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This book lays the mathematical foundations to General Relativity (GR) and
presents the majestic grandeur and essence of the theory in a new and con-
temporary style. My fascination with the ideas of the theory date back to high
school when I gained substantial knowledge from books and Youtube videos.
As an undergraduate, I wanted to get rid of the pop-science noise and formally
study the theory. As all beginners do, I too faced difficulty understanding the
mathematics which would often lead to me giving up pursuing further into
the physics. Although there are books which lay strong mathematical founda-
tions, they often overwhelm a beginner. I eventually found out that it was one’s
imaginative thinking that enables them to understand deeply and appreciate
theories such as GR and using this approach I mastered the basics so much
so that I could conduct two summer schools teaching GR to highly-motivated
undergraduates. It is these schools that encouraged me to write a book, a book
in which I can communicate deep ideas in a contemporary style.

The summer schools usually consisted of about two complete weeks of the
math required for formally studying and understanding the language of GR.
A strong foundation in differential geometry was essential for understanding
the concepts with ease although I did not give as much importance to differ-
ential topology as was required. I strongly believed that mastery of the index
notation and the chain rule almost suffices because any serious student who
aspires for a future in theoretical physics should be continually puzzled by
the physics but not at all by the math. But beyond a point, math becomes a
necessity rather than a requirement, it is necessary for someone interested in
learning the theory with rigor for only when we truly have strong foundations
will we be able to develop a holistic understanding of the subject. Almost an
entire week was dedicated to the field equations of Einstein, we derived the
equations and studied their properties from scratch. A similar approach was
taken to the study of the Schwarzschild solution. The summer schools were
long and an experience to remember, we spent five to six hours a day for five
days a week and the entire course lasted for about six weeks. Now, that’s ap-
proximately 150− 180 hours of content. The first chapter can be taught with
two to three lectures per section and as for the rest of the book, each section
would take up an entire lecture.

I have dedicated a quarter of the second chapter to laying foundations in Clas-
sical Mechanics (CM). This was done since most of the students who attended
the summer schools knew CM but not to the precision required. Although it
is a section that you can skip if you know the topic, I would advise you to
go through it since it is constructed in a manner that is relevant to the fu-
ture topics of the same chapter. The second chapter also consists of an entire
section on Noether’s theorem and its significance in GR, a section I person-
ally enjoyed writing. I have consciously avoided discussions on topics such as
the Kerr metric, the interior solution, the Oppenheimer-Synder collapse, and
gravitational radiation since these are fairly advanced topics (from a physics
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point of view) for beginners. The book is written for beginners to obtain an ad-
vanced understanding of preliminary concepts with strong basics rather than
obtain knowledge of advanced concepts with minimal basics. A quick note on
the sign convention: I have used both (− + ++) and (+ − −−) metric signa-
tures not to confuse the readers but to make them comfortable with the two
approaches. An entire chapter has been dedicated to the study of embedding
in N -dimensions, embedding diagrams and topics such as the Fujitani-Ikeda-
Matsumoto embedding and the Schwarzschild-Tangherlini metric have been
discussed in great mathematical detail. Chapter six is quite ambitious in both
the concepts it covers and the type of approach taken, it introduces one to
some of the advanced concepts of gravitational physics with the mathematical
knowledge acquired in the previous five chapters.

On the whole, the aim of this book is to present with precision, but as in-
tuitively as possible, the foundations and main consequences of GR and it is
written for students of physics interested in exact mathematical formulations or
for students of mathematics interested in intuitive understanding of physics—
or indeed for anyone with a scientific mind irrespective of your educational
field. The mathematical level of the six chapters of the book is that of under-
graduates of mathematics or physics. The book assumes the reader to possess
a fair knowledge of Set theory, Special Relativity and Electromagnetism and
aims at communicating the concepts as intuitively as possible, constantly pro-
moting the avant-garde and consciously avoiding the vicissitudes one faces in
the conventionalist approach to physics and the labyrinthine choice of words
in archaic texts.

I would like to thank Poojana Prasanna for her ideas, the truly original il-
lustrations and for bearing my long conversations; my friends Sujan Kumar S
and Vignesh T for their constructive criticism, for agreeing to edit the book
and for pointing out potentially embarrassing mistakes; the students of the En-
tropi Gravitational Summer School of ′18- Tarun S R, Thejas Bhat, Anagha
M, Pradyot Samartha and Mukund Balasubramanian-for accepting me as their
teacher, for taking up the demanding course and providing honest reviews of
my lectures which have shaped up this book; and Nishanth Shetty for his deep
insights and honest reviews.

Naveen Balaji U S
January 2019
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1

Essential mathematics

This chapter builds on the basic mathematical concepts required to under-
stand Einstein’s General Relativity. This chapter lays strong foundations of
the study and physics on manifolds, tensors, and also contains a survey of the
basic definitions of Riemannian and Lorentzian differential geometry that are
necessary in General Relativity.

1.1 Manifolds: A Pedestrian Approach

Imagine that your car’s tyres record of all the information regarding where you
had been, have been and will be going, all the events that had happened on
the road is recorded and stored in each thread of the tyre, and since you are
unsure of the events of the future, making assumptions that the tyres never
wear out (no matter what happens to it and lasts forever) and that they are
super-elastic, we can safely assume that the tyres would possess infinite number
of threads. One can access the information stored in each thread to check for
the type of terrain the tyre has travelled upon, and the shapes of the localized
deformations it had experienced. If there are infinite number of terrains, each
unique (i.e. different from each other), upon which the tyres have travelled
then there are an infinite number of deformation shapes (created on the tyres
during travel). This is shown in figure 1.1

Hence, we can satisfactorily say that all the deformation shapes, although
unique, are after all nothing but mere closed geometric figures. Now, if we
randomly pick two tyres and name them A and B, we can find the set of
deformations they have experienced and since the terrains are unique at each
point and an infinite number of events have occurred, chances are that the sets
of deformations of tyre A around an arbitrary point, p, are completely different
from those of tyre B, around an arbitrary point, q. The deeper picture here is
that although the set of deformations are different, we can perform few oper-
ations (strictly mathematical) in order to make the deformations look similar.
Hence, let us propose the following method- For every deformation in tyre A
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tyre

thread

deformation

Fig. 1.1. A visual representation of the analogy presented in this chapter. The
bottom figure shows the different deformation shapes created on the tyre surface
that are stored in the threads along with the information of the type of terrain in
which the deformation occurred.
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there is another in B which has a very close resemblance, at the same time,
for every deformation in A there are multiple other deformations in B since
all of them after all fall under the category of closed figures. The converse of
the above statements is also true (i.e. from tyre B to A). Let’s recap before
concluding, we picked two tyres at random and named them A and B. We
observed that not only are the sets deformations around arbitrary points on
the tyres not the same, but also that the deformations among the tyres had
resemblances. At the end of the day, both the tyres had deformations which
were nothing but closed shapes.

Alright then, let’s conclude! A manifold is similar to our tyres, at localized
points it represents Euclidean space just like how there were closed geomet-
ric deformations on localized points of the curved tyres, but ultimately it is
nothing but a topological space because all deformations, although unique are
nothing but closed shapes! More specifically a manifold is one in which at each
point, has a neighbourhood which is homeomorphic to the Euclidean space.
The deformations of the tyres could be made to look similar using the method
I proposed, remember? When we say that for every deformation in tyre A
there is another in B which has a very close resemblance, what it mathemat-
ically means is that every deformation in A has a one-to-one connection to
another deformation in B. When we say that for every deformation in A there
are multiple other, topologically similar deformations in B, it mathematically
translates to stating that every deformation in A is connected onto multiple
others in B. Since our deformations have both one-to-one and onto connec-
tions, mathematically we call them to be bijective. Do not forget that this
bijective display of behaviour is limited only to the deformations in A, the
converse is also true. In mathematics, there is a name assigned to the method
we proposed- homeomorphism . If you still crave for a more formal definition,
here it goes: Suppose f : A → B is a bijective (one-to-one and onto) function
between topological spaces A and B. Since f is bijective, the inverse f−1 exists.
If both f−1 and f are continuous functions, then f is called a homeomorphism.
Since the topological spaces A and B are homeomorphic, we denote them by
the following: A ∼= B.

Since we are comfortable with the meaning of a manifold, let us go a bit deeper.
We observed that the set of all deformations around an arbitrary point p on
tyre A was not similar to that around point q on tyre B, in other words, the
sets of deformations around localized points p and q are non-interfering. Also,
in collection of the deformations of all tyres, there are many which might be-
long to tyre B. Mathematically, this is called an open set. In topology, the car
is defined to be the entire set C and the tyres A,B,C,and D are its subsets, C
is an open set if it is in a subset. Hence, we can distinguish the sets of deforma-
tions around the points p and q by two non-interfering open sets, this property
is called Hausdorff. Moreover, each tyre comes with a family of deformations,
each which are unique and universally belong to the entire set C and are home-
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(p) (q)

x(p)

x(q)

Fig. 1.2. Consider the immediate neighbourhoods of the deformation points p and
q in tyres A and B. The deformation at point p in A has a one-to-one connection to
another deformation point q in B and it has an onto connection to multiple others in
the neighbourhood of q, i.e., in x(q). The continuous and invertible function f that
maps points in A to B, i.e., f : A→ B, is called a homeomorphism.

omorphic to other deformations in different tyres and hence to the whole set
of deformations. Thus, these deformation families constitute the entire set C,
i.e., C = ∪ανα , where να is a subset (may be A,B,C or D depending upon α)
and the homeomorphisms are depicted using maps, φα : να → R

n, where R
n

is the set of all Euclidean closed geometries in a Euclidean space of dimension
n. If the above conditions are satisfied, i.e. if a topological space is Hausdorff,
and comes with a family {(να, Φα)} with set να being a subset of an open set
C and homeomorphisms Φα : να → R

n such that C = ∪ανα , we call such a
topological space C to be a n-dimensional smooth manifold. The pairs (να, Φα)
are called charts, the family {(να, Φα)} is called an atlas, and Φα is called a
coordinate function.

In topology smooth corresponds to differentiable, and if our manifold has the
metric signature, (− + + +), we refer to it as a Lorentzian manifold (C, g),
where C is our topological manifold and g is the metric tensor. A Lorentzian
manifold is a type of pseudo-Riemannian manifold (C, g) which is a differen-
tiable manifold C equipped with a non-degenerate, smooth, and symmetric
metric tensor g. Spacetime is mathematically defined as a four-dimensional,
smooth, connected Lorentzian manifold (C, g). Hence, if our car is a smooth, 4-
D Lorentzian manifold then each localized deformation’s frame of reference on
this manifold is represented using coordinate charts. We adopt a more formal
and mathematically rigorous, but intuitive approach to differential topology
in the next section.
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1.2 Manifolds: The One With The Rigorous Approach

Gravitational physics done in spacetime focuses on topological spaces (M, Ψ)
that can be charted similar to how the surface of the Earth can be charted on
an atlas. Thus, a topological space (M, Ψ) is known as a n-dimensional topo-
logical manifold if for all points d which belongs to the manifold M there not
only exists an open set V in the topology Ψ , which contains the point d, but
also exists an entire map z that takes every point in the set V to a subset in
R
n in an invertible, one-to-one manner which in both directions is continuous.

Representing this mathematically we write

∀d ∈ M : ∃V ∈ ψ : ∃z : V → z(V ) ⊆ R
n, (1.1)

where z(V ) is the image of the domain under the chart z. Note that this
mapping of the point is done in such a way that:
1. z is invertible, i.e., there exists a map z−1 such that: z−1 : z(V ) → V ,
2. z is continuous, and
3. z−1 is continuous.

1.2.1 Chart

Going back to the car analogy, we observe that the tyre of the car is actually
a torus (the shape of a doughnut). We can claim that this tyre surface is the
set M which is equipped with some topology Ψ in R3, i.e., M ⊆ R

3 (M is
a subset of R3 equipped with a topology Ψ). Now, since the tyre is elastic, it
deforms at points when it encounters rocks on the terrain. For a deformation
point p, there exists an open subset V (which is its immediate neighbourhood
and whose boundary is decided based on to what extent the neighbourhood
is affected due to the rock encounter), and there exists a map z which maps
the deformation point p and every point in its neighbourhood (i.e., in its open
subset V ), to some part of R2. This mapping done is bijective and generates
an open region in the mapped part of R2, which is nothing but a set of real
numbers. Mathematically, the previous statement is expressed as follows

R
2 = R× R = {(x, y)|x, y ∈ R}. (1.2)

Say the deformation p occurred due to a rock R1, then we can say that the
position of the deformation made by the rock R1 in M ⊆ R

3 is at z(p) ⊆ R
2,

which contains two components: z(p) = (z1(p), z2(p)). What this means is
that the position of the deformation of the rock R1 on the three-dimensional
surface of the tyre is mapped to a two-dimensional region and identified using
two coordinates z1(p) and z2(p). The pair (V, z) is called a chart (see figure
1.3), where V is the boundary of the deformation effect of the rock in R3,
and z(V ) is its image existing in R

2. The whole tyre is covered by charts that
contain deformation points. Thus, for every point on the manifold, there exists
a chart that contains the point, and the topological space (M, Ψ) is called a
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two-dimensional topological manifold.

Fig. 1.3. Chart (V, z). All points in the open set V present in the manifold M
equipped with a topology Ψ (which is similar to that of a double doughnut) are
mapped to z(V ) by map z.

1.2.2 Atlas

(V, z) is a chart of (M, Ψ.) This manifold that contains a collection charts that
can be classified under a set A which mathematically is

A = {(Vρ, zρ)|ρ ∈ I} , (1.3)

where ρ is a label which belongs to some arbitrary index set I, is called an
atlas of (M, Ψ). In other words, the atlas comprises of a family of charts. The
existence of the atlas A is subject to the condition that the union of all the
charts domains must reproduce the original surface M, i.e.,

M = ∪α∈IVα. (1.4)

What this means is that if we take all the images z(Vα) of all the open sets
Vα existing in R

2 and stitch them together, we must be able to reproduce the
surface of the tyre again. The topological space M is said to be paracompact
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if for every atlas A = {(Vρ, zρ)|ρ ∈ I} there exists a locally finite atlas B =
{(Vσ, zσ)|σ ∈ I} with each open set Uσ contained in some Vρ.

1.2.3 Chart and Coordinate Maps

In general, for a n-dimensional topological manifold the function

z : V → z(V ) ⊆ R
n, (1.5)

is called a chart map. It is important to note that Rn = R×R× ... is the set of
n-tuples, thus, the image of a deformation point in R

n is represented using the
coordinates z(p) = (z1(p), z2(p), ..., zn(p)), where zj is a map which takes a
point in V and maps it to R (a real number), i.e., zj : V → R for j = 1, 2, ..., n.
A mathematical picture of this is as follows

z : V → R
n =







z1 : V → R

...
zn : V → R







= z : V → R
n =

n∑

j=1

zj , (1.6)

where the individual charts zj are called coordinate maps. What this means
is that the deformation point p(∈ V ) has its first coordinate at z1(p) present
in the region z(V ) of the chart (V, z), its second coordinate at z2(p) present in
the region z(V ) of the chart (V, z), and so on.

1.2.4 Chart Transition Maps

Consider two charts (V, z) and (U,w), with overlapping regions on the surface
M, equipped with a topology Ψ . Let the tyre encounter an arbitrary but small
distribution of rocks (of the same shape and mass), the deformation points are
all alike and exist within a region on the tyre. Let’s call this as the deformation
region. Consider the points to the deformation region’s immediate right and
immediate left. When the tyre encounters the rock distribution, the regions to
the left and right are affected to some extent (whose boundary is set based on
the magnitude of deformation). Let the open set of the left region containing
the set of affected points be V and let the open set of the right region con-
taining the set of affected points be U . Thus, we can conclude that the open
sets contain a non-empty overlap (which is the deformation region itself), i.e.,
V ∩U 6= ∅. We know that V comes with a chart map z that takes any point in
V and maps it to some region in R

n, i.e., z : V → z(V ) ⊆ R
n, and U contains

with a chart map w that takes any point in U and maps it to some other region
in R

n, i.e., w : U → w(U) ⊆ R
n. Now a deformation point d present in the

deformation region (which is the intersection of V and U) can be mapped to
two regions of Rn using the chart maps z and w. Similarly, we can map all the
points in the deformation region (V ∩ U) into z(V ) and w(U) via chart maps
z and w to obtain regions z(V ∩ U) and w(V ∩ U) in R

n. What this implies
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is that a point d in the deformation region (V ∩ U) is mapped to two points
in the regions z(V ∩ U) and w(V ∩ U) in R

n. A natural question that arises
is- how are these two points related? Let the mapped point of d in z(V ∩ U)
be d′, since we know that z is invertible we use this property to define d′′, the
mapped point of d in w(V ∩ U) as follows

d′′ = w(z−1(d′)) = w ◦ z−1(d′). (1.7)

Thus, w ◦ z−1 acts as a chart map which maps points of z(V ∩ U) existing in
R
n to w(V ∩ U) existing in R

n. Formally, this is known as a chart transition
map. Chart transition maps contain the information of how to stitch together
all the charts of an atlas. See figure 1.4 for a visualization of the mathematical
concept.

Fig. 1.4. Chart transition maps

Consider the tyre again of surface M equipped with a topology Ψ , now we
specify that it is the Euclidean space of n-dimensions, Rn. Rn is nothing but
the set of all n-tuples (x1, x2, ..., xn), with −∞ < xj < ∞. Let R

n

2 be the
lower half of R

n, i.e., the lower half of the tyre for which x1 ≤ 0. Let p be
the point existing on the lower half of the tyre and let V be the open set in
which it is contained. The map z of the open set V ⊂ R

n (in R
n

2 ) to the open

set V ′ ⊂ R
m (in R

m

2 ) is said to be of class Ck if the coordinates of the im-
age point z(p) = (z1(p), z2(p), ..., zm(p)) = (x′1, x′2, ..., x′m) in V ′ are k-times
continuously differentiable functions (which refers to the existence of the kth

derivative which is continuous) of the coordinates (x1, x2, ..., xn) of the point
p in the open set V on the tyre. A map is called C∞ if it is Ck for all k ≥ 0
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and C0 if it is a continuous.

A Ck n-dimensional manifold M is a set M together with a Ck atlas
A = {(Vρ, zρ)|ρ ∈ I} where Vρ are subsets of M and zρ : Vρ → zρ(Vρ) ⊆ R

n

are the one-to-one maps such that all the open sets Vρ cover M. If there exists
a non-empty overlap between two open sets Vρ (with map zρ) and Uσ (with
map wσ), i.e., Vρ∩Uσ 6= ∅, then the map zρ ◦w−1σ : wσ(Vσ∩Uσ) → zρ(Vρ∩Uσ)
is a Ck map of an open subset of Rn to an open subset of Rn.

1.2.5 Homeomorphism and Diffeomorphism

Let the images of V and U existing in R
n be v and u, i.e., let z(V ) = v, and

w(U) = u, and as stated previously, these are open sets since the chart maps
are invertible. A mapping between the open sets of Rn, f : v → u, is called a
homeomorphism if it is bijective and if f and its inverse f−1 are continuous.
A differential homeomorphism is called a diffeomorphism. Analogous to how
a homeomorphism is a bijection that is continuous and also possesses a con-
tinuous inverse, a diffeomorphism is a bijection which is differentiable with a
differentiable inverse, i.e., if v and u are connected open subsets of R

n such
that u is simply connected, a differentiable map f : v → u is a diffeomorphism
if the differential Dfp : Rn → R

n is bijective at each point p in v. Another
way to put this is to state that a mapping f between open sets of Rn : v → u
is called a diffeomorphism if it is bijective and if f and its inverse mapping
f−1 are differentiable. Hence, every diffeomorphism is a homeomorphism, but
not vice-versa. Generally, a bijective mapping is a Ck diffeomorphism if f and
f−1 are of class Ck (see Table 1.1). Thus, the map z from M to M′ is said
to be a Ck diffeomorphism if it is a one-one Ck map and the inverse z−1 is a
Ck map from M′ to M. We observed that the set of all deformations around
an arbitrary point p on tyre A was not similar to that around point q on tyre
B, in other words, the sets of deformations around localized points p and q
are non-interfering. Also, in collection of the deformations of all tyres, there
are many which might belong to tyre B. Consider a curve η present on the
manifold M. This curve η can be called k-times continuously differentiable if
there exists a Ck atlas.

Once you are comfortable with the Ck classes, then, another definition to
diffeomorphisms can be adopted. Two manifolds M, N are said to be diffeo-
morphic if there exists a homeomorphism f : M → N such that f is a C∞

function with a C∞ inverse. f is called a diffeomorphism.

Mathematically, we know that this is called an open set. In topology, the
car is defined to be the entire set C and the tyres A,B,C, and D are its sub-
sets, C is an open set if it is in a subset. Hence, we can distinguish the sets of
deformations around the points p and q by two non-interfering open sets, this
property is called Hausdorff. Thus, in short, a topological space M is said to
be a Hausdorff space if for two points a and b in M, there exists disjoint open
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Atlas Properties

C0 C0 (Rn → R
n) are continuous maps

C1 C1 (Rn → R
n) are the maps that are once differentiable and continuous

Ck Ck (Rn → R
n) are the maps that are k-times continuously differentiable

Dk Dk (Rn → R
n) are the maps that are k-times differentiable but are not continuous

C∞ C∞ (Rn → R
n) are the maps that are many-times continuously differentiable

C
′∞

C
′∞

(Rn → R
n) are the maps that are many-times continuously complex differentiable

Cω Cω are the maps that can be Taylor expanded

Table 1.1. This table depicts the properties of class k atlases. C
′∞

this is valid
only for even dimensional manifolds under the condition that the chart maps satisfy
the Cauchy-Riemann equations. Cω stands for analytic; a function f : Rn → R is
analytic at p ∈ R

n if f can be expressed as a power series in the (xj − pj) which
converges in some neighbourhood of p.

sets V and U in M such that a ∈ V and b ∈ V . This condition is sometimes
called the Hausdorff separation axiom (see figure 1.5).

V

U

M

a
b

V   U= Ø

Fig. 1.5. Hausdorff separation axiom
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Moreover, each tyre comes with a family of deformations, each which are
unique and universally belong to the entire set M and are homeomorphic
to other deformations in different tyres and hence to the whole set of defor-
mations. Thus, these deformation families constitute the entire set M, i.e.,
M = ∪ρ∈IVρ, where Vρ is a subset (may be A,B,C or D) and the homeo-
morphisms are depicted using maps, zρ : Vρ → zVρ ⊆ R

n, where R
n is the

set of all Euclidean closed geometries in a Euclidean space of dimension n. If
the above conditions are satisfied, i.e. if a topological space is Hausdorff, and
comes with a family {(Vρ, zρ)|ρ ∈ I} with set Vρ being a subset of an open set
M and homeomorphisms zρ : Vρ → z(Vρ) ⊆ R

n such that M = ∪ρ∈IVρ, we
call such a topological space M to be a n-dimensional smooth manifold. All
manifolds considered are assumed to paracompact, connected C∞ Hausdorff
manifolds without boundary.

1.2.6 Differential Manifold

Knowing the concept of a diffeomorphism, we can now reframe the concept of a
topological manifold. An atlas bequeaths M with the structure of a topological
manifold, of dimension n, if the mappings wσ ◦ z−1ρ are homeomorphisms (i.e.,
continuous bijections) between open sets of Rn, namely between zρ(Vρ ∩ Uσ)
and wσ (Vρ ∩ Uσ). If these mappings are diffeomorphisms, then the manifold
can be called a differential manifold. Generally, the manifold is a differential
manifold of class Ck if these mapping are Ck diffeomorphisms. Thus, the term
smooth means that a class Ck with k large enough (in particular k = ∞). A
differential manifold (or a smooth manifold) is often written as a C∞ mani-
fold. Thus, we can define a C∞ manifold as to be a pair (M, A), where A is a
maximal atlas for M.

Consider two C∞ manifolds, (R, V ) and (R, U). These manifolds are called
isomorphic if there exists an bijective (one-to-one and onto) function f : R →
R such that p ∈ V if and only if p ◦ f ∈ U . Two C∞ manifolds (M, A) and
(M′

, B) are called diffeomorphic if there is a bijective function f : M → M′

such that p ∈ B if and only if p ◦ f ∈ A. Few books refer to the atlas for M as
the differential structure for M.

1.2.7 Tangent Space and Tangent Bundle

We take the tyre again and connect all the points across the threads which ap-
pear to possesses information regarding the deformations caused to the tyre.
We connect the points (or events) with a continuous and smooth curve P .
Upon examination, we observe that events on the curve occur at regular in-
tervals (assumption made for simplicity) and using this fact we parameterize
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the curve in terms of χ. Hence the parameterized curve takes the form of dP
dχ .

Consider the very first event on the tyre Q and the very last event R. If the
points were present within the same thread, then the curve P (χ) would actu-
ally be the straight line described by the equation- P (χ) = X+χ(R−Q). The
derivative of P (χ) can be written as follows

d

dχ
(X + χ(R−Q)) = R − Q = vQRvQRvQRvQR =

(

dP
dχ

)

χ
= 0(1.8)

This is defined to be a tangent vector. More formally, a tangent vector v to
the differential manifold M at a point p ∈ M is defined as (Vρ, zρ, vzρ), where
(Vρ, zρ) are charts which contain p and vzρ = vjzρ , j = 1, 2, ..., n are vectors in
R
n. What is more interesting is the resting place of this vector. This tangent

vector does not lie on the manifold, i.e., it does not share the same home as
that of the cure P (χ), rather it lies in a so called tangent space (see figure ??)
which touches or makes contact with the manifold only at P (χ = a), the point
where dP

dχ was evaluated. Imagine that we take different colours of moulding

clay and press them against the tyre, starting at specific points (events). Thus,
all the tangent vectors of every event will be contained in specific bits of clay.
Now, mould all these pieces of clay onto a single, larger, and continuous piece
of clay. This is the tangent space which is a plane in which all the tangent
vectors to all events are contained such that the plane is tangent to the tyre
at every point.

Fig. 1.6. The points p, p′ and p′′ lie in the tangent spaces TpM, Tp′M and Tp′′M
respectively, where M is a manifold equipped with a topology Ψ (that of a tyre).

All the tangent vectors at the point p constitute a tangent space (which is a
vector space) to Mn at the point p. This tangent space is denoted by TpMn

or simply a Tp (Mn). A tangent bundle is defined as the set of the pairs of
the points and the tangent vector of that point, i.e., (p, vp), where p ∈ Mn
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(point present in the n-dimensional manifold) and vp ∈ TpMn (tangent vector
contained in the tangent space of the n-dimensional manifold), denoted by
TMn.

1.2.8 Immersions and Embeddings

An immersion is defined to be the function between differential manifolds
whose derivative is everywhere injective (one-to-one), i.e., the function h :
M → M′

is called an immersion between M and M′

(differential manifolds)
if Dph : TpM → Tf(p)N is an injective function at every point p of M . In
other words, an immersion simply means that the tangent spaces are mapped
injectively, i.e., the map described above is injective.
Consider the map z from a Ck n-dimensional manifold M to a Cl o-dimensional
manifold N . This map is called a Cr map (r ≤ k, r ≤ l) if, for the coordinates
of the image point z(p) in N are Cr functions of the coordinates of p in M.
A Cr map z (r ≥ 0) is called an immersion if it and its inverse are Cr maps,
i.e., if for each point p ∈ M there exists an open set V such that the inverse
map z−1 restricted to the image of the domain z(V ).

An immersion is called an embedding if it is a homeomorphism onto its image
in the topology Ψ of a differentiable manifold M. It is important to note that
all embeddings are one-to-one immersions, however, the converse is not true.

1.2.9 Pseudo-Riemannian metrics

A metric g on a manifold M which is a symmetric covariant 2-tensor field is
called a pseudo-Riemannian metric if the determinant |g| with elements gαβ ,
whose quadratic form it defines on contravariant vectors, g(A,B), given in lo-
cal charts by gαβA

αBβ , does not vanish in any chart, i.e., it is non-degenerate.
This definition is independent of the choice of charts because under a change
of local coordinates (x′m) → (xm) it holds that

|g| = |g′|dx
′

dx
. (1.9)

(M, g) is a diffeomorphism f which leaves g invariant, i.e., f∗g = g. Two
pseudo-Riemannian manifolds (M, g) and (M′, g′) are called locally isometric
if there exists a differential mapping f such that any point p ∈ M admits a
neighbourhood M, and f(p) a neighbourhood M′ with (M, g) and (M′, g′)
isometric. It is important to note that pseudo-Riemannian manifolds can have
different topologies although they possess the same dimension. Flat space is
defined as a pseudo-Riemannian manifold is isometric with a pseudo-Euclidean
space.



14 1 Essential mathematics

1.2.10 Lorentzian Manifold

In topology smooth corresponds to differentiable, and if our manifold has the
metric signature, (− + + +), we refer to it as a Lorentzian manifold (M, g),
where M is our topological manifold and g is the metric tensor. A Lorentzian
manifold is a type of pseudo-Riemannian manifold (M, g) which is a differen-
tiable manifold M equipped with a non-degenerate, smooth, and symmetric
metric tensor g.

Spacetime is mathematically defined as a four-dimensional, smooth, connected
Lorentzian manifold (M, g). Here M is a connected four-dimensional Haus-
droff C∞ manifold and g is a Lorentz metric on M. Hence, if our car is a
smooth, 4-D Lorentzian manifold then each localized deformation’s frame of
reference on this manifold is represented using coordinate charts. Similarly, in
the spacetime manifold, the coordinate charts are used to represent observers
in reference frames. For a physicist the most preferred and useful definition is
by identifying (locally) the manifold by R

n.

1.2.11 Whitney and Nash Embedding Theorems

In short, the idea of the theorem is that any Ck≥1 atlas A of a topological
manifold contains a C∞ manifold, i.e., an atlas in which the chart transitional
maps are at least once continuously differentiable we can remove more and
more charts until we are left with a C∞ atlas. What this implies is that we
may always consider C∞ manifolds (called smooth manifolds) from now on.
Let’s formulate this mathematically. Let M be a smooth topological mani-
fold of dimension n. The theorem roughly states that if Mn is a compact C∞

manifold, then there is an embedding z : M → R
n for some N . The strongest

version of the theorem is given below (without proof).

Theorem 1.1. Any smooth manifold of dimension n can be immersed into
R

2n−1 and embedded into R
2n

Nash embedding theorem states that every Riemannian manifold can be iso-
metrically embedded into some Euclidean space. Why this is interesting is
because it mentions isometric embedding, i.e. preserving the length of curves
in the manifold, whereas the Whitney theorem does not. According to this
theorem 4-dimensional curved spacetime can be isometrically embedded in a
flat spacetime of 39 dimensions or less1.

1 For the mathematically inclined see: Nash, J. (1954). C1 isometric imbeddings.
Annals of mathematics, 383-396, and Nash, J. (1956). The imbedding problem for
Riemannian manifolds. Annals of mathematics, 20-63.
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1.2.12 Einsteinian Spacetime

A metric is called Riemannian if it’s quadratic form, g, is positive definite.
A pseudo-Riemannian metric g can be called a Lorentzian metric if the sign
of the g is (− + ... +). A spacetime of General Relativity is a pair (M, g),
where M is a differentiable manifold and g is a Lorentzian metric on M. Such
a spacetime is called Einsteinian if there exists a physically meaningful stress-
energy tensor (of rank two) T such that the following equations are satisfied
on the differentiable manifold M: Einstein(g) = T , and ∇T = 0. 2.

1.3 Differential Forms and Tensors

1.3.1 1-Forms

A 1-form α is a linear, real valued function of vectors. Consider a point p
present in the manifold M equipped with a topology Ψ . If R is a vector at
p, the number into which the 1-form maps R is expressed as 〈α,R〉. This is
nothing but the value of α on R or simply, the contraction of α on R. For the
sake of simplicity, let’s call this the carrot operator and refer to it’s operation
as carroting3. In other words, we can define a 1-form α at a point p in (M, Ψ)
as a linear, real valued function on the tangent space Tp of the vectors at p.
The condition of linearity allows us to arrive at two conclusions, the first one
is to realize the mathematical property of linearity, and the other is to form a
visual understanding via surfaces.

Linearity implies the following

〈α, aR+ bS〉 = a 〈α,R〉+ b 〈α,S〉 (1.10)

The tangent space Tp, for a given 1-form α, defined by 〈α,R〉 = const, is lin-
ear. We can imagine a 1-form as a set of planes in the tangent space. Imagine
that each of these planes had a high-sensitive vector-alarm and as a vector
pierces through a plane, the alarm would go off (which will be recorded). Also
let’s make the assumption that each alarm makes a unique sound (thus, en-
abling us to distinguish the panes). When 〈α,R〉 = 0, the vector (or more
precisely, it’s tip) touches the first plane and we hear the first alarm. Similarly
when 〈α,R〉 = n, the vector pierces through the (n + 1)th plane and in total
we hear (n+ 1) distinct alarm sounds (see figure 1.7).

2 From Einstein’s field equations we know that the first equation corresponds to
Gµν = 8πG

c4
Tµν , and the second equation talks of the conservation of energy which

is just a consequence of Einstein’s field equations
3 The credit for naming this operator goes to my students of the Gravitational

Summer School ′18
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Fig. 1.7. Each of these planes have a high-sensitive vector-alarm and as a vector
pierces through a plane, the alarm goes off. In this figure, the vector v pierces through
the 1-form σ and 〈σ,v〉 = 4, i.e., we hear 4 distinct alarms go off.

The simplest example of a 1-form is the gradient dg of a function g. Consider
a vector u, and a curve P (η) (P (η) = ηu+ P0 which is parametrized in terms
of η), and differentiate the function g along this curve.

∂ug =

(
d

dη

)

η=0

g [P (η)] =

(
dg

dη

)

P0

(1.11)

Observe that the operators ∂u =
(
d
dη

)

η=0,P (η)
, are related, i.e., the directional

derivative and the gradient are related. Let the surfaces present in the tangent
space Tp defined for the point p in (M, Ψ) be numbered with respect to g,
(i.e., g = 1: surface one; g = 2: surface two; ...). Let the initial position of the
vector (which starts from some arbitrary surface of g) be P0. The first point of
contact of the vector with a surface would be given as 〈dg, P − P0〉, where dg
is the stack of infinitesimal surfaces present between two g-surfaces. Thus, a
generalized expression can be obtained: g(P ) = g(P0)+〈dg, P − P0〉. Since the
relation between the directional derivative and the gradient is well established,
let’s apply ∂u to g(P ) and evaluate the result at the take-off point P0.

∂ug =

〈

dg,
dP

dη

〉

= 〈dg,u〉 (1.12)

In general g(P ) will have non-linear contributions of the order O(P − P0).
Similar to how vectors possesses a basis eβ , 1-forms possess basis too. These
basis 1-forms are denoted by ωα.
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Lemma 1.2. If the basis 1-forms set defined by ωα and the basis vectors de-
fined by eβ are duals of each other, then 〈ωα, eβ〉 = δαβ

This lemma enables us to expand any arbitrary vector and 1-form in terms of
their basis as follows: eα, u = uαeα and ρ = ρβω

β. As an example we shall
calculate the surfaces of ρ pierced by a basis vector eα.

The piercing example

Example 1.3. 〈ρ, eα〉 =
〈
ρβω

β, eα
〉
= ρβ

〈
ωβ, eα

〉
= ρβδ

β
α = ρα

Similarly, let’s calculate the carroting 〈ωα,u〉 for a vector u = eβu
β .

The carroting example

Example 1.4. 〈ωα,u〉 =
〈
ωα, eβu

β
〉
= uβ 〈ωα, eβ〉 = uα

Well, what’s the bigger picture here? Go on and multiply the piercing ex-
ample with uα, the carroting example with ρα and add both the equations to
obtain the following result.

[〈ρ, eα〉uα + 〈ωα,u〉 ρα]

[〈ρ, eαuα〉+ 〈ραωα,u〉] = ραu
α + ραu

α

[〈ρ,u〉+ 〈ρ,u〉] = 2ραu
α

〈ρ,u〉 = ραu
α

(1.13)

Thus, we have obtained a way of using components to calculate the coordinate-
independent value of 〈ρ,u〉. Let’s discuss a bit more on what the dual is (from
the lemma). Since we can express the the 1-form α at a point p in terms of
it’s basis α = ωjαj, the set of all 1-forms at p forms an n-dimensional vector
space at p. This vector space is called the dual space of the tangent space Tp
and is written as ∗Tp. Let’s revise the lemma a bit and re-state it as follows

Lemma 1.5. For any 1-form α ∈ ∗Tp and any vector R ∈ Tp, we can express
the carroting 〈α,R〉 in terms of the corresponding dual basis ωj and ej by re-
lations:

〈α,R〉 =
〈
αjω

j,Rjej
〉
= αjR

j

Each function g on the manifold M defines a 1-form at a point p. This follows
a rule which states that for each vector R, 〈dg,R〉 = Rg. Here, dg is called
the differential of g.
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1.3.2 Two Roads to Tensors: Road for Pedestrians

A tensor is like a slot machine (see figure 1.8), not just any ordinary one but
rather a very modified machine. The generalized tensor slot machine has two
slots (instead of one in the real machine) and two sub-slots. These slots are
specific in what they accept. There are n first sub-slots and it accepts only
1-forms while there are m second sub-slots which accepts only vectors. Thus,
we can mathematically represent a tensor slot machine S as follows

S(α,β,γ, ..., ζ
︸ ︷︷ ︸

n 1−forms

,u,v, ...,a
︸ ︷︷ ︸

m vectors

) (1.14)

This S tensor is said to be of rank

(
n
m

)

. It is important to note that most

of the tensors do not remain the same if two slots of either 1-forms or vectors
or both are interchanged, i.e., S(α,β,v,u) 6= S(β,α,u,v). Consider the fol-
lowing example which demonstrates how to work with tensors.

Example 1.6. Let F be a tensor of rank

(
3
2

)

. Define the tensor by inserting

the basis vectors of the 1-forms and the vectors as follows:

Fαβγ
δη ≡ F

(
ωα,ωβ,ωγ , eδ, eη

)
(1.15)

Now, the output can be calculated for the given input as follows

F (σ,ρ,ν,u,v) = F
(
σαω

α, ρβω
γ , νγω

γ , uδeδ, v
ηeη
)

σαρβνγu
δvηF

(
ωα,ωβ,ωγ , eδ, eη

)
= Fαβγ

δη σαρβνγu
δvη

(1.16)

1.3.3 Two Roads to Tensors: Road for the Mathematically Inclined

We can form a Cartesian product from the tangent space Tp of vectors at point
p and from the tangent space’s dual ∗Tp of 1-forms at p as follows (The dual
space ∗Tp is often called the cotangent space.)

Πn
m = ∗Tp

︸︷︷︸
×∗Tp × ...× ∗Tpn factors

× Tp × Tp × ...× Tp
︸ ︷︷ ︸

m factors

(1.17)

this is the ordered set of 1-forms and vectors (α,β,γ, ..., ζ,u,v, ...,a). A tensor

of rank

(
n
m

)

at a point p is a function on Πn
m which is linear in each argu-

ment, i.e., if T is a tensor of rank

(
n
m

)

at p, the number into which T maps
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Fig. 1.8. The slot machine representation of tensors. The machine has n sub-slots
accepting 1-forms and m sub-slots accepting vectors.
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the element (α,β,γ, ..., ζ,u,v, ...,a) of Πn
m as T (α,β,γ, ..., ζ,u,v, ...,a). The

property of linerity also applies to tensors (this is described below).

T (α,β,γ, ..., ζ, aR+ bS,u,v, ...,a)

= aT (α,β,γ, ..., ζ,R,u,v, ...,a) + bT (α,β,γ, ..., ζ,S,u,v, ...,a)
(1.18)

The space of all such tensors is called the tensor product.

Tn
m(p) = ∗Tp

︸︷︷︸
⊗∗Tp ⊗ ...⊗ ∗Tpn factors

⊗ Tp ⊗ Tp ⊗ ...⊗ Tp
︸ ︷︷ ︸

m factors

(1.19)

1.3.4 Tensor Operations: Addition

Let S and S̄ be tensors of rank

(
n
m

)

, the addition of these tensors is defined

by the following rule

(
S + S̄

)
(α,β,γ, ..., ζ,u,v, ...,a)

= S (α,β,γ, ..., ζ,u,v, ...,a) + S̄ (α,β,γ, ..., ζ,u,v, ...,a)
(1.20)

1.3.5 Tensor Operations: Multiplication

The multiplication of the same tensor S considered in the previous example
with a scalar ζ is shown below

(ξS) (α,β,γ, ..., ζ,u,v, ...,a)

= ξ × S (α,β,γ, ..., ζ,u,v, ...,a)
(1.21)

A covariant k-tensor at a point p ∈M is defined as a k-multilinear form on k
direct products of the tangent space TpM . Similarly, a contravariant k-tensor
at a point p ∈ M is defined as a k-multilinear form on k direct products of
the cotangent space ∗TpM . The tensor product S ⊗ S̄ of a r-tensor S and a
s-tensor S̄ is a (r + s)-tensor with components defined by products of com-
ponents. Consider the product of a covariant 2-tensor T and a contravariant
3-tensor T̄ . The result is a mixed 4-tensor T⊗T̄ with the following components

(
T⊗ T̄

) γδ

αβ
= TαβT̄

γδ =W γδ
αβ (1.22)

When we refer T as a r-covariant tensor and T̄ as a s-contravariant tensor it
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implies that they are elements of the tensor product of r copies of Tp and s
copies of ∗Tp. The covariant and contravariant tensors can also be defined in
terms of local coordinates as follows

W γδ
αβ =

(
∂yζ

∂xα
∂yη

∂xβ

)

︸ ︷︷ ︸

covariant part

(
∂xγ

∂yρ
∂xδ

∂yξ

)

︸ ︷︷ ︸

contravariant part

W ρξ
ζη (1.23)

Let’s generalize this and write down the local coordinate transformation of a
n-tensor.

Sα1 ... αm
β1 ... βn

(x) =
∂yµ1

∂xβ1
...
∂yµn

∂xβn
∂xα1

∂yν1
...
∂xαm

∂yνm
Sν1 ... νmµ1 ... µn (y) (1.24)

1.3.6 Tensor Operations: Contraction

Recollect the slot-machine definition of a tensor. Contraction is similar to shut-
ting off of sub-slots (which contain both 1-forms and vectors) within the two
main slots. Consider the mixed 4-tensor R = R (σ,u,v,w) which is of rank
(

1
3

)

. We can shut off sub-slots 1 and 3 to reduce the tensor to a covariant

2-tensor, say S. This operation is described below.

S(u,w) =
∑3
α=0R (ωα, u, eα, w)

S(u, v) = Sµνu
µwν = Rαµανu

µwν

Sµν = Rαµαν

(1.25)

1.3.7 Tensor Operations:Symmetrization and Antisymmetrization

If the output of a tensor is unaffected by an interchange of 2 input vectors or
1-forms, then it is called a symmetric tensor, if not then it is called an anti-
symmetric tensor.

Symmetric

T (α,β,γ) = T (β,α,γ) = T (γ,β,α) = ...

Antisymmetric

T (α,β,γ) = −T (β,α,γ) = +T (γ,β,α) = −+ ...

(1.26)
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Let F be a 2-covariant tensor. The symmetrization and antisymmetrization of
F can be represented as follows

Symmetrization: F(αβ) =
1
2 (Fαβ + Fβα) = Sαβ

Antisymmetrization: F[αβ] =
1
2 (Fαβ − Fβα) = Aαβ

(1.27)

1.3.8 Tensor Operations: Wedge Product

Given any two vectors, we can construct their bivector by wedging them. This
can also be done with 1-forms to obtain 2-forms. This concept can also be used
to construct a trivector and 3-forms.

Bivector

a ∧ b ≡ a⊗ b− b⊗ a

2-form

α ∧ β ≡ α⊗ β − β ⊗α

(1.28)

This operator is interesting geometrically as it serves as a test of coplanarity4.
Observe that the action of the wedge can be generalized- a wedge among p-
forms produces a (p+1)-form. This raises a question-what maps these p-form
fields to (p+ 1)-form fields, it this mapping linear?

1.3.9 Exterior differentiation

5 The job of linearly mapping p-form fields to (p+1)-form fields is done by the
exterior derivative d. If z : M → N is a Cr map and Λ is a Ck form field on
N , then d(z∗Λ) = z∗d(Λ). If Σ is a function on N , the function z∗Σ on M is
defined by the mapping z as he function whose value at a point p on the mani-
fold M is the value of Σ at the image of the point z(p), i.e., z∗Σ(p) = Σ(z(p)).
What this implies is that z∗ maps functions linearly from N to M, similar to
how z maps points from M to N . Now, if ζ(t) is a curve existing in M and
passing via the point p , then the image of this curve z(ζ(t)) existing in N

4 Consider 3 arbitrary vectors a, b, c. If a and b are collinear, then a = bλ. This
implies that a ∧ b = bλ ∧ b = bλ⊗ b− b⊗ bλ = 0. Now, if c is coplanar with a

and b, then c can be expressed as a linear combination (i.e., scalar multiplication
followed by vector addition) of the other two vectors, i.e., w = bλ+aǫ. What this
implies is that c ∧ a ∧ b = 0.

5 This section is an optional read. Do skip this if this is your first read.
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passes via the image point z(p). Consider a tangent vector to the image curve,
denoted by z∗

(
∂
∂t

)

ζ
|p. z∗ acts as a linear map of the tangent space Tp(M)

into the tangent space Tz(p)(N ). For each Cr function g and vector R at z(p),
R(z∗g(p)) = z∗R(f(z(p)). We can make use of this mapping z∗ : M → N
to define a linear 1-form mapping as z∗ : T ∗z(p)(N ) → T ∗p (M). This implies
that an arbitrary p-form Λ ∈ T ∗z(p) is mapped onto the p-form z∗Λ ∈ T ∗p ,

such that 〈z∗Λ,R〉p = 〈Λ, z∗R〉z(p) is true for a vector R ∈ Tp. The fact that

d(z∗Λ) = z∗d(Λ) holds is a consequence of of the previously mentioned result.

The exterior derivative acts on a function g which is merely a 0-form field to
produce a 1-form field dg. Let’s generalize this, let Λ be a p-form field defined
by Λ = Λαβ...ζdx

α ∧ dxβ ∧ ... ∧ dxζ . Now, take the exterior derivative of this
p-form field to obtain a (p+ 1)-field as follows

dΛ = dΛαβ...ζdx
α ∧ dxβ ∧ ... ∧ dxζ (1.29)

This (p+1)-field is independent of the coordinates α, β, ..., ζ = xα used in defi-
nition and to convince ourselves of this fact, consider another set of coordinates,
say the barred counterparts given by ᾱ, β̄, ..., ζ̄ = xᾱ. In these coordinates we
have Λ = Λᾱβ̄...ζ̄dx

ᾱ ∧ dxβ̄ ∧ ...∧ dxζ̄ . The components of Λᾱβ̄...ζ̄ are given by

Λᾱβ̄...ζ̄ =
∂xα

∂xᾱ
∂xβ

∂xβ̄
...
∂xζ

∂xζ̄
Λαβ...ζ (1.30)

and the new definition of dΛ in the coordinates of xᾱ is the following 6

dΛ = dΛᾱβ̄...ζ̄dx
ᾱ ∧ dxβ̄ ∧ ... ∧ dxζ̄

= d
(
∂xα

∂xᾱ
∂xβ

∂xβ̄
...∂x

ζ

∂xζ̄
Λαβ...ζ

)

dxᾱ ∧ dxβ̄ ∧ ... ∧ dxζ̄

= ∂xα

∂xᾱ
∂xβ

∂xβ̄
...∂x

ζ

∂xζ̄
dΛαβ...ζdx

ᾱ ∧ dxβ̄ ∧ ... ∧ dxζ̄

+ ∂2xα

∂xᾱ∂xχ̄
∂xβ

∂xβ̄
...∂x

ζ

∂xζ̄
dΛαβ...ζdx

χ̄ ∧ dxᾱ ∧ dxβ̄ ∧ ... ∧ dxζ̄

= dΛαβ...ζdx
α ∧ dxβ ∧ ... ∧ dxζ

(1.31)

Consider the coordinate expression for dg, dg = ∂g
∂xα dx

α, observe that6

d(dg) = ∂2g
∂xα∂xβ

dxα ∧ dxβ = 0.. This implies that for any p-form field Λ,
d(dΛ) = 0.

6 The last line was arrived at as ∂2xα

∂xᾱ∂xχ̄
is symmetric in ᾱ and χ̄, but dxχ̄ ∧ dxᾱ is

skew symmetric.
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1.3.10 General p-forms

The gradient of a scalar produces a 1-form, and the exterior derivative of this
1-form produces a 2-form, this chain continues. Thus the exterior derivative of
a (p− 1)-form produces a p-form defined as follows

Ξ =
1

p!
Ξi1 i2 ... ipdx

i1 ∧ dxi2 ∧ ... ∧ dxip (1.32)

and the exterior derivative of Ξ is defined as follows

dΞ =
1

p!

∂Ξi1 i2 ... ip

∂xi0
dxi0 ∧ dxi1 ∧ dxi2 ∧ ... ∧ dxip (1.33)

It is important to note that Ξi1 i2 ... ip is antisymmetric under a 2 index inter-
change. The definitions provided here is an alternate one to the one in which
the factor of 1

p! is not included7 A closed form is defined as a form whose dif-
ferential is zero while an exact form is defined as a form that is the differential
of an exterior form (and it’s an example of a closed form).

1.3.11 Parallel Transport and Covariant Differenriation

An ordinary differential of a vector Aµ in a direction xα is defined as follows

∂Aµ

∂xα
dxα = ∂αA

µdxα = Aµ
,α ≡ Aµ(x+ dx)−Aµ(x). (1.34)

The ordinary differentials are defined by the difference between two vectors de-
fined at two distinct points. In curved spacetime however, we need to account
for the rotations undergone by the vector as it evolves with time. Thus, we
introduce the quantity δAµ and subtract it from the ordinary differential to
obtain the covariant differential DαA

µ ≡ Aµ
;α. To observe this rotation due to

curvature, we transport the vector Aµ(x+dx) to the point x without changing
it’s direction (see figure 1.9). This is known as parallel transport.

Aµ
;α ≡ Aµ(x+ dx)− [Aµ(x) + δAµ(x)] . (1.35)

Let S be a

(
1
1

)

tensor. The covariant derivative DRS of S along a curve

P (ζ), whose tangent vector R = dP
dζ is defined as follows

DRS|P (0) = ltη→0

[
S[P (η)]IIel transported toP (0) − S[P(0)]

η

]

(1.36)

7 i.e., in accordance to this definition, a 2-form is written as dxα ∧ dxβ =
1
2

(

dxα ⊗ dxβ − dxβ ⊗ dxα
)

.
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Au(x+dx)

Au(x)
x

x+dx

Au(x+dx)

Au(x)
x

x+dx

Au

Fig. 1.9. The evolution of the vector along the curved path (L) and the parallel
transport of Aµ(x+ dx) to the point x (R)

The covariant derivative, denoted by either ∇ or D is a connection at a point p
on the manifold M which allots every vector field R at p a differential operator
DR, such that the operator maps an arbitrary Cr vector field S into a vector
field DS. Following are some of the algebraic properties of D.
1. DRS is a tensor in the argument R. For arbitrary functions g, h and con-
tinuous, once-differentiable vectors fields, i.e., a C1 vectors fields R,S,Q,
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DgR+hSQ = gDRQ+ hDSQ. (1.37)

2. DRS obeys the linearity condition.

DR (µS+ νQ) = µDRS+ νDRQ. (1.38)

3. For any two C1 vector fields of the same rank R,S

DRS−DSR = [R,S] . (1.39)

v[P(0)]

=0

=1

P[ ]

v

Fig. 1.10. Parallel transport of a vector on the parametrized curve P (ζ)

In the third property, [R,S] is called a commutator. Suppose R and S are
tangent vectors fields, then it holds that R = ∂R and S = ∂S are true (from
previous definitions). Thus, a commutator, which by itself is a tangent vector
field is defined as follows

[R,S] ≡ [∂R, ∂S] ≡ ∂R∂S − ∂S∂R. (1.40)

Here, there is a need to define the commutation coefficients of a basis as the
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concept will come handy for a future topic. For the basis vectors eα and eβ,
the commutation coefficient Cγαβ is obtained by commuting the basis vectors.
It is a tensor-like coefficient which gives the difference between partial deriva-
tives of two coordinates with respect to the other coordinate.

[eα, eβ] ≡ ∂αeβ − ∂βeα ≡ Cγαβeγ . (1.41)

If Cγαβ = 0 it is called a coordinate basis or holonomic if some Cγαβ 6= 0 then
it is called a non-coordinate basis or anholonomic.

1.3.12 Connection Coefficients: An Introduction

From the example involving parallel transportation of the vector Aµ, for a
small dx, δAµ(x) should be linear in dx and also in Aµ(x) or in other words,
it must be an output of some transformation of the vector Aµ(x) at x. This is
given below.

δAµ(x) = BµνA
ν(x). (1.42)

Here, Bµν is a matrix that transforms the vector during parallel transport.
During parallel transport, the basis vectors and the basis 1-forms would twist,
contract, expand, and turn according to the curvature, and this is quantified
by the connection coefficient. The connection coefficient is defined as follows

Γ γαβ = 〈ωγ , Deαeβ〉 = 〈ωγ , Dαeβ〉

Γ γαβ = −〈Dαω
γ , eβ〉 .

(1.43)

It is fairly easy to prove the latter equation (proof given below). The matrix
mentioned previously is defined as Bµν = −Γµναdxα. Thus, we can conclude
that the matrix accounts for all the contributions of the basis vectors and the
basis 1-forms via the connection coefficients, over a small distance dx.

Proof. To Prove that Γ γαβ = −〈Dαω
γ , eβ〉

From lemma: 〈ωγ , eβ〉 = δγβ

Dα 〈ωγ , eβ〉 = ∂eα 〈ωγ , eβ〉 = Dα

(

δγβ

)

= 0

Thus, 0 = (Dαω
γ)⊗ eβ + ωγ ⊗ (Dαeβ)

︸ ︷︷ ︸

Dα(Contraction of ωγ⊗eβ)
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0 = 〈Dαω
γ , eβ〉+ 〈ωγ , Dαeβ〉

︸ ︷︷ ︸

Contraction of [Dα(ωγ⊗eβ)]

Γ γαβ = −〈Dαω
γ , eβ〉 .

When we take the covariant derivative of a tensor, we are to differentiate
the tensor with respect to the arbitrary basis and also account for the twisting
and turning of the 1-forms and the vectors present in the tensor’s slots. Con-

sider a tensor S of rank

(
1
1

)

. Upon covariant differentiation, we obtain the

following terms.

Sβα;γ = Sβα,γ + Γ βνγS
ν
α − Γ ναγS

β
ν . (1.44)

There are three thing to note here which will help in understanding how to
take the covariant derivative for any arbitrarily ranked tensor. Firstly, it is to
be noted that a + (positive) sign is used if the index being corrected is upstairs.
In the example, an arbitrary summation index ν was used to correct β that
resided upstairs, i.e., +Γ βνγS

ν
α. The second point to be noted is the use of a −

(negative) sign. It is to be employed when the index being corrected is down-
stairs, -Γ ναγS

β
ν . Lastly, we observe that the index being corrected shifts from

the tensor S onto the connection Γ and is replaced on the tensor by a dummy
summation index ν. Let’s see a few examples to strengthen this concept. One
way to check the correctness of your answer is to check for homogeneity- check
if the indexes upstairs and downstairs are alike on either sides of the equation
(this is shown in the examples).

1. DγTαβ
︸ ︷︷ ︸

{ 1
γαβ}

=
∂Tαβ
∂xγ
︸ ︷︷ ︸

{ 1
γαβ}

−Γ ξγαTβξ
︸ ︷︷ ︸

{ ξ
γαβξ}

−Γ ξγβTαξ
︸ ︷︷ ︸

{ ξ
γαβξ}

2. DγTα
︸ ︷︷ ︸

{ 1
γα}

= Tα,γ
︸︷︷︸

{ 1
γα}

−Γ βγαTβ
︸ ︷︷ ︸

{ 1
γα}

1.3.13 Structure Coefficients

Let M be a manifold equipped with a topology. Consider the set of coordinates
{xα} =

(
x1, x2, ..., xn

)
in the chart z. Now, the coordinates follow a lemma

which states the following: ∂x
α

∂xβ
= δαβ . This lemma also implies that d2xα = 0.

For moving frames, however, the differentials of the 1-forms Ξ do not vanish,
i.e., the wedge product of two 1-forms do not yield a null result. This wedge
product produces a 2-form given by8

8 As mentioned before, in the alternate formalism the fraction 1
2

is omitted.
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dΞm ≡ −1

2
CmabΞ

a ∧ Ξb, (1.45)

where Cmab is called the structure coefficients of the frame. The structure coef-
ficient Cmab is antisymmetric in a and b.

1.3.14 Riemannian Connection

A Riemannian connection Ω is defined for a pseudo-Riemannian metric g. It is
a linear connection obeys two conditions, the covariant derivative of the metric
is zero, and the second condition requires that the second covariant derivatives
of scalar functions to commute. The second condition implies that the connec-
tion has vanishing torsion.

Theorem 1.7. The following conditions determine the Riemannian connec-
tion Ωγαβ

∂γgαβ −Ωλγβgαλ −Ωλγαgλβ = 0. (1.46)

Let h be a scalar function, the condition requires the following

Dγ∂αh−Dα∂γh = 0. (1.47)

The Riemannian connection is defined as follows

Ωγαβ ≡ Γ γαβ + gγλΩ̄αβ,λ

Ω̄αβ,λ ≡ 1
2

(

gλξC
ξ
αβ − gξβC

ξ
αλ − gαξC

ξ
βλ

)

.
(1.48)

a coordinate basis for which the structure coefficients (Cξαβ and others) are
zero, is called holonomic. A non-coordinate basis always has some non-zero
structure coefficients, and is called anholonomic. In the holonomic case, the
connection coefficients are called Christoffel symbols given by the following ex-
pression (will be proven later)

Γ γαβ ≡ 1

2
gγλ (gβλ,α + gαλ,β − gαβ,λ) . (1.49)

1.3.15 Revisiting the Metric Tensor

Using the slot machine definition of tensors, we can think of the metric ten-
sor as a slot machine with two slots which accept only vectors as inputs:
g(
︸︷︷︸

vector1

,
︸︷︷︸

vector2

). When the same vector is inserted into the slots, we get the

square of the length of the vector as the output, g(R,R) = R2. When two
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different vectors are inserted, we obtain the scalar product of the vectors as
the output. It is important to note that irrespective of the order of insertion
of the vectors, the result remains unchanged. This is show below

g(R,Q) = g(Q,R) = RQ = QR. (1.50)

The metric obeys the condition of linearity and in a specific coordinate sys-
tem, its operation on the two input vectors is given by the following bilinear
expression

g(R,Q) = gµνR
µQν . (1.51)

There exists a reason for the name metric tensor, at least for the case when
the inner product is positive definite. Consider two points, z and z +∆z, in-
finitesimally close to each other. The square of the infinitesimal distance of the
displacement vector with components ∆zm is represented as follows

(∆s)
2 ≡ gmn∆z

m∆zn. (1.52)

Now, the metric tensor, just like any other tensor, would transform under a
coordinate change as follows

gmn(x) =
∂x̄i

∂xm
∂x̄j

∂xn
gij(x̄), (1.53)

from the above transformation, it is clear that the length ∆s of the displace-
ment vector is not dependent on the choice of coordinates, rather it is depen-
dent only on the two points under consideration. This formula is nothing but
the generalization of the Pythogorean theorem of Euclidean geometry, which
states that

(∆s)
2
= ∆x2 +∆y2 +∆z2, (1.54)

the emergence of the metric tensor is the starting point of Riemanninan geome-
try. Another interesting way to look at it, and one which we will be extensively
using in future chapters, is to observe that the length of a curve P [ζ(t)] be-
tween two points ζ(t1) and ζ(t2) can be expressed as follows

s =

∫ t2

t1

[

gmn
dζm

dt

dζn

dt

] 1
2

dt. (1.55)
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Example 1.8. In this example, we demostrate a coordinate transformation for
a metric from the toroidal to the Cartesian system. Toroidal coordinates are
related to the usual Cartesian coordinates {x, y, z} of Euclidean three-space
R

3 by

x = a sinhτ
coshτ−cosσ cosφ,

y = a sinhτ
coshτ−cosσ sinφ,

z = a sinσ
coshτ−cosσ .

(1.56)

where a is a constant, σ ∈ (−π, π], τ ≥ 0, and φ ∈ [0, 2π). We restrict our
attention to the y = 0 plane and doing so we can see that φ = 0. Thus, this
makes our coordinate relations take the following form

x = a
sinhτ

coshτ − cosσ
, a

sinσ

coshτ − cosσ
. (1.57)

Now, we first find the coordinate transformation matrix Mµ
µ′ = ∂xµ/∂xµ

′

re-
lating the Cartesian coordinates {x, z} to toroidal coordinates {τ, σ} as follows

Mµ
µ′ =





∂x
∂τ

∂x
∂σ

∂z
∂τ

∂z
∂σ



 = − a

(cosσ − coshτ)
2





(cosσcoshτ − 1) sinσsinhτ

cosσsinhτ coshτsinσ



 .

