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Preface

Many practical problems can be solved by algorithms. For this reason, com-
puter algorithms are diverse and ubiquitous today. The spectrum ranges from
one of the oldest recorded algorithms, the algorithm of Euclid from the third
century B.C., to algorithms for the investigation of large amounts of data,
algorithms for communication and searching on the Internet, algorithms for
imaging procedures and for diagnostics in medical technology, and algorithms
for assistance systems in cars, engine control or the control of household ap-
pliances. Algorithms are the subject of intensive research and belong to the
fundamental concepts of computer science. The design of efficient algorithms
and their analysis with regard to resource requirements are fundamental for
the development of computer programs. Therefore, the subject Algorithms
and Data Structures is a central component of any computer science curricu-
lum.

This book originates from lectures on algorithms and data structures for
students of computer science, media and business informatics at the Techni-
sche Hochschule Nürnberg Georg Simon Ohm. The basic topics of the book
are covered in the bachelor’s courses. Advanced parts, such as randomized
algorithms, are reserved for master’s courses.

The algorithms of the first chapter, all of which are popular algorithms,
are studied to introduce common design principles for the development of al-
gorithms. The following Chapters 2 to 6 are organized by problem areas. We
consider the problem of storing and retrieving elements of a set and problems
that can be formulated with graphs. For the first problem, we use three tech-
niques to efficiently implement these operations: Sorting with binary search,
search trees and hashing. The first two methods require ordered sets, the last
method requires that the elements of the set are uniquely identified by keys.

The sorting methods quicksort and heapsort, binary search and searching
for the kth-smallest element are the subject of Chapter 2. Special attention
is paid to the analysis of the running time of the algorithms. Throughout all
chapters, the aim is to develop explicit formulas or precise estimates for the
running time. Difference equations are used as a solution method. This allows
exact and not only asymptotic statements to be made about the running
times of algorithms. We use a standardized method for the running time
calculation: First, establish a difference equation for the running time and
then solve the equation with known methods.

V
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Hash functions, in particular universal families of hash functions, methods
for the treatment of collisions and a detailed analysis of hash procedures are
the subject of Chapter 3.

Chapter 4 deals with binary search trees, AVL trees and randomized bi-
nary search trees. B-trees are used to store data on secondary storage. Code
trees for the graphical representation of codes for data compression complete
the chapter.

Graphs play a fundamental role in many areas of computer science. For
many graph problems, solutions exist in the form of efficient algorithms. In
Chapter 5 breadth-first search and depth-first search for graphs are studied
and as an application topological sorting and the calculation of the strongly
connected components. Fundamental optimization problems, such as the con-
struction of minimum spanning trees and shortest paths as well as the flow
problem in networks, are the contents of Chapter 6.

Probabilistic methods are fundamental for the construction of simple and
efficient algorithms. In each chapter at least one problem is solved by using a
randomized algorithm. In detail, it is about the verification of the identity of
polynomials, the randomized version of quicksort and quickselect, universal
families of hash functions and randomized binary search trees. Randomized
algorithms for the computation of a minimal section in a graph and for the
construction of a minimum spanning tree for a weighted graph are among
the advanced topics.

The book focuses on algorithms. Data structures are discussed as far as
they are needed for the implementation of the algorithms. The selection of
the topics is mainly based on the aim to treat elementary algorithms which
have a wide field of application. The aim is a detailed and in-depth study.

The text assumes experience in programming algorithms, especially with
elementary data structures – such as chained lists, queues and stacks – in the
scope of the contents of the programming lectures of the first year of com-
puter science studies. Familiarity with mathematical methods covered in the
first year is also desirable. For the convenience of the reader, the mathemat-
ical methods necessary for understanding, in particular elementary solution
methods for difference equations and special probability distributions, are
repeated in the first chapter and in the appendix.

The formulation of the algorithms by using pseudo-code focuses on the
essentials and thus makes the idea of the algorithm clear. It is sufficiently
precise to allow considerations on the correctness and calculations of the
running time to be carried out. More than 100 figures illustrate the algorithms.
Many examples help the reader to understand the individual steps of the
algorithms. Numerous exercises complete each chapter and help the reader
to practice and deepen the material. Answers to the exercises are provided
on the webpage for this book: www.in.th-nuernberg.de/Knebl/Algorithms.

This book stems from lectures on algorithms and data structures that I
taught at the Technische Hochschule Nürnberg Georg Simon Ohm for many
years. During this time, the university changed its name twice and still re-

www.in.th-nuernberg.de/Knebl/Algorithms


Preface VII

mained the same. During the preparation of the lecture I used the textbooks
listed in Section 1.8.

I received a lot of support for the completion of the book. My colleagues
Jens Albrecht, Christian Schiedermeier and especially Alexander Kröner have
carefully looked through parts of it, which has led to the correction of mis-
takes and ambiguities. I owe Harald Stieber valuable suggestions and discus-
sions, which have contributed to the improvement of the book. I would like
to express my sincere thanks to all those who have supported me, including
those not mentioned. I would especially like to thank my students, who have
attended the lecture with dedication in the past years, worked diligently on
exercises and helped to track down mistakes.

The book is essentially the translation of [Knebl19]

Algorithmen und Datenstrukturen
Grundlagen und probabilistische
Methoden für den Entwurf und die Analyse

The content and structure of the text is the same as that of the German
edition. During the translation, the book was also thoroughly reviewed and
the presentation improved in many places. Inaccuracies of the German edition
have been corrected.

I am grateful to Patricia Brockmann and Sebastian Knebl for their sup-
port in proofreading, and I thank Ronan Nugent and Sybille Thelen at
Springer for their pleasant and valuable cooperation.

Nürnberg, September 2020 Helmut Knebl
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1. Introduction

An algorithm provides a solution to a computational problem. An example
of a computational problem is the computation of the product of two num-
bers. The most important feature of an algorithm is that it works correctly.
A mathematical proof that shows the correctness of an algorithm gives com-
plete confidence in its correctness. The method of verification goes one step
further. It not only proves that an algorithm is correct; it even proves that an
implementation of the algorithm in a given programming language is correct.

Following correctness, running time is the second most important feature
of an algorithm. Although it is often easy to count the number of operations
for a fixed input, the calculation of the running time in the worst case and the
average running time requires considerable effort. The average is calculated
over all inputs of a fixed size. We treat mathematical methods such as linear
difference equations, which are necessary for the running time analysis of the
algorithms.

Orthogonal to the classification of algorithms according to problems – as
done in this book in the Chapters 2-6 – you can classify algorithms accord-
ing to algorithm types or design methods for algorithms. In this chapter, we
discuss the design methods respectively algorithm types recursion, greedy al-
gorithms, divide and conquer, dynamic programming and branch and bound.
Subsequently, randomized algorithms will be introduced. Randomized algo-
rithms, introduced in recent years, capture a wide field of applications. We
study a Monte Carlo algorithm for the comparison of polynomials and in
each of the following Chapters 2-6 we also solve a problem by a randomized
algorithm.

The book covers many concrete algorithms. Theoretical concepts that
are indispensable for the formal definition of the concept of algorithm, e.g.,
Turing machines, are not necessary here. The algorithms are formulated by
using pseudo-code, which is based on common programming languages such
as Java, and contains the most important elements of a high-level program-
ming language. The representation by pseudo-code abstracts from the details
of a programming language. But it is sufficiently precise to allow considera-
tion of the correctness and calculation of the running time. We introduce the
notation towards the end of the chapter (see Section 1.7).

© Springer Nature Switzerland AG 2020 

H. Knebl, Algorithms and Data Structures, https://doi.org/10.1007/978-3-030-59758-0_1 

1

https://doi.org/10.1007/978-3-030-59758-0_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59758-0_1&domain=pdf


2 1. Introduction

1.1 Correctness of Algorithms

An algorithm is referred to as correct if, with respect to a given specification, it
works correctly. Algorithms operate on data. The specification must therefore
sufficiently and precisely reflect these data before executing the algorithm –
the precondition – and the desired state after execution of the algorithm –
the postcondition.

We now explain this method in more detail using the algorithm sorting
by selection – SelectionSort.

SelectionSort should sort an array a[1..n]. The precondition is that the
<-operator can be applied to the elements in a[1..n]. The postcondition is
a[1..n] is sorted, i.e., a[1] ≤ a[2] ≤ . . . ≤ a[n].

The idea of sorting by selection, as the name suggests, is to search for the
smallest item in a[1..n]. Assuming it is at the kth position, we then swap a[1]
with a[k] and continue the procedure recursively with a[2..n].

Algorithm 1.1.
SelectionSort(item a[1..n])
1 index i, j, k; itemm
2 for i← 1 to n− 1 do
3 k ← i;m← a[i]
4 for j ← i+ 1 to n do
5 if a[j] < m
6 then k ← j;m← a[j]
7 exchange a[i] and a[k]

The algorithm SelectionSort implements the idea from above iteratively
using two for loops.1 We now show by induction on the loop parameters
that the algorithm is correct. The task of the inner loop is to calculate the
minimum of a[i..n]. More precisely, after each iteration of the loop we obtain:

m = min a[i..j] for j = i+ 1, . . . , n and a[k] = m.

This condition is called an invariant of the loop. The condition must be
checked after the last statement of the loop is executed. In the above algo-
rithm, this is line 6. By induction on j, we see immediately that the statement
is true. After each iteration of the outer loop, we get

a[1..i] is sorted, i = 1, . . . , n− 1, and a[i] ≤ a[k] for k ≥ i+ 1.

This statement can be shown by induction on i. Since our algorithm termi-
nates and the loop variable i has the value n−1 after termination, a[1..n−1]
is sorted. Since a[n] ≥ a[n− 1], the assertion is proven.

In our proof, which shows that the algorithm is correct, the variables of
the algorithm occur. It thus refers to a concrete implementation. Such a proof,

1 The notation for the formulation of algorithms is described in more detail in
Section 1.7.
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which shows that the implementation of an algorithm A is correct, is called
program verification. Preconditions and postconditions are specified as pred-
icates V and N of the program variables. A mathematical proof that shows
that if the predicate V is valid before executing A then the predicate N is
valid after executing A proves the correctness of A, provided that A termi-
nates. The technique of program verification was developed, among others,
by Hoare2 and Dijkstra3. Textbooks on program verification are [Gries81]
and [Backhouse86].

The procedure to show, with specified pre- and postconditions, that a
code segment transfers the precondition into the postcondition can be for-
malized. The proof can be done with computer support. A theorem prover
goes one step further. It is an algorithm that finds a proof that shows that a
precondition implies a particular postcondition. The proof found is construc-
tive. It transforms the precondition into the postcondition and provides the
coding of the algorithm.

We provide evidence which shows that algorithms are correct. Thereby
the concrete implementation is not considered, with a few exceptions.

Our example SelectionSort terminates for each input. An algorithm which
contains not only for loops, but also while loops or recursive calls, does not
have to terminate for each input. The problem to decide for any algorithm
whether it terminates or not is called the halting problem. The question of
termination cannot be answered by an algorithm, i.e., the halting problem is
not decidable. Similarly, it is not possible to specify an algorithm that decides
for any algorithm A whether A is correct, or which calculates the running
time of A. Therefore, these questions must be answered individually for each
algorithm.

The following example shows that it is not even easy to decide for a given
concrete algorithm whether the algorithm terminates for each admissible in-
put.

Algorithm 1.2.
int Col(int n)
1 while n ̸= 1 do
2 if n mod 2 = 0
3 then n← n div 2
4 else n← (3n+ 1) div 2
5 return 1

It is assumed that Col terminates for each call parameter n ∈ N. This
assumption is called the Collatz4 conjecture and has been unsolved for over
60 years.

2 Tony Hoare (1934 – ) is a British computer scientist and Turing Award winner.
3 Edsger W. Dijkstra (1930 – 2002) was a Dutch Turing Award winner and made
fundamental contributions to several areas of computer science.

4 Lothar Collatz (1910 – 1990) was a German mathematician.
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Recursion is a powerful design and programming method. We will study
two interesting recursive functions.

McCarthy’s5 function, known as McCarthy’s 91 function, has a complex
recursive structure. We call this function M. For n > 100, M terminates with
return value n− 10. For n < 100 the termination is not so obvious.

Algorithm 1.3.
int M(int n)
1 if n > 100
2 then return n− 10
3 else return M(M(n+ 11))

Proposition 1.4. M terminates for all n ≤ 101 with the return value 91.

Proof. First we show the statement of the proposition for n with 90 ≤ n ≤
100. For n ≥ 90 we have n+ 11 ≥ 101. Hence, we have

M(M(n+ 11)) = M(n+ 1).

For n with 90 ≤ n ≤ 100 follows

M(n) = M(M(n+ 11)) = M(n+ 1) = M(M(n+ 12)) =

M(n+ 2) = . . . = M(101) = 91.

Now let n ≤ 89 and k = max{j | n+ 11j ≤ 100}. Then 90 ≤ n+ 11k ≤ 100
and because

M(n) = M2(n+ 11) = . . .

= Mk+1(n+ 11k) = Mk(M(n+ 11k)) = Mk(91) = 91,

the assertion is shown. 2

Our second example, the Ackermann function6, has interesting properties
which are relevant for theoretical computer science. It shows that Turing7

computable functions exist that are not primitive recursive. Ackermann pub-
lished his function in 1928 and thus refuted a conjecture of Hilbert8 that every
computable function is primitive recursive. Ackermann’s function increases
faster than is possible for primitive recursive functions. Primitive recursive
functions are the result of a limited computation model that only allows for

5 John McCarthy (1927 – 2011) was an American mathematician.
6 Wilhelm Friedrich Ackermann (1896 – 1962) was a German mathematician. He
was a student of Hilbert and studied the foundations of mathematics.

7 Alan Mathison Turing (1912 – 1954) was an English mathematician and com-
puter scientist. He made fundamental contributions to theoretical computer sci-
ence and practical cryptanalysis (Enigma).

8 David Hilbert (1862 – 1943) was a German mathematician. He is considered one
of the most important mathematicians of the late 19th and the 20th century.
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loops, but no while loops (loop programs). Ackermann’s function9 is an ex-
tremely fast increasing function that depends on two parameters m,n ∈ N0.

Algorithm 1.5.
int A(int m,n)
1 if m = 0
2 then return n+ 1
3 if n = 0
4 then return A(m− 1, 1)
5 return A(m− 1,A(m,n− 1))

For m = 0, A terminates immediately. In order to show that A terminates
for all inputs, we consider the lexicographical order on N0 × N0:

(m,n) < (m′, n′) if and only if

{
m < m′ or if
m = m′ and n < n′.

Since

(m− 1, 1) < (m, 0), (m,n− 1) < (m,n) and (m− 1, A(m,n− 1)) < (m,n)

the recursive call is made with a smaller parameter regarding the lexico-
graphical order. According to the following Lemma 1.6 there are only finite
descending sequences starting with (m,n). Therefore, the function A termi-
nates for all inputs (m,n) with a return value in N0.

The Ackermann function is used to analyze the union-find data type (Sec-
tion 6.1.2).

Lemma 1.6. Regarding the lexicographical order on N0 ×N0, there are only
finite descending sequences.

Proof. Suppose there is an infinite strictly descending sequence

(m1, n1) > (m2, n2) > (m3, n3) > . . .

