


Potential Theory and Geometry on Lie Groups

This book provides a complete and reasonably self-contained account of a new
classification of connected Lie groups into two classes. The first part describes the
use of tools from potential theory to establish the classification and to show that the
analytic and algebraic approaches to the classification are equivalent. Part II covers
geometric theory of the same classification and a proof that it is equivalent to the
algebraic approach. Part III is a new approach to the geometric classification that
requires more advanced geometric technology, namely homotopy, homology and the
theory of currents. Using these methods, a more direct, but also more sophisticated,
approach to the equivalence of the geometric and algebraic classification is made.

Background material is introduced gradually to familiarise readers with ideas from
areas such as Lie groups, algebraic topology and probability, in particular, random
walks on groups. Numerous open problems inspire students to explore further.

N . T h . Va r o p o u l o s was for many years a professor at Université de Paris VI. He
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Preface

This book is both a synthesis and an extensive elaboration of a series of papers
that I wrote on the subject in the years 1994–2000. These papers were highly
interconnected and this was one of the reasons why they were very difficult to
read. I must also admit that at the time I did not make the necessary effort to
make these papers more reader friendly.
An effort to write down the early part of this work (essentially Chapters 2

and 3) in book form was undertaken by me and a co-author in the late 1990s.
But this failed. To describe that project as a joint enterprise is not really accu-
rate because I expected the co-author to do all the hard work and the writing.
This of course was not a good idea in principle, and the fact that I had got away
with exactly this strategy a decade earlier with a previous book was no excuse.
At that time, my co-authors were young and motivated, they did all the hard
work and the book that came out was by all accounts a success. Anyway, to try
to make the same ‘trick’ work a second time reflected very poor judgement on
my part.
Having said all this I should also add that since then the feedback I got from

colleagues who were interested in the subject and who tried to read my 1994–
2000 papers was that they found them impossible to read.
It was for these reasons and to expiate my past sins that in the spring of

2011 I embarked on a new project to write a book that would be useful and
accessible to students in Lie theory and even to try to make it ‘easy reading’.
The ‘easy reading’ part of the project, however, very quickly turned out to

be wishful thinking.
The reason lies in the nature of the subject, which relies on a tremendous

amount of background material from many distinct branches of mathematics.
This very rapidly became my main preoccupation in the writing of the book.
To recall what was needed separately in detail was not an option since that
would have expanded the size of the book out of proportion.

xxv



xxvi Preface

To resolve this problem I have resorted to placing this background material
into layers that intertwine gradually with the theory as it is developed in the
book. These ‘layers’ are organised in each of the three parts and even in each
chapter of the book, and they become progressively more sophisticated as we
go along. So the reader could read the first layer of a certain topic, which should
be relatively easy reading and which also explains the underlying ideas, and
then move to another topic. Extensive indications and ‘guides for the reader’
are given in the text as to how one could navigate in that respect. The aim of it
all is to try to minimise difficulties for the reader.
At any rate, as always happens with ‘past sins’, the writing of this book

turned out to be much harder than I originally thought. In my effort, three
people have helped me and it is my pleasure and duty to thank them here.
First and foremost I want to thank David Tranah, the mathematics editor at

Cambridge University Press. It is not an exaggeration to say that without his
assistance this book would not have been written. At a technical level, he went
so far as to finish the TEX himself. But what I am most grateful to him for is
the time and effort he put into teaching me how books should be written and
where the difference lies between a book and a series of papers that nobody
can read.
David made several suggestions to improve the presentation, he read the

whole book and made many direct corrections on my manuscript. I also dis-
covered that David knew a lot of mathematics as to my surprise (and also
vexation), he even made mathematical corrections!
The world has changed and in the domain of scientific publications very

many old and prestigious editorial institutions, having bought each other (!),
have then turned themselves into money-making supermarkets. It is therefore
refreshing and encouraging to find an exception like Cambridge University
Press and people like David Tranah in its staff. I also want to thank Clare
Dennison at Cambridge University Press and Alison Durham for the excellent
job they did with the editing and preparation of the manuscript. I am very
grateful to them for their kindness and for their patience with my incompetence
in the final stage of the process.
Next, but also very importantly, I wish to thank my friend and colleague Leo

di Michele. In the early 2000s, Leo was responsible for the setting up of the
mathematics department of a new university that was then starting in Italy: the
Bicocca Milano University. That department soon became a wonderful place
to be.
My French mathematical career was then coming to a close and Leo invited

me to join Bicocca. I found there a congenial and friendly atmosphere that
contrasted very much with the cold isolation that I’d become used to.



Preface xxvii

My stay in Bicocca breathed new life into me and helped me embark on this
project. For all this and for his generous friendship, I wish to express here my
gratitude to Leo.
Last but not least it is my pleasure to thank Ivan Kupka who is a friend and

a colleague from Université Paris VI. Kupka is a distinguished geometer and
without his patient and constant help I would not have been able to understand
the geometry that I needed to write Parts II and III of the book.
Learning that geometry was one bright spot in the long and austere task of

writing this book. It was like an old man who at the end of his life falls in love
with a young girl – if that happens to you my advice is not to ask the young
lady how she feels about it. And for the same reason I feel very nervous about
my geometric ‘performance’ in the book!
From my point of view however, whether I was any good in my geometry or

not, I enjoyed the experience very much.

Paris





1

Introduction

In this chapter we shall describe in informal terms what the book is all about.
Furthermore, we shall introduce a number of concepts, notation and conven-
tions that will stay throughout the book.

1.1 Distance and Volume Growth

Distance Unless otherwise stated, all the locally compact groups that will be
considered will be compactly generated. This means that there exists e ∈Ω=

Ω−1 ⊂ G, some compact symmetric neighbourhood of the identity e ∈G such
that
⋃
n�1Ωn = G.

When G = Γ is a discrete group this means that there exists a finite sym-
metric set of generators (γ1, . . . ,γn) ⊂ Γ. A natural distance is then associated
to these generators. For x ∈ Γ we write x = γi1 · · ·γik where k is assumed as
small as possible. We then set |x| = k and |e| = 0 and define the distance
d(x,y) = |x−1y|. This distance is left invariant and d(gx,gy) = d(x,y), for x,
y, g ∈ Γ, and is referred to by the ‘word distance’. The same definition extends
to locally compact groups and |x| = k with k the smallest integer for which
x ∈Ωk.

The Haarmeasure and the volume growth Haar measures onG are positive
Radonmeasures that are invariant under group translation (see Bourbaki, 1963,
Chapter 7). For a discrete group Γ the volume growth is defined to be

γ(n) = [number of elements x ∈ Γ with |x|� n].

For a general locally compact group G,

γ(n) = Haar measure [x ∈ G; |x|� n] = Haar measure [Bn(e)].

1
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Two Haar measures exist on G: the left-invariant dg= dlg, with g ∈ G, and
right-invariant drg for which, respectively, dl(xg) = dlg and dr(gx) = drg, for
x,g∈G. Both are unique up to a multiplicative constant and we shall normalise
throughout by setting dr(x−1) = dl(x). The locally compact groups for which,
up to a multiplicative constant, drg = dlg are called unimodular. The modu-
lar function is defined by drg = m(g)dlg. Since dr(x−1) = dlx and since Ω is
symmetric (i.e. stable under x 	→ x−1), it is irrelevant in the definition of γ(n)
whether we use the left or the right Haar measure. The definition of γ(n) de-
pends on the choice of Ω but it does so in an inessential way in the sense that
if we change Ω to a new Ω there exist constantsC > 0 such that

γnew(n)�Cγold(Cn)+C; n� 0.

Convention on the letters C, c In this book we shall use systematically the
lettersC and c, possibly with indicesC1, . . . , to indicate positive constants that
are independent of the main parameters of the formula where they occur. These
constants may differ from place to place even in the same formula. For P,Q> 0
we shall also write P� Q for P�CQ, and write P∼ Q when both P� Q and
Q� P hold.

Notes and references A general reference on measure theory that will be used
is Bourbaki (1963). The classical references for locally compact groups and the
Haar measure are Pontrjagin (1939) and Weil (1953).
For the invariant distance on a locally compact group see Gromov (1981),

Varopoulos et al. (1992).

1.2 A Classification of Unimodular Locally Compact Groups

The following theorem is contained in Gromov (1981). Let Γ be some discrete
finitely generated group. Then Γ belongs exactly to one of two categories:

(α) Groups of polynomial volume growth. For these groups there exists C
such that γ(n)�CnC+1. The group Γ is of polynomial volume growth if
and only if there exists Γ1 ⊂ Γ, a subgroup that is nilpotent and such that
the index [Γ,Γ1]<+∞ is finite.

(β ) The groups that are not of polynomial volume growth. For all A > 1, for
these groups there exists C such that γ(n)�CnA for n� 1.

In these two statements the following standard practice is used; whenever we
say ‘there exists C or c . . .’, or ‘for some constant C, c, . . .’, we always mean
positive constantsC, c, . . . . This will be done throughout the book.
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Another way of measuring the growth at infinity of Γ is to consider μ ∈
P(Γ), some finitely supported probability measure that charges a set of gener-
ators γ1, . . . ,γn, and is symmetric, that is, μ(γ) = μ(γ−1), γ ∈ Γ and μ(γ j)> 0,
j= 1, . . . ,n and μ(e)> 0. We shall define μ∗n= μ ∗· · ·∗μ , the nth convolution
power; what will be relevant will be μ∗n(e). Among the groups Γ we can again
consider two categories:

(A) There existC,c> 0 such that μ∗n(e)� cn−C, n� 1.
(B) For all A> 0 there exists C > 0 such that μ∗n(e)�Cn−A, n� 1.

Here it is less clear how the asymptotics of μ∗n(e) behave under a change of μ
to a new μ1 ∈P(G) and whether the above is a classification that is independent
of a change of μ .
However, it is the case that the above two classifications are identical and

for any discrete group Γ, (α)⇔ (A), (β )⇔ (B).
The symmetry of μ is essential for the above. To see this consider Γ = Z,

μ(0) = ε , μ(1) = 1− ε for some small ε > 0.
The above generalise verbatim to unimodular locally compact groups, that

is, we have the (α)–(β ) classification determined by the volume growth and
the (A)–(B) classification that depends on μ∗n(e), which is now interpreted to
be φn(e) with dμ∗n(g) = φn(g)dg, where μ is assumed to be symmetric com-
pactly supported with φ1(g) continuous. Here again we have the equivalence
(α)⇔ (A), (β )⇔ (B).

Notes and references Hall (1959) is a good reference for the notion of nilpo-
tency of discrete groups. Feller (1968) or Woess (2000) are good references for
μ∗n(e) which is the return probability of the random walk (z(n) ∈ Γ; n � 1)
with P[z(n+ 1) = γ1, z(n) = γ2] = μ(γ−11 γ2).
The classifications (α), (β ), (A), (B) and their equivalences can be found in

Gromov (1981), Varopoulos et al. (1992).

1.3 Lie Groups

1.3.1 Convolution powers of measures

Let G be some locally compact group. We shall consider throughout μ ∈ P(G)
that are symmetric (i.e. stable by the involution g→ g−1 : μ(g) = μ(g−1)) and
of the form dμ(g) = φ(g)drgwhere φ is continuous and compactly supported.
We shall denote in general dμ∗n(g) = φn(g)drg and assume that φ(e) �= 0.
Here and throughout we adopt the (fairly) standard notation P(X) to indicate
the space of probability measures on X .
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To fix ideas let us assume that G is a connected real Lie group, that is, at the
other end of the ‘spectrum’ from the discrete groups that we considered above.
For such a group we shall now state the following classification theorem.

Theorem Let G be some real connected Lie group. Then G satisfies exactly
one of the following alternatives:

(B) For every μ ∈ P(G) as above there exist λ � 0 and C1,C2,c1,c2 > 0
such that

C2 exp(−λn− c2n1/3)� φn(e)�C1 exp(−λn− c1n1/3); n� 1.

(NB) (Non-B). For every μ ∈ P(G) as above there exist λ ,α � 0 andC1,C2 >
0 such that

C2n
−αe−λn � φn(e)�C1n

−αe−λn; n� 1.

The parameter λ depends on μ : but either λ = 0 for all μ as above and
then we say that G is amenable; or λ > 0 for all μ and then we say that
G is not amenable (see Reiter, 1968; Greenleaf, 1969; and §3.1 and (4.35)).
Typical non-amenable groups are the semisimple groups of non-compact type.
These groups are (NB) by Bougerol (1981). For the definitions on Lie groups
see Varadarajan (1974). This classification for unimodular amenable groups is
contained in Varopoulos et al. (1992, Chapter VII). If we drop the condition of
unimodularity this classification becomes much more subtle and, surprisingly,
the exponent α in (NB) varies continuously with μ in general. In ‘general’, α
can then take any value α � α0(G).
The proof of the above analytic fact and the algebraic and geometric con-

ditions on G that determine the B–NB classification are, to a large extent, the
subject matter of this book.
More general locally compact groups can be classified as above as long as

they are connected. Connectedness here is taken in the sense of the locally
compact topology of G. But connectedness (or rather irreducibility) in the
sense of algebraic geometry can also be used and the classification still per-
sists for say algebraic subgroups of GL(V ) over a field that is a finite extension
of the field of p-adic numbers. As we shall see, the proofs for these algebraic
groups are but easy modifications of the ones given for real Lie groups. These
algebraic groups are a sideshow and the reader can ignore this aspect without
missing much. Notice, however, that these algebraic groups give examples of
totally disconnected locally compact groups that are not necessarily compactly
generated and of where the theory applies.



1.3 Lie Groups 5

1.3.2 The heat diffusion semigroup

The B–NB classification can be seen from another point of view that is closer
to the one adopted in Varopoulos et al. (1992). We say that X , a vector field on
G (i.e. a first-order differential operator), is left invariant if X fg=(X f )g, where
fg(x)= f (gx), f ∈C∞

0 (G). We consider then such invariant fieldsX1,X2, . . . ,Xp,
which together with their successive brackets [Xi,Xj], [[Xi,Xj],Xk] span Te(G),
the tangent space at e. This condition on the brackets is called the Hörmander
condition; see Hörmander (1967), Varopoulos et al. (1992). We recall the def-
inition of the bracket which is the first-order differential operator [Xi,Xj] =
XiXj−XjXi. We denote by�=−∑X2j the corresponding sub-Laplacianwhich
is a second-order subelliptic operator. If X1, . . . ,Xp is a basis of Te(G) at e then
� is in fact elliptic and the reader could think of it in these terms. This clearly
generalises the standard Laplacian −∑ ∂ 2

∂x2i
in Rd .

We can then appropriately close � and obtain a self-adjoint positive op-
erator on L2(G,drg) and define the corresponding semigroup Tt = e−t�. The
following facts are then well known: Tt f = f ∗ μt , f ∈ C∞

0 where μt ∈ P(G),
t > 0, which satisfy μt(g) = μt(g−1), μt ∗ μs = μt+s, dμt(g) = φt(g)drg for
some φt ∈C∞(G). We have thus the continuous-time analogue of the convolu-
tion powers of a measure of §1.3.1. The only difference is that the measures
μt are not, in general, compactly supported. They satisfy instead a Gaussian
decay at infinity. To wit, if we denote

Et(r) = μt(G\Br); Br = [g ∈ G; |g|� r],

then Et(r)�Cexp(−cr2)where the constants depend on t; see §2.12 or Varop-
oulos et al. (1992) for more details.
Having defined dμt(g) = φt drg as above, the B–NB classification of G can

then be given by inserting φt(e) in (B), (NB) in §1.3.1 for t = 1,2, . . . .
This variant of the B–NB classification is important because the semigroup

Tt is in many ways more flexible than the convolution powers of a measure.
This semigroup can be used, for instance, to define the negative powers of the
Laplacian

�−α/2 = cα

∫ ∞

0
t−α/2Tt dt; α > 0.

Using this, Hardy–Littlewood–Sobolev (HLS) estimates and isoperimetric in-
equalities can be considered onG. These amount to analysing the boundedness
properties of

�−α/2 : Lp(G)→ Lq(G); α > 0, 1� p, q� ∞. (1.1)

These HLS estimates and the Gaussian decay of μt played a central role in
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Varopoulos et al. (1992). The classification in §I.2 of that book was in fact done
via these HLS estimates. This is no longer the case in non-unimodular groups
where only very few HLS results exist and we have many open problems but
few theorems about (1.1) (cf. Varopoulos, 1996a).
Gaussian decay when the group is amenable can be illustrated by the fol-

lowing sharp estimate (see Varopoulos, 2000a):

Et(r)�Cexp

(
− r

2

ct

)
; r, t �C,

where the constants depend only on G and�. The same estimate holds for the
convolution powers of a measure. This type of result is interesting but will not
be considered in this book.

Notes and references The essential prerequisite for reading this book is a
working knowledge of Lie group theory. There are several excellent books
on the subject. The one that I shall follow very closely in results, spirit and
notation is Varadarajan (1974). Another reference that I shall follow closely is
Helgason (1978). A beginner in the subject will find Sagle and Walde (1973)
helpful.
Amenability is a subject in itself and we shall refer to Reiter (1968) and

Greenleaf (1969), but in fact everything there that will be needed will be re-
called in §3.1. A standard general reference for connected locally compact
groups is Montgomery and Zippin (1955).
For the little use that we shall make of algebraic groups we shall use the

historical references Chevalley (1951, 1955). For our purposes these remain
the best sources.

1.4 The Geometric B–NB Classification of Lie Groups.
An Example

For the (A)–(B) classification of unimodular Lie groups we used γ(n), the vol-
ume growth of G. For non-unimodular groups on the other hand it is well
known (see Varopoulos et al., 1992, §IX.1), and very easy to see, that γ(n) �
cecn, n � 1, and therefore something more subtle has to be done to express
geometrically the B–NB classification of the previous section. We have to con-
sider volumes of sets with respect to lower-dimensional Hausdorff measures.
For these we shall need to introduce the following notions.
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1.4.1 Invariant Riemannian structures on G and quasi-isometries

Let G be some connected real Lie group. On Te(G), the tangent space at the
identity, we can fix some scalar product, that is, some Euclidean structure, and
we can then use the left group translation g→ xg to obtain the corresponding
inner product structure on each Tg(G), g ∈ G. These are the left-invariant Rie-
mannian structures on G and two different inner products on Te(G) give rise to
quasi-isometric Riemannian structures in the following sense.
Let f : M1 →M2 be some diffeomorphism between two Riemannian man-

ifolds. We then say that f is a quasi-isometry if there exists C such that |d f |,
|d f−1|�C.
For Riemannian manifoldsM we shall need to recall the following two no-

tions.
The Hausdorff measure of E ⊂M is denoted Volα(E), 0< α � d = dimM.

For α = d this is the Riemannian volume of E . For α = d−1 this is the surface
area of a hypersurface. For α = 1 this is the length of a one-dimensional curve
in E . Federer (1969) is a good reference.
Closely related to this is the notion of Lipschitz functions. Let f : M1→M2

be a continuousmapping between two Riemannian manifolds; we then say that
Lip f � R if

d2( f (x1), f (x2))� Rd1(x1,x2); x1,x2 ∈M1
for the two Riemannian distances d1, d2 onM1, M2.

1.4.2 An important example

The example that will guide us in the geometric considerations that follow is A,
the group of affine motions x 	→ ax+b, x ∈R. Here a> 0, b ∈R and A can be
identified with the upper half-plane H = [(a,b); a > 0]. The Poincaré metric
ds2 = a−2(da2+ db2) can then be assigned on H and this, identified with a
metric on A, is a left-invariant metric on A. The space H with the above metric
is a very important structure and it realises the non-Euclidean (Lobatchevski)
geometry of the plane. The geodesics (i.e. the straight lines) for that geometry
are the circles in H that are orthogonal to the boundary. For readers familiar
with elementary differential geometry this is a simply connected negatively
curvedmanifold. These manifolds are called Cartan–Hadamardmanifolds (see
Cheeger and Ebin, 1975; Helgason, 1978, Chapter 1). By conformal mapping,
H is also the unit disc on which much complex analysis happens, and A is also
the simplest non-Abelian Lie group (and the only one in dimension 2).
What counts on H is that two points X1,X2 ∈ H can be joined by a unique
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geodesic and, exactly as in the Euclidean plane, we can use these geodesics to
make a retract of H to some fixed point O ∈ H. This is done by the mapping
h(X , t)∈H, X ∈H, 0� t � 1, which is defined by h(X ,1)=X , h(X ,0)=O and
h(X , t) is the point on the geodesic that joinsO to X at distance d(O,h(X , t)) =
td(O,X).
The following facts can easily be verified (either by elementary geometry –

and then it is tedious – or by the general theory of Jacobi fields on the geodesics
– and then it is automatic).

1.4.3 Isoperimetric inequalities

Let Γ⊂H be some closed smooth curve and let O∈ Γ be some fixed point. Let
us use the above retract, with centreO, and set D= [h(X , t); X ∈ Γ, 0� t � 1].
Here D is the image in H: that is, D= α(e) where e= e2 is the topological 2-
cell and α : e→ H is a mapping with α(ė) = Γ. Here ė= S1 is the unit sphere
which is the boundary of e. We also have

Vol2(D)�C(Vol1Γ+ 1) (1.2)

for the corresponding Hausdorff measures. Incidentally, the same type of iso-
metric inequality holds in the Euclidean plane R2 but there the right-hand side
has to be replaced by (Vol1Γ+ 1)2 instead.
The above motivates the following general definition.
Let M be some Riemannian manifold that is topologically ∼= Rd . We shall

denote by en the topological n-cell (Euclidean n-ball) for 2� n� d; then ėn =
Sn−1, will denote its boundary.
We could say thatM has the volume polynomial filling property if there ex-

ists a constantC such that for every smoothα : ėn→M we can extend α̂ : en→
M smoothly and in such a way that Voln α̂(en)�C[Voln−1α(ėn)+1]C. The in-
equality (1.2) then says that H admits this polynomial filling property.
One problem with using the above definition is that it is complicated to ex-

tend it to n > d and also, clearly, the various volumes have to be counted with
‘multiplicity’ if the definition is to be coherent. It is preferable therefore to con-
sider a closely related notion which in our context of Lie groups is essentially
equivalent.
The above notions were introduced in Gromov (1991), where I learned about

them.



1.5 A Special Class of Groups and the Metric Classification 9

1.4.4 The polynomial filling property

Rather than topological cells, it will be preferable here to consider [0,1]n⊂Rn,
the unit cube; then ∂ n−1 = ∂ [0,1]n ⊂ Rn denotes its topological boundary and
they are both assigned their Euclidean distance. Going back to H and using
the retract h we see that exactly the same considerations (either elementary or
using the properties of negative curvature) show the following.

Theorem Let R> 0 and let f : ∂ 1→H be such that Lip f � R. Then we can
extend f to f̂ : [0,1]2→H in such a way that f̂

∣∣
∂ 1 = f and Lip f̂ �C(R+1)2.

More generally, again for any Riemannian manifoldM that is topologically
∼= Rd and any n � 2, we say that M has the polynomial filling property in
dimension n if there existsC > 0 such that, for all R� 1 and all f : ∂ n−1→M
with Lip f � R, we can find an extension f̂ : [0,1]n→M such that

f̂
∣∣
∂ n−1 = f , Lip f̂ �CRC. (1.3)

We consider only R> 1 because we are interested only in the behaviour of the
manifold far out at infinity. For brevity we shall say that M satisfies the PFP if
this holds in every dimension.

1.5 A Special Class of Groups and the Metric Classification

This special class, which will be called models, are the Lie groups U , which,
like the group of affine motions A of the previous section, are diffeomorphic
with some Euclidean space E =Ra; that is, we have a diffeomorphismU  E .
It is clear that this topological property is essential if the notion of the poly-
nomial filling property (PFP for short) of §1.4.4 is to be used in a systematic
way.
We shall explain in this section how these groups can be used as the building

blocks of the geometric theory. But before that, for those readers who know
what the terminology means, we should point out that these models can be
characterised algebraically by the fact that U is a model if and only if U is a
simply connected soluble group.

1.5.1 The geometric classification for models

One of the basic results in the geometric theory is the following.

Theorem Let U be a model. Then,
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(i) if U is anNB-group in the sense of §1.3.1,U admits the polynomial filling
property;

(ii) if U is a B-group, U does not admit the PFP.

The second part of this theorem is difficult to prove and it takes essentially
Chapters 8–10 to do so. On the other hand, if we restrict ourselves to models
this is a very satisfactory way to express the B–NB classification theorem of
§1.3.1 in geometric terms.
In the remainder of this section we shall explain how this theorem can be

used to give the general geometric (or ‘metric’) classification of any connected
Lie group.

1.5.2 The coarse quasi-isometries

This notion refers to general metric spaces (M,d) with a distance function:
d(m1,m2)� 0; m1,m2 ∈M.
A mapping α : M1→M2 between two such metric spaces with distances d1,

d2 will be called a coarse quasi-contraction if there exist constantsC such that

d2(α(m),α(m′))�Cd1(m,m
′)+C; m,m′ ∈M1.

We then say that the metric spaces M1, M2 are coarse quasi-isometric if there

exist two coarse quasi-contractionsM1
α
�
β
M2 andC � 0 such that

d1(m1,β ◦α(m1))�C, d2(m2,α ◦β (m2))�C; m1 ∈M1, m2 ∈M2.
This means that α and β are almost inverses of each other.
The first example that comes to mind is α : Z→ R, the natural integers and

the real line, with their natural distance. This coarse quasi-isometry is clearly
an equivalence relation and, here at least, we shall use the notation M1 ∼M2
(as good notation as any!).
Given what we have already done, a more significant example of coarse

quasi-isometries occurs when we consider in §1.1 two different distances on
the same compactly generated locally compact group that are given by two
different neighbourhoodsΩ1, Ω2 of the identity, as explained there.

1.5.3 Coarse quasi-isometric models

The next result has very little to do with Lie groups and the proof consists
of easy manipulation of the kind one finds in elementary (and old-fashioned)
homotopy theory. At any rate what this says is the following.
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Theorem Let U1, U2 be two models assigned with their group distance and
let us assume that they are coarse quasi-isometric:U1 ∼U2. Then if one of two
models admits the PFP, so does the other.

1.5.4 A general connected Lie group

Now let G be some connected group. Then using classical structure theorems
on Lie groups (some of which are quite deep), we can find some modelU such
that G∼U . Furthermore, if G is a B-group (resp. NB-group), the modelU can
be chosen to be a B-group (resp. NB-group).

1.5.5 The general metric B–NB classification

If we put together §§1.5.1–1.5.4 we see that, within our framework at least, we
have achieved our aim. Let us be more explicit but slightly informal.
We start from some connected Lie groupG. To decide geometricallywhether

G is B or NB we do this:
First find some model U such that G∼U. Then check if U admits the PFP.

If it does then G is an NB-group. If not then G is a B-group.
Furthermore, the above criterion easily extends to general connected locally

compact groups. It proves that if two such groups are coarse quasi-isometric,
then one is B (resp. NB) if the other is. Such groups, for our purposes, can in
fact be approximated by Lie groups (see Chapter 6).

1.5.6 The drawback of this metric classification

The main reason why we do not stop here and instead go on to give additional
geometric classifications is the following. In the above we have mixed two
notions that do not mix well. The first is PFP which is a continuous notion that
involves homotopy theory. The second is the ‘discontinuous’ (almost discrete,
one could say) notion of coarse quasi-isometries.
The metric theory that leads to the criterion of §1.5.5 is developed in Part II

of the book (Chapters 7–11). In the final Part III we develop another geometric
B–NB criterion that is interesting in its own right, but which also gets round
the drawback that we have just pointed out. This new classification only uses
the continuous notion of homotopy retract that will be explained in the next
section.
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1.6 Homotopy Retracts

1.6.1 The classical retract

It is a classical and deep (and difficult) theorem in the structure theory of Lie
groups (see Hochschild, 1965) that the following happens:

Let G be some connected Lie group. Then there exists some smooth function
H(g, t) ∈ G, with g ∈ G, 0 � t � 1, and some compact subgroup K ⊂ G, with
the following properties:

H(g,1) = g, H(g,0) ∈ K, H(k, t) = k; g ∈ G, k ∈ K, 0� t � 1.

The function H(g, t) is called a homotopy retract of G onto the compact
subgroup K that can be taken to be a maximal compact subgroup, but this
additional information is not relevant here. In fact, more can be said and we
actually have a diffeomorphismG K×Ra for some a= 0,1, . . . .

1.6.2 The polynomial retract

We shall say that the connected Lie group G has the polynomial retract prop-
erty if the homotopyH(g, t) of the previous subsection can be chosen to satisfy
the following polynomial bound for its gradient:

|dH(g, t)|�C(1+ |g|)C; g ∈ G, 0� t � 1,

for appropriate constants.
In informal terms, this says that the speed with which we collapse G to its

compact subgroup is at most polynomial.

Example The identity is the only compact subgroup of the group A of affine
motions that we considered in §1.4.2. (This is in fact the case for every model.)
The above homotopy therefore retracts A to a point (i.e. the space is retractible).
The considerations of §1.4.2 (whether Jacobi fields are used or elementary
means) in effect amount to saying that A has the polynomial retract property.

1.6.3 The polynomial retract property used in the B–NB
classification

The notion is natural and from our point of view it can be used as follows.

Theorem (B–NB; Ht) Let G be some connected Lie group. Then,

(i) if G is an NB-group, G admits the polynomial retract property;
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(ii) if G is a B-group, G does not admit the polynomial retract property.

Another notion of polynomial retract (less standard in topology; cf. §12.2.2)
can be given by requiring that, together with the polynomial estimate of §1.6.2,
the homotopy is such that H(g,1) = g and H(g,0) ∈ P lies in some compact
set P⊂G. This definition of polynomial retract can be substituted in the above
theorem and the theorem still holds good. As pointed out in §1.6.1, if we do not
impose the polynomial estimate, all Lie groups can be retracted to a compact
set in this sense. Notice, however, that only a very restricted class of manifolds
admit this general property.

1.6.4 The investment/return ratio; or what it takes to prove the
(B–NB; Ht) theorem

The proof of part (i) of the theorem is given in Appendix F but it would be
fairer to say that it uses bits and pieces from all over Parts I and II of the book.
The proof of part (ii) is an entirely different story and for that one has to use

the homology theory that will be developed in Part III.
This brings us to the dilemma that the author has had to face, namely, a

decision about the ‘return on investment’ that, I might add, we often have to
make in real life as well. Part III of the book is quite long and in some sense also
quite difficult because it involves sophisticated ideas from algebraic topology
and manifold theory. One of the reasons that it is so long is that Chapter 12
consists almost entirely of the background material I felt we had to recall in
order to give the average reader of this book a chance.
So, is it worth the investment?
The (B–NB; Ht) theorem is probably the most important single result in the

geometric theory and to amputate it from its ‘only if’ part would certainly be
a pity. Even so, if it were just for this theorem, we might have been tempted to
skip the 100-odd pages of the proof.
On the other hand, this homology theory that we have to develop is inter-

esting in its own right. I also feel, and wish to convince you, the reader, that it
is here that most of the future prospects of the theory lie. One cannot after all
forget that homology is the most important invariant of any geometric object
(and not just of them).
As a consequence I decided to embark on Part III.
In the next two sections we shall describe in fairly complete terms the ho-

mology that is used. This will give readers a chance to decide for themselves
whether it is worth the ‘investment’ for the ‘return’ obtained.
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1.7 Homology on Lie Groups

Let us start by recalling how two cohomology theories can be defined on a
manifoldM: the de Rham cohomology in this section and the Čech cohomol-
ogy in the next.

1.7.1 The de Rham complex

LetM be someC∞ manifold and let Λp(M) be the space of smooth differential
forms of degree p (set to zero if p< 0). The exterior differential

d : Λp→ Λp+1

is a mapping such that d2 = 0 and therefore Imaged ⊂ Kerd for any Λp−1
d−→

Λp
d−→Λp+1; that is, the image is contained in the kernel. The pth Betti number

is dim[Kerd⊂Λp]/[Imaged⊂Λp]. For general manifolds these Betti numbers
are usually ∞. However, they are finite for compact manifolds and, as we shall
see, for Lie groups too.
To understand the above one has to know what differential forms are. If you

do not, don’t despair. The other (Čech) cohomology that we shall examine in
the next section is equivalent (i.e. gives the same Betti numbers) and can be
defined by entirely elementary means.

1.7.2 The case of a Lie group

Here the manifold is a connected Lie group G and is also assigned a left-
invariant distance (which will not be used until later). In this case, the space
Λp(G) can be given a particularly simple description. We start with ω1, . . . ,ωn,
a basis of T ∗e (G), the dual of the tangent space; then ωI = ωi1 ∧ωi2 ∧·· ·∧ωip
gives a basis of

∧p T ∗e (G) as I runs through the various multi-indices I = (i1 <
i2 < · · · < ip). The group left translation (x 	→ gx) can then be used to obtain
the corresponding basis ωI(g) of

∧p T ∗g (G), with g ∈ G, and the differential
forms on G can then be written

ω(g) =∑aI(g)ωI(g).

Readers who only ‘half-know’ what differential forms are should note that un-
like the usual definition which only uses local coordinates (i.e. ∑aI dxi1 ∧·· ·∧
dxip), here, when we take the exterior differential, it is not in general true that
dωi = 0. The advantage, however, of the above representation of differential
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forms is that it is global and we can define intrinsically

|ω(g)|=∑
I
|aI(g)|; g ∈ G,

where the summation runs through the distinct multi-indices that give a ba-
sis (to

∧
T ∗G). It is clear that, up to multiplicative constant, this definition is

independent of the choice of the basis ω1, . . . ,ωn.
Be that as it may, in the case of Lie groups, two important things have to be

highlighted. The first is a deep theorem, but also an automatic consequence of
the retract property that we described in §1.6.1. This theorem says that a Lie
group has finite homology and has in fact exactly the same Betti numbers as
does the maximal compact subgroup (K in the notation of §1.6.1).
The second thing that we shall highlight is that a different complex can

now be defined. This will be called the polynomial complex. For this we can
consider ΛPol(G) which is the subspace of differential forms ω on G that are
of polynomial growth, that is, the forms for which constantsC exist such that

|ω(g)|�C(1+ |g|)C; g ∈G.
Obviously it is not in general true that d2ΛPol ⊂ ΛPol, so if we want to have
a complex (i.e. d2 : Λ→ Λ, d2 = 0) we must defined this complex by ΛPol ∩
d−1ΛPol (if ω lies in there then dω ∈ ΛPol but also, by d2 = 0, automatically
dω ∈ d−1ΛPol).
Using this complex, new Betti numbers can be defined as before: the poly-

nomial Betti numbers. If these are finite we say that the Lie group G has finite
polynomial homology.
To end the suspense, here is the key theorem.

Theorem (B–NB; Hl) Let G be some connected Lie group. Then,

(i) if G is an NB-group it has finite polynomial homology;
(ii) if G is a B-group it does not have finite polynomial homology.

Before we comment further let us illustrate this theorem and see what it
means in a simple concrete case.

Example Let U be a model as in §1.5 and let ω be some closed differen-
tial form onU without constant term (i.e. dω = 0). We shall assume that ω is
of polynomial growth. Then since U as a differential manifold is a Euclidean
space Ra, we can surely solve the Poincaré equation dθ = ω for some other
smooth differential form θ onU . The question that arises is whether that solu-
tion θ can also be chosen to be of polynomial growth. Our theorem provides
the answer: yes ifU is NB; no ifU is B.
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1.7.3 The homological investment/return ratio [sic]

It is very easy to see that (i) in the (B–NB; Hl) theorem is an easy conse-
quence of the corresponding part (i) of the (B–NB; Ht) theorem. Therefore,
as explained in §1.6.3, the proof of this is given in Appendix F, though it is
essentially contained in Parts I and II of the book.
This is not so for part (ii) of (B–NB; Hl). The proof of this is much more

difficult and this interacts with the corresponding homotopy result in §1.6. Let
us explain. To get this part (ii) we use Part III of the book: pretty much the
whole of it. This is in fact what Part III is all about. But now, and this is again
automatic, part (ii) of (B–NB; Ht) follows at once. (Grosso modo: (i) Ht =⇒
(i) Hl; (ii) Hl =⇒ (ii) Ht.) Readers who have had some exposure to algebraic
topology can no doubt see why all this happens.We shall leave it at that, except
to say that this fact puts Part III in a broader perspective. The moral is that
although in Part III the investment is quite high, the return is high also.

1.8 Čech Cohomology on a Lie Group

As promised, we now describe another complex on a Lie group that gives the
same Betti number as the de Rham complex. This construction is more general
and can be adapted to any topological space that is not a manifold. We give
this here also because the construction is more elementary and some readers
may prefer it. It should be noted too that in Part III of the book, systematic use
will be made of both these complexes.

1.8.1 A good cover of a Lie group

The terminology ‘good’ for a cover, say for a manifold, in the context of Čech
cohomology indicates a number of specific properties (see Bott and Tu, 1982)
which here, in the case of a Lie group, can be described in the following con-
crete way. Let U = (Uα ;α ∈ A) be a cover by open sets of the connected Lie
group G where A is a countable ordered index set. The sets Uα are left trans-
lates of a small neighbourhood of the identity e ∈U ⊂ G, that is, Uα = gαU .
To be specific,U = Ba is some open ball of radius a> 0 centred at e, for some
left-invariant Riemannian metric that has been fixed once and for all. As for the
points [gα ∈G;α ∈ A], they give rise to a subset of G that is chosen to be max-
imal under the condition that the distance d(gα ,gβ )� b, with α,β ∈ A,α �= β ;
here b> 0 is fixed. (Zorn’s lemma, among other things, can be used. Maximal
means that if we add an extra point, the condition breaks down.)
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It is then very easy to verify that if a� b then the open sets Ua = gaU
give a locally finite cover of G (the ‘locally finite’ comes from the condition
d(gα ,gβ ) � b, which implies that gαBb/10 are disjoint balls of the same Haar
measure).
The pivotal property that has to be imposed on the size of the small ball U

is that it is geodesically convex for the left-invariant Riemannian metric on G.
Geodesically convex open sets on a Riemannian manifold are diffeomorphic
withRn, and intersections of geodesically convex sets are geodesically convex.
The definition is what it says: any two points x, y on the set can be joined by a
unique minimising geodesic. That geodesic lies entirely in the set and no other
geodesic that joins them lies entirely in the set. The well-known Whitehead
lemma says that if the radius a of the ball U is small enough, then U and
therefore all the sets Uα and all their intersectionsUα1,...,αp =Uα1 ∩·· · ∩Uαp ,
with α1 < · · ·< αp, are also geodesically convex.

1.8.2 The Čech complex

Now let U = (Uα ; α ∈ A) be some cover as in §1.8.1. Here this could be
any cover of any set; the only thing that counts is that we can define the sets
Uα1,...,αp as above. On each of these sets we specify the space of constant func-
tions with value cα1,...,αp ∈ R. This gives a one-dimensional vector space. The
direct product of all these vector spaces for which the length of the multi-index
α1 < · · ·< αp is p is denoted byCp−1 =Cp−1(U ) and its elements are called
chains. The operator δ : Cp−1→Cp is then defined by

(δc)α1,α2,...,αp+1 =
p+1

∑
j=1

(−1) jcα1,...,α̂ j ,...,αp+1 ,

with the following explanations for this formula: the ‘hat’ means that α j has
been suppressed and for any c ∈Cp−1 the cβ1,...,βp indicates the coordinates of
c in the direct product vector space. Furthermore, cα1,...,α̂ j ,...,αp+1 is a constant
function ofUα1,...,α̂ j ,...,αp+1; therefore it stays a constant function onUα1,...,αp+1 .
Here are the facts that can then be verified. Together with the above spaces

Cp−1, p � 1, we let Cp = 0 for p < 0. We then have δ 2 = 0 when Cp−1 −→
δ

Cp −→
δ

Cp+1 and {Cp; p ∈ Z} is a complex. The proof is easy.
What also holds, but is less easy to prove, is that the Betti numbers obtained

from this complex dim([Kerδ ⊂Cp]/[Imageδ ⊂Cp]) are exactly the same as
the Betti numbers obtained from the de Rham complex of §1.7.1.
The above holds, as long as the cover is a ‘good’ cover, on any manifold and

is not restricted to groups.
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1.8.3 The polynomial complex

We shall denote byCp−1
Pol the subspace of chains σ ∈Cp−1 for which there exist

constantsC > 0 such that

|σα1,...,αp |�C(1+ |gα1|)C; α1 < α2 < · · ·< αp.

More symmetric but equivalent notation would have replaced |gα1 | in the above
by distance(e,Uα1,...,αp).
The situation is more satisfactory here than for the de Rham complex be-

cause δCp
Pol ⊂Cp+1

Pol and therefore we can use this to define a new complex and
the corresponding polynomial Betti numbers dim([Kerδ ⊂ Cp

Pol]/[Imageδ ⊂
Cp
Pol]).
At this point we go back to U = Ba, which was used to define the Čech

complex on the Lie group G; we can prove the following.

Theorem The Betti numbers of the polynomial de Rham complex and of the
polynomial Čech complex are identical as long as the radius a of U is small
enough.

This Čech complex can therefore be used to give the geometric characteri-
sation of the B- or NB-groups.
The de Rham complex is the one that is more often used on manifolds. The

notion of the Čech complex is closer to combinatorial ideas and in particular to
that of a graph. We felt therefore that in the case of a Lie group (which is both
a manifold and a group) both of these complexes deserved to be mentioned in
this introductory chapter.

1.9 The Role of the Algebra in the B–NB Classification

What we have described in this chapter can be rephrased by saying that we
have classified connected Lie groups into two classes and this we do in two
different ways.
Analytic This is done in §1.3.
Geometric This is done in §§1.4–1.8.

Seen like this, the issue is to prove that the two classifications are identical.
As it happens, this equivalence is not proved directly; rather we have to

make the classification a third way. This is achieved by conditions on g, the
Lie algebra of the group.

Algebraic We consider g, a real Lie algebra. We introduce algebraic condi-
tions that classify g into two classes: the B-algebras and the NB-algebras.
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To close the circle we show first that the connected Lie groupG is a B-group
(resp. NB-group) if its algebra is a B-algebra (resp. NB-algebra). This is done
in the analytic theory in Part I of the book.
Similarly in Parts II and III, we prove the same equivalence between the

geometric and algebraic classifications. In the equivalence of §1.10 below we
show schematically how we pass from one classification to the other.
We see from the above that the game is played on three different levels. This

explains, to some extent, why the story is so long in the telling.

An important prospect Here in fact lies the single most important prospect
for the further development of the theory. The issue is to shortcut the Lie alge-
bra altogether, as was done in Varopoulos et al. (1992) for unimodular groups
(see §1.1 above), and obtain directly the proof of the equivalence between the
analytic and geometric classifications. One hopes that this will open the way to
other classes of groups. Why not be optimistic: all discrete finitely generated
groups as in §1.1, or at least lattices in Lie groups? And so on.

1.10 A Broader Overview and Suggestions for the Reader

There are two aspects to the material of this book. The first is qualitative and is
the classification of connected Lie groups and is given at three different levels:

analytic ⇔ algebraic ⇔ geometric.

The methods of the first equivalence are functional analytic and we do not use
any ‘hard’ estimates.
To illustrate the issue let μ ∈ P(G) and φn be as in §1.3.1 and let e−λ be the

operator norm of f 	→ f ∗ μ in L2(G;drg), λ � 0. It is then an easy matter to
show (see §3.1.3) that for all ε > 0 there exist C, Cε (here Cε depends on ε)
such that

Cεe
−(λ+ε)n � φn(e)�Ce−λn.

The analytic⇔ algebraic classification then consists in finding algebraic con-
ditions on G under which one or the other of the conditions below hold:

(B) φn(e)�Cexp(−λn− cn1/3).
(NB) Ce−λnn−c � φn(e).

The second aspect of the theory builds on this classification and gives precise
results. This aspect is well illustrated by (NB): with λ = λ (μ) as in (NB)
of §1.3.1 the issue is to determine explicitly the α = α(μ) for which (NB)
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holds. This is done in terms of G and the appropriate geometric invariants of
μ . The problem is quite difficult and relies on delicate probabilistic estimates.
This result is the generalisation of the local central limit theorem in Rd where
α = d/2. Results of this kind, however, are definitely less basic than the general
classification of the groups.
For these reasons I have emphasised the first aspect, and the exact compu-

tation of α and such like can ‘wait for another day’! Furthermore, apart from
being more fundamental, once the methods of the classification are well under-
stood, the sharp results are then obtained by refining these methods. Finally,
we should point out that this first aspect of the theory has reached its final form.

Guide for the reader for Part I The analytic ⇔ algebraic classification for
amenable groups is contained in Chapters 2 and 3. There the reader will find the
basic logic of the proofs and should study these chapters carefully. To pass to
the general (non-amenable) case, new ideas are needed and these are developed
in Chapters 4 and 5.
The proofs in these chapters are not intrinsically difficult; they are, however,

long and they necessitate reasonable familiarity with Lie algebra theory, the
structure of Lie groups, probability theory. All of these come from different
mathematical cultures and herein lies the main difficulty in reading this book.
To deal with this difficulty and so as not to break the logic of the arguments, a

deal of additional material related to these topics is deferred to the appendices.
The algebraic⇔ geometric equivalence is an entirely different subject that

can be read independently. But here again the methods differ wildly from place
to place; for example, combinatorics are used in Chapter 9 and de Rham coho-
mology in Chapters 12–14.
From the above it should be clear that the proofs in the three parts should

not be read ‘linearly’. An alternative suggestion would be to pick up one set of
techniques, for example random walks in Part I, or de Rham and Čech coho-
mology in Part III, and see how these are used to provide the required compo-
nent of the B–NB classification.
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The Classification and the First Main Theorem

An Overview of Chapters 2 and 3

In these two chapters we shall give the classification theorem of §1.3.1 for Lie
groups that are amenable. These we recall are the groups for which λ = 0 in
that theorem. In that case the groups are called C and NC groups and they
are treated in Chapters 2 and 3 respectively (C stands for ‘condition’ and NC
for non-C). The amenable groups are the main building blocks for the more
general groups of Chapters 4 and 5.
The proofs in these two chapters are long and technical; therefore, in a first

reading, only the Parts 2.1 and 3.1 of these chapters should be studied. In these
first parts of the chapters we examine the convolution powers of compactly
supported measures. In fact, in Chapter 1 a slight generalisation is considered
where we prove the results for the convolution of several distinct measures.
This is not because we aim for maximal generality but because this generalisa-
tion is essential in Chapter 4 and at any rate the proofs are not more difficult.
After Parts 2.1 and 3.1, it is clear that we have here a good classification as

in §1.3 and it is only a matter of finding a way of introducing the spectral gap
λ and the exponential e−λ t in the estimates. This is done in Chapters 4 and 5.
The alternative version of the classification that uses the diffusion kernel of
some invariant operator (see §1.3.2) is done in the second parts of Chapters 2
and 3.
The algebraic conditions on the Lie algebra that give the C–NC classifica-

tion are given in §§2.1–2.3. Basic linear algebra is used there and in particular
the ‘root space decompositions’. This can be found in standard textbooks, for
example Varadarajan (1974) or Jacobson (1962) among others.
In §§2.4–2.5 we give some easy elementary properties on convolution of

measures that will be used throughout.
Once this is done, the C-part of the theorem is given in §§2.7–2.11. But

23
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before that we shall give a detailed ‘plan of the proof’ that we hope will help
the reader unravel and understand the interconnections between these sections
of Chapter 2.
In these two chapters a scheme emerges which we follow consistently in the

first part of the book. To wit,

(i) probabilistic- and potential-theoretic or other accessory ad hoc tools are
generally given in the appendices;

(ii) basic special cases of groups are identified and the theorems are first
proved in these particular cases;

(iii) the general results follow by reductions to these special cases.

The reductions needed in (iii) make extensive use of the structure theory
of Lie groups (see Pontrjagin, 1939; Weil, 1953; Hochschild, 1965; Helgason,
1978; Varadarajan, 1974), a subject that is not trivial. The reader not familiar
with this theory could skip these reductions altogether.
In Chapter 3 the special cases of (ii) are the simply connected groups, or

better still, groups that are appropriate semidirect products N�V (see §3.4).
In Chapter 2 it is more difficult to pinpoint these appropriate special cases
on which the theorem is to be proved (this is done in §2.6). Identifying these
special cases is an essential ingredient of the proofs.
The pivotal part of the proofs is the proof for the special cases (ii). Here the

key parts of Chapters 2 and 3 are §§2.7–2.11 and §§3.4–3.5 respectively.

Standing convention Unless otherwise stated, all the Lie algebras will be
finite-dimensional over the field R of real numbers. The definitions, the no-
tation and the basic facts come from Varadarajan (1974), Jacobson (1962).

Part 2.1: Algebraic Definitions and Convolutions of Measures

2.1 Soluble Algebras and Their Roots. The Levi
Decomposition

2.1.1 The nilradical

Let q be some soluble Lie algebra and let n� q be its nilradical, that is, the
largest nilpotent ideal (see Jacobson, 1962, §§3.5, 3.7, 3.8). We denote by [·, ·]
the multiplication in the algebra and for A,B⊂ q we denote by [A,B] the linear
combination of [a,b], a ∈ A, b ∈ B, and we then have [q,q] ⊂ n (Varadarajan,
1974, §3.8.3).We also denote [n, [n, [. . . ,n]] . . .] = np (with p factors).With this
notation we recall that ‘q is a Lie algebra’ means [x,y]+ [y,x] = 0, [x, [y,z]]+
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[z, [x,y]]+ [y, [z,x]] = 0. An ideal h is called nilpotent if hp = [h, [h, . . .]] = 0 for
some p. The definition of solubility can be taken to mean [q,q]⊂ n.
For any real vector space V we denote its complexification by V c =V ⊗RC

and also write adx : q(c) → q(c) for the mapping induced by adx : y→ [x,y],
x,y ∈ q. Sometimes, for additional clarity, we shall write adx= ad(x) = (adx).
When confusion could arise we shall denote the complexification by V (c).
Now let V = q/n,W = n/[n,n]; the action ad induces mappings

adv : W →W, adv : W c→W c; v ∈V. (2.1)

We can identify V with a commutative algebra of linear transformations and
define the roots and the root space decomposition of the space W c under the
action adv; see Jacobson (1962, §II.4).
To be more specific, the roots λ j ∈ HomR[V,C] are complex-valued linear

functionals of V and to each such root there corresponds a complex subspace
0 �=Wj ⊂W c, called the root space, and the defining relation is

(adv−λ j(v))n w= 0; v ∈V, w ∈Wj, n= dimq+ 10. (2.2)

These subspaces are invariant under the V action and give the direct space
decomposition

W c =W1⊕·· ·⊕Wt . (2.3)

We also recall that the action ofV onWj is given by a scalar matrix λ j(v)I plus
a nilpotent transformation, that is, strictly upper triangular for an appropriate
basis. We can decompose

λ j = Reλ j+ i Imλ j, Lj = Reλ j (2.4)

into their real and imaginary parts. If we collect together λα1 , . . . ,λαs , all the
roots with the same real part L= Lα1 = · · ·= Lαs , we obtain

Wα1⊕·· ·⊕Wαs =WL = W̃L⊗C, (2.5)

where W̃L ⊂W . To see this we shall consider onW c the complex conjugation
that sends u+ iv to u− iv for u,v ∈W . We denote this as usual by x → x̄,
with x ∈W c, and from the above it follows thatWL =WL because the complex
conjugate takes the root space with root λ j to the root space with root λ̄ j. In
other words, the WL are real spaces and we can use the exercise below. We
obtain thus

W = W̃1⊕·· ·⊕W̃p. (2.6)

This will be called the real root space decomposition that corresponds to the
distinct real partsL = (L1, . . . ,Lp)⊂V ∗ the real dual ofV , and in an abuse of
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terminology that we shall adopt throughout, the Lj will be called the real roots.
To stress the point and avoid confusion, this set is not the set of the roots that
happen to be real. This set reduces to the empty set if and only if the algebra
reduces to zero.

Exercise A subspace E ⊂W ⊗C overC is called real if E = E for the above
complex conjugation. Such a space is of the form E = Ẽ⊗C for some Ẽ ⊂W .
It suffices to observe that when E �= {0} it contains some 0 �= v ∈ E ∩W (here
W is considered as a real subspace of W c). To see this let 0 �= x ∈ E; then
2x = (x+ x̄)+ i(x− x̄)/i. So vC ⊂ E and therefore E = vC⊕E1 for another
real subspace E1 of lower dimension (to see this use a basis v,v′, . . . for W ).
The same thing for more general field extensions is used in §6.5.4 below.

2.1.2 The radical and the Levi decomposition

Let g be a general Lie algebra and let q� g be its radical, that is, its largest
soluble ideal. We can then write g = q� s as a semidirect product (see Var-
adarajan, 1974, §3.14), where s is a Levi subalgebra which is a semisimple
algebra, that is, its radical is 0 (see Varadarajan, 1974, §3.8). This means, we
recall, that g= q+ s is a direct vector space sum, that is, that q∩ s= {0}; it is
called the Levi decomposition of the algebra.

2.2 The Classification

2.2.1 Soluble algebras

Let q be a soluble algebra and letL = (L1, . . . ,Lp) be the distinct real roots as
in §2.1.1. We then say that
• q is aC-algebra if there exist α1, . . . ,αp� 0 for 1� j� p such that∑p

i=1αiLi
= 0 and such that for at least one real root L j we have α jL j �= 0;
• q is an NC-algebra (non-C-algebra) if for all α1, . . . ,αp � 0 the condition
∑p
i=1αiLi = 0 implies αiLi = 0, 1� i� p.

Clearly every soluble algebra is either C or NC. This says, in particular, that
nilpotent algebras are NC, for thenL = (0) orL = /0.
For a general algebra g, we say that it is a C-algebra (resp. NC-algebra) if

its radical is a C-algebra (resp. NC-algebra).

Exercise 2.1 If n is the nilradical, show that g/n2 is a C-algebra if and only
if g is. If z is the centre of g then g/z is a C-algebra if and only if g is. The
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product algebra g= g1×g2 is NC if and only if g1 and g2 both are. Hint. The
nilradical of g/n2 is n/n2. This holds because if ξ ∈ g is such that its image
in g/n2 is in the nilradical of that algebra, then (adξ )kg ⊂ n2 for some k and
by iterating (i.e. (adξ )sn ⊂ n3, for some s, and so on . . .), this implies that
(adξ )p = 0 for some p. This shows that ξ ∈ n because it is in the radical and
we can use Varadarajan (1974, §3.8.3). By an analogous argument we see that
the nilradical of g/z is n/z. Note, however, that for the proof of the exercise,
the characterisations in §§2.3.3–2.3.4 below are much better adapted.

2.2.2 Amenability and the R-condition

We also recall that s a semisimple algebra is said to be of compact type if
the Lie groups that correspond to s are compact (the point here is that if one
such group is compact then they all are; Varadarajan, 1974, §4.11.6; Helgason,
1978, II, §6.9). The Lie groups G for which the Levi subgroups S ⊂ G are
compact are called amenable; S is the analytic subgroup that corresponds to
the Levi subalgebra of the Lie algebra. In Chapter 3 we shall give more details
on amenability. But provisionally this will be taken to be the definition.
The definition of R-algebras is widely used in the literature; see Guivarc’h

(1973), Jenkins (1973). We say that g is an R-algebra if and only if the real
roots of §2.1.1 for the radical q�g are all zero (i.e.L = (0)), and if in addition
s, the Levi subalgebra, is of compact type. According to our definition such
algebras are NC. In this chapter we shall use this notion only in §§2.5.4 and
2.3.5 and this just to illustrate the main theorem. The reader can therefore
ignore this notion for the time being if they so wishes.
The above classification extends to connected real Lie groups. If G is such a

group we say that it is a C-group (resp. NC-group, R-group) if its Lie algebra
g is.

2.3 Equivalent Formulations of the Classification and
Examples

2.3.1 Affine geometry

Let q be soluble and V = q/n as in §2.1.1. Then q is an NC-algebra as long
as there exists x ∈ V such that Lx > 0 for L ∈ L \{0} = L1. Conversely, if
the soluble algebra q is an NC-algebra we can use Hahn–Banach in the finite-
dimensional space V ∗ to separate 0 from the convex hull (L1) and this gives
x ∈V such that Lx> 0, L ∈L1.
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Similarly, q is a C-algebra if and only if there exists V1 ⊂ V , V1 �= V (i.e. a
strict subspace), and a constant c> 0 such that

L+1 (x)+L+2 (x)+ · · ·+L+p (x)� c|x̂|V/V1; x ∈V. (2.7)

Here L+ = sup(L,0) = L∨ 0 and x̂ is the image of x in V/V1. Here we have
fixed some norm onV and in (2.7) we use the quotient norm.Grosso modo this
says that infx∈x̂∑L+j (x) can be used as an equivalent norm on V/V1.
If we use the previous characterisation of NC-algebras we see that (2.7)

implies that q is not NC. Indeed, if x ∈V is such that Lx> 0, L ∈L1, we may
suppose that x /∈ V1. But then substituting −x in (2.7) we get a contradiction
with (2.7).
Conversely, assume that q is C and let Li1 , . . . ,Lik be a minimal set of non-

zero real roots that satisfy ∑k
j=1 γ jLi j = 0 and γ j > 0. The Li j thus form a non-

trivial simplex in some subspace E ⊂V ∗ that contains 0 in its interior. But then
for all 0 �= X ∈ E∗ in the dual we have max j〈Li j ,X〉> 0; otherwise all the Li j
would be on one side of a hyperplane in E . By elementary (finite-dimensional)
duality we can identify E∗ with V/E⊥ and (2.7) follows.

2.3.2 Examples

(i) For a nilpotent group in §2.1.1 all the roots λ j equal 0 because by the
definition,V = {0} in (2.1). These groups are therefore R-groups.

Less trivial but typical illustrations of the definitions that we have given are
supplied by semidirect products. We recall that G = H �K if H is a closed
normal subgroup, K is a closed subgroup and K ∩H = {0}. See Varadarajan
(1974, §3.14), Hochschild (1965, IX) and §8.3 in Part II of the book.
(ii) The group of affine motions on R, x 	→ ax+ b, a = eα > 0, b ∈ R is

soluble and a semidirect product of the translations x 	→ x+bwhich is the
nilradical, and the dilations. This group is the semidirect product R�R.
There is only one root λ (α) = α . This group is therefore a soluble NC-
group.

(iii) We can generalise the previous example to the group of affine motions
on Rd which is Rd �GLd(R) with the natural action of GLd on Rd . To
obtain a soluble group we can consider π : Rm → GLd(R) a homomor-
phism for some m � 1 and the induced semidirect product Rd �Rm =

W �V = G. A concrete example is obtained by

π(v) = diagonal(exp(L1(v)), . . . ,exp(Ld(v)));
L1, . . . ,Ld ∈V ∗ = the real dual.

(2.8)
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The group G is then soluble and its roots L1, . . . ,Ld are real. We have a
C-group when d = 2, m= 1, L1v= v, L2v=−v.

2.3.3 The use of Lie’s theorem

Let q be some soluble Lie algebra. By Lie’s theorem, once we complexify, we
can find a basis in qc = q⊗C for which all the linear mappings adx become
simultaneously triangular (see Varadarajan, 1974, §3.7.3):

adx=

⎛⎜⎝λ1(x) �
. . .

O λn(x)

⎞⎟⎠ . (2.9)

These new λ j ∈ HomR[q,C] are also called roots and as before we can define
a new set L ′ = (L1, . . . ,Ln) with Lj = Reλ j ∈ q∗. This new set can be used
as before to classify C- and NC-algebras. This classification thus obtained is
identical to the one that we have already given.

Exercise 2.2 Prove this: the proof is a consequence of the Jordan–Hölder
composition series (see Jacobson, 1989, Volume 2, §3.3) and of the fact that
[q,q]⊂ n, the nilradical (cf. Varadarajan, 1974, §3.8.3). Use §2.3.4 below and
the series

q	n	n2	 · · ·	nr = {0}.
Use this characterisation to prove that if r� q and if q is NC then q/r is also
(this is not necessarily the case for r: for example, consider Q1 ×Q2, with
Qi = (b1,αi), the direct product of two copies of the group in §2.3.2(ii) and R,
the subgroup for which α1 =−α2).
Note also that in (2.9) at least one λi is 0 because we always have [q,q]⊂ n.
No use of this formulation of the classification will be made in this chapter.

More details will, however, be given in the next two subsections.

2.3.4 The composite roots

In the proof of the NC-theorem in the next chapter, the ad-action of q on n will
have to be examined in more detail. We shall now elucidate this but the reader
can skip this subsection until it is actually needed in Chapter 3.
Observe first that V = q/n acts by ad- also on each space Wp = np/np+1

(the notation is as in §2.1.1) and these spaces, once complexified, admit root
space decompositions. The point to note here is that if λ1,λ2, . . . are the roots
of the action onW = n/n2 then the roots of the action onWp are the composite
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roots of the form λα1 + · · ·+λαp. To see this we observe that [np,nq] ⊂ np+q

and thereforeW∞ = ∑Wp admits a structure of a graded Lie algebra for which
Wp = [W1, [W1, [. . .] . . .]]. Both q and V act naturally onW∞ by derivations and
the two actions can be identified in a natural way. We then use the fact that
the bracket of two root spaces ofW∞ by the action of V lies in the root space
with root the sum of the two roots, provided that this sum is a root and is 0
otherwise (see Jacobson, 1962, §III.2 and Chapter II, Exercise 8). As before
we can take their real parts; these will be called composite real roots and are
of the form Lα1 + · · ·+Lαp ∈ V ∗. By the Jordan–Hölder theorem we see that
this new set of composite real roots counted with multiplicity is exactly the set
L ′ defined in §2.3.3 provided that in that counting we ignore the roots that
are 0. The characterisation of §2.3.3 follows because the NC-condition forL ′

clearly holds if and only if it holds for the set of their simple components inL .
These composite real roots will be explicitly used in Chapter 3 in an impor-

tant special case that we shall describe in the next few lines.
We shall consider h ⊂ q some nilpotent subalgebra such that q = n+h. We

shall see in §3.4.2 that such an algebra always exists. The composite real roots
L ′ can then be identified with real linear functionals in (h/h∩n)∗ ⊂ h∗. These
roots can, however, also be defined directly as follows.
The algebra h induces by the ad-action some nilpotent algebra of linear

transformations on n and it induces therefore a root space decomposition of
the complexified nc = nc0 ⊕ ·· · ⊕ ncp (see Jacobson, 1962, §II.4, and §3.8.2
below). This decomposition will be examined in some detail in §3.8. Here
we shall simply point out that we can consider again L ′′ = (L1, . . . ,Lp) the
real parts of the roots of this decomposition. The same Jordan–Hölder ar-
gument shows that L ′ = L ′′ (provided again that we ignore the zero roots,
i.e.L ′\{0}= L ′′\{0}).

2.3.5 An illustration: the modular function

This subsection will only be needed in the illustration in §2.5.4 of the C-
theorem. The reader can either skip the details or treat them as exercises in
Lie group theory.
Let G be connected Lie group and g its Lie algebra. Then Adg : GL(g)→

GL(g) is the differential at e of x→ gxg−1. For this and related notions and
facts, see Varadarajan (1974, §2.13). By that definitionwe have, in §1.1,m(g)=
drg
dlg

= det(Adg).

Exercise To see this use the differential forms of §12.5.1 from the geometric
theory. If you get stuck, check it out in Helgason (1984, §2.5). But also by the
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definition, Ad(expξ ) = eadξ , with ξ ∈ g, and therefore m(expξ ) = etraceadξ

(see Varadarajan, 1974, §2.13.8).
One immediate consequence of this is that G is unimodular if and only if

traceadξ = 0, with ξ ∈ g.
Also if G is soluble, then traceadξ = ∑Lj(ξ ), ξ ∈ g, for the real roots as

defined in (2.9): observe that the trace is always real. The conclusion one draws
from this is that if G is soluble and unimodular then it has to be a C-group
unless it is an R-group (verify this also for amenable groups). A much more
complete discussion on the interaction between unimodularity and the C–NC
classification can be found in Appendix B at the end of Part I of the book.

2.4 Measures on Locally Compact Groups and the
C-Theorem

2.4.1 A class of measures

Let G be some connected locally compact group. We shall fix K ⊂ G, some
compact subset, and e ∈ Ω = Ω−1 ⊂ G, some relatively compact neighbour-
hood of the identity element e of G, and C, c> 0, both positive constants. We
shall then consider probability measures μ ∈ P(G) that satisfy the following
three conditions:

(i) suppμ ⊂ K;
(ii) dμ(g) = f (g)drg for some f ∈ L∞ with ‖ f‖∞ <C: here we use the right

Haar measure, but nothing changes if we use the left measure instead;
(iii) f (g)� c, g ∈Ω.
For a sequence of measures μ1,μ2, . . . , as above, we shall abuse notation

slightly and write μn = μ1 ∗ · · ·∗μn = f (n)(g)dg where here f (n) is continuous
for n� 2; see Weil (1953, §13). For this slightly annoying reason, many of our
estimates below can only be formulated for n � 2. It is, however, technically
more flexible to assume in (iii) that f in L∞ rather than continuous. We can
now state one of the main theorems in the subject.

Theorem 2.3 (The C-theorem) Let G be aC-connected real Lie group (i.e. the
radical of the Lie algebra is a C-algebra) and let K, Ω, C, c and measures
μ1,μ2, . . .; μn = f (n)(g)dg satisfy conditions (i), (ii), (iii) above. Then there
exist positive constants C1, c1, that depend only on G, K, Ω, C, c, such that

f (n)(e)�C1 exp(−c1n1/3); n� 2. (2.10)
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This is the upper estimate in §1.3.1 in the amenable case λ = 0. The converse
of this will be proved in the next chapter. We shall show there that if G is NC
instead, and is amenable, and if μ is symmetric, that is, if μ(x) = μ(x−1) and
satisfies the above conditions (i), (ii), (iii), then we have

f (n)(e)�C2n
−c2 ; n� 2, (2.11)

for appropriate constants C2, c2 > 0 and f (n)(g)dg = μ∗n = μ ∗ · · · ∗ μ . The
necessary facts on amenability will be given in §3.1 and we shall see that
amenability is essential for (2.11) to hold. The symmetry of μ is also essential
for obvious reasons. To see this, think of a measure in R that has most of its
mass ⊂ [100,∞[.
The above facts put together give the analytic side of the C–NC classification

of §1.3 (see also §1.10) provided that we restrict ourselves to amenable groups
because (C)⇒ (2.10), (NC)⇒ (2.11).
The proof of the C-theorem that we give in this chapter in fact only works

for amenable groups. But, as we shall explain in §3.1, if G is not amenable the
much stronger estimate f (n)(e) = O(e−cn) holds anyway.

2.5 Preliminary Facts

2.5.1 The Harnack principle for convolution

There is nothing special about the identity e ∈ G in the formulation of the C-
theorem. To see this we maintain the notation and hypothesis of the theorem
and write f (n,g) = f (n)(g), g ∈G, n� 2, and fix P⊂G some compact subset.
We shall then use the fact that there exists k � 1 andC1 > 0 such that

f (n,gx)+ f (n,xg)�C1 f̃ (n+ k,g); n= 2, . . . ,g ∈G, x ∈ P. (2.12)

The unfortunate thing here is that f̃ is defined by a different sequence of mea-
sures μ̃1, . . . that in general also depends on n, k. These newmeasures, however,
satisfy conditions (i), (ii) and (iii) of §2.4.1 with the same K, Ω, c, C. Despite
this unpleasant complication, (2.12) will be seen to serve its purposes. Observe
also that in the special case when the original measures are identical, that is,
μ = μ1 = μ2 = · · · , this complication disappears and f̃ = f . In that case we
have a genuine Harnack estimate

μ∗n(xg)+ μ∗n(gx)�C1μ∗(n+k)(g), (2.13)

where here and throughout when confusion does not arise, abusing notation
we write μ(g) for f (g) when μ = f (g)dg.
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The proof of (2.12) is immediate because with measures μ1,μ2, . . . as, in the
theorem, conditions (i), (ii), (iii) imply that, with x∈ P, δx the Dirac point mass
at x and k large enough, there exists C1 such that

δx ∗ μ1 �C1μ2 ∗ · · · ∗ μk, μ1 ∗ δx �C1μ2 ∗ · · · ∗ μk. (2.14)

All this holds for general locally compact groups that are connected. To see this
observe that, by §2.4.1(iii), for every L ⊂ G relatively compact, there exists
k0 such that for k � k0 we have μ2 ∗ · · · ∗ μk = f dg where the function f is
strictly positive on L. More explicitly, f is bounded below on L by some c1 > 0
that depends only on Ω, c of (iii) and k and L (to verify this, use a smaller
neighbourhood of e such that Ω51 ∈Ω). For (2.14) it suffices that P(suppμ1)∪
(suppμ1)P⊂ L.
From the above proof we see that a more precise version of (2.12) actually

holds. Namely, when P is fixed there exists some k0 such that, for all k � k0,
there exists C1 such that (2.12) or (2.14) holds. Furthermore, k0 depends only
on K, Ω, c, C, P, andC1 depends on K, Ω, c, C, P, k.
The important point in all this is that the choice of k or k0 andC1 is indepen-

dent of n and even of the particular measures μi that one uses, as long as they
verify (i), (ii), (iii) with fixed K, Ω, c, C.
In §5.4 we shall come back to this Harnack principle in a context that makes

the construction more transparent.

2.5.2 Applications of Harnack

Because of (2.12) we can replace e in (2.10) by any g ∈ G. Using (2.12) we
also see that (2.10) in the theorem can be replaced by the following equivalent
condition: for every compact set Q ⊂ G there exist C1, c1 that also depend on
Q such that

μ1 ∗ · · · ∗ μn(Q)�C1 exp(−c1n1/3); n� 1. (2.15)

Conditions (i) and (ii) in §2.4.1 already show that (2.15) implies (2.10) (we
use (2.15) for n and deduce (2.10) for n+1). We can also use (2.12) to see how
f (n)(e) in the theorem behaves under a projection π : G→ G/H, where G is
an arbitrary locally compact group and H is a closed normal subgroup.
Let us denote by μ̌ j = π̌(μ j) the direct image measures (Bourbaki, 1963) in

G/H for measures μ j in G that satisfy conditions (i), (ii), (iii) above. It then
follows that the μ̌ j satisfy these conditions on G/H. To see this we use the fact
that when dμ = f drg then dμ̌ = f̌ (ġ)drġ with

f̌ (ġ) =
∫
H
f (hg)drh for any g ∈ ġ ∈G/H;
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see (2.25) and (2.62) below for more details.
Let us write μ̌n = μ̌1 ∗ · · ·∗ μ̌n = f̌ (n)(ġ)dġ, ġ∈G/H. For any compact sub-

set Q⊂ G/H we have μn(π−1(Q)) = μ̌n(Q) because the image of the convo-
lution is the convolution of the images. Therefore if we use formulation (2.15)
we see that the C-theorem holds for G whenever it holds for G/H. To fix ideas
assume that G is connected and that μ1 = μ2 = · · · ; in view of (2.13), we can
then write, more precisely,

f (n)(e)�C1 f̌
(n+k)(ė), (2.16)

for the identity elements e and ė of G and G/H, and when H is compact we
have

c1 f
(n)(e)� f̌ (n+k)(ė)�C1 f

(n+2k)(e). (2.17)

Here the constants k, C1, c1 depend only on K, Ω, C, c in conditions (i), (ii)
and (iii). This also holds for different measures μ1, μ2, . . . provided that (2.16)
is interpreted as is (2.12) and we pass from f to ( f̃ )̌, and similarly for (2.17).

2.5.3 A technical reduction

In proving Theorem 2.3 we may restrict ourselves to the special case where
the first measure in the product has been fixed to be μ1 = ν , some preassigned
ν ∈ P(G) that will be chosen in advance so as to satisfy appropriate conditions.
This is clear from the same argument as in (2.14) that shows that μ1 � ν ∗
μ∗k for some k large enough and μ satisfying (i), (ii) and (iii) in §2.4.1. This
particular technical point will be used in §§2.8–2.9.

2.5.4 Unimodular groups

The connection of the present theory with the more general theory of unimodu-
lar locally compact groups, which was briefly described in §1.2, lies in the fact
that G is an R-group if and only if γ(n) grows polynomially (see Guivarc’h,
1973; Jenkins, 1973), and as already pointed out in §2.3.5, if G is unimodular,
amenable and not an R-group then G has to be a C-group.
For unimodular groups the C-theorem extends to general locally compact

groups and we can assert that f (n)(e) =O(exp(−cnα/(α+2))) as long as γ(n)�
Cexp(cnα), for some 0< α � 1. For these results see Varopoulos et al. (1992,
§7.5).
I came across this ‘strange’ bound exp(−cn1/3) in my early work on dis-

crete groups (: 1983). Realising that this was in the nature of things played an
important role in the development of the theory.
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Guide to the Proof

Here we shall explain the interconnection of the subsections that follow.
In §2.6 we construct a special case on which the proof will be given. From

these groups, in §2.11.3 we deduce, almost, the general case. This is quite
convincing because in that way we obtain all simply connected groups and all
soluble groups. The full generality is not done, however, until §2.11.3 and in a
first reading the reader could skip this technical subsection. The proof for the
special case of §2.6 is broken up in §§2.7–2.11 as follows.
In §2.7.1 we give a probabilistic interpretation of the problem, which is es-

sential if one wants to comprehend what the proof is all about. Although noth-
ing concrete is proved there the reader is strongly urged to understand that
probabilistic interpretation because here lies the germ of the whole proof. In
§2.7.2 again nothing concrete is done, other than the introduction of conve-
nient notation. The interaction of these two subsections reflects the classical
interplay between the notion of conditional expectation in probability theory
and the disintegration of measures in measure theory. For more on this see
Bourbaki (1963, Chapter 6, Historical Notes).
Although pivotal in the proof, §2.8 is just an ad hoc combinatorial lemma

on convolution of measures on Rn and is an essential accessory to the proof.
Once we have the notation of §2.7.2 and the combinatorics of §2.8 we put

these together in §2.9 to reduce the theorem to an explicit statement on classical
random walks in Rn.
For this finally we use the probabilistic estimates from the appendix, and the

random walk statement of §2.9 is proved in §2.10.

2.6 Structure Theorems for Lie Groups and the Exact
Sequence

Some familiarity with the basic facts about the structure of Lie groups will
be needed in this section, but nothing very elaborate (e.g. Varadarajan, 1974).
Alternatively, I suggest you believe what is in this section and move on.

2.6.1 The use of structure theory

Let G be some connected real Lie group and let N�G be its nilradical, that is,
the subgroup that corresponds to n� g, the nilradical of the Lie algebra. The
nilradical N is closed but not necessarily simply connected (see Varadarajan,
1974, §3.18.13). We can, however, find T �N, a compact torus, that is ∼= Tp =



36 The Classification and the First Main Theorem

(R(mod1))p such that N/T is simply connected. As a matter of fact T is a cen-
tral subgroup both in N and G. To see this we use the simply connected cover
π : Ñ → N (see Varadarajan, 1974, §2.6) and then kerπ lies in the analytic
central subgroup Z̃ ⊂ Ñ (see Varadarajan, 1974, §3.6.4). Then T is Z̃/kerπ .
Alternatively, we can take for T a maximal normal torus in G; such a group
has to be central in G because the automorphism group of T is discrete and
therefore T ⊂ N. More details on T will be given later, in §5.8∗ and §11.3.1.
We shall consider then G/T and its nilradical N/T . Now, it is clear from the

definition thatG/T is a C-group if and only if G is a C-group (see Exercise 2.1
in §2.2.1). If we use the reduction of §2.5.2 we finally conclude that, in proving
the C-theorem for the group G, we may assume that the nilradical N �G is
simply connected.
Now let N2�N be the analytic subgroup that corresponds to n2 = [n,n]. The

simple-connectedness of N implies that N2 is then a closed subgroup normal in
G (see Varadarajan, 1974, §3.18.1). The group H = N/N2 is then simply con-
nected Abelian (see Varadarajan, 1974, §3.18.2) and therefore is a Euclidean
space, that is, ∼= Rd and we have an exact sequence

0→H →G/N2→ G/N = K→ 0. (2.18)

By Exercise 2.1 in §2.2.1, G is a C-group if and only if G/N2 is, and here H is
the nilradical of G/N2. For this last point see the hint in Exercise 2.1.
Here we shall use the reductions of §2.5 and for our C-theorem we end up

with having to prove a special case of the theorem that will be analysed in
detail in the next subsection.

2.6.2 Special case of the C-theorem

Let G be some C-group. Let us assume that H, the nilradical of G, is a Eu-
clidean space so that we have an exact sequence

0→ H→G→G/H = K→ 0. (2.19)

Our aim is to show that estimate (2.10) of the C-theorem holds for G. What
we have seen is that once this has been done, the C-theorem follows in full
generality. The proof of this is done in several steps. In this subsection we
shall examine more closely what the C-condition means for the exact sequence
(2.19).
From (2.19) we shall consider the exact sequence of the corresponding Lie

algebras

0→ h→ g→ g/h= k→ 0. (2.20)
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Furthermore, let q�g be the radical of g and let us denote by h= h1⊕·· ·⊕hp

the real root space decomposition of h with respect to the action of q/h on h
as in (2.6). On the other hand, for any Lie algebra g, if q is the radical and n is
the nilradical, we have [g,q]⊂ n (see Varadarajan, 1974, §3.8.3). From this and
the Levi decomposition we conclude that we can identify k= q/h⊕ s, where s
is the Levi subalgebra of g. Since h is Abelian, the algebra k acts naturally by
derivations on h. This will be made explicit in the next sentence at the level of
the corresponding Lie groups. Furthermore, the hi, i= 1, . . . , p, are ideals in g
because, by the commutation of the above direct sum for k, the action of s on
h stabilises the root spaces (2.2).

In terms of the Lie groups in the sequence (2.19), this means that the Eu-
clidean space H can be decomposed as H = H1⊕ ·· · ⊕Hp, and that K acts
by inner automorphisms on each subspace Hi. To fix notation, for all k ∈
K and k̂ ∈ G, a pre-image of k in G, the action is τk(h) = k̂hk̂−1, h ∈ H.
The definition of τk is independent of the particular choice of k̂ because H
is commutative, k 	→ τk is a homomorphism K→ GL(Hj) and we shall write
exp(Λ j(k)) = |detτk|. This can be expressed in an alternative way by saying
that τ̌k(HaarHj) = exp(Λ j(k))HaarHj. The Haar measure is of course the Eu-
clidean measure of the corresponding vector space and k → exp(Λ j(k)) are
homomorphisms K → R+∗ . The fact that, in (2.20), k ∼= q/h⊕ s splits means
that we can find a covering map K̃ = V ⊕ S→ K, where V is the Euclidean
space that corresponds to q/h, and S is semisimple and simply connected (see
Varadarajan, 1974, §2.6). The Λ j can be identified with Λ j : K̃→R and by the
semisimplicity Λ j ≡ 0 on S, since the only homomorphic images of semisim-
ple groups are semisimple (see Jacobson, 1962, §III.5). From this it follows
that we can identify Λ j = d jL j for the real roots of (2.4) and the dimension d j
of the corresponding root space of (2.6).

Exercise 2.4 Prove that Λ j = d jL j. To see this, use the exponential mapping
(see Varadarajan, 1974, §2.10) to identify h with H and h j with Hj, and this
identifies the correspondingLebesguemeasures. Then we have exp(Ad(k)ξ )=
k exp(ξ )k−1, ξ ∈ g, k ∈ V and also Ad(exp(ζ )) = eadζ for ζ ∈ q/n which is
the Lie algebra of V (see Varadarajan, 1974, §2.13, for all these facts). From
this we see that detτk is the product of characteristic roots of the action Adk
on Hj and this is equal to exp(λα1(ζ ) + · · ·+ λαs(ζ )) when k = exp(ζ ) and
λα1 , . . . are the roots (2.2) that have the same real part Lj as in (2.5). Since the
number of these roots is s= d j the assertion follows.
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2.6.3 The C-condition on the exact sequence

Let us recapitulate what we have done in the previous subsection and consider
some locally compact groupG andH�G, some closed normal subgroup that is
a Euclidean space and that can be decomposed into subspaces H = H1⊕·· ·⊕
Hp where eachHj is a normal subgroup. The groupG/H =K acts then by inner
automorphisms on each Hj and we obtain homomorphisms Λ j : K → R as
above by the condition τ̌k(HaarHj) = exp(Λ j(k))HaarHj, where k→ τk, K→
AutH denotes the action of K on H. Furthermore, we shall restrict ourselves
to the case where K = V × S as in §2.6.2, and then the Λ j can be identified
elements of V ∗.

Definition 2.5 We say that the above exact sequence (2.19), 0→ H → G→
K→ 0, satisfies the C-condition if the homomorphismsΛ j satisfy the C-condi-
tion, that is, ∑α jΛ j = 0 for some α j � 0 with at least one α j0Λ j0 �= 0.

What we saw in our previous considerations is that a C-Lie group, as in
the special case of the C-theorem of §2.6.2, gives rise to the C-exact sequence
(2.19).
What has to be done now is to show that when H �G give rise to a C-

exact sequence then the estimate (2.10) of the special case of the C-theorem of
§2.6.2 holds for the group G. The remainder of this chapter will be devoted to
this task.

A generalisation It is of interest to extend this definition without imposing
any special structure on K. We then have τ̌k(HaarHj) = σ j(k)HaarHj for ho-
momorphisms σ j : K → R+∗ , the multiplicative groups of positive reals. The
relation in the C-condition of §2.2.1 is then replaced by σα1

1 σα2
2 · · ·σ

αp
p = 1 for

α j � 0 and this, under the C-condition, should imply that σαi
i = 1 for each i.

We shall see in Chapter 6 that this definition applies to other natural classes of
groups.

2.7 Notation, Heuristics and Disintegration of Measures

2.7.1 Probabilistic language

For any group G we use the standard notation xy = yxy−1, x,y ∈ G for any
H�G closed normal subgroup, and for the projection π : G→ G/H = K we
shall also use the notation ẋ= π(x), x ∈G. For simplicity we shall assume first
that H is a semidirect factor in G = H�K (see §2.3.2) where K is identified
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with a subgroup such that H ∩K = {e} as in §2.3.2. With x j = h jk j ∈ G, j =
1, . . . ,h j ∈H, k j ∈ K, we can then write

sn = x1 · · ·xn = (h1h
ṡ1
2 · · ·h

ṡn−1
n )ṡn = h̃nṡn. (2.21)

We shall think of sn as the partial sums of a random walk valued in G and
then k1k2 · · ·kn = ṡn ∈ K ⊂G are also the partial sums of a random walk. From
this point of view the first factor h̃n ∈ H has a ‘long memory’ and is not a
Markovian process.
To elaborate further in this spirit, the above (time-inhomogeneous) random

walk is determined by P[x j ∈ E] = μ j(E) and G is locally compact and H is
closed. Then the distribution of sn ∈ G is given by the convolution product
μn = μ1 ∗ · · · ∗ μn. To analyse that measure we are going to think of sn as the
product of ṡn with the process h̃n ∈ H, which although not Markovian does
become Markovian if we condition on ṡ1, ṡ2, . . . . This is the fundamental idea
that permeates the whole theory.
Observe also that in the above expression (2.21), the semidirect product

structure of G is not essential as long as H is Abelian because we can then de-
fine unambiguously hk̇= khk−1 for any pre-image π(k) = k̇, h∈H (see §2.6.2).
Rather than pursuing the probabilistic interpretation of μn, we shall give below
the equivalent analytic notion of the disintegration of measures (see Bourbaki,
1963, §6.3) in the fibration π : G→G/H = K where all the groups considered
are locally compact. At the end we shall return to probabilistic language again.

Suggestion Those readers who do not feel comfortable with sophisticated
measure theory might like to think of discrete groups in the next section. Or
alternatively, to restrict themselves to smooth measures as in §2.15 below.

2.7.2 The disintegration of measures, and notation

In this section we shall freely use standard notions and notation from mea-
sure theory, and follow Bourbaki (1963). To present the disintegration we shall
consider a general exact sequence

0→H→ G→ G/H = K→ 0 (2.22)

of locally compact groups, where H is Abelian. As before we shall denote
ġ= Hg= gH ∈ K, with g ∈ G, and if we fix g we can use the right (resp. left)
identification of H with the coset ġ by h→ hg (resp. h→ gh). If ν is some
measure on H we shall denote by νg (resp. gν) the image measure that we ob-
tain on the coset by that mapping. For any measure ν on H we can use this
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identification to identify ν with a measure νġ (resp. ġν) on ġ. This identifica-
tion depends on the representative g ∈ ġ but it is unique up to translations by
elements of H. For notational convenience and when no confusion arises we
shall drop the dots and denote these measures by νg and gν . With this notation
we have

(νx)x = xν; λx ∗ yμ = (λ ∗ μxy)xy, (2.23)

for measures ν , λ , μ on H, x,y ∈ G, and where νx is the image of ν by the
inner automorphism h→ xhx−1.
The measures μ on G can be written as vector integrals of measures on the

fibres gH, that is, measures of the form ġν(ġ) against some measure λ on K.
Here, to clarify the notation we may fix p : K → G some Borel section, that
is, π ◦ p is the identity on K. Let ν(ġ) be some measure on H that depends on
ġ ∈ K (i.e. ν(ġ) is a function of ġ : K � ġ→ measures on H). We shall then
translate ν , as explained before, to the measure ġν(ġ) on p(ġ)H = ġ (i.e. we use
the translation from H to ġ given by h→ p(ġ)h). We can then write down the
integral

∫
K ġν(ġ)dλ (ġ) for measures λ onG/H and the basic fact is that every

bounded measure μ on G can be represented this way. The representation is
clearly not unique, but for positive measures uniqueness can be achieved if we
specify λ = μ̌ the direct image of μ by the mapping π : G→ K of (2.22). The
ν(ġ) are then essentially uniquely determined but they depend on the section
p. We end up therefore with a representation as a vector integral

μ =

∫
K

ġν(ġ)dμ̌(ġ). (2.24)

If μ ∈ P(G) is a probability measure then μ̌ ∈ P(K) is also a probability mea-
sure and so are ν(ġ)∈ P(H), ġ∈K, μ̌ almost everywhere. If we do not specify
the Borel section p, these ν are uniquely determined only up to translation.
When dμ(g) = f (g)dg, f ∈ L1, then (see (2.62) below and Bourbaki, 1963)

dμ̌(ġ) = f̌ (ġ)dġ, f̌ (ġ) =
∫
H
f (gh)dh, (2.25)

where g ∈G is some representative of ġ. The measure ν(ġ) on H is then given
up to translations in H by

ν(ġ) = g f (h)dh; g f (h) =
f (gh)

f̌ (ġ)
, taken to be 0 when f̌ (ġ) = 0. (2.26)

In (2.25) and throughout we maintain the notation of §1.1, and denote left
Haar measure by dġ, dh for the groups K and H respectively. Formulas such
as (2.25) and (2.26) can of course also be written with right Haar measure in-
stead. Furthermore, in all the above, we have for simplicity dropped the qual-
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ifications that the formulas in question only hold ‘almost everywhere’; for ex-
ample, (2.25) holds for almost all ġ ∈ K for the Haar measure. This practice
will be adopted throughout.
We shall convolve these measures and the translations by elements ofH will

commute with the convolutions because H is Abelian. More explicitly, let

μi =
∫
K

gν i(g)dμ̌i(g); i= 1,2, . . . (2.27)

be a sequence of probability measures as above, where for notational conve-
nience we have suppressed the dots and have written g rather than ġ. When con-
fusion does not arise this notational simplification will be tacitly used through-
out.
The convolution product in G can then be written

μ1 ∗ · · · ∗ μn
=

∫
K

∫
K
. . .

∫
K

g1ν
(1)(g1)∗ · · ·∗ gnν

(n)(gn)dμ̌1(g1) . . .dμ̌n(gn). (2.28)

The integrand in the abovemultiple integral is uniquely determined up to trans-
lation by elements ofH and the factors in the convolution product are identified
to measures of G which are then convolved in the group G.
To close the circle of ideas we shall go back to the random walk notation

s j = g1 · · ·g j ∈ K where we suppress the dots above the elements of K (thus
write s and g rather than ṡ and ġ), and transform the integrand of (2.28) as
follows:

g1ν
(1) ∗ g2ν

(2) ∗ · · · ∗ gnν
(n)

=
(
(ν(1)(g1))

s1 ∗ (ν(2)(g2))
s2 ∗ · · · ∗ (ν(n)(gn))

sn
)
sn
. (2.29)

Here the convolution product on the right has been taken in the group H and
then, using right translation this time, that convolution product is identified
with a measure on the coset Hsn. The proof is but a repeated use of (2.23).
This means that for fixed s1,s2, . . . ,sn (keeping these fixed is the conditioning
that we alluded to in the previous subsection) we obtain a convolution in H. Up
to translation, this is the distribution of h̃n in (2.21). This conditioned process
becomes therefore a random walk in H.

2.8 Special Properties of the Convolutions in H

Here H = H1⊕·· ·⊕Hp is a Euclidean space. We shall decompose it in some
fixed way into a direct sum of Euclidean subspaces. This was the set-up in
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§2.6 in the definition of the C-condition for the exact sequence. In this sec-
tion we shall describe a general method of estimating convolution products
ν1 ∗ν2 ∗ · · · ∗νn, ν j ∈ P(H), that take into account the product structure of H.
Later, we shall apply this method to the specific convolution products that oc-

cur in (2.29). Let us assume that ν j � ( f ( j)1 ⊗·· ·⊗ f ( j)p )dh where the f ( j)k are
L1 functions. Then ν1 ∗ · · · ∗ νn = F(h)dh and we can assert that F ∈ L∞ as
long as for every 1� k � p we can find f ( jk)k ∈ L∞(Hk) (i.e. that the density of
the kth factor is L∞). We can put this in a quantitative estimate and assume that

‖ f ( j)i ‖1 �C for someC > 0. We then have

‖F‖∞ �C1‖ f ( j1)1 ‖∞ · · · ‖ f ( jp)p ‖∞, (2.30)

for some C1 that depends on C and H. The important thing here and in what
follows is that the constant C1 is independent of n. To see this we use the
fact that the ν j are probability measures and we can ignore, in the product
ν1 ∗ · · · ∗ νn, all the factors except those ν j for which j is one of j1, . . . , jp. A
more precise form of (2.30) can be stated as follows. Let ν1, . . . be arbitrary,
let the f ( j)k be as above and set

mk = inf
j
‖ f ( j)k ‖∞, k = 1, . . . , p. (2.31)

Then (2.30) can be restated as follows:

‖F‖∞ �C1m1 · · ·mp. (2.32)

If A ⊂ [1,2, . . . ,n] is a subset, then by ignoring in ν1 ∗ · · · ∗ νn all the factors
with j /∈ A and by denoting instead

mk = inf
j∈A
‖ f ( j)k ‖∞, k = 1, . . . , p, (2.33)

we obtain the same estimate (2.32) where here we make the assumption ν j �
f ( j)1 ⊗·· ·⊗ f ( j)p only for j ∈ A.
We shall recapitulate and refine the above estimates slightly. Let ν1, . . . ,νn ∈

P(H) and let A⊂ [1, . . . ,n] be some subset such that for every j ∈ A,
ν j �
(
f ( j)1 ⊗·· ·⊗ f ( j)p

)
dh, (2.34)

where we assume that ‖ f ( j)k ‖1 �C for some positive constant and 1 � k � p,
j ∈ A. Let us define mk as in (2.33) (possibly mk =+∞) for k= 1, . . . , p. There
exist thenC1 > 0 such that we can estimate ν1 ∗ · · · ∗νn = F dh by

‖F‖∞ �C1m1 · · ·mp. (2.35)

In applying this formula it will be convenient to setm−j =mj∧1=min[mj,1]
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and replace the right-hand side of (2.35) by C1m
−
1 · · ·m−p . This can be done

as long as we already have the additional information that mj � C for some
appropriate constant and 1 � j � p; as we shall see, in our applications this
information comes for free.

2.9 The Reduction to the RandomWalk Estimate

Here G, H satisfy the conditions of the C-exact sequence of (2.19), as in Defi-
nition 2.5, and μ1, . . . is a sequence of probability measures on G that satisfies
conditions (i), (ii) and (iii) of §2.4.1. These measures will then be disintegrated
μ j =
∫
K gν( j)(g)dμ̌ j(g) as in (2.27) and, with the notation of (2.28), we shall

denote

ν(g1, . . . ,gn) = (ν(1)(g1))
s1 ∗ · · · ∗ (ν(n)(gn))

sn ; g1, . . . ,gn ∈ K, (2.36)

where, as before, the dots have been suppressed for the elements of K and
these measures are defined only up to translation by elements of H. This is a
convolution product on the Euclidean spaceH =H1⊕·· ·⊕Hp and to be able to
use estimates of the type (2.35) we must find a way to dominate appropriately

ν( j)(g)�C
(
f ( j)1 ⊗·· ·⊗ f ( j)p

)
dh as in (2.34). It is clear that this is not possible

for all g ∈ K. But by conditions (i), (ii) and (iii) that hold for the measures μ j
and their images μ̌ j = f̌ ( j)dġ (see §2.5.2), it will follow from (2.26) that there
exist constants C, c1, . . . such that for the subsets Ω j = [g; f̌ ( j)(g) > c1] ⊂ K
(dots have been suppressed) we have μ̌ j(Ω j)> c2 and

ν( j)(g)�C
(
f ( j)1 ⊗·· ·⊗ f ( j)p

)
dh,

‖ f ( j)k ‖1+ ‖ f
( j)
k ‖∞ �C; g ∈Ω j, j � 1, 1� k � p.

(2.37)

Furthermore, to be able to use the sharper estimate with the m−j instead, we
shall use the reduction of §2.5.3 and assume that μ1 has been fixed and is such
that μ̌1(Ω1) = 1.
In the notation that follows, we shall again drop the ‘dot’ above the elements

of K. For g ∈ Ω j if we use the transformation ν( j)(g)→ (ν( j)(g))s for each
factor of (2.36) and s ∈ K, we can dominate this new transformed measure by
a similar product measure

(
f̃ ( j)1 ⊗·· ·⊗ f̃ ( j)p

)
dh where now ‖ f̃ ( j)k ‖1 �C and by

the definition of Λk in §2.6.2 we have
‖ f̃ ( j)k ‖∞ �C exp(Λk(s)); 1� k� p, s ∈ K, j � 1, (2.38)

whereC are appropriate constants. To see this we use the Jacobian of the trans-
formation onHk induced by h→ hs= shs−1, with h∈H, s∈K. In fact it is−Λk
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that should be used but we do not need to start ‘chasing’ signs here because
(−Λ1, . . .) in Definition 2.5 also satisfy the C-condition.
Let us go back to ν(g1, . . . ,gn) of (2.36) for some fixed g1, . . . ,gn and let

A be the subset of the integers j = 1, . . . ,n for which g j ∈ Ω j. As before, we
denote s j = g1 · · ·g j ∈ K. Because of (2.38) we shall abusively use the same
notation and denotemk = inf j∈A exp(Λk(s j)) andm−k =mk∧1 as before. If we
combine (2.35) and (2.38) we obtain

ν(g1, . . . ,gn) = F dh, ‖F‖∞ �Cm−1 · · ·m−p , (2.39)

for an appropriate constant.
In view of the representation (2.28) what we need to show to finish the proof

of our theorem in the special case of §2.6.2 is∫
K
· · ·
∫
K
m−1 m

−
2 · · ·m−p dμ̌1(g1) . . .dμ̌n(gn)�Cexp(−cn1/3); n� 2, (2.40)

for someC,c> 0. And, as explained in the next few lines, the additional trans-
lation sn in the right-hand side of (2.29) makes no difference.
The best way to verify that this implies (2.10) is to use the Harnack estimate

of §§2.5.1–2.5.2 and estimate the scalar product of the measure in (2.28) with
some smooth non-negative function with small support near e ∈ G that looks
like φ(h)⊗ψ(k), h ∈ H, k ∈ K. In this notation we use a local section of
G→ K and we identify G (as a manifold) in a small neighbourhood of e ∈ G
with H×K. In formal terms (using conditional expectationsE(·‖·) and (2.39))
this scalar product can be estimated by

〈μ1 ∗ · · · ∗ μn,φ ⊗ψ〉=
∫
〈(ν(g1, . . . ,gn))sn ,φ ⊗ψ〉dμ̌1(g1) · · ·dμ̌n(gn)

�C‖φ‖1
∫
ψ(sn)m

−
1 · · ·m−p dμ̌1(g1) · · ·dμ̌n(gn)

�C‖φ‖1
∫

E(m−1 · · ·m−p ‖sn ∈ dk)ψ(k)

�C‖φ‖1‖ψ‖∞E(m−1 · · ·m−p ). (2.41)

Presented like this the C-theorem becomes a problem on random walks on
the group K. To wit, g1, . . . ∈ K are independent random variables with distri-
butions μ̌ j and s j = g1 · · ·g j ∈ K is the corresponding random walk. The mk

are then random variables, and what we need is the estimate

E(m−1 · · ·m−p ) = O(exp(−cn1/3)). (2.42)

This is, of course, estimate (2.40) written out in probabilistic terms. In (2.42)
E is the expectation in the probability space of the paths of the random walk
s j = g1 · · ·g j ∈ K of §2.7.1.
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2.10 The RandomWalk and the Proof of the Theorem in the
Special Case G/H ∼= Rd

Here we shall give a proof of (2.42) in the special case when G/H = K is a
Euclidean space. In the next section we shall see that the general case easily
follows by slightly refining the method. We shall recapitulate and reformulate
the problem in probabilistic terms as follows.
LetU1,U2, . . . ∈V be a sequence of independent random variables that take

their values in the Euclidean space V . We shall assume that |Uj| �C and we
shall also fixΩ j ⊂V , a sequence of subsets such that P[Uj ∈Ω j]> c, where the
C, c are appropriate constants. In what follows it will be convenient to rename
K =V and K � ġ j =Uj.
An additional condition has to be imposed on these variables, which at first

sight seems artificial from the point of view of probability theory: we demand
that theUj have densities ψ j(x)dx and thatψ j(x)> ε0 for |x|� δ0 for some ε0,
δ0 > 0. This condition in our context is perfectly natural by (iii) of §2.4.1. This
condition is exploited in the proofs in the appendix to this chapter by the fact
that it implies that the characteristic functions, that is, the Fourier transforms
φ j = ψ̂ j satisfy φ j(0) = 1, |φ j(ξ )| � exp(−c|ξ |2) for |ξ | � 1 and |φ j(ξ )| �
1−η for |ξ |� 1 for some c,η > 0. Seen like this, the reader who has had some
exposure to elementary probability theory recognises the basic prerogative of
the proof of the central limit theorem.
Be this as it may, we shall further assume that Λ1, . . . ,Λp ∈ V ∗ are linear

functionals that satisfy the C-condition of Definition 2.5 and therefore the−Λp

also satisfy the same condition. Here we shall adopt the equivalent formulation
(2.7) and for some subspace V1 ⊂V , V1 �=V , we have

Λ(x) =∑−Λ−k (x)� c|x̂|V/V1 ; Λ−k = Λk ∧0, (−Λk)+ =−Λ−k ,
x ∈V, x ∈ x̂ ∈V/V1;

(2.43)

here ˆ indicates the image in V/V1. We shall denote

Mn = sup
1� j�n

Uj∈Ω j

Λ(S j), S j =U1+ · · ·+Uj. (2.44)

By (2.43),Mn� sup[|Ŝ j|V/V1 ; 1� j� n, Uj ∈Ω j]; and this by (2A.8), (2A.14)
(a result that will be proved in the appendix) implies

Eexp(−Mn)�C1 exp(−c1n1/3), (2.45)

whereC1, c1 depend only on the variablesUj and the C-condition (2.7).
Now, in the expressions below, we shall take sup and inf to mean sup and
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inf as 1� j � n withUj ∈Ω j. We have

−∑
k

sup
(−Λ−k (S j))�−supΛ(S j) (2.46)

and since infΛ−k (S j) =−sup(−Λ−k (S j)) we conclude that

∑
k

infΛ−k (S j)�−Mn. (2.47)

If we switch back to the notation of §2.9 and pass to the exponentials, the left-
hand side of (2.47) becomes the m−1 · · ·m−p of (2.39). And it follows that (2.42)
is a consequence of (2.45). This completes the derivation of (2.10) for the spe-
cial case §2.6.2 when K =V . From this, the C-theorem in §2.4.1 follows when
G is soluble and simply connected for, in that case, G/N = V is a Euclidean
space.

2.11 The RandomWalk and the Proof of the C-Theorem in
the General Case

2.11.1 The idea of the proof

In the general case, as we already pointed out in §2.6.2, the Lie algebra of K =

G/H in (2.19), (2.20) is the product of an Abelian algebra with a semisimple
algebra and locally K ∼=V × S, where V is a vector space and S is semisimple.
Assume for simplicity that we have K = V × S globally. The argument that
we gave in the previous section, when K ∼= V , can be pushed through to this
product case. The idea is simple enough: if g1, . . . ∈ K are K-valued random
variables and s j = g1 . . .g j is the randomwalk, we can projectK→V , g j→Uj

and since the roots Λ1, . . . ,Λp for the exact sequence 0→ H → G→ K → 0
vanish on the semisimple group S (see §2.6.2) we are back to the probabilistic
argument of the previous subsection. In this argument it is the condition gi ∈
Ωi ⊂ K in §2.9 that complicates matters because it is tricky in general to relate
this to a corresponding conditionUj ∈Ω′j ⊂V . This can of course be done but
it becomes essentially trivial when S is compact. It’s here that amenability as
defined in §2.2.2 simplifies the proof considerably. We shall therefore assume,
as we may, that G is amenable (see the final remark of §2.4).

2.11.2 The proof

We shall assume first that in (2.19), K = V × S where V ∼= Rd is a vector
group and S is compact (we do not assume here that S is semisimple). This
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happens when G is soluble because then G/N = K (where N is the nilradical)
is Abelian and is therefore the product of a Euclidean space with a torus. This
also happens is when G is simply connected, for then K is simply connected
and the fact that it is amenable implies that S is semisimple of compact type
(see §§2.2.2 and 2.4). In fact, this happens for all amenable groups, but a special
ad hoc argument is needed to see this (cf. §F.3 in Part II on geometric theory).
Formula (2.28) is, as before,

μ1 ∗ · · · ∗ μn =
∫
K
· · ·
∫
K

g1ν
(1)(g1) · · · gnν(n)(gn)dμ̌1(g1) . . .dμ̌n(gn). (2.48)

Now we shall exploit the fact that the cofactor S in K is compact to make a
special choice of the sets Ω j in §2.9.
For every j = 1,2, . . . we shall assume that there exists Ω′j ⊂ V an open

subset and c > 0 such that μ̌ j(Ω′j × S) > c and such that for all g j ∈ Ω′j ×
S the corresponding measure ν( j)(g) in (2.48) satisfies conditions (2.37) for
appropriate constants.
What this assertion says is that the sets Ω1, . . . ,Ω j, . . . ⊂ K that are used in

the proof are not arbitrary but can be modified and be assumed to be cylinders
over setsΩ′j ⊂V . By the compactness of S, this is certainly going to be the case
if Ω j is large enough, in the sense that it contains the ball [|g| � C] ⊂ K for
some appropriate largeC. Conditions (i), (ii) and (iii) of §2.4.1 do not guarantee
this of course, but if we block together μ1 ∗ · · · ∗ μk, μk+1 ∗ · · · ∗ μ2k, μ∗p =

μpk+1 ∗ · · · ∗ μ(p+1)k, . . . products of k such measures, then the new measures
μ∗j will also satisfy the conditions, and the new Ω’s in condition (iii) will be as
large as we like provided that k is large enough. So this can be done and the
additional assumption be made. Now the product of n factors μ∗j is the product
of the first nk factors μ j. For the products of length nk+ r, r = 1, . . . ,k− 1, in
between, we use the Harnack estimate of §2.5.2.
With this special choice ofΩ’s in the integral (2.48) we write g j =(Uj,σ j)∈

V×S=K and theU1,U2, . . .∈V are independent random variables that satisfy
the conditions of §2.10 and we write S j =U1+ · · ·+Uj.
Now, to estimate the integral (2.48), we write the integrand as the product

(2.36) translated on the cosetHsn as in (2.29). For each factor of (2.36) we still
use (2.38) with Λk defined in §2.6.2 for the group K = V × S, and Λk vanishes
on S because S is compact. The σ j coordinate can therefore be ignored and the
estimate (2.39) holds with mk = inf [Λk(S j); Uj ∈ Ω′j, 1 � j � n] with these
mk. We must therefore prove (2.40) because mk can be replaced by m

−
k by the

same argument as before (see §2.5.3). The probabilistic interpretation is again
(2.42) with E referring to the randomwalk on K. But since the mk depend only
on the Uj, this is the same as the expectation on the path space of S j ∈ V and
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then the estimate (2.42) is a consequence of (2.43)–(2.47) together with the
results of the appendix.

2.11.3 An exercise in Lie groups

This subsection is redundant if you use §F.3 from Part II, but it is ‘fun’ if you
enjoy manipulating Lie groups.
To reduce the proof for the general amenable group G to the special case

of the simply connected groups of §2.11.2, we consider the simply connected
covering group π : G̃→G and the corresponding exact sequence as in §2.6,

0−→ H̃ −→ G̃−→ K̃ =
G̃

H̃
=V × S,

where H̃ is the nilradical of G̃ and is therefore a closed simply connected sub-
group (see Varadarajan, 1974, §3.18.2). Exactly as in §2.11.2,V ∼= Rd is a Eu-
clidean space and S is some compact semisimple group. Furthermore, since π
is a covering map from H̃ onto H, and H is a Euclidean space, π reduces to an
isomorphism π : H̃→H. We shall denote by α : G̃→ G̃/H̃ = K̃ the canonical
projection and let Z = kerπ . We shall need to show that

α(Z) = Z̃ ⊂ K̃ is a closed subgroup. (2.49)

We shall assume this for the moment and complete the required reduction as
follows.
First of all Z̃ lies in the centre of K̃. This centre is V × Z(S) where Z(S)

is the centre of S and thus, by the semisimplicity of S, is a finite subgroup.
This means that Z̃1 = Z̃ ∩V is a subgroup of Z̃ of finite index and therefore
α−1(Z̃1)∩Z = Z1 is a subgroup of Z of finite index.
We can then consider the group G1 = G̃/Z1 which is intermediate between

G̃ and G in the sense that π factorises as

G̃−→
π1

G1 =
G̃
Z
−→
π2

G. (2.50)

We can also use π1 to construct the corresponding exact sequence as before:

0−→H1 −→G1 −→ K1 =
G1
H1
−→ 0. (2.51)

Here H1 is the nilradical of G1 and is therefore closed (see Varadarajan, 1974,
§3.18.13). Since the isomorphism π : H̃→H also factorises into H̃→

π1
H1→π2 H

and π1, π2 are coveringmaps, it follows thatH1 is also a Euclidean space. From
the definitions, on the other hand, it follows that K1 ≈

(
V/Z̃1
)× S. Since on
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the other hand V/Z̃1 is a product of a Euclidean space with a torus, the group
K1 is the product of a Euclidean space with a compact group as in §2.11.2.
What we have therefore in (2.51) is an exact sequence that satisfies all

the conditions of the exact sequences used in §2.11.2. The C-theorem (The-
orem 2.3) is therefore valid for the group G1.
Finally, in the covering map π2 : G1→G of (2.50) the kernel kerπ2 = Z/Z1

is a finite group. The reduction (2.17) therefore applies, and therefore the C-
estimate (2.10) also holds for the original group G. And we are done.
It remains to give the proof of (2.49). This is a consequence of the following.

Lemma Let G be some locally compact group and let Z,H ⊂G be two closed
normal subgroups. Let ζ : G→G/Z, χ : G→ G/H denote the corresponding
canonical projections. The subgroup χ(Z) ⊂ G/H is closed if and only if the
subgroup ζ (H)⊂ G/Z is closed.
The lemma says that the property is symmetric with respect to Z and H. To

see this we just have to notice that the subgroup χ(Z) is not closed if and only
if we can find two subsequences z1,z2, . . . ∈ Z and h1,h2, . . . ∈ H that tend to
infinity such that znh−1n → 0 in G. This situation is symmetric with respect to
the two subgroups Z and H.

Part 2.2: The Heat Diffusion Kernel and Gaussian Measures

2.12 The Heat Diffusion Semigroup

In the rest of this chapter we are concerned with the heat diffusion kernel
and diffusion measures. Let X1, . . . ,Xm be left-invariant vector fields on the
connected Lie group G as in §1.3.2 and suppose that � = −∑X2j is sub-
elliptic, that is, we shall assume that the fields satisfy the Hörmander con-
dition which means that these fields, together with their successive brackets,
span the tangent space (see §1.3.2). For simplicity the reader may assume
that the Xj already span the tangent space and that � is in fact elliptic be-
cause for the global behaviour nothing much changes. The operator� is for-
mally self-adjoint on L2(G;drg) because, for the L2 scalar product, we have
〈Xj f1, f2〉 = −〈 f1,Xj f2〉. Note that with left-invariant fields we have to use
right-invariant measure. We then close � in L2 and obtain a positive opera-
tor in L2 that generates the corresponding semigroup Tt = e−t�. An adequate
reference for this and for the basic facts that we shall describe below is Varop-
oulos et al. (1992).
The aim of this second part of the chapter is to give the classification of §1.3
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in terms of this semigroup. This is not in the mainstream of the subject and the
reader who so wishes can skip the rest of this chapter and also anything else in
the book that has to do with the heat diffusion semigroup Tt .
In the next two subsections we shall state without proofs the main properties

of the semigroup that will be needed. With the use of these properties we shall
see that the rest of this chapter is but a natural and interesting variant of what
we have done in the first part for compactly supported measures. What makes
it a ‘variant’ is that the general strategy of the proofs is the same. What makes
it ‘interesting’ is that we have to make several modifications in the proofs that
make them simpler in some ways but harder in others.

2.12.1 Heat diffusion kernel and the Harnack principle

There exists φt(g), a smooth positive function in t > 0 and g∈G, and probabil-
ity measures dμt = φt(g)drg = φt (g)m(g)dg; because of the self-adjointness
of the operators, these satisfy

Tt f (x) = f ∗ μt =
∫
G
f (xy−1)dμt(y) =

∫
G
φt(y−1x) f (y)dy;

μt(y−1) = μt(y).
(2.52)

It follows that u(x, t) = φt(x) = Ttδe(x) for the Dirac mass at e ∈G satisfies the
heat equation

∂
∂ t
u=∑X2j u; t > 0, x ∈G. (2.53)

This is the direct analogue of the classical heat equation
( ∂
∂ t −∑ ∂ 2

∂x2i

)
u = 0 in

the Euclidean space (x1, . . . ,xd) ∈Rd .
Just as in the classical situation, any positive solution of (2.53), u(t,g), then

satisfies the parabolic Harnack estimate which here is, for C > 0 and 0 < ai,
1� i� 3, there existsC0 such that

u(xy, t)<C0 u(x, t+ τ); x ∈ G, |y|G �C, t � a1, τ ∈ [a2,a3]. (2.54)

This is a local result and it is first proved for x = e and then the invariance
of the operator by left translation gives (2.54) for all x. This Harnack esti-
mate is standard when � is elliptic but perhaps less so in the subelliptic case
(see Varopoulos et al., 1992, §III.2). When u(x, t) = φt(x) this gives the direct
analogue of (2.12). To see this use the fact that φt(x−1) = φt(x)m(x) and this
allows us to pass from xy to yx in (2.54) – here we use m(xy) = m(x)m(y).
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2.12.2 Gaussian measures

For a locally compact group G we say that the function φ(g) is Gaussian if
there exist positive constants such that

C1 exp(−c1|g|2G)� φ(g)�C2 exp(−c2|g|2G); g ∈ G, (2.55)

and we say that a measure dμ = φ drg = φ(g)m(g)dg is Gaussian, or Gs(G)
for short, if φ is Gaussian. The Ci, ci are then called the Gaussian constants.
Sincem is a multiplicative character it satisfiesm(g)±1=O(ec|g|) and therefore
in the above we can use indiscriminately the right or left Haar measure. The
fundamental fact here is that the measures μt and the kernels φt of the semi-
group Tt in (2.52) are Gaussian with constants that stay uniform when t ∈ [a,b]
for fixed 0< a< b (see Varopoulos et al., 1992).

2.13 The C-Theorem

Here we shall assume that G is some connected C-Lie group that is amenable.
The theorem below says that in the C-theorem of §2.4 we can replace condi-
tions (i)–(iii) of §2.4.1 for the measures, by the Gaussian condition.

2.13.1 The Gaussian C-theorem

Theorem Let us assume that μ1, . . . ∈ P(G) are Gaussian with uniform con-
stants and let us denote μn = μ1 ∗ · · · ∗ μn, n � 1 as in §2.4.1. Then for every
P⊂G, a compact subset, there exist C,c> 0, which depend also on the Gaus-
sian constants, such that

μn(P)�Cexp(−cn1/3); n� 1. (2.56)

This is the analogue of (2.15) of §2.4. No pointwise estimate like (2.10)
can a priori be deduced for the density of μn because we do not have at our
disposal the analogue of the Harnack estimate (2.12) in this generality. For the
heat diffusion kernel on the other hand, (2.54) can be used and from (2.56) we
deduce the estimate

φt (e)�Cexp(−ct1/3); t > 1. (2.57)

Nonetheless, in the general case, the c in the exponent of (2.56) can be chosen
to be independent of P.
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2.14 Distances on a Group and the Geometry of Gaussian
Measures

We shall need to prove some properties of Gaussian measures on the group
G and to do that we shall need to recall first some general properties of the
distance | | of §1.1. We shall state these properties in the first part of this section
and the proofs will be given in the second part.

2.14.1 Statements of the facts

We shall first recall some notation from §1.1. Let G be some locally compact,
compactly generated group and let H ⊂G be some closed subgroup that is also
assumed to be compactly generated. For every h ∈ H we can then define |h|H
as in §1.1 with h considered as an element of H but also |h|G of h considered
as an element of G. It is obvious that there exist constants for which

|h|G �C|h|H +C; h ∈ H. (2.58)

It is not at all trivial to prove that for connected Lie groups G, H there exist
constants for which we have the following converse inequality:

|h|H � exp(C|h|G+C); h ∈ H. (2.59)

Fortunately, only easy cases of this will be needed and these will be proved
below. One such is when G is nilpotent and simply connected. In that case,
the exponential mapping from the Lie algebra to the group is a global diffeo-
morphism (see Varadarajan, 1974, §3.6) and furthermore if |ξ | denotes some
Euclidean norm on the algebra there exist constants such that

C|ξ |� |exp(ξ )|Group � c|ξ |c; ξ ∈ Lie algebra, |ξ |�C. (2.60)

From this we see that there exist constants for which we have

|h|H �C(|h|G+ 1)C; h ∈ H. (2.61)

WhenG is nilpotent and simply connected andH some closed subgroup then
H is compactly generated and (2.61) holds. In Ragunathan (1972, §§2.5–2.10)
one finds proofs of this and a connected closed subgroup Ĥ ⊃H is constructed
with Ĥ/H compact. This and many other results that one can find in Varop-
oulos (1999a) (a very technical and reader-unfriendly reference!) are outside
the scope of this book because, among other things, essential use is made of
the theory of algebraic groups.

Exercise 2.6 If H ⊂ G is normal then show that the distance on G/H is the
quotient distance. This means that |ġ|G/H = inf |g|G as g ∈ ġ⊂ G.



2.14 Distances on a Group and Geometry of Gaussian Measures 53

We recall from §1.1 the notation γ(r) = γG(r), which is the Haar measure
of G of Br where Br = [g; |g|G � r]. It is well known, and we shall give the
proof below, that for any locally compact group, γG(r) �Cecr for appropriate
constants. Similarly we can define γ̃H(r) as the Haar measure of H of Br ∩H,
the relative volume growth. Once more, by the involution x 	→ x−1, we see
that in the definition we can take either the right or the left Haar measure. For
appropriate constants we have again γ̃H(r) �Cecr. We shall only need this in
the case of a normal subgroup and in that case shall use the standard formula
(see Bourbaki, 1963, Chapter 7, §2.7; Helgason, 1984, §1.1.2; Ragunathan,
1972, Chapter 1)∫

G
f (g)dGg=

∫
G/H

dG/Hġ
∫
H
f (gh)dHh; f � 0, (2.62)

for the left Haar measures of G, H and G/H. In the inner integral in (2.62),
for any ġ ∈ G/H, g ∈ G is an arbitrary element for which π(g) = ġ for the
canonical projection π : G→G/H.
Now let φ(g) be some Gaussian function on G. The restriction φ to H is not

in general Gaussian but when (2.59) holds, it clearly follows that there exist
positive constantsCi for which

φ(h)� exp(−C1 log2(|h|H + 1)+C2). (2.63)

More generally, for H normal and ġ ∈ G/H we can use Exercise 2.6 to find
g∈G with π(g) = ġ as (2.62) and |g|G � 2|ġ|G/H ; we can then use the triangle
inequality and for appropriate constants we have

|gh|2G � d2G(g,gh)−|g|2G = |h|2G−|g|2G
� c log2(|h|H + 1)−|g|2G−C; g ∈ G, h ∈ H. (2.64)

We conclude therefore that

φ(gh)�Cexp(c|ġ|2)exp(−c log2(|h|H + 1)); g ∈ G, h ∈H. (2.65)

In §2.14.4 we shall use the exponential estimate on γ̃H and show that if
μ ∈Gs(G) andH is a normal closed subgroup then μ̌ = π̌(μ)∈Gs(G/H). The
converse, when H is compact, is automatic and, for any μ̌ = f̌ dġ ∈Gs(G/H),
the measure μ = f̌ (π(g))dg is Gaussian on G.
None of the above facts, with the exception of (2.59) in full generality, are

difficult but they do need proving. The proofs will be given below.
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2.14.2 The distance distortion

For a locally compact groupG we say that H ⊂G a closed subgroup is cocom-
pact if there exists P⊂G, a compact subset such that G=HP. By considering
x 	→ x−1 we also have then G= P−1H and P−1 is also compact.
Let H ⊂ G be cocompact and let h ∈ H and e = g0,g1, . . . ,gm = h a ‘geo-

desic’ in G in the same sense that g j ∈ G, m � |h|G and |g−1j+1g j| � C. We

can then write g j = h j p j, h j ∈ H, p j ∈ P, and then |h−1j+1h j|H � C. But then
e= h0,h1, . . . ,hm,h is a ‘geodesic’ in H and this shows that |h|H �C|h|G+C.
This means that we can reverse the inequality (2.58) and we then say that H is
not distorted in G.
The only instance where we shall need the exponential distortion inequality

(2.59) is the case where G is a soluble simply connected group and H = N
is its nilradical. Then what makes the proof of (2.59) easy is the fact that we
can find M ⊂ G, some analytic subgroup that is nilpotent, closed and simply
connected (a Cartan subgroup) such that G=NM. Given the one-to-one corre-
spondence between closed connected subgroups of G with the subalgebras of
the Lie algebra g (see Varadarajan, 1974, 3.18.12), it follows that it suffices to
find m⊂ g a nilpotent subalgebra such that g= n+m for the nilradical n. This
is a consequence of the general theory of Lie algebras and it will be explained
in some detail in §3.4.2. This fact easily implies (2.59). To see how this is done
we proceed as follows. By the definition of | |G,

n= n1m1n2m2 · · ·npmp; p� |n|G,
n j ∈ N, mj ∈M, |n j|, |mj|�C.

(2.66)

Notice that for small distances it does not matter whether we consider distances
in G or in a subgroup. We can then use (2.21) to write

n= n1n
M1
2 nM23 · · ·n

Mp−1
p Mp = NpMp;

Mj = m1 · · ·mj ∈M.
(2.67)

It is clear that |Mj|M � c j and from this we can deduce

|nMj−1
j |N �Cexp(cp). (2.68)

To see this we use the general formula exp(Ad(g)ξ ) = g(expξ )g−1, g ∈ G,
ξ ∈ g (see Varadarajan, 1974, 2.13), and combine this with the operator norm
‖Ad(Mj)‖ �Cexp(c j) for appropriate constants. We then use (2.60). On the
other hand,Mp ∈ N∩M and sinceM is nilpotent it follows from (2.58), (2.61)
and (2.67) that

|Mp|N �C|Mp|N∩M �C(|Mp|M+ 1)C �C(p+ 1)C. (2.69)
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Putting together (2.67), (2.68) and (2.69) we obtain the required result. See
also (8.11) for a variant of the same proof.
Since the radical of an amenable group is cocompact, we also see that with

the above, we have a proof of (2.59) when G is amenable and H is the nil-
radical. Observe finally that because of (2.61), the same exponential distortion
(2.59) also holds when H is any closed connected subgroup H ⊂ N.

Exercise To avoid having to use (2.61) for non-connectedH, prove that in the
above argument N∩M is connected. This is not a general fact but it holds here
because N is normal and G= NM. We can argue as in §8.4.3 (in the geometric
theory in Part II) to construct exponential coordinates (ζ1, . . . ,ζr,η1, . . . ,ηp)
on M (notation of §8.4.3) such that an element in M lies in N if and only if
η1, . . . ,ηp = 0. The projection G→ G/N could be used for this. The reader is
invited to anticipate some of the geometric ideas from Part II and work out the
details (cf. Exercise 8.9).

2.14.3 The volume growth

In the group G we denote balls by Br(g0) = [g ∈ G; dG(g,g0)� r]. In the ball
Br = [|g| � r] centred at e we can choose g1, . . . ,gn ∈ Br a finite subset that
is maximal under the condition dG(gi,g j) � 10, i �= j. The balls B1(g j) are
disjoint and therefore n � Cγ(r+ 1). On the other hand, since any g ∈ Br+10
can be written g= g′g′′ with g′ ∈ Br and |g′′|� 100, and since by the definition
of the g j,

⋃
j B100(g j) ⊃ Br, it follows that g can in fact be written g = gkg′′′

for some k = 1, . . . ,n and |g′′′| � 10000. The conclusion is that there exists
c> 0 such that γ(r+10)� cγ(r+1). The exponential bound γG(r)�Cexp(cr)
follows.
Now let H ⊂ G be some normal closed subgroup and let us use formula

(2.62) with f = χr+2 the characteristic function of the ball Br+2 in G. For any
|ġ| � 1, by Exercise 2.6, we can then find g in (2.62) such that |gh|G � r+ 2
for all |h|G � r. For that choice of g, the inner integral on the right-hand side
of (2.62) is therefore 
 γ̃H(r). Since the left-hand side of (2.62) is γG(r+ 2),
the exponential estimate γ̃H(r) �Cecr follows.

2.14.4 The Gaussian estimates for the projected measure μ̌

Let dμ = φ(g)dg, dμ̌(ġ) = φ̌(ġ)dġ. Let us fix ġ ∈ G/H and g ∈ G such that
π(g) = ġ and |g|G � 2|ġ|G/H . By formulas (2.25) and (2.62) we have φ̇ (ġ) =



56 The Classification and the First Main Theorem∫
H φ(gh)dh�C

∫
H exp(−c|gh|2G)dh and the integral can be estimated by

∞

∑
N=0

exp(−cN2)[H− left Haar measure of h ∈H

such that N � |gh|G � N+1].

(2.70)

But, for large |ġ|, by the choice of g such that π(g) = ġ as in Exercise 2.6,
the second factor in (2.70) is zero unless N � c|ġ|. If we use the exponential
estimate on γ̃H and sum in (2.70) we obtain the upper Gaussian estimate for μ̌ .
The lower Gaussian estimate for μ̌ is immediate from (2.55) because for

appropriate constants and |h|�C we have φ(gh)� cexp(−c|ġ|2).

2.15 The Disintegration of Gaussian Measures

We shall consider again the exact sequence of (2.19),

0→ H→G→G/H = K→ 0. (2.71)

RecallH =H1⊕·· ·⊕Hp and theΛ j, 1� j� p fromDefinition 2.5 and assume
that the C-condition is satisfied. All the notation in §§2.7–2.8 will be preserved.
We shall consider dμ = φ(g)dg ∈ Gs(G) and disintegrate it as in (2.24):

μ =

∫
ġν(ġ)dμ̌(ġ), P(H) � ν(ġ) = gφ(h)dh,

gφ(h) = φ(gh)/φ̌ (ġ), φ̌(ġ) =
∫
H
φ(gh)dh,

(2.72)

where in the choice of the pre-image g∈G such that π(g)= ġ for π : G→G/H
we use Exercise 2.6 to guarantee that |g|G � 2|ġ|K and that we saw in §2.14.2,
(2.65), (2.59) hold because H is the nilradical. This implies that there exist
constantsC, c and functions f j on Hj such that

gφ(h)�Cexp(c|ġ|2) f1(h1) · · · fp(hp); (h1, . . . ,hp) ∈ H, ġ ∈ K,
‖ f j‖1+ ‖ f j‖∞ �C; j = 1,2, . . . , p.

(2.73)

Notice here that, unlike what happens in (2.37), estimate (2.73) holds for all
ġ∈K and not only for ġ∈Ω⊂K in some subset with μ̌(Ω)> c. Apart from the
upper Gaussian in (2.55) that is obviously used for (2.73), the lower Gaussian
estimate in (2.55) for μ̌ is also used here. Observe also that when K = Rd ,
or at worst Rd× (a compact group) (cf. §2.11.2), these Gaussian estimates for
μ̌ in the case of the heat diffusion kernels as in §2.12.2 come for free from
the Euclidean case where we have explicit formulas, and we do not need the
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general theory of Varopoulos et al. (1992). See Varopoulos (1994a) for more
details on this.
Now, we shall consider ν1, . . . ,νn ∈ P(H) and ġ1, . . . , ġn ∈ K such that for

fixed constants we have

ν j �Cexp(c|ġ j|2) f ( j)1 ⊗·· ·⊗ f ( j)p dh; 1� j � n,

f ( j)k ∈ L∞(Hk), ‖ f ( j)k ‖1 �C; k = 1,2, . . . , p.
(2.74)

As in (2.35) it then follows that ν1 ∗ · · · ∗νp = F(h)dh,

‖F‖∞ �Cm1 · · ·mp; mk = inf
1� j�n

[
exp
(
c|ġ j|2
)‖ f ( j)k ‖∞

]
. (2.75)

This will be applied to the convolution product of Gaussian probability mea-
sures μ1 ∗· · ·∗μn which is represented as in (2.28). And with the same notation
as in §§2.7, 2.9, we see that there exist constants for which

ν(g1, . . . ,gn) = F dh, ‖F‖∞ �Cm1, . . . ,mp,

mk = inf
j
exp
(
c|ġ j|2+ cΛk(ġ j)

)
.

(2.76)

This is the direct analogue of (2.39) and Λk(ġ j) is the Jacobian as in (2.38).
Here we have gained the fact that no sampling is required as in (2.39). The
price that we had to pay is the additional factors exp(c|ġ j|2) and the fact that
we cannot replace Λk by Λ−k = Λk ∧0.
With this new definition of the mk, what remains to be done is to prove the

analogue of (2.40):∫
K

∫
K
· · ·
∫
K
m1 · · ·mpdμ̌1(g1) . . .dμ̌n(gn)�Cexp(−cn1/3); n� 1. (2.77)

Once this estimate has been proved, the C-theorem follows for the group
G in the exact sequence (2.71). To see this it suffices to use the analogues of
(2.28) and (2.29) and take the scalar product of μ1 ∗ · · · ∗ μn with a function of
the form φ(h)⊗ψ(k) as in (2.41).

Remark Since the compact set P in (2.56) is arbitrary, in the construction of
the two functions φ and ψ of (2.41) we cannot use a local section of G→ K.
A global section that is only Borel and not necessarily continuous, and that
may also depend on P, has to be used. Nonetheless, G and H× (G/H) can be
identified in a Borel fashion that way so that φ ⊗ψ is identically 1 on P and
(2.41) goes through.
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2.16 The Gaussian RandomWalk on G/H and the Proof of
the C-Theorem

We shall proceed as in the case of compactly supported measures. We shall
first prove (2.56) in the special case whenG/H =V =Rd is a Euclidean space
and then Λ1, . . . ,Λp ∈ V ∗ are linear functionals that satisfy the C-condition in
§2.2.1. Let U1, . . . ∈ V be a sequence of independent random variables with
distributions ψk(x)dx, x ∈V , for which there exist uniform constants such that

C1 exp(−c1|x|2)� ψk(x)�C2 exp(−c2|x|2); x ∈V. (2.78)

These are the Gaussian estimates (2.55) in V . We then define the random
variables

An(Λk) = inf
1� j�n

exp(c|Uj|2+ cΛk(Uj)) (2.79)

for fixed constants. For the proof of (2.77) we need the analogue of (2.42) and
what we need to prove now is the estimate

E(An(Λ1)An(Λ2) · · ·An(Λp))�Cexp(−cn1/3); n� 1, (2.80)

for appropriate constants. This purely probabilistic estimate can be obtained
from (2A.23) in the appendix to this chapter. The proof of our theorem in
§2.14.1 with G as in (2.71) with G/H =V is therefore complete.
Now, the procedure to prove the Gaussian C-theorem for a general amenable

group is strictly identical to the case of compactly supported measures. To wit,
the first step is to consider the exact sequence (2.71) when K is no longer Eu-
clidean but is isomorphic toV×SwhereV ∼=Rd and S is compact. The proof in
that case is identical to the one given in §2.11.2; the argument applies verbatim
in this Gaussian situation and is simpler because no sampling is involved. The
additional facts used are that Gaussian measures projected on K are Gaussian
and that for k = (u,s) ∈ K, we have far out |k|K ∼ |u|V . The final reduction for
the exact sequence (2.71) can be done as in §2.11.3 but at the very end of the
argument we need to use the final remark of §2.14.1 on the lifting of Gaussian
measures from Q/H to G when H is finite.
The last point that must be verified is that the reduction of a general amenable

group to the exact sequence (2.19) that was done for compactly supportedmea-
sures in §2.6.1 applies here also for Gaussian measures (see §2.13.1 on the
Harnack estimate).
For this we make essential use of the fact that μ̌ the image of a Gaussian

measure μ by a projection π : G→ G/H (with μ̌ = π̌(μ)) is Gaussian. It fol-
lows from this that if the Gaussian C-theorem holds for the group G/H then it
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also holds forG. The reason is that for μ1, . . . ,μn ∈ P(G), as in (2.56), we have

μ1 ∗ · · · ∗ μn(π−1(P)) = μ̌1 ∗ · · · ∗ μ̌n(P); P⊂ G/H. (2.81)

We use the above and consider again N�G, T �N and N2 as §2.6.1. Proceed-
ing as in §2.6 we can therefore reduce the problem to the exact sequence (2.19)
and (2.71). This completes the proof.

2A Appendix: Probabilistic Estimates

The results in this appendix are exercises in ‘elementary probability theory’
and what I give in the next few pages are indications of how to achieve them.
The reader who is not a ‘fan’ of that subject may simply register the results
and forget about the proofs.
LetU1,U2, . . . ∈V =Rd be independent random variables and let μk ∈ P(V )

be their distributions and ϕk = μ̂k be their characteristic functions, that is, their
Fourier transforms. We shall make the assumption that

|ϕk(ξ )|� exp(−c|ξ |2), |ξ |< 1; |ϕk(ξ )|� 1−η , |ξ |> 1, (2A.1)

uniformly in k for some c,η > 0. This is certainly true if dμk = ψk dv with
ψk(x) > c for |x− xk| < c, for some xk ∈ V and constants c, uniformly in k,
because thenψk(x) =αψ(x−xk)+(1−α)ψ̃k(x) for some 0�ψ ∈C∞

0 , ψ̃k � 0
both of integral = 1 and 0 < α < 1. In the case that we shall use (2A.1) we
even have xk = 0 and then the verification is even more obvious.
Conditions (2A.1) on the characteristic functions are standard in the proof

of the central limit theorem. Here we shall define

S∗n = sup
1�k�n

|U1+ · · ·+Uk|, Sk =U1+ · · ·+Uk, (2A.2)

and use conditions (2A.1) to prove that there existC,c> 0 such that

P[S∗N �M]�C exp

(
− N
cM2

)
; N,M � 1. (2A.3)

Let 0� χ ∈C∞
0 (V ) be such that χ(x)� 1 for |x|� 1. For the Fourier transform
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χ̂ and m= 1,2, . . . ,r > 0 we then have, by Parseval’s theorem,

P[|U1+ · · ·+Um2 |< rm]�
∫
χ
( x
rm

)
dμ1 ∗ · · · ∗ μm2(x)

�Crm
∣∣∣∫ ϕ1 · · ·ϕm2(ξ )χ̂(rmξ )dξ

∣∣∣
�Crm

∫
exp(−cm2ξ 2)|χ̂(rmξ )|dξ +(1−η)m2‖χ̂‖1

�Cr+ c(1−η)m2 � ε0; m�C, (2A.4)

for appropriate constants and some ε0 < 1 provided that r is small enough bec-
ause ‖χ̂‖∞, ‖χ̂‖1�C. By considering successive independent blocksUjm2+1+

· · ·+U( j+1)m2, with j = 0,1, . . . , p− 1, we obtain

P
[
S∗pm2 �

rm
2

]
� ε p−10 ; m, p= 1,2, . . . , (2A.5)

where in (2A.4), (2A.5) the small values m= 1,2, . . . ,m0 have to be examined
separately, but we shall not actually need to use these small values in the argu-
ment that follows. Observe now that (2A.3) holds, forM � c small and N >C
large, by the condition imposed on theUj. Inequality (2A.3) also holds trivially
if N

M2
�C. By choosing, in (2A.5), m∼M and p∼ N

M2
, we obtain then (2A.3)

for the remaining values ofM, N because r is fixed.
The estimate (2A.3) implies that for all c > 0 there exist C,c1,c2 > 0 such

that

E(exp(−cS∗n))�C
∞

∑
M=1

exp
(
−c2M− c2 n

M2

)
∼ ∑

M<n1/3
+ ∑
M�n1/3

�Ce−c1n
1/3
. (2A.6)

In the above estimate n can clearly be assumed large.

2A.1 The sampling for bounded variables

The notation is as before and we assume that Ak ⊂V , k= 1,2, . . . are such that
P(Uk ∈ Ak) > c. We shall then sample the supremum that was used to define
the variable S∗n and define the modified

S̃n = sup
1�k�n
Uk∈Ak

∣∣U1+ · · ·+Uk∣∣� S∗n. (2A.7)

We shall prove that we still have the estimate (2A.6) provided that we restrict
ourselves to bounded variables

∣∣Uj
∣∣ � C. More explicitly, for all c > 0, there
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existC1, c1 such that

E(exp(−cS̃n))�C1 exp(−c1n1/3); n� 1. (2A.8)

This was essentially the estimate needed in (2.45). There is, however, a slight
problem with the sampling in (2.45) that will be examined in the next subsec-
tion.
The argument that we shall use is combinatorial and elementary. Let

J = [1 � j1 < j2 < · · · [ be the set of integers defined by j ∈ J if and only
if Uj ∈ Aj. Let Jn = J ∩ [1,2, . . . ,n]. When |Jn| � 2 we shall define Gn =

sup jp∈Jn ( jp− jp−1). It follows that there exist constants such that

P[|Jn|� 10]�Cexp(−cn), P[Gn = k]�Cnexp(−ck). (2A.9)

To see this observe that for the event [Gn = k] to hold there must exist some
string of eventsUi /∈ Ai,Ui+1 /∈ Ai+1, . . . , Ui+p /∈ Ai+p for p = k− 2 and some
i= 1,2, . . . ,n. This proves the second estimate (2A.9). The proof of the first is
similar and simpler.
On the set [|Jn|� 10] we can write

[S̃n � m] =
⋃
k�n

(
[S̃n � m]∩ [Gn = k]

)
=
⋃
En,k. (2A.10)

By the boundedness of the variablesUj, for fixed k on the event En,k under the
union sign, we have S∗n � S̃n+ ck � m+ ck. If we use (2A.3) and (2A.9) we
obtain therefore

P(En,k)� exp
(
− n
c(m+ k)2

)
∧nexp(−ck), (2A.11)

and if we sum in the two ranges k� n1/3 and k� n1/3 we see that this sum can
be estimated by

nexp

(
− n

c(m+ n1/3)2

)
+ exp(−cn1/3). (2A.12)

To obtain E
(
e−cS̃n ; |Jn|� 10

)
we therefore multiply (2A.12) by e−cm and sum

in m. This gives the required estimate (2A.8) because for [|Jn| � 10] we can
use (2A.9).

2A.2 A variant in the sampling

Here we place ourselves in the set-up of §2.10 and we consider a projection
p : V→V/V1= Ṽ �= {0} of the Euclidean space as in (2.44). Then the variables
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Ûk = p ◦Uk ∈ Ṽ satisfy the same condition as the Uk and therefore, if we set
Ŝ∗n = sup1�k�n |Û1+ · · ·+Ûk|, we have

E(exp(−cŜ∗n))�Cexp(−cn1/3). (2A.13)

But we can also consider the following variant S̃n = sup1�k�n,Uk∈Ak |Û1+ · · ·+
Ûk| for subsets Aj ⊂ V as before. The point here is that the sampling for the
supremum is already done on the variablesUk before we project. TheUk are of
course assumed again to be bounded. By exactly the same argument we obtain
then the refinement that for all c> 0 there exist c1,C such that

E(exp(−cS̃n))�Cexp(−c1n1/3); n� 1. (2A.14)

2A.3 Gaussian variables and the C-condition

We shall consider independent random variables U1, . . . ∈ V valued in a Eu-
clidean space that satisfy conditions (2A.1). But these variables will not be
assumed to be bounded; we shall assume instead that there exist positive con-
stants c0,C for which the Gaussian estimate holds:

E(exp(c0|Uj|2))�C; j = 1,2, . . . . (2A.15)

We shall also consider Λ1,Λ2, . . . ,Λp ∈ V ∗, linear functionals on V , and as-
sume that they satisfy the C-condition as in the definition from §2.2.1 or (2.7).
With c> 0 arbitrary but fixed and Sk as in (2A.2) we can then define

An(Λ−j ) = inf
1�k�n

exp[cΛ−j (Sk)]; Λ−j = Λ j ∧0, 1� j � p, (2A.16)

and using (2A.6) by the same argument as in (2.43)–(2.47) we deduce that
there existC, c1 such that

E(An(Λ−1 ) · · ·An(Λ−p ))� E inf
1�k�n

exp(Λ−1 (Sk)+ · · ·+Λ−p (Sk))

�Cexp(−c1n1/3); n� 1. (2A.17)

No sampling is done in the definition of An. In the rest of this section we shall
give an improvement of (2A.17).
Let Φ be some function on V ; in fact, it will be Φ = Λ or Λ− = Λ∧ 0 for

some linear functional Λ ∈V ∗. We shall set then
A[Φ; p,q] = inf

p�k�q
exp(Φ(Sk)). (2A.18)

Since for any Λ ∈V ∗ there existsC > 0 such that

Λ(S1)∧Λ(S2)∧·· ·∧Λ(Sn)� 0∧Λ(S2)∧·· ·∧Λ(Sn)+C|U1|
� Λ−(S2)∧·· ·∧Λ−(Sn)+C|U1|, (2A.19)
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it follows that

A(Λ1;1,n) · · ·A(Λp;1,n)� exp(C|U1|)A(Λ−1 ;2,n) · · ·A(Λ−p ;2,n). (2A.20)

Estimate (2A.17) now applies in the product of the A’s on the right-hand side
of (2A.20) because the variable S2 =U1+U2 satisfies conditions (2A.1) and
(2A.15). If we use these observations and Hölder we deduce from (2A.17) that
there exist c,C such that

E(A(Λ1;1,n) · · ·A(Λp;1,n))�Cexp(−cn1/3); n� 1. (2A.21)

We shall finally consider the functional used in (2.79) and prove an improve-
ment of (2A.21). For c1 > 0 we set

An(Λ) = inf
1�k�n

exp[c1|Uk|2+Λ(Sk)]; Λ ∈V ∗, (2A.22)

and we need to show that there existC, c such that

E(An(Λ1) · · ·An(Λp))�Cexp(−cn1/3); n� 1. (2A.23)

Hölder can be used to see this as long as c1 is small enough – that is, pc1� c0
of (2A.15) – because we can then deal with the additional cofactor
exp(pc1 sup1�k�n |Uk|2) by (2A.15) and for the other factor in (2A.22) we use
(2A.21) and then Hölder for the expectation of the product. The proof in the
general case is more involved. (Observe, however, that for most of our appli-
cations in (2.80) this c1 may be chosen as small as we like. The reason is that
sharp Gaussian estimates for the heat diffusion kernel of §2.12.1 can be used.
As explained in the few lines that follow (2.73), these are easy to obtain for the
group K of (2.71) (see §E.1 for more on that).
We choose N � 1 to be specified later, and for α = 1,2, . . . we denote

Iα = [αN+ 1, . . . ,(α+ 1)N], Yα = inf
j∈Iα
|Uj|, (2A.24)

and jα ∈ Iα the first integer for which |Ujα |=Yα . The proof of (2A.23) hinges
on the following modifications of (2A.22):

Bn(Λ) = infα [exp(c1Y
2
α +Λ(S jα )); αN � n],

Dn(Λ) = infα [exp(Λ(S jα )); αN � n].
(2A.25)

We shall also need to use Ãn(Λ) = A(Λ;1,n), which is the same as (2A.22) if
we set c1 = 0, and then we have the following comparisons:

An+N(Λ)� Bn(Λ)� Dn(Λ)ecξ
2
n ,

Dn(Λ)� Ãn(Λ)ecζn ,
(2A.26)
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where c> 0 is large enough but independent of the choice of N and where we
use the correcting variables

ξn = sup
α
[Yα ; αN � 2n],

ζn = sup
α
[Zα ; αN � 2n], Zα = ∑

k∈Iα
|Uk|, (2A.27)

and also assume that n� 100N. These variables are controlled as follows. It is
clear that

P[Zα > λ ]�Cexp(−cλ 2),
P[ζn � λ ]�Cnexp(−cλ 2); n= 1,2, . . . , α = 1,2, . . . , λ > 0,

(2A.28)

where C, c are independent of n, α but depend on the choice of N: in fact,
c ≈ c0/N. On the other hand, with constants C3, c3 that are independent of n,
α and N we have

P[Yα > λ ]�C3 exp(−c3Nλ 2),
P[ξn � λ ]�C3nexp(−c3Nλ 2); n= 1,2, . . . ,α = 1,2, . . . ,λ > 0.

(2A.29)

From (2A.29) it follows that for any preassigned k and 1 < q < +∞ we can
choose N large enough so that

‖ekξ 2n ‖q =O(n1/q). (2A.30)

On the other hand, for any fixed N we have from (2A.28),

‖ecζn‖q = O(n1/q), (2A.31)

for any c> 0 and 1< q<+∞.
To finish the proof we use (2A.26) and for appropriate constants, indepen-

dent of N, we have

An+N(Λ1) · · ·An+N(Λp)� Ãn(Λ1) · · · Ãn(Λp)exp(c ξ 2n + c ζn); n� 100N.
(2A.32)

Here we use Hölder and (2A.21): recall that Ãn(Λ) = A(Λ;1,n)) and choose N
appropriately so that (2A.30) applies. Our estimate (2A.23) follows.
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NC-Groups

Overview of Chapter 3

As already explained, in this chapter we stick to amenable groups (i.e. λ = 0
in §1.3.1). Having proved the C-theorem in the previous chapter, here we shall
prove the NC-theorem and we shall begin §3.2 by restating the theorem that is
to be proved. In §3.2 we shall also give the easy reduction to simply connected
groups and some important examples of NC-groups.
In this chapter the role played by amenability is important and, for this rea-

son, in §3.1 we shall recall some of the definitions of that notion. It should
be noted, however, that the original and historical definition, and the one that
most people know, actually plays no role in this chapter and therefore we do
not use it here. (That ‘historical’ definition says that the groupG is amenable if
it admits an invariant mean M ∈ (L∞)∗, i.e.M : L∞(G)→R such thatM1 = 1,
M � 0 andM is invariant by, say, left translation on G.)
The next two sections §3.3 and §3.4 are special. In §3.3 essentially we refor-

mulate the problem in terms of a terminology that is proper to Markov chains.
For this, the reader does not have to know anything else except the defini-
tion of a Markov chain. Here, we consider only time-homogeneous chains that
are induced by some Markovian operator T , which we take to consist of the
convolution operator by some measure. In particular, we do not need to exam-
ine more general convolution products μ1 ∗ μ2 ∗ · · · , as we did in the previous
chapter.
In §3.4 we illustrate the criterion obtained in §3.3 by giving the proof of

the theorem for some simple examples of groups. This section is important to
understand because it contains the idea of the proof.
The actual general proof is carried out in §§3.4–3.5 and since these are bro-

ken up in a number of subsections the interconnection between these subsec-
tions is explained in the plan of the proof before we start.

65
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This chapter, as the previous one, contains a Part 3.2 where we deal with
heat diffusion kernels rather than convolution powers of measures, but there
is also a third part that contains an alternative proof, or rather a variation of
the proof given in §§3.4–3.5. This approach, if developed properly, will give
sharp results (see (3.3) below), but the price that has to be paid is an additional
algebraic lemma in §3.9.1 and, more seriously, the complications that arise
from the fact that the exponential mapping on soluble groups is not necessarily
bijective. From our point of view here, the reason for this alternative proof
is that it adapts better to the general case in Chapter 5. The reader can defer
reading the details here until they re-emerge and are used later.

Part 3.1: The Heart of the Matter

3.1 Amenability

In this first section we shall collect together the basic facts about the notion of
amenability for a locally compact group that we shall need in the book. Reiter
(1968) and Greenleaf (1969) are among the many references that can be used
in the subject.

3.1.1 Preliminaries

Let μ ∈P(G) be some probabilitymeasure on the locally compact groupG and
let Tμ : L2 → L2 for L2(G;drg) denote the convolution operator f 	→ f ∗ μ =∫
f (xy−1)dμ(y). The operator norm ‖Tμ‖� 1 will also be denoted ‖μ‖op (it is

easy to see that this is strictly positive, but this will not be used). The spectral
radius ‖Tμ‖sp = limn ‖Tnμ ‖1/n will be denoted ‖μ‖sp. Clearly, ‖μ‖sp � ‖μ‖op
with equality when μ is symmetric, that is, when dμ(x) = dμ(x−1) for then
T ∗μ = Tμ is self-adjoint.
The following simple observation is basic in our definition of amenability.

Let μ1,μ2 ∈ P(G) and let us suppose that there exist 0 < α � 1 such that we
have μ1=αμ2+(1−α)λ for some other probabilitymeasure λ . Alternatively,
this says that μ1 � αμ2 in the order relation of measures. Then it is clear that
‖μ2‖op< 1 implies that ‖μ1‖op< 1. This holds simply because these are norms
dominated by the total mass norm.

3.1.2 Definition

LetG be some locally compact group.We then say that G is amenable if for all
μ ∈ P(G) we have ‖μ‖op = 1. Note that when G is connected it is equivalent
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to say that for some μ ∈ P(G) that satisfies conditions (ii) and (iii) of §2.4.1 we
have ‖μ‖op = 1. Notice that the compactness of the support is not used here.
Exercise Prove the equivalence. Assume that there exists one symmetric μ ∈
P(G) that satisfies conditions (ii) and (iii) and for which ‖μ‖sp = 1. Then by
taking convolution powers of μ , and by the observations of §3.1.1, we see that
the condition ‖ · ‖op = 1 holds for all smooth probability measures. To see this
we use conditions (ii) and (iii) and first consider compactly supportedmeasures
and then pass to the limit. Now, if instead we assume that one such measure
exists for which ‖μ‖op = 1, then again by §3.1.1 and condition (iii) we can
find μ1 ∈ P(G) such that ‖μ1‖op = 1 as above and is in addition symmetric
(i.e. μ1(g) = μ1(g−1)). Use Reiter (1968, §8.3.7) to get rid of the smoothness
(but this last point will not be needed).

The definition we just gave is not the one most commonly used but is the
one that best fits our purposes (see Reiter, 1968, §8.3.7). To illustrate this,
observe that by the Harnack estimate of §2.5.1, if G is not amenable and if μ
satisfies conditions (i), (ii) and (iii) from §2.4.1, then μ∗n(e) = O(e−λn) for
some λ > 0. More precisely, we have μ∗n(e)�C‖μ‖nop. The reason is that we
can estimate the scalar product

∣∣〈Tnμ f ,g〉∣∣� ‖μ‖nop ‖ f‖ ‖g‖. Here and in what
follows (as we already did in §2.4), μ∗n(e) is an abuse of notation for f (n)(e)
where μ∗n = f (n)dg is as in §2.4.1. Here, μ∗n is the convolution product of n
factors each equal to μ and we use (2.13). (There is no question any more of
the abuse of notation of §2.4.1 where the factors are allowed to vary.)

3.1.3 Remarks

(i) For a general connected locally compact group, if μ is as in conditions (i),
(ii) and (iii) in §2.4.1 and if μ is assumed symmetric then we can reverse the
above inequality and ‖μ‖op = limn(μ∗n(e))1/n. This is easy to prove by the
spectral decomposition of Tμ . This last fact is folklore, though the author is
unable to give a precise reference; it was met in Chapter 1 but it will not be
again.

Exercise 3.1 Prove this: assume that for some a� 1, for every compact K ⊂
G we have supK μ∗n(g) = O(an). This implies in the spectral decomposition
Tμ =
∫ 1
−1λ dEλ that the projection of L2(K) = [ f ∈ L2; supp f ⊂ K] on E−a

and E1�Ea is zero. Then use the fact that K is arbitrary. This argument also
works for the actual limit.

The symmetry of the measures is essential in these types of considerations.



68 NC-Groups

For, take G = Z, which is amenable, and μ(−1) = μ(0) = ε , μ(1) = 1− 2ε .
Then, for ε small, μn(0) decays exponentially.

(ii) As a by-product of the theory that will be developed in Chapters 4 and
5 (together with §6.1) we can see that for a connected locally compact group
there existsC such that μ∗n(e)�C‖μ‖nsp, but the proof is not trivial (see §5.2).
The fact that this holds also for discrete groups is a consequence of the posi-
tivity of the functional μ → μ(e) in the C∗-algebra generated by L1(G) acting
on L2(G). We then use the properties of these functionals (see Naimark, 1959,
§10.3, but here it is ‖μ‖op that has to be used).

3.1.4 Alternative definition of amenability

Let G be some locally compact group. We shall then define (see Weil, 1953,
§11; Reiter, 1968, §3.5.1)

F = f ∗ g(x) =
∫
G
f (xy−1)g(y)dry. (3.1)

Then, by Hölder, ‖F‖∞ � ‖ f̌ ‖p ‖g‖q, for any two conjugate indices 1/p+
1/q = 1 and f̌ (x) = f (x−1). Then we say that G is amenable if we can find a
sequence fn, gn continuous, real non-negative and compactly supported with
‖ fn‖2 � 1, ‖gn‖2 � 1 such that f̌n ∗ gn −→

n
1 uniformly on compacta. Here the

‖ ‖2 norms are taken in L2(G,drg). This is a strengthening of the condition
〈 fn ∗ μ , gn〉 → 1 for μ ∈ P(G); see Reiter (1968, §8.3.1).
The reader could consult Pier (1984) or Paterson (1988) to see how the above

gives an ‘approximate identity’ in the ‘Fourier algebra’ and for further elabo-
ration on this and other important aspects of amenability.

3.1.5 Lie groups

The criterion for amenability is simple when G is a real connected Lie group.
Let g be the Lie algebra and let g= q� s be the Levi decomposition of §2.1.2.
Then G is amenable if and only if s is of compact type (i.e. the simply con-
nected Lie group that corresponds to s is compact); see Reiter (1968, §8.7).
Abusively, one then says that the algebra g is amenable.

3.1.6 Quotients by amenable subgroups

LetG be a locally compact group and μ ∈P(G) andH�G some closed normal
subgroup. Let π : G→ G/H be the canonical projection and let μ̌ = π̌(μ) be
the direct image measure. Then under the assumption that H is amenable we
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have ‖μ‖op = ‖μ̌‖op and similarly for the spectral norm. The definition §3.1.4
can be used for this and the argument is identical to the argument that we shall
later spell out in §4.4.4. This is related to the notion of transference (Coifman
and Weiss, 1977).
We finally recall that closed subgroups and quotients of amenable groups

are amenable; see Reiter (1968), Greenleaf (1969). Furthermore, if H�G is a
closed subgroup such that both H and G/H are amenable, then so is G.

3.2 The NC-Theorem. A Reduction and Examples

3.2.1 The NC-theorem

Theorem 3.2 (The NC-theorem) Let G be some real connected amenable
NC-group and let μ be some symmetric probability measure (i.e. dμ(x) =
dμ(x−1)) that satisfies conditions (i), (ii) and (iii) of §2.4.1. Then there exist
positive constants C, c such that

μ∗n(e)�Cn−c; n� 2. (3.2)

(The abuse of notation μ∗n(e) is as in the previous section.) The conclusion
holds in particular if μ = ϕ dgwith ϕ ∈C∞

0 . The reason for n� 2 and the abuse
of notation μ(e) is as in §2.4.1.
In fact, a precise result can be proved (see Varopoulos, 1999b – sharp results

are given there but unfortunately the paper is difficult and not very reader-
friendly; see also the final note in §3A.6 for this problem): with G and μ as
above there exists ν = ν(G,μ) � 0 that can be explicitly computed from the
geometry of the roots of G and from μ such that

cn−ν � μ∗n(e)�Cn−ν ; n� 2 (3.3)

for some C, c. The proof is an elaboration of the methods of this chapter. We
shall give a proof of (3.2) but not of (3.3) – see §1.10. Estimate (3.3) is the
generalisation of the local central limit theorem of Rd where we have ν = d/2.
As is well known, the symmetry of the measure is not essential for the local
central limit theorem (see (Feller, 1968); (Woess, 2000)). It suffices that μ is
centred, that is,

∫
Rd xdμ = 0. The same extension can also be given here for

the appropriate natural definition of centred measures; see Varopoulos (2000a).
This extension will not be examined in this book. The index ν in (3.3) in gen-
eral is not a rational number, let alone a half-integer. For ν to be a half-integer
and independent of the particular measure, it is necessary and sufficient that in
the radical of the group, the subspace spanned byL in V ∗ (notation of §2.2.1)
has dimension 0 or 1 (see Varopoulos, 1996b).
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3.2.2 A reduction

Let π : G1→G2 be a surjective homomorphism of locally compact groups and
μ ∈ P(G2) be some probability measure on G2 that satisfies conditions (i), (ii)
and (iii) of §2.4.1. Then we can lift the measure μ to μ1 ∈ P(G1) which sat-
isfies those conditions on G1 and its image on G2 is π̌(μ1) = μ . To see this
we can use σ : G2→ G1 a Borel section (i.e. an inverse of π such that π ◦σ
is the identity) for which σ(K) is relatively compact for each compact subset
K ⊂ G1. This allows us to identify G1 with σ(G2)×H, with H = kerπ , as
Borel spaces, and to define μ1 = σ̌(μ)⊗ν for some appropriate smooth com-
pactly supported ν ∈ P(H). This μ1 ∈ P(G1) satisfies the required conditions
provided that σ has been chosen to be smooth in some neighbourhood of the
identity, something that clearly is always possible. Observe also that by taking
1
2 (μ1(x)+μ1(x−1)) we may assume that μ1 is symmetric if μ is. From this and
the Harnack estimate of §2.5 it follows that the NC-theorem holds for G2 if it
holds for G1.
By taking the simply connected cover of a Lie group (see Varadarajan, 1974,
§2.6) we conclude from the above observation that in proving the NC-theorem
we may assume that G in the NC-theorem is simply connected. This obser-
vation is no longer applicable in the proof of the sharp central limit theorem
(3.3), because the exponent ν changes from G2 to G1: this is one of the many
technical difficulties in the proof of (3.3).

3.2.3 Examples and a special class of groups

We shall give here some examples of NC-groups on which we can easily apply
the ideas that will be developed in this chapter. As we shall see, these examples
are not very far from the general situation.

(i) NA-groups The simplest but also the most important examples of solu-
ble simply connected groups Q are the ones for which N, the nilradical, is a
semidirect factor as in §2.3.2. For these groups there exists A⊂Q, a closed sub-
group that is isomorphic to a Euclidean space such that Q= NA, N ∩A= {e}.
An alternativeway of giving the definition is to sayQ∼=N�A. The groups con-
sidered in the examples in §2.3.2 are of that type with N Abelian. These groups
are called NA-groups. Important examples of NA-groups with N non-Abelian
occur in the theory of symmetric spaces and semisimple groups (see Helgason,
1978 and §4.3.1 later).

(ii) Algebraic groups Algebraic groups are only a sideshow in the theory. The
next few lines can therefore be ignored by the reader who so wishes. For the
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definitions and for any of the results that will be used we shall use Chevalley
(1951), which is the original historical reference for the subject; see also Var-
adarajan (1974, §2.1). Let K be some infinite field and V some n-dimensional
vector space over K. Then GL(V ) is the full linear group of V and G⊂GL(V )
is called algebraic if there exist p1, . . . , pN , a finite number of polynomials on
the vector space of all the matrices Mn×n(K) over V such that s ∈ G, if and
only if p j(s) = 0, j = 1, . . . ,N. Such a group is called irreducible if the ideal
of polynomials onMn×n that vanish on G is a prime ideal.
To every algebraic group G ⊂ GL(V ) we can associate its Lie algebra g

which is a finite-dimensional Lie subalgebra of gl(V ), the algebra of all K-
linear transformations onV under the multiplication [A,B] = AB−BA. A num-
ber of complications occur however. To avoid these problems, in all our en-
counters with algebraic groups we shall make the assumption that the charac-
teristic of K is zero. When the field K = R, the algebraic groups that we have
defined are but special cases of real Lie groups (possibly with a finite number
of connected components; see Varadarajan (1974),Whitney (1958). Interesting
new examples do occur, however, when K =Qp is the field of p-adic numbers
(see Chapter 6).

(iii) Real soluble algebraic groups Let Q ⊂ GL(V ) be an irreducible alge-
braic group and let us assume that its Lie algebra q is soluble (see §6.4.2 later
on). When K = R this is essentially our old friend, a connected soluble real
Lie group. More precisely, there exist N,A⊂ Q, N∩A= {e} and NA= Q and
where N, A are irreducible algebraic groups, with A Abelian, and N is nilpotent
(in the sense that its Lie algebras are). To conclude, if K = R and if Q is a sol-
uble irreducible algebraic group, then the connected component of the identity
in Q is an NA-group in the sense of (i) above.

3.3 The Principle of the Proof, an Example and the Plan

3.3.1 Convolutions of the kernel

Fix G and μ as in the NC-theorem, and dμ(g) = φ(g)drg with
∫
φ(g)drg= 1.