(1.58)

Now, there are two ways we can find the metric line element ds2. Before ex-
ploring the two methods, let us represent the line element in the Cartesian form

ds2 = dx2 + dx2, (1.59)

where,

dx =
∂x

∂τ
dτ +

∂x

∂σ
dσ, dz =

∂z

∂τ
dτ +

∂z

∂σ
dσ. (1.60)

The first method is to directly take the squares of dx and dz and substitute
into the line element to obtain the line element in toroidal coordinates. This
is straightforward computation. The other method is motivated by the fact
that the metric tensor in Cartesian coordinates is diagonal and is equal to the
identity matrix, i.e., gµν = I. Now, in order to obtain the metric in terms of
the toroidal coordinates, we simply observe how the metric transforms under
the coordinate changes as follows (x̄ = {τ, σ} and x = {x, z})
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gµ′ν′(x̄) = gµν
∂xµ

∂x̄µ′
∂xν

∂x̄ν′
= ∂xµ

∂x̄µ′
gµν

∂xν

∂x̄ν′

⇒ a2

(cosσ−coshτ)4

(
(cosσcoshτ − 1) sinσsinhτ
cosσsinhτ coshτsinσ

)(
1 0
0 1

)(
(cosσcoshτ − 1) sinσsinhτ
cosσsinhτ coshτsinσ

)

= F





(cosσcoshτ − 1)
2
+ cosσsinσsinh2τ sinσsinhτ (coshτ (cosσ + sinσ)− 1)

cosσsinhτ (coshτ (cosσ + sinσ)− 1) sinσ
(
cosh2τsinσ + cosσsinh2τ

)



 ,

(1.61)

where F = a2 (cosσ − coshτ)
−4

. Now, to obtain the line element we simply
compute

ds2 =
(
dτ dσ

)
gµ′ν′

(
dτ
dσ

)

. (1.62)

Notice that the line element in toroidal coordinates is not diagonal anymore.

Exercise 1

Find the coordinate transformation matrix and the corresponding line element
in elliptic coordinates which are related to the Cartesian coordinates {x, y} of
Euclidean two-space R

2 by

x = a coshµ cosν, y = a sinhµ sinν,

where µ ≥ 0 and ν ∈ [0, 2π] and the same for parabolic coordinates

x = στ, y =
1

2

(
τ2 − σ2

)
.

Between these two, which has a diagonal line element?

1.3.16 Normal Coordinates

Consider the curve P (ζ) with well defined end points, say a and b, and let
Rγ be the tangent vector. The tensor S is said to be parallelly transported
along the curve P (ζ) if DS

sζ = 0. The covariant derivative of the tangent vector
can be expressed in the terms of the metric tensor as DαR

γ = gµγDαRµ. Now,

DαR
γ = Dα (g

µγRµ) = gµγDαRµ +RµDαg
µγ (1.63)

but, we know thatDαR
γ = gµγDαRµ. Hence, we conclude that RµDαg

µγ = 0.
This is not just something that we obtained from lousy reasoning. Observe the
term carefully & you would realize that it is the very condition of that of
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parallel transport. What this means is that we want the inner product of two
vector inputs, say a and b, g(a,b) = ab = gµνa

µbν to remain constant under
parallel transport along a curve with tangent Rγ . This gives rise to the follow-
ing condition

RγDγ (gµνa
µbν) = 0, (1.64)

parallel transport requires RγaµbνDγgµν to be true for all R, a, b. The vanish-
ing covariant metric derivative is not a consequence of using any connection,
it’s a condition that allows us to choose a specific connection Γ ρµν . In principle,
we could have connections for which Dγgµν 6= 0, but we specifically require a
connection for which this condition is true because we want a parallel trans-
port operation which preserves angles and lengths. In the local frame, which
is the reference frame in the vicinity of an arbitrary point x0 in which we can
choose normal coordinates9 such that at that point gµν (x0) = δµν and the
derivative of the metric with respect to any component of the metric can be

set to 0, i.e., gµν,α = 0 and also such that
∂2gµν
∂xµ∂xν 6= 0 (except when space

is flat). The last condition implies that at the local point x0, the connection
vanishes (specifically, the Christoffel symbol vanishes), i.e., Γ ρµν = 0.

Consider the locally flat coordinates (or normal coordinates) ξi(xµ), it can

be shown that ∂2ξß

∂xµ∂xν = Γ ρµν
∂ξß

∂xρ
10. It can be shown by the following calcula-

tion that the covariant derivative of the metric tensor vanishes.

Dρgµν = ∂ρgµν − gµσΓ
σ
νρ − gσνΓ

σ
µρ

= ∂ρ

(
∂ξi

∂xµ
∂ξi

∂xν

)

− gµσ
∂xσ

∂ξi
∂2ξi

∂xν∂xρ − gσν
∂xσ

∂ξi
∂2ξi

∂xµ∂xρ

= ∂2ξi

∂xρ∂xµ
∂ξi

∂xν + ∂ξi

∂xµ
∂2ξi

∂xρ∂xν − ∂ξj

∂xµ
∂ξj

∂xσ
∂xσ

∂ξi
︸ ︷︷ ︸

δji

∂2ξi

∂xν∂xρ − ∂ξj

∂xσ
∂ξj

∂xν
∂xσ

∂ξi
∂2ξi

∂xµ∂xρ

= 0.
(1.65)

1.3.17 Pfaffian Derivatives

Coframe on a manifold M is a system of 1-forms which form a basis of the
cotangent bundle at every point (just to remind ourselves- The dual space ∗Tp
is often called the cotangent space). The system of 1-forms Ξm used in defin-
ing the structure coefficients is a coframe. The Pfaffian derivatives ∂m in the

9 sometimes called Gaussian normal coordinates
10 This equation will be proven in upcoming sections and it has a very deep physical

meaning.
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coframe Ξm of a function h are defined as follows

dh ≡ ∂mh Ξ
m. (1.66)

It is important to note that Pfaffian derivatives, unlike normal derivatives, do
not commute. This can be seen from the analysis of the identy dh ≡ 0 as follows

d2h ≡ 1
2 [∂m∂nh− ∂n∂mh− Camn∂ah] Ξ

m ∧ Ξn ≡ 0

∂m∂nh− ∂n∂mh = Camn∂ah.
(1.67)

The basis em which is the dual to Ξm satisfies the commutation conditions
(in this formalism we include the fraction 1

2 , however, for all future purposes
we will neglect this factor)

Camnea = [em, en] . (1.68)

1.3.18 Back to Connections

Consider a tensor S of rank

(
1
1

)

. With the knowledge of the components

of Sβα;γ we can calculate the components of the covariant derivative DRS by

a contraction into Rγ as follows (where R = dP
dζ = dxγ

dζ is a tangent vector

present on the curve P (ζ))

DRS =
(
Sβα;γR

γ
)
eβ ⊗ ωα. (1.69)

The components of DRS are denoted by
DSαβ
dζ . Thus, we obtain

DSβα
dζ ≡ Sβα;γR

γ = Sβα;γ
dxγ

dζ

DSβα
dζ =

dSβα
dζ +

(
Γ βνγS

ν
α − Γ ναγS

β
ν

)
dxγ

dζ .

(1.70)

To find the connection coefficients for a given basis we first need to take metric
coefficients in the given basis and then calculate their directional derivatives
along the considered basis directions.

Dγgαβ = gαβ,γ − Γ ναγgνβ − Γ νβγgνα = 0

gαβ,γ − Γβαγ − Γαβγ = 0

gαβ,γ = 2Γ(αβ)γ .

(1.71)

Let us now construct a metric for Γναγ .
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1
2 (gνβ,γ + gνγ,β − gβγ,ν) = Γ(νβ)γ + Γ(νγ)β − Γ(βγ)ν

= 1
2 (Γνβγ + Γβνγ + Γνγβ + Γγνβ − Γβγν − Γγβν)

= Γνβγ +
(
Γβ[νγ] + Γγ[νβ] − Γν[βγ]

)
.

(1.72)

Let (R = eν ,Q = eλ) be two basis vectors. We can now use them to construct
structure coefficients by commuting the basis which was something we realized
in the section on Pfaffian derivatives.

[eν , eλ] = Dνeλ −Dλeν = Cρνλeρ

Cρνλeρ = (Γ ρλν − Γ ρνλ) eρ = 2Γ ρ[λν]eρ

Γ ρ[λν] = − 1
2C

ρ
νλ → Γρ[λν] = − 1

2Cνλρ.

(1.73)

Combining the equations we obtain an expression for the connection coefficient.

Γνβγ =
1

2
[gνβ,γ + gνγ,β − gβγ,ν + Cνβγ + Cνγβ − Cβγν

︸ ︷︷ ︸

= 0 for coordinate basis (holonomic)

]. (1.74)

Thus, we obtain the Christoffel symbol which can be expressed as follows (after
raising an index)

Γαβγ = gανΓνβγ . (1.75)

1.3.19 Transformation Formula for Connections

Let us take S = eα = ∂
∂xα to be the basis vector field (whose components are

constants), and let R = eβ = ∂
∂xβ

. We can now expand DRS in the basis and
the coefficients of expansion, Γ ρβα is given below. This relation between DRS

and Γ ρβα is established here.

D ∂

∂xβ

(
∂

∂xα

)

= Γ ρβα
∂

∂xρ
. (1.76)

The transformation formula can now be derived using the above definition.
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D ∂

∂x̄β

(
∂
∂x̄α

)
= Γ̄ ρβα

∂
∂x̄ρ

= D( ∂xµ
∂x̄β

) ∂
∂xµ

(
∂xγ

∂x̄α
∂
∂xγ

)

= ∂xµ

∂x̄β
D ∂

∂xµ

(
∂xγ

∂x̄α
∂
∂xγ

)

= ∂xµ

∂x̄β

[
∂xγ

∂x̄αD ∂
∂xµ

(
∂
∂xγ

)
+
(
∂
∂xµ

∂xγ

∂barxα

)
∂
∂xγ

]

=
[
∂xµ

∂x̄β
∂xγ

∂x̄αΓ
σ
µγ +

(
∂2xσ

∂x̄β∂x̄α

)]
∂
∂xσ ,

(1.77)

where the dummy index γ is replaced with σ. To make the comparison be-
tween the last line and the first line of the derivation, we need to manipulate
the partial factor ∂

∂xσ as follows

∂

∂xσ
=
∂x̄ρ

∂xσ
∂

∂x̄ρ
. (1.78)

Thus, we obtain

Γ̄ ρβα
∂
∂x̄ρ =

[
∂xµ

∂x̄β
∂xγ

∂x̄αΓ
σ
µγ +

(
∂2xσ

∂x̄β∂x̄α

)]
∂x̄ρ

∂xσ
∂
∂x̄ρ

Γ̄ ρβα (x̄) =
∂x̄ρ

∂xσ
∂xµ

∂x̄β
∂xγ

∂x̄αΓ
σ
µγ(x) +

∂2xσ

∂x̄β∂x̄α
∂x̄ρ

∂xσ .

(1.79)

The three index notation seems to suggest that the Christoffel symbol is a
tensor of rank three. This however is not true, the proof is in the extra term
that appears in the transformation above. Due to this very same confusion

Christoffel symbols, in older notations, were written as
{
ρ
βα

}

instead of Γ ρβα.

1.3.20 Torsion Tensor

The torsion tensor T ραβ is a third-rank tensor, antisymmetric in the first two
indices and with 24 independent components, i.e.,

T ραβ ≡ Γ ρ[αβ]. (1.80)

Consider the transformation of the Christoffel symbol again, considering the
antisymmetric part of the transformation we can show that the torsion tensor
does transform like a third-rank tensor. This bring us to a very important
conclusion, that the torsion tensor cannot be eliminated locally due the reason
that if a tensor vanishes at a particular point then it vanishes everywhere.

Γ ραβ(x) =
∂xσ

∂x̄ρ
∂x̄β

∂xµ
∂x̄α

∂xγ Γ̄
σ
µγ +

∂2xσ

∂xβ∂xα
∂xσ

∂x̄ρ

Γ ρ[αβ] = T ραβ = T̄ σµγ
∂xρ

∂x̄σ
∂x̄µ

∂xα
∂x̄γ

∂xβ
.

(1.81)
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Let R and S be vectors. Without torsion [R,S] and DRS−DSR represent the
same vector, i.e., [R,S] = DRS−DSR & DRS−DSR− [R,S] = 0 represents
a closed loop, and in the presence of torsion, there is no closure of loop (see
figure 1.11). This is shown below

RαDαS
β − SαDαR

β − [R,S]
β
= T βαγR

αSγ . (1.82)

Fig. 1.11. Left:When there is curvature alone, we observe loop closure. Right: When
torsion is introduced, there is no loop closure.

This describes the geometrical meaning of torsion, which is that torsion repre-
sents the failure of the loop to close. For all future calculations we shall assume
a torsion-free connections, i.e., T = 0.

1.4 Lie Algebra

1.4.1 Lie Bracket

Another useful operation is the Lie bracket, defined as

[X,Y ] (f) = X (Y (f))− Y (X (f)) . (1.83)

We need to check that this Lie bracket does define a new vector field. One
possible way is the use of local coordinates as follows
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[X,Y ] (f) = Xµ∂µ (Y
ν∂νf)− Y µ∂µ (X

ν∂νf)

= Xµ (∂µ (Y
ν) ∂νf + Y ν∂µ∂νf)− Y µ (∂µ (X

ν) ∂νf +Xν∂µ∂νf)

= (Xµ∂µY
ν − Y µ∂µX

ν) ∂νf +XµY ν∂µ∂νf − Y µXν∂µ∂νf
︸ ︷︷ ︸

=XµY ν (∂µ∂νf − ∂ν∂µf)
︸ ︷︷ ︸

=0

= (Xµ∂µY
ν − Y µ∂µX

ν) ∂νf,
(1.84)

which is indeed a homogeneous first order differential operator. Here we have
used the symmetry of the matrix of second derivatives of twice differentiable
functions. Also, note that the last line of the equation gives an explicit coor-
dinate expression for the commutator of two differentiable vector fields.

1.4.2 Lie Derivative

Given a vector field X, the lie derivative LX is an operation on tensor fields.
For a function f , we set

LXf = X (f) , (1.85)

and for a vector field Y , the Lie derivative coincides with the Lie bracket, i.e.,

LXY = [X,Y ] . (1.86)

In terms of the carroting operation defined previously, if α is a 1-form and Y
is a vector, then we define LX to be that 1-form satisfying the following relation

〈LXα, Y 〉 = X [〈α, Y 〉]− 〈α, [X,Y ]〉 . (1.87)

For a 1-form α, the Lie derivative is defined11 as follows

(LXα) (Y ) = LX (α (Y ))− α (LXY ) . (1.88)

Let us check if the above equation transforms as a 1-form. Note that the RHS
transforms in the desired way when Y is replaced with Y1 + Y2. Replacing Y
with fY , where f is a function, we obtain the following

11 note that this is just the Leibniz rule written the wrong-way round
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(LXα) (fY ) = LX (α (fY ))− α (LXfY )
︸ ︷︷ ︸

=X(f)Y+fLXY

= X (fα (Y ))− α (X (f)Y + fLXY )

= X (f)α (Y ) + fX (α (Y ))− α (X (f)Y )− α (fLXY )

= fX (α (Y ))− fα (LXY )

= f ((LXα) (Y )) .

(1.89)

Thus, LXα is a linear C∞ map on vector fields (hence a covector field). In
coordinate-components notation we have

(LXα)µ = Xν∂ναµ + αν∂µX
ν . (1.90)

For tensor products, the Lie derivative is defined by imposing linearity under
addition together with the Leibniz rule as follows

LX (α⊗ β) = (Lxα)⊗ β + α⊗ LXβ. (1.91)

The Lie derivative along a vector field X is a differential operator that operates
on tensor fields T converting them into tensors LXT . Since a tensor T is a is
a sum of tensor products,

T = Tn1...np
m1...mq∂n1

⊗ ...∂ap ⊗ ...dxm1 ⊗ ...⊗ dxnp , (1.92)

requiring linearity with respect to addition of tensors gives thus a definition
of Lie derivative for any tensor. Consider the following example where for a
tensor Tnm,

LXTnm = Xa∂aT
n
m − T am∂aX

n + Tna ∂mX
a. (1.93)

Similarly, we have

LXRµν = Xα∂αR
µν −Rµα∂αX

ν −Rνα∂αX
µ,

LXWµν = Xα∂αWµν +Wµα∂νX
α +Wνα∂µX

α.
(1.94)

These are all special cases for the more generalized formula of the Lie deriva-
tive, which is
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LXTn1...np
m1...mq = Xa∂aT

n1...np
m1...mq − T

an1...np
m1...mq ∂aX

n1 − . . .− Tn1...np−1a∂aX
np

+T
n1...np
a...mq ∂m1

Xa + . . .+ T
n1...np
m1...mq−1a∂mqX

a

(1.95)

The following is a useful property of Lie derivatives

L[X,Y ] = [LX ,LY ] . (1.96)

Applying this to a tensor A, we see

[LX ,LY ]A = LX (LYA)− LY (LXA) (1.97)

1.4.3 The Geometric Approach to Lie Derivative

Consider a point p0 on a manifold M, every vector Y ∈ Tp0M is tangent
to some curve. To see this, let {yi} be an local coordinates near the point
p0, with yi(p) = yi0, then Y can be written as Y i(p0)∂i. Now, if we set
γi(s) = yi0+sY

i (p0) (where γi(s) is an arbitrary curve parameterized in terms
of s between two points on the manifold), then γ̇i(0) = Y i (p0) which estab-
lishes the claim. This observation shows that studies of vectors can be reduced
to studies of curves. Let M and N be two manifolds and let φ : M → N be a
differentiable map between them. Given a vector Y ∈ TpM, the push forward
φ∗Y of Y is a vector in Tφ(p) defined as follows (see figure 1.12)
let γ be any curve for which Y = γ̇(0), then

φ∗Y =

[
d (φ ◦ γ)
ds

]

s=0

. (1.98)

Fig. 1.12. If a map, φ, carries every point on manifold M to manifold N then the
push forward of the map φ carries vectors in the tangent space at every point in TM
to a tangent space at every point in M.
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In local coordinates xj on N and yi on M, so that φ (x) =
(
φj
(
yi
))

, we find

(φ∗Y )
j
=

[

dφj
(
γi(s)

)

ds

]

s=0

=

[

∂φj
(
γi(s)

)

∂yi
γ̇i(s)

]

s=0

=
∂φj

(
yi
)

∂yi
Y i. (1.99)

Thus, this emphasizes that the definition is independent of the choice of the
curve γ satisfying Y = γ̇(0). If this formula is applied to a vector field Y de-
fined on M we get

(φ∗Y )
j
(φ(y)) =

∂φj

∂yi
(y)Y i(y). (1.100)

The above equation demonstrates that if a point x ∈ N has more than one
pre-image, say x = φ (x1) = φ (x2) with x1 6= x2, then the equation will define
more than one tangent vector at x in general. Thus, we can be certain that the
push-forward of a vector field on M defines a vector field on N only when φ is
a diffeomorphism. More generally, φ∗Y defines locally a vector field on φ(M)
if and only if φ is a local diffeomorphism. In cases such as these, we invert φ
and write the previous equation as follows

(φ∗Y )
k
(y) =

(
∂φj

∂yi

)

(y)
(
φ−1(x)

)
. (1.101)

When φ is understood as a coordinate change rather than a diffeomorphism
between two manifolds, this is simply the standard transformation law of a
vector field under coordinate transformations.
The push-forward operation can be extended to contravariant tensors by defin-
ing it on tensor products in the obvious way, and extending by linearity. Con-
sider three vectors A, B, and C, then the push-forward operation is

φ∗ (A⊗B ⊗ C) = φ∗A⊗ φ∗B ⊗ φ∗C. (1.102)

Consider a k-multilinear map ζ from Tφ (p0)M to R. The pull-back φ∗ζ of ζ
is a multilinear map on Tp0M defined as follows (see figure 1.13)

TpM ∋ (Y1, ..., Yk) → φ∗(ζ) (Y1, ..., Yk) = ζ (φ∗Y1, ..., φ∗Yk) . (1.103)

Let ζ = ζµdx
µ be a 1-form. If Y = Y ν∂nu then

(φ∗ζ) (Y ) = ζ (φ∗Y ) = ζ

(
∂φβ

∂yα
Y α∂β

)

= ζβ
∂φβ

∂yα
Y α = ζβ

∂φβ

∂yα
dyα(Y ).

(1.104)

Equivalently,
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Fig. 1.13. Pull-back

(φ∗ζ)α = ζβ
∂φβ

∂yα
, (1.105)

and if ζ is a 1-form field on N , this reads the following

(φ∗ζ)α (y) = ζβ (φ(y))
∂φβ(y)

∂yα
. (1.106)

It is to be noted here that φ∗ζ is a field of 1-forms on M , irrespective of injec-
tive or surjective properties of φ12. For a function R, the above equation reads
the following

(φ∗dF)α (y) =
∂F
∂xβ

(φ(y))
∂φβ(y)

∂yα
=
∂ (F ◦ φ)
∂yα

(y), (1.107)

which is alternatively written as

φ∗dF = d (F ◦ φ) , (1.108)

and using the notation

φ∗F = F ◦ φ, (1.109)

we can rewrite the alternate formulation of the equation for functions as

φ∗d = dφ∗. (1.110)

In this context it is thus clearly of interest to consider diffeomorphisms φ, as

12 Similarly, pull-backs of covariant tensor fields of higher rank are smooth tensor
fields
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then tensor products can now be transported in the following way; let φ̂ de-
note the associated map: Define φ̂F = F ◦φ for functions, φ̂ = φ∗ for covariant
fields, and φ̂ =

(
φ−1

)

∗ for contravariant tensor fields. We use the rule

φ̂ (S ⊗R) = φ̂S ⊗ φ̂R (1.111)

for tensor products, and the definition is extended by linearity under multipli-
cation by functions to any tensor fields. Thus, if Y is a vector field of 1-forms,
we have

φ̂ (Y ⊗ ζ) =
(
φ−1

)

∗ Y ⊗ φ∗ζ. (1.112)

1.4.4 Isometries

Let (M, g) be a pseudo-Riemannian manifold. A map ξ is called an isometry if

ξ∗f = f, (1.113)

where ξ∗ is the pull-back defined in the previous section. The group Iso(M, g)
of isometries of (M, g) carries a natural manifold structure; such groups are
called Lie groups. It is to be noted that If (M, g) is Riemannian and compact,
then Iso(M, g) is compact. Also, any element of the connected component of
the identity of a Lie group G belongs to a one-parameter subgroup {φq}q∈R of
G. This allows us to study actions of isometry groups by studying the genera-
tors of one-parameter subgroups, defined as

X(f)(x) =

[
d(f(φq(x)))

dq

]

q=0

, (1.114)

i.e.,

X =

[
dφq
dq

]

q=0

. (1.115)

These vector fields X is called Killing vectors. The knowledge of Killing vec-
tors provides considerable amount of information on the isometry group. In
General Relativity, it is of key importance that the dimension of the isometry
group of (M, g) equals the dimension of the space of the Killing vectors.

1.4.5 Flows of Vector Fields

Let X be a vector field on M . For every q0 ∈M consider the solution

dxα

dt
= Xα(x(t)), xα(0) = xα0 . (1.116)
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There always exists a maximal interval I containing the origin on which the
above equation has a solution. Both the interval and the solution are unique.
This will always be the solution I ∋ t 7→ x(t). The map

(t, x0) 7→ φt[X] (x0) = x(t), (1.117)

where xα is the solution of the equation 13, is called the local flow of X. We say
that X generates φt[X]. We will write φt for φt[X] when X is unambiguous in
the context. X is called complete if φt[X](q) is defined for all (t, q) ∈ R ×M .
The following properties are presented sans proof:
a. φ0 is the identity map,
b. φt ◦ φr = φt+r,
c. The maps x 7→ φt(x) are local diffeomorphisms; global if for all x ∈ M the
maps φt are defined for all t ∈ R,
d. φ−t is generated by −X: φ−t[X] = φt[−X].
A family of diffeomorphisms satisfying property b above is called a 1-parameter
group of diffeomorphisms.

1.4.6 Killing Vectors

Let φq be a 1-parameter group of isometries of (M, g), hence

φ∗qf = f =⇒ LXf = 0. (1.118)

Now, for the metric tensor, gαβ ,

LXgαβ = Xµgαβ,µ + gµβX
µ
,α + gαµX

µ
,β (1.119)

In a coordinate system where the partial derivatives of the metric vanish at a
point p, the RHS equals ∇αXβ +∇αXβ . But notice that the LHS is a tensor
field, and two tensor fields equal in one coordinate system coincide in all coor-
dinate systems. Thus, we have proved that generators of isometries satisfy the
following equation

∇βXα +∇αXβ = 0 =⇒ ∇(αXβ) = 0. (1.120)

This can also be shown explicitly by carrying out a short calculation in which
we substitute total derivatives in the RHS of the last two terms in 5.11 and
obtain the following result

13 the interval of existence of solutions depends upon x0 in general
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LXgαβ = Xµgαβ,µ + (∂α (gµβX
µ)−Xµgµβ,α) + (∂β (gαµX

µ)−Xµgαµ,β)

= Xµgαβ,µ +Xβ,α −Xµgµβ,α +Xα,β −Xµgαµ,β

= 2∂(αXβ) −Xµ (gαµ,β + gµβ,α − gαβ,µ)

= 2∂(αXβ) − 2 Γαβµ
︸ ︷︷ ︸

=gµµΓ
µ
αβ

Xµ

= 2∇(αXβ) = 0.
(1.121)

From the calculation just carried out, the Lie derivative of the metric with re-
spect to X vanishes. This means that the local flow of X preserves the metric.
In other words, X generates local isometries of f . To make sure that X gen-
erates a 1-parameter group of isometries we need to make sure that X is com-
plete; this requires separate considerations. We know that L[X,Y ] = [LX ,LY ],
which implies that the commutator of two Killing vector fields is a Killing
vector field, i.e.,

L[X,Y ]f = LX (LY f)
︸ ︷︷ ︸

=0

−LY (LXf)
︸ ︷︷ ︸

=0

= 0. (1.122)

We shall be revisiting these topics in explicit mathematical detail in the exer-
cises and examples.

Example 1.9. In this example, we set out to show that if X, Y , and Z are
vector fields, then the commutator of Lie derivatives of Z is given as

[LX ,LY ]Z = [[X,Y ] , Z] . (1.123)

This is a straightforward application of the Jacobi identity 1.126 (proof of
which is an exercise). Expanding the commutator and using the definition of
the Lie derivative we obtain

[LX ,LY ]Z = LX (LY Z)− LY (LXZ)

= LX ([Y,Z])− LY ([X,Z])

= [X, [Y,Z]]− [Y, [X,Z]] .

(1.124)

Finally we bring the Jacobi identity to the above form and compare the equa-
tions to prove the identity a follows

[X, [Y,Z]]− [Y, [X,Z]] + [Z, [X,Y ]] = 0,

⇒ [X, [Y,Z]]− [Y, [X,Z]] = [[X,Y ] , Z]
(1.125)



46 1 Essential mathematics

Exercise 2

1. Show that for any three vector fields X, Y , and Z the following relation
holds known as the Jacobi identity holds

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (1.126)

2. Show that the Lie derivative of ω in a coordinate basis LXωµ = Xν∂νωµ +
ων∂µX

ν can be written in terms of the covariant derivative as follows: LXωµ =
XνDνωµ + ωνDµX

ν .

3. Show that the commutator of Lie derivatives is the Lie derivative of the
commutator as shown in 1.96.

1.5 The Three Types of Vectors

1.5.1 Non-Degeneracy of a Metric

A metric is said to be non-degenerate at a point p on a manifold M if there
exists no non-zero vector R ∈ Tp(M) such that g(R,Q) = 0 for all vectors

Q ∈ Tp(M). We can now define a new metric tensor of rank

(
2
0

)

with com-

ponents gµν with respect to a basis {xµ} which is dual to the basis {xµ}, by
the following expression

gµνgνξ = δµξ , (1.127)

the matrix gµν is the inverse of the matrix gµν , and these tensors can be used
to provide an isomorphism between any contravariant tensor and a covariant
one, i.e., to raise and lower indices. If Sµν are the components of a contravari-
ant tensor, then we can lower its indices by making use of a metric tensors,
and can also obtain mixed tensors as follows

Sµν = gµξgνχS
ξχ

Sµν = gµξSξν

Sνµ = gνχSχµ.

(1.128)

1.5.2 Timelike, Spacelike and Lightlike Vectors

Consider a Lorentzian metric g on a manifold M equipped with some topology.
At a point p on the manifold, the non-zero vectors can be divided into three
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Type Condition

Timelike g(R,R) < 0

Lightlike g(R,R) = 0

Spacelike g(R,R) > 0

Table 1.2. All the conditions are mentioned for a vector R ∈ Tp

classes as given in table 1.2 (also see figure 1.14).

time,t

space

space

null cone

null cone

spacelike vectors 
lie outside the 
null cones

null vectors 
lie on the 
null cones

timelike vectors 
lie inside the 
null cones

Fig. 1.14. This figure represents the null cones as defined by the Lorentz metric.
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1.5.3 Null Cones

A vector R ∈ Tp is called causal if

g(R,R) ≤ 0 (1.129)

At each point p on a Lorentzian manifold M, we can define a double cone Cp
in the tangent space Tp(M). This is called the causal cone and is expressed in
terms of the following inequality

g(R,R) ≤ 0, R ∈ Tp(M). (1.130)

The boundary of the causal cone is called the double cone. The boundary is
formed by the null or lightlike vectors in the tangent space of the Lorentzian
manifold and this separates the timelike and the spacelike vectors.

1.5.4 Double Null Cones

If the vector R is either timelike or null, then it is called causal and if the
vector R =

(
t, x1, x2, x3

)
3) is a null vector at a point q, then

t2 =
(
x1
)2

+
(
x2
)2

+
(
x3
)2
, (1.131)

and hence R on cone with vertex at q, i.e., all null vectors at point q span a
double cone, known as the double null cone.

1.6 Causality

For each point p ∈ M, the linear space (TpM, g) is isometric to the Minkowski
spacetime R

3+1 (three spacelike coordinates and one timelike coordinate) and
hence there exists a basis (e0, e1, e2, e3) of the tangent space of M, i.e., TpM
such that

g (eα, eβ) =Mαβ , (1.132)

where Mαβ is the Minkowski diagonal matrix (−1, 1, 1, 1). Then, for any vector
R ∈ TpM we have X =

∑

αX
αeα and thus

g(R,R) = −
(
R0
)2

+
(
R1
)2

+
(
R2
)2

+
(
R3
)2
. (1.133)

If R is either timelike or null it is called causal. If R is null vector at p, then
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(
R0
)2

=
(
R1
)2

+
(
R2
)2

+
(
R3
)2
, (1.134)

and hence R lies on cone with vertex at p. It is to be noted that position of
the vector depends upon the basis eα. Thus, all null vectors at point p space a
double cone, known as the double null cone. Let Np denote the set of all null
vectors in the tangent space of M, then

Np = {R ∈ TpR
3+1 : g(R,R) = 0}, (1.135)

let Ip denote the set of all timelike vectors in the tangent space of M, then

Ip = {R ∈ TpR
3+1 : g(R,R) < 0}, (1.136)

and let Sp denote the set of all spacelike vectors in the tangent space ofM , then

Sp = {R ∈ TpR
3+1 : g(R,R) > 0}. (1.137)

1.7 Geodesic equation

1.7.1 Introduction

A geodesic is defined as a spacetime curve that is the shortest distance between
two points, straight and uniformly parametrized, or in other words, it is a curve
whose distance between two points is stationary. Mathematically, a geodesic
is a curve P (ζ) that parallel-transports its tangent vector, say R = dP

dζ , along
itself.

DRR = 0. (1.138)

In a local coordinate system xη[P (ζ)], in which the tangent vector takes the
form Rη = dxη

dζ , the geodesic is expressed as follows

D
(
dxη

dζ

)

dζ
= 0 =

d
(
dxη

dζ

)

dζ
+

[

Γ ηαβ
dxα

dζ

]
dxβ

dζ
, (1.139)

simplifying this gives us the geodesic equation,

d2xη

dζ2
+ Γ ηαβ

dxα

dζ

dxβ

dζ
= 0. (1.140)



50 1 Essential mathematics

1.7.2 Affine Parameter

If a geodesic is timelike,
1. It is a possible curve (or trajectory) for a freely falling observer, and
2. there exists a parameter ζ (called the affine parameter) which is a multiple
of the observer’s propertime, ζ = mτ + c

1.7.3 The Deeper Meaning: Part One

Let us try and reveal the deeper meaning that hides in plain sight. In normal
coordinates, in a local frame (for a local observer), we know that the following
conditions are satisfied: gµν,α = 0 and Γµνβ = 0. The the 4-velocity, which is the

tangent vector of a timelike curve, is defined as u = dxη

dτ eη|η=0 = dx0

dτ e0 = e0.
This is so because u and e0 both have unit length. Since the 4-velocity is con-
stant, the 4-acceleration is zero, i.e.,

a = Duu = D0e0 = 0. (1.141)

This equation is nothing but the previously defined geodesic equation. Com-
paring the equations we conclude the following

a = Duu = D0e0 = Γ η00eη = 0. (1.142)

What this implies is that a freely falling observer experiences zero 4-acceleration,
i.e., the observer moves along a geodesic with affine parameter equal to the
observer’s propertime. The geodesic equation for this observer in local coordi-
nate is as follows

d2xη

dτ2
+ Γ ηαβ

dxα

dτ

dxβ

dτ
= 0. (1.143)

Thus, we have proven that the observer’s trajectory is a straight line!14

1.7.4 The Deeper Meaning: Part Two

For the second reveal consider a particular spacelike coordinate, say xη = y.
Let the observer move slowly (i.e., at non-relativistic speeds), this assumption
enables us to replace propertime with just time. Let α and β (indices present
in the geodesic equation) be timelike components, this would mean that15

dxα

dτ = dxβ

dτ = dt
dτ = 1, and Γ ηαβ = Γ ηtt. Making all these changes in the geodesic

14 more generally, freely falling particles move on straight lines
15 although time and propertime are distinct conceptually, they are dimensionally

the same quantity and thus cancel
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equation, we obtain the following expression

d2y

dt2
= −Γ ηtt, (1.144)

which looks freakishly like the expression for gravitational force. Well, hold on,
let’s dig a bit deeper.

At large distances from the spherically symmetric gravitating object, space-
time is flat. Why? This is due to the fact that the influence of the gravitational
field vanishes at large distances as it varies as ≈ r−2. Due to this, the ability
of the tidal forces to curve spacetime at large distances from the gravitat-
ing object fades away thus resulting in a flat space. Note that when we talk
about the gravitating object, we have assumed that there is no matter in the
surroundings of our object, thus the vacuum field. We can represent this flat
spacetime in terms of the line element as

ds2 = dt2 − 1

c2
(
dx2 + dy2 + dz2

)
. (1.145)

Now, how would this metric change in the vicinity of our object? For this let us
first write the basic form of the metric for a plane in polar coordinates. In flat
space, the spatial distance between two points on a plane in polar coordinates
is given by the following equation

ds2 = r2dθ2 + dr2. (1.146)

now, let us modify this metric. We first start by making the replacements,
sinθ → sinh(ω), and cosθ → cosh(ω). Here, ω is the angle with which the hy-
perbola increases with respect to the origin (a timelike coordinate). Thus, we
have changed from polar coordinates to hyperbolic coordinates. In this frame,
the acceleration along a particular hyperbola is the same, however, the accel-
eration along different hyperbolae are different. An analogous relation can be
drawn to that of circular motion here, similar to the acceleration remaining
the same along a particular hyperbola, the acceleration of a particle moving
around a circle is uniform, however, the acceleration around another concentric
circle of a different radius who definitely not be the same. We now make the
transforms

X = rcosh(ω), T = rsinh(ω), (1.147)

such that

X2 − T 2 = r2
[
cosh2ω − sinh2ω

]
= r2. (1.148)
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Hence, producing the metric

ds2 = r2dω2 − dr2. (1.149)

This is the metric in which our gravitating object lies. Let us travel along a
particular hyperbola and to determine the fate of the metric. Let the gravi-
tating object, under consideration, be the super massive black hole located at
the centre of our galaxy. Now, let us remove all the matter present outside
this black hole and for the moment assume that the value of the energy den-
sity of the vacuum of space is zero16. By performing these actions, we have
established the vacuum conditions. From a small distance from a hyperbola
that is present next to where Earth was, just a moment ago, we compute the
metric. The black hole is almost 26, 000 light years away from Earth. Placing
the origin at the centre of the black hole, we re-define the position vector to
be

r = RBH→Hyp + r′, (1.150)

where RBH→Hyp = 26, 000 light years, is the distance between the black hole
and the hyperbola trajectory which runs next to where Earth was a moment
ago, and r′ is the distance between the hyperbola and us. This distance is prone
to vary since we are nothing but mere particles floating in space but would

never exceed that of RBH→Hyp. Hence, r′2

R2
BH→Hyp

→ 0. Let us substitute this

new relation into the metric and perform some manipulations.

ds2 = (RBH→Hyp + r′)2 dω2 − [d (RBH→Hyp + r′)]2

ds2 =
(
R2
BH→Hyp + r′2 + 2RBH→Hypr′

)
dω2 − [dr′]2

ds2 ≈
(

1 + 2r′

RBH→Hyp

)

R2
BH→Hypdω

2 − dr′2.

(1.151)

We know that proper acceleration A, when the speed of light is set to unity
is nothing but17 1

R . Hence, here, A = 1
RBH→Hyp

= g (this g here is the ac-

celeration due to gravity, not to be confused with the metric tensor). Define
RBH→Hypω = t, such that

ds2 = (1 + 2r′g) dt2 − dr′2 =

(

1 + 2
r′

R

)

dt2 − dr′2. (1.152)

Now, we know that the Christoffel symbol is nothing but a combination of

16 these conditions correspond to the Ricci flatness condition in which we assume
the stress-energy tensor and the cosmological constant to have a null value.

17 A = c
T

= c
R×c

|c≡1 = 1
R
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the partial derivatives of the metric tensor, with the assumptions made in the
initial part of this section, it takes the following form

Γ ηtt =
1

2
gηγ (gtγ,t + gγt,t − gtt,γ) . (1.153)

From the metric (for the motion along the y-coordinate), ds2 = Adt2 − dy2,
gyγ = gyy = 1 (since η and γ assume a spacelike coordinate). Thus,

Γ ytt =
1

2
(gty,t + gyt,t − gtt,y) = −1

2

∂gtt
∂y

. (1.154)

Substituting this in the geodesic equation, we obtain an expression that in fact
suggests the Christoffel symbol Γ ytt to be the force and gtt to be the potential.

d2y

dt2
= −Γ ytt =

1

2

∂gtt
∂y

. (1.155)

Replacing r′ with y in the metric we obtained previously, we make an obser-
vation that confirms the statement made about the Christoffel symbol.

ds2 = (1 + 2yg)
︸ ︷︷ ︸

=−gtt

dt2 − dy2

−gtt = (1 + 2yg) → ∂gtt
∂y = −2g

d2y
dt2 = −Γ ytt = −g.

(1.156)

Thus, the equation of motion of a geodesic in an accelerated coordinate frame
(for non-relativistic speeds) is nothing but Newton’s equation in an uniform
gravitational field.

1.8 Curvature

A straight line has zero curvature and a circle of radius ρ has a curvature
1
ρ . Well, why? A more important question is not why but how, how is the
curvature defined for surfaces and based on what is it defined. The curvature
of a curve is defined by how swiftly its unit normal vector n evolves as we
move along the curve. For a small distance traversed on a circle, say ds, the
infinitesimal change in the unit normal |dn| is equal to the angle ds

ρ . Similarly,
the curvature of a straight line is zero because the normals are all parallel to
each other and do not evolve with time. Hence, curvature is measured by the
ratio of the infinitesimal change in the unit normal |dn| to the infinitesimal
distance traversed by a point ds.
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1.8.1 Gauss Curvature and Geodesic Deviation

Let S be a 2-dimensional surface with n(ξ) as unit normal. Let the local co-
ordinates on this surface is denoted by x(ξ) = (ξ2, ξ2) and the infinitesimal
changes as a point traverses a distance be dξ1, dξ2. The infinitesimal distance
traversed is then given by the expression given below which is tangential to
the 2-dimensional surface

dx =
∂x

∂ξ1
dξ1 +

∂x

∂ξ2
dξ2 ≡ x,αdξ

α. (1.157)

The unit normal is a vector that does not evolve as the point traverses because
it is constant length n ·n = 0. This implies that the infinitesimal changes in it
due to the parameters ξ are orthogonal to it. i.e., dn · n = 2ndn = 0. Hence,
we can conclude that dn = n,αdξ

α is tangential to the surface. When the tan-
gential vectors dn1 and dn2 are expanded in the basis vector we obtain the
following expression

n,α = Lβαx,β . (1.158)

The coefficients Lβα define a mapping of the tangent vector dx into dn, an-
other tangent vector. The matrix Lβα is called the Weingarten matrix and the
mapping is called Weingarten mapping. This was the idea of curvature given
by Carl Friedrich Gauss, which states that the curvature of a surface at a point
is measured by the ratio of the area spanned by the infinitesimal components
of the normal vector dn1, dn2, to the area spanned by the tangent vectors
dx1 = x,1dξ

1 and dx2 = x,2dξ
2 on the surface.

Let R and S be two vectors, the area of the parallelogram spanned by these
vectors is given as |R× S|. The curvature is measured as follows

dn1 × dn2 = (n,1 × n,2) dξ
1dξ2

=
(
L1
1x1 + L2

1x,2
)
×
(
L1
2x1 + L2

2x,2
)
dξ1dξ2

=
(
L1
1L

2
2 − L1L

2L1
2

)
(dx1 × dx2) = |L| (dx1 × dx2) ,

(1.159)

where |L| =
(
L1
1L

2
2 − L1L

2L1
2

)
is called Gauss curvature (see figure 1.15).

Hence, the curvature of a plane is zero since the normals are all in the same
direction. Similarly, the curvature of a cylinder is zero too because the normal
does not change in a direction parallel to the axis of the cylinder although
it changes along the circular surface. The curvature of a sphere, however, is
1
ρ2 (where ρ is the radius of the sphere) because the soild angle dΩ that it
subtends at the sphere’s center is the same as that spanned by the normals.

Consider two geodesics that are initially parallel, separated by a distance χ0.
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Fig. 1.15. Gaussian Curvature of a surface. The curvature of the surface shown
at a point is the ratio of the area spanned by the increments (dn)1 = n1 − n and
(dn)2 = n2 − n of the normal, to the area spanned by the tangential displacement
vectors dx1 and dx2 on the surface.

They are no longer parallel when we traverse a distance s and their separation

is measured by χ = χ0cos
(
s
ρ

)

, where ρ is the radius of the sphere. The sepa-

ration follows a surprising equation.

χ = χ0cos
(
s
ρ

)

dχ
ds = −χ0

ρ sin
(
s
ρ

)

d2χ
ds2 = −χ0

ρ2 cos
(
s
ρ

)

= − 1
ρ2χ

d2χ
ds2 +Rχ = 0,

(1.160)

where R = 1
ρ2 is the Gaussian curvature of the surface and the equation derived

is called the equation of geodesic deviation which is nothing but the equation
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of simple harmonic motion!

1.8.2 Theorema Egregium

Carl Friedrich Gauss found out that the curvature of a surface can be mea-
sured exclusively in terms of quantities intrinsic to the surface, without any
reference to how the surface is embedded in the surrounding (3-dimensional)
space. The intrinsic quantities are the coefficients gµν of the line element ds
which measures the distance between two close points present on the surface.
Consider a pair of points separated by an infinitesimal distance dξα,

(
ξ1, ξ2

)

and
(
ξ1 + dξ1, ξ2 + dξ2

)
. The separation between the points is expressed as

follows

ds2 = x,µx,νdξ
µdξν ≡ gµνdξ

µdξν . (1.161)

This quadractic form of the metric is positive definite, symmetric and is non-
singular (i.e., it’s determinent is non-zero |g| 6= 0). The theorem states that it
is the combination of the Weingarten matrices Lµν that determines the Gauss
curvature (also called total curvature), which is given in terms of the metric
in an equation called the Gauss equation.

LµνL
κ
α − LµαL

κ
ν = −gµζRκζνα, (1.162)

where Rκζνα is called the Riemann curvature tensor. The straightest possible
curves on this surface, i.e., the geodesics, are expressed as function of ξα(s),
where s is the distance measured along the curve, which satisfy the geodesic

equation, d
2ξκ

ds2 + Γκζν
dξζ

ds
dξν

ds = 0.

1.8.3 The Riemann Curvature Tensor

The Riemann curvature tensor is a higher-dimensional analogue of the Gaus-
sian curvature. In 2-dimensions, the direction of the acceleration of one geodesic
relative to another geodesic (called the fiducial geodesic) is fixed uniquely by
the demand that their separation vector χ be perpendicular to the fiducial
geodesic. However, in higher-dimensions, the separation vector does not only
remain perpendicular to the fiducial geodesic, but also rotates about it. In the
slot machine analogy, the Riemann tensor is a machine that has three slots and
in a coordinate system the components can be written as a trilinear function
(it obeys linearity),

r = R(a,b, c) → rα = Rαβλξa
βbλcξ. (1.163)
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The equation of geodesic deviation in higher dimensions replaces the Gaussian
curvature with the Riemannian curvature tensor and the spatial distance with
the propertime. Let the unit tangent vector or the 4-velocity be uα = dxα

dτ ,
then the equation of of geodesic deviation is expressed as

D2χ
dτ2 +R(u, χ,u) = 0

D2χα

dτ2 +Rαβλξ
dxβ

dτ χ
λ dxξ

dτ = 0.

(1.164)

Thus, the Riemann tensor is an exterior 2-form taking values in the set of
linear maps from the tangent plane to itself. The non-commutativity of co-
variant derivatives is a geometrical property of the metric. The commutation
(DαDβ −DβDα)u

µ of two covariant derivatives of a vector u is a mixed tensor
with coefficients R µ

αβ ν such that

(DαDβ −DβDα)u
µ = [Dα, Dβ ]u

µ = R µ
αβ νu

ν . (1.165)

The components of the Riemann tensor in a coordinate basis is defined below
and the proof follows.

Rαβλξ = 〈ωα, [Dλ, Dξ] eβ〉

= Γαβξ,λ − Γαβλ,ξ + ΓαµλΓ
µ
βξ − ΓαµξΓ

µ
βλ.

(1.166)

Proof. Rµβλξ = 〈ωα, [Dλ, Dξ] eβ〉 = 〈ωα, (DλDξ −DξDλ) eβ〉

= 〈ωα, (Dλ (Dξeβ)−Dξ (Dλeβ))〉

=
〈

ωα,
(

Dλ

(

eµΓ
µ
βξ

)

−Dξ

(

eµΓ
µ
βλ

))〉

=
〈

ωα, eµΓ
µ
βξ,λ + Γµβξ (Dλeµ)− eµΓ

µ
βλ,ξ − Γµβλ (Dξeµ)

〉

=
〈

ωα, eµΓ
µ
βξ,λ +

(

eνΓ
ν
µλ

)

Γµβξ − eµΓ
µ
βλ,ξ −

(

eνΓ
ν
µξ

)

Γµβλ

〉

=
〈

ωα, eµ

(

Γµβξ,λ − Γµβλ,ξ

)

+ eν

(

Γ νµλΓ
µ
βξ − Γ νµξΓ

µ
βλ

)〉
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=
(

Γµβξ,λ − Γµβλ,ξ

)

〈ωα, eµ〉
︸ ︷︷ ︸

=δαµ=1 if α=µ

+
(

Γ νµλΓ
µ
βξ − Γ νµξΓ

µ
βλ

)

〈ωα,ν〉
︸ ︷︷ ︸

=δαν=1 if α=ν

.

Hence, Rµβλξ = Γµβξ,λ − Γµβλ,ξ + Γ νµλΓ
µ
βξ − Γ νµξΓ

µ
βλ.

The Riemann curvature tensor is closely related to tidal forces, it represents
the tidal force experienced by a particle moving along a geodesic.

1.8.4 Symmetries of the Riemann Tensor

The Riemann curvature tensor has, in 4-dimensions, 4×4×4×4 = 256 indepen-
dent components. Observations reveals a variety of algebraic symmetries such
as the first skew symmetry, the second skew symmetry, and the block symmetry.

Rαβµν = R[αβ][µν], R[αβµν] = 0, Rα[βµν] = 0. (1.167)

All of the above symmetries reduce the Riemann tensor from 256 components
to 20 independent components. The antisymmetry of (αβ) and (µν) in Rαβµν
implies that there are P = 1

2n(n − 1) different ways of choosing non-trivial
pairs (αβ) and P ways of choosing non-trivial pairs (µν). The observation
that the tensor is symmetric with respect to the interchange of (αβ) and (µν)
implies that there are 1

2P (P + 1) independent ways of choosing αβµν when
the pair symmetries are considered. The last algebraic symmetry, called the
cyclic symmetry can be written alternatively as

Rα[βµν] =
1
3! (Rαβµν −Rαβνµ +Rανβµ −Rανβµ +Rαµνβ −Rαµβν)

Rα[βµν] =
1
3! (Rαβµν +Rανβµ +Rαµνβ) =

1
3!∆αβµν = 0,

(1.168)

where the pair symmetries guarantee that ∆αβµν is totally antisymmetric such
that ∆αβµν = 0 is trivial unless all the indices are distinct. The number of
added constraints is then the number of combinations of 4 indices that can
be taken from n indices is n!

(n−4)!4! . The number of independent components is

then given by

1

2
P (P + 1)− n!

(n− 4)!4!
=
n2
(
n2 − 1

)

12
. (1.169)

In 4-dimensions, we then have
42(42−1)

12 = 20 independent components. ∆αβµν

mentioned in the previous equations is called Bianchi’s first identity. Besides
the algebraic symmetries, there exists differential symmetries called Bianchi
identities given by the following expression

Rαβ[ξµ;ν] = 0. (1.170)
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The contraction of the Riemann tensor is called the Ricci tensor18, Rµν =
Rαβµνg

β
α and the contraction of the Ricci tensor is the curvature scalar,

R = Rµνg
µν .

Rµν = ∂ρΓ
ρ
νµ − ∂νΓ

ρ
ρµ + Γ ρρλΓ

λ
νµ − Γ ρνλΓ

λ
ρµ. (1.171)

The Ricci tensor is symmetric, i.e., Rµν = Rνµ, and out of the 1
2n

2
(
n2 − 1

)

algebraically independent components of the Riemann tensor 1
2n (n+ 1) of

them can be represented by the components of the Ricci tensor. For n = 1,
Rαβµν = 0; for n = 2, there exists only one independent component of the
Riemann tensor, which is the curvature scalar; for n = 3, the Ricci tensor
completely determines the curvature tensor.

Example 1.10. In this example, we revisit our claim 1.122 that the commutator
of two Killing vectors is a Killing vector. Consider two Killing vectors, K and
M which we expand in a basis {xα} as K = Kα∂α and M = Mα∂α. Both
these vectors obey the Killing equation, i.e.,

D(αKβ) = 0, D(αMβ) = 0. (1.172)

It is easy to see that a linear combination (with constant coefficients c1 and
c2) of these two Killing vectors, say

L = c1K + c2M, L = Lα∂α (1.173)

is also a Killing vector since it obeys the Killing equation, i.e.,

D(αLβ) = c1D(αKβ) + c2D(αMβ) = 0. (1.174)

Now consider the commutator of K and M with the former expanded in a ba-
sis K = Kα∂α and the latter expanded in a basis M = Mβ∂β . Let L = Lα∂α
be the commutator which is given as

L =
[
Kα∂α,M

β∂β
]
= Kα∂α

(
Mβ∂β

)
−Mβ∂β (K

α∂α)

= Kα
(
∂αM

β
)
∂β +KαMβ∂α∂β −Mβ (∂βK

α) ∂α −MβKα∂α∂β

= Kα
(
∂αM

β
)
∂β −Mβ (∂βK

α) ∂α.

(1.175)

Now, using the definition of the covariant derivative,DαM
β = ∂αM

β+Γ βαλM
λ,

we get

18 can be defined as a covariant, contravariant, or a mixed tensor.
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Lα∂α = KαDαM
β∂β −KαΓ βαλM

λ∂β −MβDβK
α∂α +MβΓαβλK

λ∂α

=
(
Kβ (DβM

α)−Mβ (DαK
α)
)
∂α,

(1.176)

where the last line was obtained by swapping the indices and using the fact
that KαΓ βαλM

λ∂β =MβΓαβλK
λ∂α due to repeated indices. Now that we have

obtained an explicit expression for L we need to check if it obeys the Killing
equation. Note that the terms below in boldface cancel

2D(αLβ) = Dα (K
µ (DµMβ)−Mµ (DµKβ)) +Dβ (K

µ (DµMα)−Mµ (DµKα))

= DαKµMβ +KµDαDµMβ −DαM
µDµKβ −MµDαDµKβ

+DβK
µDµMα +KµDβDµMα −DβM

µDµKα −MµDβDµKα

= KµDαDµMβ −MµDαDµKβ +KµDβDµMα −MµDβDµKα.
(1.177)

Making use of the commutator relation [Dα, Dµ]Mβ = DαDµMβ−DµDαMβ ,
we get terms with a common factor D(βMα) which is zero since M obeys the
Killing equation. Now, using the definition of the Riemann tensor [Dα, Dµ]Mβ =
RδβαµMδ = gλδRλβαµMδ to simplify the equation, we obtain

2D(αLβ) = Kµλ (Rλβαµ +Rλαβµ)−MµKλ (Rλβαµ +Rλαβµ)
︸ ︷︷ ︸

µ←→ν

=MλKµ (Rλβαµ +Rλαβµ −Rµβαλ −Rµαβλ) ,

Rabcd = Rcdab = −Rdcab = Rdcba

⇒ D(αLβ) = 0.

(1.178)

Since L obeys the Killing equation we can conclude that the commutator of
two Killing vectors is a Killing vector.

Example 1.11. An important identity
We now will show that the following identity holds

DµDσX
ρ = RρσµνX

ν . (1.179)

Prior to calculation we already have a useful result we can make use of:
DσXρ = −DρXσ from which we have

DµDσXρ = −DµDρXσ. (1.180)
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We rewrite this in terms of the commutator [Dρ, Dµ] to get

DµDσXρ = −DσDµXσ + [Dρ, Dµ]Xσ

= DρDσXµ + [Dρ, Dµ]Xσ

= ([Dρ, Dσ]Xµ +DσDρXµ) + [Dρ, Dµ]Xσ

= −DσDµXρ + [Dρ, Dσ]Xµ + [Dρ, Dµ]Xσ,

= − ([Dσ, Dµ]Xρ +DµDσXρ) + [Dρ, Dσ]Xµ + [Dρ, Dµ]Xσ

= −DµDσXρ + [Dσ, Dµ]Xρ + [Dρ, Dσ]Xµ + [Dρ, Dµ]Xσ.
(1.181)

From this we obtain the following expression

DµDσXρ =
1

2
([Dσ, Dµ]Xρ + [Dρ, Dσ]Xµ + [Dρ, Dµ]Xσ) , (1.182)

and making use of the definition of the Riemann tensor [Da, Db]X
c = RcdabX

d,
the expression simplifies to the following

2

Xν
DµDσXρ = Rρνµσ

︸ ︷︷ ︸

=−Rνρµσ

+ Rµνρσ
︸ ︷︷ ︸

=Rνµσρ

+ Rσνρµ
︸ ︷︷ ︸

−Rνσρµ

. (1.183)

We can now make use of the cyclic symmetry of the Riemann tensor to see
that Rνρµσ +Rνσρµ = −Rνµσρ to finally get

DµDσXρ = Rνρµσ
︸ ︷︷ ︸

=Rµσνρ=Rσµρν

Xν ,

⇒ DµDσX
ρ = RρσµνX

ν .

(1.184)

Exercise 3

1. Using the various symmetries of the Riemann tensor show that
a. Rαβµν = 2

3

(
Rα(βµ)ν −Rα(βν)µ

)
.

b. Rαβµν + 2
(
Rα[βµ]ν −Rα[βν]µ

)
= 0.

2. Show that the Killing vector X satisfies the following identities
a. DαDβX

α = RαβX
α.

b. [Dα, Dβ ]D
[αXβ] = 0.

c. XαDαR = 0.
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d. DγDβKα −DβDγKα = RλαβγKλ.

e. Use the identity of the previous question and the fact that Rλ[αβγ] = 0 to show

Dβ (DγKα −DαKγ) +Dγ (DαKβ −DβKα) +Dα (DβKγ −DγKβ) = 0,
(1.185)

and hence use the Killing equation show that DβDαKγ = RρβαγKρ.

3. Consider the two-dimensional metric ds2 =
(

1 + u2+v2

4l2

)−1 (
du2 + dv2

)
,

where l is a constant. LetX be a Killing vector which has componentsXu = −v
andXv = u. Show that X satisfies the Killing equationD(µXν) = 0, µ, ν = 0, 1.

4. Show that the following identity holds

DκDκRµναβ = 2RλµκβR
κ
αλν − 2RλνκβR

κ
αλµ −RλκβαR

κ
λµν .

This is the Penrose equation for a vacuum spacetime. Hint: Use the Bianchi
identity.

5. Let κ = LXg using which we define

Ωαµν =
1

2
gαβ (Dµκνβ +Dνκµβ −Dβκµν) .

Notice that this is similar to how the Christoffel symbol is defined.
a. Show that

[
D[γ ,LX

]
Rµν]αβ = Ωδα[γRµν]δβ +Ωδβ[γRµν]αδ.

b. Show that simplification of καµν yields the Killing identity, i.e., obtain

Ωαµν = gαβ

2 (DµDνXβ +RγµνβX
γ). The Killing vectors satisfy the Killing iden-

tity here since κ = LXg = 0 and in-turn Ω which is a linear combination of
the Lie derivatives of g vanishes.

6. Consider a metric gαβ . If this metric, when a Lie derivative is taken over
a Killing vector K, satisfies the Killing equation does it imply that the Lie
derivative of the Affine connection vanishes, i.e., LKΓµαβ = 0? Would it also
imply that the Lie derivative of the Curvature vanishes, i.e., LKRµναβ = 0
(this is known as curvature collineation)? Would this hold if there is torsion?

1.8.5 Weyl Tensor

For values of n > 3 in 1
2n

2
(
n2 − 1

)
, the components of the Riemann curvature

tensor apart from it’s own components are represented by the Weyl tensor
Wαβµν .

Wαβµν = Rαβµν −
2

n− 2

(
gα[νRµ]β + gβ[µRν]α

)
+

2

(n− 1) (n− 2)
Rgα[µgν]β

(1.186)
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The Weyl tensor also possesses all three algebraic symmetries and in addition
it can be thought of as that part of the curvature tensor such that all contrac-
tions vanish, i.e., Wα

βαν = 0. The Weyl tensor is a measure of the curvature
of spacetime or, more generally, of a pseudo-Riemannian manifold. It can be
shown that the Weyl tensor of a three-dimensional pseudo-Riemannian mani-
fold (M, g) is identically zero. Like the Riemann curvature tensor, it expresses
the tidal force that a body feels when moving along a geodesic. It differs from
the Riemann curvature tensor in that it does not convey information on how
the volume of the body changes, but rather only how the shape of the body is
distorted by the tidal force.

The Weyl tensor is equal to the Riemann tensor in a Ricci-flat space (Rµν = 0).
It is considered that the Weyl tensor embodies in some sense the non-
Newtonian properties of the gravitational field, in particular its radiation prop-
erties. This point of view is supported by the fact that the equations for mass-
less fields, at least in four spacetime dimensions, are conformally invariant
(this is a concept that will be explained soon). Since W is obviously zero for
a flat metric, it is also zero if the metric is conformal to a flat metric. It can
be proved that if n > 3, then the identical vanishing of the Weyl tensor im-
plies that the metric is locally conformally flat. Consider two metrics, g and
ḡ. These metrics are said to be conformal if and only if

ḡ = ω2g, (1.187)

where ω is a non-zero differentiable function. If this condition is satisfied, then
for any vectors R,Q,S,V at a point p on the manifold M,

g(R,Q)

g(S,V)
=
ḡ(R,Q)

ḡ(S,V)
, (1.188)

so angles and lightlike world-lines are preserved under conformal transforma-
tions. The null cone structure in the tangent space Tp(M) is preserved by
conformal transformations since for a vector R ∈ M,

g(R,R) > 0,= 0, < 0 ⇒ ḡ(R,R) > 0,= 0, < 0. (1.189)

The metric components are related as follows

ḡµν = ω2gµν . (1.190)

This concept of conformal factors and how helps it to select a relevant two-
dimensional part of a spacetime and to make it’s stereographic projection on a
compact space is studied in Penrose-Carter diagrams. The idea behind these
diagrams is that under conformal maps (when the conformal factor is dropped)
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lightlike or null world lines and angles between them do not change.