The set {m1,m2,m3, . . .} ⊂ N0 possesses a smallest element mℓ
10. Hence,

mℓ = mℓ+1 = mℓ+2 = . . .. Then the set {nℓ, nℓ+1, nℓ+2, . . .} has no smallest
element, a contradiction. 2

1.2 Running Time of Algorithms

The running time analysis – or analysis for short – of algorithms plays an im-
portant role in the study of algorithms. Often several algorithms are available

9 The following function is called the Ackermann function. However, it is a simpli-
fied version of the original function that was introduced in 1955 by the Hungarian
mathematician Rózsa Péter (1905 – 1977).

10 The following property of natural numbers is used here: Let M ⊂ N0, M ̸= ∅.
Then M has a smallest element.
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to solve a problem. Only due to analysis can you decide which of the algo-
rithms is the most appropriate for a particular application. In the analysis,
we strive for formulas that are as explicit as possible. We now demonstrate
this with Algorithm 1.1 – SelectionSort.

1.2.1 Explicit Formulas

We analyze how often the individual lines of SelectionSort (Algorithm 1.1) are
executed. We count the number of executions in the worst case and on average.
The average is calculated over all possible arrangements of the elements in
the array a. For the analysis we assume that all elements in a are pairwise
distinct.

Let ai be the number of executions of line i in the worst case and ãi the
number of executions of line i on average – each depending on n.

Line i ai ãi
3, 7 n− 1 n− 1

5 n(n− 1)/2 n(n− 1)/2

6 ≤ n2
/4 ?

a3, a5 and a7 do not depend on the arrangement of the elements in a. There-
fore, ai = ãi for i = 3, 5, 7. The number a6 of executions in the worst case
of line 6 is limited by n(n− 1)/2. However, this bound is not reached by any
input instance. The specified bound n2

/4 is complicated to determine, see
[Knuth98a, section 5.2.3]11. In lines 4, 5 and 6 the minimum is determined
in a subarray. To calculate ã6, we first consider the search for the minimum
in an array.

Algorithm 1.7.
item Min(item a[1..n])
1 index i; itemm
2 m← a[1]
3 for i← 2 to n do
4 if a[i] < m
5 then m← a[i]
6 return m

We are now interested in the average number an of executions of line 5. An
element a[i] for which line 5 is executed is called an intermediate minimum.

Often recursive algorithms are easier to analyze. A recursive algorithm
implies a recursive equation for the running time of the algorithm. Therefore,
we program the minimum search recursively.

11 Donald E. Knuth (1938 – ) is an American computer scientist. He is the author
of TEX and Metafont and of “The Art of Computer Programming”, a standard
work on basic algorithms and data structures that now comprises four volumes,
was started almost 50 years ago and has not yet been completed ([Knuth97],
[Knuth98], [Knuth98a] and [Knuth11]).
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Algorithm 1.8.
item MinRec(item a[1..n])
1 itemm
2 if n > 1
3 then m← MinRec(a[1..n− 1])
4 if m > a[n]
5 then m← a[n]
6 return m
7 return a[1]

Let xn be the average number of executions of line 5 in MinRec. We have
an = xn. Line 5 in MinRec is executed if and only if the smallest element is at
position n. This case occurs with a probability of 1/n, because there are (n−1)!
arrangements in which the smallest element is at position n and there are n!
arrangements in total. With a probability of 1/n the number of executions of
line 5 is equal to the number of executions of line 5 in MinRec(a[1..n − 1])
plus 1, and with probability 1− 1/n it is equal to the number of executions of
line 5 in MinRec(a[1..n− 1]). The following equation holds for xn.

x1 = 0, xn =
1

n
(xn−1 + 1) +

(
1− 1

n

)
xn−1 = xn−1 +

1

n
, n ≥ 2.

Equations of this kind are called linear difference equations. We discuss a
general solution method for these equations in Section 1.3. The equation
from above is easy to solve by repeatedly replacing xj on the right-hand side
by xj−1 + 1/j, j = n − 1, . . . , 2. We say the equation is solved by expanding
the right-hand side.

xn = xn−1 +
1

n
= xn−2 +

1

n− 1
+

1

n
= . . .

= x1 +
1

2
+ . . .+

1

n− 1
+

1

n

=
n∑

i=2

1

i
= Hn − 1.

Hn is the nth harmonic number (Definition B.4).12

We record the result of the previous calculation in the following lemma.

Lemma 1.9. The mean value of the intermediate minima of the array a[1..n]
is Hn − 1.

Proposition 1.10. The average number of executions of line 6 in Algorithm
1.1 is

ã6 = (n+ 1)Hn − 2n.

12 The approximation of Hn by log2(n) defines a closed form for Hn (Appendix B
(F.1)).
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Proof. The algorithm SelectionSort determines the minimum in the array
a[i . . . n] for i = 1, . . . , n − 1. The length of this array is n − (i − 1). By
Lemma B.6 we obtain

ã6 =
n−1∑
i=1

(Hn−i+1 − 1) =
n∑

i=2

Hi − (n− 1)

= (n+ 1)Hn − n− 1− (n− 1) = (n+ 1)Hn − 2n.

This shows the assertion. 2

During the analysis of Algorithm 1.1 we counted how often the individual
lines were executed in the worst case and on average (average case).

The total number of operations is obtained by multiplying the operations
of a line with the number of executions of the line and summing up all lines.
By an operation we mean an elementary operation of a computer on which the
algorithm is to be executed. If each operation is weighted with the running
time of the operation in time units, the running time for the algorithm is
calculated in time units.

The calculation of the running time of an algorithm is based on the basic
constructs sequence, loop and branch, which make up an algorithm.

The running time of a sequence of statements is the sum of the running
times of the statements that occur in the sequence.

When calculating the running time for a loop, we add the running times
for the individual loop passes and the running time for the last check of
the termination condition. The running time for a loop pass is calculated by
adding together the running time to check the termination condition and the
running time required for the loop body. If the running time is the same for
all loop passes, we multiply the running time for a loop pass by the number
of iterations of the loop.

The running time for an if-then-else statement results from the running
time for checking the condition, the running time for the if-part and the
running time for the else-part. When calculating the running time of the
statement in the worst case, it is the maximum of the running times for
the if- and the else-part. In the average case, it is the term specified by the
weighted sum of the terms for the if- and else-part.

Definition 1.11. Let P be a computational problem, A an algorithm for P
and J the set of instances of P. Let l : J −→ N be a map that defines the
size of an instance. Let Jn := {I ∈ J | l(I) = n} be the set of instances of
size n.13 We define

S : J −→ N,

S(I) = number of operations (or the number of time units) that A needs to
solve I.

13 For our applications, Jn can be assumed to be finite.
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1. The running time or (time) complexity of A (in the worst case) is defined
by

T : N −→ N, T (n) := max
I∈Jn

S(I).

2. If a probability distribution (p(I))I∈Jn is given on Jn (Definition A.1),
then Sn : Jn −→ N, Sn(I) := S(I) is a random variable (Definition A.5).
The expected value E(Sn) =

∑
I∈Jn

p(I)S(I) of Sn is called the average
running time or average (time) complexity of A

T̃ : N −→ N, T̃ (n) := E(Sn).

In this text, the uniform distribution is always assumed for all calculations,
i.e., all elements from Jn occur with the same probability. Then the expected
value is the mean value.

Remark. Let the input of Algorithm 1.7, used to calculate the minimum, be
an array of integers. The inputs of size n are arrays of length n. We assume
the elements to be pairwise distinct. For each set {a1, . . . , an} of integers,
there are n! different arrays.

The number of digits of an integer is determined by the architecture of
the computer used. The representable integers form a finite subset I ⊂ Z
of the integers. If the number of digits of the integers is limited only by the
available memory of the computer, the effort for an operation with integers
depends on the length of the numbers and can no longer be assumed to be
constant.

Although the definition of the running time and the average running time
depend on all inputs of size n, it is possible to calculate the running time in
the worst case and on the average.

With a computer, we can simply calculate the running time needed to
compute an instance by executing the algorithm. However, it is not possible
to determine the running time in the worst case or the average running time
in this way.

Remark. Analogous to the time complexity one can define the memory com-
plexity of A. Memory complexity does not play a major role in the algorithms
we are investigating. The algorithms in Chapters 2 – 4 essentially get along
with constant memory. The memory consumption of the algorithms for graphs
is linear in the size of the input.

1.2.2 O-Notation

Let A1 and A2 be algorithms for the same computational problem, and let
T1(n) and T2(n) be the running times of A1 and A2. We now want to compare
T1(n) and T2(n) for large n, which means we are interested in the running
time for large inputs. Suppose T2(n) ≤ T1(n) for large n. This difference is



10 1. Introduction

insignificant14 if there is a constant c such that we obtain T1(n) ≤ cT2(n) for
large n. If the inequality is satisfied for no constant c, the running time of A2

is much better than the running time of A1 for large inputs. This is captured
by the O-notation, which is one of the Landau symbols15.

Definition 1.12 (order of growth). Let f, g : N −→ R≥0 be functions. g is
called in the order of f , or g is O(f) for short, if there are constants c, n0 ∈ N
with:

g(n) ≤ cf(n) for all n ≥ n0.

This means g grows asymptotically not faster than f . We write g(n) =
O(f(n)) or g = O(f).

Example. Let d > 0, ℓ ≥ 1, f(n) = nℓ and g(n) = nℓ + dnℓ−1. Then

nℓ + dnℓ−1 ≤ nℓ + nℓ = 2nℓ for n ≥ d.

For c = 2 and n0 = d, we obtain g(n) ≤ cf(n) for n ≥ n0, i.e., g(n) =
O(f(n)).
It is also valid that

nℓ ≤ nℓ + dnℓ−1 for n ≥ 0,

so for c = 1 and n0 = 0, f(n) ≤ cg(n) holds for n ≥ n0, i.e., f(n) = O(g(n)).

Remarks:

1. Directly from the definition of the O-notation follows transitivity: f(n) =
O(g(n)) and g(n) = O(h(n)) implies f(n) = O(h(n)).

2. g(n) = O(f(n)) compares f and g with respect to their asymptotic
growth (g does not grow asymptotically faster than f).

3. g(n) = O(f(n)) and f(n) = O(g(n)) means f and g have the same
asymptotic growth. Then there are constants c1 > 0, c2 > 0 and n0 ∈ N,
so that c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.

4. We extend the O-notation to functions depending on two parameters
n,m. Let

f, g : D −→ R≥0, D ⊂ N0 × N0,

be functions. We say g(n,m) = O(f(n,m)) if there are constants
c, n0,m0 ∈ N with:

g(n,m) ≤ cf(n,m) for all (n,m) ∈ D,n ≥ n0 or m ≥ m0.

This means that there are only finitely many pairs (m,n) ∈ D which do
not satisfy the inequality.
Note that 1 = O(nm) if D = N× N, and 1 ̸= O(nm) if D = N0 × N0.
We will use this generalization in Chapters 5 and 6. The running time
T (n,m) of graph algorithms depends on n, the number of nodes, and on
m, the number of edges of a graph.

14 In the sense of the O-notation, but not in the practical use of algorithms.
15 Edmund Georg Hermann Landau (1877 – 1938) was a German mathematician

who worked in the field of analytic number theory. Landau made the O-notation
known.
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Proposition 1.13. Let f(n) ̸= 0, n ∈ N. Then

g(n) = O(f(n)) if and only if

(
g(n)

f(n)

)
n∈N

is bounded.

Proof. We have g(n) = O(f(n)) if and only if there is a c ∈ N with g(n)
f(n) ≤ c

for almost all n ∈ N. This is equivalent to the fact that
(

g(n)
f(n)

)
n∈N

is bounded.
2

Remark. To decide the convergence of a sequence, analysis provides assis-
tance. Convergence of a sequence implies that the sequence is bounded (see
[AmannEscher05, Chapter II.1]). So we conclude g(n) = O(f(n)) if the se-

quence
(

g(n)
f(n)

)
n∈N

converges. In particular,

g(n) = O(f(n)) and f(n) = O(g(n)) if lim
n→∞

g(n)

f(n)
= c, c ̸= 0.

g(n) = O(f(n)) and f(n) ̸= O(g(n)) if lim
n→∞

g(n)

f(n)
= 0.

f(n) = O(g(n)) and g(n) ̸= O(f(n)) if lim
n→∞

g(n)

f(n)
=∞.

Example. Figure 1.1 shows graphs of elementary functions that occur as run-
ning times of algorithms.

Fig. 1.1: Elementary functions.

Proposition 1.14 (asymptotic growth of elementary functions). Let n ∈ N.

1. Let k ≥ 0 and a > 1. Then limn→∞
nk

an = 0. In particular, nk = O(an)
follows.
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2. Let k ≥ 0, ℓ > 0 and a > 1. Then limn→∞
loga(n)

k

nℓ = 0. Consequently,

loga(n)
k = O(nℓ).

3. Let a > 1. Then an = O(n!).
4. n! = O(nn).

Proof.

1. The general exponential function is defined by an := eln(a)n. Applying the

chain rule, we get dan

dn = ln(a)an. We show that limn→∞ nk
/an = 0. By

the rule of L’Hôpital16 for “∞
∞”, a quotient of sequences converges if the

quotient of the derivatives of the numerator and denominator converge
(see [AmannEscher05, Chapter IV.2]). Then the limit values are the same.
We consider

nk

an
,
knk−1

ln(a)an
,
k(k − 1)nk−2

ln(a)2an
, . . . ,

k(k − 1) · . . . · 1
ln(a)kan

.

The last quotient converges to 0. Thus, all quotients converge to 0. This
shows the first assertion.

2. We set loga(n) = m. Then n = am and

lim
n→∞

loga(n)
k

nℓ
= lim

m→∞

mk

((aℓ)m)
= 0 (following point 1).

The second assertion is shown.
3. Let n0 := ⌈a⌉. Then the third statement holds, because an ≤ an0n!.
4. We have n! ≤ nn for n ∈ N and hence n! = 0(nn). This is statement four.

2

Examples: Let P (x) =
∑k

j=0 ajx
j , aj ∈ R, and ak > 0.

1. P (n) = O(nk), because
(

P (n)
nk

)
n∈N

converges to ak.

2. Let Q(x) =
∑l

j=0 ajx
j , aj ∈ R, al > 0 and k < l.

Then P (n) = O(Q(n)) and Q(n) ̸= O(P (n)), because

P (n)/Q(n) = nk−l
∑k

j=0 ajn
j−k

/∑l
j=0 ajn

j−l converges to 0.

3. Let a ∈ R, a > 1.

P (n) = O(an), an ̸= O(P (n)), because
(

P (n)
an

)
n∈N

converges to 0.

4. Let P (x) = aix
i + . . .+ akx

k, ai > 0, i ≤ k.

P
(
1
n

)
= O

(
1
ni

)
, because

(
niP

(
1
n

))
n∈N converges to ai.

16 Guillaume François Antoine Marquis de L’Hôpital (1661 – 1704) was a French
mathematician.
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5. Let

f(n) =

{
1
n if n is odd and
n if n is even.

g(n) =

{
1
n if n is even and
n if n is odd.

Then neither f(n)
g(n) nor g(n)

f(n) is bounded. Thus, f ̸= O(g) and g ̸= O(f).