More generally, we shall write dμ∗n(g)= φn(g)drg. By the symmetry dμ(x) =
dμ(x−1) we have dμ∗n(g) = φn(g)m(g)dg, φn(g−1) =m(g)φn(g) for the mod-
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ular function m(g); see §1.1. We can write

f ∗ μ∗n(x) =
∫
G
f (xy−1)dμ∗n(y) =

∫
G
φn(y−1x) f (y)dy

=
∫
G
f (xy−1)φn(y)dry,

φ2n(x) =
∫
φn(xy−1)φn(y)dry,

(3.4)

and therefore

φ2n(e) =
∫
φn(g)φn(g−1)drg=

∫
φ2n (g)m(g)dg=

∫
φ2n (g)d

rg (3.5)

(to see this make the switch g↔ g−1 in the first integral). All the above hold
under much more general conditions, for instance when μ is a Gaussian mea-
sure as in §2.12.2.

3.3.2 The probabilistic interpretation

The map f → Tn f = f ∗μ∗n is a left-invariant (convolution) Markovian semi-
group and it gives rise to a left-invariant Markov chain z(n) ∈G, n= 1, . . . that
is determined by Ex( f (z(n))) = Tn f (x). Here we shall use standard Markov
chain notation (see for example Chung, 1982 or Williams, 1991) and when f
is the characteristic function of A ⊂ G this says that Px(z(n) ∈ A) = P[z(n) ∈
A//z(0) = x] =

∫
A φn(y−1x)dy. For x= e this becomes

Pe(z(n) ∈ A) =
∫
A
φn(y−1)dy=

∫
A
φn(y)dry. (3.6)

Hölder can be used, and we end up with

(Pe(z(n) ∈ A))2 �
(∫

G
φ2n (y)d

ry

)
|A|r; n� 1, (3.7)

where | |r stands for the right Haar measure of the set A (not to be confused
with |g|= d(e,g)). Combining this with (3.5) we finally deduce the inequality
that is needed for the proof of the lower estimate in the NC-theorem:

φ2n(e)� P2e(z(n) ∈ A)|A|−1r ; n� 1. (3.8)

At this point we recall that μ is stable by the involution x 	→ x−1 and this in (3.6)
implies that Pe(z(n)∈A)=Pe(z(n)∈A−1). Hence in (3.8) we can replace A by
A−1 in the first factor of the right-hand side. Since |A−1|r = |A|� is the left Haar
measure of A, this means in (3.8) we can consider |A|r or |A|� indiscriminately.
This observation, however, is not essential. Using (3.8) we shall formulate the
principle on which the lower estimate (3.2) and all the other lower estimates in
the theory are based.
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3.3.3 General criterion

Let G be some locally compact group, let μ be a symmetric measure that sat-
isfies conditions (i), (ii) and (iii) of §2.4.1 and let z(n) ∈ G, n = 1, . . . be the
Markov chain defined by the semigroup f 	→ Tn f = f ∗ μ∗n as above.
Let us assume that there exist positive constants C,c, . . . and a sequence of

subsets A1, . . . ,An, . . .⊂ G such that

(i) |An|�CnC, n= 1, . . . (here we could take either the left or the right Haar
measure | | of the sets);

(ii) Pe[z(n) ∈ An]� cn−c, n= 1,2, . . . .

Then there exist positive constants c1, C1 such that the kernel dμ∗n(g) =
φn(g)drg satisfies

φn(e)�C1n
−c1 ; n� 2. (3.9)

The φ2n(e) does not need all conditions (i), (ii), (iii) of §2.4.1. It is the use
of Harnack and the passage from even n to odd n that needs them.

Remark The criterion has been formulated in terms of the polynomial scale
n±c. We could have used a different scale, for example exp(±cn1/3), and with
this we can obtain, for instance, the lower estimate that shows that the estimate
(2.10) of the C-theorem is optimal for amenable groups. This observation will
be exploited in Part 5.3 (in Chapter 5). More will be said on this general crite-
rion in Chapter 5.
In the remainder of this section we shall illustrate the criterion and complete

the proof of (3.2) for a special class of groups of type NA.

3.3.4 Illustration of the criterion in a special group

Here we shall consider the group ax+b from §2.3.2(ii) and its natural general-
isation G= Rd�R= H�K in §2.3.2(iii), where K acts on H by the diagonal
matrices

R � t 	→ diag(exp(�1t), . . . ,exp(�dt)). (3.10)

We impose the NC-condition,which means that we can assume that �1, . . . , �d �
0. A symmetric measure μ ∈ P(G) that satisfies conditions (i), (ii) and (iii) of
§2.4.1 is then given and we use the projection π : G→ K ∼= R to define π̌(μ),
a probability measure on R which is the density of a bounded centred real
random variable X that is not degenerate (i.e. X �= 0).
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3.3.5 The gambler’s ruin estimate

Let X1,X2, . . . be independent identically distributed centred real random vari-
ables, equidistributed with X as above, and let S j = X1+X2+ · · ·+Xj, j � 1.
Then there existC,c> 0 that depend only on X such that

P0[S j < 0; j = 1,2, . . . ,n]�Cn−c; n� 1. (3.11)

This is a very coarse version of the classical gambler’s ruin estimate (or of
the probability of life – depending on your point of view: see Feller, 1968).
In this coarse form the proof takes a couple of lines that will be given in the
appendix to this chapter.
Let us now use the coordinates (h,k) ∈H�K =G in §3.3.4. The right Haar

measure can then be identified with the product of the two Lebesgue measures
drg = dhdk, and the sets An = [|h| � C1n]× [|k| � C1n] have Haar measure
= cnd+1. The constantsC1 will be chosen appropriately large and to apply the
criterion we write z(n) = x1x2 · · ·xn = sn ∈ G as in (2.21), where x j = h jk j ∈
H �K are independent random variables with values in G and distribution
μ . The k j = Xj ∈ K = R are independent real symmetric random variables
with distribution μ̌ ∈ P(R). With our previous notation we can identify ṡ j =
X1+ · · ·+Xj = S j, the image by the projection G→ K. Furthermore, |hs| =
|shs−1|� |h| for h ∈ H, s ∈R, s< 0 by the NC-condition that gives � j � 0.
For the random walk S j ∈ R we can use the gambler’s ruin estimate (3.11)

to deduce that ṡ1, ṡ2, . . . , ṡn < 0 with probability at least cn−c. Formula (2.21)
therefore implies that z(n) ∈ An with probability� cn−c. Our criterion applies
and this completes the proof of (3.2) for our special group.
A more general example is provided by (iii) in §2.3.2, Rd �Rm =W �V

with the action defined by (2.8). Here L1, . . . ,Ld ∈ V ∗ are assumed to satisfy
the NC-condition and we shall assume for simplicity that Lj �= 0, j = 1, . . . ,d.
We shall use polar coordinates x = rσ , r > 0, with σ ∈ Σm−1 the unit sphere
in V . Then the NC-condition is equivalent to the fact that there exists a conical
domain

Ω= [x= rσ ∈V ; r > 0, |σ −σ0|< ε0] (3.12)

(for some small positive ε0) such that Ljx< 0, j= 1, . . . ,d, x ∈Ω (see §2.3.1).
Our previous example is a special case of this with V = R and Ω the half-line.
The proof of the NC-theorem for this more general group follows verbatim
the proof of the previous case where m = 1. The only thing that we need to
generalise in the proof is the gambler’s ruin estimate, and this will be explained
in the next subsection.
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3.3.6 The gambler’s ruin estimate in a conical domain

Let Ω ⊂ V ∼= Rm be as in (3.12) and let X1, . . . ,Xj, . . . ∈ V be independent,
identically distributed, bounded, centred random variables. Let ψ(x)dx be the
distribution of these variables. For simplicity we shall assume that ψ(x) > c
in some neighbourhood of 0. We shall also denote by Sn = X1+ · · ·+Xn the
partial sums of the corresponding random walk. There exist thenC, c such that

P0[S1, . . . ,Sn ∈Ω]�Cn−c; n� 1. (3.13)

The proof of this estimate will be given in the appendix to this chapter. In this
coarse form, as we shall see, the proof is not too difficult. Where the problem
becomes both difficult and interesting is when the issue is to find the exact
exponent for n−c, c= c(ΩL ) in (3.13), where nowΩ=ΩL = [x∈V ; Ljx> 0].
This is one of the problems that we have to address in order to be able to prove
the sharp local central limit theorem (3.3).

3.3.7 Plan of the proof

The examples in §3.3.4 are convincing and we clearly have a correct approach.
All the more so since, by the structure theorems that we explained in §3.2.3(iii),
this approach can easily be applied to all real soluble algebraic groups as in
§3.2.3.
These types of structure theorems do not exist for general soluble Lie groups

and it is here that the Cartan subgroups come to our rescue. In §§3.4.2–3.4.3
we explain how this notion is exploited. What we do in effect in these sub-
sections is to reduce the problem to a special class of subgroups. It should be
noted that in an earlier version of the proof we avoided the use of the Cartan
subgroups (see Varopoulos, 1994b). This approach is more elementary but also
more messy.
In §3.4.5 we give an elementary lemma on matrices that takes care of the

fact that we cannot always diagonalise the action on the semidirect products as
in §3.3.4, and as a result we must resort to root space decompositions. In effect
this lemma says that when we have a sequence T1,T2, . . . of bounded upper
triangular matrices then the norm of the matrix (I+ T1) · · · (I+Tn) is O(nc),
that is, it grows polynomially as n→ ∞.
In §3.5 we finally give the proof of the theorem. The ingredients are as fol-

lows. First we give the random walk representation of (2.21), which we recall
again in the present notation in (3.23). Then we adapt the notion of the conical
domain and the gambler’s ruin estimate in §3.5.1. Finally, in §3.5.2 we con-
clude the proof. This is done by applying the criterion of §3.3.3 and for this
purpose we use the lemma of §3.4.5.
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3.4 The Structure Theorem and Cartan Subgroups

3.4.1 An example: algebraic groups

The NC-theorem for a general NA-group can be proved with only slight mod-
ifications in the proofs of the examples that we gave in the last section. How-
ever, it is preferable to tackle the general case straight away and start from one
of the main difficulties of the problem.
To understand that difficulty we shall consider g, a Lie algebra over a field K

(think of K = R) of characteristic 0. We shall assume that g is the Lie algebra
of an algebraic group G over K as defined in §3.2. In that case we have at our
disposal the perfect substitute of the example Rd �Rm that we examined in
the previous section. We can assert that g= n+a+ s is the direct vector space
sum of three subalgebras that satisfy the following conditions: n is an ideal and
is nilpotent; a is Abelian; s is semisimple and [a,s] = 0 (see Chevalley, 1955,
V §4.2).
With the help of this structure theorem the proof that we gave in the last sec-

tion easily adapts and we obtain a proof of the NC-theorem for real algebraic
groups.
Nothing like this holds for real Lie groups in general and we must start by

finding the substitute for this that we can use for all Lie groups.

3.4.2 Cartan subalgebras

Chevalley (1955) and Jacobson (1962) are good references for Cartan subalge-
bras. Let g be some Lie algebra over a field of characteristic 0. We then say that
h ⊂ g is a Cartan subalgebra if h is nilpotent and if it is its proper normaliser.
This means that if x ∈ g and [x,h] ⊂ h then x ∈ h. This definition implies that
if g is nilpotent then h = g. More generally, it implies that h is a maximal
nilpotent subalgebra of g.
For our purpose the only two things that count are first, that every such

Lie algebra g admits at least one Cartan subalgebra. And second, that if h is
a Cartan subalgebra of g and π : g→ g1 is a surjective homomorphism, then
π(h) is a Cartan subalgebra of g1 (see Chevalley, 1955, VI, §4.5 Proposition
17). The conclusion from the above properties of Cartan subalgebras that we
shall draw is that for every soluble algebra q there exists some nilpotent algebra
h ⊂ q such that q = n+h, where n is the nilradical. We see this by projecting
on q/n and then the image of a Cartan subalgebra of q is q/n because this
algebra is Abelian.
Now let g= q� s be the Levi decomposition of the Lie algebra g where q is

the radical and s is some (semisimple) Levi subalgebra.
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Lemma 3.3 (A lemma about Lie algebras) Let g= q�s be some Lie algebra
together with its Levi decomposition as above and let n be the nilradical. Then
there exists h⊂ q, some nilpotent subalgebra, such that q= n+h and [s,h] = 0.

We shall give the proof of the lemma at the end of this section but before
that we shall draw the appropriate consequences.
First of all, since h and s act on n we can form the semidirect product g̃ =

n� (h⊕ s) and the surjective homomorphism g̃→ g. See the note in §3.4.3
below. The radical of g̃ is q̃= n�h and we can consider the roots of the action
of h on n and the corresponding Zassenhaus decomposition of n. Here h is
not Abelian but it is nilpotent and this is good enough when K = R and in
that case one starts by complexifying. One can find a general discussion of all
this in Jacobson (1962, §II.4). These roots can be identified with the composite
roots given in §2.3.4 because they vanish on n∩h. The key conclusion is that
g̃ is NC if and only if g is. A more precise analysis of the action of h on n will
be given in §3.8.
From here onwards we assume that K =R. Now letG, N,H, S be the simply

connected real Lie groups that correspond to g, n, h, s; we can then form the
semidirect product and the homomorphism

π : G̃= N� (H⊕ S)→G. (3.14)

Since G̃ is an NC-amenable Lie group if and only if G is, we finally conclude
by the reduction in §3.2.2 that it suffices to prove the NC-theorem for G̃. Let
us recapitulate.

3.4.3 A reduction

In the proof of the NC-theorem we may assume that the group G is of the
form G= N� (H⊕S)where N, H are nilpotent, S is semisimple compact and
furthermore all these groups are simply connected.

Note In Varadarajan (1974, §3.14), and Hochschild (1965, III.2), one can
find more details on the semidirect products of Lie groups and Lie algebras.
However, since these types of constructions will be used repeatedly, let us elab-
orate. If a,b⊂ g are subalgebras such that a is an ideal then the algebra b acts
by derivations on a and therefore we can define a�b. By the definition of the
semidirect product, the canonical mapping a� b→ g follows. If, in addition,
b= b1+b2 for two commuting subalgebras, we can also construct a�(b1⊕b2)
for the direct sum of the two subalgebras. The fact that [b1,b2] = 0 is, of course,
essential here.
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3.4.4 Proof of the Lie algebras lemma

Let g= q� s be the Levi decomposition of g where q is the radical. Since n is
an ideal, by the semisimplicity of s it follows that there exists �⊂ q, a subspace
stable by the s action, such that n⊕ � = q because of H. Weyl’s fundamental
theorem on the representation of semisimple Lie algebras (see Varadarajan,
1974, §3.13). Since, in addition, [g,q]⊂ n, it follows that [s, �] = 0. Let

q0 = [x ∈ q; [s,x] = 0];

this is clearly a soluble subalgebra and what we have seen is that �⊂ q0. This
implies that in the mapping α : q→ q/n we have α(q0) = q/n. Let h0 ⊂ q0
be some Cartan subalgebra of q0. Then since α(h0) is a Cartan subalgebra of
an Abelian algebra, it is the whole of q/n. It follows that n+ h0 = q. This
completes the proof. For another proof of a similar lemma see Alexopoulos
(1992).

Remark In the geometric theory in Part II we shall need a refinement in
the construction of h. Let m ⊂ h be a subspace such that n+m= q, n∩m =

{0} and define the subalgebra h1 = [h,h]+m. The fact that [h,h] ⊂ n∩h (see
Varadarajan, 1974, §3.8.3) implies that for this subalgebra we have h1 = h

if and only if [h,h] = n∩ h. Furthermore, h1 clearly satisfies the conditions
of the lemma and in that lemma we can replace h by h1. Therefore, when
h1 � h we can repeat the same construction with this new h1. By repeating
this operation if necessary, we can thus guarantee that h, the subalgebra of the
lemma, satisfies [h,h] = n∩h.

3.4.5 A lemma in linear algebra

We shall use the notation of §3.4.2 and we recall that n is the nilradical of g and
h⊂ q is some nilpotent subalgebra such that q= n+h. As in §3.4.3 we denote
by H the simply connected Lie group that corresponds to h. The Adx : n→ n

action is as usual defined for x ∈ H by Ad(expξ ) = exp(adξ ), ξ ∈ h, for the
exponential mapping exp: h→ H which here is a bijection (see Varadarajan,
1974, §§2.10, 3.6.2). We can complexify nc = n⊗C and choose an appropriate
basis on nc so as to have a Zassenhaus decomposition of the action of ad(h),
and Ad(H) (see Jacobson, 1962, §II.4). This action decomposes into diagonal
blocks,

Adx= diag(M1,M2, . . . ,Mr), Mj = (expλ )I+T ;

λ = λ j = λ j(ξ ), x= expξ , ξ ∈ h;
(3.15)
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here I is the identity matrix and λ1, . . . are the roots of that action and, as
already pointed out, they can be identified with the composite roots of §2.3.4.
As for T = Tj = (tpq), it is a strictly upper-triangular matrix: that is, tpq = 0 for
p� q.
To prove the NC-theorem we shall use (3.15) to estimate Ad(x1x2 · · ·xn) for

a sequence x1,x2, . . . ∈ H that satisfies
|x j|H , |x−1j |H �C0; 1� j � n, (3.16)

that is, the x j lie in some fixed symmetric ball of H. We then have

x j = exp(ξ j); ξ j ∈ h, |ξ j|�C, (3.17)

for some fixed Euclidean norm on h. Each diagonal block of Ad(x1 · · ·xn) then
becomes a product of matrices M(1),M(2), . . . of the form M(α) = expλ (α)I
+Tα ,

M(1) · · ·M(n) = expλ (1) · · ·expλ (n)
n

∏
α=1

(I+ T̃ (α)),

λ (α) = λ (ξα), xα = expξα ∈H, ξα ∈ h, |ξα |�C,

T̃ (α) = (expλ (α))−1Tα ; α = 1, . . . ,n,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.18)

where here λ (ξ ) is the root that corresponds to the diagonal block and the
index 1 � j � r of the block has been suppressed to simplify notation. The
conclusion is that the matrix norm ‖ ‖n on nc satisfies

‖M(1) · · ·M(n)‖�C(expλ (1) · · ·expλ (n))(1+ n)D, (3.19)

where C depends only on C0 in (3.16) and where D = dimn+ 10. This is
seen by expanding the product in (3.18) and using the triangular nature of the
matrices.
If we use the real part L = Reλ of λ (ξ ) = Lξ + i Imλ (ξ ), we finally see

that (3.19) can be estimated by

(1+ n)D exp(Lξ1+Lξ2+ · · ·+Lξn). (3.20)

We shall combine all the blocks of (3.15). Furthermore, we shall fall back on
our notation of §§2.1.1 and 2.3.4 and denote byL = (L1, . . . ,Lp) the set of the
real roots of q. We recapitulate the above in the following.

Lemma 3.4 Let the notation be as above and x j = expξ j ∈ H, ξ j ∈ h as in
(3.17). Then there exists C > 0 such that

‖Ad(x1 · · ·xn)‖n �C
(
sup
1�i�p

exp(Liξ1+ · · ·+Liξn)
)
(1+n)D; n� 1. (3.21)
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As we shall see in the next section, the importance of this estimate is that it
splits into the polynomial factor (1+ n)D and an additional exponential factor
that we shall be able to control using the geometry of the roots.

3.5 Proof of the NC-Theorem

Here we assume that G is simply connected and use the notation G = N �

(H⊕S) of (3.14) and also the notation from (2.21) in §2.7. We then have x j =
mjẋ j, mj ∈ N, ẋ j ∈ H⊕ S. The ‘dots’, as in §2.7.1, just denote the images by
G→H⊕S and ẋ j = h jσ j, h j ∈H, σ j ∈ S. In the next few lines all the obvious
identifications will be made. We shall use the formula (see Varadarajan, 1974,
§2.13).

exp(Ad(x)ζ ) = (expζ )x = x(expζ )x−1; x ∈ G, ζ ∈ g. (3.22)

With this notation, the random walk formula (2.21) can now be rewritten

sn = x1 · · ·xn = m1m
ṡ1
2 · · ·m

ṡn−1
n ṡn. (3.23)

Here we shall set x j ∈G to be independent identically distributed random vari-
ables with distribution μ ∈ P(G), the probability measure of the NC-theorem
from §3.2.1, so that sn = z(n) is the Markov chain construction in §3.3.2. To
complete the proof of the theorem we shall construct the sequence of subsets
An ⊂G of the criterion §3.3.3 and we shall show that conditions (i) and (ii) are
satisfied. This will be done in the next few lines.
As in the examples in §3.3.4, drg = dmdhdσ for m ∈ N, h ∈ H, σ ∈ S and

the sets are defined by

An = [|m|�Cnc]× [|h|�Cnc]× S; n� 1, (3.24)

where the constantsC, c are chosen appropriately large and | | denotes the dis-
tance from the neutral element in the group. We recall here that S is compact
and therefore condition (i) of the criterion is satisfied. In the next two subsec-
tions we shall show that condition (ii) is also satisfied.

3.5.1 The vector space, the roots and the conical domain

We shall write V = H/[H,H]; this is a Euclidean space. Here we use the ex-
ponential mapping to identify h/[h,h]  V . Furthermore, in §3.4 the roots of
the action of h on the n λ j clearly vanish on [h,h] (since this bracket lies in
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n: see Varadarajan, 1974, §3.8.3) and therefore their real parts Lj ∈ V ∗ can be
identified with linear functionals on V . We denote

Ω=ΩL = [x ∈V ; Ljx< 1, Lj ∈L ], (3.25)

which by the NC-condition is a non-empty open conical domain ofV . We have
0 ∈Ω and whenL = (0), we have Ω=V . Here the Lj are the composite real
roots that we defined in §2.3.4. This action of hwill be examined in more detail
in §3.8.2 later on.
Let α : K = H × S→ H → V be the composition of the canonical projec-

tions. First, the map sn → ṡn projects from G to K; and then α : ṡn → šn ∈ V
projects onV . Clearly šn is a randomwalk as in §3.3.6 and therefore, by (3.13),

Pe[š j ∈Ω; j = 1,2, . . . ,n]� cn−c; n� 1. (3.26)

3.5.2 Condition §3.3.3(ii) and the conclusion of the proof
First we recapitulate our earlier notation, and return to (3.23):

ẋ j = h jσ j, h j ∈ H, σ j ∈ S, x j = mjẋ j, mj ∈ N,
z(n) = sn = m1m

ṡ1
2 · · ·mṡn−1

n ṡn,
(3.27)

where z(n) is the Markov chain of §3.3.2. Since |ṡ j|H×S < C j, for condition
(ii) of the criterion to hold it suffices to verify that there exist constants such
that

Pe
[|mṡj−1

j |N �C(1+ j)C; j = 1,2, . . . ,n
]
�Cn−c. (3.28)

But since m
ṡj−1
j = σ1 · · ·σ j−1m

h1···h j−1
j (σ1 · · ·σ j−1)−1, and since S is compact,

it suffices to prove (3.28) with m
h1···h j−1
j instead.

Towards that we use (3.22) to expressmh
j = exp(Ad(h)ζ j)with exp(ζ j)=mj

and ζ j ∈ n, h ∈ H. If we combine Lemma 3.4 with (3.26) we have
Pe
[|Ad(h1 · · ·h j−1)ζ j|�C(1+ j)C; j = 1, . . . ,n

]
�Cn−c (3.29)

for some fixed Euclidean norm as in (3.17) on n and appropriate constants.
But for that norm we have polynomial distortion (see §2.14) and there exist
constants such that

|exp(ζ )|N �C(1+ |ζ |)C; ζ ∈ n. (3.30)

Condition (ii) of the criterion follows from (3.26)–(3.30) and this completes
the proof of the theorem.
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Part 3.2: Heat Diffusion Kernel

3.6 Statement of the Results and the Tools

As in Part 2.2, the reader could skip this section in a first reading. The setting
and the notation are those of Part 2.2 and φt denotes the convolution kernel of
the semigroup Tt = e−t� with � as in §2.12. The connected Lie group G will
again be assumed to be an amenable NC-group. We then have the following
theorem.

Theorem 3.5 (NC-theorem for the heat diffusion kernel) Let G and φt be as
above; then there exist C,c> 0 such that

φt(e)�Ct−c; t � 1. (3.31)

The organisation and structure of the proof of this estimate are identical to
what we did for compactly supported measures in the first part of this chapter.
The modifications needed will be given in the next subsection. Here we shall
explain the slight changes that have to be made in the tools used in the proof.

3.6.1 The lifting of the semigroup

Let π : G̃→ G̃/H =G be a projection, whereH is a closed normal subgroup of
the connected Lie group G̃. Let�=−∑X2j be some sub-Laplacian on G as in
§2.12. Also let Ỹ1, . . . ,Ỹk be a basis for the space of left-invariant vector fields
on the connected component of H. We shall consider �̃ = −∑Ỹ 2j −∑ j X̃

2
j

where X̃ j is some choice of left-invariant field on G̃ such that dπ(X̃ j) = Xj.
It is then clear that �̃ is a subelliptic Laplacian on G̃ (see Varopoulos et al.,
1992).

Exercise 3.6 Prove this using the Hörmander condition. If the Laplacian �
is elliptic there is essentially nothing to prove.

Let dμ̃t = φ̃t drg̃ be the corresponding heat diffusion kernel of e−t�̃ as in
§2.12. It is then clear that π̌(μ̃t) = μt .

Exercise 3.7 Prove this formal fact using the definitions to see that ( f ∗μt)◦
π = ( f ◦π)∗ μ̃t for all f ∈C∞

0 (G).

3.6.2 The gambler’s ruin estimate

The notation is as in §3.3, with Ω a conical domain as in (3.12) or (3.25).
Here we shall assume that the independent identically distributed variables
X1, . . . ∈V ∼= Rd of §3.3.6 are non-degenerate normal variables.
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The same gambler’s ruin estimate (3.13) then holds for the corresponding
partial sums S j = X1+ · · ·+Xj. More explicitly, let us define the event

En =
[
S j ∈Ω; j = 1,2, . . . ,n

]
; n� 1. (3.32)

Then there existC1,c1 > 0 such that

P(En)�C1n
−c1; n= 1,2, . . . . (3.33)

The proof will be given in the appendix to this chapter. We should also
note that there is nothing special about normal variables here. It suffices to
consider centred variables that have non-singular covariance and a sufficiently
high moment E(|Xj|A) < +∞. In our applications these variables are normal
because they are obtained by the projected heat diffusion kernel on Rd . What
is needed is the very coarse estimate (3.33). It should also be noted that getting
sharp results on the exponent c1 is a difficult problem that involves quite a lot
of non-trivial potential theory; see the note at the end of §3A.6.

3.7 Proof of the NC-Theorem for the Heat Diffusion Kernel

As already said, the proof follows very closely the proof of the compact support
case in §3.3–§3.5.
We proceed as before and with the lifting of the heat diffusion kernel of
§3.6.1 we can reduce the problem to the simply connected case. And then
with the help of the Cartan subalgebras we can reduce the proof to the group
G̃ = N� (H⊕ S) of (3.14). For that reduction, in §3.2.2 we used the Harnack
estimate of §2.5. Here we use the Harnack estimate §2.12.1 instead. As we did
in §3.4.3 we suppress the tilde ( ˜ ) and denote this group by G= N� (H⊕ S).
Lemma 3.4 will be used again. We shall consider the Markov chain z(n)∈G

defined by Ex( f (z(n)) = Tn f (x), n = 1,2, . . . for the semigroup Tt = e−t� on
G and we shall show that it satisfies the conditions of the criterion in §3.3.3 for
the sets of (3.24), An = [|m| �Cnc]× [|h|�Cnc]× S ⊂ G, for an appropriate
choice of the constants. Here the notation is as before and x=mhσ ∈G,m∈N,
h ∈ H, σ ∈ S.
The criterion in §3.3.3 applies here because at no point in the proof did we

use the compactness of the support. It was only used for the Harnack principle
of §2.5 and here we have Harnack anyway from (2.54). Inequality (3.9) follows
and so does (3.31) for t = 1,2, . . . . We then apply the Harnack estimate of
§2.12.1 and (3.31) follows for all t > 0.
The verification of condition (i) of the criterion is automatic as before, and
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|An| � Cnc. The issue is therefore once again to verify condition (ii) of the
criterion in §3.3.3 and for this we must control the ‘Gaussian tail’ of §2.12.2.

3.7.1 Condition (ii) of the criterion

For this we preserve all the notation of §3.5 and in particularV =H/[H,H], the
roots Lj and ΩL ⊂V as in (3.25). The specific notation of §3.5.2 is preserved
and we write in particular x j = mjẋ j, z(n) = sn = x1 · · ·xn ∈ G, etc. for the
independent identically distributed random variables x j ∈ G with the density
μ1= φ1 drg∈ P(G) of the heat diffusion kernel. By formula (2.21), as in (3.27)
we have z(n) = m1m

ṡ1
2 · · ·m

ṡn−1
n ṡn. As in §3.5.1 we use α : K = H× S→ V to

define šn = α(ṡn) ∈ V and the event En = [š j ∈ ΩL ; j = 1,2, . . . ,n], as in
(3.26). It therefore follows as before that condition (ii) of the criterion will be
satisfied as long as we can prove the analogue of (3.28). What must be proved
is that for an appropriate choice of the constants we have

Pe
[|mṡj−1

j |N �C(1+ n)c, |ṡ j|�Cnc; j = 1, . . . ,n
]
�Cn−c; n= 1,2, . . . .

(3.34)
The difference from the case of bounded supports is that in that case, the con-
dition |ṡ j|�Cnc was automatic. The proof of (3.34) is a slight modification of
the proof of (3.28). The modifications needed are technical, and for the con-
venience of the reader it is preferable to rewrite part of the proof rather than
switch back and forth to §3.5.2. The notation will, however, be exactly as in
§3.5.2 and it will not be recalled here.
As in §3.5.2 we shall write mṡj−1

j = σ1 · · ·σ j−1m
h1···h j−1
j (σ1 · · ·σ j−1)−1 and,

as before, conjugation by elements of S can be ignored because S is compact.

We are therefore left with having to prove (3.34) with m
h1···h j−1
j instead.

Using again the end of the argument of §3.5.2 we see that for this it suffices
to construct an event E ′n ⊂ En, n� 1 such that

Pe(E ′n)�Cn−c; n� 1, (3.35)

and such that for all n and all (x1,x2, . . .) ∈ E ′n we have

|Ad(h1 · · ·h j−1)ζ j|n �C(1+ n)c, |h j|H �Cnc; 1� j � n, (3.36)

where, as before, ζ j ∈ n is defined by exp(ζ j) = mj.
Here, unlike (3.28), it is not true that |mj|N , |ζ j|n �C and this forces us to

modify the definition of En in (3.26) and consider a smaller subset E ′n ⊂ En. To
define E ′n we consider the event

Bn = [sup1� j�n |x j|G � log(n+ 10)]; n� 1,
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and by the Gaussian decay of the variables x j of the random walk in G we see
that the complementary event satisfies

Pe(∼Bn) = O(exp(−c log2(n+ 1))); n� 1, (3.37)

for some c> 0. With x j = mjẋ j as in §3.5, on the eventBn we have

|mj|N �Cexp(c|x j|G)�Cnc, |h j|N �Cnc; j = 1,2, . . . ,n, n� 1, (3.38)

for appropriate constants. The first inequality is a consequence of the distance
distortion inequality (2.59) that N satisfies in G because N is contained in the
nilradical of G (see §2.14.2). The second estimate in (3.38) is evident by the
projection G→H. Now, by the polynomial distortion of the exponential map-
ping of (2.60), we have

|ζ j|n �C(1+ |mj|N)C; j = 1,2, . . . (3.39)

for appropriate constants, where we recall that ζ j ∈ n is such that exp(ζ j) =mj.
From (3.38) it therefore follows that onBn we also have

|ζ j|n �Cnc; j = 1,2, . . . ,n. (3.40)

The new events are now defined by

E ′n = En∩Bn; n� 1, (3.41)

and (3.35) is a consequence of the gambler’s ruin estimate (3.33) and (3.37).
For the application of (3.33) we observe that šn is a Gaussian random walk
since it is obtained by the process (a Brownian motion) of V generated by
dα ◦ dπ(Δ), where we use the notation of (3.14) and (3.26). This of course is
also a consequence of the more general (2.55).
To finish the proof of (3.34) we use (3.37) and Lemma 3.4 and argue as at

the end of §3.5.2 and the polynomial distortion of the exponential mapping of
(2.60). The proof of condition (ii) of the criterion and of the theorem is finally
complete. Notice that here (3.16) fails and therefore the estimate in Lemma 3.4
needs a slight and obvious modification. This problem is taken care of in the
generalisation of the lemma given in §3.9.1.

Part 3.3: An Alternative Approach

3.8 Algebraic Considerations

The rest of this chapter is devoted to an alternative approach to proving the
NC-theorem. Let G be some connected real Lie group and let us consider R
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the class of the closed normal subgroupsH such that G/H is an R-group as in
§2.2.2. If H1,H2 ∈R then the Lie algebra of G/H1∩H2 can be identified to
a subalgebra of the Lie algebra of (G/H1)× (G/H2) and therefore H1∩H2 ∈
R. Here we use the obvious facts that subgroups, quotients and products of
R-groups are R (see Guivarc’h, 1973). Furthermore, if H ∈ R then H0, the
connected component of H, also belongs to R. All this is clear because only
the Lie algebra is involved in the definition of the R-condition of §2.2.2. It
follows thatR has a minimal element which is connected and will be denoted
by NR. If G is amenable and N is its nilradical then G/N ∼= Rd × S locally; it
follows that in that case NR ⊂ N.

3.8.1 A structure theorem

Theorem 3.8 Let G be some simply connected NC-amenable Lie group and
let NR be as above. Then there exists GR ⊂ G, a closed simply connected R-
group, such that G= NR�GR.

We shall give a proof of this fact in this section. The alternative proof of the
NC-theorem based on the above structure theorem will be given in the next
section. It is clear that in a first reading the reader could skip all of this. The
idea of this alternative proof is, however, natural: the key to the proof we gave
in §3.5 is the decomposition G̃= N� (H⊕ S) of the overgroup G̃→ G. Here
we see that we have a similar decomposition for the group itself. The price that
has to be paid is thatGR is not necessarily of the form (nilpotent)⊕ (compact),
hence the slight modifications in the arguments. This new approach is essential
for the proof of the sharp local central limit theorem (3.3) and therein lies its
importance.
For our considerations, the intrinsic characterisation of NR that we gave is

inessential. The part of the theorem that will be needed is that there exists
NR ⊂ N and GR ⊂ G such that G = NR �GR. We shall denote by g the Lie
algebra ofG and construct nR�g a nilpotent ideal and gR⊂ g and R-subalgebra
such that

g= nR�gR. (3.42)

This implies Theorem 3.8 because the groups involved are simply connected
and therefore the local isomorphisms give rise to global ones. We shall denote
by q�g the radical and first give the proof of (3.42) when q= g, that is, in the
special case when the Lie algebra is soluble.
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3.8.2 The Lie algebra is soluble

Here we shall elaborate further on the considerations of §§2.1–2.3 and examine
analogous relevant root space decompositions of the adjoint action adx : y→
[x,y] on the Lie algebra.
Let n� q be nilradical and let h⊂ q be some nilpotent subalgebra such that

q= n+h as in §3.4.2, where q is a soluble algebra. We start by complexifying
n⊗RC and consider the Zassenhaus decomposition (see Jacobson, 1962, §II.4)
into root spaces by the ad-action of h:

n⊗C= n̂0⊕·· ·⊕ n̂p. (3.43)

The space n̂0 is special and could be zero, but when not zero it corresponds
to the root μ0 = 0 if such a root exists. By taking complex conjugation exactly
as in §2.1.1 we see that n̂0 is a real subspace, that is, n̂0 = ñ0⊗C for some sub-
space ñ0⊂ n. By the nilpotency of hwe also see that h∩n⊂ ñ0. The subspaces
n̂ j, 1� j � p in (3.43) are by definition �= {0} and they are the subspaces that
correspond to the distinct non-zero roots μ1, . . . ,μp ∈HomR [h;C].
The roots μ0, . . . ,μp will be decomposed into the equivalence classes of the

equivalence relation

μi ∼ μ j ⇔ Reμi = Reμ j; i, j = 0, . . . , p. (3.44)

We shall block together the subspaces n̂i1 , . . . that correspond to the same
equivalence class Li = Reμi1 = · · · = Reμiα . By the identifications that we
made in §2.3.4 it follows that when q is an NC-algebra these functionals sat-
isfy the NC-condition. We can use complex conjugation again and we see as
before that we obtain a real subspace

n̂i1⊕·· ·⊕ n̂iα = ni⊗C (3.45)

for some subspace ni ⊂ n, with 0� i� r. Here n0 corresponds to the real root
L0 = 0 if such a root exists; otherwise it is 0. We shall also define qR = n0+h,
so that n∩qR = n0+(h∩n).
We finally obtain the decomposition

n= n0⊕·· ·⊕nr, ñ0 ⊂ n0, n0 = n∩qR. (3.46)

For this decomposition we have

[ni,h]⊂ ni; i= 0,2, . . . ,r. (3.47)

On the other hand, by easy and standard Lie algebra considerations (see Ja-
cobson, 1962, §III.2, Exercise II.8) it follows that for any i, j = 0, . . . ,r when
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[ni,n j] �= 0 then [ni,n j] ⊂ nk for some 0 � k � r and in that case we have for
the corresponding real roots Li+Lj = Lk. This means that if q is NC then

nR = n1⊕·· ·⊕nr (3.48)

is a subalgebra and by (3.47) it is in fact an ideal of q. This holds by the NC-
condition because this implies that for i, j = 1, . . . ,n, [ni,n j] ⊂ nk for some
k �= 0. Furthermore, qR = n0+h is a subalgebra by (3.47). Note also (see Var-
adarajan, 1974, §3.8.3) that

[h,h]⊂ h∩n⊂ ñ0 ⊂ n0. (3.49)

By the definition of n0, it follows that qR is an R-algebra. The required decom-
position finally follows:

q= nR� qR. (3.50)

Some of the above spaces could degenerate to zero. This is the case when q is
nilpotent because then we can take h= 0 and nR = 0.

Exercise 3.9 Verify that nR is the smallest ideal such that q/nR is an R-
algebra. (This fact will not be used in what follows.)

The algebra qR is soluble: its action on the space ni⊗C can therefore be tri-
angulated by an appropriate basis. It therefore takes the form (see Varadarajan,
1974, §3.7.3)

adζ =

⎛⎜⎝ρ1(ζ ) ∗
. . .

0 ρti(ζ )

⎞⎟⎠ ; ζ ∈ qR, i= 0, . . . ,r, (3.51)

where ρ j ∈ HomR [qR; C] and by the nilpotency of n, the ρ vanish on n0 and
h∩n, and thus can be identified with linear functionals

ρ j ∈HomR[h/h∩n, C]; h/h∩n= q/n. (3.52)

Furthermore, the roots ρ1, . . . ,ρti can be identified exactly with the equivalence
class (3.44) and for j = 1, . . . , ti we have

Reρ j = Li, the ‘real root’ of the space ni; 0� i� r. (3.53)

3.8.3 General NC-algebras

Here g is a general NC-algebra; we do not have to assume that g is amenable
but this will be the case in the applications. The radical q� g is NC-soluble
and we have the Levi decomposition g= q� s for a semisimple algebra s. We
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shall choose h⊂ q to be some nilpotent algebra as above so that q= n+h and
also [h,s] = {0} as in Lemma 3.3. We shall consider qR ⊂ q and q = nR� qR

as constructed in the previous subsection with the above nilpotent algebra h.
The commutation [h,s] = 0 implies that in the decomposition (3.43) we have
[n̂i,s]⊂ n̂i and therefore also that, with our previous notation,

[ni,s]⊂ ni, [nR,s]⊂ nR, [qR, s]⊂ qR; i= 0,1, . . . ,r. (3.54)

The bottom line is that (see (3.46))

n= nR�n0, g= nR�gR, gR = qR� s, q/n= qR/n0, (3.55)

and here, when g is amenable, gR is an R-algebra. In general, gR is not soluble
and so the analogue of (3.51) does not generally hold for gR. But for the spaces
(3.52) on which the ρ’s of (3.51) are defined, we have the following projection:

π : gR→ (qR� s)/n0 = (h/h∩n)⊕ s∼= (q/n)⊕ s, (3.56)

because h∩n= h∩n0 by (3.49). We should note that the sum on the right-hand
side is direct, not just semidirect, because of the basic commutation relation
[g,q]⊂ n; see Varadarajan (1974, §3.8.3).

3.8.4 The Lie groups and the Ad-mapping

Let G, Q, NR, QR and S be the simply connected groups that correspond re-
spectively to g, q, nR, qR and s, and let N be the nilradical of Q. We have

G= Q� S; Q= NR�QR, (3.57)

and as the algebra q/n is Abelian, it will be identified with the group via the
exponential mapping:

Q/N =V identified with q/n. (3.58)

Although inessential, note that N0 = N ∩QR is the analytic subgroup that
corresponds to n0 (see the exercise at the end of §2.12.2 or use the topo-
logical argument of Exercise 8.9 in Part II). Therefore, by (3.55) we have
N = NR�N0 ⊂ NR�QR and in particular N ∩QR = N0 is simply connected
(see Varadarajan, 1974).
Now we shall use the exp mapping to obtain the analogue of the triangula-

tion (3.51) for the group QR. But since for general soluble groups the expo-
nential mapping is not bijective, we have to proceed with care as follows. The
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Ad-action of QR on ni can be triangulated:

Ad(x) =

⎛⎜⎝ω1(x) ∗
. . .

0 ωti(x)

⎞⎟⎠ ; x ∈QR. (3.59)

To see this we use the exponential qR → QR, which is a bijection on a small
neighbourhood of 0 in qR, to yield Ad(expξ ) = eadξ . This implies that the tri-
angulation (3.59) holds for x∈ exp(qR) and that ω j(x) = eρ j(ξ ) when x= expξ
and ρ j is as in (3.51). Since expqR generates QR it follows that (3.59) holds
for all x ∈ QR and that ω j : QR → C\{0} are group homomorphisms. By the
simple-connectedness of QR we can then define homomorphisms θ j : QR→C
such that ω j(x) = eθ j(x) and θ j(expξ ) = ρ j(ξ ), ξ ∈ qR.
Now let us denote the canonical

α : QR −→ QR

N ∩QR
=
Q
N

=V ;

dα : qR −→ qR

n∩qR =
q

n
.

For typographical reasons, in what follows we shall drop all the indices. For
each ω = ω j and ρ = ρ j as above we shall define ρ̃ ∈HomR[q/n;C] such that
ρ = ρ̃ ◦ dα and then using (3.58) we can define ω̃(y) = eρ̃(ζ ) for ζ ∈ q/n and
y= expζ ∈V . For the definition of ρ̃ we use the fact that ρ vanishes on n∩qR.
One can then readily verify that (Exercise 3.10 below)

ω(x) = ω̃ ◦α(x); x ∈ QR. (3.60)

Using this we shall then use (and abuse) the same notation as before and for
x ∈QR and ζ ∈ q/n such that expζ = α(x) we shall denote Lx= Re ρ̃(ζ ).
The bottom line (via the identification (3.58)) is that this L ∈ V ∗ can be

identified with linear functionals on Q/N =V and that |ω(x)|= eL(x), x ∈ QR.
Note that the above L is the real root Li that corresponds to the space ni of
(3.53).

Exercise 3.10 Prove (3.60). Since both sides of (3.60) are homomorphisms
QR → C∗ = C\{0} it suffices to verify this for x = expξ for some ξ ∈ qR

because these give a neighbourhood of the identity of QR. To do that let ζ =

dα(ξ ) ∈ q/n and y = α(x) = expζ . We then have ω(x) = eθ(x) = eρ(ξ ) =
eρ̃ ◦dα(ξ ) = eρ̃(ζ ) and also ω̃ ◦α(x)= ω̃ ◦α(expξ )= ω̃ exp(dα(ξ ))= ω̃(expζ )
= eρ̃(ζ ).

The intertwining with S In the next section we shall make use of the follow-
ing. With the usual notation xs = sxs−1 in the group and the ω j as in (3.59), we
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have

ω j(x
s) = ω j(x); x ∈QR, s ∈ S, (3.61)

and therefore also, if we use the above abuse of notation,

Li(x
s) = Li(x); x ∈ QR, s ∈ S, 0� i� r. (3.62)

In this conjugation, the matrix of (3.59) on the other hand changes when we
pass from x to xs. The reason for the above is that x−1sxs−1 ∈N∩QR. (See Var-
adarajan, 1974, §§3.8.3, 3.18.7; more explicitly in this second reference set
a = g, b = q, h = [q,g]. More directly, assume, as we may, that x = expξ and
s are close to the identity with ξ ∈ q. Then by Varadarajan, 1974, (3.18.3) and
§3.8.3, (Ads)ξ − ξ ∈ n and since x−1sxs−1 = exp(−ξ )exp((Ads)ξ ) we can
use §§2.15, 3.8.3 of Varadarajan, 1974.) Therefore Ad(x) and Ad(xs) on ni

have the same diagonal coefficients.

3.9 An Alternative Proof of the NC-Theorem

3.9.1 Products of triangular matrices

In this section we shall give a version of Lemma 3.4 that applies to the sol-
uble group QR. In other words, we have to get around the root space decom-
position and the diagonal blocks of (3.15). Let M1, . . . ∈ Mr×r(C), for some
r � 1, be a sequence of complex matrices of the form Mj = Dj + Tj where

Dj = diag(d( j)1 , . . . ,d( j)r ), and Tj is upper triangular, that is, T = (t( j)α ,β ) with

t( j)α ,β = 0 if α � β . The bounds that will be imposed on these matrices are

|d( j)i |−1 � A, δ j =Max
(|d( j)1 |, . . . , |d( j)r |

)
� A, |t( j)α ,β |� A, (3.63)

or equivalently, ‖Mj‖,‖M−1j ‖ � A for some other fixed A � 1. We can then
write

Mj = δ j(D′j+T ′j ), ‖D′j‖= 1 (3.64)

for similar matrices D′, T ′ that are diagonal and triangular respectively, and
now

M1 · · ·Mn = δ1δ2 · · ·δn
n

∏
j=1

(D′j+T ′j ) = δ1δ2 · · ·δnΣ;

Σ= ∑
εk=±
k=1,...,n

Bε11 · · ·Bεnn , B+k = D′k, B−k = T ′k ; k = 1, . . . ,n.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.65)
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Since the product in each term of Σ is zero if more than r among the εk are
negative, it follows that there exist constantsC, independent of A, n and the δ j
such that we have the following generalisation of (3.19):

‖M1 · · ·Mn‖�Cδ1δ2 · · ·δn(1+ n)CA2r. (3.66)

Note that in the applications below we shall even have

δ j = |d( j)1 |= · · ·= |d( j)r |. (3.67)

3.9.2 Proof for soluble groups

We shall assume here that G is soluble and simply connected, with g its Lie
algebra and g= q= nR� qR and G= NR�QR are as in §3.8.4.
We consider x j = mjq j ∈ G, mj ∈ NR, q j ∈QR, |x j|G �C and use the trans-

formation (2.21) and the same notation as before:

sn = x1 · · ·xn = m1m
ṡ1
2 · · ·m

ṡn−1
n ṡn;

ṡ j = ẋ1 · · · ẋ j = q1 · · ·q j, mj ∈ NR, q j ∈QR.
(3.68)

To estimate mq (here m ∈ NR,q ∈ QR) we use the exponential mapping of NR
and, with m= expζ , ζ ∈ nR and |ζ |nR �C, we have mq = exp((Adq)ζ ) and,
as in 3.5.2,

|mṡj
j+1|NR �C‖Ad(q1 · · ·q j)‖nR �C sup

1�i�r
‖Ad(q1 · · ·q j)‖ni (3.69)

for the decomposition (3.48) of nR. A direct application of (3.66) gives in
(3.69) the estimate

(1+ j)C sup
1�i�r

exp(Li(q1)+ · · ·+Li(q j)), (3.70)

where, as at the end of §3.8, the Li are the real roots as in (3.44) with the
identifications (3.52), (3.53) and the abuse of notation of §3.8.4. This is exactly
the same estimate as in (3.21). With the help of this estimate we can finish the
proof of the NC-theorem in this soluble case by the same argument verbatim:
explicitly, the criterion of §3.3.3 is used on the sets

An = [m ∈ NR; |m|� cnc]× [q ∈QR; |q|� cnc] (3.71)

for appropriate constants and with z(n) = sn ∈G the Markov chain on G. Con-
dition (i) of the criterion is obvious. In considering the measures of the corre-
sponding sets in this condition (i), note that the groups NR and QR are unimod-
ular. For condition (ii) we denote, as in (3.25),

ΩL = [v; Liv< 1, 1� i� r]⊂V = Q/N. (3.72)
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The real roots Li, as at the end of §3.8, can be identified with linear function-
als on V because of (3.52), (3.53) and §3.8.4. Finally, we use the gambler’s
ruin estimate (3.26) and the estimate (3.70). From these, condition (ii) of the
criterion follows.

3.9.3 General amenable NC-groups

Let G be such a group and let

G= NR�GR; GR = QR� S (3.73)

be as in (3.57). We shall follow closely the proof that was given in §3.5 for the
semidirect product G= N�K, with K = H⊕ S.
The criterion of §3.3.3 is used again for the sets

An = [m ∈ NR; |m|� cnc]× [q ∈QR; |q|� cnc]× S (3.74)

and condition (i) of the criterion is again obvious.
For condition (ii) of the criterion we write x j = mjq jσ j = mjẋ j, mj ∈ NR,

q j ∈ QR, σ j ∈ S and
z(n) = x1 · · ·xn = m1m

ṡ1
2 · · ·m

ṡn−1
n ṡn; ṡ j = ẋ1 · · · ẋ j ∈GR, (3.75)

and we must prove the analogue of (3.28) and to do this we must estimate the
| |NR of

m
ṡj
j+1 = (q1σ1 · · ·q jσ j)mj+1(q1σ1 · · ·q jσ j)

−1. (3.76)

Here, unlike what happened in (3.28) in §3.5.2, the q j do not commute with
the σ j. This is the only complication compared to (3.28). In (3.76) we shall
commute the σi with the qi (i.e. ‘jump over’ them) so that we can rewrite
(3.76) in the form

σ̃(q̃1 · · · q̃ j)mj+1(q̃1 · · · q̃ j)−1σ̃−1, q̃k = qσ̃kk ; for appropriate σ̃ , σ̃1, . . . ∈ S.
(3.77)

We shall use the fact that S is compact and apply (3.66). This, together with
(3.62), gives the analogue of (3.69), (3.70), namely

‖Ad(q̃1 · · · q̃ j)‖�C(1+ j)C sup
1�i�r

exp(Li(q1)+ · · ·+Li(q j)). (3.78)

To estimate this we can use, again, the gambler’s ruin estimate (3.26) in the
conical domain ΩL ⊂ V of (3.72) where Q and N are the radical and the
nilradical of G. Some care is needed to justify the use of the gambler’s ruin
estimate. We use the projection

π : GR→ (QR� S)/N0 = Q/N⊕ S=V ⊕ S, (3.79)
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induced by (3.56), where N0 is the normal subgroup that corresponds to n0 in
(3.46) (abusing notation by using the same letter π in (3.79) and (3.56)). As
pointed out in (3.52) and (3.56), Li(q), q ∈ QR, depends only on (π(q))V ∈
V , the V component of π(q) in (3.79). Furthermore, when ẋ j = q jσ j , the V -
components of π(ẋ j) are the same as the V -components of π(q j). These are
therefore symmetric independent V -valued random variables. The gambler’s
ruin estimate can therefore be used: note that this holds despite the fact that the
q j are not necessarily symmetric random variables in QR. From this, condition
(ii) of the criterion follows and we are done. This last point on the symmetry
of the variables is subtle and it relies on the fact that on the right-hand side
of (3.79) we have a direct sum and not just a semidirect one. More explicitly,
using this we can exploit the fact that the random variables ẋ j, being defined
by the projection G→GR, are symmetric.

3A Appendix: The Gambler’s Ruin Estimate

3A.1 One-dimensional case

Let X1, . . . ∈R be centred independent identically distributed random variables
and let S0 = h > 0 be fixed and S j = h+X1+ · · ·+Xj be the corresponding
martingale. Let τ = inf [n; Sn � 0] the first exit time from ]0,+∞[. We shall
assume σ2 = E(X2j ) < +∞. By the martingale property (see Williams, 1991,
§10.9) we then have

h= E(Sn∧τ)� E([τ � n]Sn)� P1/2(τ � n)E(S2n)
1/2, (3A.1)

because Sτ � 0 when τ < ∞ (in fact τ < ∞ almost surely by the zero–one law
(Chung, 1982; Feller, 1968) but this information was not used) and where here
and throughout, by abuse of notation, τ � n refers both to the event and to its
indicator function. We have E(S2n) = h2+ nσ2 and therefore

P(τ � n)�
h2

h2+ nσ2
. (3A.2)

From this, in the set-up of §3.3.5 we can conclude that
P[X1+ · · ·+Xj > 0; j = 1, . . . ,n]� cn−c, (3A.3)

as required in (3.11). To see this we fix the positive h′, h′′ such that P(h′ <
X1 < h′′) > 0, we condition X1+ · · ·+Xj on [h′ < X1 < h′′] and then apply
(3A.2). Already in this case the sharp estimate∼ ( h√

n ) is much harder to prove
(see Feller, 1968). However, the proof that we gave here is simple and, as we
shall see, it easily generalises to higher dimensions.
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Most readers must have seen what we just did in a first course in probability
theory. What follows, and the extensions to higher dimensions, requires some
familiarity with potential theory. My advice to readers not willing to think in
these terms is to skip the rest of this appendix.

3A.2 The Markov chain in V = Rd

Let X1, . . . ∈V be independent centred identically distributed random variables
with finite moments of high enough order. We shall fix H ∈ V , S0 = H, S j =
S0+X1+ · · ·+Xj ∈V , j � 1 which is a Markov chain.
The principle that will be used is the following. We shall consider real

continuous functions u on V that are subharmonic with respect to the above
Markov process. This means that the process u(S j) is a submartingale. We
shall also normalise u(H) = 1. Further, let τ be some stopping time that satis-
fies

u(Sτ)� 0 when τ <+∞. (3A.4)

We then have, as in (3A.1) (by Williams, 1991, §10.9),

1� E(u(Sn∧τ))� E([τ � n]u(Sn))� (P(τ � n))1/2E(u2(Sn))1/2. (3A.5)

We shall also impose the condition

u(x) = O(|x|A) for some A> 0. (3A.6)

This, combined with (3A.5), gives

P(τ > n)�Cn−c; n� 1, (3A.7)

for appropriate constants C, c, because the moment condition imposed on the
variables and (3A.6) imply that the cofactor in the right-hand side of (3A.5)
grows polynomially.

3A.3 Normal variables

Let X1, . . . be assumed to be normal as in §3.6.2; then it is possible to perform a
linear change of coordinates so that X1+ · · ·+Xj = b( j) for standard Brownian
motion b(t) ∈ V . The process u(S j) is then a submartingale if �u � 0, in the
distribution sense, for the (appropriately normalised) Euclidean Laplacian�=

c∑ ∂ 2
∂x2i

(see Chung, 1982).



96 NC-Groups

3A.4 Proof of (3.33) for normal variables

Let Ω, σ0 be, as in (3.12), a conical domain and let the variables X1, . . . be
normal, as in §3.6.2. The continuous subharmonic function u in (3A.4) is de-
fined in Rd and u� 0, u(H) = 1, u≡ 0 in V\Ω, where H = hσ0 for some large
h> 0. The existence of such a function will be proved presently. With S j as in
§3A.2 we set τ = inf [n; Sn /∈Ω]. We therefore obtain (3A.7) and, by the same
conditioning as in §3A.3, we deduce the required (3.33).

3A.5 The construction of the subharmonic function

Normalise and set H = (h,0,0, . . . ,0) and σ0 = (1,0, . . . ,0), the north pole of
the unit sphere. We use polar coordinates x= rσ and σ = (θ ,ϕ1, . . . ,ϕd−2) ∈
Σd−1 for the local coordinates on the unit sphere, where (ϕ1, . . . ,ϕd−2) ∈ Σd−2
and θ is the colatitude, that is, the angle with σ0. We then use spherical har-
monics F(x) (i.e. homogeneous polynomials on V = Rd that are harmonic),
and we shall in particular consider zonal harmonics (see Szegö, 1939) of the
form

F(x) = rkP(θ ); r = |x|; σ = x/|x|= (θ ,ϕ1, . . . ,ϕd−2). (3A.8)

For k0, θ0 > 0 it is then possible to find such a zonal harmonic that satisfies

k � k0; P(θ )> 0, |θ |< θ1;
P(θ )< 0, θ ∈ [θ1,θ2]; θ2 � θ0,

(3A.9)

that is, P(0)> 0, then P dips and becomes negative for |θ |> θ1.
This in particular supplies us with the subharmonic function used in §3A.4.

To see this we simply set u = F in Ωθ1 = [|θ | < θ1] and u = 0 otherwise.
Since Ωθ1 is a conical domain that can be made arbitrarily thin, it follows that
u satisfies the properties of the function in §3A.4.

3A.6 Proof of (3.13)

Here X1, . . . are bounded variables as in §3.3.6. We shall preserve the notation
Ω, H = hσ0, u, F = rkP(θ ), θ1, θ2, etc. of §§3A.4 and 3A.5, and we shall
define the perturbation

U = u+ rk−1/2. (3A.10)

Furthermore, we shall normalise and, writing μ for the distribution of the vari-
ables Xj, we shall assume

∫
xix j dμ = δi j (which is the identity matrix). For
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the corresponding Laplacian �̃= μ− δ (where δ is the Dirac mass at 0), this
implies that

|(�̃−�) f (x)|�C sup
|y−x|�A

|∇3 f (y)|; f ∈C∞, (3A.11)

by Taylor’s remainder term, where A is the diameter of the support of μ , ∇3 =
∂ 3/∂xi ∂x j ∂xk denotes the third gradient, and C in (3A.11) depends only on
the dimension. Here, and in what follows, �̃ acts as a convolution operator.
By (3A.11) it follows in particular that if p is large enough there exist C, c

such that

�̃rp � crp−2; r >C. (3A.12)

We shall show that this implies that for all k large enough there exists C such
that

�̃U(x)> 0 for |x|>C, (3A.13)

and this says that U is subharmonic for the measure μ in that region. (For a
formal definition of subharmonicity in the above sense see §5A.1.)
Exercise Prove this. For x �∈ Ωθ1 , use (3A.12), u � 0 and u(x) = 0. For x ∈
Ωθ1 , note that �̃u� �̃F so we need to show that �̃(F+ rk−(1/2))(x)> 0. But
since F is harmonic, by (3A.11), �̃F = O(rk−3) and therefore by (3A.12), it
is �̃rk−(1/2) that is dominant here.
Now let us denote the truncated cone and the exit time by

Ω(C,θ ′) = [r >C; |θ |< θ ′]; τ = τC,θ ′ = inf [n; Sn /∈Ω(C,θ ′)]. (3A.14)

With the notation of (3A.9), we fix some θ1 < θ ′ < θ2. Then ifC in (3A.14) is
large enough, there existsC1 such that

U(Sτ)�C1 when τ = τC,θ ′ < ∞.

Such aC1 is not necessarily 0 because we may exit at a point that is not far out.
For h> 0 large enough we obtain therefore the following substitute for (3A.5):

U(H)� E(U(Sn∧τ))

� E([τ � n]U(Sn))+C1

� (P(τ > n))1/2E(U2(Sn))1/2+C1,

and for h sufficiently large we deduce P(τ > n) =O(n−c). This, for the random
variables Xj of §3.3.6, clearly gives the proof of (3.13) by the same condition-
ing X1+X2+ · · ·+Xn0 ∈ (small neighbourhood of H) for n0 large enough.



98 NC-Groups

Note The ad hoc constructions of this appendix are what one finds, more or
less, in Varopoulos (1994b). Giving a systematic exposition and finding exact
constants is a difficult problem which, however, is needed if we are to prove
(3.3) for the local central limit theorem. This was undertaken by the author
in a long series of papers over a period of 15 years (Varopoulos, 1999c, . . . ,
Varopoulos, 2014: you can find the full list in MathSciNet if you so wish). All
this however, as already said, lies outside the scope of this book and we feel
that not many of the readers would care to spend time on this problem.
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The B–NB Classification

Overview of Chapter 4

In this chapter we shall address the case of general groups that are not necessar-
ily amenable and we shall prove the upper B-estimate of §1.3 for an arbitrary
spectral gap λ � 0.
The important new aspect of the theory lies in the algebraic B–NB classifica-

tion that will be given in §4.1. This builds on the previous C–NC classification
of Chapter 2 but the algebra that will be needed here is less standard and in
particular we shall use the Iwasawa decomposition for semisimple Lie alge-
bras (Helgason, 1978, Chapter VI). Only the bare bones of what is needed will
be recalled in §4.1 and then we shall get on immediately with the main defi-
nition. Much more information on the ambient algebraic theory will be given
in Appendix A, Appendix B and Appendix C at the end of Part I of the book.
These appendices are not absolutely essential for this chapter but they will cer-
tainly clarify the picture and they will also guide the reader to navigate the
vast literature of semisimple groups. Consistent with the general scheme that
we explained in the overview of Chapters 2 and 3, we shall start in §4.3 by
identifying the special class of groups on which the theorem has to be proved
first. Here, this class contains essentially all the simply connected groups. The
actual generalisation to all the connected Lie groups is done in §4.6 (and again
later in §5.8∗) and this is quite involved. The reader should ignore this side of
things in a first reading. In §4.3 we also give a general plan of the proof.
The heart of the matter lies in §§4.4–4.5 where we prove the theorem in

the more general setting of a principal bundle. Principal bundles are of central
importance in geometry but for us here they are just a creature that allows us to
establish convenient notation and add transparency to the proof (see, however,
§14.1.5 later on for a formal definition). The ad hoc definitions that we give in
§4.4 are quite formal but the reader should take them seriously and spend time
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to understand them properly because once we have these the actual proof of
the theorem follows in just a few lines in §4.5.
In the same spirit as in the previous two chapters, in §4.6 we show that

the methods that we developed are good enough to prove our theorem for a
special class of simply connected groups. Techniques from Lie groups (e.g. the
structure of these groups) are then used to pass to the general case. As we
have already pointed out, these techniques are external to the main theme and
the reader could skip this section altogether. It is, however, also true that this
section, especially §§4.6.1–4.6.2, gives a good idea of what one has to do to
pass from the ‘special’ to the ‘general’.
There is a second part (Part 4.2) to this chapter, as there was for the previous

one. Here, as before, we prove the same theorem for the heat diffusion kernel
of an invariant differential operator on the group. As for the previous chapter,
the reader could skip this second part on a first reading.

Part 4.1: The Basic Theorem

4.1 The Lie Algebras

Let g be some real Lie algebra, let q� g, g = q� s be its radical and some
Levi decomposition where s is semisimple. We can uniquely decompose s as
the direct sum of two algebras s = sn⊕ sc where sc is of compact type, that
is, is the Lie algebra of some compact group, and sn is of non-compact type,
that is, no direct factor of sn is the Lie algebra of a compact group (see Hel-
gason, 1978, §II.6). When s is of non-compact type we shall use the Iwasawa
decomposition:

s= ns+ a+ k (direct vector space sum of subalgebras). (4.1)

Here ns is nilpotent, a is Abelian, [ns,a]⊂ ns and k is the Lie algebra of some
compact group K. Here K could be Abelian, that is, some torus. This is an im-
portant construction that is extensively used in the theory of symmetric spaces
and representation theory (see Helgason, 1978, Chapter VI; Gangoli and Var-
adarajan, 1980; Varadarajan, 1974). In Appendix A, Appendix B, Appendix C
at the end of Part I, we shall elaborate on the aspects of the Iwasawa decom-
position that are relevant to us. For our immediate use however, the only thing
that will be needed is what is described in the next few lines. The reader who
is not familiar with these notions is urged to take these facts for granted and
proceed to an understanding of the main definitions of this chapter. We shall
make the convention and agree to write the decomposition (4.1) for an arbi-
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trary semisimple algebra s= sn⊕ sc as follows. We write sn = ns+ a+ kn, as
in (4.1), where everything is taken to be zero when sn = {0}, and we then write
s= ns+ a+ k with k= kn+ sc. With this notation we write

r= q+ns+ a, g= r+ k, (4.2)

and it is clear that r is a soluble algebra since [q,s]⊂ q.
The definition of the subalgebra r is not unique, since the s, ns, a are not

uniquely defined, and r is not in general an ideal. Observe, however, that by
the above convention for amenable algebras (cf. §3.1.5) we have r = q. We
shall nonetheless call r the Iwasawa radical and we have the following result.

Proposition 4.1 Let g be some real Lie algebra and let r1,r2 ⊂ g be two
Iwasawa radicals. Then there exists x ∈G the simply connected Lie group that
corresponds to g such that (Adx)r1 = r2; that is, r1, r2 are conjugate by an
inner automorphism of g.

The proof of this is based on the fact that the same assertion holds for the
Levi subalgebra (see Varadarajan, 1974, §3.14.2). This proof, together with a
short overview of the Iwasawa decomposition, will be given in Appendix A,
Appendix B and Appendix C at the end of Part I of the book. But these alge-
braic proofs can in fact be bypassed altogether because, as we shall see, this
proposition is inessential for the proof of our main classification theorem.

Definition 4.2 We call g a B-algebra if the Iwasawa radical r is a C-algebra.
We call g an NB-algebra if r is an NC-algebra.
Similarly, if G is a connected Lie group that corresponds to g, we shall say

that G is algebraically-B or algebraically-NB respectively.

The reader at this point could anticipate and look at §A.8 where a ‘smoother’
formulation of the algebraic classification is given (without proof).
Before a proof of the proposition is given, note that, a priori in Definition 4.2,

an algebra could be both B and NB, and the proposition is needed to guarantee
that the above is a classification. We shall, however, see in the statement of the
main theorems in the next section that this proposition is not necessary, and
that these theorems provide an a posteriori proof of the fact that the above is
indeed a classification.
The properties that I shall state below are related to the B–NB classification

of Lie algebras and are not essential for the main theorem and therefore their
proofs will be deferred till Appendix A, Appendix B and Appendix C.
It is an easy exercise to see that a product algebra g = g1× g2 satisfies the

NB-condition if both g1, g2 do. The following two propositions are, however,
less trivial.
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Proposition 4.3 If g is an NB-algebra then it is an NC-algebra.

We recall that in §2.1 we defined g to be an NC-algebra if its radical q is a
(soluble) NC-algebra.
We recall now (see §2.3.5) that the Lie group G of the Lie algebra g is

unimodular if the trace Tr(adx) = 0 for all x ∈ g. Such an algebra will be
called a unimodular algebra.

Proposition 4.4 Let g be some unimodular algebra. Then exactly one of the
following conditions (i) or (ii) below holds:

(i) g is a B-algebra;
(ii) g = gR× s (direct product) where gR is an R-algebra (see §2.2.2) and s

is a semisimple algebra and then the algebra is NB.

The notation × or ⊕ will be used for direct products of Lie algebras or
groups.
The proposition implies that the converse of Proposition 4.3 fails. To see

this it suffices to consider some semidirect product of an Abelian algebra with
a semisimple algebra (of non-compact type) a� s that is not a direct product.
Indeed, such an algebra is always unimodular because Tr(ads) = 0 for all s ∈ s

(see §B.3).
As we have already pointed out in §1.2, and in §2.5.4, for unimodular groups

a parallel, less precise but more general, theory exists.

Exercise 4.5 We saw in §2.2.1 that if q is a soluble algebra and z⊂ is a central
subalgebra then q/z is a C- (resp. NC-)algebra if and only if q is. Similarly, if
z⊂ g is central, g/z is B (resp. NB) if and only if g is. This holds because any
central subalgebra lies in the radical.

4.2 Statement of the Results

In this chapter we shall consider some general connected Lie group G and
dμ(g) = φ(g)drg ∈ P(G) as in §1.3; that is, φ is continuous compactly sup-
ported and φ(e) �= 0. These conditions are satisfied automatically as we see by
considering dμ∗n(g) = φn(g)drg, some convolution power of μ as in §2.4.1. It
will also be convenient as before to abuse notation and write μ∗n(e) = φn(e),
and to avoid confusion with some of the notation that was used in Chapter 2,
we stress that, here, all the factors in the convolution powers are identical. We
shall use the notation of §3.1 and denote ‖μ‖op = e−λ . The essential part of
the classification of §§1.3 and 1.10 is then contained in the following two the-
orems.
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Theorem 4.6 (B-theorem) Let G and μ ∈ P(G), λ � 0 be as above. Let us
assume that G is algebraically-B. Then there exist C,c> 0 such that

μ∗n(e)�Cexp(−λn− cn1/3); n� 1. (4.3)

Theorem 4.7 (NB-theorem) Let G and μ ∈ P(G), λ � 0 be as above. Let us
assume that G is algebraically-NB and that μ is a symmetric measure (i.e. that
it is stable by the involution g 	→ g−1 in G). Then there exist α � 0 and C > 0
such that

μ∗n(e)�Cn−α exp(−λn). (4.4)

If G is compact, λ = α = 0 (see §6.2). In (4.4), since μ is assumed to be
symmetric, e−λ = ‖μ‖op as in §3.1 and therefore μ∗n(e) � ce−λn. Note that
in (4.3) the measure is not assumed to be symmetric and that in §5.2 we shall
prove a sharper version of (4.3) where ‖μ‖op is replaced by ‖μ‖sp.
Provided that μ is symmetric, the fact that, in (4.3), we have an analogous

lower estimate (see §1.3) is an easy by-product of the proof of the NB-theorem
in Part 5.3. What is considerably harder, and this will not be done in this book,
is to prove the full thrust of this theorem in §1.3 and to prove that the same
exponent α in (4.4) can be used to give an upper and a lower estimate as
asserted in §1.3. This says that in the NB case we have the generalisation of
the local central limit theorem of (3.3). When G is semisimple, both (4.4) and
the above local central limit theorem are a known result from Bougerol (1981).
The general case of this sharp central limit theorem is unpublished work of the
author. The proofs of both (3.3) in Varopoulos (1999b) and of the above local
central limit theorem build of course on the methods of this book. The details,
however, are so long to write down in full, that the present author at least may
well never find the time and energy to do that.
Finally, as we promised, the two theorems put together prove a posteriori

that the two properties, B and NB, do provide a classification of the groups
and the algebras without the use of Proposition 4.1.

4.3 An Overview of the Proofs

Only the B-theorem, Theorem 4.6, will be proved in this chapter; the proof of
the NB-theoremwill be given in the next one. Both proofs are long, rather than
difficult, because they depend on ad hoc machinery that has to be introduced.
The underlying idea behind this machinery is that with the use of the Levi
and Iwasawa decompositions we can generalise the notion of a connected Lie
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group G to the more general structure of a principal fibre bundle. Let us be
more precise and concentrate first on the following.

4.3.1 Special class of connected Lie groups and the principal
bundles

We shall assume that the connected group G is the semidirect product G =

Q� S where Q is a connected amenable group and S is semisimple of non-
compact type. The semisimplicity implies that the centre of S is discrete and
we shall make the additional assumption that the centre of S is finite. Any Lie
group is locally isomorphic to a special group as above. To see this, one uses
the Levi decomposition of Lie algebras (Varadarajan, 1974, §§3.14 and 3.15.1)
and the only thing that has to be verified is the assertion about the finiteness
of the centre of S. This will be done in §4.6 below. The theorems will first be
proved for these special groups and then, by additional arguments that are not
trivial, the results will be deduced for every other group.
For the above special groups, S = NAK is the Iwasawa decomposition of S

and the condition on the centre implies that K is compact (see Appendix A).
We recall here that N is nilpotent and A is Abelian. Both are closed simply
connected subgroups and the group multiplication induces a bijective diffeo-
morphism of S with N × A×K (see Appendix A). The actual group G can
then be written as a product QS = QNAK = RK where R = QNA is a con-
nected closed amenable subgroup (see §3.1.6). Here Q is not a priori assumed
to be simply connected but if it is, then R is simply connected. In the prod-
uct decompositionG= RK we shall only retain the product structure of R with
K : X = R×K so thatG� rk= g←→ x=(r,k)∈X , for r ∈R, k ∈K, and retain
also the left action by R on X given by r1(r,k) = (r1r,k) and then X should be
thought of as a (trivial) principal bundle over K where R is the structure group:
X → K. Since the fibre bundle is trivial we can in fact ignore that more general
structure and simply say that X = R×K is a product space. There are, on the
other hand, interesting situations where general (non-trivial) bundles have to
be considered.
One important point that should be stressed is that the actual group structure

of K is and should be ignored so that K is, say, some compact manifold or even
a compact topological space (or even some Borel space assigned with some
finite positive measure). We shall refer to the above creature X = R×K as an
R-(trivial) principal bundle over K. In this structure R is always a connected
amenable Lie group, and more often that not it will in fact be soluble.
The program now runs as follows:
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Step (1) We shall generalise the statements of the theorems to R-principal fibre
bundles over some compact space. This is done in §4.4.

Step (2) We shall prove the B-theorem, Theorem 4.6, in this more general
context. This is done in §4.5.

Step (3) We shall deduce the theorems for our special class of groups.
This generalisation provides a natural framework in which the proofs
should be written and is a convenient way of formalising the notation.
Without this, the notation would have been considerably harder to
follow.

Step (4) Finally in §4.6 we shall deduce from Step (3), the B-theorem in full
generality.

4.4 Left-Invariant Operators on an R-Principal Bundle

4.4.1 The formal definition

Here X = R×K will be a trivial principal bundle and our first task is to gener-
alise the convolution operators f 	→ f ∗ ν by a positive measure on the group
G= RK. These will be called left-invariant operators and will be linear opera-
tors

T : C∞
0 (X)→ space of locally bounded Borel functions on X . (4.5)

For our applications T f will in fact be continuous and compactly supported
in a sense that will presently become obvious. The conditions imposed on T
will be positivity (i.e. T f � 0 for all f � 0) and R-translation invariance. More
explicitly, if we write fr(r1,k) for f (rr1,k), with r,r1 ∈ R, k ∈ K, we have
T ( fr) = (T f )r, with r ∈ R. The above definition could have been given with-
out imposing positivity but in our applications only positive operators will be
considered and, furthermore, that positivity requirement eliminates awkward
convergence and definition issues in the integral representation of these opera-
tors that we shall give below.

4.4.2 The coordinate representation of the operators

Let μh,k, h,k ∈ K, denote a collection of positive measures on R that depends
continuously (or at least Borel) on h, k. Further, let

f 	→ L f (h) =
∫
K
L(h,dk) f (k); f ∈C(K) (4.6)
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be a positive operator onC(K) given by the kernel L(h,dk), with h,k ∈ K. The
definition of L extends to all positive Borel functions and we can define

T f (r,h) =
∫
X
f (rr−11 ,k)dμh,k(r1)L(h,dk)

=

∫
K
L(h,dk)( f (·,k)∗ μh,k)(r); f � 0, (4.7)

where in the first integral we integrate in (r1,k) ∈ X . In the above general defi-
nition these integrals could be +∞, but under appropriate boundedness condi-
tions they give rise to left-invariant operators on X . We shall use the notation

T = L⊗{∗μ}= L(h,dk)⊗{∗μh,k} (4.8)

to express (4.7), and in the special case f (r,k) = ϕ(r)ψ(k) we have

T f (r,h) =
∫
L(h,dk)(ϕ ∗ μh,k(r))ψ(k). (4.9)

All the left-invariant operators that we shall consider will be of this form (see
§§4.4.6, 4.10 below for explicit computations) and in fact, under reasonable
boundedness and smoothness conditions, one can easily see that every left-
invariant operator is of that form (this will not be essential for us and at any
rate it is an easy exercise in elementary measure theory – see Bourbaki, 1963).
The representation of such an operator as in (4.7) is not unique since we have

for instance ϕL⊗{∗μ}= L⊗{∗ϕμ} for any ϕ(h,k) � 0. We shall therefore
impose the additional condition that all the measures μ ∈ P(R) are probability
measures and then the representation (4.7) becomes (essentially) unique. Such
a representation will be called normal. Unless otherwise stated, all the repre-
sentations of left operators that we shall consider in what follows will tacitly
be assumed to be normal. For such a normal representation we have

L f = g, f ∈C(K), if and only if

T (1⊗ f ) = 1⊗ g; 1(r) = 1, r ∈ R. (4.10)

We should also note that with the notation (4.8) we have the following com-
position formula for a sequence Ti = Li ⊗ μ (i), i = 1,2, . . . of left-invariant
operators:

T1 ◦ · · · ◦Tn =
∫
k1∈K
· · ·
∫
kn−1∈K

L1(h,dk1)L2(k1,dk2) · · ·Ln(kn−1,dk)

⊗
{
∗
(
μ (n)
kn−1,k ∗ · · · ∗ μ

(1)
h,k1

)}
. (4.11)

From (4.10) it follows that the L operator that corresponds to T = T1◦· · ·◦Tn
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is L1 ◦ · · · ◦Ln and for f as in (4.9) we have

T f (r,h) =
∫
· · ·
∫
L1(h,dk1) · · ·Ln(kn−1,dk)ψ(k)

(
ϕ ∗ μ (n)

kn−1,k ∗ · · · ∗ μ
(1)
h,k1

)
(r).

(4.12)
This can be reformulated to say that T = L⊗{∗μh,k} and that μh,k is a convex
combination of (μ (n)

kn−1,k ∗ · · · ∗ μ
(1)
h,k1
; k1, . . . ,kn−1 ∈ K).

Finally, let χ be a positive multiplicative character on R, that is, χ(r) > 0,
χ(r1r2) = χ(r1)χ(r2), with r1,r2 ∈ R. A left-invariant operator T = L⊗{∗μ}
can then be conjugated by multiplication by χ (i.e. f → χ−1T (χ f )), and for
this operator we have

χTχ−1 = L⊗{∗χμ}. (4.13)

Notice, however, that (4.13) will not in general be a normal representation.

4.4.3 Measures, adjoints and Lp-norms

As already pointed out, K, the basis of the fibre bundle, is some compact space
and we shall assign to K a non-vanishingmeasure dk (i.e. the measure of every
open subset is positive). In the case when K is a group we shall, more often
than not, for reference measure take dk to be the normalised Haar measure
of K.

In our concrete applications we shall always have L(h,dk) = L(h,k)dk with
L(h,k) ∈ L∞. The reference measure that we shall then consider on X will be
fixed throughout to be dx= drr⊗dk for the right Haar measure drr on R. It is
then clear that for any 1� p�+∞ the Lp operator norms in (4.12) satisfy

‖T1 ◦T2 ◦ · · · ◦Tn‖p→p � ‖L1 ◦ · · · ◦Ln‖p→p sup
ki

‖ ∗ μkn,kn+1 ∗ · · · ∗ μk1,k2‖p→p,

(4.14)
where ‖ ‖p→p refers to the Lp→ Lp operator norm on X , K and R with respect
to the above referencemeasure, and for simplicity we suppress the j from μ ( j).

Exercise Prove (4.14). For simplicity assume that n= 2, T1= T2, T1◦T2= T 2,
L◦L= L2 and set ‖∗μk,k1 ∗μk′1,k′ ‖p→p � A, ‖L2‖p→p = B. Then, by Minkow-
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ski,

‖T 2 f (·,h)‖p �
∫∫

L(h,dk1)L(k1,dk)‖ f (·,k)∗ μk1,k ∗ μh,k1‖p

� A
∫∫

L(h,dk1)L(k1,dk)‖ f (·,k)‖p

� A
∫
L2(h,dk)‖ f (·,k)‖p;∫

‖T 2 f (·,h)‖pp dh� ApBp
∫
‖ f (·,k)‖pp dk.

Then use ‖ f ‖pLp(X)=
∫ ‖ f (·,k) ‖pp dk, ‖ T 2 f ‖pLp(X)= ∫ ‖T 2 f (·,h) ‖pp dh.

Similarly it is clear that if T = L(h,k)dk⊗{μh,k}, then the adjoint operator
in L2(X ;dx) is given by

T ∗ = L∗(h,k)dk⊗{∗μ∗h,k};
L∗(h,k) = L(k,h),

μ∗h,k(r) = μk,h(r−1).
(4.15)

4.4.4 The amenability of R

For the left-invariant operators T = L⊗{∗μ} that we shall be considering,
there will exist some compact subsetC⊂ R such that the supports of the prob-
ability measures satisfy

supportμh,k ⊂C; h,k ∈ K. (4.16)

Under that assumption, we can assert that in (4.14) we actually have

‖T‖2→2 = ‖L‖2→2, (4.17)

and in fact the same thing also holds for the Lp operator norms and also for
products of operators as in (4.14). To see this we use the amenability of R.
For the proof of (4.17) we proceed as follows. By the second definition of
amenability in §3.1.4 we can find two sequences 0 � fm,gm ∈ C∞

0 (R), m � 1
such that

‖ fm‖2 = ‖gm‖2 = 1,
〈 fm ∗π ,gm〉L2(R;drr) −→m→∞

1,

π = μk1,k2 ∗ · · · ∗ μkn−1,kn
(4.18)

and for fixed n the limit is uniform in the ki ∈ K where the notation is as in
(4.11), (4.14) and where, as before, the j on μ ( j) and Lj has been suppressed.
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For fixed ϕ ,ψ ∈C(K) non-negative, with ‖ϕ‖2, ‖ψ‖2 � 1, we consider∫
K
· · ·
∫
K
L(h,dk1) · · ·L(kn−1,dk)ϕ(k)ψ(h)〈 fm ∗ μkn−1,k ∗ · · · ,gm〉 dh. (4.19)

By (4.11), this is bounded by ‖T1 ◦ · · · ◦Tn‖2→2 for the L2(drrdk) norm. If we
pass to the limit m→∞ and use (4.18), we obtain 〈L1 ◦ · · ·◦Lnϕ ,ψ〉. We let ϕ ,
ψ vary and our assertion follows.

4.4.5 Convolution operators on a group

Here we shall go back to the special class of Lie groups considered in §4.3. As
explained there, such a group can be written G = RK and it can be identified
with the principal bundle X = R×K. The convolution T : f 	→ f ∗ν by some
ν ∈ P(G) can then be identified with a left-invariant operator on the bundle.
Since it is here that the motivation for the definitions that we gave in this sec-
tion lies, we shall in the next few lines give the explicit formulas related to this
operator. Another explicit formula, when dν = ϕ(g)dg, will be given in §4.10
below.
Clearly we can fix g1 ∈ G and restrict our attention to the case ν = δg−11 ,

where the Dirac δ is the mass at the point g−11 . The operator then becomes the
right-translation operator

Tν f (g) = f ∗ν(g) = f (gg1). (4.20)

Here K = R\G is the homogeneous space of left cosets K = {Rx; x ∈G}. The
right translation g 	→ gg1 induces an action K→K, k→ k[g1]. And there exists
a function ρ(g1,k) ∈ R, k ∈ K, called a cocycle, such that if G � g = rk =
(r,k) ∈ X we have

gg1 = (rρ(g1,k), k[g1]) ∈ X . (4.21)

With an abuse of notation we can therefore say that for this operator (4.20)
we have L(h,dk) = 0 unless h = k[g1] and we have a Dirac δ -mass for h =
k[g1]. As for the measures μh,k, they can all be taken to be the corresponding
δ -masses.

4.4.6 The Haar measure on G= RK

In the identification of G with X = R×K, as in §4.3.1, the link between the
relevant measures is supplied by dg= d�g= d�r⊗dk, g= rk, for the left Haar
measures of G, R and K; that is, we have∫

G
f (g)d�g=

∫
R×K

f (rk)d�rdk; f ∈C∞
0 (G). (4.22)
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The proof is easy. We have for sure d�g = Φ(r,k)d�rdk, where Φ is the Jaco-
bian. The left action g→ rg, r ∈ R shows that Φ(r,k) = Φ(k) is independent
of r. The right action g 	→ gk, k ∈ K on the other hand stabilises d�g simply
because K is compact. Hence Φ is a constant (see Helgason, 1984, §I.2; Bour-
baki, 1963, Chapter 7).
If we denote now by mG and mR the modular functions of the groups G and

R (see §1.1), we see that
drg= mG(g)d

�g= mG(g)d
�r⊗ dk

= mG(g)m
−1
R (r)drr⊗ dk = χ2(r)dx;

g= rk ∈ G, x= (r,k) ∈ X , χ = m1/2G (r)m−1/2R (r),

(4.23)

because mG ≡ 1 on K. This means that for any operator, the operator norm
of T on L2(G;drg) is the same as the operator norm of the operator Tχ =

χTχ−1 on L2(X ;dx) simply because f → χ−1 f is an isometry L2(X ;dx)→
L2(G;drg); here Tχ is multiplication by χ−1 followed by action by T , followed
by multiplication by χ . On the other hand, Tχ is a left-invariant operator if T is
because χ is multiplicative on R. When T f = f ∗ν as in §4.4.5 we shall write
(see §3.1)

Tχ = L⊗{∗μ}; ‖L‖2→2 = ‖ν‖op, (4.24)

where the second relation holds because of §4.4.4. The first illustration of this
basic observation is to apply it to ν = δg1−1 and (4.20) where we now have

Tχ f (r,k) = χ(ρ(g1,k)) f (rρ(g1,k), k[g1]),
Lϕ(k) = α(g1,k)ϕ(k[g1]);

α(g1,k) = χ(ρ(g1,k)).
(4.25)

The fact that ‖ν‖op = 1 combined with (4.24) gives ‖L‖= 1. This fact allows
us to identify α with an old friend from representation theory. Explicitly, we
see that α is the square root of the Radon–Nikodym derivative of dk under the
mapping k→ k[g1], and (4.25) gives the induced representation on R\G. These
connections with representation theory will, however, not be relevant to us (see
Gangoli and Varadarajan, 1980, §3.1 for more).

4.5 Proof of the B-Theorem 4.6

4.5.1 Theorem 4.6 in the principal bundle

We shall consider here X = R×K some principal bundle, as in the previous
subsection, and assume that R is a C-group. On X we shall fix T = L⊗{∗μ},
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some left-invariant operator and in direct analogy with §2.4.1 we shall impose
on L and the measures μh,k the following conditions:

(a) L(h,dk) = L(h,k)dk where dk is the Haar measure of K and L(h,k)> 0 is
continuous on K×K;

(b) the measures μh,k ∈ P(R) satisfy conditions (i), (ii) and (iii) of §2.4.1 on
the group R uniformly in h,k ∈ K.

Remark If χ is a multiplicative character on R and T is as above and satisfies
(a) and (b), then the conjugated operator χTχ−1 that we considered in the
previous subsection also satisfies (a) and (b). The reason is that if we conjugate
convolution by μ in R by multiplication by χ then we obtain convolution by
χ ·μ . The property that μ ∈ P(R) is, however, lost when we pass to χ ·μ
From what has been said, and Theorem 2.3, we can easily deduce a version

of the B-theorem (Theorem 4.6) for left-invariant operators that satisfy the
above conditions. More precisely, let us assume that X = R×K and T are as
above. Let us fix F(x) = f (r)ϕ(k), H(x) = g(r)ψ(k), x= (r,k), where 0 � f ,
g, ϕ , ψ ∈ C∞

0 are fixed. We shall then use (4.12) together with Theorem 2.3
and the uniformity in condition (b) imposed on T . We deduce that

〈TnF,H〉�C‖L‖n2→2 exp(−cn1/3)�C‖T‖n2→2 exp(−cn1/3); n� 1, (4.26)

where the constant C also depends on F and H and the last inequality follows
from (4.17). The scalar product 〈 , 〉 is taken with respect to dx but, given that
the supports of F , H are compact, any other measure locally equivalent to dx
could have been used.
We shall exploit this estimate in the next subsection.

4.5.2 Proof of a weaker form of Theorem 4.6 for the special groups
of §4.3.1

We shall consider G= RK a group as in §4.3.1 and identify it with the princi-
pal bundle X = R×K. We shall consider ν ∈ P(G) some measure as in Theo-
rem 4.6 and consider the left-invariant operators T , Tχ as defined in (4.24).
If we make the additional assumption that Tχ satisfies conditions (a) and (b)

of §4.5.1 and use (4.26) we deduce that
|〈F ∗ν∗n,H〉|= |〈Tnχ χF,χ−1H〉|�C‖L‖n2→2 exp(−cn1/3)

�C‖ν‖nop exp(−cn1/3), (4.27)

for any F,H ∈C∞
0 (G).

A simple use of the Harnack principle of §2.5.1 applied to ν finally gives the
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proof of the estimate (4.3) of Theorem 4.6 for our special class of groups. The
problem that is left is that assumptions (a) and (b) on Tχ or T that correspond to
ν are not satisfied in general. To address that issue we shall use the following.

Lemma 4.8 Let ν ∈ P(G) be as in Theorem 4.6. Then there exists m � 1
such that Tm the left-invariant operator that corresponds to ν∗m = ν ∗ · · · ∗ ν
satisfies conditions (a) and (b) of §4.5.1.

Once this has been proved, estimate (4.3) of Theorem 4.6 follows for the
measure ν∗m. The Harnack principle of §4.5.1 allows us to deduce the general
result for ν . To see this let p=mq+ r, r= 0,1, . . . ,m−1; then by the Harnack
principle of §2.5.1 (see (2.13), (2.16)) we can estimate ν∗p(e) by ν∗m(q+s)(e)
for some s � 1 that depends on the already chosen m but is independent of q
or r. But since this measure is ν∗m ∗ · · · ∗ν∗m and our result holds for ν∗m our
general result follows because ‖ν∗m‖op � ‖ν‖mop.
I shall finish this section with the proof of the lemma. The strengthening

of Theorem 4.6 with ‖ν‖sp, on the other hand, needs new ideas and will be
deferred until the next chapter.
From this special class of groups G = RK we shall be able to deduce the

general theorem for all groups in §4.6 below. That section presupposes famil-
iarity with the structure theory of Lie groups. On the other hand, the reader
could content themselves with just §4.6.1 where a proof for simply connected
groups will at last be found.

4.5.3 Proof of Lemma 4.8

By the conditions on the measure ν , for any A > 0 we can find m such that
dν∗m(g) =Φ(g)dgwithΦ continuous and compactly supported. Furthermore,
Φ(g) > 0 for all |g| < A, that is, all g ∈ G in the A-ball of G defined in §1.1.
We shall use the representation (4.8), Tm = L⊗{∗μ}, and then dμh,k(r) =
fh,k(r)dr, with r ∈R, h,k∈K. From this, if A is large enough, condition (a) and
conditions (i) and (ii) of (b) in §4.5.1 easily follow. Furthermore, fh,k(r) �= 0 as
long as Φ(krh−1) �= 0. The reason is that for fixed k ∈ K and δk, the δ -mass at
k (considered as a measure on G), Φ(k−1g), is the density of δk ∗ν∗m(g). But
we have ∣∣ |krh|G−|r|R ∣∣�C; h,k ∈ K, r ∈ R, (4.28)

by §2.14.2 because K ⊂ G is compact, and this means that fh,k(r) �= 0 for
|r|R < A′ for some large A′. This gives the proof of property (iii) of §2.4.1 in
condition (b) for Tm and completes the proof. This simple argument avoids the



4.6 Structure Theorems; Reduction to the Special Class of Groups 113

use of an explicit formula for fh,k in terms of Φ. This formula will, however,
be given in §4.10 below.
The same proof works for Tmχ = χTmχ−1 (but one might like to observe that

χ cannot in general be identified with a character of G and therefore Tχ cannot
be identified with a convolution operator on G).

4.6 Structure Theorems and the Reduction to the Special
Class of Groups

The Levi decomposition and the principal bundle

Let g be a Lie algebra; the classical Levi decomposition says that g = q� s

where q is the radical and s is a semisimple algebra (see Varadarajan, 1974,
§3.14; Jacobson, 1962, §III.9; and Appendix A). As we said in §4.1, we can
also decompose s = sc⊕ sn the direct sum of its compact and non-compact
components. It is also possible to combine q and sc and write

g= qa� sn, qa = q� sc.

We use the index ‘a’ because we shall call qa the amenable radical of g. By
definition qa is an amenable algebra (in the sense of §§2.2.2, 3.1.6; i.e. qa/q is
of compact type). Clearly qa is an ideal in g.

Exercise (Not essential for us.) Prove that qa is the ‘largest’ ideal of g that is
amenable. As such it is uniquely determined (note that this is not the case for
s), hence the terminology ‘the amenable radical’. For the proof use §3.1.6.
What counts for us, both for the classical Levi decomposition and the above

generalisation, is that it induces a similar semidirect product decomposition on
the simply connected Lie group G that corresponds to g:

G∼= Qsol� S∼= Qa� Sn,

where Qsol, S, Qa, Sn are simply connected groups that correspond to q, s, qa,
sn, respectively. To avoid pedantic qualifications, here and in what follows, we
allow Sn to be {e} (although it is hard to defend the point of view that {0} is a
semisimple algebra of non-compact type!).
Now let G be some connected Lie group that is not assumed to be simply

connected; then Qsol, the subgroup that corresponds to q�g, is called the rad-
ical of G and is always a closed subgroup of G (even when G is not simply
connected; see Varadarajan, 1974, §3.18.13). Since Sc ⊂ G the subgroup that
corresponds to sc is compact, the group QsolSc is always a closed connected
normal amenable subgroup. We shall call this the amenable radical of G.
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A question of notation In the literature (e.g. Varadarajan, 1974) Qsol is more
often than not denoted byQ. Here we prefer to use the letterQ for the amenable
radical: so Q corresponds to qsol� sc, where to stress the point, here qsol de-
notes the radical q andQsol corresponds to qsol. We shall further drop the index
n and denote by S the analytic subgroup that corresponds to sn.

Simply connected groups With this convention we are back to the notation
that we used in §4.3.1 and for a simply connected groupG we have G=Q�S
where Q is amenable and S semisimple of non-compact type.

As explained in §4.3.1 the principal bundle emerges at once from this and
from the Iwasawa decomposition of S = NAK, provided that K is compact.
This happens when S has finite centre. In that case we have G = RK where
R = QNA ∼= Q� (NA) and by §3.1.6 is an amenable group. It follows that G
can be identified with the principal bundle X = R×K. What should be noted
is that when the group is simply connected this new notion of the amenable
radical is not of great use because we could have done all the above using
the actual radical Qsol of the group. We have then G = Qsol� S where now
S = Sn⊕ Sc is a simply connected semisimple group and is the direct product
of its compact and its non-compact factor. If we proceed that way we obtain
G= Qsol� (NAK⊕ Sc) with the Iwasawa decomposition of Sn. And under the
additional assumption that the centre of S is finite (this clearly implies that
the centre of Sn is finite) we also have that K is compact (Helgason, 1978,
Chapter VI). We can then identify G with X = R×L where R is the soluble
group QsolNA and L can be identified with the compact subgroup K⊕ Sc ⊂
G. This approach will be used in the next subsection to prove the B-theorem
(Theorem 4.6) for all simply connected groups.

Some abuse of terminology In the next chapter we shall be dealing mostly
with simply connected groups and systematic use of the above decomposition
will be made. It will be convenient to introduce the following abuse of ter-
minology: we shall agree to define a decomposition S = NAK and call it the
Iwasawa decomposition of S. This will be done for all semisimple groups that
are direct sums S= Sn⊕Sc where Sn is of non-compact type and Sc is compact.
If Sn =NAKn is the genuine Iwasawa decomposition then we set K =KnSc and
S = NAK.

A variant of the Levi decomposition In §4.6.2 we shall prove the B-theorem
(Theorem 4.6) for general connected groups (simply connected or not) and
for this we shall need to make use of the amenable radical. An alternative
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approach will be outlined in §4.6.3. We shall also come back to the problem
again in §5.8∗ where yet another different approach will be explained.
Themain tool in §4.6.2 below is the following decomposition that is valid for

any connected and not necessarily simply connected group G. In the classical
situation this is called the Levi decomposition of the groupG (see Varadarajan,
1974, §3.18.13). This we can adapt here as follows.
Let Q�G denote the closed (connected) normal amenable radical and let

S ⊂ G be the analytic subgroup that is generated by the subalgebra sn ⊂ g.
Let S̃ be the simply connected Lie group that corresponds to sn and j : S̃→ G
the corresponding mapping. Let SL = S/(ker j ) and j : SL→G be the induced
injection. This means that j is one-to-one and this operation amounts to as-
signing on the subgroup S ⊂ G the finer topology of a Lie group structure,
hence the index L. The next step is to consider the semidirect product and the
projection π : Q�SL = G̃→G that is induced. The group G̃ is not necessarily
simply connected but its Lie algebra is q� sn = g and π is a covering map. To
clarify, G acts on Q by inner automorphisms on Q and so therefore does SL by
the injection j. Once G̃ has been constructed, by the definition of a semidirect
product, the identification of Q⊂G and the injection j induce the mapping π .
A simple-minded, but also more direct, way of saying all the above is as

follows. The group G can be written as the product of the two subgroups G=

QS and the product mapping Q× S � (q,s)→ qs ∈ G is bijective as long as
|q|Q < ε , |s|S < ε for ε small enough. Here |q|Q ≈ |q|G denotes the distance
from the identity in Q or equivalently in G (because Q is closed). On the other
hand, |s|S denotes the distance from the identity in S for its intrinsic Lie group
structure, which here and in §4.6.2 below we shall denote by SL (and not for
the distance and topology induced by the inclusion S ⊂ G).
One consequence of the above local bijection that we shall need is that

Q∩S⊂ SL is a discrete (closed) normal (and therefore also central) subgroup.
To see this let n ∈ Q∩ S be such that |n|S < ε small enough. Then |n|G, and
therefore also |n|Q, is also small and since e ·n = n · e = n the above bijection
implies that n= e (the identity).
(Alternatively, and perhaps more directly, A=Q∩S is a closed subgroup of

SL, and A0, the component of the identity, is an amenable normal subgroup and
therefore it reduces to the identity because the Lie algebra of S is sn.)

4.6.1 The use of Schur’s lemma

For the reader’s convenience I shall treat one difficulty at a time and consider
first a connected algebraically-B group G= Q� S that is a semidirect product
of an amenable group Q with a semisimple group S of non-compact type. All
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these groups are connected but we do not assume that Z(S) the discrete finitely
generated centre of S is finite. First, we shall prove the following.

Lemma 4.9 (i) The centre of a connected semisimple Lie group is a finitely
generated Abelian group.

(ii) Let G be some connected Lie group and let S⊂G, some analytic semisim-
ple subgroup. Let us denote by Z(G) and Z(S) the centres of G and S re-
spectively. Then there exists a subgroup Z1 ⊂ Z(S)∩Z(G) that is central
in G and such that the index [Z(S) : Z1]<+∞ is finite.

(iii) Alternatively, and more generally, any discrete central closed subgroup
of a connected Lie group is finitely generated; see Hochschild (1965,
Chapter XVI).

The B-theorem (Theorem 4.6) now follows for the above group G once this
lemma has been proved. To see this we quotient by Z1 so that

π : G→G1 = G/Z1 = Q� (S/Z1), (4.29)

where S/Z1 has finite centre. Let μ ∈ P(G) satisfy properties (i), (ii) and
(iii) of §2.4.1 in G. Then the image of μ by π has the same properties and
‖π̌(μ)‖op = ‖μ‖op by §3.1.6. Furthermore, Theorem 4.6 holds on the group
G1 by the previous section. If we apply Harnack and the reduction of §2.5.2,
we conclude that Theorem 4.6 also holds for the group G.

Exercise 4.10 Use the structure theorems of §4.6 and the above argument to
show that we already have a proof of Theorem 4.6 for all simply connected
groups.

Proof of Lemma 4.9 (i) This part is not essential for us but it is given for
completeness. We have the Iwasawa decomposition S= NAK where NARd

topologically and Z(S) ⊂ K. Since K covers the compact group K/Z(S) = K̃,
we have that Z(S) is a quotient of the fundamental group π1(K̃) (see Helgason,
1978, §VI.1).
(ii) By Weyl’s fundamental theorem (Varadarajan, 1974, §3.13.1) on repre-
sentations of semisimple groups, [Ad(s) ∈ GL(q); s ∈ S] = H is a completely
reducible group of linear transformations on q. Thus H can be identified with
H ⊂ GLC(qc) and it becomes a completely reducible group of linear transfor-
mations on qc = q⊗C (Onischik and Vinberg, 1988, §5.2, problem 25, p. 247;
Varadarajan, 1974, just below Theorem 3.19). It follows that qc =V1⊕·· ·⊕Vn
is a direct sum of irreducible complex subspaces on each of which Schur’s
lemma applies (see Weil, 1953, IV §16; Warner, 1971, §1.8). It follows that for
z ∈ Z(S) the restriction of Adz on each Vi =W is α(z)I for 0 �= α(z) ∈C with
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I the identity onW . Furthermore, (α(z))d = DetW Adz for d = dimW . On the
other hand, DetW Ads, for s ∈ S, gives a homomorphism S→C\{0}, and thus
it is≡ 1. The upshot is that α(z) is a dth root of unity. The lemma follows.
In §4.6.3 we shall also use the following additional fact on a connected

semisimple group S. Let Sn,Sc ⊂ S be the analytic subgroups that correspond
to the compact and non-compact components of the decomposition s= sn⊕sc

of the Lie algebra. By the definition, Sc is compact but the subgroup Sn ⊂ S
is also closed. To see this we use our previous notation for (Sn)L and con-
sider the projection π : S∗ = (Sn)L× Sc→ S. Then π is a homomorphism and
S= S∗/(kerπ), and clearly (Sn)L∩(kerπ)= {e}. But since kerπ ⊂ Z

(
(Sn)L
)×

Z(Sc) = Z(S∗), with the notation of Lemma 4.9, and since Z(Sc) is finite, it fol-
lows that kerπ is finite. From this our conclusion follows at once.

4.6.2 A reduction

Let G be some connected Lie group. Let Q�G be its closed amenable radical
and let S ⊂ G be some analytic subgroup that is semisimple of non-compact
type with G = QS, the variant of the Levi decomposition as in §4.6; here S is
not in general a closed subgroup.
The argument that follows is typical of what one finds in the structure theory

of Lie groups but it is important to distinguish the steps and align them in the
correct order.

(a) As we saw in §4.6.1, Q∩ S is a discrete central subgroup of SL because
it is a normal subgroup. By §4.6 we can then find Z ⊂ Q∩ S such that
the index [Q∩ S : Z] < +∞ is finite and Z is central in G. Let us denote
by H = Q∩S ⊂ G the closure in G; then clearly the index [H : Z] < +∞.
Indeed, H is the finite union of the closure of the cosets of Z in Q∩S.

(b) We have B=Q∩ (S ·Z)⊂H, for when b= s · z, for s ∈ S, z ∈ Z, and some
b ∈ B, since z ∈H ⊂Q we must have s ∈Q and therefore also s ∈Q∩S⊂
H.

(c) We consider the quotient and the canonical projections

π : G−→ G

Z
= G; π = Q−→ Q

Z
= Q; S= π(S).

Here S is an analytic subgroup that is semisimple of non-compact type.
Furthermore, Q⊂ G is an amenable closed normal subgroup and we have
G=Q ·S, which is just the variant of the Levi decomposition of the group
G that we gave in §4.6.

(d) By (b) it follows that Q∩S⊂ π(H) which is a finite group because of (a).



118 The B–NB Classification

The above (a)–(d) tell us that with the new group G we are exactly where we
started for G = QS but with the additional condition that Q∩ S is finite. We
also have the following reduction.

The reduction To prove Theorem 4.6 for the group G it suffices to prove it
for the group G. The fact that Z is Abelian, together with §3.1.6, implies that
for any ν ∈ P(G) we have ‖π̌(ν)‖op = ‖ν‖op (and the same thing for ‖ ‖sp).
We then apply the reduction of §2.5.2, and this proves the assertion.

Proof for G We can consider, as before, SL the analytic subgroup S assigned
with its Lie group structure, and form the semidirect product and the natural
projection:

G̃= Q� SL −→G. (4.30)

The finiteness of Q∩ S implies that the kernel of the projection is finite. The
validity of Theorem 4.6 was proved in §4.6.1 for the group G̃. By the Har-
nack principle of (2.17) and §3.1.6 applied to the projection (4.30) we obtain
therefore the validity of Theorem 4.6 for G.

4.6.3 An alternative approach to general groups

This alternative approach is interesting because it illustrates the use of principal
bundles that are not trivial.
Let G be again a real Lie group and let G/Q = S, where Q is the closed

radical and S is semisimple connected. Here Q denotes the genuine radical,
that is, the one that was denoted by Qsol in §4.6. Let G = QΣ, where Σ is an
analytic subgroup locally isomorphic with S (Varadarajan, 1974, §3.18.13). Let
Z ⊂ S be the centre. The aim of the next few lines is to show that for the proof
of Theorem 4.6 we are allowed to make the additional assumption that the
centre of S is finite.
Let Z be that centre and suppose that it is infinite. Since Z is discrete and

finitely generated we can lift the free (i.e. infinite-order) generators z1, . . . ,zp ∈
Z to z̃1, . . . , z̃p ∈ Z(Σ) the centre of Σ (i.e. π(z̃i)= zi, π : G→ S being the canon-
ical projections) and then the group Z̃ = Gp(z̃1 . . . , z̃p) is a discrete (closed)
subgroup of G. By Lemma 4.9 there exists Z̃1 ⊂ Z̃ that is of finite index in Z̃
and central in G. Furthermore, the projection p : G→ G̃=G/Z̃1 is bijective on
Q and takesQ onto the closed radical Q̃ of G̃. Denote G̃/Q̃= S̃ and by our con-
struction we see that now the centre of S̃ is finite. If we use the covering map p
and the reduction of §2.5.1 we see that, as asserted, the additional assumption
can be made in the proofs of the B-theorem (Theorem 4.6).
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The alternative approach to Theorem 4.6 is to prove it first for these special
groups of new type, which are the groups G such that the semisimple group
G/Q = S has finite centre. But, unlike the conditions imposed in §§4.3.1 and
4.6.1, we do not necessarily have G = Q� S. From what we have seen, once
this has been done we have Theorem 4.6 in full generality.
Let G be such a special group and let NAK be the Iwasawa decomposition

of Sn, the non-compact component of S. As we saw in §4.6.1, Sn is a closed
subgroup of S. The subgroup R= π−1(NA) is a closed soluble subgroup that is
a C- (resp. NC-) group if and only ifG is algebraically-B (resp. NB). We cannot
a priori write G= RK as before but we have the natural principal fibre bundle
q : G→ R\G=K. Here K is the compact left-homogeneous space {Rg;g∈G}
and R acts on the left on G. The difference from the situation that we treated
in §4.3 is that the bundle is in general non-trivial and the only way a priori to
trivialise that bundle is to use the following.

Borel cross section We can find a Borel mapping p : K→G such that p(K) is
relatively compact and q ◦ p= identity on K. Using this we can again identify
G with X = R× p(K)  R×K but this identification is not a priori a dif-
feomorphism. With the use of this Borel cross section, the formalism of left
R-invariant operators and their coordinate representation as explained in §4.4
goes through with only minor changes to this non-trivial principal bundle. We
shall not give the details but it would provide an interesting exercise for the
reader who is prepared to write them down for themselves.

Remark Another application of the Borel section is that for G, some locally
compact group, and R�G, some normal closed amenable subgroup, it allows
us to identify L2(G;drG) with L

2(R×G/R;drR⊗ drG/R) for the respective right
Haar measures (see Bourbaki, 1963). Using this and an easy variant of the
argument of §4.4.4 we see that for μ ∈ P(G) and the projected measure π̌(μ)∈
P(G/R) we have ‖μ‖op = ‖π̌(μ)‖op as asserted in §3.1.6.

Part 4.2: The Heat Diffusion Kernel and Gaussian Measures

4.7 Gaussian Left-Invariant Operators

All the definitions and notation of Chapter 2 concerning Gaussian measures
will be preserved.
Let X = R×K be a principal bundle and let T = L⊗ {∗μh,k} be a left-

invariant operator as in §4.4. We shall use again the reference measure dx =
drr⊗ dk defined in §4.4.3. We shall replace here conditions (a), (b) of §4.5.1
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and say that T is Gaussian if L = L(h,k)dk, where L(·, ·) is continuous and
strictly positive, and if the measures μh,k are Gaussian on R as in §2.12.2 with
constants that are uniform in h,k ∈ K. The composition of two Gaussian left-
invariant operators as above is also Gaussian. To see this we verify first that the
convolution of two Gaussian measures in a group is Gaussian. The verification
of this uses the exponential estimate of the volume growth γ(r) of §2.14.3 and
will be left as an exercise for the reader.
In (4.17) we used the uniform compact support condition (4.16) and the

amenability of R to deduce that

‖T1 ◦ · · · ◦Tn‖2→2 = ‖L1 ◦ · · · ◦Ln‖2→2; n� 1, (4.31)

for the L2(X ;dx) and L2(K;dk) operator norms. This easily extends to products
of operators that are uniformly Gaussian (i.e. uniform Gaussian constants).
In fact, for the proof of (4.17) we used the existence of 0� fm,gm ∈C∞

0 (R)
that satisfy (4.16). The argument extends to the present Gaussian situation be-
cause all that is used is the fact that for all fixed n � 1 and ε > 0 there exists
C ⊂ R a compact subset such that the measures π = μ (1)

k1,k2
∗ · · · ∗ μ (n)

kn,kn+1
of

(4.18) satisfy π(R\C) � ε . (As already pointed out, the convolution product
of Gaussian measures is Gaussian.) This condition is clearly satisfied for our
operators Tj = Lj⊗{∗μ ( j)}. Notice finally that the operator χTχ−1 defined in
(4.13) remains Gaussian if the original operator is (see §4.9).
From this the analogue of (4.26) extends verbatim for Gaussian left-invariant

operators T on X = R×K when R is a C-group. We can assert that there exists
c> 0 such that if F , H are positive compactly supported functions as in (4.26)
we have

〈TnF,H〉�C‖T‖n2→2 exp(−cn1/3); n� 1, (4.32)

whereC also depends on F , H.

4.8 The Gaussian B-Theorem

Theorem 4.11 (Gaussian B-theorem) Let G be some connected B-Lie group
and ν ∈ Gs(G). Then there exist c > 0 such that for every P ⊂ G compact
subset we have

ν∗n(P) = O(‖ν‖nop exp(−cn1/3)). (4.33)

The heat diffusion kernel and the spectral gap The typical example where
the theorem applies is ν = μt = φt(g)drg in (4.33) for the heat diffusion kernel
of Tt = e−t� in §2.12. If we combine this with the Harnack estimate of (2.54)
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we obtain the upper estimate in the classification (B) of §1.3.2 for the heat
diffusion kernel: we can assert that there exist constantsC,c> 0 such that

φt(e)�C‖Tt‖2→2 exp(−ct1/3); t � 1 (4.34)

for the L2(G;drg) operator norm.
Here� is self-adjoint and therefore

‖Tt‖2→2 = e−λ t , (4.35)

where

λ = inf [(� f , f ); f ∈C∞
0 ; ‖ f‖2 = 1] (4.36)

for the scalar product in L2(drg). Since λ = inf [ξ ∈ sp�] it is called the
spectral gap. If, for � = −∑X2j we denote |∇ f |2 = ∑ |Xj f |2, with f ∈ C∞

0 ,
we also have (� f , f ) = |∇ f |2 because the Xj are antisymmetric operators:
(X f ,g) =−( f ,Xg).
The above follows from elementary spectral theory and is close to the point

of view of Varopoulos et al. (1992, Chapter 9).

4.9 Proof of the Gaussian B-Theorem

The way to deduce Theorem 4.11 for groups from the estimate (4.32) for left-
invariant operators is identical to what was done for compactly supported mea-
sures in §4.5.2 and in §4.6 above.
We shall first consider a groupG that can be written as a productG= RK as

in §4.3.1 withK compact; this groupwill be identified with the principal bundle
R×K. The new property that must be verified is contained in the following.
Lemma 4.12 Let G, X = R×K be as above and let dν = ψ(g)drg ∈ Gs(G)
be a Gaussian measure on G. Assume that ψ is continuous and denote by
T f = f ∗ν , f � 0 the corresponding left-invariant operator on X. Then T is a
Gaussian left-invariant operator in the sense of §4.7.
Let us first assume the lemma and conclude the proof of the theorem from

it.
Exactly as in §4.4.6 with X and G as in the lemma, we consider χ and Tχ of

(4.23), (4.24). Then Tχ is also a Gaussian left-invariant operator because χ is a
positive character and so satisfies χ±1(r) =O(exp |r|R), r ∈R. The analogue of
(4.27) therefore holds. This implies (4.33) for the special groups of the lemma.
To pass from this to general groups nothing changes in the structure the-

orems and the reduction of §4.6. We shall use the general fact from §2.14.2
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that the projection π̌(μ) of a Gaussian measure on G by π : G→ G/H is also
Gaussian. We then proceed as in (2.81), without using Harnack. We shall not
rewrite the details of the proof.

4.10 An Explicit Formula and the Proof of Lemma 4.12

The notation is as in Lemma 4.12. We shall systematically denote g= rk, gi =
riki, r,ri ∈ R, k,ki ∈ K, and prove the following explicit formula:

T f (rk) =
∫∫

f (rr−11 k1)ψ(k−11 r1k)d
rr1 dk1; f � 0. (4.37)

The lemma follows from this at once because (4.37) gives the explicit repre-
sentation T = L(k,k1)dk1⊗{∗μk,k1}. We have

L(k,k1) =
∫
R
ψ(k−11 r1,k)d

rr1,

μk,k1 = fk,k1(r1)d
rr1 ∈ P(R),

fk,k1 (r1) = (L(k,k1))
−1ψ(k−11 r1k).

(4.38)

As in (4.28), the lemma is therefore a consequence of §2.14.2 which gives∣∣∣|r1|R−|k−11 r1k|G
∣∣∣�C. (4.39)

Proof of (4.37) Because of (4.7) and §4.4.6 with ν = ϕ dg, we can write

T f (rk) =
∫∫

R×K
f (rkk−11 r−11 )ϕ(r1k1)dr1 dk1; f � 0. (4.40)

Sublemma Let us fix k ∈ K and consider the one-to-one correspondence
(r1,k1)↔ (r2,k2) given by g = r1k1 = k−12 r2k. Write the Jacobian as dg =

dr1 dk1 = J(r2,k2;k)dr2 dk2. Then we have

J(r,k;k′) = J(r) =
mR(r)
mG(r)

, (4.41)

where mG (resp. mR) is the modular function of G (resp. R).

We shall presently prove the sublemma. Once this is done we shall have
from (4.40),

T f (rk) =
∫∫

f (rr−12 k2)ϕ(k−12 r2k)J(r2)dr2 dk2. (4.42)

If we then insert ψ(k−12 rk) = ϕ(k−12 rk)mG(r) and drr2 = mR(r2)dr2 in (4.42)
we obtain (4.37) – recall that ϕ and ψ are the respective densities of ν with
respect to dg and drg.
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Proof of the sublemma Since dg−1 = drg on G, formula (4.22) combined
with the involution g 	→ g−1 implies that for the parametrisation g= kr, k ∈ K,
r ∈ R, we have drg = drrdk and this, since dk−12 = dk2, implies that drg =

dk2 drr2 for g= k−12 r2k for k fixed. This means that

drg= dk2d
rr2 = dk2mR(r2)dr2 = mG(g)dg= mG(g)J(r2)dr2 dk2.

The formula follows since mG(g) = mG(r2).
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NB-Groups

Part 5.1

Overview of Part 5.1

In this chapter we shall complete the main classification of §1.3 by proving the
lower NB-estimate. This is a difficult chapter to read because it builds on the
previous three chapters and it would be futile even to start reading without a
reasonably good understanding of that previousmaterial. Also, the ad hoc tools
that are explained in the appendix, although elementary, make it considerably
more involved than the appendices of Chapters 2 and 3. Apart from this, no
fundamentally new ideas are needed and the difficulty is mostly technical.

In §5.1 we recall known results on positive eigenfunctions of positive oper-
ators. In finite dimensions these correspond to matrices with positive entries
and many readers may be familiar with the special nature of their ‘positive
eigenvectors’. Once this is recalled in §5.3 (especially §5.3.5), we proceed to
make what is often referred to as the use of the ‘ground state’ (i.e. the above-
mentioned positive eigenfunction) to ‘reduce the spectral gap’. In short, this
means that we explain a method for eliminating the exponential factor e−λ t in
the lower NB-estimate
e−λ tn−α . We are thus led to proving just a polynomial
lower estimate 
n−α for a modified new kernel.
This new polynomial lower estimate is then proved in §§5.5–5.6 by adapting

the methods of Chapter 3. The hardest point to adapt there has nothing to do
with Lie groups and consists in generalising appropriately the gambler’s ruin
estimate in the conical domains of Chapter 3. This is done in the appendix and
in the context of the principal bundles of Chapter 4.

With this lower estimate on principal bundles, in conformitywith the scheme
that we described in the overview of Chapters 2 and 3, we proceed in §5.7 first
to find the special class of Lie groups on which we can apply this previous

124
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NB-estimate of principal bundles, and then we have to reduce the problem to
this special class. The special class of groups is the same as in the previous
chapter and is relatively easy to describe since it consists of ‘essentially’ (but
not quite!) all simply connected groups. The situation is exactly as in §4.6.
A new idea based on positive-definite functions (see Naimark, 1959) is,

however, needed in §5.7 to make this reduction. This new idea is elaborated
further in §5.8∗ where we obtain a unified approach of the reductions of both
§4.6 and §5.7. Certainly the reader can skip §5.8∗ in a first reading but even
§5.7 is not a section that should be given priority in the reading of the chapter.

5.1 The First Eigenfunction and the Sharp B-Theorem 4.6

In this section we shall introduce the key definition of the ‘first’ eigenfunction
(sometimes called the ‘ground state’) and illustrate that notion by completing
the proof of Theorem 4.6 from the previous chapter and proving estimate (4.3)
with ‖ν‖sp rather than the weaker ‖ν‖op.
Here and throughout we shall denote by X = R×K a principal bundle and

we shall use throughout the referencemeasure dx= drr⊗dk as in §4.4.3. Then
for the left-invariant operator T = L⊗{∗μ} that we have been considering, we
have ‖T‖2→2 = ‖L‖2→2 for the corresponding L2 operator norms as in (4.17)
where, to fix ideas, we assume that L = L(h,k)dk with L ∈ L2(K×K). Under
that assumption L is a compact operator on L2(K) and therefore by the general
theory of compact operators (Dunford and Schwartz, 1958, VII.3, VII.4) we
can find ϕ0 ∈ L2(K), an eigenfunction (complex valued) with a maximal in
modulus eigenvalue:

Lϕ0 = α‖L‖spϕ0; α ∈ C, |α|= 1, (5.1)

where we assume that lim‖Ln‖1/n = ‖L‖sp �= 0. The following additional as-
sumptions will be imposed:

L∞ � L> 0, L∞ � ϕ0 > 0,
Lϕ0 = e−λϕ0, e−λ = ‖L‖sp.

(5.2)

In (5.2) the first assumption on L clearly implies that ϕ0 ∈ L∞ and this together
with the positivity of L will allow us to choose ϕ0 as in (5.2). Note that when
L is continuous then L1 > ε0 > 0 and therefore ‖L‖sp > 0. Both in (5.2) and
throughout, the qualification ‘holds a.e.’ has been dropped. The proof of (5.2)
will be given in the next subsection.



126 NB-Groups

5.1.1 Proof of (5.2)

The fact can be put in the more general context of positive operators on Banach
lattices (Schaefer, 1974, V.5, especially Theorem 5.2 and its corollary) and in
the jargon of that area σ = α‖L‖sp in (5.1) is an element of the peripheral
point spectrum.
The proof that follows is done in a number of steps that are either obvious

or are easy exercises for the reader. We shall normalise throughout and assume
that ‖L‖sp = 1 and ‖ϕ0‖2 = 1.
(a) By the positivity of the operator we have

L|ϕ0|� |Lϕ0|= |ϕ0|. (5.3)

This means that when L(h,k) = L(k,h) is a symmetric operator we have ‖ϕ0‖2
� ‖L|ϕ0|‖2 � ‖ϕ0‖2 and thus ‖L|ϕ0|‖2 = ‖ϕ0‖2 because the operator norm
satisfies ‖L‖op = ‖L‖sp = 1. Using (5.3) we are done because this implies that
L|ϕ0|= |ϕ0|.
If L is not assumed symmetric the proof is slightly more involved. For sim-

plicity, and because this is the only case that occurs in our applications, we
shall assume that L is continuous. This clearly implies that ϕ0 is also continu-
ous.

(b) There exists k0 ∈ K such that

L|ϕ0|(k0) = |ϕ0(k0)|; L|ϕ0|(k0) = |Lϕ0(k0)|. (5.4)

If not, there exists ε > 0 such that L|ϕ0|� (1+ ε)|ϕ0|. Iterating this we obtain
Ln|ϕ0|� (1+ ε)n|ϕ0|, n� 1 and this contradicts the condition ‖L‖sp = 1. The
second assertion in (5.4) follows from the first and (5.3).

(c) We can replace ϕ0 by eiθϕ0, with θ ∈ R, and thus assume that in (5.4)
we have ϕ0(k0) � 0. This combined with the positivity of L and the second
assertion in (5.4) implies that ϕ0(k)� 0, k ∈ K. Using the strict positivity of L
we conclude that ϕ0(k)> 0, with k ∈ K, and we are done.
The same argumentworks under the more general condition that L∈L∞(K×

K). All we have to do is to insert the qualification ‘almost everywhere’ in
the appropriate places. The only point that needs additional thinking is con-
dition (b) where the first statement in (5.4) has to be replaced by the weaker
statement that the measure of the set [k ∈ K; L|ϕ0|(k)� (1+ ε)|ϕ0(k)|] is pos-
itive for all ε > 0.
This can be proved by the same argument. Elaborating step (c) we then see

that this, as before, implies that there exists θ ∈ R and ϕ+ ∈ L∞(K) such that
ϕ+(k)� 0, with k ∈ K, and ϕ0 = eiθϕ+ and we are done.
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5.2 Proof of the Sharp B-Theorem 4.6

Here we now assume as in §4.5 that R is a C-group and that T = L⊗{∗μ}
satisfies conditions (a) and (b) of §4.5.1. This implies that (5.2) holds for the
operator L. In estimate (4.26) we shall set F = f (r)ϕ0(k) and from (4.11) we
obtain the following improvement:

|〈TnF,H〉|�C‖L‖nsp exp(−cn1/3) =C‖T‖nsp exp(−cn1/3); n� 1. (5.5)

Now letG=RK be a B-group that can be identified with X =R×K as in §4.3.1
and ν ∈ P(G) be as in Theorem 4.6. We shall consider the convolution operator
T f = f ∗ν . As we explained in Lemma 4.8, by replacing if necessary ν with
a large convolution power ν∗m we may assume that T satisfies conditions (a)
and (b) of Lemma 4.8.
Now let χ2 = mGm

−1
R and Tχ = χTχ−1 be as in (4.23) and (4.24) so that

‖ν‖sp = ‖Tχ‖sp for the spectral radius of §3.1.1. estimate (5.5) implies there-
fore that

|〈F ∗ν∗n,H〉|= |〈Tnχ (χF), χ−1H〉|�C‖ν‖nsp exp(−cn1/3); n� 1. (5.6)

This combined with the Harnack estimate of §2.5.2 gives the sharp form of
(4.3) with ‖ν‖sp for Theorem 4.6. Here the change from ν to ν∗m that we
made in order to guarantee conditions (a) and (b) clearly makes no difference
because ‖ν∗m‖sp= ‖ν‖msp and because we can use the Harnack estimate of §2.5
again as we did in §4.5.2.
Remark The same argument, but even simpler, can be used to prove the
statement μ∗n(e)�C‖μ‖nsp of §3.1.3 and this is valid without the B-condition
on the group. Whether a similar estimate holds for all locally compact groups
(connected or not – e.g. discrete groups) I do not know.

5.3 Symmetric Markovian Operators

5.3.1 Definition and the criterion

In this section we shall consider left-invariant operators T̂ = L⊗{∗μ} on X =

R×K that satisfy the following conditions:
(I) T̂ is Markovian, that is, T̂1= 1 and equivalently L1= 1;
(II) T̂ satisfies conditions (a) and (b) of §4.5.1: we recall that this means that

the kernel of L is continuous and strictly positive and that the probability
measures μh,k satisfy conditions (i), (ii) and (iii) of §2.4.1 uniformly in
h, k;
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(III) T̂ is symmetric with respect to d̂x = drr⊗ d̂k for some smooth non-
vanishing measure d̂k on K (as in §4.4.3), that is, T̂ ∗ = T̂ for the adjoint
of (4.15);

(IV) T̂ n admits a continuous kernel φ̂n(x1,x2), x1,x2 ∈ X , such that

T̂ n f (x1) =
∫
φ̂n(x1,x2) f (x2)d̂x2; f ∈C∞

0 (X). (5.7)

Let e= eX = (eR,eK)∈ X be some reference point that can be arbitrary, though
to fix ideas we could have taken the identities of R and K. We then have

φ̂n(x1,x2) = φ̂n(x2,x1);

φ̂2n(e,e) =
∫
X
φ̂n(e,x)φ̂n(x,e) d̂x=

∫
φ̂2n (e,x) d̂x; n� 1.

(5.8)

Denote by x(n) ∈ X , n = 0,1,2, . . . the Markov process generated by the
semigroup T̂ n. Then, with the same notation as in §3.3.2,

Ex f (x(n)) = T̂ n f (x), Px[x(n) ∈ E] =
∫
E
φ̂n(x,y) d̂y;

f ∈C∞
0 , E ⊂ X , x ∈ X , n� 1.

Combining this with Hölder and (5.8) we deduce, as in (3.8),

φ̂2n(e,e,)�
∫
E
φ̂2n (e,x) d̂x� P2e [x(n) ∈ E] |E|−1; E ⊂ X , n� 1, (5.9)

where |E| denotes the d̂xmeasure of E . From this we obtain for T̂ the following
generalisation of the criterion of §3.3.3.
Criterion 5.1 Let us assume that there exist positive constants C1, C2, c and
a sequence of subsets En ⊂ X, n� 1 such that
(i) the d̂x measures satisfy |En|�C1nc, n� 1;
(ii) Pe[x(n) ∈ En]�C2n−c, n� 1.

Then there exist positive constants C0, c0 such that

φ̂2n(e,e)�C0n
−c0 ; n� 1. (5.10)

As in §3.3, as soon as we have Harnack at our disposal (see the next section),
we also have the same estimate for φ̂n.

5.3.2 A modification of the criterion

As we previously indicated in the criterion of §3.3.3 we can use the scale
exp(±cn1/3) in the criterion and replace conditions (i), (ii) by
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(i′) the d̂x measure of |En|�C1 exp(cn1/3), n� 1;
(ii′) Pe[x(n) ∈ En]�C2 exp(−cn1/3), n� 1.
The conclusion then is

φ̂2n(e,e)�C0 exp(−c0n1/3). (5.11)

The proof is identical.

5.3.3 The construction of the Markovian operators

We shall start from an arbitrary left-invariant operator on X = R×X that sat-
isfies (a) and (b) of §4.5.1 and for which, as in condition (IV) of §5.3.1, there
exists a continuous kernel φn(x1,x2),

Tn f (x1) =
∫
φn(x1,x2) f (x2) d̂x2; d̂x= drr⊗ d̂k; (5.12)

we postpone specifying the measure d̂k till later.We shall also fix χ some pos-
itive multiplicative character on R and define Tχ = χTχ−1 and assume that
Tχ is symmetric with respect to dx= drr⊗ dk for the Haar measure dk on K.
We shall then use the notation of §4.4 and write Tχ = Lχ ⊗{∗μ} (this is a nor-
mal representation; see §§4.4.2, 4.4.3) with Lχ continuous and strictly positive.
Note also that in the representation (5.12) we have the freedom to change d̂x2
to another measure a(x2) d̂x2 and then φn changes to φn(x1,x2)a−1(x2).

5.3.4 Example

Let G = RK be a group that is identified with X = R×K as in §4.3.1 and let
T f = f ∗ν be the left-invariant operator on X (see §4.4.5) that corresponds to
ν = ψ drg ∈ P(G) some compactly supported symmetric measure where ψ is
continuous as in Theorem 4.7. Then T is self-adjoint with respect to right Haar
measure drg and by replacing ν by ν∗m for a large enough m as in Lemma 4.8
we may assume that T satisfies conditions (I)–(IV) of §5.3.1. In that case we
shall take χ2 = mGm

−1
R as in (4.23) and then

dx= drr⊗ dk = mRd
�r⊗ dk= mRd

�g= χ−2drg. (5.13)

For the representation of T as in (5.12) see §4.10. Then Tχ = χTχ−1 is sym-
metric as in §5.3.3 because for this χ = mGm

−1
R the mapping f → χ f in-

duces an isometry L2(G;drg)→ L2(X ;dx) and we use the symmetry of the
right convolution operator by ν on G. By the same argument we also see that
‖ν‖op = ‖Tχ‖2→2 for the operator norm of Tχ on L2(X ;dx) and the operator
norm of the convolution operator induced by ν as in §3.1.
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5.3.5 General operators

We go back to a general T and χ that satisfy the conditions of §5.3.3. We shall
write Tχ = Lχ⊗{∗μ}, where Lχ is continuous, and define some eigenfunction
ϕ0 ∈ L2 and λ ∈ R as in (5.1) such that

Lχϕ0 = e−λϕ0, e−λ = ‖Tχ‖2→2, (5.14)

for the operator norm in L2(X ;dx) ((4.17) and the symmetry of the operator is
used here). By our conditions on T it follows that ϕ0 is continuous and as in
(5.2) it can be taken to be positive. If we apply this to the example of §5.3.4,
we get ‖Tχ‖2→2 = e−λ = ‖ν‖op.
We shall now use the eigenfunction ϕ0 of (5.14) to define the following

operator and measure:

T̂ = eλϕ−10 χTχ−1ϕ0 = eλϕ−10 Tχϕ0; d̂k= ϕ20 dk; (5.15)

then T̂ and d̂k satisfy conditions (I)–(IV) and T̂ is symmetric with respect to
d̂x = drr⊗ d̂k because Tχ is symmetric with respect to dx. The kernel of T̂ n
with respect to d̂x is

φ̂n(x1,x2) = eλnα−1(x1)φn(x1,x2)α(x2); α = χ−1ϕ0, (5.16)

where φn is the kernel of Tn with respect to d̂x as in (5.12). We therefore have

φn(e,e) = φ̂n(e,e)e−λn. (5.17)

From this and (5.10) we conclude that if the conditions of Criterion 5.1 are
satisfied for T̂ then for even integers there exist constantsC, c such that

φn(e,e)�Ce−λnn−c; n� 1. (5.18)

Remark In the jargon of the area we can describe the above by saying that
we have used the ground state ϕ0 to reduce the spectral gap.

5.3.6 The group case

In the example of §5.3.4, T f = f ∗ ν with dν∗n = ψn drg, we certainly have
ψn(eG) ∼ φn(e,e) for the neutral element eG of G. This follows from the two
different ways of representing Tn f (g) =

∫
G f (gh

−1)ψn(h)drh and Tn f (x) =∫
X φn(x,y) f (y) d̂y; see (3.4). This, if the reference points are the identities eK
and eR of the groups R and K, givesψn(eG) = φn(e,e)ϕ20 (eK). Under the above
conditions, (5.18) implies therefore that there exist constantsC,c> 0 such that

ψn(eG)�Ce−λnn−c; n� 1, (5.19)
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which is exactly the estimate needed in Theorem 4.7, and similarly under con-
ditions of the modified criterion of §5.3.2. We can conclude instead

ψn(eG)�Cexp(−λn− cn1/3); n� 1. (5.20)

Once more the Harnack principle of §2.5 has to be used to obtain (5.19)–(5.20)
for all n� 1 and not just for even integers.

5.4 Theorem 4.7 for Principal Bundles and the Harnack
Estimate

For the rest of this chapter we shall fix a principal bundle X = R×K as in
§4.3.1 and assume that R is a soluble simply connected NC-group,We shall fix
T̂ some Markovian left-invariant operator that satisfies conditions (I)–(IV) of
§5.3.1 and is symmetric with respect to d̂x the measure of §5.3.1. The kernel
of T̂ n with respect to d̂x will be denoted φ̂n as in §5.3.1. The key step for the
rest of the chapter is to prove the following generalisation of Theorem 4.7.

Proposition 5.2 Let X, T̂ , φ̂n be as above, and let e∈X be the reference point
of (5.10). There exist then C,c> 0 such that

φ̂n(e,e)�Cn−c; n� 1. (5.21)

This will follow from Criterion 5.1 but in the constructions that we shall
make next we shall also need to adapt and use the Harnack estimate of §2.5.1
to this more general setting.
Notice that by the left invariance of the operator, the kernels are also left

invariant in the sense that φ̂n(rx1,rx2) = mR(r−1)φ̂n(x1,x2) for the left action
of R of X and the modular function mR of R.

Note for the reader For the global understanding of this chapter it is impor-
tant to note that §§5.1–5.3 and §§5.4–5.6 deal with very different aspects. The
first lot, as we have already said, deals with the ‘ground state’. The second
deals with left-invariant operators on a principal bundle. Note finally that the
actual convolution operator will not really be examined until §5.7.

Harnack principle

To achieve this we define on X the distance d(x1,x2) that is the sum of the left-
invariant distances on R with some distance on K. By our conditions it is then
clear that φ̂1(x1,x2) = 0 if d(x1,x2) > c0 for some c0 > 0. Also by conditions
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(I)–(IV) of §5.3.1 and the definition of the composition of (4.11), for allC there
existsm such that φ̂m(x1,x2)> 0 for all x1,x2 ∈ X such that d(x1,x2)<C. From
these it easily follows that for all a> 0 there exist m andC such that

φ̂1(x1,x2)�Cφ̂m(y1,y2); x1,x2,y1,y2 ∈ X , d(x1,y1), d(x2,y2)< a. (5.22)

As in §2.5 we shall also need a more cumbersome version of this that says
that for all a > 0 there exists m0 > 1 such that for all m > m0 there exists
C > 0 for which (5.22) holds. The only issue in (5.22) is the uniformity of the
constants because (5.22) is clear if we fix, say, x1 and allow the constants to
depend on it. The reason is that then the range of the x2, y1, y2 that is relevant
in (5.22) is compact. But from this, if we use the left invariance of the kernel
as explained above, the uniformity follows. This is similar to what we did in a
special context in §2.5.
If we combine these facts with the semigroup composition property

φ̂p+q(x1,x2) = φ̂p ◦ φ̂q(x1,x2) =
∫
X
φ̂p(x1,y)φ̂q(y,x2) d̂y; x1,x2 ∈ X , (5.23)

we deduce that for all a> 0 there exist m andC such that

φ̂n(x1,x2) = φ̂n−1 ◦ φ̂1(x1,x2)�Cφ̂n−1 ◦ φ̂m(x1,y2) =Cφ̂n+m−1(x1,y2);
x1,x2,y1,y2 ∈ X , d(x1,y1)� a, d(x2,y2)� a, n� 2.

With this we pass from (x1,x2) to (x1,y2). We can repeat the same arguments
with the analogous factorisations φ̂n = φ̂1 ◦ φ̂n−1 and this allows us to pass
from (x1,y2) to (y1,y2) as needed. Needless to stress, the important point here
is that in this estimate them and theC are independent of n. This is the Harnack
estimate for φ̂n that we shall use.

5.5 The Euclidean Bundle

5.5.1 The definition

In this section we shall denote by V = Rd the Euclidean space and for R=V ,
X =V ×K, the corresponding principal bundle. As before, d̂k is some smooth
non-vanishing measure and the reference measure is d̂x = dv⊗ dk̂, where dv
is Lebesgue measure on V . We shall then denote by

T̂ f (x) =
∫
X
M(x,y) f (y) d̂y; f ∈C∞

0 (5.24)

some Markovian symmetric operator where, with the notation x = (γ,h), y =
(λ ,k), γ,λ ∈ V , h,k ∈ K, we impose M(x,y) = M(γ − λ ;h,k), M(γ;h,k) =
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M(−γ;k,h) whereM(γ;h,k) is continuous and compactly supported. The con-
ditions ∫

M(γ;h,k)dγ d̂h=
∫
M(γ;k,h)dγ d̂h= 1;

k ∈ K, M � 0, M(0;h,k) > 0; h,k ∈ K
(5.25)

are also imposed and then we have in (5.24) a left-invariant operator that satis-
fies all conditions (I)–(IV) of §5.3.1. Denoting as before x(n)∈ X , n= 1,2, . . . ,
the Markov process generated by T̂ , we then have

P[x(n+ 1)∈ E // x(n) = (γ,k)] =
∫
E
M(λ − γ;h,k)dλ d̂h. (5.26)

This process is a generalisation of a random walk on V and when K is a single
point it is the randomwalk given by the measureM(γ)dγ . What will be needed
for us is to generalise the gambler’s ruin estimates of §3.3.6 to this process.
Remark 5.3 As in Lemma 4.8, provided we are prepared to replace T̂ by T̂ m

for a large enough m, the condition M(0;k,h) > 0, h,k ∈ K is a consequence
of the other conditions imposed onM. To see this we use the symmetry of the
operator and (4.11) and M2(0;h,h) =

∫
M(γ;h,k)M(−γ;k,h)dγ d̂k > 0; then

we use the Harnack estimate of §5.4 to pass to different h,k ∈K. This property,
in Markov chain terminology, implies that the corresponding Markov chains
are irreducible.

5.5.2 The conical domain and the gambler’s ruin estimate

LetL = (L1, . . . ,Lp)⊂V ∗ be a finite set of linear functionals on V , and set
Ω=ΩL = [v; Lv< 1, L ∈L ]⊂V (5.27)

the corresponding domain. We shall assume that L is such that Ω is an un-
bounded open conical domain that contains 0 ∈ Ω. As in Chapter 3, when
L = (0) we have Ω = V . The fact that Ω is unbounded is equivalent to the
NC-condition forL in §2.2.1.
We can then define the corresponding conical domain in Ω×K ⊂ X . The

key estimate for us is the following generalisation.

5.5.3 Gambler’s ruin estimate

Let x(n) ∈ X, n= 1,2, . . . , be the process as in §5.5.1, and let L and Ω be as
above. Then there exist C1,α > 0 depending on T̂ , L such that

P0[x( j) ∈Ω×K; j = 0,1, . . . ,n]�C1n
−α . (5.28)
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The notation in (5.28) is P0[x(0) = eX ] = 1 with eX for some arbitrary but
fixed reference point of X as in §5.3.1, that is, the probability of the process
starting at eX . In fact, α here depends only on the geometry of L and the
geometric invariants of T̂ . To compute α precisely is quite difficult. This is
essential if we are to obtain the sharp form of NB in §1.3.1. But even the
proof of (5.28) in the above weak form is non-trivial. This will be done in the
appendix to this chapter. For the time being in the proofs that follow we shall
take this polynomial gambler’s ruin estimate for granted.

5.6 Proof of Proposition 5.2

5.6.1 Overview of the proof

This is essentially the dénouement of this chapter because as we shall see in
the next section, the proof of Theorem 4.7 follows easily from this. The proof
of the proposition for the bundle X = R×K will be done in the three following
successive cases:

(i) R= N�V where N is nilpotent and V ∼= Rd is Euclidean;
(ii) R= N�H where N and H are nilpotent;
(iii) we shall use (ii) to deduce the proposition for a general soluble group R.

All the groups N, H, R are simply connected and R is NC. As a consequence
the real parts of the roots of the ad-action of the Lie algebra of V or H on the
Lie algebra of N satisfy the NC-condition of §2.2.1.
Item (i) is of course a special case of (ii), but the proof for (ii) is essentially

identical, though the notation is simpler in case (i) so we shall start with this.

5.6.2 The Euclidean case (i)

We shall denote by x( j) ∈X the Markov chain that is generated by the operator
T̂ = L⊗{∗μh,k} of §5.3.1. Let π : X = R×K→ Y = V ×K be the projection
induced by R→ R/N = V . Then the process y( j) = π(x( j)) ∈ Y is Marko-
vian and is generated by the operator T̂V = L⊗{∗π̌(μh,k)} that is symmetric
with respect to dv⊗ d̂k (cf. (4.15)). We shall introduce the following notation:
x( j) = r jk j; r j = n jv j; y( j) = v jk j; r j ∈ R; n j ∈ N, v j ∈ V ; k j ∈ K. We shall
define successively r̃ j ∈ R by r j = r̃1 r̃2 · · · r̃ j, j � 1, and write r̃ j = ñ jṽ j, for
ñ j ∈ N, ṽ j ∈ V . Note that we have v j = ṽ1 · · · ṽ j but that n j is not in general
ñ1 · · · ñ j.
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The process r j, j = 1, . . . is not Markovian. But if we condition on the path
(k1,k2, . . .) in K it becomes a time-inhomogeneous random walk with tran-
sition distributions μk j+1,k j . Here we use formal probabilistic language but,
naively, this statement says that we fix k1,k2, . . . and ‘see what happens’ to the
R-coordinate of x( j). From the conditions in Proposition 5.2 and the composi-
tion formula (4.11) it follows that with starting probability x(0) = e (which is
the reference point of (5.28)) we have almost surely for P0,

|r̃ j|R, |ñ j|N , |ṽ j|V �C; j = 1,2, . . . , (5.29)

for someC> 0. Alternatively, what (5.29) says is that the increments r−1j−1r j =
r̃ j have conditional distribution μk j+1,k j with uniformly bounded supports. We
shall now apply the gambler’s ruin estimate of §5.5.3 to the process y( j) ∈ Y .
The fact that T̂V satisfies conditions (I)–(IV) of §5.4 on Y follows from the fact
that these conditions are satisfied by T on X . This implies that the conditions
of §5.5.1 and Remark 5.3 are satisfied for T̂V on the Euclidean bundle Y .
We define the event

Es = [Lv j < 1; L ∈L , 1� j � s], (5.30)

whereL is the set of real roots of R. Since V = R/N these roots can be iden-
tified to linear functionals on V . By applying (5.28) it follows therefore that
there exist c1, α > 0 such that

P0(Es)� c1s
−α ; s� 1. (5.31)

We shall now choose an appropriately large C > 0 and define the corre-
sponding sets in R:

Bs =
[
r = nv,n ∈ N, v ∈V ; |n|N �CsC, |v|V �CsC

]⊂ R. (5.32)

We shall also use the representation of (2.21) and because of the definition
of the ṽ j we can write

r j = ñ1ṽ1ñ2ṽ2 · · · ñ j ṽ j = ñ1ñ
v1
2 · · · ñ

v j−1
j v j. (5.33)

If the constants C in (5.32) are large enough we can then use (5.33) and
Lemma 3.4 as in the argument of §3.5.2 to deduce that

Es ⊂ [x( j) ∈ Bs×K; j = 1, . . . ,s] = Ẽs; s= 1,2, . . . , (5.34)

where to estimate the last factor in (5.33) we use (5.29). This and (5.31) there-
fore imply that

P0(Ẽs)�Cs−c; s= 1,2, . . . . (5.35)

This is the key step in the proof and it gives condition (ii) of Criterion 5.1. On
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the other hand, for the Haar measure on R, drr = dndv, r = nv ∈ R = N�V ,
we see that

|Bs×K|�CsC; s= 1,2, . . . . (5.36)

The final conclusion is that the conditions of Criterion 5.1 are satisfied for the
sets Es = Bs×K. Condition (i) follows from (5.36) and condition (ii) from
(5.35). This criterion therefore completes the proof of the proposition in the
case R= N�V .

5.6.3 The case R= N�H

The proof for this more general case is almost identical to the previous one – it
is just the notation that becomes more involved. We set x( j) = r jk j; r j = n jh j;
r j = r̃1r̃2 · · · r̃ j; y( j) = h jk j ∈ Y ; r̃ j = ñ jh̃ j; r j, r̃ j ∈ R; n j, ñ j ∈ N, k j ∈ K,
h j, h̃ j ∈ H,h j = h̃1 · · · h̃ j and Y = H ×K. The quantity y( j) is the projected
Markov chain by the projection X → Y = H×K that is induced by the canon-
ical projection R→H and, as before, for the starting probability x(0) = eX we
have almost surely

|r̃ j|R, |ñ j|N , |h̃ j|H �C; j = 1,2, . . . , (5.37)

for some C > 0. Here as in (5.29) we use (4.11) and the conditions on T̂ . Let
L = (L1, . . . ,Lp) be the real roots of R. These can be identified with linear
functionals on h/[h,h] where h is the Lie algebra of H. Since V = H/[H,H]

is Abelian they can also be identified with linear functionals on V . We shall
also denote by p : H→V the canonical projection. If we denote by p(y( j)) =
v( j) = v jk j ∈ V ×K, v j ∈ V , k j ∈ K, the projected chain by the induced pro-
jection p : Y = H×K→ V ×K = Z we obtain a symmetric Markov chain in
the Euclidean bundle Z. Now we shall use the gambler’s ruin estimate (5.28)
for that chain in Z in the conical domain Ω = [v ∈ V ; Lv < 1, L ∈L ] as in
§5.6.2. We define the event

Es = [Lh j < 1; L ∈L , j = 1, . . . ,s]

= [Lv j < 1; L ∈L , j = 1, . . . ,s]; s� 1.
(5.38)

We then obtain from (5.28),

P0(Es)�Cs−α ; s= 1,2, . . . , (5.39)

for appropriate constantsC,α > 0.

For an appropriately largeC > 0 we shall define the following set in R:

Bs = [r = nh, n ∈ N, h ∈ H; |n|N �CsC, |h|H �CsC]⊂ R. (5.40)
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We use again the representation of (2.21),

r j = ñ1h̃1 ñ2h̃2 · · · ñ jh̃ j = ñ1ñ
h1
2 · · · ñ

h j−1
j h j. (5.41)

This together with (5.37) and Lemma 3.4 and the argument of §3.5.2 gives
Es ⊂ [x( j) ∈ Bs×K; j = 1, . . . ,s] = Ẽs. (5.42)

This together with (5.39) implies that

P0(Ẽs)� cs−c; s= 1,2, . . . (5.43)

and gives condition (ii) of the criterion. To finish the proof, as in case (i), we
observe that the d̂x= dndh d̂k measure satisfies |Bs×K|�Csc, s� 1, and this
gives condition (i) of the criterion. Criterion 5.1 applies again and we are done.

5.6.4 The general case (iii)

Let X = R×K be a general bundle and let T̂ be a Markovian symmetric oper-
ator as in the proposition. We shall then construct R̃= N�H and π : R̃→ R a
projection as (3.14), where N and H are nilpotent and therefore R̃ is as in case
(ii). We shall also abuse notation and continue to write π : X̃ = R̃×K→ R×K
for the induced mapping. The reference measure on X̃ is d̃x= drr̃⊗ d̂k, r̃ ∈ R̃,
k ∈ K. We shall prove the following lemma.
Lemma 5.4 We can lift T̂ to a left-invariant operator T̃ on X̃ in the sense
that T̃ ( f ◦π) = T̂ ( f )◦π , f ∈C∞

0 (X). This can be done in such a way that T̃ is
symmetric with respect to d̃x and satisfies conditions (I)–(IV) of §5.3.1.
Let us first assume the lemma and complete the proof of the proposition. To

see this let φ̃n be the kernel of T̃ on X̃ . Then for the corresponding reference
point ẽ ∈ X̃ we have φ̃n(ẽ, ẽ)� cn−c, n � 1 (note π(ẽ) = e) by §5.6.3. We can
now use the same reduction as in §3.2.2 by using the Harnack principle of
§5.4. The conclusion is the required estimate φ̂n(e,e) � cn−c for T̂ on X . This
completes the proof of the proposition.

Proof of Lemma 5.4 The proof is an elaboration of §3.2.2. Let T̂ = L⊗{∗μ}.
We can lift each individual measure μh,k to some measure μ̃h,k ∈ P(R̃) so that
π̌(μ̃h,k) = μh,k. To guarantee that conditions (i)–(iii) of §2.4.1 are satisfied by
each μ̃h,k is clearly no problem. The operator T̃ = L⊗{∗μ̃} so obtained is
Markovian because L is. To guarantee the symmetry we can always replace T̃
by 1

2 (T̃ + T̃ ∗) which by (4.10) and (4.15) is also Markovian since L∗ = L is.
The only issue is condition (IV) of the continuity of the kernel.
To address that question we shall use the existence of a smooth section, that
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is, a continuous mapping σ : R→ R̃ such that π ◦σ = identity on R. It is here
that the assumption that R is simply connected is used because this implies that
kerπ is connected and then we use Varadarajan (1974, §3.18.2) – see the re-
mark below.We can then take μσ

h,k = σ̌(μh,k)∈P(R̃), the image by σ . The con-
tinuous dependence in h, k of μσ

h,k is then guaranteed, but these measures are
supported in σ(R) and are in general singular. To mend that difficulty we write
M = kerπ ⊂ R̃ and fix θ ∈ P(M), some smooth compactly supported measure.
NowM×σ(R)→Mσ(R) = R̃ is a diffeomorphism and we can use this to de-
fine μ̃h,k = θ ⊗μσ

h,k ∈ P(R̃) which is now smooth and depends continuously on
h, k. Now, by condition (IV) on T̂ , the measures dμh,k = ϕh,k(r)dr are smooth
and depend continuously on h, k. With this choice of μ̃ therefore, the operator
T̃ satisfies condition (IV) and this completes the proof of the lemma.

Remark The existence of a smooth section (Varadarajan, 1974, §3.18.2) is a
difficult technical point and it is desirable to avoid using it. We can of course
fall back on the alternative proof that we give in §5.11.2 below for Gaussian
measures where no liftings or sections are needed. But for the construction of
the above sections it should be noted that both R̃ and R are simply connected
soluble groups and for such groups we can use the exponential coordinates of
the second kind. (cf. Varadarajan, 1974, §3.18.11 and also §7.3.1 in Part II).
The required sections can then be constructed by lifting the appropriate one-
parameter subgroups. This type of construction will be systematically used in
the geometric theory in Part II. All the details can be found in §8.4. But there
the construction is difficult because we demand much more. For our needs
here, the argument used in §11.3.3 is good enough.

5.7 Proof of Theorem 4.7

5.7.1 The reduction

Let G be some connected NB-group that can be written in the form G = RK,
R∩K = {e} with R some simply connected NC-soluble closed subgroup and
K compact. By Proposition 5.2 and the consideration of §5.3.6 it follows that
Theorem 4.7 holds for this groupG. For the proof, Lemma 4.8 and the Harnack
principle are used once more, exactly as it was in §4.5.2.
On the other hand, by the reduction in §3.2.2, in proving Theorem 4.7 we

may assume that the groupG is simply connected and therefore G=Q�S for
a simply connected soluble NC-group Q and S semisimple. What is new here
with respect to Chapter 3 is the presence of e−λ = ‖μ‖op of (4.4), but in the
reduction §3.2.2 this clearly causes no problem because of §3.1.6.
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As we previously explained in §4.6.1 we can then find Z ⊂ S some discrete
central subgroup such that G1 = Q� (S/Z) is of the required form RK. What
remains to be done is therefore to give a proof of the following new type of
reduction that has nothing to do with Harnack.

Remark 5.5 To elaborate on the choice of Z, we write S = Sn × Sc as a
direct product of it non-compact and compactor factors, Sn and Sc respectively.
Then Z ⊂ Sn is taken as a subgroup that is central in G and of finite index in
Z(Sn) the centre in Sn. Then if Sn/Z = NAKn is the corresponding Iwasawa
decomposition, we can take R= QNA and K = KnSc.

Reduction We shall show that we can deduce the validity of Theorem 4.7 for
the group G from the validity of the theorem for the group G1 = G/Z.

The proof of this reduction is interesting because it relies on the new ideas
that we shall explain in the next two subsections. To make the exposition self-
contained we shall start by recalling some definitions from §2.14.1.
Let G be some compactly generated locally compact group, and H ⊂ G be

some compactly generated closed subgroup. For all h ∈ H we can then define
|h|H , |h|G the distance from the neutral element in two different ways, that is,
with h considered as an element of G or h as an element of H. And it is clear
that |h|G � C|h|H +C for appropriate constants. The proof of this is obvious
(think of the case of discrete groups). We shall say that H is not distorted in G
if the estimate the other way round also holds and we have |h|H �C|h|G+C.
This is a rare phenomenon indeed. For more details and references on the above
the reader should refer back to §2.14.
Let us now go back to the notation of the previous section. We have the

following result.

Lemma 5.6 (Distortion lemma) The subgroup Z in the reduction of §5.7.1 is
not distorted in G.

The proof of this lemma will be given in §5.7.4 below.

5.7.2 The use of positive-definite functions

Let G be some locally compact group, let φ(g) � 0 be continuous compactly
supported, and let dμ(g) = φ(g)drg ∈ P(G) dμ∗n(g) = φn(g)drg as in §3.3.1.
Then we have

φ2n(x) =
∫
φn(xy−1)φn(y)drg, (5.44)

and if μ is symmetric we have φ(x−1) = φ(x)m(x) for the modular function.
The function φ2n(x) is not positive definite in general on G since we do not
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even have φ2n(x) = φ2n(x−1) (Weil, 1953, §14; Naimark, 1959, §30). But if we
restrict φ2n to some central subgroup Z ⊂G we obtain a positive-definite func-
tion because by (5.44) for z1, . . . ,zn ∈ Z we have (we use φn(x−1) =m(x)φn(x),
that the zi are central and that m(zi) = 1 (cf. §2.3.5) and, in the integral below,
make the change of variable g→ gzi)

φ2n(ziz−1j ) =

∫
G
φn(ziz−1j g−1)φn(g)drg=

∫
G
φn(z−1j g−1)φn(zig)drg

=

∫
φn(zig)φn(z jg)m(g)drg. (5.45)

Note We recall that the complex-valued function f (g) is positive definite if
and only if ∑ f (gig

−1
j )λiλ̄ j � 0, λ j ∈ C. What we shall use is that then f (e) �

| f (g)| (see Naimark, 1959).

5.7.3 Proof of the reduction in §5.7.1
Let dμ = φ(g)drg ∈ P(G) be as in Theorem 4.7 and let dμ̌ = φ̌ drg1 be its
image on G1 by the projection π : G→ G1. We then have

φ̌n(x) = ∑
g∈π−1(x)

φn(g); x ∈G1,

φ̌n(e) = ∑
g∈Z

φn(g); Z = kerπ .
(5.46)

Since φ2n is positive definite on Z we have φ2n(e) � φ2n(z), z ∈ Z, and (5.46)
implies that

φ̌2n(e)� φ2n(e)A2n, (5.47)

where An is the number of points of the set

[z ∈ Z; φn(z) �= 0] = Z∩ suppφn. (5.48)

Since the support of μ is compact, suppφn ⊂ [|g|G �Cn] and by the distortion
lemma (Lemma 5.6),

|suppφn∩Z|�
∣∣z ∈ Z, |z|Z �Cn

∣∣. (5.49)

This clearly implies that An �Cnd , where d is the rank of the Abelian group Z.
The reduction of §5.7.1 clearly follows from this and (5.47) and where Harnack
is used to deal with odd integers.
For the proof of Theorem 4.7 it remains therefore to prove Lemma 5.6.
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5.7.4 Proof of Lemma 5.6

The lemma is in fact contained in §11.4 where the proof relies on a general
principle that is used extensively in geometric theory (see Exercise 11.9). The
proof that I give below is interesting because it relies on different ideas. How-
ever, the reader may want to skip it until they study the geometric theory of
Chapter 11.
Let G= RK = Q�S be some simply connected group,Q be the radical and

S = NAK be the Iwasawa decomposition of the semisimple group S (in the
terminology of §4.6.1) and R= QNA. We can then identify K = R\G with the
homogeneous space (Rg : g ∈ G). Now Z ⊂ K is some discrete subgroup that
is central in G and K/Z is compact. It follows that Z, by right multiplication,
induces a discrete cocompact action on K = R\G. We can assign R\G with
the distance ḋ(k,h), k,h ∈ K, induced by the left-invariant group distance dG
of §1.1 on G. We have ḋ(k,h) = infr dG(rk,h); the balls for that distance are
the balls in G by the projectionG→ R\G and they are relatively compact. The
distance ḋ is invariant by the Z-action.
We can identify Z ⊂ R\G and since clearly ḋ(k,h) � dG(k,h) the lemma

will follow as soon as we can show that

|z|Z �Cḋ(e,z)+C; z ∈ Z. (5.50)

We shall need the following result.

Sublemma 5.7 For all c> 0 there exists C> 0 such that the number of points
|z ∈ Z; ḋ(e,z)< c|�C.

Proof Using the fact that the action of Z on K is discrete we see that there
exists ε > 0 small enough so that Bε(z1)∩Bε(z2) = /0, z1,z2 ∈ Z, z1 �= z2, for the
balls Bε(k0) = [k ∈ K; ḋ(k,k0)< ε]. Indeed, if that were not the case, using the
fact that Z is central, we would be able to find sequences zn ∈ Z, rn ∈ R, both
tending to infinity and such that znrn → 0 in G, which gives a contradiction.
Now the Haar measure of K as a group is invariant by the Z-action and all the
above balls have the same measure. The sublemma follows.

Proof of (5.50) Let ḋ(e,z) = r and e= k0,k1, . . . ,k2r = z some ‘geodesic’ in
the sense that the ‘size of the edge’ is ḋ(k j+1,k j)� 1, k j ∈ K. Such a geodesic
can be constructed because an analogous geodesic can be constructed in G for
the distance dG. By the cocompactness of the Z action on K it follows that we
can assume that k j = z j ∈ Z provided that we increase the size of the edge by
ḋ(z j+1,z j) � c for some appropriate c > 0 (this is similar to what we did in
§2.14.2). By the Z-action and the sublemma it follows that z−1j+1z j ∈ F some
finite set of Z.
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The conclusion is therefore that for a set of generators that contains F , the
word distance of z in Z from e is � 2r. This completes the proof of (5.50), and
Lemma 5.6 follows.

Exercise A less ad hoc proof can be given using the ideas of Example 11.9
from Part II. Indeed, (5.50) is a consequence of the fact that both on the group
K, with group distance, and on R\G the group Z acts cocompactly as a group of
isometries. Deduce from this that the identification K = R\G is a coarse quasi-
isometry in the sense of Chapter 11. The subtle point here is that on R\G, the
distance is not Riemannian. On the other hand, one can use ‘geodesics’ in the
above sense for these two distances.

5.8* The Global Structure of Lie Groups

In this section we shall use a different, more sophisticated method and give an
alternative proof to unify the two reductions of §§4.6 and 5.7.
The key fact that was used for the reductions of both Theorems 4.6 and 4.7

from a general Lie group to the special groups RK (with R soluble, K compact,
R∩K = {e}) was the following principle (cf. (4.29)):
If G = Q� S is the Levi decomposition of a simply connected group G and

S = NAK is the Iwasawa decomposition (using the generalised terminology
of §4.6.1 again) of the semisimple group S, then there exists Z ⊂ K a discrete
central (in G) subgroup such that G = G/Z ∼= R · (K/Z), R = QAN is of the
required form and K/Z is compact.

Unfortunately however, this general principle does not suffice to complete
the reductions and a number of ad hoc additional considerations are also needed
to complete the proofs. The aim of this section is to give a more global ap-
proach to the problem.