Revisiting the cases for different values of n, we conclude the following: In the
case of n = 1, it is implied there are zero truly independent components in the
metric. The implication of the case when n = 2, is that in any 2-dimensional
Riemann manifold, it is a standard result that locally we can always choose
coordinates to make the metric conformally flat. The implication of the case
when n = 3, is that in any 3-dimensional Riemann manifold, it is a standard
result that locally we can always choose coordinates to make the metric diag-
onal, i.e., gmn = Diag (g11, g22, g33) (all the non-diagonal elements are zero),
i.e., Riemann 3-manifolds have metric that are always locally diagonalizable.

Example 1.12. A full-blown metric calculation
Before proceeding further, we shall put the concepts introduced thus far
to work and calculate all the algebraic quantities for a given metric. Con-
sider the Poincaré half-plane model which describes hyperbolic geometry in
2-dimensions. It has the following line element

ds2 =
1

y2
(
dx2 + dy2

)
, (1.191)

which can be represented in the matrix form as follows

gµν =

( 1
y2 0

0 1
y2

)

, gµν =

(
y2 0
0 y2

)

(1.192)

The Christoffel symbols for this metric can be calculated as follows

Γ xxx = gxxΓxxx = gxx 1
2 (gxx,x + gxx,x − gxx,x) =

1
2y

2∂xy
−2 = 0,

Γ xxy = Γ xyx = gxxΓxyx = gxx 1
2 (gxx,y + gxy,x − gxy,x) =

1
2y

2
(

− 2
y3

)

= − 1
y ,

Γ yyy = gyyΓyyy = gyy 1
2 (gyy,y + gyy,y − gyy,y) =

1
2y

2
(

− 2
y3

)

= − 1
y ,

Γ yxy = Γ yyx = gyyΓyxx = gyy 1
2 (gxy,x + gxx,y − gyx,x) =

1
2y

2
(

− 2
y3

)

= − 1
y ,

Γ xyy = gxxΓyyx = gxx 1
2 (gxy,y + gxy,y − gyy,x) = 0,

Γ yxx = gyyΓxxy = gyy 1
2 (gyx,x + gyx,x − gxx,y) = − 1

2y
2
(

− 2
y3

)

= 1
y .

(1.193)

We can represent the components of the Christoffel symbols in a matrix form
as follows with the matrix having a x and y labels for the rows and columns
and the individual columns having a x and y label
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(
Γ xxx
Γ xxy

) (
Γ xyx
Γ xyy

)

(
Γ yxx
Γ yxy

) (
Γ yyx
Γ yyy

)









=









(
0

−y−2
) (

−y−2
0

)

(
y−2

0

) (
0

−y−2
)









(1.194)

Using the information of the Christoffel symbols we can now find out the ex-
pressions for the Riemann tensor. For the given metric, we will have 4 Riemann
tensors for a given upper index, i.e., say x is the upper index then we have
Rxxxx, R

x
xxy, R

x
xyx, and Rxxyy. Since we have a 2-dimensional matrix, we have

a Riemann tensor whose components span a 2 × 2 matrix whose individual
components are 2 × 2 matrices. The upper index is read as the label of the
global row, the first lower index is the label of the global column, the second
lower index is the label of local row, and the third lower index is the label of
the local column. The smart way to proceed here is to calculate one compo-
nent in each local 2× 2 matrix are try and fix the other components using the
knowledge of the symmetries. Let’s first calculate Rxxxy

Rxxxy = Γ xxx,y − Γ xxy,x + Γ xβyΓ
β
xx

︸ ︷︷ ︸

=ΓxxyΓ
x
xx+Γ

x
yyΓ

y
xx

+ Γ xβxΓ
β
xy

︸ ︷︷ ︸

=ΓxxxΓ
x
xy+Γ

x
yxΓ

y
xy

= 0,
(1.195)

since this component vanishes, we can write the Riemann tensor in a covariant
form as Rxxxy = gxxRxxxy and use the first & second skew symmetries and
block symmetry to find

Rxxxy = −Rxxyx = 0 ⇒ Rxxyx = 0,

Rxxxy +Rxxyx +Rxyxx = 0 ⇒ Rxyxx = 0,

Rxxxy = Rxyxx
︸ ︷︷ ︸

=−Ryxxx

⇒ Ryxxx = 0.

(1.196)

Proceeding the same way for other components we find that the only non-zero
components are Rxyxy, R

x
yyx, R

y
xxy, and Ryxyx, which take the following form

Rxyxy = Ryxyx = − 1

y2
, Rxyyx = Ryxxy =

1

y2
. (1.197)

Using this information, the Ricci tensor components can be calculated quite
easily as follows

Rxx = gyyRxyxy = gyygxxR
x
yxy = − 1

y2 , Rxy = 0,

Ryy = gxxRxyxy = gxxgxxR
x
yxy = − 1

y2 , Ryx = 0.
(1.198)

Finally , with all the above expressions, we can calculate the components of
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the Weyl tensor. Again the smart way to proceed is to realize that the Weyl
tensor possesses the same symmetries as that of the Riemann tensor. After
some algebra (which you are encouraged to do) it can be seen that all the
components of the Weyl tensor vanish.

Exercise 4

1. Explicitly show that for the following metric, all the components of the Weyl
tensor vanish identically

ds2 =
l2

z2
(
−dt2 + dx2 + dz2

)
. (1.199)

This called the Poincaré patch of AdS3 spacetime, l here is called the AdS
radius, and t ∈ (−∞,∞), z > 0 or z < 0 (divides hyperboloid into two
charts). Of course the realization that the Weyl tensor has 0 components in
d = 3 may aid in making future calculations much simpler. This is so since

the Weyl tensor, for values n > 3, has
n2(n2−1)

12 − n(n+1)
2 components in n-

dimensions19. Return to this question after studying Einstein’s field equations.
Einstein’s equations in vacuum (with the cosmological constant, Λ) take the
form: Rµν − 1

2Rgµν + Λgµν = 0, taking the trace of this equation gives

gµνRµν − 1
2Rg

µνgµν + Λgµνgµν = 0; gµνgµν = δµµ =
∑n
i=0 δ

i
i = n,

R− n
2R+ nΛ = 0,

⇒ R = 2Λn
n−2 ,

(1.200)

where n is the dimension of spacetime. For n = 3, the Riemann and Ricci have
6 independent components and hence, they can be expressed in terms of the
other as follows

Rαβµν = 2
(
gα[νRµ]β + gβ[µRν]α

)
−Rgα[µgν]β

= Λ (gαµgνβ − gανgµβ) .
(1.201)

This form actually corresponds to a maximally symmetric solution. Calculate
the Riemann tensor components making use of the Christoffel symbols and
using this developed expression. Compare the two to obtain the value of the
cosmological constant Λ. Does this value seem weird? What could this value
tell us about this particular spacetime?

2. Consider the metric of a 4-sphere which has the following line element

19 this is just a linear combination of the expressions which give the number of
independent components of the Riemann and Ricci tensors respectively
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ds2 = r2
(
dτ2 + sin2τ dΩ2

3

)
, (1.202)

where dΩ2
3 = dψ2+sinψ dΩ2

2 is the metric of a 3-sphere and dΩ2
2 is the metric

of a 2-sphere. This metric is diagonal and hence, we may apply the developed
formalism.

3. Show that in n = 2 the Riemann tensor takes the following form

Rαβµν =
R

2
(gαµgβν − gανgβµ) . (1.203)

1.8.6 The Kulkarni-Nomizu Product

The Kulkarni-Nomizu product of any two covariant 2-tensors A and B is de-
fined as follows

(A ∧©B)µναβ = AαµBνβ +AνβBαµ −AναBβµ −AβµBνα

= 2Aµ[αBβ]ν + 2Aν[βBα]µ,
(1.204)

which is a covariant 4 tensor that we can refer to as Pµναβ . An easier way
to represent this and understand this product is to write it as the sum of the
determinant of two separate matrices

(A ∧©B)µναβ =

∣
∣
∣
∣

Aµα Aµβ
Bνα Bνβ

∣
∣
∣
∣
+

∣
∣
∣
∣

Bµα Bµβ
Aνα Aνβ

∣
∣
∣
∣

(1.205)

The advantage of the Kulkarni-Nomizu product is that when the tensors A and
B are symmetric then the symmetries of the product is exactly the symmetries
of the Riemann tensor, i.e., that are as follows
1. Antisymmetric in the first two indices, (A ∧©B)µναβ = − (A ∧©B)νµαβ
2. Antisymmetric in the last two indices, (A ∧©B)µναβ = − (A ∧©B)µνβα
3. Symmetric in paired indices, (A ∧©B)µναβ = (A ∧©B)αβµν
4. Satisfies the Bianchi identity, (A ∧©B)µναβ+(A ∧©B)ναµβ+(A ∧©B)αµνβ =
0.

This seems like it would certainly help simplify the expression of the Weyl
tensor which also possesses the weird antisymmetric parts such as the one
shown above. Consider the Kulkarni-Nomizu product of two metric tensors
gµν and gαβ

(g ∧© g)µναβ = gµαgνβ − gµβgνα + gνβgµα − gναgµβ

= 2 (gµαgνβ − gµβgνα)

= 2gµ[αgβ]ν ,

(1.206)
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where we have used the fact that the metric tensor is symmetric. Using this
result let us first simplify the antisymmetric piece attached to the Ricci scalar
in the expression for the Weyl tensor

Rgµ[αgβ]ν =
R

2
(g ∧© g)µναβ =

R

2
ḡµναβ , (1.207)

where ḡµναβ is a short-hand notation for the product. Before considering the
next piece, let’s create a short-hand notation. Let Āµναβ be the Kulkarni-
Nomizu product of the covariant 2-tensor A and the metric tensor, i.e.,

Āµναβ = (A ∧© g)µναβ . (1.208)

Now, substituting the tensor A in the above definition with the Ricci tensor,
we obtain the simplification of the second antisymmetric piece as follows (us-
ing Ric instead of R to represent the Ricci tensor in this product in order to
avoid confusion with the Ricci scalar)

gµ[αRβ]ν − gν[αRβ]µ = Rµαgνβ +Rνβgµα −Rµβgνα −Rναgµβ

= (Ric ∧© g)µναβ = R̄µναβ .
(1.209)

Note here that R̄µναβ is the representation of the Kulkarni-Nomizu product
and is not to be confused with the Riemann tensor. We can now use these
expressions to simplify the Weyl tensor as follows

Wµναβ = Rµναβ − 1
(n−2) (Rµαgνβ +Rνβgµα −Rµβgνα −Rναgµβ)

+ 1
(n−1)(n−2)R (gµαgβν − gµβgαν)

= Rµναβ − 1
(n−2) (Ric ∧© g)µναβ + R

2(n−1)(n−2) (g ∧© g)µναβ

= Rµναβ − 1
(n−2) R̄µναβ + R

2(n−1)(n−2) ḡµναβ .

(1.210)

We can further simplify by introducing the Schouten tensor which is defined
as follows

Sµν =
1

(n− 2)

(

Rµν −
R

2(n− 1)
gµν

)

, (1.211)

which simplifies the Weyl tensor representation to the following expression

Wµναβ = Rµναβ − (S ∧© g)µναβ . (1.212)
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Exercise 5

1. Consider the global AdS5 metric

ds2 = −
(

1 +
r2

l2

)

dt2 +

(

1 +
r2

l2

)−1
dr2 + r2

(
dθ2 + sin2θ dφ2 + cos2θ dψ2

)
.

(1.213)

a. Show that the Ricci scalar is R = −20/l2.
b. Verify that the components of the Weyl tensor vanish identically.
c. Show that by replacing explicitly in the equation Wµναβ = 0, that ḡµν =
e2κ(x)gµν (note that ω2(x) = e2κ(x) here) is a valid solution, where κ(x) is a
function of all the coordinates, i.e., κ(x) = κ(t, r, θ, φ, ψ).
d. Find the components of the Schouten tensor.

2. Simplify the following products
a. LKAµν ∧© gαβ
b. LKAµν ∧©LKBαβ .
c. [LX ,LY ]Aµν ∧©L[X,Y ]Bµν .
d. LXSµν ∧© gαβ , where Sµν is the Schouten tensor.

3. Consider the conformally flat metric gµν = ω2(x)η|muν on the domain R
1+n

and set ω(x) = 1
1+K

4 σ
, where σ = ηµνx

µxν = −
(
x0
)2

+
∑n
i=1

(
xi
)2

and K is

a constant.
a. Consider the case K = 1. Find the domain in R

1+n where the metric is
defined. This metric is called the de Sitter metric.
b. Consider the case K = −1. Find the domain in R

1+n where the metric is
defined. This metric is called the anti de Sitter metric.

4. The traceless Ricci curvature is defined as

RT
µν = Rµν −

1

n
Rgµν . (1.214)

a. Show that the trace of this is indeed null so that it lives up to its name.
b. Show that the Schouten tensor can be written in terms of RT

µν as follows

Sµν =
1

(n− 2)
RT
µν +

1

2n(n− 2)
Rgµν . (1.215)

c. Consider the Poincaré patch of AdS3 spacetime as given in 1.199. Find all
the components of the Schouten tensor for the same.
d. Since AdS3 spacetime is of dimension n = 3, all the components of the Weyl
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tensor vanishes identically. Calculate the Cotton tensor. Is this spacetime lo-
cally conformally flat?
e. Show that the following holds

RµναβR
µναβ =WµναβW

µναβ +
4

(n− 2)
RµνR

µν − 2

(n− 1)(n− 2)
R2, (1.216)

and show that this quantity, called the Kretschmann invariant, for the Poincaré
patch of the AdS3 metric is equal to 12/l4.

1.8.7 The Cotton Tensor

We have now established that in three-dimensions the Weyl tensor vanishes
identically, and the Riemann and thew Ricci tensors have only 6 independent
components. However, it is to be noted that not all 3-dimensional spacetimes
are conformally flat. Hence, we require a replacement for the Weyl tensor, that
would confirm conformal flatness of a spacetime and here is where the Cotton
tensor comes into the picture. The Cotton tensor is a covariant 3-tensor that
is given by

Cµνα = Dα

(

Rµν −
1

2(n− 1)
Rgµν

)

−Dν

(

Rµα − 1

2(n− 1)
Rgµα

)

, (1.217)

which is trace-free, i.e.,

gµνCµνα = gµαCµνα = gναCµνα = 0. (1.218)

The skew symmetry in the second and third indices and Bianchi’s first identity
for the Cotton are as follows

Cµνα = −Cνµα, Cµνα + Cναµ + Cαµν = 0. (1.219)

We can now make an important observation. Consider the covariant derivative
of Cµνα and Cναµ

DαCµνα = DαCναµ, (1.220)

from which, and the covariant derivative of the first Bianchi identity, we can
immediately conclude that

DαCαµν = 0. (1.221)

We now want to establish a relation between the Weyl tensor and the Cotton
tensor. To do this we connect the two via the Schouten tensor. First we express
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the Cotton tensor in terms of the Schouten tensor as follows

Cµνα = (n− 2) (DαPµν −DνSµα)

= 2 (n− 2)D[αSν]µ,
(1.222)

where we have made use of the fact that the Schouten tensor is symmetric in
its indices (since it’s a linear combination of the Ricci tonsor and the metric
tensor which are symmetric). Now, taking the covariant derivative of the Weyl
tensor Wβµνα, it is easy to obtain the following expression (do this! hint: take
the trace of the Bianchi identity)

DβW
β
µνα = 2 (n− 3)D[αSν]µ. (1.223)

Thus, we finally obtain the relation

DβW
β
µνα =

n− 3

n− 2
Cµνα. (1.224)

This implies that for n ≥ 4, the assumption that the manifold is locally con-
formally flat, i.e., W = 0, the Cotton tensor is identically zero also in this case,
but this is only a necessary condition. Thus, a manifold can be referred to as
locally conformally flat if and only if for n ≥ 4, the Weyl tensor vanishes and
for n = 3, the Cotton tensor vanishes. For n < 3, the Cotton tensor is iden-
tically zero. What we have stated here is called the Weyl-Schouten theorem.
Formally put, this states that

Theorem 1.13. Weyl-Schouten
A Manifold M of dimension n is conformally flat if and only if

• n = 2,
• n = 3 and the Cotton tensor vanishes, i.e., Cµνα = 0, or
• n ≥ 4 and the Weyl tensor vanishes, i.e., Wµναβ = 0

Example 1.14. Conformal flatness in the global AdS spacetime and a little more
Consider a spacetime R

2,2, i.e., with coordinates {x0, x1, x2, x3}. This is a met-
ric with signature (−−++) whose line element takes the form

ds2 = −
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2
. (1.225)

AdS3 is the submanifold of this space which is given by the constraint

−
(
x0
)2 −

(
x1
)2

+
(
x2
)2

+
(
x3
)2

= −l2, (1.226)

where l is called the AdS radius. The following parameterizations satisfy the
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constraint equation

x0 = l coshψ cos
(
t
l

)
, x1 = l coshψ sin

(
t
l

)
,

x2 = l sinhψ cosφ, x3 = l sinhψ sinφ,
(1.227)

where t ∈ [0, 2πl), φ ∈ [0, 2π), and ψ ∈ [0,∞). It is easy to show that the
induced metric reads

ds2 = l2
(
−cosh2ψ dt2 + dψ2 + sinh2ψ dφ2

)
. (1.228)

This is the AdS3 metric in global coordinates (with x0 = t, x1 = ψ, x2 = φ).
We now need to check if this is conformally flat. It is easy to check that all
the components of the Weyl tensor vanishes identically (do this!). But we need
to tread carefully here since we are in n = 3 where the vanishing of the Weyl
tensor is deceptive. In accordance with the Weyl Schouten theorem, we can call
this spacetime conformally flat if and only if the Cotton tensor vanishes. So
let’s check for this. We first compute the Schouten tensor, which in n = 3, reads

Sµν = Rµν −
1

4
Rgµν = −1

2





−cosh2ψ 0 0
0 1 0
0 0 sinh2ψ



 . (1.229)

Now, using the Cotton-Schouten relation derived in 1.222, we find the compo-
nents of the Cotton tensor to be

Cttt = Cψψψ = Cφφφ = 0,
Ctψφ = 0 ⇒ Cψtφ = 0, Cφtψ = 0,
Cψtψ = Ctψψ = Cψψt = 0, Cψφψ = Cφψψ = Cψψφ = 0,
Ctψt = −DψStt = −∂tStt + 2Γ tψtStt = 0, Γ tψt = tanhψ,

Cφψφ = −DψSψψ = −∂ψSφφ + 2ΓφψφSφφ = 0, Γφψφ = cothψ.

(1.230)

We find that all the components of the Cotton tensor do indeed vanish and
hence, AdS3 is conformally flat. This metric can also be expressed in Poincaré
coordinates (t, x, z) with the following parameterization

x0 =
lt

z
, x1 =

l2

z
, x2 + x3 =

lx

z
, x2 − x3 =

−t2 + x2 + z2

z
. (1.231)

The resulting metric is called the Poincaré patch of the AdS3 (see 1.199) and
this was something that was solved as an example problem previously. AdS3

is a maximally symmetric spacetime. The global AdS3 metric can also be pa-
rameterized by representing the it as follows

g =
1

l2

(
x0 − x2 −x1 + x3

x1 + x3 x0 + x2.

)

(1.232)
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We can here note two properties of this type of representation. Firstly, all the
entries of the matrix are real numbers, i.e., x0, x1, x2, x3 ∈ R and secondly, the
determinant of the matrix is unity, i.e.,

det|g| = 1
l2

((
x0
)2 −

(
x2
)2 − {

(
x3
)2 −

(
x1
)2}
)

= cosh2ψ
(
sin2

(
t
l

)
+ cos2

(
t
l

))
− sinh2ψ

(
sin2φ+ cos2φ

)
= 1.

(1.233)

These observations were important to make since we can now compare this to
a symmetry group. The symmetry group which possesses the very same prop-
erties is SL (2,R) which is read as special linear group of degree 2 over the field
of real numbers. It is defined as the group of 2× 2 matrices with entries from
the field of real numbers and a unit determinant, under matrix multiplication.
It is represented as follows

SL (2,R) ≡
{(

a b
c d

)

| a, b, c, d ∈ R, ad− bc = 1

}

(1.234)

To observe the type of curvature singularity in global AdS3, we compute the
Kretschmann scalar. Since the Weyl tensor vanishes, the expression for the
invariant gets simplified, from 1.216 with n = 3 we have

K = 4RµνR
µν −R2, (1.235)

where the Ricci tensor components and the Ricci scalar read

Rµν =





2cosh2ψ 0 0
0 −2 0
0 0 −2sinh2ψ



 , Rµν = gµµgννRµν = 1
l4





2sech2ψ 0 0
0 −2 0
0 0 −2cosech2ψ



 ,

R = − 6
l2 .

(1.236)

Substituting this into 1.235, we obtain

K =
12

l2
, (1.237)

which is a constant and this implies that there exists no curvature singularity.

Exercise 6

1. Simplify the following (here X is a Killing vector)
a. [Dα,LX ]Sµν , where Sµν is the Schouten tensor.
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b. [De,LX ]Rabcd, where Rabcd is the Riemann tensor.
c. [Dα,LX ]Cµνβ , where Cµνβ is the Cotton tensor.
d. [De,LX ]Wabcd, where Wabcd is the Weyl tensor.

2. Consider two conformally equivalent metrics gµν and ĝµν = ω2(x)gµν =
e2κ(x)gµν . Now, consider scaling all lengths by a constant factor l > 0 so that
ω(x) = l and κ(x) = ln(l). Show that the following hold
a. Γ̂αµν = Γαµν .

b. R̂µναβ = l2Rµναβ , R̂µν = Rµν , and R̂ = l−2R.

c. Ŝµν = Sµν and Ĉµνα = Cµνα.

3. Consider a spacetime with coordinates {u, v, x, y} given by the metric

ds2 = f(u)2dx2 + g(u)2dy2 − 2dudv. (1.238)

This describes a plane-fronted gravitational wave moving in the u direction
where u = t − z and v = t + z. Perform your calculations in the {u, v, x, y}
coordinate system.
a. Show that this metric has zero scalar curvature.
b. Show that this metric has a null Kretschmann scalar.
c. Show that the only non-zero component of the Schouten tensor is Suu.
d. Use this information to show that the all the Cotton tensor components
vanish identically.
e. Is this a conformally flat spacetime?

4. Consider a field defined by ϕ(x) which satisfies the massless Klein-Gordon
equation in flat spacetime which reads

�ϕ(x) = 0,

where � ≡ ηµν∂µ∂ν is the d’Alembert operator. Now consider a metric
gµν which is related to the flat space metric by a conformal transformation
gµν = e2κ(x)ηµν .
a. Show that the expression for Ricci scalar in n-dimensional spacetime for a
metric which is conformally-related to the Minkowski metric is

R = 2(1− n)e−2κ�κ− (2− n)(1− n)e−2κηαβ∂ακ∂βκ.

b. Show that the transformed field ϕ̄(x) is related to the original field by
ϕ̄ = eλκ(x)ϕ(x) and satisfies the Klein-Gordon equation in n-dimensional space
which reads
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gµνDµDνϕ̄(x)− ωRϕ̄(x) = 0, (1.239)

where λ = 2−n
2 and ω = 1

4
n−2
n−1 .

c. Write down the Klein-Gordon equation in n = 4 and find it’s solution.

1.9 Hypersurfaces

In a 4-dimensional spacetime manifold, a hypersurface is a 3-dimensional sub-
manifold that can be either spacelike, timelike, of null. A particular hypersur-
face Σ is selected by giving parametric equations of the form

xµ = xµ (yα) , (1.240)

where yα (α = 1, 2, 3) are coordinates intrinsic to the hypersurface. Con-
sider a 2-sphere in a 3-dimensional flat space, it can be described either by
ζ(x, y, z) = x2 + y2 + z2 − r2 = 0, where r is the radius of the sphere, or by
x = r sinθ cosφ, y = r sinθ sinφ, and z = r sinφ, where θ and φ are intrinsic
coordinates. In general, a hypersurface is a manifold of dimension n − 1 em-
bedded in n-dimensional space. Hence, a hypersurface is therefore the set of
solutions to a single equation

Λ (x1, ..., xn) = 0. (1.241)

1.9.1 Normal on Hypersurfaces

The normal of a hypersurface Σ whose equation is of the form Σ ≡ r−C = 0,
where C is a constant is

nµ = Σ,µ = (0, 1, 0, 0). (1.242)

At any point on a generic hypersurface we can introduce a locally inertial
frame, and rotate it in such a way that the components of the normal vector
are

na =
(
n0, n1, 0, 0

)
& nan

a =
(
n1
)2 −

(
n0
)2
. (1.243)

Consider a vector va tangent to the surface at the same point. va must be
orthogonal to nb

nav
a = −n0v0 + n1v1 = 0, (1.244)
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which implies

v0

v1
=
n1

n0
. (1.245)

Thus,

va = ζ
(
n1, n0, α, β

)
, (1.246)

where α, β, ζ are constant and arbitrary. Now, the norm of the tangent vector is

vav
a = ζ2

(

−
(
n1
)2

+
(
n0
)
+
(
α2 + β2

))

= ζ2
(
−nana +

(
α2 + β2

))
.

(1.247)

We have the following cases:
1. If nµn

µ < 0, the hypersurface is called spacelike, and the tangent vector is
necessarily a spacelike vector.
2. If nµn

µ = 0, the hypersurface is called null, and the tangent vector can be
spacelike or null.
3. If nµn

µ > 0, the hypersurface is called timelike, and the tangent vector can
be spacelike or null.
Consider a point q on a surface Σ = 0. If the surface is spacelike, the tangent
vectors of the surface lie all outside the lightcone in q. Therefore, a particle
passing through the point q, whose velocity vector lies inside the cone, can
cross the surface only in one direction. If the surface is null, the situation is
nearly the same: the tangent vectors to the surface lie inside to the lightcone
in q, or are tangent to it, thus a particle can cross the surface in one direction
only. It the surface is timelike, some tangent vectors of the surface are inside
the cone, some others are outside, i.e. the surface cuts the cone, and then a
particle passing through q can cross the surface in both directions.

Example 1.15. Let us consider the AdS3 metric in global coordinates 1.228. We
now consider a hypersurface Σ and want to find the metric of the hypersurface
i.e., the induced metric on the hypersurface. Let a vector ∂µf be the normal
to a hypersurface. If the hypersurface is non-null, we can now introduce a unit
normal nmu such that, as previously mentioned, nµnµ = ǫ takes different val-
ues based on the whether the hypersurface is spacelike or timelike. We can
now write down an expression of nµ as follows

nµ =
ǫ∂µf

|gαβ∂αf∂βf |
1
2

, (1.248)

Note that when Σ is null, we have gαβ∂αf∂βf = 0. Thus, under the special
case of a null hypersurface we define the normal vector n̄µ as follows
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n̄µ = −∂αf. (1.249)

Now, as an example consider the AdS3 metric in global coordinates 1.228. Let
us consider a spacelike hypersurface (where ψ = Ψ = constant) where the
two-dimensional induced metric γαβ reads

γµν =

(
−l2cosh2Ψ 0

0 l2sinh2Ψ,

)

(1.250)

and the normal vector to this hypersurface with f = ψ is

nt =
∂tψ

|gtt∂tψ∂tψ|
1
2
= 0,

nψ =
∂ψψ

|gψψ∂ψψ∂ψψ|
1
2
= 1

∣

∣

∣

√
gψψ

∣

∣

∣

= l,

nφ =
∂φψ

|gφφ∂φψ∂φψ|
1
2
= 0,

⇒ nµ = lδψµ = (0, l, 0)

(1.251)

Similarly, we find that if Σ is a timelike hypersurface the normal then takes
the form

nµ = −lcosh2ψ δtµ =
(
−lcosh2ψ, 0, 0

)
. (1.252)

Exercise 7

1. Consider the Bertotti-Kasner metric which has the following line element
with Λ > 0

ds2 = −dt2 + e2t
√
Λdr2 +

1

Λ

(
dθ2 + sin2θ dφ2

)
. (1.253)

a. Show that this spacetime is not conformally flat.
b. Show that the Ricci and the Kretschmann scalar are 4Λ and 8Λ2 respec-
tively.
c. Consider a spacelike hypersurface. Find the normal to the hypersurface and
the induced metric.
d. Is the induced metric conformally flat?
e. Show that the Ricci and the Kretschmann scalars of the induced metric are
2Λ and 4Λ2 respectively.
f. Consider a timelike hypersurface and repeat the exercise.

2. Find the induced metric on a timelike hypersurface to the BTZ metric
3.57 and find the normal vector to the hypersurface.
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2

Einstein’s Field Equations

2.1 Newton v Einstein: The missing Sun

Before we divulge into the details and study the field equations, let us take a
step back to put things into perspective. We must now ask ourselves an impor-
tant question, why a different theory? I mean we are all cool with Newton’s
stuff, and as if his theories weren’t enough we are moving towards a much more
complicated one. We are in a very tricky situation now, upon studying the field
equations one may either give up complaining that the math is just too much
or one may ignore the math for a moment and focus on understanding the
elegance of the equations. Of course, my aim is to try and stimulate the latter.
I strongly believe that in order to understand a theory born out of the power
of sheer imagination it is our responsibility to try and appreciate it using our
own.
Let’s perform a Gedankenerfahrung, which might possibly explain the need

for a new theory. Imagine that for the moment both Newton and Einstein are
alive (of course they are in every physicist’s heart!) and that they are partici-
pants in a debate hosted by Wolfgang Pauli (of course this weird choice comes
with a reason).

Since its obvious that there would arise tensions (strictly egoistical) in a room
of physicists, the argument the two would have is almost inevitable. Let’s not
take sides as of yet and try and review what each of them have to say. In
Newton’s version, he states that there is a potential (let’s call it φ) every-
where in space and it varies from place to place. This variation of the po-
tential, or better, the differential variation of the potential in space gives rise
to a field, i.e., E = ∇φ (r) (I’ll let you know what ∇ stands for later). The
field instructs the particles how to move and decides their acceleration, i.e.,
F = ma = −m∇φ (r). Hence, we obtain the following relation

a = −∇φ (r) . (2.1)
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Now, what equation would instruct the field and tell it how to behave? We are
to find the differential change in the field in order to predict its characteris-
tics and the differential change in space (volume differentiation) is known as
divergence and is represented as follows

∇E =

(
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)

E. (2.2)

We are to bear in mind that the field E unlike the potential φ is a vector
quantity, and in order solve for the same we make use of Gauss theorem which
states the following

∫

∇Edx dy dz =
∫

dν En, (2.3)

were ν is the surface area and En is the normal vector to the surface area. In
one-dimension we can write

∫
dν En =

(
−Gm

r2

) ∫
dv = −Gm

r2 4πr2 = −4πGm

∫
∇E d3x =

∫
dν En = −4πGm,

(2.4)

thus,

∇E = −4πG

(
∆m

∆V

)

= −4πGρ = ∇2φ. (2.5)

Mass instructs the field how to curve via the density, ρ, this equation is known
as the Poisson equation. Thus, Newton would argue that since his theory makes
sense, if the Sun were to suddenly vanish, then the Earth would immediately
be flung in a direction tangential to its orbit almost analogous to how a stone
attached to a string would fly in a tangential path when released from rota-
tions about an axis. After this rather elegant conclusion, Pauli would be quite
convinced with the reasoning and one would require a counter of epic propor-
tions in order to even sound sane. In Einstein’s version, he starts off by stating
that Newton is simply wrong and that he is ignoring a very important con-
cept. In Einstein’s version, he states that it is well known that light takes time
to travel from the Sun and reach Earth, and since the Sun is approximately
149.27 million kilometres away from us, it would take close to 8.3 minutes for a
ray of light to reach us from the Sun (Thus the Sun you observe while reading
this book is what it was 8.3 minutes ago, furthermore, all that we see around
us is the past!). He goes on to argue that when light itself (the fastest thing
known to us) takes time to completely its journey, how can gravity be any
faster? Thus, if the Sun were to suddenly go missing, we would get to know
the same only after 8.3 minutes, and some 8.3 + x minutes later, the Earth
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would fly off tangentially. Thus, Pauli would announce Einstein the winner
and let Newton know that he was “not even wrong”!
In General Relativity, the equation: a = −∇φ (r), is replaced by a statement.
The statement tells us that once we gain knowledge of the geometry (i.e. g00
here), the rule is that particles move on spacetime geodesics. It is quite inter-
esting how this ceases to be true.

2.2 Stress-energy tensor: the messenger of mass

Space tells mass how to move and mass tells space how to curve. Prior to
observing the curvature, we are to probe for a quantity that will enable us
to understand how much mass-energy is present in a unit volume. This quan-
tity is the stress-energy tensor. Spacetime possesses multiple contributions of
4-momentum from all sorts of particles from different fields. The contributions
also pour in from the electromagnetic fields, neutrino fields, etc. Thus, we can
view spacetime as an ocean of 4-momentum and the flow of water in the ocean
is described by the stress-energy tensor T. Since T is a tensor, it has a slot ma-
chine definition. The stress-energy tensor program is a linear, and symmetric
slot machine which accepts two vector inputs, i.e., T (

︸︷︷︸

IP1

,
︸︷︷︸

IP2

). The output,

for a given input, of T are as follows
1. Input a 4-velocity v of Mr. Absolute Zero and leave the other space sans
any input. This produces the following output

T ( , v) = T (v, ) = −
{
dp

dV

}

, (2.6)

where, the RHS denotes the density of 4-momentum, i.e., the 4-momentum
per unit volume as measured in Mr. Absolute Zero’s local Lorentz frame. In
the component form, we have the following expression for him with 4-velocity
uµ,

Tµν u
ν = Tµν v

ν = −
(
dpµ

dV

)

. (2.7)

2. Now, enter the 4-velocity of Mr. Absolute Zero as the second input and
enter any arbitrary unit vector n as the second input. The program displays
the following output

T (u, n) = T (n, u) = −n dp
dV

, (2.8)

where, the RHS denotes the component of the 4-momentum density, as mea-
sured in Mr. Absolute Zero’s Lorentz frame. In the component form, we have
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the following expression

Tµνv
µnν = Tµνn

µvν = −nα
dpα
dV

, (2.9)

3. Enter the 4-velocity of Mr. Absolute Zero for either of the inputs.

T (v, v) = {density of mass− energy measured in his Lorentz frame} .
(2.10)

4. Now, select two spacelike basis vectors for Mr. Absolute Zero, in his Lorentz
frame, ei and ej . Input the basis vectors to the tensor program T . The output
is the i, j component of the stress as measured by Mr. Absolute Zero, it can
be expressed as follows

Tij = T (ei, ej) = Tji = T (ej , ei)

=

{
i− component of force acting from side xj − δ to side xj+
δ, across a unit surface area with perpendicular direction ej

}

=

{
j− component of force acting from side xi − δ to side xi+
δ, across a unit surface area with perpendicular direction ei

}

.(2.11)

Now, since you know how to construct the stress-energy tensor for Mr. Ab-
solute Zero, lets probe further into its physical significance. A stress-energy
tensor Tαβ is the flux of the αth component of 4-momentum across a surface
of constant xβ , thus, Tµ0.
a. T 00: The flux of the 0th component of 4-momentum across the time sur-
face,i.e., it indicates the density of energy.

b. T k0 = T 0k: Energy flux across the surface at constant xk, i.e., indicates
the flow of energy along xk.

c. T kd = T dk: Flux of k-momentum across d-surface, i.e., indicates stress.

2.3 Conservation: What Does it Really Mean?

We know from Maxwell’s electrodynamic equation that the derivative of the
Faraday tensor is proportional to the 4-current1, this can be expressed as

d ∗F = 4π ∗J, (2.12)

1 i.e., the number of Maxwell tubes that end in an elementary volume is equal to
the amount of electric charge present in that volume
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where ∗J and ∗F is the 4-current dual and the Faraday dual (i.e. the Maxwell
tensor) respectively, and as previously discussed the Maxwell tensor is a 2-
form while its exterior derivative, the 4-current dual is a 3-form. Thus, we
could say that in a region filled with charge, Maxwell’s tubes take the origin
and the density is described by the 3-form ∗J . In general, the 4-current ten-
sor has four components, with the first one indicating charge density and the
other three indicating current density. With this picture in mind how does one
define charge conservation? If you are to conserve a particular charge, does
it mean that you draw a boundary over the distribution and prohibit it from
moving? Or does it mean that you transfer that specific charge density into an
imaginary box of finite volume and move it to infinity?

If we follow the first definition, then we are to still deal with the charge density
present in the room whenever we do physics but pretend as though it doesn’t
exist (leading to an awkward situation). The second case seems legit, right?
Nah, not really because if we move the charge density to infinity it would mean
that we are moving the charge box over a time interval, leading to the creation
of a current and as it passes via different areas it takes the form of current
density (leading to a messy situation). So, is the fate of conservation bound
to be awkward or messy? The answer is neither, we are to change our per-
spective a bit here. Let’s start viewing the charge density from the perspective
of the field its present in. Let’s define the field and “connect it” to the source
(the charge here) in such a way that the conservation of the source shall be
an automatic consequence of some condition imposed on the field. Assume a
hypercube in the 4-D spacetime to be the volume element in which an event
occurs. There is a mathematical theorem that states that the two-dimensional
boundary of the three-dimensional boundary of the four-dimensional cube is
zero.
Rather than divulging into the mathematics, let’s try and understand this
intuitively−we have previously observed the unique working of the exterior
derivative, let me remind you, a 1-form α which is a gradient α = df , must
satisfy dα = 0 (since if α is a 1-form then f is a 0-form because its exterior
derivative is equal to α; now, dα = ddf , which is zero). It is to be noted
that not all 1-forms follow this relation. If a 1-form does α satisfies dα = 0,
then it follows that locally it has the form α = df for some f .This is an
instance of the Poincaré lemma, which says that if a f -form γ satisfies dγ = 0,
then locally γ has the form γ = dǫ, for some (f − 1)-form ǫ. Now, consider
a f -form β in a coordinate patch, with coordinates x1, x2, x3, . . . , xn, there
exists an asymmetrical set of components βp...u(= β[p...u]) to represent β. This
representation can be expressed as follows

β =
∑

βp...udx
p ∧ · · · ∧ dxu. (2.13)

The exterior derivative of a f -form is a (f + 1)-form that is written as dβ, and
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which has components

(dβ)qp...u =
∂

∂x[q
βp...u], (2.14)

the notation is all messed up due to the antisymmetrization which extends
over all (f + 1) indices, including the one on the derivative symbol. Thus, we
can formulate the fundamental theorem of exterior calculus. For a f -form ζ as
follows

∫

A

dζ =

∫

∂A

ζ, (2.15)

where A is some compact (f + 1)-dimensional oriented region whose oriented
f -dimensional boundary (which is also compact) is ∂A.
What is going on here? Well let’s see if we can understand the physical mean-
ing of the integral and try and do something with it. First off, the meaning of
compact here is a region with a specific property that any infinite sequence of
points lying in A must accumulate at some arbitrary point that exists within
A. An accumulation point z has a specific property associated to it that every
open set in A which contains z ,must also contain members of an infinite se-
quence, such that the points of the sequence get closer and closer to the point
z, without any limit. Examples of compact surfaces include the surfaces of a
2-sphere and that of a torus. However, the Euclidean plane is a non-compact
surface. We now move on to the other term, oriented, which refers to the allot-
ment of a consistent sign convention at every point of A. For a 0-manifold, this
orientation allots a positive or a negative sign to each point. For a 1-manifold,
this orientation associates a direction to the curve via a symbol (arrow). For
a 2-manifold, this orientation is the circulation of the tangent vector at each
point. A great example for a non-orientable surface is the Mobius strip. Thus,
the boundary ∂A of a compact oriented (f + 1)-dimensional region A consists
of those points of A that do not lie within itself. If A is well-behaved, then ∂A
is a compact oriented f -dimensional region (which might be possibly empty).
Its boundary ∂∂A is empty (and thus ∂∂ = ∂2 = 0, which makes sense be-
cause we know that dd = d2 = 0). Examples of this “phenomenon” include the
boundary of the closed unit disc in the complex plane is the unit circle; the
boundary of the 2-sphere is empty, etc.

Similarly, taking the example of a cube in 3-dimensions−the boundary of a
cube is its faces (2-dimensional), and the boundary of the each of the faces
are composed of four edges (1-dimensional), and all edges are used up in unit-
ing one face to another (i.e. no edges are left out). We can conclude that the
1-dimensional boundary of the 2-dimensional boundary of the 3-dimensional
cube is identically zero, i.e., the boundary of a boundary vanishes. We can ex-
tend this concept to a hypercube and state that the 2-dimensional boundary
of a 3-dimensional boundary of a 4-dimensional cube is identically zero.
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From Maxwell’s equations (presented here without proof), it is known that
d ∗F = 4π ∗J , describes the features of the field ∗F . Here, the equations are
expressed in a coordinate-free geometric form where F is called the Faraday
tensor is a mathematical object that describes the electromagnetic field in
spacetime, and ∗F is called the dual of the tensor2. The Faraday tensor is as-
sociated with the antisymmetric matrix of six electromagnetic fields as follows
(note the difference between F and ∗F)

Fµν =







0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0







∗Fµν =







0 −Ez +Ey +Ex
+Ez 0 −Ex −By
−Ey −Bz 0 −Bz
+Bx +By +Bz 0







(2.16)

Observing the above matrices we can arrive at a possible equation for the re-
lation between F and ∗F as

∗Fαβ =
1

2
ǫµναβF

µν , (2.17)

where ǫµναβ is called the Levi-Civita symbol in 4-dimensions. It is defined as
follows

ǫµναβ =







+1, if (µ, ν, α, β) is an even permutation of (1, 2, 3, 4),
−1, if (µ, ν, α, β) is an odd permutation of (1, 2, 3, 4),
0, otherwise






(2.18)

This form of Maxwell’s equation is useful as it contains, within itself, the elec-
trostatic and the electromagnetic equations, i.e., (∇E = 4πρ) ,

(
∂E
∂t −∇×B = −4πJ

)

respectively. Observe that the 4-current tensor contains the elements of the
RHS of either equations, i.e., Jα =

(
J0, J1, J2, J3

)
= (ρ, {J}) and as ex-

plained previously, since the Faraday tensor describes the electromagnetic field,
it must hence contain the electric and magnetic fields as its components. Thus,
a single geometric law is used to express the two Maxwell’s equations as follows

Fµν,ν = 4πJµ, (2.19)

an equivalent formalism of the coordinate-independent law would be to express
the equation as ∇F = 4πJ. The conservation of the source, i.e., d∗J = 0, is

2 this is not to be confused with the dual lemma presented in introductory chapters.
Here, the meaning of dual is associated to the Hodge star operator.
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a direct consequence of the identity dd∗F = 0. Thus, conservation is a direct
consequence of the vanishing of a boundary of a boundary. Conservation liter-
ally demands no creation or destruction of the source inside the 4-dimensional
cube. It is also to be noted that the integral of an event leading to a creation, i.e.
of d∗J , over this 4-dimensional region is to be zero. Thus, conservation means
zero creation of charge in a 4-dimensional region. Mathematically speaking, the
application of the exterior derivative to either side of the second Maxwell equa-
tion, i.e., d ∗F = 4π ∗J , and using the fact that d2 = 0, we can deduce that the
4-current J satisfies the vanishing boundary condition d∗J = 0, or ∇αJ

α = 0
since

dd∗F = 4πd∗J = 0, (2.20)

is true. This vanishing divergence of the 4-current yields a conservation law
for electric charge. From the fundamental theorem of exterior calculus, we can
write the conservation law as follows

∫

A

d∗J =

∫

∂A

∗J = 0, (2.21)

the same law expressed in the “boundary of a boundary vanishes” language is
the following

4π

∫

∂A

∗J =

∫

∂A

d∗F =

∫

∂∂A

∗F = 0. (2.22)

So, is it possible to use a similar reasoning to prove that there exist no magnetic
monopoles? Indeed, we can. Magnetic charge is linked with the electromagnetic
field via the equation 4πJmagnetic = dF . Thus, if any magnetic charge is not
present then it would imply that the integral of Jmagnetic over any 3-volume
A is zero (the fundamental theorem of exterior calculus); or

∫

A

dF =

∫

∂A

F = {magnetic flux passing via ∂A} = 0, (2.23)

and as mentioned previously this can be expressed in terms of the “boundary of
a boundary vanishes” language by introducing a 4-potential, V (called vector
potential). Thus, we express the Faraday tensor as F = dV ( V is a 1-form and
its exterior derivative produces the 2-form, F ), and have (this automatically
leads to conservation, something that we wanted when we started off this topic)

∫

∂A

F =

∫

∂A

dV

∫

∂∂A

V ≡ 0. (2.24)

Thus, this concept of the “boundary of a boundary vanishes” is utilised to
extend to the concept of conservation of either of Maxwell’s equations, i.e.,
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dF = 0, and d∗J = 0. Now, it is only natural to think if such a conservation is
valid in gravitational physics, and if it leads us to laws. Yup! It’s true, conser-
vation is a key concept in gravitational physics too but here we make use of
a so called “double dual” ∗R∗ of the Riemann tensor which has the following
relation with the Einstein tensor G and the stress-energy tensor T

G = Tr∗R∗ = 8πT, (2.25)

where ‘Tr’ is the trace of the matrix (of the Riemann double dual tensor here).
The reason for the 8π would become clear once we derive the field equations.
The conservation of the source here is expressed as d∗T = 0, and it’s a conse-
quence of d∗G = 0, which is called the contracted Bianchi identity. However,
unlike what the meaning of the vanishing boundary meant for charge, the
meaning of the same in gravitational physics is expressed via net moment of
rotation of a hypercube3. Conservation of the stress-energy tensor for a hyper-
cube can be expressed by making use of the fundamental theorem of exterior
as follows

∫

A

d∗T =

∫

∂A

∗T = 0. (2.26)

2.4 Conservation Leads to Continuity?

Imagine there exists a charge distribution in the room (see figure 2.1) you are
presently in (if you’re outside then assume an imaginary box around the size
of your room), now suppose you decide to send the charge off to some distant
place, then as it leaves your room, the charge flows as a current through the
walls of the room (since a moving charge generates a current). Not only does
the charge generate a current, but also generates a current density as the cur-
rent flows out, say the door of your room, i.e., across a particular area. This
leads to the idea of continuity.

Let the amount of charge present in your room (i.e., charge per unit volume

of your room or charge density) be ρ
(

= q
Aroom

)

. As the charge passes via

the walls, the amount of charge leaving the room per unit time is −ρ̇ (t) (neg-
ative sign indicates the fact that it’s leaving your reference frame, i.e., your
room). Now, you already know that this leaving charge is travelling through
the walls in the form of current (current density actually since charge density

3 See Misner, C. W., Thorne, K. S., Wheeler, J. A., & Kaiser, D. I. (2017). Gravi-
tation. Princeton University Press; Chapter 15 for more information.
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Fig. 2.1. A visual representation of the analogy presented in this chapter. The figure
(top) shows the presence of charge density in the room and the bottom figure shows
the current as charge moves towards the door.
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is travelling not charge), thus giving rise to a changing current in the x, y, & z
coordinates, i.e., giving rise to a diverging current density which can be ex-
pressed as ∇J . This relation can be expressed as follows

−ρ̇ (t) =
(
∂
∂x + ∂

∂y + ∂
∂z

)

J = ∇J,

ρ̇ (t) +
∑3
α=1

∂Jα

∂xα = 0.

(2.27)

We already know that J is the 4-current, and its components are
(
J0, J1, J2, J3

)
=

(ρ, Jx, Jy, Jz), hence we can express the above equation as follows

∂Jα

∂xα
= 0, (2.28)

this is the continuity equation. This form of the continuity is valid in your
room which is situated in flat space but in curved spacetime, continuity takes
a different form. The difference is (quite obvious)- replace the partial derivative
with a covariant derivative to take the form

DJα

∂xα
= Jα;α = 0. (2.29)

What is to be noted here is that electric charge by itself is an invariant, i.e., it
does not change no matter how it moves. The same cannot be said for charge
and current density because they are components of a 4-current vector. A sim-
ilar continuity equation can be proposed for gravitational physics in terms of
the stress-energy tensor as follows

DTαβ

∂xβ
= Tαβ;β = 0. (2.30)

What this equation implies is that the amount of energy E passing through
the room you’re in, per unit time is the energy current, T 0α. For example, if
α = 2, then the flow of energy along x2 = y direction is equal to T 02, while T 00

denotes the energy density. In the coordinate-independent sense, this yields a
conservation law for the stress-energy tensor as

∇T = 0. (2.31)

2.5 And Finally, The Field Equations...

Let’s place a source with mass (that curves spacetime) in the room you reside
in, we know from the previous section that this geometric object’s stress-energy
tensor T must have zero divergence ∇T = 0, because of the conservation of
energy-momentum. This source which has mass will communicate to the space
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around it and give it instructions on how to curve, i.e., it is responsible for
the generation of gravity. Now, we know that when mass tells space how to
curve, space in response will tell matter how to move. Thus, there exists a
completely geometrical object which is proportional to the stress-energy tensor.
This object must possess similar characteristics as T, i.e., it must be symmetric
and also have its own personalized conservation law (i.e., it must be divergence-
free). This object happens to be the Einstein tensor G (because as mention in
conservation, the conservation law d∗T = 0 is a consequence of the contracted
Bianchi identity d∗G = 0). From the above reasoning, we can express the
relation as follows

G = ζT, (2.32)

where ζ is the proportionality factor, which will be revealed later. Remember
that we wanted to make a connection between the field and the source in such
a way that the conservation of the source shall be an automatic consequence
of some condition imposed on the field. The zero divergence of the Einstein
tensor is the condition here and this automatically leads to the conservation of
the stress-energy tensor. Now, if G is providing subtitles for the conversation
between the geometry and mass, then it’s language (i.e., the field’s language)
must be in terms of the metric tensor and curvature tensor. To see this relation
and the conversation between mass and geometry in curved spacetime we are
to first understand how the conversation plays out in flat spacetime, i.e., in
Newton’s version. We go back to the debate that Einstein and Newton had,
and now Pauli questions them,

How does matter tell space to curve? And how does space tell matter
to move?

Newton argues that since potential φ exists everywhere in space and since it
varies from place to place, the field tells particles how to move by putting a
limit on acceleration as follows

F = ma = −m∇φ (x)

a = −∇φ (x) [Field informs particles how to move],
(2.33)

he further proceeds to state that it is the Poisson equation that informs the
gravitational field how to curve and concludes his thought.

∇2φ (x) = 4πGρ (x) [Mass tells space how to curve via density] (2.34)

When its Einstein’s turn he says that he would like to build on Newton’s argu-
ment and he establishes that for a spherically symmetric source, the solution
to the Poisson equation outside the gravitating source is as follows
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φ = −MG

r
. (2.35)

He then proceeds to draw parallels between this finding and his friend, Karl
Schwarzschild’s formula that explains the geometry outside a gravitating
source (i.e. the Schwarzschild metric ) as follows

ds2 =
(
1− 2MG

r

)
dt2 −

(
1− 2MG

r

)−1
dr2 − r2dΩ2

gtt = g00 =
(
1− 2MG

r

)
= (1 + 2φ) .

(2.36)

Now that he has established a relation between the metric tensor and the New-
tonian potential, he goes on to observe that there exists a Poisson-like equation
in terms of the time component of the metric tensor as follows

∇2g00 = 2∇2φ = 2 (4πGρ) = 8πGρ. (2.37)

Einstein finally concludes that matter, via density, tells space how to curve by
affecting the geometry (in terms of the metric). Well, Einstein is absolutely
correct, but let us try and understand this Poisson-like equation that Einstein
had built in his head. Einstein’s generalization of the above equation first in-
volves accounting for an object that is built out of derivatives of the metric
tensor, which implies that it has to account for the geometry and not the
matter; this turns out to be the Einstein tensor G. The other generalization
involves accounting for all the components of the source, i.e., accounting for
all the messengers (like density) of the source that communicate to space; this
turns out to be the stress-energy tensor T. Thus, in component form, we have

Gµν = 8πGTµν . (2.38)

Our aim now is to arrive at a plausible representation for the Einstein ten-
sor. Since G is proportional to the stress-energy tensor T, it must also possess
properties of the same. Thus, a suitable candidate for the Einstein tensor must
be a two-tensor, must be symmetric, and must possess derivatives of the metric
tensor. The reason for the last condition is that the metric tensor by itself has
the physical meaning of potential, and its derivative has the physical meaning
of a field, similarly, the dynamical motion of the field can be described by the
derivative of the field which is nothing but the second order derivative of the
metric tensor. In short, we need a candidate which must represent the geom-
etry of the field and be able to communicate to matter, informing it how to
move. Now, we know that the Christoffel symbol possesses first order deriva-
tives and has the form of Γ ∼ 1

2g
−1∂g, but since it’s not a tensor, it is not

a suitable candidate. What about the Riemann tensor? Well, it takes up the
form: R ∼ ∂Γ+ΓΓ− . . . , and since the Christoffel symbols contain the first or-
der derivatives of the metric tensor, it automatically implies that the Riemann
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tensor possesses the second order derivatives of the metric tensor by taking up
such a form: R ∼ ∂2g + (∂g)

2
+ . . . , and thus making it a suitable candidate.

But wait! The Riemann tensor is not a two-tensor, it has four indices. Not to
worry because it can always be contracted to obtain the Ricci tensor (which
is a two-tensor) which takes up the following form

Rµν ≡ Rαµαν = Γαµν,α − Γαµα,ν + ΓαβαΓ
β
µν − ΓαβνΓ

β
µα

= gδαRδµαν

= 1
2g
δα (gδν,µα + gµα,δν − gδα,µν − gµν,δα )

+gδαgλξ

(

ΓλµαΓ
ξ
δν − ΓλµνΓ

ξ
δα

)

.

(2.39)

From the above equation we clearly see that the Ricci tensor is composed of
second order derivatives of the metric tensor hence making this the perfect
candidate. It is important to note that the Ricci tensor by itself can be ex-
pressed in a further simplified form as Rµν = gµνR, where R is called the scalar
curvature. Enter the dilemma due to this simplification made−what candidate
is suitable and which to choose, it is here that we resort to energy conserva-
tion. We are well aware of the conservation imposed of the stress-energy tensor
(as a consequence of the contracted Bianchi identity, remember?), and hence,
in the component form we write that the covariant derivative of the stress-
energy tensor is zero, i.e., DµT

µν = 0 (and just like d∗T = 0 followed from
d∗G = 0, this equation follows from DµG

µν = 0). Following from this, we have

Dµ (g
µνR) = gµν (DµR) +R (Dµg

µν) . (2.40)

We know from the local flatness condition (i.e., in the local Minkowski reference
frame where we applied Gaussian normal coordinates ) that Dµg

µν = 0. Thus,
the second term on the RHS vanishes leaving us with Dµ (g

µνR) = gµν (DµR).
Oh, wait! I did mention to you previously that of all the two-rank tensors in
the universe that we can form by contracting the Riemann tensor, it is only the
Einstein tensor G that retains part of the Bianchi identities (and I also went
on to mention the equation Gµν;ν = 0). Taking this as our hint, let’s begin with
the Bianchi identity and see if we can land up with a comfortable expression
for G. First, let’s start by writing down the Bianchi identity for the Riemann
tensor

DµRαβχξ +DξRαβµχ +DχRαβξµ = 0. (2.41)

Upon multiplying by gνµgαχgβξ on either side of the equation (since the metric
derivatives vanish, these act as constants and can be taken inside the deriva-
tive), we obtain the following
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Dµg
νµgαχgβξRαβχξ +Dξg

νµgαχgβξRαβµχ +Dχg
νµgαχgβξRαβξµ = 0,

Dµg
νµR+Dξg

νµgαχgβξRαβµχ +Dχg
νµgαχgβξRαβξµ = 0,

(2.42)

making use of the block symmetry
(
R[abcd] = 0

)
of the Riemann curvature ten-

sor we express Rαβµχ = Rµχαβ , and Rαβξµ = Rξµαβ ; hence we obtain

Dµg
νµR+Dξg

νµgαχgβξRµχαβ +Dχg
νµgαχgβξRξµαβ = 0, (2.43)

making use of the first and second skew symmetries (i.e., Rabcd = −Rbacd,
and Rabcd = −Rabdc), we express Rµχαβ = −Rχµαβ , and Rξµαβ = −Rξµβα;
hence we obtain

Dµg
νµR−Dξg

νµgαχgβξRχµαβ −Dχg
νµgαχgβξRξµβα = 0, (2.44)

using the Ricci tensor definition
(
Rab = gacgbdRcd

)
, we write the following

Dµg
νµR−Dξg

νµgβξRµβ −Dχg
νµgαχRµα = 0,

Dµg
νµR−DξR

νξ −DχR
νχ = 0,

(2.45)

replacing dummy variables ξ, and χ with µ we have the following equation

[Dµg
νµR−DµR

νµ −DµR
νµ] = 0. (2.46)

We can now factorize the derivative to obtain

Dµg
νµR− 2DµR

νµ = 0,

Dµ

(
Rνµ − 1

2g
νµR

)
= 0.

(2.47)

On comparison of this result to the identity that we obtained via energy con-
servation we can conclude the following

DµR = 1
2g
µν∂µR

leads to
=⇒ DµR

µν = 1
2Dµ (g

µνR)

which is
=⇒ Dµ

(
Rνµ − 1

2g
νµR

)
= 0

(2.48)

Observing the equation, we find out that this object possesses the second order
derivatives of the metric tensor is a two-tensor (which is symmetric), and most
importantly, retains a part of the Bianchi identity (this identity that is being
conserved is called Bianchi’s first identity). We also observe that the divergence
of the tensor is null. Thus, this is the perfect candidate for our Einstein tensor
Gµν =

(
Rνµ − 1

2g
νµR

)
. We can now write the Einstein’s field equations in
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their complete form as follows

Rνµ − 1

2
gνµR ≡ Gµν = 8πTµν . (2.49)

Remember the proportionality constant ζ, which related the stress-energy ten-
sor T to the Einstein tensor G? Now, by comparison, we can conclude that
ζ = 8π. What this field equation told Einstein was that the source of the
gravitational field is not limited to energy density but also depends upon the
flow of energy, the flow of momentum, and the momentum density. The com-
ponents of the stress-energy tensor have the dimensions of energy density,
i.e., Tµν ∼ ml2t−2 ∼ mc2l−3; the Christoffel symbol has the dimensions of
inverse length, i.e., Γα µν ∼ l−1; and the Ricci tensor has the dimensions
of inverse square length, i.e., Rµν ∼ l−2. Thus, in order to maintain dimen-
sional homogeneity, we require the constant κ to have the following dimensions:
κ ∼ m−1lc−2. This implies that the κ, in terms of the fundamental constants,
has the following form: κ ∼ G/c4. Previously, we did not include this constant
since we were working in natural units (i.e., G ≡ c ≡ 1). We can now rewrite
the equation in terms of this constant (called seminal Newton’s constant ) as
follows

Rµν − 1

2
gµνR ≡ Gµν =

8πG

c4
Tµν (2.50)

The equation is also written with the additional term of Λg, where Λ is called
the cosmological constant. Einstein introduced the cosmological constant when
looking for a stationary model for the cosmos and did not include it in he equa-
tion (which he later called the greatest blunder of his life). The equations with
the cosmological constant included read

Gµν + Λgµν =
8πG

c4
Tµν . (2.51)

2.6 An action-based approach to the field equations

Is there a more efficient way to derive Einstein’s field equations, a method
which is strictly mathematical but would effortlessly lead us to the equation?
Well, yes and this method uses a principle that forms the heart of physics−the
principle of least action. The action of a system is a mathematical construct
that takes the trajectory of the system as its argument and gives out a real
number for the result. It is an attribute of the dynamics of a physical system
from which the equations of motion of the system can be derived.
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2.6.1 A Brief History of Classical Mechanics

Why is it that when we throw a ball, the ball always seems to trace the path
of a parabola? When we throw the ball, the ball’s trajectory is influenced by
the force with which we throw, the angle at which we throw, the air resistance
it encounters, etc. You might counter my point by stating that when a ball is
being passed between two persons who are separated by a short distance, its
trajectory is straight and not parabolic. Yes, it seems straight to the naked eye,
but there is a slight course correction and the trajectory becomes parabolic as
the ball, which possesses mass, is pulled down due to gravity. What I’m asking
you to think about is the reason why the trajectory of the ball is parabolic
without even considering the factors affecting it, i.e., why is the trajectory
of a projectile a parabola? If you are a high schooler who proudly professes
knowledge in math, you will easily churn out a proof. But then again, what I
am asking you is that why is the ball taking the parabolic path and not, say
a wavy, zig-zag path? The answer to this is provided by the principle of least
action. As the name says it all we minimize this action which is analogous to
the minimization of a function. Suppose Mr. Absolute Zero (at point PAZ) is
throwing the ball to his cousin, Mr. Zero Entropy (at point PZE), then the
ball would start from point PAZ at a time t0 and reach point PZE at a time
t1 (see figure 2.2).

Fig. 2.2. The true and the false path taken by the ball that Mr.Absolute Zero throws
from PAZ towards his cousin Mr.Zero Entropy located at PZE .