Calculating the asymptotic growth of the running time of an algorithm,
we can follow its construction from sequences, branches and loops (page 8).
In particular, the following rules can be helpful: Let gi = O(fi), i = 1, 2.
Then

g1 + g2 = O(max(f1, f2)),

g1 · g2 = O(f1 · f2).

These rules follow directly from the definition of the O-notation (Definition
1.12).

If an analysis reveals that the running time T (n) of an algorithm is of the
order O(f(n)), this statement is likely to be of mainly theoretical interest.
For an application, a precise specification of the constants c and n0 would be
very helpful, and if the size of the input is < n0, of course also the behavior
of T (n) for small n. Therefore, an exact determination of T (n) should be the
aim of the running time analysis.

Sometimes, we use the O-notation as a convenient notation to specify the
running time of an algorithm. For example, we write T (n) = O(n2), although
we could accurately determine the polynomial T (n) of degree 2. So we do not
need to specify the coefficients of the polynomial.

An important class of algorithms are the algorithms with polynomial run-
ning time T (n). With the introduced O-notation, this means T (n) = O(nk)
for a k ∈ N. An algorithm with a polynomial running time is also called an
efficient algorithm. If the degree of the polynomial indicating the running
time is large, even a polynomial running time algorithm is not applicable
for practical applications. Algorithms of exponential running time are not
efficient. We say T (n) grows exponentially if T (n) grows at least as fast as
f(n) = 2n

ε

, ε > 0.
When specifying the asymptotic growth of the running time of algorithms,

the functions log(n), n, n log(n), n2 and 2n appear many times. Then we say
that the algorithm has logarithmic, linear, super-linear, quadratic or expo-
nential running time.

1.3 Linear Difference Equations

The calculation of the running times of algorithms can often be done using
linear difference equations. We therefore discuss methods for solving linear
difference equations, which we will later use to calculate the running times
of algorithms. There is an exhaustive theory about difference equations, the
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discrete analogues to differential equations (see for example [KelPet91] or
[Elaydi03]).

1.3.1 First-Order Linear Difference Equations

Given are sequences of real numbers (an)n∈N and (bn)n∈N and a real number
b. A first-order linear difference equation is defined by

x1 = b,

xn = anxn−1 + bn, n ≥ 2.

The sequence xn is searched for. The sequences an and bn are called coeffi-
cients of the equation and are assumed to be known. The equation is of first
order because xn depends only on xn−1, the predecessor of xn. The number
b is called the initial condition of the equation.

The sequence x1, x2, . . . can be calculated with a computer. However, we
are interested in a formula for xn that allows us to calculate xn by inserting
n. Such a formula is called a closed solution of the difference equation.

The two cases bn = 0 and an = 1 can simply be solved by expanding the
right-hand side of the equation. We obtain

xn = anxn−1 = anan−1xn−2 = . . . = b
n∏

i=2

ai, and

xn = xn−1 + bn = xn−2 + bn−1 + bn = . . . = b+
n∑

i=2

bi.

In the general case, we first consider the assigned homogeneous equation

x1 = b, xn = anxn−1, n ≥ 2.

A solution of the homogeneous equation is obtained as above:

xn = πnb, where πn =
n∏

i=2

ai, n ≥ 2, π1 = 1.

Let πn ̸= 0 for all n ∈ N. The solution of the inhomogeneous equation is
obtained by the approach:

xn = πncn, n ≥ 1.

We substitute xn = πncn into the equation and get

πncn = anπn−1cn−1 + bn = πncn−1 + bn.

Division by πn yields a difference equation for cn
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cn = cn−1 +
bn
πn

.

We solve this equation by expanding the right-hand side:

cn = cn−1 +
bn
πn

= cn−2 +
bn
πn

+
bn−1

πn−1
= . . . = b+

n∑
i=2

bi
πi

.

We obtain

xn = πn

(
b+

n∑
i=2

bi
πi

)
, n ≥ 1,

as solution of the original equation.

The discussed method for solving linear difference equations of the first
order is described as themethod of variation of constants. Summarizing yields
the following proposition.

Proposition 1.15. The solution of the linear difference equation

x1 = b, xn = anxn−1 + bn, n ≥ 2,

is given by

xn = πn

(
b+

n∑
i=2

bi
πi

)
, n ≥ 1,

where πi =
∏i

j=2 aj for 2 ≤ i ≤ n and π1 = 1.

A solution can be given in closed form if this succeeds for the product
and the sum which occur in the general solution.

Corollary 1.16. The linear difference equation with constant coefficients a
and b

x1 = c, xn = axn−1 + b for n ≥ 2

has the solution

xn =

an−1c+ ba
n−1−1
a−1 if a ̸= 1,

c+ (n− 1)b if a = 1.

Proof.

xn = an−1

(
c+

n∑
i=2

b

ai−1

)
= an−1c+ b

n∑
i=2

an−i = an−1c+ b
n−2∑
i=0

ai

=

an−1c+ ba
n−1−1
a−1 if a ̸= 1 (Appendix B (F.5)),

c+ (n− 1)b if a = 1.

2
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Examples:

1. The equation
x1 = 2, xn = 2xn−1 + 2n−2, n ≥ 2,

has the solution

πn =
n∏

i=2

2 = 2n−1.

xn = 2n−1

(
2 +

n∑
i=2

2i−2

2i−1

)
= 2n−1

(
2 +

n∑
i=2

1

2

)
= 2n−2(n+ 3).

2. Consider the equation

(d) x1 = c, xn =
n+ 2

n
xn−1 + (an+ b), n ≥ 2,

where a, b, c are constant. Solving the equation we compute

πn =
n∏

i=2

i+ 2

i
=

(n+ 1)(n+ 2)

6
.

xn =
(n+ 1)(n+ 2)

6

(
c+

n∑
i=2

6(ai+ b)

(i+ 1)(i+ 2)

)

= (n+ 1)(n+ 2)

(
c

6
+

n∑
i=2

(
2a− b

(i+ 2)
− b− a

(i+ 1)

))

= (n+ 1)(n+ 2)

(
c

6
+ (2a− b)

n+2∑
i=4

1

i
− (b− a)

n+1∑
i=3

1

i

)

= (n+ 1)(n+ 2)

(
aHn+1 +

2a− b

n+ 2
− 13a

6
+

b

3
+

c

6

)
.

Hn =
∑n

i=1
1
i is the nth harmonic number (Definition B.4).

Adding up rational functions is done by using the partial fraction decom-
position (Appendix B (F.2)):

ai+ b

(i+ 1)(i+ 2)
=

A

(i+ 1)
+

B

(i+ 2)
.

Multiplying by the common denominator we obtain

ai+ b = A(i+ 2) +B(i+ 1) = (A+B)i+ 2A+B.

Comparison of coefficients yields the equations

A+B = a and 2A+B = b.
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These equations have the solutions A = b− a and B = 2a− b.
We will apply this with (a, b, c) = (1,−1, 0) and (a, b, c) = (1/6, 2/3, 0)
when calculating the average number of comparisons and exchanges for
the quicksort algorithm (proof of Proposition 2.5 and of Proposition 2.7)
and with (a, b, c) = (1, 0, 1) when calculating the average path length in
a binary search tree (proof of Proposition 4.20).

3. We now apply linear difference equations in order to analyze the running
time of algorithms. We compute the number of outputs of the following
algorithm HelloWorld.17

Algorithm 1.17.

HelloWorld(int n)
1 if n > 0
2 then for i← 1 to 2 do
3 HelloWorld(n− 1)
4 print(hello, world)

Let xn denote the number of outputs of “hello, world”, depending on n.

x1 = 1, xn = 2xn−1 + 1 for n ≥ 2.

Thus,

πn =
n∏

i=2

2 = 2n−1.

xn = 2n−1

(
1 +

n∑
i=2

1

2i−1

)
= 2n−1 +

n∑
i=2

2n−i

= 2n−1 +
n−2∑
i=0

2i = 2n−1 + 2n−1 − 1 = 2n − 1.

4. We consider a modified algorithm.

Algorithm 1.18.

HelloWorld2(int n)
1 if n >= 1
2 then print(hello, world)
3 for i← 1 to n− 1 do
4 HelloWorld2(i)
5 print(hello, world)

Again, xn denotes the number of outputs of “hello, world”.

x1 = 1, xn =
n−1∑
i=1

(xi + n) for n ≥ 2.

17 Referring to Kernighan and Ritchie’s famous “hello, world” ([KerRit78]).
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We obtain

xn − xn−1 = xn−1 + 1, hence

xn = 2xn−1 + 1, x1 = 1.

Thus, the solution of the difference equation is xn = 2n − 1.

1.3.2 Fibonacci Numbers

Fibonacci numbers are named after Fibonacci18, who is regarded as the dis-
coverer of these numbers. Fibonacci numbers have many interesting proper-
ties. Among other things they appear in the analysis of algorithms. We will
use the Fibonacci numbers in Section 4.3 to find an upper bound for the
height of a balanced binary search tree.

Definition 1.19. Fibonacci numbers are recursively defined by

f0 = 0, f1 = 1,

fn = fn−1 + fn−2, n ≥ 2.

Figure 1.2 illustrates the development of the Fibonacci numbers through
a growth process. An unfilled node becomes a filled node in the next level.
From a filled node, an unfilled node and a filled node are created in the next
level.

........

...

.......

Fig. 1.2: Fibonacci numbers.

The number of nodes in the ith level is equal to the ith Fibonacci num-
ber fi, because the nodes of the (i− 1)th level also occur in the ith level (as
filled nodes) and the nodes of the (i−2)th level are filled in the (i−1)th level.

The goal is to develop an algorithm to calculate the Fibonacci numbers
and to derive a closed formula for the Fibonacci numbers. For this purpose

18 Leonardo da Pisa, also called Fibonacci, was an Italian mathematician. He lived
in Pisa in the second half of the 12th and first half of the 13th century.
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we consider the somewhat more general linear difference equation of second
order

x0 = u0, x1 = u1,

xn = vnxn−1 + wnxn−2 + bn, wn ̸= 0, n ≥ 2.

The sequence xn is wanted. The sequences vn, wn and bn are called coeffi-
cients of the equation and are assumed to be known.

A second-order difference equation is converted to a system of first-order
difference equations:

X1 = B,

Xn = AnXn−1 +Bn, n ≥ 2,

where

B =

(
u0

u1

)
, Xn =

(
xn−1

xn

)
, n ≥ 1,

An =

(
0 1
wn vn

)
, Bn =

(
0
bn

)
, n ≥ 2.

This system has the solution

Xn = πn

(
B +

n∑
i=2

πi
−1Bi

)
, n ≥ 1, where

πi = Ai · . . . ·A2, 2 ≤ i ≤ n, π1 =

(
1 0
0 1

)
.

In particular, the homogeneous equation

x0 = u0, x1 = u1,

xn = vnxn−1 + wnxn−2, wn ̸= 0, n ≥ 2,

has the solution

Xn = πnB,n ≥ 1, where πn = An · . . . ·A2, π1 =

(
1 0
0 1

)
.

The homogeneous difference equation with constant coefficients

x0 = u0, x1 = u1,

xn = vxn−1 + wxn−2, w ̸= 0, n ≥ 2

has the solution

Xn = An−1B,n ≥ 1, where A =

(
0 1
w v

)
.
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Remarks:

1. The matrix An can be calculated by an efficient exponentiation algorithm
in log2(n) steps (see below).

2. The method for solving second-order difference equations can be gener-
alized to kth-order difference equations.

Algorithm for Computing the nth Fibonacci Number. The Fibonacci
numbers are defined by a homogeneous second-order linear difference equa-
tion with constant coefficients. With

Xn =

(
fn−1

fn

)
and A =

(
0 1
1 1

)
,

we get for n ≥ 1(
fn−1 fn
fn fn+1

)
=

(
An−1

(
0

1

)
An

(
0

1

))
= An−1

(
0 1
1 1

)
= An.

We calculate An−1 =

(
a11 a12
a21 a22

)
with the following Algorithm 1.20 and get

fn = a22.
This algorithm calculates (Al)2 and possibly AlA in one step.
Calculating (Al)2, the terms f2l−1 + f2l , fl−1fl + flfl+1 and f2l + f2l+1 have to

be used. If you replace fl+1 with fl−1 + fl, you see that the squaring requires
three multiplications (f2l−1, fl−1fl, f2l ) and six additions due to the special

shape of Al. Multiplying Al by A, the first line of AlA is the second line of
Al, and the second line of AlA is the sum of the two lines of Al. Therefore,
only two additions of integers are required.

Algorithm for Fast Exponentiation. Due to the formula

An =

{
(An/2)2 if n is even,
(A(n−1)/2)2A if n is odd,

the exponent n can be halved in one step, consisting of a squaring and at
most one multiplication. This results in an algorithm that calculates An in
time O(log2(n)).

To avoid recursion, we consider n in the binary numeral system,

n = 2l−1nl−1 + 2l−2nl−2 + . . .+ 21n1 + 20n0 (with nl−1 = 1)

= (2l−2nl−1 + 2l−3nl−2 + . . .+ n1) · 2 + n0

= (. . . ((2nl−1 + nl−2) · 2 + nl−3) · 2 + . . .+ n1) · 2 + n0.

Then l = ⌊log2(n)⌋+ 1 and

A2l−1+2l−2nl−2+...+2n1+n0 = (. . . (((A2 ·Anl−2)2 ·Anl−3)2 · . . .)2 ·An1)2 ·An0 .

We also get this formula if we expand the recursive formula from above, i.e.,

by continually applying it on A
n/2 and A

(n− 1)/2. We convert the formula
into an algorithm:
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Algorithm 1.20.
matrix Power(int matrix A; bitString nl−1 . . . n0)
1 int i; matrixB ← A
2 for i← l − 2 downto 0 do
3 B ← B2 ·Ani

4 return B

The number of iterations of the for loop is ⌊log2(n)⌋, the bit length of n minus
1. The running time of the algorithm Power is logarithmic in the exponent
n, hence linear in |n|, the bit length of n. This applies if the effort for the
arithmetic operation of addition and multiplication is constant. However, note
that the effort for large numbers depends on the length of the numbers and
is therefore no longer constant. This increases the complexity if we use the
algorithm to calculate very large Fibonacci numbers.

The iterative solution, which calculates fn by adding fi−1 to fi−2 to get
fi for i = 2 . . . n, needs n − 1 additions. The running time of this algorithm
is linear in n and therefore exponential in |n|. But it calculates the first n
Fibonacci numbers.

The following is a closed solution for the Fibonacci numbers.

Proposition 1.21. The Fibonacci number fn can be calculated by

fn =
1√
5
(gn − ĝn), n ≥ 0,

where

g =
1

2

(
1 +
√
5
)

and ĝ = 1− g = −1

g
=

1

2

(
1−
√
5
)

are the solutions of the equation x2 = x+ 1.

Definition 1.22. The number g is called the ratio of the golden mean or
golden ratio.19

Proof. The solution approach with the exponential function

fn = qn,

inserted into the equation xn − xn−1 − xn−2 = 0, yields

qn − qn−1 − qn−2 = qn−2
(
q2 − q − 1

)
= 0.