The maximal normal torus

We shall start from an easy observation that is in some sense dual to the pre-
vious principle. Let G be some connected Lie group then there exists T ⊂ G a
maximal normal torus in G. This means that T ∼= Td is a normal subgroup and
is maximal under these conditions. Some of these facts have already been used
in §2.6.1. But it is also clear, though not essential, that (i) T is unique and (ii)
T is central. All these facts are well known (see §11.3 later on and §2.6.1).
Exercise Use the theorem that every soluble compact group is a torus (see
Hochschild, 1965, §III.1.3) to prove all these facts.
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If we use the reductions of (2.17) and §3.2.2 we also see that Theorems 4.6
and 4.7 are ‘equivalent’ for G and for G/T , and therefore it suffices to prove
these theorems for groups that contain no normal torus. Then all we need to
prove in order to close this circle of ideas is a generalisation of Lemma 5.6 and
the following result.

Lemma 5.8 Let G be some connected Lie group that contains no normal
torus. Let π : G̃=Q�S→G be the simply connected cover of G together with
its Levi decomposition and let Z̃ = kerπ . Then Z̃ is not distorted in G̃.

This presents some independent interest but the main point is that it can be
combined with the positive-definite function of §5.7.2 to give the following
result.

Theorem (General reduction) Theorems 4.6 and 4.7 are equivalent for G, for
G/T and for (G̃/T ), the universal cover of G/T.

From this reduction we conclude that for both these theorems we may as-
sume that the group is simply connected. For such a group we use G= Q� S,
Z ⊂ S, as at the beginning of this section, to reduce the problem to G = RK.
We obtain thus a much more unified procedure to make the reductions of The-
orems 4.6 and 4.7. Indeed, the argument of §5.7.3 works ‘both ways’ and gives
the reduction for the upper estimate as well. We shall skip the details.

Proof of Lemma 5.8 Given that this lemma is more of an accessory than es-
sential for our theorems, we shall be brief.
Let N ⊂ Q be the nilradical of G̃. Then Z̃ ∩N ⊂ Z(N) the centre of N and

therefore Z̃ ∩N = {e}, for otherwise N/(Z̃ ∩N) and therefore also G would
contain some normal torus (see Varadarajan, 1974, §3.6.4).
If we quotient by N we obtain G̃/N = V × S = GV for V = Q/N some Eu-

clidean space, where the product is direct rather than only semidirect because
of Varadarajan (1974, §3.8.3). ThenW = θ (Z̃) the image of Z̃ in θ : G̃→ G̃/N
is closed because π(N)⊂ G is the closed nilradical of G (this is a general fact
on the analytic nilradical; see Varadarajan, 1974, §§3.18.3–3.18.3). Indeed, to
say that W is not closed is to say that we can find n j ∈ N, z j ∈ Z̃, such that
n j,z j→∞ and yet n jz−1j → 0. This fact is symmetric in N and Z̃ and is equiva-
lent to the fact that π(N) is not closed inG (we have already used this argument
in §2.11.3). It suffices therefore to prove that the central subgroupW ⊂ GV is
not distorted in GV because θ is one-to-one on Z̃. This, however, is easy. In-
deed,W ⊂ GV is a central subgroup and thereforeW ⊂ V ×Z(S) = VZ for the
discrete centre Z(S) of S, which by Lemma 4.9 is an Abelian group of finite
rank. From this it follows that every closed subgroup of VZ is not distorted in
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VZ . On the other hand, from Lemma 5.6,VZ is not distorted in GV . And we are
done.

Remark A discrete central subgroup in a non-Abelian nilpotent group as in
Varadarajan (1974, §3.6.4) is in general distorted. It follows that the condition
on the normal torus that we imposed on G is essential.

Part 5.2: The Heat Diffusion Kernel

Overview of Parts 5.2 and 5.3

The reader could or should skip both these parts in a first (or even a second!)
reading of the book.
The main aim is to prove the same results as in Part 5.1 but with measures

that are not compactly supported. To achieve this we have to overcome two
technical difficulties. First, for such measures we do not have the Harnack
estimate of §2.5 or again of §5.4 and then the lifting of the operators of §5.6.4
is tricky to carry out unless the support is compact. Rather than battle along
with these problems and obtain maximal generality, we decided to bypass these
snags and proceed as follows:

(i) In §5.11.2 we give a proof that is based on the ideas of Part 3.3 and this
bypasses the lifting altogether.

(ii) To recover the Harnack estimate we have to restrict ourselves to the heat
diffusion kernel of the semigroup e−tΔ where we have Harnack for dif-
ferent reasons altogether.

In the proof that we give in §5.11.2 we have to assume that the group is NB.
This works of course for the main theorem but not for the lower estimate of the
B-theorem in §1.3.1. This is done in Part 5.3 and here therefore we have to do
the lifting of §5.6.4.
So in Part 5.3, either we must restrict ourselves to compactly supportedmea-

sures and then we can perform the lifting of §5.6.4 or we must ‘lift’ the heat
diffusion kernel. This last point leads to additional complications related to
the Gaussian decay of the new kernel. These new problems are certainly inter-
esting but lie outside the main theme of the book. We leave it therefore until
Appendix D and Appendix E to explain how one deals with these additional
difficulties.
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5.9 Preliminaries and the Reductions

Here G will be a connected NB-group and � will denote a sub-Laplacian as
in §2.12. And as in (2.52), we write φt for the heat diffusion kernel of the
semigroup e−t�. Theorem 4.7 for this semigroup says that there exist constants
C, c such that

φt(e)�Ce−λ tt−c; t � 1, (5.51)

where λ � 0, as in (4.36), is the spectral gap of�.
The first observation is that in proving this we may assume that G is simply

connected. To see this let π : G̃→ G denote the simply connected cover and
�̃ some lifting of the Laplacian on G̃ as in §3.6.1. For φ̃t the corresponding
kernel of e−t�̃ on G̃ we have, as in (5.46),

φt(e) = ∑
z∈kerπ

φ̃t(z). (5.52)

Since by §3.1.6 the spectral gap of �̃ is λ , again we see that the validity of
(5.51) for φ̃t implies the same fact for φt .
The next reduction is as in §5.7.1 and is more subtle. The simply connected

group G can be written G= Q� S. This is the Levi decomposition where Q is
the radical and S is semisimple. As we saw in §4.6.1 and Remark 5.5, we can
find Z1 ⊂ S∩Z(G) some discrete subgroup that is central in G and such that
S1 = S/Z1 has finite centre and admits the Iwasawa decomposition S1 = NAK
(in the sense of §4.6.1) where K is now compact. Again we denote π : G→
G1 = G/Z1 and with � and φt as above on G we denote by �1 = dπ(�)

and φ (1)
t the corresponding convolution kernels. The spectral gap λ of �1 is

again the same as for� by §3.1.6 and the reduction consists in showing that it
suffices to prove that there existC, c such that

φ (1)
t (e)�Ce−λ tt−c; t � 1, (5.53)

and that then the corresponding (5.51) follows on G. To see how (5.53) implies
(5.51) we shall need to use the Gaussian estimate (see Varopoulos et al., 1992,
IX.1.2)

φt(g)�Ce−λ t exp
(
−|g|

2
G

ct

)
; t � 1, g ∈ Z1, (5.54)

where C, c are appropriate constants and |g|G is as in §1.1 and where we use
the fact that for the modular function (see §2.3.5) m(Z1) = 1. It follows that

φt (z)� φ1/2t (e)e−λ t/2 exp
(
−|z|

2
G

2ct

)
; z ∈ Z1 (5.55)
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because the restriction of φt on Z1 is positive definite; see the note in §5.7.2.
From (5.52) and (5.55) it follows therefore that

φ (1)
t (e) = ∑

z∈kerπ
φt(z)�Cφ1/2t (e)e−λ t/2 ∑

z∈kerπ
exp

(
−|z|

2
G

ct

)
. (5.56)

Now, by Lemma 5.6 we have |z|G ∼ |z|Z1 for z ∈ Z1 and since Z1 is a finitely
generated Abelian group of rank d say, we can estimate the sum in the right-
hand side of (5.56) by td and conclude that

φ (1)
t (e)�Cφ1/2t (e)e−λ t/2td . (5.57)

Our assertion follows from this. If we denote by R= QNA the group that cor-
responds to the Iwasawa radical, then R is simply connected and soluble and
the bottom line is the following result.

Theorem 5.9 (Reduction) In proving (5.51) we may assume that G = RK,
where R is simply connected soluble and K is a compact subgroup such that
R∩K = {e}.

5.10 Gaussian Left-Invariant Operators on Principal
Bundles

In this section we shall consider X = R×K, a principal bundle as in §4.3.1,
and T̂ = L⊗{∗μ}, Markovian left-invariant operators that satisfy conditions
(I), (III), and (IV) of §5.3.1, but instead of condition (II) satisfy
(II)′ T̂ is a Gaussian left-invariant operator in the sense of §4.7.
In Appendix E we shall examine these Gaussian operators in more detail.
These conditions suffice for the considerations of §5.3 to go through and

again we can construct x(n) ∈ X , n = 1,2, . . . , the Markov process. For that
process the proofs given in §5.3 show that we can again use Criterion 5.1. As
in §5.6 we shall be able to use this criterion to prove the following result.
Proposition 5.10 Let X, T̂ , φ̂ be as above, where R is assumed to be a simply
connected soluble NC-group. Then there exist constants C,c> 0 such that

φ̂2n(e,e)�Cn−c; n� 1, (5.58)

for any reference point as in §5.3.1.
The proof of this proposition will be given in §5.11 below. But before that

we shall show how the above proposition implies estimate (5.51) for the special
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NB-groupsG= RK as in the reduction theorem (Theorem 5.9). This therefore
completes the proof of Theorem 4.7 for the heat diffusion kernel.

To see this we review the argument of §5.3. Briefly, we consider� as in §5.9
onG and we identifyGwith X =R×K. We write Tn f = e−n� f = f ∗ν∗n, with
ν∗n=ψn drg. Here it is convenient to go back to the notation of §5.3 and denote
the convolution kernel by ψ . We can identify Tn on X with a left-invariant
Gaussian operator as in §5.3.4 that admits a continuous kernel φn(x1,x2) as
in (5.12). We then define χ as in (5.13) and the corresponding Tχ , ϕ0, T̂ , d̂k,
λ � 0 in §5.3.5. Now T̂ satisfies the conditions of the proposition and the
relation between φn and φ̂n, the kernel of T̂ n, is as in (5.17), (5.18). Since on
the other hand ψn(eG) ∼ φn(e,e), as in §5.3.6, estimate (5.58) implies that ψt
the kernel of e−t� satisfies ψt(e) 
 e−λ tt−c for t = 2,4, . . . , as in (5.51). A
simple use of the Harnack estimate of §2.12.1 finishes the proof of (5.51) for
all t > 1.

5.10.1 The Gaussian Euclidean bundle

As in §5.5.1 we can specialise the definition of Gaussian Markovian left-invar-
iant operators to the Euclidean bundles X = V ×K, that is, when R = V is a
Euclidean space V = Rd . Then as in (5.24),

T̂ f (x) =
∫
X
M(x,y) f (y) d̂y; f ∈C∞

0 , (5.59)

with d̂y as in §5.5.1 and where M satisfies the same conditions as in §5.5.1
with the only modification being thatM(γ;h,k) is not compactly supported but
satisfies the Gaussian estimate

C1 exp(−c1|γ|2)�M(γ;h,k)�C2 exp(−c2|γ|2); γ ∈V. (5.60)

The Markov chain x(n) ∈ X can then be defined as in (5.26):

P[x(n+ 1)∈ E//x(n) = (γ,k)] =
∫
E
M(λ − γ;h,k)dλ d̂h. (5.61)

We shall prove in §5A the same gambler’s ruin estimate as in (5.28) for the con-
ical domainΩ×K. HereΩ=ΩL = [u∈V, Lu< 1; L∈L ] is the same conical
domain (5.27) for some finite set of linear functionals L ∈ V ∗ that satisfy the
NC-condition.What will be proved is that the estimate of (5.28) extends to this
Gaussian case also.

Remark We shall see in (5.73) below that far less than condition (5.60) is
actually needed (see §§3A and 5A, and also §D.5 at the end of Part I of the
book). In particular, no ‘essential’ lower estimates are needed.
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5.11 Proof of Proposition 5.10

5.11.1 The plan of the proof

Having given the preliminaries we shall in this section give the proof of Propo-
sition 5.10.
The most obvious way to write the proof down is to imitate the proof given

in §5.6. In this approach we first give the proof for special bundles of the form
X̃ = R̃×K where R̃=N�H, whereN,H are nilpotent, and exploit the fact that
for any simply connected soluble group R we can find a group R̃ as above and
a projection R̃→ R. The two technical points that were used in passing from
X to X̃ were the Harnack estimate of §5.4 and the lifting of T̂ on X to T̃ on
R̃ of Lemma 5.4. These two points in the generalisation of this approach will
be dealt with in Appendix D. We shall give no more details here on this con-
struction because it will not be used immediately in what follows. Instead of
adopting this approach it is more direct to generalise the approach of Part 3.3,
which does not require the lifting of T̂ to an overgroup R̃→ R.
In this approach we shall use the decomposition of the soluble simply con-

nected NC-group R = NR�QR of §3.9.2, where NR is nilpotent and QR is a
soluble R-group. We then proceed exactly as for the group N�H in §5.6.1(ii)
and show that the conditions of Criterion 5.1 are satisfied. We have to adapt
the argument of §5.6.3 and take into account the following two changes:

(i) QR is a soluble R-group (see §2.2.2) but not necessarily nilpotent;
(ii) T̂ is not compactly supported (as in condition II of §5.3.1) but it is Gaus-

sian as in §4.7.
This approach offers, of course, a new way of giving the proof of Proposi-
tion 5.2 which, although based on the same principles, differs substantially in
the detail.

5.11.2 Verification of the conditions of Criterion 5.1 on X = R×K,
R= NR�QR

We shall follow very closely the proof given in §§5.6.2 and 5.6.3 and start by
adapting the notation there. Then as we go along we shall simply point out the
changes that have to be made. In particular, a good understanding of these two
sections as well as Part 3.3 is essential in this subsection. The reader could or
should skip the details in a first reading.

Again, we set x( j) = r jk j ∈ X = R×K, r j ∈ R, k j ∈ K, for the Markov chain
generated by T̂ where now r j = n jh j with n j ∈ NR, h j ∈ QR, and where again
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we write r j = r̃1 r̃2 · · · r̃ j, r̃ j ∈ R, and also y( j) = h jk j ∈ Y for the projected
Markov chain by the projection X→Y =QR×K that is induced by the canon-
ical projection R→QR. We also set r̃ j = ñ jh̃ j, ñ j ∈NR, h̃ j ∈QR. We assign the
starting probability P0 with x(0) = eX = (eR,eK) a reference point as in §5.3.1.
Here (5.37) no longer holds; instead we have the following Gaussian estimate.
We fix s� 1 and consider the event

Bs = [|r̃ j|R � log(s+ 10); j = 1, . . . ,s]; (5.62)

then by the Gaussian property of T̂ (see §§4.7 and 5.10) and the product for-
mula (4.11) we have

P0[∼Bs] = O(exp(−c log2(s+ 10))) (5.63)

for the complementary event since this is the union of s events that satisfy
the same estimate. We now use the distance distortion of (2.59) which holds
because NR lies in the nilradical of R and we see that onBs we have

|ñ j|NR �Csc, |h̃ j|QR �C log(s+ 10); 1� j � s, (5.64)

for appropriate constants (the second estimate follows from the projection R→
QR). Expressions (5.62) and (5.64) combined are the replacement for (5.37).
As in (5.40) we denote

Bs =
[
r = nh, n ∈ NR, h ∈ QR; |n|NR �CsC, |h|QR �CsC

]⊂ R, (5.65)

for some appropriate large C, and our aim is to verify that Criterion 5.1 holds
for the sets

Es = Bs×K ⊂ X ; s= 1,2, . . . . (5.66)

Condition (i) is evident as before because for the measure d̂x= drr⊗ d̂k we
have drr = dndh, n ∈ NR, h ∈ QR (notice that both these groups are unimodu-
lar).

To verify condition (ii) of the criterion we proceed as before and we write
the analogue of (5.41):

r j = ñ1h̃1ñ2h̃2 · · · ñ jh̃ j = ñ1ñ
h1
2 · · · ñ

h j−1
j h j. (5.67)

This will be used together with the following two observations:

(i) We consider the canonical mappingQR→QR/N∩QR = R/N =V where
N is the nilradical of R and where thenV is a Euclidean space (we have already
noted in §3.8.4 that N ∩QR is an analytic subgroup but, just as in §3.8.4, this
fact is not essential here). We shall compose this mapping with the projection
X → Y → V ×K and project x( j) first to y( j) ∈ Y and then to v( j) = v jk j ∈
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V ×K, v j ∈ V , k j ∈ K. Here V ×K is a Euclidean vector bundle as in §5.10.1
and we can apply the gambler’s ruin estimate to deduce that the event

Ps = [Lv j < 1; 1� j � s, L ∈L ] (5.68)

has probability

P0(Ps)� cs−c; s� 1, (5.69)

for appropriate constants, whereL here is the set of real roots of the action of
qR on nR. They were defined in (3.53) and (3.59). For all this the reader should
go back to the discussion in §§3.8.2–3.8.4.
(ii) The next observation concerns ‖Ad(h j)‖nR and here we use the fact that
on the event Bs, we have |h̃ j|QR � log(s+ 1) and recall that h j = h̃1 · · · h̃ j. If
we use (3.66) (as we did in (3.69), (3.70)) we deduce therefore that on the
event Bs ∩Ps we have ‖Ad(h j)‖nR � Csc for appropriate constants. Notice
that here in the use of (3.66) the parameter A= O(logs).

If we combine this with the polynomial distortion of the exponential map-
ping (2.60) and use (5.64) we finally conclude that with appropriate constants
we have

|ñh j−1j |NR �Csc, 1� j � s, almost surely onPs∩Bs; s� 1. (5.70)

This combinedwith (5.64) and (5.67) gives x(s)∈Es almost surely onPs∩Bs,
s � 1, provided that the constants of the definition of Es in (5.65) and (5.66)
have been chosen appropriately large. Given (5.63) and (5.69), this fact gives
the required verification of condition (ii) of the criterion. And this completes
the proof of the proposition. It goes without saying that, since the criterion only
gives the estimate of the kernel for even time 2n, the Harnack principle, that as
we know holds (see (2.54)), has to be used at the end.

Part 5.3: Proof of the Lower B-Estimate

5.12 Statement of the Results and Plan of the Proof

The proofs in the third part of this chapter are modifications of those given
in Parts 5.1 and 5.2. Here we shall consider again φn(g)dg = dμ∗n(g) for a
compactly supported symmetric measure on the connected Lie groups G as
in Theorem 4.7 or φt(g), t > 0, which is the convolution kernel of e−t� for a
sub-Laplacian as in §5.9. As before, we shall denote e−λ = ‖μ‖op (see §3.1.1)
for the spectral gap of � as in §4.8. In the proof below, these two cases will
be treated simultaneously. The novelty of the situation lies in the fact that it is
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independent of the B–BN classification and that G is general. We shall prove
the following universal lower estimate.

Theorem 5.11 Let G and μ , λ be as above and let e ∈ G be the identity of
G. Then there exist constants C,c> 0 such that

φn(e)�Cexp(−λn− cn1/3); n� 2. (5.71)

For the classification as formulated in §1.10 estimate (5.71) is not essential.
Therefore, the reader who wishes to stay in the mainstream of the subject could
skip the proof in the rest of Part 5.3.
The proof of this theorem follows the same strategy as that of Theorem 4.7.

We shall prove it first when G = RK where R is a soluble, simply connected
closed subgroup as in §4.5.2. Once this is done the reduction given in §5.7 and
the use of positive-definite functions (as in §5.7.2) allows us to pass to general
groups. The details of these reductions will not be repeated here.
For the proof for these special groups G= RK we use the methods of §§5.3

and 5.4 and consider the principal bundle X = R×K with R simply connected
soluble and the left-invariant Markovian operators T̂ as in §5.3.1. These oper-
ators satisfy conditions (I)–(IV) of §5.3.1 in the compactly supported case or
the conditions of §5.10 in the case of the convolution kernel of e−t�. So far
nothing changes and the kernel φ̂n(x1,x2), x1,x2 ∈ X ; n � 1 is defined as in
(5.7). We shall need the following version of Proposition 5.2.

Proposition 5.12 Let X, T̂ , φ̂n be as above. Then there exist C,c > 0 such
that

φ̂2n(e,e)�Cexp(−cn1/3); n� 1, (5.72)

for every reference point e as in §5.3.
Once the proposition has been proved, the theorem follows as before, where
§5.3.6 and (5.20) are now used.
Here the group R is not necessarily NC and therefore the new difficulty in

the proof of the proposition lies in the Gaussian case because we cannot use
§3.8.1 and assume as in §5.11 that R = NR�GR. We must therefore fall back
on the method of §5.6 and first prove the proposition for the special groups
R = N �H where N, H are simply connected nilpotent. As we pointed out
in §5.11.1, difficulties arise when we pass from these special groups to the
general soluble groups of the general case. To wit, once this special case has
been proved and if R is a general simply connected soluble group, we can
construct R̃ = N�H as in (3.14) and a projection R̃→ R and X̃ = R̃×K and
the induced projection X̃ → X . From the validity of the proposition on X̃ we
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must then deduce the validity on X . To make this reduction we must lift the
Markovian operator T̂ on X to a Markovian operator T̃ on X̃ . This is exactly
what was done in Lemma 5.4 in the compactly supported case when T̂ satisfied
(I)–(IV) and there was no problem. The problems that arise in the lifting of the
heat diffusion kernel of the operator that corresponds to � on the bundle X
are explained in Appendix D: they are non-trivial. Having said all this, in the
next section we shall give the proof of the proposition for the special case
R= N�H.

5.12.1 The Euclidean principal bundle revisited

Let X =V ×K, V =Rd be a Euclidean principal bundle and let T̂ be a Marko-
vian left-invariant operator as in §§5.5.1 and 5.10.1. We shall write |x| = |v|V
for x= (v,k) ∈ X and we shall maintain the notation of §5.10.1 and denote by
M(γ;h,k) the kernel of T̂ as in (5.24) and (5.59). Here M will be assumed to
be continuous and symmetric as in (5.25) with M(0,h,k) > 0, M(−γ;h,k) =
M(γ;k,h), but, rather than the compactness of the support in §5.5.1 or the
Gaussian estimate in (5.60), we shall impose the more general condition∫

V
|γ|DM(γ;h,k)dγ <C; h,k ∈ K, (5.73)

forC independent of h, k and some high enough moment D.
We shall again denote by x(n) ∈ X the Markov chain generated by T̂ . We

shall consider the starting probability P0 where P0[x(0) = e] = 1 for the refer-
ence point of (5.72). In §5B we shall prove the following result.

Proposition 5.13 Let the Markov chain and the notation be as above; then
there exist C,c> 0 such that

P0 [|x( j)| <M; j = 1, . . . , t]� cexp
(
− t
cM2

)
; t,M �C. (5.74)

The conditions t,M>C imposed are in fact not essential. The estimate gives
from below the same estimate that we proved from above for sums of indepen-
dent random variables in the appendix to Chapter 2. How much simpler these
lower estimates are for sums of independent random variables is not clear. The
probabilistically inclined reader could ponder this. At any rate here (5.74) will
be assumed and in the next section we shall finish the proof of Proposition 5.12
in our special case.
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5.13 Proof of Proposition 5.12. Special Case

Here, as explained in §5.11.1, we shall assume that R = N�H where both N
and H are simply connected nilpotent groups and T̂ will be as in the proposi-
tion. We shall follow very closely the proof in Part 5.2 and the notation will
be as in §§5.11.2 and 5.6.3. Recall for the Markov chain induced by T̂ that we
write x( j) = r jk j ∈ X = R×K, with r j ∈ R, k j ∈ K and r j = n jh j, with n j ∈ N,
h j ∈H. We then define r j = r̃1 · · · r̃ j with r̃ j = ñ jh̃ j ∈ R, ñ j ∈N, h̃ j ∈H and we
clearly have h j = h̃1 · · · h̃ j (but not n j = ñ1 · · · ñ j !). We shall use the reference
point e as in the proposition and the starting probability of the Markov process
P0[x(0) = e]. We shall modify the definition of (5.62) and define instead the
events

Bs =
[
|r̃ j |R � cs1/3; j = 1, . . . ,s

]
; s� 1, (5.75)

for appropriate constants. Exactly as before we then have

P0[∼Bs] = O(exp(−cs2/3)),
|ñ j|N � exp(Cs1/3) and |h̃ j|H �Cs1/3 onBs,

(5.76)

for appropriate constants.
For the proof of the proposition we shall use the modified criterion §5.3.2

for the sequence of sets

Es = Bs×K ⊂ X ,
Bs =
[
r = nh; n ∈ N, |n|N � exp(cs1/3),

h ∈H, |h|H � exp(cs1/3)
]
; s� 1,

(5.77)

for appropriate constants. With d̂k as in §5.3 and d̂x= drr⊗ d̂k, the d̂xmeasure
of Es is clearly |Es| ∼ (dr measure of Bs ⊂ R) � exp(cs1/3). The remaining
issue is therefore to prove condition (ii)′ of the criterion in §5.3.2 and for this,
formula (5.41) is used again:

r j = ñ1h̃1 · · · ñ jh̃ j = ñ1ñ
h1
2 · · · ñ

h j−1
j h j. (5.78)

Towards that, we fall back on the notation of §5.6.3 and consider [H,H]

the connected closed Lie subgroup that corresponds to [h,h], where h is the
Lie algebra of H; we shall also denote V = H/[H,H] and by p : H → V the
canonical projection. We then project the Markov chain x( j) first to y( j) ∈
H ×K by the projection induced by the canonical R→ H and then use the
projection induced by p to project to v( j) = p(y( j)) = v jk j ∈ V ×K, v j ∈ V ,
k j ∈ K. On the Euclidean bundle V ×K we obtain thus a Markov chain as in
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§5.12 that satisfies (5.73) in both the case of compactly supported measures
and that of the heat diffusion kernel.

Exercise In the case of the diffusion kernel we obtain on V ×K the diffusion
induced by some V -invariant operator. This, together with Appendix D, will
certainly imply (5.73) and this is undoubtedly the best way to prove (5.73) in
that case. The disadvantage is of course that we have to use Appendix D. We
can avoid this by starting from the Gaussian estimate that is known to hold for
the heat diffusion kernel on G itself. From this we can then adapt the argument
that was used in §2.14.4 to obtain the required result. The details are left as an
exercise.

The eventsPs of (5.68) will now be defined as

Ps =
[|v j|V � s1/3; j = 1, . . . ,s

]
; s� 1. (5.79)

The probabilistic estimate (5.74) will be used and we can readily verify that
there exists c> 0 such that

P0[Ps]� exp(−cs1/3); s� 1. (5.80)

We shall now use the algebraic Lemma 3.4 and the final comment of §3.7.1,
and deduce that on the eventPs∩Bs we have

‖ Ad(h j) ‖n� exp(cs1/3) (5.81)

for appropriate c where ‖ ‖n indicates the operator norm on the Lie algebra
n of N for some fixed Euclidean norm on n. Then in (5.78) set ñ j = exp(ξ j),
ξ j ∈ n. By (5.76) and the polynomial distortion (2.60) of the exponential map-
ping for a nilpotent group, we then have |ξ j|n � exp(cs1/3) on Bs ∩Ps; and
by (5.81) we have |Adh j(ξ j)|n � exp(cs1/3) for appropriate constants c. The
estimate

|ñh j−1j |N � exp(cs1/3); j = 1, . . . ,s (5.82)

then follows by the exponential mapping (3.22) and the same polynomial dis-
tortion. This together with (5.76) inserted in (5.78) finally gives the required
result, namely that on Bs ∩Ps we have x(s) ∈ Es for all s � 1. This ver-
ifies condition (ii)′ of the criterion in §5.3.2 because by (5.76) and (5.80),
P0[Bs∩Ps]� exp(−cs1/3) for some c. So we are done.
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5A Appendix: Proof of the Gambler’s Ruin Estimate §5.5.2
5A.1 μ-subharmonic functions

This subsection consists of exercises in calculus. Clearly the reader could look
at the conclusions and skip the elementary but elaborate details. I should also
add that the same thing can be said about §5B.1 but that apart from these
first two subsections, the rest, while being essentially self-contained, relies on
rather sophisticated ideas from probability theory and homogenisation theory
(see ‘The final word’ at the end). How deeply the reader wishes to immerse
themselves in these subjects is of course their choice.
We shall consider throughout μ ∈ P(Rn) that are centred in the sense that∫
xdμ(x) = 0 and admit high enough moments:

∫ |x|D dμ(x) < +∞ for some
D� 1. We shall denote by σ = (σi j) the covariance matrix. We shall denote
by E(a,A) with A,a > 0 the class of measures as above for which suppμ ⊂
[|x|< A] and which satisfies

a−1I � σ � aI; σi j =
∫
xix j dμ(x) (5A.1)

for the identity matrix I = (δi j).
Now let F be a real continuous function defined in the domain Ω⊂ Rn. We

shall then say that F is E(a,A)-subharmonic at x ∈Ω if distance (x,∂Ω) > A,
F(x) � F ∗ μ(x) for all μ ∈ E(a,A). When A = +∞ then we must assume
that Ω= Rn and that the convolution is absolutely convergent. The aim of this
appendix is to construct important classes of subharmonic functions in conical
domains. We shall therefore start with some notation.

Polar coordinates We denote the unit sphere by Sn−1 ⊂ Rn and the north
pole by I = (1,0,0, . . . ,0). We write as usual r = |x|, x ∈ Rn, and denote the
colatitude by θ , that is, the scalar product 〈I,x〉= rcosθ . If (ϕ1, . . . ,ϕn−1) are
local coordinates that are defined in appropriate subregions of Sn−1 and ϕ1 = θ
then (r,ϕ1, . . . ,ϕn−1) are the polar coordinates that we shall use in the conical
region 0 < θ < 1/10. For every θ0 small enough and ν,k � 0 we shall then
define the function 0 � Fν,k(x) = rνu(θ ) ∈ C∞ for 0 � θ < θ0 with uk = u
defined as follows:

u(θ )

{
≡ 1, 0� θ � θ0/3,
= (θ0−θ )k, θ ∈ ]2θ0/3,θ0[;

(5A.2)

in between uk = u(θ ) is smooth and positive.
In the next few lines we shall give the main construction and show that for

all a > 0, A < +∞, we can choose ν , k (and θ0 > 0) as above and B > 0
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so that F = Fν,k is (A,a)-subharmonic at every x ∈ Ω∩ [F > B] = ΩB with
Ω= [θ < θ0]. Furthermore, we can make that choice so thatΩB approximates
the conical regionΩ in the sense that there exist θ ′0 < θ0 (in fact as close to θ0
as we like) and R> 0 so that

Ω(θ ′0,R) = [θ < θ ′0; |r|� R]⊂ΩB. (5A.3)

The same construction can also be carried out with A = +∞ and Ω = Rn

provided that the measures admit a high enoughmoment. Here, when A=+∞,
we shall only need this constructionwhen the family of measures satisfy (5A.1)
and are in addition Gaussian with fixed constants as in §2.12.1.
In the constructions that follow we shall impose the condition 0< ν < k and

this will guarantee that the boundary ∂ΩB = [r,θ ; rνu(θ ) = B] for large B is
close to the boundary of Ω. To wit,

on the boundary, if r is large enough, rν/k(θ0−θ ) = B1/k and

δ (x) = distance(x,∂Ω)∼ r(θ0−θ ) = r1−ν/kB1/k→ ∞, (5A.4)

as B→ ∞, but also δ (x) = o(r) for fixed B. This implies the inclusion (5A.3)
and the fact that distance(ΩB,∂Ω)> A if B is large enough and A is finite.

To fix ideas, assume first that A<+∞, and that μ ∈ E(a,A).
We shall use the notation of (5A.1) and the Taylor series remainder term

estimate

(μ− δ )F(x) =∑
i, j
σi jHi j(x)+O

(
sup
|x−y|<A

∣∣∇3F(y)∣∣) , (5A.5)

where Hi j = ∂ 2F
∂xi ∂x j

are the coefficients of the Hessian, ∇3 = ∂ 3
∂yi ∂y j ∂yk

, . . . in-

dicates the third-order gradient for Euclidean coordinates and δ is the Dirac
mass at the origin.
To compute the Hessian for r > 0 and 0 < θ < θ0 with θ0 small enough we

observe that

∇=

(
∂
∂x1

, . . . ,
∂
∂xn

)
=M

(
∂
∂ r

,
1
r

∂
∂ϕ1

, . . . ,
1
r

∂
∂ϕn−1

)
(5A.6)

(recall: ϕ1 = θ ), where the matrix M and its inverse M−1 are locally C∞ in
θ �= 0 and independent of r and where we restrict ourselves of course to a
coordinate patch on which the local coordinates ϕ1, . . . have been defined. It
follows that the principal term in the right-hand side of (5A.5) can be written
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as

s0,0
∂ 2F
∂ r2

+ 2
1
r

n−1
∑
i=1

s0,i
∂ 2F
∂ r∂ϕi

+
1
r2

n−1
∑
i, j=1

si, j
∂ 2F

∂ϕi ∂ϕ j
+α

1
r
∂F
∂ r

+
1
r2

n−1
∑
i=1

βi
∂F
∂ϕi

, (5A.7)

where here the coefficients are independent of r and are C∞ in θ �= 0. Further-
more, the matrix (si, j), i, j = 0, . . . ,n− 1 is symmetric and satisfies (5A.1) for
some new a > 0 as long as |θ |� θ0/10 where θ0 has been fixed once and for
all and is small as in (5A.2). (This is clear if r∼ 1. Then for any large but fixed
R0, in the region r ∼ R0 scale x→ R−10 x.) For the special function F = rνu(θ ),
(5A.7) becomes for large ν ,

rν−2
[
(ν(ν− 1)s0,0+να)u+(2νs0,1+β1)u′+ s1,1u

′′]
= rν−2
[
ν2(s0,0+O(1/ν))u+ 2ν(s0,1+O(1/ν))u′+ s1,1u

′′]. (5A.8)

The computation of ∇3F is elementary. For the estimates that we shall need
we shall set ∂0 = ∂

∂ r , ∂i =
1
r

∂
∂ϕi

and ∇ =M ∂ for the matrix M in (5A.6) and

∂ = (∂0,∂1, . . .). Then ∇2F =M∂M ∂F+M2 ∂ 2F and

∇3F = ∂ 2M ∂F+ ∂M∂ 2F+ ∂ 3F =
1
r2
∂F+

1
r
∂ 2F+ ∂ 3F, (5A.9)

where in this formulawe have suppressed the brackets and also, in some places,
M and other factors that stay bounded for θ > θ0/10.
For large ν for the function F = rνu(θ ), we can estimate (5A.9) by

rν−3
[
ν3|u|+ν2|u′|+ν|u′′|+ |u′′′|]. (5A.10)

If we specialise to the function Fν,k and θ0− θ � θ0/3, the principal term
(5A.8) can be rewritten as

rν−2(θ0−θ )k−2
[
(s0,0+O(1/ν))ξ 2+ 2k(s0,1+O(1/ν))ξ

+k(k− 1)s1,1
]
; ξ = ν(θ0−θ ).

(5A.11)

If we take the inf in ξ of the term in the brackets we see that in that range this
principal term is bounded from below by

rν−2(θ0−θ )k−2(s0,0+O(1/ν))−1D,
D= k(k− 1)s1,1(s0,0+O(1/ν))− k2(s0,1+O(1/ν))2.

(5A.12)

If we combine this with (5A.1), that is satisfied for the si, j , i, j= 0,1, we deduce
the following lower estimate.
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Lemma There exist N,c> 0 such that in the range θ0−θ < θ0/3, θ0� 10−10

and ν,k�N the principal term (5A.7) is bounded from below by ck2rν−2(θ0−
θ )k−2, r > 0.

The choice of the parameters and the end of the construction The aim here
is to use the above estimates and choose the parameters k > ν � 1 and B to
guarantee the positivity of (5A.5): θ0 < 10−10 has been fixed once and for all
and we shall choose ν large enough, and k, say, so that ν < k < 2ν . We shall
consider separately the following three ranges.

(i) The range θ0−θ � θ0/3 Here k > ν � N as in the lemma and arguing
as in (5A.4) we see that for r large and x = (r,θ , . . .) ∈ ΩB we have δ (x) ≈
r(θ0−θ )� r1−ν/kB1/k, and also rν � B(θ0−θ )−k and that if ν , k have been
chosen and fixed, then δ (x)→ ∞, r→ ∞ when B→ ∞.
The error term (5A.10) in that range can be estimated from above by

rν−3(θ0−θ )k−3(ν3+ k3); x ∈ΩB. (5A.13)

Indeed, a moment’s reflection shows that provided that B is large enough we
can estimate the value of

sup
|y−x|�A

∣∣∇3F(y)∣∣∼ ∣∣∇3F(x)∣∣; x ∈ΩB (5A.14)

by the value at x and ignore the sup (because passing from x to y amounts to
replacing r by cr and θ0−θ by θ0−θ+ c

r and then we use δ (x)∼ r(θ0−θ )�
1). It is of course here that we use the fact that A<+∞.
The upshot is therefore that we first choose ν , k large and then B large

enough in terms of this choice. If we use the lemma, the positivity of (5A.5)
follows because the extra factor r(θ0−θ ) that we find in the lemma compared
to what we have in (5A.13) is r(θ0−θ )≈ δ (x), and as we saw this tends to ∞.
(ii) The range θ0/3� θ � 2θ0/3 By (5A.8) the principal term in (5A.5) is
bounded from below by cν2rν−2 provided that ν � N1 is large enough. Simi-
larly, the error term can be estimated by ν3rν−3. Once more we first choose ν
and then B (and therefore r) large enough.

(iii) The range θ < θ0/3 In this range (5A.7), (5A.8) and (5A.9) still hold
(but in the local coordinates ϕ1,ϕ2, . . . ,ϕn−1 that we use we cannot take θ =

ϕ1) and here the principal term in (5A.8) is ν(ν − 1)s0,0rν−2+ανrν−2 and
the error term in (5A.10) is Cν3rν−3. The positivity of (5A.5) clearly follows
for ν > 3 and r large enough. Of course, here F(x1, . . . ,xn) = rν , for ν = 2, is
convex because it is the sum of the convex functions x2i , so clearly F is convex
for ν � 2. As long as the support of the measure is compact, one therefore does
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not need to use the above argument. This completes the construction for com-
pactly supported measures. Note that in §5B below we shall need to compute
the Hessian of another radial function.

Measures with non-compact support The above proof can easily be adapted
to centred measures that satisfy (5A.1) and the more general condition∫ |x|D dμ(x)<+∞, for some D large enough, but that are not necessarily com-
pactly supported.
The main new observation is that for any degree of smoothness p we can

extend the function (5A.2) to be zero outside [θ < θ0] = Ω and then Fν,k ∈
Cp(Rn) is sufficiently smooth provided that ν , k are large enough. Then for
any measure as above we can still use the Taylor remainder formula in (5A.5)
but now we shall use the integral remainder formula that gives the remainder
in the following form

R(x) =∑
α

3
α!

∫ ∂α

∂xα
F(x+ u)dλα(u), (5A.15)

whereα =(α1, . . . ,αn) runs through all the multi-indiceswith |α|=α1+ · · ·=
3 and λα is now a bounded, but no longer necessarily positive, measure on Rn

and is defined to be the image of the measure (1− t)2yα dμ(y)dt on [0,1]×Rn

by the mapping (t,y)→ ty (see Hörmander, 1983, (1.1.7)′).
The new measures λα also admit D-moments∫

|y|Dd|λα |(y)< ∞. (5A.16)

In what follows we shall estimate (5A.15) for F = rνuk(θ ) as in (5A.2) and
show that there exist appropriate constants such that

|R(x)|�Cν,k r
ν−3(θ0−θ )k−3; x ∈ΩB, (5A.17)

provided that ν , k, B are large and appropriately chosen as before. This is the
analogue of (5A.13) and once this is done the rest of the argument remains
unchanged. More precisely, we again use the lemma, (5A.8) and the consider-
ations of (ii) and (iii) when θ � 2θ0/3.
In the integrands of (5A.15) for |x| = r large enough and ν , k large, we

can use polar coordinates and arguing as in (5A.14) we see that there exist
constants that depend on ν , k such that we can use (5A.10) and we estimate
(5A.15) by ∫

(r+O(ξ ))ν−3U(θ +O(ξ )/r)dσ(ξ );

0�U(θ )�Cν,k(θ0−θ )k−3 for x= (r,θ , . . .) ∈Ω,
(5A.18)
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whereU is taken to be ≡ 0 for θ � θ0 and where σ is an appropriate positive
measure that satisfies the same moment condition (5A.16) and is independent
of ν , k. We can compute and estimate (5A.18) by∫

Rd
(r+ |ξ |)ν−3

(
|θ0−θ |+ |ξ |r

)k−3
dσ(ξ ).

If we expand the powers in the integrand we see that we can estimate by
rν−3−α−β (θ0−θ )k−3−β

∫ |ξ |α+β dσ(ξ )� rν−3(θ0−θ )k−3r−α(r(θ0−θ )−β ,
with α,β � 0, because the integral can be controlled by the moment condition.
Therefore if we use the fact that r(θ0−θ )≈ δ (x) is bounded from below, we
are done.
The bottom line is that we have constructed some function in Rd that is sub-

harmonic onΩB for our measures provided they admit a high enough moment.
This in particular holds for the Gaussian measures as in §2.12.2.

5A.2 Harmonic coordinates on the Euclidean principal bundle
and the gambler’s ruin estimate

Here we shall go back to the Euclidean vector bundle of §5.5 and maintain
the notation that was introduced there but drop the caret and write dh rather
than d̂h. We denote by x(n) = (v(n),k(n)) ∈ X = V ×K, v(n) ∈ V = Rd the
Markov chain that was introduced there by the left-invariant operator T̂ and
write Dn = v(n+ 1)− v(n). By (5.26) we have therefore
P[Dn ∈ dξ//x(n)=(v,k)] = μk(dξ )

=
(∫

K
M(ξ ;h,k)dh

)
dξ ; v ∈V, k ∈ K, (5A.19)

where // denotes, as usual, conditional probability or conditional expectation.
When M is compactly supported as in §5.5.1, the measures μk (k ∈ K) are
uniformly compactly supported and when M satisfies the Gaussian estimate
(5.60), the measures μk are Gaussian as in §2.12.2 with uniform constants.
These measures can be used to compute the following conditional expecta-

tions with respect to the σ -fieldsFn generated by x(1), . . . ,x(n). By (5.26) we
have for any real continuous function F on V ,

E(F(v(n+1))//Fn) = Ex(n)(F(v(n)+Dn))

=

∫
F(v+ ξ )μk(dξ )

= F ∗ μ̌k(v); x(n) = (v,k), μ̌k(ξ ) = μk(−ξ ), (5A.20)
provided that the integrals involved are absolutely convergent. (For legibility,
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in (5A.20) we have set v= v(n), k = k(n).) This is certainly the case for com-
pactly supported measures and in the Gaussian case, provided that F does not
grow too fast at infinity.
By setting, in (5A.20), F(t) = ti the coordinate functions, it follows that the

process v(1),v(2), . . . is a martingale if and only if all the measures μk, for k ∈
K, are centred and satisfy

∫
udμk(u) = 0. An equivalent way of saying this is

that the coordinates (v1, . . . ,vd)∈V considered as functions on X are harmonic
functions with respect to the Markov chain (cf. Williams, 1991, Chung, 1982).
Similarly, for a more general function F the process F(v(n)) is a submartin-

gale as long as F is μ-subharmonic for all the measures μ̌k, that is,

F(v)� F ∗ μ̌k(v); v ∈V, k ∈ K. (5A.21)

In what follows we shall consider a Euclidean principal bundle and aim to
prove the gambler’s ruin estimate in the compactly supported case of §5.5.1
and in the Gaussian case of (5.60) and (5.61). We shall consider these two
cases simultaneously. We shall make the following assumptions.

Harmonicity assumption We shall assume that the coordinate functions
v1, . . . ,vd on X as defined above are harmonic for the Markov chain.

Assertion Under these assumptions we shall show that the gambler’s ruin
estimate (5.28) and its Gaussian analogue in (5.60) and (5.61) both hold good.

Before we give the proof, we need to observe that from the above assump-
tions and the definition (5A.19) it follows from (5.29) (see also Remark 5.3)
that there exists a > 0 for which (5A.1) holds for the measures μk, k ∈ K,
uniformly in k.

Exercise Verify this.

In the rest of this subsection we shall use the subharmonic functions that we
have constructed in §5A.1 to prove the above assertion. Then in §5A.3 below,
we shall show that it is possible to modify the original coordinates of V so
that the new coordinates are harmonic functions. The notation of §5A.1 will be
preserved.
The functionF =Fν,k has been defined onΩ= [θ < θ0] and for large enough

B we write ΩB = Ω∩ [F > B] and define Φ = F on ΩB and ≡ B outside and
this is a globally μ-subharmonic function for all the measures μ = μk, k ∈ K
of (5A.19).
For the proof of our assertion we shall use the same argument as in the

appendix of Chapter 3. We use the starting probability for the Markov process
with x(0) = (ρI,eK) = H, ρI = (ρ ,0,0, . . . ,0) and eK some reference point,
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say the identity of the group K. We denote τ = inf [ j; x( j) /∈ ΩB×K]. As in
(3A.14) by the submartingale property we have

Φ(H)� E(Φ(x(n∧ τ)))
� E([τ > n]Φ(x(n)))+B

� (P[τ > n])1/2(E(Φ2(x(n))))1/2+B. (5A.22)

By (5A.19) and (5A.20) we also have

Φ2(x(n))�Cn2ν
n

∑
j=1

D2νj ;

E(D2νj ) = EE(D2νj //x( j))�C sup
k∈K

∫
|x|2ν dμk(x). (5A.23)

This, together with the conditions imposed on the measures, implies that the
cofactor of P( ·) on the right-hand side of (5A.22) is O(nν+1). If now ρ in
the choice of H is large enough, the inequality (5A.22) implies the required
estimate

P(τ > n)� cn−c; n� 1, (5A.24)

for appropriate constants. From this the gambler’s ruin estimate (5.28) and
its Gaussian variant of §5.10.1 follows. To see this we observe that by the
conditions on the operator T̂ of §5.5 or §5.11.1, for arbitrary ε0 there exists n0
such that P[|x(n0)−H| < ε0] > 0. We can then condition on this event as in
§3A.1 and our assertion follows.

5A.3 The change of coordinates on a Euclidean bundle and the
correctors

Let X = V ×K, V = Rd be a Euclidean bundle and T̂ be as in §5.5 with the
coordinates (v,k), v = (v1, . . . ,vd) ∈ V and let χ(k) = (χ1(k), . . . ,χd(k)) ∈ V ,
k ∈ K be some continuous section. We can then perform the change of coor-
dinates and set u j = v j− χ j(k), j = 1,2, . . . ,d, k ∈ K. This induces a bijective
mapping

X � (v,k)↔ (u= v− χ ,k) ∈ X (5A.25)

that commutes with left translation by V . We shall now introduce a notion that
is basic in homogenisation theory (cf. Jikov et al., 1991) and also for random
walks in an inhomogeneous environment; see Varopoulos (2001, §6) for more
on this circle of ideas and the way they are used in the present context.
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Definition We say that χ1, . . . ,χd are correctors for the operator T̂ if the new
coordinates u1, . . . ,ud are harmonic functions for T̂ , that is, T̂ u j = u j.

We shall presently show that for M as in §5.5.1 that is either compactly
supported or satisfies the Gaussian estimates (5.60), such correctors always
exist. Once this is done the gambler’s ruin estimate follows in full generality
because we can use these new harmonic coordinates in the previous subsection
and observe that |u j− v j|�C, j = 1, . . . ,d.

The Fredholm alternative and the existence of the correctors We shall use
the fact that T̂ is Markovian and denote

L(k,h) =
∫
V
M(γ,k,h)dγ; k, h ∈ K (5A.26)

and by L : C(K)→ C(K) as in (4.10) the Markovian operator that is induced
by the kernel (5A.26). The harmonicity of u (here we drop the indices for the
coordinates) is equivalent to∫

M(u−ω ;h,k)(ω− χ(k))dω dk = u− χ(h) (5A.27)

and since T̂ is Markovian this is equivalent to

Lχ(h)− χ(h) =
∫
M(ω ;h,k)ω dω dk = θ (h). (5A.28)

It follows that to construct the correctors it suffices to solve the above equation
in L2(K;dk) because if χ ∈ L2 is a solution of (5A.28) then by the continuity of
the kernel L(h,k), it follows that χ is automatically continuous. The advantage
of using the Hilbert space L2 is that the kernel L induces a compact operator
on L2 and we can use standard Fredholm theory (see Hörmander, 1985, §19.1)
to obtain a solution of (5A.28) in L2. But for this we must verify that in the
Hilbert space we have

θ ⊥ Ker(I−L∗). (5A.29)

Here L= L∗ and the invariant functions L f = f , f ∈ L2 have to be constant by
the properties of L(h,k) (i.e. harmonic functions are constant; to see this, as in
the classical situation one considers the max f that is attained and then uses the
irreducibility of the Markov chain of Remark 5.3). The orthogonality relation
(5A.29) amounts therefore to∫

M(γ;h,k)γ dγ dhdk= 0,

which is again a consequence of the symmetry M = M∗ (see §5.5.1). This
completes the proof.
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5B Appendix: Proof of (5.74)

5B.1 The Hessian and preliminaries

Let F be some smooth real function on Rd ; we recall that for x ∈ Rd the Hes-
sian Hess(F ;x) = Hx is a symmetric bilinear form on Tx, the tangent space at
x, which for the Euclidean basis ∂

∂x j
of Tx can be expressed in matrix form (Fi j,

i, j = 1, . . . ,d) with Fi, j = ∂ 2F
∂xi ∂x j

; that is, Hx(ξ ,ζ ) = Fi, jξiζ j with the summa-
tion convention.
For our purposes we shall use the Hessian in the Taylor series remain-

der term for μ ∈ P(Rd) some centred measure that admits second moment∫ |x|2 dμ(x)<+∞. If F ∈C2 with bounded second derivatives we then have

F ∗ (μ− δ )(x) = 2∑
i, j

∫ 1
0

∫
Rd
(1− t)Fi, j(x+ ty)yiy j dμ(y)dt

= 2
∫
(1− t)Hx+ty(y,y)dμ(y)dt

=
∫
|y|<A
· · · + r(A), (5B.1)

where the remainder term r(A) tends to 0 as A→ ∞. Here δ is as usual the
Dirac mass at 0 (see Hörmander, 1983, equation (1.1.7)′).
We shall now define F(x) = ψ(r) some radial function that satisfies ψ ≡ 1

for |x|= r < 1/4, ψ ≡ 0 for r > 1, ψ > 0 smooth for r < 1 and specified to be
ψ(r) = (1− r)2 for 1/2< r < 1.
If we denote the radial field by ρ = x

|x| (which is
∂
∂ r for the polar coordinates

of §5A.1), we shall need to compute and verify that H, the Hessian of F(x),
satisfies

Hx(ζ ,ξ ) = 2〈ρ ,ξ 〉〈ρ ,ζ 〉+B(ξ ,ζ ),
|B(ξ ,ζ )|�C(1− r)|ξ | |ζ |; ξ ,ζ ∈ Tx, r < 1,

(5B.2)

for a numerical constantC.

Remark The Hessian F→Hess(F) =D2F acts as a second derivative under
composition with f : R→ R and we have D2( f ◦F) = f ′′ dF⊗ dF+ f ′D2F .
We then apply this successively: first to F0(x) = r2 =∑x2j where

1
2 Hess(F0) =

the identity matrix, then to r =
√
F0 and finally to F = ψ(r). Alternatively, the

computation of the Hessian of (1− r2)2 = ψ(r)(1+ r)2 is even simpler and
from this (5B.2) easily follows. If you are a fan of differential geometry, in
Greene and Wu (1979) you will find a general version of (5B.2).

In what follows, abusing notation, denoting F(x) by ψ(x) we shall scale ψ
and defineψM(x) =ψ( xM ); it is then clear that Hess(ψM;x) =M−2 Hess(ψ ; xM )



5B Appendix: Proof of (5.74) 165

= M−2H x
M
and we shall combine this with the scaled version of (5B.1) that

says, explicitly,

M2(μ− δ )∗ψM =

∫
|y|�A

(1− t)Hx+ty
M

(y,y)dμ(y)dt+ r(A), (5B.3)

where in the integral we have the Hessian of ψ at the point x+tyM . What is, how-
ever, relevant there is that in (5B.3), r(A)→ 0 uniformly inM � 1 because this
depends only on the second moment condition of μ ; moreover, since for the
proof of (5B.1) we need F ∈C2, we first prove (5B.3) for a modified function:
that is, (1− r)α in r < 1 near r = 1 for α > 2. Then we let α → 2.

5B.2 The subharmonic functions

Here we shall consider centred probability measures μ ∈ P(Rd) that admit a
second moment and satisfy the conditions (5A.2) for some a> 0.
The key fact that will be verified is that for all a > 0 there exist ε0, C0 such

that if 0< ε < ε0 and if M is such that (1− ε)M �C0 then

μ ∗ψM(x)� ψM(x); |x|> (1− ε)M. (5B.4)

We choose ε small andM,A,M � 100A large, and observe that the range in
which (5B.4) needs proving is (1− ε)M � |x| � M. By (5B.2), (5B.3) there
then existsC > 0 such that

M2(μ− δ )∗ψM(x)

= 2
∫
|x+ty|<M
|y|<A

(1− t)
[〈

x+ ty
|x+ ty| ,y

〉2
+R|y|2

]
dμ(y)dt+ r(A),

|R|�C

(
1− |x+ ty|

M

)
�C

(
ε+

A
M

)
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5B.5)

and
∣∣ x+ty|x+ty| − x

|x|
∣∣ in the integral is ∣∣ 1+τ|1+τ| −1

∣∣where 1= x
|x| is a vector of length 1

and τ = t y|x| and thus can be estimated by |τ|� 2 AM and is small. The conclusion
is that

M2(μ− δ )∗ψM(x) = 2I(x)+ error,

I(x) =
∫
|x+ty|<M
|y|<A

(1− t)
〈
x
|x| ,y
〉2
dμ(y)dt,

|error|� ε+
A
M

+ r(A).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5B.6)

What remains to be seen is that in our range (1− ε)M � |x|�M we can guar-
antee that there exists c0 > 0 such that I(x) > c0 for any choice of ε , M, A,
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provided that ε is small enough and M, A are large enough. To see this, by
rotational symmetry we shall, as we may, assume that x = (x1,0, . . . ,0). Then
if a > 0 is given and μ satisfies (5A.1) we claim that we can choose some A
large and thenM can be chosen in terms of A large enough so that we have

I(x)

∫
y1<0
|y|<A

y21 dμ(y)
 c0(a), (5B.7)

where c0(a) > 0 depends on a. This is of course a purely geometric prop-
erty that follows from condition (5A.1) for centred measures that admit a high
enough moment. A picture should be drawn by the reader at this point. But to
illustrate the issue, suppose that suppμ is compact. Then M is chosen so large
that even in the worst case when x1 = M, the integration region of I(x) gets
very close to [y1 < 0]∩ [|y|< A] and in fact containsDη = [y1 < η ]∩ [|y|< A]
for an arbitrary preassigned η . In that case, if η is small enough, condition
(5A.1) implies that∫

Dη
dμ(y)� c(a)> 0 and therefore

∫
Dη
y21dμ(y)� η2c(a), (5B.8)

for a constant that depends on a and the support of the measure. We use for
this the fact that μ is centred. If the support of μ is not compact the argument
is a trifle more involved. But we shall skip the details.
If we combine this lower estimate I(x)� c0 with (5B.6), our assertion (5B.4)

follows.

We shall now suppose that M and ε have been chosen so that (5B.4) holds.
On the other hand, for every x ∈Rd we have

|(μ− δ )∗ψM(x)|�CM−2; x ∈ Rd , (5B.9)

for some C that depends only on ψ . In the complementary region from the
range of (5B.4) we have therefore

(μ− δ )∗ψM(x)�−c1M−2ψM(x); |x|� (1− ε)M, (5B.10)

where c1 depends only on ψ and ε but not on M. Combining (5B.4) and
(5B.10) we finally conclude that (5B.10) holds for all x ∈ Rd .
What we have done in this subsection can be reformulated as follows.

Lemma Let a,B> 0 be given; then there exist M0,c1 > 0 such that for every
μ ∈ P(Rd) that is centred and satisfies (5A.1) and

∫ |x|2 dμ(x)� B we have

μ ∗ψM(x)� e−c1M
−2
ψM(x); x ∈Rd , M �M0. (5B.11)
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5B.3 Proof of estimate (5.74)

We consider the Euclidean principal bundle X = V ×K, V = Rd , as in §5.12,
and x(n) = (v(n),k(n)) ∈ X , n � 0, the Markov chain generated by the left-
invariant operator T̂ as in §§5.12, 5.10.1 and 5.5.1. We shall follow the same
method and same notation as in §5A and in proving our estimate (5.74) we
shall use the correctors of §5A.3 and assume, as we may, that for x= (v,k) ∈ X
theV component v is given by harmonic coordinates according to the definition
in §5A.2. In what follows we shall denote by F =ψM the function that satisfies
(5B.11) as in the previous subsection. Furthermore, we shall put on theMarkov
chain the starting probability for which x(0) = (0,eK) with eK the identity of
K as in (5.74). We shall denote by Fn the σ -field on the path space that is
generated by x(0),x(1), . . . ,x(n).
Now, exactly as in the exercise of §5A.2, the measures μk ∈ P(V ), with

k∈K, of the left-invariant operator T̂ are centred because of the harmonicity of
the coordinates and, furthermore, in the case when T̂ is Gaussian, they satisfy∫ |x|2 dμk(x) < +∞. Condition (5A.1) is also satisfied for some a > 0 in both
the Gaussian case and the compactly supported case for T̂ . All this holds uni-
formly in k ∈ K. By §5B.2 the M in ψM can be chosen sufficiently large for
(5B.11) to hold for μk uniformly in K.
Using (5B.11), all this can be reinterpreted in probabilistic language as fol-

lows:

E(F(v(n+ 1))//Fn)� e−c0M
−2
F(v(n)); n� 0. (5B.12)

The argument that follows is a standard one from discrete Markov and mar-
tingale theory (see Chung, 1982; Williams, 1991).

We shall introduce the stopping time T = inf [ j; |v( j)| � M] and denote
v∗(n) = v(n∧T ), n � 0. Then because F vanishes outside a ball of radius M
we have

E(F(v∗(n))//Fn−1) = E(F(v(n))[T � n]//Fn−1)

= [T � n]E(F(v(n)//Fn−1); n� 1, (5B.13)

for the indicator function [T � n] that is in Fn−1. This holds because [T � n]
is the complement of the union

⋃
([T � j]; j = 1, . . . ,n− 1) and so we have

[T � n] ∈Fn−1. Using (5B.12) we deduce therefore that (5B.13) is bounded
from below by

ec0M
−2
[T � n]F(v(n− 1)). (5B.14)

But if we check separately for [T � n] and [T � n− 1] the fact that F(x) = 0
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for |x|�M implies that

[T � n]F(v(n− 1)) = F(v∗(n− 1)), (5B.15)

and if we combine (5B.13), (5B.14) and (5B.15), we finally conclude that

E(F(v∗(n))//Fn−1)� ec0M
−2
F(v∗(n− 1)); n� 1.

After iteration this gives

EF(v∗(n))� exp
(
−c0 n

M2

)
, (5B.16)

since F(0) = 1. On the other hand, since 0� F � 1, by the definition of T and
ψM we have

EF(v∗(n))� P[T � n] = P[sup |v( j)|<M; 1� j < n]. (5B.17)

If we combine (5B.16) and (5B.17) the required estimate (5.74) follows.

Exercise (in elementary probability theory) In the above we have tacitly used
the fact that T <∞ a.s. This is a consequence of the well-known zero–one law.
By inserting the event [T < ∞] in the appropriate places of the argument, the
reader is invited to avoid the use of this fact.

A final word on this appendix

The results in this appendix would have appeared to be less ad hoc if we had
chosen to treat continuous time processes rather than random walks (cf. §E.4
for more on this). The existence of the correctors, in particular in §5A.3, are
part of a general construction in homogenisation theory (see Jikov et al., 1991).
To a certain extent, that is the point of view that was adopted in the earlier
papers in the subject (see Varopoulos, 1996b; in this paper all the ideas of
Chapters 4 and 5 are already in place but they are presented in a way that is not
always reader friendly).
Note finally that if the proof of the full thrust of the NB-condition of §1.3

(i.e. the generalisation of the local central theorem of (3.3) as explained in §4.2)
is ever to see the light of the day we must first refine the ideas of this appendix
and of the homogenisation theory involved, to the ‘bitter end’. This explains
my pessimism about it happening anytime soon. The reader could return to the
end of Chapter 3 and find more references in that direction.
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Other Classes of Locally Compact Groups

Overview of Chapter 6

In this chapter we shall examine briefly how the B–NB classification extends
to other classes of locally compact groups.
If we restrict ourselves to connected or compact groups this is easy to do (see
§§6.1–6.2 below). For this we use the well-known fact that every connected
group can be appropriately approximated by a Lie group (see Montgomery and
Zippin, 1955). On the other hand, among totally disconnected groups, there is
a class of ‘Lie groups’ over a totally disconnected locally compact infinite field
K (e.g.K the field of p-adic numbersQp; see Weil, 1995; Cassels, 1986) where
our classification should also work.
Let us start with an example and consider the group of affine motions on

K : x→ ax+ b with a ∈ K∗ = K\{0} the multiplicative group of K (this is
denoted by K× in Weil, 1995). This group generalises the example in §2.2 and
can be written as K�K∗. In our classification below this will turn out to be
an NC-group. Similar examples, as in §2.2, can be given by other semidirect
products of the form (K⊕K)�K∗, say, and so on. One should, however, note
that the additive group of K is not compactly generated. All these are examples
of affine algebraic groups over K. (We shall recall the definition of this notion
in §6.3 below.)
For algebraic groups a formal notion of connectedness exists as provided by

algebraic geometry. The groups that we shall be considering will be connected
in this sense although they are totally disconnected for the locally compact
topology. For these (connected) algebraic groups it seems realistic to think that
a B–NB classification exists and that it can be expressed in equivalent terms:

analytic� algebraic� geometric,

as explained in Chapter 1.
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Using the methods of Chapters 2 and 3 there are some special cases of such
groups that can be dealt with very easily. This will be done in §§6.4–6.8 below.
More explicitly, §§6.4–6.8 consist of a series of indications of how to navigate
the classical work Chevalley (1951, 1955) and how to adapt the methods of
Chapters 2 and 3 in the context of some of the algebraic groups of that work.
In writing these sections we have taken the point of view that only the more
dedicated readers, especially those that are interested in p-adic groups, will be
reading this chapter, and for these readers the indications that we give should be
good enough. Alternatively, filling in the details in the material of this chapter
could serve as a motivation for learning more on locally compact fields and
basic algebraic geometry. The author of this book confesses that the little he
knows about these beautiful subjects was learned while writing this chapter!

To complete the classification in general for all algebraic groups (over any
locally compact field), although plausible, is likely to be a difficult program. In
§6.9 below we indicate some of the concrete difficulties that one has to face.
It is interesting to see how all this fits with the general scheme that we de-

scribed in the overviews of Chapters 2 and 3. In terms of this it is (iii), the third
part of the scheme, that causes problems here. In other words, we have the re-
sults for a special class of groups but the passage to the general case remains
problematic.

6.1 Connected Locally Compact Groups

Let G be some general locally compact group and assume that G is connected.
By a basic result in the area (Montgomery and Zippin, 1955, IV.6) there exists
thenH ⊂G some compact normal subgroup such that G/H = Ǧ is a connected
real Lie group. Let π :G→ Ǧ be the canonical projection and for any μ ∈P(G)
let us as usual denote by μ̌ = π̌(μ) the direct image of μ by π . As we saw in
§2.5.2, if μ satisfies conditions (i), (ii) and (iii) of §2.4.1 on G, the measure
μ̌ satisfies the same conditions on Ǧ and furthermore, by (2.17), μ∗n(e) and
μ̌∗n(e) behave identically as n→ ∞. The classification B–NB of §1.3 for the
group G follows therefore from the classification of Ǧ.

Historical note: The above structure theorem is part of the program that led
to the solutions of Hilbert’s fifth problem (see Montgomery and Zippin, 1955).
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6.2 Compact Groups and a Generalisation

Let G be a compact group, connected or not. Then the NB-condition holds in
the very strong sense that if μ ∈ P(G) is symmetric and satisfies conditions
(i), (ii) and (iii) of §2.4.1, then, for μ∗n = φn(g) dg and the normalised Haar
measures dg, we have that the φn converge uniformly for some continuous
function φ with φ(e) �= 0. The proof of this easy fact is entirely alien to the
spirit of the book; therefore we shall content ourselves with helping the reader
to reconstruct a proof, if they so wish, in the exercise below.
By combining the compact and the connected cases we can consider G0 to

be the connected component of a general locally compact group and then under
the assumption that G/G0 is compact, G has the same B–NB classification as
G0. The proof of this is a straightforward use of the methods of Chapters 2–5
together with the above result on compact groups.

Exercise Fill in the details in what follows. We can certainly extract sub-
sequences of the μ∗n that converge weakly. These all converge to the same
measure ν = φ dg, and φ is continuous. The continuity of φ and the uniform
convergence follow because the φn have a common modulus of continuity. For
the uniqueness of the limit we use first a direct argument in the same spirit as
we did in §5.1.1 to show that if f ∗ μ = − f then f = 0. This combined with
the spectral decomposition of the symmetric operator Tμ of §3.1 implies that
Tnμ (as n→∞) converges to the projection on the eigenspace [ f ∈ L2; T f = f ].
This does it. Since the limit is a symmetric measure and ν ∗ν = ν , it also fol-
lows that φ(e) �= 0. It is of course also easy to see that φ is the normalised
characteristic function of the open subgroup generated by the support of μ .
This is not the correct proof since, for instance, it does not work for measures
that are not symmetric while the same fact does hold. But for our purposes here
it is good enough. For more, see Kawada and Ito (1940).

What does lie in the spirit of the book is the generalisation of connectedness
as supplied by algebraic geometry and which is used in the theory of algebraic
groups. The possibility of extending the B–NB classification to such groups
will be the subject of the remainder of this chapter.

6.3 On a Class of Locally Compact Groups

Let K be some locally compact non-discrete field. Such fields are completely
classified, and when, in addition, they are of characteristic zero, they are ex-
actly R, C and the fields that are finite extensions ofQp, the field of the p-adic
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numbers. In that last case they are assigned with a non-Archimedean norm
(i.e. |x+ y| � max(|x|, |y|)). More such fields exist but then the characteristic
is positive (see Weil, 1995, Chapter 1 and, for a more thorough exposition,
Cassels, 1986).

LetV be some finite-dimensional vector space over K and let G⊆GL(V ) be
some irreducible algebraic group (see Chevalley, 1951, §II.3). This means that
there existsI , a prime ideal of the ring of polynomial functions on the vector
space of matrices on V over K, such that g ∈ G if and only if p(g) = 0 for all
p ∈I . The fact thatI is prime reflects the fact that G cannot be decomposed
into two subsets that are closed in the above sense (i.e. G= A1∪A2 where A1,
A2 are the zeros of some polynomial ideal). This is a notion of connectedness
and although these groups may be disconnected for the topology induced by K
and V , they are connected in the sense of algebraic geometry. When K = R,C
the (topologically) connected component G0 of an irreducible algebraic group
G is a real connected Lie group and furthermore G/G0 is finite and we have
nothing new (Whitney, 1958; Varadarajan, 1974, §2.1). On the other hand,
when K is non-Archimedean we obtain a new class of locally compact groups
that is not necessarily compactly generated. (An example of this is the additive
group of K itself. By the non-Archimedean property, every compact subset is
contained in some compact subgroup. On the other hand, K can be realised as
a group of 2×2 ‘unipotent’ matrices.) Nonetheless, the classification of §1.3
has a chance to hold for those groups. For the rest of this chapter we shall
concentrate on those groups that are topologically totally disconnected.

The serious problem in extending the B–NB classification to these groups is
that we do not in general have at our disposal the necessary ready-made struc-
ture theorems (e.g. the Levi decomposition (see §2.1.2) and Iwasawa decom-
position (see §4.1 and Appendix A)) that were essential in the proofs in Chap-
ters 2–5. New methods have to be devised therefore and the problem is not
trivial. There are special cases, however, where adequate structure theorems
exist. We shall examine these special groups in the next subsection and then
proceed to give the B–NB classification for these groups. For the proofs, it suf-
fices to adapt the proofs of the real case and the task turns out to be quite easy.

The remainder of this chapter should be considered as a series of exercises
that help to illustrate the methods of Chapters 2–3. The reader could of course
skip all this. It is also true, however, that interesting open problems exist in
this area (see §6.9 below) but these would involve the modern theory of alge-
braic groups in a serious way and in particular the highly developed theory of
reductive groups (see Borel and Tits, 1965).
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6.4 A Review of Some Results from Algebraic Groups

6.4.1 General definitions

We shall follow the original historical reference (Chevalley, 1951, 1955) be-
cause we feel that for our needs it is by far the most accessible to those readers
who have had no exposure to modern algebraic geometry. The only problem
with this reference is that like all good old-fashioned books, onemay find it dif-
ficult to navigate and find the exact statements that one needs. For this reason
an effort has been made below to give precisely the necessary cross references.
There are at least two other, more recent books on algebraic groups (Onis-
chik and Vinberg, 1988; Humphreys, 1975) into which the reader can plunge
without previous knowledge of algebraic geometry. Unfortunately the theory
is developed there over algebraically closed fields and to go back to the origi-
nal field, say Qp, is not a meagre affair (e.g. Humphreys, 1975, Chapter XII);
see the final remark in §6.9. In fact, the book by Chevalley is the only one, as
far as I know, that treats the case of general fields directly (i.e. without first
passing through the algebraic closure!). In a final analysis, this was the reason
that made me disregard all the other inconveniences involved and use the book
as the main reference in this chapter.

Let G ⊂ GL(V ) be some irreducible algebraic group and in what follows
the characteristic of the field will be assumed to be 0. The Lie algebra g of G
can then be defined and is a subalgebra of E = gl(V ), the space of all linear
transformations onV , that is, E =EndK(V ) under the bracket operation [a,b] =
ab− ab ∈ E , with a,b ∈ E . There exists then a one-to-one correspondence
between irreducible algebraic groups G and a class of subalgebras (not all the
subalgebras in general) of gl(V ). That correspondence respects inclusions. The
characteristic 0 is essential for this fact (see Chevalley, 1951, §II.8, p. 146).
Let G ⊂ GL(V ) be as above and let g be its Lie algebra; we assume that g

is solvable. Note that we shall be using the terms soluble and solvable inter-
changeably. The definition of solubility is as in (Chevalley, 1955, §V.1), and
this is exactly as the definition that we gave in §2.1. Let n⊂ g be the set of all
the nilpotent transformations (i.e. ar = 0 for some r� 1) that lie in g. Then n is
an ideal of g (see Chevalley, 1955, §V.2.2) and adx : n→ n, with x ∈ n, is a nil-
potent transformation (see Chevalley, 1955, §IV.4.2, Corollary 4 or Bourbaki,
1972, Chapter 1, §5.4). This means that n is a nilpotent ideal in the sense of
§2.1 (see Varadarajan, 1974, §3.5) and therefore n is contained in the nilradical
used in §2.1 but it need not be the whole nilradical (e.g. dimensiong = 1 then
the nilradical of §2.1 is the whole g, and n as above could be 0).
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6.4.2 Soluble groups

We shall restrict ourselves to the case when g is a solvable algebra and re-
call the following basic structure theorem (Chevalley, 1955, §V.3.5, Proposi-
tion 21): G can be written as a semidirect product of two irreducible algebraic
subgroups N,A⊂ G, that is, N is normal in G, G = NA and N ∩A= {e}. The
subgroup A is Abelian and consists of semisimple transformations on V . Fur-
thermore, the Lie algebra g of G is the direct vector space sum of n and a the
Lie algebras of N and A, and n is exactly those elements of g that are nilpotent
transformations ofV . Moreover, as already pointed out, n is an ideal in g for its
Lie algebra structure. An additional accessible modern reference for the above
is Onischik and Vinberg (1988, Chapter 6, no. 6), but this refers only to K =C
and not even K = R, let alone Qp.

(i) The Ad-action The reader who is not too familiar with algebraic group
theory should note the following facts.
For any invertible s ∈ GL(V ) we can consider Is = X → sXs−1, with X ∈

EndK(V ) = E . This gives a representation of GL(V ) on the space of endomor-
phisms of V . On the other hand, if V ∗ is the dual we can identify E =V ⊗V ∗.
From that definition it follows that if s is a semisimple transformation on V
then Is is semisimple as a linear transformation on E . This is elementary to
verify but a proof is spelled out in Chevalley (1955, §IV.4.2 Cor. 1 and 3): the
relevant pages are 31 and 79; see also Varadarajan (1974, §3.1) for the more
general theory of replicas. What counts here is that if g ∈ G then Igg⊂ g (see
Chevalley, 1951, §II.9, Prop. 6 and the few lines that follow it).
Using the characterisation of n as nilpotent transformations of V , it fol-

lows that Ign ⊂ n. Therefore we can conclude that if a ∈ A, the transforma-
tion Ada : n→ n (i.e. ξ → aξa−1 with ξ ∈ n) is a semisimple transformation.
The reason why the same notation Ad as before (see Varadarajan, 1974, §2.13)
is used for this transformation is explained in Chevalley (1951, §II.9, Def. 2,
Prop. 7) and Varadarajan (1974, §2.13.14).

(ii) The semisimple factor A The factor A in the semidirect product decom-
position of G consists of commuting semisimple transformations in GL(V ).
This means that we can find some finite extension K of K such that for some
appropriate basis of V = V ⊗K K all the matrices that represent the elements
of A belong to D ⊂ GL(V ), the group of diagonal matrices for that basis. On
the other hand, A is a closed subgroup of GL(V ) for the locally compact topol-
ogy and since also GL(V ) is closed in GL(V ) and D is closed in GL(V ) we
conclude that A is a closed subgroup of D always with respect to the locally
compact topology.
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The group D =
(
K
∗)d
, where d = dimV , is the Cartesian product of the

multiplicative group K
∗
= K\{0} of the field. We shall now restrict the field

K to be non-Archimedean; then H = {x ∈ K∗; |x| = 1} is an open compact
subgroup and we have K∗/H � Z (see Weil, 1995, §I.4 and Cassels, 1986).
The subgroup Hd is therefore open and compact in D and D/Hd � Zd . With
the identification A⊂ D, the subgroup A∩Hd = A0 is open and compact, and
A/A0 � Zm for some 0 � m� d. It follows in particular that A is a compactly
generated group of volume growth γ(n) = O(nm); see §1.1.

6.4.3 The commutator subgroup

See Chevalley (1951, §II.14, Th. 15) for a proof of the following result.
Let G be some irreducible algebraic group and g be its Lie algebra. Then the

commutator subalgebra [g,g] corresponds to an irreducible algebraic group
G2 ⊂ G and for all x,y ∈ G, [x,y] = xyx−1y−1 ∈ G2.

6.4.4 Nilpotent groups and the exponential mapping

See Chevalley (1955, §V.3.4) for a proof of the following result.
Let x ∈ gl(V ) be some nilpotent transformation. Then expx= I+x+∑ xp

p! is
a polynomial. Furthermore, if g⊂ gl(V ) is a subalgebra consisting entirely of
nilpotent transformations, the above mapping establishes a one-to-one corre-
spondence exp : g→ G, where G is an algebraic irreducible group whose Lie
algebra is g.
Going back to the solvable groupG= NA of §6.4.2 we have the analogue of

the formula of (3.22) (see Varadarajan, 1974, §2.13.7):
exp((Ada)ξ ) = a(expξ )a−1 = (expξ )a ; ξ ∈ n, a ∈ A. (6.1)

One final property of the bijection between n andN given by the exponential
mapping is that it takes the Haar measure on n which is the Haar measure of
the vector space Kd , with d = dimn, to the Haar measure of N. This fact is
important but no immediate use of it will be made; nonetheless, in Exercise 6.1
below we outline a proof.
The Baker–Campbell–Hausdorff formula, BCH (see Jacobson, 1962, V.4;

Serre, 1965; Varadarajan, 1974, §2.15), gives additional information on the
above exponential mapping exp: n→GL(V )with n as in (6.1). To wit, assume
that s� 2 is such that ns = 0; then the product expξ1 expξ2, for ξ1,ξ2 ∈ n, can
be expressed as the exp of a finite sum ∑ j<s cα [ζα1 , [ζα2 , . . . ,ζα j ], . . .] where
α = (α1, . . . ,α j), with ζαk = ξ1 or ξ2, and cα are rational coefficients that can
be computed explicitly (e.g. for s= 3, c1 = c2 = 1, c1,2 =−c2,1 = 1/4).
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We recall that the characteristic of the field K is zero and we shall as-
sume that the norm of the field satisfies the ultrametric inequality (|x+ y| �
max(|x|, |y|), e.g. the fields Qp). In that case the BCH formula implies not
only that the above locally compact groups N are not compactly generated,
but even that they are countable unions of compact open subgroups. More ex-
plicitly, let us write N(r) = exp [ξ ; |ξ |n � r] for the image of the r-ball in
n for some norm | |n on n that has been fixed. These neighbourhoods of the
identity in N have the following property. For all r � 1 there exists C = C(r)
such that Nq(r) = N(r) · · ·N(r) ⊂ N(C) for any q = 1, . . . . The point here of
course is thatC is independent of q. The dependence on r is in fact polynomial:
C(r)�C1rc, and where the constants also depend on s.

Exercise To see this, make repeated use of the BCH formula and use ns= {0}
to deduce that any element in Nq(r) can be written as exp(ξ ) where ξ ∈ n is a
sum of elements of the form

cαcβ · · ·cγ
[
ζk1
[
· · ·ζk j
]
· · ·
]
= η with |ζk|� r.

For these brackets, we clearly have
∣∣[ζk1 [· · ·ζk j ] · · · ]∣∣ � Crs. Now the coeffi-

cients cα , cβ are just the coefficients of the BCH formula; also, clearly the
length of the product cαcβ · · ·cγ is at most s and therefore the coefficient
cαcβ · · ·cγ is a rational number a/b with |b| � B; that is, the denominator is
bounded by some constant B that is given by the product of at most s among
the denominators of the BCH coefficients cα .
The bottom line is that |η | � C1rc and the ultrametric inequality does the

rest.

Exercise 6.1 We can use the BCH formula to prove that the exp mapping
preserves the Haar measure as explained above.
For the case K = R this is an immediate consequence of Varadarajan (1974,
§2.14). It is also possible that when K is non-Archimedean the same argu-
ment based on calculus works also. Here we propose a different proof. The
exp identifies Kd � (t1, . . . , td)→ exp(t1ξ1+ · · ·+ tdξd) where ξ1, . . . ,ξd is a
basis of n. We can choose that basis so that with Vj = Vect(ξ1, . . . ,ξ j) the
space Vj is an ideal in Vj+1. When this is done a second exponential map-
ping can be defined (or rather exponential coordinates of the second kind

can be defined (see Chevalley, 1955, §V.3.4, Prop. 17)): Kd � (s1, . . . ,sd)
E→

exp(s1ξ1) · · ·exp(sdξd), which also is a bijection, and here it is evident that E
preserves the Haar measures. To see this let Nj = E(Vj); then Nj �Nj+1 are
closed subgroups and we can use the standard facts about the Haar measures of
G, H and G/H (Bourbaki, 1963, Chapter 7); at the end we use induction on d.
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To prove our original assertion on the ‘coordinates of the first kind’ it suf-
fices therefore to show that the basis ξ1, . . . ,ξd can be chosen so that t j =
s j +Fj(s j+1, . . . ,sd) and because of the shape of the coordinate transforma-
tion (s1, . . .)→ (t1, . . .) we can make repeated use of Fubini and conclude.
To see that this is possible one uses a central series n1 ⊂ n2 ⊂ ·· · ⊂ n with
[nq,n] ⊂ nq−1. Then let ζ = [ξ j1 [ξ j2 · · · [ξ jk · · · ] · · · ]] be one of the brackets of
length k � 2 that occur in the repeated use of the BCH formula that is used
to work out exp(s1ξ1)exp(s2ξ2) · · · . If one basis element, say ξ j2 , belongs to
nq then clearly ζ ∈ nq−1. All it takes therefore is to adapt the basis ξ1, . . .
with the central series in the obvious way so that if one of the above brackets,
ζ = u1ξ1+ u2ξ2+ · · · , is such that uq �= 0 then in that bracket the ξ jr , with
r = 1,2, . . . , involved have to have jr > q.

6.5 The C–NC Classification for Solvable Algebraic Groups

6.5.1 The roots

Here G= NA is as in §6.4.2 and the notation n for the Lie algebra of N is pre-
served. By the semisimplicity of Ada, a∈A, in §6.4.4 we can findK ⊃K, a Ga-
lois finite extension of the field K such that for an appropriate basis of n⊗K K
over K, all the matrices become diagonal: Ada = diag(ω1(a), . . . ,ωn(a)) ,
where ω j : A → K

∗ are group homomorphisms. In this notation, K∗ is the
multiplicative group of the field on K\{0}. (For the finiteness of the field ex-
tension observe this: let a0 ∈ A, λ0 ∈ K (which is some field extension), and
define I0 = [ξ ∈ n⊗K K; Ada0ξ = λ0ξ ]; then AdaI0 ⊂ I0, for a ∈ A.) Gal-
ois extension means as usual that the field automorphisms of K that stabilise
each element of K stabilise nothing else. The group of these automorphisms
is denoted by Aut[K : K]. When K = R we can of course take K = C, but
for the non-Archimedean fields, K is not algebraically closed and in general,
dim[K : K]� 2.
Similarly, we can diagonalise the induced action by Ada onW =W ⊗K K,

whereW = n/[n,n], where we use the same notation as in §2.1.1 but n here is
not necessarily the nilradical. The action onW becomes diag(θ1(a), . . . ,θt(a))
and by Jordan–Hölder the set of θ j : A → K

∗ is a subset (θ1,θ2, . . . ,θt) ⊂
(ω1,ω2, . . . ,ωn) . The θ are called the roots of the action of A on N and the ω
are called the composite roots of that action. The situation is entirely analogous
to that in Chapter 2 where we compared the roots in §2.1 with the composite
roots in §2.3.4. The Jordan–Hölder series that we use for the comparison is of
course n⊗K ⊃ n2⊗K ⊃ ·· · . If we consider the induced action on the factors
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(np/np+1)⊗K we also see that each composite root ω j can be written as a
product of roots: θα1θα2 · · ·θα j .

6.5.2 The real roots and their classification

We shall define two sets LW = (L1, . . . ,Lp) and Ln = (L1, . . . ,Lk) with the
identificationLW ⊂Ln by Lj = log |θ j| or log |ω j| as the case might be, where
| | indicates the unique absolute value on K that extends that on K (Weil, 1995,
Chapter 1). It is then clear that each Lj ∈Ln can be written as a sum Lj =
Lαi+ · · ·+Lα j with the Lαs ∈LW . From this it follows that in the classification
below we can takeL = LW orLn indiscriminately.

(C) We say that G is a C-group if there exist β j � 0, ∑β j = 1 such that
∑β jL j = 0 summed over Lj ∈ L and such that β j0Lj0 �= 0 for some
j0 = 1,2, . . . .

(NC) We say that G is NC if for any choice of β j � 0 such that ∑β jL j = 0,
with Lj ∈L , we must have β jL j = 0 for all j = 1,2, . . . .

When A= {0} the group reduces to N which with this definition is therefore
NC. Note, however, that because of what was said in §6.4.4, this group is not
in general compactly generated.

6.5.3 On the definition of the real roots

The subgroup A0 ⊂ A defined in §6.4.2(ii) is compact; it then follows that
L(A0) = 0 for all L∈Ln and that therefore L= L̃◦ p for a new homomorphism
L̃ : Zm→ R, where p : A→ Zm denotes the canonical projection of §6.4.2(ii).
Abusing notation, in what follows we shall drop the tilde ( )̃ and denote indis-
criminately L= L̃.

6.5.4 The real root space decomposition

To fix ideas we shall consider the roots (θ1, . . . ,θt) and the set of the corre-
sponding ‘real roots’ LW . We can then decomposeW =W1⊕ ·· ·⊕Wt where
Wj is spanned by the eigenvector that corresponds to the root θ j where here we
admit the possibility that for two distinct indices θ j = θk. If we sum together
WL =Wα1 ⊕·· · all the subspaces for which log |θα1 | = · · · = L, we obtain the
decompositionW =WL1⊕·· ·⊕WLp for the real rootsLW = (L1, . . . ,Lp). Just

as in §2.1 where K = R, each space is of the form WLj = W̃j⊗K K for some
K-subspace W̃j ⊂W and we have the corresponding real space decomposition
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W = W̃1⊕·· ·⊕W̃p. This fact is easy but yet a trifle harder to see than the case
K = R of §2.1. It is a consequence of the following lemma.
Lemma Let E be some finite-dimensional vector space over K and let us
consider E = E ⊗K K as a vector space over K. Every α ∈ Aut[K : K] then
induces α̌ , a K-linear automorphism of E. Let E ′ ⊂ E be a K subspace such
that α̌(E ′) = E ′ for all α ∈ Aut[K : K]; then there exists Ẽ ⊂ E a K-subspace
such that E ′ = Ẽ⊗K K.
Our assertion on the above real root space decomposition follows immedi-

ately from the lemma because for the absolute value on K and α ∈ Aut[K : K]
we have |α(x)| = |x|, x ∈ K (see Cassels, 1986, Chapter 7), and therefore the
automorphisms in Aut[K : K] permute among themselves the roots θα1 , . . . that
correspond to the same real root L ∈LW .

Proof of the lemma Unless E ′ = {0} there exists x= e1+λ2e2+ · · ·λnen ∈ E ′
with λ j ∈ K and (e1, . . . ,en), a basis of E over K.
Let x̄=

(
∑α̌(x) : α ∈ Aut

[
K : K
])
; then 0 �= x̄ ∈ E ′ ∩E because the exten-

sion is Galois. It follows that E ′ = xK ⊕ E ′1 where E ′1 = E ′ ∩E1 with E1 =
(e2K+ e3K+ · · ·) simply because x̄K ⊂ E ′. It follows that α̌(E ′1) = E ′1 and we
can use induction over the dimension. This completes the proof.

6.6 Statement of the Theorems

6.6.1 Conditions on the measures and the groups

For the rest of the chapter the group G will be assumed to be an irreducible
solvable algebraic group G⊂ GL(V ) where V is a d-dimensional vector space
over the field K. The field is assumed to be of characteristic 0 and is locally
compact with an absolute value | |. We have G = NA as in §6.4.2 and all the
previous notation will be preserved.
The theorems that will be proved for G are exactly the C- and NC-theorems

of Chapters 2 and 3 for the groupG when K =R, and the aim here is to extend
these results to the non-Archimedean case. For this reason, to fix ideas (unless
otherwise stated) we shall assume that K is such a non-Archimedean field.
Conditions (i), (ii) and (iii) of §2.4.1 on the probability measures for non-

Archimedean fields have to be modified because the groups G are not in gen-
eral connected locally compact groups. To see what goes wrong, assume μ ∈
P(G) has its support in π−1(A0) where we recall that π :G→G/N and A0 ⊂ A
is the compact open subgroup such that p : A→ A/A0=Zm. In that case all the
real roots L ∈L are identically zero on suppμ∗n with n � 1, and these roots
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therefore do not have any influence on the behaviour of μ∗n. The conditions
that we shall impose on the measures μ1, . . . of the theorems below are in fact
exactly the same (i), (ii), (iii) of §2.4.1 but for the set Ω⊂ G in condition (iii)
we demand the following result.

(iii)′ Ω is a relatively compact symmetric neighbourhood of e and π(Ω) gen-
erates A.

Let us write ψ = p ◦π : G→ Zm and μ̌ = ψ̌(μ). By definition, μ̌(0) > 0,
and for every x ∈ Zm there exists q such that μ̌q(x)> 0.
Condition (iii)′ guarantees therefore that the random walk on Zm controlled

by μ̌ behaves as it should. For instance, when μ is symmetric, we have
μ̌n(0)∼ n−m/2.

6.6.2 Statement of the theorems

Theorem 6.2 (C-theorem) Let G and μ1, . . . ∈ P(G) be as in §6.6.1 and let us
assume that G is a C-group. As before, denote μn = μ1 ∗ · · · ∗ μn = φn(g)drg
and let P ⊂ G be some compact subset. There exist then constants C, c > 0
such that

φn(g)�Cexp
(− cn1/3); n� 2, g ∈ P. (6.2)

This implies that

μn(P)�Cexp
(− cn1/3); n� 1 (6.3)

and (6.3) is the analogue of (2.15). Conversely, of course, by conditions (i),
(ii) and (iii)′ imposed on the measures, condition (6.3) for n implies condition
(6.2) for n+ 1.

Exercise Verify this. It is elementary by the definition of convolution. One of
the technical problems that we have to face with these groups is that we do not
have at our disposal the Harnack estimate of §2.5 because these groups are not
connected. Nonetheless, the second formulation (6.3) allows us to use the re-
duction of §2.5.3. What this amounts to is the following: let ν ∈ P(G) be some
compactly supported fixed measure and, with the notation of the C-theorem,
let us set μn = ν ∗ μn. Then, if condition (6.3) is satisfied (for an arbitrary P)
for the sequence of measures μn, then it is also satisfied for the original se-
quence μn. To see this, for any set P, we have μn(P) =

∫
μn(x−1P)dν(x) and

observe that for any compact set P1 we can find another compact set P such
that (suppν)P1 ⊂ P. Then use this P in the integral.
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Theorem 6.3 (NC-theorem) Let G and μ ∈ P(G) be as in §6.6.1 and let us
assume that μ is symmetric (i.e. that μ(x−1) = μ(x)) and that G is an NC-
group. Then there exist constants C, c> 0, such that μ∗n = φn(g)drg satisfies

φn(e)�Cn−c; n� 2. (6.4)

The proofs will be given in the next two sections. These proofs are direct
generalisations of those given in Chapters 2 and 3. In fact they are consider-
ably simpler than those proofs because the group G is already a semidirect
product of N with A and therefore the disintegration of the measures in §2.7.2
simplifies; more significantly, in the proof of the NC-theorem in Chapter 3, we
do not need to use Cartan subalgebras and the overgroup G̃→G of (3.14). The
proof of (6.4) will be given in §6.7 only for n= 2n1, an even integer. The usual
passage to the odd integers using the Harnack principle of §2.5 does not work
here and something else has to be done. Given, on the other hand, that these
two theorems are essentially just illustrations of our methods on a special class
of groups, we shall not elaborate further on that ‘something else’.
The proofs in the next two sections will be written out for non-Archimedean

fields but with only notational changes they also work for K = R,C; and for
the case of algebraic groups they provide easier versions of the arguments of
Chapters 2 and 3.

6.7 Proof of the NC-Theorem

In this sectionG and μ are as in the theorem and familiarity with the arguments
and the notation of §3.5 will be essential; we shall use this notation throughout.
We shall denote the random walk on G by z( j) = s j = x1 . . .x j ∈G, where x j ∈
G are random variables with distribution μ ∈ P(G). The proof of the criterion
of §3.3.3 is very general and applies to the above Markov chain z( j).
We shall write x j = mja j with mj ∈ N, a j = ẋ j = π(x j) ∈ A (for the projec-

tion π :G→G/N) and ṡ j = π(s j) = a1a2 . . .a j ∈ A; then we have, as in (2.21),
s j = m1m

ṡ1
2 · · ·m

ṡj−1
j ṡ j . (6.5)

We shall fix once and for all some norm | |n on n and, as in §6.4.4, define
n(r) = [m ∈ n; |m|� r] and N(r) = expn(r). Using the group distance of §1.1
on the compactly generated group A of §6.4.2(ii) we can also define A(r) =
[a ∈ A; |a|A � r] . As pointed out in §6.4.2(ii), we have for the corresponding
Haar measures of these sets |A(r)|�Crm.
The sets on which the criterion of §3.3.3 will be used are En = N(C)A(Cnc),

with n� 1, for appropriate constants.
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The Haar measure on G is drg = dm da for g = ma, with m ∈ N, a ∈ A,
and therefore the condition §3.3.3(i) of the criterion is met because the right
Haar measure satisfies |En| = O(nC) for some appropriate constant. To verify
that condition (ii) of the criterion is also satisfied we shall use the following
observation:

For all C > 0 there exists a constant C1 such that L(a) � C, with L ∈Ln

and a ∈ A, implies (Ada)(n(r)) ⊂ n(C1r) for all r > 0 and therefore also
(N(r))a = aN(r)a−1 ⊂ N (C1r), by (6.1).

We shall consider now š j = p(ṡ j) =ψ(s j)where the notation is as in §6.6.1;
this is a symmetric random walk on Zm. With the notation of §6.5.2 we shall
then define the event

En : L(š j)�C; 1� j � n, L ∈Ln,

for some appropriate constant. Therefore, by the hypothesis on the measure in
§6.6.1 and the gambler’s ruin estimate in Zm of §3A, we deduce that P0 (En)�
Cn−c for appropriate constants, where we use the starting probability
P0 [s0 = e] = 1.

From this and by the above observation, we have |mṡj−1
j |�C on the event En

and therefore m1m
ṡ1
2 · · ·m

ṡn−1
n ∈ N(C1) by §6.4.4. We conclude therefore from

(6.5) that condition (ii) of the criterion in Chapter 3 is satisfied. So we are
through.

Note Notice howmuch simpler this proof is compared with the classical case
of Chapter 3. The properties that we explained in §6.4.4 simplify the formulas
but one has to get over the usual psychological obstacle that is related to the
ultrametric property. What really simplifies the proof is the fact that the group
is already a semidirect product of N and A and that Ad(A) acts semisimply on
the Lie algebra of N.

6.8 Proof of the C-Theorem

6.8.1 The construction of the exact sequence

The group G = NA is as in the C-theorem (Theorem 6.2). The notation is as
in §6.4.2 and n is the Lie algebra of N. By Chevalley (1955, §V.3.4), there
exists N2 ⊂ N an irreducible algebraic normal subgroup that corresponds to
n2 = [n,n]. Since by §6.4.3 the commutator subgroup satisfies [N,N]⊂ N2, the
locally compact group H = N/N2 is Abelian. Similarly, the locally compact
group G̃ = G/N2 can be identified with G̃ = H�A. No attempt will be made
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to identify H or G̃ with algebraic groups, because this will not be necessary,
but for these locally compact groups we have the direct analogue of the exact
sequence of (2.18):

0−→ H −→ G̃−→ A−→ 0. (6.6)

Note On the other hand, to assign analytic group structures on these groups
over the field K is easy to do. In the ad hoc proofs that we give of the properties
below, this additional structure has not been exploited. Well-known structure
theorems do exist, however, for the Abelian analytic groupH (see Serre, 1965,
§V.7, Theorem 2, Corollary 4). Using the action of A on H it might therefore
be possible to obtain more direct proofs in the spirit of what we did in §2.6.
This, however, is an opening to another subject: that of p-adic Lie groups.

For the proof of our theorem our main task is to verify that this exact se-
quence has the same properties as in Chapter 2 and that we can define the roots
as in §2.6.3. More explicitly the following facts will be proved.

(a) H =H1⊕·· ·⊕Hp can be decomposed as a direct sum of closed subgroups
and each Hj is isomorphic as a locally compact group with Kdj , for 1 �
j � p, with the direct product topology.

(b) The subgroupsHj are normal in G̃ and the inner automorphisms τa : x 	−→
axa−1, a ∈ A can be identified with elements of GLK(Kdj ) and we can
define what we shall call the roots of the action of A Λ j, by τ̌a(HaarHj) =

exp(Λ j(a))(HaarHj) where τ̌a is the induced mapping on measures.
(c) The roots in (b) are group homomorphismsΛ j : A→R and we have Λ j =

d jL j for the real roots inLW defined in §6.5.1 that are now counted with-
out repetition.

In particular, it follows from (c) that the roots Λ j satisfy the property of §6.5.3
and can be identified as Λ j : Zm → R. Furthermore, if ϕ : G→ G/N2 is the
canonical projection we can define μ̌ j = ϕ̌(μ j) ∈ P(G̃) new measures that sat-
isfy conditions (i), (ii) and (iii)′ of §6.6.1. As in Chapter 2 the main task for
the proof of Theorem 6.2 is to prove that the measure μ̌n = μ̌1 ∗ · · · ∗ μ̌n on G̃
satisfies the analogues of (6.2) and (6.3), or in other words, that the C-theorem
holds for the group G̃. Once this is done, estimate (6.3) holds for the original
measures because for any P⊂ G̃ we have μn (ϕ−1(P))= μ̌n(P).
For the proof of (6.3) for the group G̃we use properties (a), (b), (c) of the ex-

act sequence and the arguments of §2.7–2.10. To see that these arguments are
applicable we disintegrate the measures μ̌ j as in §2.7 and because of the semi-
direct product structure G̃ = H �A this disintegration is considerably more
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transparent than in Chapter 3. Then the arguments of §§2.8–2.10 can be re-
peated verbatim but for the following two modifications.
Note that in the sampling of §2.9 we cannot use the reduction §2.5.3 as it

stands because of what was said in the exercise of §6.6.2. Note also that for
formulation (6.3) of the C-theorem we use again the Borel section and the
argument at the end of §2.16. This, as in §2.16, is necessary because of the fact
that we do not have Harnack at our disposal.
The second modification comes at the very end of §2.10 where we again use

the properties in §6.6.1 of the measures μ̌1, . . . on G̃. What needs to be done
is to adapt the results of §§2A.1–2A.2 for lattice distributions on Zn. This is
straightforward because the machinery of the central limit theorem (see Feller,
1968 or Gnedenko and Kolmogorov, 1954). Once this is done we proceed ex-
actly as in §2.10, now using the above roots Λ j on Zn. The verification of both
of these steps is left to the reader.
The rest of the argument in §§2.7–2.10 goes through verbatim and this com-

pletes the proof of the C-theorem. It now remains to give the proof of properties
(a), (b), (c) of the exact sequence.

Proof of properties (a), (b), (c) The fact thatH is Abelian follows from §6.4.3.
We shall now choose β1, . . . ,βp finite subsets of n such that dϕ(β j) is a basis
of W̃j for 1� j� p in the real root space decomposition ofW in §6.5.4.We can
then complete by a finite set β0⊂ n2 in such a way that β = β0∪β1∪·· ·∪βp is
a basis of n and on that basis we can use the result in Chevalley (1955, §V.3.4,
Prop. 17), which gives what is often referred to as exponential coordinates of
the second kind for N (see Varadarajan, 1974, §3.18.11 for real Lie groups).
Using these coordinates every x ∈ N can be written as a product

x= y0y1 · · ·yp,
yi = exp

(
z(1)i

) · · ·exp(z(di)i

)
,

(6.7)

where z(k)i ∈ hi = (linear combination of elements of βi) for 0 � i � p, and
where di = dimW̃i for i� 1.

Exercise Use §6.4.3 and the BCH formula of §6.4.4, as well as the above
reference in Chevalley (1955, §V.3.4), and (6.8) below to verify this.
We shall now need the following converse of the BCH (Baker–Campbell–

Hausdorff) formula. This is called the Zassenhaus formula (see Magnus et al.,
1965, §5.41) and it asserts that

exp(ξ +η) = exp(ξ )exp(η)E1E2 · · ·En; ξ ,η ∈ n, (6.8)

where the finitely many cofactors are of the form Ej = exp(Zj(ξ ,η)) and
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where the Zj are, as in the BCH formula, linear combinations of [θ [· · · ] · · · ]
for θ = ξ ,η , of length at least 2. A direct proof of this based on the BCH
formula can be found in Hörmander (1967).
By repeated use of the BCH formula and of (6.8) and §6.4.3 on (6.7), we

finally conclude that each x ∈ N can be written uniquely as

x= exp
(
ζ0
)
exp
(
ζ1
) · · ·exp(ζp); ζ j ∈ h j, 0� j � p. (6.9)

Furthermore, the bijection N � x↔ (ζ0,ζ1, . . . ,ζp) ∈ n2× h1× ·· · × hp is
given by polynomial functions both ways and is bicontinuous for the locally
compact topologies induced by the matrices with coefficients in K. To see
this we can use the inverse of the exp mapping of §6.4.4 given by the ‘log-
arithm’ as explained in Chevalley (1955, §V.3.4, top of p. 124). Now observe
that for j = 1, . . . , p we have ζ j(xy) = ζ j(x)+ ζ j(y) (but not necessarily for
j= 0). It follows that the above bijection induces an isomorphismofH =N/N2
with H1⊕ ·· ·⊕Hp and that the subgroups Hj ⊂ H can be identified with the
W̃j
∼= Kdj and this preserves of course the Haar measures of the groups. This

proves (a).
Part (b) is a consequence of the fact that (Ada)h j ⊂ h j+n2 for a ∈ A (this

holds by the definition of these spaces) and the fact that the exponential map-
ping intertwines Ada and τa (see (6.1)). Part (c) follows from the Ada action
on W̃j in §6.5.1. Notice that for this we only need to use the above remarks on
Haar measures (Exercise 6.1 is not used here).

6.9 Final Remarks

In the spirit of what was done in Part 5.3, it can easily be seen that with our
notation and for groups and measures as in §6.6.1, we have

φn(e)�Cexp
(− cn1/3); n� 2,

for appropriate constants provided that μ is symmetric as in the NC-theorem.
The point here is that this should hold irrespective of whether G is C or NC.
The proof in §6.7 (modified as in §5.13 to use the ‘scale’ of §5.3.2) gives

this at once but with one additional difficulty. One has to prove that the mea-
sure |N(r)| grows polynomially in r. This non-trivial fact is a consequence of
Exercise 6.1. The other question that has to be clarified here is of course that of
the amenability for the groups that we have considered in this chapter. Soluble
groups are amenable by general considerations (Reiter, 1968) but how about
the classification of §3.1.5? Can this be adapted here?
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In the same spirit, a much more difficult exercise consists in adapting Varop-
oulos (1999b) to give the local central limit theorem φn(e) ∼ n−ν for (6.3) in
the NC-theorem for some ν that depends on G and μ . This would be the ana-
logue of (3.3) but this has never been written out.
Finally, it is very likely that with the existing structure theorems on reductive

algebraic groups (Borel and Tits, 1965; Bruhat and Tits, 1972) we could make
the classification of §1.3 go through for all algebraic groups over a locally
compact field of characteristic 0. The Levi decomposition certainly exists for
these groups at least up to a point (this goes back to Chevalley, 1955, §V.4,
No. 2 and the end of No. 1 on page 143 of Tome III, where one sees what goes
wrong for fields that are not algebraically closed, or the more recent extensive
literature on the subject, e.g. Humphreys, 1975, §§30.2, 34.5 and the references
therein). However, no effort has been made to write a proof in that generality.
A similar project for positive characteristics would certainly be much more
difficult.
At any rate, all this is outside the scope of this book and it would require a

reasonable understanding of ‘rationality questions’ in algebraic group theory.
This specialised and technical subject deals with algebraic groups over fields
that are not algebraically closed, and goes beyond the results of Chevalley
(1955) on fields of characteristic 0.



Appendix A

Semisimple Groups and the Iwasawa
Decomposition

Those readers not familiar with the structure theory of semisimple Lie algebras
will find Appendices A, B and C difficult. In these appendices we give a global
‘overall’ picture of the algebras involved in our theory and also, and this is their
main purpose, we give the algebraic ingredient that is needed for the homotopic
classification (see §1.6). For more on ‘what’s involved here’ and ‘what implies
what’, see Appendix F and also §12.6 in homology theory.
Throughout the appendix, we shall denote by g some finite-dimensional Lie

algebra. As before unless otherwise stated, all these algebras will be over the
real field but here we shall also make extensive use of the theory of complex
semisimple Lie algebras. We shall denote by q (resp. n) the radical (resp. the
nilradical) of g. Our main source of references will tacitly be Jacobson (1962);
Bourbaki (1972); Varadarajan (1974); Helgason (1978); additional more spe-
cialised references will be given as we go along in these appendices. I should
also add that the style of the presentation is informal and sketchy, and as a
consequence not as precise as it should be. Readers not familiar with the the-
ory, who wish to take all this seriously, will therefore have to surf the above
references quite a lot.

A.1 The Levi Decomposition

With the notation as above there exists s ⊂ g some semisimple subalgebra
(i.e. the radical of s reduces to {0}) such that g = q+ s as vector spaces and
q∩ s = {0}. This is to say that we can write g = q� s, a semidirect product.
This is called the Levi decomposition of g. The subalgebra s is called a Levi
subalgebra.
The above decomposition is ‘essentially unique’ in the sense that if s1, s2 are
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two Levi subalgebras, there exists α ∈Aut(g), an automorphism of the algebra
such that α(s1) = s2.

Inner automorphisms

In fact, this automorphism can be chosen to be an inner automorphism α ∈
Int(g). This means that there exists x ∈G, the simply connected Lie group that
corresponds to g such that α = Ad(x). For our immediate purposes this point
is not essential. Later on, however, we shall make use of inner automorphisms
and we shall also use the following observation.

Let g = q� s be some Levi decomposition and let α ∈ Int(s) some inner
automorphism of s. Thenα can be extended to α ∈ Int(g), that is, α|s=α . This
is clear by considering G=Q�S the corresponding Levi decomposition of the
group G (Jacobson, 1962; Bourbaki, 1972, Chapter 1; Varadarajan, 1974).

A.2 Compact Lie Groups

Let g be some semisimple real Lie algebra and let G, G1 be two connected Lie
groups that admit g as a Lie algebra. If we assume that G is compact then so is
G1. We then say that g is of compact type. We also say that g is of non-compact
type (or abusing terminology, just non-compact) if it is the direct sum of simple
Lie algebras that are not compact. Recall that a non-Abelian Lie algebra is
called simple if its only ideals are {0} and the whole algebra. No confusion
should arise in the terminology ‘non-compact’ that we shall be using. This is
not the same as saying that the corresponding group is not compact. A more
precise but also more cumbersome terminology would have been to call them
‘semisimple Lie algebras without non-trivial compact factors’.
Without semisimplicity the above breaks down, as the two groupsRn and its

‘compact model’ Tn = Rn/Zn show.
Nonetheless, the above two examples supply all the ‘compact Lie algebras’.

More precisely, let G be some compact Lie group. Then the Levi decompo-
sition of the Lie algebra g of G is g = z⊕ s where z is the centre and s is
semisimple. Here the Levi subalgebra is unique s= [g,g] (see Helgason, 1978,
Chapter II, Proposition 6.6). This means in particular that a simply connected
compact Lie group has to be of the form Rd×G with G semisimple and com-
pact. But then d = 0 and therefore such a group is semisimple.
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Some notation

If s is some semisimple Lie algebra then s can be decomposed uniquely s =
sn+ sc where sn = snon-compact (resp. sc = scompact) is the non-compact (resp.
compact) component. This notation will be adopted throughout.
Here of course sn is a direct sum of simple algebras of non-compact type

in the above sense. It should, however, be noted that this is not the correct
way of presenting things. The Cartan–Killing form is what has to be used. The
reader who is not familiar with this beautiful theory is strongly urged to take
the required time to study it (Jacobson, 1962; Bourbaki, 1972; Varadarajan,
1974; Helgason, 1978).

A.3 Non-compact Lie Algebras and the Iwasawa
Decomposition

In this section s will denote throughout some non-compact real Lie algebra,
that is, sc = 0 in the above terminology. By an Iwasawa decomposition of s we
mean the direct vector space sum

s= ns+ a+ k (A.1)

that has the properties below. This is sometimes called ‘the’ Iwasawa decom-
position. This abuse of terminology will be justified later, in §A.4.

(i) All three components in (A.1) are Lie subalgebras: ns �= 0 is nilpotent,
a �= 0 is Abelian and k �= 0 is the Lie algebra of a compact group as in
§A.2. Furthermore, [a,ns]⊂ ns and therefore ns+ a is a soluble algebra.

(ii) More precisely, in the soluble algebra ns+a we have [ns,a] = ns and the
ad-action of a on ns is semisimple with real non-zero roots μ1, . . . ,μn ∈ a∗
(which is the real dual of a).

An immediate consequence of this is that the nilradical of ns+ a is ns
(see also Knapp, 1986, Prop. 5.10). For our purposes, what is also im-
portant is that these roots satisfy the NC-condition; that is, if α j � 0, for
1� j � n, are such that ∑α jμ j = 0 then all the α j are zero. Anticipating
the definition that will be given later (in Chapter 8), the above conditions
say that ns+ a is an SSA (special soluble algebra) of NC type.

(iii) The Iwasawa decomposition of the group. Let S be some connected, not
necessarily simply connected, semisimple (real) Lie group and let s be its
Lie algebra, which is assumed to be of non-compact type and admit the
Iwasawa decomposition (A.1). The following properties then hold good.
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(a) The analytic subgroups Ns, A, K that correspond respectively to ns,
a, k are closed.

(b) Ns and A are simply connected and the analytic mapping

Ns×A×K −→ S; (n,a,k)−→ nak

is an analytic diffeomorphism of the (analytic)C∞ manifolds.
(c) K is simply connected if and only if S is.

This lets us write S= NsAK, called the Iwasawa decomposition of S.
(iv) The centre Z = Z(S) of S, which by the semisimplicity is necessarily

discrete, lies in K : Z ⊂ K. Furthermore, S/Z has trivial centre (because
π : S→ S/Z is a covering mapping and since also the centre Z1= Z(S/Z)
is discrete, it follows that π−1(Z1) is a discrete normal subgroup of S and
thus it is central). Furthermore,K/Z is compact (see Helgason, 1978, V1,
Theorem 1.1).

(v) From the above properties it follows that K ∼=Rd×K1 for some compact
groupK1 (see Hochschild, 1965, XIII, §2.1). The subgroupK1 is uniquely
determined in K because any compact subgroup of Rd ×K1 has to lie
in K1 (to see this, project on Rd). Furthermore, when S and therefore
K are simply connected then K1 is a simply connected compact group
and therefore it has to be semisimple (see §A.2). See Helgason (1978);
Gangoli and Varadarajan (1980); Knapp (1986).

A.4 Uniqueness

One issue that arises is whether the decomposition (A.1) is essentially uniquely
determined (i.e. up to an automorphism of s as in §A.1) by the properties that
we have enumerated, possibly together with additional similar properties if
necessary. The author of this book does not feel very comfortable in this area,
and the only explicit reference he is aware of where this problem of uniqueness
is addressed is Onischik and Vinberg (1988, §5.4.5).
Nonetheless, what will be done is to describe an explicit construction that

we shall call the Iwasawa construction. This will be done in the three steps
below and they will lead to a decomposition as in (A.1). We do not obtain just
one single decomposition with this construction but several, depending on the
choices that are made on the way in the three different steps. Nonetheless, here
we pick up a uniqueness property that will allow us to call (A.1) ‘the Iwasawa
decomposition’. More precisely, if the two decompositions

s= ns+ a+ k= n′s+ a′+ k′
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are obtained from two different sets of choices, then there exists α ∈ Int(s)
such that

α(ns) = n′s, α(a) = a′, α(k) = k′. (A.2)

Notice that if we pass to the complex field, this uniqueness is related to the the-
ory of parabolic subgroups (see Humphreys, 1975; Gangoli and Varadarajan,
1980 and also §A.8 below),

A.5 First Step: The Cartan Decomposition and the Choice
of k

This is a fundamental step and it lies at the heart of the theory of real semisim-
ple Lie algebras. To conform with the notation of Helgason (1978), which we
shall follow very closely, we write g0 rather than s for such an algebra. The
Cartan decomposition of the algebra is then a decomposition g0 = k+p where
k is a compact algebra, that is, the algebra of some compact group, not neces-
sarily semisimple, as in §A.2 (see Helgason, 1978, Chapter II, §5 for a more
intrinsic definition; the two definitions are easily seen to be equivalent but the
fact will not be needed). This will supply the component k in the Iwasawa de-
composition (A.1). The subspace p is not a subalgebra but we have instead
[p,p]⊂ k, [k,p]⊂ p.
The construction of the Cartan decomposition is done as follows. We com-

plexify g = g0⊗C to obtain a complex semisimple Lie algebra. Using the
fundamental root space decomposition and the structure of g, we can then find
gk ⊂ g some compact real form. Several such compact real forms exist. This
means that gk ⊂ g is a subalgebra of g viewed as a real Lie algebra. Here g over
R is a real Lie algebra of dimR g= 2dimg0 and both g0 and gk can be identified
with real subalgebras of g. Two things play together in the choice of gk.
First, g is a complexification of gk, meaning g= gk+ igk and gk∩ igk = {0}.

This is exactly the same way that g is a complexification of g0. This forces
gk to be a semisimple real Lie algebra. Hence the terminology ‘real form’.
Furthermore, a choice of gk can be made so that gk is a compact semisimple
real algebra, hence the term ‘compact real form’. None of this is evident (see
Helgason, 1978). One more condition is imposed on the choice of gk, namely
that it ‘fits’ well with the original algebra g0 in the sense that

g0 = g0∩gk+g0∩ igk; k= g0∩gk; p= g0∩ igk.

This is the Cartan decomposition. Several such decompositions can be given
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depending on the choice of gk. But if

g0 = k1+ p1 = k2+ p2

are two different ones there exists ψ ∈ Int(g0) such that
ψ(k1) = k2, ψ(p1) = p2. (A.3)

A.6 Second Step: The Choice of a

We shall now fix a Cartan decomposition as in §A.5. The choice of a, or rather
‘a choice’ of a, in the Iwasawa decomposition (A.1) is as follows. We choose
a ⊂ p, some subspace that is Abelian in the sense that [X ,Y ] = 0 for X ,Y ∈ a

and such that a is maximal under that condition. One can then prove that if
a1, a2 are two different choices then there exists α ∈ Int(s), with s= g0 in the
notation of (A.1) and §A.5, such that (see Knapp, 1986, §5.13)

α(k) = k, α(p) = p, α(a1) = a2. (A.4)

A.7 Third Step: The Choice of n

Some choice of the Cartan decomposition and of k and a will be fixed as in
§§A.5–A.6. From this we shall construct n, some subalgebra that will satisfy
the conditions of the Iwasawa decomposition (A.1). Finitely many possibilities
will be given for this and they will have the property that if n1, n2 are two such
choices then there exists α ∈ Int(g0) such that (see Knapp, 1986, §5.18 or
Gangoli and Varadarajan, 1980, equation (2.2.12))

α(k) = k, α(p) = p, α(a) = a, α(n1) = n2.

This, in combination with (A.3) and (A.4), gives the required uniqueness in
(A.2). The construction of n is done as follows.
First one proves that the (Abelian) action of ada on g0 is diagonalisable

with real roots for some appropriate basis of g0. This allows us to construct the
root space decomposition of g0 where the roots are 0 and the non-zero roots
λ ∈ Σ⊂ a∗ so that we have

g0 = g0,0+ ∑
λ∈Σ

g0,λ ;
[
g0,λ ,g0,μ

]⊂ g0,λ+μ , (A.5)

with g0,· the corresponding root spaces.
Now an order relation can be given on a∗ and we shall denote by Σ+ ⊂
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Σ the set of positive roots for that order relation. For instance, we could fix
a1, . . . ,ar ∈ a some basis and define the order relation by saying that ϕ > 0 in
a∗ if the first among the coordinatesϕ(a1), . . . ,ϕ(ar) that is not zero is positive
(cf. Helgason, 1978, Chapter 3, §5).
We shall then define ns = ∑λ∈Σ+ g0,λ ; then from (A.5) it follows automati-

cally that n is a nilpotent algebra and that properties (i), (ii) of §A.3 hold good.
What needs proving is that we indeed have an Iwasawa decomposition and that
the properties in §A.3 hold.

Remark on the terminology

The roots λ in Σ are called the restricted roots. These are not what one usually
refers to as the roots, which are those obtained in a complex Lie algebra g by
the action of a Cartan subalgebra h.
For instance, it is possible that both λ ∈ Σ and 2λ ∈ Σ. Also the multiplicity

of these restricted roots is not necessarily 1.
The construction and the geometric configuration of the restricted roots is of

course closely related to the roots of the complex Lie algebra g= g0⊗C but we
do not have to go into this here. On the other hand, this become crucial when
we wish to compute the exact exponent ν in the local central limit theorem of
(3.3) (see also Bougerol, 1981). As we said, none of this will be considered in
this book (Helgason, 1978 is the reference that we have followed, but all the
above can also be found in Gangoli and Varadarajan, 1980 and Knapp, 1986
and other books on representation theory).

A.8 Uniqueness up to Automorphism of the Iwasawa
Radical. Borel Subgroups

With the notation that we have introduced and the Levi decomposition g =

q�s we shall fix ns+a+ k, some Iwasawa decomposition of the non-compact
component of s if that component is �= 0. Otherwise we set ns = a = 0. With
this notation that we defined in §4.1 the Iwasawa radical r= q+ns+ a.
The main purpose of this appendix is to show that r is unique up to an

automorphism α ∈ Aut(g) (in fact α ∈ Int(g), but this is not important now).
As a result the classification that says that g is NB if and only if r is NC is a
genuine classification. This uniqueness is now a consequence of the uniqueness
of the Levi decomposition in §A.1 together with (A.2) and the final remark in
§A.1. Recall also from §4.1 that, without proving this uniqueness of r, the fact
that we obtain a classification nonetheless follows by its equivalence with the
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analytic and geometric characterisations of the B–NB conditions (see §4.1). On
the issue of the above uniqueness, the considerations that follow are relevant
but outside the scope of the book, so we shall be brief.
If we pass to the Lie group G and if we assume that G is a complex alge-

braic group, that is, an algebraic subgroup of GLn(C) (see Humphreys, 1975;
Chevalley, 1951 and also Chapter 6), then it is a fundamental fact that we
can find B ⊂ G some closed subgroup that is soluble and cocompact; that is,
the homogeneous space G/B is compact for the Hausdorff topology.We could
have chosen B to be a Borel subgroup. Such subgroups are characterised by the
following two conditions. First B is soluble and closed. And second, no larger
subgroup B̃� B is soluble. What is important here and all round, is that if B, B1
are two Borel subgroups there exists an automorphism α ∈ Aut(G) such that
α(B) = B1. Now it is clear from both the analytic and the geometric theory that
G is B or NB if and only if the Borel subgroups B are C or NC, respectively.
This gives yet another characterisation for this special class of groups of

the B–NB condition. This characterisation is algebraic in nature. Furthermore,
we can relate this with the Iwasawa radical because when G is semisimple the
subgroup NsA coming from the Iwasawa components ns+ a is closely con-
nected to the Borel subgroups of the complexified group Gc (see Gangoli and
Varadarajan, 1980).
The disadvantage of using Borel subgroups to characterise the B–NB con-

dition is that the method can only be used for complex algebraic groups. The
restriction that we have to work with in an algebraically closed field does not
pose serious problems because we can easily complexify and pass from a real
Lie group to a complex one. The restriction that the Lie group G, and hence
g its Lie algebra, has to be algebraic is more serious. Indeed, the following
question arises. Let g⊂ gl(V ) be some Lie subalgebra of the full Lie algebra of
linear transformations on the vector spaceV (overR or C) and let g⊂ gl(V ) be
its algebraic closure (see Chevalley, 1951, §II.14; Varadarajan, 1974, §3.1.15).
Is it then true that g is B (resp. NB) if and only if g is? We shall not address
this question here because, although interesting, it lies outside the scope of this
book.

A closing remark about the algebraic B–NB classification Unfortunately,
there is no way of proving the uniqueness (e.g. (A.2), (A.3) or the correspond-
ing fact on Borel subgroups) without going deeply into the details of a different
subject. A glance at the references I have given will also show that such a di-
gression is really out of the question and pointless in this book. But the hope
is that what we have done in this appendix demystifies the ‘magic words’ Iwa-
sawa decomposition. With regard to the uniqueness, as we have already said,
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one can always fall back on the analytic geometric classifications and forget
all about it.
Finally, for readers familiar with the subject, the following is an equivalent

and more intrinsic version of the algebraic classification of §4.1. The notation
is the same as before, and let b be some minimal parabolic subalgebra of s
(cf. Gangoli and Varadarajan, 1980, §2.3). Then g is B- (resp. NB-) if q+ b

is C- (resp. NC-). Furthermore, all these subalgebras q+ b are conjugate by
inner automorphisms and they coincide with the set of all maximal amenable
subalgebras of g (cf. Warner, 1970, §1.2.3).

A.9 The Nilradical of the Iwasawa Radical r

The notation is as before.We shall denote by nr ⊂ r the nilradical of the soluble
algebra r. What is certain is that n, being a nilpotent ideal of r, lies in nr; but it
is also true that n= n+ns is a nilpotent ideal of r and n⊂ nr.
To see this observe that ns = [ns,a]⊂ [r,r]⊂ nr, where the last inclusion is a

standard fact on soluble algebras (see Varadarajan, 1974, §3.8.3). On the other
hand, n is an ideal in r because n is an ideal in g, and because [ns,a] ⊂ ns,
[q,g]⊂ n by the same fact as before.
We shall make essential use of the above in what follows. To complete the

picture, note that we have the more precise fact nr = n+n, but only marginal
use will be made of this.

Exercise Prove the above. Observe that nr ∩ q ⊂ n and therefore nr ∩ q = n

because n⊂ nr. Now let π : r→ r/q= ns+ a, the canonical mapping. For our
assertion we need to see that π(nr) ⊂ ns. But this is obvious since π(nr) is a
nilpotent ideal in ns+ a and thus it has to be contained in the nilradical of this
algebra. The nilradical of ns+ a is ns by §A.3(ii) and we are done.

A.10 A Lemma in the Representations of a Semisimple Lie
Algebra

Let g be some real non-compact semisimple algebra in the sense of §A.2. We
have for the Cartan and the Iwasawa decompositions,

g= k+ p= ns+ a+ k, a⊂ p,

gc = g⊗RC, gk = k+ ip⊂ gc.

The notation is similar but not absolutely identical to what we had before;
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for example, here g is the g0 or the s of §A.4 or §A.3. Now let ρ : g→ gl(V )
be some (real) Lie algebra representation in the Lie algebra of linear automor-
phisms of the real vector space V . We then have the following lemma.

Lemma A.1

(i) There exists a basis of V with respect to which all the linear transforma-
tions (ρ(a); a ∈ a) become simultaneously diagonal with real eigenval-
ues λ1(a), . . . ,λn(a) ∈ R. Here n= dimV and multiplicity is admitted.

(ii) We have λ1(a)+ · · ·+λn(a) = 0 for all a ∈ a.
(iii) If λ j(a) = 0, a ∈ a, j = 1, . . . ,n then ρ = 0 is the trivial identically zero

representation.

Part (iii) follows immediately from (i) and the fact that Kerρ = [x∈ g; ρ(x)=
0] is an ideal. That ideal has to be the whole algebra as soon as it contains a.
Part (ii) is automatic from the fact that ∑λ j(a) = traceρ(a) = 0. This holds

because x→ traceρ(x) gives a Lie algebra homomorphism which has to be 0
by the semisimplicity of g. (Alternatively, this trace clearly vanishes on [g,g]
which is the whole algebra by the semisimplicity.)
The proof of (i) depends on the construction of the Iwasawa decomposi-

tion. To see (i) we proceed as follows. We first complexify and extend ρ to a
representation of g⊗C= gc on Vc =V ⊗C : ρc = ρ : gc→ glC(Vc).
It suffices now to show that we can find 〈· , ·〉, some Hermitian scalar product

on Vc, for which all the transformations ρ(a) are Hermitian:

〈ρ(a)u,v〉= 〈u,ρ(a)v〉; a ∈ a, u,v ∈Vc. (A.6)

Indeed, once (A.6) has been seen, part (i) of the lemma follows.
The reason why (i) follows is that all the eigenvalues of ρ(a), with a ∈ a,

have to be real. Since on the other hand ρ(a) ∈ gl(Vc) are real transformations
(since ρ(a)V ⊂ V for a ∈ a), all the corresponding eigenvectors which are a
basis of Vc over C actually lie in V . This diagonalises each ρ(a) individually.
The fact that the diagonalisation can be done simultaneously for all ρ(a), with
a ∈ a, follows by the commutativity of a using an easy standard argument that
will be left as an exercise for the reader (for example, use induction over the
dimension of a, or the existence of a common eigenvector).
The construction of the Hermitian scalar product that satisfies (A.6) is not

evident. More explicitly we start from, say, the standard Hermitian scalar prod-
uct 〈· , ·〉◦ induced by some fixed bases u1, . . . ,un ∈V (which is to be orthonor-
mal!). We then restrict the representation ρc to ρk : gk→ glC(Vc) and consider
the induced representation ρ̂ : Gk→GLC(Vc) of the simply connected compact
group Gk that corresponds to gk. Here we use only the fact that gk, considered
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as a real Lie algebra, is a compact semisimple algebra and Gk is a compact
(real) Lie group. We then define

〈u,v〉=
∫
Gk
〈ρ̂(g)u, ρ̂(g)v〉◦ dg; u,v ∈Vc, dg= Haar measure.

This gives a Hermitian product (since it is sesquilinear with 〈u,u〉 
 〈u,u〉0)
for which all the transformations ρ̂(g), with g ∈ Gk, are unitary. By taking the
differential of ρ̂ we obtain ρk and it follows that all the transformations ρk(x),
x ∈ gk are skew-Hermitian.

Exercise Verify that

0=
d
dt

〈
ρ̂
(
etx
)
u, ρ̂
(
etx
)
v
〉∣∣∣∣
t=0

= 〈ρk(x)u,v〉+ 〈u,ρk(x)v〉 ; x ∈ gk. (A.7)

But this gives (A.6) since a ⊂ p ⊂ igk and by (A.7) all the transformations in
igk are Hermitian. This completes the proof of the lemma.

This lemma is bound to exist explicitly somewhere in the literature. But we
have given a proof of this here for the convenience of the reader.



Appendix B

The Characterisation of NB-Algebras

B.1 Notation

All the notation and the results of the previous appendix will be used again.
We write g= q� s for the Levi decomposition of the algebra g which will be
assumed to be an NB-algebra. We shall denote

s= sc+ sn; sc = compact, sn = non-compact,

sn = ns+ a+ k if sn �= 0,
r= q+ns+ a⊂ g where ns = a= 0 if sn = 0.

(B.1)

These denote the decomposition of s into its compact and non-compact com-
ponents, the corresponding Iwasawa decomposition of sn when this is not zero
and the corresponding Iwasawa radical. When q = {0} and g is semisimple
then it is an NB-algebra and there is not much else to say. So we shall assume
throughout that the radical q and the nilradical n are both not zero.

B.2 Further Notation

As in §3.4 we shall now fix h ⊂ q (possibly {0}) some nilpotent subalgebra
such that

n+h= q, [h,s] = 0 (B.2)

and write

r= n̄+ h̄, n̄= n+ns, h̄= h⊕ a; (B.3)

here and throughout the notation ⊕ will be reserved to indicate a direct Lie
algebra sum (i.e. h∩a= {0}, [h,a] = 0 in (B.3)). This is in contrast to the sign

198
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+ that indicates the sum of vector spaces. This is often, but not always (for
instance not in (B.2)), a direct sum of vector spaces.
We saw in §A.9 that

n̄= n+ns ⊂ nr = nilradical of r. (B.4)

In fact, equality holds in (B.4) but this is not essential to know at this point.
What counts is that n̄ is an ideal in r (cf. §A.9) and that the NB-condition
on g means that r is NC. Since nr + h = r, because of (B.3)–(B.4), we have
that the real roots of the ad-action of h on nr, and also on every ideal of r,
satisfy the NC-condition in the sense of the following imprecise but convenient
terminology: since h acts by ad on every ideal I ⊂ r, with I = nr,n,n+ns, . . . ,

its action on the complexification I⊗C admits a root space decomposition and
the real parts of the roots, counted with multiplicity, R1, . . . ,Rk, with k= dim I,
will be called, as in Chapter 2, the real roots of that action. Furthermore, if it
happens that the relation ∑α jR j = 0, for α j � 0, implies α jR j = 0, for j =
1, . . . ,k, then we shall say that the NC-condition is satisfied (or simply that ‘I
is NC’!). From the definition, it is clear that for the two ideals I2 ⊂ I1 ⊂ r, the
real roots of I2 are a subset of the real roots of I1. As a result, I2 is NC as soon
as I1 is.
This real root space decomposition is exactly what we did in Chapters 2 and

3 (see §2.3.4) for the action of adh on n, and if we preserve the notation of
§3.8.2 we have

n= n0+n1+ · · ·+nr, nR = n1+ · · ·+nr (B.5)

for the real root spaces with distinct real roots L0 = 0,L1, . . . ,Lr (with Lj non-
zero for j �= 0). Here we recall that n0, by abuse of notation, could be the zero
space if there is no root with real part equal to zero. All the other spaces n j for
1� j � r are non-zero. In (B.5) we have

[n j,s]⊂ n j, [n j,n0]⊂ n j; 0� j � r. (B.6)

This holds because of the commutation relation (B.2). Also we recall here that
unless [ni,n j] = 0 we have Li+Lj = Lk. For all this, go back to §3.8.2.

B.3 Two Lemmas

With this notation we can now state the following two lemmas.

Lemma B.1 The real roots L j, with 0 � j � r, satisfy the NC-condition.
Explicitly, if we assume that r� 1 and that α j � 0, for 1� j� r, are such that
∑α jL j = 0 then α j = 0, with 1� j � r.
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What this lemma says is that the radical q of an NB-algebra is NC, and gives
the proof of Proposition 4.3.
As a consequence of the lemma we can assert that

nR = n1+ · · ·+nr ⊂ g (B.7)

is a subalgebra (see §3.8.2) and because of (B.6), nR is in fact an ideal. As in
Part 3.3, we conclude from the above that when g is an NB-algebra then

g= nR� [n0+h+ s]. (B.8)

This is exactly what was exploited in Part 3.3 in the case of amenable algebras,
that is, algebras for which s is of compact type.
As we shall see presently, the converse of the lemma fails and the radical q

could well be an NC-algebra and yet g fail to be NB. (This is an exercise after
studying §B.5 below (cf. §4.1). An explicit counterexample isR2�SL(R2) for
the natural action in the semidirect product).
The second lemma (below) refers explicitly to non-amenable Lie algebras.

Lemma B.2 Let the notation be as before and g be assumed NB. Then we
have

[sn,n0] = {0}. (B.9)

The proofs of Lemmas B.1 and B.2 will be given below in §B.4 but before
that we shall use the two lemmas together with what we saw in §3.8.3 to reca-
pitulate and reorganise our notation so that we do not have to come back later.
We have

g= q� s, q= nR� (n0+h), s= sc⊕ sn,

[nR,s]⊂ nR, [n0,s]⊂ n0,

[h,s] = 0, [n0,sn] = 0.

(B.10)

We shall then define

gR = (n0+h)� sc, m= gR⊕ sn, (B.11)

where the radical of gR is qR = n0+h is an R-algebra (by the definition of n0;
see §§2.2.2, 3.8.2). This implies that

gR = qR� sc is an R-algebra. (B.12)

With this notation (B.8) becomes

g= nR� (gR⊕ sn) = nR�m. (B.13)

This final splitting, we shall presently show, may be used to give a complete
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characterisation of NB-algebras. Note also that, as we observed in §3.8, nR is
uniquely determined and is independent of the choice of h.

B.4 Proof of the Lemmas

Since [n j,s] ⊂ n j (0 � j � r) by §A.10, the Abelian algebra a acts (by ‘acts’
we refer, of course, both here and throughout to the adjoint action) diagonally
on each n j and the roots of that action λ j

1 , . . . ,λ
j
p j are real λ

j
i ∈ a∗, where

p j = dimn j. Furthermore, the trace vanishes, as in Lemma A.1:

∑
i
λ j
i = 0; 0� j � r. (B.14)

Here, to account for multiple roots, repetition is allowed in the enumeration of
these roots.
Using Jordan–Hölderwe see that the real roots (i.e. the real parts of the roots

as in §B.2) of the action of the nilpotent algebra h= h+ a on n are then

μ j
i = Lj+λ j

i ∈ h
∗
= h∗+ a∗; 0� j � r, 1� i� p j. (B.15)

Assume that α j � 0, with 1� j � r (we omit here the case j = 0), are such
that ∑ j α j p jL j = 0; then

∑
j

p j

∑
i=1

α jμ j
i =∑

j
α j p jL j+∑

j
α j

p j

∑
i=1

λ j
i = 0. (B.16)

The vanishing in (B.16) is guaranteed by the hypothesis on the α j and (B.14).
Now, as explained in §B.2, the NB-condition on g implies the NC-condition
on the μ j

i and this, together with (B.16), gives α j = 0, 1 � j � r, because by
definition L1, . . . ,Lr �= 0. This is what is stated in the conclusion of LemmaB.1.
The same argument applies to the ad-action of a on n0 when this space is not

zero. The roots of that action are then λ 01 , . . . ,λ
0
p0 ∈ a∗ and the NB-condition

on g and (B.14) imply that all the λ 0i are zero. This in turn, by §A.10, again
implies that the ad-action of a on n0 and also the action of the whole of adsn
is trivial. This proves the required (B.9).
Notice that only the trace was used in the above argument, and therefore the

explicit use of Jordan–Hölder that we made to identify the roots in (B.15) is
not essential.
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B.5 The Unimodular Case

We recall that a Lie algebra g is called unimodular if

trace(adx) = 0; x ∈ g. (B.17)

Exercise (i) Prove that an algebra g is unimodular if and only if any Lie
group that corresponds to g is unimodular, that is, left and right Haar mea-
sures coincide (see for example Bourbaki, 1963, Chapter 7 or Helgason, 1984,
Chapter 1, Lemma 1.4).

Exercise (ii) R-algebras (see §2.2.2) are unimodular because
traceadx=∑ (characteristic roots of adx)

=∑ (real parts of characteristic roots of adx),

since adx is a real transformation.

Exercise (iii) Semisimple algebras s are unimodular and traceadx = 0 with
x ∈ s because we have [s,s] = s.

Exercise (iv) If g is unimodular its radical q has to be unimodular (see Bour-
baki, 1963, Chapter 7, §2.6; in fact, it is ‘if and only if’, but we do not imme-
diately need this).

Exercise (v) The soluble algebra q is unimodular if and only if in some (or
equivalently all) triangulation of the adξ action on q⊗C, with ξ ∈ q, the sum
of the roots (which are the diagonal elements of the triangular matrices) van-
ishes (cf. §2.3.3). In particular, if q is NC it has to be an R-algebra.

Conclusion An algebra g is NB and unimodular if and only if g = gR⊕ s,
where gR is an R-algebra and s is semisimple.
The ‘if’ part follows from Exercises (ii), (iii).
The ‘only if’ follows from (B.8) because by the unimodularity we can con-

clude that nR = {0} because, by Exercises (iv), (v) and Lemma B.1, the radical
q in (B.10) is an R-algebra.

B.6 Characterisation of Non-unimodular NB-Algebras.
The Necessary Condition

Let us now assume that g is an NB-algebra that is not unimodular and let the
notation be as before. Then by Exercise (iv), q is not unimodular and nR �= 0.
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Putting together our previous considerations and using the Hahn–Banach ar-
gument of §2.3.1 we can say the following. In the decomposition (B.8), (B.13)
we saw that we could find ξ ∈ qR such that the characteristic roots of adξ act-
ing on nR, namely λ1, . . . ,λn, with n = dimnR � 1, counted with multiplicity,
satisfy

Reλ j > 0; 1� j � n. (B.18)

B.7 The Sufficiency of the Condition

Property (B.18) will be used in Appendix F. In the rest of this appendix we
shall examine a ‘converse’ of that property.
In the proofs that follow we shall be brief because this is something that is

neither important nor used again.

Hypothesis (H) Let g be some arbitrary Lie algebra that can be written as

g= nR� (gR⊕ s), (B.19)

where nR is nilpotent, gR is an R-algebra and s is semisimple or 0. Clearly, by
splitting s = sc+ sn of (B.10) we can absorb sc with gR and assume in (B.19)
that s= sn = ns+a+ k as in (B.1). We shall further assume that the following
condition is satisfied.
There exists ξ ∈ qR = the radical of gR that satisfies one and thus both, of

the following equivalent conditions.

(H) The roots of adξ |nR λ1, . . . ,λn (counted with multiplicity n = dimnR

� 1) satisfy Reλ j > 0, with j = 1, . . . ,n.
(H′) ‖Ad(e−tξ )|nR‖�Ce−ct , with t > 0, for someC, c> 0.

Under these conditions g �= 0 and g is not unimodular. For the equivalence
(H)⇔ (H′) we use the fact that qR is soluble. This will be left as an exercise
because it is essentially contained in §3.9.1.

The sufficiency We shall show that under (H), the algebra g is anNB-algebra.
There are two reasons for the second formulation (H′).
First, (H′) can be weakened in a natural way and we could impose instead

the following condition.

(WH) There exists ξ ∈ gR (and not necessarily in the radical) for which (H′)
holds.
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The conclusion is the same: (WH)⇒ (NB).
The point is that since in general gR is not soluble, any argument that in-

volves characteristic roots has to be done with care because we cannot use
Lie’s theorem. As a result, the norm of Ad(e−tξ ) is easier to handle.
The second reason is more speculative in nature but it is worth recording.

Condition (WH) says that the ‘flow induced by the 1-parameter group etξ is
contracting’. This suggests connections with the theory of dynamical systems.
This point of view, however, will not be pursued.
At any rate, putting together §§B.5–B.7 we see that we have a complete

characterisation of NB-algebras. This will turn out to be useful in Appendix F
on geometric theory.

B.8 Proof of the Sufficiency

The notation is as in (B.19) and we assume that condition (H) is satisfied. We
denote by qR the radical of gR and, as before, by q and n, respectively, the
radical and nilradical of g. The following then holds:

q= nR� qR, nR ⊂ n⊂ q,

n= nR� (n∩qR) = nR� n̂, n̂= n∩qR,
qR/n̂= q/n is Abelian.

The easy verification will be left to the reader.
In the proof below, as we shall see, n̂ will play a role analogous to that of n0

in (B.5).
A nilpotent subalgebra h ⊂ qR, say a Cartan subalgebra, can now be found

so that qR = n̂+ h and therefore also q = n+ h. This is possible because of
Chevalley (1955, §VI.4.5), as in §3.4. To avoid confusion with this notation,
we stress the point that this nilpotent algebra has nothing to do with the h that
we fixed in §B.2 and which was used to define qR.
What we can say about these subalgebras is this:

(i) [h, n̂] ⊂ n̂ and the real roots (in the sense of §B.2) of the action of the
nilpotent algebra h on n̂ are zero. This holds because qR is an R-algebra.

(ii) Similarly, [h,nR] ⊂ nR and the real roots L1, . . . ,Ln, with n = dimnR, of
the action of h on nR counted with multiplicity, satisfy the following NC-
condition: ∑α jL j = 0; α j � 0, with 1 � j � n, imply that α j = 0, with
1� j � n. In particular none of the Lj is zero.

We shall show at the end of this section that (ii) follows from condition (H).
But before this we shall complete the proof of the sufficiency.
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Proof that g is NB under condition (H) In the argument that follows, sn
could be {0} but as already said, gR, nR do not vanish. The Iwasawa radical
that corresponds then to some decomposition of sn = ns+ a+ k in g = nR�

(gR⊕ sn) is

r= q+ns+ a= n+h; n= n+ns; h= h⊕ a.

Now we shall need to use the stronger fact in §A.9 that n = nr ⊂ r is the
nilradical of r. We need to show that the real roots of the action of h on n

satisfy the NC-condition (in the sense of §B.2). This will complete the proof
that g is an NB-algebra.
By the obvious Jordan–Hölder argument applied to the ad-action of h on n

and n/n, the real roots R1,R2, . . . ∈ (h)∗ of the adh-action on n are obtained by
putting together the following two sets of real functionals on h:

(a) The real roots of the action of ad h̄ on n. These roots will be written
R1, . . . ,Rm, counted with multiplicity, with m= dimn.

(b) The real roots of the induced action adh on n/n = ns. The roots will be
written Rm+1, . . . ,Rp, with p= dimn.

Recall that h = h⊕ a and for the restrictions of these roots (remember that
they are elements of (h)∗) to the two subspaces h and a we can assert the
following.
For the first class in (a) (after possible reordering) we have

Rj
∣∣
h
= Lj; j = 1, . . . ,n (n= dimnR),

Rn+1 = · · ·= Rm = 0,
(B.20)

where L1, . . . are the real roots of the adh-action on nR as in property (ii). To see
the vanishing of the remaining roots in (B.20), observe that in the direct vector
space decomposition n= nR+ n̂we have [h,nR]⊂ nR and [h, n̂] = [h, n̂]+[a, n̂].
Now [a, n̂]⊂ [sn,qR] = 0 by (B.19). As for the ad-action of h on n̂, it has pure
imaginary roots since qR is an R-algebra and h, n̂⊂ qR.
For the roots in class (b), using [h,n]⊂ [q,g]⊂ n we deduce that

Rj
∣∣
h
= 0; j = m+ 1, . . . , p. (B.21)

Furthermore, the Rj
∣∣
a
, with j = m+1, . . . , p, can be identified with μ1, . . . the

roots of the ad-action of a on ns of §A.3(ii) – in the case sn = 0, (B.21) says
that all the Rj are zero.
Now let α j � 0 be such that

m

∑
j=1

α jR j+
p

∑
j=m+1

α jR j = 0. (B.22)



206 Appendix B: The Characterisation of NB-Algebras

By restricting this relation to h we deduce from property (ii), (B.20), (B.21)
that α1 = · · ·= αm = 0 and therefore also α jR j = 0, with 1� j �m. This new
information once inserted back in (B.22), together with the NC-property of
the roots μ1, . . . of §A.3(ii), imply that α j = 0, with j = m+ 1, . . . , p. So from
(B.22) we have concluded that all the α jR j = 0. The bottom line is that we have
proved that the Iwasawa radical r is an NC-algebra. In other words, we have
completed the proof that g is an NB-algebra. Finally, we give the following
proof.

Proof of property (ii) This is a consequence of Lie’s theorem and the tri-
angulation of the action of adq on nR⊗C (see Varadarajan, 1974, §3.7.3). Let
ϕ1, . . . ,ϕn ∈HomR[q;C], with n= dimnR, denote the diagonal elements in that
triangulation. Then for any ξ ∈ q the complex roots of adξ for that action are
ϕ1(ξ ), . . . ,ϕn(ξ ).
Now let ξ be as in condition (H). We can then write ξ = χ+ψ , with χ ∈ n,

and ψ ∈ h (not necessarily uniquely) and since adχ is a nilpotent transforma-
tion on nR, ϕ j(χ) = 0 (1� j� n) the conclusion is that ϕ j(ψ) = λ j (1� j� n)
for the characteristic roots λ j of adξ as in (H) and therefore by condition (H)
on ξ , we have Reϕ j(ψ) > 0. But the existence of such a ψ ∈ h for which this
holds clearly implies condition (ii).

B.9 Additional Remarks on the Sufficiency of the Condition

In the geometric theory in Appendix F of Part II, we shall show again by differ-
ent means that condition (H′), in fact the even weaker condition (WH), suffices
to guarantee that the simply connected group G̃ that corresponds to g is NB.
This geometric proof, in accordance with the speculations of §B.7, has a

strong dynamical system flavour. This geometric proof, a posteriori, will be
seen to be the correct way of going about things.
We shall see, in particular there, that it is not the fact that ξ ∈ gR, as stipu-

lated in condition (H), that really matters. What counts is that ξ ∈m (of (B.11))
and that ξ has the exponential contraction property (H′) for the flow g→ getξ ,
with g ∈ G̃, together with the fact that |(Adn)ξ |�C(1+ |n|M)C, with n ∈M.
Both these conditions are of a dynamical nature.
Despite this, if we insist on giving an algebraic proof that (WH) ⇒ (NB),

with the notation of Appendix C below, we can go about it as follows. (Only a
sketch of the idea will be given here and the reader is invited to treat this as a
– difficult but instructive – exercise and write down a proof.)
When ξ ∈ g and g = eξ ∈ G̃R then g = qs, q ∈ Q̃RS̃c (these are the simply



B.9 Additional Remarks on the Sufficiency of the Condition 207

connected groups that correspond to qR and sc as in §C.1 below). Then as in
the random walk argument of §2.7.1 we can write
(qs)n=(q1s1)(q2s2) · · · (qnsn)=q1qs12 · · ·qs1···sn−1n s1s2 · · ·sn=q̃1 · · · q̃nsn=q∗nsn,
with q1 = q2 = · · · = q, s1 = s2 = · · ·= s. The compactness of S̃c is then used
together with the fact that q̃1, . . . , q̃n ∈ Q̃R, which is a soluble group. Lie’s
theorem can thus be used to triangulate Ad q̃ j

∣∣
nR
and they all have the same

eigenvalues as those of Adq. It follows that the eigenvalues of Adq∗n on nR are
rn1, . . . (where r1, . . . are the eigenvalues of Adq); see (3.62).
This together with the (WH) condition can be used as a substitute for con-

dition (H) in the proof of property §B.8(ii). Indeed, condition (WH) together
with the above considerations shows that |r j|< 1 for the eigenvalues.



Appendix C

The Structure of NB-Groups

All the notation from Appendices A and B will be preserved and, throughout
here, g will be some NB-algebra.

C.1 Simply Connected Groups and Their Centres

Here G̃,NR, G̃R, S̃n, M̃ will denote the simply connected groups that correspond
to the algebras g, nR, gR, sn, m of §B.3 respectively. Clearly (B.13) induces

G̃∼= NR� M̃; M̃ ∼= G̃R⊕ S̃n,
and the groups NR and M̃ can be identified to subgroups of G̃.
To obtain the global structure of a general connected groupG with Lie alge-

bra g we shall use the following result.

Lemma The centre Z = Z(G̃) of G̃ is contained in M̃ : Z ⊂ M̃.
To prove this observe that since NR is a simply connected nilpotent group,

every element x ∈ NR can be expressed uniquely by x = expξ , where ξ ∈ nR

will be denoted by ξ = logx (see Varadarajan, 1974, §§2.1.3, 3.6). Further-
more, by the definitions

logxa = (Ada)(logx) = eadζ logx;

a= exp(ζ ), a ∈ G̃, ζ ∈ g, xa = axa−1.
(C.1)

Now let z ∈ Z and let us write (uniquely) z = xm, with x ∈ NR, m ∈ M̃. We
shall show that x= e, the identity. This will complete the proof.
To see this let a = expζ ∈ M̃ for some ζ ∈m. Then since z = za = xama =

xm we have xa = x (and ma = m because m,a ∈ M̃). This together with (C.1)
implies, by the uniqueness of the logarithm, that eadζ (logx) = (logx). If x �= e

208



C.2 A General NB-Group 209

this means that logx∈ nR is an eigenvectorwith eigenvalue 1 for all eadζ , where
ζ ∈ m. But this contradicts the condition (B.18) unless x = e. This completes
the proof.

C.2 A General NB-Group

In this section, the notation⊕ denotes the direct product of groups. The conclu-
sion from the previous section is that if G is an arbitrary connected NB-group
then there exists Z ⊂ M̃ a discrete subgroup in G̃ that is central in G̃ such that

G= G̃/Z = NR�M; M = M̃/Z. (C.2)

If we use Iwasawa decomposition in §A.3 to write M̃ = G̃R⊕KANs, where
KANs = S̃n, it follows that Z lies in the subgroup G̃R ⊕K. (To see this we
project Z on the component KANs; since that projection is central, it lies in K
by §A.3(iii).)
This means thatM can be written as a product

M = M̃/Z = LANs = ANsL; L=
G̃R⊕K
Z

, (C.3)

where the representationM �m= anl, with a ∈ A, n ∈ Ns and l ∈ L, is one-to-
one, and it induces a diffeomorphism. The group L is clearly an R-group. The
subgroups L, A, N (we drop the index s because no confusion can arise) are not
normal in M and this makes the representation (C.3) awkward to work with.
The one conclusion that can be drawn from (C.3), however, is the following.

Maximal compact subgroups LetU ⊂L be some maximal compact subgroup
(necessarily connected) and let V be some maximal compact subgroup of G.
Then dimU = dimV .
To see this we invoke the general theory of maximal compact subgroups

(see Hochschild, 1965, §XV.3; Helgason, 1978, §VI.2, and also Chapter 12
below) and the fact that AN  Rs (a diffeomorphism) to deduce that we have,
diffeomorphically,

G=U×Rp V ×Rq; p,q� 0. (C.4)

Expression (C.4) implies that dimU = dimV = n and p = q because n is the
largest index for which the real cohomologyHn(G,R) does not vanish.
An immediate consequence of this and the general theory (see Hochschild,

1965, Chapter XV, Theorem 3.1(iii)) is that some conjugate of V ⊂ L and that
U is a maximal compact subgroup of G.
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C.3 The Quasi-Isometric Modification

Apart from (C.4), the group decomposition (C.3) is not very useful in itself. To
get a more useful decomposition of M, at least geometrically, we can resort to
a device that will be used systematically later on in the geometric theory.
The idea consists in modifying the groupM and constructing a new ‘replica’

group M1, together with some diffeomorphism ϕ : M→ M1 which, although
not a group isomorphism, preserves important features of the structures. Here
it is the left-invariant Riemannian structure that will be preserved, in the sense
that |dϕ |, |dϕ−1|�C, that is, ϕ is a quasi-isometry in the sense of Chapter 11.
Once we set our mind to doing this the actual construction of M1 is not very
difficult.
Starting from S̃n = NsAK we first construct S∗ = NsA⊕K and then define

M∗ = G̃R⊕S∗, the direct product of the two groups. This is a new group that is
in a natural bijective correspondence ϕ̃ : M̃→M∗ withM and ϕ̃ has the prop-
erty |dϕ̃ |, |dϕ̃−1| � C for the two left-invariant Riemannian structures. This
is the pivot of course. The reader is invited to try to prove this for themselves
before checking it out in Example 11.9 below, where the proof is seen to be
a consequence of a more general principle. What is used there is the fact that
G̃R×NsAZ(K) can be identified with a cocompact subgroup of both M̃ andM∗.
Now we observe that ϕ̃ identifies the subgroup Z with Z∗ = ϕ̃(Z) ⊂ M∗,

which is also a central discrete subgroup in the new groupM∗. This holds be-
cause Z(M̃) = Z(G̃R)×Z(S̃n) and Z(S̃n) = Z(K) (here we use the notation Z(·)
for the centre of a group and we also use the fact §A.3(iv)). As a consequence,
the identification ϕ̃ intertwines the left action of Z on M̃ with the left action of
Z∗ onM∗. As a consequence, we deduce that the induced mapping

ϕ : M = LNA= M̃/Z
∼=−→
[
G̃R⊕K
Z

]
⊕NA= L⊕NA (C.5)

is also a diffeomorphism and satisfies |dϕ |, |dϕ−1|�C for left-invariant Rie-
mannian metrics.
Note that when the groupG is unimodular (and NB) then NR = {0} and then

(C.5) applies to G=M.



Appendix D

Invariant Differential Operators and Their
Diffusion Kernels

D.1 Definitions and Notation

Let X = R×K be some principal bundle as in Chapter 4, where R is some
connected Lie group and K some compact C∞ manifold which, to fix ideas,
we shall assume to be a Lie group. We shall use all the notation of Chapters 4
and 5 and denote by dk the Haar measure on K and dr, drr the left and right
Haar measures on R.

We shall consider on X second-order subelliptic operatorsD. This will mean
here that locally, modulo lower-order terms, these operators can be represented
by−∑Y 2j , the sum of squares of vector fields that satisfy the Hörmander condi-
tion (i.e. they, together with their successive brackets, span the tangent space).
The operators that we shall consider in this appendix will be invariant by the
left action of R on the bundle X .

When G = RK is a Lie group that is identified with the bundle X = R×K,
then the invariant subelliptic Laplacians Δ=−∑Y 2j on G that we have consid-
ered in the previous chapters give rise to invariant differential operators on X .

For an appropriate closure of D we shall consider the semigroup Tt = e−tD

and the heat diffusion kernel Tt f (x) =
∫
f (y)pt(x,dy); see Yosida (1970, Chap-

ter IX). In the situation that we shall examine in this appendix, we shall always
have pt(x,dy) = pt(x,y)dy for dy some appropriate measure on X and some
smooth kernel pt(x,y), with t > 0, x,y ∈ X .
The most natural measure to consider on X is drdk because among other

things it is left invariant by R-action and therefore the kernel p(l)t (x,y) of Tt with
respect to that measure is left invariant. This also is the measure that is identi-
fied with left Haar measure dy in the identification with G= RK (cf. §4.4.6).
The main thing that will be done in this appendix is to prove the following

upper Gaussian estimate.

211
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For all 0< a< b there exist C, c> 0 such that

p(l)t (x,y)�Cexp(−cd2(x,y)); x,y ∈ X , t ∈ [a,b]. (D.1)

Here and throughoutd(· , ·) denotes some fixedR-invariant distance onX which
is locally given by Euclidean distance on the compact neighbourhoods of the
manifold.
The above measure is not the most convenient to use on X . This we already

saw in (4.23) where, always with the identification G  RK, we had drg =

χ2 drrdk. To be systematic we shall fix notation, write dx = drrdk, with x =
(r,k) ∈ R×K, and consider a whole family of measures of the form α2(x)dx
for strictly positive smooth functions of the form α(x) = θ (r)ϕ(k), where θ
is multiplicative, that is, θ (r1r2) = θ (r1)θ (r2). The reason why we confine
ourselves to such functions is simple. Indeed, let L∗ be the formal adjoint of an
arbitrary operator L with respect to an arbitrary measure dσ . Then the formal
adjoint of the operator α−1Lα (the conjugation by pointwise multiplication by
f → α f ) with respect to α2 dσ is α−1L∗α . Therefore if the above conjugation
is to preserve R-left invariance, α has to be of the above form. Note also the
following. Let α be as above and let Y be some R-invariant vector field on X .
Also let Y ∗ be the formal adjoint of the first-order differential operator Y with
respect to dx. Then the formal adjoint with respect to α2 dx is Y ∗+ a(k) for
some smooth a ∈C∞(K).

TheMarkovian property In the above definitionsD is a Markovian generator
if D1 = 0, that is, if the differential operator D has no constant term, and then
the semigroup generated Tt = e−tD is Markovian. This property is lost by the
conjugation α−1Dα by one of the functions that we considered above. But
we can recover that property if α is an eigenfunction and Ttα = e−λ tα . Then
e−λ tTt is Markovian. This is what we did in §5.3.
Since we shall only be considering here a finite time interval, t ∈ [c,b], this

particular choice of α will not be essential. Observe, however, that by the R-
invariance D1 is always a bounded smooth function and therefore D1+ a� 0
for some a> 0 and the semigroup e−tae−tD is sub-Markovian. This guarantees
the positivity of the kernel pt(x,dy). This kernel, as we shall see in the next
section, will be smooth.

D.2 The Harnack and the Gaussian Estimates

Since we are not aiming for generality, we shall make throughout the assump-
tion that, globally, D = −∑Y 2j for R-invariant vector fields that satisfy the



D.2 The Harnack and the Gaussian Estimates 213

Hörmander condition. We shall also assume that for one of the measures con-
sidered in the previous section, namely ďx = α2 dx, the fields are skew ad-
joined, that is, Y ∗j = −Yj. This assumption is certainly satisfied in the group
case, G = R · K with Δ = −∑Y 2j as in §D.1 for the measure drg = χ2dx
(cf. (4.23)). The smoothness of the kernel u = pt(x,y) with respect to ďx is
then clear because it is symmetric and therefore satisfies the subelliptic equa-
tion [2(∂/∂ t)−Dx−Dy]u= 0.
Using the general theory (see Varopoulos et al., 1992 and the references

given there) we also see that the kernel with respect to some measure α2 dx as
above will satisfy the following Harnack estimate:

Let 0< a1 < b1 < a2 < b2 and c> 0 be given. Then there exists C > 0 such
that

pt1(x1,y1)�Cpt2(x2,y2); x1,x2,y1,y2 ∈ X ,
a1 < t1 < b1, a2 < t2 < b2, d(x1,x2)< c, d(y1,y2)< c.

(D.2)

This holds for any other choice of the measure β 2 dx (for any other function β
as in §D.1) since we can clearly pass from one to another by multiplying this
kernel by α2(y)/β 2(y) and use again the special nature of the weight functions
α and β .
The uniformity in x1,y1 is the only new point that needs checking. But this

is clear by R-invariance of D and the special nature of the weights α . Indeed,
these imply that there exists a multiplicative positive character χ on R such
that p(rx,ry) = χ(r)p(x,y), with r ∈ R, because this is what happens to the
measures that we are considering when we translate them by r ∈ R. This gen-
eralises the remark that we already used in §5.4.
Now we shall stick to the previous measure ďx = α2 dx = α2 drrdk in-

volved in our assumption on D and consider pt(x,y), the kernel of the oper-
ator αe−tDα−1 with respect to dx. Using this special measure and standard
arguments we shall prove the following Gaussian estimate:

Let t ∈ [a,b] be some bounded fixed interval. Then there exist C,c> 0 such
that

pt(x,y)�Cexp
(−cd2(x,y))m−1R (y); x,y ∈ X , t ∈ [a,b], (D.3)

where mR denotes the modular function on R, that is, drr = mR(r)dr.
This estimate is uniform in x, y but not in t. By passing to the left measure dr

we obtain the original estimate (D.1) that we set ourselves the task of proving.
Observe finally that conjugating the semigroup e−tD by α , as we did, makes

no difference to the Gaussian estimate. The reason is that the effect of this con-
jugation is to multiply the kernel by α(xy−1). This factor is in turn absorbed by
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the Gaussian factor because of the multiplicative nature of θ in the definition
α = θϕ of §D.1.

D.3 Proof of the Gaussian Estimate

In this section we shall denote by ‖ ‖2 and 〈· , ·〉 the corresponding scalar
product in the Hilbert space L2(X ;dx). We recall that dx = drrdk, and that
ďx = α2 dx is as in §D.2. The proof of (D.3) that we shall give below follows
well-known lines (see Varopoulos et al., 1992, Chapter IX) and we shall be
brief.
The first step is to fix ϕ , some real Lipschitz function on X that satisfies
|∇ϕ |= ∑ |Yjϕ |� 1 for the vector fields Yj that give the operator D as in §D.2.
We then have for any ρ ∈R,

−〈eρϕαDα−1e−ρϕ f , f 〉 =−
∫
Yj
(
α−1e−ρϕ f

)
Yj
(
α−1eρϕ f

)
ďx;

f ∈C∞
0 (X),

(D.4)

since dx= α−2ďx and where we consider only real functions f . If we compute

e∓ρϕYj
(
α−1e±ρϕ f

)
= Yj
(
α−1 f
)±ρ (Yjϕ)α−1 f

and use the |∇ϕ | � 1 we conclude that the left-hand side of (D.4) is bounded
from above by ρ2‖ f‖22 and this implies that we can bound the L2-operator
norm by ∥∥eρϕe−tαDα−1e−ρϕ∥∥2→2 � eρ

2t .