Let’s consider two separate cases, one when the trajectory of the ball is a
parabola, and the second when the trajectory of the ball is a crazy zig-zag
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curve, but in both cases the ball travels from PAZ to PZE in the time interval
t1 − t0. We know for a fact that when the ball travels its kinetic and potential
energies would vary (variation in kinetic energy due to variation in the ball’s
velocity, and variation in potential energy due to variation in the height be-
tween the ball and the ground during the course of the ball between the two
points). If we calculate the kinetic energy at every point in the ball’s path, take
away the potential energy, and integrate this quantity over the time during the
whole path, we would get a real number as the answer. What this implies is
that the difference between the average kinetic energy

(
T = 1

2mẋ
2
)

and the
average potential energy (V = mgx) (i.e. T − V ) is as little as possible for the
path of the ball from PAZ to PZE . Representing this mathematically, we can
define action S as follows

S ≡
∫ t1

t0

(T − V )dt =

∫ t1

t0

(
1

2
mẋ2 −mgx

)

dt. (2.52)

Following this definition, for the trajectory of the ball to be a parabola it’s
action must be the least in comparison to the actions of the billions of possi-
ble paths between the points PAZ and PZE . In order to prove this, we need
to adopt an appropriate mathematical formulation. You might immediately
shout, “calculus!”, but it is important to note that we are not probing for a
point on a path, we are probing for the path itself! This sort of a problem is
dealt with by making use of calculus of variations.

Fig. 2.3. the possible paths between Mr.Absolute Zero at PAZ and his cousin
Mr.Zero Entropy at PZE .

Consider the two paths we initially discussed, i.e., the parabolic one (SP ) and
the crazy zig-zag one (Sz), following the least action principle, we know that
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the action of the true path is to be the least, i.e., SP < Sz. Let’s raise the stakes,
suppose we are not able to view the event of the ball being passed between Mr.
Absolute Zero and Mr. Zero Entropy, and we are to find the true path of the
ball and the equation of motion of the ball along this path. One method that
immediately comes to mind is to calculate the action for the billions of possible
paths that exist between points PAZ and PZE and hence find the least (see
figure 2.3), but this obviously is not possible as we humans have everything
but time to waste. Let’s try and approach this problem mathematically−when
we have a quantity that has a minimum, one of it’s properties is that when we
move away from the minimum in first order, the deviation of the function from
its minimum value is only second order, i.e., take a function g (x) which at its
minima has the following property g

′

(x) = 0. Thus, the infinitesimal change
(or the deviation) of the function as we move away from the minima is g

′′

(x).
Let the true path that the ball takes be x (t), let us take another fiducial path
ξ (t) (see figure 2.4) which starts and ends at the same point the true path does
but differs from x (t) by an amount ζ (t) in between (i.e., ζ (t0) = ζ (t1) = 0).
Now, let us calculate the action for the true path (ST ) as follows

Fig. 2.4. ξ(t) = x(t) + ζ(t) is the fiducial path that differs from the true path x(t)
by an amount ζ(t).

ST =

∫ t1

t0

(m

2
ẋ2 − V (x)

)

dt, (2.53)

and replace x (t) with ξ (t) = x (t) + ζ (t) to get
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ST ′ =
∫ t1
t0

(

m
2

[
dx
dt +

dζ
dt

]2

− V (x+ ζ)

)

dt

=
∫ t1
t0

(

m
2

[
(
dx
dt

)2
+
(
dζ
dt

)2

+ 2dxdt
dζ
dt

]

− V (x+ ζ)

)

dt,
(2.54)

as discussed previously, since the deviation from the minima is only of second
order, we can approximate them out. Thus, the kinetic energy takes the fol-
lowing form

T =
m

2

[(
dx

dt

)2

+ 2
dx

dt

dζ

dt

]

+ (second and higher order terms) . (2.55)

Upon expanding the potential energy (Taylor expansion), it takes the following
form

V (x+ ζ) = V (x) + ζV
′

(x) + ζ2

2! V
′′

(x) + . . .

= V (x) + ζV
′

(x) + (second and higher order terms) .
(2.56)

Thus, the action integral takes the form

ST ′ =
∫ t1
t0

(
m
2

(
dx
dt

)2
+mdx

dt
dζ
dt − V (x)− ζV

′

(x) +O
(

V
′′

(x)
))

dt,

ST ′ =
∫ t1
t0

(
m
2

(
dx
dt

)2 − V (x) +mdx
dt
dζ
dt − ζV

′

(x) +O
(

V
′′

(x)
))

dt,

ST ′ = ST +
∫ t1
t0

(

mdx
dt
dζ
dt − ζV

′

(x)
)

dt ,

δS = ST ′ − ST =
∫ t1
t0

(

mdx
dt
dζ
dt − ζV

′

(x)
)

dt .

(2.57)

Thus, we have found out the variation in the action due to a ζ variation in
path. To calculate this variation, we need to integrate the RHS as follows

δS = m
dx

dt
ζ (t) |t1t0 −

∫ t1

t0

d

dt

(

m
dx

dt

)

ζ (t) dt−
∫ t1

t0

(

ζ (t)V
′

(x)
)

dt, (2.58)

we know that ζ (t0) = ζ (t1) = 0, hence, inputting this condition we get the
following result

δS =

∫ t1

t0

(

−md2x

dt2
− V

′

(x)

)

ζ (t) dt, (2.59)

in order to obtain the true path, the deviation between the fiducial path and
the true path must be zero (so that the paths align one on top of each other).
What this implies is that under the limit ζ (t) → 0, the fiducial path tends to
the true path and the deviation in their action tends to zero (δS → 0). Using
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these conditions, we finally obtain the following

δS = 0 =

∫ t1

t0

(

−md2x

dt2
− V

′(x)

)

ζ (t) dt
implies
=⇒ −md2x

dt2
−V ′

(x) = 0. (2.60)

What we obtain by applying the least action is the following equation of motion

m
d2x

dt2
= −V ′

(x) , (2.61)

which is nothing but Newton’s law, (F = ma). Hence, the action integral will

be minimum for the path that satisfies the differential equation: −md2x
dt2 −

V
′

(x) = 0. The trajectory of a projectile is a parabola because the parabola
happens to be the trajectory along which the action of the system is least!
Thus, stated otherwise, the least action principle says that the actual evo-
lution of a system is such that its action S attains an extremum value. Did
you ever wonder, in the above experiment, why we calculated the kinetic en-
ergy less the potential energy, i.e., T − V ? Why was it not T + V , or TV , or
anything else? To start off this quantity, T − V , is called the Lagrangian. If
we to calculated the action with the sum of the energies, the equation would
yield the wrong answer. Since the Lagrangian is composed of the kinetic and
the potential energies, it depends upon the position, velocity, and time, i.e.
L → L (x, ẋ, t). Thus, we can redefine the action integral as follows

S =

∫ t1

t0

L(x, ẋ, t)dt. (2.62)

It is to be noted that in Newtonian mechanics we use the rectangular co-
ordinate system and consider all the constraint forces. Lagrange’s approach
completely avoids the consideration of these constraints by adopting to “gen-
eralized coordinates” like the radial distance r, and polar angle φ, etc., which
are consistent with the constraint relations. The number of generalized coordi-
nates employed are the same as the number of degrees of freedom of the system
under consideration. Thus, the main advantage in Lagrangian mechanics is that
we don’t have to consider the forces of constraints, and just by having infor-
mation of the kinetic and potential energies we can choose some generalized
coordinates and blindly calculate the equations of motion totally analytically.
In Lagrangian mechanics we never concern ourselves with the constraints and
the geometrical nature of the system. Now back to the question−Why is the
Lagrangian represented as T − V ? The answer, believe it or not, has to do
with the ticking of watches. Consider a flat circular plate, rotating about an
axis passing through it’s centre. It rotates at an angular velocity of ω. Let’s
now place Mr. Absolute Zero (with frame of reference ζAZ) at the centre of
the plate (r = 0), and his cousin, Mr. Zero Entropy (with frame of reference
ζZE), at the periphery (r = R). ζZE is boosted with respect to ζAZ by some
velocity v (t) (= ωr). Let’s now compare their watches and see how much time
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∆τ will elapse in Mr. Zero Entropy’s moving watch. We know that the line
interval ds2 = −c2dt2 + dx2 has the same values in all Lorentz frames, we can
evaluate it in ζAZ and ζZE and equate the results. Since Mr. Zero Entropy’s
frame, ζZE , is co-moving, the line interval takes the form: ds2 − c2dτ2. Upon
equating both the line intervals we obtain the following relation

dτ =

∫ (

1− v2 (t)

c2

)1/2

dt. (2.63)

This is propertime and is an invariant quantity. Letting the time lapse in Mr.
Absolute Zero’s watch be ∆t (0), and that of Mr. Zero Entropy’s watch be
∆t (r), we obtain upon relation to the previous equation,

∆t (r) =

(

1− v2 (t)

c2

) 1
2

∆t (0) =

(

1− ω2r2

c2

) 1
2

∆t (0) . (2.64)

Mr. Absolute Zero, at r = 0, feels a centrifugal acceleration equal to ω2r but
would not be able to distinguish this from the gravitational acceleration that
arises from a gravitational potential on the flat circular plate. We know that
the potential satisfies the following relation

∂φ

∂r
= −ω2r

upon integration
=⇒ φ = −1

2
ω2r2. (2.65)

Since the laws of physics must be covariant in all frames (i.e., the principle of
equivalence), Mr. Zero Entropy must also face a similar centrifugal accelera-
tion. Using this reasoning, we obtain the following relation

∆t (φ) =

(

1− ω2r2

c2

) 1
2

∆t (0) =

(

1 +
2φ

c2

) 1
2

∆t (0) , (2.66)

this tells us that the flow of time depends on the gravitational potential at
which the watches are located (i.e., the time that ticks for the brothers located
at different positions on the flat circular plate). We can use the above result
to modify the line interval, in the presence of a gravitational field as follows

ds2 = −c2dτ2 = −
(

1 +
2φ

c2

)

c2dt2 + dx2, (2.67)

stationary, un-accelerated watches with dx = 0 will have a time lapse that
depends upon the potential energy they are located at similar to what was
expressed previously. The action of a relativistic particle can be expressed as
follows

S = −mc2
∫

dτ . (2.68)
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Now, in the presence of a weak gravitational field the action for a particle must
have the same form as formulated earlier. This can be expressed as follows

S = −mc2
∫
√

1

c2

(

1 +
2φ

c2

)

c2dt2 − 1

c2
dx2 , (2.69)

multiplying and dividing by dt2, we obtain,

S = −mc2
∫
√

1
c2

(

1 + 2φ
c2

)

c2 − 1
c2 ẋ

2dt

= −mc2
∫
√

1 +
(

2φ−v2
c2

)

dt

S ∼= −mc2
∫ (

1− v2

2c2 + φ
c2

)

dt.

(2.70)

This action can be further simplified to obtain

S ∼=
∫ (

mv2

2
−mφ−mc2

)

dt =

∫
(
−mc2 + (T − V )

)
dt =

∫

Ldt. (2.71)

Notice that except for a constant
(
−mc2

)
, we obtained the exact same result

of the Lagrangian. Thus, we can conclude that the Lagrangian is defined as
T −V and not anything else because gravity affects the rate of flow of watches!

Consider an action with a Lagrangian L. Let the change in path be: α (t).
This is the false path and is related to the true path x (t) by the following
relation: αǫ (t) = x (t) + η (t). Let this false path’s velocity be β (t) such that
βǫ (t) = ẋ (t) + η̇ (t). As always, the conditions imposed on the variation η (t)
are: η (t0) = 0, & η (t1) = 0, i.e., η (t) is a differentiable function, and ǫ is
small. The action can be written as

S =

∫ t1

t0

L (x (t) + ǫη (t) , ẋ (t) + ǫη̇ (t) , t) dt, (2.72)

which is extremal with respect to ǫ such that

(
d
dǫS
)

ǫ=0
= d

dǫ

∫ t1
t0

L (x (t) + ǫη (t) , ẋ (t) + ǫη̇ (t) , t) dt

= d
dǫ

∫ t1
t0

L (αǫ (t) , βǫ (t) , t) dt =
∫ t1
t0

dLǫ
dǫ dt

∫ t1
t0

(
dx
dǫ
∂Lǫ
∂x + dαǫ

dǫ
∂Lǫ
∂αǫ

+ dβǫ
dǫ

∂Lǫ
∂βǫ

)

dt

=
∫ t1
t0

(
dαǫ
dǫ

∂Lǫ
∂αǫ

+ dβǫ
dǫ

∂Lǫ
∂βǫ

)

dt

=
∫ t1
t0

(
∂L
∂x η +

∂L
∂ẋ η̇

)
dt.

(2.73)
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We can now integrate by parts to obtain

∫ t1
t0

(
∂L
∂x η +

∂L
∂ẋ η̇

)
dt

=
∫ t1
t0

(
∂L
∂x η

)
dt+ ∂L

∂ẋ η (t) |
t1
t0 −

∫ t1
t0

(
d
dt
∂L
∂ẋ

)
η (t)dt

=
∫ t1
t0

(
∂L
∂x − d

dt
∂L
∂ẋ

)
η (t) dt = 0.

(2.74)

This yields the Euler-Lagrange equation:

∂L
∂x

− d

dt

∂L
∂ẋ

= 0 (2.75)

This is a second order, partial differential equation. The evolution of a physical
system is described by the solutions to the Euler-Lagrange equation for the
action of the system. It is important to observe the time dependence of the
Lagrangian. The two sources of time dependence are the generalized coordi-
nate and velocity represented by q (t) and q̇ (t). Thus, we can express the time
dependence of the Lagrangian as follows (for j particles)

dL
dt

=
∑

j

(
∂L
∂qj

q̇j +
∂L
∂q̇j

q̈j

)

, (2.76)

however, if the Lagrangian has an explicit time dependence, then there would
be an addition term ∂L

∂t . If we observe the RHS of above equation, the first term

is: ∂L
∂qj

q̇j = ṗj q̇j , and the second term is: ∂L
∂q̇j

q̈j = pj q̈j . Hence, the time rate of

change of the Lagrangian with explicit time dependence can be expressed as
follows

dL
dt = d

dt

∑

j (pj q̇j) +
∂L
∂t

∂L
∂t = − d

dt

(
∑

j (pj q̇j)− L
)

,

(2.77)

now, define the quantity
∑

j (pj q̇j)− L = H, which is called the Hamilto-
nian, which varies with time if and only if the Lagrangian has an explicit
time dependence. This is the central piece in the new formulation of me-
chanics called the Hamiltonian formulation of classical mechanics. What does
this H represent? Let’s try and find out. Consider the standard Lagrangian,

L = mq̇2

2 − V (q) = mq̇ q̇2 − V (q) = p q̇2 − V (q). Let’s integrate this quantity
into our definition of the Hamiltonian. Upon doing so we observe the following

H =




∑

j

(pj q̇j)− L



 = pq̇−
(

p
q̇

2
− V (q)

)

= pq̇+V (q) = T+V (q) = Energy.

(2.78)
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What is more important to notice here is that if there is no explicit dependence
on the Lagrangian, then the energy H is conserved, i.e., ∂L∂t = dH

dt = 0. In the
Hamiltonian formulation, we do away with all the q̇’s and replace them with
the momenta, i.e., the p’s. Thus, we replace q̇ with p

m . We have the Hamilto-
nian as follows

H = T + V (q) =
mq̇

2
+ V (q) =

p2

2m
+ V (q) = H (p, q) . (2.79)

When we take partial derivatives of the Hamiltonian, we observe the following

∂H
∂q

=
dV (q)

dq
= −F (q) = −ṗ, ∂H

∂p
=

p

m
= q̇. (2.80)

In the first equation the fact that the rate of change of momentum is the force is
exploited. These are called the Hamilton’s equations and are first order partial
differential equations. What is important to notice is that we have simplified
a n-second order partial differential system (the Euler-Lagrange equations)
to a 2n-first order partial differential system (Hamilton’s equations). In the
action (or the Lagrangian) formulation of classical mechanics the trajectory
followed by the system was described via the generalized coordinates q (t), and
the equations are second order differential equations. The time dependent co-
ordinate space used in the Lagrangian formalism is known as the configuration
space . In the Hamiltonian formulation, however, the focus is on the space of
coordinates qj and its conjugate momenta pj . This space is referred to as phase
space . The evolution of the system is described as a trajectory in phase space,
and this trajectory is obtained via the two first order equations. Let’s examine
the time derivative of the Hamiltonian. When the Hamiltonian has an explicit
time dependence we express It as: H = H (p, q, t). The value of H varies with
time because of its explicit time dependence, and also because q and p are
themselves functions of time. The total time derivative of the Hamiltonian is
expressed as follows

dH
dt

=
∑

j

∂H
∂qj

dqj
dt

+
∑

j

∂H
∂pj

dpj
dt

+
∂H
∂t

=
∑

j

∂H
∂qj

q̇j+
∑

j

∂H
∂pj

ṗj+
∂H
∂t

. (2.81)

We can now express q̇ and ṗ in terms of the derivatives of H by making use of
Hamilton’s equations to obtain the following

dH
dt

=
∂H
∂t

+
∑

j

(
∂H
∂qj

∂H
∂pj

− ∂H
∂pj

∂H
∂qj

)

=
∂H
∂t

. (2.82)

For a conserved system, neither the kinetic nor the potential energy is to con-
tain any explicit time dependence. Thus, ∂H∂t = 0, and we obtain
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dH
dt

= 0, (2.83)

this implies that there exists a law of conservation of energy (H = T + V = E
= const).

2.6.2 Lagrangian Formulation

There exists a more elegant method to obtain the equations of motion of the
system in which we probe for a special generating function S such that the
new Hamiltonian is H′

= 0.
Since you are comfortable with the action principle let’s try and create an
action integral that would yield Einstein’s field equation when solved for. Con-
sider a field present in spacetime, say ψ (r, t), here r ∈ (x, y, t). We can write
an action for this field as

S =

∫

L (ψ,ψ,α)drdt, (2.84)

where L (ψ,ψ,α) is called the Lagrange density and it is a function of the field
ψ and the derivatives of the same with respect to an arbitrary basis α. The
field that we considered can be of any type (scalar, vector, tensor, spinor),
for simplicity we shall restrict our observations to only a scalar field. In the
Lagrangian formulation of a field theory, we have an arbitrary region ζ of a
spacetime manifold which is bounded by a closed hypersurface ∂ζ and the
Lagrangian density L (ψ,ψ,α) which is a scalar function of the field and its
derivatives. Thus, the action functional has the form

S [ψ] =

∫

L (ψ,ψ,α)
√−gd4x. (2.85)

Dynamical equations for the field ψ are obtained by the introduction of a vari-
ation δψ(xα). It is to be mentioned that this introduction is to be arbitrary
within ζ but vanishes everywhere on ∂ζ, i.e.,

δψ|∂ζ = 0. (2.86)

We need to build an action integral such that it is invariant everywhere and
the simplest invariant available is of the following form

I =

∫
√

|g|d4x, (2.87)

where d4x = dx0dx1dx2dx3 = dtdxdydz, and |g| = |det (gµν) |.
√−gd4x is the

volume element of a 4-dimensional parallelepiped with edges dt, dx, dy,& dz.
If we multiply this with any scalar field ψ (x, y, z, t) the integral would still
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remain an invariant. Hence, we make use of the Ricci scalar, R to form the
action as follows

S = α

∫ √−gd4x+ β

∫

R
√−gd4x, (2.88)

where α and β are some constants. This equation describes only gravity and
does not account for matter. Hence, we add some action which contains mat-
ter, fields or particles, and describes the interactions between them and the
metric (and hence with gravity). With the inclusion of this matter action SM ,
and fixing constants α and β we obtain

SEH = − 1

16πκ

∫ √−gd4x (R+ Λ) + SM . (2.89)

This is the Einstein-Hilbert action. Here, κ = G/c4 is the seminal Newton’s
constant and Λ is called the cosmological constant.

2.6.3 Variation of the Einstein-Hilbert Action

We apply the principle of least action and vary the action with respect to the
metric to obtain equations of motion as follows

δgSEH = [S (g + δg)− S (g)]

= − 1
16πκδg

∫ √−gd4x (R+ Λ) + δgSM = 0,
(2.90)

− 1

16πκ

∫

d4x
[(
δ
√−g

)
(R+ Λ) +

√−gRµνδgµν +
√−gδRµνgµν

]
+δgSM = 0.

(2.91)

Note that δgΛ = 0. Now, let us separately analyse each term’s contribution.

1. δ
√−g

Let’s first analyse how the natural log of a determinant of a matrix A trans-
forms (since the metric tensor is also a matrix and it would also trans-
form analogously). Consider δln |detA| = ln |det (A+ δA) | − ln |det (A) | , us-

ing the property of ln, we get lndet(A+δA)
detA , and solving this we get

lndet(A+δA)
detA = ln det

(
A−1 (A+ δA)

)

= ln det
(
1 +A−1δA

)
= Tr ln

(
1 +A−1δA

)
≈ Tr A−1δA.

(2.92)

In all of these expressions, Tr stands for the trace of the matrix. In linear
algebra, the trace of a n × n square matrix A is defined to be the sum of the
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elements on the main diagonal, i.e.,

A =






a11 · · · a1n
...

. . .
...

an1 · · · ann




 ,

Tr (A) = a11 + a22 + · · ·+ ann =
∑n
j=1 ajj .

(2.93)

Hence, in linear order we obtained δln |detA | ≈ Tr
(
A−1δA

)
. Applying this

variation to the natural log of the square root of −g, we obtain the following

δln
√−g = δln

√

|detgµν | = − 1
2δln |det (gµν) | = − 1

2gµνδg
µν ,

δln
√−g = 1√−g δ

√−g,

δ
√−g = − 1

2

√−ggµνδgµν .

(2.94)

2. gµνδRµν
√−g

To find an expression for this we move to locally flat coordinates, i.e., the
local Minkowski reference frame (LMRF). Observe: δR◦ ◦◦◦ ∼ ∂◦δΓ◦ ◦◦ +
δΓ◦ ◦◦Γ

◦
◦◦ + Γ◦ ◦◦δΓ

◦
◦◦. We know that in the LMRF, Γ◦ ◦◦ (x) = 0, and

this simplifies the expression to δR◦ ◦◦◦ ∼ ∂◦δΓ◦ ◦◦, so that

δRλ µαν (x) = δ
(
Γλ µν,α − Γλ µα,ν

)
= ∂αδΓ

λ
µν − ∂νδΓ

λ
µα,ν . (2.95)

Since at this point Γ◦ ◦◦ (x) = 0, the ordinary derivative ∂◦ is the same as the
covariant derivative D◦, making this change we obtain

δRλ µαν (x) = DαδΓ
λ
µν −DνδΓ

λ
µα, (2.96)

which is called the Palatini identity. This identity does not only hold in the
locally flat coordinates, but also in general. By setting the upper index and the
second lower index (i.e., λ = α), we can write an expression for the variation
of the Ricci tensor as follows

δRµν = DαδΓ
α
µν −DνδΓ

α
µα. (2.97)

Thus,

gµνδRµν = Dµ

(
gηρΓµ ηρ − gηµΓρ ηρ

)
≡ DµδV

µ, (2.98)

where V µ is a 4-vector. We can now rewrite the action integral for this term
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as

∫

ζ

d4x
√−ggµνδRµν =

∫

∂ζ

d4x
√−gDµδV

µ, (2.99)

where ζ is the spacetime manifold under consideration and ∂ζ is its boundary.
To solve this integral we need to make use of Gauss-Orstrogradsky theorem also
known as the Divergence theorem. The theorem states the following

∫

dnx
√−gDαX

α =

∫

dn−1x
√
−rnαXα. (2.100)

Upon comparison we find that n = 4, α = µ, & Xα = δV µ, so we write

∫

d4x
√−gDµV

µ =

∫

d3χ
√

−g(3)nµδV µ =

∮

dΣµδV
µ, (2.101)

where dΣµ = nµ
√

−g(3)d3χ is a 4-vector normal to ∂ζ, nµ is the normal vec-
tor to the boundary, and

∣
∣g(3)

∣
∣ = |detgjk | is the determinant of the induced

3-dimensional metric. This integral would vanish if the δV λ vanishes on the
boundary of the integration domain, as mentioned earlier (and as assumed
while computing the Euler-Lagrange equations). Thus, δV µ|∂ζ = 0, and we
obtain

∫

d4x
√−ggµνδRµν = 0. (2.102)

3. δgSM
The matter action has to be an invariant under coordinate transformations, it
takes the following form when varies with respect to the metric

δgSM = δg
∫
Ld4x√−g =

∫
d4x

[
∂L
∂gµν δg

µν√−g + Lδ
√−g

]

=
∫
d4x

[
∂L
∂gµν (δg

µν)− 1
2

√−ggµνL (δgµν)
]√−g

=
∫
d4x

[
∂L
∂gµν − 1

2Lgµν

]√−gδgµν .

(2.103)

Now, we define the stress-energy tensor Tµν as follows

∂L
∂gµν

− 1

2
Lgµν =

1

2
Tµν , (2.104)

thus, the final form of the variation of the matter action is
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δgSM =
1

2

∫

d4x
√−gTµνδgµν (2.105)

Let’s use all of the above results and rewrite the variation of the Einstein-
Hilbert action integral.

δgSEH = − 1

16πκ

∫

d4x
√−gδgµν

(

Rµν −
1

2
gµνR− 1

2
gµνΛ− 8πκTµν

)

= 0.

(2.106)

From this we obtain Einstein’s equations.

Rµν
1

2
gµνR− 1

2
gµνΛ =

8πG

c4
Tµν . (2.107)

2.7 Properties of the Einstein equations

Let’s first analyse the fate of the equation in vacuum with no sources. This sit-
uation implies that Λ = 0 and Tµν = 0. Plugging these into the equation we get

Rµν − 1

2
gµνR = 0, (2.108)

multiplying by gµν on either sides we get

Rµνg
µν − 1

2δ
µν
µνR = 0

Rµνg
µν = 2R

implies
=⇒ R = 0,

(2.109)

upon substituting this result in the vacuum, source-less version of the field
equation we obtain

Rµν = 0. (2.110)

This is called the Ricci flatness condition. It is important to note that the
Ricci flatness condition does not imply vanishing curvature of spacetime, i.e.,
Rµναβ = 0. There is something hidden in the field equation, it’s trying to con-
vey a key information. Let’s see what this is. Take the covariant derivative of
the equation with respect to the basis ν to get
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Dν

(
Rµν − 1

2gµνR− 1
2Λgµν

)
= Dν

(
8πG
c4 Tµν

)
,

Dν (Rµν)− 1
2gµνDν (R)− 1

2RDν (gµν)− 1
2ΛDν (gµν) =

8πG
c4 Dν (Tµν) ,

(2.111)

notice that the terms containing Dν (gµν) would vanish due to the local flat-
ness condition. We can now manipulate the leftover terms to get

gνν
(
DνR

ν
µ

)
− 1

2
(DµR) g

µ
ν gµν =

8πG

c4
(DνTµν) gνν . (2.112)

Dividing this equation by gνν on either sides we obtain the following

Rν µ;ν −
1

2
∂µR =

8πG

c4
DνTµν . (2.113)

Observe the LHS, does it ring a bell? Yup, it’s the first Bianchi identity, and
since we already know that Rνµ;ν = 1

2∂µR, we can substitute this into the equa-
tion to obtain a very elegant result

DνTµν = 0. (2.114)

We have just obtained back the conservation condition! This was the exact
same condition we deduced in the earlier section. But wait, isn’t something off
here? We assumed that conservation holds and hence obtained the field equa-
tions, but what does it mean when the field equations themselves reproduce
back the same condition, what are the equations trying to tell us? The answer
is that the conservation of the stress-energy tensor is just a consequence of the
Einstein field equations.

Example 2.1. Einstein-Hilbert action with a Cosmological constant
The Einstein-Hilbert action with a cosmological constant is given by

S =
1

2κ

∫

dnx
√−g (R− 2Λ) , (2.115)

where we have set κ = 8πG and c ≡ 1. For different values of Λ, the solutions
obey different asymptotic structures. Broadly these may be divided into three
classes of solutions.
1. Λ = 0: This yields asymptotically flat solutions such as the Minkowski and
Schwarzschild spacetimes.
2. Λ > 0: This yields asymptotically de Sitter (dS) solutions. Examples include
the de Sitter and de Sitter-Schwarzschild metrics among others.
3. Λ < 0: This yields asymptotically Anti de Sitter (AdS) solutions. Examples
include the BTZ black hole 3.57 and the other AdS metrics mentioned (see
1.228, 1.213, 6.31) among others.
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Exercise 8

1. A scalar field Φ that is governed by the following action

S[Φ] = 1

c

∫

d4x
√−g

(
1

2
gαβ∂

αΦ∂βΦ− V (Φ)

)

,

where V (Φ) is the potential of the scalar field.
a. Vary this action with respect to the metric tensor and obtain an expression
for the stress-energy tensor of the scalar field.
b. Show that stress-energy tensor conservation yields the equation of motion
of the scalar field.

2. Verify if varying the following action gives rise to the Klein-Gordon equation
in curved spacetime as given in 1.239, for n = 4

S =
1

2

∫

d4x
√−g gµν

(

DµϕDνϕ+
1

6
Rµνϕ

2

)

.

Using the relation between the stress-energy tensor Tµν and the action as given
in (refer to 2.106), show that the variation of the action gives the following
stress-energy tensor

Tµν =
1

2
gµν

(
1

6
�ϕ2 +

1

6
Rϕ2 − ϕ�ϕ

)

− 1

3
DµDνϕ2 + ϕDµDνϕ− 1

6
Rµνϕ2.

Finally, show that the trace of the stress-energy tensor vanishes.

3. The action that describes an electromagnetic field is given by

S[Aµ] = − 1

16πc

∫

d4x
√−g FµνFµν ,

where Fµν = 2D[µAν] = 2∂[µAν].
a. Find the stress-energy tensor associated with the electromagnetic field.
b. What are the time-time and the time-space components of the stress energy
tensor of the electromagnetic field in flat spacetime?
c. Show that this action is invariant under conformal transformation, xµ → xµ,
Aµ → Aµ and gµν → e2κ(x)gµν .

4. Nordstrøm devised a metric theory of gravity, before Einstein gave his,
which relates the metric tensor to the stress-energy tensor by the following
equations

Wµναβ = 0, R = κgµνT
µν , (2.116)

where Wµναβ is the Weyl tensor. The vanishing of Weyl tells us that the metric
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is conformally flat.
a. Show that gµν = e2κ(x)ηµν is a solution by replacing this in the 2.116. Here
ηµν is the Minkowski metric.
b. The dimensionality of this spacetime is n = 4. Write down the line element

and show that the Ricci scalar takes the formR = −6e−2κ(x)
(

(κ′(x))2 + κ′′(x)
)

.

c. For non-relativistic stress-energies, Tµµ ≈ T 0
0 = −ρ. Use this to show that

Nordstrøm’s field equation reduces in the Newtonian limit to the gravitational
field equations, and determine the value of κ.

5. Find the Einstein tensor of the induced metric on a timelike hypersurface
to the BTZ metric 3.57, Gµν = Rµν − 1

2Rγµν . Note that all the tensors are
obtained using the induced metric γµν .

6. Show that the components of the Einstein tensor tensor vanishes identi-
cally in n = 2. Note that the Riemann tensor takes the form as given in 1.203.

7. The Brans-Dicke theory of gravity proposes the following action with re-
spect to a field ϕ

S =
1

2κ

∫

d4
√−g (f(ϕ) + f,ϕ(ϕ) (R− ϕ)) +

∫

d4LM ,

where LM is the matter Lagrangian. This is an example of a scalar-tensor
theory of gravity. Show that varying this action action with respect to ϕ gives

f,ϕϕ (R− ϕ) = 0.

2.8 Noether’s Theorem

In the framework of the Lagrangian theory, to each continuous group of
transformations leaving the Lagrangian invariant there corresponds a quan-
tity which is conserved. In particular, energy corresponds to time translations,
linear momentum corresponds to space translations, and angular momentum
corresponds to space rotations.

2.8.1 Symmetry and Conservation Laws

Symmetry plays an important role in Noether’s theorem. A symmetry can be
defined as an active coordinate transformation that does not change the value
of the Lagrangian. Symmetry properties of the Lagrangian imply the existence
of a conserved quantities. When the displacement of the system to a newly
defined point in the configuration space, regardless of it’s location in the con-
figuration space, leaves the Lagrangian invariant, the transformation is called
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an active one. Thus, if the Lagrangian does not contain explicitly a particu-
lar coordinate of displacement, then the corresponding canonical momentum
is conserved and the absence of such an explicit dependence on the coordi-
nate implies that the Lagrangian is invariant under the given transformation.
Consider, for example, the Lagrangian L = q̇/2, under a time independent
coordinate transformation of q → q + ǫ, the velocity is unaffected and thus,
the Lagrangian is invariant under the coordinate shift, i.e., δL = 0.
In a more general example consider two arbitrary points in spacetime, say
five minutes ago from where you were to where you are now. If we were to
look at some quantity, described by a Lagrangian, which remains unchanged
in the past five minutes, we would say that the Lagrangian is symmetric under
spacetime translations. Let the Lagrangian exhibiting such a symmetry have
the form L (xα, ẋα). Then, the Euler-Lagrangian equations of this Lagrangian
can be written as follows

d

dt

∂L
∂ẋα

=
∂L
∂xα

, (2.117)

and since the Lagrangian is invariant between the your position in the past
five minutes, the time derivative of the Lagrangian would vanish, i.e.,

d

dt

∂L
∂ẋα

= 0. (2.118)

Now, ∂L/∂ẋα = mẋα = pα, is nothing but your 4-momentum. Since we have
a time derivative, we observe that the equations yields

d

dt

∂L
∂ẋα

= ṗα = 0. (2.119)

Integration yields

pα = Rα, (2.120)

where Rα is some constant vector. We know from special relativity that the
4-momentum state is related to an energy Ep and a 3-dimensional momentum
vector as follows

pα = (Ep,−p) , (2.121)

i.e., if the Lagrangian is invariant as you changed your position in spacetime
over the past five minutes, the energy and momentum are automatically con-
served. Hence, Noether’s theorem guarantees that continuous symmetry trans-
formations give rise to conservation laws. We know that the time rate change
of the Lagrangian is represented as the time rate change of the summation
of the product of the momentum and the time derivative of the position, i.e.,
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dL
dt = d

dt

∑

α (pαq̇α). Hence, the variation of the Lagrangian for the infinitesi-
mal change in your coordinates in the past five minutes can be expressed as
follows

δL =
d

dt

∑

α

(pαδq̇α) , (2.122)

and since the Lagrangian is invariant

d

dt

∑

α

(pαδq̇α) = 0. (2.123)

Let the infinitesimal shift your coordinates to be

δqα = Fα(q)δ, (2.124)

i.e., for an infinitesimal rotation of Earth in the past five minutes, your new
coordinates are

q1 → q1 + aδ;F1 = a
q2 → q2 + bδ;F2 = b
q3 → q3 + cδ;F3 = c.

(2.125)

Hence, replacing δqα with Fα(q)δ, where δ is a constant, we observe that a
particular quantity has not changed in the past five minutes, i.e., it is conserved

Q =
∑

α

pαFα(q). (2.126)

Modeling yourself to be a free-particle, your kinetic energy is of the form
T = m

2

(
ẋ2 + ẏ2 + ż2

)
and since your were unchanged by translations along x,

y, and z axes4,

T̄ =
m

2

((

˙̄x+ δ̇
)2

+
(

˙̄y + δ̇
)2

+
(

˙̄z + δ̇
)2
)

=
m

2

(
ẋ2 + ẏ2 + ż2

)
= T.

(2.127)

Hence, L = L̄, and observing that Fα(q) = 1 here, the conserved quantity is

Q =
∑

α

pαFα(q) = pα, (2.128)

i.e., linear momenta in x (when α = 1), y (when α = 2), and z (when α = 3)
directions are conserved.
The same can be demonstrated in an alternate manner. Consider the following

4 i.e., x→ x+ δ, y → y + δ, and z → z + δ.
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action functional

S = m

∫
√

gµν ẋµẋν , (2.129)

where, the Lagrangian is m
√
gµν ẋµẋν . What transformation would leave

this invariant that depends on gµν? Assuming the Minkowski metric, i.e.,
gµν = ηµν , then the Lagrangian is invariant under displacements xµ → xµ+aµ

and we obtain the conserved quantity to be

Q = ηµνa
µ mẋν
√
ηµν ẋµẋν

= pµa
µ, (2.130)

which holds for any and all aµ, and hence, the coefficient of each component
aµ must be conserved. Therefore, the conserved quantities are

pµ = ηµν
mẋν

√
ηµν ẋµẋν

, (2.131)

which is nothing but the conservation of the 4-momentum of a test particle.

2.8.2 Mathematical Formulation of Noether’s Theorem

Consider a functional of the following form

S[y] =

∫ β

α

F (x, y, y′) dx, (2.132)

where x is an independent variable and y = (y1, y2, y3, ...) is a vector of n de-
pendent variables. The functional has stationary paths defined by the Euler-
Lagrange equations. Noether’s theorem throws light upon how the value of
this functional is affected by families of continuous transformations of the de-
pendent and independent variables. Consider the following transformations
defined in terms of a single parameter ǫ

x̄ = Λ (x, y, y′; ǫ)
ȳm = Ξm (x, y, y′; ǫ) ,

(2.133)

for m = 1, 2, ..., n. Λ and Ξ are assumed to have continuous first derivatives
with respect to all the variables, including ǫ. The transformations must reduce
to identities when ǫ = 0, i.e.,

x̄ = Λ (x, y, y′; 0)
ȳm = Ξm (x, y, y′; 0) ,

(2.134)

for m = 1, 2, ..., n. Now, treating x̄ and ȳm as functions of the parameter ǫ and
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performing a Taylor expansion of them about ǫ = 0 we get the following

x̄(ǫ) = x̄(0) +
(
∂Λ
∂ǫ

)

ǫ=0
(ǫ− 0) +O

(
ǫ2
)

= x+ ǫΛ+O
(
ǫ2
)
,

(2.135)

and,

ȳm(ǫ) = ȳm(0) +
(
∂Ξ
∂ǫ

)

ǫ=0
(ǫ− 0) +O

(
ǫ2
)

= ym + ǫΞ +O
(
ǫ2
)
,

(2.136)

where Λ (x, y, y′) =
(
∂Λ
∂ǫ

)

ǫ=0
and Ξm (x, y, y′) =

(
∂Ξ
∂ǫ

)

ǫ=0
, for m = 1, 2, ..., n.

What Noether’s theorem states is that when the action functional S[y] is in-
variant under the above transformations, i.e.,

∫ δ̄

γ̄

F (x̄, ȳ, ȳ′) dx̄ =

∫ δ

γ

F (x, y, y′) dx, (2.137)

for all γ and δ such that α ≤ γ < δ ≤ β, where γ̄ = Λ (γ, y(γ), y′(γ)) and
δ̄ = Ξ (δ, y(δ), y′(δ)), then for each stationary path of the action functional,
the following equation holds good

n∑

m=1

∂F

∂y′m
Ξm +

(

F −
n∑

m=1

y′m
∂F

∂y′m

)

Λ = C, (2.138)

where C is a constant. Consider a test particle of mass m moving in a straight
path in a time-independent potential Φ(x) with it’s position at a time t given
by the function x(t). We know from Lagrangian mechanics that the path fol-
lowed by the particle will be the path of least action, whose action functional is

∫ τ

0

L (x, ẋ)dt =

∫ τ

0

(
1

2
mẋ2 − Φ(x)

)

dt. (2.139)

Observe that the Lagrangian has no explicit time dependence since the po-
tential field is time-independent. Hence, we might expect the functional to be
invariant under translations in time, and thus Noether’s theorem to hold. Con-
sider the following time translation

t̄(ǫ) = t+ ǫΛ+O
(
ǫ2
)
= t+ ǫ, (2.140)

and the following space translation

x̄(ǫ) = x+ ǫ× 0 +O
(
ǫ2
)
= x. (2.141)

For the case of a simple time translation by an infinitesimal amount ǫ, Λ = 1
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and observing the second equation where Ξ = 0 simply reflects the fact that
we are only translating in the time direction. The invariance of the action un-
der these transformations is expressed as follows

∫ τ̄

0

L (x̄, ˙̄x)dt̄ =

∫ τ̄−ǭ

0̄−ǭ
L (x, ẋ) dt =

∫ τ

0

L (x, ẋ)dt, (2.142)

where the limits in the second integral follow from the change of the time vari-
able from τ̄ to τ . Hence, Noether’s theorem holds and reduces to the following
with Λ = 1 and Ξ = 0

L − ẋ
∂L
∂ẋ

= C, (2.143)

where C is a constant. Evaluation yields

1
2mẋ

2 − Φ(x)−
(
mẋ2

)
= 0

1
2mẋ

2 + Φ(x) = E = C,
(2.144)

which is the conservation of energy.

2.8.3 Noether’s Theorem in General Relativity

As discussed previously, Lagrangian corresponds to a local coordinate de-
scription to a function. Let x denote the independent variables xα, where
α = 1, ..., n, let q denote the dependent variables qb, where b = 1, ...,m, and
let v denote the first derivatives of dependent variables vbα, n × m matrices.
Then the Lagrangian L, a function of (x, q, v), is given by

L = L(x, q, v). (2.145)

The canonical momentum is given by

pαk =
∂L
vkα
. (2.146)

Let’s now define canonical stress as follows

Tαβ = pαkv
k
α − Lδαβ , (2.147)

and let Xµ be a vector field generating a 1-parameter group of transformations
of this domain leaving the Lagrangian invariant. Then, Noether current is
defined as follows
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Jα = Tαβ X
β . (2.148)

Noether current is divergence-free, i.e.,

∂αJ
α = 0. (2.149)

Now, consider the Einstein-Hilbert action, sans the matter action and the cos-
mological constant, we have

LEH = − 1

16πκ
R, (2.150)

where R is the Ricci scalar curvaturre and depends upon second derivatives of
the metric tensor. This Lagrangian is the only one which gives rise to second
order Euler–Lagrange equations (proven below).
Let the Lagrangian L be a function of gµν , gµν,α , gµν,αβ , q(k) which is an arbitrary
space function, and q(k),ξ. Then, by varying the action as follows

δ

∫

LEH
√−gd4x, (2.151)

we obtain differential equations equal in number to the functions5. The as-
sumption that the Lagrangian is linear in gµναβ such that the coefficients of gµναβ
depend only upon gµν is to be made so that we can replace the action with a
more convenient form as follows

∫

LEH
√−gd4x =

∫

L∗EH
√−gd4x+ ζ, (2.152)

where ζ is an integral extended over the boundaries of the domain under con-
sideration and L∗EH depends only upon gµν , gµν,α , q(k), q(k)ξ, but no longer on
gµναβ .By varying the above form we get a new variational form as follows

δ

∫

L∗EH
√−gd4x. (2.153)

By varying the action with respect to gµν we obtain,

∂

∂xα

∂L∗
∂gµνα

− ∂L∗
∂gµν

= 0, (2.154)

and by varying it with q(k) we obtain the following equation

5 gµν and q(k) are to be varied independently of each other such that at the bound-

aries of integration δq(k), δg
µν , and ∂δgµν

∂xα
all vanish
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∂

∂xα

∂L∗
∂q(k)ξ

− ∂L∗
∂q(k)

= 0. (2.155)

Noether’s theorem depends on having a Lagrangian containing only the first
derivatives of the unknown functions, whereas the Einstein-Hilbert Lagrangian
contains second derivatives of the metric tensor. Thus, we cannot apply
Noether’s theorem directly to the gravitational Lagrangian. To make it easier,
we introduce a new Lagrangian

L∗EH = − 1

16πκ
LEH + ∂ωΛ

ω, (2.156)

where,

Λω = − 1

16πκ

√−g
(
gµνΓωµν − gµωΓ νµν

)
, (2.157)

and by doing this, we observe that L∗ differs from the Einstein-Hilbert La-
grangian by a divergence, i.e.,

L∗EH = − 1

16πκ

√−ggµν
(
Γ βµωΓ

ω
νβ − Γ βµνΓ

ω
βω

)
, (2.158)

and hence, will yield the same field equations. Now, we define the canonical
momentum as follows

p∗µωβ =
∂L∗EH
∂vµωβ

, (2.159)

and the canonical stress as follows

T ∗µν = p∗µωβvµωβ − L∗EHδµν . (2.160)

Observe that the Lagrangian L∗EH is invariant under translations such as
xµ → xµ + ρµ 6. Now, the Noether current is found to be

J∗µ = T ∗µν Xν , (2.161)

and by Noether’s theorem this current is divergence-free, i.e.,

∂µJ
∗µ = 0, (2.162)

and since cµ are constants, the following conservation law holds true

6 ρµ are constants and hence, a vector field generating a 1-parameter group of trans-
lations is defined as: X = cα ∂

∂xα
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∂µT
∗µ
ν = 0. (2.163)

Thus, the conservation of the stress-energy tensor arises organically from
Noether’s theorem.

2.8.4 Noether’s Theorem and the Energy Momentum Tensor

We know very well that the Lagrangian is a function associated to the system
and contains all necessary information about its dynamics. Let a system be
described by the maps φ : M → R, then it’s Lagrangian has the following form

L :
(
R, T ∗M, g−1

)
→ R, (2.164)

where g−1 is the inverse of the pseudo-Riemannian metric on M. Thus the
Lagrangian is L = L

(
φ, dφ, g−1

)
. The action functional of such a Lagrangian

has the form S(φ) =
∫

M L
(
φ, dφ, g−1

)
dg. The action of the Lagrangian gives

us the laws of evolution of the system. Thus, if we want to have a version of the
conservation of energy then we should study the action S more geometrically.
For the computation of S(φ) we require a coordinate system x on M and need
to construct diffeomorphisms on M since every diffeomorphism f : M → M
induces a pullback coordinate system y = f∗x. Consider X, an arbitrary vector
field. Since we seek for an object on M with local properties we may assume
that X is compactly supported, i.e., X = 0 outside a compact region U ⊂M .
Let Ft be the associated flow of X. Now, each such diffeomorphism Ft defines
a pullback coordinate system yt = F∗t x whose change of coordinates is Ft. Then

∫

M
L
(
φ, dφ, g−1

)
dg =

∫

F−1(M)

F∗t
(
L
(
φ, dφ, g−1

)
dg
)
, (2.165)

since F−1(M) = M,

∫

M
L
(
φ, dφ, g−1

)
dg =

∫

M
F∗t
(
L
(
φ, dφ, g−1

)
dg
)
. (2.166)

This gives us

∫

M
F∗

t (L(φ,dφ,g−1)dg)−L(φ,dφ,g−1)dg
t = 0

∫

M ltt→0

(
F∗

t (L(φ,dφ,g−1)dg)−L(φ,dφ,g−1)dg
t

)

= 0,

(2.167)

and from the definition of Lie derivative we get

∫

M
LX

(
L
(
φ, dφ, g−1

)
dg
)
. (2.168)
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Note that we were led to the above equation by only using the geometric
structure of M . Upon application of the Leibniz and chain rule we obtain the
following

∫

M

((
∂L
∂φ

LXφ+
∂L
∂dφ

LXdφ+
∂L
∂g−1

LXg−1
)

dg + L · LXdg
)

. (2.169)

Now, we make the following definitions and observations needed to solve the
above integral:

a. Define Cartlan’s identity, which is given by

LXdφ = d(Xφ) = d(LXφ). (2.170)

b. Now, consider the vector field
(
∂L
∂dφ

)k

=
(
∂L
∂φk

)

, where φk = ∂φ/∂xk. Then

∇
((

∂L
∂dφ

)

LXφ
)

= d(LXφ)
(
∂L
∂dφ

)

+ (LXφ) · ∇
((

∂L
∂dφ

))

. (2.171)

c. Application of the divergence theorem for
((

∂L
∂dφ

)

LXφ
)

yields

∫

M
∇
((

∂L
∂dφ

)

LXφ
)

dg =

∫

∂M

(((
∂L
∂dφ

)

LXφ
)

· n
)

gdn−1 = 0, (2.172)

since the boundary condition X = 0 implies that LXφ = X(φ) = 0 on ∂M .
d. Equations derived/defined in a, b, and c imply the following

∫

M

((
∂L
∂dφ

)

LXφ
)

dg =

∫

M

(LXφ)
(
∂L
∂dφ

)

dg = −
∫

M

(LXφ)∇
(
∂L
∂dφ

)

dg.

(2.173)

Thus, using equation 2.173, we can rewrite the integral as follows

∫

M

((
∂L
∂φ

LXφ− (LX) · ∇
(
∂L
∂dφ

)

+
∂L
∂g−1

LXg−1
)

dg + L · LXdg
)

= 0,

(2.174)

which when simplified gives

∫

M

([

∂L∂φ−∇
(
∂L
∂dφ

)]

LXφ+
∂L
∂g−1

LXg−1
)

dg + L · LXdg
)

= 0.

(2.175)

In general, if φ : M → N then we have the following Euler-Lagrange system
of equations for every component of φ
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∂L
∂φ

−∇
(
∂L
∂dφ

)

= 0. (2.176)

Thus, using this to simplify our integral we get

∫

M

((
∂L
∂g−1

LXg−1
)

dg + L · LXdg
)

= 0, (2.177)

which can written alternatively as

∫

M

(
∂L
∂g−1

LXg−1 + L ·
(
1

2
gµν(LXg)µν

))

dg = 0, (2.178)

or,

∫

M

(
∂L
∂gµν

(LXg−1)µν + L ·
(
1

2
gµν(LXg)µν

))

dg = 0 (2.179)

which finally yields

∫

M

(

(LXg−1)µν
[
1

2
gµν(LXg)µν −

∂L
∂gµν

])

dg = 0. (2.180)

Now, we define the stress-energy-momentum tensor as follows

Tµν =

[
1

2
gµν(LXg)µν −

∂L
∂gµν

]

. (2.181)

From observation, we see that Tµν is symmetric7.

The geometry of the space gave us equation 2.166 which was the key for the
derivation of energy momentum tensor. It states that the average of those La-
grangians over the manifold M is the same. The equation

L
(
φ, dφ, g−1

)
= F∗t

(
L
(
φ, dφ, g−1

))
, (2.182)

expresses the 1-parameter symmetries of the Lagrangian which eventually gave
rise to the conservation of a quantity which was found to be the stress-energy
tensor. Thus, in accordance to Noether’s theorem, continuous symmetries give
rise to conservation laws.

7 Also, since the integral of the product of T and a derivative is zero then by
integrating by parts we expect the integral of the product of the divergence of
T and a vector field to be zero. Since the latter is going to be true for any vector
field then we expect that the divergence of T vanishes. This is exactly what we
were looking for and so it is the most natural candidate for the energy momentum
tensor of the Lagrangian matter field φ
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3

Lé Schwarzschild Solution

3.1 Introduction

Any metric whatsoever is a solution of the field equations as long as there are
no restrictions imposed on the stress-energy tensor, since Einstein’s equations
then become just a definition of Tµν ; thus, we are to first make assumptions
about Tµν . Post this, we are to proceed by imposing symmetry conditions
on the metric, by restricting the algebraic structure of the Riemann tensor,
by adding field equations for the matter variables or by imposing initial and
boundary conditions. The so called exact solutions have all been obtained by
making some such restrictions. For a physical theory, we first mathematically
analyse the set of differential equations and try finding as many exact solutions,
or as complete a general solution, as possible. Next, comes the physical inter-
pretations of these solutions which in the case of general relativity demands an
analysis from a global perspective and the use of topological methods rather
than just the purely local solution of the differential equations.

A metric would be referred to as an exact solutions if and only if its compo-
nents could be expressed, in suitable coordinates, in terms of analytic functions
(such as trigonometric functions, polynomials, etc.). Since general relativity is
highly non-linear theory, it is not always easy to understand what qualitative
features solutions might possess. In the initial years of general relativity, only a
small number of exact solutions were proposed and discussed which had their
origins in highly idealized physical problems, and possessed a very high degree
of symmetry. Examples of these include the well-known spherical symmetric
solutions of Schwarzschild (which shall be discussed in detail), Kerr, Reissner
and Nordstrom, Tolman and Friedmann, Weyl, and the plane wave metrics.
In the early days, relativists didn’t possess high regard for the exact solutions,
with the exception of cosmological and stellar models, because of the extreme
weakness of the relativistic corrections to Newtonian gravity. Most of the prob-
lems that relativists tackled were marred by approximations methods, such as
the weak field approximation. Probably one of the most important techniques
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in common use is the algebraic classification of the Weyl tensor into Petrov
types and the understanding of the properties of algebraically special metrics.
Another common technique, and the first to become popular, was the use of
groups of motions, especially in the construction of cosmologies (more general
than Friedmann’s). Both the above discussed developments led to the use of
invariantly-defined tetrad bases, rather than coordinate components. The null
tetrad methods, and some ideas from the theory of group representations and
algebraic geometry, gave rise to the spinor techniques which are now usually
employed in the form given by Newman and Penrose. Using these methods, it
was possible to obtain many new solutions whose growth still continues.

The Schwarzschild is the best known nontrivial exact solution of Einstein’s
field equations. The Schwarzschild metric describes the gravitational field in
the vicinity of a gravitating object. This metric is named in honour of Karl
Schwarzschild, who found the exact solution about a month after Einstein
published his theory of general relativity, thus making this the first ever exact
solution to Einstein’s field equations. And, not only is it one of the simplest
exact vacuum solutions, but it is also the most physically significant one. It is
widely applied both in astrophysics and in considerations of orbital motions
about the Sun or the Earth. It predicts the deviations from the Newtonian
theory of gravity that are observed in the orbital motion in our solar system,
and more importantly, in the deflection of light by the Sun. As we start to
explore further into the derivation of this metric, one would observe that to
achieve this metric almost in a month is no easy task. Yes, the calculations are
taxing, but I can assure you is that it is worth the hard work. The specialty
of the Schwarzschild metric is that it is a spherically symmetric solution of
the Einstein field equations. The Schwarzschild metric is derived under the
conditions that the Cosmological constant and the Energy-momentum tensor
have null values, a solution of the field equations known as the vacuum solu-
tion. A null Energy-momentum tensor implies that neither are there sources
nor any sinks of gravitational fields present in that spacetime apart from our
gravitating object.

3.2 The Ricci Flatness Condition

To find the vacuum solution to Einstein’s equations, set Λ = 0, and Tµν = 0, to
get Rµν = 0. This relation is known as the Ricci flatness condition. This is the
Einstein field equation in empty spacetime. It says that the Ricci tensor van-
ishes. We speak of the field equation in the singular, but in fact it consists of a
set of equations according to the values taken by µν. It is of prime importance
to note here that a vanishing Ricci tensor does not imply that the Riemann
tensor vanishes too. Although we have the relation: Rµν(x) = gαβ(x)Rµναβ(x),
the Ricci tensor can vanish without the Riemann tensor having to do so. From
the Riemann curvature tensor, we contract by setting α = β, to obtain the
Ricci tensor in terms of the Christoffel symbols as follows
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Rαµβν = D[µDβ] =
(

∂βΓ
α
µν + Γ ρµνΓ

α
βρ

)

−
(

∂µΓ
α
βν + Γ ρβνΓ

α
µρ

)

Rµν = Rαµαν =
(
∂αΓ

α
µν + Γ ρµνΓ

α
αρ

)
−
(
∂µΓ

α
αν + Γ ρανΓ

α
µρ

)
,

(3.1)

As you can see from the above relations, when the Ricci tensor vanishes, the
Riemann curvature tensor need not vanish. Moreover, where the Riemann cur-
vature tensor is zero, spacetime would be flat. The metric we are trying to
derive has the following form

ds2 =
(

1− rs
r

)

dt2 −
(

1− rs
r

)−1
dr2 − r2dΩ2 = gµν(x)dx

µdxν . (3.2)

Before we start calculating let us analyse this metric. It may first be observed
that the metric reduces to a Minkowskian one when r → ∞. In the metric, the
rs =

2GM
c2 , is the Schwarzschild radius. Since we are performing all calculations

by setting the value of c (c ≡ 1), we can ignore the squared term in the
Schwarzschild radius.

3.3 Singularities Already?

It can be observed that the metric degenerates when r = 2GM , i.e., as r → rs.
This although may seem like a singularity, is a mere illusion created due to
some cranky coordinates. This illusion fades away when better coordinate sys-
tems are used, for example, Kruskal-Szekeres coordinates, ingoing and out-
going Eddington-Finkelstein coordinates, Lemaitre coordinates, etc. If fact, it
was Kruskal and Szekeres, who independently had discovered that this was
a coordinate singularity that arose due to the use of the Schwarzschild co-
ordinates. With the use of better coordinates, the metric becomes regular at
r = rs. However, the case of r = 0 is different, something terrible happens
to the metric, physicists encounter their worst nightmare- infinity. As r → 0,
(
1− rs

r

)
→ −∞, and the most horrid part- we end up with a metric where

all the terms are negative, implying that there are four positive eigen values
and thus producing the metric signature-(+,+,+,+). Hence, we have entered
a region where there are four space directions and no time directions.
The case of r → 0 is a true, physical singularity. To confirm this, we must turn
to quantities that are independent of the choice of coordinates. One such is
the Kretschmann invariant

K = RµναβR
µναβ =

12r2s
r6

=
48G2M2

c4r6
(3.3)

As r → 0, the curvature becomes infinite. Since curvature has dimensions of
force, we say that the tidal forces at the point r = 0 is infinite and at that
point, spacetime itself is not properly defined. It is important to note that
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this invariant is regular at r = rs, i.e., the invariant corresponds to a finite
tidal force. Hence, we conclude that the singularity at r = rs is not a real,
physical singularity. There is another method in which we make a coordinate
transform to such a metric tensor which is regular at this surface, in order to
observe that the spacetime is regular at r = rs. Such a coordinate transform is
done using the Tortoise coordinates, which we shall explore in the next chapter.

The Schwarzschild metric represents the external gravitational field of a spher-
ical gravitating object of mass m . Similar to the Newtonian picture, where
the mass of the gravitating source of a stationary, asymptotically flat (i.e. the
spacetime is flat at large distances from the source) gravitational field can be
determined by integrating over a closed surface near spatial infinity, in gen-
eral relativity, a similar integral has been introduced called the Komar integral
which yields the Komar mass (see next chapter). The parameter m can be in-
terpreted as the total mass, which is spherically distributed, inside the radius
r. In the real world, the mass of all particles is necessarily positive. Thus, it is
generally assumed that m > 0. However, as an exact mathematical solution of
Einstein’s equations, the Schwarzschild metric is also valid when m is negative.
In such a case, the apparent singularity at r = 2m would not appear, and the
corresponding spacetime would not possess a similar interpretation. We shall
discuss deeper questions pertaining to the mass of black holes in the latter
part of the chapter.

3.4 Spherical Symmetry

Using the knowledge of intense mathematical foundations laid in the introduc-
tory chapter, we can reformulate concepts underlying the Schwarzschild metric
very elegantly as follows: A three-dimensional Riemannian manifold (M, g) is
said to be spherically symmetric if: The manifold is represented by one chart
(V, z) with z(V ) = R

3, i.e., the image of the open set V , z(V ) exists in R
3.

An analogous way of conveying this is by placing a sphere S of R
3 centred

at some arbitrary point p. The pseudo-coordinates in z(V ), i.e., the spherical
polar coordinates ρ, θ, and Φ are linked to the canonical coordinates x, y, and
z of R3 by the following relations

x = ρsinθsinΦ, y = ρsinθcosΦ, z = ρcosθ. (3.4)

In z(V ), g is represented by the metric of the following form

eu(ρ)dρ2 + κ2(ρ)dΩ2. (3.5)

What these conditions imply is that z(V ) is foliated by a metric 2-spheres
of constant ρ centred at the arbitrary point p. The areas of the spheres from
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the metric are 4πκ2. This metric is the general form of a metric invariant by
rotations in R3, centred at p. It is important to note here that the vanishing of
κ2(0) does not imply the presence of a singularity in the metric, it just shows
that spherical coordinates are not the best ones available at the point ρ = 0.