The base q of the exponential function is a zero of the quadratic polynomial
X2 −X − 1. This has the solutions g and ĝ. Thus,

19 A line segment is divided in the ratio of the golden mean if the ratio of the
whole to its greater part is equal to the ratio of the greater to the smaller part.

In formulas: (x+ y)/x = x/y. This ratio does not depend on x and y and is the

solution of the equation X2 = X + 1. In architecture, proportions satisfying the
ratio of the golden mean are considered ideal.
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gn − gn−1 − gn−2 = 0 and ĝn − ĝn−1 − ĝn−2 = 0

is valid, i.e., the functions gn and ĝn are solutions of the equation xn−xn−1−
xn−2 = 0. Since the equation is linear,

λ1g
n + λ2ĝ

n, λ1, λ2 ∈ R

is also a solution. It is called the general solution of the difference equation.

The initial condition f0 = 0, f1 = 1 implies

λ1g
0 + λ2ĝ

0 = 0 ,

λ1g
1 + λ2ĝ

1 = 1 .

The solutions of the linear equations are λ1 = −λ2 = 1√
5
. Inserting λ1 =

−λ2 = 1√
5
into the solution yields

fn =
1√
5
(gn − ĝn),

the solution for the initial condition f0 = 0, f1 = 1. 2

Remarks:

1. The proof method can be used to find a closed form for the solution of
homogeneous difference equations with constant coefficients (not only for
equations of order 2).

2. Since | 1√
5
ĝn| < 1

2 for n ≥ 0, we conclude that

fn = round

(
gn√
5

)
,

where round(x) rounds to the nearest integer x. In particular, the formula
shows that the Fibonacci numbers have exponential growth.

3. The calculation of Fibonacci numbers with the formula from Proposition
1.21 is done in the quadratic number field Q(

√
5)20. The arithmetic in

Q(
√
5) gives exact results. If this is not implemented, irrational numbers

are usually approximated by floating-point numbers. However, these only
offer limited precision and the computational effort is higher compared
to integer arithmetic.

4. The quotient of two consecutive Fibonacci numbers converges to the
golden ratio g. This follows because

fn+1

fn
=

gn+1 − ĝn+1

gn − ĝn
= g

1−
(

ĝ
g

)n+1

1−
(

ĝ
g

)n = g
1−

(
−1
g2

)n+1

1−
(

−1
g2

)n .

The last fraction converges to 1. This implies the assertion.

20 Quadratic number fields are the subject of algebraic number theory and are also
studied in [RemUll08].
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We will discuss the solution of second-order linear difference equations
with constant coefficients that are not homogeneous. For this purpose we
consider the recursive calculation of Fibonacci numbers – as in the defining
equation.

Algorithm 1.23.
int Fib(int n)
1 if n = 0 or n = 1
2 then return n
3 else return Fib(n− 1) + Fib(n− 2)

Let xn denote the number of calls to Fib to calculate the nth Fibonacci
number. Then

x0 = 1, x1 = 1,

xn = xn−1 + xn−2 + 1, n ≥ 2.

We calculate a special solution of the equation by the approach φn = c, c
constant, and get c = 2c+ 1 or c = −1.
The general solution xn results from the general solution of the homogeneous
equation and the special solution φn = −1:

xn = λ1g
n + λ2ĝ

n − 1, λ1, λ2 ∈ R.

From the initial conditions x0 = x1 = 1 results λ1g
0 + λ2ĝ

0 − 1 = 1 and
λ1g

1 + λ2ĝ
1 − 1 = 1. We get

λ1 =
2(1− ĝ)√

5
=

2g√
5
, λ2 = −2(g −

√
5)√

5
= − 2ĝ√

5
.

This results in the following solution:

xn =
2√
5
(ggn − ĝĝn)− 1 =

2√
5

(
gn+1 − ĝn+1

)
− 1 = 2fn+1 − 1.

The term is therefore exponential in n. The algorithm from above, which uses
the exponentiation method, has a logarithmic running time.

Remark. We consider an inhomogeneous linear difference equation of order k
with constant coefficients:

xn + ak−1xn−1 + . . .+ a1xn−k+1 + a0xn−k = rn, a0 ̸= 0.(1.1)

We assign the characteristic polynomial to the equation.

P (X) := Xk + ak−1X
k−1 + . . .+ a1X

1 + a0.
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1. A general solution is computed as follows:
If P (X) has the zeros x1, . . . , xµ with the multiples α1, . . . , αµ, then

xn =

µ∑
i=1

αi∑
j=1

λijn
j−1xn

i , λi,j ∈ R

is a general solution of the assigned homogeneous equation.
2. The approach to the right-hand side provides a solution of the inhomoge-

neous equation: If the right-hand side rn of equation (1.1) is of the form
rn = p(n)an, where p(n) is a polynomial of degree ν, then the approach
nℓanφ(n) with a polynomial φ(n) of degree ν with indeterminate coeffi-
cients delivers a special solution. ℓ is the multiplicity of the zero a of the
characteristic polynomial.

The methods discussed in this section for solving recursive equations, es-
pecially first-order linear difference equations, are applied in the running time
calculation of quicksort (Section 2.1.1) and quickselect (Section 2.31), for de-
termining the average path length in binary search trees (Proposition 4.20)
and in Section 4.4 for analyzing the running time of the access functions
to randomized binary search trees (Proposition 4.24), and in the analysis of
a randomized algorithm for calculating a minimal cut in a graph (Section
5.7). An upper bound for the height of an AVL tree can be specified using a
second-order difference equation (Proposition 4.14).

1.4 The Master Method for Recurrences

In the literature the following proposition is called the “master theorem”. It
is applicable to algorithms that follow the divide and conquer strategy (see
Section 1.5.2). The running time T (n) of such algorithms fulfills a recurrence
equation, i.e., the value T (n) is defined by the values of arguments preceding
n.

We consider the case that only one smaller value occurs, which is deter-
mined by a contraction. If only integer input variables are considered, the
contraction must be supplemented by rounding up or down.

The method we are using to solve recurrences allows precise statements
and provides a simple proof. First, we formulate the concept of the contraction
and two preparatory lemmas.

Definition 1.24. Let g : R≥0 −→ R≥0 be a function and 0 ≤ q < 1. g is said
to be a contraction if g(x) ≤ qx for all x ∈ R≥0.

Lemma 1.25. Let g : R≥0 −→ R≥0 be a contraction, r : R≥0 −→ R≥0 a func-
tion and b ∈ N. We consider for x ∈ R≥0 the recurrence

(R0) Tg(x) = d for x < b, and Tg(x) = aTg(g(x)) + r(x) for x ≥ b,
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where a ≥ 1 and d are constants from R≥0. Let k be the recursion depth of g
with respect to x and b, i.e., k is the smallest exponent with gk(x) < b. Then

(S0) Tg(x) = akd+
k−1∑
i=0

air(gi(x)).

In particular, if r is an increasing function21 and h and g are contractions
with h(x) ≤ g(x) for all x ∈ R≥0, then Th(x) ≤ Tg(x) for all x ∈ R≥0.

Proof. We get the formula by expanding the right-hand side.

Tg(x) = aTg(g(x)) + r(x)

= a(aTg(g
2(x)) + r(g(x))) + r(x)

= a2Tg(g
2(x)) + ar(g(x)) + r(x)

...

= akTg(g
k(x)) + ak−1r(gk−1(x)) + . . .+ ar(g(x)) + r(x)

= akd+
k−1∑
i=0

air(gi(x)).

The solution formula (S0) implies the statement about monotonicity. 2

Lemma 1.26. Let n ∈ R≥0. We consider the recurrence

(R1) T( b )
(n) = d for n < b, and T( b )

(n) = aT( b )

(n
b

)
+ cnl for n ≥ b,

where a ≥ 1, c, d are constants from R≥0, b > 1 and l are constants from N0.
Let q = a/bl. Then

(S1) T( b )
(n) =


da⌊logb(⌊n⌋)⌋ + cnl q⌊logb(⌊n⌋)⌋−1

q−1 if bl ̸= a,

da⌊logb(⌊n⌋)⌋ + cnl⌊logb(⌊n⌋)⌋ if bl = a.

The order of T( b )
(n) satisfies

T( b )
(n) =


O(nl) if l > logb(a),
O(nl logb(n)) if l = logb(a),
O(nlogb(a)) if l < logb(a).

Proof. Let n =
∑k−1

i=−∞ nib
i = nk−1 . . . n1n0.n−1 . . . with nk−1 ̸= 0 in the

base-b numeral system. Then k = ⌊logb(⌊n⌋)⌋+ 1 = ⌊logb(n)⌋+ 1, and n
bi =

nk−1 . . . ni.ni−1 . . . n0n−1 . . .. With Lemma 1.25 and g(n) = n/b, r(n) = cnl

and gi(n) = n/bi we conclude

21 A function f is said to be increasing if f(x) ≤ f(y) for all arguments x ≤ y and
strictly increasing if we require “<” instead of “≤”.
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T( b )
(n) = ak−1d+ c

k−2∑
i=0

ai
( n
bi

)l
= ak−1d+ cnl

k−2∑
i=0

( a
bl

)i

=

dak−1 + cnl q
k−1−1
q−1 if bl ̸= a,

dak−1 + cnl(k − 1) if bl = a

(Appendix B (F.5)). Replacing k with ⌊logb(n)⌋+122, we obtain the formula
for T( b )

(n).
It remains to show the statements about the order of T( b )

(n).

If q > 1, i.e., logb(a) > l, then O
(

qk−1−1
q−1

)
= O(qk−1), and

O(ak−1 + nlqk−1) = O
(
alogb(n) + nlqlogb(n)

)
=23 O

(
nlogb(a) + nlnlogb(q)

)
=

O(nlogb(a) + nlnlogb(a)−l) = O(nlogb(a)).

If q < 1, i.e., logb(a) < l, then qk−1−1
q−1 converges to 1

1−q for k −→ ∞. So
qk−1−1
q−1 = O(1) and a⌊logb(⌊n⌋)⌋ + cnl ≤ nlogb(a) + cnl = O(nl).

If logb(a) = l, then da⌊logb(⌊n⌋)⌋ + cnl⌊logb(⌊n⌋)⌋ = O(nl + nl logb(n)) =
O(nl logb(n)). The assertion of the lemma is thus shown. 2

The solution method – expanding the right-hand side – immediately im-
plies the uniqueness of the solution.

Corollary 1.27. The (closed) solution (S1) of the recurrence (R1) is deter-
mined by the parameters a, b, c, d and l of the recurrence, and hence it is
unique.

Remark. Let n = bk. We set xk = T( b )
(bk). Then

x1 = ad+ cbl and xk = axk−1 + c
(
bl
)k

for k > 1.

Using the substitution n = bk, we transform the recurrence (R1) into a linear
difference equation. We present the solution of this difference equation as
an exercise (Exercise 12). Another method to solve the recurrence (R1) is
obtained by applying the inverse transformation k = logb(n) (Lemma B.23).

We formulate the prerequisites for the application of the master theorem.
We split the input of size n ∈ N for a recursive algorithm A into a instances
of size

⌊
n
b

⌋
or of size

⌈
n
b

⌉
. Then the solutions for the a subinstances are

computed recursively. The running time to split an instance and to combine
the results of the recursive calls of these subinstances is cnl.

The function T⌊ b ⌋ is defined recursively by

(R2) T⌊ b ⌋(n) = d for n < b and T⌊ b ⌋(n) = aT⌊ b ⌋

(⌊n
b

⌋)
+ cnl for n ≥ b,

22 Recursion breaks down after k − 1 = ⌊logb(n)⌋ steps. We say ⌊logb(n)⌋ is the
recursion depth of the equation (R1).

23 alogb(n) = (blogb(a))logb(n) = (blogb(n))logb(a) = nlogb(a).
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where a ≥ 1, b > 1 and c, d, l are constants from N0. The function T⌈ b ⌉ is
defined analogously by replacing in T⌊ b ⌋ the function ⌊ b⌋ with the function
⌈ b⌉.

(R3) T⌈ b ⌉(n) = d for n < b and T⌈ b ⌉(n) = aT⌈ b ⌉

(⌈n
b

⌉)
+ cnl for n ≥ b.

Let n =
∑k−1

i=0 nib
i = nk−1 . . . n1n0, nk−1 ̸= 0, in the base-b numeral

system and let q = a/bl.
The function S(n, λ), which is only used with λ = b/(b− 1) and λ =

(b− 1)/b, is defined by

S(n, λ) =


d′a⌊logb(n)⌋ + c(λn)l q⌊logb(n)⌋−1

q−1 if q ̸= 1,

d′a⌊logb(n)⌋ + c(λn)l⌊logb(n)⌋ if q = 1.

Depending on λ and n, d′ is defined by

d′ =

{
d if λ = (b− 1)/b or λ = b/(b− 1) and n ≤ (b− 1)bk−1,
ad+ cbl if λ = b/(b− 1) and n > (b− 1)bk−1.

Proposition 1.28 (master theorem). Let T( b )
be the function of Lemma

1.26.

1. Then T⌊ b ⌋(n) ≤ T( b )
(n) ≤ T⌈ b ⌉(n) for n ∈ N.

2. For n = nk−1b
k−1, the inequality from above becomes an equation, i.e.,

for T⌊ b ⌋(n) and T⌈ b ⌉(n) the formulas for T( b )
(n) of Lemma 1.26 apply.

3. Further, if n ̸= nk−1b
k−1 then S

(
n, (b− 1)/b

)
is a lower bound of T⌊ b ⌋(n)

and S(n, b/(b− 1)) is an upper bound for T⌈ b ⌉.
4. The asymptotic statements for T( b )

(n) from Lemma 1.26 apply to T⌊ b ⌋(n)
and T⌈ b ⌉(n).

Proof. Lemma 1.25 implies the inequality in point 1.
For n = nk−1b

k−1, we have ⌊ nbi ⌋ = ⌈
n
bi ⌉ =

n
bi , i = 0, . . . , k − 1. Thus, the

inequality becomes an equation.
We now show the statement for the lower bound of T⌊ b ⌋(n). For this

purpose we set

U(n) =
n− (b− 1)

b
.

Then U(n) ≤
⌊
n
b

⌋
. Let

TU (n) = d for n < b, TU (n) = aTU (U(n)) + cnl for n ≥ b.

We set

m0 = n and mi =
mi−1 + 1− b

b
for i ≥ 1.
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This is a linear difference equation with constant coefficients. Hence, by Corol-
lary 1.1624

mi =
n

bi
+

1

bi
− 1 and from there

(
b− 1

b

)
n

bi
≤ mi for i = 0, . . . , k − 2.

We have U i(n) = mi. With Lemma 1.25 and λ = (b− 1)/b, we get

TU (n) = ak−1d+ c
k−2∑
i=0

aiml
i ≥ ak−1d+ c(λn)l

k−2∑
i=0

( a
bl

)i

=

dak−1 + c(λn)l q
k−1−1
q−1 if bl ̸= a,

dak−1 + c(λn)l(k − 1) if bl = a

(Appendix B (F.5)). We replace k by ⌊logb(n)⌋ + 1 and get S(n, (b− 1)/b) ≤
TU (n) ≤ T⌊ b ⌋(n). For the last inequality, Lemma 1.25 is used.