In terms of the kernel pt(x,y) this gives∣∣∣∣∫∫ pt(x,y)eρ(ϕ(x)−ϕ(y)) f (x)g(y)dx dy ∣∣∣∣� eρ
2t‖ f‖2‖g‖2;

f ,g ∈C∞
0 (X), ρ ∈ R.

(D.5)

Now we fix h(x) ∈C∞
0 (X) non-negative with compact support in, say, the unit

ball of X . We shall then set f = hr1 , g= hr2 for the translated functions hr(x) =
h(rx) for the R-action on X and for which we have ‖hr‖pp = mR(r)−1‖h‖pp for
the modular function and any Lp-norm. With this choice of f , g and t = 2 the
left-hand side of (D.5) can be bounded from below if ρ > 0 by

cp1(r1,r2)e
ρ(ϕ(r1)−ϕ(r2))−cρ‖hr2‖1‖hr1‖1

for some c> 0 because of the Harnack estimate. This combined with (D.5) and
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the above remark will finally give that there existsC> 0 that depends on h but
is independent of ρ and ϕ such that

p1(r1,r2)�Cm−1/2(r1)m−1/2(r2)exp
(
2ρ2+ρ(ϕ(r2)−ϕ(r1))+ cρ

)
.

The ‘trick’ at this point is this. For d(r1,r2) large we choose ϕ such that
ϕ(r1)−ϕ(r2)∼ d(r1,r2) and then ρ = ε−1d(r1,r2) for some small ε > 0. This
will give the required estimate because, modulo the Gaussian factor
exp(−cd2(r1,r2)), the cofactor mR(r1)−1/2mR(r2)−1/2 can be replaced by
mR(r1)−1 or mR(r2)−1.

D.4 Applications to a Special Class of Operators

We shall go back to the situation that we examined in §5.11. We had there
a projection π : R̃→ R between two connected Lie groups, that is, R = R̃/P
where P=Kerπ . We were also given the usual identification of G RK some
other connected Lie group with the principal bundle X = R×K. For the new
principal bundle X̃ = R̃×K we consider then the induced projection π : X̃→X .
The issue in §5.11 is the following. We start with a left-invariant Laplacian

Δ onG and this is identified with an R-invariant operatorD=−∑Y 2j on X that
satisfies the conditions of §D.2 with the measure α2 drrdk where here α = χ
and ďx= drg (with the above identification) as in (5.13). Now a new measure
ďx̃ = α̃2 drr̃ dk, for x̃= (r̃,k) ∈ X̃ , can be defined on X̃ with α̃(r̃) = α(π(r)).
And the issue is to define an operator D̃ on X̃ that satisfies all the conditions of
§D.2 with the measure ďx̃ and for which

D̃( f ◦π) = (Df )◦π ; f ∈C∞
0 (X). (D.6)

This is what we call a lifting of the operator D to X̃ in §5.6.4.
Here we shall give the construction but leave the easy verifications to the

reader.
Each Yj can be written (uniquely) as Yj = a j(k)Zj +Aj where Zj is a left-

invariant field in R, and Aj is some vector field on K, with a j ∈C∞(K).
We can then pick up some (arbitrary) left-invariant field Z̃ j on R̃ such that

dπ(Z̃ j) = Zj. We can also choose Ũ1, . . . ,Ũr left-invariant fields on R̃ that are
tangent to the subgroup P = kerπ at the identity e and which are chosen to
span at e the tangent space of P. Notice that P is not connected in general, but
in defining these fields this makes no difference (we consider the component
of the identity of P). We can then define

D̃=−∑Ỹj−∑Ũ2j ; Ỹj = a j(k)Z̃ j+Aj(k), j = 1,2, . . . .
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This operator satisfies all the required conditions.

Exercise (The verification) The fact that D̃ is subelliptic and that (D.6) holds
follows from the subellipticity of D and the definition of the fields Z̃ j and Ũj.
The fact that Z̃∗j = −Z̃ j (with respect to ďx̃) follows from the same fact for

the Zj (with respect to ďx). Finally, the fact that Ũ∗j = −Ũ j follows from the
definition. For these verifications we use the fact that α̃(gx) = α̃(xg) = α̃(x),
x ∈ R̃, g ∈ P and that dr

R̃
= drP⊗ drR̃/P = drP⊗ drR (see Bourbaki, 1963, Chapter

7: this notation has to be adapted when P is not connected).

A reformulation in terms of R-invariant operators All the operators T =

e−tαDα
−1
that we have considered are R-invariant operators on X = R×K with

normal representation T = L⊗{∗μk1,k2} as in §4.4. Furthermore, dμk1,k2(r) =
ϕk1,k2(r)dr. We shall denote by φ(x1,x2) the kernel of T with respect to dx as
in §5.3.3. Then if we test formula (5.7) on f with f dx ∼ δe with e = (eR,k2)
for eR, the neutral element of R, and k2 ∈ K, we obtain φ(x1,e) = ϕk1,k2(r1)
when x1 = (r1,k1) ∈ X .
But the Gaussian estimate (D.3) on the kernel φ now gives

φ(x1,e) =O
(
exp
(−c|r1|2))

for some c> 0. This shows that the measures μk1,k2 satisfy uniformly the upper
Gaussian estimate of §2.12.2 and that therefore T is a Gaussian operator, as
needed in §5.10.

D.5 Questions Related to the Lower Gaussian Estimate

There exists what seems to be a discrepancy between the lower Gaussian esti-
mate in the condition (5.60) and the definition of Gaussian operators in §5.10,
where no mention of such an estimate is made. This discrepancy is only appar-
ent because of the following two independent reasons.
The first is by a well-known elementary device that combines the Harnack

estimate and the upper Gaussian; as a consequence the lower Gaussian comes
for free! (see Varopoulos, 1990 or Varopoulos et al., 1992). We feel confident
that the interested reader can fill in the details.
There is, however, another much better reason why we do not need to worry

about this lower Gaussian. It is that for our applications it is simply not needed.
Indeed, in the appendices of Chapter 5, where we give these applications, it is
clear that we can in fact make do with far less!



Appendix E

Additional Results. Alternative Proofs and
Prospects

As indicated in the title, we shall give in this appendix, with precise references
but no proofs, additional information on pt(x,y), the kernel of the heat diffu-
sion semigroup e−tΔ on a connected Lie groupG. The style of the presentation
will be informal to say the least.

E.1 Small Time Estimates

Here we shall consider operators of the form

Δ=−
n

∑
j=1

Y 2j +Y0

for left-invariant vector fields Y0,Y1, . . . such that the Y1, . . . ,Yn already satisfy
the Hörmander condition. We shall denote by pt(x,y) the kernel of e−tΔ with
respect to the left Haar measure dy on G, and by d(x,y), for x,y ∈ G, the left-
invariant distance induced by the fields Y1, . . . ,Yn the usual way: that is, |g| =
d(e,g) = inf(t1+ t2+ · · ·+ tp) when g= exp(t1Yi1)exp(t2Yi2) · · ·exp(tpYip) for
some choice of p� 0 and of i1, . . . . The fundamental estimate then is this:

For all 0< a< b and ε > 0 there exists C > 0 such that

C−1 exp
(
− d

2(x,y)
(4− ε)t

)
� pt(x,y)�Cexp

(
− d

2(x,y)
(4+ ε)t

)
;

x,y ∈G, t ∈ [a,b].

(E.1)

The upper estimate, especially in the case Y0 = 0, is not too difficult to prove
(see Varopoulos et al., 1992; Varopoulos, 1990, 1996b). Note, however, that an
interesting and much more general and difficult result can be found in Hebisch
(1992).
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The lower estimate in (E.1) is considerably more difficult (see Varopoulos,
1990; Varopoulos, 1996b).
The sharpness of the Gaussian reflected by the 4±ε of the exponent is some-

thing that was used crucially in one of the early proofs of the C-theorems of
Chapter 2. Indeed, that sharpness of the exponent allows us to simplify consid-
erably the use of the appendix in §2A (see the few lines that follow (2A.23)).
This was done in Varopoulos (1994a).

Estimate (E.1) extends easily to operators on a principal bundle X = R×K
where the fields Y0, . . . ,Yn now are assumed to be R-invariant. It is here that the
need to incorporate a drift term in the operator Δ becomes clear. Indeed, even
if we start from a driftless Laplacian Δ (i.e. with Y0), then by taking the adjoint
with respect to one of the measures α2 dx of §D.1, an additional drift field Y0
automatically appears.

E.2 General Estimates for the Heat Diffusion Kernel

In §3.3 for amenable groups (see also §4.2) we have come across the local
central limit theorem. A proof of this was given in Varopoulos (1999b). From
another perspective, a number of ‘off-diagonal’ (i.e. with both t and x tending
to ∞) can be found in Varopoulos (1996a). In that paper in particular we break
the cofactor mR(y)−1 of (D.3) into interesting and relevant factors. (Both the
above two papers are very difficult to read!)
It is plausible that if one works really hard one can put everything together

and obtain optimal estimates of the form

φt (x)∼ e−λ tt−ν exp
(
−|x|

2

4t

)
M(x),

for any NB-group, where λ is as usual the spectral gap and the factor M(x) is
what corresponds to mR(y)−1 in (D.3), or better still as in Varopoulos (1996a).
The problem here is that the existing proofs, although they are basically just
elaborations of the techniques that we have developed in this book, are ex-
tremely long and complicated to write down. One already gets a taste of this in
the two above-mentioned papers that have appeared in print. As a consequence
one has to overcome a strong psychological obstacle before embarking on this
subject which, despite this handicap, is interesting and rewarding.
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E.3 Bi-invariant Operators and Symmetric Spaces

As already seen on a number of occasions, the most natural example of the
principal bundles of §4.2 arise in the context of a semisimple group S with
a finite centre, which in the non-compact case, as explained in Appendix A,
can be written S = NAK and identified to R×K = X with R = NA. The cor-
responding symmetric space Σ = S/K can then be identified with R and we
can consider the R-invariant differential operators on X that correspond to left-
invariant operators on G, which are K-bi-invariant (i.e. invariant by both left-
and right-action by elements of K). These can be identified to G-invariant op-
erators on the symmetric space Σ.
This gives a special class of operators that have been subject to deep and

extensive study and on which a vast and comprehensive literature exists, for
example Helgason (1984). Obviously, we do not intend to say anything in that
direction and at any rate it would be very difficult to say anything new here.
In Varopoulos (1996b) we have, however, explained that in this special case

the character χ and the eigenfunction ϕ0, together with eigenvalue λ that
played such a crucial role in §5.3, are old friends from the classical theory
of spherical functions on symmetric spaces (see Helgason, 1984).

E.4 A Fundamentally Different Approach to the
B–NB Classification

Unlike the previous sections of this appendix, here we shall describe something
which bears explicit incidence in the presentation of this book.
We shall briefly describe the advantages and disadvantages of formulating

the main B–NB classification in terms of the heat diffusion semigroup e−tΔ

rather than the convolution powers of measures that we actually used. In other
words, §1.3.2 versus §1.3.1.
In this different approachwe would have to start by constructing the heat dif-

fusion semigroup, and also, and this is more difficult, the space of continuous
paths z(t) ∈ G, with t > 0, of that diffusion. Even without too much knowl-
edge of the subject, one knows, for example, that Bernoulli random walks and
Brownian motion in Rd go together and that more often than not (and certainly
for d � 2) it is easier to get exact exponents and exact formulas for Brownian
motion.
The same thing happens here and this is why, for instance, the exact ex-

ponent ν of the local central limit theorem in (3.3) is easier to calculate for
diffusion than for a random walk (Varopoulos, 1999b).
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But even if we stick to things that we have developed in this book, like the
gambler’s ruin estimate in §5A, the corresponding proofs are definitely more
satisfactory for continuous time diffusion. This is the point of view taken in
Varopoulos (1996b) where a natural proof for these results was directly in-
spired by homogenisation theory (this is a subject that lies between PDEs and
potential theory; see Jikov et al., 1991). This particular proof works only for
elliptic Laplacians but still there is no doubt that this is the ‘correct proof’.
So where are the disadvantages that made us adopt the different approach

and work with random walks instead? The answer is simple.
We wanted to formulate the main B–NB classification in self-contained

terms and not to have to construct the heat diffusion semigroup, let alone
the corresponding path space, first. But even if we were prepared to accept
this more sophisticated formulation, the actual potential-theoretic work in the
appendices of Chapter 5 would perhaps have been simpler (we would have
avoided then the use of error terms in the Taylor development of (5A.5) and
(5A.8)) but the proofs would have been less accessible to readers and certainly
far less self-contained.
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7

Geometric Theory. An Introduction

Overview of Chapter 7

This chapter serves several purposes.
A number of definitions will be given and notation will be fixed. These will

be used throughout the geometric theory in the rest of the book.
Some of the basic theorems will be stated in a precise manner. The proofs

will be given later.
Above all we shall describe some of the basic ideas in the theory. An effort

has been made to make this chapter reader-friendly in order not to discourage
those who are unfamiliar with geometric ideas. For the same reason, the dif-
ferential forms in §7.6 will be treated here in an informal style and the more
formal definitions will be deferred until Part III.

Guide for the reader To get a global picture of what this geometric theory of
Part II is all about, the following route is recommended. First peruse the easy
Chapter 7. Then go to the overviews of Chapters 8, 9 and 10 where we explain
the general strategy of the proofs of the theorems of Chapter 7. Then the reader
can decide which aspects of the proofs to explore first. It takes all those three
chapters to give the proofs but they are compartmentalised and the components
are independent.
Then comes something that is important for a global understanding of the

theory: the reader should look at the overview of Chapter 11 as soon as possible
and certainly before diving into the technicalities of Chapters 8–10. The reason
is that in Chapter 11 we show that the special groups of Theorems 7.10 and
7.11 can be used as the building blocks that allow us to give the general B–NB
classification of the geometric theory.
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7.1 Basic Definitions and Notation

7.1.1 Manifolds

All the manifolds that we shall be considering will beC∞ and connected, with-
out further mention. Let f : M → M1 be some continuous mapping between
two such manifolds, each assigned with a Riemannian distance. We say that f
is Lipschitz, or more precisely f ∈ LipR, with R> 0, if for the corresponding
distances we have

d1 ( f (x), f (y)) � Rd(x,y); x,y ∈M. (7.1)

This definition extends of course to general metric spaces, but in the case of
Riemannian manifolds the differential

d f : TM −→ TM1 (7.2)

exists almost everywhere and definition (7.1) is equivalent to the fact that

|d f |� R (7.3)

almost everywhere (see Federer, 1969, §3.1.9), where |d f | denotes the norm of
d f : TM→ TM1 for the Riemannian norms | |m, | | f (m) on TmM, Tf (m)M, with
m ∈M, respectively.
Caution Some care is needed beforewe can actually assert that (7.1) and (7.3)
are equivalent. The standard counterexample is the increasing non-zero func-
tion with zero derivative almost everywhere. To avoid this type of pathology,
which is totally irrelevant to us here, we could start by assuming that f is
locally Lipschitz, that is, for each m ∈M there exists m ∈Ω⊂M some neigh-
bourhood of m on which f satisfies (7.1) for some constant (depending on Ω).
Then (7.1), (7.3) are equivalent, with the same R> 0.

Exercise Use elementary real analysis to prove the above statement. For ex-
ample, since the problem is local, we can assume that M = Rd and that f
is compactly supported and satisfies (7.3) a.e. For a fixed mollifier ϕ ∈ C∞

0
with
∫
ϕ = 1, it suffices to show that for the smooth function f ∗ϕ we have

|d( f ∗ϕ)|� R. (This gives f ∗ϕ ∈ LipR and we also have f ∗ϕ→ f uniformly
as ϕ→Dirac δ -mass at 0 and proves (7.1)). To see this we write the difference

Dε = f ∗ϕ(x+ ε)− f ∗ϕ(x) =
∫
( f (x+ ε− y)− f (x− y))ϕ(y)dy

and use Lebesgue dominated convergence to see that lim
∣∣ 1
εDε
∣∣ � R. Alter-

natively, we can argue as follows. The restriction of f on each smooth curve
is absolutely continuous with a derivative with respect to arc length that is
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bounded by R and, since on that curve f is the integral of its derivative, we are
done. This second proof is slightly incomplete (why is that?) and takes Fubini
to make it proper.

The two manifoldsM, M1 will be called quasi-isometric if there exist

M
f−→M1

f−1−→M, (7.4)

inverses of each other, such that both are LipR for some fixed R> 0.
We shall consider pointed Riemannian manifolds (M,O), (M1,O1); that is,

we shall fix points O ∈ M, O1 ∈ M1. We shall also write |m| = d(O,m) and
similarly |m1|1 = d1(O1,m1) for the distance from the origin.
Now let f :M→M1 be such a map that is smooth, or more generally locally

Lipschitz. We shall say that f is a polynomial map if there exists C > 0 such
that

|d f |�C (1+ |m|)C ; m ∈M. (7.5)

By |d f | here and in what follows we denote the operator norm of d f : TmM→
Tm1M1 for the Riemannian norms where m1 = f (m). An easy consequence of
the definition of distances in a Riemannian manifold is that there exist con-
stants such that

| f (m)|1 �C (1+ |m|)C . (7.6)

Exercise 7.1 Prove this.

We say that (M,O) and (M1,O1) are polynomially equivalent if there exist
locally Lipschitz mappings f :M→M1 and f−1 :M1→M that are polynomial
mappings and inverses of each other.
It is finally evident that the composition of two Lipschitz maps is Lipschitz

and the composition of two polynomial maps is polynomial. For the latter as-
sertion we need to use (7.6).
Note finally that all the general Riemannian manifolds that we consider

henceforth will tacitly be assumed to be complete (see Cheeger and Ebin,
1975; Helgason, 1978). But anyway, this completeness plays no role in our
considerations.

Warning In many statements, for example (7.5), we omit the qualification
‘a.e.’ (i.e. ‘almost everywhere’) when it is either obvious or irrelevant.
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7.2 Riemannian Structures on Lie Groups

7.2.1 Definitions

Let G be some connected Lie group and let us denote by

Lg : x−→ gx, dLg : TeG−→ TgG; x,g ∈ G (7.7)

the left translation on G. We shall fix | · |2 = 〈·, ·〉, a scalar product and a norm
on TeG, the tangent space at e ∈G the neutral element of G. We shall then use
the left translation to identify TeG with TgG and thus obtain a Euclidean norm
on TgG for all g ∈ G. This determines a left-invariant Riemannian structure
on G.
Two different norms, | · |1 and | · |2, on Te determine two different quasi-

isometric Riemannian structures on G. This means that the identity mapping
is a quasi-isometry from one to the other. All the Lie groups that we shall be
considering will be assigned with such a left-invariant Riemannian structure
and the properties that we shall study will be invariant under quasi-isometric
changes and therefore independent of the particular choice of the left-invariant
structure chosen.
Recalling the notation of §1.1, we denote by |g|Ω the distance of g ∈ G

from e associated to some compact neighbourhood of the identityΩ⊂G. With
the notation of the previous subsection we denote |g| = d(g,e) for some left-
invariant Riemannian structure. For any P⊂ G a compact neighbourhood of e
then there exist constantsC,C1 such that

C1|g|� |g|P �C|g|; g ∈ G, |g|>C. (7.8)

Exercise 7.2 Prove this. Use the fact that for every compact set K ⊂G and P
as above there exist constants such that (7.8) holds for g ∈ K\P. Then iterate
‘along a path’.

It is, furthermore, clear that any group homomorphism f : G→ G1 is Lip-
schitz for the corresponding Riemannian structures. The more interesting ex-
amples of quasi-isometries between Lie groups from our point of view are not
induced by group isomorphisms.

Example 7.3 The group of rigid motions on the complex plane is the semi-
direct product of the group of translations onC�R2 and the group of rotations
T = Rmod(2π); see §2.3.2. The action that defines the semidirect product is
then given by the rotation z→ eiθ z, for z∈C, θ ∈R. With our previous notation
this group is R2�T and the coordinates (z,θ (mod2π)) can be used to iden-
tify R2�T with the product groupR2×T but this identification is not a group
isomorphism. Later, in §8.3.5, we shall examine in detail general semidirect
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products and identifications like these. But as a useful exercise the reader may
wish to prove directly here that the above identification is a quasi-isometry.

Example 7.4 We have already defined, in Chapter 1, the volume growth
γ(R) = Vol [g ∈ G; |g|� R] where Vol in Chapter 1 was the left Haar measure
of the group. Clearly the Riemannian volume of the left-invariant Riemannian
structure on G is just left Haar measure (up to a multiplicative constant). We
have already pointed out the fact (see §2.5.4) that γ(R) grows polynomially if
and only ifG is an R-group (see Guivarc’h, 1973; Jenkins, 1973) and otherwise
γ(R) grows exponentially. From this and our definitions it follows in particular
that if G1 and G2 are two groups that are polynomially equivalent as Rieman-
nian manifolds then they both are R-groups or not R-groups simultaneously.
To illustrate this issue further we may anticipate results that will be proved in
Appendix F. Namely, a connected Lie groupG is an R-group if and only if it is
polynomially equivalent to a Lie group of the form Rd ×K, where K is some
compact group.

Example 7.5 The exponential mapping for a simply connected nilpotent
group N exp: n→ N from the Lie algebra to the group has been used sys-
tematically in the analytic theory and we have already used the fact that it is
a polynomial equivalence between the Euclidean structure on n and the group
Riemannian structure on N. It is (7.6) that was used, for example, in Chapter 3.
That the more precise property (7.5) holds follows from the exact formula that
gives the differential of the exponential mapping (see also Appendix F and
Varadarajan, 1974, §2.14).
When H ⊂ G is a closed subgroup of the Lie group the induced Rieman-

nian structure on H from the Riemannian structure of G is of course the left-
invariant Riemannian structure. As explained in detail in §2.14, however, one
should not confuse the intrinsic distance in H and the distance induced by the
ambient space G. This situation holds for general Riemannian manifolds and
submanifolds.

7.3 Simply Connected Soluble Groups

Let Q be some simply connected soluble Lie group and let q denote its Lie
algebra. We have already pointed out on several occasions that Q is diffeomor-
phic with Rd , that is, it is diffeomorphic with the Lie algebra q assigned with
its Euclidean structure. Unfortunately, the exponential mapping exp : q→ Q,
which can always be defined in some small neighbourhood of 0, cannot be
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used to define this diffeomorphism. This is the case when q is nilpotent but
not in general (see Dixmier, 1957). To obtain a convenient way to identify q
with Q one has to use the exponential coordinates of the second kind. Let us
recall the definition briefly, but for more details the reader will have to refer to
Varadarajan (1974, §3.18.11) or Chevalley (1955, §V.3.4).

7.3.1 Exponential coordinates of the second kind

We can find {e} = q0 ⊂ q1 ⊂ ·· · ⊂ qd = q a chain of subalgebras where d is
the dimension of Q and where q j as a vector space is generated by q j−1 and
an additional vector ξ j ∈ q j, for j = 1, . . . ,d, and where (adξ j)q j−1 ⊂ q j−1,
that is, q j−1 is an ideal in q j. That this is possible can be found in Varadarajan
(1974, §3.7.5). We obtain thus an ordered basis of q, namely, (ξ1,ξ2, . . . ,ξd).
For every 1 � j � d we shall use the abbreviation e(tξ j) = exp(tξ j) ∈ Q, or
even the shorter e j(t), with t ∈ R, for the one-parameter subgroup generated
by ξ j. We obtain therefore a mapping

Rd � t = (t1, . . . , td)−→ e1(t1ξ1) · · ·e(tdξd) = g ∈Q. (7.9)

The result that is proved in Varadarajan (1974, §3.18.11) is that (7.9) is a bijec-
tive diffeomorphism and t are the exponential coordinates of the second kind
of Q.
The mapping (7.9) is a polynomial equivalence between Rd and Q when Q

is nilpotent. To verify this one can use the Baker–Campbell–Hausdorff (BCH)
formula (Varadarajan, 1974, §2.15) and its converse the Zassenhaus formula
(Magnus et al., 1965; see also Chapter 6 for more details). One can also find
an explicit proof of this in the literature (e.g. Varadarajan, 1974, §3.6.6, where
it is seen that simply connected nilpotent groups are analytic subgroups of
GL(V ) for some vector space, i.e. that they are linear groups, and Chevalley,
1955, §V.3.4, where these facts are proved for such linear groups).
The above is in accordance with a general principle (a ‘rule of thumb’ is a

more accurate description) that ‘everything involving nilpotent groups is poly-
nomial’.
Other examples where (7.9) is a polynomial equivalence can be given for

R-groups. We shall prove this later but in fact we shall not make immediate
use of this fact in what follows (see §8.4.1 and Appendix F).
Apart from these examples, the correspondence (7.9) is not polynomial in

any sense whatsoever. To estimate the behaviour of this mapping in the general
situation the exponential function et , rather than polynomials, has to be used
in (7.5) and (7.6); see Appendix F.
Despite this, general simply connected soluble Lie groups can be classified
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by properties involving polynomials. To a large extent this is the subject matter
of the geometric theory that we shall develop in this second half of the book.
The key theorems will be presented in the next subsection but before that we
shall end this section by giving a first illustration that explains why soluble
simply connected Lie groups play such a central role in the theory. General
connected Lie groups will not be examined until Chapter 11. Details will be
given there. One of the facts that will emerge is the following:

Let G be some simply connected Lie group, for example, the universal cover
of an arbitrary connected Lie group. Then there exists U some simply con-
nected soluble Lie group and K some compact connected Lie group such that

GU×K, (7.10)

where  stands for a quasi-isometry between the corresponding Riemannian
manifolds.

What this shows is that if we are only interested in ‘large-distance geom-
etry’, that is, the behaviour far out at infinity for Lie groups, we can restrict
our attention to the soluble simply connected groups that we described in this
section. Assertion (7.10) applies only to simply connected groups, but in Chap-
ter 11 we shall see that the same philosophy applies to all connected groups.

7.4 Polynomial Homotopy and the Geometric Theorems of
Soluble Groups

7.4.1 Definitions

Let f , f1 : (M,O)→ (M1,O1) be two locally Lipschitz polynomial mappings
between two pointed Riemannian manifolds as in §7.1. We then say that f ∼
f1 are polynomially homotopically equivalent if there exists F a polynomial
homotopy between them. To wit,
there exists

F :M× [0,1]−→M1, (7.11)

a locally Lipschitz mapping for the natural Euclidean structure of [0,1]. (To
be able to define dF almost everywhere without any difficulty we may as well
assume that F extends to some locally Lipschitz mapping on M× [−ε,1+ ε]
for some ε > 0. This clearly is always possible.) We shall assume that F is a
homotopy between f and f1 and satisfies:

F(m,0) = f (m), F(m,1) = f1(m); m ∈M,

|dF(m,λ )|�C (1+ |m|)C ; m ∈M, 0� λ � 1,
(7.12)
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for some constantsC where | | denotes the norm of dF from TmM×Tλ [0,1] to
TM1, for any 0� λ � 1, and where the product Riemannian structure is used.
The above obviously presupposes that f , f1 are polynomial mappings in the

sense of (7.5) and it is clear that f ∼ f1 is an equivalence relation between
polynomial mappings.
We say that the two pointed manifolds (M,O), (M1,O1) are polynomially

homotopic to each other if there exist polynomial mappingsM
f−→M1

h−→M
such that f ◦ h and h ◦ f are polynomially homotopic to the identity mapping.
We say that (M,O) is polynomially retractable if the identity mapping is poly-
nomially homotopic to the constant mapping k(m) = O. To wit, in that case
in (7.12),

F(m,1) = m, F(m,0) = O; m ∈M (7.13)

and F(m,λ ) shrinks the whole space M to O while respecting the polynomial
property

|dF |�C0 (1+ |m|)C (7.14)

for some constantsC,C0 > 0.

7.4.2 Lie groups

In what followswe shall be considering left-invariant Riemannian structures on
connected Lie groupsG. In such cases the base point will always be assumed to
be the identity e ∈ G. But of course, since the Riemannian structures involved
are homogeneous (i.e. invariant by left translation), any other point g0 ∈ G
could have been taken as the base point and the mention of the base point in
what follows can be omitted without creating any ambiguity.

Example 7.6 Every simply connected nilpotent Lie group is polynomially
retractable. This is a consequence of Example 7.5. Indeed, it suffices to inter-
twine the radial retract F(ξ ,λ ) = λξ ∈ g, for ξ ∈ g, 0� λ � 1, on the vector
space that is the Lie algebra of G, with exp : g→G; then exp◦F ◦ exp−1 gives
the retract of G.

Example 7.7 More generally, when (7.9) is a polynomial equivalence, the
soluble group Q in §7.3 is polynomially retractable. As already pointed out,
this is the case for R-groups.

Example 7.8 The interest of the above definition is that it goes beyond R-
groups for which (7.9) is polynomial. Already in Chapter 1 we indicated that
the soluble group of affine motions on the real line x→ ax+ b, for a > 0,
b ∈ R, is polynomially retractable and we used geodesics to obtain the retract.
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This example falls under a more general scheme that is neither in the spirit nor
the scope of the book but which should be described (or at least mentioned)
because, together with the nilpotent groups of the previous example, it provides
the basic model for the general definition. This is done in the next example (the
reader unfamiliar with the terminology can ignore this).

Example 7.9 (Rank 1 symmetric spaces and Cartan–Hadamard manifolds)
The group of affine motions that we considered in the previous example can be
identified isometrically with two-dimensional hyperbolic space, that is, with
the complex unit disc D = [z ∈ C; |z| < 1] assigned with the Poincaré metric
|dz|2/(1−|z|2)2 (see Helgason, 1978, Exercise 1.G). In the introduction we
used instead the upper-half complex plane obtained by conformal mapping.
Other soluble groups of type NA of §3.2.3 with dimA = 1 can be used as iso-
metric models for the symmetric spaces of non-compact type and rank 1. This,
in some sense, is what the Iwasawa decomposition (see Appendix A) is all
about. See §8.2.1 for more on this.
Be that as it may, what counts is that these simply connected soluble groups

with their group Riemannian structure are Cartan–Hadamardmanifolds. These
Riemannian manifolds, M, are by definition simply connected, complete and
have strictly negative sectional curvature everywhere: K(·) � c0 < 0. These
properties imply that M is diffeomorphic to Rd some Euclidean space. For a
Cartan–HadamardmanifoldM we can fix a base pointO∈M and for everym∈
M we shall consider the unique geodesic parametrised by length γm(t) ∈ M,
with 0� t � |m| and γ(0) =O, γ(|m|) =m. The fact that such a geodesic exists
is a consequence of the completeness ofM. The negative curvature guarantees
that this geodesic is unique. The homotopy that retracts M to O as in (7.13),
(7.14) can then be given: F(m,λ ) = γm(λ/|m|). The basic theory of Jacobi
fields then implies the polynomial property (7.14) – in fact linear, because here
C in (7.14) can be taken to be 1. For all this see Cheeger and Ebin (1975) or
Helgason (1978).

Example 7.9 is important because it shows clearly that the property of being
polynomially retractable for a manifold does not depend on the volume growth
at infinity. The affine group x→ ax+ b is not unimodular and not an R-group
and therefore is of exponential volume growth (see Guivarc’h, 1973; Jenkins,
1973). This last fact is of course very easy to verify directly.
If one is to describe the notion in informal terms, one should rather say that

for a manifold to be polynomially retractable it must possess some smoothness
(i.e. regularity) at infinity.
We now state the main geometric theorems for soluble, simply connected

groups.
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Theorem 7.10 (Geometric NC) Let Q be some simply connected soluble Lie
group that is assumed to be an NC-group in the sense of §2.2. Then Q is poly-
nomially retractable.

Theorem 7.11 (Geometric C) Let Q be some simply connected soluble Lie
group that is assumed to be a C-group. Then Q is not polynomially retractable.

7.5 A Polynomial Filling Property

The proof of Theorem 7.10 will be done directly, essentially by constructing
more or less explicitly the polynomial retract. For Theorem 7.11 however, the
situation is more involved, even when we examine simple examples. It is here
that homotopy and homology theory comes to our rescue. The reader does not
need to know anything about these two subjects to follow this aspect of things.
However, the spirit of these two subjects is very much present in both this and
the next section, where we shall give the general description of the situation.

7.5.1 Notation

We shall denote throughout by n = [0,1]n the unit cube of dimension n. We
can embed n ⊂ Rn in Euclidean space, and denote by ∂ n its topological
boundary. Both n and ∂ n will be assigned with the induced Euclidean dis-
tance and this will allow us to define Lipschitz mappings into some Rieman-
nian manifold.
In what follows we shall restrict our attention to manifolds M = Q as in
§7.3, that is, simply connected soluble Lie groups assigned with their left-
invariant Riemannian structure. Let us fix n = 1,2, . . . and let R > 0 (this is a
‘free parameter’). We shall consider Lipschitz mappings

f : ∂ n −→M; f ∈ LipR. (7.15)

For every such f it is possible, clearly, to find a Lipschitz extension (in several
ways because locally M is some Euclidean space and then one can use the
argument in the exercise below)

f̂ : n −→M, f̂
∣∣
∂ n = f ; f̂ is Lipschitz. (7.16)

We shall denote by Lip f̂ the Lipschitz constant of f̂ , that is, the optimal A for
which

d
(
f̂ (x), f̂ (y)

)
� Ad(x,y); x,y ∈ n . (7.17)
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We shall then optimise over f̂ and consider

A( f ) = inf
[
Lip f̂ ; f̂ satisfies (7.16)

]
. (7.18)

This gives the most economical way of ‘filling in’ the boundary. A trivial ex-
ample of this situation occurs when n= 1 and ∂ n consists of just two points.
Then the quantity in (7.18) is just the distance of these two points. In fact, in
that case A ∼ R in (7.17) and for some functions f̂ in (7.16), (7.17) we have
Lip f̂ ∼ R. This of course is the point, and in the general situation for any n� 1
we set

φn(R) = sup [A( f ); f satisfies (7.15)] . (7.19)

Like every ‘min–max’ definition it is tricky to write it out and to digest it but
(7.19) simply gives a measure of how much we lose in the Lipschitz constant
to ‘fill the cube n inM’.

Definition 7.12 We say thatM (which is a soluble simply connected groupQ
as in §7.3) has theFn property (in other words the polynomial filling property
in dimension n) if there exist constantsC0,C such that

φn(R)�C0R
C; R� 1. (7.20)

The reason why we restricted attention to R � 1 is because we are only
interested in the large-scale behaviour ofM, that is, ‘far out’ at infinity.
It is evident of course that when M is polynomially retractable then M sat-

isfies Fn for all n = 1,2, . . . because we can use the retract of (7.13), (7.14)
to fill in the cube. This is in direct analogy with the fact that for a retractable
topological space, all the homotopy groups πn = 0 for n� 1.

Exercise Verify this (see Bott and Tu, 1982, §13, ‘The Extension Principle’).
Assume, as we may, that the centre of n is the origin. Then we cut off a
small ball B of size ∼ 10−10 centred at the origin. Then we use the radial
mapping in Rn and the polynomial retract on M to extend the f of (7.15) to
f̂ : ( n \B)→M with ∂B going to 0. Then set f̂ (B) = 0.

The importance of the notion lies in the following result.

Theorem 7.13 (Theorem C) Let us assume that Q is a simply connected
soluble Lie group that is a C-group. Then there exists n� 2 such that property
Fn fails.

As we have already pointed out, F1 always holds, hence n � 2. To specify
the index further we denote by N�Q the nilradical of Q and write Q/N = A
which is a Euclidean space. We may also denote by dimA= r(Q) the rank of
Q, but this terminology is not standard. We then have the following theorem.
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Theorem 7.14 (Refinement of Theorem C) With the notation of Theorem C
there exists 2� n� r(Q)+ 1 for which Fn fails.

This refinement comes out automatically from the proof that will be given in
Chapters 9 and 10. For sure, more effort is necessary to determine the indices
n� 2 for whichFn holds or fails. This of course will depend on the geometry
of the roots in the C-condition in §2.2. This problem has not been addressed
and presents some independent interest and is no doubt difficult (cf. the epi-
logue at the end of the book). However, what is much more interesting, and
more intriguing, is to relate the indices n for which Fn fails to the potential-
theoretic properties of the group as in Part I.
As already pointed out in §1.4, the above notion is closely related with no-

tions in Gromov (1991).

7.6 Differential Forms

7.6.1 Definitions and notation

In the same way that ideas from homotopy theory were used in the previous
section to capture the geometric aspect of the C-condition, ideas from homol-
ogy theory can also be used. This will be informally described in this section.
More precise statements will be given in Part III of the book.
We may as well again restrict our attention to a manifold M = Q which is

a simply connected soluble group, as in §7.3, assigned with its left-invariant
Riemannian structure. Our previous notation will be preserved. For every m ∈
M a Euclidean norm can then be assigned on the exterior algebra

∧
T ∗mM of

the cotangent space (see Warner, 1971). This means that for local coordinates
and dxI = dxi1 ∧·· ·∧dxik , for some multi-index I = (i1, . . . , ik), we can define
the Riemannian norm |dxI|. We could for instance fix, once and for all, the
global coordinates (t1, . . . , td) given by (7.9). The |dxI| in general ‘explodes’ at
infinity because the dx1, . . . ,dxd are in general anything but orthonormal for
the induced Riemannian structure. Using these local coordinates we can then
define a differential form

ω =∑
I
ωI(m)dxI; m ∈M, (7.21)

written in local coordinates. In ‘sophisticated language’, ω is a section of∧
T ∗M.
The norm

|ω(m)|=∑ |ωI(m)| |dxI| (7.22)
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can then be defined by taking the modulus |ωI| of the coefficients ωI ∈ R. We
then say that ω is of polynomial growth if

|ω(m)|�C0 (1+ |m|)C ; m ∈M, (7.23)

whereC,C0 are fixed positive constants and |m| denotes the distance ofm from
the base point (i.e. e ∈ Q, the neutral element of the group).
We have said nothing about the nature of the coefficients ωI(m). This was

deliberate because here we are faced with a dilemma. There are two obvious
choices.

7.6.2 The coefficients are smooth: ωI ∈C∞

Then we are dealing with smooth forms. This is the more standard defini-
tion. Two problems arise however. Estimate (7.23) is then artificial. A more
natural estimate would have been to give bounds for all derivatives ∂/∂xi,
∂ 2/∂xi∂x j, . . . of the coefficients.
The more serious problem is that in what follows we shall want to use

f : M → M1, some polynomial map as in §7.1, and pull back f ∗ω , the dif-
ferential form ω fromM1 toM. The smoothness is then lost because f is not a
priori assumed smooth.

7.6.3 The alternative definition

The alternative definition is to say that ωI ∈ L∞loc; that is, locally bounded (and
perhaps demand in addition that in fact the coefficients ωI are actually contin-
uous). This makes estimate (7.23) natural and guarantees that we can pull back
a differential form with L∞loc coefficients of polynomial growth by a polynomial
map f : M→ M1. The difficulty here consists in defining dω , the differential
of the form, and this is something that very much has to be done. This problem
is dealt with by the use of the theory of currents (see de Rham, 1960) which
in naive terms can be described as differential forms with coefficients that are
distributions, for example L∞loc here.
We shall have to develop a bit of that in Chapter 10 and more extensively in

Part III but for the time being note that if ω is a differential form as in (7.21)
with coefficients that are L∞loc or even L

1
loc (or even measures) and if

θ ∈
∧
T ∗M, θ =∑θJdxJ (7.24)

is some smooth compactly supported form, then the scalar product 〈ω ,θ 〉 can
be defined unambiguously by the integral of

ω ∧θ =∑±ωIθJdx1∧·· ·∧dxd. (7.25)



236 Geometric Theory. An Introduction

In the summation we take J and I that are complementary, that is, they are
disjoint and I ∪ J = [1,2, . . . ,d]. Here of course we use for ± the correct sign
that gives

±dxI ∧dxJ = dx1∧·· ·∧dxd.
The scalar product

〈ω ,θ 〉=
∫
Q
ω ∧θ (7.26)

can then be defined and dω can be defined weakly by Stokes’ theorem (see
de Rham, 1960) but even without going through that definition we can define
and say the following:

The form ω in (7.21) with L∞loc coefficients is closed and dω = 0 if and only
if 〈ω ,dθ 〉= 0 for all smooth compactly supported θ ∈ ∧T ∗M.
One can easily verify that the notion is stable by the pullback by a map

f : M→M1. We shall return to all that in more detail in Part III. But we have
explained enough here to be able to state the following result.

Theorem 7.15 (Theorem C for differential forms) Let Q be a simply con-
nected soluble C-group as in the geometric C theorem (Theorem 7.11). Then
there exists ω ∈ ∧T ∗Q some differential form of polynomial growth

ω = ∑
I �= /0

aI dxI, (7.27)

with continuous coefficients, that is closed (i.e. dω = 0 in the above sense) and
is such that if θ is a differential form with L∞loc coefficients for which dθ = ω
then θ is not of polynomial growth.

We have not given the ‘weak’ definition of dθ that is used here but this is
of course given by 〈dθ ,ϕ〉 = ±〈θ ,dϕ〉 for all test forms ϕ (at least this is
correct for homogeneous forms and the appropriately chosen ±). All this will
be developed in Part III.
The point of the above theorem and also of restricting the multi-indices in

(7.27) to I �= /0 is that there exist plenty of solutions of dθ = ω but none of
these solutions is a form θ that grows polynomially.
The immediate consequence of the above Theorem 7.15 is Theorem 7.11

which asserts that soluble simply connected C-groups are not retractable. We
shall elaborate on this in Part III but what is involved is of course clear. If
a group Q is polynomially retractable, one can use in the usual way (see
de Rham, 1960; Dubrovin et al., 1990) the polynomial homotopy F of (7.12)
and that retracts Q to e and solves the Poincaré equation dθ = ω .
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Example 7.16 (Non-retractable group) We consider the group D = R2�R
of §2.3.2 where the action of R on R2 is given by R � y� (eyx1,e−yx2) for
(x1,x2) ∈ R2, that is, a diagonal action and the two roots for the action of the
Lie algebra are real with L1(y) = y, L2(y) = −y. We have therefore what is
no doubt the simplest example of a C-group. It is interesting to observe that
the coordinates (x1,x2,y) with (x1,x2) ∈ R2, y ∈ R are simply the exponential
coordinates of the second kind defined in §7.3.1.
Using the above global coordinates, we shall consider on D the form ω =

dx1∧dx2, which is clearly closed, dω = 0 and ω grows polynomially; in fact
|ω(g)|= c, some constant, with g ∈ D.
This holds because the basis ∂/∂y, ey(∂/∂x1), e−y(∂/∂x2) is an orthonor-

mal basis of the tangent space of the group at the point (x1,x2,y). This fact
is a consequence of the more general description of Riemannian structures on
a semidirect product that we shall give in §8.3.5. But in this special case the
reader could treat this as an exercise and prove it directly. The reader could also
amuse themselves by trying to prove that no solution dθ =ω can be given with
a polynomial form θ . In §9.2.3 we shall spell out the details of one possible
way of seeing this.

We can consider a slightly more general example than the group D above,
namely the groupDα ,−β =R2�R, where the only difference is that the action
of R on R2 is given now by y�

(
eαyx1,e−β yx2

)
for α,β > 0 and the same

notation. This is a C-group and we can show again that it is not (polynomially)
retractable, by constructing as before some (smooth) differential form ω that
is closed, dω = 0, in the classical sense and which satisfies the conditions of
the above Theorem 7.15. This construction will be treated in the following
exercise.

Exercise 7.17 For the same reasons as before, |dx1| = eαy, |dx2| = e−β y at
(x1,x2,y), and |dx1∧dx2|= e(α−β )y and we shall assume, as we may, by mak-
ing the change of variables y→−y if necessary, that α > β . The form

ω = f1(x1,x2)dx1∧dF1(y)+ f2(x1,x2)dx2∧dF2(y)
+θ (x1,x2,y)dx1∧dx2

(7.28)

is closed if ∂θ/∂y= (∂ f1/∂x2)F ′1− (∂ f2/∂x1)F ′2 and it can be made of poly-
nomial growth if

dF2 = 0, y<C, F1 = F2 = 0, y> 0,

for someC> 0. The fact that we cannot solve polynomially dθ = ω is an easy
extension of the argument in §9.2.3 (for an appropriate choice of fi, Fi), but as
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an exercise the reader may again find amusement in trying to give their own
reasons for that.

However, as we shall explain in §9.3.5, this easy approach will not be pur-
sued because it does not lead to a general proof of Theorem 7.10.

Note These examples have existed in the literature for some time (see Gro-
mov, 1991). We shall see more of them later in §9.2.
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The Geometric NC-Theorem

Overview of Chapter 8

In §8.5 one finds the proof of the NC-theorem (Theorem 7.10). Before that,
a fair amount of machinery will be developed. Section 8.1 consists mostly of
notation but the substantial algebraic and geometric idea of ‘replicas’ is intro-
duced in §8.3 and that of ‘polynomial sections’ in §8.4. These new ideas are
interesting in their own right and permeate all the proofs of Part II. With these
new tools, the exposition in Chapters 9 and 10 becomes much more readable
than the original in Varopoulos (2000b).

Whether the same can be said about the proofs of the NC-theorem in this
chapter is debatable. Taking into account the development of these new tools,
the proof given here is longer than the original one in Varopoulos (2000b). It
is, however, not substantially different though much cleaner than the original,
which uses neither replicas nor polynomial sections. A brief outline of this
original proof is given in §8.5.2 at the very end of the chapter. More signifi-
cantly, the entire problem will be re-examined in Appendix F in the context of
general NB-groups (whether soluble or not, whether simply connected or not).

Of the two theorems in §7.4, the NC-theorem (Theorem 7.10) is by far the
easier to prove. In fact, its proof relies on just one standard idea from hyper-
bolic geometry (which is complex analysis in the unit disc if the dimension
is 2). We explain this idea in some detail, albeit in an informal manner, in §8.2.
What we need to use is one of the central concepts in Riemannian geometry,

namely that of geodesic flow when curvature is negative (Cheeger and Ebin,
1975; Helgason, 1978). In §8.2 we show how this can be adapted in our case
where the curvature is not (‘exactly’) negative. The author debated whether
to spend more time developing this purely Riemannian notion. But this would
have taken us too far afield. The result was a ramble, perhaps unsatisfactory,

239
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through these important ideas that are presented mostly in the form of exam-
ples (see §8.2).
Unsatisfactory or not, the reader should spend time in §8.2 because once this

notion of the generalised geometric flow is understood, then no one can have
any doubt about how the proof of the NC-theorem should go. Furthermore, the
theorem that we shall prove in Appendix F, which in some sense is the ultimate
result in this direction, also hinges on the same notion of generalised geodesic
flow.

8.1 Differentiation on Lie Groups

8.1.1 A description of the tangent space

Let G be some connected Lie group. Then g, the Lie algebra of G, is iden-
tified with Te(G), the tangent space at the identity, and one can use the ex-
ponential map exp : g → G to identify g with G near zero, and for every
ξ ∈ g, if ϕ(t) = etξ = exp(tξ ) is the one-parameter subgroup generated by
ξ , then ϕ̇(0) ∈ Te(G) is the vector corresponding to ξ . Here, for any mapping
ϕ :R→G, we adopt the notation ϕ̇(t) = dϕ(∂/∂ t) at t. The above statements
in fact amount to a number of definitions for example g, exp, etξ , which in
some sense are ‘circular’. It depends where we start so to speak, and then the
other definitions follow. For all this we shall refer the reader to Varadarajan
(1974, §§2.10–2.15) and to Helgason (1978, §II.5).
The left translation Lg : x→ gx in G of §7.2 is then used, and ξ ∈ g is iden-

tified with the vector

dLg ξ = ρ̇(ξ ,g) ∈ Tg(G); g ∈G, (8.1)

where we use the notation ρ̇(ξ ,g) for ρ̇(0,ξ ,g) with ρ(t,ξ ,g) = getξ . This is
a convenient way of identifying g with Tg(G); it allows us to write down in
the next two subsections a number of important formulas. (For a more formal
approach to these formulas see Greub et al., 1973, §1.1.)

8.1.2 The inverse function

Let J :G→G be given by the involution g→ g−1. Then

dJξ =−(Adg)ξ ; ξ ∈ g. (8.2)

If ξ ∈ g then it corresponds to ρ̇ = ρ̇(ξ ,g) ∈ Tg(G). Therefore dJ(ρ̇) = θ̇(0)
where

θ (t) = e−tξg−1 = g−1ge−tξg−1 = g−1 exp
(−t(Adg)ξ)
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by Varadarajan (1974, formula (2.13.7)) (a formula we have already systemat-
ically used in the analytic theory; see for example (3.22). Hence our assertion.

8.1.3 The product

Let P : G×G→ G be the product mapping P(g1,g2) = g1g2. Then the Lie
algebra ofG×G is g×g and, for ξ = (ξ1,ξ2)∈ g×g and g= (g1,g2)∈G×G,
with our previous notation we have(

g1e
tξ1 ,g2e

tξ2
)
= ρ (t,ξ ,g) . (8.3)

It follows that dP(ρ̇) = θ̇ (0) with

θ (t) = g1e
tξ1g2e

tξ2 = g1g2e
t(Adg−12 )ξ1etξ2 (8.4)

for the same reasons as before. Here we shall use the BCH formula which gives
(see Varadarajan, 1974, §2.15)

etζ etη = exp
(
t(ζ +η)+ 1

2 t
2 [ζ ,η ]+ · · ·

)
.

This, together with the fact that dexp= Identity at t = 0 gives the formula

dP(ξ1,ξ2) = (Adg−12 )ξ1+ ξ2 (8.5)

for the differential at (g1,g1). This formula can be put in a more general form
as follows.
LetM be someC∞ manifold and let φi : M→G, with i= 1,2, be two smooth

mappings such that φi(m0) = gi for some point m0 ∈M. For the product map-
ping F(m) = φ1(m)φ2(m), with m ∈M, we then have

dF(m0) = (Adg−12 )dφ1(m0)+ dφ2(m0), (8.6)

where both sides of (8.6) are identified with vectors in the Lie algebra g as in
(8.1). To see this we could, for instance, compose the mapping (φ1,φ2) : M→
G×G with P.
One illustration of formula (8.6) that will be used in §8.4 is the following.

Let H ⊂ G be a closed subgroup such that Ad(H) is polynomial in the sense
that the norms of the operators satisfy

|Adg(h)|�C (|h|H + 1)C ; h ∈ H, (8.7)

for some constants and where Adg indicates the action on g, the Lie algebra of
G. Let us further assume that φ1 : M→G and φ2 : M→H are polynomialmaps
from the pointed manifold (M,O) to the corresponding groups. Then F(m) =
φ1(m)φ2(m) is a polynomialmap F : M→G. This incidentally, combined with
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(8.9) below, is an easy way of seeing the ‘rule of thumb’ for nilpotent groups
that we explained in §7.3.1.

8.1.4 Applications

All the notation of the previous subsections will be preserved. We shall ill-
ustrate the previous formulas with a number of applications. Many of them,
especially those that are not directly relevant to the proof of Theorem 7.10,
will be treated in the exercises.

The norm of the Admapping The mapping Ad(g) ∈GL(g) is multiplicative
in g and, if |g|G � n, we can write g= g1 · · ·gn as a product with |gi|�C. This
implies that there exist constants such that

|Adg|�Cexp(C|g|); g ∈G (8.8)

for the Euclidean norm of the operator on g.
What is more subtle is that if G=QR is a soluble simply connected R-group

(see §7.3.1) then there exist constants such that
|Adg|�C(1+ |g|)C; g ∈G, (8.9)

that is, a special case of (8.7). This is an immediate consequence of Lie’s the-
orem (see §§2.3.3, 3.9.1). This will not be used until much later, but for more
details and an explicit proof of (8.9) see Appendix F.

Semidirect products Let G = N�K be the semidirect product of two con-
nected Lie groups. Every g ∈ G can be written uniquely g = nk, with n ∈
N, k ∈ K. We shall denote the corresponding projections by πN(g) = n and
πK(g) = k. The projection πK : G→ K is a group homomorphism; therefore
|dπK | � C. On the other hand, for πN : G→ N, we can only assert that there
are constants such that

|dπN |�Cexp(C|g|); g ∈ G, (8.10)

where |g| denotes as usual the distance in G from e. Inequality (8.10) is an
immediate consequence of the fact that n= gk−1 and of (8.2), (8.5), (8.8).
Consequences of (8.10) are the facts about distance distortion that we have

already encountered in §2.14.2, namely, that for the distances in the groups G
and N we have

|n|N �Cexp(C|g|G) ; g ∈ G (8.11)

for some constantsC > 0.

Exercise Prove (8.11) and the results in §2.14.2 using the above ideas.
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Exponential retract Let G be some connected real Lie group; we shall say
thatG admits an exponential retract (see §7.4) if there exists a locally Lipschitz
map

F : G× [0,1]−→G, (8.12)

for the product Riemannian structure such that for some constants C > 0 we
have

|dF(g,λ )|�Cexp(C|g|), F(g,0) = e, F(g,1) = g; g ∈ G. (8.13)

Example 8.1 Let G = N�K be the semidirect product of two simply con-
nected nilpotent groups, and let FN , FK be polynomial retracts of N and K
respectively. Such retracts exist (by Examples 7.6 and 7.7). We shall also de-
mand that there exist constants such that |FK(g, t)| � C|g|+C. (That such a
retract can always be constructed will not be an issue here. This is, however,
correct: see the end of Appendix F.) With the above notation we shall write

F̃N(g,λ ) = FN(πN(g),λ ),

F̃K (g,λ ) = FK (πK(g),λ ) ; g ∈G, 0� λ � 1.

Then let

FG(g,λ ) = F̃N(g,λ ) F̃K(g,λ ); g ∈ G, 0� λ � 1. (8.14)

By formula (8.6) we have

dFG = (Ad F̃K)
−1dF̃N+ dF̃K . (8.15)

By the conditions that we have imposed on FN , FK , if we combine (8.15),
(8.10), (8.11) and (8.8) we deduce that FG is an exponential retract of G as in
(8.13).

This example will be developed further in §8.2.2 and especially in Ap-
pendix F where it will be considered in greater generality. Notice too that in
this example we can also demand that FG(e,λ ) = e, 0 � λ � 1, because this
can be made to hold for FN and FK . In §12.2 on the other hand, we shall see
that this additional condition actually comes for free.
In fact (see Appendix F), it can be shown that every soluble simply con-

nected group admits such an exponential retract, but this will not be essential
to us. What will be essential for the proof of the NC-theorem (Theorem 7.10)
is to specialise the above group, G= N�K, and assume that K is Abelian and
that it acts on N by diagonal matrices. More precisely, we shall denote by k

the Lie algebra of K and its action on n, the Lie algebra of N, is given for an
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appropriate basis by

adξ = diag(L1ξ ,L2ξ , . . . ,Lnξ ) ; ξ ∈ k, (8.16)

where L1, . . . ,Ln ∈ V = k∗ are the roots, which are assumed to be real. The
group G will be assumed to be an NC-group and we shall fix some ζ ∈ k such
that

Ljζ > 1; j = 1, . . . ,n, (8.17)

as in §2.3.1. We then have the following result.
Proposition 8.2 The above group G = N �K that satisfies (8.16), (8.17)
admits a polynomial retract.

This proposition is one of the two components needed for the proof of the
NC-theorem (Theorem 7.10). The other component is the fact that (essentially)
every NC-group, as in this theorem, is polynomially homotopically equivalent
to some special group as in Proposition 8.2. This will be in Proposition 8.3
below and with this we can complete the proof of the NC-theorem. The reason
why we say ‘essentially’ is that condition (8.17) excludes the case that some of
the Li are zero, which can of course occur for NC-groups. We shall, however,
see in §§8.4–8.5 below that this causes no serious problems.

R-groups Another non-trivial, but also inessential, application of the formu-
las of §§8.1.2–8.1.4 is the direct proof that simply connected soluble R-groups
are polynomially retractable (as an exercise give the proof!). This is of course
a special case of the NC-theorem 7.10. But it can also be used as an interme-
diate step in an alternative approach to that theorem. We shall examine these
groups further in Appendix F and in Example 8.10 because much more is true
here and, not surprisingly, an R-group as above is polynomially equivalent to
Euclidean space see Example 7.7.

8.2 Strict Exponential Distortion and the Proof of
Proposition 8.2

8.2.1 Hyperbolic geometry and ‘heuristics’

We shall start with the group of affine motions x� ax+b, a= eα > 0, α,b ∈
R. We have already pointed out, without a proof, in §1.4.2 the fact that this
group can be identified isometrically for its group Riemannian structure with
the upper-half complex plane H = [z= b+ ia ∈C; a> 0] assigned with its
Poincaré (hyperbolic) metric a−2|dz|2.
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Exercise The reader is invited to use the general facts of §8.3.5 below to
give a proof of this. Much more is given in Helgason (1978, Chapter 1, Further
Results G) and also Helgason (1984, Introduction, §4).
For our considerations in this and the next chapter it is very important to

recall a phenomenon on the distances inH that is basic in hyperbolic geometry.
This is illustrated in Figure 8.1 drawn in H where the bottom line denotes the
real axis.

ia+T

i+T

ia

i

(a)

i +Ti

0

(b)

Figure 8.1 (a) A path of length ≈ logT , where a= eα ; α = 10log(T +10) and T
is large; (b) the geodesic joining i to i+T , i.e. a circle orthogonal to the boundary.

The path in Figure 8.1(b) is the geodesic for the non-Euclidean (Lobachev-
ski) geometry of H. In Figure 8.1(a), on the segment between ia and ia+T , if
T is large the Poincaré metric is ≈T−20× the Euclidean metric. Therefore this
segment has bounded length (in fact it tends to 0 as T →∞) and this proves the
assertion that the length of the path≈ logT .
In terms of parametrisations, we could say that the path in Figure 8.1(a) is

parametrised by p(t), with 0< t < 1, where the segment from i to ia is covered
when t ∈ [0,1/3]. We need a speed ṗ(t) ≈ logT to be able to do that because
on that segment p(t) = ie3αt , and the non-Euclidean speed is measured by the
derivative α ′(t) (see (8.18) below for the notation). The situation is similar for
t ∈ [2/3,1], which runs through the segment from ia+T to i+T .
To be able to cover the segment from ia to ia+T in Figure 8.1(a) we need

a ‘huge’ speed ≈T , but fortunately we are talking here of the Euclidean speed
p′(t). The speed in the Poincaré metric stays bounded if T is large enough.
Let us reinterpret this phenomenon in terms of the group ax+ b, which is

the semidirect product

G= R�R; G � g= (b,eα), α,b ∈R

(see §2.3.2 and also §8.3 below), concentrating on the heuristics and leaving
the precise computations for later sections. The path p(t) that we considered
in H has then two components:

p(t) = (b(t),α(t)) ∈ R�R. (8.18)
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It is in fact the product p(t) = b(t)α(t) in the group G. It follows that if we
wish to compute the speed (i.e. ṗ(t) = dp(∂/∂ t)) for the Riemannian metric
of the group G we can use the basic formula (8.6) to obtain

ṗ(t) = (Adα(t))−1 b′(t)+α ′(t). (8.19)

The reader should have in mind here that b, α lie in the two subgroups ∼=R
that give the semidirect product and therefore the ordinary derivatives b′ and
α ′ have been used. A much more precise description of Riemannian metrics in
a semidirect product will in fact be given in §8.3.
For the time being, the heuristic interpretation of formula (8.19) that we have

exploited here is as follows.

The path that joins the two points First we go vertically up in Figure 8.1(a);
that is, we move with α(t) while keeping b(t) = 0. We do that until Adα(t)
in (8.19) is so large that it will essentially ‘kill’ the speed coming from the
necessary movement in the horizontal direction in Figure 8.1(a). This says that
the factor Ad−1 compensates for b′(t) in (8.19), until we reach ia+T and then
we reverse our first move in the vertical direction and reach i+T .

8.2.2 Strict exponential distortion

This ideas of §8.2.1 will be used in §8.2.3 in the proof of Proposition 8.2.
But before that we shall further illustrate these ideas by constructing an ex-
ample of a subgroup of strict exponential distortion (i.e. distance in the sub-
group ≈ exp[distance in the group]; see Varopoulos, 2000a for more on that
phenomenon).
We shall consider here a simply connected soluble Lie group of the form

G = N�H where N, H are both nilpotent and we write g, n, h for the corre-
sponding Lie algebras. We shall denote (see §3.8.2) by n⊗C= nα1⊕nα2⊕·· ·
the root space decomposition under the action adh and block together nα1 ⊕
·· ·= nL⊗C all the root spaces with roots that satisfy Reα1 = Reα2 = · · ·= L
for some 0 �= L ∈ h∗. We assume of course that such an L and α1, . . . exist.
We shall fix 0 �= ξ ∈ nL and consider etξ ∈ N, the one-parameter subgroup

generated by ξ . In the next few lines we shall show that there exists then a
constantC such that ∣∣eTξ ∣∣G �C log(|T |+ 10); T ∈ R. (8.20)

This was exactly the situation earlier for the one-parameter subgroup x 	→
x+ b of translations in the group of affine motions. Observe that for the proof
of (8.20) we may as well assume that T � 100.
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To prove (8.20) let us fix ζ ∈ h such that Lζ = 1. Then a direct application
of §3.9.1 implies that the norm of Ad(etζ ) as an operator in GL(nL) satisfies∣∣Ad(e−tζ )∣∣� e−ct ; t >C (8.21)

for appropriate constants.
The path that we shall use to join the identity to eTξ in G will then be given

by the product of two time-changed one-parameter subgroups

p(s) = φ1(s)φ2(s) = exp
(
α(s)Tξ

)
exp
(
Aβ (s) logTζ

)
; 0< s< 1, (8.22)

where A > 0, α(·), β (·) ∈ C∞ with α(0) = β (0) = β (1) = 0, α(1) = 1. We
shall show that these may be chosen so that the speed of that path dp(∂/∂ s) =
ṗ ∈ TG satisfies

|ṗ(s)|�C logT ; 0< s< 1 (8.23)

for some appropriateC > 0. This will clearly imply (8.20).
To see this we shall choose the α increasing from 0 to 1, β � 0 and also

α(s) = 0; s ∈ [0, 13],
α(s) = 1; s ∈ [ 23 ,1],
β (s) = 1; s ∈ [ 110 , 910],

(8.24)

that is, β takes off fast and stays equal to 1 before it sinks again. As for α , it
takes all its variation from 0 to 1 in the range where β = 1. As for A > 0, it
will be fixed at the end and it will be large enough. We then have∣∣φ̇ 1(s)∣∣�CT,

∣∣φ̇2(s)∣∣� A logT ; 0< s< 1,

|ṗ(s)|� A logT ; s< 1
3 or s>

2
3 .

(8.25)

But from (8.21) we have, as well,∣∣Adφ−12 ∣∣�CT−cA; 1
3 < s< 2

3 , (8.26)

where the constants c and C in (8.25) and (8.26) are independent of A. If we
use (8.24), (8.25), (8.26) with A large enough, and formula (8.6), we finally
see that (8.23) holds and this completes the proof of our assertion.

8.2.3 Proof of Proposition 8.2

In this subsection, G = N�K will be simply connected, N will be nilpotent,
K ∼=Ra Abelian and all the notation for the roots of the action of k on n and ζ ∈
k will be as in (8.16), (8.17) in Proposition 8.2. The notation of the homotopies
FN and FK will be as in Example 8.1 but of course, here, for FK we may simply
take FK(x,λ ) = λx, with x ∈ K ∼=Ra.
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For g= nk, with n ∈ N, k ∈ K, we define FG(g,λ ) = F̃N(n,λ )F̃K(k,λ ) as in
(8.14). The issue is to prove that in our special group we can modify FG and
construct a new homotopy retract F as in (8.12) that improves the exponential
estimate (8.13) and gives instead

|dF|�C(1+ |g|)C; g ∈ G (8.27)

for appropriate constants. The proof closely follows the ideas of §8.2.2.
With the above notation we shall write σ(t) = exp(tζ ) ∈ G which is but a

straight line in K = Ra and set

F(g,λ ) = FG (g,α(λ ))σ (Aβ (λ )|g|) ; g ∈G, 0� λ � 1. (8.28)

We shall choose large enough A > 0 at the end, and the functions 0� α , β ∈
C∞ that perform the time change will be exactly as in §8.2.2, with α = 0 for
0� λ � 1/3, α = 1 for 2/3< λ � 1 and β (0) = β (1) = 0, β = 1 for 1/10�
λ � 9/10.
With this definition, with constants C that are independent of A, we clearly

have

|dF|�CA(|g|+C); λ < 1
3 or λ > 2

3 ; (8.29)

note that the first factor in (8.28) is FG(g) = g or FG(g) = e in that range. To
see this we apply formula (8.6) with φ1 = FG and φ2 = σ and in our range and
by the choice of ζ in (8.17) we can assert that |dφ1|, |dφ2|�CA(|g|+C) and
|Adφ−12 |�C (see §3.9.1). For the range 1/3< λ < 2/3 formula (8.6) gives

dF = Adσ−1dFG+ dσ
= Adσ−1Ad F̃−1K F̃N+ dF̃K+ dσ ; 1

3 < λ < 2
3 ,

(8.30)

because K is commutative and the Adσ -action on g= n� k, the Lie algebra of
G, actually reduces to the action on n. Now, on the right-hand side of (8.30),
the second and third terms are bounded by C|g|+C and in the first term the
factor Ad F̃−1K dF̃N can be estimated as in Example 8.1 by exp(C|g|) with C
independent of A. If, however, we use (8.16), (8.17), it follows that the norm
of Adσ−1 on n can be estimated by exp(−cA|g|) with c independent of A. It
follows that if A is chosen large enough, we have |dF | � C|g|+C in (8.30).
This completes the proof of the proposition.
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8.3 Semidirect Products

8.3.1 The definition of the semidirect product

Let N, H be two connected Lie groups. Then the usual definition of their semi-
direct product is given by the formula

(n1,h1)(n2,h2) =
(
n1n

h1
2 , h1h2

)
; n1,n2 ∈ N, h1,h2 ∈H (8.31)

and by a homomorphism s : H → Aut(N), the group of automorphisms of N,
and where we write nh = s(h)n, with n ∈ N, in (8.31). The notation is N�H,
though N�s H would have been more accurate.
We shall assume in what follows that the groups N and H are simply con-

nected. In that case, s is determined by a homomorphism ŝ :H→GL(n)where
n is the Lie algebra of N provided that ŝ(H) ⊂ Aut(n), that is, that ŝ(h) is an
automorphismof the Lie algebra n. Taking the differentialσ = dŝwe then have
σ : h→ Der(n) a Lie algebra homomorphism where h is the Lie algebra of H
and σ(ξ ) ∈ Der(n) = D(n), the algebra of derivations of n (we recall that in
any algebra A, the map D: A→A is a derivation if D(x ·y) = (Dx) ·y+x ·(Dy)).
For any D ∈ D(n) we have eD ∈ Aut(n) and therefore we can reverse the

above process. So from a Lie algebra homomorphism σ : h→ D(n) we can
reconstruct ŝ and s. For all this see Hochschild (1965, Chapter IX); Varadarajan
(1974, §§2.13, 2.14); Helgason (1978, §II.5).
For the Lie group structure of G = N�H the Lie algebra is g = n� h and

then with the above notation we can identify

adξ = σ(ξ ), ŝ(expξ ) = eadξ = Adexpξ ∈ Aut(n); ξ ∈ h.

We regard all these as operators acting on n. For this reason in the above defini-
tion, in what follows we shall abuse notation and write σ = ad, ead = ŝ◦exp=
Ad◦exp. The reader may wish to go back to the definitions in the above refer-
ences to clarify the above formulas.

8.3.2 Definition of replicas

The notation G = N�H, n, h, σ = ad, ead = Ad◦exp are as in the previous
subsection. The Lie algebra homomorphism ad : h→D(n) will then be ‘mod-
ified’ to another similar homomorphism ad0 = σ0 : h→ D(n) which will be
called a replica of σ and from this we can get ŝ0 ◦exp=Ad0 ◦exp= ead0 and a
new semidirect product G0 = N�0H will be defined. This semidirect product
will be called a replica of the original product G. The above idea fits with the
more general set-up of replicas that can be found in Varadarajan (1974, §3.1).
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This general notion of replicas is due to C. Chevalley and, like everything else
that he did, is ‘worth the detour’. The reader is urged to check this out.
For us here we shall consider only concrete explicit examples and we shall

assume throughout that n and h are nilpotent Lie algebras and that

n⊗C= nα1⊕nα2⊕·· · (8.32)

is the root space decomposition of the action of σ(h) = adh on the complexi-
fication of n (see Jacobson, 1962, §II.4; see also §3.8).

8.3.3 The semisimple replica

To give the first significant example of a replica, for every ξ ∈ h we shall
decompose σ(ξ ) = σS(ξ ) + σN(ξ ) into its semisimple and nilpotent parts.
Here σS(ξ ) is a replica of σ(ξ ) in the sense of Chevalley, and the fact that
σS(ξ ) ∈ D(n) follows from the general theory (see Varadarajan, 1974, §3.1,
especially §3.1.14). We can verify this directly by using the root space decom-
position (8.32) as follows. The complexification of the mapping σ(ξ ) reduces
on each nα j to the mapping

α j(ξ )I+T j, (8.33)

where I is the identity, T j is nilpotent and the complexification of σS(ξ ) is
defined by α j(ξ )I on each nα j . On the other hand, [nα j ,nαk ]⊂ nα j+αk if α j+

αk is a root, and that bracket is zero otherwise. From this we see that when
σ(ξ ) is a derivation of n, the complexification of σS(ξ ), and therefore σS(ξ )
itself, is a derivation. The fact that ξ → σS(ξ ) is a Lie algebra homomorphism
(h→ D(n)) is also clear because we have in general α j ([ξ1,ξ2]) = 0 for any
root. Therefore we have

σ ([ξ1,ξ2])S = [σS(ξ1),σS(ξ2)] = 0; ξ1,ξ2 ∈ h. (8.34)

We shall write adS = σS and GS = N�S H for the corresponding replica.

The C–NC classification It is clear from the above definition that N�S H is
a C- or NC-group if N�H. This of course holds because the corresponding
algebras have exactly the same roots defined by Lie’s theorem in §2.3.3.

8.3.4 A class of special soluble groups

We shall say that g is given by a real semisimple action if g = n� h, where
n and h are nilpotent, and where the action of h on n is semisimple with real
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roots. This means, for an appropriate basis of n, that adξ , with ξ ∈ h, takes the
diagonal form

adξ = Diag(L1ξ , . . . ,Lnξ ), (8.35)

where the roots Lj are real, that is, they are L1, . . . ,Ln ∈ h∗, linear functionals
on h. No complexification is involved here.
Let us go back to the replica N �S H that we constructed in the previous

subsection and the complexification of σS(ξ ) that acts on the root spaces nα j
of (8.32) by σS(ξ ) = α j(ξ )I, with ξ ∈ h. We shall then define on each nα j the
action

σ0(ξ ) = Reα j(ξ )I; ξ ∈ h. (8.36)

In other words, and loosely speaking, we replace each root by its real part.
The mapping σ0(ξ ) maps n into itself (i.e. is a real mapping), and by the same
argument as before, though even easier, we see that it is a replica of σ (see the
exercise below). We shall write

ad0 = σ0, Ad0 ◦exp= ead0 , n�0 h= g0. (8.37)

Exercise The sum of all the nα j for the roots α j with the same real part L, is
of the form nL⊗C for some nL ⊂ n (because it is a real space, i.e. stable under
conjugation). We have n = nL1 ⊕nL2 ⊕·· · and [nLj ,nLk ] ⊂ nLj+Lk . Our asser-
tion follows because σ0(ξ ) reduces to a real scalar transformation on each nL.
This is also consistent with the general set-up of replicas that we mentioned,
and in Varadarajan (1974, §3.1.15), one can find a complete description of the
replicas of diagonal transformations.

This replica g0 is then given by a real semisimple action. We shall denote by
G0 = N�0H the corresponding simply connected group that is a replica of G.
As before it is of course clear that G0 is a C- or NC-group if G is.
We shall now state one of the main results of the chapter and also the raison

d’étre of the replica ad0.

Proposition 8.3 Let Q be some simply connected soluble Lie group. Then
there exists G=N�A, some simply connected group, whose algebra g= n�a

is given by real semisimple action, where n is nilpotent and a is Abelian and
such that Q is polynomially homotopically equivalent to G and furthermore, G
is C- (resp. NC) if Q is.

The proof of Proposition 8.3 will be completed in §8.5.1 below. We pointed
out previously, however, in Proposition 8.2, that this is the missing link needed
to complete the proof of the NC-theorem (Theorem 7.10). Replicas will be
used in the proof but before then some preparation is needed.
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8.3.5 Riemannian structures on semidirect products

We shall consider again G = N�H the semidirect product of two connected
Lie groups and let n, h, g denote the Lie algebras of N, H and G respectively.
We shall fix left-invariant Riemannian structures on N and on H by specifying
| |n and | |h some Euclidean norms. These will be kept fixed throughout. We
define, then, the corresponding Euclidean norm | |2g = | |2n+ | |2h on g.
Now G as a differential manifold can be identified with the product N×H

and therefore at every g= nh ∈ G (n ∈ N, h ∈ H) the tangent space Tg(G) can
be identified with Tn(N)×Th(H). To push this identification a step further, we
write

Tg(G) � X = Y +Z; Y ∈ Tn(N), Z ∈ Th(H), (8.38)

and then, with the notation of §8.1.1,

Y = ρ̇(ν,n), Z = ρ̇(μ ,h); ν ∈ n, μ ∈ h, (8.39)

which identifies X = Y +Z with ν+ μ .
We shall now give the explicit expression of the Riemannian norm on Tg(G)

for the left-invariant structure induced by | |g. To do this we consider first
ρ̇(μ ,g) which is the Lg translate of μ ∈ h⊂ g and in the identification T(G) =
T(N)×T(H) this is Z as in (8.39).
Now let ν1 ∈ n and consider ρ(t) = ρ(t,ν1,g) ∈ G, with t ∈ R where ν1 is

considered as an element of g. Then (see §8.1)
ρ(t) = nexp

(
t(Adh)ν1

)
h= ρ
(
t,(Adh)ν1,n

)
h; g= nh ∈ G. (8.40)

This means that if ν1 = (Adh−1)ν in (8.40) we have ρ̇ =Y .
The above can be reformulated by saying that when we identify X ∈ Tg(G)

in (8.38, 8.39) with the elements of g by the left translation Lg, we have

dL−1g X = (Adh−1)ν+ μ ; g= nh ∈ G. (8.41)

Therefore for the left-invariant Riemannian structure on G we have

|X |2 = |(Adh−1)ν|2n+ |μ |2h, (8.42)

and in particular TN and TH are orthogonal.

Riemannian norms on replicas We shall preserve all the notation of the pre-
vious subsection. Then let G1 = N �1H be some replica of G = N�H and
let Ad1 be defined for that replica as in §8.3.2. For fixed n ∈ N, with h ∈ H,
we shall denote (n,h) = n� h (resp. n�1 h) their product in G (resp. G1). For
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the identification of the tangent space at (n, h) as in (8.38) we then have the
following two Riemannian norms on TG that are given by (8.42):

|X |2 = |(Adh−1)ν|2n+ |μ |2h,
|X |21 = |(Ad1 h−1)ν|2n+ |μ |2h.

(8.43)

8.3.6 Quasi-isometric and polynomially equivalent replicas

Let G1 = N �1 H, G2 = N �2 H be two replicas of G and let Ad1 and Ad2
(from H → GL(n)) be the two corresponding mappings. Let us assume that
there existsC > 0 such that∥∥(Adi h)(Ad j h−1)∥∥�C; h ∈H, i, j = 1,2. (8.44)

Then it is clear from (8.43) that for left-invariant Riemannian structures on G1,
G2, the identity mapping is a quasi-isometry. An example of this situation is
supplied by the replicas GS and G0 of §§8.3.3, 8.3.4.
Similarly, let us assume for the two replicas that there exist constants such

that ∥∥(Adi h)(Ad j h)−1∥∥�C (1+ |h|H)C ; h ∈ H, i, j = 1,2. (8.45)

Then, again, formula (8.43) shows that the identity mapping between G1 and
G2 is a polynomial equivalence. An example of this situation is supplied by the
groups G and GS of §8.3.3.

Exercise 8.4 Prove the above statement. The commutation between the semi-
simple and nilpotent components in §8.3.3 shows that the left-hand side of
(8.45) can be estimated by the operator norm on n of eσN(ξ ) with h = expξ ,
where ξ ∈ h, and therefore also estimated by (1+ |ξ |)C. We can then use the
distance distortion (2.60), and (8.45) follows.

Exercise 8.5 If we denote the direct product by GT = N×H we obtain the
trivial replica of G= N�H. Use (8.9) and the above to prove that GT is poly-
nomially equivalent to G if and only if G is an R-group. Of course, GT is also
polynomially equivalent to a Euclidean space (see Example 7.4).

Exercise 8.6 For any two replicas as above on the subset [g= nh], with |h|�
C, prove that the two Riemannian structures are quasi-isometric with constants
that depend only onC.
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8.4 Polynomial Sections

8.4.1 Definitions and examples

We shall consider a homomorphism

π : G−→ G
N

= K, (8.46)

where G, N, K are simply connected Lie groups and N is a closed normal
subgroup of G. We then say that the mapping σ : K → G is a section if it is
smooth and π ◦σ = Identity on K. Such sections always exist (see Varadarajan,
1974, §3.18). We shall say that σ as above is a polynomial section if there exist
constants such that

|dσ |� c(1+ |k|)C; k ∈ K, (8.47)

where dσ : TK→ TG.

Example 8.7 If G is nilpotent we can use the exponential mapping exp: g→
G and Example 7.5, among other things, to see that every homomorphism
(8.46) admits a polynomial section.

Example 8.8 (Soluble groups) See also Varopoulos (1994b, §1). Let us ass-
ume in (8.46) that G is a simply connected soluble group and that N�G is its
nilradical. ThenG/N = K ∼=Rd is Abelian (see Varadarajan, 1974, §3.18). We
can then find a section σ that is polynomial.

This example and the considerations that follow in the next one will not be
essential to us in the sense that they are not used in the proofs of Theorems 7.10
and 7.11. We shall outline the proofs, however, because they already bring in
some of the ideas that will be needed later.

Exercise 8.9 (The use of the Cartan subgroups in Example 8.8) We recall
from §3.4 that we can find H ⊂G, a closed connected nilpotent subgroup such
that NH = G. It is of course by no means true in general that N ∩H = {e}.
With the above notation, π reduces to a projection πH :

πH : H −→ H
H ∩N = K; σH : K −→H, (8.48)

and from Example 8.7 there exists a polynomial section σH of πH in the sense
of (8.47) for which πH ◦σH = Identity of K. However, σ = σH : K→ H ⊂ G
can be considered as a mapping from K to G, and then it is actually a poly-
nomial section of π . Our assertion follows. Notice also, and this will be essen-
tial later, that H∩N is connected. This follows from the simple-connectedness
of K and the lifting homotopy theorem for fibre spaces (see Hilton, 1953,
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§V.1.2). But, using Varadarajan (1974, §3.18), we have already given a proof
of this by direct methods in §2.14.2.

Example 8.10 (R-groups) Let the notation be as in Example 8.8. Then π , σ
can be used to identify

G
θ−→←−

θ−1
N×K. (8.49)

This is achieved by writing g∈G uniquely as a product g= nx (n∈N, x ∈ Σ=

σ(K)), so that we have

θ (g) = (n,π(g)); n= n(g) = g(σ ◦π(g))−1 ∈ N,
θ−1(n,k) = nσ(k) ∈ G. (8.50)

As seen in §8.1, the fact that σ is a polynomial does not suffice to guarantee
that θ is polynomial. This, however, is a typical situation when formula (8.6),
withM = N×K, can be used.

In the case when G is an R-group, to show that θ is polynomial it suffices to
show that θN : g→ n(g) as a mapping G→ N is polynomial. But since N ⊂ G
is a subgroup it suffices to prove that θN : G→ G is polynomial. Then going
back to the expression of n(g) we see again that formula (8.6) applies with
M = G with φ1 = Identity and φ2 = (σ ◦π)−1. Then by (8.9) we have a proof
of our assertion on θ , and since the same argument works for θ−1, we see that
(8.49) gives a polynomial equivalence. In other words, we have a proof of one
of the assertions made in §7.3.1.

8.4.2 The strict polynomial section. Definition and statement of the
results

Here we shall need to strengthen the notion of a polynomial section of the
projection π :G→ K of (8.46). Let σ be some polynomial section as in (8.47)
and let us denote, throughout, Σ = σ(K) ⊂ G which is a closed (embedded;
see Hirsch, 1976, Chapter 1) submanifold. We shall then say that σ or Σ is a
strict polynomial section if Σ is a polynomial retract of G.
To be precise, we assume that there exists F : G× [0,1]→ G that is locally

Lipschitz and satisfies (see §7.4)

|dF(g, t)|�C (1+ |g|)C ; g ∈ G, 0� t � 1, (8.51)

for the product Riemannian structures and fixed constants. Furthermore, F is
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such that

F(g,1) = g, F(g,0) = σ ◦π(g), F(x,λ ) = x;

g ∈ G, x ∈ Σ, 0� λ � 1.
(8.52)

We now come to one of the main technical tools used in this and the follow-
ing chapter. We assume as in Example 8.8 that G is a soluble simply connected
group, that N is the nilradical and that H ⊂ G is a closed connected nilpotent
subgroup such thatG=NH (see Varadarajan, 1974, §3.18.12).We can then use
the action of H on N that is defined by inner automorphisms ( : n→ hnh−1)
to construct the semidirect product N �H and the canonical projection (see
§3.4.2)

π : G̃= N�H −→ G= NH. (8.53)

Furthermore, the group G̃ is C- (resp. NC-) if G is.

Exercise Prove this last point by elaborating §§2.3.3, 2.3.4 as follows. Let
q be some soluble algebra and let n,h ⊂ q be nilpotent subalgebras such that
q = n+ h and n is an ideal. Then the non-zero roots λi(x) in (2.9) can be
identified naturally with the non-zero roots of the adh-action on nc. Hint. Start
with νi, . . . , some basis (over C) of nc that triangulates the adq-action on nc.
Then complete with appropriate χ1, . . . ∈ hc and obtain thus a basis of qc that
triangulates the adq-action on qc.

To avoid confusion in the notation and the proofs that follow, we shall in G̃
denote the product g̃ = n� h ∈ G̃, with n ∈ N, and h ∈ H (this notation is not
standard and is simply convenient for the occasion). Then

π(n� h) = nh= the product in G, (8.54)

and also, to be absolutely explicit, we can use the notation of §8.3.1 and then
G̃= N�s H with s(h)n= hnh−1, with h ∈ H, n ∈ N.

Proposition 8.11 With the above notation the projection π admits a strict
polynomial section.

The proof of the proposition will occupy the rest of this section. Observe,
however, right away that once we have this proposition we have a polynomial
homotopy equivalence between G̃ and G (see §7.4 and also §12.2 below). We
can combine this with the replicas of §8.3.4 and we almost have a proof of
Proposition 8.3. The only essential element that is missing is that H is not
necessarily Abelian. We shall come back to this when we finalise in §8.5.
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8.4.3 One-parameter subgroups and notation

We shall denote by g, n, h the Lie algebras of the groupsG,N,H of the proposi-
tion. We shall fix (ζ1, . . . ,ζr)⊂ n∩h and then complete it to η1, . . . ,ηp ∈ h so
that (ζ1, . . . ,ζr,η1, . . . ,ηp)⊂ h is an ordered basis of h for which we can define
exponential coordinates of the second kind in H as in §7.3.1.
Exercise Show that this is possible. Use the following facts: h is nilpotent and
n∩h is an ideal in h. The construction of this basis is then much easier than the
general construction that is given in Varadarajan (1974, §3.18.12) because we
can start from any basis of n∩h that is appropriately constructed in successive
steps in the central series and complete that with a similar basis of h (modh∩
n).

With the notation from §7.3.1 we shall write
e(τζ ) = e(τ1ζ1) · · ·e(τrζr) ∈ H; τ = (τ1, . . . ,τr) ∈ Rr,

e(tη) = e(t1η1) · · ·e(tpηp) ∈ H; t = (t1, . . . , tp) ∈ Rp,

}
(8.55)

where, as in §7.3.1, e(tξ ) = etξ , with t ∈ R, with ξ ∈ g, denotes the one-
parameter subgroup generated by ξ ∈ g. With this notation and that of (8.54)
we then have

G= [Ne(tη); t ∈ Rp] , (8.56)

G̃= [N� e(τζ )e(tη); τ ∈ Rr, t ∈Rp] , (8.57)

and we shall define

Σ= [N� e(tη); t ∈ Rp]⊂ G̃, (8.58)

σ(ne(tη)) = n� e(tη) ∈ G̃. (8.59)

Exercise Verify that in (8.56) an element g = ne(tη) uniquely determines
t ∈Rp. This is necessary for the above definition to be legitimate. It is obvious
because the images dφ(η j)with φ : G→G/N =H/H∩N give coordinates on
the Euclidean space H/H ∩N. Note also that these coordinates stay bounded
byC|g|.
Let us now fix g ∈ G and use the notation of §8.1.1 to define

ν̇ j = ρ̇ (ν j ,g) , η̇ j = ρ̇ (η j ,g) ∈ Tg(G); j = 1,2, . . . ,

where ν1, . . . ,νn ∈ n is a basis of the algebra n. The left-invariant Riemannian
structures on G and G̃ will then be given by requiring that

(ν1, . . . ,νn,η1, . . . ,ηp)⊂ g (8.60)
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is orthonormal and

(ν1, . . . ,νn,ζ1, . . . ,ζr,η1, . . . ,ηp)⊂ g̃= n�h (8.61)

is orthonormal.

8.4.4 Proving that σ is a polynomial section
By the above definitions, to prove that σ is a polynomial section it suffices to
prove that there exist constants such that∣∣dσ (ν̇ j)

∣∣�C (1+ |g|)C ,∣∣dσ (η̇ j)
∣∣�C (1+ |g|)C ; g ∈G, j = 1,2, . . . .

(8.62)

The first assertion in (8.62) is easy. Indeed, if g= nh for n ∈ N, h ∈ H, with
h = e(tη) as in (8.56), then σ(g) = n� h = g̃ ∈ Σ ⊂ G̃. As in §8.1.1 we can
then define

ρ j(t) = ρ j(t,ν j,g) = getν j ∈ G,
ρ̃ j(t) = ρ j(t,ν j, g̃) = g̃etν j = ñ� h ∈ G̃,

(8.63)

where here ñ = hetν j h−1 ∈ N depends on t. Clearly the above cosets of one-
parameter groups correspond by the mappings π ( : ρ̃ j(t) −→π ρ j(t)), and by
(8.63) it follows that ρ̃ j(t)⊂ Σ and therefore that σρ j = ρ̃ j. The conclusion is
that

dσ (ν̇ j) = ρ̇(ν j, g̃), (8.64)

where the ν̇ j on the left is identified to an element of TG and on the right we
have an element of TG̃. This completes the proof of the first assertion of (8.62).

8.4.5 Proof of the second assertion of (8.62)

This is more subtle because although we can define ρ̇(η j , g̃) ∈ TG̃ as before,
this vector is not in general tangent to Σ. To get round this difficulty we first
need to introduce appropriate additional notation. Let g∈G be as before, where
we use the coordinates of (8.56) to write

g= ne(tη); n ∈ N, t = (t1, . . . , tp) ∈ Rp, (8.65)

in a well-determined unique way. For t ′ ∈ R, we shall set t( j) = (t1, . . . , t j +
t ′, t j+1, . . . , tp), that is, we add t ′ to the jth coordinate. We shall then set

Ej
(
t ′
)
= e(tη)e

(
t ′η j
)
= h1
(
t ′
)
e
(
t( j)η
)
= h1
(
t ′
)
h2
(
t ′
)
; h1,h2 ∈H. (8.66)
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In (8.66), h1 ∈ [H,H] is obtained by the commutation operations that are needed
to bring the additional one-parameter subgroup to the jth place and then also to
bring the error term so obtained at the beginning of the product. Here h2(t ′) =
e(t( j)η) is a function of t ′ with the other coordinates fixed.
(a) Now, to obtain the tangent vector that corresponds to η j in TG at g we
have to take the derivative at t ′ = 0 of nE(t ′) ∈ G. With the notation of (8.1),
this is dLnĖ j(0).

(b) To obtain the tangent vector that corresponds to η j in TG̃ at g̃ = n� e0
with e0 = e(tη) we have to take the derivative at t ′ = 0 of n�Ej(t ′) which
again, with the notation (8.1), is dLnĖ j(0).

Here we have abused notation slightly and denoted by Ln the left translation
by elements of N in both G and G̃; moreover,H was considered as a subgroup
of both G and of G̃. In each case, Ė j(0) ∈ Te0H and this, as well as the two
dLnĖ j(0) in (a) and (b), has length 1.
The problem that arises is that, unlike the previous case in §8.4.4, it is not

true in general that ϕ0(t ′) = n�Ej(t ′) ⊂ Σ and therefore the tangent vector
that we have obtained in (b) is not necessarily tangent to Σ. To cope with this
difficulty we modify ϕ0 and with the two factors h1, h2 of (8.66) we write

ϕ(t ′) = nh1(t
′)� h2(t

′) ∈ G̃. (8.67)

This makes sense since h1 ∈ [H,H] ⊂ N (see the discussion following (8.72)
below). Now we clearly have

ϕ(t ′)⊂ Σ, π
(
ϕ(t ′)
)
= π
(
ϕ0(t ′)
)
, (8.68)

and therefore, with the notation of §8.1.1, we have
dσ η̇ j = ϕ̇(0). (8.69)

It suffices then to prove that

|ϕ̇(0)|�C(1+ |g|)C; g ∈ G (8.70)

and the second assertion (8.62) follows. Furthermore, since the Riemannian
structure on G̃ is left invariant, we can use L−1n and reduce the problem to the
case when, in (8.65), n = e is the identity. In other words, in (8.67) we can
assume

ϕ(t ′) = h1(t
′)� h2(t

′) ∈ G̃. (8.71)

But in this special case,

ϕ(t ′) ∈ (N ∩H)�H = G̃N (8.72)
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because h1 ∈ [H,H] ⊂ N ∩H. Note that the subgroup [H,H] generated by all
the group commutators xyx−1y−1, with x,y ∈ H, is the analytic subgroup of H
whose Lie algebra is h2 = [h,h] and h2 ⊂ n (see Varadarajan, 1974, §3.8.3; this
description of the commutator subgroup was explained in Varadarajan, 1974,
§3.18.8). The group G̃N is nilpotent because the ad-action of h on n∩ h is
clearly nilpotent, and this together with the nilpotency of H implies that adξ
(ξ in the algebra of the group) is nilpotent (see Varadarajan (1974, §3.5) or
Chevalley (1955, V, §2.2, Proposition 4)). The reason for this is that in that
algebra the roots defined in (2.9) by Lie’s theorem have to vanish on h and
on h∩ n. On the other hand, by their construction, the two mappings h1, h2
are products of one-parameter subgroups of the nilpotent group H; they are
therefore polynomial mappings in the sense that ḣ1, ḣ2 can be estimated by
1+ |t|C, where again we use the notation of §8.1.1. Our assertion (8.70) follows
from this by applying (8.7), (8.9), or by applying Example 7.5 to the nilpotent
group (8.72). At the end, we estimate |t| by |g| as explained in §8.4.3 (see the
exercise in §8.4.3).

8.4.6 Proof that σ is strictly polynomial
The issue is to construct the homotopy that satisfies the conditions of the def-
inition in (8.51), (8.52). We shall use (8.57), that is, the fact that every g̃ ∈ G̃
can be written uniquely as

g̃= n� h= n� e(τζ )e(tη). (8.73)

Moreover, the maps G̃→ H, g̃→ h in (8.73) are polynomial, and the depen-
dence of τ , t on h is polynomial because H is nilpotent. The only difficulty is
that in general the mapping g̃→ n in (8.73) is not polynomial.
We shall now define

F(g̃,λ ) = n� e(λτζ )e(tη) ∈ G̃;
g̃= n� h, 0� λ � 1, τ ∈ Rr, t ∈ Rp,

(8.74)

where, to clarify the notation, we recall that e(λτζ ) = e(λτ1ζ1)e(λτ2ζ2) · · · ,
and that τ , t are the polynomial functions of g̃ defined in (8.73). It is clear
that (8.52) is satisfied and to prove that this gives a strict polynomial section it
suffices to estimate dF and verify (8.51) for the product Riemannian structure
G̃× [0,1] =M. To do this we shall rewrite

F(g̃,λ ) = n� e(τζ )e(tη)e((λ − 1)τ)h∗ ∈ G̃,
h∗ = h(τ, t,λ ) ∈ [H,H]⊂ N ∩H,

(8.75)



8.4 Polynomial Sections 261

where to obtain h∗ we write each one-parameter group

e(λτ jζ j) = e(τ jζ j)e((λ − 1)τ jζ j); j = 1, . . . (8.76)

and then use the necessary commutators in H of the form [x,y] = xyx−1y−1,
with x,y ∈ H, to bring the second factors in (8.76), and the correcting terms
coming from the commutators, at the end of the product in (8.75).What counts
is that from the above definitions we have that the mapping

G̃× [0,1]−→H ∩N; (g̃,λ )−→ h∗ (8.77)

is polynomial. This follows from our original remarks just after (8.73) that
make the mapping from G̃× [0,1] into H polynomial and the nilpotency of H.
We can also rewrite

F(g̃,λ ) = g̃e((λ − 1)τ)h∗ = g̃φ2,

H ∩N � φ2(m) = e((λ − 1)τ)h∗; m ∈M = G̃× [0,1].
(8.78)

In (8.78) the product is taken in G̃=N�H and φ2 lies in the cofactorH. More
precisely, φ2 ∈H ∩N ⊂H ⊂ G̃. In other words, if φ1(m) = g̃ we are in the set-
up where formula (8.6) applies. However, (8.7) also applies because Ad(H∩N)
is polynomial on g̃ = n� h in the sense of (8.7). Indeed, for x ∈ H ∩N and
ξ̃ = ν + χ ∈ g̃, with ν ∈ n, χ ∈ h, we have (Adx)ξ̃ = (Adx)ν +(Adx)χ . In
applying (8.7), H ∩N is considered as a subgroup of the cofactor H in G̃ and
therefore also as a subgroup of G̃ and Adx in the above formula refers to the
action of G̃ on its Lie algebra. The estimate

|dF|�C(1+ |g̃|)C; g̃ ∈ G̃, 0� λ � 1, (8.79)

therefore follows and this proves our assertion. The nilpotency of N, H and
(8.9) are used in the above.

8.4.7 A variant of the argument

The argument in §§8.4.4–8.4.6 can be adapted in the following situation.
Let G̃ = N �H, where N, H are assumed simply connected and H is nil-

potent. Furthermore, let H1 ⊂ H be some normal connected closed subgroup
that centralises N. This means that for all h ∈ H1, if we restrict Adh to the
Lie algebra of N we obtain Adn(h) = Identity. We then define πH : H →
H/H1=H2 and extend this to a homomorphismπ : G̃→N�H2=G by setting
π(n� h) = n�πH(h), where the semidirect product is defined by the induced
action of H2 on N. For every section σH : H2 → H (i.e. πH ◦σH = Identity)
we can then define the corresponding section σ : G→ G̃. We then have the
following proposition.
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Proposition 8.12 Let the notation be as above and assume that [H,H]⊂H1.
Then we can construct a polynomial section σH : H2→H in such a way that

(i) σ is polynomial;
(ii) σ is strictly polynomial.

Exercise 8.13 Adapt the proofs that we gave in §§8.4.3–8.4.6 to prove the
first part of the proposition.

Here are the changes in the definitions that have to be made.

Part (i) of Proposition 8.12 Now (ζ1, . . . ,ζr)⊂ h1 is a basis of the Lie alge-
bra of H1 and we complete it to (ζ1, . . . ,ζr,η1, . . . ,ηp) ⊂ h to form a basis of
the Lie algebra of H, for which we can define exponential coordinates of the
second kind in H as in §8.4.3. Expressions (8.55) are defined exactly as before
and the definitions (8.57) and (8.58) are used here again and are identical, but
now instead of (8.56) and (8.59) we set

G= [N�πH (e(tη)); t ∈ Rp],

σ(n�πH (e(tη))) = n� e(tη) ∈ G̃.
(8.80)

In all of this, the notation that we introduced in (8.54) is of course used.
With this notation essentially nothing changes in §§8.4.3–8.4.4. Adapting

the argument of §8.4.5 is very simple. Indeed, with the notation of (8.66),
h1(t ′) ∈ [H,H]⊂ H1 by our hypothesis. The rest of the argument applies with

ϕ0(t ′) = n� h1(t
′)h2(t ′), ϕ(t ′) = n� h2(t

′) (8.81)

instead of (8.67), where the definitions of h1, h2 are as in (8.66). The details
are in fact simpler than before and are left for the reader.

Exercise 8.14 (Part (ii) of Proposition 8.12) Exactly as for part (i), the proof
is an easy adaptation of §8.4.6. We change the notation as explained in Ex-
ercise 8.13. The group G̃ is still N� e(τζ )e(tη), as in (8.57), with the new
definitions of ζ and η of Exercise 8.13 and G, σ as in (8.80). The definition of
the retract is as in (8.75):

F(g̃,λ ) = n� e(τζ )e(tη)e((λ − 1)τζ )h∗, g̃= n� e(τζ )e(tη),

with the only difference being that h∗ ∈ [H,H] ⊂ H1, and where, as in (8.78),
we set φ2 = e((λ −1)τζ )h∗ ∈H1. To conclude the polynomial estimate (8.79)
for this new F we argue as at the end of §8.4.6 where we use Adg̃(H1) with g̃
the Lie algebra of G̃. For this we use the nilpotency of H and the fact that H1
centralises N. The end of proof is identical and the reader can finish things up
without any difficulty.
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8.5 Dénouement

8.5.1 Proofs of Proposition 8.3 and Theorem 7.10

If we combine Proposition 8.11 with §§8.3.4 and 8.3.6 we see that if Q is some
simply connected soluble group then there exist N, H, two simply connected
nilpotent groups, and there exists also an action of h, the Lie algebra of H, on
n, the Lie algebra of N that is given by (real) diagonal matrices

adξ = diag(L1ξ , . . . ,Lnξ ); ξ ∈ h. (8.82)

The Lj ∈ h∗ are the roots of that action, and in this construction the semidirect
product G = N�H is polynomially homotopically equivalent to Q. Further-
more, G is C- (resp. NC-) if Q is and in this construction we can even assume
that H is Abelian since Proposition 8.12 applies (cf. §8.5.1.2 below). We have
thus a proof of Proposition 8.3. What has to be seen therefore is that the con-
clusion of Theorem 7.10 holds for this new groupsG. Towards that and in view
of Propositions 8.2 and 8.3, we shall make two additional easy reductions.

8.5.1.1 A reduction whenQ is an NC-group In this case, as we have already
said, the group G that we constructed above is also NC. The easy case here is
when Q is an R-group and all the roots in (8.82) are zero: Li = 0. In that case
G= N⊕H is a direct sum and is a nilpotent group.
If G is not an R-group, we fall back on the constructions (and notation) of

the exercise in §8.3.4, denote by nLj = n j ⊂ n the root spaces in the Lie algebra
n of N that correspond to the roots Lj in (8.82) and write nR =∑Lj �=0 n j and n0
for the root space that corresponds to the zero root L0 = 0 if such a root exists.
Otherwise we set n0 = 0. It is obvious that [n0,h] = 0 and that hR = n0+h is
a nilpotent subalgebra. Furthermore (see §3.8), nR is an ideal and g, the Lie
algebra of G, can be written g = nR� hR and therefore G  NR�HR for the
corresponding groups. This gives a new decomposition for the groups G with
an action of hR on nR. This action may well not be semisimple but if we then
take the semisimple replica of this new semidirect product we have a group G
exactly as in (8.82) but here all the roots Lj �= 0 are non-zero, as was one of
the prerogatives in Proposition 8.2: see (8.17).

8.5.1.2 Reduction to make h Abelian We start with G= N�H as in (8.82)
and set H1 = [H,H] the commutator subgroup: it is an analytic subgroup with
Lie algebra [h,h]. We then consider π : H → H/H1 = A: we can make the
construction of Proposition 8.12 because by (8.82)H1 acts trivially on N. Fur-
thermore, the roots of the action of A on N are given by Lj ◦ (dπ), which is
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well defined, and we have, with these roots, a new group N�A that satisfies
(8.82). In addition, A is Abelian, as needed in Proposition 8.2.
Putting together (8.82) with the two above reductions we can finally give the

proof.

Proof of Theorem 7.10 Let Q be some simply connected soluble NC-group.

(i) If Q is an R-group then Q is polynomially homotopically equivalent to a
nilpotent group (see Example 8.10 or Exercise 8.5).

(ii) If Q is not an R-group then Q is polynomially homotopically equivalent
to a special soluble group that satisfies the conditions of Proposition 8.2.

In both cases therefore, either by Proposition 8.2 or by Example 8.10, the
group so obtained, and therefore also the original group Q, is polynomially
retractible. This completes the proof of the NC-theorem (Theorem 7.10).

.

8.5.1.3 A class of special soluble groups We have just seen that every simply
connected soluble group G is polynomially homotopically equivalent to some
special soluble group of the form N�A that satisfies the conditions of Proposi-
tion 8.3 where A=Rρ for some ρ � 0. In view of Theorem 7.11 for C-groups,
it is of interest to note that it is possible to choose

ρ = dim(G/nilradical of G).

To see this we just have to follow the proofs given in this chapter with special
emphasis on §8.5.1.2, which shows that ρ can be chosen to be dim(h/[h,h]).
We then use the remark in §3.4.4. The details will be left to the reader.

Open problems Let us write ρ0(G) for the minimum possible value of ρ � 0
for whichG is polynomially homotopically equivalent to N�Rρ . For instance,
ρ0(G) = 0 if and only if G is an NC-group.

Open problem 1 Can the geometry of the roots of G (in the sense of Chap-
ter 2) be used to determine ρ0(G)?

Open problem 2 Is it conceivable that we can classify simply connected sol-
uble groups up to polynomial homotopy equivalence? Or at least obtain invari-
ants similar to ρ0(G)?
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8.5.2 Comments on the proof of Theorem 7.10

In the previous subsection we gave a proof of the theorem by combining Propo-
sitions 8.2 and 8.3. These show that any soluble simply connected group is
polynomially homotopically equivalent to a group that satisfies the conditions
of Proposition 8.3. Then we apply Proposition 8.2.
There is, however, an alternative approach to the theorem which is the one

that was originally adopted in Varopoulos (2000b). This approach avoids the
use of the replicas of §8.3.3 and also of the mapping N�H → NH in (8.53)
that uses Cartan subgroups. This approach relies on the following two facts:

(i) We can write G, some soluble simply connected NC-group, as G= NR�
QR, where NR is nilpotent and QR is a soluble R-group. This was ex-
plained in §3.8. Note, however, that Cartan subgroups are used for that
construction.

(ii) The soluble simply connected R-group QR is polynomially retractable.
This was proved in Example 8.10. In the proof that we gave of this fact
we again made use of Cartan subgroups. Alternative but more or less
equivalent proofs of this fact exist (see Appendix F and also the original
proof in Varopoulos, 2000b).

One feature of this alternative approach of the NC-theorem that is worth
noting is that the proof is done in two stages. It is first done for R-groups in (ii)
and although not trivial, it certainly is not surprising. Then we use (i) and an
argument that is entirely analogous to §8.2.3 to conclude the proof in general.
This alternative approach is ‘messier’ but it should be noted that it gener-

alises and gives the first half of the final theorem in the area (see §1.6.3 and
Appendix F).

8.5.3 Comments on the definition of a strict section and the
polynomial homotopy equivalence

We shall end this chapter by making some comments on the conditions of the
polynomial sections in (8.52). There we actually demanded more than was
necessary for our purposes. But – and this presents some independent interest
– with the same notation, instead of (8.52), suppose we impose the following
three conditions: F(g,1) = g, F(g,0) ∈ Σ, F(x,λ ) = x; for g ∈ G, x ∈ Σ, 0 �
λ � 1. Then we can assert that G admits the F property of Definition 7.12 if
and only if K does. (We leave the proof of this to the reader.)
The above remark is related to a more general problem in homotopy the-

ory: in loose terms the issue is what, if anything, stays fixed in a homology
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H(m, t)∈M, form∈M, 0� t � 1 (i.e. pointsm0 ∈M for whichH(m0, t) =m0
for 0 � t � 1)? For instance, in the original definition in §7.4.1 it might have
been more consistent with the context to impose the additional condition that
F(O, t) = O1 (with the notation that we used there). As it happens (this will
be examined in more detail in Chapter 12), the modification makes no differ-
ence for our purposes because the additional condition comes for free for the
homotopies that we shall be using.
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Algebra and Geometry on C-Groups

Overview of Chapters 9 and 10

In these two chapters we shall give the proof of the C-theorem (Theorem 7.11)
for simply connected soluble C-groups. The proof is very long and, at least in
this approach to the problem, this is probably inevitable.
To clarify how the proof is done in the two different chapters, the following

comments are in order. Grosso modo, we could say that in Chapter 9 a num-
ber of intricate geometric constructions are made in a special class of soluble
groups, which we call SSG for short. Then, in Chapter 10, these constructions
are used to give the proof of the theorem for these SSG. The method that al-
lows us to pass from these SSG to the general case is based on the polynomial
homotopy equivalences developed in Chapter 8.
However, this overall organisation is relative. For instance, in Chapter 9 we

already explain, in broad terms, how the proof finishes in order to justify the
reasons for the constructions. And in Chapter 10 we give further refinements
of the constructions of Chapter 9.
Section 9.1 is special and stands apart from the theory of Lie groups because

it consists of linear algebra and finite geometry. The SSA are explicitly defined
there.
The first basic construction is carved out in §§9.3 and 9.4. The overall de-

scription is given in §9.3, and the details in §9.4. In §9.5 we give the second
basic construction. This involves a different idea but, once we have it, the de-
tails are much easier to describe than those of the first construction. Section 9.2
is also special and in it we describe a number of examples that existed before
the C–NC classification and the proof of the theorem.
Before embarking on the details of the constructions, it is important for the

reader to understand why in §§9.3–9.4 we work so hard to construct such a
specific piecewise linear S (i.e. a triangulation of the d-dimensional sphere)

267
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embedded in R2d+1. It is here that spending some time in §9.3 on the general
description of the first basic construction, and in §9.2 on the examples, will pay
off.
However, given how long the construction is, the reader basically has just

two options.
The first is to understand how the examples in §9.2 work – this is very lim-

ited but is also very easy – and then simply believe that the general construction
described in §9.3 works. In this case the reader can skip altogether the tricky
§9.4.
In the second option, which will require time and energy, the reader will

also have to develop a certain ‘tolerance’ (preferably a ‘liking’) for the finite
geometry of §9.1 and the piecewise linear constructions of §9.4. Otherwise, we
warn, these two sections will be unbearably hard to digest.
Finally, for the purpose of getting a global perspective and the prospect of

avoiding many of the geometric constructions that we are about to describe,
one could have a quick look at the introduction to Part III and at the epilogue
of the book.

9.1 The Special Soluble Algebras

9.1.1 Algebraic considerations

We shall start by giving the formal definition of a special soluble algebra
(SSA). These have already been used in Proposition 8.3.

Definition 9.1 We say that g is a special soluble algebra if g= n�awhere n
is nilpotent and a �= {0} Abelian and where the action of a on n is semisimple
with real roots.

We shall elaborate on this definition and codify some notation that will stay
fixed throughout. We write V = a∗ �= {0} for the dual space but exclude the
case a = 0 from the definition. We shall fix E ⊂ V , a finite set which will be
called the set of the roots. When n �= {0} then E �= /0 and we can decompose

n=
⊕
e∈E

ne, the root space decomposition, (9.1)

where (see §2.1 and Jacobson, 1962, §II.4)

ne = [ν ∈ n; (adξ )ν = e(ξ )ν, ξ ∈ a] (9.2)
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and where ne is assumed to be �= 0. This implies the basic relation

[ne, ne′ ]⊂
{
ne+e′ if e+ e′ ∈ E,
0 if e+ e′ �∈ E. (9.3)

In the above notions the elements of E are distinct and are counted once, that
is, no notion of multiplicity is involved but dimne � 1. The additional point to
be stressed is that in this definition we are not only defining the algebra g but
also the splitting n� a and therefore also (9.1).

Definition 9.2 Let n′ ⊂ n be some subalgebra and assume that [n′,a] ⊂ n′.
Then g′ = n′� a is a subalgebra of g. It is an SSA with the induced structure
and will be called an SS-subalgebra of g. From the definition and elementary
linear algebra it follows that

n′ =
⊕
e∈E

(
n′ ∩ne
)
. (9.4)

In the above definition the roots of g′ form a subset E ′ ⊂ E . We have, for
instance, E ′ = /0 in the trivial case n′ = {0}.
We stress the point that in the above definition a �= {0} stays put and fixed.

It is only the n′ ⊂ n that varies.

Definition 9.3 Let a2 =
⋂
e∈E Kere, that is, a2 = V⊥1 is the orthogonal sub-

space for the duality between a and V , with V1 = Vec(e,e ∈ E). Let a1 ⊂ a be
some complementary subspace so that a= a1⊕ a2. Then clearly

g= g1⊕ a2, g1 = n� a1, V1 =

(
a

a2

)∗
= a∗1. (9.5)

When E �= {0} this means that once we have fixed the complement a1 we
obtain the decomposition (9.5) where g1 = n� a1 is also an SSA in its own
right (because a1 �= 0) where now the roots E1 of g1 spanV1 = a∗1. Note that a2
could be zero, but a1 �= 0 unless E = {0}.
The two extreme cases are g= n× a and the action of a on n vanishes and

then the roots E = {0}. At the other extreme, a2 = 0 and E spans a∗ and we
then say that g is irreducible.

Definition 9.4 We say that g= n�a is an SSA of Abelian type if n is Abelian.

Definition 9.5 We recall here the definition of a Heisenberg algebra. This is
the nilpotent algebra h= hs = (ν,μ ,ζ ) that depends on the parameter 0 �= s ∈
R and is generated by three vectors that satisfy the relations

[ν,μ ] = sζ ; [ν,ζ ] = [μ ,ζ ] = 0. (9.6)



270 Algebra and Geometry on C-Groups

By rescaling we may assume that s= 1.
Let g= n�a be some SSA. We shall say that g is ofHeisenberg type if there

exists 0 �= L ∈ E such that −L ∈ E and such that the root space decomposition
(9.1) becomes

n= nL⊕n−L⊕n0, (9.7)

where n0 is the root space with zero root 0 ∈ E . Furthermore, we assume that
(9.7) is a Heisenberg algebra, that is, that nL,n−L are both one-dimensional
and n0 = [nL,n−L] �= 0. In that definition n0 is central in n.
Definition 9.6 We shall say that g some SSA is a special soluble C-algebra
(SSCA) if it is a C-algebra.

This abbreviation is a trifle ‘heavy’. Already the abbreviation SSA is bad
enough for possibly different but obvious and rather sinister reasons (that must
be clear to all familiar with twentieth-century German history). But it is useful.
To wit,
the SSA algebra g= n�a is an SSCA if it satisfies the C-condition of §2.2.

This means that with the notation X = E\{0}, which will be adopted through-
out, we have

0 ∈ convex hull of X = CH(X) = ∑
x∈X

λxx, with λx � 0,∑λx = 1. (9.8)

To see this use the fact that the nilradical of g contains n, or use §2.3.3.
This definition forces X to have at least two points. The aim of this first

section will be to prove the following basic result.

Theorem 9.7 (The algebraic structure theorem) Let g = n� a some SSCA
as above. Then there exists g′ = n′� a some SS-subalgebra that is also a C-
algebra and furthermore g′ is of Abelian type or of Heisenberg type.

Remark 9.8 The theorem and its proof provide a different point of view of
the notion. We could instead say that we start with a, some non-zero Abelian
algebra, and identify it to a commuting family of linear mappings α : n→ n,
with α ∈ E , where n is some nilpotent algebra and we demand that
(i) α is a semisimple transformation with real roots;
(ii) α is a derivation of n.

In this light, the case n= 0, and E = /0, is trivial.

The proof of the theorem will be given in §9.1.6, but before we can do that
we must develop the necessary machinery.
Observe also that one can ‘skip’ all this and go straight to §9.1.7, where
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we recapitulate this structure theorem and prepare it for use in our geometric
theory.

9.1.2 Bracket-reduced SSA

Definition 9.9 All the notation of the previous subsection is preserved and
g= n� a is an SSA. We shall write throughout

A= [e ∈ E; ne∩ [n,n] = 0] ,
B= E\A= [e ∈ E; ne∩ [n,n] �= 0] , (9.9)

n= nA+nB =
⊕
α∈A

nα ⊕
⊕
β∈B

nβ . (9.10)

Either A or B (or both if n = 0) could be /0, and B = /0 if and only if n is
Abelian. More precisely, [n,n] is stable under the a-action and therefore by
(9.4), nB ⊃ [n,n] and B is exactly the set of the roots of the action of a on [n,n].
When 0 ∈ E we write n0 �= {0}, the corresponding root space and it is clear
from (9.3) that

[nα ,n0]⊂ nα ∩ [n,n] = 0; α ∈ A. (9.11)

With this notation it is also clear that if A′ ⊂ A and nA′ =
⊕

α∈A′ nα (this is
taken to be 0 if A′ = /0) and writing

n′ = nA′+nB, g′ = n′� a, (9.12)

then n′ ⊂ n is a subalgebra and g′ = n′� a⊂ g is an SS-subalgebra of g.

If we set n′′ = nA+ [n,n] then n′′� g is an SS-subalgebra with exactly the
same roots.

Definition 9.10 The notation is as before. We say that g is bracket reduced if
nB = [n,n] or, equivalently, n= nA+[n,n].

When g is bracket reduced then n is generated by nA. More precisely, if we
use the notation of §2.1 we have

nB = [n,n] =∑ [nA, [nA, [· · ·nA] · · · ]] = ∑
j�2

n
j
A, (9.13)

B⊂
⋃
j�2

(A+A+ · · ·), (9.14)

where j is the length of summation. To see this write

[n,n] =
[
nA+[n,n],nA+[n,n]

]
= [nA,nA]+ [n, [n,n]] = [nA,nA]+n3. (9.15)
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Therefore,

[n, [n,n]] =
[
nA+n2, [nA,nA]+n3

]
= n3A+n4, (9.16)

and so on until the nilpotency kills np for large enough p. Formula (9.14)
follows. From (9.11), (9.13) it follows that for a bracket-reduced algebra for
which 0 ∈ E we have

n0 ⊂ z(n) = the centre of n. (9.17)

Two special cases

If g is a bracket-reduced SSA and if B= /0, then by definition, g is of Abelian
type.
Let us instead make the assumption B = {0}. This, by (9.13) and (9.17),

implies

0 �= nB = [n,n] = n0 ⊂ z(n). (9.18)

But (9.13), (9.18) imply

[n,n] =∑ [na,n−a] , (9.19)

where the summation extends through all a ∈ E such that 0 �= a, −a ∈ A be-
cause if a,b ∈ E are such that [na,nb] �= 0 then a+ b ∈ B and thus a+ b= 0.
The relation (9.19) implies in particular that n contains an SS-subalgebra of
Heisenberg type. We can summarise.

Proposition 9.11 Let g be some bracket-reduced SSA and assume that B= /0.
Then g is of Abelian type. If B = {0} then g contains an SS-subalgebra of
Heisenberg type.

Example Let h be as in Definition 9.5 and a �= 0 be Abelian. Then, in (9.7),
for g= h� a in (9.9), (9.10) we have A �= /0, B= {0}.

The bracket reduction Let g= n�a be some SSA and let E ⊂V = a∗ be the
set of its roots. We shall consider the class of SS-subalgebras g1 = n1�a such
that E1 ⊂ V , the set of roots of g1 is the same set E1 = E . In other words, we
have not ‘lost any roots’ by passing from g to g1. We shall consider g0 = r�a,
some minimal element in that class (in the sense that no strict SS-subalgebra
of g0 has the same set of roots). This SS-subalgebra is of course not uniquely
determined.

Proposition 9.12 If g0 is as above, then g0 is a bracket-reduced SSA and has
the same roots E as g.
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Indeed, let rA+ rB be the decomposition of r as in (9.9), (9.10) for a disjoint
union A∪B= E . If we assume by contradiction that g0 is not bracket reduced
then E �= /0 and

r′ = rA+[r,r]� r (9.20)

and g′ = r′�a has the same roots E . This contradicts the minimality of g0 and
proves the proposition.

Remark One conclusion that cannot a priori be deduced from this proposi-
tion is that the inclusion (9.14) holds in general (i.e. without making the hy-
pothesis that the algebra is bracket reduced). The reason is that the sets of roots
E of g and g0 are the same but the decompositions E = A∪B of Definition 9.9
may be different.

9.1.3 Combinatorics

9.1.3.1 Definitions Here V will denote throughout some non-zero finite-dim-
ensional real vector space and E ⊂V will denote a finite subset. We shall then
denote X = E\{0}.
We enumerate three properties that the set E may or may not possess:

A1 : E spans V : Vec(E) =V ;

A2 : the convex hull of X contains 0:

0 ∈ CH(X) = [∑x∈X λxx; λx � 0, ∑λx = 1] ; (9.21)

A3 = A1∩A2 : that is, bothA1 andA2 hold for E; it will also be convenient
to write A3 = A .

If E ∈Ai and 0 ∈ E , then E\{0} is still an Ai-set. Notice that these proper-
ties imply that X �= /0.

Definition 9.13 Let E ⊂V be as above. We say that it is a minimalAi-set for
some i= 1,2,3 if E is anAi-set and if for every x ∈ X , E\{x} is not anAi-set.

It is clear that E is a minimalA1-set if X = E\{0} is a basis of V .
Definition 9.14 (Simplexes and minimalA2 sets) We recall the standard def-
inition of a simplex. Let E = (x0,x1, . . . ,xk)⊂V be distinct points. We say that
E are the vertices of a simplex in V and denote the corresponding simplex σ
if, for the convex hull of E (: CH(E)),

σ = [E] = CH(E) we have k = topological dimension of σ . (9.22)
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We then write

Intσ =
[
∑k
j=0λ jx j; λ j > 0, ∑λ j = 1

]
. (9.23)

There should no confusion between Intσ and ◦σ , the topological interior
of σ , which could be /0. When Intσ =

◦σ , we say that the simplex is non-
singular. When k = 0 we say that the simplex is degenerate. The following
property of simplexes is well known.
Let E ⊂ V and let x ∈ CH(E). Then there exist Y = (y1,y2, . . . ,yk)⊂ E that

are vertices of a simplex σ = CH(Y ) and such that x ∈ Int(σ).
Exercise 9.15 (Carathéodory’s theorem; see Grünbaum, 1967) Prove this by
induction on dimV = n � 1. Indeed, we may assume that P = CH(E) has a
non-empty interior and x ∈ ◦

P⊂V , for otherwise, E lives in an affine subspace
of lower dimension and we use the induction there. Let x �= x0 ∈ E be arbitrary.
Then the line segment that joins x0 to x, once extended, cuts ∂P at some point
x′ ∈CH(E ′) for some E ′ ⊂ E , and E ′ lies in some affine subspace ofV of lower
dimension. The inductive hypothesis applies therefore to x′ and E ′ and we are
done. Here we have assumed that E is finite which is good enough for us.

From the above it clearly follows that if E is a minimal A2-set then X =

E\{0} are the vertices of a non-degenerate simplex and 0 ∈ Int[X ].
Proposition 9.16 Let E be some minimal A = A3-set. Then we can decom-
pose X = X1∪X2 into two disjoint subsets and we can decompose V =V1⊕V2
into a direct sum of subspaces in such a way that the following hold:

(a) Xi = X ∩Vi and Vi is spanned by Xi, i= 1,2;
(b) X1 �= /0 and X1 form the vertices of a non-degenerate simplex [X1] and

0 ∈ Int[X1];
(c) when V2 �= {0}, X2 is a basis of V2 (but it could be that V2 = {0} and then

X2 = /0).

To see this we express 0 = ∑k
j=1λ jx j as a convex combination with X1 =

(x1, . . . ,xk) ⊂ X and k as small as possible. By the minimality of k and Exer-
cise 9.15 it follows that X1 form the vertices of a non-degenerate simplex and
0 ∈ Int[X1].
Let X2=X\X1 andVi=Vec(Xi)with the convention thatV2= {0} if X2= /0.

Then we must have V1 ∩V2 = {0}. Otherwise, assume for contradiction that
0 �= z ∈V1∩V2. Now z is a linear combination of points of X1 and a non-trivial
linear combination of points of X2. This implies that an element u ∈ X2 can
be ‘knocked out’ and X1 ∪ (X2\{u}) still spans V . This contradicts the A -
minimality of X . This proves that V =V1⊕V2. But then if V2 �= {0} it follows
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that X2 is a basis of V2 because of the A -minimality of X . This completes the
proof of the proposition.

9.1.4 A -couples

Definition 9.17 Let A⊂ E ⊂V be two finite subsets where A is anAi-subset
for some i= 1,2,3 and V �= {0} as before, and where

E ⊂ [a1+ · · ·+ a j; j � 1, ak ∈ A, 1� k � j
]
. (9.24)

We then say that A⊂ E is an Ai-couple. We shall say that A⊂ E is a minimal
Ai-couple if for all 0 �= a ∈ A the set E\{a} is not an Ai-set.

Comments For arbitrary finite sets A ⊂ E ⊂ V , condition (9.24) implies that
A ∈ Ai if and only if E ∈ Ai. Notice, on the other hand, that (9.24) could
hold for two sets A ⊂ E but not for A ⊂ (E ∪ {0}). But more to the point,
the motivation example of Ai-couples is supplied by E , the set of roots of
a bracket-reduced SSA where A is as in §9.1.2, and condition (9.24), being
none other than (9.14). This makes the link with bracket-reduced algebras. For
instance, a bracket-reduced algebra is SSCA if and only if the corresponding
A⊂ E in §9.1.2 is an A2-couple. It is clear that when A⊂ E is a minimal Ai-
couple then A is a minimal Ai-set. In what follows we shall write B= E\A. It
is then obvious that when A ⊂ E is a minimal A1 couple then B is either /0 or
{0}. We also have, however, the following proposition.
Proposition 9.18 If A ⊂ E ⊂ V is a minimal Ai-couple for some i = 1,2,3
then B is either /0 or {0}.

The A2 case We can write 0 = ∑a∈A\{0}λ (a)a where λ (a)> 0 by the mini-
mality condition. Use (9.24) and assume for contradiction that

0 �= b= ∑
a∈A\{0}

μ(a)a ∈ B; μ(a) = 0,1,2, . . . not all 0. (9.25)

Both λ and μ are considered as non-negative functions on A and we can define

η0 = sup [η > 0; ημ(·)� λ (·)] . (9.26)

There exists then 0 �= a0 ∈ A such that η0μ(a0) = λ (a0). We have then

0= η0b+ ∑
a∈A\{0}

(
λ (a)−η0μ(a)

)
a. (9.27)

But b �= a0 because b /∈ A and (9.27) implies that E\{a0} is an A2-set and
contradicts the minimality.
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Aside What we have used here is the exchange principle while keeping track
of the signs.

The A3 case By our condition, A is a minimal A3-set and with the notation
of Proposition 9.16 we can write V = V1⊕V2 and, for i = 1,2, Ai = Vi ∩A,
Xi = Ai\{0}, giving Vi = Vec(Ai), 0 ∈ Int(X1).
We shall give the proof of Proposition 9.18 by contradiction and distinguish

two separate cases:

(i) assume there exists B � b �= 0 with b ∈V1;
(ii) assume there exists B � b �= 0 with b �∈V1.
By our definition (9.24), every b ∈ B can be written b = b1 + b2 where,

when bi �= 0, we have bi = [a sum of elements of Xi], with i = 1,2. If we use
the canonical projection V1⊕V2 = V → V2 we see from Proposition 9.16 that
in that decomposition, if b ∈V1 then b2 = 0. We can therefore write

b= b1 = ∑
a∈X1

μ(a)a, μ(a) = 0,1,2, . . . .

The argument that we used in the A2 case can be repeated because in Propo-
sition 9.16(b), 0 ∈ IntX1 and we can find some a0 ∈ X1 such that 0 lies in
the barycentre of the set Y = (X1\{a0})∪{b} ( : 0 ∈ CH(Y ): see (9.27)). For
the point a0 we also have μ(a0) �= 0 and therefore Y can be used to span
V1 =Vec(X1) =Vec(Y ). In this exchange that we have made between a0 and b
we have not affected the set X2 at all. The conclusion is that the set Y ∪X2 has
the A3-property. Since E\{a0} ⊃ Y ∪X2, because b /∈ A and therefore b �= a0,
this contradicts the minimality condition of the couple A⊂ E .
In case (ii), if b �∈V1 we write again the decomposition

b= b1+ b2 = ∑
a∈X1

φ(a)a+ ∑
a∈X2

φ(a)a, (9.28)

and there exists a2 ∈ X2 such that φ(a2) �= 0. We shall consider the projection
V � u → u(modV1) ∈ V2. With this projection we see from (9.28) that the
set (X2\{a2})(modV1), together with b(modV1), spans V2. On the other hand,
since X1 spans V1, it follows that the set (A\{a2})∪{b} spans V . This set is
contained in E\{a2} because b /∈ A, and since 0∈CH(X1)⊂CH(E\{a2}), the
required contradiction with the minimality of the couple A⊂ E follows.

9.1.5 The A algebras

We recall that A3 is simply denoted by A . Let g = n� a be some SSA and
E ⊂ V = a∗ is the set of roots as in §9.1.1. We shall assume that g is bracket
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reduced and A∪B = E are as in Definition 9.9 and n = nA + nB. We shall
further assume that E ∈ A in V . To wit, the conditions imposed on g are the
following.

Definition 9.19 If g is a bracket-reduced SSA and E = A∪B is an A -set
of V = a∗, then we call g a bracket-reduced A -algebra (BRA A). See the
comments in §9.1.4.
Definition 9.20 We say that g = n� a is a model if it is a BRA A and if
A⊂ E is a minimalA -couple.

Definition 9.21 Let g = n� a, n = nA+ nB, A∪B = E (with the notation
of (9.10) be some BRA A and assume that it has the following minimality
property: if g1 = n1� a is an SS-subalgebra and if g1 �= g then g1 is not a
BRA A. We then say that g is a minimal BRA A.

This definition is formulated in such a way that every g BRA A contains
some SS-subalgebra that is a minimal BRA A. Indeed, in the class of SS-
subalgebras of g that are BRA A-algebras we pick one up of minimal dimen-
sion.

Proposition 9.22 Every minimal BRA A algebra is a model.

Proof Let g = n� a with n = nA+ nB, A∪B = E (as in Definition 9.9) be
some minimal BRA A. And let us suppose for contradiction that A⊂ E is not
a minimalA -couple.
There exists then 0 �= α0 ∈ A such that E ′ = E\{α0} is anA -set and we can

define

n′ = ∑
α∈A′

nα + ∑
α∈B

nα ; A′ = A\{α0}. (9.29)

If we define g′= n′�a, by (9.12) we have an SS-subalgebra which, considered
as an SSA in its own right, has roots E ′ and this is an A -set. We now apply
Proposition 9.12 and construct g′0 ⊂ g, some bracket-reduced subalgebra with
the same roots E ′. This means that g′0 is a BRA A and since g′0 � g we have
the required contradiction.

9.1.6 Proof of the algebraic structure theorem (Theorem 9.7)

Let g = n� a be some SSCA as in Definition 9.6. The first step is that we
can use this definition to write g = (n� a1)⊕ a2, where the action of a2 is
trivial and g1 = n� a1 is irreducible in the sense of §9.1.1. For the proof of
Theorem 9.7 we may therefore assume that g is an irreducible C-algebra. Fur-
thermore, we can apply Proposition 9.12 and assume that g is bracket reduced.



278 Algebra and Geometry on C-Groups

These two conditions are equivalent to saying that g is an SSA A-algebra by
the definition of the A = A3 condition (see the comments in §9.1.4). But then
Proposition 9.22 applies and it follows that g contains a modelm= n′�a with
n′ = nA+nB as in (9.12). By Proposition 9.18 there are exactly two possibili-
ties:

(a) B= /0: then by Proposition 9.11,m is an SSCA of Abelian type;

(b) B = {0}: then, by Proposition 9.11, m contains some SSA of Heisenberg
type.

This completes the proof of the theorem.

9.1.7 The two alternatives

In this final subsection we shall recapitulate what we have done and express it
in concrete terms without the use of the additional technical terminology that
we used in the proofs.
We shall consider g= n�a some SSA that is also a C-algebra. This implies

that a �= {0}. One of the following two alternatives is realised.

The Abelian alternative There exists n′ ⊂ n a subalgebra that is a stable; that
is, [n′,a]⊂ n′ such that

(i) n′ is Abelian;
(ii) the roots L1, . . . ,Lp ∈V = a∗ of g′ = n′�a are non-zero and are vertices

of a simplex σ and 0 ∈ Intσ and p � 2;
(iii) the root spaces nLj = n j ⊂ n′, with j= 1,2, . . . , p, are all one-dimensional

and n′ = n1⊕·· ·⊕np.

Example 9.23 When p= 2 this is the C-algebra considered in §2.3.2(iii) and
Example 7.16.

The Heisenberg alternative There exist 0 �= L ∈ V = a∗ some root of g and
two non-zero vectors ν+,ν− ∈ n such that

(adξ )ν± = (±Lξ )ν±; ξ ∈ a (9.30)

and such that ζ = [ν+,ν−] �= 0, [ν±,ζ ] = 0. It also follows of course from
the above that (adξ )ζ = 0, with ξ ∈ a. Furthermore, with n′ = (ν+,ν−,ζ ),
g′ = n′� a is a subalgebra of g because [n′,a]⊂ n′.
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The general overview We shall summarise here the notation that will be used
throughout and which will hold for both the above alternatives. We shall set

a0 =
⋂

1� j�p

KerLj in the Abelian case,

a0 = KerL in the Heisenberg case.
(9.31)

With this definition, a0 acts trivially on n′ in both cases. If we denote by a′

some complement of a0 in a, the formulas that should be retained and which
apply to both cases are (see (9.5))

g= n�
(
a′ ⊕ a0
)
; n′ ⊂ n,

g′ = n′�
(
a′ ⊕ a0
)
=
(
n′� a′
)⊕ a0.

(9.32)

Furthermore, in the Abelian case, the roots L1, . . . ,Lp can be identified to
the vertices of a non-singular simplex σ ⊂ (a′)∗, the dual space of a′, and
0 ∈ Intσ =

◦σ . This means, in particular, that dima′ = p− 1.
In the Heisenberg case, dima′ = 1 and the roots are 0, L, −L ∈ (a′)∗, with

L �= 0.
Remark 9.24 In both cases a0 splits off trivially as a direct factor in g′ but not
in g; and a0 in general acts non-trivially on n. This fact is a source of serious
complications in the geometry of the group in §9.5.

9.2 Geometric Constructions on Special Soluble Groups:
Examples

In this section I shall codify notation and give the proof of Theorem 7.11 for
some examples that can be found in Gromov (1991).1

9.2.1 Notation

Throughout, we shall use the terminology SSG for special soluble groups for
simply connected groups whose Lie algebra is an SSA (see §9.1.1). Right
through we shall resort to the standard practice that consists in tacitly iden-
tifying the Lie algebra and the corresponding simply connected group when
the group is Abelian. (For example, the additive groupG=R is identified with
the vector space R which is the Lie algebra g. Strictly speaking of course, the

1 In that reference the author refers back to Epstein et al. (1992) so, at least to me, the precise
individual who initiated these examples, and the corresponding proofs, is not clear.
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exp mapping x 	→ ex sends g to the multiplicative group R∗+. But for us here,
R∗+  R.)
We shall denote the group that corresponds to n′�a′ of (9.32) in the case of

the Abelian alternative by Gr = N�A = Rr� Rr−1, for r = 2,3, . . . . For the
Abelian group N we shall identify the group with the Lie algebra n′ and the
action of A on n′ is given by the diagonal matrix

Adu= Diag
(
eL1u, . . . ,eLru

)
; u ∈ A, (9.33)

where A and a are identified and where L1, . . . ,Lr are vectors in Rr−1 which is
identified to the dual space of a′ (see (9.32)). These vectors are the vertices of
a non-singular simplex σ∗ = [L1, . . . ,Lr] with 0 ∈ Intσ∗ = ◦σ∗.
With the above notation we shall write x = (x1, . . . ,xr) ∈ Rr = N and

(u1, . . . ,ur−1) ∈ Rr−1 = A for the Euclidean coordinates so that we can give
on G the coordinates (x1, . . . ,xr,u1, . . . ,ur−1) (cf. §7.3.1).
The important new object that we shall consider is the cube

r
R =
(
x=
(
x1, . . . ,xr

)
; 0� x j � R, j = 1, . . . ,r

)⊂ N, R> 1. (9.34)

The size R of this cube throughout will be a free parameter that will vary and
will be made to tend to ∞.

9.2.2 The special case G2

Here the coordinates onG=G2 are (x1,x2,u)∈R3 that is identified with R2�
R and

Adu=

(
eαu 0
0 e−βu

)
; u ∈ R, where α,β > 0. (9.35)

This is the group that we considered in §2.3.2 and more explicitly in Exer-
cise 7.17.
The vertices of 2

R are then identified to the four points (ε1R,ε2R,0) ∈ G,
with εi = 0,1, which we shall denote by a, b, c, d. For some C > 0, to be
specified later, we shall write U = (0,0,C logR) and a± = a±U, . . . ,d± =

d±U .
We shall consider the four paths in Figure 9.1, consisting of three line seg-

ments each, indicated below by their successive vertices:

γab = aa+b+b, γbc = bb−c−c, γcd = cc+d+d, γda = dd−a−a. (9.36)

These are polygonal loops: γab joins a to b, and similarly for the other loops.
The important property that we shall need is that the total length of these paths
for the Riemannian structure on G is ≈ logR.
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a a+a–

c– c+
c

d–
d

b– b+

d+

b

Figure 9.1 A piecewise linear path of total length ≈ logR that goes through the
vertices a, b, c, d of 2

R.

It is clear that to see this, it suffices to verify that the four straight-line seg-
ments

(a+b+), (c+d+), (b−c−), (d−a−) (9.37)

have Riemannian length � logR because, by the choice of U , the other com-
ponents of the paths clearly have lengths≈ logR.
For the first two segments in (9.37), by §8.3, it follows that their Riemannian

length is just their Euclidean length Rmultiplied by e−C logR. That length tends
therefore to 0 as R→ ∞ as long as the constant C > 0 has been chosen large
enough. If we switch the coordinates x1 to x2 and α to−β , we see that the same
thing holds for the other two segments in (9.37). This proves our assertion.
The polynomial arcs γab, . . . can be smoothed out by rounding out the corners

to the C∞ arcs γ̃ab, . . . as shown in Figure 9.2. Thus we obtain S which is a C∞

embedded circle (: S1 ⊂ R3) which, apart from having length≈ logR, also has
the following property.

Transversality property

S∩ [|u|� 1] = [x1 = ε1R, x2 = ε2R, |u|� 1, εi = 0,1] . (9.38)

These are four segments in the u coordinate that stick out from the vertices
of 2

R.

9.2.3 A first application of the construction

We shall go back to the differential form ω = dx1∧ dx2 of Example 7.16 and
assume here that α = β = 1 in (9.35). From our construction it is now easy to
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a

b

~

c

d

abg

~
cdg

Figure 9.2 The smoothed-out path of Figure 9.1 which is an embedded circle that
lives in G=R3.

see that it is not possible to solve dθ = ω with a polynomially growing form
θ on R3; here θ is a form of degree 1 (i.e. θ ∈ T ∗R3).
To see this we use Stokes’ theorem on the surface Σ⊂R3 that is the union of

the five rectangles abcd and aa+b+b, bb−c−c, cc+d+d, dd−a−a. The bound-
ary of that surface is S0 = γab ∪ γbc ∪ γcd ∪ γda. The contradiction under the
assumption that θ is polynomial is then immediate by

∫
Σω = 4R2 because we

are here only integrating in 2
R. On the other hand, |

∫
∂Σ θ | � c(logR)c be-

cause ∂Σ = S0 lies in the ball of radius � logR and we can use the bounds on
|θ | and also the length of S0�C logR. Stokes’ theorem on the other hand gives∫
Σω =
∫
∂Σ θ , provided of course that the correct orientations have been chosen

in Σ and ∂Σ.
The above argument can, without too much trouble, be extended to the gen-

eral case α,β > 0 in (9.35) and to the differential forms that we defined in
Exercise 7.17 but we shall not pursue the matter further now (see §9.3.5 be-
low).

9.2.4 The use of transversality and the filling property

The C-condition (i.e. that the two roots L1 =α , L2 =−β are of opposite signs)
is essential for transversality because it is this that allows us to switch the
coordinates x1 to x2 and vice versa without backtracking in the u-coordinate.
For the requirement that the total length of S is�C logRwe could havemade

the four satellite rectangles aa+b+b, . . . all on the same side by backtracking
in u and the argument in §9.2.2 about the lengths in (9.37) works just the same.
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For this the C-condition is not needed. For the application that we gave in
§9.2.3 the C-condition α = +1, β = −1 is, on the other hand, used to prove
that ω is a bounded form (see Exercise 7.17).
Now, however, in our next exploitation of the construction of §9.2.2 we shall

make essential use of this transversality.
We shall show that the F2-property of Definition 7.12 fails in G2. More

precisely, we shall assume that there exists some Lipschitz map Φ̂ defined on
the unit disc D= [x ∈ R2; |x|� 1] such that

Φ̂ : D−→G; Φ̂(∂D) = S (9.39)

and that there exist constants such that

LipΦ̂�C(logR)C; R� 1. (9.40)

We shall show that a contradiction can be obtained from this.
This contradiction will here be obtained under the additional assumption on

Φ̂ that it is possible to perturb Φ̂ and modify it slightly to a new Φ̃ ∈C∞ that is
not only smooth, but also gives an embedding of D to a smooth manifold with
boundary Φ̃(D) = D̃⊂ G, and for which (9.38), (9.39) and (9.40) also hold.
Let π : N�A→ A denote the canonical projection. This projects (x1,x2,u)

to the third coordinate. We shall need to use the following fundamental fact
from differential topology.
For almost all [u ∈ A; |u|< 1], lu = π−1(u) is a ‘neat’ submanifold of D̃ and

its boundary consists of two points among (a,u), (b,u), (c,u), (d,u). Here,
neat submanifold means a C∞ curve that joins two different points among the
above four points. The values of u ∈ A for which this holds are the regular
points, and the ‘almost all’ comes from Sard’s theorem in differential topology
(see de Rham, 1960; Hirsch, 1976).
The possibility of regularising and obtaining D̃ relies on the Whitney em-

bedding theorem (see Hirsch, 1976, Chapter 2). We shall come back to that
in greater generality in §9.3.4. (The well-informed reader must have noticed
that there are problems with the use of Whitney’s theorem simply because the
dimensions do not add up! Here dimG2 = 3 and dim D̃= 2. We shall explain
how to get round that difficulty in §9.3.4.)

The endgame From the above it follows that for every regular point the Eu-
clidean length of lu, that is, the length for the Riemannian structure of R3, is
�2R. We shall now use the classical coarea formula in the Euclidean space R3.
This implies that

Euclidean surface area of D̃∩ [|u|� 1]� 2R (9.41)
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because the set of regular points is of full measure. The direct verification of
(9.41) is in fact elementary.
On the other hand, by (8.43), the two Riemannian metrics on [ |u|< 1]⊂ G,

namely the Euclidean metric of R3 and the one coming from the group struc-
ture, are comparable within fixed constants. In fact the Euclidean Riemannian
structure comes from the trivial replica GT (see Exercises 8.5 and 8.6). The
conclusion is that the Riemannian two-dimensional volume

Vol2
(
D̃∩|u|< 1

)
� cR. (9.42)

This contradicts the fact that Φ̃ ∈ Lip(c(logR)c). We have proved therefore
that theF2-property fails in G2.

Remarks Several remarks and references can be given on the above argu-
ment. But we shall defer these until we treat the general case in Chapter 10.
It is worth pointing out, however, that we have not used the full thrust of the
F2-property to obtain the above contradiction. In fact we have used only the
original conditions (cf. (1.2))

Vol2
(
Φ̂(D)
)
�C
(
1+Vol1 Φ̂(∂D)

)C
. (9.43)

9.2.5 Generalisations and the Heisenberg alternative

The example that we examined in §9.2.2 has two special features. First it is a
Gr = Rr�Rr−1 group as defined in §9.2.1. We shall generalise this construc-
tion to all SSG that are C-groups of the formGr. Some indication of how this is
done will be given, however, at the end of this section in §9.2.7 but the general
construction will be deferred to §§9.3 and 9.4.
The other special feature of G2 in §9.2.2 is that it is of ‘rank 1’. This means

that it is of the form N�A where A = R is one-dimensional and N is some
nilpotent group. It is this feature that we shall maintain here and consider the
Heisenberg alternative n′� a′ in (9.30) and the corresponding group K = H�

A = H �R where H is the Heisenberg group that is simply connected and
corresponds to the Heisenberg algebra in (9.6).
To find the correct generalisation of 2

R ⊂ R2 from §9.2.3, we observe that
if X = (R,0), Y = (0,R) ∈R2 then 0, X , X+Y , X+Y −X , X+Y −X−Y = 0
are the four vertices of 2

R ⊂ R2 where we use the group product to mul-
tiply (i.e. add since R2 is Abelian) in the group R2. In multiplicative no-
tation the vertices of 2

R are therefore the successive segments of the word
[X ,Y ] = XYX−1Y−1 that represents the identity.
For the Heisenberg group H we shall use the notation of (9.6) and set X =
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eRν , Y = eRμ , with R > 1, for ν,μ ∈ h in the Lie algebra. What replaces the
above commutator is then the following representation of the identity:

XY 2XY−1X−2Y−1 = e. (9.44)

To see (9.44) we simply use the BCH formula (see Varadarajan, 1974, §2.15)
to verify that [X ,Y ] = YXY−1X−1 ∈ centre of H and write the left-hand side
as XYX−1Y−1YXY−1X−1. The successive segments of the word (9.44) (after
cyclic permutation) are then denoted by the points a, b, c, d, e, f in H; they
are drawn in Figure 9.3. These points are distinct because they clearly project
to distinct points in H/(the centre).

c

ba

d

e

y–1
y2

x–2

y–1

x

x

f

Figure 9.3 The successive components of the word (9.44) in H.

efγ

deγ

d

e
f

Figure 9.4 For the arcs γe f ,γde, . . . we spill out of H in the positive or negative
A± = (h ∈ H, u ∈ A; ±u> 0) as the case might be.

The aim now is to find a new S = SK ⊂ K that is an embedded C∞ circle
S1 that has Riemannian length Vol1(S) � C logR and passes through the six
vertices. We shall denote by γe f , . . . the arc of S between e and f , and so on.
Then S= γe f ∪·· · , as in Figure 9.4. The transversality condition now says that
with the coordinates of K,

(h,u); h ∈ H, u ∈ A= R, (9.45)
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we have the following result.

Theorem 9.25 (Transversality property) The set S∩ [|u|� 1] is obtained by
multiplying the segment [−1,1]⊂ A by a, b, c, d, e, f on the left in K.
The best way to verify that we can guarantee these properties is to use

for the arcs γab, . . . the same parametrisation as in §8.2.2. For example, γe f
is parametrised by

exp(α(s)Rν)exp(C0β (s) logRξ ) , 0< s< 1, (9.46)

where ξ is the generator of a the Lie algebra of A and where 0 � α, β ∈
C∞, β (0) = β (1)= 0 and these functions satisfy (8.24). The fact that the length
of γe f is O(logR) then follows if C0 in (9.46) is large enough as in (8.25), and
the transversality property (Theorem 9.25) is a consequence of the definition
of α , β in (8.24).
The exploitation that we made of S in §9.2.4 can now be repeated verbatim

for SK ⊂ K. We construct Φ̂ : D→ K that has properties (9.39), (9.40). We
then regularise as in §9.2.4 and obtain Φ̃ to be close to Φ̂ and for which D̃ =

Φ̃(D) is transversal to the canonical projection π : K→ A for almost all |u|� 1
for coordinates that are as (9.45): see de Rham (1960), Hirsch (1976). The
endgame in §9.2.4 is now modified as follows.

9.2.6 The endgame in the Heisenberg case

As in §9.2.4, we write lu = π−1(u) for every regular point of π u ∈ A, for
|u|< 1. The set lu is a one-dimensional submanifold in the manifold K which
is a C∞ manifold  H×R  R4. Furthermore, lu has as a boundary two dis-
tinct points (a1,u), (a2,u), with ai = a,b, . . . , f as in Figure 9.3. We can again
assign on K with the product Riemannian structure of the group Riemannian
structure on H with R. This again is the trivial replica of Exercise 8.5 and will
be denoted by KT . On |u|< 1, the group Riemannian structure K and the prod-
uct structure KT are comparable and lie within fixed constants. This fact was
observed previously in §9.2.4. We conclude from the above observations the
following two points.

Remark 9.26 (Coarea) The surface areas of D̃∩ (|u|< 1) measured for the
two Riemannian structures K and KT are comparable within a constant inde-
pendent of R:

area in K ≈ area in KT . (9.47)

We shall now use the fact that by the polynomial distortion of Example 7.5
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and §2.14 on the nilpotent group H, the mutual distance between the points a,
b, c, d, e, f is at least CRC for some constant C > 0 and R � 1. This implies
that the length of lu in the Riemannian metric KT is at least CRC. To see this
mutual distance we can also project to H/[H,H], as we did before.
The coarea formula applies again in the productH×R and it implies that the

right-hand side, and therefore also the left-hand side, of (9.47) is larger than
CRC. We finally have the exact analogue of (9.42):

Vol2
(
D̃
)
�CRC; R� 1 (9.48)

for appropriate constants. The above argument that uses the coarea formula
will be elaborated further in Chapter 10.
One conclusion of (9.48) is that we cannot have Φ̃∈ Lip(C(logR)C) for any

constants and the final result is the following proposition.

Proposition 9.27 The group K in the Heisenberg alternative does not have
the F2-property.

Remark 9.28 The above argument can be extended without any difficulty to
deal with any group of rank 1, that is, any soluble simply connected group that
is a C-group and of the formN�AwithN nilpotent and AR (see Varopoulos,
2000b, §3.1.2). Finally, as I have already pointed out, these are examples that
are found in Gromov (1991).

9.2.7 The five-dimensional example of G3

In the next section we shall give the formal definition of the generalisation
of the embedded circle S ⊂ G2 of §9.2.2 and construct an embedded (r− 1)-
dimensional sphere Sr−1 ⊂ Gr that generalises to higher dimensions the prop-
erties of S inG2. This extension is natural, and in some sense it is not even very
difficult to imagine, but to describe it precisely, a formidable array of notation
will have to be introduced and the constructions become long and tedious to
explain. Furthermore, no pictures can be drawn in that generality. We propose
therefore to finish this paragraph in the following informal way. We shall draw
a few pictures in G3 = N�A= R3�R2 as far as this is possible, and we hope
that these will help the reader to improve their intuitive grasp on the construc-
tions that will be made in §9.3 and §9.4 below.
Figure 9.5 shows 3

R the R-cube sitting in N = R3. In Figure 9.6, the dotted
lines indicate smooth arcs that spill out of R3 into G3 (which is in R5). Their
Riemannian length is ≈ logR and they are the generalisations of the four arcs
γ̃ab, . . . in Figure 9.2. Their construction relies on (9.33) and the geometry of
the simplex σ of §9.2.1.
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P1

P2

P3

P0
P5

Figure 9.5

Figure 9.6

P3

P2

P1

FP0

Figure 9.7

In Figure 9.7 we indicate one face of 3
R in Figure 9.6 with its dotted sides

which we fill in with a film F ⊂ G3 (surface). This film is a deformation of the
side P0P1P2P3. It spills out in such a way that area Vol2(F) is also O

(
(logR)C

)
.

The boundary of F consists of the four dotted edges of Figure 9.6. Now F
corresponds to the face P0P1P2P3. We glue together the six deformed faces so
obtained and obtain the required embedded sphere S2 = F1∪·· ·∪F6.
Figure 9.8 illustrates the transversality near the vertices. Here we look at the

three deformed faces F , F ′, F ′′ that meet at P0. The heavily shaded neighbour-
hood of P0 in S2 is flat, that is,it lies in P0× (some neighbourhood of 0 in R2 =
A).

9.3 The First Basic Construction (I): The Description

9.3.1 An introduction and guide for the reader

In this subsection we shall deal exclusively with the group Gr = Rr�Rr−1 =
N�A for r � 2 that was introduced in §9.2.1. The case G = Gr comes about
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P5

P3

P1

F

F’’
F’

P0

Figure 9.8

from the Abelian alternative of §9.1.7. The notation for the roots is as in (9.33),
the coordinates x1, . . . ,u1, . . . are as in §9.2.1 and r

R ⊂ N is as in (9.34). In
§9.2.2 we constructed an embedded circle S = S1 ⊂ G2 and in §9.2.7 we ex-
hibited some pictures (Figures 9.5–9.8), and indicated how this construction
generalises to G3.
Here we shall describe the formal construction but since the notation needed

for the construction is heavy we shall start with the auxiliary §9.3.2 where we
shall codify some terminology, which is essential to keep the notation within
acceptable limits both here and in the next section.
In §9.3.3 we shall describe precisely the properties that we shall require from

S⊂Gr, which will be some embedded smooth (r−1)-dimensional sphere Sr−1.
In §9.3.4 we shall show how these properties are used to prove that Gr does
not have theFr-property. It is not until §9.4 that we shall grind out the details
and the formal definition of S.
This choice of presentationmakes it possible for the reader to go through this

section and get a precise idea of what is happening without having to embark
on the details of the construction in §9.4, which the reader could skip in a first
reading. In going through this section the reader may find the pictures drawn
in the previous section helpful.

9.3.2 Terminology and conventions

Throughout,M will be some Riemannian manifold and in our case it will al-
most exclusively be the Riemannian structure on some connected Lie groupG.
We shall consider mappings

Φ : X →M (9.49)
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where, here, X will be some metric space and not necessarily a Riemannian
manifold. Typical examples for X are

X = r, r
R with R= 1,

X = ∂ r the boundary of r in Rr,

X = ∂0 r = [(x1, . . . ,xr) ; x j = 0,1] the set of vertices of
r,

X = ∂s r
R the s-dimensional boundary.

(9.50)

Here 0 � s � r− 1 and for s = r− 1 is the ordinary boundary, for s = 1 it is
the set of edges of r

R and so on. The formal definition will be given in §9.4.1
below.
The functions (9.49) will be Lipschitz with Lipschitz constant l, that is, Φ ∈

Lip(l). Throughout, R� 1 will be a free parameter that will be made to tend
to ∞, and we shall denote

Φ ∈ LL(R)⇔Φ ∈ Lip(C(logR)C) (9.51)

for some fixed constants C > 0 (i.e. l =C(logR)C); the two L’s represent Lip-
schitz and log. If Φ in (9.49) is LL(R) we shall write

Φ(X) is an LL(R)−X ⊂M. (9.52)

As an illustration, ∂0 r
R ⊂ N ⊂ G in §9.2.1 is then

Φ0 (∂0 r) = ∂0 r
R is an LL(R)− ∂0 r ⊂ G (9.53)

because, by §§8.2.1–8.2.2 and (9.33), the mutual distance of the vertices of r
R

in G is � logR. The mapping Φ0 in (9.53) is the ordinary dilution x→ Rx in
N = Rr.
What we shall do here is extend the mapping Φ0 of (9.53) to higher-dimen-

sional boundaries ∂s r and construct, in particular,

S=Φ(∂ r) is an LL(R)− ∂ r ⊂ G (9.54)

for some functionΦ ∈ LL(R) that extendsΦ0, that is, Φ(∂0 r) =Φ0 (∂0 r).
For sure, in the construction (9.54) we are not going to have S ⊂ N. The pic-
tures in §9.2 illustrate these constructions.
To show the flexibility of this terminology let us go back to theFr-property

of §7.5. Then, to show that the manifoldM admits this property, we must prove
that for all Φ such that

E =Φ(∂ r) is an LL(R)− ∂ r ⊂M, (9.55)

there exists Φ̂ such that

Ê = Φ̂( r) is an LL(R)− r ⊂M (9.56)
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and is such that

Φ̂
∣∣
∂ r =Φ. (9.57)

Or, if we use notation from cubic singular homology theory (seeMassey, 1991)
we can simply say

∂ Ê = E. (9.58)

We have abused terminology here mostly because we have made no mention
of the constants. The formally correct way of saying things would have been
this.

Let C > 0 be given, let R� 1010 and let Φ ∈ LL(R) with constants C (i.e. Φ ∈
Lip(C(logR)C)) be such that (9.55) holds. Then there exists C1 that depends
on C only (not on R nor on Φ) and there exists also Φ̂ ∈ LL(R) with constant
C1 (i.e. Φ̂ ∈ Lip

(
C1(logR)C1

)
) that satisfies (9.56) and for which (9.57) holds.

The equality (9.58), if interpreted in terms of cubic singular homology, also
is an abuse of terminology in homology theory because signs related to orien-
tation are assigned to the various faces of the boundary operator ∂ . The correct
way to read (9.58) is that the support of ∂ Ê is E .
Abuse or not, this terminology is very convenient and it will be used sys-

tematically. Its briefness outweighs the imprecision and we feel confident that
no confusion will arise.

To fill in We shall express (9.58) in words by saying that Ê fills in E . This
again is an abuse unless we bring in the two functionsΦ, Φ̂ in (9.57).
The following statement is a sample of how we abuse terminology:
To show that Gr does not admit theFr-property it suffices to construct some

S that is an LL(R)− ∂ r ⊂ Gr (9.59)

that cannot be filled in by some

Ŝ an LL(R)− r ⊂ Gr. (9.60)

This is what was done inG2 in §9.2.2. We can already see why it is convenient
to use logR for the free parameter.

9.3.3 The description of the embedded sphere S= Sr−1 ⊂ Gr

In this subsection we shall start from the final statement of the previous sub-
section and describe precisely what we need to construct.
The sine qua non properties of the construction are the following:

S =Φ(∂ r) is an LL(R)− ∂ r ⊂ G. (9.61)
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Let us for the last time write explicitly what (9.61) means: there exists

Φ : ∂ r −→ G, (9.62)

some Lip
(
C(logR)C

)
mapping for fixed C but with R that is allowed to vary

(of courseΦ depends on R). The other essential condition on S is the following
transversality condition.

Transversality With the notation of §9.3.2 we have
S∩ [(n,u) ∈ N�A; |u|� 1] =

⋃
[D(P); P ∈ ∂0 r] ,

D(P) = [(x,u) ∈ G; x=Φ0(P), |u|� 1] .
(9.63)

Here the coordinates of §9.2.1 have been used and (9.63) means that in the
cylinder above |u|� 1, the set S splits into a finite number of discs sticking out
from the verticesΦ0 (∂0 r) = ∂0 r

R as in (9.53). This is of course the obvious
generalisation of (9.38) or of Figure 9.1.

Comments The above two properties will in fact suffice to give the proof that
propertyFr fails for Gr. This will be done in Chapter 10 and the proof is but
a straightforward extension of §9.2.4 when r = 2. These two properties suffice
to show the existence of S, and we do not need to assume that Φ is smooth or
that S is an embedded manifold. Therefore, the smoothing procedure that we
shall explain later is not essential for our purposes. However, it is possible to
guarantee a posteriori that

Φ ∈C∞; S is an embedded Sr−1 ⊂ G, (9.64)

that is, that S is an embedded (r− 1)-dimensional sphere. The set-up (9.64) is
exactly what we assumed in §9.2.2 for r = 2 and we actually used this in the
proof that we gave in §9.2.4. Figures 9.1–9.8 in §9.2 illustrate this smoothing
well.

Regularisation First of all, it is easy to see that we can smoothΦ and preserve
the transversality (9.63). The fact that S can be made an embedded Sr−1 is more
subtle and is in fact exactly theWhitney embedding theorem (see Hirsch, 1976,
Chapter 2) which applies because

dim(Gr) = 2r− 1� 2
(
dimSr−1

)
+ 1= 2r− 1. (9.65)

This means that by a small perturbation of the originalC∞− S we can make it
an embedded manifold. Since the perturbations that we performed are arbitrar-
ily small, property (9.61) is preserved and we are done.
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9.3.4 The endgame. Whitney regularisation and theF -property

Once we have regularised S and we assume that S is an embedded (r− 1)-
dimensional sphere we can play the same endgame as in §9.2.4 and conclude
that Gr does not admit theFr property.
The general validity or non-validity of the Fr properties will be of central

concern in Chapter 10 and they will be examined there in a systematic way.
Here, however, we shall briefly indicate how theWhitney theorem, Sard’s theo-
rem and transversality (i.e. standard facts from differential topology, for which
see de Rham, 1960 and Hirsch, 1976) can be used to settle this question very
simply by extending the argument of §9.2.4. We proceed as follows.
We assume by contradiction thatFr holds on Gr. There exists then

D=Φ(B) is an LL(R)−B⊂ Gr, (9.66)

where B is the unit ball inRr and we can clearly assume thatΦ∈C∞ by simple
regularisation, say by convolution. The Whitney theorem can then be used,
and we replace D by D̃ such that D̃ is some smooth submanifold not of Gr,
because there is no room in the dimensions as in (9.65), but it can be a smooth
submanifold in Ra×Gr, for some positive a, and such that ∂ D̃= ∂D= S. For
this it suffices that a+ 2r− 1= dim(Ra×Gr)� 2r+ 1= 2dimD+ 1, that is,
a� 2. In other words, we have to ‘spill out’ of Gr.
Once this is done, the group projection Gr → A = Rr−1 induces πa : Ra×

Gr → Rr−1 simply by sending to 0 the factor Ra. For the regular values u ∈
A, |u| � 1 then lu = π−1a (u) are neat submanifolds2 of dimension 1, that is,
C∞ arcs that have their boundary on the set (9.63). This last statement does not
quite make sense of course because the set (9.63) is a subset of Gr and not of
Ra×Gr. But the way to make a correct and precise statement out of this is
rather obvious (see §10.4.3 below).
The length of these arcs is therefore � cR for the Euclidean distance Ra×

Rr×Rr−1 on Ra×Gr. As before, the Euclidean distance and the Riemannian
distance lie within constants in [|u|< 1] and the contradiction with (9.60) fol-
lows as in (9.42) because by Sard’s theorem the set of regular points is of full
measure in [u ∈ A; |u|� 1].