3.5 Constructing the Schwarzschild Metric

At large distances from the spherically symmetric gravitating object, space-
time is flat. Why? This is due to the fact that the influence of the gravitational
field vanishes at large distances since it varies as ≈ r−2. Due to this, the ability
of the tidal forces to curve spacetime at large distances from the gravitating
object fades away thus resulting in a flat space. Note that when we talk about
the gravitating object, we have assumed that there is no matter in the sur-
roundings of our object, thus the vacuum field. We can represent this flat
spacetime in terms of the line element as

ds2 = dt2 − 1

c2
(
dx2 + dy2 + dz2

)
. (3.6)

Now, how would this metric change in the vicinity of our object? For this let us
first write the basic form of the metric for a plane in polar coordinates. In flat
space, the spatial distance between two points on a plane in polar coordinates
is given by the equation

ds2 = r2dθ2 + dr2. (3.7)

Now, let us change this metric. We first start by making the replacements,
sinθ → sinhω, and cosθ → coshω. Here, ω is the angle with which the hyper-
bola increases with respect to the origin (a timelike coordinate). Thus, we have
changed from polar coordinates to hyperbolic coordinates. In this frame, the
acceleration along a particular hyperbola is the same, however, the acceleration
along different hyperbolae are different. An analogous relation can be drawn
to that of circular motion here, similar to the acceleration remaining the same
along a particular hyperbola, the acceleration of a particle moving around a
circle is uniform, however, the acceleration around another concentric circle of
a different radius who definitely not be the same. We now apply the following
transformations

X = rcosh(ω), T = rsinh(ω), (3.8)

such that,

X2 − T 2 = r2
[
cosh2(ω)− sinh2(ω)

]
= r2. (3.9)
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Hence, producing the following metric

ds = r2dω2 − dr2. (3.10)

Now, this is the metric in which our gravitating object lies, let us travel along
a particular hyperbola and to determine the fate of the metric. Let the grav-
itating object, under consideration, be the super massive black hole located
at the centre of our galaxy. Now, let us remove all the matter present outside
this black hole (Tµν = 0) and for the moment assume that the value of the
energy density of the vacuum of space is zero (Λ = 0). By performing these
actions, we have established the vacuum conditions. From a small distance
from a hyperbola that is present next to where Earth was, just a moment ago,
we compute the metric. The black hole is almost 26, 000 light years away from
Earth. Placing the origin at the centre of the black hole, we re-define the po-
sition vector to be

r = RBH→Hyp + r′ (3.11)

where RBH→Hyp = 26, 000 light years, is the distance between the black hole
and the hyperbola trajectory which runs next to where Earth was a moment
ago, and r′ is the distance between the hyperbola and us. This distance is prone
to vary since were nothing but mere particles floating in space but would never

exceed that of RBH→Hyp, hence, r′2

R2
BH→Hyp

→ 0. Let us substitute this new

relation into the metric and perform some manipulations,

ds2 = (RBH→Hyp + r′)2 dω2 − [d(RBH→Hyp + r′)]2

ds2 = (R2
BH→Hyp + r′2 + 2RBH→Hypr′)dω2 − dr′2

≈
(

1 + 2r′

RBH→Hyp

)

R2
BH→Hypdω

2 − dr′2.

(3.12)

We know from previous chapters that proper acceleration, A, when the speed
of light is set to unity is nothing but 1

R . Hence, here, A = 1
RBH→Hyp

= g.

Define RBH→Hyp(ω) = t.

ds2 = (1 + 2r′g) dt2 − dr′2. (3.13)

For a spherically symmetric gravitating object, we know from Newton’s theory
that the gravitational field is given by: g = −GM

r′2 . Where M is the mass of the
black hole and re-defining r′ by stating that it is the distance at which we are
placed next to the black hole (note that r′ > rs). We now get the final form
of the metric to be
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ds2 =

(

1− 2GM

r′

)

dt2 − dr′2 = [1 + 2Φ(r′)] dt2 − dr′2. (3.14)

It is interesting to note that as r′ → 2GM, dτ2 → −dr′2, and the vanishing
coefficient

(
1− 2GM

r′

)
, happens to be the black hole horizon. When the speed

of light is not set to unity, and when r′ = x + y + z, we obtain the metric of
the form

ds2 =

(

1− 2GM

r′c2

)

dt2 − 1

c2
(
dx2 + dy2 + dz2

)
. (3.15)

We now have a problem with the coordinate system, it’s too hard to study
central force problems in Cartesian coordinates. We move to another system
which is tailor-made for studying the central force problem and one which
acknowledges the spherical symmetry of our gravitating object-the spherical
polar coordinates. Thus, we change the flat space metric by transformations
to give

dx2 + dy2 + dz2 = dr2 + r2
(
dθ2 + sin2θdΦ2

)
= dr2 + r2dΩ2. (3.16)

Substituting this into our metric, we obtain

ds2 =

(

1− 2GM

rc2

)

dt2 − 1

c2
dr2 − 1

c2
r2dΩ2. (3.17)

This whole struggle was to find the metric in the vicinity of our gravitating
object. Let us recap- we started with the polar form of the metric describing
a plane, we then transformed this metric to obtain a hyperbolic form, we then
manipulated this form replacing the position vector with the net distance be-
tween us and the black hole, during simplification we realised the term that
represented proper acceleration and that we could place a gravitating body
with a gravitational field g in that spacetime. With such an object in place,
we then realized that the first diagonal term of the metric represented the
Newtonian potential, and since the object that we have placed is spherically
symmetric, we have changed from Cartesian to spherical polar coordinates.
So, this leaves us with only one question- is this metric correct? The answer-
absolutely not! This is due to the reason that was mentioned on the paragraph
about singularities. Let us discuss this point in detail and plan a surgery to
obtain the correct metric. In the limit of r → 0, the metric goes nuts

ds2 =
(
1− 2GM

rc2

)
dt2 − 1

c2 dr
2 − 1

c2 r
2dΩ2 = −gµν(x)dxµdxν

limr→0 ds,
(
1− 2GM

rc2

)
→ −∞.

(3.18)

Hence, we obtain |gµν | = Diag (+∞, A,B,C), where A,B,and C are positive
constants. We ended up obtaining a metric where all the terms are negative,
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implying that there are four positive eigen values and thus producing the met-
ric signature-(+ + + +). Hence, we have entered a region where there are
four space directions and no time directions. This is the reason why the metric
derived is wrong. Let’s perform a surgery to this metric such that we get the
acceptable one. One might immediately suggest to add the term

(
1− 2GM

rc2

)
to

the dr and dΩ components of the metric. But the correct metric derived from
Einstein’s field equations is of the form

ds2 =

(

1− 2GM

rc2

)

dt2 −
(

1− 2GM

rc2

)−1
1

c2
dr2 +

1

c2
dΩ2. (3.19)

Note that when dt2 flips sign, dr2 flips sign too. What this implies is that
outside the Schwarzschild radius, there is no change in the metric and its
signature is (− + + +), i.e., one time direction and three space directions
(r, θ, Φ). However, inside the Schwarzschild limit, space and time exchange their

roles. The correction,
(
1− 2GM

rc2

)−1
, is quite negligible as long as we don’t get

too close where r is too small.

3.6 The Derivation

Here comes the easy part, the mathematical derivation of the Schwarzschild
solution. Math is just a route (the best-known route) for us to utilize in order
to get to the crux of the problem in hand. Without further ado, let’s divulge
into the math and derive the Schwarzschild solution. We make an ansatz (an
educated guess) of a metric such that it preserves spherical symmetry, it has
the following form

ds2 = gttdt
2 + gtrdtdr + grtdrdt+ grrdr

2 + ζdΩ2. (3.20)

Since gtr = grt, we can re-write the metric in its final form as follows

ds2 = gttdt
2 + 2gtrdtdr + grrdr

2 + ζdΩ2, (3.21)

where dΩ2 = dθ2 + sin2θdΦ2, r ∈ [0,∞), Φ ∈ [0, 2π), and θ ∈ [0, π]. Taking
a time-slice, i.e., at a constant time (dt = 0), space is sliced by concentric
spheres, spheres whose radii are set up by grr(r, t), and spheres whose areas
are set up by ζ(r, t). The metric, when dt = 0 is given by

ds2 = grr(r, t)dr
2 + ζ(r, t)dΩ2. (3.22)

This form of the metric is invariant under coordinate changes: r = r(r′, t
′

),
and t = t(r′, t

′

). Now the metric tensor and ζ(r, t) would transform as follows
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g
′

αβ(y) = gµν(x)
∂xµ

∂yα
∂xν

∂yβ

ζ
′

(y) = ζ[x(y)].

(3.23)

It is important to observe that ζ
′

(y) transforms as a scalar. Here yα =
(r, t), where α runs from 1 to 2. Using this freedom of choice of two func-
tions, r(r′, t

′

), and t(r′, t
′

), we can choose two out of the four functions,
gtt(r, t), grt(r, t), grr(r, t), and ζ(r, t). We fix the following standard notations
for gtt(r, t), and grr(r, t)

gtt(r, t) = eA(r,t), grr = −eB(r,t). (3.24)

Thus, we have arrived at the covariant form of our ansatz

ds2 = eA(r,t)dt2 − eB(r,t)dr2 − r2dr2. (3.25)

In the above metric, the two-dimensional surface with r = const, t = const
has the standard line element dl2 = r2dΩ2 of the 2-sphere with the proper
area A = 4πr2. We are assuming, for the moment that A > 0, and B > 0,
this implies eA > 1, and eB > 1 so that t = const surfaces are spacelike and
r = const surfaces are timelike. From the metric, we observe the following

||gµν || = Diag (g00, g11, g22, g33) = Diag
(
eA,−eB ,−r2,−r2sin2θ

)

||gµν || = Diag
(
g00, g11, g22, g33

)
= Diag

(
e−A,−e−B ,− 1

r2 ,− 1
r2sin2θ

)
.

(3.26)

Let’s now calculate the Christoffel symbols for the metric. This can be a long
and tiresome process, however, there are two methods of finding the Christoffel
symbols- one is by direct evaluation, and the second is to obtain them from
the variation of the geodesic equation. Although the latter is the preferred
method, we shall do both the methods to highlight the elegance of the latter.
Note the following conventions: 0 → t, 1 → r, 2 → θ, 3 → Φ. We will be follow-
ing the below mentioned method for the computation of the Christoffel symbols

Γαµν = Γανµ = gααΓµνα = gαα
1

2
(∂µgνα + ∂νgαµ − ∂αgµν) . (3.27)

The non-zero components of the Christoffel symbols are the following

Γ 1
11 = g11Γ111 = −e

−B

2
(g11,1 + g11,1 − g11,1) = −e

−B

2

∂eB(r,t)

∂r
=
B

′

2

Γ 0
10 = g00Γ100 = − e−A

2 (g10,0 + g00,1 − g10,0) =
e−A

2
∂eA(r,t)

∂r = A
′

2
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Γ 2
33 = g22Γ332 = − 1

2r2 (g32,3 + g32,3 − g33,2) = − 1
2r2

∂r2sin2θ
∂θ = −sinθcosθ

Γ 0
11 = g00Γ110 = e−A

2 (g10,0 + g10,1 − g11,0) = − e−A

2

∂(−eA(r,t))
∂t = Ḃ

2 e
B−A

Γ 1
22 = g11Γ221 = e−B

2 (g21,2 + g12,2 − g22,1) =
e−B

2

∂(−r2)
∂t = −re−B

Γ 1
00 = g11Γ001 = − e−B

2 (g01,0 + g10,0 − g00,1) =
e−B

2
∂eA(r,t)

∂r = A
′

2 e
A−B

Γ 2
12 = g22Γ122 = − 1

2r2 (g22,1 + g21,2 − g12,2) = − 1
2r2

∂(−r2)
∂r = 1

r

Γ 2
12 = g22Γ122 = − 1

2r2 (g22,1 + g21,2 − g12,2) = − 1
2r2

∂(−r2)
∂r = 1

r

Γ 3
13 = g33Γ133 = −1

2r2sin2θ (g33,1 + g31,3 − g13,3) =
1

2r2sin2θ

∂(r2sin2θ)
∂r = 1

r

Γ 3
23 = g33Γ233 = −1

2r2sin2θ (g33,2 + g31,2 − g23,3) =
1

2r2sin2θ

∂(r2sin2θ)
∂θ = cotθ

Γ 0
00 = g00Γ000 = e−A

2 (g00,0 + g00,1 − g00,0) =
e−A

2
∂eA(r,t)

∂t = Ȧ
2

Γ 1
10 = g11Γ101 = − e−B

2 (g01,1 + g11,0 − g10,1) = − e−B

2

∂(−eB(r,t))
∂t = Ḃ

2

Γ 1
33 = g11Γ331 = − e−B

2 (g31,3 + g13,3 − g33,1) =
e−B

2

∂(−r2sin2θ)
∂r = −rsin2θe−B .

(3.28)

The other components of the Christoffel symbols are zero. Now, let us com-
pute the same in a different approach, let’s use some physics! This method
focuses on obtaining the Lagrangian from the metric and observing Christoffel
symbols as part of the Euler-Lagrange equation.

We first obtain the Lagrangian from its definition, S =
∫
ds =

∫
Ldτ, we

get the Lagrangian to be

Ψ = L2 = ds2

dτ2 = eA(r,t) dt2

dτ2 − eB(r,t) dr2

dτ2 − r2 dθ
2

dθ2 − r2sin2θ dΦ
2

dτ2 = gµν(x)
dxµ

dτ
dxν

dτ

Ψ = eA(r,t)ṫ2 − eB(r,t)ṙ2 − r2θ̇2 − r2sin2θΦ̇2 = gµν ẋ
µẋν .

(3.29)

Now, we make use of the Euler-Lagrange equation, by matching the coefficients
in the equation with those in the geodesic equation for each coordinate t, r, θ, Φ
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d
dτ

(
∂Ψ
∂ṫ

)
− ∂Ψ

∂t = d
dτ

(
2ṫeA

)
−
(

ȦeAṫ2 − ḂeB ṙ2
)

= 2
(

eAẗ+
(

ȦeAṫ+A
′

eAṙ
)

ṫ
)

−
(

ȦeAṫ2 − ḂeB ṙ2
)

= 2eAẗ+ 2ȦeAṫ2 + 2A
′

eAṙṫ− ȦeAṙṫ+ ḂeB ṙ

= 2eA
(

ẗ+ Ȧ
2
ṫ2 + A

′

2
ṫṙ + A

′

2
ṙṫ+ Ḃ

2
eB−Aṙ2

)

= 0.

(3.30)

From this equation, we observe the following Christoffel symbols (highlighted
in bold face)

Γ 0
00 =

Ȧ

2
, Γ 0

01 = Γ 0
10 =

A
′

2
, Γ 1

11 =
Ḃ

2
eB−A (3.31)

d
dτ

(
∂Ψ
∂ṙ

)
− ∂Ψ

∂r = d
dτ

(
−2ṙeB

)
−
(

A
′

eAṫ2 −B
′

eB ṙ2 − 2rθ̇2 − 2rsin2θΦ̇2
)

= −2
(

eB r̈ +
(

ḂeB ṫ+B
′

eB ṙ
)

ṙ
)

−
(

A
′

eAṫ2 −B
′

eB ṙ2 − 2r ˙theta
2 − 2rsin2θΦ̇2

)

= −2eAr̈ − 2ḂeB ṫṙ −B
′

eB ṙ2 −A
′

eAṫ2 + 2rθ̇2 + 2rsin2θΦ̇2

= −2eA
(

r̈ + Ḃ
2
ṫṙ + Ḃ

2
ṙṫ+ B

′

2
ṙ2 + A

′

2
eA−Bṫ2 − re−Bθ̇2 − re−Bsin2θΦ̇2

)

= 0.

(3.32)

From this equation, we observe the following Christoffel symbols (highlighted
in bold face)

Γ 1
01 = Γ 1

10 =
Ḃ

2
, Γ 1

11 =
B

′

2
, Γ 1

00 =
A

′

2
eA−B , Γ 1

22 = −re−B , Γ 1
33 = −re−Bsin2θ

(3.33)

d
dτ

(
∂Ψ
∂θ̇

)

− ∂Ψ
∂θ = d

dτ

(

−2r2θ̇
)

−
(

−2r2sinθcosθΦ̇2
)

= −2
(

2rṙθ̇ + r2
)

θ̈ + 2r2sinθcosθΦ̇2

= −2r2
(

θ̈ + 1
r
ṙθ̇ + 1

r
θ̇ṙ − sinθcosθΦ̇2

)

= 0.

(3.34)

From this equation, we observe the following Christoffel symbols (highlighted
in bold face)
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Γ 2
12 = Γ 2

21 =
1

r
, Γ 2

33 = −sinθcosθ (3.35)

d
dτ

(
∂Ψ
∂Φ̇

)

− ∂Ψ
∂Φ = d

dτ

(

−2r2sin2θΦ̇
)

= −2
(

2rsin2θṙΦ̇+ 4r2sinθcosθθ̇Φ̇+ 2r2sin2θΦ̈
)

= −4r2sin2θ
(

Φ̈+ 1
r
ṙΦ̇+ cotθθ̇Φ̇

)

= 0.

(3.36)

From this equation, we observe the following Christoffel symbols (highlighted
in bold face)

Γ 3
13 =

1

r
, Γ 3

23 = cotθ. (3.37)

As you would have observed, obtaining the Christoffel symbols from the Euler-
Lagrange equation is a simpler task, due to the main reason being that we
obtain only the non-zero components, without any a priori information about
the null components. We have 4 components and they need to be arranged in
three slots of the Christoffel symbol (the way in which they are arranged mat-
ters). Let’s lay out a 4×4×4 cubic matrix, containing a total of 64 coefficients.
Run a plane through the front face’s diagonal and another plane through the
top face’s diagonal separately, what we are doing here is running through the
thickness diagonal. By doing this we run through the front, bottom, back, and
the top faces, and observe that there is a total of 4 × 4 = 16 coefficients.
In addition to this, in the four faces we have travelled past there are a total
of 6 coefficients above and below each diagonal thus resulting in a total of
4× 6 = 24 coefficients above and 24 coefficients below the main diagonal. This
would mean that we need to compute a total of 24 + 16 = 40 independent
Christoffel symbols just to realize that 15 of them have non-zero components.
It is also interesting to note that in each of the cube’s face there are 10 in-
dependent components, out of which 4 are consumed by general covariance,
i.e., freedom to use arbitrary coordinates, and the remaining six correspond
to 3 spatial rotations and 3 Lorentz boosts. Mathematically, if we wanted to
sound smart, we can think that the independent components are the number
of parameters of the Lorentz-Poincare group, i.e., the group of translations (4),
spatial rotations (3), and velocity boosts (3), but let’s not get into that. So,
next time you compute the Christoffel symbols, please save the hard work for
the next part.

What next part? Let’s think about it. Thus far, since the diagonal elements of
the metric tensor were known, we had computed something which was created
from a combination of them, i.e., the Christoffel symbol(s). So, our next step
is to compute something else which is constructed from a combination of the



3.7 Method for Hard Workers 135

Christoffel symbols. Three results pop up- the Riemann curvature tensor, the
Ricci tensor, and the Ricci scalar, which one are we to pick? Turn to Einstein’s
field equations for the answer. In the equations, we have two quantities, the
Ricci tensor and the Ricci scalar. Although it is true that we can compute the
Ricci tensor and scalar from the Riemann curvature tensor, it is a cumbersome
task, instead we directly compute the Ricci tensor. Now you may question me
as to why I am taking the hard route of direct computation, is there no other
way for avoiding the mess? Yes, there is: since we have 4 components that need
to be arranged in the two slots of the Ricci tensor, we end with 16 different
possibilities, out of which only 4 have non-zero components. The smarter way
to proceed is to observe the null components of the Ricci tensor from sym-
metry considerations and then find the 4 non-zero components by evaluating
the line interval on the unit sphere after a coordinate transformation. Similar
to the approach in this section, we shall do both methods, not for wasting
time, energy, space and information, but rather to understand the beauty and
elegance of the latter method.

3.7 Method for Hard Workers

We solve the Einstein field equations separately for R00, R11, R22, and R33,
and are left with the following painful-to-look-at equation

R00 = −Γ 1
00,1 + Γ 0

01Γ
1
00 − Γ 1

00Γ
1
11 − Γ 1

00Γ
2
12 − Γ 1

00Γ
3
13,

R11 = +Γ 0
10,1 + Γ 0

10Γ
0
01 − Γ 1

11Γ
0
10 + Γ 2

12,1 − Γ 1
11Γ

2
12 + Γ 2

12Γ
2
21 + Γ 3

13,1

−Γ 1
11Γ

3
13 + Γ 3

13Γ
3
31,

R22 = −Γ 1
22Γ

0
10 − Γ 1

22,1 − Γ 1
22Γ

1
11 + Γ 2

21Γ
1
22 + Γ 3

23,2 − Γ 1
22Γ

3
13 + Γ 3

23Γ
3
32,

R33 = −Γ 1
33Γ

0
10 − Γ 1

33,1 − Γ 1
33Γ

1
11 + Γ 3

31Γ
1
33 − Γ 2

33,2 − Γ 1
33Γ

2
12 + Γ 2

32Γ
2
33.
(3.38)

Solving these equations by plugging in the appropriate Christoffel symbols, we
obtain four equations, each which are to be solved to obtain the metric. Let’s
do this.

1. Calculation of R00:
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R00 = − 1
eB

[

(−eB)′(eA)′

4(−eB)
− (eA)

′′

2 − (eA)
′

(eA)
′

4(eA)
− (eA)

′

r

]

= −e−B
[

A′B′eA

4 − A′′eA

2 − (A′)
2
eA

4 − A′eA

r

]

= eA−B
[

A′′

2 + A′

r +
(A′)

2

4 − A′B′

4

]

.

(3.39)

2. Calculation of R11:

R11 =
(eA)

′

(eA)
′

4(eA)
+

(eA)
′′

2 − (eA)
′

(−eB)′

4(−eB)
− (−eB)′(eA)

(−eBr)

= eA
[

(A′)
2

4 + A′′

2 − A′B′

4 − B′

r

]

.

(3.40)

3. Calculation of R22:

R22 =
(eA)

′
r

2(eA)(−eB)
− (−eB)′r

2(−eB)2
− 1

(−eB)
− 1

= A′r−B′r
2 e−B − 1 + e−B .

(3.41)

4. Calculation of R33:

R33 = R22sin
2θ

=
[
B′r−A′r

2 e−B − 1 + e−B
]

sin2θ.
(3.42)

Alright, we have successfully found what we were looking for, now if I were to
ask you the question as to why we are finding these equations, what would your
answer be? Sometimes, we get too carried away with the math that we tend
to forget the reason of their very creation/existence. An equation’s beauty is
highlighted by its physical significance, and an equation’s importance is inten-
sified when it serves a purpose. The purpose here is to find an equation that
would describe the spacetime in the vicinity of the black hole. The founda-
tion of the Schwarzschild solution lies in the assumptions made- null value of
the energy-momentum tensor and the cosmological constant. Since there is no
matter distribution outside the black hole, we arrived at a condition which is
to be used for finding equations describing that spacetime- the Ricci flatness
condition. This condition communicates to us that at any point in the vacu-
umed (i.e., zero matter distribution) spacetime the computation of the Ricci
tensor yields a null result, i.e., Rµν = 0. Hence, let us impose this condition
of the found equations and check for results. Before imposing the Ricci flat-
ness condition blindly too all equations, let us carefully observe the equations
obtained for bread crumbs in order to solve the final mystery of the metric.
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Applying the Ricci flatness condition to R11 we observe the following

R11 = eA
[

(A′)
2

4 + A′′

2 − A′B′

4 − B′

r

]

= 0

=⇒ B′

r =
(A′)

2

4 + A′′

2 − A′B′

4 .

(3.43)

Using this equation in the expression for R00 and imposing the Ricci flatness
condition to the R00 component, we obtain

R00 = 0 = eA−B
[

A′′

2 + A′

r +
(A′)

2

4 − A′B′

4

]

= eA−B
[
A′+B′

r

]

=⇒ A′ +B′ = 0,

(3.44)

and from this, we see that

A = −B(r). (3.45)

Now, applying the Ricci flatness condition to the R22 component, we observe

R22 = 0 = B′r−A′r
2 e−B − 1 + e−B

(
1− e−B

)
= B′−A′

2 e−Br,

(3.46)

and since, from 3.43, A′ = −B′, we have

(
1− e−B

)
= − 2B′

2 e−Br

=⇒ − dB
(eB−1) −

∫
dr
r = 0,

(3.47)

which is a first-order non-linear ODE whose solution is

B(r) = −ln
(
C1

r + 1
)

=⇒ e−B = eA =
(
1 + C1

r

)
.

(3.48)

Now, let us rewrite the metric using the above obtained result

ds2 =

(

1 +
C1

r

)

dt2 −
(

1 +
C1

r

)−1
dr2 − r2dΩ2. (3.49)

From equation 1.151, the metric describing a gravitating object far away from
the source was found to be: ds2 = (1 + 2rg) dt2 − dr2. The acceleration due
to gravity for a gravitating object is g = −GM

r2 . Thus, the metric post this
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substitution reads

ds2 =

(

1− 2GM

r

)

dt2 − dr2, (3.50)

and upon comparison we find the constant C1 to be

C1 = −2GM. (3.51)

It is to be noted that all our calculations were done setting the speed of light
to unity, i.e., c ≡ 1. When the calculations are done sans this assumption, we
obtain the constant to be C1 = 2GM/c2, and the final form of the metric reads

ds2 =
(

1− rs
r

)

dt2 −
(

1− rs
r

)−1
dr2 − r2dΩ2, (3.52)

where rs is the Schwarzschild radius. This concludes our derivation but raises
a question- why did we compare our ansatz, whose purpose was to describe
the geometry of a gravitating object in it’s vicinity, to the metric describing
the geometry, far away from the gravitating object. How can the metrics even
be compared? We will learn in the next chapter that Birkhoff’s theorem and
Israel’s theorem account for this comparison.

Exercise 9

1. Show that, by explicit calculations, the Kretschmann scalar of the Schwarzschild

metric is K =
12r2s
r6 .

2. Consider the Einstein field equations with a cosmological constant in vac-
uum,

Gµν + Λgµν = 0. (3.53)

a. Consider general spherically symmetric spacetime metric and show that it
reduces to the following

ds2 = −
(

1− rs
r

+
Λ

3
r2
)

dt2 +

(

1− rs
r

+
Λ

3
r2
)−1

dr2 + r2dΩ2
2 , (3.54)

This is called the Schwarzschild-de Sitter metric and is the generalisation of the
Schwarzschild solution which includes an arbitrary cosmological constant Λ.
Notice that when Λ = 0, we see that the metric simplifies to the Schwarzschild
case and when m = 0 (and hence, rs = 0) we obtain the de Sitter metric which
can be AdS or dS base on the sign of the cosmological constant.

b. Show that the Kretschmann scalar for this metric is K =
12r2s
r6 + 8Λ2

3 .
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3. Consider the following transformations

θ → ir, φ→ it, r → z, t→ iφ. (3.55)

a. Apply these to the Schwarzschild metric and then perform an overall sign
change. The resulting metric is called the metric of the type D solution which
refers to the Petrov type D. Note that sin2(ir) = −sinh2r.
b. Show that the Kretschmann scalar is the same as that of Schwarzschild with
r replaced with z.
c. Will all the components of the Riemann tensor be equal to their Schwarzschild
counterpart if the defined transformations are applied?

4. A Wick rotation is to make the substitution t → −iτ . This helps us to
find a solution to a metric in the Minkowski space with a Lorentzian signature
(−++ . . .+) from a metric in the Euclidean space with signature (++ . . .+).
a. Wick rotate the time coordinate in the global AdS3 metric 1.228.
b. Parameterize the metric and show that it is related to the symmetry group
SL (2,C) which has the properties

SL (2,C) ≡
{(

a b
c d

)

| a, b, c, d ∈ C, ad− bc = 1

}

. (3.56)

c. Simplify the metric by making the substitutions r = lsinhψ and t̄ = lτ .

5. A rotating BTZ (Bañados-Teitelboim-Zanelli) black hole is described by
the metric

ds2 = −
(
r2 − r2+

) (
r2 − r2−

)

r2l2
dt2+

l2r2
(
r2 − r2+

) (
r2 − r2−

)dr2+r2
(

dφ− r+r−
lr2

dt
)2

.

(3.57)

where r+ and r− are the black hole radii and l is the AdS radius. This is a
black hole solution for (2+ 1)-dimensional gravity, i.e., two spatial dimensions
(r and φ here) and one time dimension. Notice that this metric possesses off-
diagonal components.

a. Simplify this metric by expressing it in terms of the mass M =
r2+−r2−
8Gl2 and

the angular momentum J = 2r+r−
4Gl .

b. Calculate the Ricci tensor components and show that the Ricci scalar takes
the form R = −6/l2.
c. Compare the Riemann tensor calculated to the one calculated via the ex-
pression 1.201 and fix the value of the cosmological constant. What type of a
spacetime is the BTZ black hole in?
d. Calculate the Cotton tensor and comment on the conformal flatness of this
metric.
e. Taking r− = 0, show that the Kretschmann invariant for this metric is
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K = 12/l4. This is quite interesting since we obtain a constant as the answer
and not a curvature singularity which blows up as some length parameter is
taken to zero as in the case of the Schwarzshchild black hole. If there exists no
singularity, why is the BTZ black hole a black hole? The answer is that in the
BTZ black hole the singularity is due to the causal structure of the spacetime,
not in its curvature. The type of singularity observed here is referred to as a
causal singularity1

Example 3.1. A neat trick to have up ones sleeve is to realize that for diagonal
metrics, the Christoffel symbols take a specific form. Let gαβ be a diagonal
metric, then we have

Γµαβ = gµµΓαβµ = 0,

Γµαα = gµµΓααµ = − 1
2g
µµgαα,µ = − 1

2gµµ
∂µgαα,

Γµαµ = gµµΓαµµ = 1
2gµµ

∂αgµµ = ∂α

(

ln
√

|gµµ|
)

,

Γµµµ = gµµΓµµµ = 1
2gµµ

∂µgµµ = ∂µ

(

ln
√

|gµµ|
)

.

(3.58)

The advantages of this observation is twofold- firstly, we now know that all
the mixed Christoffel symbols identically vanish since Γ ijk = giiΓjki and Γjki
contains (the derivative of) only non-diagonal components of the metric tensor
which are all zero, and secondly, we now have expressions (for different classes
such as all indices alike, base indices alike, and so on), to compute the remaining
non-vanishing symbols. As an exercise rework the Christoffel symbols for the
4-sphere 1.202 and cross-check you results.

3.8 More on Isometries

3.8.1 Stationarity and Staticity of the Schwarzschild Metric

A Killing Field is a vector field the local flow of which preserves the metric.
Equivalently, X satisfies the Killing equation,

LXgµν = ∇(µXν) = 0. (3.59)

One among the many features of the Schwarzschild metric is that it’s station-
ary with a Killing vector field X = ∂t. A spacetime is defined to be stationary
if there exists a Killing vector field X which approaches ∂t in the asymptoti-
cally flat region, i.e., where r → ∞ definitions) and generates a one parameter
groups of isometries. A spacetime is called static if it is stationary and if the

1 for more information see (33))
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stationary Killing vector X is orthogonal to the hypersurface, i.e.,

Xβ ∧ dXβ = 0, (3.60)

where,

Xβ = Xµdx
µ = gµνX

νdxµ. (3.61)

Consider a general coordinate transformation, under which the metric tensor
transforms as

ḡµν(x̄) = gαβ(x)
∂x̄µ

∂xα
∂x̄ν

∂xβ
, (3.62)

and the infinitesimal form of the transformation is to be found. If x̄ =
xµ + ǫµ(x), where ǫµ(x) is a small vector field, then

ḡµν(x̄) ≈ gαβ(x)
(
∂(x̄µ+ǫµ)
∂xα

)(
∂(x̄ν+ǫν)
∂xβ

)

≈ gαβ(x)
(
∂x̄µ

∂xα + ∂αǫ
µ
) (

∂x̄ν

∂xβ
+ ∂βǫ

ν
)
,

(3.63)

and we know that ∂xa

∂xb
= dxa

dxb
= δab , thus, in linear order

ḡµν(x̄) ≈ gαβ(x) (δµα + ∂αǫ
µ)
(

δνβ + ∂βǫ
ν
)

≈
(
gαβδµα + gαβδαǫ

µ
) (

δνβ + ∂βǫ
ν
)

≈ gµν(x) + gµ∂ǫν + gν∂ǫµ + ∂νǫµ∂µǫν
︸ ︷︷ ︸

≈0

.

(3.64)

Hence, we get

ḡµν(x̄) ≈ gαβ(x) + ∂µǫν + ∂νǫµ ≡ gαβ(x) + ∂(µǫν). (3.65)

Now, if for some transformation ǫµ = Kµ, the metric tensor does not change,
i.e.,

D(µKν) ≡ DµKν +DνKµ = 0,

then the corresponding vector field Kµ is called a Killing vector and the trans-
formations are called isometries.
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3.8.2 Axisymmetric Spacetimes

A spacetime is called axisymmetric if there exists a Killing vector field Y ,
which generates a 1-parameter group of isometries, and which behaves like a
rotation. This property is captured by requiring that all orbits 2π periodic,
and that the set {Y = 0}, called the axis of rotation, is non-empty. In the
extended Schwarzschild spacetime the set {r = 2m} is a null hypersurface E ,
the Schwarzschild event horizon. The stationary Killing vector X = ∂t extends
to a Killing vector X̂ in the extended spacetime which becomes tangent to and
null on E , except at the bifurcation sphere, where X̂ vanishes.

3.8.3 Killing Vectors of a 2-Sphere

Consider the metric of a 2-sphere ds2 = dω2
2 . After calculating the Christoffel

symbols (which is left as an exercise), we write down the Killing equations
D(µXν) = 0 where indices µ, ν = 0, 1. Here we have three Killing equations
which read

DθKθ = ∂θKθ − ΓαννKα = 0

⇒ ∂θKθ = 0,

DφKφ = ∂φKφ − ΓαφφKα = 0,

⇒ ∂φKφ +Kθsinθcosθ = 0,

DθKφ +DφKθ = ∂θKφ + ∂φKθ − ΓαθφKα − ΓαφθKα = 0,

⇒ ∂(θKφ) −Kφcotθ = 0.

(3.66)

The two components of the Killing vector are functions of the coordinates,
i.e., Kθ = Kθ(θ, φ) and Kφ = Kφ(θ, φ). Solving the first Killing equation, we
obtain a constant that depends only on φ and hence, we can conclude that

Kθ(θ, φ) = Kθ(φ). (3.67)

We now differentiate the third Killing equation with respect to φ to obtain

∂2φKφ + ∂θ (∂φKφ)− 2cotθ (∂φKφ) = 0. (3.68)

From the second Killing equation, we substitute for ∂φKφ in 3.68 to get

∂θ (−Kθsinθcosθ) + ∂2φKθ − 2cotθ (−Kθsinθcosθ) = 0,

Kθ

(
−cos2θ + sin2θ

)
+ ∂2φKθ + 2Kθcos

2θ = 0,

⇒ ∂2φKθ +Kθ = 0.

(3.69)
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The solution to this differential equation is

Kθ(φ) = c1sinφ+ c2cosφ, (3.70)

where c1 and c2 are constants. Now we can insert this solution into the second
Killing equation to find the solution to Kφ as follows

∂φKφ = −c1 sinφ sinθ cosθ − c2 cosφ sinθ cosθ, (3.71)

which is a non-homogeneous differential equation whose solution is

Kφ = c1 cosφ sinθ cosθ − c2 sinφ sinθ cosθ + f(θ), (3.72)

where f(θ) is a solution to the homogeneous differential equation ∂φKφ = 0.
Substituting 3.70 and 3.72 back into the third Killing equation we get

f ′(θ)− 2f(θ)cotθ = 0,

∂θ

(
fθ

sin2θ

)

= 0,

⇒ f(θ) = c3 sin2θ.

(3.73)

Thus, we have the following solutions for the Killing vectors

Kθ = c1 sinφ+ c2 cosφ,

Kφ = c1 cosφ sinθ cosθ − c2 sinφ sinθ cosθ + c3 sin
2θ.

(3.74)

To make the calculations nice, let’s absorb the negative sign into the constant
c2 and define a new constant c̄2. Now, we have three independent constants
c1, c̄2 and c3 for which we will have three independent Killing vectors K1, K2

and K3.
a. Let c1 = 0, c̄2 = 1, c3 = 0

(K1)θ = −cosφ, (K1)φ = sinφ sinθ cosθ, (3.75)

b. Let c1 = 1, c̄2 = 0, c3 = 0

(K2)θ = sinφ, (K2)φ = cosφ sinθ cosθ, (3.76)

c. Let c1 = 0, c̄2 = 0, c3 = 1

(K3)θ = 0, (K3)φ = sin2θ. (3.77)
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We can now write down the Killing vectors in the following form

Ki = (Ki)
θ
∂θ + (Ki)

φ
∂φ. (3.78)

Raising the indices using the metric tensor, we finally obtain the three Killing
vectors

K1 = −cosφ ∂θ + cotθ sinφ ∂φ,

K2 = sinφ ∂θ + cotθ cosφ ∂φ,

K3 = ∂φ.

(3.79)

If you lived on this 2-sphere, you have the freedom to do the following three
things: you can walk in a particular direction, you can walk in a direction
that is perpendicular to your first direction, and you can stand and spin in one
place. All of these actions would not change the way you perceive the landscape
or in other words these three symmetries would leave you invariant. The three
Killing vectors we derived above correspond to these three symmetries.

3.8.4 Killing Vectors Algebra

For a general surface S in n-dimensional constant curvature spacetimes, we
can have n(n+ 1)/2 number of Killing vectors. Consider now a surface in R

3

where we have 3 Killing vectors which read

K1 = ∂x, K2 = ∂y, K3 = y∂x − x∂y. (3.80)

All these vectors form a bases of the infinitesimal isometry mappings. They
are closed under a bracket [K,M ] called the commutator of the Killing vectors
K and M which is defined as follows

[K,M ] ≡ [ai∂ibj − bi∂iaj ] ∂j , (3.81)

where K = a1∂x + a2∂y and M = b1∂x + b2∂y. Under this bracket, the Killing
vectors form a closed algebra which is shown below
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[K1,K2] = [∂x, ∂y] = ∂x∂y − ∂y∂x = 0,

[K1,K3] = [∂y, y∂x − x∂y] = ∂x (y∂x − x∂y)− (y∂x − x∂x) ∂x

= y∂2x − ∂y − x∂x∂y − y∂2x + x∂y∂x = −∂y,

[K2,K3] = [∂y, y∂x − x∂y] = ∂y (y∂x − x∂y)− (y∂x − x∂y) ∂y

= ∂x + y∂y∂x − x∂2y − y∂x∂y + x∂2y = ∂x,

⇒ [K1,K2] = 0, [K2,K3] = K1, [K3,K1] = K2.

(3.82)

3.8.5 Killing Vectors of Poincaré Half Plane

Consider the Poincaré half-plane metric 1.191. We have three Killing equations
here which read

DxKx = ∂xKx − ΓαννKα = 0

⇒ ∂xKx − 1
yKy = 0,

DyKy = ∂yKy − ΓαννKα = 0

⇒ ∂yKy +
1
yKy = 0,

DxKy +DyKx = ∂xKy + ∂yKx − ΓαxyKα − ΓαyxKα = 0

⇒ ∂xKy + ∂yKx +
2
yKx = 0.

(3.83)

Solving the second Killing equation gives us

Ky =
1

y
f ′(x), (3.84)

where f ′(x) is the derivative of an arbitrary function of x.Using this in the
first Killing equation gives us

Kx =
1

y2
f(x) + g(y). (3.85)

Now, substituting equations 3.84 and 3.85 into the third Killing equation gives
us

f ′′(x) + 2g(y) + yg′(y) = 0. (3.86)

This partial differential equation is separable and hence let f ′′(x) be equal to
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a constant, say c1. This yields

f ′′(x) = c1 ⇒ f(x) =
1

2
c1x

2 + c2 + xc3. (3.87)

and similarly, we let the differential equation for g(y) to be equal to −c1 so
that adding this to the equation of f(x) gives back the original form.

2g(y) + yg′(y) = −c1 ⇒ g(y) = −1

2
c1 +

1

y2
c4. (3.88)

Substituting these results back into 3.84 and 3.85 we obtain the Killing vectors
which read

Kx =
1

2

(
x2

y2
− 1

)

c1 +
1

y2
(c2 + xc3 + c4) , Ky =

1

y
(xc1 + c3) (3.89)

Since the integration constants c2 and c4 serve the same purpose, we can either
set one of them to zero or let c2+c4 = c5. Doing so and using the metric tensor
to write the Killing vectors in the contravariant form as follows (with c1 = a,
c3 = b and c5 = c)

Kx =
1

2

(
x2 − y2

)
a+ xb+ c, Ky = xya+ by. (3.90)

We now have three constants a, b and c for which we obtain three independent
Killing vectors K1, K2 and K3.
a. Let a = 2 (so that the factor cancels), b = 0, c = 0.

(K1)x =
(
x2 − y2

)
, (K1)y = 2xy.

⇒ K1 =
(
x2 − y2

)
∂x + 2xy∂y.

(3.91)

b. Let a = 0, b = 1, c = 0.

(K2)x = x, (K2)y = y.

⇒ K2 = x∂x + y∂y.
(3.92)

c. Let a = 0, b = 0, c = 1.

(K3)x = 1, (K3)y = 0.

⇒ K3 = ∂x.
(3.93)

It can be checked that the Killing vectors form a closed algebra

[K3,K2] = K3, [K2,K1] = K1, [K1,K3] = −2K2 (3.94)
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Exercise 10

1. Consider the Killing vectors for a 2-sphere 3.79. Show that they satisfy the
Lie algebra for SO(3), i.e., the following commutator relations

[K1,K2] = K3,

[K2,K3] = K1,

[K3,K1] = K2.

(3.95)

2. Check that the Killing vectors of the Poincaré half-plane do form a closed
algebra as shown in 3.94.

3. Find the the Killing vectors of the following
a. Hyperboloid H

2 with metric ds2 = R2
(
dθ2 + sinh2θ dφ2

)
.

b. ds2 = −cosh2µ dλ2 + dµ2.
c. The Minkowski metric.
d. The Poincaré patch of AdS3 1.199.
e. Metric of psuedospheres, i.e., surfaces of negative curvature, ds2 = K2

(
dϑ2 + e2θdϕ2

)
,

where K is a constant.
f. The gravitational wave metric as given in 1.238.

4. The applicability of Killing vectors extends also to the infinite-dimensional
dynamical systems, for example, those describing various fields. Given a Killing
vector K and a conserved stress-energy tensor Tµν , we have the conserved cur-
rent Jν = KµTµν . This implies the existence of the corresponding conserved
charge. Show that, using the Killing equation and the fact that Tµν is sym-
metric, DνJ

ν = 0.

5. Show that is (Mg) is Ricci flat and ξ is a Killing field, then ξ satisfies
the Maxwell equations.

3.8.6 Conformal Killing Vectors

Conformal Killing vectors preserve the metric up to an overall factor of scaling.
The condition for a vector K to be a conformal Killing vector is

LKgαβ = λgαβ (3.96)

where λ is an arbitrary scalar function defined on the manifold. Contracting
the indices we have

λ =
2

n
DαK

α, (3.97)
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and hence, the conformal equivalent of Killing’s equation reads

D(αKβ) −
1

n
gαβDαK

α = 0. (3.98)

Now let’s consider two conformally related metrics ḡµν = e2κ(x)gµν . The
Christoffel symbols of the two metrics are related as follows

Γ̄αµν = ḡααΓ̄αµνα

= e2κ(x)gαα 1
2 (ḡαµ,ν + ḡαν,µ − ḡµν,α)

= gαα 1
2 (gαµ,ν + 2κ,νgαµ + gαν,µ + 2κ,µgαν − gµν,α − 2καgµν)

= Γαµν + δαµκ,ν + δαν κ,µ − gαρgµνκ,ρ.

(3.99)

Now, the Killing equation reads

D̄(αK̄β) = ∂(αK̄β) − Γ̄α(µν)K̄α

= ∂(α
(
e2κ(x)Kβ)

)
− e2κ(x)ΓαµνKα −

(
δαµκ,ν + δαν κ,µ − gαρgµνκ,ρ

)
Kα

= e2κ(x)D(αKβ)
︸ ︷︷ ︸

=0

− (Kµκ,ν +Kνκ,µ − gµνK
ρκ,ρ) = 0

⇒ D̄(αK̄β) − ḡµνK̄
ρκ,ρ = 0.

(3.100)

Now, consider DαKβ = Dα (gαβK
α) = gαβDαK

α = 0. This is implied since
Kα is a Killing vector of gαβ . Using this we have

gαβD̄αK̄
α = e2κ(x)

(
∂αK

α + ΓαµαK
µ
)
− gαβgµνK̄

ρκ,ρ

⇒ gµνK̄
ρκ,ρ =

1
nD̄αK̄

α,
(3.101)

where the last step was obtained via contraction. Using this result we finally
obtain the conformal equivalent of 3.98,

D̄(αK̄β) −
1

n
D̄αK̄

α = 0. (3.102)

Now, let us consider the covariant derivative of 3.96 which reads

Dγ (DβKα +DαKβ)− gαβλ,γ = 0, (3.103)
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which is simplified to the following using 1.185 and the Killing equation

DαDβKγ +DβDγKα +DγDαKβ =
1

2
(gαβλ,γ + gαγλ,β + gγβλ,α) . (3.104)

Using the conformal Killing equation one more timeDγ(DαKβ) = Dγ (DβKα − gαβλ)
enables us to make use of a familiar identity

DαDβKγ = DγDβKα −DβDγKα
︸ ︷︷ ︸

=Rρ
βαγ

Kρ

+
1

2
(−gαβλ,γ + gαγλ,β + gγβλ,α) ,

(3.105)

and hence, we obtain

DαDβKγ = RρβαγKρ +
1

2
(−gαβλ,γ + gαγλ,β + gγβλ,α) . (3.106)

This equation implies that the second derivatives of the conformal Killing fields
are determined by themselves and by the gradient of the scalar function defined
on the manifold λ.

3.8.7 Conformal Killing Tensors

A conformal Killing tensor of rank m is defined as a totally symmetric tensor
Kν1...νm , that in the conformal frame obeys the conformal Killing tensor equa-
tion which reads as follows

D(µKν1...νm) = mg(µν1Kν2...νm), (3.107)

where Kν2,...,νm is a totally symmetric tensor of rank m− 1 that can be found
by taking the trace on both sides. To observe how this related to an ordi-
nary Killing tensor, we can perform a conformal transformation. The covari-
ant derivative in the conformal frame D is related to the ordinary covariant
derivative D̂ by a change of the Christoffel symbol,

Γαµν = Γ̂αµν + Cαµν , (3.108)

where,

Cαµν = ω−1
(
δαµω,ν + δαν ωµ − gµνg

αβω,β
)
, (3.109)

where ω is the conformal factor in ĝµν = ω2(x)gµν . We now have
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DµKν1,...,νm = D̂µKν1...νm + Cαµν1Kα...νm + . . .+ CαµνmKν1...νm

= D̂µKν1...νm +Qµν1...νm ,

(3.110)

where Qµν1...νm is symmetric since Cαµν is symmetric in lower indices. Now,
we can define Qµν1...νm = mg(µν1Kν2...νm) since it is consistent with the defi-
nition of Qµν1...νm when Kν2...νm is a totally symmetric tensor of rank m− 1.
Now using the property that Kν1...νm is a Killing tensor, we obtain back the
conformal Killing tensor equation 3.107 since the ordinary covariant deriva-
tive of the Killing tensor vanishes in accordance to the Killing equation, i.e.,
D̂(µKν1...νm) = 0.

Exercise 11

1. Show that we require 1
2 (n+ 1) (n+ 2) constants to calculate DαDβKγ .

2. Take the covariant derivative of 3.106 and show that for n = 2 the fol-
lowing equation holds

DηDαDβKγ =
1

2
gβζδ

ξζ
γηDη (RKξ) +

1

2
Dη (−gαβλ,γ + gαγλ,β + gγβλ,α)

(3.111)

Notice that both sides of 3.111 are covariant derivatives and in order to de-
termine the scalar function λ and the Killing vector Kα we require an infinite
number of constants. In other words there doesn’t exist a finite basis of the
conformal Killing fields exists in n = 2. This is a direct consequence of the fact
that every 2-D metric is conformally flat and hence, there exists an infinite
family of transformations preserving the conformally flatness.

3. Consider a Killing tensor Kαβ which obeys the Killing equation D(µKαβ) =
0. Show that the product of two Killing vectors Kα and Kβ is a Killing ten-
sor. Similarly, prove that Kν1Kν2 . . . Kνm is a Killing tensor if each of the Kνi

(i = 1, . . . ,m) are Killing vectors. An elementary example of a Killing tensor
is the metric tensor since D(αgµν) = 0 holds.

4. Consider the Killing identity,DµDνXβ = −RγµνβXγ . Show thatD(µDνXβ) =
0 which implies that DνXβ is a Killing tensor. It is interesting to note that
this holds when a Christoffel symbol built out of the Lie derivatives of metric
tensors vanishes or in other words LXΓabc = 0 which is the statement of Affine
collineation. Thus, we can conclude that a Killing symmetry (LXgab = 0) im-
plies an Affine symmetry (LXΓ abc = 0) which implies a Curvature symmetry
(LXRabcd = 0). This is called the theorem of inheritance of symmetries.

5. A rank p Killing tensor is a totally symmetric tensor Kν1,...,νp = K(ν1,...,νp)

that satisfiesD(µKν1,...,νp) = 0. If Lµ ≡ ẋµ is tangent to an affinely parametrised
geodesic, show that the following quantity is constant along the geodesic
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Q = Lν1...νpKν1,...,νp .

3.9 Killing Vectors and Isometries of The Schwarzschild

Metric

We know that the Schwarzschild metric is time invariant and have no depen-
dence on the angle φ. Hence, it’s isometries include at least the transformations
in time, i.e., t → t + ξ, and rotations, i.e., φ → φ + ζ, for some constants ξ
and ζ. The corresponding Killing vectors, Kµ =

(
Kt,Kr,Kθ,Kφ

)
take up the

following form

Kµ = (1, 0, 0, 0) & Kµ = (0, 0, 0, 1) . (3.112)

3.9.1 Conserved Quantities in the Schwarzschild Metric

Let a test particle move along a world line xµ(s) with a 4-velocity given by
vµ(s) = dxµ

ds . It’s derivative is given as

d

ds
(Kµvµ) =

d

ds

(

Kµvµ × dxν

dxν

)

=
d

dxν
(Kµvµ)

dxν

ds
= ∂ν (K

µvµ)
dxν

ds
,

(3.113)

which upon computation yields

∂ν (K
µvµ)

dxν

ds
= KµvµDνvµ + vνvµDνKµ. (3.114)

Now, for a particle moving along a geodesic, vνDνvµ = 0 and if Kµ is the

killing vector, then D(µKν) = 0. Thus,
d(Kµvµ)

ds = 0, i.e., the corresponding
quantity is conserved.

(Kµvµ) = Const, (3.115)

for the motion along a geodesic. Now, considet the Schwarzschild spacetime
and the killing vector Kµ = (1, 0, 0, 0). The conserved quantity is given as
follows

(Kµvµ) = v0 = g00v
0 =

(

1− rs
r

) dt

ds
≡ E

m
, (3.116)

and similarly, for the killing vector Kµ = (0, 0, 0, 1), we obtain the following
conserved quantity
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r2sin2θ
dφ

ds
≡ L

m
. (3.117)

Let us choose the plane to be at x3 = 0, i.e., at θ = π/2. The the conserved
quantity becomes

r2
dφ

ds
≡ L

m
. (3.118)

Notice that the quantity r2 dφds is nothing but the area swept by the radius
vector of the orbiting test particle in a given time interval. Thus, the equation
above is nothing but Kepler’s second law!

Furthermore, the 4-velocity must obey (with θ = π/2)

gµνv
µvν =

ds2

ds2
=
(

1− rs
r

)( dt

ds

)2

−
(

1− rs
r

)−1(dr

ds

)2

− r2
(
dφ

ds

)2

= 1.

(3.119)

Using the two conservation laws, we find that the world line of a massive par-
ticle in the Schwarzschild spacetime obeys

(
dr

ds

)2

=

(
E

m

)2

−
(

1− rs
r

)(

1 +
L2

m2r2

)

(3.120)

Physical Meaning of E and L

Consider the Newtonian and non-relativistic limits, i.e., rs << r and dr/dt <<
1 respectively. Then dr/ds ≈ dr/dt, and

E2 −m2

2m
≈ m

2

(
dr

dt

)2

+
L2

2mr2
− mrs

2r
. (3.121)

If E2 −m2 = (E −m)(E +m) ≈ 2mE , where E = (E −m) << m is the non-
relativistic total energy, and L is the angular momentum, then the equation
defines the trajectory of a massive particle present in the Newtonian gravita-
tional field. Thus, the conservation of energy (E) follows from the invariance
under time translations and the conservation of angular momentum (L) follows
from the invariance under rotations.
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3.10 Orbits in the Schwarzschild Metric

3.10.1 Radial Plummet or Crash

With zero angular momentum, i.e., L = 0, the orbit equation takes up the form

(
dr

ds

)2

=

(
E

m

)2

−
(

1− rs
r

)

. (3.122)

Now, let’s assume that the particle starts its free fall at infinity with null ve-
locity, i.e., dr/ds→ 0 as r → ∞. Then,

(
dr

ds

)2

=

(
E

m

)2

− 1 = 0 =⇒ E = m, (3.123)

and the equation simplifies to

(
dr

ds

)2

=
rs
r
. (3.124)

Now, the propertime of the particle’s free fall from a radius r = R to the
horizon r = rs is2

s = −
∫ rs

R

√
r

rs
dr =

2

3
rs

((
R

rs

) 3
2

− 1

)

. (3.125)

Thus, it takes a finite propertime for a particle to cross the Schwarzschild black

hole horizon. It follows from the energy conservation that dt/ds =
(
1− rs

r

)−1

and thus, the ratio of dr/ds to dt/ds is given as

dr

dt
= −

√
rs
r

(

1− rs
r

)

. (3.126)

The time necessary for a particle to fall from a radius r = R(>> rs) to a
radius r = rs + ǫ in the vicinity of the horizon (ǫ << rs) is

t (R→ rs + ǫ) = T = −
∫ rs+ǫ

R

(
r

rs

)
r

r − rs
dr ≈ rs ln

R

ǫ
, (3.127)

and hence, as ǫ → 0, t → ∞, i.e., the particle cannot approach the horizon
within finite time as measured by an observer fixed over the black hole. This
can also be observed from another perspective. Consider the action functional

2 note that the negative sign of the integral is due to the fact that for the trajectory
of the fall, dr < 0 & ds > 0
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of the Schwarzschild metric3

S = −m
∫
√
(
1− rs

r

)
dt2

dt2

(
1− rs

r

)−1 dr2
dt2 dt

= −m
∫
√
(
1− rs

r

)
−
(
1− rs

r

)−1
ṙ2dt = −m

∫
Ldt.

(3.128)

Now, the Hamiltonian, H, given by H =
∑
pṙ − L = pr ṙ − L =

(
∂L
∂ṙ ṙ
)
− L,

takes up the following form

H =
m

L
(

1− rs
r

)

= E , (3.129)

which upon squaring on either side and solving for ṙ we obtain

ṙ =
(

1− rs
r

)
√

1− m2

E2

(

1− rs
r

)

. (3.130)

Hence, as the particle falls towards the horizon, it’s velocity goes to zero as it
approaches the Schwarzschild limit. The object’s velocity diminishes along the
trajectory instead of accelerating! It asymptotically gets nearer and nearer to
the horizon, but never gets there.

3.10.2 Circular Orbit

Consider a particle travelling in a circular orbit around the black hole. It’s or-
bit, with time looks like a helix and the projection of the helical trajectory on a

surface results in a circular orbit. Let
(
1− rs

r

)
= F(r) and

(
1− rs

r

)−1
= G(r)

and since we restrict our observation to a surface, dφ = 0. The action func-
tional reads

S = −m
∫ √

F(r)− G(r)ṙ2 − r2θ̇2dt = −m
∫

Ldt.(3.131)

Now, for a circular orbit, the energy (E) and the angular momentum (L) are
conserved. Thus, L = ∂L

∂θ̇
= pθ, and a straightforward computation yields

pθ = mΞ
(

r, ṙ, θ̇
)

, Ξ =
r2θ̇

L , (3.132)

and the momentum associated with the radial coordinate r reads

pr =
mGṙ
L . (3.133)

It is important to note here that Ξ is conserved since the angular momentum,

3 with c ≡ 1
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L is conserved and the function Ξ is called reduced angular momentum. But,
the momentum associated with the radial coordinate, i.e., pr is not conserved
since r is not conserved under any law. Now, we write the Hamiltonian as
follows

H =
(

pθ θ̇ + pr ṙ
)

− L

= mθ̇Ξ
L + mGṙ

L − L

= mF(r)
L = E,

(3.134)

and for circular orbits, ṙ = 0 thus,

E =
mF(r)

√

F(r)− r2θ̇2
, L =

mr2θ̇2
√

F(r)− r2θ̇2
. (3.135)

Let’s find an expression for θ̇ from the equation of angular momentum.

L = mr2θ̇2√
F(r)−r2θ̇2

= mΞ

θ̇2
(
r2 + Ξ2

)
= F(r)Ξ

2

r2

θ̇ = Ξ
r

√
F(r)
r2+Ξ2 = f(r, Ξ)

(3.136)

Substituting this into the expression for energy, we obtain

E = m

√

F(r) (r2 + Ξ2)

r2
= g(r, Ξ). (3.137)

3.10.3 Orbiting Photon

Consider an orbiting photon with fixed energy and angular momentum. Since
Ξ is very large, r2Ξ2 >> r4. The energy of this photon is deduced to be

E =
m

r2

√

F(r) (r2Ξ2) =
mrΞ

r2

√

F(r) =
L

r

√

F(r). (3.138)

Let A(r) =

√
F(r)

r = 1
r

√
1− rs

r . The orbit of the photon will be positioned
where the function A(r) is stationary, i.e., either maximum or minimum. Let
us study this in separate cases.
1. Case I:
At large distances, A(r) = 1

r and E = L
r .

2, Case II:
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At closer distances, A(r) = 0 and E = 0.

Photon Orbit

We find the maxima of the function A(r) to be

A
′

(r) = 3rs−2r
2r3

√
1− rs

r

= 0

r = 3
2rs.

(3.139)

This radius at which the photon orbits is called the photon sphere (see figure
3.1). Thus, it is implied that photon spheres can only exist in the space sur-
rounding an extremely compact object such as a neutron star or a black hole.
This unstable orbit is independent of the angular momentum. Any particle
(with mass) inside the photon sphere, moving in an angular direction, would
wind up inspiraling into the singularity.

No signal from the star’s surface can escape to infinity once the surface has
passed through r = rs. For the external observer, the surface never actually
reaches r = rs, but as r → rs the redshift of light leaving the surface increases
exponentially fast and the star effectively disappears from view within a time
≈ GM/c3. The late time appearance is dominated by photons escaping from
the unstable photon orbit at r = 1.5rs.

3.10.4 The Schwarzschild Potential

Using the two laws of the conserved quantities of the Schwarzschild metric, we
found that the world line of a massive particle in the Schwarzschild spacetime
obeyed a certain equation. Let us now rewrite the equations in terms of the
effective potential, V 2(r) as

(
dr

ds

)

=
1

m

√

E2 − V 2(r), V 2(r) = m2
(

1− rs
r

)(

1 +
L2

m2r2

)

. (3.140)

Let us define h = L/m. Hence, in terms of h the equation takes the following
form

(
dr

ds

)

=
1

m

√
√
√
√E2 −

[

m2

(

1− 2GM

r

)(

1 +
h2

r2

]2
)

, (3.141)

where rs = 2GM . Now, to understand the nature of the relativistic orbits,
let us determine the maxima and minima of this effective potential in terms
of dimensionless variables w ≡ GM/c2r and L̂ = L/Mm = Lc/GMm. The
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r<r
s r>r

s

r=r
s

singularity

event horizon

photon sphere

Fig. 3.1. Photon sphere and various orbits.

maxima of the function V 2(r) occurs at

wm ≡
1±

√

1− 12
L̂

6
, (3.142)

with the maximum potential being

V 2
m(L̂) = m2 (1− 2wm)

(

1 + L̂2w2
m

)

. (3.143)

Observe that for L̂ >
√
12, i.e., for L > 2

√
3GMm, the effective potential has

one maximum and one minimum. There is a unison of the two extrema for
L = 2

√
3GMm and the function becomes monotonic for L < 2

√
3GMm. The

maximum potential is reached when L = 4GMm. Several important aspects
of the motion can be deduced by plotting a graph of V (r)/m against rc2/GM4

for different values of L.

4 = r/M in natural units, i.e, when c ≡ G ≡ 1
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Fig. 3.2. The plot shows the effective potential for an object in the Schwarzschild
metric for varying r/M

Notice that for h = 0, the radial plummet is just as it is for the Newtonian
case because the potential is the same. For a given value of L and E the nature
of the orbit will be governed by the turning points inn r, determined by the
equation V 2(r) = E2. If L > 4GMm, the the value of Vmax is greater than m.
Also, Vmax → m as r → ∞ for all values of L. If the energy E of an object
is lower that m and L > 4GMm, then there will be two turning points. The
object will orbit the central body with a perihelion and an aphelion undergoing
precession (similar to elliptical orbits in Newtonian gravity).



3.11 Null Hypersurfaces 159

For m < E < Vmax(L), there will be only one turning point. The object
will approach the central mass from infinity, reach a radius of closest approach
and travel back to infinity (similar to hyperbolic orbits in the Newtonian grav-
ity).

For E = Vmax(L), the orbit will be circular at some fixed radius r̄ determined
by the condition V ′(r̄) = 0, V (r̄) = E. Solving these equations simultaneously,
we find that the the radii of circular orbits and their energies are given by

r̄

2GM
=

L2

4G2M2m2

(

1±
√

1− 12G2M2m2

L2

)

, E2 =
L2

GMr̄

(

1− 2GM

r̄

)2

.