To show the upper bound for T⌈ b ⌉(n), we use the following notation:

⌈n
b

⌉
0
:= n and

⌈n
b

⌉
i
:=

⌈⌈
n
b

⌉
i−1

b

⌉
for i ≥ 1.

We show first that⌈n
b

⌉
i
=
⌈ n
bi

⌉
≤ b

b− 1

n

bi
for i = 0, . . . , k − 2.

Let n =
∑k−1

i=0 nib
i = nk−1 . . . n1n0, nk−1 ̸= 0, in the base-b numeral

system. For i = 0, . . . , k − 2 we show⌈ n
bi

⌉
≤ b

b− 1

n

bi
or equivalently (b− 1)

⌈ n
bi

⌉
≤ n

bi−1
.

If i = 0 or ni−1 . . . n0 = 0, there is nothing to show. Let i ≥ 1 and
ni−1 . . . n0 ̸= 0. Then for the left-hand side l and for the right-hand side
r we have

l = nk−1b
k−i + nk−2b

k−i−1 + . . .+ nib+ b−
(nk−1b

k−i−1 + nk−2b
k−i−2 + . . .+ ni + 1)

≤ nk−1b
k−i + nk−2b

k−i−1 + . . .+ nib+ (b− 1)− bk−i−1

= nk−1b
k−i + (nk−2 − 1)bk−i−1 + nk−3b

k−i−2 + . . .+ nib+ (b− 1)

≤ nk−1b
k−i + nk−2b

k−i−1 + . . . nib+ ni−1

≤ r

24 Please note the index shift, because here the start condition is given for m0 and
not for m1.
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By Lemma 1.25 we get

T⌈ b ⌉(n) = d′ak−1 + c
k−2∑
i=0

ai
(⌈n

b

⌉
i

)l
≤ d′ak−1 + c(nλ)l

k−2∑
i=0

( a
bl

)i

=


d′ak−1 + c(λn)l

(
qk−1−1
q−1

)
if bl ̸= a,

d′ak−1 + c(λn)l(k − 1) if bl = a.

Again, we replace k by ⌊logb(n)⌋+1 and get the upper bound for T⌈ b ⌉. State-
ment 4 is a consequence of statements 1 and 3 (with Lemma 1.26). 2

Remark. We summarize the results of our investigations. The running time
T (n) of a divide and conquer algorithm that splits instances of size n into
instances of size

⌊
n
b

⌋
or
⌈
n
b

⌉
can be exactly determined for n = nk−1b

k−1.
In the case n ̸= nk−1b

k−1, we specify functions that bound T⌊ b ⌋(n) narrowly
downwards and T⌈ b ⌉(n) narrowly upwards. The recursion depth of each of the
equations (R1), (R2) and (R3) is ⌊logb(n)⌋ for n ∈ N. The statements about
the order of the running time follow immediately from the derived formulas
for S

(
n, (b− 1)/b

)
and S

(
n, b/(b− 1)

)
.

We will present a first application of the master theorem in the following
section.

The Algorithm of Strassen for the Multiplication of Matrices. We
consider the product of two 2 × 2 square matrices with coefficients from a
(not necessarily commutative) ring25:(

a11 a12
a21 a22

)
·
(
b11 b12
b21 b22

)
=

(
c11 c12
c21 c22

)
.

The standard method calculates the scalar product of each row of the first
matrix with each column of the second matrix, and requires eight multiplica-
tions and four additions of the coefficients.

The following equations, which Strassen26 published in [Strassen69], re-
duce the number of multiplications to 7.

(S.1)

m1 = f1 · j1 := (a11 + a22) · (b11 + b22),
m2 = f2 · j2 := (a21 + a22) · b11,
m3 = f3 · j3 := a11 · (b12 − b22),
m4 = f4 · j4 := a22 · (b21 − b11),
m5 = f5 · j5 := (a11 + a12) · b22
m6 = f6 · j6 := (a21 − a11) · (b11 + b12),
m7 = f7 · j7 := (a12 − a22) · (b21 + b22).

25 In the application it is a matter of matrix rings. The result of multiplying two
matrices depends on the order of the factors. Matrix rings are generally not
commutative.

26 Volker Strassen (1936 – ) is a German mathematician.
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The product (cij) i=1,2
j=1,2

is computed from m1, . . . ,m7:

(S.2)

c11 = m1 +m4 −m5 +m7,
c12 = m3 +m5,
c21 = m2 +m4,
c22 = m1 −m2 +m3 +m6.

The calculation of (cij) i=1,2
j=1,2

is done by seven multiplications and 18 additions.

The equations can easily be verified by recalculation.

The following algorithm calculates the product of two n×n square matri-
ces A,B with coefficients from a ring R for n = 2k. We apply the reduction
of the number of multiplications from eight to seven recursively. For this, the
inputs A and B are each divided into four n/2× n/2 matrices. Now A, B and
C are 2× 2 matrices with n/2× n/2 matrices as coefficients:(

A11 A12

A21 A22

)
·
(
B11 B12

B21 B22

)
=

(
C11 C12

C21 C22

)
.

So we are looking at 2 × 2 matrices over the matrix ring of the n/2 × n/2
matrices, where the equations (S.1) and (S.2) to calculate the product of two
2× 2 matrices also apply. The algorithm is designed according to the divide
and conquer design method (Section 1.5.2).

Algorithm 1.29.
matrix StrassenMult(matrix A[1..n, 1..n], B[1..n, 1..n])
1 if n = 1
2 then return A[1, 1] ·B[1, 1]
3 for k ← 1 to 7 do
4 (Fk, Jk)← Divide(k,A,B)
5 Mk ← StrassenMult(Fk, Jk)
6 C ← Combine(M1, . . . ,M7)
7 return C

For n = 1 the product is computed immediately, and for n = 2 the algorithm
performs the operations of the equations (S.1) and (S.2) with elements from
the ring R.

The calculation of the inputs (F1, J1), . . . , (F7, J7) for the recursive calls
is done by Divide (line 4) according to the equations (S.1). It requires 10
additions of square matrices of dimension n/2. After termination of the recur-
sive calls of StrassenMult, the results are combined to give the return value
C (by the equations (S.2)). For this, eight more additions of square matrices
of dimension n/2 are necessary.

Hence, the number of arithmetic operations (additions, subtractions and
multiplications) fulfills the following recurrence

T (n) = 7 · T
(n
2

)
+ 18

(n
2

)2
for n ≥ 2 and T (1) = 1.
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We now apply Proposition 1.28 and get

T (n) = 7log2(n) + 6n2

((
7

4

)log2(n)

− 1

)
= nlog2(7) + 6n2

(
nlog2( 7

4 )) − 1
)

= 7nlog2(7) − 6n2 = 7k+1 − 3 · 22k+1.

The number of arithmetic operations is of order O(nlog2(7)) = O(n2.807).
For any n we set k = ⌈log2(n)⌉. We complete A and B to 2k×2k matrices,

by setting the missing coefficients to 0. Then we apply Algorithm 1.29. For
the number T (n) of arithmetic operations, we get

T (n) = 7⌈log2(n)⌉ + 6n2

((
7

4

)⌈log2(n)⌉

− 1

)

≤ 7 · 7log2(n) + 6n2

(
7

4

(
7

4

)log2(n)

− 1

)

= 7nlog2(7) + 6n2

(
7

4
nlog2( 7

4 )) − 1

)
=

35

2
nlog2(7) − 6n2.

For any n we have an estimate for the number of arithmetic operations. Since
the running time is proportional to the number of arithmetic operations,
StrassenMult’s running time is O(nlog2(7)) = O(n2.807) for all n ∈ N.27

In [CopWin90] an algorithm is developed that solves the problem of multi-
plying square matrices of dimension n in a running time of order O(n2.375477).
Since then optimizations have been published which decrease the exponent
from the third digit after the decimal point.

However, the assumption is that the problem of multiplying square ma-
trices is solvable in time O(n2).

1.5 Design Techniques for Algorithms

The design of an algorithm is done individually depending on the problem.
However, there are design principles that have proven themselves and provide
good algorithms. The first method is recursion. It is often easy to reduce a
problem to a problem of the same type but of a smaller scope. In this situation
recursion can be applied. Other methods are divide and conquer – often
in conjunction with recursion – greedy algorithms, dynamic programming
and branch and bound algorithms. In this section, we introduce these design
techniques using prominent examples.

27 The running time of the standard algorithm is in O(n3).
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1.5.1 Recursion

Recursion is a powerful tool in the development of algorithms, and it is often
easy to prove the correctness of a recursive algorithm and to calculate its
running time. We explain this using the example of the towers of Hanoi. This
is a puzzle which is attributed to Lucas28. The towers of Hanoi appeared
in 1883 as a toy under the pseudonym “N. Claus de Siam”, an anagram of
“Lucas d’Amiens”. The game, shown in Figure 1.3, consists of three upright
rods A,B and C and a tower. The tower consists of n perforated discs of
different diameters, arranged according to size, with the largest disc at the
bottom and the smallest disc at the top, lined up on rod A.

The aim of the game is to move the complete tower from A to B.

..
A

.
B

.
C

Fig. 1.3: Towers of Hanoi.

1. One step allows you to move a disc from one rod to another.
2. Never place a disc on a smaller one.
3. Rod C serves as a clipboard.

It is not immediately clear that the problem has a solution at all. However,
with recursion the problem can quite simply be solved as follows:

Algorithm 1.30.
TowersOfHanoi(int n; rod A,B,C)
1 if n > 0
2 then TowersOfHanoi(n− 1, A, C,B)
3 move disc n from A to B
4 TowersOfHanoi(n− 1, C,B,A)

The function TowersOfHanoi outputs a sequence of working steps that
lead to the goal. We shall prove our assertion by induction on n. If there is
only one disc, the target is reached by line 3: move the disc from A to B.
Constraint 2 above is observed.

We now assume that TowersOfHanoi for n − 1 discs indicates a se-
quence of steps that lead to the goal and respect the constraint. The call

28 François Édouard Anatole Lucas (1842 – 1891) was a French mathematician and
is known for his work in number theory.
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TowersOfHanoi(n − 1, A, C,B) moves the first n − 1 discs from A to C. B
serves as clipboard. Then the largest disc is moved from A to B. Next the
call TowersOfHanoi(n−1, C,B,A) moves the n−1 discs from C to B. Now A
serves as clipboard. The second condition is maintained with all movements.

Since every recursive call lowers n by 1, n = 0 occurs and the algorithm
terminates. These considerations show that our algorithm works correctly.

Even now that we know that the problem of the Towers of Hanoi has a
solution, it does not seem obvious what a solution without recursion should
look like. This shows that recursion provides a powerful method for designing
algorithms. The steps we get using recursion can also be achieved iteratively
(Exercise 15).

We now analyze TowersOfHanoi. The number of steps is easy to describe.
Let xn be the number of steps to move a tower of n discs from one rod to
another. Then

x1 = 1, xn = 2xn−1 + 1, n ≥ 2.

This is a linear difference equation of the first order. According to Corollary
1.16 it has the solution xn = 2n−1 + 2n−1 − 1 = 2n − 1.

However, recursion does not always provide an efficient solution. This
is shown by the function that calculates the Fibonacci numbers recursively,
analogously to the defining equation (Algorithm 1.23).

Recursion is used to define trees, to traverse trees and more generally to
traverse graphs (Chapter 4 and Algorithm 5.12). The algorithm quicksort
(Algorithm 2.1), the algorithm for the search for the kth-smallest element
(Algorithm 2.30) and the algorithm for binary search (Algorithm 2.28)) use
recursion together with the divide and conquer method. The Algorithm of
Karger, Klein and Tarjan – a randomized algorithm for computing a min-
imum spanning tree in a graph – uses divide and conquer with recursion
virtuously (Algorithm 6.50).

1.5.2 Divide and Conquer

With the divide and conquer strategy, the problem is first divided into smaller
independent subproblems. The subproblems should be easier to control than
the overall problem. The subproblems are solved recursively. Then the so-
lutions of the subproblems are combined to form a solution to the overall
problem. The application of this principle leads to a simpler algorithm, as in
the following example of integer multiplication. This also results in a signifi-
cant improvement of the running time.

The product of positive integers

c =
n−1∑
i=0

cib
i and d =

n−1∑
i=0

dib
i
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– represented in the numeral system with base b – is computed according to
the school method as follows:

e = cd =
2n−1∑
i=0

eib
i.

The coefficients ei are calculated from

ei =
∑

j+k=i

cjdk.

Additionally, carry-overs have to be considered, i.e., calculations are modulo
b and the carry-over from the previous position has to be added.

With this method, every digit of c is multiplied by every digit of d. There-
fore, n2 multiplications of digits are necessary. When calculating with paper
and pencil, we use the decimal system. We have n2 digits to multiply accord-
ing to multiplication tables. If c and d are large numbers, we use a computer
and display the numbers with the base b = 232, for example, if it is a 32-bit
computer. Then the multiplication of digits is performed by the processor.

However, there are procedures for multiplying numbers that are faster if
the numbers are large. The algorithm of Karatsuba29 uses the divide and
conquer design method (see [KarOfm62]).

Let c and d be 2n-digit numbers. To apply Karatsuba’s method, we write

c = c1b
n + c0, d = d1b

n + d0,

where c0, c1, d0 and d1 are at most n-digit numbers. When calculating the
product

cd = c1d1b
2n + (c1d0 + c0d1)b

n + c0d0,

a trick is used to reduce the four multiplications of n-digit numbers to three
multiplications. Calculate f := (c1 + c0)(d1 + d0). Then

c1d0 + c0d1 = f − c1d1 − c0d0.

Thereby c1+c0 and d1+d0 can have at most n+1 digits. The calculation of f
is a bit more complex than with n-digit numbers. We neglect this additional
effort in the following considerations.

Figure 1.4 illustrates the advantage with a geometric figure. Only the
areas of the white squares have to be calculated.

29 Anatoly Alexeyevich Karatsuba (1937 – 2008) was a Russian mathematician
working in computer science, number theory and analysis.
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..

d
0

.

c0d0

.

d
1

.

c0d1

.

c0

.

c1

.

c1d0

.

c1d1

.

d
0
+

d
1

.

c0 + c1

.

(c0 + c1)·

.

(d0 + d1)

Fig. 1.4: Reduction from four to three multiplications.

The advantage of this reduction from four to three multiplications pays
off especially if we use it recursively. This is done in the following Algorithm
1.31.

Algorithm 1.31.
int Karatsuba(int p, q)
1 if p < m and q < m
2 then return p · q
3 lp ← len(p), lq ← len(q)
4 l←

⌈
max(lp, lq)/2

⌉
5 lowp ← p mod bl, lowq ← q mod bl

6 hip ← rshiftl(p), hiq ← rshiftl(q)
7 z0 ← Karatsuba(lowp, lowq)
8 z1 ← Karatsuba(hip, hiq)
9 z2 ← Karatsuba(lowp + hip, lowq + hiq)

10 return z1b
2l + (z2 − z1 − z0)b

l + z0

The recursion is aborted if both factors are smaller than a given limit
m. In this case, the multiplication is executed immediately (by the processor
of the computer). The summands of the additions are large numbers. The
function len(x) returns the number of digits of x and rshiftl shifts by l digits
to the right.

Let M(n) be the number of multiplications necessary to multiply two
n-digit numbers. Then

M(n) = d for n < m and M(n) = 3M
(⌈n

2

⌉)
.