9.3.5 A different strategy

The first construction of the set S was done in §9.2.2 for the group D2, and ev-
erything was explicit and simple: see (9.35) and Figures 9.1 and 9.2. In §9.2.3
2 Yet another standard notion from differential topology; see Hirsch (1976, Chapter 1).
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we combined this with the differential form ω of Example 7.16 and Exer-
cise 7.17 to give a proof that the group D2 satisfies the conditions of the C-
theorem (Theorem 7.11). In that proof the C-condition of D2 was used for the
construction of the form ω which has to be closed and of polynomial growth.
The properties needed from S, however, are much more flexible and much eas-
ier to describe. This fact has been pointed out already in §9.2.4, and no use
of the transversality condition was made (in §9.2.4 we used the term ‘back-
tracking’). More to the point, the C-condition on the group is not used in the
construction of S ⊂ D2.
Exactly the same strategy works for general Dr groups, with r � 2, and, fol-

lowing this strategy, a different proof can be given that all these groups satisfy
the conditions of Theorem 7.11. The constructions of ω and S ⊂ Dr involved
here are considerably simpler than what we are about to do in the next para-
graph. It is not obvious, however, we can complete the proof of Theorem 7.11
with this strategy because these simpler constructions do not seem to fit with
the method that we shall adopt in §9.5 and Chapter 10. As a consequence, as
things stand we have to proceed as in the next section.3

9.4 The First Basic Construction (II):
Details and Computations

The issue here is to give the formal explicit definition of the functionΦ and the
set S of (9.54) that satisfy the properties that we explained in §9.3.3. To achieve
this we shall start by constructing an appropriate simplicial decomposition of
r. The mappingΦwill then be a simplicial mapping, that is, piecewise affine.

This is illustrated in Figure 9.1. To define the mapping Φ for r � 2 we need
a complicated construction in piecewise linear topology. We shall offer two
different constructions, the second at the end in §9.4.8, in order to give a choice
to the reader. But unfortunately they are both quite long.

9.4.1 Notation on the unit cube

The unit cube in Rr was defined in §9.2.1 and can be taken to be (9.34) with
R= 1, that is,

= r =
(
x= (x1, . . . ,xr) ∈ Rr; 0� x j � 1, j = 1, . . . ,r

)
, (9.67)

3 Added in proof: In the Epilogue at the end of this book we discuss another approach to the
problem that was worked out after the writing of the book was completed. In this new
approach, we do not need the piecewise linear constructions of the next section which, though
elementary, are long and tedious to describe.
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where we shall drop the exponent r when no confusion can arise. The vertices
are then

∂0 = (P= (ε1, . . . ,εr) ; ε j = 0,1, j = 1, . . . ,r) . (9.68)

For every I � [1,2, . . . ,r] we denote by s= |I| the cardinality of that set and
for fixed P= (ε1, . . . ,εr) ∈ ∂0 we denote the corresponding face by

F = F(I,P) =
[
0� xi � 1, i ∈ I; x j = ε j, j /∈ I

]⊂ ∂ . (9.69)

The union of all s-dimensional faces is denoted by ∂s and ∂0 ⊂ ∂1 ⊂
·· · ⊂ ∂r−1 = ∂ = (the topological boundary). Each face F is an affine cube
and we shall denote the centre of F by ξF ∈ F . The notation is simplified
further by writing ∂s = ∂s .

9.4.2 The simplicial decomposition of ∂ r

The constructions in this section will depend on a decomposition of ∂ into
simplexes, that is, a simplicial decompositionS which we shall now describe
in two different ways.
We shall denote by P ∈ ∂0 some vertex of the cube and to fix ideas we shall

assume below that P= 0 ∈ Rr. Then we obtain as follows all the simplexes of
dimension r− 1 inS that admit P as a vertex. We first choose I ⊂ [1, . . . ,r], a
subset of cardinality r− 1, and fix some ordering [i1, . . . , ir−1] = I, that is, the
i’s are distinct. The simplex that corresponds is then

σ =
[
0� xi1 � xi2 � · · ·� xir−1 �

1
2

]
. (9.70)

It is also clear that two different orderings give rise to simplexes with disjoint
interiors (because an ordering is given by assigning x� y or y� x for all (x,y),
and for different orderings these two differ for at least one pair).
We shall denote by Es(P) the simplexes of dimension s with P as one of

the vertices. The above description gives us all the simplexes in Er−1(0). The
definition of the simplexes in Er−1(P) for the other vertices P ∈ ∂0 is identical
by making the obvious changes x j → 1− x j whenever necessary.
The above simplexes cover ∂ because each x ∈ ∂ belongs to one of the

simplexes of Er−1(P), where P= (ε1, . . . ,εr)∈ ∂0 is determined by |x−P|=
maxi |xi− εi|� 1/2. The simplicial decompositionS of ∂ is then obtained
by all the subsimplexes of all simplexes of Er−1(P) for all P ∈ ∂0.
An alternative description ofS can be given as follows. The set of vertices

S0 of the complex S is {ξF ; F = the faces (9.69)} the centres of the faces.
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It follows in particular that ∂0 ⊂ S0. Let us now fix some P ∈ ∂0. The one-
dimensional simplexes E1(P)with one vertex at P are then the segments [P,ξF1 ]
for all one-dimensional faces F1 ⊂ ∂1, as in (9.69), that contain P.
For every σ1 ∈ E1(P) and F2, a two-dimensional face that contains σ1, we

construct σ2 = convex hull [σ1,ξF2 ] ∈ E2(P), and so on inductively for E j(P),
the j-dimensional simplexes that contain P. More explicitly for σ j ∈ E j(P) and
Fj+1, a ( j+ 1)-dimensionless face that contains σ j, we construct

σ j+1 = convex hull (σ j,ξFj+1) ∈ E j+1(P). (9.71)

It follows that the simplexes in σ ∈ Er−1(P) are in one-to-one correspon-
dence with sequences of subsets

I1 ⊂ ·· · ⊂ Ir−1 ⊂ [1,2, . . . ,r] (9.72)

with |I j|= j. These of course give rise to simplexes

{P}= σ0 ⊂ σ1 ⊂ ·· · ⊂ σr−1 = σ ; σ j ∈ E j(P). (9.73)

With this interpretation of the construction, if σ = σ ′ ∈ Er−1(P) then the
corresponding sequence, σ ′0 ⊂ σ ′1 ⊂ ·· ·σ ′r−2 ⊂ σ ′, has to be identical. To see
this observe that because the ξFr−1 that is used for both σ and σ ′ is the same,
we must have σr−2 = σ ′r−2. Then we argue by induction moving downwards
in the dimension.

ξF
1

ξF
2

ξF

ξF

ξF
2

1

1

Figure 9.9 The triangulation of ∂ 3.
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9.4.3 The mappings. General description

We shall closely follow §9.2.1 and denoteGr = N�A with N =Rr, A=Rr−1

but we shall change the notation and instead write A=V so the relevant space
becomes Rr×V . We use this new notation to highlight the fact that the vec-
tor space structures of both N = Rr and V = Rr−1 play a crucial role in the
construction that we shall make. Two mappings

fN : ∂ r −→ N, fV : ∂ r −→V (9.74)

will be defined and examined in the next two sections. These two mappings
will depend on the free parameter R > 0 of §9.3.2 and put together they will
combine to give a mapping

f = ( fN , fV ) : ∂ r −→Rr×V = Gr. (9.75)

This mapping will have the properties described in §9.3. Namely

f (∂ r) is an LL(R)⊂ Gr (9.76)

and it enjoys the LL(R) and transversality properties of §9.3.3.
Two different variants of the construction will be given and the reader can

choose the one that suits them best. The first one is given in §§9.4.4–9.4.7, the
second in §9.4.8. The actual problem with these constructions is that a lot of
heavy notation is needed; otherwise they are but the obvious generalisation to
higher dimensions of what was done in §9.2 for r = 2,3. The reader is advised
to take their time, to draw a few pictures, and to cross-check back and forth
the material that follows from here up to §9.4.8, or, as a final resort, simply to
believe the end result! This ‘end result’ is summarised in (9.75) and (9.76) but
also a more precise description of the mapping f near the vertices of r will
be needed. This additional information is described in detail in §§9.4.5–9.4.6.
What this says is that near, say, the vertex 0 ∈ r, fN stays constant (we say
‘stuck’ at 0) and fV is one-to-one near 0 and piecewise linear on the simplexes
of Er−1(0). See Figure 9.1 for the case r = 2.

9.4.4 The mapping that does the stretching

In this subsection we shall define mappings f : E → ∂ r where E = ∂ j, with
j= 0,1, . . . . These mappings are successive extensions of each other and even-
tually E will be the whole of ∂ . A property that all these mappings will have
is that for F ⊂ E , some face of r as in (9.69), we have f (F) ⊂ F . We shall
say that f has the δ -retract property for 0 < δ < 1/2 if f (x) = f (x′) for two
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x = (x1, . . . ,xr), x′ = (x′1, . . . ,x
′
r) ∈ F where the coordinates only differ when

they are δ -close to the end points 0 or 1. More precisely, if we denote

J0 =
[
j; 0� x j � δ

]
, J′0 =

[
j; 0� x′j � δ

]
,

J1 =
[
j; 1− δ � x j � 1

]
, J′1 =

[
j; 1− δ � x′j � 1

]
,

and if we assume J0 = J′0, J1 = J′1 and xi = x′i, i /∈ J0∪ J1, then f (x) = f (x′).
We now move on to define the mappings that do the ‘stretching’. A typical

stretching mapping, or more precisely a δ -stretchingmapping, on [0,1] is given
by

f (x) =

⎧⎪⎪⎨⎪⎪⎩
0 for x ∈ [0,δ ],
1 for x ∈ [1− δ ,1],
affine [δ ,1− δ ],

so the three pieces fit to give a continuous function on [0,1].
Our mappings on ∂ will be defined inductively on ∂0 ⊂ ∂1 ⊂ ·· · and

they will be required to have the δ -retract property. We define f0 : ∂0 → ∂0
to be the identity. With fs : ∂s → ∂s assumed already defined, we first define
fs+1 : F → F for every (s+1)-dimensional face, (9.69), on the collar of width
δ of the boundary ∂F . More precisely, this collar,Cδ =Cδ (F), for F = F(I,P)
of (9.69), is defined as the set x = (x1, . . . ,xr) ∈ F for which there exists at
least one index in I, say i0 ∈ I, such that either xi0 ∈ [0,δ ], or xi0 ∈ [1− δ ,0].
In the first case, we set xi0 = 0 and in the second xi0 = 1. We also set x

′
i = xi

if i �= i0, and x′i0 = xi0 . We then extend the definition of fs to Cδ by setting
fs+1(x) = fs(x′). By putting all the Cδ (F) together, we obtain in this way an
extension to a δ -neighbourhood of ∂s.
One easily verifies that this definition is unambiguous in case there are sev-

eral candidates for the index i0. To see this, one uses the δ -retract property
that, by induction, fs satisfies on all the faces in ∂s. The inductive construction
clearly shows that fs+1 is Lipschitz on Cδ (F) if fs is already Lipschitz on ∂s.
(For this verification we must estimate the difference fs+1(x)− fs+1(y) when
x,y∈Cδ (F) and in addition x, y differ only on one of their coordinates, and say
xi = yi, i �= 1. If x2, . . . , ,xr ∈ [δ ,1− δ ] and x, y are close, then that difference
vanishes. If not, then by our construction we can use the inductive hypothesis.)
And of course, foremost, fs+1 is an extension of fs, that is, fs+1

∣∣
∂s
= fs. The

definition of fs+1 on the complement F\Cδ will be done below but, from what
we already have, it is clear that fs+1 has the δ -retract property.
It remains to define fs+1 on Fδ = F\Cδ , that is, the complementary set of

the collar Cδ in F . This could be done in any way whatsoever as long as it
respects the Lipschitz property and fs+1(ξF) = ξF . To fix ideas, we shall make
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fs+1 continuous and affine on every line segment in F between ξF and Cδ on
which fs+1 is already defined.

The normalisation and the definition of fN With R � 1 the free parameter
of §9.3.2 we shall now define the mapping

fN = R fr−1 : ∂ −→ ∂ R, (9.77)

where of course R = R ⊂Rr in the R-cube= [0� xi � R; i= 1, . . . ,r] and
fN ∈ Lip(cR) for some c and there exists some small c1 > 0 such that fN stays
constant in the corresponding neighbourhoods of the vertices

fN [x; |x−P|< c1] = fN(P); P ∈ ∂0 . (9.78)

The definition of fV and the transversality We shall now give the definition
of fV in (9.75), (9.76). For this we use the simplicial decomposition S of
§9.4.2 and, for every vertex ξF ∈S0 which is the centre of the face F , we set
fV (ξF) = ζI ∈ V where I is the subset I in the definition (9.69) of the face F
and ζI is an appropriate choice of vectors of V . The definition of fV is then
completed on the whole of ∂ by requiring that it is an affine mapping on each
simplex ofS (i.e. f (λ1x1+λ2x2) = λ1 f (x1)+λ2 f (x2); λ1,λ2 � 0, λ1+λ2 =
1). In this definition two different faces defined by the same index I but with
different vertex P in (9.69) give rise to the same fV (ξF) ∈V and this mapping
is continuous.
The choice of the vectors ζI ∈ V will be crucial for (9.76) and for the

transversality condition §9.3.3. That choice will also depend on the free par-
ameter R> 1 by scaling as

ζI = c0 (logR)ζ ∗I ; I � [1, . . . ,r], R� 1, (9.79)

where c0 will be chosen later and will be large enough. The ζ ∗I ∈V on the other
hand will depend only on the roots L1, . . . ,Lr of (9.33) and not on R, and we
shall set ζ ∗/0 = 0. The construction of the other ζ ∗I will be given in §9.4.6 and
for this purpose in §9.4.5 we shall introduce some notation.

9.4.5 Affine mappings in conical domains

LetV =Rr−1 as before and let e1, . . . ,en ∈V (n= r−1) be a basis. For vectors
x1, . . . ,xm ∈V we shall use the notation

CC(x1, . . . ,xm) =
m

∑
j=1

ρ jx j; ρ j � 0 (9.80)
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for the convex conical domain they generate. For every non-empty subset I ⊂
[1,2, . . . ,n] we shall define once and for all eI = ∑i∈I λ

(I)
i ei with fixed positive

coefficients λ (I)
i > 0. For consistency set e /0 = 0. We shall further write CC =

CC(e1, . . . ,en) and CCJ = CC(eJ1 ,eJ2 , . . . ,eJn) where

J : J1 ⊂ J2 ⊂ ·· · ⊂ Jn = [1,2, . . . ,n] (9.81)

is an arbitrary sequence of subsets with |Jj| = j. The following facts must be
verified.
The conical domains CCJ asJ runs through all the choices (9.81) form a

tessellation of CC. This means that the conical domains CCJ have non-empty
disjoint interiors and that their union is CC.

Exercise 9.29 Verify this. As in (9.72), (9.73) there is a one-to-one corre-
spondence betweenJ in (9.81) and CCJ . To see that we have a covering of
CC we take a slice with a hyperplane, consider the simplex σ = [e1, . . . ,en],

and write ėI =
(
∑λ (I)

i

)−1
eI ∈ Intσ with I = Jn and the simplexes

σ j = [e1, . . . ,e j−1, ėI,e j+1, . . . ,en]⊂ σ ,

that is, we replace e j by ėI . These simplexes cover σ . Then we argue by induc-
tion on the dimension.

The next obvious fact is that if e′1, . . . ,e
′
n ∈ V is another basis and e′I =

∑μ (I)
i e′i some choice of the e

′
I as before, then there is a continuous bijection

from CC(e1, . . . ,en) to CC(e′1, . . . ,e
′
n) that for each J , as in (9.81), is the re-

striction of a linear mapping from CC(eJ1 , . . . ,eJn) to CC(e
′
J1
, . . . ,e′Jn).

Exercise 9.30 Verify this. It is a simple consequence of the fact that for any
sequence J in (9.81), eJ1 , . . . ,eJn is a basis of V and the linear mapping is
obtained by eJi → e′Ji . That the linear mappings glue together and define a
mapping on CC(e1, . . . ,en) follows because if J : J1 ⊂ ·· · ,K : K1 ⊂ ·· · are
as in (9.81) then CCJ ∩CCK = CC(eI1 , . . . ,eIn) where Ii = Ji if Ji = Ki and
Ii = /0 otherwise.

The tessellation of V Let σ = [u1, . . . ,ur] ⊂ V be some non-singular sim-
plex of V such that 0 ∈ Intσ . A tessellation as before can then be obtained
for the whole space V . This is done by using the conical domains CCi =
CC(u1, . . . ,ui−1,ui+1, . . . ,ur) where the vectors that generate CCi are a basis
of V . These basis vectors are then used as above. More precisely, as in §9.4.5,
we define

eI =∑
i∈I

λ (I)
i ui, (9.82)
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where the λ (I)
i > 0 are given and are defined for every I ⊂ [1, . . . ,r] with |I|�

r− 1 and i ∈ I. These eI can then be used to tessellate further each CCi as
in Exercise 9.29. In that fashion we finally obtain a tessellation of the whole
space V into polyhedral convex conical domains.
Note that the above construction will be revisited in §10.3.

9.4.6 The choice of the ζI and the transversality condition §9.3.3
The choice of the ζI in §9.4.4 will now be made by choosing first some non-
singular simplex σ = [u1, . . . ,ur] ⊂ V with 0 ∈ Intσ . We then set in (9.79)
ζ ∗I = ∑i∈I λ

(I)
i ui = eI of (9.82). The definition of fV and the tessellation of

§9.4.5 imply therefore that the transversality condition of §9.3.3 holds for the
mapping f = ( fN , fV ) of (9.75).
More precisely, using §9.4.5 we see that for every P ∈ ∂0 , the mapping f

maps each small neighbourhood of size 1/4 of P in ∂ in a piecewise affine
and continuousmanner on {P}×V ⊂Rr×V . If R is large enough, the transver-
sality condition is therefore satisfied. To see this, note that if (X ,∂0 ) > c
for some c and X ∈ ∂ , then | fV (X)|, for fV (X) ∈ V , is as large as we like
provided that R is large enough. To see this last point we use the fact that
fV is affine on the simplexes of S and that for any such simplex that is de-
fined by

(
I1 ⊂ ·· · ⊂ Ir−1 ⊂ [1,2, . . . ,r]

)
with |I j| = j as in (9.72), the convex

hull [ζI1 , . . . ,ζIr ] is far from 0. This function fV so defined gives a one-to-one
piecewise affine mapping between small neighbourhoods in ∂ of the vertices
P∈ ∂0 and a neighbourhood of 0∈V . These facts combined with the locally
constant property (9.78) of fN prove the transversality.

The dual simplex and an illustration Here briefly we shall explain an alter-
native way of defining the ζI . The reader who, like the author, does not enjoy
piecewise linear combinatorial constructions, can ignore the next few lines. We
shall start with σ∗ = [L1, . . . ,Lr] ⊂ V ∗ some non-singular simplex in the dual
space of V , with 0 in the interior, for example the simplex determined by the
roots as in §9.2.1. We can then define σ = [e1, . . . ,er]⊂ V some dual simplex
that satisfies Ljei > 0 for all i �= j (see §10.3.2: this is also non-singular and 0
is in the interior). We can then give an alternative definition for the ζI in (9.79)
by setting

ζ ∗I =∑
j/∈I
e j; /0 �= I ⊂ [1, . . . ,r], |I|� r− 1. (9.83)

This can now be used as in §9.4.4–§9.4.6 to define first a tessellation of V and
then the mapping fV is defined by setting ζI = c0(logR)ζ ∗I in (9.79).
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Exercise 9.31 Prove this and prove that the transversality condition is satis-
fied again if R is large enough. We decompose the dual simplex σ into (r−1)-
dimensional simplexes with 0 as common vertex and where the other vertices,
(r−|I|)−1ζ ∗I , lie on the topological boundary. We then have a natural one-to-
one correspondence between the above simplexes and those of Er−1(P) (see
§9.4.4). The details are left to the reader.
This approach, which is dual to the previous one, has the following advan-

tage. It gives for free the additional condition

LiζI � c1 logR; i ∈ I, (9.84)

for any I ⊂ [1,2, . . . ,r] with |I|� r− 1, /0 �= I, where the c1 > 0 can be chosen
as large as we like provided that c0 > 0 in (9.79) is large enough.
Condition (9.84) plays a crucial role in proving the LL(R) property of the

mapping (9.75). We shall examine property (9.84) from our previous point of
view in the next subsection.

Proof of (9.84) without using the dual simplex It will be convenient now to
assignV =Rr−1 with its natural Euclidean inner product structure and identify
it thus with its dual space V ∗.
Let us fix L1, . . . ,Lm ∈ V non-zero vectors that satisfy the NC-condition of
§§2.2 and 2.3.1. Using the inner product, this means that there exists u ∈ V
such that

〈Lj,u〉= Lju> 0; j = 1, . . . ,m. (9.85)

It is easy to show that it is possible to choose u in (9.85) to be of the form

u= ζ =
m

∑
j=1

λ jL j; λ j > 0. (9.86)

Once this is proved we can go back to §9.4.5 and consider some simplex
σ = [L1, . . . ,Lr]⊂V with 0∈ Intσ . For every I � [1, . . . ,r], with /0 �= I, we can
then use (9.86) and define appropriate vectors

ζ ∗I =∑
i∈I

λ (I)
i Li, ζI = c0(logR)ζ ∗I (9.87)

for which (9.84) holds.
This is done now directly on σ and we do not need to use the dual simplex.

As a result it is easier to keep track of the tessellation of V that is involved in
the simplicial mapping fV .

Exercise 9.32 Prove (9.86) (see Varopoulos, 2000b, §1.1.5). In §9.4.6 we
avoid this but then we have to prove the existence of the dual simplex.



9.4 First Basic Construction (II): Details and Computations 303

9.4.7 The LL(R) property of the mapping f in (9.75)–(9.76)

We already saw that f as defined in §9.4.4 is a Lipschitz mapping f : ∂ →
Rr×V . Now consider Ω ⊂ ∂ the open, everywhere-dense subset that con-
sists of the union of all the interiors Intσ of the simplexes of maximal dimen-
sion r−1 in Er−1(P) (cf. §9.4.2), whereP runs through the set of all the vertices
P∈ ∂0 . For any X ∈Ω we can then define the differential of f at X . We shall
show that the norm of that differential satisfies

|d f |� c logR; X ∈Ω, R> 10, (9.88)

for some c > 0 provided that the constant c0 in (9.79) has been chosen large
enough. The norm of the differential in (9.88) is taken with respect to the
Euclidean norm on r ⊂ Rr and the group Riemannian structure of §7.2 on
Gr = Rr�V = N�A (putting V = A) of §9.2.1. We have thus two Lipschitz
properties. The first is global, but where the control of the Lipschitz constant
is not specified. The second is on the set Ω; that is, a set of ‘full measure’
and here we have in addition the correct estimate (9.88). These two properties
combined together imply the required property f ∈ LL(R). For more details on
the correct Lipschitz constant see §7.1.1.
In the next few lines we shall prove (9.88) for

X ∈ ◦τ =
[
1
2 > x1 > x2 > · · ·> xr−1 > 0; xr = 0

]
, (9.89)

where τ ∈ Er−1(0), which is a typical interior of the simplexes that we are
considering: see (9.70). Every other simplex can be renormalised by reordering
the coordinates and replacing x j by 1−x j when necessary, bringing the simplex
to the above case (9.89).
We shall first prove (9.88) with f replaced by fV . This is easy because by

the construction of fV we have

|d fV |� c logR; R� 10, (9.90)

for some c that depends on c0 of (9.79). Inequality (9.90) holds because the
values fV (ξF) = ζI are ≈ logR apart and fV ∈ V is an affine mapping on each
simplex ofS of §9.4.2.
Now we examine fN and use the δ of the retract property of that mapping

defined in §9.4.4. For X = (x1,x2, . . . ,xr−1,0) as in (9.89) we shall determine
the index k by

1
2 > x1 > · · ·> xk > δ > xk+1 > · · · (9.91)

and the possibility that some coordinate is δ can be discarded by reducing
further the set Ω to Ω∩ (no coordinate is equal to δ ). By the construction of
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the mapping f it then follows that for X as in (9.91) we have

d fN

(
∂
∂xi

)
∈ Nk = Vec(e1, . . . ,ek)⊂ N = Rr; i= 1, . . . ,r, (9.92)

where e1, . . . are the canonical basis vectors ofRr. (For this observe two things.
First, if i > k then changing the ith coordinate xi slightly does not change the
value of fN(X). Second, we always have fN(F) ⊂ F for any face F ⊂ ∂p and
for any dimension.)
To prove (9.88) for fN the following observation about fV will be needed.

If the coordinates of X0 = (1/2, . . . ,1/2,xk+1, . . . ,xr−1,0) are all 1/2 up to the
kth, and every other coordinate is �δ , and if I j = [1, . . . , j], then

X0 ∈ convex hull
[
ξIk , . . . ,ξIr−1

]
.

This follows from the alternative way the simplex τ in (9.89) is constructed
(see §9.4.2) with ‘successive’ vertices 0, ξI1 , ξI2 , . . . and the fact that the first k
coordinates are 1/2. From this and the definition of fV in §9.4.4 it follows that

fV (X0)/ logR ∈ c0 convex hull
[
ζ ∗Ik , . . . ,ζ

∗
Ir−1

]
, (9.93)

where the ζ ∗I are as in §9.4.6. It follows that if δ in (9.91) is close enough to
1/2 then, with X as in (9.91), fV (X)/ logR is close enough to the convex hull
of (9.93) because of the affine definition of fV . This in turn implies that on the
Lie groupGr =N�V the (Ad( fV (X)))−1 restricted on the subspace Nk ⊂N of
(9.92) will have a norm �R−C for an arbitrarily large C > 0 provided that the
c0 in (9.79) is large enough. This last assertion is a consequence of the choice
of the ζ ∗I in §9.4.6 and in (9.83) or (9.87). Indeed, that choice guarantees that
(9.84) holds and this, in view of formula (9.33) for Ad in the group Gr, is
exactly what is needed for our assertion.
Our assertion on estimate (9.88) for d fN then follows by (8.42) for the Rie-

mannian structure on Gr.
The proof of the LL(R) property for f in (9.75)–(9.76) is thus complete.

9.4.8 An alternative description of the construction

What follows is a variant (see Varopoulos, 2000b) of the construction of f =
( fN , fV ) of (9.75) that was done in the previous sections and it will give the
reader another way of going through the details if they wish. We shall fix some
P ∈ ∂0 and some σ ∈ Er−1(P) and define

f : σ −→ σ ×V (9.94)
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in a way such that those mappings for the different choices of the simplexes σ
fit together to give a global mapping f on ∂ , as required.
The following notation will be used. First of all let σ ∈ Er−1(P) for some

P ∈ ∂0, and let {P}= σ0 ⊂ ·· · ⊂ σr−1 = σ be as in (9.73) where ξ j = ξFj ∈ σ j

are the centres of the faces Fj that contain σ j as in (9.71). For every θ =

(θ1, . . . ,θr−1) with θ j ∈ [0,1] we can define inductively x j ∈ σ j by(
1−θ j+1

)
ξ j+1+θ j+1x j = x j+1; 0� j � r− 2, x0 = P. (9.95)

Similarly, let ζ j = ζIj ∈ V be as in §9.4.4, (9.79), for the subsets I j = IFj
that determine the faces Fj defined in (9.69). We can again define inductively
y j ∈V by (

1−θ j+1
)
ζ j+1+θ j+1y j = y j+1 ∈V, y0 = 0. (9.96)

We combine these to define

Φ(θ1, . . . ,θr−1) = (xr−1,yr−1) ∈ σ ×V,
Φ= (ΦN ,ΦV ) : [0,1]r−1 −→Rr×V = N�V = Gr.

(9.97)

Observe that if θ j = 0 for some j � 1, then x j = ξ j, y j = ζ j and from then on-
wards only θ j+1, θ j+2 come into play. One could say that the ‘memory before
j’ has been erased and Φ(θ ) is independent of θi for i< j.
The mappingΦN(θ1, . . . ,θr−1) = xr−1 = x ∈ σ admits an inverse

Φ−1N : Intσ −→ [θ j; 0< θ j < 1, 1� j � r− 1] , (9.98)

which is also defined inductively by (9.95). To wit, we start from xr−1 = x ∈
Intσ and this in (9.95) determines uniquely (xr−2,θr−1) with xr−2 ∈ σr−2 and
0< θr−1 < 1 and then repeat with xr−2 and work our way all the way down to
(x0,θ1) with x0 = P.
We shall now use some functionα : [0,1]→ [0,1] and, abusing notation, also

denote α : [0,1]r−1 → [0,1]r−1 by α(θ1, . . . ,θr−1) = (α(θ1), . . . ,α(θr−1)).
Now consider the composed mapping

fN =ΦN ◦α ◦Φ−1N : Intσ −→ σ . (9.99)

The function α will be non-decreasing, smooth and equal to 0 in some neigh-
bourhood of 0, and equal to 1 in some neighbourhood of 1. See Figure 9.10.
The function fN in (9.99) is then Lipschitz and extends to the whole of σ . To

verify this Lipschitz property we shall fix some ε > 0, that will be determined
later and will depend on the function α , and consider the following cases.
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Case (i) x ∈ Intσ is such that the coordinates (θ1(x), . . . ,θr−1(x)) of Φ−1N x
are all θ j > ε . In that case the Lipschitz condition for Φ−1N x holds in some
neighbourhood of x with a constant that depends on ε .
This is seen by the inductive construction of the θr−1,θr−2, . . . . To wit,

θr−1(x) is always a Lipschitz function of x. But if θr−1(x) � ε we see from
(9.95) (with x j+1 = xr−1 = x) that x j = xr−2 is also a Lipschitz function of
x. We then repeat the argument using (9.95) with x j+1 = xr−2, θr−2(x) � ε ,
and so on. The function fN in (9.99) is therefore Lipschitz in that range with a
constant that depends on ε .

Case (ii) If case (i) fails it could be that θr−1(x) � ε . On the other hand, if
case (i) fails and θr−1(x) > ε let k, with 1 � k � r− 2, be the first integer for
which θr−k−1 � ε . In that case,

θr−1(x)> ε, . . . ,θr−k(x)> ε; θr−k−1(x)< 2ε. (9.100)

Incidentally, case (i) can be interpreted as (9.100) with k = r− 1. Similarly,
(9.100) with k = 0 is interpreted as θr−1 < 2ε . At any rate, in case (ii) when
(9.100) holds, even when k= 0, the functions θr−1, . . . ,θr−k−1 are Lipschitz in
a neighbourhood of x with a Lipschitz constant that depends only on ε for the
same reasons as before.
To determine the value fN(x) = ΦN ◦α ◦Φ−1N (x), we must use the induc-

tive hypothesis construction (9.95). It then follows that if for some x and j
we have αθ j(x) = 0 (an abuse of notation for α ◦ θ j) then, as observed just
after (9.97), fN(x) depends only on αθr−1(x), . . . ,αθ j(x) and is independent
of αθi(x) for i< j. This observation is now combined with condition (9.100),
where we make sure that the choice of ε is such that θr−k−1(x) < 2ε implies
that αθr−k−1(x) = 0. This, and our previous remark about the Lipschitz nature
of θr−1, . . . ,θr−k−1, completes the proof that fN is Lipschitz.

Definition 9.33 (Definition of fV ) We can now use another non-decreasing
smooth function β : [0,1]→ [0,1] with the same property, that β (0) equals 0
in some neighbourhood of 0 and equals 1 in some neighbourhood of 1 (see
Figure 9.10), and compose again

fV =ΦV ◦β ◦Φ−1N : Intσ −→V. (9.101)

For the same reason as before, this is again Lipschitz and it extends to σ
and, considering once more the above two cases, we see that the Lipschitz
norm satisfies Lip fV = O(sup |ζ j|C). If we combine (9.99) and (9.101), we
finally obtain the required mapping:

f = ( fN , fV ) : σ −→ σ ×V. (9.102)
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Two points have to be verified.

Point 1 The functions f defined in (9.94) for the simplexes σ of maximal
dimension ‘fit together’. More precisely, they extend to some unique global
function,

f : ∂ −→ ∂ ×V, (9.103)

that is Lipschitz. Furthermore, for the choice in (9.96) of the ζI , as in (9.79) and
for an appropriate choice of the shape the ‘stretching functions’ α , β (see Fig-
ure 9.10), the above function f satisfies the transversality condition of §9.3.3.

Graph of α βGraph of 

Figure 9.10 The two functions used in (9.99) and (9.101).

Point 1 is easy to verify. Probably the best way to see this is to define directly
the global mapping

fN : ∂ −→ ∂ ,

fN : ∂ j −→ ∂ j; j = 0,1, . . . ,r− 1,
inductively on j: assuming that fN is defined on ∂ j we consider F ⊂ ∂ j+1, some
face, and for all x ∈ F different from ξF we can define x′, θ by

x= (1−θ )ξF +θx′; θ ∈ ]0,1], x′ ∈ F ∩∂ j. (9.104)

The extension of f j to F is then given by

f j+1(x) = (1−α(θ ))ξF +α(θ ) f j(x′). (9.105)

If we set f j+1(ξF) = ξF we have a definition on the whole of F and obtain thus
the required extension of fN to ∂ j+1. This proves the required inductive step of
the construction and completes the definition of

fN : ∂ −→ ∂ . (9.106)

Once θ has been determined as above, the construction can be made for
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fV : ∂ → V by (9.96). The two put together give the construction of the
function in (9.103). The fact that this function f restricted to each simplex
σ of maximal dimension is our original function in (9.94), (9.102) can again
be seen by induction by considering σ0 ⊂ ·· · ⊂ σr−1 = σ as in (9.73). To
wit, we consider the successive restrictions of fN to the lower-dimensional
subsimplexes σ j, defined either as in (9.94) or as in (9.103) and show that they
coincide, and similarly for fV .
The transversality condition is a consequence of the shape of the two func-

tions α , β that will be chosen to look as in Figure 9.10, where (thinking of
time as moving backwards from 1 to 0) α does not move away from 1 until β
has completed its ‘life span’. With the functions α , β as above we prove the
transversality condition with the same tessellation argument that was used in
§9.4.6. The details are identical and will not be repeated. More about the veri-
fication of transversality can be found in the original presentation of this con-
struction in Varopoulos (2000b). Notice also that, in the above construction,
the mapping f , (9.103), is constant in small neighbourhoods of the vertices.
This can easily be rectified and the mapping can be made one-to-one there by
a slight modification of β near 1.

Rescaling Let us now go back to the mappingΦ defined in (9.97). The param-
eter R� 1 is built into the mapping ΦV because the choice of the ζI in (9.96)
depends on R. We shall now modify f in (9.102) and, using for simplicity the
same notation, set

f = (RΦN ◦α, ΦV ◦β )◦Φ−1N ∈ Rr−1×V, (9.107)

where we use scalar multiplication by R in Rr and the composition with α
and β . For this mapping and the Riemannian group structure on Gr (and the
Euclidean structure on [0,1]r−1) we shall prove point 2.

Point 2 If c0 in (9.79) is large enough, the function f of (9.107) satisfies f ∈
LL(R). Given that f is already known to be Lipschitz (as was verified when
R= 1 in (9.99)), this follows from the fact that

|d f |�C logR; R� 10, (9.108)

for someC > 0 for the same reason as before (explained in §7.1.1).
We now come to the proof of (9.108). By the definition of the ζI and the

Lipschitz norm of fV that we estimated in (9.101), it is clear that only the
N-coordinate of f in (9.107) is an issue. We must therefore estimate the dif-
ferential of the function ΦN ◦α ◦Φ−1N =Ψ. This will be done in the next few
lines.
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By the properties of α and β the functionΨ is constant in some neighbour-
hood of a point x for which β j = β ◦ θ j(x) �= 0, with 1 � j � r− 1. We may
therefore assume that there exists some 1� p� r−1 such that βp = 0 and for
such a p we have

fV (x) = yr−1 = convex hull [ζr−1, . . . ,ζp] (9.109)

because of the inductive definition in (9.96) (this should be compared with
(9.93) and with the comments after (9.97)). Let p be the largest possible int-
eger for which βp = 0, so that either p= r− 1 or

βp = 0, βp+1 �= 0, . . . ,βr−1 �= 0. (9.110)

But by the choice of the functions α , β from (9.109) it follows that

αp+1 ◦Φ−1N = · · ·= αr−1 ◦Φ−1N = 1 (9.111)

in some neighbourhood of x. By (9.97), (9.99) (see the inductive procedure
(9.95) that gives the definition), this means that Ψ = ΦN ◦α ◦Φ−1N ∈ σp (de-
fined in (9.73)). Let F = F(Ip,P) ∈ ∂p be the p-dimensional face (9.69) that
contains σp ⊂ F . Then the differential of this mappingΨ takes its values in the
vector subspace

Vec

[
∂
∂xi
; i ∈ Ip
]
= Np ⊂ TN, (9.112)

the tangent subspace generated by the coordinates in Ip. Of course, (9.112) also
holds trivially when p= r− 1.
Now, in view of (8.42), where we specified the Riemannian structure on

Gr, what needs to be estimated is Ad( fV (x))−1, and more precisely, because
of (9.112), it is the restriction of that action on Np that counts. The argument
used for this estimate is exactly as at the end of §9.4.7 (especially the use of
(9.93), which now is replaced by the use of (9.109)) and we shall not repeat the
details. The crux is that because of (9.84) in the choice of the ζI , the norm of
that restriction is O(R−c) for any preassigned c provided that the c0 in (9.79)
is large enough. We use formula (9.33) again here for Ad in the group Gr.

9.5 The Second Basic Construction

9.5.1 The general SSG that are C-groups

We shall retain our previous notation and if G is some general SSG that is a
C-group, then, by §9.1.7, we have two alternatives.
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The Abelian alternative The C-group G is of the form G = N � (A′ ⊕ A)
where N, A′, A are the simply connected groups that correspond to n, a′, a0 of
(9.32). We have dropped the index 0 here because no confusion will arise. The
groups A′, A are Euclidean spaces: A′ ∼= Rr−1, A∼= Rs, with r � 2, s � 0. The
group N contains N′ ⊂ N some subgroup that is Abelian and is the subgroup
that corresponds to the subalgebra n′: N′ ∼=Rr and the elements ofN′ commute
with the elements of A. We shall write

G′ = N′� (A′ ⊕A) = (N′�A′)⊕A, G= N� (A′ ⊕A). (9.113)

Furthermore, N′� A′ is a Gr group as in §9.2.1 and the action of A′ on N′
is given by roots L1, . . . ,Lr ∈ (A′)∗ (the dual space). These roots satisfy the
C-condition as in §9.2.1.

The Heisenberg alternative We preserve the same notation forG=N�(A′⊕
A) but now dimA′ = 1 and N′ ⊂ N is a Heisenberg group with Lie algebra n′

as in Definition 9.5, and the Lie algebras of A′, A are a′, a0, respectively, as in
(9.32). The action of A′, A on N, N′ is induced by the corresponding actions in
(9.32) and for the group

G′ = N′� (A′ ⊕A) = (N′�A′)⊕A, (9.114)

the action of A on N′ is trivial and N′�A′ is then the group K that we consid-
ered in §9.2.5.
When A= {0}, the constructions that we made in §9.2.5 (for the Heisenberg

case) and in §§9.2–9.4 (for the Abelian case) suffice for the proofs that we shall
give in the next chapter. The new problem that arises in the general situation for
both the above alternatives is the presence of the additional group A. Indeed,
while A splits off as a direct factor in the groupG′, its action on N is in general
non-trivial. This radically changes the whole picture and new ideas are needed.
For the rest of this section we shall assume that A �= 0 and that s� 1.

9.5.2 The new tools. A special case

Here we shall introduce the new idea that is needed to handle the general SSG
of the previous sections. We shall do so first for the Abelian case in the special
situation s= 1 in §9.5.1 and, with the notation from there, what we have is

G′ = Gr⊕A, G= N� (A′ ⊕A), A= R. (9.115)

We shall show that the following result.

Proposition 9.34 One or both of properties Fr, Fr+1 fail to hold on G.
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This proposition is a special case of the following more general one.

Proposition 9.35 Let G= N� (A′ ⊕A) with Gr = N′�A′ and A= Rs as in
§9.5.1. Then at least one of properties Fr,Fr+1, . . . ,Fr+s fails to hold on G.

The new idea involved is that while we shall not be able to pinpoint the
exact index j for which F j fails, we shall at least show it fails for some j.
This of course is good enough to show that these groups are not polynomially
retractable as in Theorem 7.11.
We shall argue by contradiction and for a group G as in Proposition 9.34,

we shall assume that both properties Fr, Fr+1 hold. A contradiction will be
obtained. Towards that we shall assume that condition Fr holds on G and
proceed to make the following construction in G. That construction will be
shown to be contradictory withFr+1.

9.5.3 The construction needed for Proposition 9.34 underFr for
s= 1

The notation is as above. Our first step is to construct S ⊂ Gr that satisfies
properties (9.61), (9.63), that is,

S is an LL(R)− ∂ r ⊂ Gr (9.116)

and the transversality condition is satisfied.
The underlying difficulty is the following. We showed in §9.3.4 that this

construction contradicts property Fr in Gr. The problem is that property Fr

could still hold in the larger group G. In other words, although we may not be
able to fill in S by some S′ that is LL(R)− r ⊂ G′ (where the terminology is
as in §9.3.2), this may still be possible if we allow S′ to spill out of G′ and be
some Ŝ that is LL(R)− r ⊂ G and such that ∂ Ŝ = S.
The difficulty does not lie in the fact thatN′�N because, as long as A= {0},

using the same ideas as §9.3.4 we can easily adapt that proof here. (This will be
one of the things that will be done in the general proof in Chapter 10. Adapting
§9.3.4 in this case is an interesting exercise that the reader may like to think
about.) The problem is rather the presence of A that has a non-trivial action
on N.
Be that as it may, as we said, the assumption is that indeedFr does hold for

the group G and we shall proceed with our construction.
The set S ⊂ G′ can be translated to Sa = S+ a⊂ G (a ∈ A) and since A lies

in the centre of G′ we can of course use either the left or right group action.
Additive notation has deliberately been used to stress this point. Using the left
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action we see that

Sa is an LL(R)− ∂ r ⊂ G (9.117)

uniformly in a ∈ A. Since property Fr has been assumed in G, we can fill in
Sa in G and for each a ∈ A construct

Ŝa is an LL(R)− r ⊂G,
∂ Ŝa = Sa

(9.118)

and the LL(R) constants in (9.118) are uniform in a ∈ A. We shall denote by
Φa the function that does the filling: Ŝa =Φa(

r).
Let us now consider the set X = S× [−a0,a0] for some a0 ∈ A = R with

a0 = c0(logR)c0 for some large c0 that will be chosen later. What counts is that

X is an LL(R)− (∂ r)× [0,1]⊂ G′ = Gr×A. (9.119)

This is a consequence of the direct product structure and the choice of a0. We
shall denote by ΦX the function that does the mapping in (9.119). The LL(R)
constants in (9.119) depend on c0 and the LL(R) constants of (9.117). We can
now consider the set

Y = Ŝ−a0 ∪X ∪ Ŝa0 is an LL(R)− ∂ r+1 ⊂ G. (9.120)

This set Y looks like an empty food can. The lateral boundary X sits in G′

but the top and bottom spill out to G. The LL(R) property follows by glueing
together two LL(R) functions

Φ±a0 :
r −→G,

ΦX : ∂ r×[0,1]−→ X
(9.121)

that coincide on their common range and construct the function needed in
(9.120).
The additional crucial geometric property that the setY has is described after

the following exercise.

Exercise One thing that we are not allowed to do for the construction of the
Ŝa is to fix one, say Ŝ0 (i.e. a = 0) and then ‘translate it around’ to a+ Ŝ0 in
G. Why not? In the construction, the fact that A lies in the centre of G′ plays a
crucial role.

Transversality We shall denote by (n,a′,a) ∈ G, with n ∈ N, a′ ∈ A′, a ∈ A,
the coordinates in G induced by (9.113). We can make the choice of c0, in
the choice of a0, large enough depending on the LL(R) constants of Ŝ±a0 in
(9.118) (that are uniform in a0) in such a way that [|a| < 1]∩ Ŝ±a0 = /0. This
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holds because for c0 sufficiently large the Lipschitz condition (9.118) on Ŝ±a0
does not allow it to reach anywhere near a= 0. It follows that

Y ∩ [|a|< 1] = X ∩ [|a|< 1] , (9.122)

Y ∩ [|a′|< 1, |a|< 1]= X ∩ [|a′|< 1]∩ [|a|< 1] . (9.123)

Since X is the product set S× [−a0 < a< a0], the set in (9.123) is simply(
S∩ [|a′|< 1])× (|a|< 1) . (9.124)

The first factor in (9.124) is the ‘old friend’ from the transversality condi-
tion (9.63), which applies so that the set (9.124) has exactly the same shape
as (9.63).
The same argument as in §9.3.4 can therefore be applied and shows that

(9.120) and the transversality property of (9.124) imply that G cannot have the
Fr+1 property and Y cannot be filled in with some

Ŷ that is an LL(R)− r+1 ⊂ G.

Hence the required contradiction.
We shall not give more details here because all of this will be treated in

detail and in full generality in Chapter 10.

A modification in the construction of (9.120) Instead of allowing the size
of the interval [−a0,a0] ≈ c0(logR)c0 we shall exploit the uniformity in the
parameter a of (9.117) and apply the above argument to Xn = S× [n,n+ 1].
Then (9.119) holds for Xn with constants that are uniform in n. We define Yn =
Ŝn∪Xn∪ Ŝn+1 and then (9.120) holds for Yn with constants that are uniform in
n. By glueing together and erasing the intermediate boundaries we obtain

Ω=
⋃

−N�n�N−1
Yn which is an LL(R)− ∂ ( r×[−N,N])⊂ G (9.125)

and the LL(R) constant is uniform in N. For the same reason as before, if N is
large enough so that Ŝ−N , ŜN are far enough, (9.122)–(9.123) hold for this Ω.
To finish the argument we must get rid of the N in (9.125). But this is easy

because if Φ : ∂ ( r×[−N,N])→G is Lip
(
c(logR)C

)
then the rescaled func-

tion on the last coordinate gives a mapping ∂ r+1→G that, being a composi-
tion of two Lipschitz functions, is Lip(cN(logR)c). A choice of N ≈ (logR)c0

for c0 large enough will therefore do the trick. Arguably, nothing has changed
in this ‘new proof’. However, this is the point of view that has to be adopted in
the general case that we shall give in the next subsection for s� 1.
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9.5.4 The construction needed for Proposition 9.35 with s� 1

The strategy for the proof of Proposition 9.35 is identical. We shall assume that
Fr,Fr+1, . . . ,Fr+s−1 hold and proceed to perform an analogous construction.
That construction at the end will contradict propertyFr+s and this will provide
the required contradiction.
A priori this extension seems ‘innocent’. We construct S ⊂ G′ as in §9.5.3

and one should be able to repeat the previous construction by generalising
X = S× [−a0,a0]s of (9.119), one would think. This approach can be made to
work but there is an unexpected snag. The point is that, exactly as in (9.120), X
is only part of the boundary ∂ r+s: the other part ‘looks like’ Ŝ×∂ ([−a0,a0]s)
for some Ŝ ⊂ G that has been used to fill in S. In doing that one can proceed
inductively and consider successively Ŝ× ∂s1 ([−a0,a0]s) (notation of §9.4.1,
s1 = 1,2, . . .) and this is exactly what we shall do below. However, at the very
end we are stopped by the choice of c0 in a0 = c0(logR)c0 that is needed for
the transversality §9.3.3. If we try to carry out the details we see that ‘things do
not add up’. Therefore this approach has to be carried out with care. Already
the case s= 2 is typical. We shall therefore start with the following.

Construction for s= 2 underFr,Fr+1 The way we shall organise the nota-
tion for s= 2 is as follows. We shall write

L= [a1,1,a1,2,a2,2,a2,1]⊂ A, (9.126)

a rectangle with sides parallel to the axes, and denote the two sides by

[ai,1,ai,2] = l1i , [a1,i,a2,i] = l2i . (9.127)

The size of L is |l1i |, |l2i | � 1 but all the constructions below will be uniform
with respect to the initial position a1,1 ∈ A. The fact that G′ and A commute as
before implies that for i, j = 1,2,

Si, j = S×{ai j} is an LL(R)− ∂ r ⊂ G′ (9.128)

and similarly, also,

S× l1i , S× l2i are LL(R)− (∂ r)× [0,1]⊂ G′. (9.129)

Using (9.128) and the Fr-property in G that is assumed to hold, we can con-
struct Bi, j such that

Bi, j is an LL(R)− r ⊂ G,
∂Bi, j = Si, j; i, j = 1,2.

(9.130)
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But then by the same argument as in (9.121), the two sets

X1i = Bi,1∪Bi,2∪
(
S× l1i
)
,

X2i = B1,i∪B2,i∪
(
S× l2i
) (9.131)

are both

Xki are LL(R)− ∂ r+1 ⊂ G; i,k = 1,2 (9.132)

and the constants are uniform with respect to the initial position a1,1. We can
therefore use theFr+1-property in G and fill in the two sets (9.131) so that for
i,k = 1,2,

Bki is an LL− r+1 = r×[0,1]⊂ G, (9.133)

∂Bki = Xki . (9.134)

Now, for the same reason as in (9.119), (9.129),

S×L is an LL(R)− (∂ r)× 2 ⊂ G′. (9.135)

So we can glue things together and we see that

Δ=
⋃
i,k

Bki ∪ (S×L) is an LL(R)− ∂ r+2 ⊂ G. (9.136)

The set in (9.136) is given by five pieces and, as in (9.121), it is clear that each
piece is determined by an LL(R) function. The thing that might be slightly
challenging for the readers who (like the author of this book) do not have much
background in combinatorial topology, is to verify that the pieces do indeed fit
together to make up a boundary of a r+2.

Exercise 9.36 One construction that may clarify matters is the boundary
∂ ( r× 2) that consists of (∂ r)× 2, which looks like S× L in (9.136),
and r×∂ 2. In this second component of the boundary, the four sides in
∂ 2 give terms that in view of (9.133) look like Bki .

The transversality We now return to the argument where we were left: on the
set Δ at (9.136). We start by subdividing the large square [−N,N]2 ⊂ R2 = A
into unit subsquares Ln,m = [n,n+ 1]× [m,m+ 1] as in §9.5.3 and we perform
the above construction with each Ln,m. This, however, is done in such a way
that the Bi, j(n,m), with i, j = 1,2, that correspond to the four vertices of Ln,m
depend only on the position of that vertex and not on which kind (left or right,
top or bottom) of vertex it is. This amounts of course to specifying some filling
for each S× (n,m) that satisfies properties (9.128). Similarly, the Bki of (9.133)

are made to depend only on the position of the edge l (1)n,m = (n, [m,m+ 1]) or
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l (2)n,m = ([m,m+ 1],n) as the case might be. For every Ln,m, we have constructed
thus some Δn,m as in (9.136). The union Ω =

⋃
Δn,m is like an empty honey-

comb and the walls of two neighbouring cells Δn,m are the same. The inner
walls ‘cancel’ and only the outer walls of Ω remain. More precisely,

Ω=
(
S× [−N,N]2)∪ outer walls. (9.137)

What we mean by walls in the above statements is the part of the boundary of
Δn,m that corresponds to

⋃
Bki in (9.136). The outer walls correspond to Δn,m

with n or m=±N that are constructed by some edge l (1)n,m or l
(2)
n,m with n=±N.

By the LL(R) properties of these walls, which are uniform with respect to
the base point (n,m) ∈ A, the outer walls in (9.137) are far from a = 0 in the
coordinates (x,a′,a) of §9.5.3. The transversality property, (9.122)–(9.124), for
Ω therefore follows for N = C(logR)C and C large enough depending on the
constants of theFr,Fr+1 properties that have been assumed to hold on G. As
in (9.125),

Ω is an LL(R)− ∂ ( r×[−N,N]2)⊂ G (9.138)

and therefore, by the same rescaling as in §9.5.3,
Ω is an LL(R)− ∂ r+2 ⊂ G if N = c1(logR)

c1 . (9.139)

From Ω the contradiction with property Fr+2 that is assumed to be satisfied
on G follows again as in §9.3.4. But as said before, this contradiction will be
explained in detail in Chapter 10.

Remark If, instead of the ∼ N2 different cells in the above honeycomb con-
figuration, we had worked with just one cell of size N, we would have four
walls whose size would also have depended on N. And here lies the problem:
by choosing N large enough we would not have been able to conclude that, for
a∈ A, the a-coordinate on these walls does not get close to zero. It follows that
the transversality property is not provable that way.

9.5.5 The general case s� 2

As in (9.126) we shall start with some cube,

L= [a1,b1]× [a2,b2]×·· ·× [as,bs]⊂ A (9.140)

of size |ai− bi| � 1 and proceed exactly as in the special cases of §§9.5.3–
9.5.4. To make the notation manageable we shall denote by P0,P′0,P

′′
0 , . . . ∈

∂0L= ∂0 the vertices of the cube L; further, we denoteP1,P′1, . . .∈ ∂1L= ∂1 and
P2,P′2, . . .∈ ∂2L, and so on.We generalise (9.128), (9.129) and, for j= 0,1, . . . ,
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we use the notation S j = S×Pj, S′j = S×P′j, . . . for (Pj,P′j, . . . ∈ ∂ j), so that
S0,S′0, . . . S1,S

′
1 and are the generalisations of (9.128) and (9.129) respectively.

We now generalise (9.130) and use theFr-property of G to define B0,B′0, . . . ,
the fillings of S0, . . . that satisfy

B0 is an LL(R)− r ⊂ G; ∂B0 = S0. (9.141)

We define B′0, . . . similarly. Now let P1 ∈ ∂1 and let P0,P′0 be its two boundary
points; then

X1 = S1∪B0∪B′0 is an LL(R)− ∂ r+1 ⊂ G. (9.142)

This generalises (9.131) and is proved in an identical manner. The analogous
X ′1, . . . are constructed. PropertyFr+1 can then be used and we construct

B1 is an LL(R)− r+1 ⊂ G; ∂B1 = X1. (9.143)

This is what generalises (9.133)–(9.134). To carry out one more step we define

X2 = S2∪B1∪B′1∪B′′1 ∪B′′′1 (9.144)

for some P2 ∈ ∂2 and where the B1’s are constructed in (9.143), (9.144) from
the four sides P1,P′1, . . . ∈ ∂1 of the square P2. This is the analogue of the Δ in
(9.136). PropertyFr+2 is then used to fill in X2 and obtain B2, and so on.
At the end, when we have exhausted all dimensions 0,1,. . . ,s, we obtain a

number, (2N)s, of cells Bs that corresponds to the honeycomb of §9.5.4 and
these cells have common walls. The union is

Ω= (S× [−N,N]s)∪ outer walls. (9.145)

The walls of the cells Bs are Bs−1∪B′s−1∪·· · in the last step of the construction
Xs = Ss∪Bs−1∪B′s−1∪·· · (9.146)

and by outer walls we mean the Bs−1 that are constructed by the Ps−1 ∈ ∂s−1
that are contained in ∂ [−N,N]s. The LL(R) properties of the walls of the cells
are uniform with respect to all the cells and therefore the outer walls are far
from any point whose A-coordinate a= 0 (for the coordinates we use the nota-
tion of §9.5.3) as long as N = c1(logR)c1 is chosen with c1 large enough. The
transversality property for Ω as in §9.5.3 follows and we have the analogue of
(9.122):

Ω∩ [|a|< 1] = (S× [−N,N]s)∩ [|a|< 1]. (9.147)

On the other hand, by our construction, Ω is an LL(R)− ∂ ( r×[−N,N]s) ⊂
G. By the choice of N and by the same rescaling as in §9.5.3, it follows that

Ω is an LL(R)− ∂ r+s ⊂ G. (9.148)
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As in §9.3.4, the two properties can now be used to contradict conditionFr+s

that is assumed to hold on G. This contradiction will be explained in detail in
Chapter 10.

Note The above description is informal and we feel that this is the best way
to present things. Note that, for technical reasons, we shall have to come back
to the above constructions again in §10.3.7. Note also that a more formal treat-
ment of the same problem is given in §13.6. In fact, in Chapter 13 the construc-
tion will be formalised for the use of homology theory with the systematic use
of currents. This allows us to present everything that we did in this section
in algebraic terms. The reader could anticipate matters by looking ahead if so
wished.

9.5.6 The Heisenberg alternative

We nowmove to the Heisenberg alternative of §9.5.1 and if we use the notation
there we have N′�A′ = K where K is as in §9.2.5. As before we denote s =
dimA. We can then construct an embedded circle S1∼= S⊂K that goes through
the segments of the word (9.44). This is the only change that we need to make
to prove the analogue of Proposition 9.35.

Proposition 9.37 Let G and G′ = K×A be as above in the Heisenberg alter-
native. Then the group G cannot satisfy all of the propertiesF2,F3, . . . ,Fs+2.

In other words, at least one of the propertiesF2, . . . ,Fs+2 fails.
This proposition is again proved by assuming that properties F2, . . . ,Fs+1

hold for the group G and making a construction that, combined with Fs+2,
will lead to a contradiction. This construction is nearly (verbatim) identical to
the constructions of §9.5.5.
The only difference is that now we start from this new S1 ∼= S⊂K instead of

the previous Sr−1 ∼= S. Then, if s= 1, we proceed as in §9.5.3 and the transver-
sality condition (i.e. the analogue of Theorem 9.25) holds. For this construction
F2 is used. If s� 2 the construction is done step by step as in §9.5.4–9.5.5 un-
til we reach the top dimension. We construct then the analogue ofΩ in (9.145)
and the corresponding transversality property §9.3.3 holds for this Ω. For this
constructionF2, . . . ,Fs+1 is used. Rewriting the details of these constructions
does not seem to be necessary.
The final contradiction withFs+2 is then obtained by the method of §9.2.6;

details will again be given in Chapter 10.
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9.5.7 A recapitulation

We shall collect together the essential features of the constructions of this chap-
ter. We shall use the notation G = N�V , G′ = N′�V for the SSG of §9.5.1,
where N, N′ are nilpotent, A, A′ are Abelian and where we write V = A⊕A′.
This notation is the same for both the Abelian and the Heisenberg cases.
The special case A = {0} was treated in §9.2–9.4. In the Abelian case of
§9.5.1, A′ = Rr−1, with r � 2. In that case we constructed S = Φ(∂ r) an
LL(R) subset of N′�A′, with R� 1. The set N ∩S = E consists of 2r distinct
points Φ(∂0 r). There exist constants such that

d(e,e′)�CRc e,e′ ∈ E e �= e′ S∩N = E, (9.149)

where we can measure the distance in N because of the polynomial distortion
of distances between N and N′ (see §2.14).
In the Heisenberg case of §9.2.5, A′ = R, r = 2 and A= {0}. We then con-

structed S=Φ(∂ r) an LL(R) subset ofG′ and now E =N∩S= (a,b, . . . , f )
are the six segments of the word (9.44) (cf. Figure 9.3). There exist again con-
stants for which (9.149) holds.
In the general situation of §§9.5.5, 9.5.6, we placed ourselves in the case

A=Rs, with s� 1 and we assumed that the conditionsFr, . . . ,Fr+s−1 hold in
G. In both the Abelian and the Heisenberg cases we started from the previous
construction of S ⊂ N′�A′ and E the same set as above. Then we proceed to
construct some

Ω is an LL(R)− ∂ r+s ⊂ G; Ω⊃ S, Ω∩N = E. (9.150)

Furthermore, if we denote by π : G→ V the canonical projection and V1 =
[v ∈V ; |v|< 1] the unit ball of V , then we have the transversality condition

Ω∩π−1(V1) = E×V1. (9.151)
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The Endgame in the C-Theorem

In this chapter we put together what was done in Chapters 7–9 to complete
the proof of the C-theorem (Theorem 7.11). What is difficult in this proof is
that it uses the different components that were constructed in the course of
these previous chapters. Collecting together and describing these components
without going through the details of the constructions again is what we have
tried to do in the first section of this chapter. The reader is invited to spend
time there and to make sure that they understand what is involved, by cross-
checking with the previous three chapters for the definitions and notation that
are used. Once this is done we give two different proofs of the C-theorem. One
is based on ideas from differential topology (see de Rham, 1960; Hirsch, 1976),
the other on ideas from geometric measure theory (see Federer, 1969). More
precisely, the proof of the C-theorem is reduced to the proof of Proposition 10.5
and, as explained in §10.1.7, two different proofs of this proposition will be
given in §§10.2 and 10.4 respectively. Of the proofs, the former is by far the
shorter of the two, but to make it self-contained, familiarity with the notion
of currents is needed. The purpose of the second proof is to avoid this notion.
More will be said on these two proofs in §§10.1.7–10.1.8.
The reader is encouraged to navigate freely in this chapter and not to try to

read it rigidly from beginning to end. Better still, once the reader has captured
the general idea, they are urged to move to the next chapter without worrying
unduly over the details. This general idea, both here and in the earlier §9.4,
is nothing other than extending to higher dimensions what was done in §9.2
and seen very clearly in Figures 9.1 and 9.2, where everything is very easy
indeed. That we can extend this simple construction to higher dimensions is not
surprising: the opposite would have been! These extensions are never difficult
to visualise (see §9.2.7), but they take pages and pages of new notation. . . .

Added in proof The footnote on page 294 very much applies to the presen-
tation of this chapter which simplifies considerably in this new approach. On

320
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the other hand, readers familiar with topological methods may well find other
ways to simplify this endgame.

10.1 An Overview and a Guide for the Reader

10.1.1 Notation and the previous constructions

We shall consider throughout this chapter a simply connected soluble Lie group
that satisfies the C-condition and is of the formQ=N�V , whereN is nilpotent
andV =Rd−1 is a Euclidean space with d � 2 and dimN = n, dimQ= n+d−
1= p. The left-invariant Riemannian metric will be considered throughout. In
Chapter 9 we constructed mappings

f : ∂ d −→ S = Image f ⊂ Q (10.1)

and we shall recapitulate here some of the key properties of these construc-
tions.
The function f is Lipschitz,

f ∈ Lip(C (logR)c) ; R>C, (10.2)

for fixed constants and a parameter R that will be made to tend to ∞. With the
notation of §§7.5.1 and 9.3.2 we can then write

S is an LL(R)− ∂ d ⊂ Q. (10.3)

We shall use the translation of Q and assume, as we may, that e, the identity
of Q, lies on S, and this implies that S lies in a ball of Q centred at e with
radiusC(logR)c. Furthermore, since ∂ d is bi-Lipschitz homeomorphic with
the unit sphere Sd−1⊂Rd , whenever this is convenient the mapping (10.1) will
be replaced by

f : Sd−1 −→ S ⊂ Q; f ∈ Lip(C(logR)c). (10.4)

For the critical transversality condition of this mapping we refer back to §9.3.3,
and forward to §10.1.4.
Example 10.1 Here Q=Gr =Rr�Rr−1 with d = r� 2, p= 2r−1. This is
as in §§9.2–9.4.
Example 10.2 HereQ=H�RwhereH is the Heisenberg group as in §9.2.5.
We then have d = 2 and p= 4.

For the SSG of §9.5, Q = N� (A′ ⊕A) and A′ = Rr−1, A= Rs, V = A′ ⊕A
and therefore d = r+ s, p = n+ d− 1. When A = {0} and s = 0 we can use
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the constructions for the above two examples and then f takes its values in the
subgroup N′�A′ (with the notation of §9.5).
Example 10.3 We take the Abelian alternative in §9.5 with s � 1; the con-
struction of f and S was carried out under the assumptionsFr, . . . ,Fr+s−1 on
Q.

Example 10.4 We take the Heisenberg alternative in §9.5.6; then r= 2, s� 1
and the construction was carried out under the assumptions F2, . . . ,Fs+1 on
Q.

10.1.2 General soluble simply connected C-groups and
their ‘rank’

The importance of Examples 10.1–10.4 lies in the fact that up to polynomial
homotopy equivalence they cover the general case. More precisely, let G be an
arbitrary simply connected soluble C-group and let N�G be its nilradical. We
set

ρ = dim

(
G
N

)
= rank (G). (10.5)

(This terminology for the rank is used mostly in the realisation of symmet-
ric spaces as soluble Lie groups; see Helgason, 1978, Chapter 6.) We saw in
§§8.3.4 and 9.5 that there then exists an SSG Q as in the above examples for
which G  Q is polynomially homotopically equivalent. Furthermore, with
the notation of §10.1.1 and (10.5) we can choose Q so that d− 1 = dimV =

rank(G) (see §8.5.1.3).

10.1.3 Coordinates, distances and Riemannian metrics

We shall denote by π : Q→V the canonical projection and by

g= (x1, . . . ,xn,y1, . . . ,yd−1) ∈ Rp; g ∈ Q (10.6)

the exponential coordinates of the second kind (see §7.3.1) where the xi are
the coordinates on N and the yi are the Euclidean coordinates of V . With these
coordinates π(g) = (y1, . . . ,yd−1), and we shall denote

U =Ua = π−1 (Va) , Va = [v ∈V ; |v|< a] ; 0< a< 10−10. (10.7)

We can identifyU with

U =Ua  N×Va. (10.8)

We shall consider the following distances and Riemannian structures onU .
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(i) The Riemannian norm | |1 on TU induced the Riemannian norm of Q.
(ii) The product Riemannian norm of | |N , the left-invariant Riemannian norm

on N and the Euclidean norm onV . This product norm is denoted by | |2.
(iii) We have | |1 ≈ | |2 onU . This follows from Exercise 8.6.
Given that N is nilpotent it also follows (see §§7.3 and 2.14) that onU the Rie-
mannian distance d1 induced by the above Riemannian norms is polynomially
distorted with respect to the Euclidean distance d induced by the coordinates
(10.6); that is, d1 �C(1+ d)C and vice versa.

10.1.4 The transversality condition on the mapping (10.1), (10.4)

Here a in (10.8) is assumed to be sufficiently small and then

Ua∩S = D1∪·· ·∪Dm (10.9)

breaks up into m disjointed pieces as explained in the transversality condition
of §9.3.3. In particular, π : Dj→Va is bijective and for the distance d we have

d(Di,Dj)� Rc; R�C, (10.10)

for appropriate constants. The exact value ofm is 2r in the Abelian case (where
r is as in Examples 10.1 or 10.3; see also §9.5.7) and m= 6 in the Heisenberg
case, but for our purposes all that counts is that m � 2. Furthermore, for j =
1, . . . ,m, the mappings

f : Aj −→Dj; Aj = f−1(Dj)⊂ ∂ d or Sd−1

as may be the case in (10.1) or (10.4),
(10.11)

are bijective and Lipschitz with Lipschitz constants bounded by C(logR)c for
fixed constants. (For the Lipschitz condition we use the Euclidean structure on
d and the Riemannian structures of §10.1.3.) By its construction the mapping

(10.1), (10.4) has considerablymore structure and is piecewise affine (see §§9.4
and 9.5). This additional structure will be exploited in an essential way in the
constructions below in §10.2 and §10.3.

10.1.5 The filling function and the key proposition

To fix ideas we shall adopt here the version of f given in (10.4) with f defined
in the unit sphere. As in §7.5, a filling function will then be some Lipschitz
function

F : Bd −→ Q; Bd =
[
x ∈ Rd ; |x|< 1], F|Sd−1 = f , Sd−1 = ∂Bd . (10.12)
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Several such extensions clearly exist.
For the next proposition we recall that the Lipschitz norm of the functions

F , f is defined to be

‖F‖Lip = infA such that d (F(x),F(y))� A|x− y|, (10.13)

where the distance is given by the left-invariant metric on Q. The aim of this
chapter is to prove the following result.

Proposition 10.5 Let Q, f , F be as above. Then the Lipschitz norm of F
satisfies

‖F‖Lip � cRc; R�C, (10.14)

for some constants C,c> 0 that depend only on Q.

By property (10.2) on f it follows from (10.14) that as long as it is possible
to make a construction of f as above then property Fd breaks down in the
group Q (see §7.5).

10.1.6 Deducing the C-theorem (Theorem 7.11)

We shall apply the proposition to Examples 10.1–10.4 considered earlier, where
we recall that d− 1 = dimV and that for the construction in Examples 10.3
and 10.4 we had assumed that properties F2, . . . ,Fd−1 hold. The conclusion
from the proposition is therefore that in all these examples Fd breaks down.
Therefore, finally, in all four examples it is not possible thatF2, . . . ,Fd simul-
taneously hold.
The C-theorem (Theorem 7.11) follows from this because of the polynomial

homotopy equivalence of §8.5.1.3. The following more precise result in fact
follows.

Theorem 10.6 (Theorem C) If Q is some soluble simply connected C-group
then at least one of the properties

F2,F3, . . . ,Fρ+1; and ρ = rank(Q) (10.15)

breaks down.

Open Problem 10.7 Given Q as in the theorem it remains an interesting
open problem to specify exactly those indices j for which F j breaks down.
This problem was seen in §9.5.2, though there it was not described exactly
which (or possibly both) of the two propertiesFr orFr+1 breaks down.1

1 Added in proof: This type of problem, or rather the corresponding version in homology
theory, is what the Epilogue at the end of the book is all about.
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10.1.7 Guide for the reader

Two different proofs will be given for Proposition 10.5. The first, in §10.2, is
essentially an application of Stokes’ theorem combined with the transversality
of §10.1.4. This proof will be given in §10.2.1 under the additional condition
that f , F are smooth (in fact they will be assumed to be embeddings). This
proof is straightforward and the reader should definitely start with it. The best
way to get round the smoothness is to use the notion of currents where Stokes’
theorem amounts to the definition of the boundary operator on currents. This
is done in §10.2.2 and for the convenience of the reader we shall there recall
in an informal way the definitions and properties of currents that are needed.
The advantage of this way of using currents is that it is light, but like every
informal approach it leaves something to be desired. For readers who wish
to have more information on currents we give a guide to the literature on the
subject in §10.2.6.
At any rate the reader who is not happy with this attitude can fall back to

the second proof of the proposition that is based on ideas from differential
topology. This second proof is carried out in §§10.3–10.4 and we give a brief
description in the next subsection.

10.1.8 The second approach based on smoothing

When d = 2 in (10.4) the smoothing is exactly what we see in Figures 9.1
and 9.2, where a circle S ⊂ R3 is smoothly placed in R3, albeit in a ‘twisted’
manner. The aim is to do the same thing with higher-dimensional spheres
Sd−1 ⊂ R2d−1 by smoothing out the constructions of Chapter 9. This smooth-
ing uses standard tools from differential topology and is not difficult, although
in places it becomes elaborate to describe. This is very definitely stuff that the
reader should skip in a first reading.
The notation is as in the previous subsection and f is as in (10.4) and F as

in (10.12). By modifying a posteriori the constructions of f and F we shall
show that together with all the previous properties in §§10.1.1–10.1.4 they also
satisfy the following:

(i) F , f areC∞,

(ii) f : Sd−1→ Q and F : Bd →Q

are embeddings of manifolds (the second is a manifold with boundary).
This means that these mappings are one-to-one and that their differentials

are injective (see Hirsch, 1976 for more details).
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(iii) For all x ∈ Aj of (10.11), with 1 � j � m, the differential dπ ◦ d f of the
composed mapping π ◦ f is surjective (i.e. onto) at x.

The regularisation needed to achieve (i) and (iii) is elementary if slightly
technical. This is done in §10.3.
The procedure for achieving (ii) is much deeper and it uses the Whitney

approximation theorem (see Hirsch, 1976, Chapter 2) and can only be carried
out if we assume in addition that

p� 2d+ 1. (10.16)

Condition (10.16) necessitates in Examples 10.3 and 10.4 large values of n and
is for instance never satisfied in Examples 10.1 and 10.2. In the general case,
to get round (10.16) an ad hoc device of jacking the dimension p of Q has to
be used. This will be done in §10.4 where we shall also complete the proof
with the use of Sard’s theorem and the use of transversality from differential
topology.
It is also clear that once we have achieved the smoothness of the mappings

we can fall back on Stokes’ theorem in its smooth version in §10.2.1 and we
can thus avoid the use of currents.

10.2 The Use of Stokes’ Theorem

10.2.1 The smooth case

In this subsection we shall give a proof of Proposition 10.5 under the assump-
tion that F gives a C∞ embedding of the manifold with boundary B in Q. We
recall that this means that F is one-to-one and an immersion (i.e. dF is one-to-
one; see Hirsch, 1976 and §10.1.5).
We shall use, systematically, the notation of §§10.1.1–10.1.5 and the co-

ordinates (10.6) for Q = N�V where X = (x1, . . . ,xn) are the coordinates of
N and Y = (y1, . . . ,yd−1) are the coordinates ofV . We thus identify Q with Rp

and we shall consider a smooth differential form with support inUa/2 in (10.7)
with a> 0 small enough.With the above coordinates this differential form will
be of the form

ω = ϕ(g)dy1∧·· ·∧dyd−1; g= (X ,Y ) ∈ Q. (10.17)

Stokes’ theorem will then be used and with the notation of (10.9) and B =

F(Bd) we have ∫
B
dω =

∫
S
ω =

∫
S∩Ua

ω =∑
j

∫
Dj

ω . (10.18)
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The projection π : Q→ V can then be used to identify each Dj with the
Va of (10.8). An orientation on Rd and on V will be fixed throughout. From
the orientation on Bd ⊂ Rd we obtain an orientation on Sd−1 as the ∂Bd and
therefore an orientation of each Dj. We shall set ε = +1 if π preserves the
above orientations and ε =−1 if it reverses these orientations.
We shall now fix 0 � ϕ0 ∈C∞

0 (Va/2) and define ϕ in (10.17) in such a way
that

ϕ(g) = εϕ0(Y ); g= (X ,Y ) ∈Dj. (10.19)

For such a choice, provided that ϕ0 has been chosen appropriately,we clearly
have ∣∣∣∣∫

S
ω
∣∣∣∣=m

∣∣∣∣∫
Va
ϕ0 dy
∣∣∣∣� 1. (10.20)

Definition (10.19) specifies the values of theC∞
0 function ϕ in (10.17) on the

sets Dj. It is possible to extend this definition to some C∞
0 (Q) function, and if

we take (10.10) into account, this extension can be done in such a way that the
corresponding extension of the form (10.17) satisfies

|dω |1 ∼ |dω |2 �CR−c; R�C, (10.21)

for some appropriate choice of the constants. Here the Riemannian norms | |
of §10.1.3 are used to give norms |dω | on differential forms. Towards that, we
shall choose ϕ(g) = ϕ1(n)ϕ2(v), for g= nv, n∈ N, v ∈V , with |dϕ1|N �CR−c

which is possible by (10.10), and we then have

‖dω‖∞ = sup
g∈Q
|dω(g)|1 �CR−c, (10.22)

for some new constantsC, c> 0, provided that suppϕ2 ⊂Va.
From this we conclude that for an appropriate choice of constants we have∣∣∣∣∫

B
dω
∣∣∣∣� ‖dω‖∞Vold B�CR−c Vold B; R�C, (10.23)

where here the d-dimensional volume for the smooth submanifold B is mea-
sured with respect to the Riemannian norm | |1 on Q as in §10.1.3(i). Combin-
ing (10.18), (10.20) and (10.23), we conclude that

Vold B�CRc; R�C, (10.24)

for appropriate constants. This clearly implies that the Lipschitz constant of

F : Bd −→ B⊂ Q satisfies LipF �CRc; R�C, (10.25)

for some constants and we have a proof of (10.15) and of the proposition in
this special smooth case.
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10.2.2 Stokes’ theorem for the general case. The use of currents

The notation is as in §§10.1.1–10.1.4 but now it is preferable to use the defi-
nition in (10.1) and consider S = f (∂ d) where f is assumed to be Lipschitz
and satisfying the conditions of §§10.1.1–10.1.5.
For F an extension of f to d as in §10.1.5 and B = F( d), the proof of

Proposition 10.5 will follow identical lines. We shall construct some appropri-
ate smooth differential form ω for which∫

S
ω � 1,

∫
S
ω =

∫
B
dω . (10.26)

Here B, S are not hypersurfaces and the above integrals, as well as the fact that
the boundary of B is S, have to be interpreted in the sense of currents. This we
shall explain in the next few lines.
The space of currents

∧∗ is by definition the dual space of ∧T ∗Q, the space
of compactly supported smooth differential forms assigned with theC∞ topol-
ogy on compact sets. (This is an inductive limit topology; see the guide to the
literature in §10.2.6 below.)
Since f , F are Lipschitz we can pull back ω and we obtain f ∗ω , F∗ω ,

which are differential forms with L∞ coefficients. Being slightly pedantic here,
in the definition of F∗ω observe that F extends to some Lipschitz function in
some neighbourhood of d (see Federer, 1969, §2.10.43). Two linear forms on∧
T ∗Q can thus be defined by

〈[S],ω〉=
∫
∂ d

f ∗ω , 〈[B],θ 〉=
∫

d
F∗θ ; ω ,θ ∈ ∧T ∗Q. (10.27)

This is the interpretation of the two integrals
∫
S and
∫
B in (10.26).

The above currents are special: they are integration currents. These are linear
forms on the space of compactly supported differential forms with continuous
coefficients. For any current T we can define (possibly +∞)

‖T‖= sup [|〈T,θ 〉| ; θ ∈∧T ∗Q, ‖θ‖∞ � 1] . (10.28)

In (10.28) we set, as before,

‖θ‖∞ = sup [|θ (g)|1; g ∈ Q] (10.29)

for the Riemannian norm on T ∗Q.
If the currents in Q are written as differential forms with coefficients that

are distributions, then the integration currents are the ones for which the co-
efficients are measures: see the guide to the literature in §10.2.6 below; note
that in Federer (1969, §§4.1.5–4.1.7), these are called ‘currents representable
by integration’, and that the norm (10.28) is denoted by M(T). Note also that
we have to be careful when we say that currents are ‘differential forms with
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coefficients that are distributions’; this is standard practice in the literature but
is an abuse of terminology. For the formally correct way of seeing things see
de Rham (1960, §8).

10.2.3 The boundary operator on currents

The boundary operator b on
∧∗ is defined by (see de Rham, 1960)

〈bT, f 〉= 〈T,d f 〉; T ∈
∧∗

, f ∈
∧
T ∗Q. (10.30)

If T is represented as a differential form with distributional coefficients, and
at least when T is ‘homogeneous’, we have bT = ±dT where the derivatives
are taken in the sense of distributions and the ± depends on the degree of T
(see the literature survey in §10.2.6), then, with that terminology, the second
formula in (10.26) says that

b[B] = [S]. (10.31)

The analogous formula b[ d ] = [∂ d ] in Rd is the classical Stokes’ theorem.
The dual mappings F∗, f∗ of the pullback mappings F∗, f ∗ give the direct

images of currents and the definition (10.27) can be rephrased as

F∗
[ d ]= [B], f∗

[
∂ d ]= [S]. (10.32)

Equation (10.31) therefore says that for the normal current T = [ d ] on Rd

and the Lipschitz function ϕ we have

ϕ∗bT = bϕ∗T. (10.33)

An integration current with compact support is called normal if bT is also an
integration current (see §10.2.6 for more information).
Notice that additional conditions are needed for (10.33) to hold. Observe

for instance that if T is a general integration current, ϕ∗T cannot a priori be
defined unless the coefficients of T as a differential form are L1 functions. This
is because for the pullback of a smooth differential form ω the coefficients of
ϕ∗ω are a priori, L∞ functions (see Federer, 1969, as explained in §10.2.6
below).

10.2.4 The general proof of Proposition 10.5

We shall apply (10.26) to the differential form defined in (10.17), (10.19),

ω = ϕ(X ,Y )dy1∧·· ·∧dyd−1; ϕ = εϕ0(Y ), (10.34)



330 The Endgame in the C-Theorem

but here some care is needed in the definition of the orientation ε and ϕ0 be-
cause since f is only Lipschitz it is not a priori clear how it transports the
orientations from ∂ d to V .
The easiest way to handle this difficulty is to suppose that the support of

ϕ0 lies in Ω which is some very small ball very close to 0. By the piecewise
linear structure of the mapping fV in the definition of f (see §9.4), this Ω can
be chosen in such a way that in the correspondence between ∂ d andV by the
two mappings f and π of §10.1.4, the sets Ω j that correspond to Ω lie in the
interior of simplexes σ of dimension (d−1) of the simplicial decomposition of
the boundary ∂ d (see §9.4.1). To clarify this further, consider Example 10.1.
Then the simplex σ is one of the simplexes of Er−1(P), for some vertex P,
of §9.4.2. What we are then saying is that (π ◦ f )−1(Ω) ⊂ σ . An analogous
definition can be given for all the other examples of §10.1.1. The mapping π ◦ f
can thus pull back the differential form dy1 ∧ ·· · ∧ dyd−1 and the orientation
from V to ∂ d . Therefore the first formula in (10.26) is guaranteed exactly as
in (10.20).
We can, on the other hand, extend the definition of ω as in §10.2.1 with
‖dω‖∞ �CR−c for the same reasons and what replaces (10.23) is that for ap-
propriate constants the following estimate holds (see (10.28)):∣∣∣∣∫

B
dω
∣∣∣∣� ‖ [B]‖ ‖dω‖∞ �CR−c‖ [B]‖. (10.35)

The estimate

‖ [B]‖�CRc (10.36)

follows for appropriate constants. On the other hand, by the definition of [B]
we have

‖ [B]‖�C(LipF)d (10.37)

for some constant and the Lipschitz norm of F in §10.1.5. The conclusion from
(10.36), (10.37) is

LipF �CRc; (10.38)

hence the proof of the proposition.

Remark 10.8 We have been unduly careful with choosing the small ball Ω
and the suppϕ0 ⊂Ω. In fact any ϕ0 � 0, with support in Va/2 as in the smooth
case, would have done just as well for the first formula in (10.26). This follows
from the following.

Exercise 10.9 For simplicity let us stick with Example 10.1. In the definition
of fV : ∂ d → V in §§9.4.5–9.4.6, this mapping is affine when restricted to
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the simplexes of dimension (d− 1) as long as we stay close to P, where P is
any vertex of ∂0 d . Now let us fix some orientation of Rd . This induces an
orientation on ∂ d and therefore on all the above simplexes. We can also fix
some orientation ofV and so what has to be verified is that fV either respects or
reverses these orientations (simultaneously) for all these simplexes that contain
P, and which of the two happens depends only on P. The reader is urged to
think about this. Writing down the details of this is long but, fortunately, as we
saw, we do not have to use this exercise. From this exercise it clearly follows
that the ε = +1 or −1 and ϕ = εϕ0 can be chosen as in (10.19).

10.2.5 Slicing of currents and yet one more proof of
Proposition 10.5

The notion of slicing of currents is subtler and far less standard (cf. §10.2.6).
However, if one is willing to use it, one can present an alternative way of
formulating the proof given in §10.2.4. This approach is interesting and in par-
ticular it avoids the questions of orientation that we had to consider in §§10.2.2
and 10.2.4.
We shall give only an informal (in fact heuristic!) description of this ap-

proach because we feel that very few readers know or are willing to learn what
the slicing of currents really means. The reader who wishes to pursue the mat-
ter further should study first the literature given in §10.2.6.

Heuristic description of slicing When π : U =Rp→Rd−1=V in the canon-
ical projection every absolutely continuous measure dμ = F dx on U can be
disintegrated by Fubini as an integral on V of L1(π−1(v)) functions on the fi-
bres of π , for v ∈ V . The same thing is possible for currents of dimension m
(i.e. the dual of

∧
m T
∗U the differential forms of degree m) provided that

m � dimV = d− 1 = n. Here the example that is relevant is the current [B]
of §10.2.3 where m= d.
The currents for which this can be done are the integration currents T for

which ∂T is also an integration current. These currents are called ‘normal’.
In that case, for almost all v ∈ V we can define a new current on U , called
the slice on π−1(v), which we denote by 〈T,π ,v〉. This is also an integration
current that is supported on π−1(v) and has dimension (m− n). For this the
following Fubini-type of disintegration holds:

T =

∫
V
〈T,π ,v〉dv. (10.39)

A correct interpretation is needed for this formula to make sense. Observe for
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instance that in a naive interpretation the degrees of the two sides of (10.39)
do not match! What counts, and this time the formulas are formally correct, is
that when m> n we have

‖T‖�
∫
‖〈T,π ,v〉‖dv, ∂ 〈T,π ,v〉= (−1)n〈∂T,π ,v〉. (10.40)

The informal proof of Proposition 10.5 that uses the slicing We use the
notation of §10.2.2, apply the slicing (10.39) and (10.40) to T = [B], ∂T = [S],
and write Bv = 〈[B],π ,v〉, Sv = 〈[S],π ,v〉with π : Q→V . Here dimSv = 0, and
for v ∈ V close enough to zero, Sv consists of m points at distances ≈Rc apart
(m and R are as in §10.1.4 and (10.9)).
This means that we can argue on each separate slice π−1(v) = Nv separately

and construct ϕ ∈C∞
0 (Nv) which is a scalar function this time for which

‖dϕ‖∞ = O(R−c), 〈Sv,ϕ〉� 1. (10.41)

On the other hand, since by (10.40)

〈Bv, dϕ〉= 〈Sv,ϕ〉, (10.42)

we deduce that ‖Bv‖ �CRc for appropriate constants. By (10.40) this implies
that ‖[B]‖�CRc, which is the required conclusion in (10.36). This finishes the
outline of this approach.
One reason why this formulation of the proof is interesting is that it runs

in complete analogy with the endgame that we shall play in §10.4 below. In
§10.4.2 we use Sard’s theorem and transversality from differential topology,
while here we use the slicing of currents from geometric measure theory.

10.2.6 Guide to the literature on currents

The classical book on currents is de Rham (1960). One only needs to browse
through the first part of the book to get a clear picture. It is very readable and
the old-fashioned style in which it is written is I feel an advantage.
To get more precise information on the topological vector spaces aspect, one

would have to consult Schwartz (1957) also. In Chapter 12 we shall need quite
a bit of information on those topologies and then more specialised literature is
needed. We shall use Bourbaki (1953) and Grothendieck (1958) for this.
Coming back to currents, unfortunately what one finds in de Rham (1960) is

not the end of the story for us. The integration currents that are our main object
of interest can be found in Federer (1969) and are part of geometric measure
theory. The subject is technical and even pinpointing the exact references that
are needed in this book is not an easy task. Starting to read it from scratch to
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find each reference as needed is very time consuming; in the next few lines a
guide will be given as to what to look for.
Federer (1969, Chapter 4) is the relevant chapter for us and in fact only
§4.1.1–§4.1.19 are really needed. The definitions of normal currents are in
§4.1.7. Our formula (10.33) can be found in §4.1.14. This formula is explicitly
stated in the second half of that section. The important point that has to be
understood is that we can take direct images of normal currents by Lipschitz
functions. This is explained in the first part of §4.1.14. For this the notion of flat
seminorms (see §4.1.12) and a specific homotopy formula (see §4.1.13) have
to be used.
For the slicing and the relevant formulas that we use in §10.2.5 one has to

look at §4.3.1 and §4.3.2 and here §4.1.18 is needed.
The hope is that the above indications will help the reader to inform them-

selves on these important notions.

10.3 The Smoothing of the Mapping f : ∂ d →Q

10.3.1 An overview

As already explained in §10.1.8, for the second approach to the C-theorem we
shall need that the mapping given in (10.1) and (10.4) is smooth. The purpose
of this section is to show how we can start from the Lipschitz mappings as
defined in §10.1.1 and thenmodify them and smooth them out while preserving
their essential properties.
As usual, the smoothing is done by convolutionwith a mollifier but the prob-

lem here is that one usually loses the bijectivity as soon as convolution is used.
These mappings therefore have to be modified first and be ‘linearised’ near the
vertices of the cube ∂0 d . This is the reason for the combinatorial considera-
tions that we start with in §§10.3.2–10.3.4. For the first basic construction of
§§9.3–9.4 the linearization is done in §10.3.5. For the second basic construc-
tion of §9.5 the linearization is done in §10.3.7. Once this is achieved the rest of
the smoothing procedure is straightforward. This linearization in the first part
of the smoothing consists of an ad hoc elementary argument that is, however,
long to write down. The reader should first concentrate on understanding what
is happening rather than worrying too much about the details (see the informal
recapitulation at the end of §§10.3.5 and 10.3.6). In the exercise of §10.3.6 the
need for that linearization will become clear.
Basic non-trivial ideas from differential topology that are not elementary

will be needed to guarantee that f is in addition an embedding f : Sd−1→ Q
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(see §10.1.8). This, however, will be postponed until §10.4 where the final
endgame is also played out.

10.3.2 Simplexes revisited. Their canonical position in affine space

We shall denote, throughout, V = Rn a real finite-dimensional vector space.
We shall consider σ = [v0, . . . ,vn] ⊂ V a non-singular simplex, that is, we as-
sume that Intσ =

◦σ (see §9.1.3) and that 0 ∈ Intσ . We shall denote the basis
vectors ofV by e j = (0, . . . ,0,1,0, . . . ,0) , with 1� j� n, and define the linear
transformation A ∈ GL(V ) by Av j = e j. Since 0 ∈ (Aσ)◦ lies in the interior of
the image, the first vector Av0 has to lie in the negative quadrant and there exist
scalars λ j such that

Av0 = e0 = (λ1, . . . ,λn) ∈V ; λ j < 0, j = 1, . . . ,n. (10.43)

In what follows, the image simplex Aσ = [e0, . . . ,en] will be called the canon-
ical position of σ . The A is clearly unique if, as we always do, we fix the order
of the vertices of the simplex.
We shall identify, in what follows, V with its dual space V ∗ by the scalar

product induced by the orthonormal basis e1,e2, . . . ,en. We shall illustrate the
canonical position of σ by constructing the dual simplex σ∗ = [σ∗0 , . . . ,σ∗n ] ⊂
V ∗ that we used in §9.4.6. We recall that the non-singular simplex σ∗ ⊂ V ∗ is
called a dual simplex if 0 ∈ Intσ∗ and if

〈σi,σ∗j 〉> 0; i, j = 0,1, . . . ,n, i �= j. (10.44)

Example 10.10 The simplex σ = [σ0,σ1,σ2, ]⊂R2 is a triangle in the plane
and, if we denote by σ∗j the orthogonal projection of σ j on the face opposite
σ j, we have a dual simplex.
Rather than trying to generalise this example in higher dimensions we shall

assume that σ = [e0,e1, . . . ,en] is in the canonical position (10.43). Then the
simplex σ∗ = [e∗0, . . . ,e

∗
n] given by

e∗0 = (1,1 · · ·1), e∗j =−e j+ ae∗0; j �= 0 (10.45)

is a dual simplex provided that a > 0 is small enough. The verification of
(10.44) for this definition is immediate.

For a general simplex σ as above let A ∈ GL(V ) be the linear transforma-
tion that brings it to its canonical position σ . Then σ∗ = A∗σ∗ for the adjoint
transformation is a dual simplex.
(Verification: 〈σ j,σ∗k 〉= 〈A−1e j,A∗e∗k〉= 〈e j,e∗k〉.)



10.3 The Smoothing of the Mapping f : ∂ d →Q 335

10.3.3 The tessellation of §9.4.5 revisited
Let V = Rn and σ be as in the previous subsection. For every subset I ⊂
[0,1, . . . ,n] of length 1� |I|� n and any set of positive scalars λ (I)

i > 0 (i ∈ I)
we shall denote, as in §9.4.5,

eI =∑
i∈I

λ (I)
i vi ∈V ; (10.46)

no confusion should arise between these eI and the basis vectors of the previous
subsection. Similarly to (9.81), for any increasing chain of subsets

J : J1 ⊂ ·· · ⊂ Jn = [0,1, . . . ,n] (10.47)

with |Ji|= i, for 1� i� n, we can consider the conical domain

CJ = CC(eJ1 , . . . ,eJn)⊂V.
These give the required tessellation of V in §9.4.5.
If we consider now σ ′ = [v′0, . . . ,v

′
n] and other similar simplexes and vectors

e′I =∑
i∈I

μ (I)
i v′i; μ (I)

i > 0, i ∈ I, (10.48)

for the same chainJ we can define new conical domainsC′J ⊂V and a new
tessellation of V . These two tessellations in §9.4.5 were linked together by a
continuous, piecewise linear mapping:

Ψ=ΨeI ,e′I : V −→V ; (10.49)

it will be more convenient to writeΨ=Ψ[eI ,e′I ]. This mapping is characterised
by the fact that Ψ(eI) = e′I and that its restriction on each CJ of the first
tessellation is a linear mapping ofCJ ontoC′J of the second tessellation.

Example 10.11 When V = R is one-dimensional then Ψ becomes a dilation
ofR with possibly different dilating constants for the positive and negative half
axes V± = [x ∈ R; ±x> 0].
Key Example 10.12 Here we go back to the notation of §10.1.1 and Exam-
ple 10.1, with r ⊂Rr = N, V = Rr−1. Note thatdimV = n= r−1 here. This
example is related to the first basic construction of §§9.3–9.4.
We shall identify V with a hyperplane V ⊂ N such that V ∩ r = {0}, that

is, this hyperplane intersects the cube r only at 0 ∈ ∂0 r. We shall denote
by κ : N→ V the affine mapping that is defined by the radial projection from
the centre of the cube (= (1/2, . . . ,1/2)) onto V . When ξF is the middle point
of the face F ⊂ r of the cube that corresponds to the index I ⊂ [1, . . . ,r] and
contains 0 ∈ F (here |I| � r− 1 and we are using the notation of §9.4.1), we
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shall write eI = κ(ξI) ∈ V . This notation is compatible with that in (10.46)
when vi = κ(ei) where now e1, . . . ,er are the basis vectors of Rr = N. These
vectors ei can be identified with vectors along the edges of r (i.e. in ∂1 r)
that contain 0.
With these eI , in our definition of Ψ in (10.49) we shall take e′I = ζI ∈ V

as in (9.87). The mapping fV defined in §§9.4.3–9.4.6 coincides then near 0
(∈ ∂0 r) with

fV =Ψ◦κ ; Ψ=Ψ
[
eI,e

′
I

]
; (10.50)

a similar identification can be made for all the other vertices in ∂0 r.

10.3.4 The linearization ‘lemma’ of Ψ near the origin

Here we shall present a technical lemma that in the next subsection will be
used in the smoothing of the function fV of §§9.4.3–9.4.6 and (10.50). The eI ,
e′I and Ψ=Ψ[eI ,e′I ] are as in (10.49).
We shall modify the mapping Ψ(v) so that it does not change when |v| is

large but it becomes a non-singular linear transformation v→ Av, with A ∈
GL(V ), in some small neighbourhood of 0. In view of the transversality con-
dition (see §9.3.3) we shall require from this modification to maintain the ‘bi-
jectivity near 0’.
More precisely, we shall provisionally denote by Ψ̃ : V → V this modifica-

tion and impose the following conditions:

(i) A constant c1 > 0 will be chosen and will stay fixed: say c1 = 10−100.
(ii) The modification Ψ̃ to be constructed will satisfy Ψ̃(v) =Ψ(v) for |v|>

c1.
(iii) We shall show that it is possible to find some c3 < c1 and A ∈ GL(V ),

some non-singular linear transformation, such that the following hold:

(iv) Ψ̃(v) = Av for v ∈ Bc3 = [|v|� c3];
(v) (here is the crux of the construction:) for every v ∈ Bc3 there exists

one and only one ω ∈ V such that Ψ̃(ω) = v and ω is given by
ω = A−1v.

It goes without saying that Ψ̃ is a Lipschitz mapping. A more accurate nota-
tion for this modification would have been Ψ̃=ΨA or evenΨA,c1,c3 .
In the above definition of Ψ̃ we have transgressed standard mathematical us-

age. We should have said the following: given c1 > 0 there exists c3, A andΨA

such that (iv) and (v) hold. We feel, however, that the way we have described
the set-up is more transparent.
To see that the above construction is possible we start first from the special



10.3 The Smoothing of the Mapping f : ∂ d →Q 337

case when both the two simplexes σ , σ ′ of §10.3.3 are in canonical position
(see §10.3.2). In that case we choose some 0 < c2 < c1 and χ(v), with v ∈ V ,
some cut-off function that satisfies χ(v) = 1 for |v|< c2, χ(v) = 0 for |v|> c1
and 0< χ(v)< 1 for c2 < |v|< c1. We shall then set

Ψ̃(v) = χ(v)v+(1− χ(v))Ψ(v); v ∈V (10.51)

and show that the function will satisfy the required conditions with A = I, the
identity, and c3 > 0 sufficiently small, that is, ΨI = Ψ̃.
To see this we consider the annulus R = [c2 < |v| < c1]. It is then clear that

condition (iv) holds. Furthermore, if in condition (v) we impose the additional
restriction that ω �∈ R then (v) certainly holds. Now if I is some multi-index
with |I|= n (as in §10.3.3) and if v ∈ R∩CC(vi; i ∈ I) the intersection of the
annulus with the convex conical domain generated by the vi (see §9.4.5), then
Ψ(v) ∈ R′ ∩CC(v′i; i ∈ I) for some other annulus R′ = [c′2 < |v| < c′1] with
c′2 > 0. The fact that σ , σ ′ are in canonical position guarantees from this that
no convex combination of v and Ψ(v) is close to 0 (draw a picture to see this).
And this, in view of the definition (10.51) completes the proof of property (v)
in this special case.
Now let B,B′ ∈ GL(V ) be two non-singular linear transformations. By our

definition (see §10.3.3) we then have
Ψ[eI,e

′
I ] = (B′)−1 ◦Ψ[BeI,B

′e′I ]◦B. (10.52)

These two linear transformations can be chosen so that Bσ , B′σ ′ are in canon-
ical position, where now we have started from two arbitrary simplexes σ , σ ′

as in §10.3.3. Formula (10.52) allows us therefore to reduce the general case
to the special case that we have just treated. This completes the construction in
general because we can then set A= (B′)−1B in (iii).

10.3.5 The linearization of the Key Example 10.12

We shall go back to the mapping of §9.4.3,
f = ( fN , fV ) : ∂ r −→ N�V = Gr, (10.53)

of the first basic construction.
As in (10.4) the first step is to transform this into a mapping

f : Sr−1 −→Gr
∼= R2r−1. (10.54)

This is done by composing f in (10.1)with the radial projection from the centre
of r onto the sphere Sr−1 with the same centre as r that goes through ∂0 r.
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For x0 a vertex on ∂0 r ⊂ Sr−1 and c> 0 small enough we write
Bc = Bc(x0) =

[
x ∈ Sr−1; |x− x0|< c

]⊂ Sr−1, (10.55)

which is a small neighbourhood of x0, and consider the restriction of the map-
ping fV on Bc,

fV : Bc −→V. (10.56)

The same radial projection can again be used so that in (10.55), for c small
enough, f can be identified with

fV : T −→V, (10.57)

where T is a neighbourhood of size c of 0 in the tangent space Tx0(S
r−1) =Vx0

of Sr−1 at x0. As explained in Key Example 10.12, this mapping (10.57) can,
in a small neighbourhood of 0, be identified with the mapping (10.49), (10.50),

Ψ
[
eI ,e

′
I

]
: Vx0 −→V. (10.58)

This mapping can thus be modified and can be linearised as in §10.3.4. The
choice of the constants 0 < c3 < c1 in the ‘linearization lemma’ will be made
in what follows and from that we can make the following construction.
There exists c3 < c1 that satisfies the conditions of §10.3.4. Furthermore,

these constants can be chosen to be much smaller than the c of (10.55), (10.56).
The local modification of the lemma will then be performed on fV on Bc(x0)
and this will be done for every x0 ∈ ∂0 r.
If c is small enough, these modifications for the various vertices of ∂0 r do

not interfere with each other and they can be put together because the value
fV (x) of the original definition does not change if x is not close to ∂0 r. More
explicitly, we see that there exist small constants 0 < c′ � c′′ � 1 such that if
we denote by f̃ V the modified function

f̃ V : Sr−1 −→V, (10.59)

then f̃ V is Lipschitz and satisfies

(i) f̃ V (x) = fV (x) if d(x,∂0 )> c′′;
(ii) for each x0 ∈ ∂0 r, f̃ V

∣∣
Bc′ (x0)

is the composition of the radial projection

κ with a non-singular linear function from Tx0S
r−1 toV (abusing notation

we use the same notation for this radial projection as in (10.50)).

Since in (10.53) the function fN is constant near the vertices ∂0 r we can
choose c′′ small enough and define a modification of the global function (10.53)
by setting

f̃ =
(
fN , f̃ V
)
: Sr−1 −→Gr (10.60)
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and this can be done so that f̃ is Lipschitz and satisfies the transversality prop-
erties of §9.3.3.

Recapitulation of the essential features

There exist c,c∗ > 0 such that the small neighbourhoods of the vertices ∂0 r

correspond in a one-to-one fashion to a small neighbourhood of 0 in V via the
projection of Gr on V . Explicitly we have

f̃−1[nv; n ∈ N, v ∈V, |v|< c∗]⊂ [
⋃
Bc(x0); x0 ∈ ∂0 r] , (10.61)

f̃ (Bc(x0))⊂ {x0}×V ⊂ Gr; x0 ∈ ∂0 r, (10.62)

and furthermore, for each x0 ∈ ∂0 r, the mapping

f̃ : Bc(x0)−→ {x0}×V (10.63)

is, modulo the radial projection κ , a non-singular affine mapping.
The final point is that this modification has not changed the Lipschitz prop-

erties of f and

f̃
(
Sr−1
)
= S̃ is an LL(R)− ∂ r ⊂ Gr. (10.64)

To see this recall that fN has not been modified and therefore (10.64) amounts
to the fact that there exist constants such that

f̃ V ∈ Lip(C(logR)c) ; R�C. (10.65)

This is obvious because by construction the Lipschitz norm of f̃ V depends only
on the Lipschitz norm of fV and c1, c2, A and χ in §10.3.4.
In this recapitulation it is worth observing that all this elementary but lengthy

work was done for one purpose and one purpose only: namely to linearise and
achieve the additional linearity property of (10.63). Having achieved this lin-
earization we shall show in the next subsection that the function f̃ that has been
constructed and satisfies (10.61), (10.62), (10.63) and (10.65) can be smoothed
and can in addition be assumed f̃ ∈ C∞. The proof below is ad hoc but, quite
generally, any Lipschitz mapping f : Sd → G into some Lie group (and other
more general Riemannian manifolds) can be smoothed out while keeping the
Lipschitz constant under control. Exponential coordinates can be used to iden-
tify G locally with Rn. Then a simplicial decomposition of Sd can be used to
localise. The idea is simple but the details are involved because among other
things the decomposition of Sd has to depend on ‖ f‖Lip.
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10.3.6 Smoothing by convolution

We shall show here how the smoothness properly asserted at the end of the pre-
vious subsection is achieved. And to make the presentation as clear as possible
we shall start from the case d = 2 so that then Sd−1 can be identified with the
one-dimensional torus T which is a group. We can therefore use ordinary con-
volution to regularise and approximate uniformly any vector-valued Lipschitz
function f : T→ E . This is done by a sequence

C∞ � fn = f ∗θn −→ f ; lim‖ fn‖Lip �C‖ f‖Lip, (10.66)

where θn ∈ C∞(T), suppθn ⊂ [−1/2,1/2] and ∫T θn dt = 1 (see Katznelson,
1968, Chapters 1 and 2).
This convolution applied to the function f̃ of the previous section shows that

the property f̃ ∈ Lip(C(logR)c) of (10.65) is maintained after regularisation.
The vector space E is now Gr = N�V with its usual (see §9.2) vector space
structure R2r−1.
The additional transversality and linearity conditions (10.61), (10.62) and

(10.63) that f̃ satisfies show that, in addition, in this case fn→ f̃ converges in
theC∞ topology (see Katznelson, 1968, Chapter 1) near the vertices of ∂0 . In
addition, near these vertices for n large enough, fn are one-to-one and they in-
duce embeddings of the four neighbourhoodsBc(x0), x0 ∈ ∂0 of (10.55) into
V for c small enough. Properties (i) and (iii) of §10.1.8 are therefore satisfied
by fn if n is large enough.

Exercise Verify the above. The reason for the lim in (10.66) is that the Eu-
clidean structure on E and the Riemannian structure onGr are not identical. To
deal with this difficulty we use §8.3.5, which gives explicitly the Riemannian
structure onGr in terms of the Euclidean coordinates of E and this allows us to
dispose with the localisation (see the end of §10.3.5) and it simplifies matters.
The fact that fn remains one-to-one near the vertices comes from (10.63) and
the affine nature of the function is used.

This completes the proof for d = 2.
In the general case d � 2, Sd−1 is not a group. But the convolution with

smooth measures μ = ϕ ds on the orthogonal group SOd can be defined by the
action x→ sx on Sd−1, for x ∈ Sd−1, s ∈ SOd . We set

f ∗ μ(x) =
∫
SOd

f (sx)dμ(s) (10.67)

for any reasonable function f on Sd−1. When ϕ ∈ C∞, the above convolution
gives a smooth function and when

∫
dμ = 1 and support μ → (the identity
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of SOd) we obtain the same approximating sequence as in (10.66), which has
exactly the same properties.
This convolution can then be applied to the function f̃ of (10.59) in the

general case and finishes the proof.

Exercise Fill in the details in the above argument.

Recapitulation The function f̃ that is finally obtained, together with the prop-
erties in the recapitulation of §10.3.5, is in addition C∞ and satisfies the trans-
versality property (iii) in §10.1.8.

10.3.7 Smoothing the second basic construction of §9.5
In this subsection we shall consider the Abelian case of §9.5. We recall some
of the notation used there where the simply connected soluble C-group Q of
§10.3.1 was instead denoted by G and

G= N�
(
A′ ⊕A)= N�V, G′ = N′�V ⊂ G,

A= Rs, A′ = Rr−1; s� 0, r � 2.
(10.68)

Here, as before, N is a simply connected nilpotent group and Rr ∼= N′ ⊂ N
and, with the notation of §§9.2.1, 9.5.1, G′ ∼=Gr×A. Here and throughout this
section we use the notation of §9.5.
In the construction in §9.5 we consider a unit cube r ⊂ N′ = Rr and this

was used to make the first basic construction of S ⊂ Gr. Then a new cube was
considered,

r+s = r×[−1,1]s ⊂ Rr+s = N′ ⊕A,
s
∗ = [−1,1]s ⊂ A, (10.69)

and the original cube r was identified with

P= r×{0} ⊂ r+s; 0= centre of s
∗ . (10.70)

The set of vertices ∂0 r is then identified with the subset P0 ⊂ P. In this con-
struction r and s∗ play different roles. We constructed in §9.5 a mapping

f = ( fN , fA′ , fA) :
r+s −→ G (10.71)

with the three components in N, A′, A respectively. The two key conditions on
f are

f
(
∂ r+s)=Ω is an LL(R)− ∂ r+s ⊂G (10.72)

and the transversality conditions (9.147) are satisfied in small neighbourhoods
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of the points of f (P0). Observe also that here P0 is not the set of vertices of the
cube (10.69); it is the set of vertices of the slice P of that cube in (10.70).
As before we shall first show howwe start by smoothing out ∂ r+s so that it

becomes the unit sphere Sr+s−1 and then we smooth out f so that it preserves
the key properties and becomes a smooth function f : Sr+s−1 → G. The first
step is to write

∂ r+s = (∂ r× s
∗)∪ ( r×∂ s

∗) = L∪M. (10.73)

As in §10.3.5 we shall use the radial projection to identify ∂ r with Sr−1

and then L becomes a cylinder with base Sr−1 and edge s∗, that is, L= Sr−1×
s∗. We then use (10.73) to make the identification of ∂ r+s with Sr+s−1 in

such a way that L is identified smoothly with the belt

Sr−1× s
∗ ⊂ Sr+s−1, (10.74)

around the subsphere Sr−1 ⊂ Sr+s−1.
This situation becomes simple to describe when s= 1 because what we have,

in effect, is the construction of Sr as the suspension of the lower dimension
sphere: Sr = SSr−1 (see Hilton, 1953). In that suspension, Sr−1 becomes the
equator and the two components of M in (10.73) collapse to the north and
south poles respectively.
In the identification of ∂ r+s with Sr+s−1, P0 in (10.70) is identified with a

set

PS0 ⊂ Sr−1×{0} ⊂ Sr−1× s
∗ ⊂ Sr+s−1 (10.75)

where (10.74) is used. We then proceed exactly as in (10.1), (10.2) and we
identify the function f of (10.71) with a function

f : Sr+s−1 −→ G. (10.76)

This new function is again in Lip(C(logR)c) for appropriate constants and its
image Ω = f (Sr+s−1) ⊂ G satisfies the transversality conditions (9.147) as
explained in §9.5.5.
We shall use the notation of §§10.1.1–10.1.4 where d = r+ s, V = A′ ⊕A,

dimV = d−1, and π : N�V →V is the canonical projection. Then the above
function in (10.71), (10.76) can be rewritten

f : ∂ d −→ N�V, f : Sd−1 −→ N�V (10.77)

and the transversality condition can be formulated as in §10.1.4.
Our aim is to proceed as in §§10.3.5–10.3.6 and smooth out the function f

so as to satisfy the additional conditions (i)–(iii) of §10.1.8. Given the work
that has already been done, this smoothing of f is now quite easy to do.
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Let us go back to the construction of §9.5 for the function f in (10.71) and
recall that we first used the first basic construction to construct

f ′ = ( fN′ , fA′) ; ∂ r −→ N′�A′ = Gr ⊂ G. (10.78)

Then we obtain f by identifying ∂ r with

∂ r×{0} ⊂ ∂ r× s
∗ = L⊂ ∂ r+s (10.79)

and by extending the definition of f ′ from ∂ r to the whole of ∂ r+s. In
terms of coordinates we have

f (α,β ) ∈ G; α ∈ ∂ r, β ∈ s
∗, (α,β ) ∈ L,

f (α,0) = f ′(α) ∈ A′ ⊂V. (10.80)

Let us also recall that in the construction of §9.5, a dilation was used (see end
of §9.5.3 and (9.147) versus (9.148)) to identify s∗ with the cube

[−N,N]s ⊂ A⊂V with N ∼ (logR)c. (10.81)

Going through the construction in §9.5 it is clear that in the extension from f ′

to f we can take (in fact this is the natural thing to do)

f (α,β ) = f ′(α,0)+Nβ ∈ G′ ⊕A⊂ G (10.82)

as long as |β | < 10−10. Here the dilation from s∗(⊂ Rs)→ A = Rs given
by β 	→ Nβ , with β ∈ Rs, is used. This is clear enough when s = 1 in the
modification in the construction in §9.5.3. For s� 1 one has to follow the way
the constructions of §§9.5.4–9.5.5 were made.
The conclusion is that once we have modified and linearised f ′ near ∂0 r

in the sense of §10.3.4, formula (10.82) automatically gives a linearization of
f and this mapping is seen to be affine in some small neighbourhood of the
vertices PS0 ⊂ Sr+s−1 of (10.75). Here we understand the term ‘affine function
on Sr+s−1’ in the sense of (10.63), that is, after composition with, say, a radial
projection from Sr+s−1 onto the tangent space.
Once we have achieved this linearization we can use convolution exactly

as in §10.3.6 and guarantee that f can also be taken to be C∞ and satisfies
conditions (i) and (iii) of §10.1.8. The bijectivity near PS0 of the function after
convolution is seen as in the first exercise of §10.3.6. We shall omit the details.

10.3.8 The smoothing for the Heisenberg alternative

The Heisenberg versions of the two basic constructions were carried out in
§§9.2.5 and 9.5.6. In each of these two cases, the function f that we need to
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smooth out is defined on the circle S1. As a result, this linearization is as in
Example 10.11 and is much easier,
not to say entirely trivial. One formal difference from the Abelian case is that

here we linearise on the six vertices of §9.2.5 (see also §9.5.7) and this contrasts
with the four vertices of ∂0 2 for the Abelian case of the same dimension.
The other changes in §10.3.6 that have to be made for the smoothing are

entirely formal and involve only a change in the notation. The details will be
left as an easy exercise for the reader. Notice, finally, that in Figure 9.4 we tried
to draw this embedded circle in R4.

10.3.9 Smoothing of the extension mapping F of §10.1.5
Here we shall go back to the mapping F : Bd → Q that extends f : ∂Bd → Q
to the whole of the unit ball Bd as in §10.1.5. We shall assume that we have
already performed the smoothing of f as explained and that f ∈C∞. A priori, F
is not smooth but there are several easy ways of modifying F to guarantee that
F ∈C∞ and that conditions (i) and (iii) of §10.1.8 are satisfied. The procedure
that we shall describe in the next few lines is as good as any. Let us define

F̃(x) = F(2x); x ∈ Rd , |x|� 1
2 ,

F̃(x) = f (σ) = F(σ) for x= rσ ∈ Rd , 12 < r < 2, σ ∈ Sd−1,
(10.83)

that is, we use polar coordinates in 1/2< |x|< 2. The mapping F̃ is Lipschitz
in |x|< 2 and there existsC such that

‖F̃‖Lip �C‖F‖Lip; F̃
∣∣∣
Sd−1

= f . (10.84)

We can then replace F̃ by Fε = F̃∗ϕε for some mollifier ϕ ∈C∞
0 with

∫
ϕε = 1,

and suppϕε ⊂ [|x|< ε], for ε > 0, and we have

lim‖Fε‖Lip �C‖F‖Lip; Fε |Sd−1 = fε −→
ε→0

f , (10.85)

for theC∞ topology (cf. the first exercise in §10.3.6). We can then replace F , f
by Fε , fε for ε sufficiently small and all is well in §10.1.8 (i), (iii).

A final remark on the proof of Proposition 10.5 In the next section, this
proposition and (10.14) will be proved under the assumption that F is smooth.
Explicitly, it will be seen that for ε > 0 small enough the function Fε in (10.85)
will satisfy

‖Fε‖Lip �CRc; R�C (10.86)

with constants that are independent of ε > 0. If we combine this with (10.85)
we have a proof for the original function F .
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10.4 The Second Proof of Proposition 10.5

10.4.1 The mapping F in §10.1.5 can be made to be an embedding
In the previous section we went through the lengthy but elementary process
that shows that in §10.1.5 and in the proposition the mappings f , F can be
assumed to beC∞ and also satisfy the properties of §§10.1.1–10.1.5 and of (i),
(iii) of §10.1.8.
It remains to be seen how we can also assume without loss of generality

that F : Bd → Q is in addition an embedding of a manifold with boundary as
asserted in §10.1.8(ii). This will use standard but non-trivial facts from differ-
ential topology and can only be achieved directly if the condition

p = dimQ� 2d+ 1 (10.87)

is satisfied. We shall make that assumption in §10.4.2 and complete the proof
of the proposition.
In §10.4.3 we shall use a simple device that ‘jacks up’ the dimension of

Q in Proposition 10.5 while keeping d fixed. This will allow us to make the
assumption in the proof that (10.87) is satisfied and this completes the proof.

10.4.2 Use of facts from differential topology

Here the assumption (10.87) that p� 2d+ 1 will be made and all the notation
introduced in this paragraph will be maintained. The function F : Bd → Q in
Proposition 10.5 will here be assumed to beC∞ as explained in §10.4.1 and we
shall apply the Whitney approximation theorem to this mapping (see Hirsch,
1976, Chapter 2; the fact that Bd has a boundary makes no difference because
among other things, we can extend the definition of F to some neighbourhood
of Bd). This theorem says that we can find new functions

F̃ : Bd −→ Q, f̃ = F̃
∣∣∣
Sd−1

: Sd−1 −→ Q (10.88)

that approximate F , f as close as we like in the C∞ topology and for which
the mappings are embeddings of manifolds (with boundary); that is, one-to-
one and immersions (i.e. the differentials of the mappings are non-singular).
These new mappings therefore satisfy all the properties of §§10.1.1–10.1.4 and
also properties (i), (ii) and (iii) of §10.1.8 provided that the approximation in
(10.88) is close enough.
We shall complete the proof for these two new functions F̃, f̃ and to simplify

the notation we shall drop the tildes ‘˜’ and denote these functions by F , f
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instead. As in (10.12), we shall write

B= F(Bd)⊂ Q, ∂B= S = f (Sd−1),

Va = [v ∈V ; |v|< a] , π : Q−→V,
(10.89)

where a will be chosen appropriately small. We can then assert that T ⊂ Va,
the set of regular values of π ◦F and π ◦ f is of full Lebesgue measure in Va.
(This is the content of Sard’s theorem; see de Rham, 1960; Hirsch, 1976. To
elaborate, x ∈ B (resp. x ∈ ∂B) is called a singular point of π ◦F (resp. π ◦ f )
if at that point the rank of d(π ◦F)x (resp. d(π ◦ f )x) is < the dimension of
V . Then the Lebesgue measure of the image of singular points by π ◦F (resp.
π ◦ f ) is zero. It is the complement of that image that we call the set of regular
values.)
On the other hand, by (10.10) there exist constants such that

d(s,s′)� cRc; R>C, x ∈Va, s,s′ ∈ Sx = π−1(x)∩S, s �= s′, (10.90)

and recall that Sx consists of m points, an even number (m= 2r in the Abelian
case or 6 in the Heisenberg case). The distance in (10.90) is measured for either
of the two Riemannian metrics | |2 or | |1 of §10.1.2. Therefore, by elementary
differential topology, for all x ∈ T we can write

Bx = π−1(x)∩B=M(1)
x ∪·· ·∪M(q)

x ; q=
m
2
, (10.91)

where each M( j)
x is a ‘neat submanifold’ of B (see Hirsch, 1976, §1.4), that is,

it is a one-dimensional embedded submanifold of B for which ∂M( j)
x consists

of two distinct points on Sx.
If we combine (10.90), (10.91) with the equivalence of Riemannian met-

rics explained in §10.1.2, it follows that there exist constants such that for the
Riemannian metric | |1 their lengths satisfy

l(i)x = Length
(
M(i)
x

)
� cRc; R�C, i= 1, . . . ,q. (10.92)

We shall now consider the Riemannian d-dimensional volume of B for the
metric | |1 in §10.1.2. By elementary differential geometry (this is sometimes
called the coarea formula) we have

VoldB� Vold
(
π−1(T )∩B)� q

∑
i=1

∫
T
l(i)x dx� cRc; R�C, (10.93)

for appropriate constants. From this, exactly as in §10.2, we deduce that
Lip F̃ � cRc; R�C, (10.94)

where the constants depend only on the constants of (10.90) and where we go
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back to the notation with tilde for the approximating function F̃ in (10.88). If
that approximation is close enough in the C∞ topology it follows that (10.94)
also holds for the original function F and this is the required estimate (10.14)
for the proof of Proposition 10.5. We have thus settled the special case p �

2d+ 1.

10.4.3 Getting round the constraint (10.87) on the dimensions

It is easy to see that without condition (10.87) theWhitney approximation theo-
rem may fail. The standard counterexample is provided by a figure 8 immersed
in the plane.
Observe that in the examples of §10.1.1 it is only Examples 10.3 and 10.4

for dimN large enough that satisfy condition (10.87). This gives us a clue as to
how to get round this difficulty.
Let us start from an arbitrary Q = N �V as in §10.1.1 and let us choose

A� 1 sufficiently large so that for Q∗ we have

Q∗ = N∗�V = RA×Q, N∗ = RA×N; dimQ∗ � 2d+ 1, (10.95)

with d as in (10.87). We shall denote here π∗ : Q∗ →V , the canonical projec-
tion, and since Q ⊂ Q∗ canonically we can identify the functions F , f of the
proposition that take their values in Q, with functions

F : Bd −→Q∗, f : Sd−1 −→Q∗. (10.96)

On the mappings (10.96) we can therefore apply the treatment of §10.4.2 and
approximate these mappings by new mappings

F∗ : Bd −→ Q∗, f ∗ = F∗|Sd−1 : Sd−1 −→Q∗, (10.97)

where these mappings are embeddings and for which all the conditions of
Proposition 10.5 and (i), (ii) and (iii) in §10.1.8 are satisfied. The idea here
is that to perform the approximation of the functions of the proposition we had
to spill out of Q in Q∗.
Now we can apply the result for the special case of §10.4.2 to Q∗, F∗, f ∗

and π∗. We deduce that

LipF∗ � cRc; R�C, (10.98)

where the constants in (10.98) are independent of the particular approximation
(10.97) that we used and depend only on F , f .
By making this approximation sufficiently close we deduce that the same

thing holds for F and

LipF � cRc; R�C.
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This completes the proof of the proposition in full generality.



11

The Metric Classification

Overview of Chapter 11 (and a Preview of Part III)

In this chapter we shall give the geometric classification theorems B and NB
for general groups. We shall see in particular that for this classification the spe-
cial groups that are soluble and simply connected and which have preoccupied
us in the first four chapters of the theory play the role of building blocks. We
recall (see §7.3) that these groups are diffeomorphic to some Euclidean space
(and vice versa!; see §11.2.1). The tool that allows us to use these as a building
block in the theory is the notion of quasi-isometries (see §7.1; i.e. diffeomor-
phismsM1

ϕ−→M2 with |dϕ |, |dϕ−1| bounded).
Theorem 11.14 already gives the distinct flavour of what is achieved. This

theorem says that as long as the group G is simply connected then G is quasi-
isometric with U ×K, where K is some compact group and U is a simply
connected soluble group. Furthermore, U is a C-group (resp. NC-group) if G
is a B-group (resp. NB-group). By examples one easily sees that the simple-
connectedness is essential for such a quasi-isometric classification to hold.
Despite this, by passing to the simply connected cover of any connected

group G, we can claim that with the above and with Chapters 7–10 we have
what we wanted: namely a geometric B–NB classification of G.
Whether this classification should be considered satisfactory is a matter of

opinion. One thing that is certain is that to go further we need new ideas.
One such idea is the use of the coarse quasi-isometries of §11.1.1 below.

Without rewriting the definition here, we can say that this new metric notion
captures the global large distances ‘outlook’ of some metric space while ig-
noring the local differences that could be very drastic. For instance, with this
definition, R and Z, with their natural distances, are coarse quasi-isometric.
Locally of course, these two spaces could hardly look more different.
One way to ‘popularise’ the notion is to place an observer very far out: for

349
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such an observer the distinctions between consecutive integers in Z blur out
and on the whole Z and R look the same.
Once a precise definition is given, we shall prove in §11.2 that ifU1,U2 are

two simply connected soluble groups and if, with their natural distances, they
are coarse quasi-isometric then if one is a C-group (resp. NC-group) then so is
the other. We shall also show (see §11.1.5) that if G is some connected B-group
(resp. NB-group) then there existsU , some simply connected soluble C-group
(resp. NC-group), such that GU (coarse quasi-isometric).
Theorem 11.16 is in fact more precise and, in view of preparing the ground

for Part III of the book, we shall say a few more things on this. In that theorem
we start from some connected Lie groupG and then construct a new Lie group
G1, and what the theorem says can be highlighted schematically as follows:

G∼
1
G1 ∼

2
Q×K; Q∼

3
U.

Here Q is some connected soluble group,U is some simply connected soluble
group and K is some compact group.
Here ∼

3
is some coarse quasi-isometry which will be constructed explicitly

in §11.3.3 and is quite simple. The definitions of ∼
1
and ∼

2
are even simpler:

∼
1
is given by G1 → G1/F = G, the quotient mapping by some finite central

subgroup F . As for ∼
2
, it is a genuine quasi-isometry (and not a coarse one).

Finally, and this by now goes without saying, all the groups G, G1, Q and U
are simultaneously B or NB.
It is this sequence of equivalences ∼ (: 1,2 and 3) that prepares the ground

both for Appendix F and Part III of the book. Let us allow ourselves to end up
by giving a preview of what happens there.
The fundamental topological invariants of homotopy and homology theory

will come into play. More explicitly, in Part III we shall develop an adapted
homology theory that takes into account the metric character of the space (here
this space is the groupG) and which is invariant by the polynomial equivalence
of §7.1. Then the above equivalences∼ (: 1,2 and 3) will allow us to start from
any group and get back to our building blocks, that is, the simply connected
soluble groups.
On these building blocks the homology will be ‘computed’ and on the basis

of this we shall capture once more the B–NB classification of the group.
In the final remark of this chapter one will also find a direct and easier con-

struction of the coarse quasi-isometry G U that always exists for any given
connected Lie group G and some simply connected soluble groupU .
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11.1 Definitions and Statement of the Metric Theorems

11.1.1 Definitions of quasi-isometries

Depending on the use one wants to make, different definitions of quasi-contrac-
tions and quasi-isometries between two metric spaces (M1,d1) and (M2,d2)
can be used. Here Mi denotes the space and di(·, ·) denotes the distance in (M,
d). We shall explain the notions involved in Definitions 11.1, 11.3, 11.4, 11.5
below.

Definition 11.1 Let f : (M1,d1)→ (M2,d2) be a mapping between two met-
ric spaces. We say that f is Lipschitz or a quasi-contraction if there exists some
constant A> 0 such that

d2( f (x), f (y)) � Ad1(x,y); x,y ∈M1. (11.1)

Remark 11.2 IfM1,M2 as above are Riemannian manifolds and if f satisfies
(11.1) then the differential d f exists almost everywhere and

d f : TM1 −→ TM2; |d f |� A a.e. (11.2)

(see §7.1.1). The converse is not quite true and (11.2) does not in general imply
(11.1). The classical counterexample is the singular increasing function from
[0,1] to [0,1] with zero derivative almost everywhere. If we make, however,
the additional hypothesis that f ∈C1 or even locally Lipschitz then (11.2) does
imply (11.1). Locally Lipschitz means that for every m ∈M1 there exists m ∈
Ω⊂M1 some neighbourhood of m on which f is Lipschitz with a constant AΩ
in (11.1) that may depend on Ω.

Together with the notion of a quasi-contraction comes the notion of a quasi-
isometry.

Definition 11.3 Let (M1,d1), (M2,d2) be two metric spaces as above. We
then say thatM1, M2 are quasi-isometric if we can find

M1
ϕ−→←−

ϕ−1
M2, (11.3)

where ϕ , ϕ−1 are two bijective mapping inverses of each other such that ϕ ,
ϕ−1 are both quasi-contractions.

We shall now generalise the above notions so that only large distances are
taken into account.

Definition 11.4 Let f : (M1,d1)→ (M2,d2) be as in Definition 11.1. We then
say that f is a coarse quasi-contraction if there exist constantsC > 0 such that

d2( f (x), f (y)) �Cd1(x,y)+C; x,y ∈M1. (11.4)
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Notice that in the above definition f does not have to be continuous.

Definition 11.5 Let M1,M2 be two metric spaces as above. We then say that
they are coarse quasi-isometric if there exists a constant C and coarse quasi-
contractions α , β that satisfy

M1
α−→←−
β

M2;

d1 (β ◦α(x),x)�C, d2(α ◦β (y),y)�C; x ∈M1, y ∈M2. (11.5)

Two important examples follow.

Example 11.6 Let us go back to our original definition of a compactly gener-
ated locally compact group G. Then, as we saw in §1.1, every compact gener-
ating neighbourhood of the identity e ∈Ω⊂ G induces a natural left-invariant
distance dΩ. We have previously pointed out (see §1.1) that the identity map-
ping on G is a coarse quasi-isometry for the two distances that correspond to
two different such neighbourhoodsΩ1 and Ω2.

Example 11.7 The above example can be elaborated as follows. Let G be
some compactly generated locally compact group and let d = dΩ be the above
distance that corresponds to some compact neighbourhood of the identity as
above. Let K ⊂ G be some compact subgroup and let

G
K

= [ġ= gK; g ∈ G] ; π : G−→ G
K

(11.6)

be the right homogeneous space and π the natural projection. When K is nor-
mal, G/K is the quotient group. Even when K is not normal the distance d on
G induces on G/K the distance

ḋ(ẋ, ẏ) = inf [d(x,y); x ∈ ẋ, y ∈ ẏ] , (11.7)

provided that the distance d is K-right invariant, that is, d(xk,yk) = d(x,y), for
x,y ∈ G, k ∈ K. (Notice that, by replacing Ω if necessary with [

⋃
k−1Ωk; k ∈

K], we can always achieve this on dΩ up to coarse quasi-isometry.Analogously,
a left-invariant Riemannian structure, as in §1.4.1, can be assumed to be K-
right invariant up to quasi-isometry: see §14.2.4.1 below.)
When K is normal this is again the left-invariant distance on the groupG/K.

For these distances π is a quasi-contraction. It is always possible to construct
s : G/K → G, a Borel mapping that satisfies π ◦ s(ġ) = ġ for all ġ ∈ G/K.
Such a mapping is usually referred to as a Borel section. The two mappings

G
π−→←−
s

G/K induce a coarse quasi-isometry. In many important examples in

this chapter the section s will be a C∞ embedding.
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From §6.1 and the above it follows, in particular, that every connected lo-
cally compact group (: LCG) as above is coarse quasi-isometric to some con-
nected Lie group. As a consequence, several of the results of this chapter ex-
tend to this larger class of groups.

Example 11.8 Another natural example of coarse quasi-isometry occurs in
the left-invariant group distances and the natural injection i : R→G whereG is
some LCG that is compactly generated and R is a closed cocompact subgroup.
This means that there exists K ⊂ G some compact subset such that G = R ·K.
This example was examined in §2.12.2 where, in effect, we showed that R
and G are coarse quasi-isometric. From this example we see in particular that
coarse quasi-isometric spaces can in fact look very different, for example Z⊂
R, the integers as a subset of the reals gives a coarse quasi-isometry. On the
other hand, Zr and Zs are coarse quasi-isometric only if r = s (prove that).

The next example that we shall consider is important and we shall use it
explicitly later on.

Example 11.9 LetM be someC∞ manifold and let R be some abstract group
that acts cocompactly on the left and gives a group of diffeomorphisms on M.
We denote that action by

m 	−→ r ·m ∈M; m ∈M, r ∈ R. (11.8)

We shall assume that there exists K ⊂M some compact subset such that

R ·K = [r · k; r ∈ R, k ∈ K] =M. (11.9)

We shall assignM with two Riemannian structures, that is, two scalar prod-
ucts 〈·, ·〉1, 〈·, ·〉2 on the tangent space TM that are both invariant by the group
action. This means that

〈drX , drY 〉i = 〈X ,Y 〉i; r ∈ R, X ,Y ∈ TM, i= 1,2, (11.10)

where r is identified with the diffeomorphism (11.8). The conclusion is that
these two Riemannian structures are quasi-isometric.

Exercise 11.10 Verify this. The proof is immediate since we have 〈X ,X〉1 ∼
〈X ,X〉2 for X ∈ TmM, m ∈ K by the compactness of K. We then apply (11.10).
Example 11.11 A further example of a coarse quasi-isometry that will be
used systematically is given by M M×K, where both M and K are metric
spaces and K is a metric space of bounded diameter, for example some com-
pact space and the direct sum distance is assigned on the product. In that case
the two mappings α , β of (11.5) are supplied by the canonical injection and
projectionM→M×K→M that are induced by the Cartesian product.
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Finally, it is clear that both the quasi-isometries and the coarse quasi-iso-
metries are equivalence relations between metric spaces. Verification of this is
immediate and of course without this property the notions would have been of
very little use.

11.1.2 The building blocks and the C–NC classification theorem

The basic building blocks for the geometric characterisation of the classifica-
tion of the C–NC conditions that we shall give are the soluble simply connected
Lie groups that we examined in detail in Chapters 7–10.
The following is an essentially elementary result but it needs proving. We

shall give the proof in §11.2 below.
Theorem 11.12 Let U1, U2 be two simply connected soluble Lie groups as-
signed with their left-invariant Riemannian structure and let us suppose that
they are coarse quasi-isometric (:U1 U2 as in Definition 11.5). Then U1 is a
C- (resp. NC-) group if U2 is a C- (resp. NC-) group.

This result will be combined with the observation in Example 11.11 and we
can deduce the following result.

Corollary 11.13 Let U1, U2 be two simply connected soluble Lie groups as-
signed with their left-invariant Riemannian structures. Further, let K1, K2 be
two bounded metric spaces (e.g. both compact) such that

U1×K1 U2×K2 coarse quasi-isometric (11.11)

as in Definition 11.5. Then U1 is a C- (resp. NC-) group if and only if U2 is.

11.1.3 The classification theorem for simply connected Lie groups

Theorem 11.14 Let G be some simply connected Lie group. Then there exists
U some simply connected soluble Lie group and K some compact Lie group
and

G−→
ϕ

U×K −→
ϕ−1

G, (11.12)

two diffeomorphisms that are bijective and inverses of each other and that give
a quasi-isometry G  U ×K as in Definition 11.1. Furthermore, U is a C-
(resp. NC-) group if G is a B- (resp. NB-) group.

This theorem should be combined with Corollary 11.13.
It is easy to show by examples (see §11.3.4 below) that the simple-connected-

ness is essential for (11.12) to hold.
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For any connected Lie group we can consider the simply connected cover
π : G→G that is B (resp. NB) if G is. One could therefore argue that the above
theorem, together with Theorems 7.10 and 7.11, gives the required geometric
B–NB classification for general connected Lie groups.

11.1.4 Soluble non-simply-connected groups

It is here that the notion of coarse quasi-isometry takes its full significance. We
recall also that a Lie group T is called a torus or a toroidal group if T  Tk

with T= R(mod1).

Theorem 11.15 Let Q be some connected soluble Lie group. Then there exists
U, some soluble simply connected Lie group, and T some torus and

Q
ϕ−→←−

ϕ−1
U×T, (11.13)

a bijective diffeomorphism that induces a coarse quasi-isometry. Furthermore,
T is isomorphic with a maximal compact subgroup of Q (see Hochschild, 1965,
§XV.3.1) and U is a C- (resp. NC-) group if G is.

By concrete examples we shall see that it is impossible in general to improve
(11.13) and have genuine quasi-isometries.
The complete proof of this theorem will only be given in Appendix F. The

main application of this theorem is that the simply connected soluble groupU
is coarse quasi-isometric with Q and this is quite easy to see directly (see §11.3
below).

11.1.5 One more geometric classification of connected Lie groups

Here we shall consider a general connected Lie group G.

Theorem 11.16 Let G be a connected Lie group. Then there exist Q, some
connected soluble Lie group, and K, some connected compact Lie group. There
exist also G1, some other connected Lie group, and F ⊂ G1, some finite cen-
tral group such that G is homomorphic with G1/F and G1 is smoothly quasi-
isometric with Q×K. Furthermore, the soluble Lie group Q is a C- (resp.NC-)
group if G is a B- (resp. NB-) group.

By smoothly we mean of course that there exist diffeomorphisms

G1
ϕ−→←−

ϕ−1
Q×K (11.14)
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that give a quasi-isometry.
Now if we invoke Examples 11.11 and 11.7 and Theorem 11.15, we finally

see that a coarse quasi-isometry exists as in Definition 11.5,

G
α−→←−
β

U, (11.15)

where U is simply connected soluble. But now a priori the α , β are not even
continuous, let alone smooth. TheU in (11.15) is C (resp. NC) if G is B (resp.
NB). This follows from Theorems 11.15 and 11.16 and in view of Exam-
ple 11.7, (11.15) also holds for general connected LCGs. A direct proof of
this important consequence of Theorem 11.16, that does not use the theorem,
will be given at the end of the chapter.

Remark (Not used in our theory) The amenability property of §3.1 is not
preserved by quasi-isometries (see (11.42)). It is, however, preserved if we
restrict ourselves to unimodular groups. One can use the HLS estimates of
Varopoulos et al. (1992) (see §1.3.2) to see this. Alternatively, one can use the
Følner condition (cf. Paterson, 1988, §§4.6(iii), 4.13) directly. The details are
easy but will not be given in this chapter. This, on the other hand, together with
§§1.2, 2.5.4, highlights the role that unimodularity plays in the theory.

11.2 Proof of Theorem 11.12

11.2.1 A reformulation of Theorem 11.12

We recall first Definition 7.12, the polynomial filling property (PFP).
Let M be some Riemannian manifold. We say that M admits the PFP if for

all n� 1 there existsC =Cn such that for all R� 100 and all

f : ∂ n −→M, f ∈ LipR, (11.16)

there exists an extension

F : n −→M; F |∂ n = f , F ∈ Lip(RC). (11.17)

As in §7.5.1, and ∂ denote the unit cube and its boundary in Rn.
In view of the theorems of §§7.4–7.5, our Theorem 11.12 admits the follow-

ing equivalent formulation.

Theorem 11.12′ Let U1, U2 be two coarse quasi-isometric soluble simply
connected groups. Then U1 admits the PFP if and only if U2 does.
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The PFP is in general not invariant under coarse quasi-isometries and the
special nature of U1, U2 is needed. The proof of this theorem will be done in
the next subsection. This proof, although not deep or difficult, is submerged in
a ‘torrent’ of notation. The reader could, or indeed should, skip the details in a
first reading.
It is worth noting, however, that this theorem has very little to do with group

theory and is a consequence of the following result.

Lemma 11.17 Let U1, U2 be two homogeneous smooth Riemannian mani-
folds that satisfy the following conditions:

(a) If x,y ∈Ui, with i= 1,2, are two points, then there exists T , a Riemannian
isometry on Ui, such that Tx= y. We shall further assume that

(b) both U1, U2 are diffeomorphic with a Euclidean space and

(c) U1, U2 are coarse quasi-isometric by the mappings U1
α−→←−
β

U2 as in

Definition 11.5.

Then if U1 admits the PFP, so does U2 also.

It is clear that the lemma implies Theorem 11.12′ because of the funda-
mental fact (see Varadarajan, 1974 and §7.3) that the simply connected soluble
group satisfies the conditions of the lemma. But what is also true is that as soon
as U is a Lie group that satisfies condition (b) of the lemma, then U has to be
a soluble simply connected group (see the exercise below). As a result, for all
practical purposes, the formulation of the lemma is essentially an equivalent,
but perhaps more transparent, reformulation of Theorem 11.12′.

Exercise 11.18 Verify the above. When the Lie group U is as in (b) of the
lemma, then since U is simply connected we use the Levi decomposition and
the (generalised – see §4.6) Iwasawa decompositionU = Q�NAK, R= Q�

NA, with K compact and simply connected. Therefore R is soluble and simply
connected and K has to reduce to the identity. (There are all sorts of ways of
seeing this last point! For example, the homologyHn(K) �= 0 when n= dimK.)

A digression: general locally compact groups revisited (see Chapter 6) Let
G be some connected locally compact group such as those we considered in
§6.1. Then by the general theory on these groups (see Montgomery and Zip-
pin, 1955) there exists K ⊂G, some compact normal subgroup, such that G/K
is a Lie group. Using Example 11.7 and (11.15) we deduce therefore that G
is coarse quasi-isometric with some soluble simply connected Lie group. Fur-
thermore, if we use the previous lemma we can give a geometric (metric) B–
NB classification for these connected locally compact groups. Moreover, this
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classification is consistent with the classification that is suggested in §6.1 and
which is based on the analytic theory of Part I of the book.
This matter will, however, not be pursued any further.

11.2.2 Proof of Lemma 11.17

11.2.2.1 Notation We first recall notation from §§7.5, 9.2 and denote by
the unit cube, and by R the cube of size R� 1010 in Rn. For simplicity in
the notation we shall suppress the dimension n in = n. These are assigned
with their Euclidean distance and all the Lipschitz conditions below refer to
that distance. All the positive constants c1,c2, . . . that we shall introduce in the
proof depend only on U1, U2 in the dimension n and the two mappings α , β ,
but they are independent of R. These constants are introduced successively and
c j will also depend on the previous ones, c j−1, . . . ,c1.
In what follows we shall assume that R, the size of the cube is large and

for a larger integer m � R we shall denote by ( R)m the grid points of the
cube [0,R/m,2R/m, . . . ,R]n ⊂ n

R at a distance R/m apart that subdivide the
cube into mn small subcubes. The notation (∂ )m = ( R)m ∩ ∂ R will also
be used. Two points on this grid will be called adjacent if they are vertices of
the same small subcube as above. These grid points will be denoted by zmi and
the ones that lie in the boundary will be denoted by żmi (see Figure 11.1).

11.2.2.2 The picture in two dimensions, n = 2. Cube of size R We start by
subdividing R into subcubes of size � 1 as explained.

0

xj

zmi
zmi

xj+1

R

Figure 11.1 The points xj ,xj+1 are adjacent, i.e. a distance ≈ 1 apart on the
boundary. For large m, the grid points of ( R)m are zmi , where i ∈ Z2 is a dou-
ble index. The notation żmi indicates grid points that lie on the boundary.
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U2U1

∂  R

b

a

f

Figure 11.2 The mappings φ : ∂ R→U1, and α , β are given.

gk

gjz
m
i

Γzi

gp

U2

afxk

afxk+1

afxj+1

afxj

m

Figure 11.3 We write γ = γ1 ∪ γ2 ∪ · · · . The term Γ denotes the extension of γ
to R, and defines the new points Γzmi . The following sets of points are close:
Γżmi = γ j żmi ∼ αφxj and then βΓżmi ∼ βαφxj ∼ φxj ∼ φ żmi .

What makes the dimension n= 2 special is that the adjacent points x j, x j+1
(see Figure 11.1) can be denoted as successive points as we enumerate them
round the boundary.
Here φ : ∂ R→U1, with φ ∈ Lip(1), is given. (This, modulo scaling, is the

same as some Lip(R) mapping →U1.) We shall assume thatU2 has the PFP
and proceed with a construction that will show thatU1 also has the PFP.

11.2.2.3 The first extension (See Figures 11.1, 11.2 and 11.3.)We construct
paths γ j that join αφx j with αφx j+1 and parametrise them to be γ j(t), with
t ∈ [ j, j+ 1], and γ j ∈ Lip(c1). By following γ1,γ2, . . . , one after the other, we
obtain γ ∈ Lip(c1), γ : ∂ R → U2. For this construction only properties (b)
and (c) of the lemma have been used and also, at least the way it looks, the
fact that the dimension n = 2. We shall see, however, below that this can be
generalised to higher dimensions. But before this we shall finish the proofs in
this special case.
We use the PFP on U2 and extend γ to Γ : R →U2 such that Γ|∂ R

= γ
and Γ∈ Lip(Rc2), with R� 1010 where, to apply the PFP, we scale first to bring
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R to the unit cube . From this it follows that we can find R� m� Rc3 such
that for the two adjacent points in the grid ( R)m we have

d
(
Γ(zmi ),Γ(z

m
j )
)
� 1; zmi , z

m
j ∈ ( R)m adjacent. (11.18)

Let us fix some j = 1,2, . . . and consider a point żmi between x j and x j+1. Then
Γ(żmi ) = γ j(żmi ) is close to αφx j and therefore βΓ(żmi ) is close to βαφx j which
in turn is close to φx j and φ żmi (see Figure 11.3). Explicitly,

d
(
βΓ(żmi ),φ ż

m
i

)
� c4. (11.19)

The bottom line is this: from R intoU1 we have defined two mappings:

(i) The first is φ : ∂ R→U1 defined only on the boundary.

(ii) The second is βΓ(zmi ) and is defined only on ( R)m.

We shall now glue together these two mappings and define

Y = ∂ R∪( R)m −→U1 (11.20)

and to be able to do this we shall first need to modify the value of the second
mapping of (ii) as follows: on żmi ∈ ∂ R we shall not give the value βΓ(żmi ) but
the value φ żmi which is close, by (11.19). The function so obtained is clearly a
Lipschitz function from Y with the induced Euclidean distance to the spaceU1
with the Riemannian distance. For this use (11.18), (11.19).
To render the following (and final) construction more general and more

canonical we shall scale in Rn (here n= 2) so that R becomes R1 with R1 
m and ( R)m becomes the ‘unit’ grid, that is, the lattice points X0 = R1 ∩Zn.
Our set Y and our mapping in (11.20) then becomes

f0 : Y0 = ∂ R1 ∪X0 −→U1,

f0 ∈ Lip(c5).
(11.21)

The proof of Lemma 11.17 will now be a consequence of the extension prop-
erties to be described below (see Bott and Tu, 1982, p. 147).

11.2.2.4 The second extension Here there is no real advantage in assuming
that n = 2. This extension property says that we can extend f0 to a Lipschitz
mapping on the whole cube:

f : R1 −→U1, f ∈ Lip(c6). (11.22)

With this, if we scale back, we obtain a proof of our lemma.



11.2 Proof of Theorem 11.12 361

11.2.2.5 The first extension revisited The first extension property is a sim-
pler version of the mapping §11.2.2.4. The original function

f : X0 −→U1, f0 ∈ Lip(c) (11.23)

is defined on X0 = R∩Zn for some c> 0 and R � 1010. Then there exists C
depending on c but independent of R such that we can extend f0 to a function

f : R −→U1, f ∈ Lip(C), f |X0 = f0. (11.24)

Note that here the Lipschitz property (11.23) for the function f0 can be refor-
mulated by saying that

d
(
f0(x1), f0(x2)

)
� c for adjacent points x1,x2 ∈ X0. (11.25)

Notice that the argument of §11.2.2.3 started with the construction of the
paths γ j and these are the special case for n = 1 of this extension which we
applied separately on the four sides of the square 2

R. Using the first extension
property on each of the 2n faces of R again, we can therefore repeat what was
done in §§11.2.2.2–11.2.2.3 for any dimensions n� 2. The proof of the lemma
as we finished it in §11.2.2.4 works therefore for all dimensions.

11.2.2.6 Proof of the extension properties Together with X0= R∩Zn (here
R is a large number) we shall denote by Xj the union of the j-dimensional
boundaries ∂ j (see §9.4) of all the subcubes of size 1 with lattices on X0. We
have X0 ⊂ X1 ⊂ ·· · ⊂ Xn−1⊂ Xn = R. To prove the first extension property of
(11.24), (11.25) we shall construct inductively f j : Xj→U1, with f j ∈ Lip(c j),
that give successive extensions, that is, f j+1

∣∣
Xj

= f j .

This is immediate by the triviality of the π j(U1) = 0 homotopy group. The
homogeneity property (a) in the lemma allows us to make these extensions
with Lipschitz constants that are independent of the position of the particular
face Fj+1 ∈ ∂ j+1 whose boundary ∂Fj+1 ⊂ ∂ j. More explicitly, f j is already
defined on ∂Fj+1 and we extend it on Fj+1.
This is exactly what is also done for the second extension property where

the inductive construction of the functions f j : ∂ R∪Xj = Yj → U1 is done
as before. With the same notation if Fj+1 ⊂ ∂ R then Fj+1 ⊂ Yj+1 and we
do not need to do anything. If not, we have again ∂Fj+1 ⊂ Yj and of course
∂Fj+1 is bi-Lipschitz homeomorphic to ∂ j+1. As before, the triviality of the
homotopy group π j(U1) is used for the extension and just the definition of the
homotopy groups is used (see Hilton, 1953).
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11.3 Soluble Connected Groups

The groups that will be considered in this section will be soluble and con-
nected, but not necessarily simply connected. Further, and more technical, re-
sults on these groups will be given in Appendix F. Here we shall give a direct
proof of the main corollary of §11.1.4 which says that every soluble connected
group is coarse quasi-isometric with some soluble simply connected group.
Also, in a number of examples we shall see how the notions on metric spaces
that were introduced in §11.1 apply on soluble Lie groups.

11.3.1 The maximal central torus

LetG be some connected Lie group.We shall consider toroidal subgroups, or a
torus, T ⊂G; that is, T is closed and∼= Tk, where T=R (mod1). If the group
T �G is a normal torus, it is necessarily central because the inner automor-
phism induced by G on T has to be a discrete group since the automorphism
group of T is discrete. It follows that the inner action of G on T has to be
trivial. Note also that if T1,T2 ⊂ G are two such normal tori then so is T1T2
because that group is compact and soluble (see Hochschild, 1965 §XIII.1.3).
Consequently, there exists one such torus that is maximal.
We shall denote by TG this maximal compact central subgroup of G. This

subgroup TG is fully invariant, that is, it is invariant by all automorphisms
α ∈ Aut(G), α(TG) = TG. As a consequence, if H ⊂ G is some connected
closed normal subgroup we have TH ⊂ H ∩ TG because TH is normal in G.
Easy examples show (see below) that we do not in general have TH = H ∩TG.
This, however, is the case when H is assumed nilpotent (see next subsection).
Observe finally that the quotient group G/TG contains no non-trivial central
tori, for otherwise its inverse image in G would be soluble and compact and
strictly larger than TG. One other incidental fact that we shall not actually use
is that since TG is central it lies in the nilradical N�G and therefore TG = TN .

Example Let T be a one-dimensional torus and F ⊂ T a finite subgroup. Let
S be some compact semisimple group and F1 ⊂ S some finite central subgroup,
F  F1 (see Helgason, 1978, §§II.6.9 and VII.6). Let G be the group that we
obtain from T × S after we identify F with F1, that is, quotient by (x,−x),
with x ∈ F . Then T can be identified with some central subgroup of G and
T ∩S1 = F1 (with the obvious identification of S with a subgroup S1 ⊂ G). On
the other hand, TS1 = {0}.
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11.3.2 Nilpotent groups

The central tori in a nilpotent group N are easy to describe. The reason is that
if π : Ñ → N is the universal covering group then D = kerπ ⊂ Ñ is a central
discrete subgroup ∼= Zk and therefore by the nilpotency it follows that D ⊂
Z(Ñ) the analytic centre of Ñ (see Hochschild, 1965, §XVI.1.1; Varadarajan,
1974, §3.6.4).
We have then the following natural identifications:

N =
Ñ
D
,

Z(Ñ)
D

=V ×T ;
V ∼= Rp, T = Tq, TN = T ⊂ N;
N1 =

N
T

= simply connected.

(11.26)

Here we use the fact that every connected Abelian Lie group is of the form
V ×T . These can be summarised by the exact sequence

0−→ TN −→ N −→ N1 −→ 0. (11.27)

Exercise 11.19 With the help of Varadarajan (1974, §3.6), verify the above
facts.

Now if K ⊂ N is some compact subgroup of N then TNK is also compact,
and by (11.27) the image of that group in N1 is also compact, and therefore by
the simple-connectedness of N1 this image is {e}. As a consequence K ⊂ TN .
Example 11.20 The Heisenberg algebra h = (ζ ,μ ,ν) is generated by the
three vectors such that ζ = [μ ,ν] lies in the centre of h (Definition 9.5). Using
the exponential coordinates of §7.3.1 we see that the corresponding simply
connected group H is generated by the one-parameter subgroups

H = ZXY ; X =
[
X(t1) = et1ν

]
,

Y =
[
Y (t2) = et2μ

]
, Z =
[
Z(τ) = eτζ

]
; t1, t2,τ ∈ R.

(11.28)

Let

D= [Z(n); n ∈ Z]⊂ Z ⊂H. (11.29)

Then we shall consider the identifications

HT =
H
D

= TXY ; T =
Z
D

= THT , (11.30)

where (11.30) denotes the product of the one-parameter subgroups

HT = [Z(τ)X(t1)Y (t2); t1, t2 ∈ R, τ ∈ R(mod1) = T] . (11.31)

Here we use the same notation as (11.28) and identify the subgroups with the
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images of the subgroups (11.28) by the mapping H→ HT . Of course Z(τ) is
the subgroup Z/D= THT , hence the periodic values of τ in (11.31).
This is therefore a version of ‘periodic’ exponential coordinates similar to
§7.3.1.
These exponential coordinates give aC∞ identification

HT

ϕ−→←−
ϕ−1

T×R2 =H0. (11.32)

Here on H0 we shall give the direct product group structure and by the dis-
cussion in Example 11.7, ϕ is a coarse quasi-isometry for the left-invariant
Riemannian structures that are involved.
These types of coarse quasi-isometries are fundamental in the theory. They

illustrate the notions of §11.1.1 very well because in particular HT and H0
are not quasi-isometric. To see that the mappings of (11.32) are not quasi-
isometries we consider the corresponding mappings on the simply connected
covering groups: these cannot be quasi-isometries since then the two sides of
would have different volume growths at infinity (see Varopoulos et al., 1992).
The volume growth, on the other hand, is clearly a quasi-isometric invariant.
The fact that no quasi-isometry exists between the two groups of (11.32) will
not be used but nevertheless for the proof we can again appeal to volume
growth, together with the “lifting” argument that we use in the more involved,
but similar, situation developed in §11.3.4 below.

11.3.3 Tori in connected soluble groups

The type of argument that we used in §11.3.2 applies to connected soluble
groups Q as follows. Let N�Q be the nilradical (a closed subgroup; see Var-
adarajan, 1974, §3.18.13). Then Q/N is Abelian and of the form V ×T as in
(11.26). Let Q1 = π−1(V ) for the canonical projection π : Q→Q/N. Then, by
Example 11.8, Q1 is coarse quasi-isometric with Q. On the other hand, if TN is
the maximal central torus of N then the group Q1 is, by Example 11.7, coarse
quasi-isometric with Q1/TN = U and this group is simply connected soluble
and, furthermore,U is a C- (resp. NC-) group if Q is a C- (resp. NC-) group.

Exercise Use §2.2 to verify this last point.
With the above we have kept the promise that we made at the beginning of

this section that Q is coarse quasi-isometric withU .
Using this coarse quasi-isometry for soluble connected groups we shall see

in the next section that this can in fact be achieved for all the connected Lie
groups. Nonetheless, it is worth noting that the proof that we gave also works
for all amenable groups (see §3.1).



11.3 Soluble Connected Groups 365

Exercise Refer to §F.3, (F.9) and verify this.

11.3.3.1 Exponential coordinates revisited We shall consider a special case
of §11.3.3 and assume thatQ/N =V is a Euclidean space. In other words, with
our previous notation, we shall assume that T = 0 but that the central torus TQ
is not necessarily trivial. We then have

π : Q−→ Q
TQ

= Q∗ = simply connected. (11.33)

We shall express Q∗ in terms of exponential coordinates of the second kind

Q∗ = {e∗1(r1) · · ·e∗n(rn); r j ∈R, 1� j � n}, (11.34)

where we use the notation e∗j(r j) = er jξ
∗
j for the one-parameter subgroups as in

§7.3 for appropriate vectors ξ ∗j ∈ q∗ the Lie algebra of Q∗. We then lift the ξ ∗

by dπ(ξ j) = ξ ∗j in an arbitrary manner to vectors ξ j ∈ q in the Lie algebra ofQ
and write e j(r j) = er jξ j ∈ Q for the corresponding one-parameter subgroups;
these can be used to define the products and the bijective mapping

σ : e∗1(r1) · · ·e∗n(rn)−→ e1(r1) · · ·en(rn),
Σ= [e1(r1) · · ·en(rn) ∈ Q; r j ∈R]

(11.35)

and this, by (11.34), can be identified to a section (see §8.4)
Q−→

π
Q∗ −→

σ
Σ, π ◦σ = Identity. (11.36)

We have thus obtained a bijective diffeomorphism

Q
ϕ−→←−

ϕ−1

Q
T
×T, T = TQ,

Q
T
−→←− Σ,

(11.37)

and as we saw in Example 11.7, ϕ , ϕ−1 give a coarse quasi-isometry. From this
we also obtain exponential coordinates of the second kind on Q itself, exactly
as in (11.31). This can be done because TQ is central (fill in the details).

11.3.4 The role of the fundamental group

We shall present here an example that illustrates a number of important points.

Example 11.21 The notation is as in Example 11.20.Once again h=(μ ,ν,ζ )
is the Heisenberg algebra and a= ξR is the one-dimensional Abelian algebra.
As in Definition 9.5 we define the C-algebra of Heisenberg type q = h� a
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given by the action [ξ ,μ ] = Lμ , [ξ ,ν] =−Lν , [ξ ,ζ ] = 0 for some L �= 0. The
simply connected group that corresponds to q is Q̃ = H�R where H is the
Heisenberg group as in §11.3.2. With the notation of §11.3.3,

D= [Z(n); n ∈ Z]⊂ Z ⊂H⊂ Q̃ (11.38)

is again a discrete central subgroup in Q̃ and in (11.33) we can take Q̃/D =

QT = HT �R with the natural identifications and the natural action, and the
notation of (11.30). Here the central torus TQT ⊂QT is T = Z/D and the group
QT/T is R2�R with the action [ξ ,μ ′] = Lμ ′, [ξ ,ν ′] = −Lν ′ for the basis
(μ ′,ν ′) of R2 and ξ the basis vector in R. This is the simplest C-group of
Abelian type of §§9.1.7 and 9.2.2. Because of (11.32), topologically we do
have a diffeomorphism

QT =HT �R
ϕ−→←−

ϕ−1
T × (R2�R

)
= Q0. (11.39)

What we shall show is that not only can we not choose such a diffeomorphism
ϕ to be a quasi-isometry but that ϕ cannot even be chosen to be a polynomial
map as in §7.1. In showing this we shall illustrate in addition the role that is
played by the fundamental group in these types of considerations.
To see this let Q̃0 = R× (R2�R) denote the simply connected covering

group of Q0 and let ϕ̃ : Q̃→ Q̃0, the lifting of the mapping ϕ where we shall
assume, as we may, that ϕ(e) = e, ϕ̃(e) = e for the corresponding neutral
elements. Our assertion that ϕ cannot be polynomial is a consequence of the
following observations.

(i) We have ϕ̃(Z(n)) = n ⊂ Z ⊂ R = the first factor in the product that de-
fines Q̃0 (we prove this below).

(ii) The distance in Q̃0 between e and ϕ̃(Z(n)) is ∼ n. This follows from (i)
and the product structure of Q̃0.

(iii) The distance between Z(n) and e in Q̃ is � logn. The proof of this is a
variant of the argument of §9.2.5 as indicated in Figure 9.4; the reader
is invited to prove this for themselves. Here we have in fact a typical
example of what in Varopoulos (2000a) – see also §8.2.2 – is called a
subgroup of ‘strict exponential distortion’ and if you get stuck with the
proof and absolutely wish to see it you can always look it up there.

Proof of (i) This is a consequence of the winding number that we obtain from
some path γ ⊂ Q̃ (i.e. γ(t) ∈ Q̃, 0 � t � 1) and its image ϕ̃(γ) ⊂ Q̃0 once we
project these paths on the two groups QT and Q0. Indeed, as long as these
projected paths are closed they have the same winding number on the cylinder
T ×R3 which is topologically diffeomorphic to QT and Q0.



11.4 General Groups and Theorems 11.14 and 11.16 367

This example shows that the groupQT cannot be polynomially equivalent to
any group of the form K×U with K compact andU simply connected soluble.
Had that been the case we would have K  T and U some three-dimensional
C-group. This forcesU to be the group in §9.2.2!
Exercise Verify the above statements

This example should be compared with results in Appendix F.

11.4 General (Not Necessarily Soluble) Groups and
Theorems 11.14 and 11.16

In the previous two sections, we have exclusively considered soluble groups.
There the main tool from the point of view of global structure theory was the
use of the exponential coordinates of the second kind of §7.3. It is a surprising
feature of our geometric theory that these soluble groups are pivotal and that
they in fact capture the general classification of all the groups. We shall first
deal with the case where these groups are simply connected.