(3.144)

The upper and lower signs refer to the stable and the unstable orbit re-
spectively. The stable orbit closest to the center has parameters r̄ = 6GM ,
L = 2

√
3GMm and E = m

√

8/9 ≈ 0.943m. When an object falls into the
black hole from the stable circular orbit closest to the center, it can release
a fraction 0.057 of it’s energy in radiation. An interesting case is that when
E > Vmax(L), the object falls to the center. This behaviour to Newtonian
gravity in which an object with non-zero angular momentum can never reach
r = 0.

3.11 Null Hypersurfaces

Let’s remind ourselves the definition of a normal of a hypersurface whose
equation is Σ ≡ r − const = 0, given as nµ = Σ,µ = (0, 1, 0, 0). From the
Schwarzschild metric and the definition of a normal of a hypersurface, in the
case of r = const surface, we have

nµnνg
µν = grr = 1− rs

r
. (3.145)

Thus, the surfaces r = const are spacelike if r < rs, null if r = rs, and timelike
if r > rs. The null hypersurface r = rs separates the regions of space where
r = const are timelike hypersurfaces from regions where r = const are spacelike
hypersurfaces; this implies that a particle crossing a null hypersurface can never
comeback. Hence, the null hypersurface r = rs is called a horizon. The region
with r > rs, where the r = const hypersurfaces are timelike; the r → ∞ limit,
where the metric becomes at, is in this region, so we can consider this region as
the exterior of the Schwarzschild black hole. The region with r < rs, where the
r = const hypersurfaces are spacelike; an object which falls inside the horizon
and enter in this region can only continue falling to decreasing values of r,
until it reaches the curvature singularity r = 0; this region is then considered
the interior of the black bole.
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3.11.1 Null Geodesic Generators

Now, consider a surface S given by equation S(xµ) = 0. It is well known that
the normal nµ is in the direction ∂µS to the surface. Consider another vector
tµ such that tµ is orthogonal to the normal, i.e., tµnµ = 0. Let the vector
tµ = dxµ/dλ for some curve xµ(λ) on that surface, then the orthogonality
condition implies that the vector tµ is tangent to the normal and that S does
not change along the curve, i.e., (dxµ/dλ)∂αS = 0. When the norm of ∂µS
is non-zero, we have normalize this vector so that its norm is ±1. For a null
hypersurface Σ, the normal to the hypersurface is also to it. This is satisfied
by the the normal itself when it is null, i.e., nµn

µ = 0. When the normal is null
we will henceforth use the symbol l instead. The normal l is tangent to the
null curves xµ(λ) in Σ: lµ = dxµ/dλ. In fact, the integral curves of l are null
geodesics on the surface S in the hypersurface σ. Let lµ = fgµν∂νS, where f
is an arbitrary function. We have

l · ∇lν = lµ∇µ (fg
νρ∂ρS)

= lµ (∇µf) g
νρ∂ρS + flµgνρ∇µ∂ρS

= (l · ∇f) f−1lν + flµgνρ∇µ∂ρS.

(3.146)

The second term reduces as follows

flµgνρ∇µ∂ρS = flµgνρ∇ρ∂µS

= flµgνρ∇µ

(
f−1lµ

)

= fgνρ∇µ

(
f−1lµ

)
l2
︸︷︷︸

=0

+lµgνρ∇ρlµ

= 1
2g
νρ∇ρ(l

2)

∝ lν .

(3.147)

In the last line, note that l2 = 0 on Σ does not necessarily imply ∇ρ(l
2) = 0,

because l2 can be non-zero outside of Σ and hence its derivative can be non-
zero. However, any non-zero contribution to ∇ρ(l

2) must be proportional to
the normal to Σ: ∇ρ(l

2) ∝ lρ. Together with (3.81) this implies that l·ν ∝ lν

and therefore the integral curves of lµ are geodesics. If the integral curves of
lµ are not affinely parametrised, then we can always find some function ζ(x)
such that l̄µ = ζ(x)lµ has affinely parametrised integral curves, i.e., l̄ ·∇l̄µ = 0.
These curves are called the null geodesic generators of the null hypersurface.

Exercise 12

1. Consider the following metric which is a solution to the Einstein equation
with Λ > 0



3.11 Null Hypersurfaces 161

ds2 = −f(r)2dt2 + f(r)−2dr2 + r2dω2
2 ,

a. show that f(r) =
(

1− r2

l2

)

, where l2 = 3
Λ .

b. Let τ denote the proper time of a particle. The action can be written as
follows

S =

∫

dτ
(

−f(r)2ṫ2 + f(r)−2ṙ2 + r2
(

θ̇2 + sin2θ φ̇2
))

,

where ẋµ = dxµ/dτ . Show that there are two conserved quantities, the angular
momentum L = 1

2
dL
dφ̇

= r2sin2φ̇ and the energy E = 1
2
dL
dṫ

= f(r)ṫ.

c. The equations of motion arising from the action should be supplemented
with some constraint that informs us whether we’re dealing with a massive
or massless particle. For a massive particle, the constraint ensures that the

trajectory is timelike, i.e, −f(r)2ṫ2 + f(r)−2ṙ2 + r2
(

θ̇2 + sin2θ φ̇2
)

= −1.

Restricting to geodesics that lie in the θ = π/2 plane, show that the effective

potential is given by Veff (r) =
(

1 + L2

r2

)

f(r)2.

2. A particle which is in a circular orbit around a black hole is perturbed
in such a way that it’s angular momentum is unchanged, but the energy is
slightly increased so that there is a small velocity component outwards. De-
scribe and sketch the resulting behavior, for initial radii 3M , 4M , 5M and 6M .

3. Consider the metric

ds2 = −dt2 +
(
1 + αr2

)
dr2 + r2dΩ2

2 ,

where α is a positive constant.
a. Consider the null geodesics on the equatorial plane (θ = π/2) and show that
they satisfy

(
dr

dφ

)2

= r2
(
1 + αr2

) (
βr2 − 1

)
,

where β is a constant.
b. Show that, by integrating this equation, the paths of light rays are ellipse.

4. Find the geodesic equations for a wormhole which is described by the metric
5.54.

5. The Friedmann-Lemaître-Robertson–Walker (FLRW) has the following met-
ric

ds2 = −dt2 + a(t)2
(

1

1− kr2
dr2 + r2dΩ2

2

)

, (3.148)
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where a(t) is a scaling parameter called the expansion factor and k ∈ {1, 0,−1}.
This metric describes a universe that is spatially homogeneous and isotropic
at each instant of time.
a. Show that the Ricci scalar takes the form, R = 6a−2

(
k + ȧ2 + aä

)
.

b. Show that the Kretschmann scalar is K = 4a−4
(
29 + 18ȧ2 + 3ȧ4 + 3a2ä2

)
.

c. Show that the Weyl tensor vanishes for this metric.
d. The vanishing of the Weyl tensor implies that there exists a coordinate
system in which this metric (for all k) is conformal to the Minkowski met-
ric. Show that the spatially flat FLRW metric with k = 0 can be expressed
as gµν = a(η)2ηµν , where η is the conformal time coordinate defined as
η =

∫
a(t)−1dt and ηµν is the Minkowski metric.

6. In the FLRW metric 3.148, consider the case with k = 0, when a fluid
system that is described by the stress energy tensor

Tµν =
(
ρ(t),−a(t)2p(t),−a(t)2p(t),−a(t)2p(t)

)
,

where ρ is mass density and p is pressure.
a. Find the Einstein tensor and obtain the following Friedmann equations for
such a system (with c ≡ 1)

(
ȧ

a

)2

=
8πG

3
ρ,

2ä

a
+

(
ȧ

a

)2

= −8πGp.

b. Show that these two Friedmann equations lead to the following

ä

a
= −4πG

3
(ρ+ 3p) .

This equation tells us that ä > 0, i.e., the universe will undergo accelerated
expansion, only when (ρ+ 3p) < 0. Note that for normal matter, (ρ+ 3p) > 0
and hence, ä < 0 which implies that the universe will have a decelerating ex-
pansion.
c. Apply the stress-energy conservation DµT

µν = 0 and show that it yields

ρ̇+ 3
ȧ

a
(ρ+ p) = 0.

d. Solve this equation which governs the evolution of ρ(t) in a Friedmann uni-
verse for a fluid with an equation of state p = wρ, where w is a constant, and
show that ρ(t) ∝ a(t)−3(w+1). Hint: Set H = ȧ/a and solve the equation, this
is called the Hubble parameter.
e. Consider the Einstein field equation with a cosmological constant. Derive
the Friedmann equations for such a case and write down an explicit expression
for the scaling factor for a relativistic fluid with w = 1/3.
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7. Consider the Kerr metric in Boyer-Lindquist coordinates which describes
the geometry around a rotating black hole,

ds2 = −
(
1− rsr

Σ

)
dt2 − 2rsarsin

2θ
Σ dtdφ+ Σ

∆dr
2 +Σdθ2

+
(

r2 + a2 + rsa
2rsin2θ
Σ

)

sin2θdφ2,

(3.149)

where Σ = r2+a2cos2θ, ∆ = r2− rsr+a2, and the Kerr parameter a = J/M ,
i.e., the ratio of the angular frequency to the mass of the black hole.
a. What happens to the metric when there is no angular frequency, i.e., a = 0.
b. Consider the grr component, this is singular when ∆ = 0. Show that this has
two solutions r± and also check if r+ → rs and r− → 0 as a→ 0. This implies
a presence of an event horizon at r+. The expression of r+ indicates that the
angular momenta of Kerr black holes are limited by the square of their mass.
Kerr black holes with the largest possible angular momentum J = M2 are
called extremal black holes. Matter, principally from an accretion disk around
the black holes, spirals into the black hole and thus adds its angular momen-
tum to it5.
c. Consider the gtt component, the condition gtt = 0 has two solutions ri andro,
find these. The outer solution ro defines the boundary of the ergoregion which
surrounds the event horizon.
d. Show that the normal vector to the surface r = r+ is null.
e. Rewrite 3.149 for θ = π/2 and find out the effective potential at the equa-
torial plane felt by a test particle moving in the spacetime.

5 This implies that many black holes would naturally tend towards becoming ex-
tremal.





4

Singularities and their Eliminations

4.1 Singularities and The Cosmic Censorship Hypothesis

It was previously discussed that there are two singularities present in the
Schwarzschild metric, the unphysical coordinate one at r = rs, and the physi-
cal one at r = 0. After falling through the event horizon, the particle continues
to move to smaller values of r, and will experience larger tidal distortions. At
the hypothetical point r = 0 however, the particle would experience an infinite
tidal force. This physical singularity is a harmless one, harmless since it does
not affect the black hole exterior as its hidden behind an event horizon. But,
what if a singularity has nowhere to hide? The singularity at r = 0 in the past
is called the white hole singularity. What’s a white hole? For now, let’s put it
this way: A white hole is an object which is the exact opposite of a black hole,
a black hole sucks while a white hole pukes. Before proceeding it is important
to note here that a black hole doesn’t suck matter, it ain’t a cosmic vacuum
cleaner! If our Sun were to be replaced by a black hole, the gravitational field
would almost remain the same and the Earth would continue to orbit around
the new incognito Sun, it is only beyond the Schwarzschild radius that objects
can’t escape out of the black hole via the event horizon. Hence, I have exer-
cised my poetic-licence when I attributed black holes to suck. For the sake of
symmetry, every black hole has a white hole counterpart such that the total
energy is conserved. A question may arise now whether all the particles that
go into a black hole come out through the white hole which leads to a deeper
question revolving around whether the big bang really did happen at a point.
The latter question would be addressed later. Well, according to the idea pre-
sented above, they might but not in one piece.

When, Mr. Absolute Zero falls into a black hole, he would get spaghettified
(since the gravity acting at his feet is greater that the gravity at his head),
he would be ripped into pieces and the pieces would get ripped into smaller
ones, until Mr. Absolute Zero is just an accumulation of the most basic par-
ticles that form matter. These particles would then have to travel through a
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throat-like bridge (known as the Einstein-Rosen bridge) to the other side and
then be spit out by the white hole. What if Mr. Absolute Zero wants to get
to the other side in one piece? He then has to travel faster than the speed of
light (which is clearly impossible with today’s technology) & if he does then
he would experience the mysterious new universe.

A white hole singularity is known as a naked singularity. The cosmic censor-
ship hypothesis proposed by Roger Penrose states that these naked singularities
are illegal. It is basically a mathematical conjecture, i.e., it is as yet neither
proven nor refuted. This conjecture states that singularities are never naked,
i.e., they can never exist outside of black holes. Einstein’s field equations can
yield surplus unphysical solutions like the case of having naked singularities
(not covered by event horizons). Naked singularities are points where Einstein’s
classical theory of gravity breaks down and quantum gravity takes over. In
2006, there emerged a new conjecture which states that gravity is always the
weakest force in any universe, this was the Weak Gravity Conjecture. A sim-
ple way to check this is to calculate the and compare the coulombic and the
gravitational force between two electrons separated by a unit distance. The
gravitational force happens to be of the order of 10−71 N , while the coulom-
bic force is of the order of 10−28 N . Now think of this- What if the quantum
particles that exist in the universe gravitationally collapse into a black hole
due to a high energy electric field? Such a black hole formed would have a
naked singularity and thus, we can establish that there does exist a connection
between the two conjectures.

A physicist would believe that in real situations black holes are results of
collapse processes, he would expect that during these processes any quantity
which is physically measurable remains regular and that the formation of a
black hole by the collapse of matter is not a time-symmetric process which
leads to a black hole without the associated white hole. In fact, physicists
John Preskill and Kip Thorne debated Hawking that observable naked singu-
larities could exist and this gave rise to a bet which was made in 1991. However,
after supercomputer simulations indicated that naked singularities could exist
Hawking conceded the bet on the 5th of February, 1997. Hawking presented his
colleagues with ’adequate raiment’s to shield their nakedness from the vulgar
view’. The goods he presented consisted of two T-shirts, which was apparently
inscribed with “an appropriate message” from Hawking!

Here’s an interesting question to ask: When does the singularity of a black
hole form? The answer is simple but deep. When a star collapses to form a
black hole, the horizon is first formed before the singularity, since if the events
occurred in reverse, we would have a naked singularity and these were de-
clared outlaws by judge Penrose, right? Now the time inside the event horizon
is frozen with respect to Mr. Zero Entropy who is an outside observer, thus Mr.
Zero Entropy outside would never observe the singularity, but in the reference
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frame of the collapsing star, the singularity forms in approximately millisec-
onds after the horizon’s formation. Hence, with respect to Mr. Zero Entropy,
the singularity never formed and he would assume the black hole formed to be
singularity-less!

Another way to define a singularity is by stating that it (singularity) is a
condition in which geodesics are incomplete. For example, if Mr. Absolute
Zero is dropped into a black hole, his world-line terminates at the singularity.
He is not just destroyed due to being spaghettified, but also possesses no fu-
ture world-lines. It is important to note here that the black hole singularity
is a type of curvature singularity, i.e., as Mr. Absolute Zero approaches the
singularity, the curvature of spacetime diverges to infinity as measured by a
curvature invariant such as the Ricci scalar. There is another type of singular-
ity called the conical singularity. This one like the tip-of-the-cone singularity,
once geodesics hit the tip there is arbitrariness in the direction it would pro-
ceed in1. Hence, geodesics are incomplete. The singularities involving geodesic
incompleteness are not coordinate singularities which were discussed above.
Now, let’s tackle the question regarding the big bang-did the big bang occur
at a point? First off, the singularities that we discuss in general relativity are
not points in spacetime; it’s like the hole in the topology of a manifold. A
simple answer to this question is no, the big bang did not happen at a point,
instead it happened everywhere in the universe at the same time. Consequences
of the above answer includes the fact that the universe has no centre, the big
bang did not happen at a central point in the universe that it is expanding
from. This can be supported with a simple example- imagine the universe was
a balloon on the surface of which are galaxies, if Mr. Absolute Zero was on
one of the galaxies he would observe the other galaxies drifting away from him
as the balloon (i.e. universe) expands. From this observation, Mr. Absolute
Zero would conclude that he is on the centre of the universe, but on another
universe, his cousin Mr.Zero Entropy would make a similar observation and
this would lead him to believe that he and not his cousin is on the centre of
the universe. Every person in every galaxy on the balloon would think that
they are the centre of the universe (literally!). This is the reason why there is
no centre for the universe’s expansion. Another consequence of the answer is
that the universe isn’t expanding into anything, there is no space outside into
which it can expand.

4.2 Birkhoff’s Theorem

4.2.1 An Introduction to Birkhoff’s Theorem

From the Schwarzschild metric, we know that at large distances from our
spherically symmetric gravitating object, i.e., as r → ∞, the metric translates

1 for examples see the section on embeddings
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to flat spacetime. Such metrics abiding by the above rule are referred to as
asymptomatically flat. Thus, an asymptomatically flat, spherically symmetric
metric in vacuum (Λ = 0, Tµν = 0) is static (i.e., time independent and di-
agonal). This is Birkhoff’s theorem. When we say static, we mean that the
coefficients of the Schwarzschild metric are independent of t; such a metric is
said to be stationary. Also, the metric does not have any non-diagonal com-
ponents, such as dtdΦ, dθdr, etc. A stationary metric having only diagonal
components is said to be static. Using this new-found knowledge of spherical
symmetry in the previous chapter, Birkhoff’s theorem can be restated as fol-
lows

Theorem 4.1. A smooth spherically symmetric metric solution of the vacuum
equations of Einstein field equations is necessarily static.

Observe the elegance of the theorem, every word of the theorem now has an
embedded mathematical note, thus making the theorem a physical symphony!
Such is the power of math. Let’s understand the power of this theorem, to do
that lets create a black hole!

4.2.2 Shell Theorem

Consider a spherically symmetric shell of incoming radiation, incoming with
the speed of light and which carries energy and momentum. Newtonian theory
suggests that on the interior of this shell, there is no gravitational field, while
on the outside one would see the gravitational field as it would be if all the
mass was concentrated at a point. This is the famous Shell theorem of Newton
and this holds true even if the shell is moving. Moreover, the gravitational field
inside such a shell varies linearly with distance from its centre. To check this,
consider the following experiment: let Mr. Absolute Zero to be placed inside
the shell at a distance r from the centre, now since there is no net gravitational
force exerted by the shell on any particle inside we can ignore all the shells of
greater radii, in accordance to the shell theorem. Thus, the remaining mass m
is proportional to r3 and from Gauss law (

∫
gdS = −4πGm), we get the grav-

itational field to be proportional to m
r2 and using the proportionality of m, we

conclude that the gravitational field is proportional to r3

r2 = r (hence the linear
relation). Now, let’s analyse this shell the GR way. Birkhoff’s theorem states
that a spherically symmetric solution is static, and a shell, more precisely a
vacuum shell corresponds to the radial branch of the Schwarzschild solution in
some radial interval r ∈ [r1, r2]. Here, since there is no mass M , at the centre
of the shell (corresponding to the region r ∈ [0, r2]), the Schwarzschild radius
is zero (rs =

2GM
rc2 = 0). Hence, the metric reduces to the following form

ds2shell = c2dt2 − 1

c2
(dr2 − r2dΩ2). (4.1)
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This is nothing but the flat Minkowski metric in spherical polar coordinates.
This implies that the gravitational field must vanish inside this spherically
symmetric shell. This is in perfect unison with what the shell theorem of New-
tonian theory suggests. An interesting consequence of the Birkhoff theorem is
that no radial changes in a spherical star (expansion, pulsation, contraction,
etc.) can affect its external gravitational field (reason for this statement is
provided in the experiment performed in the upcoming paragraph): all spher-
ically symmetric vacuum gravitational fields are indistinguishable for r > rs.
This implies that a spherically pulsating star cannot emit gravitational waves,
nor can it gravitationally radiate away its mass. This can be viewed in another
way; any spherically symmetric perturbation and the subsequent collapse of an
equilibrium configuration cannot affect the external gravitational field as long
as exact spherical symmetry is maintained. Analogous to how Maxwell’s laws
prohibit monopole electromagnetic waves, Einstein’s laws prohibit monopole
gravitational waves! There is absolutely no way for any gravitational influence
of the radial collapse to propagate outward.

4.2.3 Gedankenerfahrung

What can be the explanation for why spherical symmetry collapse would
not lead to gravitational waves? Let us understand this intuitively via a
Gedankenerfahrung (thought experiment). Consider the collapse of a static,
solid and non-rotating star instead of that of a vacuumed shell. The star is
modelled to be an ideal spherically symmetric ball filled with matter sur-
rounded by vacuum. It is important to note the assumption that spherical
symmetry of the ball is never to be violated with time. If the symmetry is
violated by perturbations, they will grow in time due to tidal forces. Also, any
violation of the spherical symmetry of the star would lead to creation of time
dependent gravitational fields in the vacuum assumed, i.e., to a creation of
gravitational waves. Initially the star wouldn’t have been static due to some
thermonuclear processes going on inside it, which was the reason for the inter-
nal pressure of the star. But, say at a time t = 0 the entire fuel was used up
and the star turns out to be momentarily static. We are to further assume that
there is a homogeneous distribution of pressure-less material (called dust by
physicists) inside the ball. Such a massive star would create a spherically sym-
metric gravitational field that is asymptotically flat. Hence, from Birkhoff’s
theorem, we conclude that the metric outside the star is the Schwarzschild
metric. Now, we are to do something amazing, electrically charge the ball such
that the charge is homogeneously distributed over its volume (i.e., uniform vol-
ume charge density). Alright, since we have laid the foundations, let’s answer
the question. Imagine the ball starts to contract rapidly, but while doing so
the spherical symmetry and homogeneity of it is intact. The vital observation
during such a process is to see that independent of the radius of the ball, the
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coulomb field outside the ball remains unchanged. Let’s prove this before pro-
ceeding the experiment any further. From Gauss theorem, we have

∮

A

EdS =
1

ǫ0

∮

V

ρdV , E(r) =

{
ρ

3ǫ0
r = 1

4πǫ0

Q
R3 r, R > r

ρ
′

3ǫ0
r = 1

4πǫ0

Q
r2 , R < r

(4.2)

Note that when the ball shrinks from radius R→ r′, the coulomb field on the
interior would change, but not the exterior since the electric field for R < r is
independent of the radius of the ball, R and hence, independent of any evolu-
tion of R with time. Thus, the electric field is time independent and becomes
an electrostatic field. In this case we would observe that the magnetic field out-
side the ball is vanishing (∇×E = −∂B

∂t = 0) and such a motion of charge does
not create an electromagnetic radiation. Resuming the experiment, we observe
that all momenta are zero with respect to the centre, but to have radiation
we need a time varying dipole moment. Similarly, for gravitational radiation
we need a time varying quadruple moment which we don’t observe in our ex-
periment. Thus, there is no creation of gravitational waves (which transport
energy as gravitational radiation) due to spherical symmetry collapse.

For a very elegant proof of Birkhoff’s theorem, consider the time translation:
t→ t+ δt, where δt is a small fraction of time and is a constant. Applying this
time translation to the Schwarzschild solution we find that we obtain back the
original line element. Thus, as was discussed in the previous chapter, the metric
is invariant under time translations (since gtt and grr do not depend on time),
and this implies that the spherically symmetric solution of Einstein’s vacuum
field equation is necessarily static, which is what the Birkhoff theorem states.
Considering the field of a pulsating star, what this theorem implies is that
since spherically symmetry is maintained constantly and although the mass is
pulsating (i.e., mass remains at m but its radius keeps varying), the exterior
metric remains static (i.e., the star has the same external field of a star, of
the same mass, at rest). This also implies that spherically symmetric bodies
cannot produce gravitational waves. It turns out that it takes a spherically
asymmetric situation for the production of gravitational waves.

4.2.4 Birkhoff’s Theorem: A Mathematical Proof

Now we move on to the actual mathematical proof of Birkhoff’s theorem. All
that talk about spherical symmetry implies that spacetime can be foliated by
2-spheres, each with a line element

ds2 = r2dθ2 + sin2θdΦ2 (4.3)

Let’s set r to be our third coordinate and refer to the rest of the coordinates
as t. Spherical symmetry of the geometry further implies that we can choose
the r and t directions to be orthogonal to the spheres, then the complete form
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the line element is

ds2 = −αdt2 + βdr2 + 2γdtdr + r2dθ2 + sin2θdΦ2. (4.4)

where α, β, and γ are functions of r and t only. For a constant θ and Φ , we
can express the metric in the (t, r)-plane as follows

ds2 = −αdt2 + βdr2 + 2γdtdr = −
(

αdt− γ

α
dr
)2

+

(

β2 − γ2

α2

)

. (4.5)

Now, we can use the uniqueness property of differential equations- assuming
that the differential equation dt

dr = γ
α2 has a solution t = ζ(r), then

d(t− ζ(r)) = dt− γ

α2
dr =

αdt− γ
αdr

α
. (4.6)

And thus, we can set t
′

= t − ζ(r) and ρ = α. Thus, any differential in two
dimensions is a multiple of an exact differential, and we have

αdt− γ

α
dr = ρdt

′

. (4.7)

We can now write the line element in terms of the newly defined quantities, ρ
and t

′

as

ds2 = −ρ2dt′2 + χ2dr2, (4.8)

where χ2 = β2 − γ2

α2 . Note that χ2 is positive as the metric signature is in-

variant. This also implies that ρ and χ are now functions of t
′

and r. We
henceforth drop the primes; this argument shows that we could have simply
assumed that γ = 0 (thus, ρ = α and χ = β). The step of the proof is
to compute the Einstein tensor for the original line element (with γ = 0),
ds2 = −αdt2 + βdr2 + r2dθ2 + sin2θdΦ2

Gtt = − 1
r2β2

(

β2 − 1 + 2r
β
∂β
∂r

)

Gtr = − 2
α2βr

∂β
∂t

Grr = − 1
r2β2

(
β2 − 1 + 2r

α
∂α
∂r

)

Gθθ = GΦΦ = 1
r2β2

(

− r
β
∂β
∂r + r

α
∂α
∂r + r2

α2
∂2α
∂r2 − r2

β
∂2β
∂t2 − r2

αβ
∂β
∂r

∂α
∂r + r2

αβ
∂β
∂t

∂α
∂t

)

.

(4.9)

Setting Gtr = 0, we observe that β must be a function of r alone. Similarly,
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setting Gtt −Grr = 0, we obtain the following

1

β

∂β

∂r
= − 1

α

∂α

∂r
. (4.10)

This implies that β = Λ
α , where Λ(= f(t)) acts as an integration constant. By

setting dt
′

= dt
Λ , we can absorb this integration constant into the definition of

t. We can therefore safely assume that Λ = 1, so that

β =
1

α
, (4.11)

and the line element take the form

ds2 = −αdt2 + 1

α2
dr2 + r2dθ2 + sin2θdΦ2, (4.12)

where α is a function of r alone. Setting Gtt = 0 and using 4.10 and 4.11 we
get

1

α

∂α

∂r
=

1

β

∂β

∂r
=
β2 − 1

2r
=

1− α2

2rα2
. (4.13)

Upon separation we yield a differential equation in α and r, and hence solve
for it as

∫
αdα
1−α2 =

∫
dr
2r

−ln(1− α2) = ln(cr)

α2 = 1− 1
cr .

(4.14)

where c is an integration constant. The final step of the proof is to insert
Gtt = 0 into Gθθ = GΦΦ and using 4.10 along with the final relationship

∂

∂r

(
1

α

∂α

∂r

)

=
1

α

∂2α

∂r2
− 1

α

(
∂α

∂r

)2

. (4.15)

which shows that these components vanish identically, thus completing the
proof.

4.3 Israel’s Theorem

Now to Israel’s theorem which is just the converse of Birkhoff’s theorem, i.e., it
states that given an asymptomatically Minkowski spacetime, the Schwarzschild
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solution is the only valid static spacetime solution for Einstein’s field equa-
tions. It is important to note that not every spherically symmetric spacetime
will have a metric like the Schwarzschild one, but it can be made to look like
the latter by suitable coordinate transformations. The Schwarzschild geometry
is the unique static vacuum gravitational field in general relativity, this can
be said to be a sort of uniqueness theorem. It is very easy to create asymp-
tomatically flat spacetimes, for example, if a doughnut (a very heavy one) is
placed in spacetime, it would create a very complicated stationary spacetime
metric which is asymptotically flat. The black hole uniqueness theorem proves
that we cannot create such a metric when we have only vacuum, it has to be
either the Minkowski metric or the Schwarzschild one. Israel’s theorem was the
start of black hole uniqueness theorems. This theorem can also be framed in
another way- If the black hole is static, then it must be spherically symmetric
whose geometry can only be described by the Schwarzschild solution. What
this would imply is that in the absence of angular momentum, the gravita-
tional collapse of a star (whose mass is above a certain threshold) must result
in a Schwarzschild black hole. This statement raises more questions than it
answers. This statement would also imply that the star would collapse into
a Schwarzschild black hole irrespective of its initial shape. What if the star,
prior to its collapse, had a non-spherical shape? Richard Price, proposed in
1972 that any non-spherical protrusion must be radiated completely away as
gravitational waves by an object collapsing to a black hole. This is known as
Price’s theorem . These protrusions are higher order multipole moments and
are either radiated away, either out to infinity as gravitational waves or to the
black hole. After all such radiations fade away, the black hole settles down in
a spherical shape. An analogue to elucidate this theorem would be strumming
a chord on a guitar. Say we strum the chord of C# (C sharp), its sound is
heard as long as the strings vibrate. The vibrations create sound waves, which
are Fourier transformed by our ears to be heard and the sound persists until
the vibrations dampen off. Similar to that of a string, the horizon of a black
hole vibrates, sending off gravitational waves. These gravitational waves carry
away the energy of the horizon’s deformation, and as the vibrations dampen,
the horizon settles to a spherical shape. In this analogy, the role of our ears cur-
rently being played by the gravitational wave detectors such as LIGO, VIRGO,
etc. These detectors act as our cosmic ears, performing multiple Fourier trans-
forms that enables us to hear and differentiate the many violent astrophysical
events.
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4.4 The Structure of Isometry Groups of Asymptotically

Flat Spacetimes

2 A prerequisite for studying stationary spacetimes is the understanding of the
structure of the isometry groups3 which can arise, together with their actions.
For the theorem that follows we do not assume anything about the nature of
the Killing vectors or of the matter present; it is therefore convenient to use
a notion of asymptotic flatness which uses at the outset 4-dimensional coordi-
nates. A metric on Ω will be said to be asymptotically flat if there exist ζ > 0
and k ≥ 0 such that

|gµν − ηµν |+ r |∂αgµν |+ ...+ rk |∂α1
...∂αkgµν | ≤ Cr−ζ , (4.16)

for some constant C (ηµν here is the Minkowski metric). Ω will be called a
boost-type domain if

Ω = {(t,x) ∈ R×R3 : |x| ≥ R, |t| ≤ Ξr + C}, (4.17)

for some constants Ξ > 0 and C ∈ R. Let φt denote the flow of a Killing vector
field X. (M, gµν) will be said to be stationary-rotating and if φt satisfies4

φ2π (x
µ) = xµ +Aµ +O

(
r−δ
)
, δ > 0 (4.18)

in the asymptotically flat end, where Aµ is a timelike vector of Minkowski
spacetime (in particular Aµ 6= 0). We can think of ∂/∂φ + a∂/∂t, a 6= 0 as a
model for the behavior involved.

4.4.1 Asymptotically Flat Stationary Metrics

A spacetime (M, g) will be said to possess an asymptotically flat end if M con-
tains a spacelike hypersurface Mext diffeomorphic to R

n B(R), where B(R)
is a coordinate ball of radius R, with the following properties: there exists a
constant ζ > 0 such that, in local coordinates on Mext obtained from R

n B(R),
the metric g induced by g on Mext, and the extrinsic curvature tensor K of
Mext, satisfy the fall-off conditions, for some k > 1,

gµν − δµν = Ok

(
r−ζ
)
, Kµν = Ok−1

(
r−1−ζ

)
, (4.19)

2 Necessary for the mathematically inclined, optional for the physics mind, and
avoidable if you haven’t done chapter 1

3 see chapter 1
4 also,if the matrix of partial derivatives of Xµ asymptotically approaches a rotation

matrix in Sext



4.4 The Structure of Isometry Groups of Asymptotically Flat Spacetimes 175

where we write F = Ok

(
r−ζ
)

if F satisfies

∂k1 ...∂kpF = O
(
rζ−p

)
, 0 ≤ p ≤ k. (4.20)

For simplicity it is assumed that the spacetime is vacuum. Along any spacelike
hypersurface S, a Killing vector fieldX of (M, g) can be decomposed as follows

X = nN + Y, (4.21)

where Y is tangent to S, and n is the unit future-directed normal to Mext.
The fields N and Y are called Killing initial data. The vacuum field equations,
together with the Killing equations imply the following set of equations on S

DµKν +DνYµ = 2NKµν ,

Rµν(g) +Kk
kKµν − 2KµkK

k
ν −N−1 (LYKµν +DµDνN) = 0,

(4.22)

where Rµν(g) is the Ricci tensor of g. The above equations are called Killing ini-
tial data equations. Under the boundary conditions, an analysis of these equa-
tions provides detailed information about the asymptotic behavior of (N,Y ).
In particular we can prove that if the asymptotic region Sext is part of initial
data set (S, g,K), we can then choose adapted coordinates so that the metric
can be, locally, written as follows

g = −V2




dt+ φµdx

µ

︸ ︷︷ ︸

=φ






2

+ gµνdx
µdxν

︸ ︷︷ ︸

=g

, (4.23)

with

∂tV = ∂tφ = ∂tg = 0

gµν − δµν = Ok

(
r−ζ
)
, φµ = Ok

(
r−ζ
)
, V − 1 = Ok

(
r−ζ
)
.

(4.24)

Methods known in principle show that, in this gauge, all metric functions have
a full asymptotic expansion in terms of powers of ln|r| and inverse powers of
r. In the new coordinates we can take

ζ = n− 2. (4.25)

By inspection of the equations we can further infer that the leading order
corrections in the metric can be written in the Schwarzschild form5.

5 this is dealt in greater depth in the next chapter
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4.5 Spherical Collapse and Collapse with Small

Non-Spherical Perturbations

So how does a realistic collapse look like? The entire process can be stated in
one line: In a star, instability causes an implosion which leads to the creation
of a horizon and a singularity.

When the star has exhausted all of its nuclear fuel, it starts contracting in-
wards at a slow pace. Eventually it begins to squeeze its electrons or photons,
which sustain the pressure, onto its atomic nuclei; this “softens” the equation of
state leading to an instability being induced. This sets up a chain reaction and
in less than a second, the instability develops into a full-scale implosion. The
star’s surface falls through its gravitational radius, for an idealized spherical
case, thus forming the horizon. From the star’s interior frame, within a short
proper time interval after passing through the horizon, a singularity is reached.
The singularity is a point of zero radius which possesses infinite density and
infinite tidal gravitational forces.

What would be the result if small non-spherical perturbations are introduced
during the star’s collapse? Richard H. Price performed calculations which sug-
gested that during the collapse, all things that can be radiated away are com-
pletely radiated in part to “infinity” and in part “down the black hole”, such
that the final field is characterised by its conserved quantities. Let’s study
these non-spherical perturbations. Such a collapse would lead to perturbations
in the star’s density, angular momentum, and electromagnetic field. Let’s anal-
yse these perturbations individually.

4.5.1 Perturbations of density

When the star begins to collapse, it possesses a small non-spherical protrusion
in its density distribution. This protrusion grows larger as collapse proceeds,
and this growing protrusion radiates gravitational waves. This protrusion on
the star remains on it as the star plunges via the horizon during its collapse,
thus creating a deformed horizon. It is key to note that the radiated gravitation
waves have two flavours, waves of short wavelength and waves of long wave-
length. The former (λ≪M), emitted from near the horizon (r−2M ≤M), are
partly propagated to infinity and are partly backscattered by the background
Schwarzschild curvature of spacetime. These backscattered waves propagate
their way into the horizon formed during collapse of the star. The latter flavour,
i.e., waves of long wavelength (λ ≫ M) emitted from near horizon are fully
backscattered by the curvature of spacetime. These waves, however, don’t reach
far (no further than r ≈ 3M) and eventually end up propagating down the
black hole. If Mr. Absolute Zero were examining the protrusion throughout the
collapse of the star, he can never learn of the existence of the final protrusion,
he can do so only by examining the deformation, i.e. the quadruple moment, in
the final gravitational field. This final deformation in field propagates with the
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speed of light, in the form of gravitational waves. Thus, the final external field
is perfectly spherical, protrusion-free and possesses a Schwarzschild geometry!

4.5.2 Perturbations in angular momentum

During the collapse process of a star, it possesses a small spin, or nonzero
intrinsic momentum S. S is conserved throughout the collapse6. What kind of
a geometric object is S? It is defined by measurements made at far distances
from the source, where, with receding distance, spacetime is becoming asymp-
totically flat. Thus, asymptotic flatness is key to definability of S and also M
(the mass of the star, because more the mass more the curvature and longer
distance in spacetime for the metric to become asymptotically flat), and at
far away distances from the source (, i.e. at weak curvature) the intrinsic an-
gular momentum (and also the 4-momentum) will reveal themselves by their
imprints on the spacetime geometry. This imprinted S cannot propagate out-
ward from near horizon due to its conservation law. Hence, the final external
field is that of an undeformed, slowly rotating black hole

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1
dr2 + r2dΩ2 −

(
4Ssinθ

r2

)

rsinθdΦdt.

(4.26)

The first part of the metric describes the usual Schwarzschild geometry we all
are aware of, while the latter part describes the rotational imprint (polar axis
oriented along S).

4.5.3 Perturbations in electromagnetic field

Since a star has an internal charge distribution, it possesses an electric field,
it also possesses a magnetic field which are generated by currents in its inte-
rior, and its intensely hot matter emits electromagnetic radiation. The electric
monopole moment of the star is conserved (other quantities vary), i.e., the
number of Maxwell tubes is equal to the product of the solid angle (4π) and
charge e. The total flux never changes and remains constant prior to the col-
lapse, during the collapse, and into the black hole stage. The final external
electromagnetic field is a spherically symmetric Coulomb field; and the final
spacetime geometry is that of Reissner and Nordstrøm, given by

ds2 = −
(

1− 2M

r
+
Q2

r2

)

dt2 +

(

1− 2M

r
+
Q2

r2

)−1
dr2 + r2dΩ2. (4.27)

A collapsing spherical star with an arbitrary non-spherical scalar charge dis-
tribution, generates an external scalar field Ψ , and its vacuum field equation

6 A small, negligible change due to angular momentum is carried off by waves; that
change is proportional to the square of the amplitude of the perturbations in star,
i.e., to S2
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is ∂α∂αΨ = Ψα;α = 0. An assumption that the spin field S is small and has a
minuscule perturbation on the star’s external, Schwarzschild geometry. Let’s
attribute an integer s to the fields (such that s = 0 is a scalar field; s = 1 is
a vector field; etc.), and an integer l to the different poles (such that l = 0
for monopole; l = 1 for dipole; l = 2 for quadruple; etc.). During the collapse
process, all multipole fields with l < s are conserved. The scalar field Ψ (s = 0)
conserves nothing. From the above passages we know that the star has an elec-
tromagnetic field (vector field, thus, s = 1) that conserves only monopole parts,
the gravitational field (tensor field, thus, s = 2) that conserves its monopole
part (with imprint equal to mass), and its dipole parts (with imprints on the
spacetime metric measuring angular momentum). Radiation is possible only
for l ≥ s, i.e. scalar waves can have any multipolarity, electromagnetic waves
must be dipole and higher, and gravitational waves must be quadruple and
higher. Price’s theorem states that, for near spherical star collapses (to form
black holes), all things that can be radiated, i.e. all the multipoles l ≥ s, get
radiated away completely in part to infinity and in part down the black hole.
Thus, the final field is characterised completely by its conserved quantities, i.e.
multipole moments with l < s.

4.6 Black holes get bald too

According to Price’s theorem, all protrusions are radiated away completely.
This provides us an explanation of the mechanism which makes black holes
hairless. This act of black holes becoming bald is called as the no hair theo-
rem. Let’s try and understand this theorem via a thought experiment.

The horizon of the black hole is a region of infinite redshift. Position two
observers, Mr. Absolute Zero and his brother Mr. Zero Entropy at coordinates
rAZ and rZE . We observe that Mr. Absolute Zero emits two signals towards
his brother. There would be a coordinate time separation equal to δt between
the emissions. Now, we assume that the metric is time independent so that
the time separation between the arrival of the signals to Mr. Zero Entropy is
also δt. We already know the relation between the proper time and time as:
dτ =

√
g00dt. For δ changes, the proper time separations of the signals would

have the following relation

δt =
δτAZ

√

g00(rAZ
=

δτZE
√

g00(rZE
. (4.28)

Since frequency is inversely related to clock rate, we can approximately say
the following is true

ωZE = ωAZ

√

g00(rAZ)
√

g00(rZE)
. (4.29)

From the above equation we observe that when the position of Mr. Absolute
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Zero is slowly changed to the Schwarzschild radius, i.e., as rAZ → rS , the fre-
quency of the signal received by his brother tends to zero, i.e., ωZE → 0. This
implies that the signal Mr. Zero Entropy receives is infinitely redshifted. This
behaviour is independent of the where Mr. Zero Entropy is positioned (rZE).
Hence, if Mr. Absolute Zero emits black body radiation behind the horizon of
the black hole, his brother would only see a stationary field due to the infi-
nite redshift. Now apply the same analogy to that of a collapsing star. When
the source of all the gravitational radiations (the protrusions) approaches the
Schwarzschild radius, the radiation would experience a greater magnitude of
redshift. Hence, observers, such as ourselves, would observe stationary fields
independent of the initial of the frequency of the initial radiations. During
the collapse, all that can be radiated away is radiated away so that distant
observes detect only stationary fields. But wait! I had previously stated that
the protrusions give rise to multipole moments that are emitted away as grav-
itational waves, but what moments are capable of providing stationary fields
(since they are what we detect)? To have gravitational waves, we need a time
rate of change of multipole momenta (usually quadruple moment). In order
to have electromagnetic radiations, there needs to exist a time rate of change
of dipole moment. Similarly, only the monopole electric moment (charge), the
monopole gravitational moment (mass) and dipole gravitational moment (an-
gular momenta) are able enough to provide exclusive stationary fields, hence
we can conclude that they are the ones that must remain after the collapse
process has ended. This implication of the above lines is that a black hole, in
the presence of some electromagnetic fields, can possess only three parameters-
coulombic charge, mass, and angular momentum. The black hole cannot carry
any “scalar hairs”. This is the no hair theorem. If you still crave for a simplified
explanation, we can say that the no hair theorem explains as to why a black
hole wants to be spherical with no strings attached!

As stated earlier, in accordance to Price’s theorem, the influences of the black
hole’s mass, angular momentum (spin), and charge are the only things that
remain after the end of a gravitational collapse. All of the other higher mo-
menta would be carried away as radiations. What this means is that we cannot
perform any experiment in which measurements of the final three parameters
of the hole would reveal any features of the star it imploded to form it, except
for the star’s mass, charge, and spin. The black hole makes the intricate details
of its humble origins anonymous. However, the firm and ultimate proof that
a black hole has no hair (except for the scalar hairs) was not given by Price.
Prince’s theorem is restricted to star implosions that had very small deviations
from spherical symmetry and whose spin was very slow. The proof determining
the fate of a rapidly spinning, highly deformed, imploding star was done by
Brandon Carter, Stephen Hawking and Werner Israel, but that’s a topic for
another day.
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4.7 That mass though...

Electromagnetic radiation cannot escape a black hole since it travels at the
speed of light. Similarly, gravitational radiation cannot escape a black hole
either, because it too travels at the speed of light. A black hole, however can
have an electric charge, which means there is an electric field around it (as
described in the paragraphs above), there is nothing to be alarmed at here
due to the fact that a static electric field is not the same as electromagnetic
radiation. Similarly, black holes have mass, so they have a gravitational field
around them, there is nothing to be shocked at here too because a gravita-
tional field is different from gravitational radiation. The fundamental differ-
ence between a standard gravitational field and a gravitational wave is quite
subtle-the latter consists of propagating ripples which carry energy in the form
of gravitational radiation. With this said, let’s ask ourselves an interesting
question-gravitational attraction that we would feel next to a black hole car-
ries information about the amount of mass within the black hole. We know
that no information can escape from a black hole, but then how do we reason
as to why the information of the black hole’s mass escapes? The answer is that
the information doesn’t have to escape from inside of the horizon, because the
information about its mass is not inside but on the horizon. This statement
raises more questions than it answers one and the main question is- then where
is the mass of the black hole located (or stored)? Yes, the information is on
the horizon, but where’s the mass? Before you shout out, “at the singularity!”,
allow me to remind you that singularity is not a point but rather a hole in the
topology of a manifold7.

4.7.1 Mass in General Relativity

Now, let’s answer the question. I did state that singularities are not points on
the topological manifold because if they were points, then they could well be
explained using Euclidean geometry by representing their reference frame us-
ing a coordinate chart in the Cartesian coordinates of (t, x, y, z), Singularities
are something much more complicated- they are holes in topological manifold,
more elegantly, they are similar to having punctures in the tyres of our car. Not
all terrains contain rocks and materials which are sharp and heavy enough to
poke holes in our tyres (our tyres were assumed to be very elastic remember?),
only a few can. Analysing all the rocks (stars) we find that only a few cause
punctures and all of these can be differentiated from the rest using a mass
limit. Hence, the ones which puncture our manifold are black-holes (or rather
are stars who are heavy enough that their collapse yields a black-hole), whose
information is not stored in the threads but rather stored on boundaries of the
punctures (information is on the event horizons of the black holes). So where is
the mass? Well, since you know the actual theory now, you must ask yourself,

7 understand what this statement means before answering the question, via the sim-
ple analogy presented in the first chapter. See Manifolds: A Pedestrian Approach
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“how can mass be stored in punctures?”, well that can’t be right! Punctures
are mere holes on the tyres and assigning mass to holes makes no sense. The
answer is that we don’t know, this is one of the many puzzling questions to
which we are still to find answers but certainly will one day.

Mass in General Relativity has multiple definitions and can be confusing.
It is almost impossible to find a generalized definition for a system’s total
mass, for the reason observe Einstein’s field equations, the gravitational field
energy is not a part of the energy-momentum tensor. The energy-momentum
tensor, Tµν represents the energy due to matter and electromagnetic fields, but
this does not include any contribution from the gravitational energy. Now we
find ourselves in a catch 22 situation because we can argue that gravitational
energy does not act as the source of gravity, but since Einstein’s equations
are non-linear, this would imply that gravitational waves interact with each
other and hence, we can argue that gravitational waves interact with each
other and hence, we can argue that gravitational energy is a source of grav-
ity. However, it is possible to define mass for a stationary spacetime. This is
called the Komar mass. We shall not go into the details but will try and under-
stand this using our analogy. Let us consider the puncture in the topological
manifold created by a specific spherically symmetric rock. We here make a
crucial assumption that all the rocks on all the terrains are spherically sym-
metric. Hence, on application of Israel’s theorem we find that the only metric
that can explain the rock’s (star’s) geometry is the Schwarzschild metric (of
course there is a possibility that this spherically symmetric metric need not
resemble the Schwarzschild one, but one can always use coordinate transfor-
mations to achieve a Schwarzschild-like look). Since the Schwarzschild metric
is a stationary one, it satisfies the condition for using Komar mass. We can
find with ease, by setting t = const, dΦ = 0, that the radial acceleration that
is required to hold a test mass stationary at a Schwarzschild coordinate of r
is-a = m

r2
√

1− 2GM
rc2

= m
r2
√
gtt

.

Now, the motion of the test mass as the tyre rotates and translates through
terrains, is given by the geodesic equation. Hence, we can see that the acceler-
ation, in covariant form can be given as- ˙̇xµ = −Γµαβuαuβ , and the Christoffel

symbol has the dimensions of potential, i.e.,
[

Γµαβ

]

= 1
r ≈ Φ(r). Now, the po-

tential can be expressed as the negative integral of force, i.e., Φ(r) = −
∫
Fdr,

and finally since the force has dimensions of inverse length squared which
is also the dimension of the Riemann tensor (also the Ricci tensor since the
metric tensor is dimensionless) we can arrive at the conclusion that the mass
is proportional to the following integral- m ∝

∫

V
Rµνu

µuν . Furthermore, we

can find that Rµν = − 8πG
c4 T by setting µ = ν. Thus, the mass integral is-

m ∝
∫

V
(2Tµν − Tgµν)u

µuνdV . If we had done some hard work and derived
the equation, it would have the following form
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m =

∫

V

√
gtt (2Tµν − Tgµν)u

µuνdV (4.30)

this is the Komar mass integral. The spacetime in which this is defined is
a stationary one, i.e., it exhibits time translational symmetry. There is an-
other class of situations referred to as asymptotically flat, in which we can
study the mathematical model of mass carried away from massive gravitat-
ing systems in the form of gravitational waves. Similar to Komar mass, we
can define (asymptotically flat class) the ADM and the Bondi masses. For an
isolated gravitating system, whose spacetime is asymptotically flat and which
emits gravitational waves, there is a precise amount of total mass/energy-
momentum and of its loss through gravitational radiation, referred to as the
Bondi-Sachs conservation law.
The deeper we divulge into relativity, the more we discover that we haven’t

completely understood anything. You may go on to ask that if there is such a
huge confusion of the mass of a black hole, how are we to ever find the mass of
the universe. Does the universe have a mass? Well we don’t completely know
the extent or the ’edge’ of the universe to confine it and find the mass. . . so
we can’t ask that question. Then what is the mass of the observable universe?
Well, since the observable universe cannot be considered to be an isolated
system, it is neither asymptotically flat nor stationary and hence none of the
’definitions’ of mass in General Relativity apply to it. Now, if we considered
the universe to be closed, then would the closed universe have a mass? Well,
I’m sorry to disappoint you yet again because the answer is a huge no. As John
Wheeler put it, “There is no such thing as the energy (or angular momentum
or charge) of a closed universe, according to general relativity, and this for a
simple reason. To weigh something, one needs a platform on which to stand
to do the weighing...”

4.8 Elimination of Singularities

We already know by now that there is only one physical singularity and that
is when r → 0. As we have already observed, to see to that the above case
is a true singularity we are to turn to quantities that are independent of the
choice of coordinates. We chose the Kretschmann invariant and note that it is
indeed regular at r = rs. Another method to see that the spacetime described
by the Schwarzschild metric is regular at r = rs is to make such a coordinate
transformation to such a metric tensor which is regular at this surface so that
it would eliminate this unphysical singularity. The Schwarzschild metric can
be re-written as

ds2 =
(

1− rs
r

)[

dt2 −
(

1− rs
r

)2

dr2
]

− r2dΩ2 (4.31)

Our aim is to change the radial coordinate which would map the horizon
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to negative infinity such that the resulting coordinate system covers the re-
gion r > 2MG

c2 , exclusively. Hence, we define new coordinates called the
tortoise coordinates.

r∗ = r + rsln

∣
∣
∣
∣

r

rs
− 1

∣
∣
∣
∣
, dr∗ =

(

1− rs
r

)−1
dr (4.32)

Plugging this into the re-written form of the Schwarzschild metric, we obtain
a new metric which has the following form

ds2 =
(

1− rs
r

) [
dt2 − dr2∗

]
− r2dΩ2 (4.33)

Notice that the radial-time part of the metric takes up a form called confor-
mally flat. Any space can be called conformally flat if it can be brought to the
following form

ds2 = H(x)dxµdxνηµν (4.34)

Where ηµν is the Minkowski metric. When we fix θ and Φ, the radial-time,
two-dimensional space is conformally flat. It is important to note that in these
coordinates, as r → ∞, r∗ → ∞ and as r → rs, i.e. at the horizon, r∗ → −∞.
This is a good coordinate system but not the best, hence, let’s try and find
a better system which would cover the entire Schwarzschild spacetime com-
pletely. We have to discover coordinates for performing the mentioned task,
but where do we start? This is the wrong question to ask. The question we
must ask ourselves is how do we start this? Firstly, we need coordinates that
would cover the entire spacetime manifold. To do this we need to observe the
entire spacetime manifold, there is a desperate need for “the perfect view”. On
obtaining such a view, we can go ahead and try and measure its boundaries
and try and represent the spacetime in terms of a cooked-up but correct co-
ordinates. Yeah, I know what you’re asking, to view the entire manifold we
need to observe the infinities, how do we even imagine such a think? Hold the
thought, we will come back to it. Although this manifold trip might sound like
an enjoyable one, to get this view we need to trek it using math. The mathe-
matically picture is much more elegant. We will make use of our car analogy
and try and make sense of the math by drawing relations.
Consider the same car which represents our entire spacetime manifold with
four tyres that record all the information of the terrains it has travelled upon
in its threads, which are infinite in number. Now remember that the deforma-
tions on the tyres are created due to the stones present in the terrain and that
not all puncture the tyres since a specific mass and sharpness is required by
the stones to poke a hole in the tyre. When the tyres get punctured, nothing
happens to the car, it’s perfectly fine and resumes its travels with a specific
speed. Before your imaginations run wild let me intrude by stating that you
are the driver and not anything else! Now think of this, your car need not
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be the only one in town, there are multiple cars, few similar to yours and a
few not. Now you want to fix the punctures but your economic condition pre-
vent you from doing so. You now start wondering how the costlier, high-end,
luxury cars manage their tyres so well and hence observe the behaviour of a
puncture in the tyre of the costlier car. Since I trust you (because well you
are a future physicist after all!), I hand you my super expensive luxury car.
You try to simulate a puncture by driving over terrains you had visited earlier
but fail to obtain a puncture of similar geometry. A brilliant idea strikes you
and you cut out a patch of your car’s tyre and a paste it to my car’s tyre,
where you had cut out a hole of similar dimensions. You paste the patch us-
ing a special adhesive. You successfully simulate a puncture and observe the
details of the hole created. The puncture is more pronounced now because its
geometry is not in any way influenced by your car’s tyre material (which is
more prone to puncture than mine). You realize that you can now study and
access the information of the terrain (which is stored in the threads and the
punctures) in greater detail when parts of your tyre are glued to mine. You
immediately replace your tyres with mine and glue patches of your tyre and
simulate exactly similar type of punctures and observe them in greater detail.
This concludes our analogy, now let’s view this mathematically. As mentioned
previously the punctures are the topological holes in the spacetime manifold,
i.e., black holes. Now recollect that your car is a 4-D Lorentzian manifold
and mine being a high-end luxury car represents a manifold of a different di-
mension. The detailed observation of the punctures was possible only when
the tyre material was glued to mine, this mathematically translates to us em-
bedding the spacetimes in higher dimensions. The special adhesive that we
used is called a hyperplane in math-land. In conclusion, we can summarize our
thought experiment by stating that to find better coordinates that cover the
entire spacetime (of Minkowskian flavour), you had to embed the spacetime
as a hyperplane into a higher dimensional Minkowski space in order to find
coordinates that cover the hyperplane completely, and hence, cover the entire
original curved spacetime. We know very well that at every point of our 4-D
spacetime, its metric, being a symmetric 2-tensor would have 10 independent
components (Since the metric tensor has 4 diagonal components and 6 other
symmetrical components to both the left and right sides of the diagonal. Total
number of independent components = 6+ 4 = 10). From this we can subtract
4 degrees of freedom in accordance to the four coordinate transformations,
x̄µ(x), resulting in 6 independent degrees of freedom at each point. Hence, we
have just embedded a 4-D spacetime locally as a hyperplane into a (4 + 6)
dimensional Minkowski spacetime. Or simply put, you have glued your 4-D
car’s tyre onto my (6 + 4)-D car’s tyre using a special adhesive in order to
understand better the geometry of the puncture and cook-up a coordinate a
system which would cover the entire boundary of the adhesive.
It turns out that the curved spacetime has extra, available symmetries,

then one can embed it into a flat space of a dimension less than ten. The
Schwarzschild spacetime (which is symmetric) can be embedded into a 6-D
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flat space. This embedding is done with using the Kruskal-Szekeres coordinates.
Before proceeding to this, let’s reflect on the above few lines. There won’t be
any gravity in the 6-D spacetime because the metric is globally Minkowski-
an, i.e., Rµναβ = 0 everywhere, identically. In order to understand the deep
implications and the overall elegance in this method let us try to show as to
why it is possible to embed the Schwarzschild metric in higher dimensions.
To check this, we must embed the metric in a 6-D flat spacetime and prove
that the embedded metric reproduces the geometry of the 4-D Schwarzschild
metric. Hence, thinking of the Schwarzschild metric as an induced metric on
a four-dimensional hyperplane embedded in a flat six-dimensional spacetime
with the line element given as

ds26 = +dΨ2
1 − dΨ2

2 − dΨ2
3 − dΨ2

4 − dΨ2
5 − dΨ2

6 (4.35)

where,

Ψ1 = 4GM
√

1− 2GM
r sinh

(
t

4GM

)

Ψ2 = 4GM
√

1− 2GM
r cosh

(
t

4GM

)

Ψ3 = ±
∫ [

2GM
r +

(
2GM
r

)2
+
(
2GM
r

)3
+O

[(
2GM
r

)4
)]

Ψ4 = rsinθcosΨ, Ψ5 = rsinθsinΨ, Ψ6 = rcosθ

(4.36)

By taking the derivatives (which is left for you to compute), we would end up
with a metric. The crucial part of the proof is to observe the fate of the Ψ3 term.

Notice that this term is nothing but the Taylor expansion of
(
1− 2GM

r

)−1
at

x = 0, where x = 2GM
r . Finally, we obtain and observe the following

ds26 =

(

1− 2GM

r

)

dt2 −
(

1− 2GM

r

)−1
dr2 − r2dΩ2 = ds24 (4.37)

Thus, we have just shown that the metric of the embedded metric in 6-D
flat space is nothing but the 4-D Schwarzschild metric. This type of embed-
ding is known as Fronsdal embedding. Now arises the question as to how we
have embedded it. The embedding had to be performed in such a way that
the metric reproduces itself and as mentioned earlier this is done using the
Kruskal-Szekeres coordinates. Embedding diagrams provide an effective path-
way for visualizing the geometry of a spherically symmetric metric such as the
Schwarzschild metric. We shall first study the details of such a diagram before
understanding and divulging into the math surrounding the Kruskal coordi-
nates, by doing this you would be able to appreciate the ingenious coordinate
transformations and obtain a holistic understanding.
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Exercise 13

1. The Reissner-Nordstrøm metric is a solution to Einstein’s field equations
that describes the spacetime around a spherically symmetric non-rotating body
with mass M and an electric charge Q. The line element takes the following
form

ds2 = −
(

1− rs
r

+
r2Q
r2

)

dt2 +

(

1− rs
r

+
r2Q
r2

)

dr2 + r2dΩ2
2 , (4.38)

where r2Q ≡ GQ2

4πǫc4 and rs =
2GM
c2 .

a. Show that the Ricci scalar vanishes identically.
b. Show that the Kretschmann scalar is K = 4

r8

(
14r4Q − 12r2Qrrs + 3r2r2s

)
.

c. Show that the metric is only singular at r if Q > M .
d. Another singular point is at r = r± for the case Q < M . Show that
r± =M ±

√

M2 −Q2 with G ≡ c ≡ 1 and 1
4πǫ ≡ 1.

e. Define the tortoise coordinate r∗ by

dr∗ =

(

1− rs
r

+
r2Q
r2

)−1

dr,

and solve to obtain an expression for r∗.

2. In the Reissner-Nordstrøm metric 4.38, setting constants G ≡ c ≡ k ≡ 1
(where k = 1

4πǫ consider the special case that the charge and mass are equal,
Q = M . This special case describes the extremal Reissner-Nordstrøm geome-
try.
a. What happens to the inner and outer horizons r+ and r−?

b. Show that the Ricci scalar is R = 2M2(M−2r)2
(M−r4)r2 .

c. Consider the case with an imaginary charge Q2 < 0. Although this is un-
physical, the resulting metric is well-defined. Check if the singularity, instead
of being gravitationally repulsive, becomes gravitationally attractive (this in-
volves some tiresome calculations).

3. In AdS3 space, there is SL(2,R)L × SL(2,R)R symmetry. The generators
of SL(2,R)L read

L0 = i∂u, L±1 = ie±iu
(

coth(2ψ) ∂u −
1

sinh2ψ
∂v ∓

i

2
∂ψ

)

, (4.39)

where u = t+ φ and v = t− φ. SL(2,R)R is generated by L̄0,±1 which can be
obtained by simply interchanging u and v.
a. Rewrite the global AdS3 metric in terms of coordinates φ̂ = lcoshψ − it,
γ = tanhψ eiu, and γ̂ = tanhψ eiv.
b. Rewrite the SL(2,R)L and SL(2,R)R generators in terms of the new coor-
dinates.
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c. Check that the following forms a closed algebra

[L0, L±1] = ∓L±1, [L1, L−1] = 2L0. (4.40)

d. Find the Killing vectors for the AdS3 metric (either in global coordinates as
in 1.228 or in Poincaré coordinates as in 1.199) and check if the Killing vectors
obey the SL (2,R) algebra shown above.