The multiplications with powers of b are shift operations and are not counted
with the multiplications. With Proposition 1.28 we conclude

M(n) = O(nlog2(3)) = O(n1.585).

We get a procedure that manages with much less than n2 multiplications.
There is a procedure that is even faster for very large numbers. It uses

the discrete Fourier transform method from analysis and was published by
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Schönhage30 and Strassen31 in [SchStr71].

The algorithms StrassenMult (Algorithm 1.29), quicksort (Algorithm 2.1),
quickselect (Algorithm 2.30) and binary search (Algorithm 2.28) as well as
the algorithm KKT−MST (Algorithm 6.50) to calculate a minimum span-
ning tree apply the divide and conquer principle.

1.5.3 Greedy Algorithms

We consider a unit-time task scheduling problem. Given are tasks

ai = (ti, pi), i = 1, . . . , n,

ti is the deadline in time units for ai and pi is the premium paid when ai is
completed before the deadline ti. The tasks must be processed sequentially.
Each task needs one time unit to be processed. We are now looking for a
processing schedule that maximizes the total profit.

Example. Let a = (1, 7), b = (1, 9), c = (2, 5), d = (2, 2) and e = (3, 7) be
tasks. For the execution in the first step, all tasks are possible. In the second
step, the tasks that have a deadline 1, no longer need to be considered and
in the third step, the tasks that have deadlines 1 and 2 earn no profit.

A possible approach to the solution is to select in each step a task that
appears to be optimal. A task is selected that maximizes the profit at the
moment. A locally optimal solution should result in an optimal solution. In
the previous example, this procedure produces the schedule b, c, e.

This strategy is called a greedy strategy and an algorithm that implements
such a strategy is called a greedy algorithm. The situation in which the greedy
strategy leads to success can be formalized.

Definition 1.32. Let S be a finite set and τ ⊂ P(S) a set of subsets of S.
(S, τ) is called a matroid if τ ̸= ∅ and

1. τ is closed regarding subsets, i.e., for A ⊂ B and B ∈ τ we also have
A ∈ τ . This is sometimes called the hereditary property.

2. For A,B ∈ τ , |A| < |B|, there is an x ∈ B \ A with A ∪ {x} ∈ τ . This
condition is called the exchange property .

The elements of τ are called independent sets.

This definition is already contained in a work by H. Whitney32 from 1935
([Whitney35]). There have been extensive investigations about matroids and

30 Arnold Schönhage (1934 – ) is a German mathematician and computer scientist.
31 Volker Strassen (1936 – ) is a German mathematician.
32 Hassler Whitney (1907 – 1989) was an American mathematician. He is famous

for his contributions to algebraic and differential topology and to differential
geometry.
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greedy algorithms, see for example Schrijver’s monograph “Combinatorial
Optimization” [Schrijver03].

We consider a matroid M = (S, τ) with a weight function

w : S −→ R>0.

Let A ∈ τ . w(A) :=
∑

a∈A w(a) is called the weight of A.

The optimization problem for (S, τ) now consists of finding an Ã ∈ τ with

w(Ã) = max{w(A) | A ∈ τ}.

Ã is called an optimal solution of the optimization problem.

We now want to apply this notation to the task scheduling problem. Let
S = {a1, . . . an} be the set of tasks.

τ must be defined so that the elements of τ represent a solution to the task
scheduling problem (a solution with maximum profit is wanted). A subset of
S is said to be admissible for the task scheduling problem if there is an
order for the elements of A (a schedule for A) so that all tasks from A can
be completed before their deadline date. We refer to such an order as an
admissible order. Let τ be the set of admissible subsets of S. We assign to
the task scheduling problem the pair (S, τ). We will first show that (S, τ) is
a matroid. Then, the task scheduling problem is an optimization problem for
a matroid.

Proposition 1.33. (S, τ) is a matroid.

Proof. 1. We have ∅ ∈ τ , so τ ̸= ∅. Obviously, τ has the hereditary property.
A schedule for a subset results from a schedule of the superset by deleting
tasks.
2. It remains to show that the exchange property holds. Let A,B ∈ τ and
|A| < |B| =: l. We write the elements of B in an admissible order:

b1 = (t1, p1), b2 = (t2, p2), . . . , bl = (tl, pl).

Since each task needs a time unit to be processed, tj ≥ j, j = 1, . . . , l.
Let k be maximum with bk ̸∈ A, i.e., bk ̸∈ A and bk+1, . . . , bl ∈ A. |A \

{bk+1, . . . , bl}| = |A| − (l − k) = |A| − |B|+ k < k.
We show that A ∪ bk ∈ τ by specifying a schedule for A ∪ bk. We

first execute the tasks of A \ {bk+1, . . . , bl} in the (admissible) order of
A \ {bk+1, . . . , bl} and then the tasks bk, bk+1, . . . , bl (in that order). The
task bj is executed at a time ≤ j, j = k, . . . , l. Because tj ≥ j, j = 1, . . . , l,
we get a valid order for A∪{bk}, i.e., A∪{bk} ∈ τ . This shows the exchange
property for τ . 2
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Example. Figure 1.5 shows the power set for the set of tasks S = {a, b, c, d, e}
from the previous example. Between the admissible subsets of our task
scheduling problem above, the subset relationship is given. They form a ma-
troid.

..

. . . . . ..{}

.

. ..{a} . ..{b} . ..{c} . ..{d} . ..{e}

. .

..{a, b} ..{a, c} ..{a, d} ..{a, e} ..{b, c} ..{b, d} ..{b, e} ..{c, d} ..{c, e} ..{d, e}

. .

..{a, b, c} ..{a, b, d} ..{a, c, d} ..{a, b, e} ..{a, c, e} ..{a, d, e} ..{b, c, d} ..{b, c, e} ..{b, d, e} ..{c, d, e}

. ..{a, b, c, d} . ..{a, b, c, e} . ..{a, b, d, e} . ..{a, c, d, e} . ..{b, c, d, e}

. . . . . ..{a, b, c, d, e}

Fig. 1.5: The matroid for the task scheduling example.

Let (S, τ) be a matroid with weight function w : S −→ R>0. The following
algorithm, a generic solution to the matroid optimization problem, calls an
algorithm Sort to sort S by weights in descending order, i.e.,

w(s1) ≥ w(s2) ≥ . . . ≥ w(sn).

Algorithm 1.34.
set Optimum(Matroid (S, τ))
1 {s1, . . . , sn} ← Sort(S);O ← ∅
2 for i← 1 to n do
3 if O ∪ {si} ∈ τ
4 then O ← O ∪ {si}
5 return O

Example. Let the tasks a = (1, 7), b = (1, 9), c = (2, 5), d = (2, 2) and
e = (3, 7) be given. Our algorithm first chooses b. The test with a is nega-
tive. Then we select e and finally c. {b, e, c} is admissible and maximum. The
schedule for {b, e, c} is (b, c, e).

In general, the matroid is not explicitly but only conceptually given. The
test “O ∪ {si} ∈ τ” corresponds for the task scheduling problem to check:
Is O ∪ {si} admissible for the task scheduling problem, i.e., a schedule of
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O ∪ {si} must be specified so that all tasks can be completed before their
deadline date.

Proposition 1.35. Let M = (S, τ) be a matroid and w : τ −→ R>0 a weight
function on M , then the algorithm Optimum returns an optimal solution to
the optimization problem for (M,w).

Proof. The algorithm returns an element O from τ . Let S = {s1, . . . , sn} and
O = {si1 , . . . , sik} be sorted by weight in descending order, and let Õ be an
optimal solution. First we show that |O| = |Õ|.

From |O| > |Õ| it follows from the exchange property that there is an
s ∈ O \ Õ with Õ ∪ {s} ∈ τ . This is a contradiction because Õ is optimal.

From |O| < |Õ| it again follows from the exchange property that there
is an s ∈ Õ \ O, so O ∪ {s} ∈ τ . Due to the subset property, each subset of
O ∪ {s} is an element of τ . But then s would have been selected in line 4 of
the algorithm when processing the list L, a contradiction.

Let Õ = {sj1 , . . . , sjk} and w(sj1) ≥ w(sj2) ≥ . . . ≥ w(sjk). Suppose

w(Õ) > w(O). Then there would be an l̃ with w(sjl̃) > w(sil̃). Let l be the
smallest index with this property. Since S is sorted descending by weight,
jl < il holds. Let A = {si1 , . . . , sil−1

} and Ã = {sj1 , . . . , sjl}. Following the

exchange property, there is an s ∈ Ã \ A with A ∪ {s} ∈ τ . Since w(sj1) ≥
w(sj2) ≥ . . . ≥ w(sjl), we get w(s) ≥ w(sjl) > w(sil), a contradiction to

the choice of sil in line 4 of the algorithm. So w(Õ) = w(O). Hence, O is an
optimal solution. 2

Remark. Let τ only satisfy the hereditary property (first condition of Def-
inition 1.32). Then the greedy algorithm Optimum calculates an optimal
solution if and only if τ is a matroid ([Schrijver03, Theorem 40.1]).

Greedy algorithms include Algorithm 1.43 for solving the fractal knap-
sack problem, Huffman’s algorithm (4.43) for data compression, Dijkstra’s
algorithm (Section 6.2) for computing the shortest paths in weighted graphs,
and the algorithms of Prim (Section 6.2), Kruskal (Section 6.3) and Bor̊uvka
(Section 6.4) for computing minimum spanning trees in weighted graphs. The
LZ77 algorithm uses a greedy strategy to parse strings (Section 4.6.4).

1.5.4 Dynamic Programming

Using the method of dynamic programming we calculate an optimal solution
of a problem in a simple way from the optimal solutions of partial problems.
This method has been known for a long time. A systematic treatment was
performed by Bellman33 (see [Bellman57]). The key in developing a solution
by the method of dynamic programming is to find a recursive formula for an
optimal solution. This formula is called Bellman’s optimality equation.

33 Richard Bellman (1920 – 1984) was an American mathematician.
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Dynamic programming refers to a solution method using tables and not to
a programming technique. A simple algorithm that implements this method
is to calculate the first n Fibonacci numbers iteratively. The table is an array
Fib[0..n] initialized with Fib[0] = 0 and Fib[1] = 1. The further entries are
calculated with Fib[i] = Fib[i− 1] + Fib[i− 2] for i = 2, . . . , n.

Fib = 0, 1, 1, 2, 3, 5, . . .

This algorithm is at the same time a typical example for the application of
the dynamic programming method. The recursive method fails here, because
common partial problems are recomputed again and again (Algorithm 1.23).
The dynamic programming method solves each subproblem exactly once and
stores the result in a table. If you only want to calculate the nth Fibonacci
number, this can be done much more efficiently with Algorithm 1.20.

The RMQ Problem. We apply the design method of dynamic program-
ming to calculate a solution to the range-minimum-query (RMQ) problem.
The solution shown here follows [BeFa00].

The RMQ problem deals, as the name implies, with the calculation of the
minimum in a subarray of an array of numbers. More precisely, an index is
to be determined within the subarray that specifies a position at which the
minimum of the subarray is located.

Example. In Figure 1.6 the minimum of the subarray a[5..12] is located at
position 10.

..19. 32. 23. 14. 7. 4. 5. 11. 3. 1. 6. 15. 41. 7. 12. 61.

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

11

.

12

.

13

.

14

.

15

.

16

Fig. 1.6: The RMQ problem.

First we specify the problem and introduce notations. Let a[1..n] be an
array of numbers. An algorithm rmqa(i, j) for the RMQ problem returns for
indices i and j with 1 ≤ i ≤ j ≤ n an index k with i ≤ k ≤ j and

a[k] = min{a[l] | i ≤ l ≤ j}.

The solution developed here calculates a lookup table ta[1..n, 1..n], which
stores the index of an element with minimal value for i ≤ j:

ta[i, j] = rmqa(i, j).

After the table ta has been created, a query can be answered with one
table access. Because

min a[i..i] = a[i] and
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min a[i..j] = min{min a[i..j − 1],min a[i+ 1..j]},
we get a recursive formula for the calculation of ta[i, j]:

ta[i, i] = i,

ta[i, j] =

{
ta[i, j − 1] if a[ta[i, j − 1]] ≤ a[ta[i+ 1, j]] and
ta[i+ 1, j] otherwise.

The idea of dynamic programming is to calculate the values ta[i, j] one
after the other and store them in a table.

ta[1, 1] ta[1, 2] ta[1, 3] . . .

ta[2, 2] ta[2, 3]

ta[3, 3]
...

ta[4, 4]

. . .
...

ta[n, n]

We set the diagonal elements ta[i, i] = i. Starting from the diagonal we
calculate the columns in the order from left to right and from bottom to top.
For the calculation of ta[i, j], the values ta[i, j−1] and ta[i+1, j] are required.
These values have already been calculated. They are in the table and can be
easily read.

Algorithm 1.36.
compTab(item a[1..n])
1 index i, j
2 for j ← 1 to n do
3 ta[j, j]← j
4 for i← j − 1 to 1 do
5 if a[ta[i, j − 1]] < a[ta[i+ 1, j]]
6 then ta[i, j]← ta[i, j − 1]
7 else ta[i, j]← ta[i+ 1, j]

The running time of compTab is of the order O(n2).

Example. For a = {7, 4, 5, 11, 3, 1} we receive for the table ta

1 2 3 4 5 6

1 1 2 2 2 5 6

2 2 2 2 5 6

3 3 3 5 6

4 4 5 6

5 5 6

6 6
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We optimize the procedure by calculating a lookup table only for indices
i < j whose distance j − i is 2k − 1. We calculate a lookup table t+a for the
index pairs

(i, i+ 2k − 1), i = 1, . . . , n and for all k ≥ 0 with i+ 2k − 1 ≤ n.

We have rmqa(i, i+2k−1) = t+a [i, k] and rmqa(i−2k+1, i) = t+a [i−2k+1, k].
The following consideration shows that this is sufficient.

For the index pair i < j and k = ⌊log2(j − i+ 1)⌋, we get

j − i+ 1 = 2log2(j−i+1) < 2⌊log2(j−i+1)⌋+1 = 2 · 2k

and thus also
j − 2k + 1 ≤ i+ 2k − 1.

Hence, we have

[i, j] = [i, i+ 2k − 1] ∪ [j − 2k + 1, j].

So with i′ := rmqa(i, i + 2k − 1) = t+a [i, k] and j′ := rmqa(j − 2k + 1, j) we
get

rmqa(i, j) =

{
i′ if a[i′] ≤ a[j′] and

j′ otherwise.

The value rmqa(i, j) can be computed by the queries

rmqa(i, i+ 2k − 1) and rmqa(j − 2k + 1, j).

For both queries, the distance between the indices is a power of 2 minus 1.
We now set up a recursive formula for t+a . Because

min a[i..i] = a[i] and min a[i..i+ 2k − 1] =
min{min a[i..i+ 2k−1 − 1],min a[i+ 2k−1..i+ 2k − 1]}, k ≥ 1,

we get the following recursive formula for t+a :

t+a [i, 0] = i,

t+a [i, k] =

{
t+a [i, k − 1] if a[t+a [i, k − 1]] ≤ a[t+a [i+ 2k−1, k − 1]] and

t+a [i+ 2k−1, k − 1] otherwise.