11.4.1 Notation and structure theorems

Let G be some simply connected Lie group.We shall make essential use of the
Levi decomposition (see Varadarajan, 1974, §3.18)

G= Q� S; Q radical of G, (11.40)

and S some semisimple closed Levi subgroup. Several choices of (11.40) ex-
ist and we shall fix one. The subgroup S may or may not be compact and
as we saw in §3.1 this is what makes the distinction between amenable and
non-amenable groups. We can write in both cases (somewhat abusively) the
Iwasawa decomposition

S = NAK; (n,a,k)→ nak,

n ∈ N, a ∈ A, k ∈ K is a diffeomorphism. (11.41)

For simply connected closed subgroups N, A, K, we have N is nilpotent, A is
Abelian. When S is of non-compact type this is the classical Iwasawa decom-
position that we explained in Appendix A. In the general case we shall use the
terminology of §4.6 and write a simply connected S = Sn⊕ Sc for its compact
and non-compact components and Sn =NAKn the classical Iwasawa decompo-
sition. Then in (11.41) we set K =Kn⊕Sc. The centre Z(S) is a closed discrete
subgroup and Z(S)⊂ K with a compact quotient K/Z(S).
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Most people that have had some exposure to Lie group theory are probably
already familiar with the above facts and notation. A classical reference is
Helgason (1978). At any rate we have already made use of (11.40), (11.41)
in our definition of the Iwasawa radical R = QNA. This is a soluble closed
simply connected subgroup and R is a C- (resp. NC-) group if and only if G
is a B- (resp. NB-) group. For the above the reader can also refer to Chapter 4
and Appendix A. This in fact gives the definition of the B-condition for G. In
Chapter 4, in the case when K is compact, the product space X = R×K has
already played a crucial role in the analysis of the convolution operators on G.
Whether K is compact or not we shall push the product structure a step fur-

ther and together with the original group G we shall consider a new group G0,

G= RK, G0 = R×K, (11.42)

for the direct product group structure on G0. An alternative way of viewing
(11.42) is to say that we have given on the same space G two different Lie
group structures.
To handle the two groups in (11.42) we shall need to recall an additional

feature of the centre Z(S) ⊂ S. We saw in §4.6.1 (in the proof that we gave
there S was of non-compact type, but the proof works in general) that there
exists Z ⊂ Z(S) a subgroup of finite index (i.e. Z(S)/Z is finite; recall also that
Z(S) is finitely generated and Z(S) ⊂ K) such that Z ⊂ Z(G), that is, zg = gz,
z ∈ Z, g ∈ G.
Proof of Theorem 11.14 The first step for the proof of this theorem is to prove
that the two groups G and G0 assigned with their left-invariant structures are
quasi-isometric.
This is a direct consequence of Example 11.9. To see this with Z as defined

in the previous subsection we define two subgroups

H = RZ ⊂ G, H0 = R×Z ⊂ G0. (11.43)

(These subgroups are closed but this is not relevant in what follows.) The fact
that Z is central has to be used to see that H is a subgroup. What counts is that
in both cases H, H0 act cocompactly on the two manifolds G and G0 by left
group action. Indeed, the homogeneous spaces in both cases can be identified
with the compact group K/Z (see Helgason, 1978, Chapter 6).

A digression To finish the proof of our theorem we shall need to use the
following additional information. The group K is a direct product:

K = E×K0; E =Rk is a Euclidean space, K0 is compact. (11.44)

The proof of this is difficult and furthermore it is not really part of general
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knowledge on Lie groups. It is, however, a direct consequence of the fact that
the mapping

K −→ K
Z(S)

= compact (11.45)

is a locally injective map. Proofs can be found in Hochschild (1965, §XIII.2.1)
even in the context of general connected locally compact groups.

Return to the Proof of Theorem 11.14 Combining the quasi-isometry so ob-
tained in (11.42) and (11.44) we get a quasi-isometry

G= REK0
ϕ−→←−

ϕ−1
G0 = R×E×K0 = RE ×K0; RE = R×E (11.46)

where× indicates direct product group structures. Here RE is a C-group if and
only if R is (see §2.2), that is, if and only if G is a B-group. This completes the
proof of Theorem 11.14.

Remark It is much easier to prove that there exists E  Rk that is a closed
subgroup of K with Z ⊂ E (see Hochschild, 1965, Chapter XVI) than the full
thrust of (11.44). With this and Example 11.8 we already have (11.15) for
simply connected groups.

Remark 11.22 (The double coset decomposition) In (11.46) we wrote G =

RK0E and this a double coset decomposition with respect to the two subgroups
R, E . Furthermore, it is easy to verify from well-known facts on the construc-
tion of the Iwasawa decomposition that K0⊂ S is a maximal compact subgroup
of S.

Exercise 11.23 To see this let P ⊂ S be some compact subgroups of the
simply connected semisimple group. Then P ⊂ K for some Iwasawa decom-
position S= NAK. This holds because the image of P in S/Z(S) = S1 = NAK1
lies in K1 (see Helgason, 1978, §6.1.1). As a consequence P ⊂ Rd ×K0 and
therefore P ⊂ K0. We shall not pursue the matter because it is not of great
significance in our theory. From this it follows that K0 is a maximal compact
subgroup of G also, because for any compact subgroup M, M ∩Q = {e} (see
Hochschild, 1965, §XII.2.3) since Q is simply connected and soluble.

At any rate it is worth recording the above as follows:

The quasi-isometry of Theorem 11.14 is associated with the double coset
decomposition with respect to the Iwasawa radical R and some Euclidean sub-
group E and R\G/E =K0 can be identified with a maximal compact subgroup.
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Towards the proof of Theorem 11.16 Before we give the proof we need to
use the following additional information on the decomposition K = E×K0 of
(11.44). For this we need to observe that K0 is simply connected and compact.
As a result, by the basic structure theorem on these groups (see Hochschild,
1965, §XIII.1.3), K0 is a semisimple group and Z(K0), the centre, is finite.
Using this fact we see that in our choice of Z ⊂ Z(S) in (11.43) the projection
of Z ⊂ K by K = E×K0→ K0 lies in Z(K0). Therefore by taking a subgroup
of Z of finite index we may suppose that

Z ⊂ E ∩Z(G). (11.47)

This remark will be used in the proof of Theorem 11.16 that we shall give
below.

11.4.2 The simply connected covering group

Let G be some connected Lie group and let π : G→ G be the covering by
the simply connected group G. For the group G we have the decompositions
(11.40), (11.41) and with our previous notation we can summarise the infor-
mation we have as follows:

p : G= Q� S−→ S = NAK;

K = E×K0, Z ⊂ E ∩Z(G), [Z(S) : Z]<+∞. (11.48)

Now let D⊂G be some discrete central subgroup D⊂ Z(G). Since p(D)⊂
Z(S) the subgroup

Γ= D∩ p−1(Z); [D : Γ]<+∞ (11.49)

is a subgroup of finite index in D. We shall examine Γ in more detail and use
the same notation, g = q� s ∈ G, for the product in G with q ∈ Q, s ∈ S in
(11.40) as we did in (8.54). For γ ∈ Γ we can then write

γ = γQ� γS ∈ Γ; γQ ∈ Q, γS ∈ Z ⊂ Z(G) (11.50)

and therefore also

γQ ∈ Z(G), γ −→ γQ, γ −→ γS are group homomorphisms,
(q� s)γ = qγQ� sγS; γ ∈ Γ, q ∈Q, s ∈ S. (11.51)

Furthermore, if G= REK0 is the decomposition of (11.42), (11.44) we shall
express the elements of G as products in that decomposition and we have

g= rxk; r ∈ R, x ∈ E, k ∈ K0, γ = γQ� γS ∈ Γ;
gγ = (rγQ)(γSx)k; rγQ ∈ R, γSx ∈ E. (11.52)
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This holds because γQ,γS are central elements in G.
We shall consider now the direct product group in (11.46),

G0 = R×E×K0 = RE ×K0,

and g0 = r× x× k (to indicate the product in G0) and we shall define the dis-
crete central subgroup

Γ0 = [γQ× γS× e; γ = γQ� γS ∈ Γ]⊂ G0,

where e ∈ K0 is the identity and we recall that γS ∈ E by our choice of Z in
(11.47) and of Γ in (11.49). The left (and right) action of Γ0 on G0 is then
given as follows. For

g0 = r× x× k= rE × k ∈ G0 = RE ×K0; RE = R×E, (11.53)

γ0 = γQ× γS× e ∈ Γ0; γ = γQ� γS ∈ Γ, (11.54)

we have

g0γ0 = rγQ× xγS× k= rEγ0× k. (11.55)

Finally, if we put together (11.52), (11.55) we see that the actions of the groups
Γ and Γ0 intertwine the identification (11.46), that is,

ϕ(gγ) = ϕ(g)γ0 (11.56)

with γ , γ0 as in (11.54).
Since the action of Γ (resp. Γ0) is discrete we see that the quasi-isometric

diffeomorphism ϕ in (11.46) induces a quasi-isometric diffeomorphism on the
corresponding two quotient groups:

G−→ G
Γ
; G0 −→ G0

Γ0
. (11.57)

We denote this as

G
Γ

ϕ−→←−
ϕ−1

G0
Γ0

=

(
RE
Γ0

)
×K0 = P×K, (11.58)

where P is some connected soluble group, not in general simply connected,
that is C- (resp. NC-) if G is B- (resp. NB-).

11.4.2.1 A recapitulation We start from some central discrete subgroup D⊂
G. We can then find Γ ⊂ D, a subgroup of finite index, such that we have a
smooth quasi-isometry as in (11.58).
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Proof of Theorem 11.16 We go back to the original group G of the theorem
and to the covering map π : G→ G and apply the previous considerations to
D= kerπ . We then have canonical mappings

θ :
G
Γ
−→ G

D
= G; kerθ =

D
Γ
= finite. (11.59)

If we combine (11.58), (11.59) we finally see that we have a proof of Theo-
rem 11.16.

Remark The most important application of Theorem 11.16, at least for the
time being, is to prove (11.15), which says that the connected Lie group G is
coarse quasi-isometric with some connected soluble group that is C (resp. NC)
if G is B (resp. NB). For this, much easier proofs can be given but they depend
on proving first the easy fact that R⊂G, the analytic subgroup that corresponds
to the Iwasawa radical r= q+n+a as in §4.1, is a closed subgroup. The proof
of this is left as an exercise (it is spelled out in Varopoulos, 1996b, §4.8).
With this we consider the connected semisimple group S = G/Q where Q

is the radical. If Z(S) the centre of S is finite, the group R is cocompact and
G R are coarse quasi-isometric by Example 11.8, and we are done.
In the general case we proceed as in §4.6.3 and select z1, . . . ,zp ∈ Z(G) to

be in the centre of G and such that their canonical images z1, . . . ,zp ∈ S are the
free generators of a subgroup of finite index in Z(S).
Write Zp Γ=Gp(z1, . . . ,zp)⊂G. Then R= Γ⊕R⊂G is a closed cocom-

pact subgroup (exercise: verify this). Therefore G R as before. On the other
hand, again by Example 11.8, R is coarse quasi-isometric with the connected
soluble group Rp⊕R which is a C-group if and only if R is (see §2.2). And we
are done again.



Appendix F

Retracts on General NB-Groups (Not
Necessarily Simply Connected)

F.1 Introduction

This appendix could have been presented as a separate chapter because in §F.4–
F.5 it contains the proof of one of the main theorems of the subject. More
precisely, we shall prove in this appendix the following result.

Theorem (NB–Pol) Let G be some connected NB Lie group; then G is poly-
nomially homotopic (see §7.4) to some compact manifold G0.
One of the main reasons that the homology theory of Part III of the book was

developed is that it allows us to prove the above theorem the other way round,
and show that when G is polynomially homotopic to a compact manifold, then
G is an NB-group. In other words, we have a B–NB classification in terms of
polynomial homotopy.

Maximal compact subgroups In the above theorem, G0 can be chosen to be
some maximal compact subgroup G0 ⊂ G.
We encountered maximal compact subgroups of Lie groups in §11.4.1 and

in Appendix C. Let us recall here some important features of these subgroups
(see Hochschild, 1965, §XV.3.1; Helgason, 1978 §VI.2). These facts are deep
and difficult to prove.
These subgroups are what their name says, that is, they are compact sub-

groups and are contained in no other compact subgroups. Furthermore, if L⊂G
is some compact subgroup and G0 is such a maximal subgroup of G, there ex-
ists g ∈ G such that gLg−1 ⊂ G0. Maximal compact subgroups exist and they
are connected when G is. Better still, if G is connected, when G0 ⊂ G is a
maximal compact subgroup and if d = dimG− dimG0 there exists a diffeo-
morphism

G G0×Rd. (F.1)

373
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Incidentally, it is this diffeomorphism that ‘triggers’ the third part of the book:
see §12.1.3. Note, however, that apart from this motivation, (F.1) will not be
used in any essential way

R-groups The other thing that will be proved in this appendix is the following
result.

Proposition When G is a connected R-group (see §2.2.2) then the diffeo-
morphism (F.1) can be chosen to be a polynomial equivalence (see §7.4). The
converse also holds.

The proposition is one of the ingredients for the proof of the above (NB–
Pol) theorem. It will be proved in §§F.2–F.3 below, together with a number
of other geometric properties of R-groups. We have already encountered most
of these geometric properties before (in Chapters 7 and 8) and their proof is
long overdue. These properties are, on the other hand, well known and their
connections to the subject were studied long before the B–NB classification of
this book (see Guivarc’h, 1973; Jenkins, 1973).
There are two reasons that justify the presentation of all this as an appendix.

One is that although it comes up with one of the main results of the geometric
theory, the proofs are ‘odds and ends’ of things that we have done elsewhere
and the real advantage of putting this material in an appendix is that by doing
so, we felt free to make the exposition less formal, lighter and more condensed.
The other reason is that while the proof of the main theorem in this appendix

is not very hard, it does rely on the ideas that were presented in Appendix A,
Appendix B and Appendix C. Note, on the other hand, that the simply con-
nected case of the theorem follows directly from §11.1.3, and also that these
ideas, which are non-trivial, are not essential if we are prepared to settle with
something slightly less (see §12.6.2).

F.2 R-Groups

Throughout this section we shall consider connected R-groups (see §2.2) and
we shall elaborate on the following easy proposition (see (8.9)).

Proposition Let G be some connected R-group. Then the norm of the Ad-
action of G on the Lie algebra g grows polynomially, that is, there exist con-
stants such that

‖Adg‖�C(1+ |g|)C; g ∈G. (F.2)

Here, as usual, |g| denotes the distance from the identity e.
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Proof By considering the simply connected cover π : G̃→ G and by lifting
any g ∈ G to some g̃ ∈ G̃ such that π(g̃) = g, |g̃|� 2|g| (see Exercise 2.6), we
may assume that G is simply connected. But then by the Levi decomposition
(see §2.2.2 and Varadarajan, 1974, §3.18) we have G= Q�K where Q is sol-
uble and K is compact. Then g in (F.2) can be written as g = qk, with q ∈ Q,
k ∈ K, and since, by compactness, ‖Adk‖�C stays bounded and additionally
|q| � |g| (see §§1.1, 2.14), we may assume in (F.2) that g ∈ Q. To finish the
proof, we look at the Ad-action of Q on g. The roots of that action, ω1, . . . ,
are the exponentials of the roots of the ad-action of q, the Lie algebra of Q, on
g. Now, [q,g]⊂ q and the roots of adq on q are pure imaginary by definition.
It follows that |ω1| = |ω2| = · · · = 1. For this, we then invoke Lie’s theorem
(see Varadarajan, 1974, §3.7.3, and also §2.3.3 above) and the discussion that
follows (3.59) is used to cope with the exponential mapping on soluble groups
(cf. §3.8.4). We then use the lemma proved in §3.9.1, and estimate (F.2) fol-
lows.

The converse assertion, (F.2)=⇒ (G is an R-group), is also essentially con-
tained in the above proof.

Exercise F1 Prove this assertion. The same lemma from §3.9.1 implies, when
(F.2) holds, that the radical Q�G is an R-group (use Adeξ = eadξ ). Now (F.2)
will also hold on the semisimple group G/Q. Using the structure theorems on
these groups, deduce that G/Q is compact. For more details on all that see
Guivarc’h (1973), Jenkins (1973) and part (i) of the following exercise.

Exercise F2 Deduce from the proposition and Exercise F1 the following
well-known and easy facts:

(i) The algebra g is an R-algebra if and only if the characteristic roots of the
adξ -action on g, with ξ ∈ g, are pure imaginary (use the lemma in §3.4.4
or in §3.9.1 on the one-dimensional algebra {adξ} acting on the space
g).

(ii) Use (i) and the action induced by ad to prove that subalgebras and quo-
tients of the R-algebras are R.

(iii) Use the proposition and §8.1 to prove that in an R-group the following
mappings are polynomial:

(a) G→ G given by g 	→ g−1;
(b) G×·· ·×G→G given by (g1, . . . ,gn)→ g1 · · ·gn (group product);
(c) g→G given by the exponential mapping ξ → expξ .

We have already encountered (c) in Example 7.5 in the case of the nil-
potent groups. (For the proof see Varadarajan, 1974, §3.6. For nilpotent
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groups, the Baker–Campbell–Hausdorff formula could be used.) For gen-
eral R-groups, this property (c) will not be needed but it can be proved by
the explicit formula for the differential of the exponential mapping (see
Varadarajan, 1974, §2.14).

(iv) The correspondence that we obtain in (7.9) by the use of exponential
coordinates of the second kind of a simply connected soluble R-group Q
gives a polynomial equivalence between Q and Rd . Let us recall that two
Riemannian manifolds are polynomially equivalent if

M1
φ−→←−
φ−1

M2,

where both ϕ and ϕ−1 are polynomial diffeomorphisms (see §7.1).
To see this, with the notation of (7.9), we observe that the mapping

Q � g 	→ td , the last coordinate, is polynomial since it can be identified
with Q 	→ Q/Q1, where Q1 is the subgroup generated by e1, . . . ,ed−1.
Now Q=Q1�{ed} and therefore q→ q1, the Q1-coordinate of q, is also
polynomial (by (F.2) and §8.1.2). Then use induction on the dimension
for Q1.

We have more generally the following result.

Proposition Let G be some connected R-group. Then G is polynomially
equivalent to Rd×G0, where G0 is some maximal compact subgroup of G.
The obvious converse that any group that is polynomially equivalent toRd×

K, for some compact manifold K, is an R-group clearly holds. To see this, we
can for instance use γ(r), the volume growth of G that has to be polynomial
(see Guivarc’h, 1973; Jenkins, 1973).
The proposition is important because it is one of the ingredients in the proof

of the (NB–Pol) theorem in §F.1. In particular, this proposition, combined with
§C.3, gives a proof of the (NB–Pol) theorem for unimodular groups. We shall
give the proof of the proposition in the next section.
We finish this section with an exercise that puts in perspective the exponen-

tial coordinates of the second kind of §7.3.
Exercise Prove in full generality (i.e. G is simply connected and solvable,
but is not necessarily an R-group) that the correspondence obtained betweenG
and t = (t1, . . . , td) cannot in general be made polynomial (as above). However,
with a choice of an appropriate basis ξ1, . . . ,ξd of the Lie algebra, as in §7.3,
we can have exponential bounds; that is, we have |g| � exp(C|t|+C) and the
converse.
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The proof of this uses the ideas of Chapter 8 and is not trivial. Since we shall
make no use of this fact we shall simply indicate the choice of the ordered basis
ξ1, . . . ,ξd of g that is used and the interested reader can then work out the proof
if they so wish.
As in §8.4 we let n � g be the nilradical of the Lie algebra of G and let h

be some Cartan subgroup. The ordered basis of g that we need to use for the
exponential coordinates will be ν1, . . . ,νn,ηn+1, . . . ,ηd where ν1, . . . ,νn ∈ n is
a basis of n and ηn+1, . . . ,ηd ∈ h. The first thing that needs proving, exactly
as in §8.4.3, is that such a choice is possible. Once this is done, one sees that
the coordinates tn+1, . . . , td , which correspond to the vectors ηn+1, . . . , depend
polynomially on g. The last step is similar to what we did in §8.1.4. More
explicitly, when g = e(νt)e(ητ) (notation as in (8.55)) then e(νt) depends
exponentially on g. To finish up, we use the fact that n is nilpotent.

F.3 Amenable Groups

Let g be the Lie algebra of an amenable connected Lie group G. Let n � q � g
be the nilradical and the radical of g. We then have the Levi decomposition
g = q� s, where s is a semisimple algebra of compact type (see §3.1). It is
important to recall here that this fact in the Levi decomposition can be used
to define the amenability on the group; that is, G is amenable if and only if
S, some – and therefore all – Lie group that corresponds to s, is compact (see
Helgason, 1978, §II.6.9 and Varadarajan, 1974, §4.11.6; see also Appendix A).
We have already pointed out that we can identify g/n a× s where a  q/n

is Abelian. The product is direct rather than semidirect because [g,q]⊂ n (see
Varadarajan, 1974, §3.8.3). If we already know that the group G is simply
connected, this fact about the Lie algebras implies that G/N is of the form
A× S, where here N is the nilradical of G and where A is a Euclidean space
and S is some compact semisimple group. But quite generally, without the
condition of simple-connectedness, we do have

G/N V ×K, (F.3)

where V  Rd is a vector space and K is again compact (but not necessarily
semisimple).

Steps in the proof of (F.3) To see this let (G/N)∼ be the simple connected
cover of G/N. Then (G/N)∼  A× S, where A is a Euclidean space and S
is compact and semisimple. As a consequence, G/N  (A× S)/Γ for some
discrete central subgroup Γ. But since the projection of Γ on the factor S lies
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in the finite centre of S, the index [Γ : A∩Γ]< +∞ is finite. It follows that to
obtain G/N we first factor (G/N)∼/(A∩Γ) = A1× S where A1  Ra×Tb is
Abelian and then factor (A1× S)/F by some finite group Γ/A∩Γ. But then
F ⊂Tb×S and with K  (Tb×S)/F we have the required isomorphism (F.3).

Short exact sequences We shall preserve all our earlier notation, in particular
that of (F.3), and denote by T the maximal central torus ofG. Since T is central
it is a central subgroup of N and it coincides with TN , the maximal central torus
of N (see §11.3.2). More explicitly, TN is invariant by all automorphisms of N,
and therefore TN is a normal subgroupG and as a consequence TN = T . On the
other hand, the automorphism group of a torus is discrete and this implies that
TN is central in G, as asserted. We then have two exact sequences

0→ N/T →G/T −→
π
G/N =V ×K→ 0, (F.4)

0→Q∗ = π−1(V )→ G/T −→
α
K→ 0. (F.5)

The group N/T is simply connected (see Varadarajan, 1974, §3.6.4) and so
therefore is Q∗, which is clearly also soluble: we have 0→ N/T →Q∗ →V →
0. These properties of Q∗ and the fact that K is compact imply that the exact
sequence (F.5) splits and

G/T = Q∗�K∗ (F.6)

for some compact subgroup K∗ ⊂G/T that is mapped isomorphically on K by
α (see Hochschild, 1965, §XII.3.2; Varadarajan, 1974, Exercise 3.37).
We shall denote by θ : G→ G/T the canonical projection and write Q1 =

θ−1(Q∗), K1 = θ−1(K∗). We have

G= Q1 ·K1, Q1∩K1 = T, (F.7)

where T is now a central torus on Q1 (in fact the maximal central torus in that
group – see the ‘proof’ below), and where Q1/T = Q∗ is simply connected.
We can then construct the smooth coarse quasi-isometry of (11.37):

Q1
φ−→←−

φ−1
Q∗ ×T. (F.8)

It is also easy to see that K1 is a maximal compact subgroup of G. This point
is not very important, so we shall be brief.

A quick ‘proof’ Let P⊂G be such a maximal compact subgroup. Since T is a
central torus in G we must have T ⊂ P; but then θ (P)⊂Q∗�K∗ is a compact
subgroup. Therefore Q∗ ∩ θ (P) = {e} because Q∗ is simply connected and
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soluble (see Varadarajan, 1974, Exercise 3.36). This means that dimθ (P) �
dimK∗ and thus dimP� dimK1. The fact that the maximal compact subgroups
are all conjugate finishes the proof.

What is important instead is the following ‘twist’ that we can make in the
above construction. By (F.7), every element g ∈ G can be represented as a
product g = q1k1, with q1 ∈ Q1, k1 ∈ K1. Modulo T , this representation is
unique, that is, all other representations are g= (q1τ)(k1τ−1) for some τ in the
central subgroup T . We can then specify one particular such representation as
follows. Denoting with a dot ġ= θ (g) ∈G/T , we first consider G→G/T and
decompose uniquely ġ= q̇k̇, with q̇∈Q∗, k̇ ∈ K∗, using the semidirect product
(F.6). We now use the mapping σ : Q∗ → Σ ⊂ Q1 for the ‘section’ that was
defined in (11.36), and write g = σ(q̇)[(σ(q̇))−1g] where clearly the cofactor
(σ(q̇))−1g ∈ K1. This therefore gives a decomposition of g= σk1 with σ ∈ Σ,
k1 ∈ K1 which is clearly unique because if σk1 = σ ′k′1 then σ ,σ ′ ∈ Q1 have
the same image in Q1→Q1/T = Q∗ by (F.6). We obtain in this way a smooth
identification ψ :

G
ψ−→←−

ψ−1
Q∗ ×K1, (F.9)

which clearly is a coarse quasi-isometry because we always have

|dG(σ(q̇1)k1,σ(q̇2)k2)− dQ∗(q̇1, q̇2)|�C,

when q̇1, q̇2 ∈ Q∗, k1,k2 ∈ K1. This is just a consequence of the definition of
the section Σ and the compactness of K1; see §11.3.3 and Example 11.7.
Finally, let us specialise G to be an R-group, which, we recall, are amenable.

In that case, by the semidirect product (F.6) and §F.2 (see the exercise), the
mapping G/T � ġ→ q̇ ∈ Q∗ is polynomial in the sense of §7.2. But again, by
§F.2 and (11.36), the mapping σ is polynomial. Therefore in the identification
(F.9) both ψ and ψ−1 are polynomial mappings. We have therefore obtained a
proof of the proposition in §F.2.

F.4 Homotopy Retracts for Groups That Are Not Simply
Connected

To make the exposition as light as possible we shall give the definitions and
notation below in a slightly informal manner.
Let M be some Riemannian manifold with a base point O as in §7.1 and let

Y ⊂M be some compact subset. We shall consider smooth, or at least locally
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Lipschitz, homotopies as in §7.4 that have the following properties:
H(x,1) = x, H(y, t) = y, H(x,0) ∈Y ; x ∈M, y ∈ Y, 0� t � 1, (F.10)

and as in §7.4 we shall impose the additional condition that
|dH(x, t)|�C(1+ |x|M)C; x ∈M, 0� t � 1, (F.11)

for some C > 0 with | |M denoting the Riemannian distance from the base
point. If such a homotopy exists, for brevity we shall denote that homotopy
by HM,Y (x, t) and simply say that HM,Y exists. If M is such that for all a � 0
we can find some compact subset Y ⊂ M that contains the ball of radius a,
(i.e. [m ∈M; |m|� a]⊂ Y ) and such that HM,Y exists, we shall say thatM has
property-H . In general, whenH holds, several such Y exist and they are all
of the same homotopy type. Informally, this says that the homotopy retracts
M can be chosen so that it also leaves unchanged the points of an arbitrary
compact subset.
Let us now specialise and assume that M = G is some connected Lie group

with its intrinsic Riemannian structure (see Chapters 1 and 7). Then from (F.1)
it follows that if we assume that G has property-H , then HG,G0 exists for any
maximal compact subgroup G0 ⊂ G. This holds because, if we use (F.1), we
can follow HG,Y with some ‘local homotopy’ that shrinks Y into G0 (see also
the end of this appendix). The converse is also easy to see and we actually
have H ⇐⇒ (HG,G0exists). This converse will not be needed and we shall
not elaborate on this (see, however, the next exercise).
From this it follows in particular that if the group G has property-H then

it is polynomially homotopically equivalent to the compact manifold G0 and
satisfies the condition of the theorem in §F.1.

Examples The following are clear:

(i) The direct product of two groups that have property-H also has pro-
perty-H .

(ii) Simply connected soluble NC-groups have property-H . In that case,
G0 = {e}. This follows from Theorem 7.10 and the special case of our
previous assertion when G0 = {e}.

(iii) R-groups have property-H . This follows from the proposition in §F.2.
(iv) Simply connected NB-groups have property-H . This follows from The-

orem 11.14 and (i), (ii).

Exercise Verify (ii) above. Let B1,B2 ⊂ G be the balls of radius 1 and 2
respectively. Furthermore, let H0(t,s) ∈ G, for 0 � t � 1, s ∈ G, be given by
the homology of Theorem 7.10 and be such that H0(0,s) = e and H0(1,s) = s.
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Then construct H(t,x) ∈ G, for 0 � t � 1, x ∈ G, such that H(t,s) = H0(t,s),
H(t,b) = b, H(1,x) = x, for 0 � t � 1, b ∈ B1, x ∈ G, s �∈ B2. For this we use
the fact that G is diffeomorphic with a Euclidean space, and Federer (1969,
§2.10.43). Then we follow H with some local homotopy that leaves the points
of B1 unchanged and shrinksH(0,G) into B1. Notice also that by Examples 7.5
and 7.6 the problem is much easier when G is simply connected and nilpotent
because it reduces to the same problem on Euclidean spaces. This special nil-
potent case suffices for the applications at the end of this subsection.

The aim of the rest of this appendix will be to give the proof of the following
result.

Proposition Every connected NB-group admits property-H .

This, as promised, will imply the NB–Pol theorem of §F.1.
As we pointed out, property-H behaves well under direct products. It turns

out that it also behaves well under semidirect products provided that an addi-
tional condition is imposed, which we now explain.
Let G= N�M be the semidirect product of two connected Lie groups that

each possess property-H . Let g= n�m be the corresponding semidirect prod-
uct of the Lie algebras. We shall make the following hypothesis which we shall
call the ‘glueing condition’ for the semidirect product.

Glueing condition There exists ξ ∈m that has the following two properties:

GC1: The characteristic roots λ1, . . . ,λn of the action adξ on n, with n =

dimn, satisfy Reλ j > 0 for 1� j � n.
GC2: The characteristic roots μ1, . . . ,μm of the adξ action on m, with m =

dimm, satisfy Reμ j � 0 for 1� j � m.

In §F.5 below, we shall prove the following result.
The glueing lemma Let G = N�M be the semidirect product of two con-
nected Lie groups. Assume that both N and M satisfy the H -property and
that their Lie algebras satisfy the glueing condition. Then G satisfies the H -
property.

Before we give the proof let us go back to Appendix B and Appendix C. For
any NB-groupG we saw in (C.2) that G= N�M, where both N andM satisfy
the H -condition. To see this for N we use part (ii) of the above example. For
M we use (C.5) and parts (i) and (iii) of the example. For the second factor
NA in the right-hand side of (C.5) we can use part (ii) or we can again use
the glueing lemma because now we are in a situation where theH -property is
clearly satisfied for the factors A and N (see the previous exercise).
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Back to our proposition. We shall assume that the NB group of the propo-
sition is not unimodular and we shall use §B.6. In the unimodular case, as we
have already pointed out, the proposition in §F.2 directly implies the (NB–Pol)
theorem.
Now the Lie algebra m ofM is gR⊕ sn (see Appendix B). Since Hypothesis

(H) of §B.7 is satisfied, the vector ξ ∈ qR (which is the radical of gR) in Hy-
pothesis (H) satisfies GC1. Condition GC2 is automatically satisfied since gR
is an R-algebra and as a consequence Reμ j = 0 (see Exercise F.2(i)). The final
conclusion is that the above glueing lemma applies and completes the proof of
our proposition.

F.5 Proof of the Glueing Lemma

F.5.1 The exponential retract

We shall start from a more general situation where G is some connected Lie
group that we can retract to some compact subset P⊂ G, that is, H(g,1) = g,
H(p, t) = p, H(g,0) ∈ P, where g ∈G, p ∈ P, 0� t � 1, as in (F.10). But now
instead of (F.11) we consider the following weaker exponential bound:

|dH(g, t)|�Cexp
(
C|g|C); g ∈ G, (F.12)

for someC > 0. It is ‘probably provable’ (with the methods of Chapters 8 and
11) that such a retract always exists, even with an exponent C = 1 on |g| (see
the final ‘comment’ at the end of this appendix). This general fact (if correct),
however, will not be needed here because in what follows we shall stick to
groups for which this exponential retract comes for free.

The perturbation This perturbation of the homotopy H will depend on two
things. First, on some ξ ∈ g the Lie algebra of G that has the property that
ρ1, . . . , the characteristic roots of adξ on g, have non-negative real parts: Reρ j
� 0, for j= 1, . . . . For the same reasons as in Exercise F.2(i), this is equivalent
to the fact that the norm of Adexp= ead satisfies

‖Ade−tξ ‖�C(1+ t)C; t > 0 (F.13)

for appropriate constants.
The other ingredients on which our perturbation of H will depend are two

C∞ functions, 0� α(t),β (t)� 1 for 0� t � 1 with the following properties:

β (0) = β (1) = 0; β (t)≡ 1; t ∈ [ 110 , 910],
α(t) = 0 for t ∈ [0, 410]; α(t) = 1 for t ∈ [ 610 ,1].

}
(F.14)
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This means that β is constant when it reaches its ‘top’ value in a large central
interval, and α ‘picks up’ all its increment in a much smaller central interval
(see §8.2.3 where a very similar construction was carried out).
With a large value of C0 > 0, to be chosen later, we shall then define the

required perturbation by

H0(g, t) = H(g,α(t))θ (g, t), θ (g, t) = exp
(
C0β (t)|g|C0ξ

)
;

g ∈G, 0� t � 1.
(F.15)

With this notation H0 is the product in G of H and θ . We can then use formula
(8.6) for the differentials to obtain

dH0(g, t) = (Adθ (g, t))−1dH+ dθ (g, t). (F.16)

Here, the bounds

‖Ad(θ (g, t))−1‖�C(1+ |g|)C; |dθ |� |g|C+C (F.17)

hold for appropriate constants, by (F.13) and the fact that
∣∣d|g|∣∣ �C. In com-

puting dθ observe that θ is a time-changed one-parameter subgroup.
Straightaway therefore we can deduce from (F.16) and (F.17) that the fol-

lowing polynomial bound holds:

|dH0(g, t)|�C(1+ |g|)C; g ∈ G, t ∈ [0, 410]∪ [ 610 ,1], (F.18)

for someC > 0.
Indeed, in the interval

[
0, 410
]
, the first factor in (F.15) reduces to e. In the

interval
[ 6
10 ,0
]
this first factor is identical to g and the differential dH stays

bounded. We can therefore use (F.16). This is parallel with what we did in
§8.2.3: the choice of ξ , together with §3.9.1, is used.
The issue is therefore to prove (F.18) in the central interval

[
4
10 ,

6
10

]
and for

this, additional conditions in G clearly have to be imposed.

F.5.2 A special exponential retract

The additional conditions that we must impose on G are that it satisfies the
conditions of the glueing lemma of §F.4. Here, G= N�M and the notation of
the previous subsection is retained.
We shall also denote byHN ,HM the two polynomial retracts on the groupsN

andM that satisfy (F.10) and (F.11), where P in §F.5.1 is taken to be some large
compact subset in N or M, as the case may be. Then using the same notation
(which is not standard) for the product in G of two elements (one from N and
the other fromM) as in (8.54) we shall define the following homotopy on G:

H(g, t) =HN(n, t)�HM(m, t); n∈ N, m∈M, g= n�m, 0� t � 1. (F.19)



384 Appendix F: Retracts on General NB-Groups

By the definition of HN , HM, this does retract G to some compact subset as
needed and we shall prove in the next few lines that it satisfies the properties
of §F.5.1. For this we apply as before the formula from §8.1.3 to obtain

dH(g, t) = AdH−1M
(
dHN(n, t)

)
+ dHM(m, t). (F.20)

From this we can easily verify (F.12). The only point that has to be treated with
care in this verification is that the differentials in (F.20) are taken with respect
to the variables g and t. Therefore, on the right-hand side of (F.20) we are
considering the compositions of dn,tHN ◦dgn and dm,tHM ◦dgm. (To be formally
accurate, if slightly pedantic, we should write dg,t(n, t) = dgn⊕ Identity here,
rather than dgn, and the same thing for dgm)
The mapping g 	→m given by the splitting g= n�m is a homomorphism, so

the second composition of differentials that we need gives no problem because
of the polynomial properties of dm,tHM . For the first composition of differen-
tials we have

|dn,tHN(n, t)|�C(1+ |n|)C; n ∈ N, (F.21)

|dgn(g)|�Cexp(C|g|),
|n(g)|�Cexp(C|g|); g ∈G.

}
(F.22)

Inequality (F.21) follows by the hypotheses on HN , and for (F.22) we use n =
gm−1 and §§8.1.2, 8.1.3, 8.1.4. If we use (F.21), (F.22) and (F.20), estimate
(F.12) follows at once. For this we must observe in addition that |HM(g, t)| �
|g|C+C because HM is polynomial, and then use the general fact ‖Adh‖ �
cexp(c|h|), for h ∈ G, where c depends only on the group: see (8.8). This
explains the |g|C in the exponential in (F.12) and, to avoid this, something
special clearly has to be done. It was avoided in Example 8.1 only by imposing
additional conditions; see, however, the final comments of this appendix.

F.5.3 The perturbations and the proof of the glueing lemma

We shall preserve the notation of the previous subsection and construct the
perturbation (F.15) with a ξ ∈ m that satisfies conditions GC1 and GC2 of
the glueing lemma and where H(g, t) is as constructed in (F.19). Formulas
(F.16) and (F.20) will be combined, but now we shall restrict ourselves to the
central range t ∈ [ 410 , 610] that was left undone in §F.5.1. In that range θ (g, t) =
exp(C0|g|C0ξ ) and dH0(g, t) is therefore the sum of three terms that will be
examined separately as follows. For constantsC that depend onC0 we have

(i) |dθ |�C|g|C+C as before;
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(ii) |(Adθ−1)dHM| � C(1+ |g|)C: this follows from the polynomial prop-
erty (F.11) that holds for M, combined with the facts that g 	→ m in
the decomposition g = n�m is a homomorphism, and that from GC2,
‖Adθ−1

∣∣
m
‖�C(1+ |g|)C.

(iii) Adθ−1AdH−1M dHN remains, and this can be estimated by the product of
the three norms

‖Adθ−1∣∣
n
‖‖AdH−1M ‖|dHN |; (F.23)

we saw in §F.5.2 that the product of the last two factors in (F.23) can be
estimated by C1 exp(|g|C1), with g ∈ G, for some C1 > 0 that does not
depend onC0 of (F.15).

On the other hand, by GC1 and, of course, the use of the lemma in §3.9.1,
we deduce that there exists c1 > 0 such that the first factor in (F.23) can be
estimated by

C(1+ |g|)C exp(−c1C0|g|C0),
where hereC depends onC0 but c1> 0 does not. If we combine these estimates
and make the choice ofC0 sufficiently large, we finally conclude that the norm
of the term (iii) is bounded in the range t ∈ [ 410 , 610].
The bottom line is that (F.11), as well as the first and third conditions in

(F.10), holds for H0. The second condition in (F.10), however, breaks down.
To handle the problem and guarantee that H(y, t) = y, with y ∈ Y , 0 � t � 1,
we must modify the perturbing factor θ and make it ≡ e when |g| is small. To
fix ideas we could for instance set θ (g, t) = exp(C0β (t)|g|C0P ξ ) where |g|P =

(distance of g from P) and P⊂ G some large compact subset. The verification
that all the above estimates for this new perturbation still hold will be left to
the reader.
With this we have completed the proof of the glueing lemma and have shown

that an NB-group admits theH -property.

An open problem Let us restrict ourselves to soluble groups: we saw in
§11.3.4 that, for C-groups at least, it is not always possible to make them
polynomially equivalent to a group of the form U × T , where U is simply
connected and T compact. We have, on the other hand, seen that this is possi-
ble for R-groups. Whether it is possible for NC-groups is unclear. We can go
a step further and ask the same thing for general NB-groups (not necessarily
soluble). This general problemmay be difficult to tackle but, on the other hand,
there may be interesting classes of groups for which there is a positive answer.
The techniques that we have developed for our specific purposes may lead to
results of that type but we shall leave it at that.
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A comment on the construction If we use further structure theorems for a
simply connected soluble R-group G we can construct a polynomial retract
H on G that, in addition, satisfies |HM(g, t)| � C|g|+C (see Example 8.1).
This certainly presents some independent interest and for us here it allows
us to dispose with the artificial exponent C in |g|C on the right-hand side of
(F.12). Since, however, the structure theorems needed for this are non-trivial,
the use of |g|C0 in the perturbing factor θ was, we felt, preferable (although,
admittedly, it is ugly to look at). No doubt this special type of polynomial
retract can be constructed for any NB-group and this completes the picture
nicely. Some indication of how to go about this is given in Varopoulos (2000b,
§§5.3–5.4), if the group is simply connected; the general problem is, however,
‘esoteric’ and technical so we shall say no more.
Another point worth noting is that the use we made at the beginning of §F.4

of the general fact (F.1) can be avoided. One way to see this is to build the
required condition explicitly in the construction of the two homotopies HN ,
HM of §F.5.2. The details are left to the reader.
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The Homotopy and Homology Classification of
Connected Lie Groups

12.1 An Informal Overview of the Chapter and of Part III

12.1.1 A review of what has already been achieved in
the geometric classification

The task we set off to accomplish was to give geometric conditions on a general
connected Lie group G that characterise the B and NB conditions. This, one
could argue, has been achieved already. Indeed, we showed in Chapter 11 that
G is coarse quasi-isometric to some soluble simply connected Lie group Q,
and Q is B or NB at the same time as G. These soluble simply connected
Lie groups should be considered as the basic building blocks of the theory. For
these the C–NC conditions have been characterised geometrically in the course
of Chapters 7–10 and this was done by homotopy considerations.
This way of going about things is, however, unsatisfactory. Quite apart from

having to go about it in two stages, we are mixing here the coarse quasi-
isometry which is a rough (almost discrete) equivalence relation G  Q with
the smooth homotopy properties of Q.
The aim of the third part of the book is to overcome this objection and ob-

tain the geometric classification in one go on G by homotopic or homological
considerations.

12.1.2 The use of the Poincaré equation

For a soluble simply connected group Q we have indicated already (without
proofs) in Chapter 7 how the Poincaré equation dθ = ω for closed smooth
formsω (closed means that dω = 0) can be used to characterise the C–NC con-
dition.
Let us recap. Let ω = ∑aidxi+∑ai jdxi∧dx j+ · · · be, in local coordinates,

a closed smooth differential form with vanishing constant component. Global
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coordinates could also have been used here becauseQ∼=Rn (diffeomorphism).
From this it also follows that ω can be written dθ = ω for some other differ-
ential form θ . This is standard for Rn (see Warner, 1971 or de Rham, 1960,
which is the reference that we shall follow very closely in Part III of the book).
The issue now is this. Assume that ω grows polynomially. This notion was

used in Chapter 7 and it will be developed in detail in this chapter. Is it then
possible to solve the equation dθ = ω by a form θ that also grows polynomi-
ally? It turns out that this is possible if and only if Q is an NC-group.
This is one of the main results in the geometric theory and it will be the topic

in this and the next chapter.

12.1.3 Homology and the Poincaré equation for general connected
Lie groups

This characterisation of the NC-condition cannot possibly hold as stated in
the previous subsection for general groups. The obvious example is the torus
T= [ϕ ∈R; mod1] where the form ω = dϕ cannot be represented by ω = d f
for some smooth function f onT. This example already shows that the problem
lies with compact groups.
To explain further we first invoke a deep fundamental theorem (see Hoch-

schild, 1965, §XV.3.1).
Theorem 12.1 Let G be some connected Lie group. Then there exist some
compact Lie group K, some Euclidean space E = Rn and ϕ some diffeomor-
phism such that

E×K
ϕ−→←−

ϕ−1
G. (12.1)

12.1.3.1 Maximal compact subgroups It is possible to make the construc-
tion of (12.1) in such a way that ϕ(0×K) = K0 ⊂ G is a compact subgroup
that is maximal. This is equivalent, here, to saying that if L ⊂ G is some com-
pact subgroup then there exists a ∈G such that aLa−1 ⊂ K0. In relation to this
last point, observe that from (12.1) it follows that K0 is connected.
No direct use will be made of this difficult result but it will be an important

guiding line for the theory that will be developed in Part III.
One important consequence of (12.1) is that we can use the radial retract of

the Euclidean space E to 0 and this induces a retract of G to the maximal com-
pact subgroup K0. This means that there exists some smooth function F(g, t)
of the two variables g ∈ G and 0 � t � 1 such that F(g,1) = g, F(k0, t) = k0
(k0 ∈ K0) and F(g,0) ∈ K0.
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The question arises of how fast we have to move to achieve this, that is, how
big the gradient ∇F of F has to be. This gradient is taken in the left-invariant
Riemannian structure of G. When ∇F can be controlled by a polynomial in
terms of |g|, the distance from the identity, we shall say that G admits a poly-
nomial retract to a compact. This notion generalises the notion of the polyno-
mially retractable simply connected soluble Lie groups Q where then K0 re-
duces to the identity {e}. The main result in Chapters 8–10 was to characterise
the NC-condition on Q by the existence of a polynomial retract to a point. This
fact generalises to a general group G and it will be examined in detail in §12.2
below.
What is even more important from our point of view is that (12.1) implies

that H(G,R) ∼= H(K,R). Explicitly, this says that the homology of G is iden-
tical to the homology of K and is therefore a finite-dimensional vector space.
This can among other things be seen by the retract F , and can be reformulated
in terms of the Poincaré equation as follows.
There exist finitely many smooth closed differential forms Ω1, . . . ,Ωm on G

such that for every smooth closed differential form ω on G there exist some
smooth differential form θ and scalars λ1, . . . ,λm ∈ R such that

ω = dθ +λ1Ω1+ · · ·+λmΩm. (12.2)

Let us now restrict ourselves to the subspace of closed smooth differential
forms that grow polynomially. The question then arises whether the Ω j can be
chosen once and for all as above so that they have polynomial growth and such
that the θ that solves (12.2) can also be chosen to be of polynomial growth
when ω is of polynomial growth.
The answer is striking: this can be done if and only if G is an NB-group.
The proof of this fact when G is simply connected will be done with the

methods that we shall develop in this chapter and the next. To get round the
simple-connectedness, as is often the case with questions involving homology,
is a difficult problem and this will be the subject matter of Chapter 14.

12.1.4 The homology on manifolds. The use of currents

The homology H(G;R) of the previous subsection that will be used will be
the homology developed by de Rham (1960) in his pioneering work. This is
based on the systematic use of smooth differential forms on a manifoldM and
their dual space which is the space of currents on M. The point of view that
is taken in de Rham (1960) is that currents are generalised forms. This is like
the distributions on Rn that, as well as being elements of a dual space (see
Schwartz, 1957) could and should be considered as generalised functions.
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Ideally, before embarking on the chapter the reader should spend some time
looking at the first three chapters of de Rham (1960), which are very readable.
One way or another, familiarity with currents will be essential in this chapter.
The reader who tries to tackle the second half of this chapter and Chapter 13
below and get away with just the overview that we gave in §10.2 may find
several points hard going. To help the reader, a further overview on currents
and how to read de Rham (1960) will be given in this chapter.

12.1.5 Content of Chapter 12

In this subsection we shall give a more detailed description of Chapter 12 and
of how it stands with respect to Part III. This should help the reader cope with a
chapter that is unusual in the sense that what it mostly does is collect together
and try to synthesise background material from several branches of algebra,
analysis and geometry.
The sections in this chapter fall into three groups:

first group: §§12.2–12.6;
second group: §§12.7–12.13;
third group: §§12.14–12.17.

First group This is easy to read and with it one can find what Part III is all
about. The first thing we do is formalise some notions that we have encoun-
tered before from the theory of currents, de Rham cohomology and homotopy
theory. In particular, the pivotal definition of polynomial growth in de Rham
cohomology is hammered out in its final form.
With this background material we are able to state precisely the theorems

that will be proved in Part III, which are among the most important results in
the subject. In fact, the results on polynomial homotopy come straightaway in
§12.2.
The proofs of these theorems will be given in Chapter 13 for the special

case of soluble simply connected groups (these are the ‘models’ of §1.5) and
in the general case in Chapter 14. For the latter, some sophisticated ideas from
algebraic topology have to be recalled and we shall say much more about this
when we come to it.

Second group This is considerably more technical and gives backgroundma-
terial from the different subjects:

(i) further aspects from the theory of currents – homotopies and regularisa-
tion of currents;
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(ii) some basic definitions from homological algebra and algebraic topology;

(iii) some notions from the theory of topological vector spaces that go beyond
the normed and Banach spaces that everyone knows.

In the proofs of Chapter 13, these subjects and ideas are blended. Because of
this, in an effort to save space, we have tended to mix these topics in a manner
that is somewhat artificial. A more compartmentalised exposition would have
been more satisfactory, but this would have been longer and, given the size of
the book already, we felt we could not afford to do that.

Third group Here we process the notions from the second group so that they
will be ready to be used in Chapter 13.

From the above, it should be clear that only those readers that intend to
study carefully the proofs of Chapters 13–14 need to go any further than the
first group in this chapter.

12.2 Definitions and the Main Theorem Related to
Homotopy

We shall first collect, in a systematic and unified manner, some of the defini-
tions already given in Chapter 7.

12.2.1 Homotopies. Homotopic equivalence

Let f ,g : X→Y be two continuous mappings between two topological spaces.
We say that f  g are homotopic if there exists a continuous mapping F ,

F : X× [0,1]−→ Y ; F(x,1) = f (x), F(x,0) = g(x), x ∈ X . (12.3)

We say that two topological spaces are homotopically equivalent, written
X  Y , if there exist continuous mappings α , β ,

X
α−→ Y

β−→ X , (12.4)

such that β ◦α  the identity mapping on X and α ◦β  the identity mapping
on Y . Both the above  are equivalence relations. Hilton (1953) is a good
reference for these notions.
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12.2.2 Homotopy retracts

Let X ⊃ A be some connected topological space and some subspace. We say
that X retracts (homotopically) to A if there exists some homotopy F(x, t) as in
(12.3) such that

F(x,1) = x, F(x,0) ∈ A; x ∈ X . (12.5)

This is a very weak notion and it does not even imply that X  A, but we
shall make systematic use in the following two cases:

(1) A= {O} for some point O ∈ X . We then say that X retracts to a point.
(2) A⊂ X , some compact subset. In this case we say that X is retractable to a

compact set.

Exercise Try to convince yourself, using ideas from the exercise in §14.1.2,
that only a very restrictive class of manifolds are retractible to a compact set in
the above sense. This is not easy to see but has nothing to do with the subject
of the book. On the other hand, by Theorem 12.1, connected Lie groups do
admit this property.

12.2.3 Smooth manifolds

The above definitions will be applied to C∞ manifolds which, more often than
not, will in fact be Lie groups. In that case all mappings considered will be
smooth or at least locally Lipschitz (see §7.1). This assumption will be made
tacitly throughout without further mention.
A number of technical issues concerning the above definitions will also be

tacitly ignored. Here is an example. Assume that X , Y are C∞ manifolds and
that the two mappings f , g in (12.3) areC∞. Assume also that the homotopy F
in (12.3) is locally Lipschitz. We can then regularise and obtain some smooth
homotopy F̃ between f and g that still satisfies (12.3). This fact is necessary if
we wish to link up two smooth homotopies f  g and g  h and prove that a
smooth homotopy is an equivalence relation. To write down a proof of this in
full generality might take some doing.
In our case, however, where the homotopies considered will be constructed

explicitly, the smoothing whenever necessary will be seen to be automatic.
This and similar issues will therefore be bypassed without mention.

12.2.4 Riemannian manifolds and polynomial mappings

Let us first go back to a definition that we introduced in §7.1. Let M be some
C∞ connected Riemannian manifold and let O ∈M be some base point. LetM1
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be some other C∞ Riemannian manifold and let f be some smooth, or at least
locally Lipschitz mapping

f : (M,O)−→M1. (12.6)

We say that f is polynomial if

|d f (m)|�C(1+ |m|)C; m ∈M, (12.7)

where |m| is the Riemannian distance fromm to O, for constantsC independent
of m. Note that for a Lipschitz mapping, d f is defined almost everywhere;
see Federer (1969, §3.1.4). Note also that the ‘a.e.’ has been suppressed in
(12.7). This will be standard practice in similar situations where the ‘a.e.’ is
obvious. The norm | | on the left of (12.7) is of course taken with respect to the
Riemannian norm on the tangent spaces.
We saw in §7.1 that if we fix some base point O1 ∈ M1 and write |m1|1 =

d1(O1,m1) for the distance inM1 then there exist constants such that

| f (m)|1 �C(1+ |m|)C; m ∈M. (12.8)

This fact implies that the composition of two polynomial mappings,

(M,O)
f−→ (M1,O1)

g−→M2, (12.9)

is polynomial.
Similarly, if f ,g : (M,O)→ M1 are two polynomial mappings we say that

they are polynomially homotopic if there exists F , a homotopy as in (12.3),
that in addition satisfies

|dF(m, t)|�C(1+ |m|)C; m ∈M, 0� t � 1, (12.10)

for appropriate constants, where |dF| is taken for the product Riemannian
structure on M× [0,1] and where also F is assumed to be locally Lifschitz
for the product distance.
Similar definitions are given for two polynomially homotopically equivalent

manifolds (M,O) (M1,O1) and a polynomial retract of (M,O) to A⊂M.
These notions are clearly invariant by Riemannian quasi-isometries (see
§1.4.1) and by a change of the base point, although then the constants in say
(12.8) or (12.10) depend on the base point.
Extensive use will be made of the above notions when the manifolds are

connected Lie groups assigned with their left-invariant metrics (see §1.4). In
that case, more often than not, we shall tacitly take as a base point the iden-
tity element e ∈ G. And, of course, the particular choice of the left-invariant
Riemannian metric used makes no difference to the definitions.
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12.2.5 Simply connected groups

With the previous definitions we can now express the essential content of
Chapters 7–10 as follows.

Theorem 12.2 Let G be some simply connected soluble Lie group. Then G
is an NC-group if and only if it is polynomially retractable to e ∈ G, or in
other words, if and only if it is polynomially homotopically equivalent to the
one-point space {e}.

To put this result in the correct perspective, we shall start from two elemen-
tary exercises on the Euclidean space Rd that will be left for the reader to do.

Exercise 12.3 Let c < C be two constants; then there exists some smooth
homotopy F1(x, t) (x ∈ Rd , 0� t � 1) such that

F1(x,1) = x; x ∈Rd ,

F1(x,0) = O= origin of Rd ; |x|� c,

F1(x, t) = x; |x|�C, 0� t � 1.

(12.11)

This says that we can continuously shrink the c-ball to the origin O without
moving the points that are far out at all.

Exercise 12.4 Let γ(t) � 0 (0 � t � 1) be continuous with γ(1) = 0, and
C � supγ(t)+ 1. Then there exists a homotopy F2(x, t), for x ∈ Rd , 0 � t � 1
such that

F2(x,1) = x; x ∈ Rd ,

F2(x, t) = x; |x|�C, 0� t � 1,

F2(x, t) = O; |x|� γ(t), 0� t � 1.

(12.12)

Here we are as in Exercise 12.3, but the shrinking of the small balls is progres-
sive with time and it is a matter of constructing a continuous function of x and
t such that F(x, t) = x for |x| �C, F(x,1) = x for |x| �C but F(x, t) = O for
|x|� γ(t).

We now recall that every soluble simply connected groupQ is diffeomorphic
with some Euclidean space; see Varadarajan (1974, §3.18.11). This fact, com-
bined with Theorem 12.2 and Exercises 12.3 and 12.4, leads to the following
two facts.

Theorem 12.5 Let Q be some soluble simply connected group. Then Q is NC
if and only if Q is polynomially retractable to a compact.
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It suffices for this to follow the original contracting homotopy to a compact
set by the homotopy F1 of Exercise 12.3. Furthermore, let F(g, t) ∈Q be some
polynomial homotopy such that F(O,1) = F(O,0) =O. Since Q is diffeomor-
phic to Rd we can use (12.12) and compose F2(F(g, t), t) = F̃(g, t) and we
have a new polynomial homotopy for which the base point stays put:

F̃(O, t) = O; 0� t � 1. (12.13)

In this context, note that the original shrinking homotopy that we constructed
for NC-groups in Appendix F and §8.5.2 already satisfies (12.13).
A consequence of Theorem 12.5 and the above observation is the following

important theorem.

Theorem 12.6 Let G be some simply connected Lie group. Then G is NB if
and only if G is polynomially retractable to a compact.

To prove this we use the previous theorem and in addition Theorem 11.14,
which says that the group G of Theorem 12.6 is smoothly quasi-isometric to
Q×K where Q is simply connected soluble and K is compact. And G is NB if
and only if Q is. But also clearly G is polynomially contractible to a compact
set if and only if Q is. This gives Theorem 12.6.

Exercise 12.7 For the last point, if we can retract G = Q×K to a compact
P⊂G by a polynomial homotopyH(g, t), and ifQ

i−→G
p−→Q are the canon-

ical injections and projections then p[H(i(q), t)] =HQ(q, t) is a homotopy that
retracts Q to a compact set.

If we use Appendix F we obtain the following more general result.

12.2.6 Retract to a maximal compact subgroup

Theorem 12.8 If G is a connected NB-group, then there exists K0 ⊂ G some
compact subgroup and a polynomial retract F(g, t) of G onto K0 that has the
additional property that

F(k, t) = k; k ∈ K0, 0� t � 1. (12.14)

It follows in particular that G is a polynomially homotopically equivalent
to K0. Furthermore, the compact subgroup K0 can be chosen to be a maximal
compact subgroup of G. This last point is not of great significance; it was
discussed in §F.4 and we shall not come back to it again.
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12.2.7 General connected Lie groups

One of the main results of Part III is that we have a converse of Theorem 12.8
and thus a homotopy B–NB characterisation.

Theorem 12.9 Let G be some connected Lie group that can be retracted
polynomially to a compact. Then G has to be an NB-group.

As a consequence, a connected Lie group G is NB if and only if G is poly-
nomially retractable to a compact set.

The hypothesis of the theorem is as in §12.2.2 and it does not automatically
imply the existence of a homotopy that satisfies (12.14). There is an interesting
gap in the above ‘if and only if’. This, among other things, will be examined
in Chapter 14. For this, one uses (12.1), which is quite deep and is not proved
in this book, combined with (14.5) and the discussion at the end of §14.1.2.

Exercise 12.10 Prove a reduction. For the proof of the first part of Theo-
rem 12.9 we may assume that G is soluble. This reduction illustrates things
that we have already done but it will not be used for the proof of the theorem.
To prove that reduction we use §11.1.5 and find new groups G̃, Q, K, with Q
soluble and K compact, and a quasi-isometry such that

G̃ Q×K, G̃/F = G, (12.15)

where F is a central finite subgroup.

Now it is elementary to see, and quite in the spirit of fibre spaces (see Hilton,
1953, §V.1 or Steenrod, 1951, §11), that the polynomial homotopy that retracts
G to a compact can be lifted to a similar polynomial homotopy on G̃. If we in-
tertwine this homotopy with i and p as in Exercise 12.7 we see that the soluble
group Q is already polynomially contractible to a compact set. As a conse-
quence at this point, if we can conclude from this that Q is NB, then the same
thing will hold for the original groupG because of Theorem 11.16. Note that a
similar use of §11.1.5 will be made in Exercise 12.22 down the road but in the
context of homology theory.

Note finally that the complete dénouement for Theorem 12.9 will only hap-
pen in Chapter 14.
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12.3 A Review of the General Theory of Currents: A
Reader’s Guide to the Literature

12.3.1 Scope of §§12.3, 12.4
This section and the next will be a rapid review of the general theory of currents
and how they are used to define a homology theory on C∞ manifolds. The
key reference in the subject is de Rham (1960). The style of the book is old-
fashioned but we have found this to be a great advantage, especially in its first
part, which has aged very well. We hope the reader will agree!
We have already used currents and given an informal introduction to the

subject in §10.2. Here we shall need another aspect which is more formal and is
related to their invariance properties as they are defined on a general manifold.
For this the reader will have to fall back on de Rham (1960). We shall describe
things and give precise references as we go along, and since there will be many
of them will simply specify the section or page as ‘de Rham (1960, §x)’, say.
But the task of seeing exactly how things are done by de Rham will have to
be carried out by the reader. Note, however, that this is not the only section in
which we shall give background material on the theory of currents. This task
will be picked up again in §§12.8–12.10

12.3.2 Even and odd forms

Apart from the style of de Rham (1960) we must clarify another technical but
important point. The manifoldsM considered in that book are not assumed to
be orientable. As a result de Rham (1960, §5) considers two kinds of (smooth)
differential forms: the even ones and the odd ones, and similarly for even and
odd currents (de Rham, 1960, §8). In those considerations below, all our man-
ifolds will be orientable and we shall dispense with this distinction. All the
forms that we shall consider are even forms in the sense of de Rham; similarly,
all the currents are odd, being the elements of the dual of the space of even
forms.
One standard way of saying that a manifold M is orientable is to demand

that there exists some non-vanishing real smooth differential form of maximal
degree. The above definition of orientability, in the terminology of de Rham
(1960, §5), implies the existence of a C∞ odd form ε of degree 0 which in
terms of local coordinates is a scalar that is ε = ±1. De Rham calls this an
orientation and it can be used to turn even forms into odd forms and vice versa
by ω � εω .
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Exercise 12.11 Prove that Lie groups are orientable. Use the left-invariant
(Haar measure) volume form.

De Rham’s terminology for odd forms seems to have fallen out of use (see
Bott and Tu, 1982, §7 for the modern terminology) but the great advantage
built into the formalism is that the integral∫

M
(odd form of maximal degree)= can be defined

(see de Rham, 1960, §5).
(12.16)

For even forms ω this can only be done by using an orientation, if it exists,
by passing to the corresponding odd form εω (see de Rham, 1960, §6). More
explicitly, for an orientable manifoldM we shall fix the orientation ε (there are
two choices for this) and for an even form ω we shall write∫

ω instead of
∫
εω (terminology of de Rham, 1960, §6). (12.17)

There are therefore two possible choices for this integral on the left.

12.3.3 Further notation

Let M be some C∞ orientable manifold. The space of all (even) smooth dif-
ferential forms on M is denoted by E = E (M) and the subspace of compactly
supported forms is denoted by D = D(M).
For their natural topologies (see de Rham, 1960, §9), D ′ = D ′(M) is the

dual of D and is the space of currents (see de Rham, 1960, §8) on M, and
E ′ = E ′(M) is the dual of E and is the space of the currents with compact
support.
We shall use the notation (see de Rham, 1960, §8)

(α,T ) = (T,α) = T [α]; α ∈D , T ∈D ′,

(β ,S) = (S,β ) = S[β ]; β ∈ E , S ∈ E ′.
(12.18)

Here, again for the natural topologies, we are in a reflexive situation and the
duals, written as ( )∗ are (see de Rham, 1960, §10)

(D ′)∗ = D , (E ′)∗ = E . (12.19)

However, in what follows, the dual of a topological vector space E will be
denoted by E ′ or E∗, whichever of the two is more natural; and sometimes it
will be more natural to use 〈·, ·〉 rather than (·, ·).
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12.3.4 An illustration: chains

LetM be someC∞ manifold (orientable or not!) and let c be some chain inM.
This we recall (de Rham, 1960, §6) is

π : Π−→M; Π⊂ Rp, (12.20)

where Π is some non-singular simplex Π ⊂ Rp together with some orienta-
tion ε on Rp and π defined andC∞ in some neighbourhood of Π in Rp.
Now let α ∈D run through the space of (even) forms, the current associated

to c; the integral of α on c is then defined in de Rham (1960, §6, §8, Example
1) as

(α,c) =
∫
c
α =
∫
ε fπ∗(α), (12.21)

where f is the characteristic function of Π in Rp and π∗ is the pullback map-
ping on the differential forms. Explicitly, to avoid de Rham’s notation, we
should consider only forms of degree p and write

(α,c) =
∫
Π
π∗(α) =±

∫
f (x)a(x)dx1 · · ·dxp; (12.22)

π∗(α) = a(x)dx1∧·· ·∧dxp; (x1, . . . ,xp) Euclidean coordinates of Rp;

that is, ± the integral with respect to Lebesgue measure with the ± being de-
cided by the orientation onRp. It is the orientation that by definition determines
whether dx1∧·· · ∧dxp is + or − the Lebesgue measure. For forms α that are
not of degree p, the scalar product in (12.22) is 0, by definition.

12.3.5 Currents as forms with distribution coefficients

This point is very important in the theory and is in complete analogy with
distribution theory (Schwartz, 1957).
Distributions on Rn are defined as elements of the dual of C∞

0 (R
n) (this

space is denoted by D in Schwartz, 1957) but they can and they should also
be considered as generalised functions and this is in conformity with the his-
torical definition in the pioneering work of Sobolev et al. in partial differential
equations.
This is done as follows. We start from some function f say in L1loc(R

n) and
associate the linear functional

ϕ 	−→ f [ϕ ] =
∫
ϕ(x) f (x)dx1 · · ·dxn; ϕ ∈D(Rn). (12.23)

The same thing can be done on differential forms on an orientable mani-
fold M (whose orientation has been fixed). To wit, let α be some (even) dif-
ferential form on M with L1loc coefficients; we can then define (see de Rham,
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1960, §8, Example 2)

ϕ 	−→ α[ϕ ] =
∫
α ∧ϕ ; ϕ ∈D(M). (12.24)

A special case of (12.24) is (12.23) whereM =Rn, α = fdx1∧·· ·∧dxn and
where the orientation of Rn is the one that makes dx1 ∧ ·· · ∧ dxn = Lebesgue
measure.
This way of looking at currents goes a long way. In this spirit, many authors

prefer to define currents as differential formswith distribution coefficients. The
drawbackwith this approach is that we run into difficulties with the transforma-
tion rule for local coordinates. The correct way of presenting this interpretation
of currents can be found in de Rham (1960, §8, p. 42).
Be that as it may, these identifications allow us to write

D ⊂ E ′, E ⊂D ′, (12.25)

and consider these as subspaces of the largest possible space D ′.

12.3.6 The differential and the boundary operators

In §12.3.4 and (12.24) we gave examples of currents associated to a chain c
or a differential form α . These and Stokes’ theorem motivate the following
definitions that we have already used in §10.2 (cf. de Rham, 1960, §11).
For T ∈D ′(M) we define

(bT,α) = (T,dα); α ∈D(M),

dT = wbT. (12.26)

Finally, a form ω (resp. a current T ) is called closed if dω = 0 (resp. dT = 0).
Here w is the linear operator on D ′ (see de Rham, 1960, §11) which multi-

plies currents of degree p by (−1)p. And we say that a current T is of degree
p if (T,α) = 0 for all α ∈D that are not of degree n− p, n= dimM. We then
also say that T is of dimension n− p (see de Rham, 1960, §8).
The reader can easily verify that the above definitions are consistent with

the degree of the differential forms in (12.24) and with the geometric dimen-
sion and boundary of c in (12.21). Seen like this, (12.26) is just a rewriting of
Stokes’ theorem (de Rham, 1960, §6).

12.3.7 The pullback of forms and the direct image of currents

Conforming with the notation of de Rham (1960, §§3, 11) let μ : W → V be
some C∞ mapping between two orientable C∞ manifolds. The pullback map-
ping μ∗ : E (V )→ E (W ) for differential forms is then defined. For example,
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if α ∈ E (V ) is of degree 0, that is, a function onW , then μ∗α = α ◦ μ is the
function obtained by composition.
The direct image on currents is defined by duality (see de Rham, 1960,
§p. 55) by μT [ϕ ] = T [μ∗ϕ ] in de Rham’s notation (T ∈ E ′, ϕ ∈ E ). The direct
image cannot in general be extended to D ′ unless μ is a proper mapping, that
is, if μ−1 of a compact set is compact.
Note that when T is a Radon measure, that is, a current of dimension 0

(see de Rham, 1960, §8) then Bourbaki (1963) uses the notation μ̌ for this
direct image. For additional clarity we shall sometimes denote this mapping
on currents by μ∗ and call it the ‘pushforward’ (as opposed to the ‘pullback’
μ∗ on forms).

12.4 Homology. Review of the Definitions of the General
Theory

12.4.1 General definitions. Some classical examples

To define a homology theory like the one that we shall need to use we shall
start from a sequence of real vector spaces (Λn; n ∈ Z) and a sequence of
linear mappings

Λ : · · · −→ Λn−1
dn−1−→ Λn

dn−→ Λn+1 −→ ·· ·
that turn these into a complex in the sense that dn+1 ◦ dn = 0 (see Cartan and
Eilenberg, 1956, §IV.3).
More often than not, natural locally convex linear topologies will be as-

signed to these spaces so that they become topological vector spaces (TVS).1

In that case the dn will be required to be continuous.

Example 12.12 All the spaces are finite-dimensional and up to equivalence
only one separated topology can be assigned to these spaces (namely, the Eu-
clidean topology). The standard notation and definitions are as follows:

Hn = Hn(Λ) =
Kerdn
Imdn−1

= the nth homology group (12.27)

(actually a vector space) and

Ker= kernel of the mapping, Im= image of the mapping. (12.28)

1 Throughout, such spaces will be assumed to be locally convex and their topologies will be
separated (i.e. Hausdorff). For these spaces we shall use the references Bourbaki (1953),
Grothendieck (1958) and Jarchow (1981).
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Sometimes one also writes

Λ =
+∞

∑
−∞

Λn; d : Λ −→Λ ; d|Λn = dn, d
2 = 0;

H =
+∞

∑
−∞
Hn =

Kerd
Imd

,

(12.29)

and also, abusing notation2 somewhat, we write instead d : Λ →Λ .

One other item of notation that is often used and is useful is the image for
the canonical projection in (12.29):

Kerd −→ Kerd
Imd

= H; ξ −→ [ξ ] ∈H; ξ ∈ Kerd. (12.30)

When [ξ1] = [ξ2] we say that ξ1 and ξ2 are homologous. Also, when it is nec-
essary to be more specific, the complex Λ is denoted (Λ ,d).
One says that the complex Λ is geometric if Λn = 0 for n < 0 and for n �

n0 � 0. When all the homology spaces Hn are finite-dimensional we shall say
that the complexΛ is finite or has finite homology.

Example 12.13 (i) The complex associated to a finite geometric simplicial
complex is a geometric complex and all the spaces Λn are finite-dimensional.

(ii) Let us consider Λ the complex of singular simplexes in a nice topological
space, for example, some compact manifold (see e.g. Dubrovin et al., 1990;
Hilton and Wylie, 1960 and §12.4.3 below). Then Λ is finite but the spaces Λn
are not finite-dimensional. Note that for the complexes that occur in topology
we have that dimH0 equals the number of components of the space. In what
follows it will also be convenient to adopt a terminology that is not standard.
We shall say that a complex is acyclic if Hn = 0 for all n �= 0.
(iii) Complexes of differential forms and currents on a manifold M will be
considered in the next subsection. There the spacesΛn will be TVS in a natural
way.

12.4.2 C∞ manifolds and complexes of differential forms

Here and throughout this subsectionM will denote some C∞ differential man-
ifold and the notation D , D ′, etc. will be as in §12.3.3. We shall denote by
Dn ⊂ D , En ⊂ E , D ′n ⊂ D ′, E ′n ⊂ E ′ the corresponding forms and currents of

2 Despite its ambiguity, this is the notation used in the standard texts on algebraic topology. We
shall be using the following references systematically: Godement (1958), Hilton and Wylie
(1960), Dubrovin et al. (1990), Cartan (1948), Massey (1991).
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degree nwith 0� n� dimM. Currents of dimension pwill be denoted byD(p),
E(p).
The exterior differential d and the boundary operator b in §12.3.3 turnD , E ,

D ′, E ′ into complexes. For example, we have

D : · · · −→Dn−1
d−→Dn

d−→Dn+1 −→ ·· · ,
E ′ : · · · −→ E ′n−1

d−→ E ′n
d−→ E ′n+1 −→ ·· · .

The above complex (E ′,d) can be written alternatively and equivalently in
terms of the boundary operator

E ′ : · · · ←− E ′(p−1)
b←− E ′(p)

b←− E ′(p+1)←−
where E ′(m) = E ′N−m = compactly supported currents of dimension m with

N = dimM. Here of course the reversal of the arrow for the b operator in E ′

appears simply as a superficial change of notation. But this reversal of the ar-
row also reflects another point that has played an historically important role in
the development of algebraic topology.
This is the distinction between cohomology theory as given by the complex

(E ,d) and homology theory as given by the complex (E ′,b). The difference
between homology and cohomology is that when X

f→ Y is someC∞ mapping
between two C∞ manifolds then it induces

H
(
E ′(X)
)−→H

(
E ′(Y )
)

(12.31)

by the direct mapping on currents (see de Rham, 1960, §11) but a mapping in
the opposite direction,

H (E (X))←− H (E (Y )) , (12.32)

by the pullback mapping of differential forms (see de Rham, 1960, §§5, 18).
In the terminology of algebraic topology this says that homology is a covariant
functor and that cohomology is a contravariant functor.
This distinction between homology and its dual, cohomology, appears only

in a marginal way in de Rham (1960, §21), where cochains are considered for
the first and last time. The point of view adopted by de Rham, and this is also
the point of view that is best suited for our purposes, is the following.
The homology is defined on the largest (universal in some sense) complex

(D ′,d) and insofar that the other complexes D , E , E ′ can be considered as
subcomplexes of D ′ the definition of their homologies can be ‘subordinated’
to this. This of course does not necessarily mean a priori that, say, H(E ′) can
be identified to a subspace of H(D ′). Indeed, two closed currents T1, T2 ∈ E ′
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could be homologous in D ′ without being homologous in E ′; see de Rham
(1960, §18) for more on this important point.
The fact, on the other hand, that we can identify H(E ) = H(D ′) is an im-

portant consequence of the regularisation of de Rham (1960, §15) to which we
shall return in §12.10.3 below.
From our point of view the relation between the homology of Λ in §12.4.1

and the homology of its dual Λ∗ (see §12.4.4 below) is something that will
play a pivotal role in this chapter and the next.

12.4.3 More on singular homology. Connections with algebraic
topology

In de Rham (1960, §21) one finds a proof of the equivalence between the ho-
mologies of D and E and the simplicial homology of the manifold M. Even

more direct is the connection with the singular homologyS : · · · →Sn−1
∂→

Sn
∂→Sn+1→ ··· that we obtain onM by the Lipschitz singular simplexes.

To be more precise, we consider Sn the space spanned by all Lipschitz
mappings

f : Π−→M where Π= (0,e1, . . . ,ep)⊂ Rp (12.33)

is the standard simplex and e j = (0, . . . ,1,0, . . . ,0) are the unit coordinate vec-
tors. An orientation is then induced by the natural order of these vectors and
the chain c and the current

∫
cα =
∫
Π f ∗α can be defined as in §12.3.4. These

singular simplexes can thus be identified to currents in E ′(M) by the defini-
tions of §12.3.4 and de Rham (1960, §8). This identification intertwines the
boundary operators b of (12.26) and ∂ in here. We obtain thus a mapping
H(S )→ H(E ′). That this mapping induces an isomorphism of the two ho-
mologies is a long story. For instance, one can use de Rham (1960, §21) and
also the not-so-obvious but nonetheless well-known fact that singular homol-
ogy and simplicial homology coincide on M. This can be found in standard
algebraic topology references such as Massey (1991) and Hilton and Wylie
(1960). (For the above ‘Lipschitz’ variant one can use, e.g., a modification of
Bott and Tu, 1982, §15.8. This proof is, however, rather sophisticated because
it goes through Čech cohomology. Or see Massey (1991), Appendix A, for a
direct proof.)

12.4.4 Intermediate spaces and complexes

As before, M will be some C∞ manifold and D = D(M) ⊂ D ′ = D ′(M) are
in some sense the largest and the smallest spaces of forms that make sense to
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consider. All other natural spaces of forms are intermediate and together with
the definition of such a space Λ we usually assign a topology to Λ which, if
the definition of the subspace is natural, should be built into the definition. A
number of examples that we shall need later will be given in the next subsec-
tion, but of course, every aspect of modern analysis is full of such spaces; see,
for example, Schwartz (1957).
The dual spaceΛ ′ ofΛ can then be defined and since we shall also need this

to be an intermediate space

D ⊂Λ ⊂D ′, D ⊂Λ ′ ⊂D ′, (12.34)

we shall often demand in the original definition of the TVS Λ that D is dense
in Λ because this guarantees the second inclusion in (12.34).
The problem here is that unless something very specific happens, with the

exception of the obvious examples D , E , D ′, E ′, there is no reason at all that
such a space should give rise to a complex, that is, that dΛ ⊂Λ for the differ-
ential of (D ′,d).
There are two natural ways to mend this. If we start from an arbitrary inter-

mediate space Λ we can then define two complexes as follows:

Λ̂ =Λ ∩d−1Λ , Λ̌ =Λ + dΛ . (12.35)

These are subspaces of D ′ and that they are indeed complexes is obvious (for
the first one uses d2 = 0 and ξ ∈ Λ̂ certainly implies that ζ = dξ ∈ d−1Λ since
dζ = 0). The issue here is how we define the topologies in (12.35). This is
done by standard ideas in TVS (see e.g. Bourbaki, 1953; Grothendieck, 1958).
We can identify Λ̂ with a subspace of Λ ×Λ by the inclusion map ξ →

(ξ ,dξ ), for ξ ∈ Λ̂ , and the topologywe give on Λ̂ is the topology as a subspace
of the Cartesian product. (This is the weakest topology that makes both the
i : Λ̂ →Λ , i(ξ ) = ξ , and d : Λ̂ →Λ , ξ → dξ continuous.)
By Hahn–Banach we see in particular that the dual is(

Λ̂
)∗

=Λ ′+ bΛ ′ =Λ ′+ d∗Λ ′ (12.36)

for the dual mapping b= d∗ of (12.26). (Exercise: verify this.)
Similarly, the natural topology for Λ̌ is the strongest topology that renders

continuous the two mappingsΛ i→ Λ̌ (i is the identical inclusion) and Λ d→ Λ̌ .

Exercise 12.14 For this topologywe can identify the dual (Λ̌)′ =Λ ′ ∩b−1Λ ′.
No direct use of this will be made but doing this exercise will allow the reader
to brush up on topological vector spaces! (see Bourbaki, 1953).

Observe incidentally that the density ofD in Λ̌ for this topology is automatic
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because dD ⊂ D . The proof that D is dense in Λ̂ usually has to be done in an
ad hoc manner (see Exercises 12.25 and 12.26 below).

Remark 12.15 Related to the above, one should note a subtle but largely
irrelevant point. The identification of the dual to (12.36) is just abstract Hahn–
Banach and makes sense whether D is dense in Λ̂ or not. But unless we have
that density, the sum in (12.36) is not the sum inD ′ and the dual of Λ̂ cannot be
identified to a subspace of D ′. In concrete terms, (T1,bT2) ∈ Λ ′ ⊕ bΛ ′ always
gives rise to an element of (Λ̂ )∗.

12.4.5 Examples and further remarks

(i) We shall consider C = C (M) the space of differential forms with continu-
ous coefficients. The topology is given by the seminorms

pK(ω) = sup
K
|coefficients of ω |; K ⊂⊂M compact subsets. (12.37)

Changing the local charts and the coefficients clearly causes no problem. (Exer-
cise: prove this.) This is a Fréchet space, or at least this will be the case for all
the manifolds that we shall be considering. This means that it is a metrisable
complete, locally convex TVS. A countable number of seminorms are needed
to define the topology (see Bourbaki, 1953; Grothendieck, 1958 and §12.14.1
below).
The dual C ′ of C is the space of compactly supported forms with coeffi-

cients that are Radon measures (see Bourbaki, 1953; Bourbaki, 1963).

(ii) If we take K (M) ⊂ C (M) the subspace of compactly supported contin-
uous forms with the appropriate topology, the dual ((K (M))′; see Bourbaki,
1963) is the space of all integration currents onM, that is, all forms with coef-
ficients that are Radon measures.

(iii) The complex associated to C as in (12.35) is C ∩ d−1C and the natural
Fréchet topology is given by the seminorms

qK(ω) = sup
K

[|coefficients of ω |+ |coefficients of dω |] ;

K ⊂⊂M compact subsets, (12.38)

and this gives the topology defined in (12.35). For these topologiesD is dense
in both C and C ∩d−1C . (Exercise: prove this; see Exercises 12.25 and 12.26
for a more difficult case.) Similarly, a differential complex structure and a
topology can be assigned on K ∩ d−1K and the dual of this is the space
of currents T that admit the decomposition

T = S1+ bS2; S1,S2 integration currents onM. (12.39)
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These types of currents are important in a number of issues and we shall
come back to these in §12.7 below. Equation (12.39) is very close to the more
precise notion of flat currents developed in Rn in Federer (1969). Similarly,
K ′ ∩d−1K ′ is the complex of normal currents (see §10.2.6).
(iv) As a final point observe that we could have replaced the continuous forms
in C and C ∩ d−1C by forms that have coefficients in L∞loc. Otherwise the
topologies and the seminorms are defined as before in (12.37) – the sup being
of course replaced by ‘esssup’. This generalisation has the following advan-
tage over C . Let f : M1 → M2 be some mapping. Then if f is smooth the
pullback works in C , that is, f ∗ω ∈ C (M1) for all ω ∈ C (M2), but this prop-
erty breaks down if f is only locally Lipschitz. To rescue the property, L∞loc
coefficients have to be considered.
Another feature of L∞loc is that, although its dual is a very big space, L

∞
loc itself

is the dual of L1comp., which is the compactly supported L
1 functions. This we

shall see will be used in §12.13 below.
Remark 12.16 (A final remark) The intermediate spaces Λ in (12.34) can
very rarely be made reflexive (Λ ′)′ =Λ . As we shall see, when this reflexivity
holds it is a great help, but since it is not there in general we have to do without.
The elaborate technical contortions that we shall indulge in §12.12 below are
designed to give the correct substitute. This also gives an unexpected twist to
the proofs.

12.5 The Heart of the Matter. Forms of Polynomial Growth

12.5.1 Riemannian norm on differential forms

Throughout this section a Riemannian structure will be assigned on the C∞

manifold. For every local chart Ω ⊂M we can then apply the Gram–Schmidt
process on dx1, . . . ,dxn for the local coordinates and obtain ω1, . . . ,ωn smooth
differential 1-forms that are orthonormal for the Riemannian structure on M,
that is, the dual of the Riemannian structure of TM. Now any differential form
ω ∈ C (M) (or even the L∞loc variant of §12.4.5) can be written uniquely (this is
only almost everywhere in the L∞loc variant):

ϕ = ∑
p�0

∑
|I|=p

aI(m)ωI ; I = (i1 < · · ·< ip) is a p-multi-index,

ωI = ωi1 ∧·· ·∧ωip , aI(m) ∈R, m ∈Ω. (12.40)

One then defines

|ϕ(m)|=∑ |aI(m)| ; m ∈Ω, (12.41)
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and this up to equivalence is independent of the coordinates x1, . . . ,xn and the
choice of ω1, . . . ,ωn. The square root of the sum of the squares would have
been a better choice in (12.41) and then the strict invariance is clear; this point,
however, is not important. For a more formal presentation of these facts see
Warner (1971, Exercise 2.13, p. 79). Also up to equivalence, |ϕ | in (12.41) is
invariant when we change the Riemannian metric on M to a quasi-isometric
equivalent Riemannian metric. In (12.41) only forms of degree � 1 have been
considered. If the degree is 0 then ϕ is a scalar function and in (12.41) we set
the ordinary absolute value.

Lie groups Our main object of study will be connected Lie groupsG assigned
with their left-invariant Riemannian metric. In that case the orthonormal basis
ω1, . . . ,ωn of T ∗M can be chosen globally and is obtained by the left translation

of a set of orthonormal basis vectors ω(0)
1 , . . . ,ω(0)

n of the cotangent space T ∗e G
at the identity point e ∈ G.

12.5.2 Spaces of differential forms on M

The basic space will be the space of bounded C (M) forms, that is, the forms
ϕ of §12.4.5 for which

‖ϕ‖0 = sup
m
|ϕ(m)|<+∞. (12.42)

For the L∞loc coefficients the supremum is of course replaced by the essential
supremum (esssup). Although ‖ ‖∞ would conform better with the traditional
terminology, the notation (12.42) is preferable as we can see in the notation
below.
In what follows, O ∈ M will be a fixed base point and as before we shall

denote |m|= d(O,m) with m ∈M. The following notation and definitions will
then be used throughout:

‖ϕ‖p = ‖ϕ(1+ |m|)−p‖0; p� 0, ϕ ∈ C (M) (or in the L∞loc variant),

Cp = Cp(M) = [ϕ ∈ C (M); ‖ϕ‖p <+∞],

C (pol) = C (M;pol) =
⋃
p�0

Cp (· · ·Cp ⊂ Cp+1 ⊂ ·· · ).

Sometimes the notation C (M;pol,L∞loc) will also be used for the L
∞
loc variant.



12.6 Statement of the Homology Theorems 411

12.5.3 The complex of polynomial forms

This will be the complex that we can construct from C (M;pol) by the con-
struction of Λ̂ in (12.35). We shall denote

ΛP(M) =Λ(M;pol) =
[
ϕ ∈ C (M,pol); dω ∈ C (M,pol)

]
. (12.43)

The L∞loc variant can be defined analogously and we write Λ(M;pol,L∞loc).
The other way Λ̌ of turning C (M;pol) into a complex could have been used

but we shall not use this here. Observe, however, that the theory that we shall
build around ΛP(M) in the rest of the chapter, we can also build for this Λ̌
larger variant with essentially only formal changes in the arguments.

12.6 Statement of the Homology Theorems

12.6.1 Simply connected groups

The first result in that direction concerns the simply connected groups that are
soluble and which as before constitute the building block of the theory.

Theorem 12.17 (Simply connected soluble groups) Let G be some simply
connected soluble group. Then the following conditions on G are equivalent:

(i) G is an NC-group;
(ii) ΛP(G) is acyclic, that is, Hn = 0 for n �= 0 (see §12.4.1);
(iii) the homology of ΛP(G) is finite-dimensional.

Recall that the complexes Λ = ΛP,E , . . . for any connected manifold U or
topological space for that matter, we have H0(Λ) = R. The proof of the the-
orem will not be given before the next chapter. But it requires quite a bit of
preparation and this will be carried out in the remainder of this chapter. Note,
however, that the proof of the implication (i)⇒(ii) is contained in Chapter 8
because of §12.9 below.
It will be important to reformulate this basic result in terms of the classical

Poincaré equation dθ =ω without the use of currents or even the formalism of
homology theory. This is done in the following proposition, the proof of which
will be given in §12.10.3 below and has nothing to do with the NC-condition.
The proposition also holds for more general manifolds but the proof in this
more general case requires more machinery and will not be given.

Proposition 12.18 Let G be some connected Lie group. Then the following
two properties are equivalent:

(i) The complex ΛP(G) is acyclic.
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(ii) Let ϕ = ϕ1+ϕ2+ · · · ∈ΛP(G)∩E (G) be some smooth differential form
that grows polynomially, has no constant term and is closed, that is,
ϕn ∈ En as in §12.4.2, and dϕ = 0. Then there exists θ ∈ΛP(G)∩E (G)
such that dθ = ϕ .

Similarly, the following two properties are equivalent.

(iii) The homology of ΛP(G) is finite-dimensional.
(iv) There exist ω(1), . . . ,ω(p) ∈ ΛP(G)∩E (G), finitely many closed smooth

differential forms of polynomial growth such that for all ϕ ∈ ΛP(G)∩
E (G) that is closed and smooth, there exist θ ∈ΛP(G)∩E (G) and scalars
λ1, . . . ,λp ∈R such that

ϕ = dθ +λ1ω(1) + · · ·+λpω(p). (12.44)

One then usually says that the ω(1), . . . form a basis of the homology.
The situation is illustrated well by compact groups that are NB-groups. Just

about everything is known on the homology of compact Lie groups (e.g. Greub
et al., 1973 Chapter IV; Dubrovin et al., 1990). But one thing that is obvious
and certain is that this homology is finite-dimensional, as is the homology of
any compact manifold, because among other things such a manifold admits a
finite triangulation; see, for example, Hilton and Wylie (1960) and Bott and Tu
(1982, §5.3.1). More to the point, we have the following theorem.
Theorem 12.19 (Simply connected groups) Let G be some simply connected
Lie group. Then the following two conditions on G are equivalent:

(i) G is an NB-group;
(ii) the homology of ΛP(G) is finite-dimensional.

This result is in fact contained in the previous theorem. This can be seen in
the following exercise.

Exercise 12.20 WhenG is simply connected, by §11.1.3 it is smoothly quasi-
isometric toQ×K, whereQ is simply connected soluble andK is compact. The
two canonical mappings

Q−→
i
G= Q×K −→

p
Q (12.45)

show that if ω(1), . . . ,ω(p) ∈ ΛP(G), with dω(n) = 0, induce a basis of the
homology of ΛP(G) then

[
i∗
(
ω(1)
)]
,
[
i∗
(
ω(2)
)]
, . . . (see (12.32) and §12.8 be-

low) span the homology of ΛP(Q). This means that if ΛP(G) is finite then so
is ΛP(Q). Theorem 12.17 therefore applies and shows that Q is NC. But this
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together with §11.1.4 shows that G is NB and proves the implication (ii)⇒(i)
in Theorem 12.19.
The implication the other way round, (i)⇒(ii), in Theorem 12.19 follows

from the polynomial retract of Q to a point and therefore of G to the com-
pact submanifold K (see §12.2). By general considerations that we shall ex-
plain in §12.9 below, this retract gives an isomorphism between the homology
of ΛP(G) and H(K), the homology of K. This homology is therefore finite-
dimensional.

Remark (i) One clearly sees from the above the necessity of using condi-
tion (iii) in Theorem 12.17.

(ii) The correct way to exploit the product in (12.45) is through the general-
isation of Künneth’s formula in the appendix to Chapter 14. This formula is
rather sophisticated but once there, the equivalence of (i) and (ii) in the above
theorem is automatic.

12.6.2 General connected Lie groups

What we did in the previous subsection was to use the structure theorems
of Chapter 11 to reduce the proof of Theorem 12.19 to the proof of Theo-
rem 12.17, that is, the case of a simply connected Lie group to the special case
of a soluble simply connected Lie group. This reduction, at least in one direc-
tion, can also be done in a more general situation. To be specific, the following
result holds.

Theorem 12.21 (General Lie groups) Let G be some connected Lie group.
Then the following two conditions on G are equivalent:

(i) G is an NB-group;
(ii) the homology of ΛP(G) is finite-dimensional.

Because of §12.9 the implication (i)=⇒ (ii) is a consequence of Appendix F.
In the next few lines, however, we shall show how this can be achieved without
using the full thrust of that difficult appendix.
Our claim is that for the implication (i)⇒(ii) we can reduce the proof to

the special case and assume that G is soluble (but not necessarily simply con-
nected).

Exercise 12.22 To prove this, as in Exercise 12.10 we start from a general
connected Lie group G and construct a smooth quasi-isometry  where

G̃ Q×K, G̃/F = G, G̃−→
π

G, (12.46)
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Q is soluble, K is compact, both are connected and F is a finite central sub-
group of the new Lie group G̃. Furthermore, if G is assumed to be NB the
group Q is NC. The above construction was done in §11.1.5.
Now let ω1, . . . ,ωn ∈ ΛP(G) = ΛP(G̃/F) closed differential forms and let

us pull them back to ω∗j = π∗ω j ∈ ΛP(Q×K). If [ω∗1 ] · · · [ω∗n ], the homol-
ogy classes of these forms, are linearly dependent, then we can find scalars
λ1, . . . ,λn, not all 0, and some form θ ∗ ∈ΛP(Q×K) such that

dθ ∗ = λ1ω∗1 + · · ·+λnω∗n . (12.47)

By taking averages with respect to the group action by F we can assume that
θ ∗ = π∗θ for some θ ∈ ΛP(G) and therefore the original homology classes
[ω1], . . . , [ωn] are linearly dependent also.
What we have thus shown is that if the homology of ΛP(Q×K) is finite, so

is the homology ofG. Incidentally, one can also easily prove this the other way
round (see §14.3.2 below) but this fact is not needed here.
It remains to be seen that if Q is a soluble connected NC-group and if K is a

compact connected group then the homology of ΛP(Q×K) is finite.
Now, when Q is a connected soluble NC-group then Q is polynomially ho-

motopically equivalent to a torus Tk, Q  Tk (see Appendix F). It follows
therefore that Q×K  some compact Lie group. Our final assertion therefore
follows from the general results of §12.9 below.
We see therefore that modulo some relatively easy additional facts (much

easier than the full thrust of Appendix F) we have a proof of the implication
(i)⇒(ii) in the theorem.
Exercise Verify that Appendix F becomes much easier when we assume that
the group is soluble. The additional algebraic results from Appendix A and
Appendix B are then not needed. And although one uses the same geometric
strategy explained in §§F.4, F.5, 8.5.2, the only additional fact that is needed is
the easy algebraic result in (3.50) and the lemma in §C.1 (and even that lemma
is not really essential; see Varopoulos, 2000b, §5). The bottom line is that the
algebra in Appendix A and Appendix B is only essential for the homotopy of
Theorem 12.9, and not for Theorem 12.21.

12.6.3 The scope and return on investment of Part III

Theorem 12.21 gives a characterisation of the B–NB condition in terms of
homology theory. The homology used has to be defined, especially when seen
in the light of the Poincaré equation. The bottom line is that this theorem is
very much in the nature of things. Its main drawback is that it takes about 150
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pages to give a complete proof of the implication (ii)=⇒ (i) of this theorem: in
other words, essentially the whole of Part III. (Added in proof : In the Epilogue
we describe a different approach to this implication. When and if this is written
out, it will for sure give shorter proofs all round.)
The author hesitated in writing the details of that proof, because the effort

seemed disproportionate, before finally deciding to do so. The following rea-
sons were decisive in making that decision, and the reader may ponder these
to decide whether to read Part III or not.
First, without the implication (ii)=⇒ (i), we do not have a general proof of

Theorem 12.9 either, and this weakens the geometric theory considerably.
But not only that: a variety of new tools, or rather variations of classical tools

in geometry and algebraic topology, had to be developed. These are interesting
in their own right and also point to further developments in the subject. It is
also these that take most of the space!

12.7 Banach Spaces of Currents and Their Duals

Notation The letterM that was used up to now to indicate a smooth connected
manifold will now be changed toU , V, . . . . This conforms with de Rham’s no-
tation and, more to the point, will avoid confusion in the formulas that follow.
As before, the manifolds that will be considered are assigned with a base point
and a Riemannian metric. Here are samples of the notation that we shall be
using:

m,x, . . . ∈U ; ϕ ∈ E (U), T ∈D ′(U).

12.7.1 The total mass norm

We shall adopt the notation

M(T ) = sup
{|(T,ϕ)|; ϕ ∈D(U), ‖ϕ‖0 � 1

}
;

‖ ‖0 as in (12.42), T ∈D ′(U),
(12.48)

and we shall also write, more generally,

Mp(T ) =M (T (1+ |m|)p) ; T ∈D ′(U), p� 0. (12.49)

The space of currents T ∈ D ′(U), for which M(T ) < +∞, is the space of
integration currents of finite total mass (see Federer, 1969). In fact, (12.49) is a
slight abuse of notation because unless we already know that T is an integration
current, then T (1+ |m|p), where |m| is the distance from the base point, may
not make sense! However, we feel such pedantic points are best ignored.
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Example 12.23 Radon measures onU can be identified to currents of dimen-
sion 0. For such a measure μ , M(μ) = ‖μ‖ is its total mass norm (see Bour-
baki, 1963). For a ∈ U the standard notation δa will be used to indicate the
Dirac δ -mass at a. We shall write (see §12.5.2)

C 0
p (U) =

{
ϕ ∈ C (U); |ϕ(m)|(1+ |m|)−p −→

m→∞
0
}
. (12.50)

Exercise 12.24 Show that C 0
p (U)⊂ Cp(U) is the closure of D(U) in Cp for

the norm ‖ ‖p of (12.5.2). See §12.7.2 below where a more intricate situation
is considered.

As a consequence the dual can be identified to a space of currents(
C 0
p (U)
)∗

=
[
T ∈D ′(U); Mp(T )<+∞

]
. (12.51)

Exercise 12.25 Show that (12.51) follows from the definitions.

We shall also write

C ∗(U,pol) =
⋂
p�0

(
C 0
p (U)
)∗
, (12.52)

which is the dual of C (U,pol) for the appropriate topology on this space. More
of this topology and duality will be discussed in §12.13 and (12.63) below (see
also the appendix to this chapter). However, no essential use of (12.52) or the
topologies in question will be made. This space of currents consists of all the
superpolynomially decaying integration currents. More precisely, T belongs to
(12.52) if and only if

Mp(T )<+∞; p� 0 (12.53)

(see also (12.67), (12.68) below). Inequality (12.53) can be expressed equiva-
lently as

M
[
T I[m ∈U ; |m|> R]

]
= O(R−p) as R−→ ∞, for all p> 0, (12.54)

where I denotes the indicator function for the set outside the R-ball.

12.7.2 Banach spaces of complexes

We shall write

Λp,q(U) = [ϕ ∈ Cp(U); dϕ ∈ Cq(U)] . (12.55)

This is the space of currents for which the norm (cf. (12.35))

‖ϕ‖p,q = ‖ϕ‖p+ ‖dϕ‖q <+∞. (12.56)
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The closure of D(U) in Λp,q for the norm (12.55) is

Λ0p,q(U) =
[
ϕ ∈ C 0

p (U); dϕ ∈ C 0
q (U)
]

(12.57)

provided that p� q.

Exercise 12.26 This is a little more subtle. To see this we can consider say,
locally Lipschitz, cut-off functions χ that have compact support and

‖χ‖0+ ‖dχ‖0� 1010 (12.58)

and are identically ≡1 in larger and larger compact subsets that saturate U .
Such functions can be constructed by composing with the distance function
|m| : χ(m) = χ0(|m|) for some χ0 function on R.
Having such a function we can replace any ϕ ∈ Λ0p,q by χϕ ∈ Λ0p,q which

is compactly supported. But to prove that this approximates ϕ we still have to
consider

d(χϕ) = dχ ∧ϕ+ χdϕ (12.59)

and to make this work we need the continuous inclusion Cp ⊂→ Cq. It is this that

forces us to restrict ourselves to the case p� q.

Exercise 12.27 (The smoothing out) We still have to smooth out the form
χϕ ∈ Λ0p,q to obtain an element in D(U). Since the support of χϕ is compact
this is easy; for example, a partition of unity can be used to write χϕ = ∑ϕ j

with the ϕ j having small support and then convolution for each ϕ j in Rn to
smooth out each ϕ j.
The above regularisation can also be done by the method that is developed in
§12.10 below in the case whenU is a Lie group. This more precise density is,
however, not needed for the identification below in (12.60) of the dual space
to a space of currents (see Remark 12.15). Explicitly, the following can be
asserted. From this density of D , when p � q, we see, as in (12.39), that we
can identify the dual space(

Λ0p,q(U)
)∗

=
[
T = T1+ bT2; T1,T2 ∈D ′, Mp(T1)+Mq(T2)<+∞

]
.

(12.60)
Using the spaces of currents defined in (12.57) we have (see (12.43))

ΛP =
⋃
p,q

Λp,q =
⋃
Λ0p,q = C (U ; pol)∩d−1C (U ; pol) (12.61)

because we always have

Λp,q ⊂Λ0p1,q1 ; p< p1, q< q1, (12.62)

and if, as we shall briefly explain in §12.13.2 and the appendix to this chapter,
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the appropriate (inductive limit) topology (see e.g. Bourbaki, 1953) is assigned
on this space, its dual can be identified with

Λ∗P =
⋂
p�q

(
Λ0p,q
)∗
. (12.63)

This space of integration currents is in many ways as natural to consider in
its own right as the original space ΛP. It is, however, less simple to describe
explicitly. This is done as follows. First, T ∈ Λ∗P if and only if for all p,q > 0
with q� p, we can rewrite T ∈D ′ (see Remark 12.15),

T = T1+ bT2; T1 ∈
(
C 0
p

)∗
, T2 ∈
(
C 0
q

)∗
, (12.64)

with Mp(T1)<+∞, Mq(T2)<+∞. Given that
(
C 0
p1

)∗ ⊂ (C 0
p

)∗
for all p� p1

we can dispense with the condition q� p in (12.64) and we can write T ∈Λ∗P
in the form (12.64) for any p, q.

Remark 12.28 The space in (12.63) is not a priori the same space as
C ∗(U,pol)+ bC ∗(U,pol) = ΛP. On the other hand, we may be hard-pushed
to produce an example where ΛP �= Λ∗P . (The author confesses that he has not
spent any time on this issue!)

The flat seminorms To clarify these definitions further we shall define flat
seminorms (possibly +∞; cf. §10.2.6)

Fp(T ) = inf [Mp(T1)+Mp(T2); T = T1+ bT2] ; T ∈D ′. (12.65)

With this definition, T ∈Λ∗P if and only if Fp(T )<+∞, p � 0.

Remark and exercise A more transparent way of presenting (12.53) in the
case of a Lie group goes as follows. With the notation of §12.5.1 we can rep-
resent any integration current T on G as

T =∑TIωI , (12.66)

where the TI can be defined and identified globally (once the orthonormal ba-
sis ω1, . . . ,ωn in §12.5.1 has been fixed) with Radon measures on G. (Strictly
speaking, as in de Rham, 1960, §8, p. 42, each TI is a current of degree 0.
To make this a measure μI , we set 〈μI ,ϕ〉 = ±T [ϕ dωJ], with ϕ ∈C∞

0 , for the
complementarymulti-index J.) Let us denote |T |=∑ |μI | (see Bourbaki, 1963)
which is then a positive Radon measure on G. Condition (12.53) then reads∫

|T |(1+ |m|)p <+∞; p� 1. (12.67)
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Alternatively and equivalently,

total mass of[G\ball of radius R] = O(R−p), for all p� 0, (12.68)

that is, that total mass decays superpolynomially.

Suggestion for the reader Use of the dual space (12.63) and Remark 12.28
will be non-essential and marginal. Those readers not familiar with this more
sophisticated theory of TVS need not worry therefore.

12.8 Geometric Properties of C (U,pol) and a ‘Technical’
Review of Currents

In this section we shall present several technical lemmas, properties and def-
initions on currents of polynomial growth. Then, as we did in §12.3, we shall
help the reader to do some more ‘surfing’ of de Rham (1960) and highlight
some additional facts about the theory of currents. These will be used in the
course of this and the next chapter. The reader is advised to skim through this
section and then refer back as necessary.

12.8.1 Images by polynomial mappings

Let f : (U,O)→ (U1,O1) be a polynomialmapping between Riemannian man-
ifolds with base points as in §12.2.4. We shall denote by f ∗ the pullback map-
ping on differential forms and by f∗ the dual pushforward mapping whenever
defined, for example on E ′(U) (see de Rham, 1960, §11). What counts is that
we then have

f ∗C (U1,pol)⊂ C (U,pol), f ∗Cp(U1)⊂ Ccp+c(U); p � 0, (12.69)

f∗C ∗(U,pol)⊂ C ∗(U1,pol), Mp( f∗T )�CMcp+c(T ); T ∈D ′, (12.70)

for c,C > 0 independent of p. From this, since f ∗ and f∗ commute with d and
b, we deduce that f ∗ΛP ⊂ΛP and f∗Λ∗P ⊂Λ∗P .

Exercise 12.29 Prove the second assertion in (12.69). The rest easily follows.
The verification there is easy enough because it suffices to make it on forms α
of degree 0, that is, functions, and there it suffices to use | f (m)|1 �C(1+ |m|)C
in (12.8), and for forms e1,e2, . . . ∈ C (U1,pol) of degree 1 and use the defini-
tion for d f in (12.7). More explicitly, 〈 f ∗ei,ξ 〉 = 〈ei,d fξ 〉, |d fξ | � C(1+
|m|)C|ξ | for ξ ∈ Tm(U). The verification for general forms is then done by ex-
pressing any such form ϕ (locally) as a linear combination of forms that are
simple monomials of the form αei1 ∧ ei2 ∧·· · (cf. (12.40)).
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The above also holds when f is not smooth but only locally Lipschitz, but
then, in the target space of f ∗, we have to allow the larger space C (U ;pol,L∞loc)
of §12.5.3, and no use will be made of this aspect of things.

12.8.2 Polynomial mappings in Lie groups

Here G is some connected Lie group assigned with the left-invariant Rieman-
nian metric and e ∈G as the base point.
(i) The simplest polynomial mappings are the left and right actions

sa,τa : G−→ G; a ∈ G, τag= ag, sag= ga; g ∈ G. (12.71)

The constants of these polynomial mappings of course depend on a.
Sometimes it will be essential to keep track of these constants. The best way

to do that is to introduce new notation and set

Ma
p(T ) =M0

(
T (g)(1+ |a−1g|)p) , a ∈G, T ∈D ′(G), p� 0, (12.72)

which essentially amounts to changing the base point. Then it is clear that for
the left translation we have

Ma
p

(
(τa)∗T
)
=Mp(T ); Mp

(
(τa)∗T )

)
�C
(
1+ |a|)pMp(T ), (12.73)

because we are using a left-invariant Riemannian structure. The second esti-
mate in (12.73) follows from the first and from (12.72).
Nothing like this can of course be done for right translation and there, in

general, the constants that would appear in (12.73) grow exponentially in |a|.
Exercise 12.30 (i) Use §8.1 to elaborate on this. For right translations, for
the constants to stay bounded, in general a has to stay in some compact subset
of G.

(ii) The product mapping is

G×G−→G, (g1,g2)−→ g1g2; g1,g2 ∈ G. (12.74)

If we go back to §8.1 again we see that the restriction of this mapping,
(g1,g2)−→ g1g2; g1 ∈G, g2 ∈ K, K ⊂⊂ G, K compact, (12.75)

is polynomial but the constants depend on K.

(iii) A mapping used in homotopies. Let

exp: g−→ G; exp(ξ ) ∈ G, ξ ∈Ω⊂ g (12.76)

be the exponential mapping (Varadarajan, 1974, §2.10) that is defined and is a
bijective diffeomorphism in some compact neighbourhood Ω ⊂ g of 0 in the
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Lie algebra g. This mapping has already played an important role in several
places in the analytic theory (e.g. §§3.4 or 3.5).
For every g∈ exp(Ω)⊂G such that g= exp(ξ ) for some ξ ∈Ω we can then

define a homotopy:

F(x, t) = xgt ∈G; gt = exp(tξ ), 0� t � 1, x ∈G, 0� t � 1. (12.77)

This is clearly a polynomial mapping (from G× [0,1] to G) with constants
that are uniform in g as long as Ω stays fixed.

Exercise 12.31 Use §8.1 to prove this. Observe that the same thing cannot
be asserted in general for gtx, because there the second factor runs through the
generally non-compactG (see §14.3.2 below).

12.8.3 Double forms and double currents

Here, until the end of the section, we shall pick up again our review of the
theory of currents that we started in §12.3, and explain some of the techni-
cal aspects of the theory that will be needed in the proofs. We shall conform
closely to the notation of de Rham (1960) and consider two differential man-
ifolds V , W . De Rham uses the notation E (V ×W) (resp. D(V ×W )), not to
indicate E (M) (resp.D(M)) for the manifoldM=V×W , but the space of dou-
ble C∞ forms and the space of such forms that are compactly supported. We
then define E (V ×W ) as the space of differential forms on V with coefficients
in E (W ) or, equivalently, vice versa, differential forms onW with coefficients
on E (V ). A more symmetric definition is also given in de Rham (1960, §§7,12)
and similarly for D(V ×W).
The duals of these spaces for the appropriate topologies are defined to be

D ′(V ×W) the space of double currents, and E ′(V ×W ) the subspace of com-
pactly supported double currents.
To make an essential clarification of the notion we can identify ϕ ∈ D(M),

that is, an ordinary form onM =V ×W , with a double form ‘simply by bring-
ing in the product structure in the definition’. By this cryptic statement we
simply mean the following.
If U ⊂ V and U ′ ⊂W are local charts in V andW respectively (this is the

notation in de Rham, 1960, pp. 36, 58) then coordinate changes inU andU ′ put
together make up a coordinate change in U ×U ′ ⊂ V ×W = M. This simply
means that if γ̃ ∈ D(M) we can look at it as a double form γ . In de Rham’s
notation (de Rham, 1960, §13) this is written out as γ = A ∗γ̃ . By duality a
double current L ∈ D ′(V ×W ) corresponds to a current in M = V ×W that is
denotedA L and is defined by A L[γ̃] = L[A ∗γ̃].
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This set of notions and notation may at first sight appear rather ‘heavy’, es-
pecially if one is to take this seriously and follow in detail the presentation
of de Rham (1960, §13). The point, however, is that sometimes it is neces-
sary to distinguish between the variables in a product manifold; for example,
in considering homotopies F(m, t), (m, t) ∈ M×R in (12.3), the variables m
and t play very different roles on this product manifold. The ordinary forms
on this manifold are then best considered as double forms. This will be exam-
ined in more detail in §12.9 below. And a full detailed, but also more energy-
consuming, exposition can be found in de Rham (1960, §14).

12.8.4 Application of double currents

Here we shall specialise the set-up of the previous subsection to V =W = G
some Lie group, and, for two currents T1,T2 ∈ D ′(G), define a double current
T1× T2 ∈ D ′(G×G) because the algebraic tensor product D(G)⊗D(G) ⊆
D(G×G) can be identifiedwith a dense subspace of the space of double forms;
see de Rham (1960, p. 59). Here, if ϕ1,ϕ2 ∈D(G), thenψ = ϕ1 ·ϕ2 is a double
form (see de Rham, 1960, §7, p. 36, and (12.81) below) and we set 〈T1 ×
T2,ψ〉 = T1[ϕ1]T2[ϕ2]. Note that the use of ‘×’ that we make here deviates
from de Rham’s notation.

Exercise 12.32 This fact is well known (see Schwartz, 1957) if V = Rn,
W = Rm. Therefore this tensor product is dense in the space of double forms
with their support in U ×U ′ for two charts U , U ′ in V and W respectively
because of the representation (12.81) below. For the general case we use finite
partitions of unity to take care of the compact support.

We shall consider now the product mapping

π : G×G−→G; π(g1,g2) = g1g2. (12.78)

It follows that as long as the support of one of the two currents T1 or T2 is
compact, the direct image

π∗A (T1×T2) = T1 ·T2 ⊂ G (12.79)

can be defined because the mapping is proper on the support of T1× T2 (see
de Rham, 1960, pp. 56, 58). The convolution sign ∗ is normally used for mea-
sures.

Example 12.33 With the notation of (12.71) and §12.7.1,
(τa)∗ T = δa ·T, (sa)∗T = T ·δa; T ∈D ′(G). (12.80)

We shall elaborate further on the above definitions in §12.8.5.2 below.
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12.8.5 The boundary operators on double currents and the
‘produit tensoriel’

The same notation as before will be used and, once more, the notation of
de Rham (1960) will be maintained when possible. For the local charts U ×
U ′ ⊂V×W , the local coordinates inU andU ′ will be x1, . . . ,xn and y1, . . . ,ym,
so that dimV = n, dimW = m. With the notation of de Rham (1960, p. 36), a
double form can then be represented as

γ(x,y) =∑
I,J
CI,J(dx

I) · (dyJ); I = i1 < · · ·< ip, J = j1 < · · ·< jq. (12.81)

The degree of this double form is said to be p in x and q in y if, in the sum-
mation (12.81), only the coefficients CI,J for which |I| = p and |J| = q are
non-zero. Similarly (de Rham, 1960, pp. 57–58), a double current L is said to
be of dimension p in x and q in y (equivalently of degree n–p in x and m–q in
y) if L[ϕ ] = 0 for all double forms ϕ that are not of degree p in x and q in y.
On such (homogeneous) double currents one then defines the operators

wxL= (−1)pL, w∗xL= (−1)n−pL; p = degL in x, (12.82)

and then extends to the whole space of double currents by linearity.
On double forms one defines the two exterior differentials dx and dy in the x

and y variables and these commute (de Rham, 1960, p. 37). One then defines
on currents the dual operators by bxL[γ] = L[dxγ] and dx = wxbx (de Rham,
1960 p. 58). Similar definitions are given for wy, w∗y , dy, by on the same space
of double currents (de Rham, 1960 p. 58).
All this keeping track of the ± signs in the definitions of the boundary may

seem unduly complicated at first sight. The reader should not take all this too
seriously in a first reading of de Rham (1960) but should nevertheless bear in
mind that it is important and that this problem is also intrinsic in homology
theory in general (see Massey, 1991, Chapter VIII). The reader should rather
concentrate on formula (12.83) below and on the illustrations of this formula
that are given next. There the geometric meaning of the operators b and w
should become apparent.

12.8.5.1 The formula for the boundary Let L be some double current on
V ×W with which we can associate an ordinary current on the manifold M =

V ×W . This current is denoted by A L in de Rham (1960, §13) and then
A : L→A L becomes a linear operator. The formula that relates b, the bound-
ary operator on currents on M, with the boundary operators on the currents
on V and W can, with our previous notation, be written out as the following
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identity between operators (de Rham, 1960, p. 62, §13):

bA = A (bx+w∗xby) . (12.83)

This says, grosso modo, that to take the boundary in the product we have to
combine the two boundaries in the x-variables and the y-variables. The addi-
tional twist is that in the second component a ± crops up, depending on the
dimension of the first component. This is very much inherent in homology
theory and among other things it guarantees that the identities b2 = 0, b2x = 0,
b2y = 0 are compatible (see Example 12.37 below). We hope that the geometric
illustration in the next subsection will help to clarify matters.

12.8.5.2 The commutative produit tensoriel The space D(V ×W ) of dou-
ble forms γ of (12.81) is defined in de Rham (1960, p. 36) as the space of
differential forms on V with coefficients in DW (this is de Rham’s notation
for D(W )). Similarly, D(W ×V ) can be defined, and the obvious identifi-
cation J : D(V ×W )→ D(W ×V ) is used tacitly and throughout (de Rham,
1960, p. 36 again).
Now let γ(x,y) ∈ D(W ×V ), and also let T (x) ∈ D ′(V ), S(y) ∈ D ′(W )

(de Rham, 1960, p. 59). The coefficients of γ lie in DV ; we can then act by
T (x)[γ(x,y)] ∈ DW and on this can apply S and set L[γ] = S(y)

[
T (x)[γ(x,y)]

]
so that L ∈ D ′(W ×V). This procedure can be done the other way round and
we obtain L′ ∈ D ′(V ×W) by L′[γ] = T (x)

[
S(y)[γ(x,y)]

]
. Testing on the spe-

cial double forms γ = α(x)β (y) we see that, modulo the identification J, these
are identical.
The notation L = ST = S(y)T (x), L′ = TS = T (x)S(y) is used in de Rham

(1960, p. 59), where this product is called le produit tensoriel, and is com-
mutative. With this commutative product we clearly have bx(TS) = (bT )S,
by(TS) = T (bS). Examples of this are used in the homotopy formulas (see
§12.9 below and in de Rham, 1960, p. 67) where the product IT = I(t)T (y) ∈
D ′(R×W ) is considered for the current I = [0,1] ∈ D ′(R) of the next sub-
section. In §12.8.4 we prefer to denote L′ = T × S and L= S×T and say that
J∗L= L′ for the dual identification.
We shall now stick with de Rham’s notation and, with T , S as above we shall

define the double current R = TS = ST on the product of V with W . We can
use the operatorA on the two manifoldsM =V ×W and N =W ×V to define
the two currentsAMR,ANR onM and N respectively. Notice that if θ : M→N
is given by θ (x,y) = (y,x), then θAMR= ANR (to see this test on some forms
ϕ(x)∧ψ(y)). Now letU be a third manifold and let α : U →V , β : U →W be
diffeomorphisms. The two diffeomorphismsα×β : U×U→M, β ×α : U×
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U → N can then be used to define the two currents (α ×β )−1AMR = A and
(β ×α)−1ANR= B on the manifoldU×U .
Now letU =G be a Lie group and let π denote the group product of (12.78).

In the above terms, definition (12.79) now becomes

(α−1T ) · (β−1S) = πA, (β−1S) · (α−1T ) = πB.

This should put the reader at ease and explain why, despite the fact that the
produit tensoriel is commutative, the product (12.79) on the group in general
is not. We shall return to this point in (13.99) below.

Example 12.34 Let V =W = G be some Lie group and let π be the product
mapping of (12.78). If T1,T2 ∈ D ′(G) are such that one of them has compact
support, then the product T1 ·T2 = π∗A (T1×T2) ∈ D ′(G) can be defined. To
simplify notation we shall also assume that T1 is homogeneous of dimension r.
Then if in formulas (12.83) and (12.82) we apply the pushforward mapping π∗
we obtain the formula

b(T1 ·T2) = (bT1) ·T2+(−1)rT1 · (bT2) . (12.84)

12.8.6 Examples of currents in Rn

One item of notation that we shall use systematically and that is also used in
de Rham (1960, §14, p. 67) is the current I ∈ E ′(R) in the real line defined
formally by

I[ϕ ] =
∫ 1
0
ϕ ; ϕ = ϕ1 dx ∈D1(R), ϕ1 ∈C∞

0 . (12.85)

Here the notation is as in §12.4.2 and I vanishes onD0(R). The more general
definition of In ∈ E ′(Rn) of a current of dimension n is given by the chain
c = In = [0,1]n ⊂ Rn (with the canonical embedding) as in §12.3.4 where the
orientation dx1∧·· ·∧dxn = Lebesgue measure on Rn will be fixed. Similarly,
the subspaces Rp = (0, . . . ,xi1 , . . . ,0,xi2 , . . .), where all but p coordinates are
0, can be oriented by dxi1 ∧·· · = Lebesgue measure on Rp. If Rn = Rp×Rq,
where Rp involves the first p coordinates and Rq involves the last q = n− p
coordinates, and if I p and Iq are the corresponding currents onRp andRq, then
the product double current I p× Iq ∈ E ′(V ×W) can be defined as in §§12.8.4,
12.8.5.2 with V = Rp,W = Rq. By the definitions we then have In = A (I p×
Iq); that is, In is the current on Rn that corresponds to this double current.

Remark 12.35 We can also consider Rn as a Lie group; the above two sub-
spaces are then subgroups (and Rn = Rp×Rq =Rp⊕Rq is the direct product
group). By the pushforward of the natural injectionsRp, Rq→Rn we can then
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identify I p, Iq ∈ E ′(Rn) as currents on Rn. Then, with the notation of (12.79),
we have In = I p · Iq.
Now, the boundary bIn is a current whose support is the geometric boundary

∂ [0,1]n and corresponds to (n− 1)-Lebesgue integration on the affine hyper-
planes with ±’s so that Stokes’ formula holds (see de Rham, 1960, §6, p. 31):∫

In
dϕ =

∫
bIn

ϕ , (bIn,ϕ) = (In,dϕ) ; ϕ ∈D(Rn). (12.86)

The boundary of I in (12.86) is simple enough to work out. With the notation
of (12.85) and §12.3.6 we have

bI = δ1− δ0; I[dϕ ] =
∫ 1
0
dϕ = ϕ1(1)−ϕ1(0). (12.87)

We can use formula (12.83) and the product structure of In to work out the
signs needed for the Lebesgue measure on the affine hyperplanes to make for-
mula (12.86) hold good.

Example 12.36 Suppose n = 2 and let I2 = I1× I2 be the unit square in
the plane where suppI1 = [0 � x1 � 1, x2 = 0] and vice versa for I2 for the
coordinates (x1,x2) ∈ R2. Here the orientation is such that dx1 ∧ dx2 is the
Lebesgue measure. The current I2 is thus defined and the geometric definition
of the orientation on ∂ I2 is given by the inner normal and the usual rule. This
orientation on ∂ I2 makes (the geometric) Stokes’ theorem∫

I2
dϕ =

∫
∂ I2

ϕ (12.88)

work (see Warner, 1971) and defines a current in E ′(R2) which has to be bI2

in the general version of Stokes’ theorem in (12.86). This of course amounts
to the definition of the b-operator for currents.
So here (12.83) is what it takes to specify algebraically the orientations on

the boundary that make Stokes’ theorem work.

Example 12.37 Connections with the cubical homology in algebraic topol-
ogy (see e.g. Hilton andWylie, 1960 or Massey, 1991). Another equivalent and
very closely related way of defining the singular homology (S ) of a topologi-
cal space is by considering the complex spanned by all continuous mappings,
not of the standard simplexΠ (as in §12.4.3 or again in the next section, §12.9)
but by the mappings of the unit cubes In. The boundary operator ∂− in this
complex (Scub) is then defined by adding with + or − the images of the faces
of the cubes in ∂ In. And of course these ±1 are none other than the ones ob-
tained by applying formula (12.83) repeatedly on the coordinate. This is the
way things should be if we are to have the conclusion (Scub,∂ )⊂ (E ′,b). (Of
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course, for this to hold, exactly as in §12.4.3, we must also make the construc-
tion of the cubical homology with Lipschitz mappings of the unit cubes into
the manifold.)

Exercise 12.38 Check things out.

12.9 The Use of Polynomial Homotopy in the Complexes
ΛP(U), Λ∗P(U)

12.9.1 The abstract chain homotopies. The literature

Even with rudimentary exposure in algebraic topology one knows that one
cannot go very far in homology theory without the systematic use of homotopy
(see Hilton and Wylie, 1960; Massey, 1991). For the homology in the complex
of currents one finds a systematic exposition of this in de Rham (1960, §14)
and also Federer (1969, §4.1.9). Here we shall give a brief introduction to this,
enough to show how things work. For more details one will have to refer to the
above references.
The use of homotopy that we shall make in §12.9.7 is to show that when the

Riemannian manifold U is polynomially retractable to a point then the com-
plexes ΛP(U) and Λ∗P(U) are acyclic. (The second interpretation of the com-
plex E ′ in §12.4.2 is then used!) The way this is done consists in constructing
in these complexes a chain homotopy. Let us recall what this means for a gen-
eral complex as in §12.4.1. A chain homotopy is then a sequence of mappings
h= (hn : Λn→ Λn−1; n ∈ Z) that satisfies

dn−1 ◦ hn+ hn+1 ◦ dn = Identity if n �= 0. (12.89)

Certainly, for n �= 0 if ξ ∈ Λn is a cycle, that is, dξ = 0, then ξ = dhnξ is a
boundary and [ξ ] = 0. This means that Hn(Λ) = 0, n �= 0 and Λ is acyclic. The
diagram is as follows:

· · · Λn−1 Λn Λn+1 · · ·

· · · Λn−1 Λn · · · .

dn−1 dn

hn hn+1

d

(12.90)

This is a special case of a chain homotopy between two chain maps f ,g :
(Λ,d)→ (Λ′,d′) between two complexes (i.e. f , g intertwine d and d′). The
maps that are induced on the homologies f∗,g∗ : H(Λ)→H(Λ′) are then iden-
tical. (Exercise: check or work this out; see the end of the next section or Cartan
and Eilenberg, 1956, §IV.3.)
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We shall illustrate this in the concrete situation of singular homology in the
next subsection.

12.9.2 Brief overview of chain homotopy in singular homology

The complexS = (S ;X) of the singular homology on a topological space X
is the vector space (overR) whose basis consists of all singular simplexes, that
is, the continuous mappings

ϕ : Π−→ X ; Π= (0,e1, . . . ,en)⊂Rn, n� 0, e j = (0, . . . ,1,0, . . .) (12.91)

for the standard simplexesΠ=Πn (see §12.4.3). The boundary operator ∂ϕ =

ϕ0−ϕ1+ · · · for ϕ j = ϕ |Π j
= the restriction on the boundary simplexes (see

Hilton and Wylie, 1960, or Dubrovin et al., 1990, for details).
Let f ,g : X → Y be two continuous mappings that are homotopic as in
§12.2.1 and

F : X× [0,1]−→ Y ; F(x,0) = f (x), F(x,1) = g(x), x ∈ X . (12.92)

Then f , g induce chain mappings on the corresponding singular complexes and
these induce mappings

f∗,g∗ : H(S ;X)−→H(S ;Y ) (12.93)

on the singular homologies by setting f ◦ϕ , g ◦ϕ for the singular simplexes.
The fundamental fact about the homotopy F is that it guarantees that f∗ = g∗.
The verification of this fact is well known (see Hilton andWylie, 1960) but it is
also very instructive in what we shall do for currents in the next subsection. In
the next few lines we shall therefore recall how this is done (see also Dubrovin
et al., 1990, §5.2, Figure 35).
In Figure 12.1 we show how in the cases where the dimension n = 1,2 the

prismΠ× [0,1] and the boundary prisms of ∂Π× [0,1] can be decomposed into
simplexes. Geometrically, we clearly have for the boundaries of these prisms

∂ (Π× [0,1]) = ∂Π× [0,1]∪ (Π×{0})∪ (Π×{1}). (12.94)

Now let (Π;ϕ) be the corresponding singular simplex in X (Figure 12.2).
The mapping f ◦ϕ , g ◦ϕ : Π→ Y can be extended to a mapping from Π×
[0,1]→ Y that is given by

Π× [0,1]� (ξ , t)−→ F (ϕ(ξ ), t) ∈ Y. (12.95)

In Figure 12.2 we indicate by f∗, g∗ the mappings that are induced from the
singular simplexes of X to singular simplexes of Y . By linearity this induces
also a mapping from the singular complex of X to the singular complex of Y .
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Figure 12.1 Decomposition of Πm× [0,1] into simplexes for m= 1,2.

f◦j(Π)

g◦j(Π)

j(Π)

g
*

f
*

Figure 12.2 The mappings on Π2 and on the prism.

Observe that for this the appropriate identification of the simplexes of Fig-
ure 12.1 with the corresponding standard simplex as in (12.91) has to be made
before we actually obtain singular simplexes.
What follows from the above is that once (Π;ϕ) is given we determine sin-

gular simplexes

f∗ (Π;ϕ) = (Π; f ◦ϕ) , g∗ (Π;ϕ) = (Π;g ◦ϕ) (12.96)

as shown in Figure 12.2. We can also define a singular chain which is the
sum of the singular simplexes of higher dimension that are determined by the
images under the mapping (12.95) of the simplexes of the decomposition of
Π× [0,1] of Figure 12.1 (the dimension is 3 in the right-hand figure). This
chain will be denoted by F∗(Π;ϕ).
This mapping extends by linearity to the whole singular complex

F∗ : (S ;X)→ (S ;Y )

and increases the dimension by 1. This is like the mapping (12.90) for two
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different complexes. The claim is that, if the identification of the standard sim-
plexes (12.91) with simplexes that decomposeΠ× [0,1] and ∂Π× [0,1] is done
properly, we have the fundamental identity that characterises chain homotopies

F∗ ◦ ∂ + ∂ ◦F∗ = f∗ − g∗. (12.97)

This, in less precise but perhaps more transparent notation, can also be written
as

∂F∗Π+F∗∂Π= f ◦ϕΠ− g ◦ϕΠ. (12.98)

Seen like this (12.98) appears simply as the result of applying the mappingF of
(12.95) to Figure 12.1. Finally, by the last statement in the previous subsection,
we conclude that the identity (12.97) implies that the induced mappings f∗, g∗
on the singular homologies are identical (see Cartan and Eilenberg, 1956).

Exercise 12.39 Prove this. If c ∈ (S ,X) is a cycle, that is, if ∂c = 0 then
f∗c− g∗c= ∂F∗c and therefore the difference is a boundary.

12.9.3 Chain homotopy on E ′. Heuristics

Let W , V be C∞ manifolds. We saw in §12.4.3 how the Lipschitz singular
chains of (S ;W ) in §12.9.2 (note here we assume that the mapping ϕ in
(12.91) is Lipschitz) can be identified with currents in E ′(W ). This identi-
fies this ‘Lipschitz’ singular simplex (S ;W,Lip) to a subcomplex of E ′(W ).
One can easily see that the way the definition of ∂ was done was designed to
make Stokes’ theorem work so that the boundary operators ∂ of S and b as
in (12.26) coincide in this identification. One can also prove (cf. §12.4.3) that
in the definition of singular homology we can restrict ourselves to Lipschitz
singular simplexes.
Now let f ,g : W → V be Lipschitz mappings that are homotopic by a Lip-

schitz homotopy F as in (12.3). Here, to be as close as possible to the notation
of de Rham (1960, §14), we shall denote this homotopy by

μ(t,y) = μty= x, μ1 = f , μ0 = g; y ∈W, x ∈V, t ∈ R. (12.99)

The aim is to construct a chain homotopyM : E ′(W )→ E ′(V ) that satisfies the
formula

μ1T − μ0T = f∗T − g∗T = bMT +MbT ; T ∈ E ′(W ), (12.100)

where the ∗ in the direct image of currents is inserted to highlight the analogy
with (12.97). The mapping M increases by 1 the dimension of homogeneous
currents.
Insofar that μ1 = f∗ and μ0 = g∗ is the natural extension from the space of
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Lipschitz chains of (S ,W,Lip) to E ′(W ), the natural way of viewing – and
possibly also proving – (12.100) is thatM is an extension of the mapping F∗ of
the previous subsection.
The above idea could probably be carried out as long as the currents T ∈

E ′(W ) are integration currents because then the space of Lipschitz chains in
(S ,W,Lip) could possibly be seen to be dense in E ′(W ). For instance, if
dimT = 0 and T is a Radon measure in W this is clear enough, because we
can approximate T by a linear combination of δ -masses. Things, however, get
messy in higher dimensions and even messier for currents that are not integra-
tion currents. So something else has to be done.
That ‘something else’ is what is done in de Rham (1960, §14). We shall

briefly outline this construction in the next few lines but for the details the
reader will have to fall back to de Rham’s exhaustive/ing exposition.

Remark 12.40 A raison d’être of flat currents is formula (12.100). Indeed,
for a normal current T (i.e. T , bT integration current) the current on the right-
hand side of (12.100) is not necessarily normal because of the term bMT , but it
is flat as long as in our constructionMT is an integration current. For more on
this and other subtle related points in geometric measure theory, see Federer
(1969, §4.1.13).

12.9.4 The construction of the chain homotopy on E ′

Figures 12.1 and 12.2 should be kept in mind and we shall recall the notation
that was used in §§12.3, 12.8. As in §12.8.6, I ∈ E ′(R) is the integration current
on [0,1], and T ∈ E ′(W ) and IT ∈ E ′(R×W ) is the product (produit tensoriel)
double current as in §12.8.5.2. The current on the manifold R×W that will
be considered is A (IT ). The notation A is used in de Rham (1960, §14) to
indicate that a double current is considered as an ordinary current.
As explained in §12.8.5 and (12.87),

bA (IT ) = A
(
(bI)T
)−A (IbT ) ∈D ′(R×W), (12.101)

bI = δ1− δ0 ∈D ′(R). (12.102)

From (12.102) we see that if we apply the mapping μ of (12.99) to A
(
(bI)T
)

we obtain μ1T − μ0T . Therefore the same μ applied to (12.101) gives

μbA (IT )+ μA (IbT ) = μ1T − μ0T, (12.103)

where μ (of a current) is the direct image of that current (see §12.3.7). Now μ
and b commute and we shall set

MT = μA (IT ); T ∈ E ′(W ), (12.104)
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where we use de Rham’s notation. With these we see that (12.103) is exactly
the required formula (12.100) which is also de Rham (1960, §14, p. 68, for-
mula (3)).
This derivation of formula (12.100) is considerably more direct and clear

than for the corresponding formula (12.97) in singular homology where we
had to ‘chase around’ the various triangulations. This is but one among several
examples where the formalism of currents can indeed be used with profit.

12.9.5 The chain homotopy on E

Having defined the homotopy operator M on E ′, the easiest way to define the
corresponding homotopy operator M∗ is to use the duality between E and E ′

and write

M∗ : E (V )−→ E (W ); (M∗ϕ ,T ) = (ϕ ,MT ), ϕ ∈ E (V ), T ∈ E ′(W ),

(12.105)
where the notation is as in (12.100).
The formula for the pullback mappings on forms by the two mappings then

follows at once:

μ∗1 − μ∗0 = dM∗+M∗d. (12.106)

This is de Rham (1960, §14, p. 69, formula (4)), and just before, one finds the
explicit expression

M∗ϕ = I(t)[A ∗μ∗ϕ ], (12.107)

where I(t) stands for the current that we denoted by I in §12.9.4. The meaning
of the product in (12.107) is explained in de Rham (1960, §12, Theorem 9,
p. 59), and is exactly as in the definition of the produit tensoriel that we recalled
in §12.8.5.2. We shall not elaborate further on de Rham’s §14.
Rather, we shall rewrite (12.107) in a simple-minded way as is done in many

of the elementary presentations of de Rham cohomology, and in doing this we
shall use the local coordinates (t,y1, . . . ,yn) on R×W (see (12.106)). We can
then write

μ∗ϕ =∑
I

aI dyI+∑
J

bJ dyJ ∧ dt

for the usual notation dyI = dyi1 ∧ ·· · for increasing multi-indices I = (i1 <
· · · ). The explicit expression of (12.107) then becomes

M∗ϕ =±∑
J

(∫ 1
0
bJ dt

)
dyJ, (12.108)



12.9 Use of Polynomial Homotopy in ΛP(U), Λ∗P(U) 433

for an appropriate choice of the ±. We shall leave it as an exercise (consult-
ing Dubrovin et al., 1990, §§1.3–1.4, if required) for the reader to verify that
(12.106) holds.
A by-product of this construction is that it gives an illustration of the notion

of double differential forms. Indeed, the construction is invariant under coor-
dinate changes of the special kind t→ t ′ and (y1, . . .)→ (y′1, . . .), but one is not
allowed to mix the two. Note also that the above ‘coordinate approach’ to the
problem is what is done at the end of de Rham (1960, §14), but there it comes
out ‘less simple minded’.
All in all, the moral of the story is that the two operatorsM andM∗ are dual

to each other; it suffices therefore to spell out the definition of just one and
the other follows automatically. When choosing how to define M our primary
motivation was the close connection that this has with classical homotopy (see
§§12.9.2, 12.9.3) in algebraic topology.

12.9.6 Application to the homology theory of Lie groups

The main application of the chain homotopies of the previous section is that

if, say, two manifoldsM1
α−→←−
β

M2 are homotopically equivalent as in §12.2.1
then their homologies H(M1) ∼= H(M2) are isomorphic. This of course is a
very general fact and works for just about every homology theory (simpli-
cial, singular, etc.) but to be specific let us assume that α , β are C∞ and
that the homotopy is also C∞. Then the homologies of the two complexes
E (M1) and E (M2) are isomorphic. This here of course amounts to the fact
that dimHn(E (M)) = βn(M) the Betti numbers (possibly +∞) are the same
for the two complexes.
In our context this applies to a Lie group G and K0 ⊂ G some maximal

compact subgroup and the homotopy G � K0 of §12.1.3. This gives the very
important and well-known fact on the Betti numbers βn(G) = βn(K0)<+∞.
For the same reason this also applies to the homologies of the complexes

E ′(M). This homology should be compared with the compactly supported co-
homologyHc of the manifold (see de Rham, 1960, §19; Bott and Tu, 1982).

12.9.7 The polynomial homotopy and the complexes ΛP, Λ∗P
Let f ,g : (M,O) =W → (M1,O1) = V be polynomial smooth (or just locally
Lipschitz) mappings that are homotopic by a homotopy F , as in §12.2.1, (12.3)
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that is also polynomial. From §12.8 these induce mappings
f ∗,g∗ : ΛP(V )−→ΛP(W ), (12.109)

f ∗,g∗ : H(ΛP(V ))−→H(ΛP(W )). (12.110)

Some care is needed here if we wish to insist that these should be defined
for f , g locally Lipschitz. As we pointed out in §7.6.3 for such mappings, we
need to consider the complexes ΛP(M;L∞loc) that come from C (M;pol,L∞loc)
(cf. §12.5.2), the forms with L∞loc coefficients. This aspect of things will not be
essential in what follows and we shall always assume f and g to be smooth.
Be that as it may, the constructions of the chain homotopies that we gave in
§12.9.4 extend and give chain homotopies

M : Λ∗P(W )−→Λ∗P(V ),
M∗ : ΛP(V )−→ΛP(W ).

(12.111)

Exercise 12.41 Use §12.8.1 to verify this. ForM in (12.111) use the fact that
T ∈ (C 0

p (W )
)∗ of (12.51) implies that A (IT ) ∈ (C 0

p (R×W )
)∗. To see this,

(12.67) could be used. More formally, we can start by showing that in general
M0(A (TS)) =M0(T )M0(S), for two Riemannian manifolds with a base point
and the corresponding Riemannian product structure and the notation TS for
de Rham’s produit tensoriel. (The notation of (12.49) and §12.8.5.2 are used
here.) We apply this to (12.104). Then use §12.8.1 and (12.104). For M∗ use
the duality. Alternatively, of course this can also be seen from the elementary
coordinate definition of M∗ given at the end of §12.9.5. Not surprisingly this
elementary verification is more tedious. Notice also that because of the homo-
topy formula, say (12.106), in effect, for (12.111), we only need to verify that
M∗, say, maps C (U,pol) into itself (see §12.5.2).
From (12.106), (12.111) we conclude, as in Exercise 12.39, that f ∗ = g∗ on

the corresponding homologies in (12.110). We sum up:

If we make the assumption thatW, V are polynomially homotopically equiv-
alent (see §12.2.4) then H(ΛP(W ))∼= H(ΛP(V )) are isomorphic and the same
for the Λ∗P complexes.

12.9.8 Applications to the NC-condition

We have the following applications of the above.

(i) If Q is simply connected NC-soluble then Q � {e} is polynomially ho-
motopically equivalent to a point (Theorems 7.10, 12.2). It follows that
the complexes ΛP(Q) and Λ∗P(Q) are acyclic; that is, all the Hn = 0 for
n �= 0.
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(ii) If G is simply connected NB then G� K is polynomially homotopically
equivalent to a compact group K (see Theorem 12.6). It follows that the
homologies of ΛP(G) and Λ∗P(G) are finite-dimensional.

(iii) The conclusion of (ii) holds for all connected groups (see Theorem 12.8).
But the proof uses Appendix F and is more difficult.

The notation that is adopted here and throughout is of course the homological
notation for the complex Λ∗P(G) and the differential decreases the dimension
(cf. §12.4.2) and the index n in Hn(Λ∗P) indicates the dimension.

12.10 Regularisation

12.10.1 The setting of the problem

The smoothing operator we introduce below is very important in the homol-
ogy theory of manifolds. But from our point of view it only becomes essential
in Chapter 14 where we shall systematically be using the simplex ΛP ∩E of
smooth forms of polynomial growth. In concrete terms, we have already en-
countered this complex in Proposition 12.18 and, as promised, a proof of this
proposition will be given in this section. But for those readers not wishing to
surf de Rham (1960) more than they have to, this section will not be essen-
tial before, and if, they get as far as Chapter 14. We therefore suggest that the
reader skips this section in a first reading.
Explicitly, using the homotopy formulas of the previous section, we shall

explain a procedure that allows us to regularise currents by a linear operator:

D ′(U) � T → RT ∈ E (U) (12.112)

on the C∞ manifold U . This smoothing operator has the basic property that
when T is closed then RT is too, and furthermore RT is homologous to T ; that
is, T −RT ∈ bD ′(U). In what follows we shall restrict ourselves to the case
where the manifold is a connected Lie group G. Note that this special case is
exactly what is done in de Rham (1960, §15, p. 77), as a first step towards the
general construction that is given by de Rham.

12.10.2 The construction of the regularising operator

We return to §12.8.2, and from the homotopy of (12.77) we shall define the
homotopy operator S∗g, with g ∈ G, as in §12.9.5. This satisfies

s∗gϕ−ϕ = dS∗gϕ+ S∗g dϕ ; ϕ ∈ΛP (12.113)
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(see de Rham, 1960, p. 75), where we recall that sg : x → xg, with x ∈ G,
is a right translation, and the basic property is that S∗g : ΛP → ΛP. This is a
consequence of (12.111) and of the fact that the homotopy is polynomial (see
§12.8.2). Note also that we could not have done the same thing with the left
action τg on the group.
Now the left action on G induces an action on D ′(G) that commutes with

S∗g. This implies that S∗g : E (G)→ E (G).

Exercise To see this, observe that every ξ in the Lie algebra induces a right-
invariant Lie derivative onD ′, E ′, . . . (i.e. the derivativewith respect to the flow
g→ etξ g; see Warner, 1971, §2.24) that commutes with S∗g. See also de Rham
(1960, Theorem 12(3), p. 80).

Now any smooth measure dμ = f dg, with f ∈ C∞
0 (G) and

∫
dμ = 1, can

be used as a mollifier (see Schwartz, 1957; Katznelson, 1968) and we can
integrate (12.113) to obtain (see de Rham, 1960, §15, p. 75)

R∗ϕ−ϕ = dA∗ϕ+A∗dϕ ; R∗ϕ =

∫
s∗gϕ dμ(g),

A∗ϕ =

∫
S∗gϕ dμ(g), ϕ ∈ΛP,

(12.114)

and by what we just said,

A∗ : ΛP→ΛP; A∗ : E → E . (12.115)

Moreover, by the basic properties of the mollifier (these were used in §10.3.6),
we have R∗ : ΛP→ΛP∩E .
All the properties of the regularising operator R∗ that are needed have thus

been verified. In the next subsection we shall give an important application of
this regularisation and to simplify notation we shall drop the ∗ and denote the
corresponding operators by R and A.

12.10.3 Proof of Proposition 12.18

Refer back to the proposition for conditions (i)–(iv).
If ϕ ∈ ΛP is closed, by (12.114) we see that [ϕ ] = [Rϕ ] are in the same

cohomology class and since Rϕ ∈ΛP∩E this shows that (ii)=⇒ (i).
Similarly, let ω(1) · · ·ω(p) ∈ ΛP ∩E be closed forms as in (12.44), and let

θ ∈ ΛP be some closed form. By (12.114), we have θ = Rθ + dAθ , and since
condition (iv) says that Rθ = dθ1+λ1ω(1) + · · ·+λpω(p), with θ1 ∈ E (G)∩
ΛP, it follows that θ = dθ1+dAθ+λ1ω(1)+ · · · . In other words, (iv)=⇒ (iii).
Conversely, assume that condition (i) holds. Let ϕ ∈ΛP∩E be some closed

formwithout constant term.We can then write ϕ = dθ for some θ ∈ΛP. But by
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(12.114) we can also write θ = Rθ+dAθ+Aϕ . Therefore ϕ = d(Rθ+Aϕ) =
dθ1 where θ1 ∈ΛP∩E . In other words, we have shown that (i)=⇒ (ii).
Similarly, assume condition (iii) holds and let ϕ ∈ ΛP ∩E be some closed

form. We can then write

ϕ = dθ +λ1ω(1) + · · ·+λpω(p); λ1, . . . ∈ R, θ ∈ΛP, (12.116)

and whereω(1), . . . ,ω(p) is some basis of the cohomology ofΛP. By replacing,
if necessary, ω( j) by Rω( j), we can also assume that ω(1), . . . ∈ ΛP∩E . Now
use (12.114) to get

θ = Rθ + dAθ +Adθ

= Rθ + dAθ +A
(
ϕ−λ1ω(1)−·· ·−λpω(p))

= θ1+ dAθ ,

(12.117)

where θ1 ∈ΛP∩E . By substituting θ from (12.117) in (12.116) we obtain

ϕ = dθ1+λ1ω(1) + · · ·+λpω(p)

as needed in condition (iv). This means that (iii)=⇒ (iv).

Exercise The above is a simple-minded but direct way of proceeding! The
reader is invited to ponder the following equivalent, but more sophisticated,
formulation: the canonical inclusion H(E ∩ΛP)→ H(ΛP) is an isomorphism.
Compare with de Rham (1960, §18, p. 94).

12.11 Duality Theory for Complexes

12.11.1 Notation and definitions

Let us go back to §12.4 and consider the chain complex of topological vector
spaces and continuous linear mappings

Λ : · · · −→ Λn−1
d−→ Λn

d−→ Λn+1 −→ ·· · ; d2 = 0.

We shall also consider the chain complex of dual spaces (i.e. the spaces of
continuous linear functionals; see e.g. Bourbaki, 1953; Grothendieck, 1958)
and the dual mappings

Λ∗ : · · · ←− Λ∗n−1
d∗←− Λ∗n

d∗←− Λ∗n+1←− ·· · .
One can, as in §12.4.1, consider the homologies of these complexes H(Λ) and
H(Λ∗). The issue is to find out how they relate to each other. This question is
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usually formulated more simply by setting

dimHn(Λ) = βn, dimHn(Λ∗) = β ∗n ; n ∈ Z, (12.118)

the corresponding Betti numbers possibly +∞ and trying to decide how these
are related.

The classical example All the spaces are finite-dimensional (their topology
is tacitly taken to be unique, e.g. the Euclidean topology). These are the com-
plexes that arise from a finite geometric simplicial complex in algebraic topol-
ogy (see e.g. Hilton and Wylie, 1960; Dubrovin et al., 1990). The answer to
our question is then very simple and very well known and we have βn = β ∗n
for n ∈ Z, (and of course then, as pointed out in §12.4.1, only finitely many
are non-zero). This can be treated as an elementary exercise in linear algebra,
which in fact will be carried out in detail in a more general setting later on.
Or the reader could find this explicitly in the above references. In that case the
dual spaces Λ∗n are finite-dimensional and are also assigned with their natural
topology.
Natural topologies can also be given to the duals in all the natural examples

of complexes that we have considered, for exampleD , D∗ = D ′, E , E ∗ = E ′,
etc. in §12.4.2. When this can be done, the bidual complex, Λ∗∗ = (Λ∗)∗, can
be considered and we have the natural identification Λn ⊂ Λ∗∗n , with n ∈ Z.
In the finite-dimensional case we have Λ∗∗n = Λn but this is also the case for
(D ′)∗ = D and (E ′)∗ = E . We are then in the case of reflexive spaces (see
de Rham, 1960, §§9, 10, 17); recall that ∗ and ‘prime’ are used interchange-
ably to indicate the dual. For finite-dimensional complexes, the easiest proof
that βn = β ∗n (as, say, in Dubrovin et al., 1990) uses this reflexivity (see Exam-
ple 12.43 below).
For general complexes, if we are in a reflexive situation our problem about

the relation between βn and β ∗n is, again, usually easier to answer. Unfortu-
nately, with the exception of the examples that we have just described, the
reflexive situation does not occur among the natural complexes that we shall
need to consider.
Be that as it may, in the remainder of this chapter we shall examine this

problem in a systematic way.

12.11.2 Notation and standard identifications

Here Λ will denote a topological vector space (TVS; see §12.4.1 and foot-
note) and Λ∗ will denote its dual. For x ∈ Λ, x∗ ∈ Λ∗ we denote by (x∗,x) =
(x,x∗) = x∗(x) the natural scalar product. For a subspace B ⊂ Λ we write
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B⊥ = [x∗ ∈ Λ∗; (x∗,b) = 0, b ∈ B], and clearly B⊥ = (B)⊥, for the closure B
of B in Λ. Let us now consider two subspaces that will be assigned with their
induced topologies

Λ⊃ Z ⊃ B, Λ∗ ⊃ B⊥ ⊃ Z⊥, (12.119)

and let us assume that B is closed so that we consider the following TVS and
their duals where we make the standard canonical identifications:

(Λ/B)⊃ (Z/B) , (Λ/B)∗ ⊃ (Z/B)⊥ , (Λ/B)∗ = B⊥ ⊂ Λ∗;

(Z/B)∗ = (Λ/B)∗
/
(Z/B)⊥ ,

(12.120)

where the quotient topology is assigned on the quotient spaces. The subspace
(Z/B)⊥ ⊂ (Λ/B)∗ consists of the elements ξ ∈ (Λ/B)∗ that vanish on all ż ∈
Z/B. This happens if, in the identification (12.120), ξ not only belongs to B⊥

but to the smaller space Z⊥ and we can therefore identify canonically

(Z/B)⊥ = Z⊥ ⊂ B⊥ = (Λ/B)∗ , (Z/B)∗ = B⊥/Z⊥. (12.121)

Consider now two TVSs, their duals, a continuous linear mapping between
them and its dual mapping:

Λ d−→ Λ̃, Λ∗ d∗←− Λ̃∗ :
(
d∗ξ̃ ∗,ξ

)
=
(
ξ̃ ∗, dξ
)
; ξ ∈ Λ, ξ̃ ∗ ∈ Λ̃∗. (12.122)

The standard notation Im d,Ker d, . . . for the image space and the kernel of a
mapping are used below and we have

Im d∗ ⊂ (Ker d)⊥ ⊂ Λ∗, Ker d∗ = (Im d)⊥ ⊂ Λ̃∗. (12.123)

Exercise 12.42 Prove this. For the first relation, (d∗ f ,z) = ( f , dz) = 0, f ∈
Λ̃∗, z ∈ Ker d. For the second relation,

z ∈ Ker d∗ ⇔ (d∗z, f ) = 0, for all f ∈ Λ⇔ (z, d f ) = 0,

for all f ∈ Λ⇔ z ∈ (Im d)⊥ .

We shall use these facts and identifications to the complexΛ and to its dual
in §12.11.1:

· · · dn−1−→ Λn
dn−→ Λn+1 −→ ·· · , · · · d

∗
n−1←− Λ∗n

d∗n←− Λ∗n+1←− ·· · , (12.124)

B= Im dn−1 ⊂ Z = Ker dn ⊂ Λn,

Ker d∗n−1 = (Im dn−1)⊥ = B⊥ ⊂ Λ∗n.
(12.125)

Without assigning a topology to the dual spaces Λ∗n we obtain therefore a
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surjective linear mapping

Hn(Λ∗) = Ker d∗n−1/ Im d∗n
−→ B⊥/Z⊥ = (Z/B)∗ =

(
Ker dn
/
Im dn−1

)∗
.

(12.126)

Under the assumption that the subspaces Im dn−1 are closed we finally have
a surjective linear mapping

Hn(Λ∗)−→
(
Hn(Λ)
)∗
; n ∈ Z. (12.127)

Example 12.43 When all the spaces Λn are finite-dimensional then (12.127)
holds and in (12.118) we have β ∗n � βn. Furthermore, we are then in a reflexive
situation andΛ∗∗ =Λ and therefore we also have βn � β ∗n . The proof we gave
is essentially the standard proof that βn = β ∗n in that case (see Dubrovin et al.,
1990, §2.9).

Example 12.44 (The classical complexes D , E of §12.4.2 on an orientable
manifold) As we have already pointed out for the natural topologies we are
again in a reflexive situation with (D)∗ = D ′, (E )∗ = E ′. We shall use the
notation dD ,dD ′ , . . . for the differentials of these complexes. One important
property of these complexes is the fact that (12.123) can be strengthened here
and we have

ImdD ′ = (KerdD)
⊥ , ImdE ′ = (KerdE )

⊥ . (12.128)

This statement is the celebrated Poincaré duality for de Rham cohomology (see
de Rham, 1960, §22 and Bott and Tu, 1982, §12.15).

This type of duality fails for the complexesΛP, Λ∗P , that are the subject mat-
ter of Part III of the book. In the classical situation Λ =∑i∈IRi, Λ∗ =∏i∈IRi,
with Ri

∼= R, and these spaces are assigned with their natural topologies (see
Grothendieck, 1958, §IV.1, no. 6, p. 273). Among the other things that one
uses for the proof of (12.128) when the manifold is not compact is the fact that
every linear functional on Λ is continuous (see de Rham, 1960, §22, p. 207 or
§G.4.1 below). This ‘strange’ property of course does not hold on ΛP.

Remark (Not used in what follows.) More generally, if Λ, d is a TVS with
d : Λ→ Λ a linear mapping such that d2 = 0, a differential, and Λ∗, d∗ is the
dual space with the dual differential, then we have a canonical vector space iso-
morphism Kerd∗/ Imd∗ ∼=

(
Kerd/ Imd

)∗
, where the closure in Λ∗ is taken for

the weak σ(Λ∗,Λ) topology. This follows from (12.126) and Hahn–Banach,
which says that Imd∗ = (Kerd)⊥ (see Grothendieck, 1958).
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12.12 The Use of Banach’s Theorem

12.12.1 Banach’s theorem

The key new ingredient that will be used is Banach’s theorem (see e.g. Groth-
endieck, 1958, Bourbaki, 1953, I, §3). This fundamental fact in analysis says
that if i : B1 → B2 is a one-to-one onto continuous linear mapping from one
Banach space to another, then i is actually a Banach space isomorphism; that
is, i−1 : B2→ B1 is also continuous and we write B1 ∼= B2. This fact also holds
if we assume that B1, B2 are Fréchet spaces, that is, spaces that are metrisable
and complete (cf. footnote 1 in §12.4.1). An equivalent way of stating this is
to say that if α : B1→ B2 is a continuous surjective mapping between Fréchet
spaces, that is, if Imα = B2, then B2 ∼= B1/Kerα (for the quotient topology).
This fact will now be incorporated into the considerations of our previ-

ous section. The notation of §12.11 will be preserved throughout and Λ, Λ̃
in (12.122) will be assumed to be Banach spaces or more generally Fréchet
spaces. This new condition will be moulded in the identifications of §12.11
and the additional information that we shall obtain will be best expressed in a
sequence of diagrams.

Exercise Let α : B1→ B2 be as above but now we make the weaker assump-
tions that Imα is of finite codimension. Then Imα is a closed subspace. For
the proof, by the above observation, α can be assumed one-to-one and if V is
the finite-dimensional algebraic complement of (Imα) in B2 thenV⊕B1, with
the natural topology, goes surjectively on B2 by (Identity)V ⊕α on B2.

12.12.2 The diagrams

The notation and the conditions are as explained above and in §12.11, and in
this subsection we always assume for the mapping d of (12.122) that Im d = B
is closed.
In diagram 1 of Figure 12.3, d1 is the induced mapping from Λ to B= Imd

and i is the canonical injection of B in Λ̃.
In diagram 2, d∗1 and i

∗ are the dual mappings. The dual B∗ of B is taken
with the dual Banach topology and i∗ is surjective by Hahn–Banach.
In diagram 3, Z = Ker d, π is the canonical projection to the quotient space

with the quotient topology and ḋ1, by Banach’s theorem, is a TVS isomor-
phism between Banach spaces (or more generally Fréchet spaces).
In diagram 4, ḋ

∗
1 is a vector space isomorphism, that is, one-to-one and onto.

But observe that no topologies are a priori given to these spaces; π∗ is the dual
of π , π∗ is one-to-one and it factors as explained in diagram 5.
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Λ Λ̃

B
d1

d

i

Λ∗ Λ̃∗

B∗

d∗

i∗d∗1

Λ B

Λ/Z
π

d1

ḋ1

Diagram 1 Diagram 2 Diagram 3

Λ∗ B∗

(Λ/Z)∗

d∗1

ḋ
∗
1

π∗

(Λ/Z)∗ Λ∗

Z⊥
π∗1

π∗

j

Diagram 4 Diagram 5

Figure 12.3

In diagram 5, π∗1 is one-to-one and onto, that is, a vector space isomorphism,
and j is the one-to-one identification of the subspace Z⊥ in Λ∗, where we use
the notation of §12.11.2.
By combining these diagrams we obtain the following composition of map-

pings:

Λ̃∗ i∗−→
onto

B∗
ḋ
∗
1−→∼= (Λ/Z)∗

π∗1−→∼= Z⊥ j−→
one-to-one

Λ∗. (12.129)

By the diagrams we have

π∗ = j ◦π∗1 , π∗ ◦ ḋ∗1 = d∗1 , d∗1 ◦ i∗ = d∗, (12.130)

and (12.130) implies

j ◦π∗1 ◦ ḋ∗1 = d∗1 , j ◦π∗1 ◦ ḋ∗1 ◦ i∗ = d∗, (12.131)

that is, (12.129) is a factorisation of d∗. Finally, we conclude the required im-
provement of (12.123), namely

Im d∗ = (Ker d)⊥. (12.132)

The above will be summed up in the following result.

Lemma 12.45 Let us assume that the complex of §12.11.1,

Λ : · · ·Λn−1 dn−1−→ Λn
dn−→ Λn+1 −→ ·· · ,

is a chain complex of Banach or, more generally, of Fréchet, spaces. Let us
further assume that all the subspaces Imdn ⊂ Λn+1 are closed. We then have

Im d∗n = (Ker dn)⊥; n ∈ Z. (12.133)
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This implies that the canonical mapping of (12.126),

Hn(Λ∗) = Ker d∗n−1/ Im d∗n −→∼= (Ker dn/ Im dn−1)∗

= topological dual of the Banach space Hn(Λ),

is a (vector space) isomorphism.

Observe that this lemma is an alternative way of proving the identity of
Betti numbers βn = β ∗n for the complexes with finite-dimensional spaces Λn.
This proof is less simple but it works for Banach spaces that are not necessarily
reflexive provided that these Betti numbers are finite.
This last point will be used explicitly below. We shall therefore state it as a

corollary.

Corollary 12.46 Let us assume that Λ in §12.11.1 is a chain complex of
Fréchet spaces. Then

(i) if we assume that Λ is acyclic then the dual complex Λ∗ in §12.11.1 is
acyclic;

(ii) if we assume that Λ is finite (i.e. the homologies are finite-dimensional
as in §12.4.1) then Λ∗ is finite.

For (ii) we use the exercise in §12.12.1.
Notice finally that (12.133) is an abstract version of (12.128). So in particu-

lar, in Example 12.44 when the manifold is compact,D(M) is a Fréchet space
and we have a proof of Poincaré duality! This should not come as a surprise
because we started with the condition that Imd is closed. This condition is thus
seen to be very strong (see the exercise in §12.12.1).

12.13 The Use of More Sophisticated Topological Vector
Spaces

12.13.1 The scope of this section

The reader who does not feel comfortable with the general theory of topolog-
ical vector spaces and who is not prepared to dip into the classical references
on TVS (e.g. Grothendieck, 1958, Chapter IV) could skip reading this section
altogether.
The results from functional analysis that will be essential for the proof of

Theorem 12.17 will in fact be given in §12.15 below and there only Banach
spaces are used. However, the arguments in §12.15 will appear rather ad hoc
unless one is guided by a more global set-up that we shall explain here and
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in §12.14. What makes things more ambiguous is that the ideas in this section
work only up to a point for the proof of Theorem 12.17, and anyway the content
of §12.15 is essential.

12.13.2 The natural topologies on ΛP, Λ∗P
We saw in §12.7 that the spaces ΛP,Λ∗P can be represented as the subspaces of
D ′(U) for the manifoldU as follows:

ΛP =
⋃
m

Λm,m, Λ∗P =
⋂
m

(
Λ0m,m
)∗
. (12.134)

From the definitions it is easy to verify that the single index m suffices (see
§12.7).
The natural topologies to assign to these spaces are essentially imposed by

the way they are defined (see Bourbaki, 1953; Schwartz, 1957 or de Rham,
1960, §9). On ΛP we give the inductive limit topology of Banach spaces and
on Λ∗P the projective limit topology of the dual spaces. The standard notation
(used in these references) is

ΛP = lim−→Λm,m, Λ∗P = lim←−
(
Λ0m,m
)∗
. (12.135)

The inductive limit topology is the strongest topology that makes all the injec-
tions Λm,m ⊂→ ΛP continuous and the projective limit topology is the weakest
topology that makes all the ‘projections’ (which here are in fact one-to-one)
Λ∗P
⊂→
(
Λ0m,m
)∗
continuous.