5

Embedding Diagrams and Extensions of the

Schwarzschild Metric

5.1 Embedding Diagrams and Their Machinery

We shall first address the question that you would have asked in the previous
chapter, i.e., to view the entire manifold we need to observe the infinities, how
do we even imagine such a thing? How do we view something from the out-
side if we don’t know where it ends? After reading the previous section you
would propose embedding as an approach to such a problem, which is correct.
Embedding forms the crux of the idea of an extrinsic view of topology. This is
true simply due to the reason that we cannot view something from the outside
unless it can be confined to some larger, or higher-dimensional space. Suppose
there was a population of intelligent creatures living on our car (topological
manifold), and if they wanted to observe and study the geometry of the punc-
tures (topological punctures, i.e., black holes) the only way they could achieve
such a task is to cut portions of the tyres and glue it to the tyre of a different
car (my car, a higher-dimensional topological manifold) that they can observe.
It is impossible for them to probe the geometrical dimensions of the car they
live in similar to how it is impossible for us to find the edge of the universe.
Hence, embedding refers to how a topological object such as a manifold is posi-
tioned in space. Taking a time-slice of the Schwarzschild metric, i.e., t = const,
the two-dimensional geometry of the θ = π/2 surface is given by the following
metric (metric signature followed is (−+++))

ds2 =

(

1− 2GM

r

)−1
dr2 + r2dΦ2 =

dr2

ζ(r)
+ r2dΦ2 (5.1)

Our aim is to visualize the geometry by building a two-dimensional surface
embedded in a three-dimensional flat space. It is important to note that when
M(r) = 0, then the function ζ(r) = 1 and the metric assumes a flat geometry.
This can be thought of as a flat plane, z = 0, in cylindrical coordinates. Of
course, the metric describes the geometry of a gravitating object of non-zero
mass, i.e., M(r) 6= 0. Hence, we can assume the metric to be describing a
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surface of revolution given be z = z(r), with the Φ component of the cylin-
drical coordinates having the range 0 < Φ ≤ 2π. The metric of such a surface
embedded in three dimensions is described by the following metric

ds2 = dz2 + dr2 + r2dΩ2 =

[(
dz

dr

)2

+ 1

]

dr2 + r2dΩ2. (5.2)

On comparing the above metric to the Schwarzschild time slice, we observe
that the surface equation is related to the function ζ(r) by the following rela-
tion

(
dz

dr

)2

+ 1 = ζ(r)−1. (5.3)

Notice that dz
dr is continuous, we will use this later for obtaining the embed-

ding diagram. We can now integrate this equation to obtain the expression
that describes the surface of revolution.

z(r) =

∫ r

0

√

1− ζ(x)

ζ(x)
dx =

∫ r

0

[
x

2GM(r)
− 1

]− 1
2

dx. (5.4)

For r > rs, i.e., outside the gravitating object we observe that the above inte-
gral takes the following form

z(r) =
√

8GM(r − 2GM) + C (5.5)

We can observe that at a large radius, z(r) ∝ r
1
2 . Near the centre of the star,

we can approximate M(r) as 4π
3 ρr

3 and integrate the equation after introduc-

ing a variable ξ =
√

3c2

8πGρ . Upon integration, we obtain an equation which

hints that the surface is a segment of sphere of radius ξ near the centre of the
star, given by

(ξ − z(r))2 + r2 = ξ2. (5.6)

The above equation is valid for r ≫ ξ and this result is exact for any star of a
constant density and is approximately correct near the origin of any other rel-
ativistic gravitational object model. Upon stitching the geometry represented
by the above equation with that represented by the equation for r > R, we
obtain an embedding diagram that represents the curvature around a spheri-
cally symmetric gravitational source. It is important to note that z and r are
monotonically increasing functions of each other. This implies that the em-
bedded surface always opens upward and outward like a bowl. The geometry
never has a neck and it never flattens out except asymptotically at r = ∞.
Remember that dz

dr was continuous? This hints that the interior and exterior
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geometries in the embedding diagram will join smoothly. For any relativis-
tic density and pressure, the geometry would be similar.The time-slice of the
Schwarzschild metric is nothing but the quartic surface defined by the equation

x2 + y2 =

(
z2

8M
+ 2M

)2

, (5.7)

embedded in a three-dimensional Euclidean space with cartesian coordi-
nates (x, y, z). To see this, consider the following coordinate transformations:
x = rcosΦ, y = rsinΦ, and z =

√

(8M(r − 2M)). Applying these transfor-
mations to the three-dimensional Euclidean metric: ds2 = dx2 + dy2 + dz2,
which I leave for you as an exercise, you would get back the time-sliced
Schwarzschild metric. To analyse the geometry of the embedding, we can per-
form two parametric plots, one with (rcosΦ, rsinΦ,

√

(8(r − 2)), and another

with (rcosΦ, rsinΦ,−
√

(8(r − 2)) shown in figure 5.1. Both have similar ranges
with r ∈ [0, 10] and Φ ∈ [0, 2π] (note that mass M has been set to unity for
simplicity).

Fig. 5.1. Parametric plots of the upper half (L) and the lower half (R)

While gluing these diagrams together, observe that the two halves have been
attached together at the circle r = 2M = rs. The two halves correspond to
two separate regions. This is known as the Einstein-Rosen bridge, which is
one among the many examples of a wormhole. No observer can ever cross this
bridge, this can be clearly verified from the Kruskal diagram (which is in the
subsequent sections). If you wish to cross the wormhole from the upper half to
the lower half or vice-versa, then your trajectory must be spacelike somewhere.

5.2 Embedding in N-Dimensions

Let’s represent the Schwarzschild metric in (n+1) dimensions with a (−+++)
metric signature,
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ds2 = −
(

1− rs
rn−2

)

dt2 +
(

1− rs
rn−2

)−1
dr2 + r2dΩ2. (5.8)

Note that here dΩ2 is the round unit metric on a sphere Sn−1. Following the
embedding machinery as described in the previous section, we shall embed this
metric (it’s time slice) in a (n+ 1)-dimensional Euclidean space as follows

ds2 = dz2 + (dx1)2 + (dx2)2 + ...+ (dxn)2 =
[(
dz
dr + 1

)]2
dr2 + r2dΩ2. (5.9)

This equation will coincide with the spacelike component of the time-sliced
(n+1)-dimensional Schwarzschild metric. Thus, a smooth function is obtained.

dz

dr
= ±

√
rs

rn−2 − rs
. (5.10)

Note that this function can be explicitly integrated in 3 and 4 dimensions. Let
us analyse the cases separately.

5.2.1 (n = 3)-dimensions

The smooth function takes the following form in (n = 3) dimensions

dz

dr
= ±

√
rs

r − rs
(5.11)

Integration yields the following result

z(r) = ±2rs

(√
rs

r − rs

)−1
+ C = ±2

√
2m

√
r − 2m+ C, (5.12)

where rs = 2m. You know the reason for the positive sign- it represents the
exterior of a black hole. What about the negative sign? It actually corresponds
to the other side of the Einstein-Rosen bridge, which is an asymptotically flat
region. Solving for r(z) (and setting the integration constant) we obtain

r = 2m+
z2

8m
. (5.13)

The geometry of this is that of a paraboloid. Since this was first denoted by
Flamm, its called the Flamm paraboloid. This embedding in (n = 3) is visual-
ized in figure 5.2.
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Fig. 5.2. Embedding of an n = 3 dimensional Schwarzschild black hole into a four-
dimensional Euclidean space. The two halves of the black hole are glued by the
Einstein-Rosen bridge r = 2m

5.2.2 (n = 4)-dimensions

The smooth function takes the following form in (n = 4) dimensions

dz

dr
= ±

√
rs

r2 − rs
. (5.14)

Integration yields the following result

z(r) = ±√
rsln

(√

r2 − rs + r) +C = ±
√
2m ln

(√

r2 − 2m+ r
)

+C. (5.15)

Solving for r(z) (and setting the integration constant) we obtain

r =
√
2m cosh

( z

2m

)

. (5.16)

This embedding in (n = 4) is visualized in figure 5.3.

5.2.3 (n ≥ 5)-dimensions

Things get a bit complicated in n ≥ 5 dimensions as z(r) is expressed in terms
of elliptic functions. The qualitative behaviour in this dimension, or for that
matter in n ≥ 5 dimensions is quite different, here z(r) asymptotically dimin-
ishes to a finite value as r → ∞. The smooth function takes the following form
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Fig. 5.3. Embedding of an n = 4 dimensional Schwarzschild black hole into a five-
dimensional Euclidean space. The two halves of the black hole are glued by the
Einstein-Rosen bridge r =

√
2m

in (n = 5) dimensions

dz

dr
= ±

√
rs

r3 − rs
. (5.17)

Integration yields the following result (to simplify calculations let us make the
assumption that m = 1)

z(r) = ± 2i

3
1
4

√

(−1)
5
6 (r − 1)

r2 + r + 1

r3 − 1
F



sin−1





√

−ir − (−1)
5
6

3
5
6







 (−1)
1
3 ,

(5.18)
where F (x|m) is the elliptic integral of the first kind with parameter m = k2.
The form of the function in (n = 6) dimensions is the following

dz

dr
= ±

√
rs

r4 − rs
. (5.19)

Integration yields the following result

z(r) = ±F
(
sin−1(r)| − 1

)
+ C. (5.20)
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Fig. 5.4. The glued plot which is actually the isometric embedding of the space-
geometry of a (5 + 1)– dimensional Schwarzschild black hole into six-dimensional
Euclidean space.

5.3 Embedding of the Schwarzschild Metric in

Six-Dimensional Space

As we mentioned in the earlier, the minimal dimension N of the flat space in
which the Schwarzschild metric can be embedded is equal to six; let us revisit
the embedding but first lets rewrite the line interval of the Schwarzschild met-
ric (G ≡ c ≡ 1), we have (metric signature followed is (−+++))

ds2 = −
(

1− rs
r

)

dt2 +
(

1− rs
r

)−1
dr2 + r2dΩ2 (5.21)

where rs(= 2m) is the Schwarzschild radius. In the following sections, we dis-
cuss few variants of embeddings.

5.3.1 Kasner Embedding

ds2 = dΨ2
1 + dΨ2

2 − dΨ2
3 − dΨ2

4 − dΨ2
5 − dΨ2

6

Ψ1 =
(
1− rs

r

)1/2
cos(t), Ψ2 =

(
1− rs

r

)1/2
sin(t), Ψ3 = f(r),

Ψ4 = rsinθsinΦ, Ψ5 = rsinθcosΦ, Ψ6 = rcosθ

(5.22)

Where
(

f(r)
′

)2

= 2mr3+m2

r3(r−2m) . Historically, this was the first Schwarzschild met-

ric embedding. This covers only the region r > rs and has a conical singularity
at r = rs. This embedding, however, is not asymptotically flat. Let’s try and
work this out. After computing the derivatives and their squares (which I
leave to you as an exercise), you should land up with the following metric
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(with rs = 2m)

ds2 = −
(

1− 2m

r

)

dt2 +

(

1− (m− 1)m

r4

)(

1− 2m

r

)−1
dr2 + r2dΩ2 (5.23)

Our aim is to visualize the geometry by building a two-dimensional surface
embedded in a three-dimensional flat space. Let’s consider the time-slice of
this metric at θ = π

2 , and proceed with the embedding operations.

ds2 =
(

1− (m−1)m
r4

) (
1− 2m

r

)−1
dr2 + r2dΦ2 = dr2

ζ(r) + r2dΦ2

=
[(
dz
dr

)2
+ 1
]

dr2 + r2dΩ2

(5.24)

We can now integrate to obtain an expression for z(r) as follows

z(r)|m≡1 =

∫ r

0

√

1− ζ(x)

ζ(x)
dx =

√
2r

√

1

r
− 1− 1√

2
tan−1





√
1
r − 1(2r − 1)

2(r − 1)



+C

(5.25)

Apply the transformations- x = rcosΦ, y = rsinΦ, and z as in expression,
to the three-dimensional Euclidean metric- ds2 = dx2 + dy2 + dz2, and plot
the parametric plots for (x, y, z) and (x, y,−z). Observe the plots, shown in
figure 5.5, of the upper and lower halves and compare them with the previous
embedding diagrams.

Fig. 5.5. Kasner Embedding: Parametric plots of the upper half (L) and the lower
half (R)
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5.3.2 Fronsdal Embedding

ds2 = dΨ2
1 − dΨ2

2 − dΨ2
3 − dΨ2

4 − dΨ2
5 − dΨ2

6

r > rs : Ψ1 =
(
1− rs

r

)1/2
sinh(t), Ψ2 =

(
1− rs

r

)1/2
cosh(t), Ψ3 = κ(r),

r < rs : Ψ1 =
(
1− rs

r

)1/2
cosh(t), Ψ2 =

(
1− rs

r

)1/2
sinh(t), Ψ3 = κ(r),

Ψ4 = rsinθsinΦ, Ψ5 = rsinθcosΦ, Ψ6 = rcosθ,
(5.26)

where κ(r) =
∫ √

2mr3+m2

r2(r−2m)dr =
∫
√
(
2m
r

)
+
(
2m
r

)2
+
(
2m
r

)3
dr

5.3.3 Kruskal-Szekeres Coordinates

This was the type of embedding explained earlier, in the previous section. The
outcome of such an embedding was ds24, and using the knowledge of tortoise
coordinate, we obtained the equation

ds2 =

(

1− 2m

r

)
[
dt2 − dr2∗

]
− r2dΩ2. (5.27)

Now, let us define lightlike coordinates: u = t+r∗ and v = t−r∗. Add these two
equations to obtain an expression for t. Differentiate and square the expression
to get: 4dt2 = du2 + dv2 + 2dudv, and observing that dt2 − dr2∗ = dudv, we
obtain the following metric

ds2 =

(

1− rs
r(u, v)

)

dudv − r2(u, v)dΩ2. (5.28)

From these lightlike coordinates we can also find an expression for r∗. Sub-
tracting the two equations we get,

r∗ =
v − u

2
. (5.29)

We already know the form of r∗ from the previous chapter. The coordinate
singularity of the metric, i.e., the one that occurred as r → rs, is now replaced
at r∗ → −∞, or v − u→ −∞. Define the following transformations

U = −2rse
− u

2rs = −2rse
− t−r∗2rs = −2rse

− t−r2rs

(
r

rs−1

) 1
2

,

V = 2rse
v

2rs = −2rse
t+r∗
2rs = −2rse

t+r
2rs

(
r

rs−1

) 1
2

.

(5.30)
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Taking the derivatives of the defined transformations we obtain expressions for
du and dv, which we can substitute into the metric as follows

du = e−
u

2rs

(
r

rs−1

)− 1
2

dU, dv = e
v

2rs

(
r

rs−1

)− 1
2

dV

ds2 = e
v−u
2rs

(

1− r
rs

)(
r

rs−1

)−1
dUdV − r2(U, V )dΩ2

ds2 = rs
r(U,V )e

− r(U,V )
rs dUdV − r2(U, V )dΩ2.

(5.31)

Here, r(U, V ) is an implicit function given by

(
r(U, V )

rs
− 1

)

e−
r(U,V )
rs = −UV

4r2s
. (5.32)

We can write r(U, V ) explicitly by making use of the Lambert W-function as
follows

r(U, V ) = rs

[

1−W
UV

e

]

. (5.33)

We can also replace u and v by spacelike and timelike coordinates, U and V ,
called the Kruskal-Szekeres coordinates defined by

r > rs : U =
(
r
rs

− 1
) 1

2

e
r

2rs cosh
(

t
2rs

)

, V =
(
r
rs

− 1
) 1

2

e
r

2rs sinh
(

t
2rs

)

.

r < rs : U =
(
r
rs

− 1
) 1

2

e
r

2rs sinh
(

t
2rs

)

, V =
(
r
rs

− 1
) 1

2

e
r

2rs cosh
(

t
2rs

)

.

(5.34)

Taking the derivatives of the coordinates (for r > rs) and substituting it into
the Schwarzschild line element we obtain

dU2 =
(
r
rs

− 1
)
e
r
rs

4r2s
sinh2

(
t

2rs

)

dt2 + r2e
r
rs

4r4s

(
r
rs

− 1
)−1

cosh2
(

t
2rs

)

dr2

+ re
r
rs

2r3s
sinh

(
t

2rs

)

cosh
(

t
2rs

)

drdt

(5.35)
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dV 2 =
(
r
rs

− 1
)
e
r
rs

4r2s
cosh2

(
t

2rs

)

dt2 + r2e
r
rs

4r4s

(
r
rs

− 1
)−1

sinh2
(

t
2rs

)

dr2

+ re
r
rs

2r3s
sinh

(
t

2rs

)

cosh
(

t
2rs

)

drdt

(5.36)

Subtracting equation 5.36 from 5.35, we observe the following

dU2 − dV 2 =
(
r
rs

− 1
)
e
r
rs

4r2s
cosh2

(
t

2rs

)

dt2 + r2e
r
rs

4r4s

(
r
rs

− 1
)−1

sinh2
(

t
2rs

)

dr2

= e
r
rs

4r4s

[

− r
rs

(
1− rs

r

)
dt2 + r

rs

(
1− rs

r

)−1
dr2
]

= e
r
rs

4r4s

r
rs

[

−
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2
]

= e
r
rs

4r4s

r
rs
ds2

(5.37)

Let’s rewrite the above equation in terms of the line element ds2 (with non-
zero angle element dΩ) as follows

ds2 =
4r3s
r
e−

r
rs

(
dU2 − dV 2

)
− r2dΩ2 =

32m3G3

rc6
e−

r
rs

(
dU2 − dV 2

)
− r2dΩ2

(5.38)

In natural units (i.e., c ≡ G ≡ 1), we define the Schwarzschild line element in
the Kruskal-Szekeres coordinates as follows

ds2 =
32m3

r
e−

r
rs

(
dU2 − dV 2

)
− r2dΩ2 (5.39)

where r is an implicit function of U and V defined by
(
r
rs

− 1
)

e−
r
rs = U2−V 2.

Notice that the metric is now regular at r = rs, and it contains only one
physical singularity at r = 0. The property associated to the Kretschmann
invariant being finite at r = rs implies that the Schwarzschild spacetime is
extensible, i.e., it can be embedded in a larger spacetime whose manifold is not
covered by the Schwarzschild coordinates with r > rs. Thus, we can conclude
that it is indeed possible to embed the Schwarzschild spacetime and both
of its extensions (i.e., the Eddington-Finkelstein extension and the Eddington-
Finkelstein white hole extension of r < rs) in a larger spacetime which contains
an additional copy of the Schwarzschild spacetime. The manifold description
of the Fronsdal embedding is closely related to the use of Kruskal-Szekeres
coordinates. It is to be noted that the metric signature of (+ − + − −−) is
used to construct the embedding in a finite region of a manifold with the
Schwarzschild metric, but this embedding would contain singularities.
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Properties of the Kruskal metric

1. UV = −4r2s

(
r(U,V )
rs

− 1
)

e−
r(U,V )
rs .

Hence, for constant r, we have hperbolae and for conatant t, we have straight
lines passing through the origin. The hyperbolae degenerate as r → rs and we
obtain straight lines defined by UV = 0.

2. From UV = 0, we obtain: U = 0 and V = 0. U and V are lightlike co-
ordinates since the equations dU = 0 and dV = 0 describe light rays. To
visualize the global manifold we define the following lightlike coordinate

U = T −R, V = T +R. (5.40)

In the Kruskal diagram shown in figure 5.6, outgoing light rays move along
curves U = const and ingoing light rays move along curves V = 0.

T r= constant < 2m

r= constant > 2m

r= 2mt= ∞

r= 0

(Singularity)

R

r= constant > 2m

r= constant 

r= 2m
r= 0
(Singularity)t= ∞

t= 0

I´ I
t= 0

Fig. 5.6. Kruskal diagram

Note that the Schwarzschild coordinates cover only the first quadrant and
the metric is singular along the hyperbola, r = 0. Observation tells that the
metric describing a gravitating object is not static in the Kruskal-Szekeres
coordinates. The metric in is explicitly dependent upon the time coordinate
T . As shown in section 5.2.1, the two-dimensional surface embedded in three-
dimensional Euclidean space, having this geometry is generated by the rotating
curve (about the z-axis)

z =
√

8m(r − 2m). (5.41)
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The resulting geometry is the Flamm paraboloid and the region connecting
the two asymptotically flat regions is called the Einstein-Rosen bridge. This is
visualized in figure 5.7.

Fig. 5.7. This is the surface defined by equation 5.41 with t = const and θ = π/2.
For large r the geometry of this surface becomes approximately flat. The z-axis
runs vertically through the middle of the throat, i.e., the Einstein-Rosen bridge, the
r-coordinate is the distance from that axis.

5.3.4 Fujitani-Ikeda-Matsumoto Embedding

ds2 = dΨ2
1 + dΨ2

2 − dΨ2
3 − dΨ2

4 − dΨ2
5 − dΨ2

6

Ψ1 = t
(
1− rs

r

) 1
2 , Ψ2 = 1√

2α

(
α2t2

2 − 1
) (

1− rs
r

) 1
2 + h(r)√

2
,

Ψ3 = 1√
2α

(
α2t2

2 + 1
) (

1− rs
r

) 1
2 + h(r)√

2
, Ψ4 = rsinθsinΦ,

Ψ5 = rsinθcosΦ, Ψ6 = rcosθ,

(5.42)

where

h(r) =
αr(2r + 3rs)

4

√

1− rs
r

+
3αr2s
8

ln

(
2r

rs

(

1 +

√

1− rs
r

)

− 1

)

, (5.43)

and in all the above equations α =
√
2. It is to be noted that there are two

possibilities of metric signatures we can follow: (++−−−−) and (−−+−−−),
and lets use the former for the embedding. Computing the derivatives and their
squares we land up with the following metric (expressed in signature (−+++))
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ds2 = −
(

1− rs
r

)

dt2+
(

1− rs
r

)−1(4r4 − 2r3rs + r2r2st
2 − r2s

4r4
)

)

dr2+r2dΩ2.

(5.44)

The embedded metric resembles the Schwarzschild metric except for the addi-

tional term which is a function of t and r, i.e., f(r, t) =
(

4r4−2r3rs+r2r2st2−r2s
4r4 )

)

.

Again, follow the embedding machinery explained previously and consider the
time-slice at θ = π

2 (with rs = 2m).

ds2 =
(
1− rs

r

)−1 ( 4r4−2r3rs+−r2s
4r4 )

)

dr2 + r2dΦ2

= dr2

ζ(r) + r2dΦ2 =
[(
dz
dr

)2
+ 1
]

dr2 + r2dΦ2.

(5.45)

Integration yields the following result

z(r) =

∫ r

0

√

1− ζ(x)

ζ(x)
dx = −m

∑

ω:−ω4+mω3+2m=0

m ln(r − ω)− 2ω3 ln(r − ω)

−4ω3 + 3mω2
.

(5.46)

Taking a series expansion (generalized Puiseux expansion) we obtain the fol-
lowing expression (with non-zero m)

z(r) = −2m ln(r) + 2m
r + 3m3+m2(2m2−1)

3r3 + m3(2m2+3)
r4

+m4(2m2+7)
5r5 +O

((
1
r

)6
)

.

(5.47)

For simplicity, we can set m ≡ 1 and obtain the parametric plots. This type
of embedding covers only the region r > rs and has a conical singularity at
r = rs. It is important to note that if the signature (− − + − −−) is used to
construct an embedding of the Schwarzschild metric at r < rs. Observe the
parametric plots of the upper and lower half, shown in figure 5.8, by making
appropriate substitutions as explained in the previous sections.

Example 5.1. Consider the Barriola-Vilenkin metric which describes the grav-
itational field of a global monopole,

ds2 = −dt2 + dr2 + k2r2dΩ2 (5.48)

To obtain the embedding metric we first scale the metric of the embedded
surface by r → kr so that (see 5.2) now reads

ds2 =

[

1 +
1

k2

(
dz

dr

)2
]

k2dr2 + k2r2dφ2. (5.49)
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Fig. 5.8. Fujitani-Ikeda-Matsumoto Embedding: Parametric plots of the upper half
(L) and the lower half (R)

We can now compare this metric to the time-slice of the Barriola-Vilekin met-
ric at θ = π/2 to obtain the embedding function as follows (for k < 1)

[

1 + 1
k2

(
dz
dr

)2
]

k2 = 1,

z(r) =
√
1− k2r.

(5.50)

Exercise 14

1. Consider the metric for a cosmic string the Schwarzschild spacetime whose
line element reads

ds2 = −
(

1− rs
r

)

dt2 +
(

1− rs
r

)−1
dr2r2

(
dθ2 + β2sin2θ dφ2

)
, (5.51)

where β is called the string parameter. Show that the embedding function for
β2 < 1 this metric takes the form

z(r) = r
(

1− rs
r

)√ r

r − rs
− β2 − rs

2
√

1− β2
ln

√
r

r−rs − β2 −
√

1− β2

√
r

r−rs + β2 −
√

1− β2
,

(5.52)

and check if it reduces to the embedding function of Schwarzschild metric when
β2 = 1.

2. Show that the embedding function for the Janis-Newman-Winicour met-
ric 6.33 is
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z(r) = 2
√
rrs F1

(

− 1
2 ;

γ+1
2 ,− 1

2 ;
1
2 ,

rs
r ,

rs(γ+1)2

4rγ2

)

− 2πγ
γ+1 2F1

(

− 1
2 ,

γ+1
2 ; 1; 4γ

(γ+1)2

)

,

(5.53)

where F1 is the Appell-F1 function and 2F1 is the hypergeometric function.
Why doesn’t this reduce to the Schwarzschild case when γ = 1 although the
metric does?

3. Consider the simplest metric which describes a wormhole

ds2 = −dt2 + dl2 +
(
b20 + l2

)
dΩ2

2 , (5.54)

where b0 is the throat radius of the wormhole, l is a radial coordinate, and
r2 = b20 + l2. This was first given by Morris and Thorne.

a. Show that the Kretschmann scalar for this metric is K =
12b20

(b20+l2)
4 .

b. Find the embedding function for this metric and plot the same for a worm-
hole with a unit throat radius.

5.4 Extensions of the Schwarzschild Metric

Let’s address another problem, we know very well now that the metric is sin-
gular at r = rs and r = 0 and we must tear them off the manifold defined by
the coordinates (t, r, θ, Φ). The manifold would get disconnected into regions
0 < r < rs and rs < r < ∞ if we pluck off the surface defined by r = rs.
Observing the region r > rs we realize that this is nothing but the external
field. Is there a larger manifold M̄ into which M can be immersed? Is the
Schwarzschild spacetime extensible? We have proven this without even realiz-
ing it. Consider the manifold M with a Schwarzschild metric g. To prove that
(M, g) can be extended we introduce a new coordinate defined by

dr∗ =
(

1− rs
r

)−1
dr → r∗ = r + rsln(r − rs). (5.55)

Remember this? This was the Tortoise coordinate. Now, since you recollect
you would predict that the next move would be to introduce the light-like
coordinates v = t + r∗ and u = t − r∗ and then use the ingoing coordinates
(v, r, θ, φ) to obtain the ingoing Eddington-Finkelstein metric ḡ defined by (see
figure 5.9

ds2 =
(

1− rs
r

)

dv2 − 2dvdr − r2dΩ2. (5.56)

Well, you are spot on! Notice that the manifold M over the external field region
is rs < r <∞, but the ingoing Eddington-Finkelstein metric ḡ is non-singular
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and hence the manifold is not disconnected. Since the manifold is no longer
singular at r = rs, we can safely say that this metric is valid in a manifold M̄,
which is larger and for which 0 < r <∞.

Now, consider a point p and the open set V it belongs to existing in (M, g),
where g is the Schwarzschild metric defined by coordinates x(p) = (r, t, θ, Φ),
and its image point in the open set U existing in (M̄, ḡ), where ḡ is the in-
going Eddington-Finkelstein metric defined by coordinates x̄(q) = (v, r, θ, Φ).
There exists a map z from M to M̄ such that it is a one-one Ck map and
its inverse z−1 is a Ck map from M̄ to M, i.e., the coordinates of the image
point z(p) = x̄(p) in an open set U are k-times continuously differentiable
functions of the coordinates x(p). Thus, there exists a map z between M and
M̄ which is a Ck diffeomorphism, and we conclude that the region of (M̄, ḡ)
for which 0 < r < rs is isometric to the region of the Schwarzschild metric for
which 0 < r < rs. Thus, changing of coordinates implies moving to a different
manifold!
The different manifold here is M̄ to which we have extended the Schwarzschild
metric such that it is no longer singular at r = rs and this region where r = rs
on M̄ is called a null surface. Notice that as r → 0, the Kretschmann invariant
diverges as RµναβR

µναβ → 1
r6 , therefore r = 0 is the real deal and is called a

physical singularity. The pair (M̄, ḡ) cannot be extended in a C0 manner, i.e.,
cannot be extended continuously across r = 0. Note that the same extension
also works for the outgoing coordinates defined by (u, r, θ, Φ), where u = t−r∗.
Using these coordinates, we obtain the outgoing Eddington-Finkelstein metric
g′ defined by (see figure 5.10)

ds2 =
(

1− rs
r

)

du2 + 2dudr − r2dΩ2. (5.57)

Again, we notice that the manifold M over the external field region is
rs < r <∞, but the outgoing Eddington-Finkelstein metric g′ is non-singular
and hence the manifold is not disconnected. Since the manifold is no longer sin-
gular at r = rs, we can safely say that this metric is valid in a manifold larger
manifold M′ for which 0 < r <∞. Also notice that the new region 0 < r < rs
of the manifold M′ equipped with the outgoing Eddington-Finkelstein metric
defined by the coordinates (u, r, θ, Φ) is isometric to the region 0 < r < rs
of the Schwarzschild metric. There is something amazing happening here and
it lies right in front of you. Try and predict the metric’s fate under a time
reversal, t → −t. Upon performing this exercise, you would land up with the
following metric

ds2 =
(

1− rs
r

)

du2 − 2dudr + r2dΩ2, (5.58)

which is similar to the ingoing metric. What could be the connection? The
answer is that the isometry reverses the direction of time. The surface defined
by r = rs is a null surface in M′, and permits only the past-directed time-like
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Fig. 5.9. Ingoing Eddington-Finkelstein coordinates (with θ = π/2). Surfaces of
constant v, being ingoing null surfaces, are plotted on a 450 slant, just as they would
be in flat spacetime. Here, r = rs = 2M

curves cross from r > rs to r < rs. We can make both extensions (M̄, ḡ)
and (M′, g′) simultaneously. We came to this conclusion in the chapter on
singularities where we stated that it is possible to embed the Schwarzschild
spacetime and both of its extensions in a larger spacetime which contains
an additional copy of the Schwarzschild spacetime. Translating this to the
language of manifolds, we say that there exists a larger manifold M∗ with the
metric g∗ into which both the extensions (M̄, ḡ) and (M′, g′) can be embedded
isometrically. This is done such that it coincides on the region r > rs which is
isometric to the Schwarzschild spacetime (M, g). This embedding is done using
the Kruskal-Szekeres coordinates to obtain the Kruskal extension (M∗, g∗),
where g∗ is defined using the coordinates (U, V, θ, Φ). Since Kretschmann scalar
RαβγδR

αβγδ diverges as r−6 when r approaches zero, we can conclude that
the metric cannot be extended across the set r = 0, at least in the class of C2

metrics.
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Fig. 5.10. Outgoing Eddington-Finkelstein coordinates (with θ = π/2). Surfaces
of constant u, being outgoing null surfaces, are plotted on a 450 slant, just as they
would be in flat spacetime. Here, r = rs = 2M

Exercise 15

1. Define ingoing coordinate u = t + r∗ and rewrite the Reissner-Nordstrøm
metric 4.38.

2. A much better coordinate system for describing the Kerr metric 3.149 near
the surfaces r = r± is Eddington–Finkelstein coordinates (v, r, θ, ϕ), where r
and θ are the same as before whereas v and ϕ̄ are related to Boyer–Lindquist
coordinates via the following formulae

dv = dt+
r2 + a2

∆
dr, dϕ = dφ+

a

∆
dr.

Rewrite the Kerr metric in the above defined coordinates and check that the
singularities are absent.
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5.5 Killing Horizons

5.5.1 A Pedestrian Approach

Consider Mr. Absolute Zero to be travelling along the X-axis in a trajectory
X = f(τ), T = g(τ), where f and g are specified functions and τ is the proper
time in the clock carried by him. Let the point p be some event with Minkowski
coordinates (T,X) to which Mr. Absolute Zero assigns the coordinates (t, x).
We know from Special Relativity that the two coordinates are related by

X − cT = f(t− x/c)− ch(t− x/c)

X + cT = f(t+ x/c) + ch(t+ x/c)
(5.59)

Let us now apply this to Mr. Absolute Zero travelling along the X-axis with a
uniform acceleration g. The equation of motion

d

dT

(

v
√

1− v2/c2

)

= g. (5.60)

The proper time τ shown by Mr. Absolute Zero’s watch while he is being uni-
formly accelerated can be related to the coordinate time by the standard result

τ =

∫ T

0

√

1− v2dT =
1

g
sinh−1(gT ), (5.61)

and using this result, we can express his trajectory in a parameterized form
(in terms of the proper time) as follows

gX = cosh(gτ) ≡ g f(τ), dT = sinh(gτ) ≡ g h(τ). (5.62)

Thus, the coordinate relations with (c ≡ 1) become

X − T = g−1e−g(t−x), X + T = g−1eg(t+x), (5.63)

which yields

X = g−1egxcosh(gt), T = g−1egxsinh(gt). (5.64)

This provides the transformation between the inertial coordinate system and
that of Mr. Absolute Zero. Observe that the above transformations are non-
linear and hence won’t preserve the line element ds2. The coordinate frame
based on (t, x) is called the Rindler frame. Now, using

dT 2 − dX2 = e2gx
(
dt2 − dx2

)
, (5.65)
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we get

ds2 = −dt2 + dX2 + dY 2 + dZ2 = e2gx
(
−dt2 + dx2

)
+ dy2 + dz2. (5.66)

Using the coordinate transformation (1 + gx′) = egx, where we change to a
new space coordinate x′, we get

ds2 = −
(

1 +
gx′

c2

)2

c2dt2 + dx′2 + dy′2 + dz′2. (5.67)

An alternative form of the Rindler metric is

ds2 = −
(
2gw

c2

)

c2dt2 +

(
2gw

c2

)−1
dw2 + dy2 + dz2, (5.68)

which is obtained by making a coordinate transformation 1 + gx′ =
√
2gw.

Now, consider the generalized Schwarzschild metric

ds2 = −F(r) + F−1(r)dr2 + r2dΩ2, (5.69)

with the condition that F(r) has a simple zero at r = rk with F ′(r) 6= 0. Our
aim is to observe that such metrics will have a horizon at r = rk and will also
share many of the physical features in the Schwarzschild metric. In this case,
the metric near r = rk take the following form

ds2 ≈ −F ′(rk)(r − rk)dt
2 + (F ′(rk)(r − rk))

−1
dr2 + dL2, (5.70)

where dL2 denotes the metric on the t = const, r = const surface. Introducing
the variable χ ≡ 1

2F ′(rk) and a new coordinate w ≡ (r− rk) in place of r, the
metric takes the form

ds2 ≈ −2χwdt2 + (2χw)
−1
dw2 + dL2. (5.71)

Notice that the above form is precisely the modified metric of the Rindler
frame with the horizon now being located at w = 0. We see that, when the
flat spacetime is described in the Rindler coordinates, the metric is singular at
w = 0; but since the underlying spacetime is flat, we know that the geometry
has no real singularity at w = 0 and the peculiar behaviour of the metric must
be due to the bad choice of coordinates. This is a clear indication that, for
metrics of the above form, the spacetime geometry at r = rk is well-defined.
Consider the Schwarzschild spacetime, given in terms of the Kruskal-Szekers
coordinates
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ds2 = −32m3

r
e−

r
rs

(
dU2 − dV 2

)
+ r2dΩ2 ≡ −C2(U, V )

(
dU2 − dV 2

)
+ dL2,

(5.72)

where

U = −2rse
− u

2rs , V = 2rse
v

2rs , (5.73)

with u = t + r∗ and v = t − r∗, where r∗ is the tortoise coordinate. In the
metric, C2(U, V ) is the conformal factor. The above metric is a generaliza-
tion of the general spherically symmetric metric in Schwarzschild spacetime,
with χ replacing1 1

2rs
. The Killing vector, ξ = ∂t representing time transla-

tion invariance in the Schwarzschild like coordinates can be expressed in the
Kruskal-Szekeres coordinates as

ξ = ∂t ×
∂Xα

∂Xα
=
∂Xα

∂t

∂

∂Xα
= χ

(

V
∂

∂V
− U

∂

∂U

)

, (5.74)

and the norm of the Killing vector is given as follows

ξ2 = gUV ξ
UξV = C2χ2UV. (5.75)

From the nature of the transformations, we know that the product UV is neg-
ative in in the right wedge and positive in the future light cone. It vanishes
on the horizon H, where UV = 0 (which implies U = V = 0), and given by
U = T − R = 0 and V = T + R = 0. The conformal factor, C is finite at
the horizon. It follows that the norm of the Killling vector ξ2 vanishes van-
ishes on the horizon and switches sign there. Take the Schwarzschild metric
for instance, we know from the previous chapters that the first Killing vector
Kµ = (1, 0, 0, 0) and to find the covariant forms, we simply need to lower with
the metric. In Schwarzschild we have

ξ = Kµ = gµνK
ν =

{

−
(

1− rs
r

)

, 0, 0, 0
}

, (5.76)

and thus, the norm is

ξ2 = −
(

1− rs
r

)

. (5.77)

The killing vector ξ itself becomes

ξ|H = (∂t)H = χV ∂V =
1

2rs
2rse

v
2rs

∂

∂
(

2rse
v

2rs

) = ∂v. (5.78)

on the future horizon U = 0. Therefore, the Killing vector ξ is both normal

1 since χ = 1
2
F ′(r) = 1

2
ltr→rs

(

1− rs
r

)

= 1
2rs
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and tangential to the horizon surface which, of course, is possible only because
the horizon is a null surface. Similar conclusions apply on the past horizon
V = 0. Now, given a Killing vector ξ, its integral curves are called the orbits of
ξ and are illustrated in figure 5.11. Observe that the orbits of ξ are hyperbolas
in the right and left wedges; they degenerate to straight lines on the horizons
with the origin U = 0, V = 0 being a fixed point. Just like any other event in
the UV plane, the origin also represents a 2-sphere with coordinates θ and φ
on it and is called a bifurcation 2-sphere.

Fig. 5.11. A birfurcate Killing horizon

A Killing horizon H is a type of null surface which arises if a Killing vector
field ξ is normal to the null surface. Let l be normal to the null hypersurface
Σ and affinely parametrised such that l · ∇l = 0. Then, for some function f ,
ξ = fl on Σ. It follows that ξ satisfies

ξµ∇µξ
ν = flµ∇µ(fl

µ)

= flµlν∇µf + f2lµ∇µl
ν

= flν lµ∇µf

= κξν ,

(5.79)

on Σ. κ is called surface gravity. It takes its name from the fact that κ is
constant over the horizon and equals the force that an observer at infinity
would have to exert in order to keep a unit mass at the horizon.



212 5 Embedding Diagrams and Extensions of the Schwarzschild Metric

Killing Horizons in the Schwarzschild Spacetime

Performing a coordinate change to ingoing Eddington-Finkelstein coordinates
causes the metric to take the form (−+++)

ds2 = −
(

1− rs
r

)

dv2 + dr dv + dv dr + r2dΩ2. (5.80)

We know that the Killing vector has the following form

ξµ = Kµ = (1, 0, 0, 0), & ξµ = Kµ = gµνK
ν =

{

−
(

1− rs
r

)

, 1, 0, 0
}

. (5.81)

Thus, ξµ∇µξ
ν = κξν gives the following differential equation

1

2

∂

∂r

(

1− rs
r

)

= κ, (5.82)

and upon solving this we get κ = 1
2rs

. Observe that at the horizon, we obtained

χ from the Schwarzschild metric to be χ = 1
2F ′(r) = 1

2rs
= κ, this is nothing

but surface gravity.

5.5.2 A Mathematical Approach

A Killing horizon is a null-hypersurface defined by the vanishing of the norm
of a vanishing Killing vector field. Mathematically, we can define it as follows:
A null hypersurface which coincides with a connected component of the fol-
lowing set

AX = A(X) = {g(X,X) = 0, X 6= 0}, (5.83)

where X is a Killing vector, with X tangent to A, is called a Killing horizon
associated to X2.
Consider a spacelike submanifold S of co-dimension 2 in a spacetime (M, g),
and suppose that there exists a Killing vector field X which vanishes on S.
Then, the 1-parameter group of isometries, φt[X], generated by X leaves S
invariant and, along S, the tangent maps, φt[X]∗, induce isometries of TM to
itself. At every point q ∈ S there exist precisely two null directions- vector-
space of n± in the tangent space of M , i.e., n± ⊂ TqM , where n± are two
distinct null future-directed vectors normal to S. Now, since every geodesic
is uniquely determined by its initial point and its initial direction, we can
conclude that the null geodesics through the point q are mapped to themselves
by the flow ofX which implies thatX is tangent to those geodesics. There exist
two null hypersurfaces A± threaded by those null geodesics, intersecting at S.
Let A±+ be the connected components of the hypersurface sans the set of null

2 Here it is implicitly assumed that the hypersurface is embedded
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Killing vectors, i.e., A± \{X = 0} lying to the future of S and accumulating at
S. Similarly, let A±− be the connected components of A±\{X = 0} lying to the
past of S and accumulating at S. Then, the A±± are Killing horizons which,
together with S, form a bifurcate Killing horizon with bifurcation surface S.

5.5.3 Killing Pre-horizons

Let X be a Killing vector, then every connected3 null hypersurface A0 ⊂ AX ,
with AX

4, with the property that X is tangent to A0, is called a Killing pre-
horizon. This is not to be confused with a Killing horizon since a horizon is
necessarily embedded while a pre-horizon is not allowed to embedded. Hence,
every Killing horizon is a Killing pre-horizon, but not every Killing pre-horizon
is a Killing horizon.

5.6 Penrose-Carter Diagrams and the Idea of Pinning

Down Infinities

The mathematical idea of a Penrose-Carter diagram is to select a relevant
2-dimensional part of a spacetime and make it’s stereographic projection on a
compact space. What this idea translates to in English is- we use a coordinate
transformation on the spacetime (M, g) to pin an infinity to a finite coordi-
nate distance, so that we can draw the entire spacetime on a sheet of paper. A
2-dimensional metric, being a symmetric 2 × 2 matrix, has three components
among which two can be fixed via transformations of two coordinates. Thus,
any 2-dimensional metric on R1,1 can be transformed to the following form

gαβ = ω2(x)ηαβ , α = 1, 2 (5.84)

where ω is a non-zero differentiable function, and ω2(x) is a spacetime depen-
dent function called conformal factor.

5.6.1 Causal and Conformal Relations

Since spacetime is locally Lorentzian, any two events in a sufficiently small
neighbourhood can be joined by lines that are everywhere either spacelike,
timelike or null.
a. In the case in which the events are separated by a timelike line: One event
occurs before the other. Such events are said to be causally related. The first
event is contained within the past light cone of the second, which it can causally
influence. The second event is contained inside the future light cone of the first.

3 not necessarily embedded
4 AX = A(X) = {g(X,X) = 0, X 6= 0}
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Fig. 5.12. The idea of pinning down infinities via a Penrose-Carter diagram. Here
i0 is a spacelike infinity while I± are null infinities.

b. In the case in which the events are separated by a spacelike line are causally
unrelated and information which cannot propagate faster than the speed of
light, cannot travel between them.
In some spacetimes, infinite world-lines exist which remain permanently out-
side each other’s light cones. Observers on these world-lines could never be
aware of each other’s existence! Distinct regions of spacetime that contain
families of such world-lines are said to be causally separated and the presence
of these regions are to be recognized in spacetimes that contain them.
The idea behind a Penrose-Carter diagram, as previously seen, is that angles
and lightlike world-lines are preserved under conformal transformations. The
metric will typically diverge as we approach the infinities, i.e., the edges of
the finite diagram. To fix this, we perform a conformal transformation on g
to obtain a new metric ḡ that is regular on the edges. Then (M, ḡ) is a good
representation of the original spacetime (M, g) insofar that it has exactly the
same causal structure. A remarkable property of the conformal transformation
is that the Weyl tensor for the original and conformal spacetimes are identi-
cal, i.e., Wαβγδ =Wαβγδ. Curvature tensors, however, are not preserved under
conformal transformations, i.e., for example R̄αβγδ 6= Rαβγδ. Thus, it is gen-
erally not possible for both the original and the conformal spacetimes to be
vacuum, or to correspond to the same type of source.

For any spacetime with metric g and manifold M , a related spacetime
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with metric ḡ and manifold M̄ is defined by the conformal transformation
ḡµν = Ω2gµν , where the conformal factor Ω can be, in general, an arbitrary
function. Tensor indices in the original and conformally related spacetimes are
lowered and raised using the corresponding metric, with ḡµν = Ω−2gµν . This
conformal transformation is particularly useful if it maps the asymptotic re-
gions at infinite proper distance in the original spacetime to finite regions in
the conformal spacetime. Taking the conformal factor Ω to be positive in M ,
the asymptomatic boundary of M maps to the hypersurface in M̄ on which
Ω = 0. This boundary is referred to as conformal infinity and denoted as I
(pronounced ′scri′). Conformal diagrams take a particularly simple form when
describing spherically symmetric spacetimes. This enables the spacetime to be
visualized in a 2-dimensional picture in which every point represents a typical
point on a 2-sphere at some time. For spacetimes with less symmetry, it is still
possible to construct conformal diagrams for specific sections, but to visual-
ize their complete causal structure in a suitable higher-dimensional conformal
picture is usually much more difficult.

5.6.2 Spatial vs Future Null Infinities

Mr. Zero Entropy and Mr. Absolute Zero are in charge of calculating the
amount of mass carried away by gravitational and electromagnetic waves dur-
ing a supernova explosion. They first measure the asymptomatic form of the
metric not just at spatial infinity but at future null infinity. Mr. Absolute Zero
measures the mass before the explosion mB by examining the asymptomatic
form of g00 at spatial infinity, the following are the results he reported back to
base

g00 = −1 +
2mB

r
+O

(
1

r2

)

, (5.85)

as r → ∞, t = const. Mr. Zero Entropy waits in the spaceship is at a fixed ra-
dius r until the radiation has flowed completely past their point. He measures
the mass after explosion mA. The following are the results he reported back
to base

g00 = −1 +
2mA

r
+O

(
1

r2

)

, (5.86)

as r → ∞ with t − r = const. Thus, the measurement of mA is done by
examining the asymptomatic form of g00 not at spatial infinity, but at future
null infinity.

5.6.3 Conformal Mapping of Minkowski Spacetime

The simplest spacetime is that which is flat everywhere. Such a spacetime con-
tains no matter and no gravitational field. It is known as Minkowski space, and
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is the spacetime of special relativity. It typically occurs as a weak-field limit
of many solutions of general relativity, and may also appear as the asymptotic
limit of the gravitational field of bounded sources. For all these reasons it is
most important that its structure be clearly understood. As is well known,
in a 3 + 1-dimensional spacetime, the maximum number of symmetries is 10.
The Minkowski metric has this precise number of isometries, which can be
considered to correspond to four translations, three spatial rotations and three
special Lorentz boosts. Such a maximally symmetric spacetime necessarily has
constant curvature, which is zero in this case. Thus, in any coordinate repre-
sentation in which it may not be immediately recognisable, Minkowski space
(or part of it) can always be uniquely identified by the fact that its curva-
ture tensor vanishes identically. the Minkowski metric can be expressed in the
Cartesian form as follows

ds2 = −dt2 + dx2 + dy2 + dz2, (5.87)

in which the coordinates t, x, y, z cover their full natural ranges (−∞,∞). In
spherical polar coordinates, the metric takes up the following form

ds2 = −dt2 + dr2 + r2dΩ2. (5.88)

But in this form, the metric has apparent singularities when r = 0, when
sinθ = 0, and when r → ∞. However, these are simply coordinate singular-
ities which correspond, respectively, to the origin, the axis of spherical polar
coordinates and to spatial infinity. These apparent singularities thus have no
physical significance. In this case of a flat Minkowski space, the conformal re-
lation is obtained by considering the (t, x) part of spacetime, and applying the
following coordinate transformations

t+ x = tan
(
ψ+ξ
2

)

t− x = tan
(
ψ−ξ
2

)

.

(5.89)

Thus, if t, x ∈ (−∞,∞), then ψ, ξ ∈ [−π, π]. We have just pinned down the
infinities to finite values −π and π via appropriate functions. Now,

dt2 − dx2 =
1

[

2cos
(
ψ+ξ
2

)

cos
(
ψ−ξ
2

)]2

(
dψ2 − dξ2

)
. (5.90)

Comparing this to the standard form of conformal transformation, we find that
the conformal factor is

Ω =
1

[

2cos
(
ψ+ξ
2

)

cos
(
ψ−ξ
2

)]2 , (5.91)
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and it blows up at |ψ ± ξ| = π, which makes the boundary of the compact
(ψ, ξ) spacetime infinitely far away from it’s internal point. This allows us to
map the compact (ψ, ξ) spacetime onto the non-compact (t, x) spacetime. The
boundary of the physical Minkowski spacetime is then given by the points
where Ω = 0, i.e., ψ + ξ = π and ψ − ξ = −pi. These points corresponds
to infinities in the physical spacetime. For the section on which θ = π/2, the
entire Minkowski space is conformal to the region between the two null cones.
Such null cones are shown in figure 5.13, and Minkowski space can thus be
seen to be conformal to the region between them.

=

=

= - =  --

= +

= 0

=
 0

Ø

Fig. 5.13. The section θ = π/2 of Minkowski space is conformal to the region
between the two null cones ψ + ξ = π and ψ − ξ = π that is within the timelike
cylinder of radius π which represents the Einstein static universe

This immediately illustrates the important fact that the conformal infinity of
Minkowski space is null, and denoted as I. Also, since the radius of the 2-
spheres vanishes at ξ = π, it is demonstrated that the point at spatial infinity
i0 is indeed just a point. ξ = 0 represents the origin of the spherical coordinates
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r = 0, and ψ = 0 corresponds to t = 0. Table 5.1 gives the definitions of all
the pinned infinities.

Label Name Definition

I− denotes the past null infinity (ψ − ξ = −π, 0 < ξ < π)
I+ denotes the future null infinity (ψ + ξ = π, 0 < ξ < π)
i− denotes the past timelike infinity (ψ = −π, ξ = 0)
i0 denotes the spatial infinity (ψ = 0, ξ = 0)
i+ denotes the future timelike infinity (ψ = π, ξ = 0)

Table 5.1. The symbols associated to and the conditions of the pinned infinities

The metric of the new compact (ψ, ξ) space, in polar coordinates has the fol-
lowing form

ds2 =
−dψ2 + dξ2

4cos2
(
ψ+ξ
2

)

cos2
(
ψ−ξ
2

) + r2(ψ, ξ)
(
dθ2 + sin2dφ2

)
. (5.92)

Note that if dt2 − dx2 = 0, then dψ2 − dξ2 = 0. Thus, the conformal factor
is irrelevant in the study of the properties of lightlike world-lines which obey
ds2 = 0.

5.6.4 Conformal Mapping of Schwarzschild Spacetime

Consider the Schwarzschild metric in the Kruskal-Szekeres coordinates

ds2 =
32m3

r
e−

r
rs

(
dU2 − dV 2

)
− r2

(
dθ2 + sin2dφ2

)
. (5.93)

As seen previously, these coordinates are already in the conformally flat form
hence we need only to make their ranges compact. This can be done using the
following coordinate transformations

U ± V = tan

(
ψ ± ξ

2

)

. (5.94)

These transform the metric into the form

ds2 =
32m3

r
e−

r
rs

dψ2 − dξ2

4cos2
(
ψ+ξ
2

)

cos2
(
ψ−ξ
2

) − r2
(
dθ2 + sin2dφ2

)
. (5.95)

the global structure of the Schwarzschild spacetime is illustrated in figure 5.14.
It shows all possible regions of the complete analytically extended manifold.
In particular, exterior to the horizons there exist two causally separated static
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regions r > rs that are asymptotically Minkowski like. The figure also shows
the spacelike character of the initial and final curvature singularities r = 0.

i+i+

I +

I -

I +

I -

+

r=0

r s

r
s

horiz
on

horizon

r=0

i0i0

i-i-

r=∞

r=
∞

Fig. 5.14. The figure shows the Penrose diagram for the complete Schwarzschild
spacetime. Here, the θ and φ coordinates are suppressed so that each point represents
a 2-sphere of radius r. All lines shown are hypersurfaces on which r is a constant.

Figure 5.15 illustrates the character of the spacelike infinity i0, null infinity I±,
and the horizons that surround the initial and final curvature singularities. The
initial and final curvature singularities are also referred to as the white hole
and the black hole.
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r = 0
i+

i0

i-

I +

I -

Fig. 5.15. The exterior region of the Schwarzschild spacetime with the angular
coordinate φ reintroduced. The complete spacetime contains two such regions that
are causally separated (see subsection 5.6.1) from each other. The horizons at r = rs
are drawn at 450 to reflect the fact that they are null, but their area at all times
remains constant.

5.6.5 Why Curvature Singularities?

Due to the immense physical significance of the Schwarzschild solution as de-
scribing the spacetime exterior to a massive spherical object or black hole, we
have concentrated on the case in which m > 0. This solution with a negative
parameter m, i.e., m < 0 may also be considered5. In such a case, there is no
horizon and the curvature singularity at r = 0 is timelike, globally naked and
unstable. The global nakedness of the singularity tells us that the curvature
singularity could be literally seen at every point in the spacetime. This case,
however, does not correspond to any known physical situation. The Penrose
and conformal diagrams for this solution are illustrated in figure 5.16.

5 the assumption that r ∈ (0,∞) still holds
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r = 0i+ i+

i0
i0

i- i-

r = const.

I +

I -

I +

I -

Ø

Fig. 5.16. Penrose and conformal diagrams for the Schwarzschild spacetime for the
case when m < 0. Notice the globally naked timelike singularity at r = 0.

5.7 Higher Dimensions

A conventional coordinate system for the Schwarzschild metric is the Isotropic
coordinates in which we introduce a new radial coordinate r̄, which is implic-
itly defined by the following formula

r = r̄
(

1 +
m

2r̄

)2

, (5.96)

with some computations we obtain,

gm =

(

1 +
m

2|x|

)4
(

3∑

α=1

(dxα)
2

)

−
(
1− m

2|x|
1 + m

2|x|

)2

dt2, (5.97)

where xα are coordinates on R3 with |x| = r̄. Those coordinates show explic-
itly that the space-part of the metric is conformally flat.
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5.7.1 Painlevé - Gullstrand Coordinates

The Schwarzschild spacetime has the agog property of possessing flat spacelike
hypersurfaces. They appear when introducing the Painlevé-Gullstrand coordi-
nates as follows:
Starting from the standard Schwarzschild metric we introduce a new time τ
via the following equation

t = τ − 2r

√

2m

r
+ 4m tanh−1

(√

2m

r

)

, (5.98)

such that

dt = dτ −

√
2m
r

2m
r

dr. (5.99)

This yields the following metric

ds2 = −
(

1− 2m

r

)

dτ2 + 2

√

2m

r
drdτ + dr2 + r2dΩ2, (5.100)

or, alternatively in standard Cartesian coordinates

ds2 = −
(

1− 2m

r

)

dτ2 + 2

√

2m

r
drdτ + dx2 + dy2 + dz2. (5.101)

5.7.2 Wave Coordinates and their Asymptotic Behaviour

Wave coordinates are another set of coordinates that act as an effective tool for
PDE analysis of spacetimes. In spherical coordinates associated to wave coor-
dinates (t, x̂, ŷ, ẑ), with radius function r̂ =

√

x̂2 + ŷ2 + ẑ2, the Schwarzschild
metric takes the following form 6

ds2 = − r̂ −m

r̂ +m
dt2 +

r̂ +m

r̂ −m
dr̂2 + (r̂ +m)

2
dΩ2. (5.102)

Now, consider the Schwarzschild metric in dimensions greater than 3, i.e.,
n ≥ 3,

ds2n = −
(

1− 2m

rn−2

)

dt2 +

(

1− 2m

rn−2

)−1
dr2 + r2dΩ2, (5.103)

6 this is obtained by replacing r in the Schwarzschild metric with r̂ = r −m
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and consider a general spherically symmetric static metric of the the following
form

ds2 = −e2αdt2 + e2βdr̂2 + e2γ r̂2dΩ2, (5.104)

where α, β, and γ depend only upon r. Now let us define φ and ψ such that

φ = eα+β+(n−3)γ , ψ = eα+β+(n−1)γ (e−2β − e−2γ
)
. (5.105)

Now, we proceed to perform all our calculations in a coordinate system in
which the vector (x, y, z) is aligned along the x-axis, (x, y, z) = (r, 0, 0). Then
the metric in a spacetime dimension of n+ 1 reads

g =










−e2α 0 0 0 · · · 0
0 e2β 0 0 · · · 0
0 0 e2γ 0 · · · 0

0 0
...

. . . 0
0 0 0 · · · e2γ










, (5.106)

which implies the following

det g = |g| = e2(α+β)+2(n−1)γ , (5.107)

still at (x, y, z) = (r, 0, 0). Spherical symmetry implies that this equality holds
everywhere. Now, we have

det g ∂g∂
gx = ∂ξ

(√

|g|gνµ
)

= ∂ξ
(
e−2γδµν +

(
e−2β − e−2γ

)
xµxν

r2

)

= ∂ξ




e

α+β+(n−3)γ
︸ ︷︷ ︸

=φ

δµν + eα+β+(n−1)γ (e−2β − e−2γ
)

︸ ︷︷ ︸

=ψ

xµxν

r2






=
(

φ
′

+ ψ
′

+ n−1
r ψ

)
xµ

r ,

(5.108)

this is called the harmonicity condition. It follows from this condition that

0 =
d (φ+ ψ)

dr̂
+
n− 1

r̂
ψ, (5.109)

equivalently,
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d
[
r̂n−1 (φ+ ψ)

]

dr̂
= (n− 1) r̂n−2φ. (5.110)

Now, comparing the above equation with the standard metric defined, we find

eα =

√

1− 2m

rn−2
, eβ =

dr

.r
e−α, eγ =

r

r̂
. (5.111)

Since φ+ ψ = eα−β+(n−1)γ and φ = dr
dr̂

(
r
r̂

)n−3
, we finally obtain 7

d

dr

[

rn−1
(

1− 2m

rn−2

)
dr

dr̂

]

= (n− 1)r̂rn−3. (5.113)

The characteristic exponents are 1 and n − 1 so that, after matching a few
leading coefficients, the standard theory of such equations provides solutions
with the behaviour

r̂ = r − m

(n− 2) rn−3
+

{
m2

4 r
−2 ln(r) +O

(
r−5 ln(r)

)
, n = 4

O
(
r5−2n

)
, n ≥ 5.

(5.114)

Thus, somewhat surprisingly, we find logarithms of r in an asymptotic expan-
sion of r̂ in dimension n = 4. However, for n ≥ 5 there is a complete expansion
of r̂ in terms of inverse powers of r, without any logarithmic terms in those
dimensions.

5.7.3 Schwarzschild-Tangherlini Metric

In spacetime dimension (n+ 1), the metrics take the form

ds2 = −V2(r, t)dt2 + V−2dr2 + r2dΩ2, (5.115)

with

V2 = 1− 2m

rn−2
, (5.116)

7 which upon introduction of x = 1/r becomes

d

dr

[

x3−n
(

1− 2mxn−2) dr̂

dx

]

= (n− 1)r̂x1−n, (5.112)

this is called an equation with a Fuchsian singularity at x = 0
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where the mass m is called Arnowitt-Deser-Misner (or ADM) mass in space-
time dimension four 8. Making the assumption that m > 0, a maximal analytic
extension can be constructed by a simple modification of the calculations pre-
sented above, leading to a spacetime with a global structure.
Consider a metric of the following form

ds2 = −Rdt2 +R−1dr2 + hµνdx
µdxν

︸ ︷︷ ︸

=h

, (5.117)

with R = R(r), where h = hµν (t, r, x
γdxµdxν) is a family of Riemannian

metrics on an (n2)-dimensional manifold which possibly depend on t and r9.
It is assumed that R is defined for r in a neighborhood of r = r0, at which R
vanishes, with a simple zero10 there. Equivalently

R (r0) = 0, R′

(r0) 6= 0. (5.118)

Let us define the following

u = t− f(r), v(r) = t+ f(r), f = 1
R

û = −e−cu, v̂ = ecv,
(5.119)

we are led to the following form of the metric

ds2 = −R
c2
e−2cf(r)dûdv̂ + h. (5.120)

Since R has a simple zero, it factorizes as follows

R = (r − r0)H(r), (5.121)

for a function H which has no zeros in a neighborhood of r0. This follows im-
mediately from the following formula

R−R (r − r0) =

∫ 1

0

dR (t (r − r0) + r0)

dt
dt = (r − r0)

∫ 1

0

R
′

(t (r − r0) + r0) dt.