The idea now, as above, is to calculate and save the columns of the table

t+a [1, 0] t+a [1, 1] . . .

t+a [2, 0] t+a [2, 1]
...

...
... . .

.

t+a [n− 4, 0] t+a [n− 4, 1] t+a [n− 4, 2]

t+a [n− 3, 0] t+a [n− 3, 1] t+a [n− 3, 2]

t+a [n− 2, 0] t+a [n− 2, 1]

t+a [n− 1, 0] t+a [n− 1, 1]

t+a [n, 0]
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one after the other.
The first column is t+a [i, 0] = i, i = 1, . . . , n. For the following columns, we

use the recursive formula. For the calculation of the kth column t+a [i, k], we
need the values t+a [i, k− 1] and t+a [i+2k−1, k− 1] from the (k− 1)th column.
Since we calculate the columns one after the other from left to right, these
values are already in the table t+a and we can simply read them out.

Example. Let a = [7, 4, 5, 11, 3, 1, 14, 17, 2, 6]. Then

1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10
1 2 2 3 5 6 6 7 9 9
2 2 5 6 6 6 6 9
3 6 6 6

is the matrix transposed to t+a .
For the ith row of the table t+a , the inequality i+2l−1 ≤ n or equivalently

l ≤ log2(n− i+1) is valid for the largest column index l. The table thus has

n∑
i=1

(li + 1) =

n∑
i=1

(⌊log2(n− i+ 1)⌋+ 1)

= n+
n∑

i=1

⌊log2(i)⌋

= (n+ 1)(⌊log2(n)⌋+ 1)− 2⌊log2(n)⌋+1 + 1

entries (Lemma B.15).
An algorithm that implements the calculation iteratively can be imple-

mented analogously to Algorithm 1.36. It is of the order O(n log2(n)).

Proposition 1.37. Every RMQ request for an array a of length n can be an-
swered in constant time, after preprocessing with running time O(n log2(n)).

Remarks:

1. In Section 6.1.3, we specify an algorithm with linear running time for the
RMQ problem. First for an array in which two consecutive entries differ
only by +1 or −1 and then for any array.

2. The RMQ problem is equivalent to the LCA problem. This consists of
determining in a rooted tree the common ancestor of two nodes which has
the greatest distance to the root (Section 6.1.3). The LCA problem and
thus also the RMQ problem is a basic algorithmic problem that has been
studied intensively. An overview is given in the article “Lowest common
ancestors in trees” by Farach-Colton in [Kao16].

3. Range minimum queries have applications in many situations, for ex-
ample, document retrieval, compressed suffix trees, Lempel-Ziv compres-
sion and text indexing (Fischer: Compressed range minimum queries in
[Kao16]).
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The Edit Distance. A further application of the design method of dynamic
programming is the calculation of the edit distance of two strings. The edit
distance quantifies how similar two strings are.

Definition 1.38. The edit distance of two strings is the minimum number of
operations to convert one string into the other string. The operations allowed
are insert (i), delete (d) and substitute (s). Keeping a character (k) should
not be counted as an operation.

The definition of the edit distance is attributed to Levenshtein34

([Leven65]). No algorithm for the calculation is given in that article. In our
presentation we refer to the paper [WagFis74], which follows a more general
approach.

Example. The edit distance between “remedy” and “ready” is two. The op-
erations keep r, keep e, substitute m with a, delete e, keep d and finally keep
y convert “remedy” to “ready”.

Proposition 1.39. Let a1 . . . an and b1 . . . bm be strings. The edit distance
d(a1 . . . an, b1 . . . bm), or d(n,m) for short, is calculated recursively.

d(0, 0) = 0, d(i, 0) = i, d(0, j) = j,

d(i, j) = min{d(i, j − 1) + 1, d(i− 1, j) + 1, d(i− 1, j − 1) + [ai ̸= bj ]},

where [ai ̸= bj ] = 1 if ai ̸= bj and 0 otherwise.

Proof. When converting a1 . . . ai to b1 . . . bj , we distinguish between the fol-
lowing cases

(1) delete ai (at the end) and convert a1 . . . ai−1 to b1 . . . bj ,
(2) convert a1 . . . ai to b1 . . . bj−1 and add bj ,
(3) convert a1 . . . ai−1 to b1 . . . bj−1 and substitute ai with bj or
(4) convert a1 . . . ai−1 to b1 . . . bj−1 and keep the last character.

Since d(i, j) is produced by one of the four cases, d(i, j) ≥ min{d(i, j − 1) +
1, d(i− 1, j) + 1, d(i− 1, j − 1) + [ai ̸= bj ]}.
Since the conversion of a1 . . . ai into b1 . . . bj must be done by one of the
four cases considered, and since d(i, j) is the minimum distance, d(i, j) ≤
min{d(i, j − 1) + 1, d(i− 1, j) + 1, d(i− 1, j − 1) + [ai ̸= bj ]}. This shows the
assertion. 2

We can without effort convert the formula from Proposition 1.39 into a
recursive function. Although there are only (n+ 1)(m+ 1) partial problems,
the running time of this function is exponential. That is because the recur-
sive function calculates the same distances over and over again. The following
procedure provides a more efficient algorithm.

34 Vladimir Levenshtein (1935 – 2017) was a Russian mathematician.
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We calculate the values

d(0, 0) d(0, 1) d(0, 2) . . . d(0,m)
d(1, 0) d(1, 1) d(1, 2) . . .
d(2, 0) d(2, 1) . . .

...

one after the other and save them in a table. We start with the calculation of
the first row and the first column. We calculate the following columns from
top to bottom and from left to right. When calculating d(i, j), we need the
values d(i, j − 1), d(i − 1, j) and d(i − 1, j − 1). These values are already
calculated. They are in the table, and we can simply read them out. The
table consists of n rows and m columns. Our calculation takes place in time
O(nm). We summarize the result in the following proposition.

Proposition 1.40. Let a = a1 . . . an and b = b1 . . . bm be strings of length n
and m. With the method of dynamic programming, we can calculate the edit
distance from a to b in time O(nm).

We specify the algorithm in pseudo-code.

Algorithm 1.41.
Dist(char a[1..n], b[1..m])
1 int i, j, d[0..n, 0..m]
2 for i← 0 to n do
3 d[i, 0]← i
4 for j ← 1 to m do
5 d[0, j]← j
6 for i← 1 to n do
7 for j ← 1 to m do
8 if ai = bj
9 then k ← 0

10 else k ← 1
11 d[i, j]← Min(d[i, j − 1] + 1,
12 d[i− 1, j] + 1, d[i− 1, j − 1] + k)

After the termination of Dist, d[n,m] contains the edit distance of a[1..n] and
b[1..m].

We now modify the algorithm Dist so that it also calculates the sequence
of operations that determines the edit distance. To do this, we store how the
value of d[i, j] comes about. We use a second matrix op[0..n, 0..m], in which
we set the empty set as the initial value for each cell. Then we extend Dist
with

op[i, 0] = {d} , 0 ≤ i ≤ n,

op[0, j] = {i} , 0 ≤ j ≤ m,
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op[i, j] =


op[i, j] ∪ {d} (delete) if d[i, j] = d[i− 1, j] + 1,
op[i, j] ∪ {i} (insert) if d[i, j] = d[i, j − 1] + 1,
op[i, j] ∪ {s} (substitute) if d[i, j] = d[i− 1, j − 1] + 1,
op[i, j] ∪ {k} (keep) if d[i, j] = d[i− 1, j − 1].

After terminating Dist, it is possible to obtain a sequence of operations
corresponding to the edit distance by passing op from op[n,m] to op[0, 0].
The resulting path contains the operations. We start in op[n,m]. The next
node in the path is determined by the choice of entry from op[i, j]. The next
possible node is

op[i− 1, j] if d ∈ op[i, j],
op[i, j − 1] if i ∈ op[i, j] or
op[i− 1, j − 1] if s or k ∈ op[i, j].

The path – and thus also the sequence of the operations – is not uniquely
determined.

Example. We calculate the edit distance between “ready” and “remedy” and
a minimal sequence of operations that converts “ready” into “remedy”.

We get the distance matrix d

d r e m e d y
0 1 2 3 4 5 6

r 1 0 1 2 3 4 5
e 2 1 0 1 2 3 4
a 3 2 1 1 2 3 4
d 4 3 2 2 2 2 3
y 5 4 3 3 3 3 2

and the operation matrix op

o r e m e d y
i i i i i i

r d k i i i i i

e d d k i i i i

a d k d s i,s i,s i,s

d d d d d,s s k i

y d d d d,s d,s d k

The sequence of operations is k, k, s, i, k, k.

Remarks:

1. The calculated sequence of operations for a word pair (v, u) results from
the sequence of operations for (u, v) by swapping operations i (insert)
and d (delete).
“remedy” can be converted into “ready” by means of the operations se-
quence k, k, s, d, k, k.
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2. The matrix d calculated for the word pair (a1 . . . an, b1 . . . bm) also con-
tains the edit distances of all prefix pairs (a1 . . . ai, b1 . . . bj), 1 ≤ i ≤
n, 1 ≤ j ≤ m. Accordingly, the op matrix contains the entries for recon-
structing an operation sequence for each prefix pair.
The edit distance d(read, re) = d[4, 2] = 2. Starting with op[4, 2] you get
the unique operation sequence k, k, d, d.

3. The edit distance and its calculation is used in algorithmic biology. Here
the similarity of DNA sequences is measured with the edit distance. The
individual operations are weighted differently. The method is also used
in the field of pattern recognition. There one usually speaks of the Lev-
enshtein distance.

The algorithm of Warshall-Floyd is constructed according to the design
method of dynamic programming (Section 6.7).

1.5.5 Branch and Bound with Backtracking

Branch and bound is a basic design principle for algorithms and can be ap-
plied in many situations. The idea of branch and bound was already developed
in the 1960s to solve integer optimization problems.

Branch and bound requires that the solution space L of the computational
problem consists of n-tuples (x1, . . . , xn) ∈ S1 × . . . × Sn, where Si, i =
1, . . . , n, is a finite set. These n-tuples (x1, . . . , xn) ∈ L are defined by certain
conditions. The solution space is often provided with the structure of a tree
(Definition 4.1).

For example, permutations of the sets {1, . . . , i}, 1 ≤ i ≤ n, can be
assigned to a tree. We define π2 as the successor of π1 if π2 continues the per-
mutation π1 and is defined on one more element. Permutations of {1, . . . , n}
are located in the leaves of the tree.

When branch and bound is used, the solution space is searched for a
solution. A bounding function limits the search space by truncating subtrees
that cannot contain a desired solution. Breadth-first, depth-first and priority-
first search define different visit sequences when searching the solution tree.

Backtracking uses depth-first search (Algorithm 4.5). If the bounding func-
tion is used to determine that a subtree with root w contains no solution, the
search is continued in the parent node of w: a backward step is performed
(backtracking). We explain branch and bound with backtracking in more de-
tail using the eight queens problem and the knapsack problem.

The Eight Queens Problem. The eight queens problem was published
by Bezzel35 in 1848. It consists in positioning eight queens on a chess board
in such a way that no two queens threaten each other. More precisely, the
problem is to indicate the number of possible solutions of the problem. Even
the famous mathematician Gauss36 dealt with the problem.

35 Max Friedrich Wilhelm Bezzel (1824 – 1871) was a German chess player.
36 Carl Friedrich Gauss (1777 – 1855) was a German mathematician. He is recog-

nized as one of the most outstanding mathematicians of his time.
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Figure 1.7 shows one of the 92 solutions to the eight queens problem.

.

Fig. 1.7: A solution to the eight queens problem.

If a queen stands on a square F , the second queen cannot be positioned
on a square contained in the row, column, or one of the two diagonals that
pass through the square F .

Therefore, the queens must be positioned in different rows. Hence, a so-
lution to the problem is defined by specifying the column for each row, i.e.,
a solution is an 8-tuple (q1, . . . , q8) ∈ {1, . . . , 8}8, where qj is the column
for the jth row. In addition, (q1, . . . , q8) must fulfill the condition of mutual
“non-threat”.

Since two queens have to be positioned in different columns, a solution
(q1, . . . , q8) must accomplish particularly qi ̸= qj for i ̸= j. (q1, . . . , q8) is
thus a permutation (π(1), . . . , π(8)). The set of all permutations of (1, . . . , 8)
can be represented by a tree with nine levels. Each node in level i has 8 − i
successors. So the tree has 1 + 8 + 8 · 7 + 8 · 7 · 6 + . . . + 8! = 69, 281 nodes,
as shown in Figure 1.8.
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Fig. 1.8: The solution tree for the eight queens problem.
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A permutation q is given in the tree by a path P from the root to a leaf.
If a node k in the ith level belongs to P , k specifies the ith component of q.

The solutions can now be found by traversing the tree using depth-first
search. In each node it is checked whether the permutation (q1, . . . , qi) is still
part of a solution. If this is the case, the subsequent nodes in the next level
are examined. If (q1, . . . , qi) is not part of a solution, the search is continued
at the previous level. Thus, a backtracking step takes place. The search is
aborted and continued from the higher-level node.

The following algorithm Queens implements this solution without explic-
itly displaying the tree. The representation is implicitly given by the descend-
ing paths of the recursion.

Queens gives a solution to the n queens problem, which generalizes the
problem for n queens and a chessboard with n× n squares.

Algorithm 1.42.
Queens(int Q[1..n], i)
1 if i = n+ 1
2 then print(Q)
3 for j ← 1 to n do
4 if testPosition(Q[1..n], i, j)
5 then Q[i]← j
6 Queens(Q[1..n], i+ 1)

boolean testPosition(int Q[1..n], i, j)
1 for k ← 1 to i− 1 do
2 if Q[k] = j or Q[k] = j + i− k or Q[k] = j − i+ k
3 then return false
4 return true

The call Queens(Q[1..n], 1) calculates all solutions of the n queens prob-
lem and outputs them with print(Q). The function testPosition checks for
the ith row whether a queen can be positioned in the jth column. To do
this, it must be checked whether the jth column or one of the straight lines
y = x+ (j − i) or y = −x+ (j + i) (through (i, j)) already contains a queen.
This is done in line 2 of testPosition for the line k, k = 1, . . . , i− 1.

The 92 solutions for the eight queens problem can be computed with
a PC in less than one second. Recently, a working group at TU Dresden
succeeded in computing all solutions of the 27 queens problem. There are
234,907,967,154,122,528 solutions. Field Programmable Gate Arrays (FPGA),
which allow massive parallel computing, were used for the calculation. These
computed for one year with all their idle time to achieve the result
([Queens@TUD-Team16]).

The Knapsack Problem. In the knapsack problem, there is a fixed-size
knapsack and pieces of luggage. The aim is to pack the knapsack as full as
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possible with a suitable selection of the pieces. More abstractly and more
generally, the problem is formulated as follows:

Given are m ∈ N, w = (w1, . . . , wn) and p = (p1, . . . , pn) ∈ Nn. Searched
for is x = (x1, . . . , xn) ∈ {0, 1}n with

n∑
i

xiwi ≤ m and
n∑
i

xipi is maximal.