The topology on Λ∗P is a complete metrisable topology, that is, a Fréchet
topology. This is simply because it is the countable projective limit of Banach
spaces (see Bourbaki, 1953). This topology, as is always the case for Fréchet
spaces, is given by an increasing sequence of seminorms which here are (see
(12.65))

p1 � p2 � · · · ; pn(T ) = Fn(T ), T ∈D ′(M). (12.136)

Notice that abstract inductive limits are not in general Hausdorff. Here we have
no problem because ΛP ⊂→D ′(U).

12.13.3 An illustration

The following proposition shows how we can pass from the Fréchet complex
Λ∗P to the original complex ΛP. This proposition illustrates both the regulari-
sation of §12.10 and the use of the Banach theorem that we apply to Fréchet
spaces in §12.12.We shall make explicit use of the dual complexΛ∗P in the next
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chapter, but the use of the next proposition will not be essential. The proof of
the proposition will be given as a series of exercises and the reader can skip it
if they so wish (together with the rest of the section for that matter).

Proposition 12.47 Let G be some connected Lie group and let ΛP, Λ∗P be the
corresponding complexes as in §12.5.3. Then

(i) if Λ∗P is acyclic ΛP is acyclic also;
(ii) if the homology ofΛ∗P is finite-dimensional then so is the homology ofΛP.

It may well be true that the above implications work the other way round
and even for a general manifold. In other words, it is possible that for a general
manifold the two complexesΛP andΛ∗P have to be acyclic simultaneously. This
question presents some independent interest.
The proof illustrates well many of the ideas that we have developed. We

shall outline the proof of (i) in the following exercises.

Exercise 12.48 Let us modify the spaces of §12.7 as follows:
C ∗p (L

1) =
[
T ∈ L1loc(G); Mp(T )<+∞

]
, (12.137)

Λ∗p,q(L
1) =
[
T = T1+ bT2; T1,T2 ∈ L1loc, Mp(T1)+Mq(T2)<+∞

]
.

These are exactly the spaces of (12.51), (12.60) with the additional require-
ment that the coefficients of the corresponding forms are locally L1 functions
with respect to Lebesgue measure. The space Λ∗P(L1) =

⋂
p,qΛ∗p,q(L1) is then

defined as in (12.63).
The first step in the proof consists in showing that the acyclicity of Λ∗P im-

plies the acyclicity of Λ∗P(L1). The proof is done by the regularisation proce-
dure of §12.10. The details, however, are not entirely trivial and to write the
whole thing properly takes a bit of doing! One must show in particular that
AΛ∗p(L1)⊂Λ∗p(L1) where A is as in §12.10 or de Rham (1960, p. 75).

Exercise 12.49 As in (12.135) we assign on Λ∗P(L1) the projective limit
topology. This is a Fréchet topology and its dual is the space ΛP(G;pol,L∞loc)
of §12.5.3. This is a routine exercise in TVS.

Exercise 12.50 Now use Corollary 12.46 to show that ΛP(G;pol,L∞loc) is
acyclic.

Exercise 12.51 The regularisation of §12.10 finally gives the acyclicity ofΛP.

Remark 12.52 The same exercise can be carried out with the complexΛP of
Remark 12.28 instead.
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Remark 12.53 All these are interesting exercises but do not have great inci-
dence in the proof of our theorem. This could of course change if one could
produce a proof of the following:

acyclicity ΛP⇐⇒ acyclicity of Λ∗P ⇐⇒ acyclicity of ΛP (12.138)

for all manifolds, or at least find the natural condition on a manifold for
(12.138) to hold.

12.13.4 An unsuccessful but instructive attempt to prove
Proposition 12.47 the ‘other way round’

Let us examine closely the inductive limit topology that is given in (12.135) for
the space ΛP. This topology is not Fréchet but by its definition is what in the
specialised literature is call a limit Fréchet or L F -topology. A key property
that these spaces admit is that Banach’s theorem as explained in §12.12.1 holds
for these spaces (see Grothendieck, 1958, §IV.1, no. 5, p. 271).
Things therefore look promising and we seem to be in ‘good shape’ to re-

verse all the arguments in the proof of Proposition 12.47 and prove the impli-
cations the other way round. In carrying this program out we are stopped by a
rather unexpected and intriguing obstacle. Banach’s theorem has to be applied
in §12.12 not only to the space Λ but also to the closed subspace B, and the
subspaces ofL F -spaces are not in generalL F (see Jarchow, 1981, pp. 270,
281; Grothendieck, 1958, p. 263). Nor is there any guarantee that Banach’s
theorem holds for these subspaces. The relevant references for the reader who
wishes to pursue this matter further are as above.
The question of whether acyclicity of ΛP implies acyclicity of Λ∗P for a gen-

eral manifold remains therefore open and seen in this light it is a question that
presents some independent interest. An effort to tackle this general problem is
made in §12A.2. For the experts or enthusiasts in TVS note that, related to the
above, there exists a famous example due to G. Köthe which shows that sub-
spaces of bornological spaces need not be bornological (see Bourbaki, 1953,
§IV.5, Exercise 21 or Grothendieck, 1958, §IV.4, Exercise 4).

12.13.5 An exercise in topological vector spaces

We describe here one of the tricks we have to use in the proof of the L F -
version of Banach’s theorem. Explicit use of this will be made in §12.15 later.
Exercise Let Λr, with r � 1, and B be Banach spaces, let δr : Λr → B be
continuous linear mappings and let U =

⋃
(δrΛr) ⊂ B. Then if U = B there
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exists some r0 such that δr0Λr0 = B. To see this let Dr ⊂ Λr denote the unit
ball of the Banach space. By our hypothesis we have

⋃
r,n δr(nDr) = B. The

Baire category theorem implies therefore that there exists r such that δr(Dr) is
a neighbourhood of 0 in B. This implies δrΛr = B by one of the standard lem-
mas that one proves on the way to Banach’s theorem (see e.g. Grothendieck,
1958, §1.14.2, p. 69 or Bourbaki, 1953 or even any other text on elementary
functional analysis).

The above argument can give a slightly stronger conclusion. Let the nota-
tion be as above but make the weaker assumption thatU ⊂ B has finite, or even
more generally, countable, codimension. Then the conclusion is that there ex-
ists some r such that δrUr is closed and of finite codimension in B.
Only the finite codimension will be needed (in §12.16 below) and the proof

is as in §12.12.1: forV a finite-dimensional subspace such that B=U⊕V (the
algebraic sum) we consider the corresponding mappings Λr⊕V → B; then we
are in the previous case.
The countable case is almost identical: we let V =

⋃
Vj be the union of

finite-dimensional subspaces. We then consider the corresponding mappings
Λr⊕Vj→ B and argue as before.

12.14 The Acyclicity of Λ∗P and ΛP of §12.7.2
This section only uses Fréchet spaces and as a result it should be less forbid-
ding than the previous one to non-experts in the theory of TVS. Nonetheless,
like the previous subsection it is not essential for the proof of the main the-
orem and the reader who so wishes could skip it. The fact remains, however,
that the methods and the patents that are developed here are very instructive
for understanding the proofs that will be given in the crucial §12.15.

12.14.1 Fréchet spaces and their quotients

It follows easily from the definition that the topology on any metrisable (lo-
cally convex) TVS E is defined by an increasing sequence of seminorms (see
e.g. Bourbaki, 1953). Let

p1 � p2 � · · · , q1 � q2 � · · · (12.139)

be two such sequences that define on E the same topology. In concrete terms,
this happens if and only if the two sequences of seminorms satisfy the follow-
ing property.
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There exists N � i→ θ (i) ∈ N a mapping from N= (1,2, . . .) into itself and
constants λi > 0, i� 1 such that

pi � λi qθ(i), qi � λi pθ(i); i� 1. (12.140)

Exercise 12.54 Prove this. Think of normed spaces. Use the definitions (see
Grothendieck, 1958, p. 38).

When H ⊂ E is a closed subspace then the quotient topology on E/H is
given by the seminorms ṗ1 � ṗ2 � · · · that are defined by

ṗ j(ẋ) = inf [p j(x); x ∈ E, π(x) = ẋ] ; ẋ ∈ E/H,

π : E −→ E/H is the canonical projection.
(12.141)

This is also an easy exercise on the definitions.
If we combine the above two observations and use Banach’s theorem we

conclude the following.

Let f : E→ Ẽ be some continuous linear mapping from the Fréchet space E
onto the Fréchet space Ẽ. Further, let

p1 � p2 � · · · and p̃1 � p̃2 � · · · (12.142)

be seminorms that give the corresponding topologies on E and Ẽ respectively.
Then there exist a mapping θ and constants as in (12.140) such that for all
i= 1,2, . . . and all x̃ ∈ Ẽ there exists x ∈ E such that

π(x) = x̃; pi(x)� λi p̃θ(i)(x̃). (12.143)

Notice that the x depends on x̃ and on i (see Bourbaki, 1953, I, §3).

12.14.2 The acyclicity of Λ∗P
The above observations will be applied to the Fréchet complex Λ∗P of §12.7,
which will be assumed to be acyclic, and to the mapping b : Λ∗P → Λ∗P given
by the boundary operator. We shall apply (12.143) to

E =Λ∗P; Ẽ = [S ∈Λ∗P; bS= 0, S= S1+ S2+ · · · , dimS j = j ] (12.144)

and to the mapping b : E → E , which by our hypothesis satisfies Ẽ ⊂ bE . The
definition of Ẽ says that the component S0 of zero dimension is 0. The conclu-
sion from (12.143) that is needed is stated in the following result.

Proposition 12.55 Assume that the complex Λ∗P is acyclic. Then there exists
a mapping N � i→ θ (i) ∈ N and a sequence of positive constants λ1,λ2, . . .
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such that for all S ∈ Λ∗P that is closed and has zero-dimensional component
S0 = 0, and all q ∈ N, there exists T ∈Λ∗P such that

bT = S; Mq(T )� λqMθ(q)(S). (12.145)

To see how this follows from the general fact (12.143) observe the following.
For all S ∈Λ∗P we have Fp(S)�Mp(S) (p� 0) for the flat seminorms of Λ∗P in
(12.65). And also observe that when S= bT1 for some T1 ∈Λ∗P with Fq(T1)� 1,
then T1 = T + bT ′ as in (12.60) with T,T ′ ∈ D ′(U), Mq(T ), Mq(T ′) � 2 and
that we also have S = bT .

Remark 12.56 There is a drawback in (12.145). We could start from some
closed current S ∈ C ∗(U,pol) and construct T ∈ D ′ that satisfies (12.145).
It would be nice to be able to assert that the T that satisfies (12.145) is T ∈
C ∗(U,pol). This stronger assertion is easily seen to follow from the acyclic-
ity of the smaller complex ΛP = C ∗P (U ;pol)+ bC ∗P (U,pol) of Remark 12.28.
This complex with its natural topology as in (12.36) is also Fréchet. To prove,
under the acyclicity ofΛP, the stronger assertion, observe that now if S∈ΛP is
closed and as in the proposition, we can write S = bT1 with T1 ∈ΛP, and with
Mq(T1) � λqMθ(q)(S) where q→ θ (q) and the λq are as before in (12.143)
and nowMq are the seminorms that define the topology on ΛP. The difference
with the previous case is that now

Mq(T ) = inf [Mq(T1)+Mq(T2); T = T1+ bT2, T1,T2 ∈ C ∗(pol)] (12.146)

and not just Ti ∈D ′. The argument finishes as before.

Observe also thatΛP is the dual of the same spaceΛP assigned with a topol-
ogy that is a priori different from the inductive limit topology of (12.135). This
topology is given on ΛP = C (pol)∩d−1C (pol) by the procedure explained in
(12.35), (12.36). One ‘superficial’ advantage that ΛP has overΛ∗P is indeed the
above remark that makes the Poincaré equation easier to state. (Whether these
two topologies of ΛP are the same is of course an interesting issue, and one
that is clearly related to the abstract problem on L F -spaces that we alluded
to in §12.13.4: it is easy to see that one (which?) is stronger than the other.)

12.15 The Acyclicity of ΛP

12.15.1 Comments on the proof

We finally come to the explicit description of the acyclicity (see §12.4.1 for the
definition) of the complex ΛP of §12.7 and to the proof of the proposition that
will be essential for our main theorem.
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This proposition is directly inspired from Proposition 12.55 on Fréchet
spaces. But it is more subtle to prove because the fundamental use of the Baire
category argument,which is the main tool for provingBanach’s theorem, has to
be built into the proof. Herein lies the additional difficulty. On the upside, only
Banach spaces are used in the proof and none of the more sophisticated TVS
notions and results of §§12.13 or 12.14 will be needed. As a result the reader
who has skipped the last two sections could pick up the argument here. But
readers that feel really comfortable with TVS should start with the appendix at
the end of this chapter where an abstract result involving only functional anal-
ysis is explained and which in turn contains essentially all that will be done in
this section.
The only thing that will be needed in this proof will be the definitions and

the notation of §§12.7 and 12.12. This notationwill be reorganised in (12.147)–
(12.150) below.

12.15.2 The diagram and the use of Baire category

We shall assume that the complex ΛP(U) is acyclic and we shall fix some
p � 0. We shall go back to diagram 1 of Figure 12.3 and specialise the spaces
and the mappings as follows (see §12.7):

Λ Λ̃

B;

d

Λ̃= Λ̃p =Λ0p,0 = [ω ∈ C 0
p ,dω ∈ C 0

0 ], (12.147)

B= Bp =
[
ω ∈ C 0

p ; dω = 0, ω homogeneous of degree ν+ 1
]⊂ Λ̃p.

The space Λ will be chosen as

Λ= Λ(ν)
q,p =
[
ω ∈ C 0

q ; dω ∈ C 0
p , ω homogeneous of degree ν

]
, (12.148)

where the index q will be chosen presently and ν � 0, the degree of the homo-
geneous forms, will be fixed throughout. To simplify notation, in what follows

we shall also drop the exponent and write Λ(ν)
q,p = Λq,p. Going back to §12.7.2,

note that this is the component of degree ν in (12.55) – not to be confused with
(12.57). For these spaces of currents we have
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⋃
r

Λ(ν−1)
r,q Λq,p Λ̃p

Bp;

δ d

δ is induced by d,
ν � 1,

(12.149)

Λ∗q,p
(
Λ̃p
)∗
,

d∗ (12.150)

where the union on the left-hand side is the union of the subspaces ofΛ(ν−1)
r,q ⊂

D ′ and d is the differential of the complex ΛP and it gives a continuous map-
ping between the corresponding Banach spaces in (12.149). In (12.150) we
consider the dual spaces and the dual mapping.
Since d2 = 0 and by the acyclicity of ΛP we clearly have

d(Λq,p)⊂ Bp, d
(⋃

q
Λq,p
)
= Bp. (12.151)

Now comes the pivotal use of Baire category (see §12.13.5). This ensures that
there exists some q0 such that

d(Λq,p) = Bp; q� q0 (recall Λq1,p ⊃ Λq,p, q1 � q) . (12.152)

In what follows, some index q as in (12.152) will be fixed and then we are
in the situation where the argument of §12.12.2 and (12.132) holds. Explicitly,
in (12.149), (12.150) we have (Kerd)⊥ = Imd∗.
We shall denote

Hs = [S ∈D ′; Ms(S)<+∞, bS= 0, S homogeneous of dimension ν]; s> q.

The scalar product S[ω ], with S ∈ Hs, ω ∈ Λq,p, then identifies Hs with a sub-
space Λ∗q,p and in that identification we have

‖S‖Λ∗q,p �CMs(S); S ∈ Hs. (12.153)

Let us now return to the first part of the diagram and use the acyclicity and
the Baire category argument of §12.13.5 again. We conclude that there exists
some index r such that dΛ(ν−1)

r,q = Kerd. With this we shall now fix some new
index s > r+ q+ p. The claim is that Hs ⊂ (Kerd)⊥ ⊂ Λ∗q,p for the duality
(12.149), (12.150).
To see this, let f ∈ Kerd and φ ∈ Λ(ν−1)

r,q such that dφ = f . Because of
Exercises 12.26 and 12.27, there then exists D � φn → φ as n→ ∞ for the
topology of Λs,s. It follows that

〈S, f 〉= lim〈S,dφn〉= 0; S ∈Hs, (12.154)
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and because f ∈ Kerd is arbitrary, our assertion follows. And the bottom line
is that Hs ⊂ Imd∗ because of (12.132).
Now since Imd∗ is a closed subspace we can use Banach’s theorem to con-

clude that for all S ∈ Imd∗ there exists T0 ∈ (Λ̃p)
∗ such that

d∗T0 = S, ‖T0‖(Λ̃p)∗ �C‖S‖Λ∗q,p, (12.155)

where the constant is independent of S.
For the definition of the norm in (Λ̃p)

∗ we go back to §12.7 and taking into
account (12.153) we can reinterpret (12.155) as follows. For all S ∈ Hs there
exists T0 = T + bT ′ such that (12.155) holds and for which Mp(T ),M0(T ′) �
CMs(S). But then also S = bT .
This argument works for all degrees ν = 1,2, . . . .We therefore have proved

the following proposition.

Proposition 12.57 Let us assume that ΛP(U) is acyclic and let p � 0. Then
there exists q0 = q0(p) � p and for all q � q0 there exists C =Cq,p > 0 such
that for all

S ∈D ′, Mq(S)<+∞, bS= 0, S0 = 0 (12.156)

we can solve with bounds the equation

T ∈D ′, bT = S, Mp(T )�CMq(S). (12.157)

In (12.156) S0 denotes the component of dimension 0 of the current S. Note
also that the q0 here is not the same as in (12.152) and that, if we use the
notation of the proof, we can take q0(p) ≈ r+ q+ p. As a matter of fact, the
notation would have been more consistent if in the statement of the proposition
I had used the letter s of the proof rather than q. For later purposes, however, it
is better to leave things as they are.

12.15.3 Comment on Propositions 12.57 and 12.55

Proposition 12.57 is of an algebraic nature, but it is basic for the proofs in
Chapter 13 and a number of comments are in order.

12.15.3.1 Comparison of Propositions 12.57 and 12.55 These propositions
and the variant in Remark 12.56 about the acyclicity of ΛP read almost identi-
cally. The only differences, and of course this changes everything, are these (in
what follows we shall simplify notation and write C ∗r for the dual space (C 0

r )
∗

of (12.51)):

(1) In Proposition 12.57, S is given and lies in C ∗q and T is constructed in C ∗p .
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(2) In the ΛP variant of Proposition 12.55, S lies in C ∗(pol) and T is con-
structed in C ∗(pol).

(3) In the original Proposition 12.55 on Λ∗P , S was, say, in C ∗(pol) but the T
that we construct a priori only lies in Λ∗P .

It is (1) that is essential for our theorem but the proofs of (2) and (3) are
much easier because the hypothesis there is stronger (see Proposition 12.47).
Also, this circle of arguments does not prove (12.138) because the current T in
(12.157) is not shown to belong to Λ∗P .

12.15.3.2 The choice procedure in Proposition 12.57 There is something
asymmetric about the way we have to make our choices (in informal language
one could qualify the choice procedure as ‘lopsided’). Indeed,

given p we choose q= q0(p)� p

but then, given S ∈ C ∗q we choose T ∈ C ∗p .

(12.158)

All in all, the situation is quite ‘subtle’ and one can easily go wrong. In the
appendix to this chapter we shall return to this strange choice procedure and
examine what it means from the point of view of general TVSs.
In the next chapter the way of choosing the index q from the index p in

(12.158) will be used systematically and that choice will be iterated. We shall
give the details when we come to it (see §13.6.1) but grosso modo what we do
is the following.
We shall construct inductively s+2 positive indices ps+1, ps, . . . , p1, p0 (and

should think 1010 � ps+1 � ps � ··· ). This construction is done backwards
and assuming that p j+1 has been chosen then p j is arbitrary but is larger than
q0(p j+1) for the q0( ·) of (12.158) and of Proposition 12.57. We start with a
more or less arbitrary but large ps+1 and the length s+2 will be determined by
the geometry of the group.
Once p0 has been reached we stop and fix S0 ∈ C ∗p0 . Since p0 could be very

large and certainly ‘out of control’ this S0 will have to be compactly supported.
From this we shall switch and move forward and construct successively

S0,S1, . . . , such that Si ∈ C ∗pi , until we reach S
s+1. With this, we close the loop,

so to speak.
This successive construction of the currents S0, . . . uses Proposition 12.57

and the choice of the indices. How this is done is a long story that will be
explained in Chapter 13. The above schematic idea of ‘closing the loop’ will,
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on the other hand, be good to keep in mind although at this point it need not be
taken too seriously.

12.16 The Case Where the Homology of ΛP(U) Is
Finite-Dimensional

Let us now assume that, say, the complexΛP(U) has finite-dimensional homol-
ogy rather than being acyclic. Then we have the following version of Proposi-
tion 12.57.

Proposition 12.58 Assume that the homology of complex ΛP(U) is finite-
dimensional and that dimH(ΛP) = h< m<+∞ for some integer m. Then for
all p � 0 there exist q0 = q0(p) � p such that for every q � q0 there exists
C =Cp,q > 0 with the following property.
Let S1, . . . ,Sm ∈D ′(U) be such that

‖{S}‖=
m

∑
j=1

Mq(S j)<+∞; bS j = 0, 1� j � m. (12.159)

Then there exist scalars λi, . . . ,λm ∈ R with sup j |λ j|= 1 and T ∈D ′(U) that
solves with bounds the equation

bT =∑λ jS j; Mp(T )�C‖{S}‖. (12.160)

Notice that here we do not have to worry about the 0-dimensional compo-
nent of the currents. The proof is a very easy adaptation of Proposition 12.57.

Exercise As an exercise, the reader should fill in the details of the outline
proof below. To simplify and use the notations of §12.15.3, we shall assume
that S1, . . . are homogeneous of dimension ν � 1. This will suffice for the app-
lications in §13.7. The general case is similar but new notations are needed.
First, by §12.13.5 as in §12.15.2, with p given, we shall fix q so that in the

diagram (12.149) Imd= B is closed and therefore Imd∗ = (Kerd)⊥.
Then, as in §§12.15.2, 12.13.5, we can find an r large enough so that

δ
(
Λ(ν−1)
r,q
)
= Imδr (here δr is the restriction of d on Λ

(ν−1)
r,q ) is a closed sub-

space of Kerd and of codimension � h = dimH(ΛP), the dimension of the
homology. If s > 0 is large enough, by the same argument as in §12.15.2 this
implies that if S ∈D ′ is such that bS = 0 and Ms(S)<+∞ then 〈S, f 〉= 0 for
all f ∈ Imδr and this says that S ∈ (Imδr)⊥. But Imd∗ = (Kerd)⊥ ⊂ (Imδr)⊥

is a subspace of codimension� h. From this, the existence of scalars such that
sup j |λ j|= 1 and ∑λ jS j ∈ Imd∗ follows as long as m> h. From this we argue
as in (12.155) and the few lines that follow it, to conclude.
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A refinement of this will be needed in §13.7 (see Exercise 13.7): there,
instead of one family of currents, several such families Sα ,1, . . . ,Sα ,m, with
1�α �α0, will be given and then, provided thatm is large enough, the scalars
λ1, . . . ,λm can be chosen to work simultaneously for all these families.
Another refinement of the proposition consists in weakening the hypothesis.

We assume instead that the dimension of H(ΛP) is countable. Then we can
use the refinements of §12.13.5 to obtain the same conclusion. The reader can
rewrite the proof under this weaker hypothesis if so wished. The only use that
one makes of this refinement is that with it we can prove that when G is a
B-group then not only is H(ΛP) infinite-dimensional but even uncountably so!
This fact, however, is neither important nor surprising and we shall not return
to it.
The analogue of this proposition holds under the assumptions that one or the

other of the complexesΛ∗P , ΛP that we considered in §12.14 have finite homo-
logy. The only differences are the ones that we pointed out in §12.15.3 and
also, of course, that now the exploitation of the key relation (12.132), Imd∗ =
(Kerd)⊥, in §12.12 is not needed, and everything is much easier.

12.17 The Partial Acyclicity of the Complexes

Let ν = 1,2, . . . . We then say that the complex ΛP is acyclic at the level ν if
Hν(ΛP) = 0. A similar definition can be given for the general complex Λ of
§12.4.1 and in particular for the complexesΛ∗P and ΛP of §12.7.
Similarly, we say that a complex Λ is finite at level ν if dimHν (Λ) < +∞.

Observe that for the geometric complexesΛP,Λ∗P, . . . we haveHν = 0 for every
ν that is not in the range 0� ν � dimU.

The statements of Propositions 12.55 and 12.57 that we gave admit a variant
in terms of this more refined definition. The proofs are verbatim identical and
one only has to keep track in the formulas in the proofs of the additional index
ν for which the homology vanishes. The only reason why these propositions
were stated in terms of global acyclicity was because we did not wish to over-
load their statements, at least not in a first reading, with yet another index ν .
However, here is this more refined version of Proposition 12.57 and the thing

to observe is that here it is preferable to consider homogeneous currents in
order to see exactly how the index ν comes into play.

Proposition 12.59 Let us assume thatΛP(U) is acyclic at levels ν and ν+1,
for some 1� ν � dimU, and let p� 1. Then there exists q0� p and for all q�
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q0 there exists C > 0 such that for all homogeneous currents of dimension ν ,

S ∈D ′, dimS = ν, Mq(S)<+∞, bS= 0, (12.161)

we can solve with bounds by a homogeneous current T the equation

T ∈D ′, bT = S, dimT = ν+ 1, Mp(T )�CMq(S). (12.162)

Remark 12.60 The reason why q0 andC in the proposition are not shown to
depend on ν is that ν only takes a finite number of values that are not trivial:
ν = 1, . . . ,dimU .

The proof of this will be left as an exercise for the reader. It will involve go-
ing through the proof that we gave in §12.15.2 and verifying that the acyclic-
ity of ΛP was used twice at two different levels: first ν + 1, then ν . Simi-
larly, for the analogue of Proposition 12.58, if we know that dimHi(ΛP)< ∞,
with i = ν,ν + 1, and if m is large enough in that proposition, then the con-
clusion (12.159), (12.160) can be drawn provided that the currents S j are ν-
dimensional.

12A Appendix: Acyclicity in Topological Vector Spaces

12A.1 The position of the problem

Much of the second part of this chapter was about the following problem. Let
E be some topological vector space assigned with a differential, that is, some
continuous linear operator d : E → E such that d2 = 0. The dual space E∗ is
then assigned with the dual differential d∗ but no topology is assigned to E∗.
The corresponding homologyH(E) =Ker d/ Imd (and similarly forH(E∗)) is
defined. The issue was thus: assume that dimH(E) < +∞; can we then assert
the same thing for H(E∗)? In this appendix we shall treat this problem as a
general one on topological vector spaces. We shall simplify the problem here
and only consider H(E) = 0 because this case already contains all the ideas
that are used in the proof of the general situation. Notice that the situation here
is more general than what we considered in §§12.14–12.17 insofar that we do
not demand the grading of a simplicial complex.
We saw in §12.12 that our problem admits a positive answer when E is a

Banach (Fréchet) space and the case ofL F spaces was alluded to in §12.13.
Let us finally make it clear that this appendix is meant for readers that are
familiar with (and like!) the theory of topological vector spaces.
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12A.2 A class of topological vector spaces and ersatz acyclicity

We shall consider a special class of topological vector spaces that is natural
and contains all the examples considered in this chapter. Let En be a sequence
of Banach spaces and let E∗n denote the dual spaces and let ‖ ‖n, ‖ ‖∗n denote
the norms and the dual norms. We shall assume that there exists a sequence
of dense injections i : En→ En+1 (i.e. linear, continuous one-to-one, and i(En)
dense in En+1); the dual mappings π : E∗n ← E∗n+1 are then also one-to-one.
The example of En = Λ0n,n(U) for a manifold U (see §12.7) is what we have
considered in this chapter, and then D(U) is dense in all these spaces. The
class of topological vector spaces that we shall consider are the corresponding
inductive limits E = lim→En under the assumption that E is Hausdorff (note
that the Hausdorff property is not something that comes for free with inductive
limits: cf. the final remark in §12.13.2). The dual E∗n is then the projective limit
of the E∗n (see in particular Grothendieck, 1958, §IV.1).
The situation is summarised as follows:

E0 ⊂ ·· ·En ⊂ En+1 ⊂ ·· · ⊂ E = lim−→En, (12A.1)

E∗0 ← ···E∗n ← E∗n+1← ··· ← E∗ = lim←−E
∗
n , (12A.2)

where the Ej are identified with subspaces of E , and by our hypothesis all the
arrows in the above definition of the projective limit are one-to-one continuous
linear mappings. We can then assert that the differential d that is defined on
E has the following property. For all n there exist m and dn,m : En→ Em some
continuous linear mapping such that the restriction of d on En can be factored
as im ◦ dn,m for im, the natural inclusion of Em in E . (This holds for any linear
mapping d: En→ E; see Grothendieck, 1958, §IV.1, no. 5.)
The dual mapping d∗ = b can certainly be defined on E∗. By analogy with
§12.7 we shall call this the boundary mapping: it can also be defined on the E∗n
as follows.
Let n0 be such that d maps E0 continuously in En0 as above. Then for each

n � n0 the dual mapping b : E∗0 ← E∗n can be defined. More generally, when d
maps Ep continuously in Eq the boundarymapping b : E∗p←E∗q can be defined.
Concretely, if n � n0 and S ∈ E∗n then bS ∈ E∗0 and we say that S is closed if
bS= 0.
In the above general set-up, it may or may not be true that H(E∗,b) = 0

follows; but we know of no counterexample. Nonetheless, we can prove the
following ersatz version of this fact which implies all the results of §§12.15–
12.17.

Theorem (The ersatz acyclicity of E∗) Let p� n0 be given; then there exists
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q0 = q0(p) � n0 such that for all q � q0 there exists C = Cp,q > 0 with the
following property. For all closed S ∈ E∗q there exists T ∈ E∗p such that

bT = S; ‖T‖∗p �C‖S‖∗q.
In concrete terms, both bT and S can be identified with elements of E∗0 and

our condition says that they are identical. This can be expressed, without the
definition of the boundary operator b, by saying that q� n0 and

〈T, dφ〉= 〈S,φ〉; φ ∈ E0.
One recognises here an abstract version of Proposition 12.57 on integration
currents of superpolynomial decay. Notice also that what is subtle in the above
statement is this: if S∈ E∗ and p� 1 we can for sure solve bT = S with T ∈ E∗p
but not necessarily in E∗ as the acyclicity of E∗ would have implied.

12A.3 The proof

We consider B = Imd ⊂ E which is closed because of the acyclicity, and
identify En with a subspace of E . Let p be as given in the theorem and let
Bp = Ep∩B a closed subspace of Ep.
Let H = Eq∩d−1Ep for some q. Clearly, dH ⊂ Bp and if we assign H with

the norm ‖x‖q+ ‖dx‖p, then H is a Banach space. (For if (xn) is Cauchy in H
then xn→ x in Eq implying dxn→ dx in E . Also dxn→ y in Ep implies dxn→ y
in E . Since E is Hausdorff, it follows that y= dx.)
By §12.13.5 and the same argument as in §12.15.2 we deduce that there

exists some q such that dH = Bp. We shall fix such a q and fix the correspond-
ing space H. Notice that for this step we have not used the full thrust of the
acyclicity but only that Imd is closed.
We then have the same diagram as in §12.15.2:

Er ∩d−1Eq Eq∩d−1Ep Ep,

Bp,

δ d0

H∗ E∗p.
d∗0

Both δ and d0 are induced by d; the dual map is d∗0. Now we shall use the
acyclicity and §12.13.5 to choose some r � q so that Imδ = Kerd0. We shall
also use §12.12 to deduce that Imd∗0 = (Ker d0)⊥.



12A Appendix: Acyclicity in Topological Vector Spaces 459

Now let s� r be such that d maps Er continuously into Es as explained. The
following are natural inclusions (i.e. one-to-one):

E∗s
⊂→ E∗r

⊂→ E∗q
⊂→
(
Eq∩d−1Ep

)∗
= H∗.

For the last observe that E0 ⊂ H because p� n0.
Now let S ∈ E∗s . Then S can be identified with an element of H∗ and we

have ‖S‖H∗ � ‖S‖∗s . But also, if bS = 0, this element in H∗ belongs to Imd∗0.
Indeed, for all f ∈Kerd0= Imδ we have f = dφ for some φ ∈Er and therefore
〈S, f 〉 = 〈S,dφ〉= 〈bS,φ〉= 0 (to see this use d : Er→ Es, b : E∗r ← E∗s ). This
means that S ∈ (Kerd0)⊥ = Imd∗0.
On the other hand, it is clear, for the boundary operator, that we can factorise

b= i∗ ◦ d∗0 : E∗p→ E∗0 because

E0
i−→ Eq∩d−1Ep = H

d0−→ Ep

for the canonical inclusion i.
We can now use Banach’s theorem once more because Imd∗0 = (Kerd0)⊥

is closed in H∗. From this it follows that for all S ∈ Imd∗0 there exists T ∈ E∗p
such that bT = S and ‖T‖∗p � C‖S‖H∗ . If we apply this to a closed element
S ∈ E∗s as explained above, we deduce that ‖T‖∗p � C‖S‖∗s as needed in the
ersatz acyclicity.

12A.4 The Imb

In the above argument we saw that the first part of the proof works under the
condition that Imd⊂ E is closed. What is actually used is that for every p� 0,
Imd∩Ep is closed in Ep. Under that condition it is not clear that we can con-
clude for the mapping b : E∗ → E∗ that Imb ⊂ E∗ is closed (probably not in
general!) but we can conclude a slightly weaker condition on Imb. Indeed, let
us go back to the diagram of §12A.3 for some fixed p and q and the corre-
sponding H. Also let π : E∗ → H∗ be the canonical (injective, i.e. one-to-one)
mapping. Then for the closure Imb ⊂ E∗ we have π(Imb) ⊂ Imd∗0 because
Imd∗0 is closed. The conclusion that we can also draw is therefore the follow-
ing.

Let S ∈ Imb⊂ E∗ and let p� 0. Then there exists T ∈ E∗p such that bT = S.

The importance of this observation lies in the fact that with this and the
methods of Chapters 13, 14 (see §13A.1) we can prove a refinement of Theo-
rem 12.21, namely the following.

Let G be some connectedC-group and let (ΛP,d) be the corresponding poly-
nomial complex. Then Imd is not a closed subspace of ΛP.



13

The Polynomial Homology for Simply
Connected Soluble Groups

In this chapter we shall complete the proof of Theorem 12.17 and obtain thus
the homological characterisation of the C–NC condition for soluble simply
connected groups. This characterisation can be formulated directly, without
the terminology of polynomial homology, by the Poincaré equation dθ =ω on
the group. The issue is whether we can solve this equation for a closed form ω
of polynomial growth by a form θ of polynomial growth.
The NC-part of this theorem was proved in §12.9.8. So, unless otherwise

stated, all the Lie groups G considered in this chapter will be assumed to be
soluble simply connected C-groups.
We shall freely use the results and the notation of Chapter 12 and a com-

prehensive understanding of that chapter is essential for what follows, but un-
fortunately not only of Chapter 12. Many constructions and definitions from
Chapters 7–10 will also be needed and will have to be reactivated as we go
along. Therefore, in §13.1 we recall some of that material.

13.1 The Reductions and Notation of Chapters 8–10. The
Organisation of the Proof

13.1.1 The basic reduction

The basic reduction from Proposition 8.3 combined with §9.1 consists in prov-
ing that every simply connected soluble group (C- or NC-) is polynomially ho-
motopically equivalent to a group whose algebra is, in our case of a C-group,
a special soluble algebra (SSA), as described in §9.1.7. We shall recall and fix
the notation and use it freely in the rest of the chapter.
Such an SSA-group is of the form G = N�V , where N is nilpotent and V

is a Euclidean space. Furthermore, the action of V on N is semisimple and if

460
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g, n, a are the Lie algebras of G, N, V respectively all the roots of the action
of a on n are real. All the groups here are simply connected: here V stands for
‘vector space’ and a for ‘Abelian’.
Since G is a C-group the constructions of §9.1.7 can be made and we have

the two alternatives for these SSAC groups. The reader will have to go back
to Chapter 9 for the details but here we shall recall the necessary notation and
this will stay fixed for the rest of the chapter. The notation of §9.5 is

G= N�V ; V = A′ ⊕A, N′ ⊂ N,
G′ = N′�V = N′� (A′ ⊕A) = (N′�A′)⊕A⊂ G. (13.1)

Briefly, N′ is a closed subgroup that is stabilised by the V -action and thus
a subgroup G′ ⊂ G can be defined. The Euclidean space V splits into a direct
sum with A′ ∼= Rr−1, A ∼= Rs with r � 2 and s � 0. The action of A on N′ is
trivial, hence the direct sum decomposition of G′.
We can distinguish two alternatives according to what N′�A′ looks like:

The Abelian alternative In the case N′ = Rr and the roots of the action in
N′�A′ =Gr, with r � 2, have the special C-configuration of (9.33). The nota-
tion Gr was used for these groups in §9.2.1.

The Heisenberg alternative In the case r = 2, A′ = R and N′ = H is the
Heisenberg group of Definition 9.5 and Example 11.20. In the group N′�A′

the action of A′ on N′ is as explained there.

13.1.2 The LL(R)−∂ r construction in the two alternatives

The distinction between the two alternatives is of course important, but once
that distinction has beenmade, the proofs in Chapters 9 and 10 were essentially
identical for the two cases.
In both cases the pivot was the construction of sets

S is an LL(R)− ∂ r ⊂ N′�A′ ⊂ G′ ⊂ G. (13.2)

This is a short way of saying that there exists

f ∈ Lip(logR)C, f : ∂ r −→ N′�A′, f (∂ r) = S, (13.3)

where f depends on the large parameter R� 1, but the constant C does not
(cf. §9.3.2). In the Heisenberg case r = 2 and ∂ 2 � S1, that is, the 1-sphere.
This summarises the first basic construction of Chapter 9, and when s = 0

that construction was sufficient for the proofs that we gave in Chapter 10.
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13.1.3 The second basic construction

This first basic construction does not suffice when s � 1, and in §9.5 we gave
the second basic construction that was needed.
For the latter, our starting point was the LL(R)-set constructed from the first

construction. We proceeded from there to the second construction. This was
done in a strictly identical manner in the two different cases of the Abelian and
Heisenberg alternatives.
This second construction is simple enough when s= 1, but it becomes pro-

gressively more involved as s= 2,3, . . ..

13.1.4 The organisation of this chapter

The proofs of this chapter unwind in exactly the same way as in Chapters 9,
10. The difference lies in the fact that we have to be much more formal. The
qualitative considerations for instance of §9.5 have to be replaced by alge-
braic relations between currents. Indeed, it is the systematic use of currents
that makes the difference and allows us to pass from the mostly descriptive
proofs of Chapters 9, 10 to the much more rigid proof of our theorem here.
Two new geometric ideas will have to be incorporated in the process. The way
that all this plays out will be described in the next few lines.
In §13.2 we shall revisit the first basic construction and reformulate it in

terms of currents. Once this is done we shall in §13.3 prove the non-acyclicity
for C-groups in Theorem 12.17 for the special case s= 0.
This special case s = 0 simplifies matters considerably since in that case

only the first basic construction is needed. But even in this special case, to
treat the case where the homologies are only finite and not zero, new ideas are
needed. This problem did not arise in Chapters 9, 10. The new idea of bouquets
of spheres will be introduced in §§13.4 and 13.4.3 and we shall illustrate these
ideas by giving the proof that the homology for C-groups is infinite – shorthand
for saying the dimension is infinite – for the simple case s= 0.
To treat the general case s� 0, the second basic construction is needed. But

even in the simplest case s = 1 with an acyclic complex ΛP a new geometric
feature crops up. Furthermore, in the more general case of a finite homology for
ΛP yet another geometric problem has to be examined. To illustrate these two
new geometric problems as clearly as possible we shall start from this special
case s= 1 and complete the proof of the theorem there in §§13.5 and 13.6.4.1.
This finishes the first part of this chapter and the reader who has understood
this part well will already have a very good idea of the proof of Theorem 12.17.



13.1 Reductions and Notation of Chapters 8–10 463

The second part of the chapter for the general s� 0 could have been left as an
exercise for the reader!
This second part may well be an exercise but it is an elaborate one. It takes

the rather long §§13.6, 13.7 to complete. Nonetheless the task in hand merely
consists of developing the necessary terminology and notation to push the ideas
of §13.5 to higher dimensions. This terminology and notation have, not surpris-
ingly, a strong flavour of homological algebra. Some readers may enjoy this,
others on the other hand (like the author of this book) may not!

13.1.5 List of special cases

For the convenience of readers we shall make a list here that explains how
we deal with the indices r, s and with h= dim

(
H(ΛP)
)
. When the complex is

acyclic, h= 1 which comes from zero-degree cohomology,H0. More generally,
1 � h < +∞ is the case of a complex of finite-dimensional homology. The
implication (iii)=⇒ (i) in Theorem 12.17 can then be reformulated as follows:

[h<+∞] and the C-condition are incompatible.

First note that the index r is not an issue here. It certainly gave us a lot of
trouble to pass from the easy case r = 2 to the general case in Chapters 9, 10
for the first basic construction. But this is now a done thing.

• The case s= 0, h= 1 is the easiest and is done in §13.3.
• The case s= 0, h� 1 is done in §13.4.3.
• The case s= 1, h= 1 is done in §13.5.
• The case s� 1, h= 1 is done in §13.6.
• The general case s,h� 1 is finally done in §13.7, but the special case s= 1,
h� 1 can be found in §13.6.4.2.

By doing these special cases first we have made this chapter longer than it
need be. But we also feel that this gives a much better chance for the reader to
understand the ideas in the proofs.
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13.2 The Currents Generated by the First Basic
Construction

13.2.1 The definition of the currents

The notation for the first basic construction will be as in §§9.2–9.5 and more
recently (13.2), (13.3) above:

S is an LL(R)− ∂ r ⊂ N′�A′. (13.4)

This is the image of a Lip((logR)c) mapping f : ∂ r → N′�A′ ⊂ G′. We
have shown that we can even assume that f : Sr−1→ N′�A′ can be smoothed
out and be assumed to be C∞ and in fact defines an (r− 1)-dimensional em-
bedded sphere Sr−1 ⊆R2r−1. Once we have smoothed f , it defines a chain and
a current in N′�A′ by the definition of de Rham (1960, pp. 27, 40), which was
recalled in §12.3.3:

S[ω ] =

∫
∂ r

f ∗ω . (13.5)

For this definition the orientations have been fixed once and for all as fol-
lows. We fix an orientation on Rr for the Abelian alternative and this induces
an orientation on the unit ball Br or on r and thus also on the boundary Sr−1

or the faces of ∂ r. For the Heisenberg alternative, S is just an embedded cir-
cle (i.e. the 1-sphere S1) and thus we can orient clockwise or anticlockwise,
and we do this once and for all.
If the function f is not assumed smooth but only Lipschitz (in fact piecewise

affine) we can still use formula (13.5) to define a current because the pullback
f ∗ω of the form ω can again be defined and has L∞-coefficients for the natural
Lebesgue measure of ∂ r.
In what follows in this chapter we shall abuse notation and use the same

letter S for the current defined in (13.5) and for the set S in (13.3) which is
the support of this current. This notational convention and terminology will
be convenient and will be adopted throughout without further mention; we
shall, for instance, say that S is an LL(R) current. It should also be observed
that if we use the notation of §12.8.6 for the current Ir then all the above can
be summarised by saying that S is the direct image by the mapping f of the
boundary of Ir. Formula (13.5) then says that

S= f∗(bIr); r � 2. (13.6)

From (13.6), among other things it is clear that S is a closed current, that is,
bS = 0. To define the direct image of these currents we shall always assume,
as we may, that the function f is piecewise affine. Alternatively, the image of
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a normal current by a Lipschitz function can always be defined (see §§10.2.3,
10.2.6 or Federer, 1969).

13.2.2 The metric properties of the current S

For S ∈ E ′(G′)⊂ E ′(G) as in (13.5) we shall normalise by left translation, as
we may, and always assume that f (0) = e ∈ G is the identity of G for 0 the
origin of Rr. This also applies in the Heisenberg case with r = 2. This means
in both the Abelian and Heisenberg alternatives, that we have e ∈ suppS and
therefore by the Lipschitz property of f we have

suppS⊂ [g ∈ G′; |g|G′ � (logR)C
]
= ball of radius (logR)C; R�C, (13.7)

for appropriate constants and the distance in the group G′ from the origin
|g|G′ = dG′(e,g).
From this and from the definition of the normsMp in §12.7 we can state the

essential properties of the current S:

S ∈ E ′(G′)⊂ E ′(G), bS= 0, Mj(S)� (logR)c j ;

R�C, j = 0,1,2, . . .
(13.8)

for constantsC,c0,c1, . . . that are independent of R. It goes without saying that
for the definition of the norms Mp we use left-invariant Riemannian structure
and the neutral element e ∈ G is the base point of the manifold.
Exercise 13.1 Verify this. Use (13.7) and also the fact that f ∈ Lip(logR)C
implies that the Jacobians involved in the pullback of the definition (13.5) sat-
isfy analogous O((logR)C) uniform estimates. Notice also that |g|G � |g|G′ in
(13.7) and that the Mj is (13.8) refers to (12.67) for the group G′ or even for
the group N′�A′ because of (13.1). This, however, implies the same thing for
the group G. (A similar implication the other way round for a group and a
subgroup fails; see §2.14.)

13.3 The Special Case s= 0 and an Acyclic Complex

No new ideas will be needed in this section and it is only a matter of recycling
the proofs of Chapter 10 using the new terminology of currents.

13.3.1 The contradiction and connections with Chapter 10

Here we shall assume that in the groupG= N� (A′ ⊕A) of §13.1.1, the group
A= {0}: that is, s= 0; we shall also make the assumption that the polynomial
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homology of the complexΛP vanishes at the level r− 1, r (see §12.17):

Hj(ΛP) = 0; j = r− 1,r. (13.9)

This assumption will lead to a contradiction. In this way we shall complete
the proof of Theorem 12.17 when ΛP is acyclic and s = 0. The reason why
we need the two dimensions r, r− 1 will be the use of Proposition 12.59 in
§13.3.2 below. Despite the formal resemblance, this is not directly related to
the hypothesis of Proposition 9.34. It should rather be compared with (13.22)
and with remark (iv) in §13.3.4.
At first sight it might appear awkward to give the proof by contradiction.

This, however, both here and in all the other proofs, is the more convenient
way to proceed. This, after all, is not very different from the attitude that was
adopted in Chapters 9, 10 (especially §§9.5.2–9.5.5) but there, instead of the
acyclicity properties (13.9), it is the fillingF -property that is used.
For the proof we shall use the chain and current S constructed from the first

basic construction in §13.2. The transversality properties of the support of this
current will be used (see §9.3.3). As already explained in §13.2.1, the support
of the chain is also denoted by

S is an LL(R)− ∂ r ⊂ G′. (13.10)

To fix ideas we shall assume that the group satisfies the Abelian alternative.
Themodifications needed for the Heisenberg alternative are automatic and they
will be left as an exercise for the reader.
In the proof below we shall follow closely the proof given in §10.2. As

there, the geometric considerations that follow are easier to visualise when the
support S in (13.10) has been smoothed out first and is an Sr−1, that is, a C∞

embedded sphere in G′. The smoothing out process in §10.3 was, however,
quite elaborate. Furthermore, the proof we gave in §10.2.4 does not use this
smoothness and relies only on the transversality. The smoothing process was
thus avoided. It is this second variant of the proof that will be adapted here but
it will certainly help the reader to think in terms of smooth embedded spheres
Sr−1 ⊂ G′.

13.3.2 The properties of the current S

The two main properties of the current S that are used are not surprising. First
there is the metric condition of (13.8) thatMp(S) =O((logR)cp) for any p� 0.
Then the transversality property of the support has to be used.
This metric condition combined with the acyclicity condition (13.9) will be
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used in Proposition 12.59. From this it follows that we can construct some
current S1 = Ŝ ∈D ′(r)(G), that is, a current of dimension r that satisfies

bŜ= S, M0
(
Ŝ
)
�CMp(S) = O((logR)c) , (13.11)

where the constants C, c and p are independent of R. The notation Ŝ for this
current is designed to keep the analogy with the notation of Chapters 9 and 10,
although Ŝ1 = S1 would be better since this is consistent with the notation that
will be used systematically later on in this chapter.
We shall examine now the transversality condition for the current S and to do

that we shall proceed as in §10.2 and on G = N�A′ we shall use exponential
coordinates of the second kind (cf. §7.3.1) so that with these coordinates the
general element g ∈ G is represented g = (X ,Y ), with X = (x1, . . . ,xn) ∈ Rn

being these coordinates for the nilpotent groupN andY =(y1, . . . ,yr−1)∈Rr−1

being the Euclidean coordinates of the Abelian A′ ∼= Rr−1. In terms of these
coordinates the transversality condition on S gives the following.
We can define a narrow slice Nc,

N ⊂ [g= (X ,Y ); |Y |� c] = Nc ⊂ G, (13.12)

for some appropriately small but fixed (i.e. independent of R) constant c. This
slice has the following property.
Let us denote by ∂0 r

R ⊂ r
R ⊂ N′ the vertices of the cube r

R that was
used for the construction of S. Let us also denote Vc = [v ∈ A′; |v|< c] for the
same constant c as in (13.12) and for each P ∈ ∂0 r

R write

EP = {P}×Vc ⊂ G. (13.13)

We then have

suppS∩Nc =
⋃[

EP; P ∈ ∂0 r
R

]
. (13.14)

This is not all the information contained in the transversality condition of
Chapters 9 and 10, but it is enough to remind the reader what it is all about
and also to induce them to go back to these chapters for more details. Notice
both here and in the analogous transversality conditions of this chapter, that
suppS ⊂ G′ and in (13.14) we cut it with a subset of G and that a slight abuse
of notation is made because to do this we must consider suppS⊂ G.

13.3.3 The construction of the differential form and
the contradiction

The pivot for the contradiction that will complete the proof is, as in Chapter 10,
the differential form ω that we constructed in §10.2. This differential form
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depends on S and on R. The reader should go back to Chapter 10 for the details
but for convenience we shall recall here the salient features of that differential
form.
The exponential coordinates (X ,Y ) of the previous subsection forG are used

and we define this C∞ differential form by

ω = ϕ(g)dy1∧·· ·∧dyr−1; g= (X ,Y ) ∈ G. (13.15)

We require that it has the following three properties:

(i) The support of ω is compact and also suppω ⊂ Nc for the constant c in
(13.12) where the transversality condition holds.

(ii) There exist constants that are independent of R for which we have (nota-
tion of §12.5.1)

‖dω‖0 = sup |dω |�CR−c; R�C. (13.16)

As usual, the Riemannian norm |dω | is taken with respect to the left-invariant
Riemannian structure on G. What is important is that we can accommodate
property (13.16) with the next property below.

(iii) We shall fix at will some ϕ0 ∈C∞(Rr−1) such that

suppϕ0 ⊂ [Y ; |Y −Y0|� c0]⊂Vc = [|Y |� c] (13.17)

for some small constant c0 and some Y0 ∈ Rr−1 = A′ sufficiently close
to 0, where c and Vc are as in (13.13). The additional condition on ω =

ϕ dy1∧·· · that will be imposed is that ϕ takes the following preassigned
values on the sets EP of (13.13):

ϕ(P,Y ) = εPϕ0(Y ); Y ∈Vc, P ∈ ∂0 r
R ⊂ N. (13.18)

The ε are εP = 0,±1 and all but one will in fact be chosen to be 0. By the
transversality condition we can then choose ϕ0 and the εP so that

S[ω ] = 〈S,ω〉� 1. (13.19)

How this construction was done was explained in detail in §10.2. The pres-
ence of the localising function was also explained in §10.2.4. In the case when
S is aC∞ embedded Sr−1 sphere, this additional localisation is unnecessary. In
fact, this additional localisation is never necessary, even without having gone
through the smoothing first. The actual raison d’être of this localisation is that
it means we are spared from ‘chasing’ the global orientations of S near the
vertices P ∈ ∂0 r

R.
For more details on all this and on the compatibility of (13.16), (13.18)

the reader should refer back to §10.2.1. For the reader’s convenience, recall
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however, that for this we set ϕ = ϕ1(X)ϕ0(Y ) and for the norm we can use
the direct product N×V Riemannian structure since the support of ϕ0 is as in
(13.17); cf. §10.1.3. We then have dω = dϕ1∧ϕ0 dy1∧·· · , |dω |� |dϕ1|N and
this can be estimated by (13.16) as long as the mutual distances of the vertices
∂0 r

R in N are 
 Rc.
Having constructed the above differential form ω , the contradiction that we

promised now follows on one line because (13.11), (13.19) give

1� 〈S,ω〉= 〈dω , Ŝ〉� ‖dω‖0M0
(
Ŝ
)
= O
(
R−c
)

(13.20)

for some fixed c> 0 (independent of R). This completes the proof.

13.3.4 Additional comments and remarks

(i) First of all, let us observe that the proof that we gave above is no differ-
ent from the proofs that we gave in §10.2 under the conditionsFr−1 . . . . The
proofs of that chapter did not go through a contradiction and they were for-
mulated in terms of direct estimates, but that different presentation is purely
window dressing. The similarity (in fact verbatim identical) of these proofs is
not surprising because theFr−1 applied to the current S says that we can find
a new current Ŝ such that bŜ= S and where

Ŝ is an LL(R)− r ⊂ G. (13.21)

This is a special acyclicity condition that in terms of algebraic topology
could informally be summarised as follows. All these spherical chains in πr−1
⊂ Hr−1(ΛP) are boundaries and give trivial homology; better still, they are
trivial in the homotopy group.

(ii) The next observation is that we can carry the same proof out if instead of
the hypotheses (13.9) we assume that for the dual complex Λ∗P of Chapter 12
we have

Hr−1 (Λ∗P) = 0. (13.22)

Strictly, nothing changes and in particular Ŝ exists as in (13.11). But now the
reason why such an Ŝ can be constructed is not Proposition 12.59 but Proposi-
tion 12.55 (cf. remark (iv) below).

(iii) Note that the way that this proof adapts to the Heisenberg alternative is
automatic. In this case we have G′ =H�R, where now r = 2, and the current
S= f∗(bI2) in G is constructed as in §§13.2.1, 13.2.2. The geometric details of
the construction can be found in §§9.2.5, 9.2.6. The construction of the differ-
ential form ω on G in §13.3.3 easily adapts. We obtain, as before, analogues
of (13.19), (13.20) and the required contradiction.
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Exercise 13.2 Write the details out for this.

(iv) Finally, we come back to the two dimensions r, r−1 in the acyclicity con-
dition (13.3). Similar conditions, for example (13.36), (13.79) and so on, will
crop up right through the chapter. It is of course the use of Proposition 12.59
that makes these conditions necessary. The best attitude in reading this chapter
is not to take this too seriously and make the stronger assumption that ΛP is
acyclic or that it has finite-dimensional homology as the case might be (i.e. for
the homology of all dimensions). Then we only need to use Proposition 12.57
and can ignore the more specialised §12.17. Theorem 12.17 follows anyhow.

13.4 Bouquets of Currents

A new geometric construction will be introduced in this section. This will be
a finite collection of currents S constructed by the first basic construction as in
§13.2. The supports of these finitely many currents all contain the origin but
apart from that they are ‘far from each other’; see Figures 13.1, 9.2. These will
be referred to as bouquets (of currents). If we go as far as to smooth out in the
first basic construction then each support S is an embeddedC∞ sphere and the
union of these supports really looks like a bouquet of spheres. This smoothing,
however, will not be done in general.

13.4.1 Definition for the Abelian alternative

We recall the notationGr =Rr�Rr−1=N′�A′ ⊂G′ and r
R ⊂N′ from §13.1

and Chapter 9. Here the constructionwill be made inGr (see §9.2.1); r� 2 will
stay fixed and R� 1 will as usual denote the large basic parameter on which
the first main construction depends. The construction below will depend on
R� 1 and we proceed as follows.
The first step is to consider not one cube but a finite collection of cubes

j =
r
c jR = [0,c jR]

r ⊂ Rr = N′; 1� j � m (13.23)

of size c jR with distinct constants c j, that are fixed once and for all and are
independent of R. For clarity one should think of these constants as being large
and geometrically very far from each other, that is, that for i �= j either ci/c j or
c j/ci is, say larger than 1010. These cubes are contained in each other like Rus-
sian dolls and have the origin in common and the whole configuration depends
on the parameter R (see Figure 13.1(a)).
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We now use each of these cubes j to make the first basic construction of
§§9.3–9.4 so that we obtain

S j is an LL(R)− ∂ r ⊂ Gr,

(the vertices)= ∂0 j ⊂ j∩S j; 1� j � m. (13.24)

In the smooth case these are embedded spheres that go through the origin (see
Figures 13.1(b), 9.2).
To each S j we associate the corresponding current and we define the bouquet

of currents

B = (S1, . . . ,Sm) , |B|=
⋃
j

suppS j. (13.25)

(a)

y1

x1

x2

(b)

The cubes 2 that give the A bouquet of (one-dimensional)
‘Russian dolls’ in G2. currents.

Figure 13.1

The supports of these currents have in common the neutral element e ∈ Gr

and therefore also the set

{0}×Va⊂ N′�A′; Va =
[
v ∈ A′; |v|� a

]
(13.26)

for some constant a independent of R, where R is always assumed to be large.
But apart from this, the intersections of these supports with the slice Nc of
(13.12) are disjoint. This is expressed formally in (13.28). We could describe
this informally by saying that these supports are ‘as disjoint as they can be’.
By the properties of the first basic construction (13.8) there exist constants

c′p, p= 1, . . . , andC > 0 independent of R such that

Mp(S j)� (logR)c
′
p ; R�C, 1� j � m, p = 1,2, . . . . (13.27)

The transversality condition of the first basic construction will now give the
following transversality property on the set |B| of (13.25).
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We shall abuse notation somewhat by writing ∂0B =
⋃
∂0 j the set of all

the vertices of the cubes (13.25) in the definition of the bouquet.We recall also
the definition of the canonical projection π : Gr = N′�A′ → A′ = Rr−1 and
Vc = [v∈ A′; |v|< c] for some appropriately small c> 0. The transversality for
the bouquet now says, among other things, that

|B|
⋂

π−1(Vc) =
⋃
P

[{P}×Vc; P ∈ ∂0B] =
⋃
P

EP. (13.28)

More information is of course contained in the transversality condition (see
§§9.3, 9.4) and this information will be used in what follows.

13.4.2 The Heisenberg alternative

The modifications needed in the above definition of a bouquet in the Heisen-
berg alternative are rather obvious.
Here N′�A′ =H�R as in §13.1 and the first basic construction gives

S is an LL(R)− ∂ 2
R ⊂ N′�A′. (13.29)

The reader will have to go back to §9.2 to check out the notation (in §9.2 the
Heisenberg group is denoted byH) and it will also be left as an exercise to give
the analogous definition of a bouquet in this case. The construction is, in fact,
if anything, easier to visualise here because r = 2 and S is an embedded circle.
The additional complication is that S∩H consists of six points and is not just
the four vertices of 2

R. All this was explained in detail in §9.2 and it is easy to
see that this makes no difference in the analogue of (13.28) and in the further
use that we shall make.

Exercise Verify the above. The ∂ that are represented by the Russian dolls
of Figure 13.1(a) are now replaced by the c jR (1 � j � m) ‘scalar multiples’
of the segments of the word (9.44) of Figure 9.3. For this use the fact that the
Heisenberg group admits a natural dilation structure g→ λ ·g, g ∈H, λ > 0.

13.4.3 The first illustration of the bouquet of currents

We shall preserve the notation of §13.3 and assume that G = N�A′ and that
A = {0}, s = 0. To fix ideas we shall assume that we are in the Abelian alter-
native.
Now, instead of the acyclicity condition (13.9), we shall assume that the

homology is finite-dimensional:

dimHj(ΛP)< m; j = r,r− 1. (13.30)
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Here we shall use the bouquets defined in §13.4.1 with m in (13.25) equal
to the bound m for the dimension of the homology in (13.30). As before, from
these we shall produce a contradiction. This will complete the proof of Theo-
rem 12.17 for the special case s= 0.
In the proof given in §13.3 we used (13.9) and Proposition 12.59. Here,

under condition (13.30), we shall need to use the refinement in Propositions
12.58 and 12.59 and this will force us to consider a bouquet

B = (S1, . . . ,Sm) (13.31)

of currents as defined in §13.4.1.
Then by §§12.16, 12.17 we can find scalars λ1, . . . ,λm ∈ R such that we can

solve with bounds the b-equation in Ŝ ∈D ′(r)(G),

bŜ=∑λ jS j = S, sup |λ j|= 1, M0(Ŝ)�C∑Mp(S j)�C(logR)C,
(13.32)

where the constants C and p are independent of R. Furthermore, the transver-
sality condition holds:

suppS
⋂

[|Y |� c]⊂
⋃

[EP; P ∈ ∂0B] , EP = {P}×Vc,
[|Y |� c] = π−1 (Vc) with Vc as in (13.13), (13.33)

and where we use again the exponential coordinates g = (X ,Y ) ∈ N�A′ = G
of §13.3.1 for the group and π : G→ A′ is again the canonical projection. In
(13.33) the left-hand side could be a proper subset, for example some of the λ
could be zero.
The definition of the form ω of §13.3.3 is identical and satisfies properties

(i), (ii) and (iii). Here, in condition (iii),

ϕ(P,Y ) = εPϕ0(Y ); P ∈ ∂0B, εP = 0,±1, (13.34)

P runs through all the vertices and as before all but one of the εP is 0. As for
ϕ0, it is chosen as in (13.17). The only additional provision now is that in the
choice of Y0 and c0 we have to make sure that we stay on the set on which all
the mappings f j : j →Gr that define all the currents S j ofB are smooth (in
fact affine).
The important new condition here is that if P0 ∈ ∂0B is the vertex for which

εP0 =±1 (and εP = 0 for all the others) then

(i) P0 �= e (= the common vertex);

(ii) P0 ∈ ∂0 j0 is a vertex of the cube j0 and for that index |λ j0 |= 1. This
is possible by our hypothesis on the λ in (13.32).
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By these conditions it follows as before that for the currents Ŝ and S of (13.32)
we have again as in (13.19), (13.20),

S[ω ] = 〈S,ω〉� 1.
1� 〈S,ω〉= 〈dω , Ŝ〉� ‖dω‖0M0(Ŝ) =O(R−c). (13.35)

Hence the contradiction.

Exercise 13.3 Fill in the details to make the same proof work in the Heisen-
berg alternative.

13.5 The Case G= N� (A′ ⊕A) with A= R and s= 1

Unless otherwise stated, we shall fix ideas and assume that we are in the
Abelian alternative of §13.1.1. This special case already contains the main
new geometric idea that is needed. Furthermore, we can treat this case in just
two steps and we can avoid the elaborate inductive process needed for general
groups and therefore this new idea is highlighted much better. The hypothesis
that will be made throughout in this section is that

Hr−1 (ΛP) = Hr (ΛP) = Hr+1(ΛP) = 0. (13.36)

This hypothesis, together with the C-condition, will lead to a contradiction as
in §13.3.3 and will thus complete the proof of Theorem 12.17 in this special
case.
Here, remark (iv) in §13.3.4 very much applies again and we recommend

that in a first reading you should assume that the complex ΛP is acyclic. This
is of course a stronger assumption but with it we avoid having to chase the
dimensions around when using Proposition 12.59.

13.5.1 Notation

We shall introduce an important notational convention that will be adopted for
the rest of the chapter and which will help us keep track of the dimensions
in the various formulas. Several, in fact most, of the currents in this chapter
will be denoted by capital letters: S, Ŝ, T, . . . . For these currents (but only for
the ones that are denoted by capital letters) we shall often insert an exponent
Sp, T p, etc. to indicate that the dimension of the current is (r− 1+ p), that is,
Sp,T p, . . . ∈D ′(r−1+p).
We shall also recall some of the notation that was introduced in Chapter 12

and which will be used here: δg ∈ E ′(0)(G), with g ∈ G, is the Dirac mass at
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g and, for a ∈ A (the subgroup of G), δa ∈ E ′(0)(A)⊂ E ′(0)(G). These are zero-
dimensional currents. Similarly, I= [0,1]⊂R=Awith the positive orientation
is identified with a current I ∈ E ′(1)(A)⊂ E ′(1)(G) of dimension 1 (see (12.85)).
We then have

bI = δ1− δ0. (13.37)

We shall also use the notation S (= S0 with our notational convention) for
the current constructed by the first basic construction in §13.2. This current
will depend on the free parameter R� 1 and the letter R will be reserved just
for that parameter.

13.5.2 The choice of the index p1

In the general case s � 1, a whole sequence of indices has to be chosen back-
wards as explained in §12.15.3.2. We shall return to this in a systematic way
in §13.6.1. Here, for s = 1 things simplify and we just have to choose one
index p1 � 10 and this is done by applying Proposition 12.57, or rather, the
refinement of §12.17, and hypothesis (13.36). We define p1 by the following
condition.
For all closed currents U (i.e. bU = 0), as in Propositions 12.57 or 12.59

with finite Mp1-norm, we can solve with bounds the following equation in T :

bT =U, M0(T )�CMp1(U), (13.38)

with a constantC that is independent ofU . Here we use hypothesis (13.36).
Having fixed p1 from the same Proposition 12.59, it is then also true that

for all closed currents S ∈D ′(r−1)(G) we can solve the following equation in Ŝ
with bounds

bŜ= S, Mp1(Ŝ)�CMp(S), (13.39)

for some C and p that are independent of S. We have not indicated the fact
that Mp(S) is finite here because if not, the validity of (13.39) is formally cor-
rect (the same convention applies to (13.81), (13.88), (13.90) and other similar
estimates below).
In (13.38) and (13.39) the dimensions are as follows: dimU = r (i.e.U =U1

with our convention) and T = T 2. Also, with this notationwe should set S= S0,
Ŝ= Ŝ1, hence the notation for p1. Similarly, for p in (13.39) we should perhaps
write p = p0. More precisely, in what follows the S ∈ E ′(0)(Gr) will be fixed
and it will be the current that we constructed from the first basic construction
in §13.2 for which we have

Mp(S) = O((logR)cp) ; p > 0 (13.40)
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for constants cp independent of R. Here and throughout we use the notation of
§13.1.1 and identify the subgroup N′�A′ with Gr. The current Ŝ will then be
constructed as in (13.39) and it will satisfy

Mp1

(
Ŝ
)
= O((logR)c) (13.41)

for some constant independent of R.

13.5.3 The currents in the second basic construction

We shall maintain the notation δa, I and S, Ŝ, p1 from §§13.2 and 13.5.2 and
use the product of §12.8.4 to define

S · I = I ·S ∈ E ′(r)(G). (13.42)

For typographical reasons, when confusion does not arise, we shall drop the
‘dot’ in the product, that is, S · I above would become SI.
Exercise 13.4 Use the fact that A is central in G′ and I ∈ E ′(A), S ∈ E ′(G′)
to verify this. This commutation relation is not essential for the construction.
For more details see (13.99) below. On the other hand, the fact that A and Gr

are direct factors in G makes (13.42) certainly not surprising (think about it).
This will be used in an essential way in (13.48) below.

We shall also denote

ID =
D−1
∑

n=−D
δnI = [−D,D] ∈ E ′(1)(A) (13.43)

and here the correct way to define the current ID is by the chain [−D,D] ori-
ented by the same orientation as I = [0,1] (see §12.8.6 and de Rham, 1960,
§14). We shall now define the key new currents as follows:

T = T 1 = IS+ Ŝ− δ1Ŝ

T 1(ID) =
D−1
∑

n=−D
δnT 1 = IDS+ δ−DŜ− δDŜ; D= 1,2, . . . . (13.44)

We use the convention of §13.5.1; the dimension of these currents is dimT 1 = r.
By formula (13.37) we have (see (12.84))

b(IS) = (δ1− δ0)S; b(T ) = 0 (13.45)

because bS= 0 is closed. Therefore bT 1(ID) = 0.
Given thatGr and A commute (i.e. every element ofGr commuteswith every

element of A), the reader should notice that, by (13.42), in the above definition
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we certainly have IS = SI but a priori δaŜ �= Ŝδa, with a ∈ A, and the order by
which we multiply in (13.44) cannot be interchanged (see (13.99)).
Now we come to another crucial feature of the definition (13.44). This is the

choice of D, which will also depend on the basic parameter R. We shall have
D∼ (logR)ĉ for some ĉ> 0. We shall set

D=
[
(logR)ĉ

]
= integer part of (logR)ĉ . (13.46)

The important point here is that the choice of the constant ĉ is independent
of R and that this choice will be made at the very end of the proof. This constant
ĉ will depend on the other previous constants of the construction of S and the
other geometric constants of G. Putting it differently, the constants c j and C
from (13.8) and (13.39) for which

Mj(S) = O
(
(logR)c j

)
, Mp1

(
Ŝ
)
= O
(
(logR)C

)
(13.47)

are independent of ĉ. So therefore are the constants in the following estimates:

Mp1(IS), Mp1(Ŝ), Mp1(T ) = O
(
(logR)c

)
. (13.48)

The commutation between A and Gr is used for the first estimate (see the exer-
cise below). From these and §12.8.2 we deduce that we have

Mp1

(
T 1 (ID)
)
= O (logR)Ĉ (13.49)

for some new Ĉ that now depends on the ĉ of (13.46).

Exercise 13.5 In a product situationM0
(
A (T ×S))=M0(T )M0(S); cf. Ex-

ercise 12.41. Use the homomorphism H×K→ HK ⊂ G for two (pointwise)
commuting subgroups H,K ⊂ G to conclude that M0(TS)�M0(T )M0(S) for
T ∈D ′(H), S ∈D ′(K).

13.5.4 The restriction of these currents to the slice

As in §§13.1, 13.3 we shall write
π : G= N�V −→V, V = A′ ⊕A, Vc = [v ∈V ; |v|� c] ,

Nc = π−1 (Vc) = [g= (X ,Y ) ; |Y |� c]⊂ G (13.50)

for the canonical projection π , the c-ball Vc and the slice Nc. Here the same
exponential coordinates as in §13.3 are used: X = (x1, . . . ,xn) for N and Y =

(y1, . . . ,yr) ∈ Rr for the Euclidean space V .
We shall denote by χ the characteristic function of the slice and multiply the
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corresponding integration currents (i.e. measures as coefficients and therefore
this multiplication is possible):

χT 1 (ID) = χ (IDS)+ error term, (13.51)

where

error term= χ
(
δ−DŜ
)− χ
(
δDŜ
)
. (13.52)

No confusion should arise in this notation, where IDS refers to the multipli-
cation of §12.8.4 that is induced by the group multiplication, and χ(· · ·) is
the multiplication of an integration current by the characteristic function of a
closed set.
Furthermore, by the fact that

supp ID ⊂ A; suppS⊂ N′�A′ (13.53)

we deduce that

principal term= χ (IDS) = Ic (χS) (13.54)

for the chain and current Ic = [−c,c] of A with the same orientation as ID. For
the identity (13.54) to hold, the norm |v| on the Euclidean spaceV will through-
out be taken to be v= supi |vi| for the Euclidean coordinates v= (v′,vr)⊂V =

A′ ⊕A, v′ ∈ A′, vr ∈ A. This new notation for the coordinates will be adopted;
so for the exponential coordinates of the group G= N�V , g= (X ,Y ) that we
used in (13.50) we now set Y = (v1, . . . ,vr) = (y1, . . . ,yr).
With these coordinates the principal term in (13.51) can now be expressed

quite explicitly provided of course that c is small enough. This will be done in
the §13.5.4.1.

13.5.4.1 The principal term and the transversality condition From the
transversality condition on S it follows from (13.14) that

supp(χS) =
⋃
P

E ′P, E ′P =
[{P}×V ′c] ,

V ′c =
[
v ∈ A′; |v′|< c

]
; P ∈ ∂0 r

R ⊂ N′.
(13.55)

Here P runs through the vertices of the cube that was used in the first basic
construction for S and to fix ideas, as said, we shall assume that we are in the
Abelian alternative.
From this and (13.54) it follows that

supp(χIDS) =
⋃
P

EP; EP = [{P}×Vc] , Vc = [v ∈V ; |v|� c] , (13.56)

for the same set of vertices P as in (13.55). In fact, considerably more than
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the above description of the supports can be asserted from the transversality
properties of S.
We shall now express the principal term as a sum of explicit currents. To-

wards this let us denote by [V ′c ] the current in A′ defined by the chain[
v′ ∈ A′; |v′|< c

] ∈ E ′(A′), (13.57)

where the orientation of A′ has been fixed by the order of the coordinates
v1,v2, . . . . Similarly, the chain

[Vc] = [v ∈V ; |v|< c] ∈ E ′(V ) (13.58)

can be defined for the same orientation of V . In all the above definitions the
constant c is assumed sufficiently small. Both the above currents can be inter-
preted as the product currents Ir−1 ∈ E ′(A′), Ir ∈ E ′(V ) that were examined
in §12.8.6. These currents can be translated on the left in G by the vertices P
of (13.55) and we obtain new currents δP[V ′c ], δP[Vc] ∈ E ′(G); cf. §12.8.4.
Using these currents and the full content of the transversality conditions as

explained in §§9.3.3, 9.4.6, 9.5.4 we can then assert that there exist ηP,η ′P =

±1 such that
χS=∑

P
η ′PδP
[
V ′c
]
, (13.59)

χIDS=∑
P

ηPδP [Vc] , (13.60)

where the ±1 in the η are needed in both (13.59) and (13.60) to take care of
the orientations.
These orientations for the chain S near the vertices were already an issue in

Chapter 10. There was no problem to define these once we assumed that S ⊂
Gr, an embedded sphere. This is what was done in §10.2.4. Serious problems,
however, arise when we try to define the orientation of a whole neighbourhood
of a vertex P ∈ S when S was not smoothed out and was only piecewise affine.
Some explanation of how to do this was given in Exercise 10.9.
This additional difficulty was evaded in Chapter 10 and in §13.4.3 by the

device of localising further. The same thing can be done here in §13.5.4.2 be-
low, which, however, the reader is advised to skip, at least in a first reading, as
additional awkward notation is needed to describe the corresponding currents.

13.5.4.2 The additional localisation near the vertices We shall be careful
to explain again, in precise terms, this additional localisation.
We recall that the first basic construction as done in Chapter 9 was piecewise

affine. This is reflected in the precise definition of the transversality in §9.4.6.
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Observe also that this is essentially automatic when dimS = 1, for example in
the case of the Heisenberg alternative. Be that as it may, from this piecewise
affine structure of S near the vertices we can proceed as follows.
First of all let us change the notation slightly, so that the formulas below are

more readable, and write A′=V ′ ⊂V . Also, for some point v′0 ∈V ′ sufficiently
close to 0 and for c0 > 0 sufficiently small we shall write

Ṽc0 =
[
v′ ∈V ′; |v′ − v′0|� c0

]⊂V ′c ,
χ̃ = characteristic function of π−1

(
Ṽc0
)⊂ N�V ′

for π : N�V ′ −→V ′.

(13.61)

By the piecewise affine nature of the construction we further see that if v′0 and
c0 in (13.61) are appropriately chosen then the mapping f : ∂ r→ S⊂N�V ′

is affine ‘above all the points of Ṽc0’, that is, when the point ξ is such that
π ◦ f (ξ ) ⊂ Ṽc0 . It follows that an orientation can be defined on each of these
patches:

π−1
(
Ṽc0
)∩ (small neighbourhood of P in S); P ∈ ∂0 r

R . (13.62)

From that orientation the corresponding signs η ′P and ηP = ±1 can be de-
fined on the corresponding patch. More explicitly, the analogue of (13.59) and
(13.60) holds once localised by χ̃ . We have

χ̃S =∑η ′P δP
[
Ṽc0
]
, (13.63)

where
[
Ṽc0
] ⊂ E ′(V ′) ⊂ E ′(G) is the chain and the current defined by Ṽc0

of (13.61) and some fixed orientation of V ′ = Rr−1.
Once we have this localisation for Swe can localise IDS by (χ̃S)Ic0 for some,

say the same as in (13.61), constant c0 and obtain

(χ̃S)Ic0 =∑η ′PδP
[
Ṽc0
]
Ic0 . (13.64)

Here we use the product notation of §12.8.4 for the two currents Ic0 and[
Ṽc0
]
. A more natural notation would perhaps have been Ṽc× [Ic0 ] for the chain

Ṽc0 × Ic0 = Ṽc0 × [−c0,c0] and orientations that have been fixed (this could,
however, have created confusion with the notation of §12.8.5). Notice that, in
the product, Ic0 commutes with S and δP.

The Heisenberg alternative All the above constructions adapt with no prob-
lem in the case of the Heisenberg alternative where we start with the S that we
obtain from the first basic construction for the Heisenberg case. In fact, things
are easier because here r = 2 and S is an embedded circle for free.
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13.5.5 The error term and the estimate of T 1(ID)

We start with a number of observations. First of all, for the left-invariant Rie-
mannian distance on G we have for the slice Nc of (13.50),

distance (Nc,a)� c1 (|a|− c) ; a ∈ A (13.65)

for some appropriate c1 > 0. Here we identify of course A ⊂ G and one can
see (13.65) by using the projection π : G= N� (A′ ⊕A)→ A which contracts
distances.
Also, quite generally, by the definition for any integration current U on G

we have (see (12.68))

M0 (UI(|g|> r))�CMp(U)r−p; r > 0, p> 0, (13.66)

where I(·) is the indicator function of the set outside the r-ball of G centred
at e andC is independent of r (but depends of course on p).
This estimate for the total mass outside a ball of radius r can be applied to Ŝ

and we can translate and get δmŜ form=−D,D−1 in the error term of (13.52).
This will give the estimate of the total mass of δmŜ outside the r-ball centred
at m ∈ A (see §12.8.2).
It is here that the constant ĉ involved in the choice of D in (13.46) comes

into play for the first time. Using (13.65) we obtain from the above that

M0
(
χ
(
δmŜ
))

�CMp1

(
Ŝ
)
(logR)−ĉp1; |m| ∼ (logR)ĉ. (13.67)

We recall also (see (13.41)) that

Mp1(Ŝ) = O(logR)
c (13.68)

for some c that is independent of the choice of ĉ. Note that p1 is also inde-
pendent of ĉ. The conclusion is that we can choose the ĉ so that the error term
in (13.67) satisfies

M0(error term) = O(logR)
−10. (13.69)

We shall recapitulate what was done in the last two subsections and we shall,
abusing notation somewhat, write

χT 1 (ID) =∑
P
ηPδP [Vc]+O

[
(logR)−10

]
, (13.70)

where the O− is understood in the sense of (13.69).
It is this O-error term that is the new idea. This has to be incorporated in the

second basic construction. This, and the way ĉ is chosen in (13.46), is what
one has to understand. The way ĉ was chosen was of course already an issue
in §9.5 where we had to deal with theF -property, but there the difference was
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that, provided we went far enough, in other words by choosing ĉ large enough,
the error term disappeared altogether.
We have written (13.70) in terms of formula (13.60). The same thing can of

course be written in terms of the finer localisation (13.64) except that the nota-
tion becomes more involved. The reader could take on the exercise of writing
out complicated notation to spell that formula out. Similarly, an entirely anal-
ogous formula can be written in the Heisenberg alternative.

Exercise 13.6 Write these formulas out explicitly.

13.5.6 The construction of S2

Having constructed T 1 in (13.44) with bT 1 = 0 we shall now use hypothesis
(13.34) and the property of the index p1 in (13.38) to apply Proposition 12.59.
The conclusion is (see (13.45)) that we can construct S2 ∈D ′(r+1)(G) such that

bS2 = T 1, M0
(
S2
)
= O
(
(logR)C

)
, (13.71)

for someC independent of R.
With the same notation as before andD as in (13.46) we can go a step further

and define

S2 (ID) =
D−1
∑

a=−D
δaS2, bS2 (ID) = T 1 (ID) , M0

(
S2 (ID)
)
= O
(
(logR)Ĉ

)
,

(13.72)
where Ĉ is independent ofR (but does depend on ĉ now!). This estimate follows
from (13.71) by left translation as in §12.8.2 and (13.49).

13.5.7 The contradiction and the endgame in the proof

This is achieved by the same differential form ω on G as in §13.3.3:
ω = ϕ(g)dy1∧·· ·∧dyr, g= (X ,Y );

X = (x1, . . . ,xn) , Y = (y1, . . . ,yr) ,
(13.73)

for the same exponential coordinates as in (13.50) on N�V =G. The only dif-
ference is now that dimV = dim(A′⊕A)= r, hence the number of y-coordinates
is r.
The differential form satisfies properties (i), (ii) and (iii) verbatim for an

appropriate choice of εP = 0,±1 (and all but one are 0) in (iii). The fact that
there is one more coordinate yr gives only a change of notation and this makes
no difference.
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There is, however, one difference and one more property that we must im-
pose on ω .

(iv) There existsC such that

‖ω‖0 = sup
g
|ω(g)|�C (13.74)

for the Riemannian norm |ω |. This is easy to achieve because |ω(g)| =
C|ϕ(g)|. To see this note that ω = ϕ(g)ω0 with ω0 = dy1 ∧ ·· · ∧ dyr.
The form ω0 is the pullback of a constant form on V (see (13.50)) and
|ω0|=C.

We are finally in a position to give the contradiction and complete the proof
of the theorem as before.
First of all, by (13.60), (13.63), (13.64) and an appropriate choice of the εP

of the differential form, we can guarantee for the principal term in (13.70),

〈IcS,ω〉= 1 (13.75)

and therefore by (13.70) and property (iv) of ω ,〈
S2 (ID) ,dω

〉
=
〈
T 1 (ID) ,ω

〉
= 1+O

(
(logR)−10

)
. (13.76)

On the other hand by (13.72) and property (ii) of ω we have∣∣〈S2 (ID) ,dω〉∣∣�M0
(
S2 (ID)
)‖dω‖0 = O(R−c) (13.77)

for some c > 0 independent of R. Observe that the dependence of Ĉ on ĉ
in (13.72) here makes no difference.
Our required contradiction lies between (13.76) and (13.77) when R→ ∞.

13.5.8 A retrospective examination of the second
basic construction

In this final subsection we shall be very informal. We shall try to explain why
the way we went about the second basic construction was in some sense the
only possible one. When we say this we refer to the qualitative geometric con-
struction as presented in §9.5. Now, in the rest of this chapter the algebra will
take over and the geometric ideas behind it will be hidden and lost. This, there-
fore, is an appropriate moment to make this retrospective.
The use of S= S0⊂Gr as an ‘openingmove’ is inevitable because this is the

only thing that we have in hand. If we wish to make an endgame in the spirit
of §13.3 we must somehow ‘stretch’ S out in the two directions of A. This has
to be done in such a way that by the projection π =G= N�V →V , we cover
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some neighbourhood of 0 ∈V and at the same time the error terms, that is, the
terms that give the lateral boundary in the sense of Chapter 9, are far out.
Pretty much the only thing that we can try is to fill in S by Ŝ and then translate

either from the left or the right. This gives

[−m,m] · Ŝ or Ŝ · [−m,m] (13.78)

for m some large m ∈ A and use left or right multiplication in G.
There are difficulties in both choices but the second choice is definitely ex-

cluded because, as pointed out in §12.8.2, the relevant norms cannot be con-
trolled for the right multiplication Ŝ ·δa and large a∈ A. So it is the first choice
in (13.78) that has to be made, despite the fact that we multiply on the right by
the non-compactly-supported current Ŝ, something that a priori causes prob-
lems (see §12.8.2). Here the twist in the proof that makes things work is this:
(i) S and A commute; therefore on the boundary bŜ= S at least it makes no

difference whether we take left or right multiplication.
(ii) We actually do not consider (13.78) as a whole, but in §9.5 we make a

long tube by glueing together slices of size 1 side by side, to look like
empty food cans, and then fill each of these cans separately. This is how
the idea was visualised in §9.5. Similarly, (13.78) in (13.72) looks like a
long sausage cut into portions.

All in all, in the construction that we have made we have simply formalised
these two ideas in a natural way.

13.6 The Proof of Theorem 12.17 under the Acyclicity
Condition in the General Case

In this section we shall consider the general case of (13.1) whenG=N�(A′ ⊕
A) where A= Rs, with s� 0 and once more, to fix ideas, we shall assume that
we are in the Abelian case unless otherwise stated. The hypothesis that we
shall make throughout is the acyclicity

Hr−1 (ΛP) = · · ·= Hr+s (ΛP) = 0 (13.79)

and we shall show that this leads to a contradiction which in turn will prove
the theorem.
The convention of §13.5.1 concerning the currents S,T,U, . . .∈D ′(r−1+p)(G)

of dimension (r− 1+ p) that are denoted with an exponent p, that is, Sp, T p,
Up, . . . will be used systematically here.
The proof in this general case is but a natural generalisation of the proof that
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we gave in the previous subsection. The only difficulty lies in choosing good
notation without which the formulas in this section very rapidly become un-
readable. Like everything else that has anything to do with homological alge-
bra, the choice of notation is important. Without being unduly pedantic, entire
sections of this chapter will be devoted to this problem of organising notation.

13.6.1 The choice of the indices

This subsection is the extension of §13.5.2 to the general case s � 0. The hy-
pothesis is (13.79) and we shall repeatedly use Propositions 12.57 and 12.59.
The former can only be applied under the more restrictive hypothesis of the
acyclicity of ΛP and remark (iv) in §13.3.4 here should be taken into account.
With these we shall choose inductively indices

ps+1, ps, . . . , p0 : all of these will be assumed to be �1010(s+ 1), (13.80)

and we shall start with ps+1 = 1010(s+ 1). Proposition 12.57 is used for these
choices and we have already given a description of these indices in §12.15.3.2.
Here we shall be more explicit.
Assume that p j+1 has been chosen for some 0 � j � s. The choice of p j is

then made by the following condition:

We choose p j such that, for all closed currents T = T j (of dimension r−
1+ j and bT = 0), we can solve in S = S j+1 the following b-equation with
bounds:

bS= T, Mpj+1

(
S j+1
)
�CMpj

(
T j) , (13.81)

where C is a constant that is independent of T . The additional condition
p j � 1010(s+ 1) can of course be imposed a posteriori.

We can work our way down on the dimensions starting in dimension r+ s,
where ps+1 is essentially arbitrary but large, to dimension r− 1 where we end
up with a possibly much larger p0.
Concerning this last index p0, let us point out that, in the last step for j = 0,

equation (13.81) will be used with the current obtained from the first basic
construction in §13.2, T = S0. For this compactly supported current we have

Mp
(
S0
)
= O
(
(logR)C

)
; p� 0, (13.82)

for some constantC that depends on p. From this it will follow that we do not
need to worry about p0.
We shall anticipate the way these indices and equations (13.81) will be used

by starting from (13.82) and working our way up through the dimensions.
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From this we shall conclude that the solution S1 of (13.81) with j = 0 and
T = S0 as in (13.82) satisfies

Mp1

(
S1
)
= O
(
(logR)C

)
(13.83)

for some C. And so on, step by step: if we have some closed current T j that
satisfies

Mpj

(
T j)= O((logR)C) (13.84)

for someC > 0, then in (13.81) we can solve in S j+1 which satisfies

Mpj+1

(
S j+1
)
= O
(
(logR)C

)
(13.85)

for some other constant. And so on until we reach Ss+1.
This idea was described in §12.15.3.2 as ‘closing the loop’.

13.6.1.1 The variant for the complex ΛP We used hypothesis (13.79) and
Proposition 12.59 for the choice of the indices ps+1, ps, . . . . We could have
used a different hypothesis

Hr−1
(
ΛP
)
= · · ·= Hr−1+s

(
ΛP
)
= 0 (13.86)

for the complex ΛP of Remark 12.28. If we make that hypothesis then we
can use Proposition 12.55 instead of Proposition 12.57 and make an analo-
gous choice of indices ps+1, ps, . . . verbatim by the same inductive condition.
A point to note here is that in this variant, Proposition 12.55 is easier to prove
and the intricate TVS considerations that were used in §12.15 can be bypassed.
Note also that we have not exactly used Proposition 12.55 but rather the par-
tial acyclicity version in the spirit of §12.17, so that (13.86) can be used. The
reader can fill in the details, I am sure. The use of ΛP rather than Λ∗P , as in
(13.22), was done here just for ‘variety’ (see Remark 12.56).

13.6.1.2 The finite homology Here, instead of (13.79), we shall make the
finite homology assumption

h= dimHr−1 (ΛP)+ · · ·+ dimHr+s (ΛP)< m, (13.87)

where the integer m is assumed large enough, and explain how the choice of
the indices is made under this more general assumption. The suggestion that
we made to the reader in remark (iv) of §13.3.4 is very much valid again.
Since this new variant for the choice of the indices ps+1, . . . will not be

needed immediately, the reader is advised to skip this material and come back
to it when it is needed later in §13.6.4.2 and, more so, in §13.7.
Let us examine first the special case s= 1 where only one index p1 � 10 has
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to be chosen. In that case we use the refinement of Proposition 12.57 as refined
in §§12.16–12.17 and we can define p1 by the following condition.
For any choice of closed currents T 11 , . . . ,T

1
m (i.e. currents of dimension r)

there exist real scalars λ1, . . . ,λm such that sup j |λ j|= 1 and for which we can
solve with bounds the following b-equation in S2:

bS2 =∑
j
λ jT 1j ; M0

(
S2
)
�C∑

j
Mp1

(
T 1j
)
, (13.88)

for a constantC independent of the currents T 1j .
As before in (13.39) and §13.5.2, once p1 has been chosen the following

also holds. For any choice S01, . . . ,S
0
m of closed currents of dimension (r− 1)

we can find scalars μ1, . . . ,μm such that supi |μi| = 1 and for which we can
solve the following b-equation with bounds in S1:

bS1 =∑
i
μiS0i ; Mp1

(
S1
)
�C∑

i
Mp
(
S0i
)
, (13.89)

with p and the constant C independent of the currents S0i . This will suffice for
the case s= 1 as we shall see in §13.6.4.2 below.
For the general case s � 1 in §13.7, however, the choice of the indices

ps+1, ps, . . . is slightly more elaborate. Once more we set ps+1 = 1010(s+ 1)
and again assume that p j+1 has been chosen for 0� j� s. The analogue of the
inductive step that is used to choose p j is now given by the following property
that p j has to satisfy.
Let (T j

α ,1, . . . ,T
j
α ,m; 1 � α � α0) be mα0 closed currents of dimension r−

1+ j. Then there exist scalars λ1, . . . ,λm such that supi |λi| = 1 and for which
we can solve the following b-equations with bounds in S j+1α :

bS j+1α =∑
i
λiT j

α ,i, Mpj+1

(
S j+1α

)
�C∑

i
Mpj

(
T j
α ,i

)
; α = 1,2, . . . ,

(13.90)
where the constant C is independent of the currents T j

α ,i. The scalars λi are
the same for all the 1 � α � α0 and several equations have to be solved now.
The number α0 of these equations will depend on the geometry of the situation
in §13.7 and it will be fixed. The existence of such a p j < +∞ and of the
coefficients λi follows from hypothesis (13.87) provided thatm is large enough.

Exercise 13.7 The proof of this is just a refinement of the argument of §12.16.
Indeed from the exercise in that section we see that if the right-hand side of
(13.90) is finite for some appropriately large enough p j, then we can define
linear mappings

Rm � (λ1, . . . ,λm)−→
Lα
∑
i
λiT j

α ,i ∈ (Imδr)⊥,
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where δr here is as in §12.16 (note, however, that in §12.16 the use of the letters
T and S is different). Let us write Kα = L−1α (Kerd)⊥ ⊂Rm, where again Kerd
is as in §12.16. Hypothesis (13.87) implies that codimensionKα � h. It follows
that if m is large enough, depending on α0 and h, these subspaces have a non-
zero intersection and 0 �= (λ1, . . . ,λm) ∈

⋂
α Kα will give the required scalars.

13.6.2 The Γ-free complex

With the same notation G= N� (A′ ⊕A), A′ = Rr−1, A= Rs, s � 0, we shall
denote by e j = (0, . . . ,1,0, . . . ,0), 1� j � s the basis elements of A and by

Γ=

(
∑
j
n je j; n j ∈ Z

)
⊂ A; Γ∼= Zs (13.91)

the lattice they generate in A.
We shall use this lattice to define a complex of real vector spaces (see §12.4)

C : · · · ←− C 0←− C 1←− ·· · ←− C p←− ·· · ;
C n = 0 if n< 0 or n> s.

(13.92)

The definition of this complex that we shall give below is not the most natural
one but it is the one that best suits our purposes.
The coordinates of A in terms of the basis e j are (x1, . . . ,xs) ∈Rs. For every

increasing multi-index I = (1 � i1 < i2 < · · · ip � s) of length p, with p =

0, . . . ,s (for p = 0 we set I = /0), we shall define the following current eI ∈
E ′(A) ⊂ E ′(G). We write e /0 = δ0 for the current of dimension 0 given by the
δ -mass at 0. Let dxI = dxi1∧·· ·∧dxip be the basis of

∧
T ∗A. We then define the

current eI by eI [adxJ] = 0 if J �= I and a ∈C∞(Rs). And if for such a function
we write aI for the restriction of a to the subspace spanned by the (ei, i ∈ I),
we define

eI [adxI] =
∫
0<xi<1

aI dxi1 . . .dxip . (13.93)

This current is none other than the one that we defined in §12.8.6.
These currents will now be translated by the elements of the group Γ and we

shall obtain the currents τγeI = δγeI where τγ is the translation x �→ x+ γ in A,
γ ∈ Γ. These will be used as a basis over R to define the vector spaces

C p = Vec
[
δγeI ; γ ∈ Γ, |I|= p

]
. (13.94)

The above, with the usual boundary operator b for currents, define the com-
plex C . The eI will be called the Γ-basis elements of C .
It is clear that the basis of C 0 can be identified with the group Γ which acts
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on the complex by translation. This complex qualifies for what, in homological
algebra, one calls a Γ-free complex and a free resolution of Γ and this can be
used to define the homology of the discrete group Γ (cf. Appendix G). This
homology is the same as the homology of Rs/Γ = Ts. This aspect of things
will not be relevant here.
Concerning this complex we shall fix once and for all some notation. In the

same spirit as our previous convention in §13.5.1 we shall use small Greek
letters, for example ζ p,ξ p ∈ C p, to denote elements of dimension p of C so
that ζ p can be identified with a current in D ′(p)(G). This is not to be confused
with Sp ∈D ′(r+p−1) in §13.5.1. We shall also denote by γξ = τγξ the action of
the group Γ on C .
With this convention we shall fix some closed current S = S0 ∈ D ′(r−1)(G)

and using the definition given in §12.8.4 for the product in G of two currents
we shall define

W (ξ ) = ξS; ξ ∈ C . (13.95)

In this and in what follows, as with (13.42), in the definition of the product
T1 ·T2 of (12.79) the dot will be suppressed when there is no confusion. No con-
fusion shall arise either with the notation for the produit tensoriel of de Rham
(1960, p. 36), that we briefly recalled in §12.8.5. The definition will depend on
S, so a more accurate notation would have beenWS. In conformity with §13.5.1
we shall also denote byW p the restriction ofW to C p:

W p : C p −→D ′(r+p−1)(G), that is, Wp(ξ ) ∈D ′(r+p−1); ξ ∈ C p. (13.96)

When S is the current of §13.2 the relevant estimate forW is

Mj (W (ξ ))� O((logR)c j ) ; j � 0 (13.97)

for constants c j independent of R, provided that the support of ξ ∈ C stays
in some fixed ball [|x| � c] of A = Rs. This is, of course, exactly as in Exer-
cise 13.5, an immediate consequence of the commutativity between N′�A′,
which is identified with Gr (see §13.1.1) and A.
With this notation it is clear that

W (γξ ) = τγW (ξ ), bW (ξ ) =W (bξ ); γ ∈ Γ; (13.98)

the second relation holds because of (12.84) and because S is closed: bS= 0.
In our application we shall always set for S in the definition a current defined

by the first basic construction as in §13.2. In that case, for ξ = ξ p ∈ E ′(A), by
the commutation between Gr and A we deduce that in (13.95) we have

ξS= Sξ . (13.99)
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Exercise No use of (13.99) will be made. However, it is good to keep it in
mind and the proof is formal (see §12.8). Let Ti ∈ D ′(G), suppTi = Ei, for
i= 1,2. Assume that E1 and E2 commute pointwise and at least one of the two
is compact. Then, for the product of these two currents in (12.79), we have
T1T2 = T2T1. For the proof let H = G×G and p : H → G, where p(x,y) = xy
is the group product. Let θ (x,y) = (y,x) be the involution θ : H→H. We have
p ◦ θ = p on Ei×Ej, for i �= j. Now with A as in de Rham (1960, §13) or
§12.8 we have TiTj = pA (Ti×Tj) and also θA (Ti×Tj) = A (Tj × Ti). Put
these together and we are done.
To elaborate further go back to §12.8.5.2. The notation there was different

because we wanted to stick with de Rham’s notation and the reader should be
careful to avoid confusion. At any rate, it follows from the discussion given
there that the two products T1 ·T2 and T2 ·T1 in the group are the images under
p and p◦θ respectively of one and the same currentR onG×Gwith support in
E1×E2. The confusion that has to be avoided is that in de Rham, T1T2 denotes
‘le produit tensoriel’ which is a double current; cf. §12.8.3.

13.6.3 The acyclicity of ΛP and the mappings S1,S2

In this section we shall use once more the notation Sq. But this time it is to
indicate an important mapping on the complex C . To define these mappings
the acyclicity conditions of (13.79) and (13.36) on the vanishing of some ho-
mology groups Hr−1(ΛP) = 0, . . . will be needed and we shall also need and
use freely the indices ps+1, ps, . . . of §13.6.1. When they can be defined, these
mappings are

Sp : C p−1 −→D ′(r+p−1), Sp
(
ξ p−1
) ∈D ′(r+p−1);

p = 1, . . . ,s+ 1, ξ p−1 ∈ C p−1,
(13.100)

and we shall assume that s � 1. We shall always denote S0 = S ∈ E ′(N′ �
A′) the current defined by the first basic construction in §13.2. As far as the
dimensions are concerned, the above notation is consistent with our convention
in §13.5.1 but there should be no confusion between these mappings and the
currents of dimension r+ p− 1.
The first two mappings S1 and S2 are easy to define. Let s � 1 and let Ŝ ∈

D ′(r)(G) be as in §13.3.2 where we had

bŜ= S, M0(Ŝ)�CMp(S), (13.101)

where C and p are independent of the parameter R. This can be defined un-
der the acyclicity condition (13.79) and, to be consistent with the notation of
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§13.5.1, it is preferable to write S = S0, Ŝ = Ŝ1 and to rewrite (13.101) as

Mp1(Ŝ
1)�CMp0(S

0), (13.102)

where now . . . , p1, p0 are as in §13.6.1, so that this is essentially a rewriting of
(13.39). Be that as it may, the first mapping (13.100) is then defined

S1(δ ) = δ Ŝ; δ = δ 0 ∈ C 0. (13.103)

This is the product of currents and is well defined by translating Ŝ on the left
by elements of Γ.
With this definition and W as in the previous subsection, we have (see

(12.84))

b
(
ξ Ŝ
)
= S1(bξ )−W1(ξ ) = T 1(ξ ); ξ ∈ C 1. (13.104)

Notice that we have already encountered this notation in (13.44) but there it
was given with the opposite sign. Not to worry, as no confusion will arise. Here
we represent the first steps of a sequence of ‘creatures’ T 1, T 2, . . . that we shall
elaborate on in the rest of this chapter. But before that, we shall immediately
give the next step of the construction. For this we consider the e j of the basis
of Γ or equivalently of the Γ-free basis of C 1 in (13.94), and under hypothesis
(13.79) and the definition of p2 � 1010(s+ 1) of §13.6.1 we can construct
S2(e j) that satisfies

bS2(ξ ) = S1(bξ )−W1(ξ ); ξ = e j, (13.105)

Mp2(S
2(e j))�CMp1(T

1(e j)); 1� j � s, (13.106)

where C is independent of R > 0 and of the particular choice of S = S0. This
can be done because by (13.104) it follows that bT 1 = 0.
Now we shall use the Γ-free nature of the complex C and of the Γ-basis

(13.94) to extend S2 to a unique Γ-mapping

S2 : C 1 −→D ′(r+1); S2(ξ 1) ∈D ′(r+1). (13.107)

The mapping S2(ξ ) satisfies the estimate O(logR)C of (13.83) and the depen-
dence of the estimate on ξ will be one of the issues of the proof (see (13.114)).
By Γ-mapping we mean here and throughout that the mapping is linear and
that it commutes with the Γ-action on the two spaces. In algebraic terminol-
ogy we have a Γ-module mapping. It also satisfies (13.105) for all ξ ∈ C 1. To
summarise,

bS2(ξ ) = S1(bξ )−W1(ξ ), S2(γξ ) = τγS2(ξ ) = δγS2(ξ );
γ ∈ Γ, ξ ∈ C 1.

(13.108)
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This mapping depends on the original current S = S0 and on the parameter R.
We should perhaps write in (13.108) more accurately

bS2S(ξ ) = S1(bξ )−W1
S (ξ ); ξ ∈ C 1. (13.109)

But of course these mappings also depend on the particular choice of Ŝ in
(13.101) that we used to define S1.

13.6.4 The first application of the mapping S2

13.6.4.1 The acyclicity theorem (Theorem 12.17) when s = 1 As a first il-
lustration of the mapping S2 that we defined in the previous subsection we shall
assume that G= N� (A′ ⊕A) satisfies

A= R, i.e. s= 1, Hr−1 (ΛP) = Hr (ΛP) = Hr+1(ΛP) = 0, (13.110)

that is, that we are in the set-up of §13.5. Here we shall simply rewrite some of
the proof that we gave in §13.5 using these new mappings and notation. This
will give a good illustration of their use in proofs.
The current S = S0 is the one that comes from the first basic construction

as explained in the previous subsection. We then choose Ŝ = Ŝ1 as in (13.101)
and the two mappings S1, S2 of the previous subsection are then defined. These
depend on the basic parameter R and the choice of S and Ŝ.
Let D= [(logR)ĉ] be as in (13.46) where ĉ> 0 is to be chosen later (it will

be chosen last as explained in (13.46)). We then define

ξD =
D−1
∑

n=−D
δne1 ∈ C 1 (13.111)

for e1, the unique Γ-basis element of C 1 in (13.94). With the notation and the
orientation specified in §13.5.3 we have

ξD = [−D,D], bξD = δD− δ−D (13.112)

and now our defining relation for S2 gives the key identity (13.72) that is used
in the proof in §13.5.5. This now reads (cf. (13.105) and (13.106)

bS2 (ξD) = S1 (bξD)−W1 (ξD) = (δD− δ−D) Ŝ− ξDS. (13.113)

The estimate in §13.5.6 here reads
M0
(
S2 (ξD)

)
�CMp1

(
T 1 (ξD)

)
�C

(
Mp1

(
δDŜ
)
+Mp1

(
δ−DŜ
)
+

D−1
∑

n=−D
Mp1 (δne1S)

)
= O(logR)Ĉ, (13.114)
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where we use the notation (13.104) and for the last O-estimate we use again
§12.8.2 as in (13.72), (13.48), (13.97). These are the ingredients that were used
in §13.5.7 to finish the proof for the special case s= 1.

13.6.4.2 The case of finite homology when s = 1 This is a special case of
§13.7 and the reader could defer reading this until later. Nonetheless this case
illustrates well several of the ideas that we have already used. As before we
shall assume that A = R but now we shall make the more general assumption
that

dimHr−1 (ΛP)+ dimHr (ΛP)+ dimHr+1(ΛP)< m<+∞, (13.115)

for some integer m
Under these conditions we shall produce a contradiction and thus give the

proof of the finite homology part of Theorem 12.17 for this special case s= 1.
This will illustrate the use of the bouquets of currents of §13.4 as well as the
new twist of double bouquets that has to be used in this proof.
First of all, unless we introduce a bouquet of currents

B = (S1, . . . ,Sm) (13.116)

as in (13.31), we cannot take off because, since we do not have the acyclicity
(13.79), we cannot solve bŜ= S and define the first mapping S1 of (13.103). On
the other hand, the index p1 and the corresponding scalars λ j of §13.6.1.2 and
Proposition 12.59 can be used. What we obtain is what follows (cf. 13.6.1.2).
Once the bouquetB has been introducedwe can find scalars λ1, . . . ,λm such

that sup j |λ j|= 1 for which we can solve with bounds the following b-equation
in Ŝ,

bŜ=∑λ jS j, Mp1

(
Ŝ
)
�C∑

j
Mp0 (S j) , (13.117)

for someC and p0 independent of R.
This Ŝ can now be used to define S1(δ ) = δ Ŝ as in (13.103) and we set as

before

T 1(ξ ) = S1(bξ )−W(ξ ) = b
(
ξ Ŝ
)
; ξ ∈ C 1. (13.118)

These are closed currents but we are faced with the same problem as be-
fore because (13.17) is not assumed to hold and we cannot a priori solve the
b-equation bS2(e1) = T 1(e1) as we did in (13.105) with bounds. Here we em-
phasise ‘with bounds’ because otherwise this equation can of course be solved
by some current.
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It is here that the notion of a double bouquet comes to our rescue. Instead of
one bouquetB in (13.116) we introduce a collection of m-bouquets

B2 = (B1, . . . ,Bm); B j = (S j,1, . . . ,S j,m),

[B2] = (S j,i; i, j = 1, . . . ,m is a bouquet in the sense of §13.4).
(13.119)

Each of these bouquets B j , with 1 � j � m, gives rise to coefficients and
currents

λ j,1, . . . ,λ j,m ∈ R, sup
i
|λ j,i|= 1, S j =∑

i
λ j,iS j,i; j � 1, (13.120)

for which we can solve with bounds the corresponding b-equations

bŜ1j = S j; Mp1

(
Ŝ1j
)
�C∑

i
Mp0(S ji), j � 1, (13.121)

for C and p0 that are independent of the parameter R, and we recall that
dimS j = r−1. When confusion does not arise, for typographical reasons with
these multiple indices, the commas will be suppressed; for example, S ji rather
than S j,i
These Ŝ1j can in turn be used to define the corresponding mappings S

1
j(δ ) =

δ Ŝ1j of (13.103). So now, instead of having a closed currentT 1(ξ ) as in (13.104),
we have m such currents T 11 (ξ ), . . . ,T

1
m(ξ ).

Having these currents we shall use the definition of p2 in §13.6.1.2. We
conclude that we can find scalars μ1, . . . ,μm such that sup j |μ j| = 1 for which
we can solve with bounds the following b-equation when ξ = e1 is the element
in the Γ-basis of C 1 (13.94):

bS2(ξ ) =∑
j

μ jT 1j (ξ ) =∑
j

μ j
(
S1j(bξ )−W1

S j(ξ )
)

=∑
j
μ jS1j (bξ )−∑

i, j
μ jλ jiξS ji; ξ = e1, (13.122)

becauseWX is linear in X . Since C 1 is a free Γ-module we can extend S2 to a
Γ-linear mapping that satisfies (13.122) for all the ξ ∈ C 1.
Furthermore, the corresponding bound

M0
(
S2(e1)
)
�CMp2

(
S2(e1)
)
�C∑

j

Mp1

(
T 1j (e1)
)

(13.123)

holds for constants that are independent of R and from this, by the definition
of T 1, it follows that

M0
(
S2(e1)
)
= O
(
(logR)C

)
(13.124)
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for a similar constant C. We now apply (13.122) to ξD of (13.111) with D as
in (13.46) and we have

bS2 (ξD) =∑
j
μ jS1j(bξD)−∑

i, j
μ jλ jiξDS ji. (13.125)

That this can now be used to give a contradiction in the case when s = 1,
exactly as was done in §13.5, is but an exercise. We shall not give the details
here because the general case s� 1 will be treated in §13.7.
Exercise 13.8 The reader is urged to complete the details for themselves here.
The pivot is that the coefficients μ jλ ji of Si j in (13.125) are ‘triangular’ in the
sense that we can first choose j such that |μ j| = 1 and then i so that |λ ji|= 1.
For these specific values of the indices, the contribution to the principal term
is then given by μ jλ jiξDS ji and the error term can be estimated by (13.69)
because bξD is far out as in §13.5.5.

13.6.5 The mappings Sq; q� 1

Here we shall assume that s � 2 and go back to the original standing hypoth-
esis of acyclicity, (13.79). The mappings S1 and S2 were defined in §13.6.3.
The general mapping Sq, with 1 � q � s+ 1, will now be constructed under
hypothesis (13.79). This will be done inductively for q= 1,2, . . . .

13.6.5.1 The construction of S3 For the convenience of the reader we shall
start with the next case q = 3 and we shall assume that the current S = S0

of the first basic construction has been fixed and it depends of course on the
parameter R > 0. We shall use the mappings S1, S2 and the mappingW =WS

that we defined in §13.6.3. From the definition of S2 it follows that
b
(
S2(bξ )+Wξ

)
= bS2(ζ )+ b(Wξ )
=
(
S1(bζ )−W1(ζ )

)
+W 1bξ = 0; (13.126)

ζ = bξ , ξ ∈ C 2,

and therefore the current T 2(ξ ) = S2(bξ )+W(ξ ) is closed. As a consequence,
by the definition of the indices ps+1, ps, . . . in §13.6.1 and the acyclicity hy-
pothesis (13.79), we can solve the following b-equations with bounds.
For every ei, j, with i< j, i, j= 1, . . . ,s, the basis element ofC 2 as in (13.94),

we can solve the equations

bS3(ξ ) = S2(bξ )+W2(ξ ) = T 2(ξ ); ξ = ei j,

Mp3

(
S3(ei j)
)
�CMp2

(
T 2(ei j)

)
; i< j,

(13.127)
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for some constant C independent of R. We can now use the Γ-basis of C 2

in (13.94) to extend the definition of S3 for all ξ ∈C 2 so that it is a Γ-mapping.
This completes the definition of S3.

13.6.5.2 The definition of Sq in the general case Here s � 1 and, as before,
both S = S0 from the first basic construction and the corresponding mapping
W (13.95) will be fixed. The indices ps+1, ps, . . . from §13.6.1 will also be
assumed fixed. Let 2 � q � s be given. We shall assume that the Γ-mappings
Sq,Sq−1, . . . have been constructed and that they satisfy

bSq(ξ ) = Sq−1(bξ )+ (−1)q−1Wξ ; ξ ∈ C q−1,

Mpq (S
q(eI))� (logR)C; R�C,

(13.128)

whereC is independent of R and where eI are the Γ-basis elements of C q−1 as
I runs through the corresponding multi-indices of length (q−1). From this we
have

bSq(bξ ) = (−1)q−1Wbξ ; ξ ∈ C q. (13.129)

Therefore we have (see (13.98))

bTq(ξ ) = 0; Tq(ξ ) = Sq(bξ )+ (−1)qWqξ , ξ ∈ C q. (13.130)

By the definition of the index pq+1 and our acyclicity hypothesis (13.79) we
can therefore solve in Sq+1 the following b-equations with bounds:

bSq+1(ξ ) = Sq(bξ )+ (−1)qWξ = Tq(ξ ); ξ = eI ∈ C q (13.131)

Mpq+1

(
Sq+1 (eI)

)
�CMpq (T

q (eI))�C(logR)C; |I|= q, R�C. (13.132)

This is done for all the basis elements eI , (13.94), of C q with a multi-index I of
length |I|= q and with constants that are independent of R. The final estimate
in (13.132) is a consequence of (13.128) and of (13.97). From this we can
use the Γ-free nature of the complex C and we can extend Sq+1 to a Γ-linear
mapping defined for all ξ ∈ C q that satisfy (13.131).
This completes the inductive step and we can define thus all the mappings

S1,S2, . . . ,Ss+1. This was referred to in §12.15 as ‘closing the loop’.

An explanation of the construction. This construction is quite involved. In
particular, we have to use all the dimensions r−1, r, . . . of (3.79). The follow-
ing offers some explanation of why this is so.
The reason that we have to proceed by induction on the dimensions is that

once some current that has already been constructed spills out of N′�A′ we
cannot multiply it by some current of A and estimate the product in a useful
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way (cf. §8.1). The only hope is to translate that current on the left and use
§12.8.2. This is what was done in (13.67), (13.72) and will be done again in
the next subsection and in §13.7.

13.6.6 The end of the proof in the general case

Once themapping Ss+1 has been defined under the acyclicity condition (13.94),
a contradiction can be obtained exactly as we did for the special case s = 1
in §13.5.7.
To see this we define

ξD = ξ sD
=∑

γ
[γe; γ = (n1, . . . ,ns) ∈ Γ, −D� n j � D− 1, 1� j � s] . (13.133)

This is [−D,D]s, the chain with the same orientation on Rs that gives e ∈ C s

the unique basis element e= e[1,...,s] of (13.46). Here, as before, D= [(logR)ĉ]
exactly as in (13.46) where the new constant ĉ> 0 will be chosen at the end.
We shall then apply (13.131) to the current ξD and we obtain

bSs+1 (ξD) = (−1)sWsξD+ Ss (bξD) = T s (ξD) (13.134)

and now we have to examine separately,

principal term= (−1)sWξD, error term= Ss (bξD) . (13.135)

With these formulas one sees the algebraic reasons behind the definitions that
we have made. For instance, we use the Γ-module property of Ss and we have

∑
γ
γSs(be) = Ss

(
∑γbe
)
= error term.

A special case when s= 1 is the telescopic sum of §13.5.3.
The way to go from here is verbatim what we did in §13.5 for s = 1. It

could have been left as an exercise for the reader to write this proof out. For
convenience, however, we shall first recall the notation as adapted here in the
general case s� 1.
In fact, the only difference is that in G = N�V with V = A′ ⊕A, now A is

A∼= Rs, with s� 1. The notation of §13.5.4 will therefore be adapted. For g=
(X ,Y ) ∈ G, we have X = (x1, . . . ,xn), Y = (y1, . . . ,yr+s−1) = (v1, . . . ,vr+s−1)
for the exponential coordinates for N and the Euclidean coordinates for V ,
respectively, as in §13.5.4, with

v=
(
v′,vr, . . . ,vr+s−1

) ∈ A′ ⊕A, (vr, . . . ,vr+s−1) ∈ A (13.136)
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as in §13.5.4.1. The norms and the corresponding balls in V ,

|v|= sup
i
|vi| , [|v|< c] =Vc ⊂V, (13.137)

are defined as in (13.50) for some appropriately small c> 0. Using the canon-
ical projection π : G→V we define the slice Nc = π−1(Vc)⊂ G as in (13.50)
and denote by χ the characteristic function of that slice. This together with
(13.130) gives the analogue of formula (13.70) which now becomes

χTs (ξD) = (principal term)+ (error),
principal term= (−1)sχWξD = (−1)sχξDS0,

error= χSs (bξD) .
(13.138)

From here the proof unfolds exactly as in the special case s = 1 in §13.5,
even with the same notation, provided that we bear in mind that in §13.5 the
one-dimensional current ξD was denoted by ID. What was done in §13.5, and
what has to be done here again in the general case, is to take the following
three steps.

(a) Localisation of the principal term

χ (ξDS) =∑
P

ηPδP [Vc] (13.139)

with summation on the vertices and the same notation as (13.59), (13.60) (we
recall that P ∈ ∂0r

R, δP are Dirac masses, ηP = ±1). Here [Vc] ∈ E ′(V ) is
an (r+ s−1)-dimensional current. The same comments about the orientations
and of course the finer localisation as in §13.5.4.1 apply here again.

(b) Estimate of the error term and the formula We have, again with a slight
abuse of notation, the analogue of formula (13.70):

χTs (ξD) =∑
P
ηPδP [Vc]+O

(
(logR)−10

)
, (13.140)

where the O is interpreted in terms of theM0-norm as in (13.69) and (13.70).
It is the choice of ĉ in the definition of D and the estimate of the error term

in (13.132) that allows us to write (13.140). Here in the error term χSs(bξD)
the current bξD is supported on ∂ IsD the boundary of the cube [−D,D]s and is
not just the two-point δ±D of the case s= 1. This makes no difference because
the only thing that counts is that [distance (0,∂ IsD)] in V is ∼ (logR)ĉ. From
this the same estimate on the error term follows.
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Exercise 13.9 We shall outline below the proof of this and the reader should
fill in the details. Notice that the same argument in a more intricate situation
will be spelled out in detail in §13.7.4.3 below.
Write bξD=∑α ζα , for ζα ∈C s−1 which are in fact of the form ζα =±δγeJ ,

with γ ∈ Γ and eJ the basis elements in (13.94). This is the natural decompo-
sition of the boundary of the cube ∂ IsD into subcubes of size 1 and dimen-
sion (s− 1). The translations γ involved are all |γ| = D ∼ (logR)ĉ. The total
number of these subcubes is ≈(s− 1)-dimensional measure of ∂ IsD ≈ Ds−1 ≈
(logR)ĉ(s−1).
By the argument of §13.5.5 and §12.8 the contribution of each ζα in the slice

Nc is

M0
(
χSs(δγeJ)

)
�C|γ|−psMps

(
Ss(eJ)
)
� (logR)−psĉ(logR)C; R�C,

(13.141)
where the important point is that the constantsC are independent of the choice
of the constant ĉ because ĉ is the last constant that was chosen. The index ps
is independent of ĉ also. Furthermore, ps� s in §13.6.1. This is something we
did not have to worry about when s = 1. Putting all these estimates together
we obtain the required estimate for the error term

M0
(
χSs(ξD)

)
�C(logR)(s−1−ps)ĉ(logR)C = O

(
(logR)−10

)
, (13.142)

where for the last O-estimate ĉ has to be chosen sufficiently large. It is at this
point that we finally make the choice of ĉ in (13.46). This completes the proof
of (13.140).

(c) Final step in the proof With (a) and the estimate (b), the contradiction
that is needed for the proof of the theorem is produced by the same differential
form as §13.5.7,

ω = ϕ(g)dy1∧·· ·∧dyr+s−1; for y1, . . . ,yr+s−1 the coordinates of V ,
(13.143)

where ω satisfies the same properties (i), (ii) and (iii) of §13.3.3 and prop-
erty (iv) of §13.5.7. Furthermore, the coefficients εP of property (iii) will again
be chosen so that

〈ξDS,ω〉= (−1)s (13.144)

for the principal term in (13.140) and therefore〈
Ss+1(ξD),dω

〉
=
〈
T s(ξD),ω

〉
= 1+O(logR)−10. (13.145)

This follows from (13.140), (13.144) and property (iv) of ω . These are the
analogues of (13.75), (13.76). The required contradiction is thus obtained from
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this and ∣∣〈Ss+1(ξD),dω〉∣∣�M0
(
Ss+1(ξD)

)‖dω‖0 = O(R−c) (13.146)

which is the exact analogue of (13.77) and where §12.8.2 is used again to
estimate the first factor on the right-hand side.
Adapting the above for the Heisenberg alternative will be left as an exercise.

13.7 The Use of Bouquets and the Proof of Theorem 12.17
under the Finite Homology Condition

In this section the groupwill be as in the previous section, but instead of (13.79)
the standing hypothesis will be that

h= dimHr−1 (ΛP)+ · · ·+ dimHr+s (ΛP)<+∞ (13.147)

and as in the previous section we shall obtain a contradiction that will give the
theorem.
This has already been examined for s= 0,1 in §§13.4 and 13.5. In both cases

s = 0,1 this was done by generalising the mappings S1, S2 of the previous
section. In this section we shall see how these mappings Sq are generalised for
1� q� s+ 1 and obtain the required contradiction from these.
Bouquets of currents were used for this already when s = 1 in §13.6.4.2.

Nonetheless, as we shall see, for s = 0,1 the construction was special in a
very particular way. To explain this problem as clearly as possible we shall
recapitulate in §13.7.1 the constructions of S1 and S2, but this time for a general
s� 1. Once this is well understood, the way the general construction of Sq has
to be made should be clear. But to write the details down for the general Sq a
well-chosen set of notation is needed. This gives rise to a non-trivial exercise
in organising notation that will be carried out in §13.7.3 below.

13.7.1 The construction of S1, S2 for s� 1

The notation G = N� (A′ ⊕A), A′ = Rr−1, A = Rs and all the other notation
on the groups is as in §13.1.1 and once more we fix ideas the reader should
assume are in the Abelian alternative. Also, the notation on the complex C is
as in §13.6.2. The standing hypothesis here will be (13.147) and we shall fix m,
a very large integer depending on h and s, m=m(h,s)� h, that will be chosen
later.
The definition of S1, as we saw in §13.6.4.2, necessitates the use of the bou-

quets of currentsB = (S1, . . . ,Sm) of §13.4. Once the bouquet has been fixed
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we shall specify scalars

λ1, . . . ,λm ∈R, sup
i
|λi|= 1 (13.148)

for which we can solve the following b-equation with bounds

bŜ=∑
i

λiSi = S; Mp1

(
Ŝ
)
�C∑Mp0 (Si) = O

(
(logR)C

)
, (13.149)

where p1, p0 are the indices chosen in §13.6.1.2 andC is independent of R.
We shall use the notation I= [0,1] and δa for the currents of §§12.8.2–12.8.6,

and the notation for the mappingW and the complex C as in §13.6.2.
For e1 = I = [0,1], a basis element of C 1, we then have (see (12.84))

b
(
IŜ
)
= (δ1− δ0) Ŝ− IS= S1 (be1)−W1e1 = T 1 (e1) , (13.150)

where we set S1(ξ 0) = ξ 0S with ξ 0 ∈ C 0.
A similar definition is given for each Γ-basis element ei ∈ C 1 of (13.46) and

we have

bT 1 (ei) = 0; T 1 (ei) = S1 (bei)−Wei = (bei) Ŝ− eiS; i= 1, . . . ,s.
(13.151)

From (13.151) it does not follow that we can solve the equation bS2(ξ ) =
T 1(ξ ), where ξ ∈C 1, with bounds because we do not have a priori the acyclic-
ity condition (13.79). For this reason we have to start not with just one bouquet
of currents but with several bouquets:

B2 = (B1, . . . ,Bm) , B j = (S j,1, . . . ,S j,m) (13.152)

with the same large m. We shall choose the above bouquets so that the union
[B2] = (S j,i; 1� i, j�m) is also a bouquet in the sense of §13.4. We callB2 a
double bouquet. Using this we constructed S2 in §13.6.4.2 when s= 1, and for
this, together with coefficients λ as in (13.148) that correspond to each bouquet
B j, a new choice of coefficients μ1, . . . , has to be made. In generalising this
construction when s� 1 this has to be made separately for each basis element
e1, . . . of C 1. Care is therefore needed in applying this argument.
Let us denote by T 1j (ei) the T

1(ei) defined from the jth bouquetB j by some
set of coefficients. More explicitly, let the coefficients

λ j,1, . . . ,λ j,m, sup
i

∣∣λ ji∣∣= 1; 1� j � m (13.153)
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be as in (13.148). We solve first as in (13.149) to obtain Ŝ j and then define

bŜ j =∑
i
λ jiS ji = S j, S1j(δ ) = δ Ŝ j; δ ∈ C 0,

Wj(ξ ) =WSj(ξ ) = ξS j; ξ ∈ C 1,

T 1j (ei) = S1j (bei)−Wj (ei) .

(13.154)

We obtain thus s sets of closed currents(
T 11 (ei), . . . ,T

1
m(ei)
)
; 1� i� s. (13.155)

By Exercise 13.7, common coefficients μ1, . . . ,μm can now be found for all
these different sets provided that m is large enough. More precisely, there exist
scalars

μ1, . . . ,μm, sup
j
|μ j|= 1, (13.156)

such that we can solve with bounds the following s equations in S2:

bS2(ξ ) =∑
j
μ jT 1j (ξ ); ξ = ei,

Mp2

(
S2 (ei)
)
�C∑

j
Mp1

(
T 1j (ei)
)
; 1� i� s,

(13.157)

where p2, p1 are as in §13.6.1.2 and C is independent of R. We can then use
Γ-linearity to extend (13.157) to all ξ ∈C 1 and thus complete the definition of
a Γ-linear mapping S2.
This definition depends of course on the double bouquet B2 of (13.152)

and on the choice of coefficients λ ji, μ j and also on the particular solutions
chosen for the b-equations of (13.154) and (13.157). In the notation it will be
convenient to suppress this additional information, which will be implicit, and
simply denote by S2

B2(ξ ), where ξ ∈ C 1, the Γ-linear mapping so constructed.
We shall also denote

W 1
B2(ξ ) =∑

i, j

μ jλ jiξS ji =∑μ jWj(ξ ); ξ ∈ C 1 (13.158)

and then the defining equation for S2 is

bS2B2(ξ ) =∑μ jS1j(bξ )−W1
B2(ξ ); ξ ∈ C 1. (13.159)

From this definition it follows that

bT 2(ξ ) = 0; T 2B2 = T 2(ξ ) = S2B2(bξ )+W2
B2(ξ ), ξ ∈ C 2. (13.160)
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To see this write

bS2B2(ζ ) =∑μ jS1j(bζ )−W1
B2(ζ ) =−W 1

B2(bξ ); ζ = bξ , ξ ∈ C 2

(13.161)
and thus (13.160) follows from bW (ξ ) =W (bξ ) of §13.6.2.
Remark 13.10 It is a fact that the coefficients μ j are common for all the basis
elements ei which allows us to factor the coefficients μ j out and write (13.158)
for all ξ ∈ C 1.
Using Exercise 13.7 we can in fact choose common coefficients (i.e. inde-

pendent of the first index) λ j,i = λi. But for this to work out in (13.152), the
number of bouquets B1, . . . ,Bm1 has to be chosen first, and afterwards, the
number of currents, say m0, in each bouquet is chosen in terms of m1. We pick
up some obvious notational advantages in this approach but the global under-
standing of the proof is then loaded with this extra ‘twist’ and this does not
help matters. As a consequence, we shall avoid this.

13.7.2 The construction of S3 and the proof of the theorem
when s= 2

Before we go on to give the general definition of Sq under the finite homology
condition (13.147) we shall define S3 in the special case s= 2. This will allow
us to obtain the required contradiction and prove the theorem in that special
case. It will also illustrate the idea of the proof well.
To define this S3 we only need to solve one b-equation bS3(e) = T 2(e) with

bounds because for s = 2 there is only one Γ-basis element e = e12 for C 2.
Even that of course a priori cannot be done since we do not have the acyclicity
(13.79). To cope with this difficulty we shall need to consider several double
bouquetsB2

k as in (13.152):

B3 =
(
B2
1 , . . . ,B

2
m

)
=multiple (triple) bouquet,

B2
k = (Bk1, . . . ,Bkm) = double bouquet for each k fixed,

Bk j =
(
Sk j1, . . . ,Sk jm

)
= bouquet for each k, j fixed,

(13.162)

where as before the commas have been suppressed between the indices. These
are chosen so that

[B3] = (Sk ji; 1� i, j,k � m) (13.163)

is a bouquet in the sense of §13.4 and as long as m has been chosen large
enough the constructions below can be carried out.
For each of these double bouquetsB2

k coefficients λk ji, and μk j , where i, j=
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1, . . . ,m, can be chosen for which we can solve the corresponding b-equations
(13.154), (13.159) with bounds, and define T 2k (e) = T 2

B2
k
(e) as in (13.160).

This is the end of the story as far as S3 is concerned when s= 2. Indeed, we
can then choose scalars

ν1, . . . ,νm ∈ R, sup
k
|νk|= 1 (13.164)

and for which we can solve with bounds the following equation in S3:

bS3(ξ ) =∑
k

νkT 2k (ξ ) =∑
k

νk
(
S2

B2
k
(bξ )+W2

B2
k
(ξ )
)
; ξ = e,

Mp3

(
S3(e)
)
�C∑

k

Mp2

(
T 2k (e)
)
,

(13.165)

with p3, p2 as in §13.6.1.2 andC independent of R.
As before, the definition of S3 can be extended to a Γ-linear mapping for

every ξ ∈ C 2 and the defining equation that it satisfies is

bS3(ξ ) =∑
k

νkS2B2
k
(bξ )+W2

B3(ξ );

WB3(ξ ) = ∑
k, j,i

νkμk jλk jiSk ji; ξ ∈ C 2.
(13.166)

From this, the required contradiction that gives the theorem follows for the
case s = 2. This was outlined in §13.5 for s = 1 and it will be treated in the
general case s � 1 in §13.7.4 below. The reader is urged to work this out for
themselves using the ‘triangular’ nature of the coefficients νk, μk j , λk ji (see
Exercise 13.8). This together with (13.148), (13.153) and (13.164) allows us
to find indices k0, j0, i0 for which |νk0μk0 j0λk0 j0i0 |= 1; cf. also Remark 13.10
where one sees that, by adopting a slightly different approach, the notation in
this side of things simplifies.
Apart from this, the other overall information that is used for the contradic-

tion is contained in (13.149), (13.157), (13.165), where we have obtained the
following estimates:

Mp1(Ŝ), Mp1(T
1), Mp2(S

2), Mp2(T
2), Mp3(S

3) = O
(
(logR)C

)
(13.167)

for some constant that is independent of R and where Tq = Tq(e), Sq = Sq(e)
for the basis elements e of C .

13.7.3 The general definition of Sq, 1� q� s+1

The general definition that we shall give here is not likely to be very clear un-
less the reader has understood well how the two special cases S1, S2 of the
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previous two sections work out. In contrast, if one has acquired a good under-
standing of these special cases, then one probably does not need to read any
further because it should be pretty clear how to go about things. For complete-
ness, however, in this subsection we shall spell out the details of this general
construction. The other thing the reader has to make sure that they understand
properly is the construction of the indices ps+1, ps, . . . of §13.6.1.2 because in
what follows, these indices will be used freely without further explanation.

13.7.3.1 The lexicographical indices for multiple bouquets We have al-
ready encountered double bouquets in (13.152) and (13.162). This construc-
tion will now be iterated s times with s as in §13.1.1 for our SSAC group G.
A bouquet is as defined in §13.4 and will be denoted by B1 here, to indicate
that it is a simple bouquet. By taking a collection,B1

i , . . . , of simple bouquets
we obtain double bouquets B2. And so on. This definition is summarised as
follows:

B1 = B = (S1, . . . ,Sm) = bouquet,

B2 = (B1, . . . ,Bm), B3 = (B2
1 , . . . ,B

2
m), . . . ,

B j+1 = (B j
1, . . . ,B

j
m), . . . ; 1� j � s.

(13.168)

The additional requirement is that if we put together all the currents Sα that
occur in (13.168) and denote this set of currents by [Bs+1] = (Sα ;α), then we
have a bouquet in its own right that consists of ms+1 currents Sα . We shall call
B j a (multiple) bouquet of order j. The length m of these bouquets will be
large and will be chosen later.
The double bouquetB2

p can be represented by currents (Sp,1, . . . ,Sp,m) and
the final bouquetBs+1 will be indexed lexicographically as follows:[

Bs+1]= (Si1,...,is+1 ; 1� i j � m, 1� j � s+ 1
)
, (13.169)

where [· · · ] in (13.169) indicates that we put together all the currents in the set
Bs+1; that is, (13.169) gives the index set for α in a lexicographic order as
follows.
If we fix the first t indices i1, . . . , it , where t = 0,1, . . . ,s (the case t = 0 means

that we fix no index at all), then it+1 = 1, . . . ,m is the index of the bouquet of
order Bs−t in the bouquet of order Bs−t+1 to which the current Sα belongs
in (13.168). With this indexing we can rewrite (13.168) backwards as follows:

Bs+1 = (Bs
i1 ; 1� i1 � m), Bs

i1 = (Bs−1
i1i2
; 1� i2 � m); 1� i1 � m,

... (13.170)

Bs+1−t
i1,...,it

= (Bs−t
i1,...,it+1

; 1� it+1 � m); 1� i1, . . . , it � m, t = 0, . . . ,s,
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where for the last equation with t = s to make sense we shall agree that a bou-
quet of order zero, B0 = S, is one single current. The indexing by i1, . . . , is+1
in (13.169) is then what we get in (13.170) when t = 0. This indexing is thus
lexicographic and every fixed index i1, . . . , is+1 contains all the information
that indicates which previous bouquets of successive orders this current Sα be-
longs to (this information on the ‘history’ of each current will, however, not be
needed).

13.7.3.2 The coefficients and the construction of Ŝ, S1 Here the multiple
bouquets and all the notation will be as in the previous subsection. The ho-
mologies in (13.147) do not vanish but they are of dimension� h. We conclude
that for the indices p1, p0 of §13.6.1.2 and for every fixed i1, . . . , is = 1, . . . ,m
we can introduce an additional index is+1 and find coefficients as follows:

λi1,...,is,is+1 , sup
1�is+1�m

|λi1,...,is,is+1 |= 1; 1� ii, . . . , is � m, (13.171)

for which the following holds.
We can solve with bounds the following b-equation in Ŝ = Ŝ1:

bŜi1,...,is = ∑
is+1

λi1,...,is,is+1Si1,...,is,is+1 ,

Mp1(Ŝi1,...,is)�C∑
is+1

Mp0

(
Si1,...,is,is+1

)
= O(logR)C ,

(13.172)

for constantsC that are independent of R. We can use these to define

S1i1,...,is
(
ξ 0
)
= ξ 0Ŝi1,...,is ,

Wi1,...,is

(
ξ 1
)
= ∑

is+1

λi1,...,is,is+1ξ
1Si1,...,is,is+1 ,

T 1i1,...,is
(
ξ 1
)
= S1i1,...,is

(
bξ 1
)−W1

i1,...,is

(
ξ 1
)
;

ξ 0 ∈ C 0, ξ 1 ∈ C 1, 1� i1, . . . , is � m.

(13.173)

Here we have used our notation of §13.5.1 and writtenW (ξ 1) =W 1(ξ 1). Also
as before, S1,W 1 and T 1 are Γ-linear mappings on the complex C of §13.6.2
with values in D ′(G) and the convention for the exponents ξ p ∈ C p and Sp,
T p andWp ∈D ′(r+p−1) (cf. §§13.5.1 and 13.6.2) will be used in this section.
By this definition we have (see (12.84) and (13.104))

T 1i1,...,is = b
(
ξ 1Ŝi1,...,is

)
, bT 1i1,...,is = 0; ξ 1 ∈ C 1, 1� i1, . . . , is � m.

(13.174)
This completes the first step of the construction.
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13.7.3.3 The general case Sq The notation of §§13.7.3.1 and 13.7.3.2 will be
preserved. In order to work out the inductive step that gives the Γ-mappings
S1,S2, . . . ,Ss+1 we proceed as follows. We assume that Γ-mappings

Sqi1,...,is−q+1(ξ ) ∈D ′(r+q−1)(G); ξ ∈ C q−1,

Wii...,is−q+1 : C −→D ′(G); i1, . . . , is−q+1 = 1, . . . ,m
(13.175)

have been defined for a certain 1� q� s and that these have a number of prop-
erties that we shall enumerate below. From this we shall work out an inductive
step and construct the next two Γ-mappings down the road:

Sq+1i1,...,is−q(ξ ) ∈D ′(r+q)(G), Wi1...,is−q : C −→D ′(G);

i1, . . . , is−q = 1, . . . ,m, ξ ∈ C q
(13.176)

that enjoy the same properties. Notice that in this next step of the induction, the
length of the index set decreases. To be consistent, in the last step when q= s
the multi-index of (13.169) is /0 and the mapping Ss+1 = Ss+1/0 is also defined,
but forW/0 we do not need to bother. As for the first step q= 1 the mappings S1

andW 1 are the ones that we constructed in §13.7.3.2 with new notation.
Now we come to the properties that the mappings Sq, W of (13.175) will

have to satisfy. First for the W . These will be defined explicitly in terms of
the currents that occur in the bouquets of §13.7.3.1 and depend on a choice of
coefficients. This definition will be given in due course but for the moment we
shall simply require that these mappings have the following property:

W : C p −→ E ′(r+p−1)(G), bW (ξ ) =W (bξ ); ξ ∈ C ,

i.e. b ◦W =W ◦ b, Mj(W (e)) = O(logR)c j ;

j = 0,1, . . . , e= eI , the elements of the Γ-basis of C ,

(13.177)

for constants c0,c1, . . . . Here, for ξ p ∈ C p, we shall use the notation of §13.5.1
and writeW (ξ p) =Wp(ξ p). This condition is certainly satisfied byW 1,W 2 in
§§13.7.2, 13.7.3.2.
The conditions for Sq are more involved. To write them down we put

Tqi1,...,is−q+1(ξ
q) = Sqi1,...,is−q+1(bξ

q)+ (−1)qWi1,...,is−q+1 (ξ
q) ;

ξ q ∈ C q, i1, . . . , is−q+1 = 1, . . . ,m.
(13.178)

What is required is that

bTq = 0, Mpq (S
q(e)) = O(logR)c; e basis elements of C q−1 (13.179)

for some c > 0 independent of R. From definition (13.178), and (13.177), it
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also follows that

Mpq (T
q(e)) = O(logR)c (13.180)

for the same basis elements e of C q.

13.7.3.4 The choice of the coefficients and the inductive step: the over-
all strategy To make the inductive step, as in §13.6, we must solve with
bounds the b-equation bSq+1 = Tq. But since the relevant homologies are
only assumed finite-dimensional and not necessarily zero we must use Propo-
sition 12.58. Hence the need to consider the bouquets as we did in §13.7.1.
Furthermore, since several b-equations have to be solved, one for each Γ-basis
element of C q, here we are obliged to use the further refinement of Proposi-
tion 12.58 that was explained in Exercise 13.7.

13.7.3.5 The explicit details Let eI , with |I| = q, be the Γ-basis of C q. We
know by the inductive step that bTq(eI) = 0 and we shall assume that m �

m0(h,s) is large enough depending on s and h of (13.147). Then from §13.6.1.2
we conclude that we can find appropriate scalars λ with the properties

λi1,...,is−q,is−q+1 ; 1� it � m, t = 1, . . . ,s− q+ 1,
sup
1� j�m

∣∣λi1,...,is−q, j∣∣= 1; 1� it � m, t = 1, . . . ,s− q, (13.181)

and these scalars are such that we can solve with bounds the following b-
equations in Sq+1:

bSq+1i1,...,is−q(ξ ) = ∑
1� j�m

λi1,...,is−q, jT
q
i1,...,is−q, j(ξ ),

Mpq+1

(
Sq+1i1,...,is−q(eI)

)
= O(logR)C; i1, . . . , is−q = 1, . . . ,m, ξ = eI,

(13.182)
for some C that is independent of R. Using the Γ-free property of C we also
see that Sq+1 in (13.182) can be extended to all the ξ ∈ C q and we have thus
Γ-linear mappings. Of course, the point here is that the particular choice of ξ in
(13.182) among the finitely many eI does not affect the choice of the λ . Putting
things the other way round, we use §13.6.1.2 to choose common coefficients
for all the basis elements eI . To be more explicit, we fix the indices i1, . . . , is−q
and then the number of equations that have to be solved is equal to dim(C q);
therefore if m is large enough, Exercise 13.7 can be used. This is done for
every choice of these indices. To avoid confusion we stress that the λ depend
on i1, . . . that have been fixed but are the same for all basis elements.
For the definition of the Sq+1 apart from the choice of the constants λ we
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also have made a choice of how we solve the b-equations (13.182). For the
inductive definition of theW , no such additional choice is used. We simply set

Wi1,...,is−q = ∑
1� j�m

λi1,...,is−q, jWi1,...,is−q, j; i1, . . . , is−q = 1, . . . ,m. (13.183)

The verification that b ◦W =W ◦ b and that Mpq+1(W (e)) = O(logR)C for the
basis elements e ∈ C is thus immediate. To complete the proof that this is a
legitimate inductive step (i.e. that (13.179) is satisfied after we have taken this
step), it remains to verify that if we write

Tq+1i1,...,is−q(ξ ) = Sq+1i1,...,is−q(bξ )+ (−1)q+1Wq+1
i1,...,is−q(ξ ),

i1, . . . , is−q = 1, . . . ,m, ξ ∈ C q+1,
(13.184)

then bTq+1i1,...,is−q = 0. This follows from (13.182), (13.178) because these give

bSq+1i1,...,is−q
(
bξ q+1
)
= ∑
1� j�m

λi1,...,is−q, jT
q
i1,...,is−q, j(bξ )

= ∑
1� j�m

(−1)qλi1,...,is−q, jWi1,...,is−q, j(bξ );

ξ = ξ q+1 ∈ C q+1,

(13.185)

and we need only to use b ◦W =W ◦ b.

13.7.3.6 The final mapping Ss+1 We shall end this subsection by collecting
together our previous information for the final dimension q = s+ 1 and the
mapping Ss+1/0 = Ss+1(ξ ), where ξ ∈ C s. We shall write

bSs+1(ξ ) = (−1)sW (ξ )+ error term,
W (ξ ) = ξ

(
∑λi1λi1,i2 · · ·λi1,...,is+1Si1,...,is+1

)
; ξ ∈ C s,

(13.186)

where the Si1,... are the currents that occur in the multiple bouquets of §13.7.3.1,
and the λ in the definition of the coefficient

μi1,...,is+1 = λi1λi1i2 . . .λi1,...,is+1 , the product of the λ , (13.187)

are the λ that we have picked up in the inductive construction. The only thing
that counts and will be used below is the following property of these coeffi-
cients:

sup
1�it+1�m

∣∣λi1,...,it ,it+1∣∣= 1; 1� i1, . . . , it � m, 1� t � s. (13.188)

From this it follows in particular that we can make one choice i01, i
0
2, . . . , i

0
s+1

for which the coefficient in (13.187) is∣∣∣μi01,...,i0s+1 ∣∣∣= 1. (13.189)
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So much for the principal term. (You can also use Remark 13.10 and ‘sim-
plify’.)
Now, how about the error term? This of course is much more involved to

write down explicitly and it also depends on the particular solutions of the b-
equations that we have chosen in the successive inductive steps. However, as
we shall see, for this error term it is quite easy to give appropriate estimates.

13.7.4 The estimate of Ss+1; the principal term; the error term

13.7.4.1 The test current As we did before we shall now apply the mapping
Ss+1 to the current

ξD =∑
γ
δγe= [−D,D]s ∈ C s. (13.190)

Here e = e(1,2,...,s) is the unique Γ-basis element of C s and the summation is
taken on

γ =
[
(n1, . . . ,ns) ∈ Γ= Zs; −D� n j � D− 1, 1� j � s

]
. (13.191)

This is the chain and the current [−D,D]s ∈ E ′(A)⊂ E ′(G) for the orientation
dx1∧·· ·∧dxs which is the Lebesgue measure (cf. §12.8).
Now we come to

D=
[
(logR)ĉ

]
= integer part of (logR)ĉ. (13.192)

The important point here is that the constant ĉ> 0, which is independent of R,
will be chosen at the very end and it will depend on the geometric constants of
the group G and on the various other constants that had to be introduced in the
process of the construction of Ss+1. Putting this the other way round, all the
constants that crop up in the construction of Ss+1 are independent of this ĉ> 0.
Formula (13.182) will now be applied to this current and we have

bSs+1 (ξD) = (−1)sW (ξD)+PD,

error term= PD = ∑
1�i�m

λiSsi (bξD) . (13.193)

The other piece of information that will be used is a global one on Ss+1(ξD)
and not on its boundary. We have the estimate

M0
(
Ss+1(ξD)

)
�Mps+1

(
Ss+1(ξD)

)
�∑

γ
Mps+1

(
δγSs(e)

)
= O(logR)Ĉ.

(13.194)
For this we use (13.182), §12.8.2 and the size of D. Here Ĉ also depends

on ĉ and not only on the constants that crop up in the construction of Ss+1.
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13.7.4.2 The localisation of the principal term to the central slice In G =

N� (A′ ⊕A) = N�V we consider as before the characteristic function χ of
the central slice

Nc = π−1 (Vc)⊂ G; π : G→V = canonical projection,

Vc = [v ∈V ; |v|� c] ,
(13.195)

for some appropriately small c > 0. We shall localise the current W in the
principal term of (13.186) and examine

χW (ξD) = ∑
i1,...,is+1

μi1,...,is+1χ
(
ξDSi1,...,is+1

)
. (13.196)

The localisation of each individual term (see (13.139))

χ
(
ξDSi1,...,is+1

)
=∑ηPδP [Vc] (13.197)

has already been analysed twice before (in §13.5.4 in the special case s = 1
and §13.6.6 in the general case). This will therefore not be repeated. Summing
over all the indices we put all these together and write

χW (ξD) = ∑
i1,...,is+1;P

μi1,...,is+1ηPδP [Vc] , (13.198)

where in that summation, for every fixed choice of the indices i1, . . . , is+1, the
P runs through the vertices of the cube cR that is used to define the cur-
rent Si1,...,is+1 in the definition of the bouquet (13.169); see §13.7.3.1.
The comments that we made in §13.5.4 about the orientations apply again.

We recall that to be able to define the ηP = ±1 we need to specify the ori-
entation that is used when we define the corresponding S = Si1,...,is+1 near the
vertex P. This was explained in Chapter 10 and again in §§13.5 and 13.6. This,
as already pointed out, is easy to see when this current has been smoothed.
However, if we have not done that smoothing, this orientation can again be
defined, but this amounts to a non-trivial exercise (see Exercise 10.9). Alter-
natively, as we have already explained (e.g. §13.5.4.2), we can localise further
and consider instead χ̃W (ξD) with χ̃ the characteristic function of an appro-
priate smaller slice, as in §13.5.4.2.

13.7.4.3 The localisation of the error term This is easier but here we have
to keep track of the constants in the corresponding powers of logR.
First of all observe that, exactly as in Exercise 13.9, we have

bξD =∑
γ,J
±δγeJ; |J|= s− 1 (see (13.191)), |γ|= sup

j
|n j|= D. (13.199)
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This is just the building up of the boundary ∂ [−D,D]s by subcubes of dimen-
sion (s− 1) and size 1, and they are all at a distance D from 0 in A.
The total number of terms in the summation is

# of terms∼Ds−1. (13.200)

We recall on the other hand that quite generally

M0 (T I(|g|> r))� rpMp(T ) (13.201)

for every integration current T , any index p, any r > 0 and the indicator func-
tion I of the set outside the ball of radius r (cf. (12.68)). We observe also that
in the summation (13.199) the Riemannian distance inG of the support of each
current δγeJ from the slice Nc of (13.195) is given by

distance
 D∼ (logR)ĉ. (13.202)

This follows from the fact that the canonical projections G
π→V → A contract

the distances.
The localisation of the error term can now be completed as follows. First we

have

PD = ∑
1�i�m

λiSsi (bξD) =∑
γ,iJ

λiδγSsi (eJ) , (13.203)

where we sum as in (13.199). The total number of terms in the second summa-
tion by (13.200) is

# of terms�CmDs−1 =Ch,sD
s−1 �Ch,s(logR)

sĉ, (13.204)

where, by the definition of m, the termCh,s depends on s and the dimension of
the homologies h in (13.147) but is in particular independent of R and ĉ.
By (13.201) and (13.182), for the localisation of each term in (13.199) we

have

M0
(
χ
(
δγSsi (eJ)

))
� (logR)−ĉps(logR)C; R�C, (13.205)

whereC is independent of R and also of the choice of ĉ.
Putting these together we finally obtain

M0 (χPD)� (logR)C(logR)(s−ps)ĉ; R�C. (13.206)

The exponent of logR in (13.206) is

exponent=C+(s− ps) ĉ; (13.207)

here ps is also independent of ĉ. Furthermore, ps, which was chosen in §13.6.1,
is larger than 1010+ s. It is therefore down to the choice of ĉ which will be
made at this point to make sure that the exponent (13.207) is �−10.
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We shall finally put together in abbreviated terms the information we have
obtained on the principal term and the error term localised on the central
slice Nc. We shall write

χ
(
bSs+1(ξD)

)
=∑μi1,...,is+1ηPδP[Vc]+O(logR)

−10, (13.208)

where the summation is taken over the i1, . . . , is+1 = 1, . . . ,m and the corre-
sponding vertices as in (13.198) and where the O-error is interpreted in terms
of theM0-norm as in (13.182), (13.205).

13.7.5 The endgame and the contradiction

The same differential form on G as in (13.143) is used:

ω(g) = ϕ(g)dy1∧·· ·∧dyr+s−1 (13.209)

where yi are the Euclidean coordinates of V .
This form satisfies properties (i), (ii), (iii) and (iv), which were given in
§§13.3.3, 13.5.7 and used again in §13.6.6(c). As before, the value of ϕ is
preassigned near all the vertices that are used in the summation (13.208). In
other words, we must have, exactly as in §13.4.3, (13.34),

ϕ(g) = εPϕ0(v), εP = 0,±1; g= (P,v) ∈ G, v ∈Vc, (13.210)

where P is viewed as a point of N (since N′ ⊂ N) and P runs through all these
vertices.
Now, as before, all these εP but one will be chosen to be 0. The one vertex

P0 for which εP0 is not zero is chosen on the support of the current Si01 ,...,i0s+1 for
which μi01 ,...,i0s+1 = ±1 (cf. (13.189)) and this P0 is not the identity of G. The
conclusion as in §13.6.6 is that a choice can be made so that

〈W (ξD) ,ω〉= 1. (13.211)

But then by (13.208) the other two estimates (13.145), (13.146) of §13.6.6 hold
verbatim and the contradiction follows.
Adapting the above to the Heisenberg alternative will be left as an exercise

to the reader.

13A Appendix

13A.1 The use of an infinite bouquet

For simplicity let us stick with the groupG2=R2�R (see §§13.1, 7.6.3, 9.2.2)
and construct a sequence of cubes j ⊂R2, as in §13.4, of size Rj but now for
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an infinite sequence of parameters that grow very rapidly: 1� R1� ··· . By
the first basic construction, we can construct currents S j ∈ E ′(1) for each cube as
in §13.4; we shall define the new current S=∑α jS j ∈D ′(1), where the positive
coefficients α j are chosen such that ∑α j(logRj)

c < +∞ for all c > 0. This
current has the following properties.
First, S ∈ C ∗(pol) (see (12.52), (13.8)) and, denoting by S̃ j ∈ E ′(2) an arbi-

trary compactly supported current such that bS̃ j = S j, then we have S= limbTn
for the topology ofC ∗ induced by the seminorms (12.49), with Tn=∑ j�nα j S̃ j.
All this is clear enough; but what is also true is that the coefficients α j and the
sizes Rj can be chosen in such a way that it is impossible to solve the equation
bT = S, whereM0(T )<+∞.
To see this we closely follow §§13.3, 13.4 and construct a sequence ωn =

ϕn dy of smooth differential forms that live in [|y|< c] (with the same notation
for the coordinates (x1,x2,y) as in §13.3) that have the following properties.
We have ‖dωn‖0 �CR−cn for some c> 0, and the values of ϕn near the vertices
are pre-assigned as in (13.34). More explicitly, near the vertices of n, other
than the identity e we set, say, ϕn = ±α−1n or 0 and ϕ vanishes near all the
other vertices. It follows that 〈S,ωn〉 ≈ 1 (for a proper choice of the ±) and,
additionally, if bT = S solves the equationwith a bound as above then 〈S,ωn〉=
〈T,dωn〉=O(R−cn ) for some c> 0. This contradiction proves our assertion (see
(13.35)).
From this and §12A.4 we deduce that Imd is not closed for the group G2.

More precisely, for the complex ΛP(G2), assigned with the inductive limit
topology of §12.13, the subspace

Im
[
(forms of degree 1)→ (forms of degree 2)

]
is not closed because otherwise we would contradict §12A.4.
It is clear that the above argument can be generalised to some of the other

SSAC groups that are considered in this chapter (no doubt all!). From this,
using the material of the next chapter, it is safe to assume (insofar as such a
thing can be said about a mathematical statement) that for every B-group one
can prove that Imd is never closed in ΛP. This matter, however, will not be
pursued further.

13A.2 The topological homotopy

Position of the problem The complexes · · · →Λn
d−→Λn+1→ ··· that we have

considered in this book consist of topological vector spaces; therefore the clo-
sure for that topology, Imd, can be considered as in §13A.1 and a new homol-
ogy group H = Kerd/Imd (actually a vector space) can be defined.
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This new way of defining polynomial homology for a Riemannian mani-
fold M is easily seen (verify this) to be invariant under polynomial homotopy
and, together with polynomial mappings, this gives a new contravariant func-
tor. Because of (12.128), that is, Poincaré duality, one can define a canonical
mapping

H(M) = H(ΛP(M))→H(M,de Rham). (13A.1)

If the manifold is an NB-connected Lie group, then (13A.1) is an isomor-
phism because of the polynomial homotopy equivalence of §12.9.8.
In the rest of this appendix we shall stick to the same group R2�R of
§13A.1 and prove that (13A.1) is an isomorphism. This will be done in a series
of steps (i.e. exercises). In what follows G will always denote this group. The
reason we do this is that it shows that (13A.1) is an isomorphism for a group
that is not NB.

The distance from the origin. Notation and facts On the group G = G2 =
R2�R, the same coordinates (x1,x2,y) as in §13.3.2 will be used to identify
G with R3 (see §§7.6.3, 9.2.2). Throughout, we shall use the notation G � g↔
(x1,x2,y) = X ∈R3 and also denote ‖X‖= log(|x1|+10)+ log(|x2|+10)+ |y|.
Then there exist constants such that

C2‖X‖� |g|�C1‖X‖; g ∈G, |g|= dist(e,g)�C. (13A.2)

For the proof we just have to combine the following two observations. Let
g= xy be the group product with x ∈R2 and y ∈ R. Then

(a) |y|� |g| (to see this project onto R) and |y|= |g| when x= 0;
(b) when y = 0 and g = (x1,x2) ∈ R2 then |g| ≈ log(|x1|+ 10)+ log(|x2|+

10)�C – this follows easily from the considerations of §8.2.2 (if you get
stuck, look at the explicit general proof of this in Varopoulos, 2000a).

We shall now streamline the notation for the polynomial complexes of the
group G and denote

(ΛP,d) : 0→ E0→ E1→ E2→ E3→ 0,

where Ep denotes the space of forms of degree p. The topologies are, as usual,
the inductive limit. We can then assert the following:

(i) Im(E0→ E1) =Ker(E1→ E2). This holds for any Riemannian manifold
because we can integrate any closed form ω along an appropriate path
from e to g and then V (g) =

∫
ω solves the Poincaré equation dV = ω .
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(ii) Im(E2→ E3) = E3. Let ω = f dx1∧dx2∧dy ∈ E3; then

θ =

(
±
∫ y

y0
f (x1,x2,y)dy

)
dx1∧dx2 ∈ E2; y0 =∓∞ or 0

solves dθ = ω . To see that θ ∈ E2 use the orthonormal basis of Exer-
cise 7.17 for the cotangent space

ω1 = e−αy dx1, ω2 = eβ ydx2, ω3 = dy, (13A.3)

where α,−β are the two roots. The details are left to the reader and they
are, if anything, easier than what is done below.

The only interesting new assertion is the following.

(iii) Im(E1→ E2) =Ker(E2→E3). The proof of this uses duality. In concrete
terms, this is the first step (a) in the proof below.

Proof of (iii) (a) We shall assume by contradiction that (iii) fails. In the nota-
tion of §12.7 this means that there exist some p > 0 and some closed ω ∈ Cp

such that ω /∈ Imd. It follows that for all q > p we can find some T ∈ (Cq)
∗

(see (12.52)) such that bT = 0 and T [ω ] = 1. To see this we go back to (12.63),
(12.64) for the explicit description of the dual spaceΛ∗P and use Hahn–Banach.
This gives S = T + bT1 ∈Λ∗P with T as above and T1 ∈ (C0r )

∗ for some r� p.
We shall show that if q is chosen large enough, a contradictionwill be obtained.

(b) Smoothing by a mollifier. As we pointed out, the coordinates (x1,x2,y) are
used to identifyG and R3 and the spacesΛP, Λ∗P with the spaces of currents on
R3. OnR3 we can use (Euclidean) convolution by some f ∈C∞

0 and smooth out
in these spaces because by (13A.2), (13A.3), we readily see that ΛP ∗ f ⊂ ΛP
and Λ∗P ∗ f ⊂ Λ∗P . As a consequence, the current T that was constructed in
(a) can be assumed to be smooth: T = a1 dx1+ a2 dx2+ bdy (note that the
convolution commutes with the d and b operators on the complexes).
Furthermore, from (13A.3) it follows that the form eγy dx1∧dx2 = ω1 ∧ω2

is bounded when γ = β −α and therefore ‖X‖qeγy dx1∧ dx2 ∈ Λq. From this
we deduce that ∫

|b(X)| ‖X‖qeγy dx1 dx2 dy<+∞. (13A.4)

If need be we can change the direction of the y-axis and assume that γ � 0.
We can also convolve with an additional mollifier so that for the Euclidean
gradients ∇= ∂

∂x1
, ∂
∂x2

, ∂
∂y , and all k= 0,1, . . . and q,γ � 0 as above, we have∫ ∞

−∞
|∇kb(x1,x2,y)| ‖X‖qeγy dy<+∞; x1,x2 ∈ R. (13A.5)
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(c) The Poincaré equation and the contradiction. Because of (13A.5) we can
define V = −∫ ∞y bdy and verify that dV = T (the form dV −T = edx2 with

e=−∫+∞−∞ ∂b
∂x2
dy – see (13A.5) – is closed, therefore e= 0 because of (13A.4),

(13A.5)). We shall presently show that∫
|V | ‖X‖reγy dx1 dx2 dy; r = q− 10. (13A.6)

From this, the contradiction easily follows: let χ ∈C∞
0 (R

3) be some appropri-
ate cut-off function that is≡ 1 in larger and larger subsets (see Exercise 12.26).
Then d(χV) = χT+Vdχ→ T in (C 0

r )
∗ and if r> p we have the contradiction

0= 〈dω ,χV〉= 〈ω ,b(χV )〉 → T [ω ] = 1.

(d) The proof of (13A.6). For this we shall use a different expression for ‖X‖
in the integrals and instead we set ‖X‖= (1+ |y|)( log(|x1|+ 10)+ log(|x2|+
10)
)
. By changing the values of q and r, we see that this makes no difference.