(5.122)

8 and is proportional to that mass in higher dimensions
9 It is convenient to write R for V2, as the sign of R did not play any role; sim-

ilarly the metric h was irrelevant for the calculations performed in the previous
section(s).

10 If f is a function that is meromorphic in a neighbourhood of a point z0 of the
complex plane, then there exists an integer n such that f(z) (z − z0)

n. Simple
zero is one of order |n| = 1
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Now, in the following equation

1
R(r) =

1
(r−r0)H(r0)

+ 1
R(r) − 1

(r−r0)H(r0)

= 1
(r−r0)H(r0)

+ H(r0)−H(r)
H(r)H(r0)(r−r0) ,

(5.123)

an analysis of H(r)−H (r0) followed by integration yields

f(r) =
1

R′ (r0)
ln (r − r0) + f̂(r) (5.124)

for some function f̂ which is smooth near r0. Substituting this into the metric
with

c =
R′

(r0)

2
, (5.125)

we get

ds2 = ∓ 4H(r)

(R′ (r0))
2 e
−f̂(r)R′

(r0)dûdv̂ + h, (5.126)

with a negative sign if we started in the region with r > r0, and positive oth-
erwise. The function r is again implicitly defined by11

ûv̂ = ∓ (r − r0) e
f̂(r)R′

(r0). (5.127)

The function f defined previously, for a (4 + 1)-dimensional Schwarzschild-
Tangherlini solution can be calculated to be the following

f = r +
√
2m ln

(

r −
√
2m

r +
√
2m

)

, (5.128)

which results in the following metric

ds2 = −8m
(
r +

√
2m
)2

r2
e−

r
2m dûdv̂ + dΩ2. (5.129)

11 Notice that the RHS has a derivative which equals ∓e
f̂(r0

R
′
(r0) 6= 0 at r0, and hence

this equation defines a smooth function r = r (ûv̂) for r near r0 by the implicit
function theorem. The above discussion applies to R which are of Ck differen-
tiability class, with some losses of differentiability. Also, the above equation also
provides an extension of Ck2 differentiability class, which leads to the restriction
k ≥ 2. However, the implicit function argument just given requires h to be differ-
entiable, so we need in fact k ≥ 3 for a cogent analysis.
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The isotropic coordinates in higher dimensions lead to the following form of
the Schwarzschild-Tangherlini metric

ds2 =

(

1 +
m

2|x|n−2
) 4
n−2

(
n∑

α=1

(dxα)
2

)

−
(
1− m

2|x|n−2

1 + m
2|x|n−2

)

dt2, (5.130)

where the radial coordinate |x| has the following relation with r

r =

(

1 +
m

2|x|n−2
) 2
n−2

|x|. (5.131)

An explicit formulation of the same metric, expressed as functions of elemen-
tary coordinates, may be given as follows

ds2 = −8m

(

dxdy +
y2

xy + 2m
dx2
)

− (xy + 2m)2dΩ2, (5.132)

where the coordinates (x, y) are related to standard Schwarzschild coordinates
(t, r) are follows

r = xy + 2m,

t = xy + 2m
(
1 = ln

∣
∣ y
x

∣
∣
)
,

|x| =
√

|r − 2m|e r−t4m ,

|y| =
√

|r − 2m|e t−r4m .

(5.133)

In higher dimensions there exists an explicit, manifestly globally regular form
of the metric, in spacetime dimension n+ 1

ds2 = −2
q2(−(r)−n+22n+1mn+1+4m2((n+1)(2m−r)+3r−4m))

m(2m−r)2 dW 2

+8mdWdz + r2dΩ2
n−1,

(5.134)

where r ≥ 0 is the following function

r(W, z) = 2m+ (n− 2)Wz, (5.135)

and dΩ2
n−1 is the metric of a unit n− 1 sphere.
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Advanced Topics

6.1 The Vielbein Spin Connection

A neat trick to have in one’s pocket is the knowledge of the Vielbein spin con-
nection or the tetrad formalism. This is specifically useful in removing waste,
i.e., terms which are null. This formalism is very useful when we have a di-
agonal metric where the non-null components of the Christoffel symbol and
Riemann tensor can be computed with ease. It can also be employed with
non-diagonal metrics although the calculations are a bit length but still less
when compared to the usual method. In the following paragraphs, I will be
providing a brief outline of this method, enough to do computations. Consider
a metric ds2 = gαβdx

αdxβ . We introduce a Vielbein which is nothing but a
basis of 1-forms

ea = eaαdx
α, (6.1)

where the components eaα possess the property

gαβ = ηabe
a
αe
b
β . (6.2)

The indices a and b are called tangent space indices and ηab is the flat metric.
It is to be noted that the metric ηab will possess the same signature of gαβ . The
choice of vielbeins is arbitrary but we can specifically choose an orthogonal-
type transformation to obtain another valid Vielbein ēa which is related to the
original Vielbein by

ēa = Λabe
b, (6.3)

where Λab satisfies the condition

ηabΛ
a
cΛ

b
d = ηcd. (6.4)
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We can now define the connection 1-form as follows

ωab = ωabαdx
α (6.5)

which can be regarded as a non-degenerate n× n matrix with 1-form entries.
The connection 1-form is related to the connection coefficient, in local coordi-
nate basis, by the following expression

ωab = Γ acbdx
c. (6.6)

The torsion 2-form is given by

T a = dea + ωab ∧ eb. (6.7)

Now, if the connection is torsion-free (which it usually is), then from 6.6 it can
be seen to satisfy the following

(
ωab ∧ eb

)

αβ
= Γ acb

(

ecαe
b
β − ecβe

b
α

)

= 2Γ acbe
c
[αe

b
β]

= −2D[αe
a
β]

= − (dea)αβ

(6.8)

This is called Cartan’s first structural equation. The covariant derivative com-
mutes with the process of contracting the tangent space indices a, b with ηab
provided that we have

Dηab ≡ dηab − ωcaηcb − ωcbηac = 0. (6.9)

Realizing that the components of ηab are constants, we obtain the equation of
metric compatibility which reads

ωab = −ωba, (6.10)

where ωab ≡ ηacω
c
b . Cartan’s first structural equation 6.8 and the metric com-

patibility equation 6.10 help determine the connection 1-form ωab uniquely. By
definition, the exterior derivatives of the Vielbeins ea are given by

dea = −1

2
Cabce

b ∧ ec. (6.11)

Form this definition of the exterior derivative and Cartan’s first structure equa-
tion, we find that the solution to ωab reads as follows
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ωab =
1

2
(Cabc + Cacb − Cbca) , (6.12)

where Cabc ≡ ηcdC
d
ab. A curvature 2-form is defined as follows

indexcurvature 2-form
Ωab = dωab + ωac ∧ ωcb . (6.13)

Taking the exterior derivative of connection 1-form 6.6 we obtain

dωab = Γ acb,ndx
n ∧ dxc = 1

2

(
Γ acb,n − Γ acn,b

)
dxn ∧ dxc (6.14)

and the wedge of two connection 1-forms read

ωac ∧ ωcb = Γ acnΓ
c
bmdx

n ∧ dxm

= 1
2 (Γ

a
cnΓ

c
bm − Γ acmΓ

c
bn) dx

n ∧ dxm.
(6.15)

Substituting equations 6.15 and 6.14 in 6.13, we obtain

Ωab = 1
2

(

Γ acb,n − Γ acn,b + Γ acnΓ
c
bm − Γ acmΓ

c
bn

)

dxn ∧ dxm

= 1
2R

a
bnmdx

n ∧ dxm
(6.16)

Let Ena denote the inverse of the Vielbein ean, satisfying Enb e
a
n = δab . The

Reimann tensor components can now be defined entirely in the tangent basis
as

Rabcd ≡ Enc E
m
d R

a
bnm, (6.17)

and hence, in terms of the tangent indices, we have

Ωab =
1

2
Rabcde

c ∧ ed, (6.18)

which is called Cartan’s second equation of structure. Consider a spherically
symmetric metric with line element

ds2 = −e2µ(t,r)dt2 + e2ν(t,r)dr2 + r2dΩ2
2 , (6.19)

We first introduce the orthonormal Vielbein basis1

1 usually the script are hated, i.e., et̂ should be used instead of et we are using here
to denote that they are coordinate basis. We can afford to be a snobbish here.
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et = eµdt, er = eνdr, eθ = rdθ, eφ = rsinθdφ, (6.20)

whose exterior derivative reads

det = µ̇eµ dt ∧ dr + µ′eµ dr ∧ dt = −µ′e−ν et ∧ er

der = ν̇eν dt ∧ dr = −ν̇e−µ er ∧ et,

deθ = dr ∧ dθ = − 1
r e
−ν eθ ∧ er,

deφ = sinθ dr ∧ dφ+ rcosθ dθ ∧ dφ = − 1
r e
−ν eφ ∧ er − 1

r cotθ e
φ ∧ eθ.

(6.21)

Since we have dea = −ωab ∧ eb to hold for a torsion-less connection, we can use
these equations to directly read-off the connection 1-forms as follows

ωtr = µ′e−ν et, ωrt = ν̇e−µ er,

ωθr = 1
r e
−ν eθ, ωφr = 1

r e
−ν eφ, ωφθ = 1

r cotθ e
φ.

(6.22)

With the connection 1-forms found, we can make use of equation 6.13 to cur-
vature 2-forms, but before we do that let us write down the expressions for
each 2-form and see what components of the wedge product we need to evaluate

Ωtr = dωtr + ωtt ∧ ωtr + ωtr ∧ ωrr + ωtθ ∧ ωθr + ωtφ ∧ ωφr = dωtr,

Ωrt = dωrt + ωrr ∧ ωrt + ωrt ∧ ωtt + ωrθ ∧ ωθt + ωrφ ∧ ωφt = dωrt ,

Ωθr = dωθr + ωθθ ∧+ωθrω
θ
r ∧ ωrr + ωθφ ∧ ωφr + ωθt ∧ ωtr = dωθr + ωθφ ∧ ωφr

= dωθr − ωφθ ∧ ωφr
︸ ︷︷ ︸

∝ eφ∧eφ=0

,

Ωφr = dωφr + ωφt ∧ ωtr + ωφθ ∧ ωθr + ωφφ ∧ ωφr + ωφr ∧ ωrr = dωφr + ωφθ ∧ eθr,

Ωφθ = dωφθ + ωφφ ∧ ωφθ + ωφr ∧ ωrθ + ωφt ∧ ωtφ + ωφθ ∧ ωθθ = dωφθ − ωφr ∧ ωθr .
(6.23)

Upon careful computations, we would be able to obtain the following expres-
sions for the curvature 2-form
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Ωtr = (µ′ν′ − µ′′ − ν′′) e−2ν et ∧ er,

Ωrt = (µ̇ν̇ − µ̈− ν̈) e−2µ er ∧ et,

Ωθr = ν′

r e
−2ν eθ ∧ er + ν̇

r e
−µ−ν eθ ∧ et,

Ωφr = ν′

r e
−2ν eφ ∧ er + ν̇

r e
µ−ν eφ ∧ et,

Ωφθ = 1−e−2ν

r2 eφ ∧ eθ.

(6.24)

We can now compare these expressions to Cartan’s second structure equation
6.18 and directly read off the Riemann tensors

Rtrtr = (µ′ν′ − µ′′ − ν′′) e−2ν , Rrtrt = (µ̇ν̇ − µ̈− ν̈) e−2µ,

Rθrθr =
ν′

r e
−2ν , Rθtθt =

ν̇
r e
−µ−ν ,

Rφrφr =
ν′

r e
−2ν , Rφrφt =

ν̇
r e
−µ−ν , Rφθφθ =

1−e−2ν

r2 .

(6.25)

These components of the Riemann tensor are nothing but Ricci tensor com-
ponents in disguise. Consider Rtrtr, we can write the covariant description as
Rtrtr = ηttR

t
rtr and finally the Ricci tensor as Rrr = ηttRtrtr = Rtrtr. It is to

be noted here that we are raising and lowering indices using the Minkowski
metric, ηab, since the indices are not holonomic. For a diagonal metric, as we
have here, the holonomic components of a (1, 1)-tensor coincide with the non-
holonomic components. This is the power of the curvature 2-form method. No
need to calculate Christoffel symbols and more importantly, there is no need
of blind calculations since the only components we solve for are the non-null
components.

6.1.1 Curvature 2-form Bianchi Identity

For every tensor valued p-form Ψ of type (n,m) there exists a unique tensor
valued (p + 1)-form DΨ , which is also of type (n,m) and has the following
components with respect to a basis {ea}

(DΨ)
a1...a2
b1...bm

= dΨa1...a2b1...bm
+ ωa1c1 ∧ Ψ c1a2...anb1...bm

+ . . .+ ωancn ∧ Ψa1...cnb1...bm
− ωc1b1 ∧ Ψa1...anc1b2...bm

. . .

−ωcmbm ∧ Ψa1...anb1...cm
.

(6.26)

Now, consider the form DΩab which can be written as

DΩab = dΩab + ωac ∧Ωcb − ωcb ∧Ωac (6.27)

Using 6.13, we can write the exterior derivative of the curvature 2-form as
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follows

dωab = d (dωab + ωac ∧ ωcb) = d (dωab ) + dωac ∧ ωcb − ωcb ∧ dωac , (6.28)

where d (dωab ) = 0. Substituting this into 6.27 we obtain the identity

DΩab = 0. (6.29)

This corresponds to the differential Bianchi identity.

Exercise 16

1. Show that the Schwarzschild metric has the following structure coefficients

Cttr =
rs

2r2
√

1− rs
r

, Cθrθ = Cφrφ = − 1
r

√
1− rs

r , C
φ
θφ = cotθ

r . (6.30)

2. The AdS4 metric in global coordinates has the line element

ds2 = −
(

1 +
r2

l2

)

dt2 +

(

1 +
r2

l2

)−1
dr2 + r2dΩ2

2 , (6.31)

where l is called the AdS radius. You can solve this by first introducing the
following orthonormal Vielbein basis

e0 =

(

1 +
r2

l2

) 1
2

dt, e1 =

(

1 +
r2

l2

)− 1
2

dr, e2 = rdθ, e3 = rsinθdφ. (6.32)

a. Find the structure coefficients and use them to find the connection 1-forms.
b. Find the curvature 2-forms and hence, the Riemann tensor components for
this metric.

3. Consider a spacetime in spherical coordinates (t, r, ϑ, ϕ) described by the
following line element

ds2 = −αγc2dt2 + α−γdr2 + r2α−γ+1
(
dϑ2 + sin2ϑ dϕ2

)
, (6.33)

where α = 1− rs
γr . This is called the Janis-Newman-Winicour spacetime.

a. Define a Veilblein basis and show that the structure constants of this metric
are as follows

Cttr =
rs
2r2α

(γ−2)
2 , Cϕϑϕ = − cotϑ

r α
(γ−1)

2 ,

Cϑrϑ = Cϕrϕ = − 2γr−rs(γ+1)
2γr2 α

(γ−2)
2 .

(6.34)
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b. Using the structure coefficients compute the connection 1-forms following
6.12.
c. Show that the only non-zero component of the Ricci tensor is Rrr =

− rs(γ2−1)
2γ2r4α2 and find the Ricci scalar.

d. Find the Kretschmann scalar and show that it matches the Kretschmann
scalar of the Schwarzschild case when we set γ = 1. This is true since when
γ = 1, the line element reduces to that of Schwarzschild.

4. The curvature 2-form method works well even for non-diagonal metrics.
Consider the TaubNUT metric which describes a spinning black hole. The line
element, in Boyer-Lindquist like spherical coordinates (t, r, ϑ, ϕ) reads

ds2 = −∆
Σ

(dt+ 2lcosϑ dϕ)
2
+Σ

(
dr2

∆
+ dϑ2 + sin2ϑ dϕ2

)

, (6.35)

where Σ = r2 + l2 and ∆ = r2 − 2Mr− l2. We have made use of natural units
here. M here is the mass of the black hole and l characterizes the magnetic
monopole strength of the black hole.
a. Find the connection 1-forms using the following orthonormal Vielblein basis

e0 =

√

∆

Σ
(dt+ 2lcosϑ dϕ) , e1 =

√

Σ

∆
dr, e2 =

√
Σ dϑ, e3 =

√
Σsinϑ dϕ.

b. Find the Curvature 2-forms and show that the Ricci scalar is R = 0.

6.2 Further Discussions on The Einstein Equations

Consider the principle part, i.e., the part containing the highest derivatives of
the metric (which is the 2nd derivative) is

P {Rµν} =
1

2
gαβ {∂µ∂αgβν + ∂ν∂αgβµ − ∂µ∂νgαβ − ∂α∂βgµν} (6.36)

The character of the Einstein equations as reflected in their symbol, which is
defined by replacing in the principal part ∂µ∂νgαβ by ξµξν ġαβ , where ξµ are
the components of a covector and ġαβ (the components of a possible variation
of g). Then, for a given background metric metric g, ρξ at a point p ∈ M and
the covector ξ ∈ ∗TpM are given by

(ρξ · ġ)αβ =
1

2
gαβ (ξµξαġβν + ξνξαġβµ − ξµξν ġαβ − ξαξβ ġµν) , (6.37)

let (iξ ġ)ν = gαβξαġβν , (ξ, ξ) = gαβξαξβ , (ξ ⊗ λ)µν = ξµλν , and gαβ ġαβ = Tr ġ,
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then

{ρξ · ġ) =
1

2
(ξ ⊗ iξ ġ + iξ ġ ⊗ ξ − Tr ġξ ⊗ ξ − (ξ, ξ) ġ} . (6.38)

6.2.1 The Symbol of a system of Euler-Lagrange Equations

Let x denote the independent variables xα, where α = 1, ..., n, let q denote the
dependent variables qb, where b = 1, ...,m, and let v denote the first derivatives
of dependent variables vbα, n×m matrices. Then the Lagrangian L, a function
of (x, q, v), is given by

L = L (x, q, v) , (6.39)

now, a set of functions ub(x) : b = 1, ...,m is a solution of the Euler–Lagrange

equations, if qb = ub(x), and vbα = ∂vb

∂xα (x) gives the following equation

∂

∂xα

(
∂L
∂vbα

(x, u(x), ∂u(x))

)

− ∂L
∂qb

(x, u(x), ∂u(x)) = 0. (6.40)

We can condense the Euler-Lagrange equations by defining pαb = ∂L
∂vbα

, and

gb =
∂L
∂qb

, to give2

∂pαb
∂xα

= gb. (6.41)

Now, the principle part of the Euler-Lagrange equations is given by

hαβbc
∂2uc

∂xα∂xβ
(x, u(x), ∂u(x)), (6.42)

where hαβbc = ∂2L
∂vbα∂v

c
β

(x, q, v). The equations of variation are linearized equa-

tions, satisfied by a variation via solutions as follows: If u̇b denotes the vari-
ations of the functions ub, the principle part of the linearized equations is as
follows

hαβbc (x, u(x), ∂u(x))
∂2u̇c

∂xα∂xβ
. (6.43)

Considering oscillatory solutions of the equations of variations, such as

2 where q, v, p, g are analogous to position, velocity, momentum and force respec-
tively, in classical mechanics.
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u̇b = k̇beiθ, (6.44)

and substituting (θ/δ) for θ in the high-frequency limit of δ → 0, we get

hαβbc (x, u(x), ∂u(x))k̇
c ∂θ

∂xα
∂θ

∂xβ
= 0. (6.45)

Notice that the LHS of the above equation, after replacing α with µ, rep-
resents the symbol ρξ · k̇, where ξµ = ∂θ

∂xµ . Generalizing, the symbol of the
Euler-Lagrange is given by

(ρξ · u̇)b = hαβbc ξαξβ u̇
c = ζbc(ξ)u̇

c, (6.46)

where ζbc(ξ) = hαβbc ξαξβ is an n × m matrix whose entries are homogeneous
quadratic polynomials in ξ. The meaning of the above operations can be under-
stood from a global perspective as follows: xα, α = 1, ..., n are local coordinates
on an n-dimensional manifold M and x denotes an arbitrary point on M, while
qb, b = 1, ...,m are local coordinates on an m-dimensional manifold N and q
denotes an arbitrary point on N . The unknown u is the mapping u : M → N
and the functions ub(x), b = 1, ...,m describe this mapping in terms of the
given local coordinates.
If M is an n-dimensional manifold, the characteristic subset, C∗x ∈ ∗TxM is
defined as follows

C∗x = ξ 6= 0 ∈ ∗TxM : null space ofρξ 6= 0; = ξ 6= 0 ∈ ∗TxM : Detζ(ξ) = 0.
(6.47)

Hence, ξ ∈ C∗x if and only if ξ 6= 0 and the null space of ρξ is non-trivial. A very
basic example of an Euler-Lagrange equation with a non-empty characteristic
is the linear wave equation

∂α∂
αu = gµν∇µ(∂νu) = 0, (6.48)

which arises from the following Lagrangian

L =
1

2
gµνvµvν . (6.49)

The symbol is ρξ · u̇ = (gµνξµξν) u̇ and the characteristic is given as follows

C∗x = {ξ 6= 0 ∈ ∗TxM : (ξ, ξ) = gµνξµξν = 0} , (6.50)

i.e., C∗x is the null cone in the cotangent space ∗TxM associated to the metric
g.
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6.2.2 Back to symbol for the Einstein Equations

By setting ġ = λ⊗ ξ + ξ ⊗ ξ for an arbitrary covector λ ∈ ∗TxM. Then,

iξ ġ = (λ, ξ) ξ + (ξ, ξ)λ = gµνλµξν + (ξ, ξ)λ, (6.51)

and,

Tr ġ = 2(λ, ξ). (6.52)

We observe that

ρξ · ġ = 0. (6.53)

Thus, the null space of ρξ is a non-trivial covector ξ. This degeneracy is due
to the fact that the equations are generally covariant, i.e., if g is a solution of
the Einstein equations and f is a diffeomorphism of the manifold onto itself,
then the pullback, defined by f ∗ g, is also a solution. If X is a vector field on
M, then X generates a 1-parameter group {fl} of diffeomorphisms of M and

LXg =
d

dl
f∗l g|l=0, (6.54)

the Lie derivative (with respect to X of g), is a solution of the linearized equa-
tions. From the introductory chapter, we know from section 1.4.2 that the Lie
derivative is defined as follows

(LXg) (Y,Z) = g (∇YX,Z) + g (∇ZX,Y ) . (6.55)

Setting Y = eµ and Z = eν , where eµ : µ = 0, 1, 2, 3 is an arbitrary frame,

(LXg)µν = ∇µXν +∇νXµ, (6.56)

where Xµ = gµαX
α, and the symbol of the Lie derivative id given by

ġµν = ξµλν + ξνλµ, (6.57)

where λµ = Ẋµ. In General Relativity we must factor out solutions of the form
LXg = ġ for any vector field X. Thus, consider the equivalence relation

ġ1 ∼ ġ2 ⇐⇒ ġ2 = ġ1 + λ⊗ ξ + ξ ⊗ ξ, λ ∈ ∗TxM, (6.58)
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which gives the quotient space3 Q, of dimension 4− 1 = 3. Consider the null
space ρξ (with ρξ defined on Q). We can now distinguish two cases according
as to whether the covector ξ satisfies (ξ, ξ) 6= 0 or (ξ, ξ) = 0.

Case I: (ξ, ξ) 6= 0. If ξ is not null, then ρξ · ġ = 0 implies that

ġ = λ⊗ ξ + ξ ⊗ ξ, (6.59)

where λ =
(iξ ġ− 1

2Tr ġξ)
(ξ,ξ) . Thus, ρξ has only trivial null spaces on Q.

Case II: (ξ, ξ) = 0. If ξ is null, we can choose ξ in the same component
of the null cone N ∗x ∈ ∗TxM such that (ξ, ξ) = −2 and there is then a unique
representative ġ in each equivalence class {ġ} ∈ Q such that

iξ̄ ġ = 0. (6.60)

Thus,

ρξ · ġ = 0 ⇐⇒ ξ ⊗ iξ ġ + iξ ġ ⊗ ξ − ξ ⊗ ξTr ġ = 0. (6.61)

Upon taking the inner product with ξ̄, we observe that (iξ ġ, ξ) =
(
iξ̄ ġ, ξ

)
= 0,

hence

−2iξ ġ + 2ξTr ġ = 0. (6.62)

Again, taking the inner product with ξ̄ yields

−4Tr ġ = 0 =⇒ Tr ġ = 0, (6.63)

and substituting this gives

iξ ġ = 0. (6.64)

Therefore, if ξ ∈ N ∗x , then we can conclude that the null space of ρξ can be
identified with the space of trace-free quadratic forms on the 2-dimensional

3 The quotient space (also called factor spaces) Q of a topological space M and an
equivalence relation ∼ on M is the set of equivalence classes of points in M (under
the equivalence relation ∼) together with the following topology given to subsets
of Q: a subset U of M is called open if and only if ∪b∈Ub is open in M. This can
be stated in terms of maps as follows: if q : M → Q denotes the map that sends
each point to its equivalence class in Q, the topology on Q can be specified by
prescribing that a subset of Q is open if and only if q−1[the set] is open.
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spacelike plane Σ, the g-orthogonal complement of the linear span of ξ and ξ̄.
This is the space of gravitational degrees of freedom at a point (two polariza-
tions) 4.

6.3 The Minkowskian Approximation

Consider weak gravitational fields, say, the gravitational field from a far away
gravitational wave producing source. In this region, any change in the matter
distribution, i.e., in Tµν , will induce a change in the gravitational eld, which
will be recorded as a change in metric which is expressed as follows

gµν = ηµν + hµν , (6.65)

where, ηµν = Diag(−1, 1, 1, 1), and hµν is a tensor describing the variations
induced in the spacetime metric. It can be thought of as a small perturba-
tion in the otherwise flat spacetime. We now proceed with the linearization
approach which assumes that the tensor hµν is small (|hµν | << 1), so that
we need only keep terms linear in hµν in calculations. Upon calculation, the
Einstein equations in vacuum have the following form

Rµν ≈ −1

2
ηαβ∂2αβhµν +

1

2
∂µξµ +

1

2
∂νξµ = 0, (6.66)

where

ξµ = ∂αh
α
mu −

1

2
∂µh

α
α. (6.67)

When ξµ = 0, the linear eld equations in vacuum have the form

ηαβ∂2αβhµν = 0. (6.68)

These are a system of waves equations for h, the perturbation. They can be
expressed alternatively as

[

− ∂2

∂t2
+∇2

]

hµν ≡ ∂λ∂
λhµν = 0, (6.69)

which is the 3-dimensional wave equation. The equations ξµ = 0 are inter-
preted as polarization conditions satisfied by gravitational waves. The simplest
solution to the wave equation is a plane wave solution of the form

hµν = Sµνe
ikλx

λ

, (6.70)

4 Conversely, iξ̄ ġ = iξ ġ = 0 and Tr ġ = 0 implies that ġ lies in the null space of ρξ
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where Sµν is a constant symmetric tensor called the polarization tensor. This
is where the information about the amplitude and the polarization of the waves
is encoded. kλ is a constant vector called the wave vector which determines
the propagation direction of the wave and its frequency. It is to be noted that
only the real part of the wave solution is used in physical applications.

6.4 Hilbert’s Gauge Condition

Consider again the weak gravitational field with a small perturbation. With
the linearization approach we can calculate the Christoffel symbols to be (the
raising and lowering of indices done by ηµν)

Γ γαβ =
1

2
ηγλ (∂αhλβ + ∂βhλα − ∂λhβα) =

1

2

(

∂αh
γ
β + ∂βh

γ
α − ∂γhβα

)

. (6.71)

The curvature tensor is found to be

Rγβαλ = 1
2∂α

(

∂λh
γ
β + ∂βh

γ
λ − ∂γhβλ

)

− 1
2∂λ

(

∂αh
γ
β + ∂βh

γ
α − ∂γhβα

)

= 1
2

(
∂α∂βh

γ
λ + ∂λ∂

γhβα − ∂α∂
λhβλ − ∂λ∂βh

λ
α

)
.

(6.72)

We can now contract the above equation on two of the indices by multiplying
ηλγ throughout the equation to obtain the Ricci tensor and scalar

Rβα = 1
2

(

∂α∂βh+ ∂ζ∂
ζhβα − ∂α∂λh

λ
β − ∂λ∂βh

λ
α

)

,

R = Rββ = ηβαRβα = −∂ζ∂ζhβα + ∂λ∂βh
βλ.

(6.73)

We can now use these equation to obtain the Einstein tensor, Gβα, and write
Einstein’s equations in the following form

∂α∂βh+∂ζ∂
ζhβα−∂α∂λhλβ−∂λ∂βhλα−ηβα

(
∂ζ∂

ζhβα + ∂λ∂βh
βλ
)
= −16πκTβα.

(6.74)

It is convenient to change the variables hβα to h̄βα, whose relation is defined
as follows

h̄βα = hβα − 1

2
ηβαh. (6.75)

Rewriting the field equations in terms of the newly defined variable produces

∂ζ∂
ζ h̄+ ηβα∂λ∂γ h̄

λγ − ∂α∂λh̄
λ
β − ∂β∂λh̄

λ
α = −16πκTβα (6.76)
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Notice that this equation is invariant under the following gauge transformation

h′βα = hβα − ∂βξα − ∂αξβ , (6.77)

which leaves the curvature tensor Rγβαλ invariant and can be expressed as

Rµβνα ≈ gµδ
(
∂νΓ

δ
βα − ∂αΓ

δ
βν

)
≈ 2 (∂νΓµβα − ∂αΓµβν) . (6.78)

By explicit substitution, the curvature tensor takes the following form

Rµβνα − ξµ[,α,ν],β + ξβ[,α,ν],µ − ξα[,µ,ν],β + ξα[,β,ν],µ. (6.79)

Observe that in the above equation the partial derivatives commute with
each other, the additional terms cancel out and the curvature remains in-
variant the gauge transformation. Further note that under a coordinate shift,
xµ → x

′µ = xµ+ξµ(x), the metric changes by −∂(µξν) 5. Similarly, the change

in the newly defined variable h̄βα is

h̄
′βλ = h̄βλ − ∂βξλ − ∂λξβ + ηβλ∂γξ

γ . (6.80)

We can now choose four functions ξα to put four conditions on the tensor field
hβα as follows

∂λh
′βλ = 0, (6.81)

which is called the Hilbert’s gauge condition (or sometimes the de Donder’s
gauge conditions or the Fock’s gauge conditions or just simply the Einstein’s
gauge conditions). When applied to the obtained Einstein’s equation in terms
of the newly defined variable, we get

∂ζ∂
ζ h̄βα = −16πκT βα, (6.82)

which in vacuum with no sources becomes ∂ζ∂
ζ h̄βα ≡

[

− ∂2

∂t2 +∇2h̄βα
]

= 0.

Each component of the perturbation satisfies the wave equation. Hence, all the
components of the metric just move down the axis like waves with the speed
of light.

5 this is true in a flat space time. However, in an arbitrary curved spacetime with
metric tensor defined as g

′

αβ = gαβ + δgαβ , the change in the metric is expressed
as δgαβ = −D(βξα)
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6.5 Plane Waves

Let us consider the vacuum solutions to ∂ζ∂
ζ h̄µν = −16πκTµν . The study of

this is of prime importance, at least to homo sapiens since the detection of
these gravitational waves is taking place far away from its sources. In vacuum,
Einstein’s equations are expressed as ∂ζ∂

ζ h̄µν = 0, with supplementary gauge
conditions called the Hilbert’s gauge conditions, h̄µν,ν . The solution to these
equations (for distances far from the source) can be expressed as a superposi-
tion of plane waves

h̄µν = Re
(

Hµνe
ikλx

λ
)

, (6.83)

with additional constraints

kνHµν = 0, (6.84)

that implies that the waves are transverse. Here kν , as explained previously, is
the real wavevector and Hµν is a constant symmetric complex matrix describ-
ing the polarization of the wave. The wave equation reduces to

kρk
ρ = 0, (6.85)

i.e., the solution describes a wave with frequency ω ≡ k0 =
√

k2x + k2y + k2z
which propagates with the speed of light. Consider the null vector defined by

kρ = ω(1, 0, 0, 1). Now, eikρx
ρ

= e−iω(t−
z
c ) describes a wave of frequency ω

propagating in along the z-axis with the speed of light. Hρ1 = Hρ2 = 0 and
the transverse condition reduces to

Hρ0 +Hρ3 = 0. (6.86)

It is to be noted that the Hilbert’s gauge condition does not eliminate all gauge
freedom. Consider the gauge transformation hµν → hµν+∂(µξν), imposing the
gauge condition ∂ν h̄µν = 0, we observe

∂ν h̄µν → ∂ν h̄µν + ∂ν∂νξµ, (6.87)

this would preserve the gauge condition if and only if ξµ obeys the following
wave equation

∂ν∂νξµ = 0. (6.88)

Thus, we can conclude that there is a residual gauge freedom which we can use
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to simplify the solution. Consider a simple solution to the above wave equation

ξµ(x) = Aµe
ikζx

ζ

, (6.89)

now using h̄µν → h̄µν + ∂µξν + ∂νξµ − ηµν∂
ζξζ , we observe that the residual

gauge freedom in this particular case is

Hµν → Hµν + i
(
kµAν + kνAµ − ηµνk

ζAζ
)
, (6.90)

which can be used to achieve the longitudinal gauge

H0µ = 0. (6.91)

But notice that this still doesn’t determine Aµ uniquely, which is fixed when
we use the gauge condition to set

Hµ
µ = 0. (6.92)

This is known as the trace-free condition. Now, The longitudinal gauge con-
dition combined with the transversality condition yields H3µ = 0. Upon using
the trace free conditions we get

Hµν =







0 0 0 0
0 H+ H× 0
0 H× H+ 0
0 0 0 0






, (6.93)

where the solution is specified by the two constants H+ and H× corresponding
to two independent polarizations. Thus, gravitational waves are transverse and
have two possible polarizations. This is what we mean when we say that the
gravitational field has two degrees of freedom per spacetime point6.

6.6 Petrov-Penrose Classification

Since the Weyl tensor is a measure of curvature of a pseudo-Riemannian man-
ifold, a spacetime is said to be conformally flat if its Weyl tensor vanishes,
i.e., if Wαβγδ = 0. Generally, gravitational fields are classified in accordance
to the Petrov-Penrose classification of their corresponding Weyl tensor. This
is an algebraic classification based on the idea that the curvature tensor can
be thought of as a 6 × 6 matrix and the reduction of these matrix naturally
results in general categories of curvature tensors.

6 The same conclusion was obtained in a highly mathematical fashion in section 6.2
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6.6.1 Matrix Representation of the Curvature Tensor

From the symmetries of the Riemann curvature tensor, we can write it as Rαβγδ
and associate an index I = 1, 2, ..., 6 with each pairs 01, 02, 03, 23, 31, 12
of independent values that αβ and γδ can take. The curvature tensor can be
expressed as a 6× 6, MI

K matrix as given below













R01
01 R01

02 R01
03 | R01

23 R01
31 R01

12

R02
01 R02

02 R02
03 | R02

23 R02
31 R02

12

R03
01 R03

02 R03
03 | R03

23 R03
31 R03

12

−−−− −−−− −−−− −−−− | − −−− −−−− −−−− −−−−
R23

01 R23
02 R23

03 | R23
23 R23

31 R23
12

R31
01 R31

02 R31
03 | R31

23 R31
31 R31

12

R12
01 R12

02 R12
03 | R12

23 R12
31 R12

12













(6.94)

MI
K can be alternatively written in it’s more enlightening form as follows

MI
K =





A B

−BT C



 , (6.95)

where A,B, C, are 3 × 3 matrices. Notice that the trace of matrix B is null.
This can be shown by first lowering the index and making use of the property
of the Levi-Civita symbol as follows

Tr B = R01
23 +R02

31 +R03
12 = ǫ011R123 + ǫ022R231 + ǫ033R312. (6.96)

In the above equation, ǫ is called the the three-dimensional standard for of the
Levi-Civita symbol (see figure 6.1). The following equation accounts for it’s
property

ǫijk =







+1, if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)
−1, if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)
0, if i = j, or, j = k, or k = i

(6.97)

Now, from the above properties, that when j = k in the three-dimensional
standard for of the Levi-Civita symbol, ǫijk = ǫikk = ǫijj = 0, i.e., ǫ011 =
ǫ022 = ǫ033 = 0. Thus, we obtain the result

Tr B = 0. (6.98)

Also, notice that the matrices A and C are equal to their transposes, i.e.,
A = AT and C = CT . The structure of the matrix represented in equation
6.94 is based on separating the components of the Riemann curvature tensor
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Fig. 6.1. Visualizing the three dimesional Levi-Civita symbol to be equivalent to
the three slices of a three dimensional loaf of bread. Similarly, the four dimensional
Levi Civita we encountered in section 2.3 would be four slices off a four dimensional
loaf.

into three distinct sets, R0α0β , R0βγδ, and Rγδµν . Observe that the first set is
a 3 × 3 matrix in the indices α and β and as for the other two, they are to
be fixed by removal of antisymmetricity they possess. Thus, we introduce the
following 3× 3 matrices

Ψαβ = R0α0β , Σαβ =
1

2
ǫαγδR

γδ
0β , Λαβ =

1

4
ǫαγδǫβµνR

γδµν , (6.99)

where ǫabc is a three-dimensional Levi-Civita tensor. These matrices yield the
following relations under the Ricci flatness condition, RXY = 0

Ψαα = 0, Σαβ = Σβα, Ψαβ = −Λαβ . (6.100)

According to the definitions given above we have the matrix Ψαβ to have the
following form

Ψ11 = R0101, Ψ12 = R0102, Ψ0103 = R0103, ...

=⇒ Ψαβ =





R0101 R0101 R0103

R0201 R0202 R0203

R0301 R0302 R0303



 =





Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33





(6.101)

Comparing this matrix to the 6×6 form obtained previously, we find that Ψαβ
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is comprised of the components of first quarter of the matrix (after lowering
their index). Thus, Ψαβ = A. Now, to the matrix Σαβ . Observe that in the
components of the Σαβ

Σ11 =
1

2
ǫ123R

23
01, Σ12 =

1

2
ǫ123R

23
02, Σ13 =

1

2
ǫ123R

23
03, ..., (6.102)

the factor 1/2 is removed by the symmetry of the matrix, i.e., sinceΣαβ = Σβα,
Σ12 = Σ21, ..., and hence

Σ(12) = 2Σ12 = Σ12 +Σ21 = ǫ123
︸︷︷︸

=1

R23
02 = R23

02. (6.103)

Similarly, we can calculate the other components to obtain the following matrix

Σαβ =





R23
01 R

23
02 R

23
03

R31
01 R

31
03 R

31
03

R12
01 R

12
02 R

12
03



 =





Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33



 . (6.104)

Comparing this matrix to the 6 × 6 form obtained previously, we find that
Σαβ is comprised of the components of third quarter of the matrix (, i.e. the
first half of the second row). Thus, Σαβ = −BT . In matrix Λαβ , notice that
there is symmetry in the indices and also among matrix components due to
the block symmetry of the curvature tensor. the following are the components
of the matrix Λαβ

Λ11 = 1
4ǫ123ǫ123R

1323, Λ12 = 1
4ǫ123ǫ231R

2331, Λ13 = 1
4ǫ312ǫ312R

1212,

Λ21 = 1
4ǫ213ǫ123R

1323, ...
(6.105)

We know that Λαβ is a symmetric matrix thus, components such as Λ12 =
Λ21 =⇒ Λ(12) = 2Λ12, and this eliminates the factor (1/2). Now, to account for
the remaining (1/2), consider the matrix components a12 = Σ12 and a21 = Σ21

(using index a to avoid confusion), in which there exists a block symmetry7 be-
tween Riemann curvature tensor components, R2331 = R1323. This implies that

a12 = Σ12 = 1
2ǫ123ǫ231R

2331 = 1
2ǫ213ǫ123R

1323 = Σ21 = a21

=⇒ 2a(12) = a12 + a21 = ǫ123
︸︷︷︸

=1

ǫ231
︸︷︷︸

=1

R2331 = R2331.
(6.106)

Similarly, we can calculate the other components to obtain the following matrix

Λαβ =





R2323 R2331 R2312

R3123 R3131 R3112

R1223 R1231 R1212



 =





Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33



 (6.107)

7 Rαβγδ = Rδγαβ = Rβαγδ
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Comparing this matrix to the 6 × 6 form obtained previously, we find that
Λαβ is comprised of the components of fourth quarter of the matrix (, i.e. the
second half of the second row). Thus, Λαβ = C.

Let Ωαβ be a symmetric complex tensor defined as follows

Ωαβ =
1

2
(Ψαβ + 2iΣαβ − Λαβ) =

1

2
(Ψαβ + 2iΣαβ + Ψαβ) = Ψαβ + iΣαβ

(6.108)

The classification of the Riemann curvature tensor can be reduced to a simple
eigen value problem. Consider the eigen value equation Ωαβkβ = λkα, in which
the complex eigenvalues λ = λR+iλI satisfy the condition λ(1)+λ(2)+λ(3) = 0
since Ωαα = 0. The matrix’s classification is now dependent on the number of
independent eigenvectors and leads to six different cases, called Petrov Types
I, II, D, III, N , and O.

6.6.2 Petrov Type I

In this case there are three independent eigenvectors and upon diagonalizing
Ωαβ and separating it’s real and imaginary parts we obtain the real part to be

Ψαβ = Diag
(

λ
(1)
R , λ

(2)
R ,−

(

λ
(1)
R + λ

(2)
R

))

, (6.109)

and the imaginary part to be

Σαβ = Diag
(

λ
(1)
I , λ

(2)
I ,−

(

λ
(1)
I + λ

(2)
I

))

. (6.110)

Upon computation we can show that the eigenvalues can be expressed in terms
of the following scalars

I1 = 1
48

(
RabcdR

abcd − i Rabcd
∗Rabcd

)

I2 = 1
96

(

RabcdR
cdefRghef + i RabcdR

cdef ∗Rghef

)

,
(6.111)

where ∗Rabcd =
1
2ǫabefR

ef
cd is the dual of the Riemann curvature tensor. Also,

notice that the real part of the scalar I1, divided by a factor of 48, is nothing
but the Kretschmann invariant we have encountered in previous chapters, i.e.,

1

48
Re (I1) = RabcdR

abcd =
12r2s
r6

= K. (6.112)

Calculating the scalars using the diagonalized matrices, Ψαβ and Σαβ , we ob-
tain
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I1 =
1

3

(

λ(1)2 + λ(2)2 + λ(3)2
)

, I2 =
1

3
λ(1)λ(2)

(

λ(1) + λ(2)
)

. (6.113)

These formulae enable us to calculate λ(1), λ(2) starting from the values of the
Riemann curvature tensor Rαβγδ in any reference frame.

Petrov Type D

The special case in which λ(1) = λ(2) is called Type D.

6.6.3 Petrov Type II

There are two independent eigenvectors such that the square of one of them is
then equal to zero (i.e., kαk

α vanishes for one of them). This implies that we
can choose this vector to lie in the x1 − x2 plane so that k2 = ik1 and k3 = 0.
The eigenvalues equations now read Ω11 + iΩ12 = λ, Ω22 + iΩ12 = λ so that
we can write

Ω11 = λ− iµ, Ω22 = λ+ iµ, Ω12 = µ. (6.114)

The complex quantity λ = λR + iλI is a scalar and cannot be changed. But
the quantity µ can be given any non-zero value by a suitable complex rotation;
hence, we can assume it to be real. We obtain the following matrices

Ψαβ =





λR µ 0
µ λR 0
0 0 −2λR





Σαβ =





λR − µ 0 0
µ λR + µ 0
0 0 −2µ



 .

(6.115)

In this case there are just two invariants λR and λI so in accordance to equation
6.113, we have I1 = λ2 and I2 = λ3 so that I3

1 = I2
2 .

Petrov Type N

The special case when λ = 0 corresponds to a situation in which both the
curvature invariances vanish and this type is called Type N.

6.6.4 Petrov Type III

In this case there is just one eigenvector with kαk
α = 0 and all other eigen-

values are identically zero. The eigenvalue equation, Ωαβnβ = λkα , has the
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following solution

Ω11 = Ω22 = Ω12 = 0, Ω13 = µ, Ω23 = iµ, (6.116)

so that

Ψαβ =





0 0 µ
0 0 0
µ 0 0





Σαβ =





0 0 0
0 0 µ
0 µ 0



 .

(6.117)

In this case the curvature tensor has no non-zero invariants even though the
spacetime is curved.

6.6.5 Discussion on the Petrov types

The matrix Ωαβ can be expressed in terms of A and B as

Ωαβ = Ψαβ + iΣαβ = A− iBT . (6.118)

Now, let Q = Ωαβ . Thus, the eigenvalue equation can alternatively be written
as follows

Qk = λk, (6.119)

i.e., in which we have determined the eigenvectors k and the eigenvalues λ of
the complex symmetric and traceless 3×3 matrix Q: from the four-dimensional
Lorentz frame we have passed to a three-dimensional complex space with
Euclidean metric. This eigenvalue problem led to a characteristic equation
det Q− λI) = 0. The results are tabulated in the table 6.1. The algebraic type
of the matrix Q provides an invariant characterization of the gravitational field
at a given point p; these characteristics are independent of the coordinate sys-
tem at p.

Petrov Type O

We know that the form the Weyl tensor takes up in n ≥ 3-dimension is

Wαβµν = Rαβµν −
2

n− 2

(
gα[νRµ]β + gβ[µRν]α

)
+

2

(n− 1) (n− 2)
Rgα[µgν]β .

(6.120)
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Petrov Types Eigenvalues Matrix Criterion

I λ1 6= λ2 6= λ3 (Q− λ1I) (Q− λ2I) (Q− λ3I) = 0
D λ2 = −2λ1 (Q− λ1I) (Q− λ2I) = 0

II λ2 = −2λ1 (Q− λ1I)
2 (Q− λI) = 0

N λ1 = λ2 = λ3 = 0 Q2 = 0
III λ1 = λ2 = λ3 = 0 Q3 = 0
O λ1 = λ2 = λ3 = 0 Q = 0

Table 6.1. The table shows the matrix criteria for distinct Petrov Types

Clearly, the Weyl tensor is composed of the Riemann and the Ricci tensors
and the curvature scalar. Now, the matrix criteria for Petrov Type O reads

Q = 0

=⇒ Ωαβ = Ψαβ + iΣαβ = 0

=⇒ Re (Ωαβ) = Ψαβ ==





R0101 R0101 R0103

R0201 R0202 R0203

R0301 R0302 R0303



 = 0

=⇒ Rαβγδ = 0 =⇒ Rαβ = 0 =⇒ R = 0.

(6.121)

The vanishing of the Riemann tensor, the Ricci tensor and the curvature scalar
imply a vanishing Weyl tensor8 which in turn implies that the space is con-
formally flat. Thus, Type O regions are conformally flat regions which are
associated with places where the Weyl tensor vanishes identically (see section
1.8.5).

6.7 Causality Theory

The study of a black hole present in a spacetime is done in two distinct regions-
the black hole’s interior and it’s exterior. These regions are distinct since they
are distinguished by the property that all external observers are causally sepa-
rated (see subsection 5.6.1) from events that go on in the inside. Let us device
a thought experiment to understand some of the deep ideas associated with
black holes. Let Mr. Absolute Zero have a radio device that constantly sends
signals back to the spaceship where Mr. Zero Entropy tracks his location. Once

8 But the converse depends on the dimension. In dimension 1, every metric is flat,
and the Riemann, Ricci, and scalar curvatures are always zero. In dimension 2, if
the scalar curvature is zero, the metric is flat. In dimension 3, if the Ricci curvature
is zero, the metric is flat, but there are non-flat metrics with zero scalar curvature.
In dimensions 4 and up, there are plenty of examples of non-flat metrics with both
Ricci and scalar curvatures equal to zero
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Mr Absolute Zero enters the black hole, he can no longer send signals back
to the spaceship. He would disappear off the radar as if he went into stealth
mode!
Let’s try to associate mathematical terms to simplify this concept. Let Mr.
Absolute Zero sending light signals to the mother ship be event Z. We can
associate a null cone to characterize the set of all points (a.k.a. events) that
can be reached from the event Z by future-directed null curves (in general they
can be either timelike or null). Such a set is called the causal future of Z and
is denoted by J +(Z). Similarly, associate a null cone to the set of all events
that can be (or was reached) from Z by past-directed null curves (again, in
general it can be timelike or null). Such a set is called the causal past of Z
and is denoted by J−(Z). Now, rather than just localizing our definition to
an event (or a point) of Mr. Absolute Zero’s adventures, let’s associate similar
definitions to the set of all such events SZ , or for the sake of simplicity , just
S. If S is the set of all events in which Mr. Absolute Zero has sent light signals,
then J +(S) is the union of the causal futures of all the events Z contained in
S. Similarly, if S is the set of all events in which Mr. Absolute Zero had sent
light signals, then J−(S) is the union of the causal pasts of all the events Z
contained in S.

A spacetime is said to contain a black hole if there exists null geodesics that
never reach future null infinity I+. These geodesics originate from the inte-
rior of the black hole which is a region characterised by the very fact that all
future-directed curves originating from it fail to reach I+. Thus, from this we
can conclude that events lying within the black hole interior cannot be in the
causal past of I+. Using all this logic we can now mathematically define a
black hole. The black hole region B of the spacetime manifold M is the set of
all events Z that do not belong to the causal past of future null infinity, i.e.,

B = M−J−
(
I+
)
, (6.122)

and the event horizon H is then defined to be the boundary of the black hole,
i.e.,

H = ∂B = ∂
[
J−

(
I+
)]
. (6.123)

∂ [J− (I+)] is sometimes alternatively written as J̇ + (I+). Generally, J̇ +(S)
is called the boundary of the causal future J +(S) and similarly, J̇−(S) is called
the boundary of the causal past J−(S). Table 6.2 lists all the mathematical
labels defined.
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Label Name

I−(Z) The past null infinity of event Z or the chronological past
I+(Z) The future null infinity of event Z or the chronological future
J−(Z) The causal past of event Z
J+(Z) The causal future of event Z
J−(S) The causal past of set S
J+(S) The causal future of set S

J̇−(S) The boundary of the causal past, J−(S)

J̇+(S) The boundary of the causal future,J+(S)

J̇−
(

I+
)

The totality (or union) of all future horizons

J̇+
(

I−
)

The totality (or union) of all past horizons
i− The past timelike infinity of event Z
i0 The spatial infinity of event Z
i+ The future timelike infinity of event Z
C(s) Causal curve that is nowhere spacelike

Table 6.2. Causality labels

Fig. 6.2. Causal labels associated to Z.

6.7.1 Gedankenerfahrung: Mr.Absolute Zero and the Global

Structure of Horizons

Consider another scenario, one in which Mr. Absolute Zero receives light sig-
nals from his spaceship as opposed to him transmitting them. In such a reversal
of events, the light signals sent to Mr.Absolute Zero will not only have a space-
like future i0 but also have a future null infinity I+ since light continues to
travel along null geodesics. In Mr.Absolute Zero’s frame of reference, when he
is at a point Z in space, the signals he receives causally precede Z and hence
belong to his causal past J−(Z). Imagine now that Mr.Absolute Zero has an
infinite number of clones, all invited to join the experiment from various paral-
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lel universes. Let’s say that all the Absolute Zeros travel at the speed of light,
which they commence in unison with a specific light signal they all receive si-
multaneously from the spaceship (i.e., the spaceship deploys an infinite number
of light signal to the infinite number of Absolute Zero’s simultaneously). The
unison of all the future boundaries that all the Absolute Zero’s reach, i.e., the
boundary of the domain J− (I+) is J̇− (I+). Now, after an infinite distance,
if we were to trace back a light signal from any one of the Absolute Zero’s we
would find that the signal goes to the causal past of that Absolute Zero and it’s
future infinity, i.e., J− (I+). Let’s now position a black hole at the boundary
so that all the Absolute Zero’s reach it and travel into it’s interior. Now if we
try and trace back a light signal from any one of the clones we would find out
that they have no future since the events lying withing the black hole interior
cannot be in the causal past of I+. In other words, once all the clones reach
the boundary J̇− (I+), there is no going back for both them and the light sig-
nals. With this thought experiment we have just proven Penrose’s theorem on
the structure of future horizons. Formally put, the theorem states the following

The future horizon J̇− (I+) is generated by null geodesics that have

no future end points.

The null geodesics which lie in J̇− (I+) are called the generators of J̇− (I+)
and the point (or event) at which the generator leaves is called a caustic of
J̇− (I+). It is obvious that when we follow all the light signals from an in-
stantaneous point a priori to them entering the black hole, we would observe
that none of them intersect each other. This gives rise to the condition that
generators can never intersect each other. After all the clones enter the black
hole, they are spaghettified towards the singularity, where we have positioned
the boundary J̇− (I+), and all the light signals or generators intersect at the
caustic. Form this we can conclude that generators can only intersect at a caus-
tic. Thus, the entry points into the event horizon are caustics of congruence
of null generators. By following the generators of each of the clones locally we
have obtained a global picture.

Penrose’s theorem implies that the event horizon H of a black hole is a null hy-
persurface that is generated by null geodesics which have no future end points.
For a Schwarzschild black hole, the generators of J̇− (I+) are the world lines
of radially outgoing photons at the Schwarzschild radius, rs = 2M . Penrose’s
theorem is not myopic, it is valid for any black hole- dynamic or static; ro-
tating or stationary; coalescing with another black hole or isolated- in any
asymptotically flat spacetime.
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Fig. 6.3. S is a spacelike slice which extends from i0 in r = rs but does not include
r = rs. All the Absolute Zeros traverse in this region. J+(S) does not include the
leftmost horizon, but J̇+(S) is the leftmost horizon.
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Bianchi identity 92
Bianchi’s first identity 94
bifurcate Killing horizon 213
bifurcation 2-sphere 211
Birkhoff’s theorem 138, 167, 172
Birkhoff’s theorem, mathematical proof

170
bivector 22
block symmetry 58, 247
Bondi-Sachs conservation law 182
Boyer-Lindquist coordinates 163

calculus of variations 96
canonical momentum 116
canonical stress 116
carrot operator 15
carroting 15
Cartan’s first structural equation 230
Cartan’s second structural equation

231
Cartesian product 18
Cartlan’s identity 120
causal 48
causal cone 48

causal future 251
causal past 251
causal relations 213
causality 48, 251
causally related 213
causally separated 214
caustic, of J̇−

(

I+
)

254
chart 5
chart map 7
chart transition maps 7
Christoffel symbol 35
Christoffel symbols 29
Classical mechanics, introduction 95
coframe 33
commutator 26
configuration space 103
conformal infinity 214
Conformal Killing tensors 149
Conformal Killing vectors 147
conformal mapping, Minkowski

spacetime 215
conformal mapping, Schwarzschild

spacetime 218
conformal relations 213
conformally flat 63, 251
conformally invariant 63
connection coefficients 27, 34
connections, transformation formula

35
conservation 87
continuity 87
contracted Bianchi identity 87
contravariant tensor 20
coordinate map 7
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cosmic censorship hypothesis 166
cosmological constant 94, 105
cotangent space 18, 33
Cotton tensor 70
covariant differentiation 24
covariant tensor 20
curvature 53
curvature singularities 220
cyclic symmetry 58

d’Alembert operator 74
de Donder’s gauge conditions 242
diffeomorphic 11
diffeomorphism 9
differential forms 15
differential manifold 11
divergence theorem 107, 120
double cone 48
double null cone 48
dual 17

Einstein tensor 90
Einstein’s equations 235
Einstein’s fields equations 89
Einstein’s gauge conditions 242
Einstein-Hilbert action 105
Einstein-Rosen bridge 191, 201
Einsteinian spacetime 15
embedding 13
embedding diagrams 189
embedding in 3-dimensions 192
embedding in 4-dimensions 193
embedding in 5-dimensions 193
embedding in 6-dimensions 195
embedding in N-dimensions 191
Euler-Lagrange equation 102, 112, 120
event horizon 252
extensions of the Schwarzschild metric

204
exterior derivative 23
exterior differentiation 22

Faraday dual 83
Faraday tensor 82, 85
fiducial geodesic 56
first skew symmetry 58, 93
Flamm paraboloid 192, 201
flat space 89
Fock’s gauge conditions 242

Friedmann-Lemaître-Robertson–Walker
metric 161

Fronsdal embedding 185, 197
Fujitani-Ikeda-Matsumoto embedding

201

Gauss curvature 54
Gauss equation 56
Gauss-Orstrogradsky theorem 107
Gaussian normal coordinates 33, 92
Gedankenerfahrung 79, 169
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(
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254
geodesic 49
geodesic deviation 54
geodesic equation 49
gravitational waves 243

Hamiltonian 102
harmonicity condition 223
Hausdorff 3, 9
Hausdorff separation axiom 9
Hausdorff space 9
high-frequency limit 237
Hilbert’s gauge condition 241
Hodge star operator 85
holonomic 27, 29
homeomorphism 3, 9
hypersurface 75
hypersurface, normal 75

immersion 13
ingoing Eddington-Finkelstein metric

204
isometric embedding 14
isometry 43, 140
isometry groups 174
isomorphic 11
isotropic coordinates 221
Israel’s theorem 138

Karl Schwarzschild 91
Kasner embedding 195
Kerr metric 163
Killing equation 140
Killing field 140
Killing horizon 211
Killing horizon, a mathematical

approach 212
Killing horizon, in Schwarzschild

spacetime 212
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Killing horizon, pedestrian approach
208

Killing initial data 175
Killing pre-horizon 213
Killing vector 44, 141
Killing vectors 43
Killing vectors, 2-sphere 142
Killing vectors, Poincaré half-plane

145
Klein-Gordon equation 74
Komar mass 181
Kretschmann invariant 70, 125, 199,

248
Kruskal extension 205
Kruskal-Szekeres coordinates 184, 197
Kulkarni-Nomizu product 67

Lagrange density 104
Lagrangian 99
Leibniz rule 120
Levi-Civita symbol 85, 245
Lie algebra 37
Lie bracket 37
Lie derivative 38, 119
Lie derivative, geometric approach 40
lightlike vector 46
linearization approach 240
local flow 43
local Minkowski reference frame 106
Lorentzian manifold 14
Lorentzian metric 15

matrix trace 87
Maxwell’s equations 85
metric tensor 29, 91
Minkowski approximation 240

naked singularity 166
Nash embedding theorem 14
no hair theorem 178
Noether’s current 116
Noether’s theorem 111
Noether’s theorem, mathematical

formulation 114
non-degenerate 46
non-spherical perturbations 176
Nordstrøm gravity 110
normal coordinates 32
null cone 48, 251
null geodesic generators 160

null hypersurface 142, 212, 254
null hypersurfaces 159
null infinity 215

orbits in the Schwarzschild metric 153
outgoing Eddington-Finkelstein metric

205

p-form 24
Painlevé - Gullstrand coordinates 222
Palatini identity 106
paracompact 6
parallel transport 24
Penrose-Carter diagram 63, 213
Petrov-Penrose classification 244
Pfaffian derivatives 33
phase space 103
photon orbit 156
photon sphere 156
plane waves 243
Poincaré half-plane 64, 145
Poincaré patch 66
Poincaré lemma 83
Poisson equation 90
polarization conditions 240
polarization tensor 241
Price’s theorem 173, 178
principle of least action 94
principle part 235
pseudo-Riemannian metric 13, 119
pull-back 41, 42
push forward 40

quotient space 239

radial plummet 153
Reissner-Nordstrøm metric 177, 186
Ricci flat 246
Ricci flatness 108, 124, 136
Ricci tensor 92
Riemann curvature tensor 56, 245
Riemannian connection 29
Riemannian metric 15
Rindler frame 208
Rindler metric 209

scalar curvature 92
Schouten tensor 68
Schwarzschild metric 91, 127
Schwarzschild potential 156
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Schwarzschild solution 123, 130, 135
Schwarzschild-de Sitter metric 138
Schwarzschild-Tangherlini metric 224,

227
second skew symmetry 58, 93
seminal Newton’s constant 94, 105
Shell theorem 168
spacelike vector 46
spatial infinity 215
spherical collapse 176
spherical symmetry 126
stereographic projection 63, 213
stress-energy tensor 81
structure coefficients 28, 234
surface gravity 211
symbol of a system 236
symbol of Einstein equations 238

tangent bundle 11
tangent space 11
tangent vector 12
tensor product 20
tensor, addition 20
tensor, contraction 21

tensor, multiplication 20
tensors 15
tensors, for pedestrians 18
tensors, mathematical formulation 18
theorema egregium 56
timelike vector 46
torsion tensor 36
Tortise coordinates 126
Tortoise coordinates 204
trace-free conditions 244
trivector 22

Vielbein Spin Connection 229

wave coordinates 222
wave vector 241
weak gravity conjecture 166
wedge product 22
Weingarten mapping 54
Weingarten matrix 54
Weyl tensor 62, 244, 250
Weyl-Schouten theorem 71
Whitney embedding theorem 14
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