This allows us to split the integrals into y and (x1,x2) integrals. In fact, if γ > 0,
then (13A.6) simply follows from the observation that∫ +∞

−∞
eγy(1+ |y|)r

(∫ ∞

y
|b|dy
)
dy�C

∫ +∞

−∞
eγy(1+ |y|)r+1|b|dy. (13A.7)

This is just integration by parts because the integrated term so obtained is �
eγy(1+ |y|)r+1 ∫ ∞y |b|dy and vanishes at y=±∞. To see this note that ∫ ∞y |b|dy�
e−γy(1+ |y|)−q by (13A.4) for y ∈ R (check separately for y> 0 and y< 0).
If γ = 0, observe that because of (13A.5) and the fact that dT = 0, we have

a1 =−
∫ ∞

y

∂a1
∂y

dy=−
∫ ∞

y

∂b
∂x1

dy,

a2 =
∫ y

−∞
∂a2
∂y

dy=
∫ y

−∞
∂b
∂x2

dy,

−
∫ ∞

y

∂ 2b
∂x1∂x2

dy=
∂a1
∂x2

=
∂a2
∂x1

=

∫ y

−∞
∂ 2b

∂x1∂x2
dy,

where all the integrals are absolutely convergent. This means that B=
∫ ∞
−∞ bdy

satisfies ∂ 2B
∂x1∂x2

= 0, that is, B= f1(x1)+ f2(x2) and therefore by (13A.4) again
B= 0.
Having this, integration by parts is used again on

∫ ∞
−∞(1+ |y|)r

∣∣∫ ∞
y bdy
∣∣dy,

and here, to show that the integrated term vanishes for y=−∞, we use (13A.4)
and B= 0. We then finish as in (13A.7). (Added in proof): A general theorem
in that direction for ‘rank 1’ groups is stated without proof in the epilogue.
Results of that nature are elementary, but tricky to prove. What one should
conjecture for higher rank is anything but clear.
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13A.3 Further comments

The argument that we gave is ad hoc and gives no indication of how to go
about the homomorphism (13A.1) in general. By a similar ad hoc argument
we can show that for any Riemannian manifold M (assume for simplicity that
M is diffeomorphic to Rn, with n� 2) and any T ∈Λ∗P(M), a closed current of
dimension 1, we have T ∈ Imb for the projective limit topology; cf. §12.13. To
see this, it suffices to find a sequence of compactly supported closed currents
Tn that converges to T in Λ∗P because all these currents lie in Imb (see Bott and
Tu, 1982, §4.7.1; de Rham, 1960, §19). The interested reader can find some
details of how this is done in the exercise below.

Exercise Verify the following facts and for simplicity assume T ∈C ∗(M,pol)
– see (12.52) – and bT = 0.

(i) Use the cut-off function as in Exercise 12.24 and verify that

(1) SR= d(χT ) = dχ∧T is supported in the annulus PR= [m; R� |m|�
R+ 1] and Mp(SR) = O(R−a) for all p,a > 0 where R is a ‘free par-
ameter’ that will be made to tend to infinity;

(2) 〈SR,1〉 =
∫
d(χT ) = 0 and therefore the zero-dimensional current

SR (i.e. a Radon measure) can be written as a vector integral (see
Bourbaki, 1963, Chapter 6) SR =

∫
x,y∈PR(δx−δy)dμ(x,y) where μ is

a Radon measure of total mass bounded byM0(SR).

(ii) We have δx−δy = b�x,y where �x,y is a one-dimensional current given by
a path (as in §12.3.4) that joins x to y of length � R.

(iii) Put these together and set TR = χT − error, with

error=
∫
x,y∈PR

�x,y dμ(x,y).

Then dTR = 0, and error→ 0 as R→ ∞, that is, TR→ T in Λ∗P . Done!

Note finally that in the case at hand the same fact can be seen by abstract
methods simply by dualising (iii) of §13A.2. For this we use the functional
analysis of the remark in §12.11 combined with the regularisation of §12.10,
which allows us to reduce the problem to the spaces (12.137). The details are
left to the reader, who may be interested in putting this appendix in the context
of the TVS and the dualities that we presented in the second half of Chapter 12.
We shall not, however, pursue this matter.
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Cohomology on Lie Groups

14.1 Introduction: Scope and Methods of the Chapter

This chapter differs in many essential ways from the rest of the book and it is
desirable to make it as self-contained as possible. We shall start therefore by
summarising what has been done in Chapters 12 and 13 and highlighting the
problem that remains to be addressed.

14.1.1 The de Rham complex revisited

OnM, someC∞ manifold, we shall denote byΩ∗(M) =∑Ωp(M) the complex
of C∞ differential forms on M, where p = 0,1, . . . ,n = dimM denotes the de-
gree of the form, and for ω ∈ Ω∗ we have the corresponding decomposition
ω = ∑ω p. For typographical reasons we sometimes omit the ∗.
Notation In previous chapters we have used the letter Λ to indicate the var-
ious spaces of differential forms and, more often than not, the forms that we
considered in those chapters were not necessarily smooth but had continuous
or even L∞loc coefficients. We change the notation here to stress the point that
in this chapter we shall work exclusively in the C∞ category (this Ω notation
is one that many topologists use, e.g. Bott and Tu, 1982; on the other hand
de Rham, 1960 uses the letter E ).

In our case, more often than not the manifoldM will be some connected Lie
groupG and then (see §12.5) we can fix ω1, . . . ,ωn ∈Ω1(G) some global basis
of left-invariant 1-forms (i.e. we choose some basis of T ∗e (G) the cotangent
space at the identity andmove it about by left translation). An arbitraryω ∈Ωp,
can then be written

ω =∑
I
aI(g)ωI; ωI = ωi1 ∧·· ·∧ωip , g ∈ G, (14.1)

519
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where I = (i1, . . . , ip), 1 � i j � n runs over all the increasing multi-indices of
length |I| = p (i.e. i1 < i2 < · · · ). It follows that for any ω ∈ Ω(G) we can
define

|ω(g)|=∑
p
∑
|I|=p
|aI(g)|; g ∈ G, (14.2)

and that this, up to equivalence (i.e. within multiplicative constants), is un-
ambiguous and independent of the basis ω1, . . . ,ωp. With a little additional
care, this norm can be defined in a Riemannian manifold M (see §12.5 or,
say, Warner, 1971). Uniform norms of differential forms can be defined using
(14.2).
We shall say that a differential form ω is of polynomial growth, denoted by

ω ∈Ω(G;Pol), if there exist constantsC such that

|ω(g)|�C(1+ |g|)C; g ∈ G, (14.3)

where |g| is the distance of g from the identity for the left-invariant distance on
G. The notion also extends to any Riemannian manifold (see §12.5).
We shall use these forms to construct cohomology:we define the polynomial

complex

ΩP(G) = [ω ∈Ω∗(G); ω ,dω ∈Ω∗(G,Pol)]. (14.4)

We can also make the same definitionΩP for any Riemannian manifoldM. The
homology of this complex will be denoted H(G;Pol) (or HDR(. . .) to empha-
sise that it is the de Rham cohomology we are using). When the polynomial
growth is clear from the context we shall even drop the ‘Pol’ and simply write
HP(G) or even just H(G).
This homology is naturally graded and we can define the Betti numbers bp=

dimHp(G), where Hp =Ker
(
Ωp
P
d−→Ωp+1

P

)/
Im
(
Ωp−1
P →Ωp

P

)
, and whereΩp

P
is the natural grading of (14.4) and as usual we set Ωp

P = 0 for p< 0. When all
the Betti numbers are finite (i.e. bp < +∞) we shall write HDR(G;Pol) < +∞
and say that G (orM) has finite (de Rham) polynomial homology.

14.1.2 What has been done and what remains to be done

It is useful at this point to resurrect terminology that we used in §1.5. We said
there that a Lie group G is a model if G is diffeomorphic with some Euclidean
space Rn. Such a group is of course nothing more than a simply connected
soluble group such as the ones that we considered in Chapters 12 and 13.

Exercise To see this use the Levi decomposition (Varadarajan, 1974, §3.15);
when G is a model then G=Q�S and the semisimple factor S is {0} because



14.1 Introduction: Scope and Methods of the Chapter 521

as a differential manifold it is contractible. Here we ask the reader to look back
at Exercise 11.18.

We can now summarise Chapters 12 and 13 in the following result.

Theorem 14.1 Let G be some model. Then the following are equivalent:

(i) G is an NB-group;
(ii) HDR(G;Pol)<+∞.

This was proved in Chapters 12 and 13 but for a different complex of forms
that were not necessarily smooth. We denoted this complex by ΛP(G). In
Proposition 12.18 and §12.10 we showed how a standard regularisation pro-
cedure can be used to pass from this complex to the smooth complex ΩP(G).
It is the implication

H(G,Pol)<+∞ =⇒ G is NB (14.5)

that is the issue in those two chapters. The implication the other way round
was done in §12.9 and in Appendix F with the use of the polynomial retract
and this was done for general Lie groups without the assumption that the group
is a model. Note that the homotopy we constructed in Appendix F can be made
to be smooth (see also §12.2.3). The implication (14.5) will be the missing link
needed for a complete proof of Theorem 12.9 (see §12.9.8 and §§1.6–1.8 for a
refresher of the ‘overall’ picture).
What remains to be done – and this is the aim of this chapter – is to prove im-

plication (14.5) for a general Lie group without the assumption that the group
is a model. From this, the theorem of §1.6.3 follows at once.
Exercise Show that the general case of (14.5) can be used to complete the
proof of Theorem 12.9. When G is polynomially contractible to a compact
set as in §§12.2.2–12.2.4, we can follow the contracting homotopy with the
obvious local homotopy coming from (12.1) and deduce that there exists a
mappingΛ∗P � T → f T ∈D ′(K) where K ⊂G is some compact subgroup, and
such that when T is closed then f T is closed and polynomially homologous to
T . This implies that H(Λ∗P(G)) is finite-dimensional. This in turn implies that
H(G,Pol)<+∞ by §12.13.3. We then apply (14.5).

14.1.3 Simply connected groups and the general strategy in the
proofs

It is very easy to see that with what we have we can deal at once with simply
connected groups. Indeed, we saw in §11.1.3 that such a groupG is (smoothly)
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quasi-isometric with a group of the form Q×K = G1, where Q is a model and
K is compact. On the other hand it is easy to see that H(G1,Pol) <+∞ if and
only if H(Q;Pol)<+∞.

Remark Only the implication H(G1)<+∞ =⇒ H(Q)<+∞ is needed and
this is automatic from Q→ G1 → Q and the induced mapping on H(Q)→
H(G1) which is one-to-one (cf. Exercise 12.20). The other way round, which
is not needed, comes from the Künneth formula for polynomial cohomology.
We shall come back to this in §14.6, below.
Be this as it may, what follows is that H(G)<+∞ =⇒ H(Q)<+∞. Since

in the construction from §11.1.3 it is also true that Q is an NB-group if and
only if G is, we see that the required implication (14.5) does hold for simply
connected groups.
The above argument is typical of what we shall be doing in this chapter. To

wit, we start from a group G and by a suitable procedure we construct some
new group G1, and in that construction, G1 will be NB if and only if G is NB,
and also the following implication will hold: H(G)<+∞=⇒ H(G1)<+∞. In
our previous example of a simply connected group this new group could have
been taken to be the model Q.
Once this is done it follows that if the implication (14.5) holds for G1 it also

holds for G. In other words, we have a reduction.
We shall see that it is possible to make a series of reductions like this, which

will ultimately prove the implication (14.5) in full generality.

14.1.4 The pivotal reduction

This is contained in the following result.

Proposition 14.2 Let G be some connected Lie group and let K be some
connected compact normal subgroup. Then the following are equivalent:

(i) H(G;Pol)<+∞;
(ii) H(G/K;Pol)<+∞.

This will be proved in §14.6 below and will be shown to hold in even greater
generality when K is not necessarily normal and G|K = [gK; g ∈ G] is the
right homogeneous space (as we shall see, the definition of H(G|K;Pol) easily
extends; see also Example 11.7). The proposition also holds more generally
for the case of a bundle with compact fibre: K ⊂→ E → B provided that natural
conditions are imposed (see the next subsection and §14.2 below). A lot of
background material has to be developed before we come to the proof. We
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shall do that in §§14.2, 14.4, 14.5 and in between in §14.3 we shall go back
to structure theorems to show that once we have this type of reduction the
required implication (14.5) follows.
In fact only the following special cases of the above propositionwill actually

be used:

(i) G is connected and soluble, and K is some normal – and therefore also
central – torus (see §§2.6 and 11.3.1).

(ii) K = F is some finite subgroup. Once more it is only the case when F is
central that will be needed (see §11.1.5): the point is that the proposition
still holds here despite the fact that F is not connected.

(iii) The ultimate reduction. This consists in showing, for the polynomial
homologies, that

H(G)<+∞ ⇐⇒ H(G/Γ)<+∞

for any connected Lie groupG and Γ�G some discrete central subgroup.
We know a posteriori that this holds but we have not been able to give a
direct proof. Had we been able to do so no other reduction would have
been needed because this would reduce everything to the simply con-
nected case.

(iv) The 0-distorted case. The implication that we suggested in (iii) will be
proved in the special case when Γ is 0-distorted in G. We recall (see
§§2.14.1, 5.7.1) that this means that the distance induced on Γ as a subset
of G is equivalent to the intrinsic word distance of Γ. This will be post-
poned to Appendix G but it will not be an essential step to our final goal.
Nonetheless, this is one of the most interesting aspects of this circle of
ideas because it connects naturally with the cohomology of the discrete
group Γ.

Remark In proving such reductions for a discrete central group Γ it is clear,
by passing to intermediate subgroups Γ ⊃ Γ′ ⊃ {0}, that we can assume that
either Γ is finite (this is dealt with in §14.3) or Γ=Z, which will be the subject
matter of Appendix G. For this reduction recall that Γ is finitely generated and
Abelian.

14.1.5 The methods and the background for the proofs

The proof of the proposition in §14.1.4 makes essential use and needs the full
thrust of some basic concepts and ideas from algebraic topology.
To explain these we recall what a fibre bundle, F ⊂→ E π−→ B, is (see Steenrod,
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1951; Hilton andWylie, 1960; Bott and Tu, 1982). Here, π is a continuous sur-
jective mapping of topological spaces such that each fibre π−1(x)∼= F for each
x ∈ B, that is, they are homeomorphic. Furthermore, there exists U= (Uα ; α ∈
I), an open cover such that we have homeomorphisms π−1Uα

ϕα−→∼= Uα × F
for which the natural fibres π−1(x) and {x}×F correspond. Here we shall be
working throughout in the C∞ category, that is, all the spaces are smooth. The
open sets Uα are called the charts of the bundle, and the mappings ϕα are the
corresponding trivialisations.
In fact, in this chapter we shall be exclusively in the special case of G→

G/K (or G|K) for a connected Lie group and some closed subgroups K. When
the subgroupK is not normal,G|K denotes the homogeneous space (recall that
G|K is the space of cosets (gK; g ∈ G) assigned with the canonical manifold
structure; see Helgason, 1978, §II.4). These special cases fall under the more
general class of principal bundles (see Greub et al., 1973, Chapter V). We
recall that this means that F is some Lie group that acts on the ‘total’ space E
and ϕα respects the natural group actions, that is, if x ∈ π−1y with y ∈Uα and
f ∈ F then f · x ∈ E (the group action of f on E) is such that f · x ∈ π−1y and
ϕα( f · x) = (y, f · f1) when ϕα(x) = (y, f1), where f1 ∈ F and where f · f1 is
the group multiplication.
The case that is important for the proposition is when, as above, F = K is

connected and compact.
At the other extreme F = Γ is discrete and acts ‘discretely’ on E so that

we have a covering space. This is the situation that we shall consider in Ap-
pendix G.
At this juncture let us completely forget about the Lie group structure, the

possible Riemannian structure and the polynomial cohomology, but still work
in the differential category of smooth manifolds. The fibre F will be assumed
to be connected and we shall consider the classical de Rham cohomology of the
spaces involved H∗(X), X = E,B,F , that is, nothing polynomial or Riemann-
ian here. The result from algebraic topology that will be pivotal for us is the
following:

Assume that H∗(F)<+∞; that is, finite Betti numbers. Then, under ‘appro-
priate conditions’, H∗(E)<+∞ if and only if H∗(B)<+∞.

For the ‘appropriate conditions’ on the fibre bundle we could demand, for
instance, that B is simply connected.
We shall say more on this result in §14.6 below where our task will be to

introduce the Riemannian structure on the fibre bundle and adapt the proofs to
make them apply to our polynomial cohomologiesH∗(X ;Pol).
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14.1.6 About the style and the presentation of the chapter

The methods needed for the proof of the result on the homology of a fibre
bundle are difficult but also central in algebraic topology. In fact, when they
were discovered they marked a turning point in the subject.

A bit of history These are the methods that use the algebraic tool of spectral
sequences. The discoverer of these methods was J. Leray and he did this when
he was a prisoner of war in the period 1940–1945. It seems that the Germans
respected the Geneva convention for French officers. I am sure, however, that
had Leray been a Soviet officer, nobody would ever have heard either of him,
or his spectral sequences.
At any rate, between 1945 and the late 1950s these methods were developed

by some of the greatest mathematicians of the century: A. Borel, H. Cartan,
J.-P. Serre and others, and the algebraic machinery that we now call spectral
sequences was worked out by J. L. Koszul. The work of the great topologist
H. Hopf was also decisive in these developments. Much of this was presented
in the celebrated Séminaire Cartan, ENS, 1948–1959.
Be this as it may, we shall be needing all of this, and as a consequence, when

writing this chapter I was faced with a dilemma:

• Should I give all the background material? Given the scope and the size of
the book this would have been really out of the question.
• Or, should I address this chapter only to people with good knowledge of
algebraic topology? Given who the average user of this book is likely to be,
that would have cut the audience considerably.

The advantage of taking the second position would have been of course that
the chapter would not have been a chapter but just a few pages.
I opted for the following hybrid policy. The presentation is on the one hand

informal, and on the other more what one finds in a research paper rather than
a book. This has been done in order to economise on space, and, since so much
background is missing anyway, I felt this was a good compromise.
However, and partly to compensate, I have tried to place this chapter in

the more general context of modern algebraic topology with the following el-
ements: a number of digressions; a good guide to references in the subject;
indications of alternative proofs depending on the aspects that one wishes to
stress.
I also feel that this chapter, and especially Appendix G, contains the germ

of further developments; and the presentation is designed to encourage readers
to study and pursue these matters.
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14.2 Notions from Algebraic Topology and Riemannian
Geometry

Some basic definitions and facts from these subjects will be recalled in this sec-
tion and these will be essential background material for the rest of the chapter.

14.2.1 Cohomology attached to a cover

14.2.1.1 Čech cohomology We denote U = (Uα ,α ∈ I) some open cover of
theC∞ manifoldM where I is a finite or countable ordered index set. For multi-
indices α = (α0,α1, . . . ,αp) that are increasing (i.e. α0 < α1 < · · · < αp) and
of length |I|= p+1, we shall use the notationUα =Uα0 ∩·· ·∩Uαp when that
set is not empty. We shall associate with this C∗(U) = C∗(U;M), the vector
space ∏α Rα , where all the Rα = R are the reals, that is, C∗ = (cα ∈ R; α).
This is the space of Čech cochains of the cover.
We denote by Cp, with p � 0, the cochains of length p+ 1, that is, cβ = 0

unless the length of β = p+1; we haveC∗ =∑p�0C
p. We can then define the

following differential δ : Cp→Cp+1 (i.e. a linear map with δ 2 = 0):

(δc)α0,...,αp+1 =∑
j

(−1) jcα0,...,α̂ j ,...,αp+1 ; c= (cα) ∈C∗. (14.6)

Here, c,δc ∈C∗ and the indices, for example (δc)α , indicate the α coordinate
of δc. As usual, the hat ˆ indicates that the term is omitted. That this is a dif-
ferential can be easily verified and so we obtain a graded differential complex

0→C0 −→
δ
C1 −→

δ
C2→ ··· →Cp→ ··· . (14.7)

The homology of this complexH∗(U) =H∗(U,M) is the Čech cohomology of
the cover U onM.

14.2.1.2 Presheaf cohomology Čech cohomology can be generalised into
what is called presheaf cohomologyH∗(F) for some presheaf

F=
(
F(Uα); α0 < α1 < · · ·< αp, p� 0

)
.

First of all F(Uα) denotes, for allU =Uα , some vector space (other objects,
e.g. Abelian groups, or more general modules over some ring, could be consid-
ered) and the corresponding presheaf cochain C∗(F) is then the vector space
∏U cU , with cU ∈ F(U), and where here U runs through the set of all Uα , as
above. The corresponding differential complex is then defined as (14.6), with
Cp defined as before and where, in this definition of the differential, we replace
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the right-hand side with ∑ j(−1) ji j(cα0,...,α̂ j ,...,αp+1); here i j is an appropriate
linear mapping

iVU : F(U)→ F(V ); V =Uα0,...,αp+1 , U =Uα0,...,α̂ j ,...,αp+1 . (14.8)

Now we explain how the mappings in (14.8) are defined and for this we shall
start with the easier case when F(U) is actually defined for all the open sets
U ⊂M. One then simply demands

iUU = Identity, iWU = iWV ◦ iVU ; W ⊂V ⊂U. (14.9)

This condition qualifies F to be a functor that is defined in the full category
Open(M) and not only on the subcategory (Uα) as in (14.8).

Example 14.3 We could set F(U) =Ω∗(U) or F0(U)�R, the constant func-
tions on U which is ∼= R (the reals). In these cases we set iVU the restriction
mapping. For F0 we of course obtain back the Čech cohomology of (14.7).

For the presheafs that we are considering in this chapter, an open cover U
will be considered and only the values F(U) forU =Uα will be involved. But
this functor will be the restriction of a functor that is defined on the whole
Open(M) with condition (14.9) on the iVU . We shall therefore stop here and not
give the more sophisticated definition for functors only defined on the subcat-
egory (14.8); see Bott and Tu (1982, §13).
Remark In fact, what will happen in §14.2.3 below is this. All the sets
Uα ∼= Rn (diffeomorphic) and the functor F(Uα) will be the restriction of a
functor F(V ) defined on (V open in M, V ∼= Rn and V contained in someUα)

with condition (14.9) satisfied for the mappings between these sets.

Once the δ has been defined on C∗(F) we easily verify that δ 2 = 0 and we
therefore have a complex. (To stress the presence of the cover we could denote
this by C∗(U;F)). The homology of this complex is denoted H∗(U;F) and is
called the cohomology of the cover U with values in the presheaf F.

14.2.1.3 Constant and locally constant presheafs When all the F(U) = L
are identical and all the iVU are the identity mappings we say that the sheaf is
the trivial presheaf L (where L can be a vector space, an Abelian group, etc.).
For instance, the original Čech cohomology is defined on the trivial presheaf
L= R.
When the presheaf F is isomorphic to a trivial presheaf, we say that F is

constant. A homomorphism between two presheafs (F; i)→ (G; j) is a family
of linear mappings ϕU : F(U)→G(U) that intertwine the defining homomor-
phisms i and j (i.e. forV ⊂U as above, we have ϕV ◦ iVU = jVU ◦ϕU ).



528 Cohomology on Lie Groups

As long as we are in the setting of the above remark, there is a very im-
portant halfway notion for a presheaf that demands that all the F(U) � L are
isomorphic to some fixed vector space and all the iVU are isomorphisms. Such a
presheaf on the cover U is called locally constant.

Exercise Show that a presheaf could be locally constant without being con-
stant. Simple examples can be found in Bott and Tu (1982, §10.7).
Exercise Show that for a presheaf to be constant we need to be able to specify
isomorphisms θU : F(U)−→∼= L such that λ = θV ◦ iVU ◦θ−1U is the identity. In the

case of a locally constant presheaf we have analogous mappings but then the
isomorphism λ is not necessarily the identity (cf. the proofs of Bott and Tu,
1982, Theorem 13.2 and Example 13.5).

Note The reader is urged to elaborate these definitions further and consult
at least the rapid review of the subject that can be found in most books on
algebraic topology, for example Bott and Tu (1982, §§10,13). A comprehensive
but very readable account can be found in Godement (1958). For instance,
the setting of the above remark is artificial and the correct notion of a locally
constant presheaf on an open cover is elaborated on further in Bott and Tu
(1982, §13, p. 142). To do this one has to use an abstract simplicial complex
called the nerve of the cover.

14.2.2 Good covers, notation and fundamental facts

BothM andU are as before.We say thatU is a good cover if all the setsUα (that
by definition are not empty open sets) are diffeomorphic with Rn, n = dimM.
Here are some basic facts.
First of all, every manifold admits some good cover. At the end of this sec-

tion we shall see how this is done.

Monodromy IfM is a simply connected manifold and if U is a good cover of
M then any locally constant presheaf attached to U is constant.
A proof of this can be found in Bott and Tu (1982, §13). In the same book,

several proofs, some direct, some less so, can be found for the following basic
fact:

Let M, U be as above with U some good cover. Then we have an isomorphism
between the de Rham cohomology and the Čech cohomology with respect to
the cover U.
In symbols, we have H∗DR ∼= H∗(U).
One of these proofs, not the most direct, but one that uses spectral sequences,
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will be reproduced in §14.5 below. The reader who is serious about the material
of this chapter is, however, urged to study a more direct proof as given in Bott
and Tu (1982, §8).
For later use the following notions and notation that are related to a cover U

on the manifold will be specified.
One is that of a partition of unity (ρα ; α ∈ I) that is subordinated to the

cover. These are ρα ∈ C∞
0 (Uα) for each α ∈ I and such that ∑α∈I ρα = 1 and

suppρα ⊂Uα .
The other is the retract hα(x, t) ∈ Uα , with x ∈ Uα , 0 � t � 1. These are

smooth and defined for all α , not just the elements α ∈ I in the index set, and
they retract the set Uα to some fixed point xα = hα(x,0), for x ∈ Uα , while
for t = 1 we have hα(x,1) = x for all x ∈Uα , and also hα(xα , t) = xα , with
0� t � 1. These clearly only exist if the cover U is a good cover.

14.2.2.1 A homotopy operator A good reference for this material is Bott
and Tu (1982, §8.2). Let U = (Uα) be some open cover that is not necessarily
a good cover, and let F = Ω∗(Uα) be the presheaf of Example 14.3. For the
decompositionC∗(U;F) = ∑Cp let

0−→Ω∗(M)−→
r
C0 −→

δ
· · · −→

δ
Cp→ ···

be the corresponding complex with δ as in (14.7) and r induced by the inclu-
sions Uα ⊂ M, that is, the restriction mappings. It is clear that Kerr = 0 and
Imr = Ker[δ : C0→C1].
We can also construct a ‘homotopy operator’ K : Cp→Cp−1, for p � 1, by

the formula

(Kω)α0···αp−1 =∑
α
ραωαα0···αp−1 (14.10)

for the partition of unity of §14.2.2. In this formula we use the convention that
when two indices are interchanged the form becomes its negative:

ω···α ···β ··· =−ω···β ···α ··· (14.11)

and therefore in the indices of ωα0···αp we no longer have to assume that α0 <
· · ·< αp.
By a routine verification we now see that (see Bott and Tu, 1982, §8.5)

δK+Kδ = Identity. (14.12)

From these facts it follows that the homology of the above complex vanishes.

Remark The ‘convention’ (14.11) comes straight out of Bott and Tu (1982,
Exercise 8.4), where an informal presentation of the material in hand is given.
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We follow that presentation closely and make it even more informal! For our
purposes this is the best way of proceeding, no doubt about it. There are places,
however (e.g. §§14.2.4.4 and G.1.2), where more formal definitions would clar-
ify matters; see standard references on algebraic topology, for exampleMassey
(1991) or Godement (1958), for these.

14.2.3 The cohomology presheaf of a bundle

We recall that we are working throughout in the C∞ category and in what fol-
lows in this subsection we shall be using the de Rham cohomology. We shall
also consider a fibre bundle F ⊂→ E −→

π
B and on every open setU ⊂ B we shall

define F(U) =H∗(π−1U) so that now iVU : F(U)→ F(V ) forV ⊂U is induced
by the inclusion π−1V ⊂ π−1U .
We shall now fix U = (Uα) a good cover of B and restrict the definition of

F to the subcategory of open sets of the formUα0···αp as in §14.2.1. We obtain
therefore a presheaf attached to the cover U; this presheaf is locally constant
since any two subsets V ⊂U as above are contractible and therefore for any
x ∈V we have

H∗(π−1U)∼= H∗(π−1V )∼= H∗(π−1x)∼= H∗(F). (14.13)

To see this we use the standard fact that a bundle with a contractible base space
is trivial (i.e. a product; see Steenrod, 1951, §11.6). In everything that follows,
however, all the setsU will always be chosen so small that π−1U ∼=U×F is a
chart of the bundle, so that we do not have to worry about this.
It follows in particular that this presheaf is constant when B is simply con-

nected (cf. §14.2.2). On the other hand, one can easily verify (see Bott and Tu,
1982, Examples 10.1 and 13.1) that when the fibre bundle is a Möbius strip
this presheaf is not constant.

Proposition Let the fibre bundle be given by the homogeneous space G −→
π

G|K where G is a connected Lie group and K is a connected closed subgroup.
Further, let U be some good cover of G|K as above; then the above presheaf is
constant.

To see this, let us fix both x ∈ Uα0···αp = Uα , and g ∈ π−1(x). Then we
have an isomorphismH∗(K)→H∗(π−1Uα) that is induced by ġ : K→ π−1(x),
k �→ gk, and the inclusion π−1(x)→ π−1Uα . For the proof it suffices to show
that this isomorphism is independent of the two choices of x and g (see the fol-
lowing exercise). Furthermore, this argument extends to all principal bundles.

Exercise (See also Greub et al., 1973, Chapter V.) For some fixed x ∈ G|K
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and two different choices g1,g2 ∈ π−1x the corresponding mappings ġi differ
by group multiplication on K, k̇0 : k → k0k, k ∈ K, with k0 = g−11 g2. And if
k0(t) ∈ K, 0 � t � 1 is a path that joins e to k0, the mappings k→ k0(t)k give
a homotopy between k̇0 and the identity.
Similarly, for the two choices x1,x2 ∈Uα , by considering some trivialisation

we can find gi ∈ π−1(xi) such that the two mappings fromK→ π−1Uα , namely
ġi : K→ π−1xi ⊂ π−1Uα , are homotopic.

14.2.4 How to construct a good cover

14.2.4.1 The set-up In this subsection we shall show how to construct a good
cover on a connected Lie group G and also on a homogeneous space G|K,
where K ⊂ G is some compact subgroup.
Some of the special features of the constructions below are difficult to adapt

to a general C∞ manifold M but the essential properties of the construction
go through for M and even for more general topological spaces (see Bott and
Tu, 1982, §§5, 13, p. 147). At any rate, in this chapter the only manifolds that
we shall be considering will be M = G or the homogeneous space G|K, as in
§14.1.4.
We shall fix once and for all some left-invariant Riemannian structure on G.

Once this structure is chosen also to be K-right invariant (this is always possi-
ble when K is compact because it amounts to choosing the Riemannian scalar
product 〈·, ·〉 on Te(G) to be invariant by the compact AdK action on the Lie al-
gebra g; this can be done by taking the average

∫
K〈(Adk)ξ ,(Adk)ζ 〉dk), then

the Riemannian structure on G induces canonically a G-invariant Riemannian
structure on G|K (i.e. invariant under ẋ→ gẋ, ẋ ∈ G|K, g ∈ G, where, when
ẋ = xK is the coset, gẋ is the coset gxK). The way this is done is as follows:
let k ⊂ g be the Lie subalgebra of K and let k⊥ be the orthogonal complement
with respect to the Riemannian scalar product. This subspace can be identified
with Tė(G|K), the tangent space at the identity class ė= K ∈G|K. This defines
a scalar product on that space and one can easily verify that the G-group action
defines unambiguously a global Riemannian structure on G|K (see Kobayashi
and Nomizu, 1963, Example IV.1.3; Kobayashi and Nomizu, 1969, Chapter X;
Helgason, 1984, §II.4, p. 284).
In fact, for most of our purposes and certainly for all the essential ones, K

is a compact normal subgroup (even central!) and then G/K is a Lie group. In
that case the above Riemannian structure is (up to equivalence) just the left-
invariant structure of the group G/K.
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14.2.4.2 The Whitehead lemma and geodesically convex sets in Rieman-
nian manifolds Here we shall explain and comment on some well-known
facts from local Riemannian geometry.
We recall first what it means to say that U ⊂ M, some open set in a (com-

plete) Riemannian manifold, is geodesically convex. For any two points x,y ∈
U there exists γ(t) ⊂M, t � 0, some geodesic in M that joins x to y, with the
following properties:

(i) The geodesic γ ⊂U and no other geodesic that joins x to y lies entirely
in U .

(ii) The geodesic γ gives distance; that is, the length of γ equals the Rieman-
nian distance between x and y. Such a geodesic is called a minimising
geodesic. Furthermore, γ is the only minimising geodesic between x and
y in M.

What is clear is that if U,V ⊂M are geodesically convex then so is U ∩V ,
and since we expect these sets to be diffeomorphic to Rn, we see that these sets
can be used to give good covers on a manifold (see Bott and Tu, 1982, §5).
The Whitehead lemma is as follows.

Lemma 14.4 (Whitehead lemma) For every x0 ∈M there exists ρ0 such that
for all 0 < ρ < ρ0 the Riemannian open ball U = Bρ(x0) centred at x0 with
radius ρ is geodesically convex.

It is also clear (at least if ρ0 is small enough) that the above setsU are normal
neighbourhoodsof any of their points. More explicitly, we use here the fact that
for all x0 ∈M there exists ρ1 > 0 such that for all x ∈M with d(x0,x)< ρ1, the
set [ξ ∈ Tx(M); |ξ |< ρ1], that is, the ball of radius ρ1 on the tangent space, is
mapped bijectively and smoothly by Expx : Tx(M)→M onto what is called a
normal neighbourhood of x ∈M and the coordinates that we obtain near x by
Expx : R

n→M are called normal coordinates. Here, Expx denotes the mapping
that sends every vector ξ ∈ Tx(M) small enough, to Exp(ξ )∈M at distance |ξ |
from x and lying on the geodesic from x in the direction ξ . Furthermore, the
geodesic from x to Exp(ξ ) is minimising.
These well-known facts from Riemannian geometry can be found in stan-

dard books on the subject, for example Kobayashi and Nomizu (1963, §3.8) or
Hicks (1971, §9.4).
It follows therefore, as asserted (at least if ρ0 is small enough), that the

geodesically convex sets that we constructed, U , are diffeomorphic with Rn.
Furthermore, they are ‘geodesically star shaped’ with respect to any of their
points.
More generally, if x0,x1, . . . ,xk are finitely many points (and ρ0 is small
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enough to work simultaneously for all the convex subsets Uj = Bρ(x j)), then
the intersectionU =U0∩·· ·∩Uk is diffeomorphic to Rn when not empty.
Let us elaborate more on this finite intersection so that we do not have to

come back later. Provided that ρ0 as above is small enough, this is what can be
said:

The setU could certainly have the nasty shape of a long thin lens, the inter-
section of two discs that barely overlap. But whatever the shape might be,U
is ‘geodesically star shaped’, with centre any of its points x̄ ∈U .
More formally we can give normal coordinates for U with zero at x̄ and

these identify U with a star-shaped domain in Rn centred at the origin. This
follows from what we have explained. These normal coordinates can then be
used to define a smooth retract h(x, t) ∈ U with h(x,0) = x̄, h(x,1) = x and
h(x̄, t) = x̄, for x ∈ U , 0 � t � 1. Furthermore, the gradient (both in x and
t) satisfies |∇h| � C, where C depends only on x0, ρ0 and the Riemannian
structure of the manifold in some neighbourhood of x0. A special case, where
we do not have to worry about this Riemannian structure in the dependence of
|∇h|�C, is whenM is a Lie group with its left-invariant Riemannian structure,
or more generally the homogeneous spaces G|K that we considered earlier in
this section. This holds because this structure is homogeneous and is the same
as we move from one point to another. This will be used in the construction of
the good cover that we shall use in the next subsection.
The essential exploitation that will be made of this retract h forU is the fol-

lowing. Let ω ∈Ω∗(U) be some closed form without constant term (i.e. dω =

0, ω = ω1 + · · · ); then the Poincaré equation dθ = ω can be solved with
θ ∈ Ω∗(U) with control on the uniform norm ‖θ‖∞ = supx∈U |θ (x)|. That is,
‖θ‖∞ � C1‖ω‖∞, where C1 depends only on C (and a priori also possibly on
the Riemannian structure onU – but in our case, for Lie groups, it will essen-
tially depend only on the group).

Exercise 14.5 Verify the above. This is sometimes referred to as the Poincaré
lemma (see de Rham, 1960, lemma in §19). One elementary way of proceeding
is to use the previous observation so that, for each U as above, there exists
U∗, some star-shaped domain around the origin in the Euclidean space, and a
diffeomorphism F : U∗ →U that, together with its inverse F−1, has bounded
gradients (depending again on ρ0 and the Riemannian geometry). This allows
us to transport the problem to Rn. Then we can use well-known formulas (see
Warner, 1971, §4.18) that solve the Poincaré equation in Rn. Alternatively, we
can do what we did in §12.9 with polynomial homotopy. The homotopy that
we use here is h and is in fact ‘bounded’.
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14.2.4.3 Construction of the good cover We shall deal only with the case for
a group G. The construction for G|K is identical and will be left to the reader.
This good cover on G depends on the following construction. We fix some

c0 > 0 and then choose a sequence of points g1,g2, . . . ∈ G that satisfy the
condition d(gi,g j) > c0 for i �= j for the left-invariant distance, and are such
that if we add one additional point this condition no longer holds, that is, the
sequence is maximal under our condition. Zorn’s lemma can be used for the
construction. This means that the balls of radius 10c0, centred at the points gi,
give a cover of G. These balls areUα = gαU whereU = (|g|< 10c0).
By its very construction this cover has a number of special properties. In

particular, a partition of unity (ρα), as in §14.2.2, subordinated to the cover,
can be constructed so that it is of bounded gradient. More precisely, |∇ρα |�C
uniformly on α (here C depends on G and c0). Also, such a cover is locally
finite and no more than C balls (depending on G and c0) can have non-empty
intersection. The above also imply that the |ρα | are also uniformly bounded.
Exercise 14.6 Verify this as follows. If C balls intersect, the C disjoint sub-
balls gαU ′, withU ′ = [|g|< c0], are close together. Then use the Haar measure
to boundC.
Furthermore, if we use the Whitehead lemma (Lemma 14.4) and the prop-

erties enumerated in the previous subsection, we see that the above cover
U = (Uα) is a good cover and also the uniformly bounded retracts hα of the
Uα (with α = (α0, . . . ,αp), as in §14.2.1) can be constructed. For all of these
it suffices to choose c0 > 0 small enough so that in particular the Poincaré
lemma, from Exercise 14.5, applies.

14.2.4.4 An illustration for the covering spaces We shall consider in Ap-
pendix G a covering map G̃ −→

π
G between two connected Lie groups. More

precisely, G = G̃/Γ and Γ = kerπ is a discrete central subgroup. It is then
clear that if the good cover U= (Uα) that we constructed on G in the previous
subsection is fine enough (i.e. c0 is small enough) then we can lift it to a similar
good cover Ũ = (π−1Uα) where each π−1Uα breaks up into disjoint balls and
the deck transformation group Γ is in one-to-one correspondence with these
balls, that is, π−1(Uα) = (γŨα ; γ ∈ Γ), for some fixed Ũα . Furthermore, as
long as the diameter of the original ballU in our construction has been chosen
sufficiently small, it is clear that d(γ1Ũα ,γ2Ũα)� c for γ1 �= γ2 and some c> 0
independent of γ1, γ2 and α . A consequence of this is that, whenUα1∩Uα2 �= /0,
then for all γ1 ∈ Γ there exists one and only one γ2 such that γ1Ũα1 ∩γ2Ũα2 �= /0.
The connection betweenH∗(U) andH∗(Ũ) is a very important issue (cf. Mc-

Cleary, 2001, §8bis.9) and it will also be the subject matter of Appendix G.
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14.2.5 The polynomial Čech cohomology

In this final subsection the new notion of the polynomial Čech complex will
be introduced. We go back to the manifold M and the open cover U = (Uα)

of §14.2.1 and now a base point O ∈M will be fixed and a Riemannian struc-
ture will be introduced and we shall assume that diam(Uα) � C for some C
uniformly in α .
The polynomial Čech subcomplex of the corresponding Čech complex con-

sists of the chains c ∈C∗(U) of §14.2.1 for which there exist constantsC > 0,
withC depending on the particular chain, such that

|cα |�C
(
1+ dist(O,Uα)

)C
. (14.14)

These are polynomially growing chains and they clearly form a subcomplex
of C∗(U) under the differential δ provided that the cover is uniformly locally
finite, as in Exercise 14.6. We shall denote this subcomplex by C∗P(U) and its
cohomology will be the polynomial Čech cohomology of the cover U and will
be denoted by H∗P(U).
In §14.5 below we shall show that, provided the cover U satisfies the condi-

tions of §14.2.4.3, we have H∗DR(M;Pol. ) ∼= H∗P(U). For this we shall use the
spectral sequences of §14.4. But for the reader who followed our suggestion
in §14.2.2 to study Bott and Tu (1982, §8), that is, the ‘elementary’ proof of
H∗DR ∼= H∗(U) without using spectral sequences, there will be no difficulty in
being convinced that the same proof with easy modifications will also give this
corresponding fact for polynomial cohomologies.

Note The reader must not get the impression that we have, all of a sudden,
fallen in love with spectral sequences. Anything but! But they have to be used
for the main result of this chapter and the use one makes of the isomorphism
H∗DR(M;Pol. ) ∼= H∗P(U) offers a very instructive illustration. Apart from this,
the spectral-sequence-free approach that we have urged the reader to work out
is preferable from every point of view. That proof is due to A. Weil and it
played an important role in the development of the subject. See the footnote
at the end of the preface in Godement (1958). This comes from someone who
was a young man when it was all happening in École Normale Supérieure in
the late 1940s; cf. §14.1.6.

14.3 Revisiting Structure Theorems

In view of the reductions that we explained in §14.1 we have to go back and
recycle some of the structure theorems of Chapter 11.
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14.3.1 Soluble groups

The critical reductions of §14.1.4 depend on what we shall recall here. Let G
be some connected soluble group and let T denote its maximal compact cen-
tral torus (see §§11.3.1 and F.3, especially (F.6)). Then we have the following
commutative diagram:

G −→
π

G1 =M�K

α ↘ ↙ β
G1|K.

(14.15)

Here π is the canonical group projection on G1 =G/T andM is a model (i.e. a
simply connected soluble group) and K is compact. Thus π is a group homo-
morphism and the other two mappings, α and β , give canonical mappings on
the homogeneous space G1|K = G|KT and α = β ◦ π (see §14.2). The two
mappings α , β are used to give an independence proof and they may be ig-
nored for the first approach that we give.
This first approach consists in proving that

H(G)<+∞ =⇒ H(G1)<+∞. (14.16)

We are using here the terminology of §14.1 and talking of polynomial de Rham
cohomology of course. Once we have proved (14.16) we are essentially done.
The reason is that we have a quasi-isometryG1≈M×K and this, as we pointed
out in Exercise 12.20, implies that

H(G1)<+∞ =⇒ H(M)<+∞. (14.17)

On the other hand, both the groups G1 and M are NC if and only if G is. To
see this, for G1 use the fact that T is central and §2.2.1. As for M, use the fact
that M is normal in G1 and since the action of Ad(K) on the Lie algebra of
M is compact, it has unimodular roots (this is obvious; but in case you have
a problem, go back to the linear algebra of Part I, e.g. §§3.4.4, 3.9.1). Notice
that in the construction (14.15), the nilradical of G1 lies in M and therefore
any of the algebraic characterisations of the NC-condition of Chapter 2 can be
used. (Explicitly, we use the Lie algebra g1 = m� k and Varadarajan, 1974,
§3.7.3 to triangulate the action adg1 on m⊗C, then the real parts of the roots
vanish on adk because of the above remark. Since k is Abelian, we obtain thus
a triangulation of the adg1 action on g1⊗C on which we apply §2.3.3.
We have therefore the reduction of our problem, as explained in §14.1.3,

from an arbitrary connected soluble group G to a modelM.
The alternative approach consists in using the two mappings α , β in (14.15)

– observe that these both give fibrations with fibres homeomorphic to a torus
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because these fibres are connected compact soluble groups (see Hochschild,
1965, XIII, §1.3). We arrive then at the same conclusion but now by proving

H(G)<+∞ =⇒ H(G1|K)<+∞, (14.18)

H(G1|K)<+∞ =⇒ H(G1)<+∞ (14.19)

for the corresponding polynomial cohomologies. The polynomial cohomology
on G1|K which is not necessarily a Lie group is given by the definition on a
general Riemannian manifold (see §14.1.1 or Chapter 12).
This approach is at first sight more involved. However, here the advantage

is that the base spaces of the fibrations are simply connected and therefore in
the proofs that we give in the next section we could use the monodromy of
§14.2.2. The proposition of §14.2.3 in is particular not needed.
The reductions (14.16), (14.18), (14.19) that we described above will be

proved in the next three sections: see (14.64).

14.3.2 The endgame

Once we have the reductions of the previous subsection we can put things
together and play the endgame in the proof of (14.5) as follows.
Let G be some arbitrary connected Lie group. We can find some new con-

nected Lie group G̃ with the following two properties: G ∼= G̃/F (group iso-
morphism) for some finite central subgroup F , and G̃ � Q×K (a quasi-iso-
metry) where Q is soluble, connected and K compact. Furthermore, Q is a
C-group if G is a B-group (and vice versa – but this is not needed). This con-
struction was carried out in §11.1.5.
Now it is easy to see that if we assume that H(G) < +∞ then it follows

that H(G̃)<+∞ too (see the exercise below) and from this it also follows that
H(Q)<+∞ as we have already observed (see the remark in §14.1.3). Since Q
is soluble the reductions of the previous subsection apply and it follows from
Theorem 14.1 that Q has to be an NC-group. Hence G is an NB-group; in
other words we have a proof of the implication (14.5) and our goal has been
achieved.

Exercise Here G is an arbitrary connected Lie group and F ⊂ G a finite
subgroup (in our previous considerations, F ⊂ G̃ was a central subgroup of G̃).
Go through the arguments below and verify them.
Let ΩI(G) denote the differential forms on G that are invariant under right

translation by elements of F (recall that in our case, F is central). Show that
the cohomology of this complex is identical to the cohomology ofΩ(G|F), and
that the same holds for the complexes of forms of polynomial growth (for more
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on this see Greub et al., 1973, 1976).This is evident because the projection
π : G→ G|F induces an isomorphism between Ω(G|F) and ΩI(G). Now the
injectionΩI(G)→Ω(G) clearly induces α : H∗(ΩI)→H∗(Ω). We shall show
that this is an isomorphism.
To see that α is one-to-one we use the average operator ω = 1

|F | ∑x∈F τ∗xω ,
with ω ∈ Ω(G), where τx : g→ gx is the right translation. From this we con-
clude, for some ω ∈ ΩI(G), that if we can solve ω = dθ for some θ ∈ Ω(G)
we can also choose this θ to belong to ΩI .
To prove that α is onto, we start from some closed ω ∈Ω(G) and then show

that for all x ∈ F , we have ω ∼ τ∗xω are cohomologous (i.e. give the same
cohomology class). From this we are done because this shows that ω ∼ ω ∈
ΩI(G).
This last point is slightly less formal and to prove it we must use the con-

nectedness of G. Indeed, this implies that all the mappings τy : g→ gy, with
y ∈ G fixed, and in particular all the mappings τx, with x ∈ F , are polynomi-
ally homotopic to the identity. We have already observed this fact in the proof
of the proposition in §14.2.3: the homology is supplied by g→ gy(t) where
y(t) ∈ G, 0 � t � 1 is some path that joins y to the identity (compare with
Exercise 12.30).

A digression This will not be needed in this chapter but is interesting because
it brings out an aspect of the polynomial homology where it differs from the
classical theory. This is the fact that if we define τy by left translations the
same conclusion in general no longer holds. One can already see this on the
group R2�R and the differential forms of Example 7.16 by arguing on the
inner automorphisms g→ y−1gy. But to write the whole thing out is quite long
(though it is ‘fun’!). The details will not be given below, but for the reader who
wants to try their hand, here is a hint:

• Use the notation of Example 7.16 and set F(x1,x2)=∑ j−2χ
( x1
Rj
, x2Rj

)
, where

χ is the characteristic function of the unit square and R1<R2< · · · is rapidly
increasing. ThenR acts by inner automorphism onR2: denote that action by
Iy, with y ∈ R.
• Let ω = F(x1,x2)dx1∧dx2 and show that the Rj can be chosen so that ϕ =

(I∗1 − I∗−1)ω cannot be written as dθ for some θ ∈ΛP.
• To see this restrict ϕ on R2 and use Stokes’ theorem on appropriate squares
of the plane. The new idea here is that we can use the strict exponential
distance distortion (see §8.2.2) of R2 in G.

In this context we can make the following remark, which, however, is marginal
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because it is only used in §G.4.2: whenG is NB then both left and right transla-
tions act trivially onH(Λ∗P) because every closed current inΛ∗P is polynomially
homologous to a closed current of compact support. (Prove that this does it.)

14.3.3 About 0-distorted discrete subgroups

We have already pointed out (see Lemma 4.9) that a discrete central subgroup
Γ ⊂ G of the connected Lie group G is finitely generated. As a consequence
it admits its intrinsic word distance. When that distance is equivalent (i.e. up
to multiplicative constants) to the induced distance as a subset of G (assigned
with its left-invariant Lie group distance) we shall say that Γ is 0-distorted (see
§§2.14.1, 5.7.1). In view of the reduction that we shall prove in Appendix G
(see (14.22) below), the following simple construction will be relevant.
Let G be some connected Lie group and consider π : G̃→ G, the simply

connected cover so that Γ= kerπ ⊂ G̃ is a discrete central subgroup. Also let
G̃ = Q� S be the Levi decomposition, where Q is the radical. As a first step,
let us factorise π as follows:

G̃→G= Q� S−→
π
G;

Q= Q/Q∩Γ.
(14.20)

It is then clear that we have

Kerπ = Γ/Q∩Γ= Γ, Q∩Γ= {0}, (14.21)

and if we denote by θ : G→ S the canonical projection, then Kerθ ∩Γ⊂ Q∩
Γ= {0}, and therefore θ is one-to-one when restricted to Γ.
On the other hand, since θ(Γ) ⊂ S is central it has to be discrete by the

semisimplicity of S, and therefore, as we saw in §5.7.4, this image is 0-distorted
in S. Therefore the original group Γ is also 0-distorted in G.
The bottom line is this: For an arbitrary connected Lie group G we can find

G, some connected Lie group, and Γ ⊂ G, some 0-distorted central subgroup,
such that G/Γ� G and G� Q� S splits into a semidirect product, where Q is
connected soluble and S is semisimple and simply connected.
The reason why this construction is useful in the ‘reduction game’ that we

are playing in this chapter (see §14.1) is that it allows us to give a slightly
different approach to the one that we described in the previous subsection.
Indeed, let S=NAK be the Iwasawa decomposition (in the generalised sense

that we explained in §4.6) of the semisimple simply connected cofactor S. This
means that in the decompositionG=QNAK the soluble closed groupR=QNA
is NC if and only if G is NB. Now, in Appendix G we shall show that quite
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generally we have that if π : G1→ G2 = G1/Γ with Γ⊂ G1 0-distorted, then
H(G1)<+∞ ⇐⇒ H(G2)<+∞, (14.22)

with polynomial homology of course.
When we make the additional assumption that K is compact, the above,

together with the fact that the group G ≈ R×K (quasi-isometry; see Exam-
ple 11.9) finishes things. Explicitly, the information H(G) < +∞ implies that
H(R) < +∞ (here the remark in §14.1.3 is used) and, since R is soluble from
the reduction §14.3.1, it follows that R is NB.
Things are a little more tricky in the general case when K is not assumed

to be compact. In that case we proceed as follows. We saw in Lemma 4.9 that
there exists ΓS ⊂ S, a closed discrete 0-distorted subgroup that is central in G,
and of finite index in Z(S), the centre of S. We have therefore

G→Q� S= G= R ·K, (14.23)

where S/ΓS = S = NAK is the generalised Iwasawa decomposition with com-
pact K. Now by using (14.22) twice we have

H(G)<+∞ ⇐⇒ H(G)<+∞ ⇐⇒ H(G)<+∞. (14.24)

On G we can argue as before because G � R×K, a quasi-isometry. The re-
quired reduction is now done in two steps because using (14.24) we can pass
from G to G and then from G to G.
Note that the use of the finite subgroup F of §11.1.5 and the exercise in
§14.3.2 can be avoided with this approach (but of course this exercise is a
special case of (14.22)).

About this alternative approach What are the advantages of using the cov-
ering mapping G→ G/Γ and (14.22) in our reductions? The answer is not
many. And had it been just for this, Appendix G would not have been worth
writing. So, despite the fact that it would be a good thing to avoid the use of
presheaf and Čech cohomology, this unfortunately cannot be done just with
(14.22). It turns out, however, that it can be done by adopting a radically dif-
ferent approach, though at a very high price; we shall say a few words about it
in §G.6.

14.4 Algebraic Tools

Ideally it is desirable in this chapter to have some familiarity with the use of
homological techniques. Many readers may not have this familiarity, so the
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aim of this section is to provide such readers with a condensed and informal
account of these algebraic tools. For more details see standard books such as
Cartan and Eilenberg (1956), McCleary (2001), Godement (1958), Hilton and
Wylie (1960), Cartan (1948), Greub et al. (1976), Bott and Tu (1982). This is
a long list of references and they are the sources that the author has used in
his effort to learn something about spectral sequences and the two geometric
applications that we shall need in §§14.5–14.6. The reader will make their own
choice in this list.

Warning To understand how spectral sequences work is quite tricky but it is
possible to ‘cheat your way’ through the subject with little cost. This is exactly
what we intend to do in this section.

14.4.1 A double complex

Everybody should be familiar with the notion of a differential graded module.
Just as in Chapter 12, we shall simply refer to such a creature as a complex:
A= ∑n�0An is the grading and for p < 0, all the Ap are zero. Throughout, all
modules here are just real vector spaces. The differential d is then just a lin-
ear mapping such that d2 = 0 and d: An→ An+1 for n ∈ Z. We shall give the
outline that follows for complexes of cohomological type, that is, the differen-
tial increases the index, but of course nothing changes when the arrows go the
other way round.
A double complex will be a similar creature with a double grading, A =

∑n,m�0An,m; as beforewe assume Ap,q= 0 if either p or q are negative (see Car-
tan and Eilenberg, 1956, §IV.4), and for simplicity we consider only ‘first quad-
rant’ complexes. Here two differentials d′,d′′ are defined: d′ : An,m→ An+1,m
and d′′ : An,m→ An,m+1 with (d′)2 = (d′′)2 = 0; this qualifies them to be differ-
entials. Furthermore, we impose the condition d′ ◦d′′+d′′ ◦d′ = 0. The reason
for this anticommutation relation is the construction of the associated sim-
ple grading that turns A into an ordinary complex: A = ∑p�0Ap with Ap =
∑m+n=p Am,n, where the differential is d = d′+ d′′ (verify that d2 = 0). This
sometimes is called the total complex of A.

14.4.2 The two spectral sequences associated with a double
complex

What we shall describe in this subsection is the beginning of the construction
of a special spectral sequence that is attached to the double complex of the pre-
vious subsection. The merit of this special case is that it is simple to describe.
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If we had wanted to give a general definition, however, we would have to have
taken a different point of view and started from a ‘filtered differential module’;
this we do not intend to do. For that we shall refer to the extensive literature
(as suggested at the start of this section).
Be this as it may, this spectral sequence E = (Er) is a sequence, r =

0,1,2, . . . , of double complexes with E0 = (Ap,q) as in the previous subsec-
tion. To construct E1 = (Ep,q

1 ), we simply take the homology with respect to
the first differential d′ : E1 = H(E0,d′). Explicitly, this says

Ep,q
1 = Ker

(
Ap,q

d′−→ Ap+1,q
)
/ Im
(
Ap−1,q

d′−→ Ap,q
)
. (14.25)

Then the second differential d′′ induces a differential on (E1)which for reasons
that will become clear will be denoted d1. The homology of this gives E2 =
(Ep,q
2 ) = H(E1;d1). Explicitly,

Ep,q
2 =Ker

(
Ep,q
1

d1−→ Ep,q+1
1

)
/ Im
(
Ep,q−1
1

d1−→ Ep,q
1

)
. (14.26)

From here we continue with the construction of a sequence of double com-
plexes Er = (Ep,q

r ), r = 0,1,2, . . . , that we shall call the spectral sequence. In
the literature this is called the ‘second’ spectral sequence attached to the double
complex A.
For the construction of the ‘first’ spectral sequence, we interchange the roles

of the two indices and do exactly the same things but start with d′′ first and use
d′ on the corresponding E1. (To make the distinction, Cartan and Eilenberg,
1956, §XV.6 uses the notation (Ir) and (IIr) for these two sequences.)
We shall not explain how the construction of Er, r = 3, . . . is done. The

reader can find that construction in the references that we indicated. Instead,
what we shall give in the next few lines are some of the principal properties of
this spectral sequence. It will turn out that by using just these properties and
without necessarily knowing how the construction is done, we shall achieve
our goal. This goal will be results on a number of specific double complexes
that arise naturally on the geometry of a manifold. This is an unorthodox, but
convenient and economical, way of proceeding! On the other hand, it should
be stressed that if we really wanted to define Er, r = 3, . . . , we would be better
off starting with the case of a general filtered differential module rather than
with the special case of the above double complex to which one assigns its
natural filtrations (see §14.4.4 below). In fact, if one is interested in the general
definitions of a spectral sequence, as we have already said, what we are doing
here amounts to a muddle of what the definition should be. The readers who
know the subject will no doubt also say that the way we went about things is
misleading. But let it be!
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14.4.3 Definition and properties of spectral sequences

A spectral sequence is a sequence Er = (Ep,q
r ) of double complexes for r =

1,2, . . . (it is convenient here to start from r = 1 and not r = 0). A differential
operator is also defined by

dr : Er→ Er, dr : Ep,q
r → Ep+r,q−r+1

r ; d2 = 0; (14.27)

drawing arrows in the first quadrant to indicate these mappings we see that
r = 0 is special: see Figure 14.1.

(p+ 2, q – 1)

(p, q)

Figure 14.1 The arrows indicate d2. Some authors (e.g. McCleary, 2001, figure on
p. 29) use the transposed notation and interchange the lines and columns. See also
Cartan and Eilenberg (1956, XV6, p. 331) for a formal transposition that shows
that there is ‘divine providence’ that protects you if you get mixed up in this point.

The basic prerogative of the spectral sequence is that if we compute the
homology of (Er,dr) we pick up Er+1, that is, Er+1 = H(Er;dr),

Ep,q
r+1 = Ker

(
Ep,q
r −→

dr
E p+r,q−r+1
r

)
/ Im
(
Ep−r,q+r−1
r −→

dr
E p,q
r

)
. (14.28)

With this terminology, what we have asserted in the previous subsection is that
the double complex A gives rise to a spectral sequence and we have defined the
first two terms E1, and E2 and a mapping d1 (see (14.25) and (14.26)). The d2
and E3 etc. were not constructed in §14.4.2. These have additional properties
that we shall explain in the next subsection.
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We shall consider only first-quadrant spectral sequences here; that is, we
shall assume that Ep,q

r = 0 if either p,q< 0. Also, for simplicity, and because
this is the only case that we shall need in the setting of differential forms, we
shall assume that Ep,q

1 = 0 for q � n for some finite integer (which will be the
dimension of the manifold in question). Things could have been the other way
round and we would have then imposed instead that Ep,q

1 = 0 for p � n for
some finite n. The point is that in either of the two cases it is clear that dr = 0
if r � r0, say for r0 = n+ 10, because we then spill out of the (p,q)-band in
the first quadrant on which Ep,q

r has a chance of not vanishing. In this respect
observe that it follows from (14.28) that for any p, q, r, the term Ep,q

r+1 = 0
automatically if Ep,q

r = 0. What we have seen is that this happens when the
spectral sequence lives in a band as above without necessarily requiring that
the original double complex An,m lives in the first quadrant.
In general, if it happens that dr0 = dr0+1 = · · · = 0 we say that the spectral

sequence degenerates at r0. We then set Er0 = Er0+1 = · · ·= E∞ = (Ep,q
∞ ) and

say that the spectral sequence Er →→ E∞ converges to E∞.

Remark (This remark will not be needed here but it illustrates well the
‘games’ one plays with general spectral sequences.) The same argument shows
that a first-quadrant spectral sequence always converges in the sense that for
fixed p,q� 0, if r is large enough (say r> p+q+100), then dr = 0 (restricted
on Ep,q

r ). So we have again the convergence Ep,q
r = Ep,q

r+1 = · · · = Ep,q
∞ . This

convergence is not ‘uniform’ as before, but for the applications this usually
makes no difference.

14.4.4 The limit of the spectral sequence of a double complex

We return to the double complex A and explain an additional property of the
spectral sequence of §14.4.2.
For this we consider the total complex A = ∑p�0Ap with total differential

d = d′+ d′′, and on this we impose the ‘filtration’; that is, a sequence of sub-
complexes A= F0 ⊃ F1 ⊃ ·· · defined by Fp =∑r�p∑q�0Ar,q. This is compat-
ible with the total differential d on A in the sense that dFj ⊂ Fj. From this it
follows that H =H(A;d), the homology of the total complex, is filtered by the
induced filtration H =H(F0)⊃H(F1)⊃ ·· · , where H(Fj) is the canonical im-
age of H(Fj;d), the homology of the module Fj, in H. To this filtered module
we associate the corresponding graded module GH (here it is a vector space
over the reals) which is the direct sum of the modules H(Fr)/H(Fr+1).
The additional essential property of the first spectral sequence is that this
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graded homology is isomorphic to the total limit complex. Explicitly,

GHn = ∑
p+q=n

E p,q
∞ , (14.29)

for the homology of degree n. Equation (14.29) is important for applications
below but we do not need to know how the isomorphism is done. In fact, here
we are only dealing with vector spaces and the only thing that counts is that
the dimension (possibly infinite) of H(A) is the sum of the dimensions of the
spaces Ep,q

∞ . Analogous facts hold for the second spectral sequence where in
the filtration the rows and columns are interchanged.

Remarks (i) Let us pause a minute to demystify what we have done (or rather
not done but claim that it can be done). In the applications (e.g. fibre bundles)
it is H = H(A;d) that we want to work out. But that homology is usually dif-
ficult to compute. The Ep,q

r , and especially E2, on the other hand are easier to
compute and since Er →→ E∞, we can approximate H by things that we know
something about.

(ii) In some sense all the above is just linear algebra, and barely more when
one considers spectral sequences of Abelian groups or more general modules.
However, what makes the subject tricky and not friendly to ‘working mathe-
maticians’ is the presence of triple indices and all the arrows that indicate the
mappings that ‘fly all over the place’. These tend to put people off. But once
one is convinced that the subject is useful one is usually capable of digesting
things.

14.4.5 Spectral sequences that degenerate on the second step

There are important examples of these. This, for instance, obviously happens
if Ep,q

2 = 0, with p = 0,1, . . . and q = 1,2, . . . , that is, when the only non-zero
terms of E2 are to be found on the first column q = 0. To see this, it suffices
to look at bi-degrees in (14.28). We could also switch the indices and demand
that these, possibly non-zero, terms lie in the first line: see the six figures of
Bott and Tu (1982, pp. 136–138), or you can draw your own figure! What we
are saying is that then

Ep,0
2 = Ep,0

∞ � Hp(A;d), (14.30)

where the� is a special case of (14.29). This observation is obvious and it will
be used below.

Exercise 14.7 Marginal and inessential use of this exercise is made in §14.6.
To do it one needs to know what the definitions of d2,d3, . . . (which we have
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not given in §14.4.2) actually are, so verifying the facts below will require a
lot of dedication and work on the part of the reader.
Let B = (Bn,dB) and C = (Cn,dC) be two (simple) complexes with Bn =

Cn = 0 for n < 0. We can then define A = (B⊗C), the double complex with
An,m = Bn⊗Cm and d′ = dB⊗ (IdC), d′′ = ±(IdB)⊗ dC where the ± is there
to guarantee that d′d′′+ d′′d′ = 0; see, for example, Bott and Tu (1982, p. 91).
What now happens is that the spectral sequence (the first or the second) that we
can construct from this double complex degenerates at r = 2 and E2 gives the
homology of the total complex of A; this is the one that is sometimes referred
to as the tensor product of B and C. The above says that E2 = · · · = E∞ =

H(B⊗C) = H(B)⊗H(C) and more explicitly, Ep,q
2 = Hp(B)⊗Hq(C). More

on this can be found in Hilton and Wylie (1960, §§10.1.9, 10.3.12) or Bott and
Tu (1982, Exercise 14.23).

Exercise 14.8 This exercise is easy and a special case of well-known obser-
vations in the subject. We shall make essential use of it in §14.6. Verify the
following facts about the finiteness of the dimensions (more on these can be
found in McCleary, 2001, §5.2 and Cartan, 1948, Exposé 10, J.-P. Serre). Let
A= (An,m) be a double complex and assume that we have dimE2<+∞. By the
subquotient property (14.28), it follows that the same holds for the dimensions
of all the E3, . . . ,E∞. We shall need the following partial converse of this.
We shall make the assumption that Ep,q

2 = Bp⊗Cq for the two specific (sim-
ple) complexes B and C, as in the previous exercise. We shall assume that
dimE∞ < +∞ and that 0 �= dimB < +∞. The apparently artificial situation
crops up naturally in geometric applications; see Bott and Tu (1982, §14.18)
and (14.41) below. The conclusion is that dimC<+∞. (Hint. Consider the first
p for which Bp �= 0 and the first q, if such a q exists, for which dimCq =∞. We
have then dimEp,q

2 = ∞ and also by (14.28) and the choice of p, q we see that
the same thing has to hold for all the Ep,q

r (r � 2). A contradiction can thus be
obtained from this. Therefore no such q exists.)

14.5 The Čech–de Rham Complex

To a large extent, the way we have presented this section comes straight out of
Bott and Tu (1982, §8). The aim is to give the proof of the fundamental fact that
for any manifold M, and any good cover U of M, the de Rham and the Čech
cohomologies are identical: H∗DR(M) � H∗(U); see §14.1.6. In Bott and Tu
(1982) it is the classical case that is treated of course. Here we shall reproduce
some of these arguments in a condensed but essentially self-contained manner,
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and then adapt them to make them work for polynomial cohomology in the
Riemannian case of §14.2.5. The reader is urged to fall back on the book of
Bott and Tu, or any other text on algebraic topology for additional reading.

14.5.1 The double complex

Let M be some C∞ manifold. We shall fix some open, not necessarily good,
cover U = (Uα). All the notation and in particular Uα =Uα0···αp will be as in
§14.2. We shall consider the double complex K = (Kp,q) with

Kp,q =Cp(U,Ωq) = ∏
α0<···<αp

Ωq(Uα0···αp), (14.31)

that is, Čech p-chains as in Example 14.3, with values on the presheaf of q-
differential forms on the open sets. In this notation, the product ∏ is over all
increasing (p+ 1)-multi-indices and, for any open set, Ωq(U) indicates the
differential forms of degree q on U . If you are unable to study the relevant
sections of Bott and Tu (1982), then Figures 14.2, 14.3 (which are essentially
reproduced from that work, pp. 95, 97) will be helpful. Note that to conform
with the notation of this book, the indices p, q for rows and columns, have
been interchanged from what we had in Figure 14.1, which was closer to the
notation of Cartan and Eilenberg (1956, §IV.4, p. 61).

0 ® W0(M) K 0, 0 K1, 0®
r

0 ® W1(M) K 0, 1 K1, 1®
r

0 ® W2(M) K 0, 2

q

p

K1, 2®
r

Figure 14.2 From Bott and Tu (1982). Reproduced with permission of Springer
Nature.

Now on this double complex, the two differentials of §14.4.1 can be defined
as follows. For the first, which in the notation there was actually denoted d′,
we take the δ -Čech differential (14.6) and this acts on the rows; for example,

→ 0→Ωm(M)−→
r
K0,m −→

δ
K1,m −→

δ
· · · (14.32)
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Figure 14.3 From Bott and Tu (1982). Reproduced with permission of Springer
Nature.

for the mth row. In (14.32) the first mapping

Ωm(M)−→
r ∏α

Ωm(Uα)

is the restriction mapping coming from the inclusionsUα ⊂M. We have seen
in §14.2.2.1 that the complex (14.32) is acyclic. In fact, here the homology of
(14.32) vanishes identically.
The other differential, which is denoted d′′ in §14.4, will be taken to be

(−1)pd: Kp,q→ Kp,q+1,

for the exterior differential d on the differential forms Ω(Uα0···αp). As already
explained in §14.4.1, the (−1)p is needed for the construction of the total dif-
ferential, which, to avoid confusion, we now write as

D= D′+D′′ = δ +(−1)pd; D2 = 0;

this is the notation in Bott and Tu (1982, §8), and in that book, this double
complex is called the Čech–de Rham complex and is denoted byC∗(U;Ω∗).
With the notation of §14.4 the acyclicity of the complex (14.32) says that

H(K;D′) = (Ep.q
1 )with E0,q1 =Ωq(M) and Ep,q

1 = 0 for p �= 0.We can therefore
apply (14.30) and conclude that

Hq
DR(M) = E0,q2 = E0,q∞ �

(
the Hq homology
of the total complex

)
, (14.33)

which is a way of writing (abusing notation somewhat) (14.29) in the case at
hand. We shall ignore the grading and, following Bott and Tu (1982), we shall
denote the homology of the total complex by HD

(
C∗(U;Ω∗)

)
. The above can

therefore be expressed by saying that

Hq
DR(M)� Hq

D

(
C∗(U;Ω∗)

)
, (14.34)
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where this isomorphism is the one induced by the restriction mapping r of
(14.32). We have already urged the reader to study the direct proof of (14.34)
– for instance in Bott and Tu (1982), Proposition 8.8 or p. 135 where it comes
under the picturesque name of the tic-tac-toe lemma – which is much more
instructive than the above and which is done without the use of spectral se-
quences.

14.5.2 The first spectral sequence

Now, as explained in §14.4, the same thing can be done the other way round
on Čech–de Rham double complexes; that is, we can start from the differential
D′′ = (−1)pd. This in some sense is simpler because here we are talking about
the ordinary de Rham cohomology on each open set U =Uα0···αp in (14.31).
There is no presheaf involved here and for every fixedU we have the complex

0→ R−→
ε
Ω0(U)−→

±d
Ω1(U)−→

±d
· · · ; (14.35)

in the jargon of the area, ε is called the augmentation, and sends 1 to the con-
stant function on U . Here we shall impose the additional condition that U is
a good cover, and then U � Rn a diffeomorphism. It follows from de Rham
(1960, §19), or Bott and Tu (1982, §4), that the complex(14.35) is acyclic and
has vanishing homology.
If we apply this to every U = Uα we conclude for the double complex

(14.31) that Ep,0
1 =Cp(U) is the Čech complex defined in §14.2.1, and Ep,q

1 = 0
for q �= 0. This spectral sequence is the one that in §14.4.2 we called the first
spectral sequence of the double complex (14.31).
The conclusion from §14.4 is therefore the analogue of (14.34), that is, that

the Čech cohomology ofM with respect to the cover U is

Hp(U) = Ep,0
2 = Ep,0

∞ = Hp
D

(
C∗(U;Ω∗)

)
. (14.36)

Combining (14.34) and (14.36) we finally obtain the required result:

H∗DR(M) � H∗(U;M). (14.37)

As already pointed out, the exact shape of this isomorphism is irrelevant. In
fact, the only thing that counts here is that the dimensions of the two sides of
(14.37), possibly infinite, are the same. The proof of (14.37) that we gave can
be found in Bott and Tu (1982, §§12.1, 14.16). Note also that the same notation
� will be used down the road a number of times and it will always stem from
(14.29) and will always be interpreted as saying that the dimensions on the two
sides are the same.



550 Cohomology on Lie Groups

14.5.3 The polynomial Čech–de Rham complex

All the notation and in particular that of the Čech–de Rham complexC∗(U;Ω∗)
will be preserved and the following additional features will be introduced.
First of all, a Riemannian structure will be assigned on the manifold M (and
some base point O ∈M will be fixed) and the condition supα diam(Uα)<+∞
and the local finiteness of Exercise 14.6 and the uniform boundedness of the
gradient for the corresponding partition of unity, as in §14.2.4.3, will be im-
posed on the cover. Additional conditions will be imposed on this cover U
later on, but already with these conditions and in the spirit of what we have
already done, it is possible to define a subcomplex of the Čech–de Rham dou-
ble complex. This will be denoted by C∗P(U;Ω∗) = (Kp,q

P ) = KP, and it will
be the subcomplex (i.e. Kp,q

P ⊂ Kp,q) of the Čech–de Rham complex where
X = (ωα ) ∈ ∏α Ωq(Uα0···αp) belongs to K

p,q
P if there exist constants C that

depend on X for which

‖ωα‖�C
(
1+ dist(Uα ,O)

)C
for all α, (14.38)

where ‖ωα‖ = sup
(|ωα(x)|+ |dωα (x)|

)
for the |ω | defined in §14.1 and the

sup is taken as x ∈ Uα . This will be called the subcomplex of polynomial
growth, denoted C∗P(U;Ω∗). The point of this definition is of course that the
two differentials D′, D′′ induce differentials on KP. Notice that the indices p, q
only assume a finite number of values; as a consequence, the dependence of C
on these indices in (14.38) is irrelevant.
It is important to understand that this is a ‘global’ condition of X and not one

on each of the coordinates separately; that is, to decide whether this X belongs
to Kp,q

P we have to look at all of its coordinates of the Čech chain at the same
time. We insist on this in order to stress the point that for some X ∈ KP it could
be that X = DY (or D′Y or D′′Y ) for some Y ∈ K and yet X is not a boundary
in KP (i.e. this Y cannot be chosen to belong to KP). To deal with this aspect of
our definition, we shall use the following.

The pivotal new observation This is the fact that if the good cover U that
we use satisfies the above two properties, and if we have a uniform bound on
the gradients of the partition of unity as in §14.2.4.3, then the acyclicity of the
polynomial versions of (14.32) and (14.35) is guaranteed. By this we mean the
acyclicity of the complex (14.32), where we rewrite (14.32) withΩm

P and K
j,m
P .

To see this we use the homotopy operator of §14.2.2 and the gradient estimates
of the partition of unity in §14.2.4.3. Observe that U does not have to be a good
cover for this.
Similarly, for (14.35) the acyclicity is uniform with respect toU in the sense
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that when p� 1 forω ∈Ωp(U)with dω = 0 we can solve dθ =ω with ‖θ‖U �

C‖ω‖U for the L∞ norms ‖ω‖U = supx∈U |ω(x)|, and some constant C that is
independent ofU =Uα . For this the full thrust of the construction of §14.2.4.3
is needed; see Exercise 14.5.
From the above we see that when the cover has all the ‘strong properties’

of §14.2.4.3, the issue that we pointed out is no longer a problem. It follows
that the proof of (14.37) that we gave generalises verbatim at a stroke to the
polynomial case. The conclusion is summarised as follows.
With the same notation as before, let U be a, not necessarily good, open

cover for which supα diam(Uα) < +∞, and for which the local finiteness of
Exercise 14.6 and the boundedness of the gradients of the partition of unity of
§14.2.4.3 holds. Then we have

H∗DR(M;Pol. )� HD
(
C∗P(U;Ω∗)

)
.

We shall now assume in addition that the cover is good and has all the above
properties. To fix ideas we shall assume that the manifold is a Lie group, or
at least a homogeneous space, and the covering is the one we explicitly con-
structed in §14.2.4.3. Then we can assert that

H∗P(U)� HD
(
C∗P(U,Ω

∗)
)� H∗DR(M;Pol. ).

14.6 Proof of Proposition 14.2

The classical de Rham cohomology As in the previous section, we shall start
with the classical cohomology and a fibre bundle F ⊂→ E −→

π
B and no Rieman-

nian structure or polynomial growth will be involved at first. In this section we
shall follow closely the exposition in Bott and Tu (1982, §14.18). The modifi-
cations that have to be made to that proof for the cohomology of polynomial
growth and for the proof of Proposition 14.2 from §14.1.4 will be given in the
second part of this section. To avoid irrelevant complications we will assume
throughout that the fibre F is connected.

Questions of notation The results that we shall prove, under appropriate con-
ditions, hold for general bundles. Here, however, we shall concentrate on a
connected Lie groupG and the corresponding homogeneous space G|K, where
K is a connected and compact subgroup. Depending on the point we wish to
emphasise we shall use interchangeably the following notation on the bundle:
E or G; F or K; B or G|K.



552 Cohomology on Lie Groups

14.6.1 The de Rham cohomology

We start from an arbitrary fibre bundle F ⊂→ E −→
π
B and some good cover U =

(Uα) on B. This cover will be assumed to give a chart for the bundle, as in
§14.1.5. For this, it suffices of course that the cover is sufficiently fine. It is
also clear that in the case of Lie groups that we consider in this section, the
construction that we made in §14.2.4.3 can be made fine enough for this to
hold. To this we associate π−1U = (π−1Uα) which is a cover (in general not
a good cover) of E . With this cover we construct the Čech–de Rham double
complex:

Cp(π−1U;Ωq) = ∏
α0<···<αp

Ωq(π−1Uα0,...,αp). (14.39)

The differentials on this complex are denoted, as in §14.5, by D= δ+(−1)pd=
D′+D′′. Then, as in §14.5, we take the homologywith respect to D′′ and obtain
the E1 term of the corresponding spectral sequence

Ep,q
1 = ∏

α0<···<αp
Hq(π−1Uα0,...,αp). (14.40)

We saw in §14.2 that the coefficients under the∏ signs belong to a locally con-
stant presheaf defined on the cover U and the presheaf is constant if the bundle
is principal (see §14.2.3; or for a general bundle, provided that B is simply
connected, see Bott and Tu, 1982, §§13, 14, p. 169). When this presheaf is
constant, (14.40) can be written Ep,q

1 =C∗
(
U;Hq(F)

)
and in what follows the

cohomology of the fibre will be assumed to be finite (i.e. have finite Betti num-
bers) so thatHq(F) =R×·· ·×R,m copies of the reals, and Ep,q

1 =C∗(U;Rm).
In an alternative notation, we can therefore write

Ep,q
2 = Hp(U;Rm) = Hp(B)⊗Hq(F). (14.41)

On the other hand, from the results of §14.5 it follows that E∗,∗∞ is some grad-
ing of H∗DR(E) – observe that for this we do not need the cover π−1Uα to be
good; see §14.5.1. We then invoke Exercise 14.8, and the assertions of §14.1.5
follow where we are in the classical situation and we are talking about standard
de Rham cohomology. More explicitly, we can recapitulate:

Bottom line We use presheaf cohomology and spectral sequence as follows:

The set-up F ⊂→ E → B is a fibre bundle (on the C∞ category, i.e. manifolds
and smooth mappings).
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The hypothesis

(i) H∗(F)<+∞, that is, the Betti numbers are finite. This holds for example
if F is compact.

(ii) The homology presheaf of the bundle is constant. Since we have assumed
that U is a good cover this is guaranteed by either of the following two
conditions:

(a) B is simply connected;
(b) F � some connected Lie group and the bundle is principal.

This is the case in particular when the bundle is given by a homogeneous space
of the connected Lie group G and G→G|K for some compact connected sub-
group K.
From the facts in §14.5.1 applied to the cover π−1U on E we deduce that

H∗DR(E) = E∗∗∞ . We now use (14.41) as explained above, and then Exercise
14.8 to obtain the required conclusion.

The conclusion In the above set-up, H∗(E) is finite if and only if H∗(B) is
finite. This is a result that was stated in §14.1.5.

14.6.2 The polynomial cohomology

The strategy As before we shall use the Riemannian structure of the total
space E of the bundle and for some good cover on B we define the subcom-
plex C∗P(π−1U;Ω∗) of (14.39) of the chains of polynomial growth. Using this
new double complex, the spectral sequence E1,E2, . . . ,E∞ can be defined as
in §14.5, and the proof for this polynomial cohomology, and in particular for
Proposition 14.2, follows exactly as for the classical de Rham cohomology
verbatim.
Some care is, however, needed because we are dealing with very abstract

creatures and one can very easily go wrong. To make sure that we have a real
proof we shall therefore, in the rest of this subsection, give precise definitions
and details. Notice, however, straight away that for this approach to go through,
the compactness of the fibre F = K is essential for otherwise the cover π−1U
cannot be used in §14.5.3.

The presheaf of the fibre bundle revisited We are working in the C∞ cate-
gory (manifolds and smooth mappings) with F ⊂→ E −→

π
B some fibre bundle,

and for simplicity we shall assume that F is a connected Lie group and the
bundle is principal. In fact, it is only the case G→ G|K of a homogeneous
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space (with G a connected Lie group and K a compact connected subgroup)
that we shall use.
We shall consider all V ⊂ B open subsets that are diffeomorphic to Rn and,

in addition, V is contained in some chart of the bundle (see §14.1.5). For each
such set we shall define H∗(π−1V ) = F(V ). In other words, the functor is only
defined in this subcategory of Open(B). We saw in §14.2.3 that we can define
an isomorphism

γ : H∗(π−1V )→H∗(F). (14.42)

This is induced (for a principal bundle) by the injection F → π−1V , F � ϕ →
gx ·ϕ , where x∈V , gx ∈ π−1x, and the multiplication is the group action (writ-
ten as a right action) on the principal bundle. This definition of γ is independent
of the choice of x and gx. The details can be found in §14.2.3.

A trivialisation over V Again, V is open in B and V � Rn. Let us consider
now the spaceV×F , which, we note, admits the natural structure of a principal
bundle; then just as before we can define

β : H∗(V ×F)→ H∗(F). (14.43)

Also, if we fix some trivialisation τV : π−1V −→� V ×F , we pick up isomor-
phisms

τ : H∗(V ×F)→H∗(π−1V ). (14.44)

These do not depend on the particular trivialisation because, by their construc-
tion, these mappings satisfy

τ = γ−1 ◦β , γ = β ◦ τ−1. (14.45)

14.6.2.1 The (quasi-)norms We shall place ourselves in a situation where
natural quasi-normswill be defined onH∗(F), F(V ) =H∗(π−1V ) andH∗(V×
F). Indeed, F , π−1V and V ×F are manifolds, and observe that once a Rie-
mannian structure is assumed on the manifoldM, we can assign the norm

‖ω‖= ‖ω‖∞+ ‖dω‖∞; ω ∈Ω∗(M), (14.46)

for the uniform norms, as in §14.1. Then since H∗(M) = Kerd/ Imd is a sub-
quotient of Ω∗(M), this space is also assigned canonically with a quasi-norm
(‘quasi’ because Imd is not necessarily closed; we shall, however, see that
in our case all these will be proper norms). This quasi-norm will be denoted
qM(x), with x ∈ H∗(M).
For the definition of the norm (14.46), the issue is to decide what Rieman-

nian structures we shall use on F , π−1V , V ×F . Here for simplicity we shall
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not examine the problem for general fibre bundles but restrict ourselves toG|K,
the homogeneous spaces that we described in §§14.1–14.2.
The Riemannian metric on G is then some G-left-invariant and K-right-

invariant metric as explained in §14.2.4.1, and this induces Riemannian met-
rics on K, G|K and on each V ⊂ G|K, π−1V and V ×K with the product
Riemannian structure. We have therefore the required quasi-norms on H∗(F),
F(V ) = H∗(π−1V ), H∗(V ×F). Without giving formal definitions one could
say that with this norm on F(V ) we obtain a ‘normed presheaf’, that is, a func-
tor with values in the category of quasi-normed vector spaces.
It is also clear that β is a quasi-norm isomorphism, that is,

qV×F(x) = qF(β (x)); x ∈ H∗(V ×F). (14.47)

We shall give the details in the exercise below.

Exercise To see this use the canonical mappings F→V ×F→ F defined by
the product structure. Then the induced vector space isomorphisms

H∗(F)−→
i
H∗(V ×F)−→

p
H∗(F)

are norm decreasing, with p ◦ i = Identity simply because the corresponding
mappings on the spaces of differential forms Ω∗( ·) are norm decreasing. No-
tice, however, that the product Riemannian structure is used in an essential way
here and therefore the way we defined the Riemannian structures matters both
here and in what follows.

More details Whether qF in (14.47) is a genuine norm or only a quasi-norm
is for us inessential because in the proof below we can in fact get round that
difficulty; see the remark at the end of the section. In the next few lines we
shall, however, see that we actually have a norm. By the definition of the norm
(14.46) (withM = F) it is clear of course that Kerd⊂Ω∗ is a closed subspace.
But a priori, the same thing is not clear for Imd. In our case, F is a compact
Lie group (or even a torus, and in particular H∗(F) is finite-dimensional; see
Bott and Tu, 1982, §5.3.1).
To show that Imd is closed for the normed topology of the norm (14.46)

we shall fall back on the previous notation that we used in Chapters 12 and
13 (i.e. de Rham’s and Schwartz’s notation; de Rham, 1960, §§9, 10) and set
Ω∗(F) = D so that the dual space, which is the space of currents on F , is
denoted by D ′. The two spaces (D ,D ′) are in duality and the mapping that is
dual to d of D is denoted by b on D ′ (see §12.3.6 and de Rham, 1960, §11).
Now let ω j ∈ D , for j = 1, . . . , be such that dω j → ω ∈ D for the uniform

topology. We need to show that there exists θ ∈ D such that ω = dθ . But
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from the above duality it is clear that there exists T ∈ D ′ such that ω = bT
(here we identify D ⊂ D ′ as a subspace (see §12.3.5 and de Rham, 1960,
§8). Indeed, dω j ∈ Imb and therefore also ω ∈ Imb because Imb = (kerd)⊥

(see (12.128): this is the non-trivial ‘Poincaré duality) is closed for the weak
topology σ(D ′,D) on D ′ (see Bourbaki, 1953).
The fact that T can be chosen to belong to D is not formal and it relies on

the regularisation of currents that we used in §12.10. In the classical reference
(de Rham, 1960, §15, especially p. 77), one sees that in the case of the Lie
group F this regularisation is obtained simply by convolution.
What this regularisation says is that we can construct two operators R and

A of D ′ (see §12.10) such that T −RT = bAT +AbT , for T ∈ D ′, and such
that RD ′ ⊂D and AD ⊂D . For the above ω we obtain therefore ω = b(RT +

Aω) = dθ with θ ∈D , as needed.
Note that all the above is a proof of the ‘elementary’ fact that Imd is closed

for, say, F a torus. The proof that we suggested is perhaps not the simplest, and
certainly not the more elementary, since Poincaré duality is used. The reader
is invited to give a more direct proof for themselves. Hint. Use the fact that the
homologyH(F) is finite-dimensional and the observation on Banach spaces in
the exercise of §12.12.1. To be able to use the Banach space ΛP induced by the
norm (14.46), the same regularisation of §12.10 has to be exploited. This will
show that the dimension of the homology of ΛP is no larger than that of the
homology of Ω∗. Some work is needed here.

The choice of the trivialisation This subsection is pivotal. We consider U =

(Uα), the good cover that was constructed in §14.2.4.3 on the base space B=

G|K of the bundle, and restrict further the category of open setsV ⊂B on which
the functor F(V ) =H∗(π−1V ) is defined. For this subcategory we demand that
V � Rn (diffeomorphisms) and also V ⊂ Uα for some open set of the cover.
Notice that by the special properties of the cover, for each fixedV only finitely
many indices α can be used. This particular property in the construction of the
cover, as defined in §14.2.4.3, is, however, not essential. What is essential is to
show that we can define trivialisations

τα : π−1Uα →Uα ×K (14.48)

that induce Riemannian quasi-isometries (for the Riemannian structures that
we defined in §14.6.2.1) uniformly in α .
To see this, we shall fix some trivialisation π−1U �U ×K for some small

ballU ⊂G|K centred at ė ∈G|K (the class of the identity – note that this is the
identity element of the group G/K where K is normal). Then sinceUα = gαU
for some gα ∈ G (the G-actions on G|K) we have π−1Uα = gαπ−1U (group
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multiplication). This induces the required trivialisations

π−1Uα � π−1U �U×K �Uα ×K, (14.49)

where the final identification in (14.49) which is induced by U → gαU =Uα
is a Riemannian isometry on G|K. This construction depends of course on the
choice of the representatives gα .
Finally, the following additional choice has to be made before we complete

our construction. For every V in our subcategory we shall choose one (out of
the finitely many)Uα such that V ⊂Uα and then the trivialisation (14.49) that
we have chosen will induce a trivialisation

τV : π−1V −→� V ×K. (14.50)

This trivialisation will now be fixed for eachV . This τV is a Riemannian quasi-
isometry uniformly in V (induced Riemannian structure on the left of (14.50)
and the product Riemannian structure on the right).
Now we go back to (14.44) and define

τV = H∗(V ×F)→ H∗(π−1V ). (14.51)

This, we have seen, is uniquely determined, is independent of the previous
choices, and the fact that (14.50) is a Riemannian quasi-isometry implies that
(14.51) is a (quasi-)norm equivalence, that is,

qV×F(x)≈ qπ−1V (τV (x)); x ∈H∗(V ×F). (14.52)

Now, from γ = β ◦ τ−1V in (14.45) and from the fact that τV and β preserve, up
to equivalence, the corresponding q( ·) seminorms (see (14.47)), we conclude
that

qπ−1V (x)≈ qK(γ(x)); x ∈ H∗(π−1V ). (14.53)

Furthermore, the equivalences in (14.52) and (14.53) are uniform in V .

A digression (Presheafs of quasi-normed vector spaces.) We shall leave it to
the reader to give the formal definitions if they so wish but what we have
done can be summarised as follows.We constructed a presheaf of quasi-normal
vector spaces that is isomorphic (in the sense of §14.2.1.3, i.e. up to quasi-norm
equivalence) to the trivial presheafH(F) assigned with the quasi-norm that we
defined in this subsection.
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Combining the previous observations Here we shall put things together and
use freely the terminology of presheafs. For this, with U a good cover of B as
in §§14.2.4.3, 14.6.1 we shall go back to the double complex of (14.40):

X = ∏
α0<···<αp

Hq(π−1Uα0,...,αp) (14.54)

and consider a subcomplex XP ⊂ X – the polynomial complex.
To define XP we decree that x= (xp,q) ∈ X belongs to XP if there exist con-

stantsC> 0 such that the coordinates xp,q(α0, . . . ,αp) ∈Hq(π−1Uα0,...,αp) sat-
isfy

qπ−1Uα (xp,q
(
α0, . . . ,αp)

)
�C
(
1+ dist(ė,Uα0,...,αp)

)C; (14.55)

here we recall Uα0,...,αp ⊂ B = G|K and dist(·, ·) refers to the distance on the
homogeneous space G|K, where ė is the identity class.
Another way of writing the double complex of (14.54) is

X = ∏
α0<···<αp

H q(Uα0,...,αp), (14.56)

whereH q denotes the constant presheaf of §14.2.3 defined by the coverUwith
values on the finite-dimensional vector spaceHq(F)=R×·· ·×R (cf. (14.42)).
Now taking the D′ differential (see §§14.4, 14.5.1) we obtain

X2 =Hp(U;Hq(F)) = Hp(U)⊗Hq(F). (14.57)

This is exactly as we did in §14.6.1. We shall now restrict the action of
D′ to the polynomial subcomplex XP. Because of the quasi-norm equivalence
(14.53), we obtain in this way the corresponding (X2)P which is

(X2)P = HP(U)⊗H(F). (14.58)

Dénouement We shall now go back to the Čech–de Rham complex (14.39)
that is associated with the bundle

Cp(π−1U;Ωq) = ∏
α0<···<αp

Ωq(π−1Uα), (14.59)

and consider the associated polynomial subcomplex for which ω = (ωp,q), an
element of (14.59), has coordinates ωp,q(α) ∈Ωq(π−1Uα) that satisfy

‖ωp,q(α)‖�C(1+ dist(ė,Uα))
C; α = (α0, . . . ,αp), (14.60)

for the norm (14.46) and where the constantC depends onω (notice thatωp,q �=
0 only for a finite number of p, q so, at least here, there is no point speculating
about whether C could also depend on these indices). The compactness of F
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and the fact that the distance of Uα from ė is approximately the same as the
distance of π−1Uα from e, are here essential. This subcomplex of (14.59) will
be denoted byC∗P(π−1U;Ω∗).
As in §14.5 we shall apply the D′′ differential on this polynomial Čech–

de Rham subcomplex to get the first term of the spectral sequence E1 =
(
Ep,q
1

)
and this, after a moment’s thought, is none other than the XP that we defined
in (14.55). In that ‘moments reflexion’ [sic], use the notation of (14.55) to
represent each xp,q(α) by a cycle ωp,q(α) ∈ Ωq(π−1Uα) and in such a way
that (14.60) holds. The other way round, the fact that E1 ⊂ XP is even more
obvious.
The second term of the spectral sequence, as explained in (14.58), is there-

fore

Ep,q
2 = Hp

P(U;B)⊗Hq(F). (14.61)

On the other hand, by the abstract theory of §14.4, we know that
E∞ = HD

(
C∗P(π

−1U;Ω∗)
)

(14.62)

for some appropriate graduation of the right-hand side.
Now the complex C∗P(π−1U;Ω∗) is exactly the polynomial complex on the

space E for the cover π−1U that we considered in the previous section; see
(14.38). We can therefore apply the results of §14.5.3 and deduce that the right-
hand side of (14.62) is H∗DR(E;Pol.). Ignoring the graduations we deduce that
the two vector spaces are isomorphic:

E∞ � H∗DR(E;Pol.). (14.63)

To make (14.63) work we use the partition of unity subordinated to π−1U
(cf. §14.2.2) that we pick up by pulling back the partition of unity of the origi-
nal cover U on B. The condition on the gradients of this partition of unity (see
§14.2.4.3) is therefore satisfied simply because this holds for the good cover U
on B.
It remains now to combine (14.61), (14.62) and (14.63) with Exercise 14.8

and we conclude the required result:

dimH∗DR(E;Pol.)<+∞ ⇐⇒ dimH∗P(U;B)<+∞. (14.64)

Given that on B , H∗P(U;B) and H
∗
DR(B;Pol.) are the same by the previous

subsection, it follows that Proposition 14.2 has been proved, and by §14.3.2,
this completes the proof of (14.5) and we are done.

Remark Throughout the proofs we have used, at least implicitly, the fact that
qF is a norm. But even in situations where we have problems guaranteeing this
(e.g. dimH∗P <+∞ for F , but F is not compact) the proof can be adapted.
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Indeed, we have in general H∗P = H ′ ⊕H ′′, a direct decomposition and qF
restricts to a proper norm on H ′ and vanishes on H ′′. What is then obtained,
instead of (14.61), is

E2 =
(
H∗P(B)⊗H ′

)⊕ (H∗(B)⊗H ′′). (14.65)

Notice that both the polynomial and the standard cohomologies of B are in-
volved here. (Warning. The author confesses that he has not written out the
details of this approach, and it is in this light that (14.65) should be viewed.)

Exercise Now that Proposition 14.2 has been proved, the reader is invited to
do the following ‘retrospective’ and figure out why the following very simple
(but incorrect!) ‘proof’ of (14.16) does not work: repeat the argument of the
exercise in §14.3.2 with the finite group F replaced by the central compact
torus of (14.16). There is after all no problem in replacing 1

|F | ∑x∈F by the
normalised integral

∫
F . What goes wrong is subtle (Greub et al., 1973, §6.3).

It is possible to straighten things out. The procedure for doing this is deep and
interesting (cf. §G.6 below).

Appendix: Künneth’s formula

A particularly simple bundle is the one where E = B×F is a direct product.
Spectral sequences can be used to prove that

H∗(E) = H∗(B)⊗H∗(F)
and the analogous formula for the polynomial cohomology (cf. Bott and Tu,
1982, §14.19). This is what is called Künneth’s formula. Here, for simplicity,
we shall assume as before that F is compact.
One way to do things is to start from the simple observation that in this

special case in the corresponding Čech–de Rham complex of (14.59) we can
specify the following subcomplex:

A= F⊗B=Ω∗(F)⊗C∗(U;B)⊂C∗(π−1U;Ω∗) = E. (14.66)

As we observed in Exercise 14.7, the E2 of A is just H(F)⊗H(B) and
furthermore this spectral sequence degenerates so that E2 = E3 = · · ·= E∞.
Now we have seen that the E2 term of the spectral sequence of the Čech–

de Rham complex E is exactly the same. By very simple, purely algebraic
considerations, it follows that the same thing holds for the successive terms
E2 = · · · = E∞ and these are identical for A and E. This is the content of Car-
tan and Eilenberg (1956, Theorem 15.3.2) or McCleary (2001, §3.4). You do
not have to know how the spectral sequences are constructed to use this refer-
ence here. What we did in §14.4 suffices provided that you adopt the correct
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point of view (which we did not!) so that the correspondence that assigns the
spectral sequence E(A) to A is functional. As we have already said, this view-
point involves just a module A assigned with differentiation and a compatible
filtration.
Therefore H∗(E), which is isomorphic to E∞, is H(F)⊗H(B), as stated in

the Künneth formula.

Exercise Assume that H∗P(F)< +∞ (but that F is not necessarily compact).
The polynomial Čech–de Rham complex can again be defined. Here, for the
coordinates ωp,q ∈Ωq(π−1Uα0,...,αp) we demand that |ωp,q(x)|+ |dωp,q(x)| �
C(1+ |x|)C, with x ∈ B×F and |x| denotes the distance from the base point.
Adapt the arguments of this subsection to show that H∗P(E) =H∗P(B)⊗H∗P(F).
This exercise, while not important in our considerations, is interesting for

several reasons. In particular, the spaces Ωq(π−1Uα) are not now normed
spaces but have instead an inductive limit topology (see §12.13). Nonetheless,
natural quasi-norms can be induced on the corresponding homologies because,
by our hypothesis, these are finite-dimensional.
This is also the moment, if ever there was one, for the reader to check out

the proof of Künneth’s formula given by A. Grothendieck that uses the theory
of nuclear (locally convex) topological vector spaces (see Schwartz, 1953). For
more on this see Appendix G next. For the author, that proof was particularly
inspiring but this may well reflect a subjective view.

An extension to more general fibre bundles

The reader is invited to extend the results of §14.6 to the setting of a general
fibre bundle F ⊂→ E → B where the following hypothesis is made: Riemannian
structures are assigned to the three connected manifolds F , E , B, and a triviali-
sation (cf. §14.1.5) exists such that ϕα : π−1Uα→Uα×F are quasi-isometries
uniformly in α . Notice also that this situation occurs naturally in our theory:
E = G a connected Lie group and Γ ⊂ G is some discrete central subgroup.
We then take F to be some closed connected Abelian subgroup such that F/Γ
is compact (see Hochschild, 1965, Chapter XVI). An interesting spectral se-
quence as in §14.6 crops up from this. Furthermore, we feel that with a bit of
luck this could settle the ‘ultimate reduction’ of §14.1.4. There is a problem to
all of this however. (What is the problem?Hint. Look at (G.1) in Appendix G.).
On the other hand, it is very likely that this formalism can be used to provide
an alternative proof of (14.24) without the use of the Cartan–Leray spectral
sequence of §G.2.3. The reader is invited to explore this set-up further.



Appendix G

Discrete Groups

The aim of this appendix is to introduce the reader to some interesting prob-
lems related to our theory as applied to discrete groups (cf. §1.9). To be able
to do this in a few pages I had to recall some of the background material in a
rather sketchy way (in particular, in §§G.1.2, G.3.1, G.5 below). Those readers
that get interested in these problems will be able to find additional information
on this necessary background in the literature and in the references that will be
supplied in the text.
Throughout this appendix, Γ will denote some discrete, finitely generated

group and |γ| = dΓ(e,γ), for γ ∈ Γ, will, as in §1.1, denote the word distance
from the identity element.

G.1 Group Action on a Metric Space

G.1.1 The set-up

Here X̃ will be some metric space on which Γ acts isometrically and discretely;
that is, every x ∈ X̃ has a neighbourhood U such that d(U,γU) > 0, for all
γ ∈ Γ, with γ �= e, where d is the distance function of X̃ . The quotient mapping
π : X̃ → X = X̃/Γ induces then a distance on X (see Exercise 2.6).
Although most of the considerations of the appendix can be made in this

general setting, we shall tacitly concentrate on just the following two cases:

(a) The covering map of §14.2.4.4. Here G̃ is some connected Lie group, Γ
is some central discrete subgroup and π : G̃→ G̃/Γ = G is the canoni-
cal homomorphism. The distances are the left-invariant distances on these
groups and Γ is assumed to be 0-distorted (see §14.3.3).

(b) The uniform lattice.Here G̃ is, as before, a connected Lie group and Γ⊂
G̃ is some discrete subgroup such that the homogeneous space G̃|Γ= X =

562
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(Γg;g ∈ G̃) is compact. The canonical projection is denoted by π : G̃→
G̃|Γ as before. The left action of Γ on G̃ and the left-invariant distance on
G̃ are used here.

The 0-distortion In both of these cases the action of Γ on X̃ is 0-distorted.
In case (b) this means that d(x,γx)≈ |γ|, that is, that there exist fixed uniform
constants such that d(x,γx) � C|γ| and c0|γ| � d(x,γx), as long as x lies in
some fixed compact subset whose image by π is the whole of X ; see §2.14.2.

G.1.2 Covering spaces

We shall use the same notation, U = (Uα) as in §14.2.1, to denote an open
cover of X , and assume throughout that diam(Uα) � c1 is sufficiently small
(depending on c0). In that case π−1Uα breaks into disjoint pieces

⋃
γ∈Γ γŨα ,

where Ũα ⊂ X̃ is open, and diamŨα � c1. The projection π reduces to a bijec-
tive isometry on each of these pieces.
By fixing once and for all some representative Ũα we can index Ũ= π−1U=

(Γ×U). In this indexing it will be convenient to specify the representative Ũα
further. We shall fix Õ ∈ X̃ , some base point on X̃ (the identity of G in cases
(a) and (b)) and set O = π(Õ) ∈ X . For Uα ∈ U we shall then choose some
Ũα ∈ Ũ such that dist(Õ,Ũα) ≈ dist(O,Uα) (several such choices exist). With
this choice then, in the identification π−1U = Γ×U, for any Ũ = (γ,U) we
have

dist(Õ,Ũ)≈ |γ|+ dist(O,U), (G.1)

where ≈ has the obvious meaning (namely, if Xi are the two sides of (G.1)
then Xi � CXj+C, with i, j = 1,2; see Definition 11.4). With this fixed, and
if the choice of c1 for the diameters is small enough, the following holds: if
Uα ∩Uα ′ �= /0 and γ ∈ Γ then there exists one and only one γ ′ ∈ Γ such that
γŨα ∩ γ ′Ũα ′ �= /0. The second term in the right-hand side of (G.1) is of course
only relevant in case (a).

Čech complexes With the covers Ũ, U on X̃ and X we can associate the Čech
complexes C∗(Ũ), C∗(U) as in §14.2.4.4. The differentials will be denoted δU
(in either case). The group Γ acts naturally onC∗(Ũ) and the projection induces
π∗ : C∗(U)→ C∗(Ũ). And it is clear that the differentials intertwine the Γ-
action and the projection. Explicitly,

δU ◦ γ = γ ◦ δU , δU ◦π∗ = π∗ ◦ δU .
To see this think of c1, the mesh of the cover, satisfying c1� c0. Let us write
C∗I (Ũ) = [c ∈C∗(Ũ); γc= c, γ ∈ Γ]. Then it is clear thatC∗I (Ũ) = π∗C∗(U).
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Exercise LetU =U1∩·· ·∩Um �= /0 forUj ∈U, let Ũ j ∈ π−1Uj be appropriate
pieces in the above decomposition chosen such that Ũ = Ũ1∩·· ·∩Ũm �= /0, and
let also c ∈C∗(U). Then π∗c(Ũ) = c(U), where we use (14.11) to take care of
the order of the indices. Use (14.11) to verify the above formulas (see Bott and
Tu, 1982, Exercise 8.4 if you get stuck). The fact that the differential is inde-
pendent of the ordering of the indices is something that is standard in simplicial
homology, where the order of the vertices of a simplex gives the orientation
of the simplex (see standard references on algebraic topology, e.g. Hilton and
Wylie, 1960).

This way of using the ‘orientation’ (i.e. the ordering of the index set of the
covering) by invoking (14.11) is ‘cavalier’ to say the least and so also therefore
are the above explanations about the differential. This is already the attitude
adopted in Bott and Tu (1982) and probably it is the best that can be done if one
is not prepared to devote a whole section to the use of the boundary operator in
oriented (abstract) simplicial complexes in algebraic topology. The reader who
is not happy with this should consult standard references in algebraic topology,
for example Hilton and Wylie (1960, §2.3) or Godement (1958, Chapter 3).

Čech complexes of polynomial growth These complexes,C∗P(Ũ),C
∗
P(U) (alt-

ernatively written as C∗(Ũ;Pol.)), can be defined exactly as in §14.2.5. Simi-
larly, we can define C∗(Γ×U;Pol.) for the product distance on Γ×U, as the
one used in (G.1). The equivalence (G.1) then shows thatC∗P(Ũ) =C∗P(Γ×U).

Good covers The cover Ũwill be throughout a good cover of the group G̃with
all the properties of §14.2.2. In case (a), this was explained in §14.2.4.4. In
case (b), we use the Riemannian structure on G|Γ induced by the left-invariant
Riemannian structure on G̃ and the compactness to make a construction as we
did in §14.2. We shall skip the details.

G.1.3 Informal description of the problem

Everything that will be done in this appendix stems directly from the relations
that exist between the homologies of the two complexes C∗(Ũ) and C∗(U). It
was for this purpose that H. Hopf introduced the notion of homology of the
discrete group Γ. (This incidentally has since become a subject of its own; see,
for example, Brown, 1982.)
Here we shall examine exactly the same problem in terms of the polynomial

homologies and see how these relate to the homology of Γ. Few things can be
proved and many more interesting problems naturally arise. We believe there
is scope for further development.
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To describe the new difficulty that arises in two lines, think of the dual situ-
ation where we consider F̃ = F(Ũ) and F = F(U), the corresponding subcom-
plexes of the finite chains. Then the key algebraic fact that one exploits in the
classical theory is that F̃ = F⊗Λ(Γ), where Λ= RΓ is the group algebra and
is defined in §G.2.2 below, that is, that F̃ is a free Λ-module and that we can
take as a Λ-basis an R-basis of F .
The analogous fact for the two complexes S and S̃ of Čech chains onG and G̃

of superpolynomial decay (this is the analogue of the finite complexes; precise
definitions will be given below) no longer holds.
The fascinating thing here, however, is that we can save the day by using

the topological tensor product and we have S̃ = S⊗̂S (Γ) where S (Γ) is the
algebra of functions on Γ of superpolynomial decay (see §G.3.1 below), that
is, the completion of Λ(Γ) (in the sense of topological vector spaces) for an
appropriate metrisable topology.
The development of the topological tensor product, as well as applications

to algebraic topology, is the subject matter of A. Grothendieck’s thesis (see
Grothendieck, 1952; Schwartz, 1953) and as I have already said, Grothen-
dieck’s work in this area has been of great inspiration to me.

G.2 The Group Γ= Z

In this section Γ will be alternative notation for the group of integers Z.

G.2.1 Elementary complexes

Let C0, C1 be two copies of the vector space of real sequences indexed by
the integers ∏i∈ΓRi. More precisely, we shall denote C0 = (ci; i ∈ Γ), C1 =
(ci,i+1; i ∈ Γ), where the notation used is suggested by the identification that
we can make of Cp =Cp(U; R) with the Čech chains of §14.2.1 for the cover
of the manifold R given by a succession of congruent intervals . . . ,c0,c1, . . .
with the intersections ci ∩ ci+1 = ci,i+1. The notation ci, ci,i+1 will be used to
denote the coordinates of the chains c inC0 orC1 respectively (see Figure G.1).

· · ·
( )

c−1
( )

c0
( )

c1
( )

· · ·

c−2,−1 c−1,0 c0,1 c1,2

Figure G.1
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We shall then define the mapping

δ = δC : C0→C1; (δc)i,i+1 = ci+1− ci; c ∈C1,
which is the Čech differential of §14.2.1. This gives rise to the complex

C∗ : 0→C0
δ−→C1→ 0. (G.2)

Since Kerδ is the one-dimensional space of constant sequences, we have the
homology H0 = R. Also Hp = 0 for p �= 0.
Exercise Show that H1 = 0. The other values of p are clear. Let

C1+ = (. . . ,0,0,c0,1,c1,2, . . .), C1− = (. . . ,c−2,−1,c−1,0,0,0, . . .)

be subspaces so that C1 =C1−⊕C1+. We define
C0 � h+(c) = (. . . ,0,0,c0,1,c0,1+ c1,2,c0,1+ c1,2+ c2,3, . . .)

for c ∈C1+, where the ‘first non-zero’ term is at the coordinate i= 1, and
C0 � h−(c) = (. . . ,c−2,−1+ c−1,0,c−1,0,0,0, . . .)

for c ∈ C1−, where the ‘final non-zero’ term is at i = −1. If we set h : C1 →
C0, the linear mapping that coincides with ±h± on C0± (abusing notation, this
could be ‘thought of’ as h= h+−h−), we obtain the required inverse operator
δ ◦ h = Identity that proves the assertion. In the terminology of homological
algebra, h is a homotopy operator.
Notice finally that the group Γ acts on the complex C∗ by the shift in the

coordinates, for example (γc)i = ci+γ , for c ∈C0. This action intertwines with
the differential δ , that is, γ ◦ δ = δ ◦ γ , but not of course with h.
Remark (Generalisation to Γ = Zn) We can obtain the same type of com-
plex with a tessellation of Rn by translates of the unit cube as in Figure G.1.
We shall denote by U the corresponding open cover as in Figure G.1. Doing the
construction of the homotopy directly is now more involved. One can on the
other hand use the de Rham cohomology of Rn, namely HDR(Rn) � H∗(U),
and use the homotopy supplied by the Poincaré lemma for the de Rham com-
plex (see Exercise 14.5). Then one can use the general theory to pass from this
to the homotopy for the Čech complex (see Bott and Tu, 1982, remark in §9.7).
None of this, however, will be of any use to us here.

The following subcomplexes will also have to be considered:

F∗ = F∗(Γ) : 0−→ F1
δ−→ F0 −→ 0; δ = δF ,

E ∗ : 0−→ E 0
δ−→ E 1 −→ 0; δ = δE ,

(G.3)
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with F1,E 0 ⊂C0, F0,E 1 ⊂C1, and with Fi consisting of the sequences of finite
support (i.e. all but finitely many coordinates are zero) and E i are the sequences
of polynomial growth (e.g. |cn|= O(|n|C). The notation E comes from distri-
bution theory; see Schwartz (1957) or §G.5.1.2 below. Also we have switched
the degrees 0 and 1 in the F∗ complex to make it correspond to the dimen-
sions of a simplicial decomposition of R that the reader should visualise for
themselves.
What is clear is that the homotopy operator of the above exercise operates

on E ∗; that is, h(E 1)⊂ E 0, and therefore, as in the complex C∗, we also have
H0(E ∗) = R and Hp(E ∗) = 0 for p �= 0.
For the complex F∗ we haveH0(F∗) =R andHp(F∗) = 0 for p �= 0. The next

exercise shows this.

Exercise Let ε(c) = ∑i ci,i+1 ∈ R for c ∈ F0. Then ImδF = Kerε .

This is seen by a different homotopy operator: hF(Kerε)⊂ F1 with hF(c) =
(∑i�p ci,i+1; p ∈ Γ), and from this it follows that ImδF = Kerε . On the other
hand, clearly KerδF = 0, and our assertion follows.

G.2.2 A short digression: homology of the discrete group Γ

Let Λ = RΓ be the group ring with real coefficients; that is, Λ = ∑γ∈Γ αγγ ,
with αγ ∈ R finite sums and where the group multiplication and the linearity
over R induces the multiplication. For every Λ-module N (this is a real vector
space that admits a Γ-action) we can define the new complex F∗(Γ)⊗Λ N (=
0→ F1⊗Λ N → F0⊗Λ N → 0) and the homology of this complex is written
H∗(Γ; N): the homology of the group Γ (cf. Hilton and Wylie, 1960, §10.7),
with values in N. Clearly, here Hp = 0 if p �= 1,0.
Assume now that the action of Γ on N is trivial, that is, γn = n, with γ ∈ Γ,

n ∈ N, and denote H∗(Γ) = H∗(Γ; R) with trivial action of Γ on R. Then
H∗(Γ⊗Λ N) = H∗(Γ)⊗N; the ⊗ without the index means ⊗ over R. This is
seen by the use of a basis N = ∑iRi, countable or not, where Ri

∼= R. In our
case it is also clear that dimH1(Γ)� 1 (it actually is 1 but we do not need this).
We also have H0(Γ) = R.

Exercise We can verify this directly without recycling abstract definitions
from homological algebra (see Cartan and Eilenberg, 1956, §X.4) as follows.
It is clear that Fα ⊗ΛN = N (= (. . . ,0,1,0, . . .)⊗N)) for α = 0,1 because we
can use the Γ-action to shift the non-zero coordinates to i = 0. On the other
hand, δF(. . . ,0,1,0, . . .) = (0,0,1,−1,0,0, . . .) and therefore

δF ⊗ Id
(
(. . . ,0,1,0, . . .)⊗ n)= (. . . ,0,n,−n,0, . . .) = 0 in F0⊗ΛN.
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This implies that Im(δF ⊗ Id) = 0 and H0(F∗ ⊗ΛN) = N.

G.2.3 Covering spaces with group Γ= Z and the Cartan–Leray
spectral sequence

Here we shall go back to the covering map G̃→ G̃/Γ = G (where Γ = Z) of
case (a) of §G.1.1. The cover U of G will be as in §14.2.4.3 and it will be
sufficiently fine for all the considerations of §G.1.2 to hold. The corresponding
cover on G̃ will be Ũ; cf. also §14.2.4.4.
The double complex that we shall consider is M = F∗ ⊗ΛC∗(Ũ), where the

Γ-action on C∗(Ũ) is as in §G.1.2. From this we shall construct the two spec-
tral sequences as in §14.4. The fact that the arrows in F go the wrong way
only makes notational differences in §14.4 and anyway we can put the arrows
straight by setting F−i = Fi, but then we obtain second quadrant spectral se-
quences. (In (G.8) below we shall refer to Bott and Tu, 1982, Exercise 12.12.1
and there one finds a similar reversal of the arrows which happens for the same
reason.)
We consider first the ‘first’ spectral sequence of §14.4.2, that is, the one

where we start by taking the d′′= δU onM. We clearly obtain ′′E∗∗1 = F∗(Γ)⊗Λ
H∗(Ũ). But we have already seen that the Γ-action on H∗DR(G̃) and therefore
also on H∗(Ũ) is trivial (see the exercise in §14.3.2). From §G.2.2 it therefore
follows that

′′E∗∗2 = H∗(Γ)⊗H∗(Ũ). (G.4)

Now for the ‘second’ spectral sequence, where we start with d′ which is
induced by δF . We shall use the fact that Λ⊗ΛN =N for any Γ-moduleN; this
is automatic by the definition of ⊗Λ. It will also be convenient to use §G.1.2
and identify Ũ with Γ×U. This allows us to identify C∗(Ũ) with C∗ which is
a space of double arrays c(γ,U), where γ ∈ Γ and U is a finite intersection
of open sets of U. The double complex M consists of just the first two rows

C∗(0) and C
∗
(1), each identical to C

∗; and d′ induces C∗(0)
δF⊗Id−−−→ C∗(1). With this

differential we have

C∗(0) �
(
c(γ,U)
)→ (c(γ+ 1,U)− c(γ,U)

)∈C∗(1).
Therefore Ker(δF ⊗ Id) consists of all the

(
c(γ,U)
)
that are independent of

γ . Hence this kernel and so also ′E0,∗1 can be identified with C∗(U), the Čech
complex of U on G (see the definition of C∗I in §G.1.2). But ′E1,∗1 = 0 (and
also, trivially, ′Ep,∗

1 = 0 for p �= 0,1), because the homotopy operator h of
the exercise from §G.2.1 can be used on just the first coordinate γ of c(γ,U).
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Furthermore, from §G.1.2 it follows that the second differential d′′ = δU on
C∗(Ũ) induces on ′E0∗1 =C∗(U) the Čech differential δU with respect to U.
The bottom line is that we are in the situation where (14.29), (14.30) apply

so that with a slight abuse of notation we have

′E0,n2 = · · ·= ′E0,n∞ = Hn(U) = ∑
p+q=n

′′Ep,q
∞ (G.5)

for some filtration of the cohomology. For more on this Cartan–Leray spectral
sequence see McCleary (2001, §8bis.9).
If we combine (G.4) and (G.5) and the abstract considerations of Exer-

cise 14.8 in §14.4.5 we obtain the required conclusion. Namely that in the
covering π : G̃→ G̃/Γ= G the cohomology H∗(Ũ;G̃) is finite-dimensional if
and only if the cohomologyH∗(U;G) is finite-dimensional. This point is elab-
orated on further in the example of §G.5 below, where we deal with a situation
that is more involved.
In the above we have worked with the ordinary Čech cohomology or, equiv-

alently, the ordinary de Rham cohomology, and, because of (12.1), we hardly
need to do all this work to prove the finiteness of the cohomology.On the other
hand, by the above consideration,we are only a step away from the equivalence
(14.22) on polynomial cohomologies. This was the main geometric motivation
of this appendix.

The polynomial cohomology For this we apply exactly the same steps on the
polynomial version of the previous double complexMP = F∗ ⊗ΛC∗P(Ũ), using
the notation of §G.1.2 for the polynomial complex. The constructions that we
have made are verbatim the same here, and we shall leave to the reader the task
of writing out the details. The following simple observation has to be taken into
account: sinceC∗P(Ũ) =C∗P(Γ×U), as explained at the end of §G.1.2, it follows
that the homotopywhich we used to show that ′E1,∗1 = 0 can be used again. This
holds because the explicit formula that implies that homotopy gives h(E )⊂ E :
see §G.2.1.

G.3 Discrete Groups

G.3.1 Notation and free resolutions

From here until the end of the appendix, Γ will denote some finitely generated
group and |γ|= dΓ(e,γ) will be the word distance from the identity (see §1.1).
Together with the group ring Λ= RΓ of §G.2.1, we shall use Λs = S (Γ), the
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larger ring of all sums x= ∑γ∈Γ αγγ for which

‖x‖C =∑
γ
|αγ | |γ|C <+∞ for all C > 0.

Exercise Verify that S (Γ) is closed under multiplication because |γ1γ2| �
|γ1|+ |γ2|. But for our purposes what counts is that it is a module over Λ. We
shall call this the space of functions of rapid decay on Γ.

In the homology theory for discrete groups one says that Γ is an (F)-group
if it admits a free resolution of finite type. More explicitly, there exists

F∗ = F∗(Γ) : · · · −→ Fn
δ−→ Fn−1

δ−→ ·· ·F0 −→ 0; δ = δF , δ 2 = 0, (G.6)

where Fj = Vj ⊗Λ for finite-dimensional real vector spaces V0, V1, . . . , and
such that the homology of (G.6) satisfies Hp = 0 for p �= 0, and H0 = R. To
stay closer to the terminology used in homological algebra, the Fj are free Λ-
right modules and the Λ-action on H0 = R is trivial, that is, xγ = x, γ ∈ Γ,
x ∈ H0. One then says that (G.6) is a Γ-free resolution of R. We shall say that
Γ is an (S )-group if it admits a resolution as in (G.6) for which in addition the
complex

S∗ = S∗(Γ) : · · ·Sn δ−→ Sn−1 −→ ·· ·S0 −→ 0; δ = δS, (G.7)

with Sn = Fn⊗Λ Λs = Vn⊗Λs and the induced differential, also satisfies, for
its homology, H0 = R, and Hp = 0 for p = 0. Here Λs is considered a left Λ-
module and, in the terminology of homological algebra, we are simply saying
that H(Γ;Λs) = R.

Example The resolutions (G.3) for Z satisfy these properties because the
mapping ε and the homotopy hF in the exercise of §G.2.1 adapt in an obvious
way to the corresponding S∗.

Using algebraic or topological methods, many things can be proved about
(F)-groups. For example, finite groups, finitely generated Abelian groups etc.
are (F)-groups (see Serre, 1970; Brown, 1982). We say that a group is strictly
polycyclic (Ragunathan, 1972) if a finite composition series Γ⊃Γ1⊃ ·· · exists
such that Γi/Γi+1 ∼= Z. These groups are (F)-groups.
In the next subsection we shall put together some observations on the above

notions that are related to the subject of the book. We shall be brief and for the
proofs in the subsequent section we shall be even briefer. As they stand, these
results are mere curiosities. One can, however, speculate whether these (S )-
groups can be used as a substitute to obtain a B–NB classification for discrete
groups that is related to random walks, as is the case for Lie groups.



G.3 Discrete Groups 571

G.3.2 The B–NB classification for lattices

Nowwe shall concentrate on case (b). We shall denote by Γ⊂ G̃ some uniform
lattice in some simply connected soluble Lie group; G̃ is a model. Recall that
G̃|Γ is compact and so the above condition implies that G̃ is unimodular be-
cause G̃|Γ carries an invariant measure (see Bourbaki, 1963, Chapter 7, §2.6;
Ragunathan, 1972, §§1.4, 1.11, 3.1). Then we have the following dichotomy:
(i) If G̃ is an NC-group then Γ is an (S )-group.
(ii) Conversely, when Γ is a uniform lattice in some model, then this model is

NC provided that the homology H(Γ;S (Γ)) is finite-dimensional.

Many things can be said about lattices in models (see Ragunathan, 1972).
Here are a few of the facts:

(1) Every such lattice is strictly polycyclic and therefore finitely generated and
torsion-free.

(2) (Mal’cev) Every finitely generated torsion-free nilpotent group N can be
realised as a uniform lattice on some simply connected nilpotent Lie group.
It follows that N is an (S )-group.

(3) There is a converse to (2). Indeed, if Γ is a lattice in some NC-model G̃,
then by the unimodularity of G̃ and §B.6 it follows that G̃ is an R-group
and therefore that Γ is a finite extension of a nilpotent group (by Gromov’s
theorem, see §1.2, on the growth function γ(n) for Γ among other things,
but of course here Γ is actually soluble and the whole thing is much easier).

(4) All lattices as above are (F)-groups and by the above we see that they are
not all (S )-groups; cf. Ragunathan (1972, §§4.28–4.29). In fact, putting
everything together we see that for a polycyclic group to be (S ) it has to
be nilpotent by finite and this ‘essentially’ characterises the condition.

(5) dimH(Γ;S )<+∞ holds for Γ= SL2(Z) or if Γ is a free group. The proof
of this will not be given. See, however, Serre (1970) and §G.4.2 below.

Recall that the condition on the homology H(Γ;S ) says this: there exists a
free resolution of Γ as in (G.6) – but we do not necessarily assume that the
spaces Vj are finite-dimensional – for which the corresponding complex (G.7)
has finite-dimensional homology. Notice that then, this also holds for every
other free resolution of Γ. The fact that we can pass from one free resolution
to another is an easy standard, but critical, fact in homological algebra (see
Cartan and Eilenberg, 1956, §V.1).
Problem (Difficult) How about random walks? How about H(Γ;S ) when
Γ is some lattice (not necessarily uniform) in a semisimple Lie group (see
Ragunathan, 1972)?
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G.4 Outline of the Proofs

We give only an outline, and this in a style that would probably only be right for
seminar notes. However, many new ideas are introduced and the prospects for
further research and development are obvious. It is this that justifies the writing
of this section. But it is this that also explains the style of writing because to
present these new ideas in a more acceptable manner would have forced me
to introduce a tremendous amount of background material (that would have
amounted to a new chapter).

G.4.1 Čech homology

This is a covariant functor, as opposed to the Čech cohomology of §14.1 which
is a contravariant functor. (In the ‘specialist literature’ such creatures are re-
ferred to as ‘pre-cosheafs’. In this book, however, we follow the lead of Bott
and Tu, 1982, and ignore several aspects of the specialised literature!)
For general definitions see Eilenberg and Steenrod (1952) and also Bott and

Tu (1982, Exercise 12.12.1) for C∞ manifolds M. In what follows we briefly
recall the definition when the manifoldM is a Lie group (and so is orientable,
for people who know what that means). For the case of rapid decay, in §G.4.2
below we shall even restrict ourselves to the models G̃ that admit a lattice
Γ⊂ G̃ as in §G.3.2.
For these manifolds a constant presheaf can then be defined by H (U) =

Hn
c (U), which is the de Rham cohomology with compact support, whereU ⊂

M runs through all open subsets that are diffeomorphic to Rn. This is similar to
what we did in §14.1; the main difference is that forU ⊂ V the isomorphisms
iVU : H (U)→H (V ) are covariant (it is the direction of the arrow that does
that). Using this presheaf, which is constant (analogous to the definitions in
§14.2.1) because of the orientation, we shall define C∗(U,H ) = ∑p�0Cp, the
Čech homology complex, where U is a good cover of the Lie group that has all
the properties from §14.2.4.3. The differential δ : Cp+1→ Cp is defined here
by

(δc)α0,...,αp =∑
α
cα ,α0,...,αp ; c ∈Cp+1,

and by the properties of the cover this sum is always finite; under the summa-
tion sign we have suppressed the obvious iVU mapping and used (14.11).
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G.4.2 Chains of rapid decay

As we said we shall restrict ourselves to G̃ of §G.3.2. In that case Ũ and U

(which is finite) will be (good) covers of G̃ and G̃|Γ respectively, and the
notation Ũ = π−1U is as in §G.1.2. Furthermore, C∗(Ũ,H ) = C(Γ)⊗C∗(U)
where C(Γ) is the space of functions on Γ and C∗(U) is the Čech complex on
G|Γ with respect to the finite cover U. Note that C∗(U) is a finite-dimensional
space. The chains of rapid decay will then, by definition, be the subspace
C∗(Ũ,H ,S ) = S (Γ)⊗C∗(U).
A general definition (for any manifold) can be given for these rapid decay

chains, by imitating the work that was done in §14.2.5, but we shall leave it to
the reader to do this.

Proof of the dichotomy With the above notation the following Poincaré du-
ality holds (this needs proving: see Bott and Tu, 1982, Exercise 12.12.1 for the
proof in the classical case with compact cohomology Hc on the left and Čech
chains of finite support; the proof extends to the case of chains of rapid decay
as in Definition G1 below):

Hp
DR(G̃,S ) = Hn−p

(
C∗(Ũ,H ,S )

)
. (G.8)

To clarify the meaning of the left-hand side when G̃ is NB we recall that then
G̃ ≈ Rn (polynomial equivalence as in Appendix F) because it is an R-group
and the left-hand side of (G.8) stands for the cohomology of the complex
Ω∗(Rn,S ), that is, of smooth differential forms ω on G̃ ≈ Rn that together
with dω decay rapidly (i.e. |ω(x)|, |dω(x)| = O

(
(1+ |x|)−c) for all c > 0).

By the same proof (see Bott and Tu, 1982, §4.7.1) as for the case of compact
cohomology Hp

c (Rn) for the forms of compact support Ω∗c(Rn), we can then
easily show that the left-hand side of (G.8) is R for p = n and zero otherwise.
Now, whether G̃ is NB or not, the complex C∗ on the right-hand side of

(G.8) is S (Γ)⊗F∗ where F∗ is the subcomplex of C∗ =C∗(Ũ,H ,S ) of the
chains of finite support. Furthermore, by classical Poincaré duality (see Bott
and Tu, 1982), the fact that topologically G̃ ≈ Rn implies that F∗ is a Γ-free
resolution of R as in (G.6) for which the corresponding (G.7) is none other
than the complexC∗. Putting things together, part (i) of the dichotomy follows
directly from (G.8).
This also proves part (ii) of the dichotomy because when Γ satisfies the

condition in (ii), (G.8) shows that (see the end of §G.3.2)
dimension of the homologies in (G.8)= dimH∗DR(G̃;S )<+∞ (G.9)

for the de Rham homology of the complex of smooth forms of rapid decay
Ω∗(G̃;S ); see (G.8) and Definition G1 below.



574 Appendix G: Discrete Groups

The final step is to deduce from (G.9) that G̃ is an NC-group. This is con-
tained in Chapter 12 and is the hardest and longest step in this chain of argu-
ments. In Chapter 12 we did not work on the complex of smooth forms of rapid
decayΩ∗(G̃;S ), but on the corresponding complex of currents (see §12.7). To
pass to smooth forms we have to use some smoothing procedure as in §12.10.
Definition G1 We could adopt several definitions for Ω∗(G̃;S ). For in-
stance, we could demand that the forms in that space satisfy∫

G̃

(|ω(g)|+ |dω(g)|)|g|c dg<+∞; c> 0,

the integral being taken with respect to left Haar measure and the left Rieman-
nian structure is used in the definition of |ω |, |dω | and |g| (note that here G̃ is
unimodular).

Several variants of this definition could also be given. Notice, for instance,
that this is not the same as the one we gave for Ω∗(Rn;S ) in the first part
of the proof. The only thing that counts in the definition is that Hp

DR(G̃;S ) =

Hn−p(Ũ;H ,S ) as in (G.8) and that we can use the results of Chapter 12.
Notice that in full generality (G.8) should be compared with (14.37), but to
prove that this works the analogous verifications of §14.2.4.2 are needed. The
discussion on Poincaré duality of §12.11.2 and Remark 12.53 could then be
seen in this light.

G.5 A Variation on the Same Theme

We shall outline here a variant of the circle of ideas that we have developed in
this appendix. In order not to interrupt the presentation, terminology from the
theory of topological vector spaces will only be recalled at the end of the sec-
tion. Even so, only those readers who are comfortable with functional analysis
will enjoy these variations.
We shall place ourselves in the context of case (a) in §G.1.1 with π : G̃→

G̃/Γ = G for some central 0-distorted discrete subgroup Γ that is therefore a
finitely generated Abelian group (see §4.6.1). The notation for the Čech com-
plexes are as before and the covers U, Ũ are as in §G.1 and satisfy the good
properties of §14.2.4.3. We then have
C∗(Ũ,S ) =C∗(Ũ,H ,S ) =S (Γ)⊗̂C∗(U,H ,S ) =S ⊗̂C∗(U,S ). (G.10)

The new feature here is that on the spaces S and C∗(·,H ,S ) we have as-
signed the Fréchet topology induced by the seminorms ‖x‖C of §G.3.1 and



G.5 A Variation on the Same Theme 575

their analogue for C∗. In (G.10) we have completed the tensor product for the
projective topology⊗π (hence the hat ‘̂’). The proof of (G.10) – it is the mid-
dle relation that needs proving as the other two amount to notation – is then an
easy consequence of the definitions. (This holds because the S -topology is a
projective limit of L1 topologies and projective limits behave well under ⊗π ;
see Schwartz, 1953, Exposée 7, Proposition 5 or Jarchow, 1981).
We shall also assume in the free resolution F∗(Γ) of (G.6) that not are

only the dimensions of the Vj finite, but also the resolution is of finite length
(i.e.Vj = 0 for j large enough). This is certainly the case when Γ�Zk (cf. fact
(2) in §G.3.2).We shall consider now a variant of the double complex of §G.2.3
which can be written

M = F∗(Γ)⊗ΛC∗(Ũ,S ) = ∑
p�0

Sp⊗̂C∗(U,S ) = S∗(Γ)⊗̂C∗(U,S ) (G.11)

and on this we shall play the same game that we did twice before (in §§G.2 and
G.4).
Explicitly, we use the first expression in (G.11) to work out the first spectral

sequence (where we start with the second differential d′′ = δU ). We pick up
′′E1p,q = Fp⊗ΛHq(Ũ,S ),

and the action of Γ onH(Ũ,S ) is trivial (see the exercise in §14.3.2 and §G.4).
It follows that (cf. §G.2.2)

′′E2p,q = Hp
(
F∗(Γ)⊗ΛHq(Ũ,S )

)
= Hp(Γ)⊗Hq(Ũ,S ). (G.12)

Now we pass to the second spectral sequence ′E∗∗,∗, that is, the one we get
by starting with the first differential d′ = δF . This amounts to applying the δS
differential in the third expression ofM in (G.11). What we obtain for this is

′E10,∗ =C∗(U,S ); ′E1p,∗ = 0 for p �= 0. (G.13)

This needs proving. It follows from a lemma due to Grothendieck (see §G.5.1
below) which asserts that as long asS (Γ) is a nuclear topological vector space
(which is the case here) we have

H(S∗⊗̂C∗(U,S );δS) = H(S∗;δS)⊗̂C∗(U,S ) =C∗(U,S ), (G.14)

where for simplicity let Γ� Z and use §G.2.1 to see that this is an (S )-group.
This proves (G.13).
Back in (G.11), the δU (for Ũ on G̃) on the left-hand side induces a mapping

onM that commutes with δF and when we pass to the homology, as in (G.13),
it induces the Čech differential of the right-hand side of (G.14). To put it differ-
ently, δU induces on ′E10,∗ in (G.13) the Čech differential δU ofC∗(U,S ). It is
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obvious that this ‘has to be that way’ but the actual verification is a non-trivial
exercise in topological vector spaces and homological algebra. Grothendieck
stuff! We shall say more on this in the next subsection.
Having done all of this, together with the abstract algebraic considerations

of §14.4, we finally conclude
′E20∗ = · · ·= ′E∞

0∗ = H∗(U) = H∗(C∗(U,S );δU ) (G.15)

for some filtration of the homology.
This is the end of this story because for the first spectral sequence we have

the E2 from (G.12) and the limit E∞ is the same as in (G.15). From this, the
rest of the work is abstract and from these spectral sequences we can draw the
same conclusions exactly as before.

Example For instance, let q0 be the last integer (if any) for which Hq(Ũ) is
infinite, that is, dim= ∞. As in §G.2.3, the arrows in the spectral sequence go
the ‘wrong’ way’ because in (G.7) we decrease dimensions. We must there-
fore resort to the same trick as in §G.2.3 and change the index from n to −n
(cf. Cartan and Eilenberg, 1956, §V.i and Bott and Tu, 1982, §12.2.1), and then
(14.27) still holds but for a second quadrant spectral sequence. NowH0(Γ) =R
in (G.12) (cf. §G.2.2) so using therefore Exercise 14.8 again, we deduce that
E20,q0 , E

3
0,q0

, . . . are all infinite. Therefore E∞ would also have to be infinite. As

a consequence we see that dimH∗(U)<+∞ =⇒ dimH∗(Ũ)<+∞.

Further prospects It is clear from the previous three sections that for any
finitely generated discrete group Γ, the homologyH =H(Γ;S (Γ)) could turn
out to be an interesting invariant and our wild speculation is that this may
provide some kind of analogue, for discrete groups, of the B–NB classification.
That aside we could try to look at the following concrete problems.
The question of whether dimH < +∞ was answered in §G.3.2(4) for poly-

cyclic groups using geometric methods. Similarly, geometric methods are used
for the groups of (5) in §G.3.2. Purely algebraic proofs seem to be difficult to
devise. As a consequence, deciding what happens for general soluble finitely
generated groups, for example, does not seem to be that easy (see McCleary,
2001,§8bis.12 for more on this).
Note though that by the very definition ofS (Γ) we always have

H0(Γ;S (Γ)) = R

(prove this! hint: ϕ ∈ S with
∫
ϕ = 0 can be written as a sum of ‘bipolars’

λ (δx−δy) as in §13A.3) so if dimH =∞we have to look at higher dimensions
and to a large extent it is this that makes the problem non-trivial and interesting.
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Topological vector spaces A Fréchet space is a complete, metrisable, locally
convex topological vector space. The topology is then defined by a countable
sequence pi( ·) of seminorms as in §12.14. Such a space isS (Γ) and the semi-
norms are then given by ‖x‖C in §G.4. In the esoteric terminology of the sub-
ject, S (Γ) is a Köthe sequence space (see Jarchow, 1981) and is easy to see
that with this definitionS (Γ) is a nuclear space if and only if Γ is a group of
polynomial growth. So for our spacesS (Γ), this could be taken as the defini-
tion of nuclearity.
The projective topology on the tensor product F ⊗π E is the topology in-

duced by the seminorms pi⊗ q j for the seminorms pi and q j of F and E re-
spectively. Here p⊗ q(u)< 1 if it is possible to write u = ∑x j⊗ y j as a finite
sum so that ∑ p(x j)q(y j) < 1. There is another topology that can be defined
on the tensor product, called the injective topology. The completion under that
topology is denoted by ˆ̂⊗ and if one of the two spaces is nuclear the projective
and the injective topologies on the tensor product coincide. For all that, see the
references below.

Relevant references See Grothendieck (1958) or Bourbaki (1953) for topo-
logical vector spaces, Schwartz (1953) for the theory of topological tensor
products or the more recent reference Jarchow (1981) for both.

G.5.1 The Grothendieck lemma and all that. . .

The lemma The spaces A, B, C, E , F below are Fréchet spaces and B, E are
assumed to be nuclear. Furthermore, a differential d : E→ E is given (i.e. there
is a linear continuous map with d2 = 0) for which B(E) is closed. (Here we
adopt standard notation and in the presence of a differential d on the space
X we denote Z(X) = Kerd, the space of cycles; B(X) = Imd; H(X) = Z/B
= the homology.) In Grothendieck’s thesis (see Schwartz, 1953, Exposée 27,
Grothendieck, 1952) one finds the proofs of the following results. Let

0→ A−→
i
B−→

π
C→ 0

be an exact sequence (topologically, i.e. A is a closed subspace of B and C =

B/A with the quotient topology). Then by tensoring with F we also obtain a
topological exact sequence

0→ A⊗̂F i⊗1−−→ B⊗̂F π⊗1−−→C⊗̂F → 0.

(The reason for this is simple: ⊗̂ behaves well under the projection π , and ˆ̂⊗
well under the inclusion i, and by our hypothesis ⊗̂= ˆ̂⊗.) This can be applied
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to the following exact sequences:

0→ Z(E)→ E→ B(E)→ 0,

0→ B(E)→ Z(E)→ H(E)→ 0,

and we obtain

Z(E⊗̂F) = Z(E)⊗̂F, B(E⊗̂F) = B(E)⊗̂F, H(E⊗̂F) = H(E)⊗̂F.
Furthermore, if F = F1⊕F2 is a direct topological vector space sum, both the
left- and right-hand sides naturally ‘split’ into the F1 and F2 components.
We can specialise the above to the case H(E) = R and to the splitting F =

{c}⊕F′, where {c} is the one-dimensional space spanned by some c ∈ F and
F ′ is some complement (Hahn–Banach). The bottom line in that case is that in
the identification H(E⊗̂F) = F the element c ∈ F can be represented by the
cycle z⊗c ∈ Z(E)⊗F , where z ∈ Z(E) is any cycle that represents the identity
1 ∈ H(E) = R. (We write [z] = 1 where [ ] denotes the homology class.)

G.5.1.1 The ‘non-trivial’ exercise after (G.14) The above facts will be used
with F = C∗(U,S ) – the space will be denoted by C∗ in what follows – and
E = S∗(Γ) which, as we have pointed out, is nuclear. Together with the Čech
differential δU onC∗ we shall define another mapping δH : C∗ →C∗ as follows.
Denoting by 1 the identity mapping, we start with the mapping 1⊗ δU on
M̃ = F∗(Γ)⊗C∗(Ũ,S ) – the ⊗ product over R – and use this to induce a
mapping δM : M→M (use the left-hand side of (G.11) to do this). It is easy to
see that δM commutes with the mapping δS⊗ 1, where we use the right-hand
side in formula (G.11). This simply happens because 1⊗ δU commutes with
δF ⊗ 1 on the original tensor product M̃. It follows that δM induces a mapping
on the homology of δS⊗1 which isC∗ (see (G.13), (G.14)). This is the mapping
that we call δH . What will be proved below is that δH = δU , which was used
in (G.15).
To give a concrete expression for δHc, with c ∈C∗, we can use the previous

considerations and represent c by a cycle z⊗c∈M, with z∈ ZΓ(S∗(Γ)), that is,
for the differential δS, where the z has been chosen as explained above.We then
have δHc= [δM(z⊗ c)] ∈C∗. Note also that this cycle z can even be chosen to
belong to F0 of (G.6). This additional information has a certain ‘psychological’
value in the argument below but is not essential. At any rate, the reason for this
is simple enough: ImδS ⊂ S0 is of codimension 1 and it is also closed by the
continuity of δS and Banach’s theorem (see the exercise in §12.12.1). We then
use the density of F0 in S0.
Be this as it may, from this concrete definition it is easy to verify that when

c is a Čech chain of U of finite support then δHc= δUc. From this we can then
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in turn verify the required conclusion that δH = δU because the chains of finite
support are dense in C∗. To be able reach that conclusion it suffices to verify
that both the mappings δU and δH are continuous.
For the continuity of δU we use the definition of the seminorms (the ana-

logues of the ‖ ‖ of §G.3.1) that induce the Fréchet topology of C∗. But we
also need to use the uniform local finiteness of the cover U (see §14.3). So this
is easy but not formal. The verification that δH is continuous uses the same
principles but is more involved. Proceed as follows.
LetC∗ � cn→ 0 and represent, as explained earlier, the cn by the cycles z⊗cn

where z ∈ ZΓ(S∗(Γ)) is fixed. We can then write z as a finite sum z= ∑ek⊗ sk
where ek are the basis elements of ∑Vj (see (G.7)) and sk ∈S (Γ). It suffices
therefore to show that δM(e⊗ s⊗ cn)→ 0 for every basis element e as above
and every fixed s ∈S (Γ). This, by the definition of δM , amounts to showing
that δU(s⊗ cn)→ 0 where δU refers to Ũ and where the s⊗ cn are identified
with elements ofC∗(Ũ;S ); see §G.1.2. For this we proceed on the covering Ũ
as we did just above for U.
The above proof of the continuity of δH is rather ad hoc. A more canonical

way of proceeding would have been to start by proving that the mapping δM
that we defined onM is already continuous. The proof of this follows the same
lines and is an interesting exercise in topological vector spaces. For that proof
one can use the fact that in the ⊗̂-product of two Fréchet spaces E and F , one
of which is nuclear, the bounded sets are just the tensor products of bounded
sets in E and F (after we take closed convex bounded envelopes; see Schwartz,
1953, Exposé 19, Théorème 2, Corollaire). We then use the fact that Fréchet
spaces are bornological, that is, that a linear mapping is continuous as soon
as it takes bounded sets into bounded sets (cf. Bourbaki, 1953; Grothendieck,
1958).

G.5.1.2 On the role of the topological vector space With hindsight one un-
derstands why difficult aspects, and also to a large extent ‘forgotten aspects’,
of topological vector spaces have to be used in the theory.
In short, homology for complexes that are topological vector spaces has to

be considered in our theory because one could almost say that this is what the
theory is all about. As a consequence the tensor product is forced into the game
and it has to be the ‘topological tensor product’.
This is what Grothendieck developed in his thesis (before he moved on to

algebraic geometry). That kind of mathematics was very fashionable in the
early 1960s.1 Since then, as often happens with mathematical fashions (and

1 I was a student in Cambridge and I studied a lot of that!
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other fashions as well!), much of this has been forgotten and is now familiar
only to a few specialists in the subject.
While writing the third part of this book I came across a problem in topo-

logical vector spaces (and distribution theory) that I found intriguing and that I
was not able to do – but of course it is a long time since I was an eager graduate
student in Cambridge! Here it is:

Problem With the notation used in distribution theory, D(T) ∼= S (Z) and
D ′(T) ∼= E (Z). Here T is the one-dimensional torus, D are smooth functions,
D ′ is the space of distributions and E represents the sequence of polynomial
growth. The above isomorphisms are done using Fourier transforms. The prob-
lem is this: do we have (D⊗̂D ′)∗ = D ′⊗̂D for the dual space? Incidentally,
the problems on TVS that we encountered in §12.13.4 are of the same nature:
very specialised, ‘screwy’ and probably quite difficult.

Maybe some ‘eager graduate student’ of today will be able to give the ans-
wer to this and also see how this connects with some of the things we have
done in this appendix (for example, homology of Γ with values in E (Γ). . . ).

G.6 Connections, Curvature and Cohomology

This is not ‘variations’ but an entirely different ‘theme’. It is also the title of the
three-volume work by Greub et al. In that work, a theory is developed that is
based on the cohomology theory of Lie algebras. Presheaf cohomology is not
used in that theory but the spectral sequences cannot be avoided. The ‘Koszul
complexes’ are the magic tool that one uses here.
One of the important results of this theory (see Greub et al., 1976, §IX.2), the

so-called fundamental theorem of Chevalley, can be specialised to the homo-
geneous spaces G|K of §14.1.4 and one immediately obtains from this the
proposition of that section. From this the whole program of Chapter 14 folds
up at a stroke. So much so, that we can do this in half a page rather than a
chapter! (See the exercise at the end of §14.6.)
So why did we not adopt this approach rather than the presheaf cohomology

of Chapter 14?
As a matter of fact, this approach was originally adopted in a first attempt

to present the program of Chapter 14. But then we felt that we had to help
the reader navigate the vast technical material of Greub et al. (1976) and in
particular we had to explain why the Chevalley theorem does specialise to give
§14.1.4.
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This turned out to be as long and elaborate and incomparably less satisfac-
tory than what we did.
To finish, let me throw in a few more magic words: ‘Serre’s thesis’, ‘cubical

singular homology’, ‘fibre spaces in the sense of Serre’, etc. To the experts,
these describe a circle of ideas that can be used to prove the results of §14.1.4
without the use of presheaf cohomology. The price one pays for this alternative
approach is, on the other hand, quite high. Nonetheless, this approach, which
does not avoid the use of spectral sequences, can be used here also. More pre-
cisely, after quite a bit of hard work one can adapt this approach and what one
obtains is an equivalent version of our theorem expressed in terms of currents
of superpolynomial decay of §12.7.
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Part III of the book was to a large extent devoted to the proof of the homologi-
cal B–NB classification (see §§1.7, 1.8). This was quite involved and uses deep
basic tools from geometry and topology together with ad hoc constructions and
ideas.
As I explained in Chapter 1, this homological classification was not viewed

in the book as an aim itself. It was rather an intermediate link in the global
B–NB classification of Lie groups.
With hindsight, I now feel that this homological classification deserves a

better, cleaner and more systematic treatment in its own right than the one I
gave in the book. It would take a new program to achieve this and it would
require a separate examination of each of the H0, H1, . . . , the homology groups
of polynomial growth of dimension 0,1, . . . .Depending on the linear geometry
of the roots, one would want to decide, for each of these, whether it is of finite
or infinite dimension. We would thus be refining the classification of §2.2.
I did not consider this problem until the writing of the book was finished

and even then my main concern was to find a way to bypass the geometric
constructions of Chapters 9 and 10 which in places become very ‘hairy’. Had
it not been for this I do not think I would have pursued this problem for almost
a year, since in addition this proved to be an arduous and ‘screwy’ (to say the
least) game to play and in an area that is totally ad hoc and has nothing to do
with the rest of the book.
This epilogue is not the place to tell readers what I now know on this prob-

lem, other than ‘yes, with different methods we can eliminate most of the dif-
ficult geometric constructions of Chapters 9 and 10.’ In these new methods
we use only calculus and algebraic manipulations on differential forms; that
is, things that are more digestible to people with an analytical background.
However, these manipulations are not straightforward, and in fact I now think
that it would be quite difficult to finalise this project. To the futile question

582
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of whether I would have written Part III of the book differently had I known
about these methods earlier, I can only give yes as an answer. The reason is
that the geometric constructions of Chapters 9 and 10 are replaced by different
constructions that may be more subtle but are considerably easier and simpler
to describe. I try not to regret this fact too much and say to myself that in any
mathematical theory, important simplifications are bound to happen with time.
Having said all this, in the next few lines I shall give readers a taste of the

things that happen here. For simplicity I shall stick to the special semiprod-
uct group Rn�R = G (see §2.3.2). The Euclidean coordinates of Rn are de-
noted by (x1, . . . ,xn) and y ∈ R acts by (eL1yx1, . . . ,eLnyxn), where L1, . . . ,Ln,
the roots, are now real numbers. In what follows we can split off the zero roots
so that G = G1×Rn−k, where G1 is similar, with L1, . . . ,Lk all non-zero. On
the other hand, since G1 is a polynomial retract of G (see §12.2) our problem
reduces to G1. (Incidentally, there is scope here to use Grothendieck’s version
of Künneth’s formula; see Appendix G.5, but let us not get into this.)
The most convenient complex to consider here is that of currents ω such

that the coefficients of both ω and dω are measures (these are called normal
currents; see §10.2) and such that the mass decay of both ω and dω are su-
perpolynomial at infinity (see §12.7, especially (12.52)–(12.54), for a formal
definition). Then Hp is the pth homology of this simplex. Here p indicates the
dimension of the currents that we consider, so that when, for instance, ω is rep-
resented by integration on a cell, then p is the dimension of the cell. We have
of course H0 = R (one can use the ideas of Exercises (i) and (iii) in §13A.3 to
see this) and Hn+1 = 0 (since Kerd= 0 in that dimension) and, as we said, all
the roots L1, . . . ,Ln are now assumed to be non-zero.
In this simple situation our question admits a very natural and satisfactory

answer, and we have the following criterion. Surprisingly, even in this case,
which is as simple as it gets, the proofs are not easy.

Criterion Let p = 1,2, . . . ,n. Then Hp = 0 if and only if all partial sums of
p distinct roots, Li1 + · · ·+Lip are all � 0 or all � 0.

Clearly the change of direction y �→ −ymakes these two formulations equiv-
alent. We could then say that the roots satisfy the NCp-condition. Conversely,
in the Cp case, where there exist two such partial sums, Li1+ · · ·+Lip > 0 and
Lj1 + · · ·+Ljp < 0, we have dimHp = ∞. To convince yourself that the proof
of this cannot be easy, observe that it implies that if Hp = 0 then so is Hp+1.
Try to prove this directly! From the nature of the criterion, one also sees that
it is essential to separate the zero roots before we even start thinking of the
problem.
For anyone who tries to prove the above criterion for themselves it is worth
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pointing out that the non-degenerate case, where we assume in addition that all
partial sums Lα1 + · · ·+Lαp �= 0 (distinct summands) do not vanish, is much
easier to handle than the general case. This is one of the many strange things
that one comes across in this area and it illustrates the complexity of the prob-
lem, and this already in a very special class of ‘rank 1’ groups. In fact, the
difficulty I had in proving this criterion left me with no doubt that any general
theorem in this project is bound to be quite challenging even when it comes to
making a ‘reasonable’ guess.
Whether I shall pursue this program to its ‘bitter end’, let alone be success-

ful, I do not know. At this point it is not even clear to me that I shall ever get
round to writing down in full detail what I know. But what I have said in this
epilogue may inspire other people to pursue this matter further.
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Čech–de Rham, 546
de Rham, 14, 519
differential form, 404
double, 541, 547
finite, 404
Γ-free, 488
geometric, 404
of a vector space, 403
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finite-dimensional, 412, 454
singular, 406, 428
statement of theorems, 411
topological, 514

homology on Lie groups, 14
homology on manifolds, 391
homotopy, 12
equivalence, 393
operator, 529, 566
polynomial, 229
complexes, 427

retract, 12, 379, 394

immersion, 326
inductive limit topology, 515
injective topology, 577
inner automorphism, 188
integration current, 328
normal, 329

interior of a simplex, 274
irreducible operator, 133
irreducible SSA, 269
isoperimetric inequalities, 5, 8
Iwasawa decomposition, 99, 100, 189, 231
generalised, 114

Iwasawa radical, 101, 193

Jordan–Hölder composition series, 29

Künneth formula, 413, 560

Laplacian, 5
sub-, 5

lattice, 571
LCG, see locally compact group
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left-invariant operator, 5, 105
Gaussian, 146

Levi decomposition, 26, 68, 104, 186, 187
of a Lie group, 115
of a subalgebra, 187

Levi subalgebra, 187
Lie algebra
C, 26
NC, 26
nilpotent, 25
nilradical, 24
radical, 26
semisimple, 26
simple, 188
soluble, 24, 26

Lie group, 3
amenable, 27
compact, 188
differentiation, 240
general connected, 398
good cover, 16
homology, 14
model, 520
nilradical, 35
Riemannian structure, 226
simply connected, 354
toroidal group, 355

Lie’s theorem, 29
lifting of an operator, 215
Lipschitz, 351
locally, 351

Lipschitz constant, 232, 290
Lipschitz function, Lip, 7
Lipschitz log (LL), 290
Lipschitz mapping, 224, 232
local, 224

LL(R) current, 464
locally compact group, 169
compactly generated, 1
connected, 353
metric classification, 352
unimodular, 2

locally connected group, 356
lower estimate, 150

manifold
Riemannian, 224

Markov chain, 72, 95
Markovian operator
construction, 129
criterion, 128
symmetric, 127

maximal compact subgroup, 390
measure
Gaussian, 119

measure operator norm, 66
metric classification, 9, 349
metric space, 224
metric theorems, 351
minimal Ai-set, 273
minimal bracket-reduced, BRA A, 277
minimising geodesic, 532
model, 9, 277, 520, 521
modular function, 2, 30
monodromy, 528

NA-group, 70
NB model, 571
NB-algebra, 101
characterisation, 198
non-unimodular, 202
unimodular, 202

NB-group
PFP, 10
retract, 397
retract characterisation, 398

NB-theorem, 103
polynomial, 373

NC structure theorem, 86
NC-algebra, 26, 101, 102
NC-condition, 74
NC-group, 27, 65, 571
NC-radical, 26
NC-theorem
algebraic groups, 181
geometric, 232
heat diffusion kernel, 83
sharp, 69

neat submanifold, 283
nerve, 528
nilpotency, 175
nilpotent, 25
nilpotent group, 175, 363
nilradical, 24
Lie group, 35

Non-B group, see NB-group
non-retractable group, 237
non-simply connected group, 355
normal coordinates, 532
normal representation, 106
nuclearity, 577

operator
Gaussian left-invariant, 146
left-invariant, 105
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p-adic number, 169
partition of unity, 529
peripheral point spectrum, 126
PFP, see polynomial filling property, see

polynomial filling property
Poincaré duality, 440, 515
Poincaré equation, 389
Poincaré lemma, 533
polynomial Čech cohomology, 535
polynomial Čech complex, 535
polynomial Betti number, 15
polynomial cohomology, 553, 569
polynomial complex, 15, 18, 520
homology of, 520

polynomial equivalence, 225
polynomial filling property, 8–10, 232, 233,

356
polynomial forms
complex of, 411

polynomial growth, 520
differential forms, 409
subcomplex of, 550

polynomial homology
finite de Rham, 520
Riemannian manifold, 515
simply connected group, 412

polynomial homotopy equivalence, 229
polynomial map, 225
polynomial mapping
Lie group, 420

polynomial retract, 230
polynomial retract property, 12
polynomial section, 254
strict, 255

polynomially growth, differential form, 235
polynomially homotopic, 395
polynomially homotopic manifolds, 230
polynomially retractable, 230, 231
polynomially retractable group, 244
presheaf, 572
bundle, 530
cochain, 526
cohomology, 526, 530
constant, 527
fibre bundle, 553
locally constant, 528
normed, 555
polynomial, 553
trivial, 527

principal bundle, 104, 146, 524
Euclidean, 152

Harnack, 131
probabilistic language, 39
probability of life, 74
produit tensoriel, 424, 432
commutative, 424

projective topology, 577
property-H , 380
pullback
of forms, 402

pushforward, 403

quasi-contraction, 351
coarse, 10, 351

quasi-isometry, 7, 210, 225, 351
coarse, 10, 352
models, 10

quasi-norm, 554

R-algebra, 27
R-condition, 27
R-group, 27, 227, 244, 374
polynomially retractable, 230

R-principal bundle, 104, 105
radical, 26, 113
amenable, 113
amenable, of a Lie group, 113

Radon–Nikodym derivative, 110
random walk, 3, 20, 39
C-theorem, 45
estimate, 43
Gaussian, 58
generalised, 133
inhomogeneous environment, 162
time-inhomogeneous, 39

rank
soluble group, 233, 322

rapid decay, chains of, 573
rapid decay, space of functions of, 570
real root, 26
algebraic groups, 178
composite, 30

real root space decomposition, 25, 178
real semisimple action, 250
real subspace, 26
reduction theorem, 146
regular value, 346
regularisation
currents, 435

regularising operator, 435
replica, 249
polynomially equivalent, 253
quasi-isometric, 253
semisimple, 250
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representation
normal, 106

restricted roots, 193
retract, 529
homotopy, 12, 394
maximal compact subgroup, 397
polynomial, 12

retracts to a compact set, 394
retracts to a point, 394
Riemannian manifold
good cover, 532
polynomial mapping, 394

Riemannian norm, 234
Riemannian structure
invariant, 7
Lie group, 226
replicas, 252
semidirect product, 252

root, 25
composite, 29
of an action, 177
composite, 177

real, 26
root space
real, 25

root space decomposition, 23

(S )-group, 570
Schur’s lemma, 115
section, 254
polynomial, 254
R-group, 255
strict polynomial, 255

semi-simple algebra, compact type, 27
semidirect product, 26, 28, 226, 242
Lie algebra, 77
Lie group, 77, 249

seminorm, 447
semisimple, simply connected group, 37
set of roots, 268
simplex, 273
degenerate, 274
dual, 301, 334
non-singular, 274

simplicial mapping, 294
simply connected group
retract, 396

simply connected soluble group, 9
slicing, 331
smooth section, 137
smoothing, 325
Heisenberg alternative, 344

of a mapping, 333
second basic construction, 341

solubility, 25
soluble group
connected, 362
rank, 322
special, 264

special soluble algebra (SSA), 189, 268
Abelian type, 269
Heisenberg type, 270

special soluble group (SSG), 251, 264, 267
general C-group, 310
geometric construction, 279

special soluble C-algebra (SSCA), 270
spectral gap, 23, 99, 120, 121, 130
spectral radius, 66
spectral sequence, 543
Cartan–Leray, 568
convergence, 544
degenerate, 544, 545
double complex, 541
first, 549
limit, 544

SS-subalgebra, 269
Stokes’ theorem, 326
currents, 328

strict exponential distortion
distance, 246

strictly polycyclic group, 570
subcomplex of polynomial growth, 550
subgroup
0-distorted, 539
maximal compact, 373, 390
one-parameter, 257

subharmonic function, 96, 165
μ-, 155

telescopic sum, 497
tensor product, 546
topological n-cell, 8
topological interior of a simplex, 274
topological vector space, 403, 437, 438, 446,

577, 579
inductive limit topology, 444
projective limit topology, 444
special topologies, 443

topology, 406
toroidal group, 355
torus
maximal central, 362
maximal normal, 142

torus, maximal central, 36
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total complex, 541
total mass norm, 415, 416
transference, 69
transversality, 281, 286
bouquets, 473
condition, 323

transversality condition, 292
TVS, see topological vector space

ultrametric inequality, 176
uniform lattice, 562
unimodular algebra, 102
unimodular group, 34, 356
unimodular locally compact group, 2

volume growth, 1, 55, 227
polynomial, 2

Whitehead lemma, 532
word distance, 1

Zassenhaus formula, 184, 228
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