The number m is called the capacity , the vector w the weight vector
and the vector p the profit vector . The problem is to calculate a solution that
maximizes the profit (

∑n
i xipi) while observing the capacity limit (

∑n
i xiwi ≤

m). A solution that satisfies this is called an optimal solution.
More precisely, this problem is the 0,1 knapsack problem. The 0,1 knap-

sack problem is one of the so-called NP-complete problems. Under the assump-
tion that P ̸= NP37 is true there is no polynomial running time algorithm to
solve the problem. Computational problems from complexity class P can be
solved by a deterministic Turing machine in polynomial time, those compu-
tational problems from complexity class NP by a non-deterministic Turing
machine. A deterministic Turing machine can verify solutions from NP in
polynomial time. The NP-complete problems prove to be the most difficult
problems from NP. If a single NP-complete problem has a solution which we
can compute in polynomial time, it is possible to solve all problems in NP
in polynomial time. The complexity classes P, NP and others are studied
in theoretical computer science. We refer interested readers to textbooks on
computability and complexity theory, such as [GarJoh79] and [HopMotUll07].

The knapsack problem has a long history. The main methods to solve the
problem are the dynamic programming and the branch and bound method.
Many theoretical and application-oriented papers have been published about
the problem. A comprehensive overview can be found in [MartToth90] or
[KelPisPfe04].

First we weaken the requirements of the solutions and also allow vectors
x = (x1, . . . , xn) ∈ [0, 1]n with fractions as components of the solutions. In
this case, we call the problem the fractal knapsack problem. First we solve
the fractal knapsack problem by the following algorithm greedyKnapsack. It
goes back to a paper by Dantzig38 from the year 1957.

The algorithm pursues the following obvious greedy strategy to maximize
the profit: Pack the items in descending order of their profit density pi

wi
,

i = 1, . . . , n, more precisely; start with the item with the highest profit density,

37 The decision of the problem P ̸= NP is included in the list of Millennium Prob-
lems drawn up in 2000 by the Clay Mathematics Institute. The list contains
seven problems; among the six unsolved problems is the P ̸= NP problem.

38 George Bernard Dantzig (1914 – 2005) was an American mathematician. He de-
veloped the simplex method, the standard method for solving linear optimization
problems.
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continue packing the items in descending order of their profit density until
the barrier m is reached and fill the remaining capacity with a portion of
the next item. To do this, we sort w = (w1, . . . , wn) and p = (p1, . . . , pn)
so that p1

w1
≥ p2

w2
≥ . . . ≥ pn

wn
. The function greedyKnapsack has for i = 1

the call parameters weight vector w[1..n], profit vector p[1..n] and the vector
x[1..n], which is initialized with 0, and the capacity m of the knapsack. The
vector x[1..n] contains the solution after termination. We assume without loss
of generality that

∑n
i=1 wi > m. The function greedyKnapsack returns the

largest index j with x[j] ̸= 0 and the achieved profit P .

Algorithm 1.43.
(int, real) greedyKnapsack(int p[i..n], w[i..n], x[i..n], m)
1 index j; int c← 0; P ← 0
2 for j ← i to n do
3 c← c+ w[j]
4 if c < m
5 then x[j]← 1
6 P ← P + p[j]

7 else x[j]← w[j]−(c−m)
w[j]

8 P ← P + p[j] · x[j]
9 break

10 return (j, P )

Proposition 1.44. If we call Algorithm 1.43 with the parameter i = 1, it cal-
culates an optimal solution for the instance (p[1..n], w[1..n],m) of the fractal
knapsack problem.

Proof. For the result x = (x1, . . . , xn) of Algorithm 1.43, we have∑n
i=1 xiwi = m. If xi = 1 for i = 1, . . . , n, then x is an optimal solution.

Otherwise, there is a j with 1 ≤ j ≤ n, x1 = . . . = xj−1 = 1 and 0 < xj ≤ 1,
xj+1 = . . . = xn = 0.

We now assume that x = (x1, . . . , xn) is not optimal. Let k be maximum,
so that for all optimal solutions (ỹ1, . . . , ỹn) we have ỹ1 = x1, . . . , ỹk−1 = xk−1

and ỹk ̸= xk. For this k we obtain k ≤ j, because if k > j we get xk = 0, and
we conclude that ỹk > 0 and

∑n
i=1 wiỹi >

∑n
i=1 wixi = m, a contradiction.

Let (y1, . . . , yn) be an optimal solution with y1 = x1, . . . , yk−1 = xk−1

and yk ̸= xk. Now, we show that yk < xk. For k < j we get xk = 1, hence
yk < xk. It remains to discuss the case k = j. Suppose yj > xj . Then∑n

i=1 wiyi >
∑n

i=1 wixi = m, a contradiction. Therefore, k ≤ j and yk < xk

is shown.
From y1 = . . . = yk−1 = 1 we get

wk(xk − yk) =
n∑

i=k+1

wiαi with αi ≤ yi.
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We now change the solution (y1, . . . , yn) at the positions k, . . . , n. More pre-
cisely, we define (z1, . . . , zn) as follows: Choose zi = yi, i = 1, . . . , k − 1,
zk = xk and zi = yi − αi, for i = k + 1, . . . , n. Then

n∑
i=1

pizi =
n∑

i=1

piyi + pk(zk − yk)−
n∑

i=k+1

piαi

≥
n∑

i=1

piyi +

(
wk(zk − yk)−

n∑
i=k+1

wiαi

)
pk
wk

=
n∑

i=1

piyi.

Since (y1, . . . , yn) is optimal,
∑n

i=1 pizi =
∑n

i=1 piyi follows. Therefore,
(z1, . . . , zn) is optimal, a contradiction to the choice of k. So (x1, . . . , xn)
is optimal. 2

Now we solve the 0,1 knapsack problem and may assume that wi ≤ m
for i = 1, . . . , n and

∑n
i=1 wi > m. We will use Algorithm 1.43 and assume

therefore that the order of p[1..n] and w[1..n] yields a decreasing sequence
p[1]
w[1] ≥

p[2]
w[2] ≥ . . . ≥ p[n]

w[n] .

We consider the following binary tree B (Definition 4.3). Nodes are the
binary vectors (x1, . . . , xi), i = 0, . . . , n. The node (x′

1, . . . , x
′
i+1) is a successor

of (x1, . . . , xi) if x
′
j = xj for j = 1, . . . i (see Figure 1.9). The tree has 2n+1−1

nodes spread over n+ 1 levels (numbered from 0 to n).
The solutions to the knapsack problem are located in the 2n leaves. These

are all in the nth level. But not all leaves are solutions of the knapsack prob-
lem. Some may violate the capacity limit, others may not reach the maximum
possible profit. Completely traversing the tree and then checking the capac-
ity limit and optimality condition in each leaf gives a correct result. However,
since the number of nodes of B increases exponentially in the number of
items, this procedure leads to an algorithm of exponential running time. The
idea is to recognize in time that a subtree cannot contain an optimal solution.

If the capacity condition is violated in a node v, it is violated for all nodes
in the subtree that has v as root. If in the node v the sum of the profit that
has already been achieved and the profit that is still to be expected does not
exceed the maximum profit achieved so far, we do not examine the subtree
with root v any further. With this strategy, the following algorithm solves the
0,1 knapsack problem. It consists of the function knapSack, which starts the
execution, and the function traverse, which traverses B by depth-first search
(Algorithm 4.5). As with the solution of the eight queens problem, we do not
explicitly present the solution tree B as a data structure.
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Algorithm 1.45.
int: p[1..n], w[1..n], x[1..n], x̃[1..n]

knapSack(int p[1..n], w[1..n],m)
1 (i, p′′)← greedyKnapsack(p[1..n], w[1..n], x̃[1..n],m)
2 if x̃[i] < 1
3 then x̃[i]← 0
4 traverse(x[1..1],m, 0)
5 return x̃

traverse(int x[1..j],m′, p′)
1 int : p̃
2 p̃←

∑n
k=1 p[k]x̃[k]

3 if j ≤ n
4 then (i, p′′)← greedyKnapsack(p[j..n], w[j..n], x[j..n],m′)
5 if p′ + p′′ > p̃
6 then if w[j] ≤ m′

7 then x[j]← 1
8 traverse(x[1..j + 1],m′ − w[j], p′ + p[j])
9 x[j]← 0, traverse(x[1..j + 1],m′, p′)
10 else if p′ > p̃ then x̃← x

Remarks:

1. The function knapSack calls greedyKnapsack (line 1). This calculates a
solution x̃ to the fractal knapsack problem. If x̃ is an integer solution, then
an optimal solution has been found, consisting of integers. Otherwise, we
set the last component of the solution x̃ which is different from 0 to 0 and
get a solution in {0, 1}n. After the termination of traverse(x[1..1],m, 0)
called in line 4 of knapSack, x̃ contains the first optimal solution found.

2. The parameters of traverse are the current node (x1, . . . , xj), the capac-
ity m′ remaining in the node (x1, . . . , xj), and the profit p′ earned up
to node (x1, . . . , xj−1). The algorithm greedyKnapsack calculates an op-
timal solution of the fractal subproblem restricted to [j..n] (Proposition
1.44). The profit of the 0,1 solution is always less than or equal to the
profit of the optimal fractal solution.

3. We initialize the solution (x̃1, . . . , x̃n) with greedyKnapsack, and then
update it whenever we discover a solution with a higher profit (line 10).

4. The condition in line 5 checks whether the subtree with root (x1, . . . , xj)
can contain an optimal solution. This is the case if the profit p′ obtained
up to the node (x1, . . . , xj−1) plus the profit p′′ of an optimal solution
for the fractal problem restricted to [j..n] is greater than the profit p̃ =∑n

i=1 pix̃i of the solution (x̃1, . . . , x̃n), the current optimal solution. If
this is the case, we continue the search in the next level with xj = 0 and
with xj = 1 if the remaining capacity allows it (line 6: w[j] ≤ m′). The
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variable j specifies the level of the tree where the node (x1, . . . , xj) is
located. In particular, a leaf is reached for j = n.

5. If the condition in line 5 does not occur, we cut off the subtree under
the node (x1, . . . , xj−1), i.e., we search neither the subtree with root
(x1, . . . , xj−1, 0) nor the subtree with root (x1, . . . , xj−1, 1) for an optimal
solution.

6. The notation x[1..j] also passes the parameter j when the function is
called. If we call traverse with j = n + 1, we update x̃ if the profit
p′ =

∑n
k=1 pkxk, which is given by the node (x1, . . . , xn), is greater than

the profit of the solution stored in x̃, i.e., if p′ >
∑n

k=1 pkx̃k (line 10).

Example. Figure 1.9 shows a solution tree for the knapsack problem with five
pieces of luggage, p = (10, 18, 14, 12, 3), w = (2, 6, 5, 8, 3) and m = 12.
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Fig. 1.9: Solution tree for five items.

The greedy solution is 11000 and makes profit p′ = 28. This is first up-
dated with 11001. The assigned profit is p′ = 31. c stands for a violated
capacity condition (row 6: w[j] > m′) and b for a violated bounding condi-
tion (row 5: p′ + p′′ ≤ p̃). The optimal solution is 01100 and yields profit
32.

1.6 Randomized Algorithms

Originally, randomized algorithms were mainly used in computational num-
ber theory and cryptography. Important examples are the primality tests
of Solovay-Strassen and of Miller-Rabin (see for example [DelfsKnebl15]). In
cryptography, probabilistic methods are the key technology for secure crypto-
graphic methods (ibid.). In the meantime, there is a wide field of applications
for probabilistic methods. They belong to the basic techniques for the con-
struction of simple and efficient algorithms. In this section, we follow the
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description in “Randomized Algorithms” by Motwani and Raghavan, which
provides a good insight into the field of randomized algorithms ([MotRag95]).

The control flow in randomized algorithms depends on random decisions,
such as the result of a coin toss. If we apply a randomized algorithm twice for
a computation with the same input, then different results of the coin tosses
can lead to different results of the computation. For theoretical purposes,
randomized algorithms are modeled analogously to (deterministic) algorithms
with randomized Turing machines, see e.g., [HopMotUll07].

Random Walk on a Line. The following algorithm is completely random.
The result depends only on the result of a series of coin tosses, where the
probability is p for heads and 1 − p for tails. This is a random walk on the
number line Z. At the start we position a figure F at the zero point of Z. In
each step, depending on a coin toss we move F one unit to the right (+1) or
one unit to the left (-1).

Algorithm 1.46.
int randomWalk(int n)
1 int x← 0
2 for i = 1 to n do
3 choose at random z ∈ {−1, 1}
4 x := x+ z
5 return x

The random variable X describes the return value x (the endpoint of the
random walk). It can take the values −n, . . . , n.

The variable X has the value x if k times 1 and n−k times −1 happened
and if x = k − (n − k) = 2k − n, i.e., k = (n+ x)/2. We get as generating
function of X

GX(z) =

n∑
x=−n

(
n

n+x
2

)
p(x+n)/2(1− p)(n−x)/2zx

=
2n∑
x=0

(
n
x
2

)
px/2(1− p)n−x/2zx−n

=
1

zn

n∑
x=0

(n
x

)
px(1− p)n−x

(
z2
)x

=
(pz2 + (1− p))n

zn

(see Definition A.15, Definition A.11 and Appendix B (F.3)). We get

G′
X(1) = n(2p− 1), G′′

X(1) = 4n
(
n (p− 1/2)

2 − p (p− 1/2) + 1/4

)
.

For the expected value we get E(X) = n(2p−1) and for the variance Var(X) =
4np(1− p) (Proposition A.12). The recalculation of the formulas is a routine
task.
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For p = 1/2 the expected value of X is 0. We expect the random walk to
end again at the origin after n steps. The variance Var(X) = n. We would
therefore be surprised if the random walk ends in many cases more than
σ(X) =

√
n positions remote from the origin.

Example. The histogram in Figure 1.10 shows the relative frequencies of the
endpoints of 10,000 simulated random walks, each consisting of 50 steps.

Fig. 1.10: Distribution of the endpoints of 10,000 random walks.

Since the endpoints are even for an even number of steps, only the even
coordinates are given. The coin is a fair coin, heads and tails have equal
probability, 1/2. The random walk ends in 68% of the performed experiments,
as expected, in the interval [-7,7]. The experimentally determined distribution
hardly deviates from the computed distribution.

1.6.1 Comparing Polynomials

We consider the problem of deciding whether two finite sequences of integers

α1, . . . , αn and β1, . . . , βn

contain the same elements. If we sort the two sequences and then compare
the sequences element by element, we obtain a solution that has a running
time of order O(n log2(n)) (see Chapter 2).

We get a more efficient solution using the polynomials

f(X) =
n∏

i=1

(X − αi) and g(X) =
n∏

i=1

(X − βi)

assigned to α1, . . . , αn and β1, . . . , βn. Let f(X) and g(X) ∈ Z[X] be poly-
nomials with integers as coefficients. The task now is to determine whether
f(X) = g(X).

If the coefficients of f(X) and g(X) are known, this can simply be done
by comparing the individual coefficients. However, there are also situations in
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which the coefficients are not known. This is the case, for example, if we only
know the zeros of f(X) and g(X). As we know, two normalized polynomials
are equal if f(X) and g(X) have the same zeros α1, . . . , αn and β1, . . . , βn.

Multiplying out the products and then comparing the polynomials does
not provide a faster algorithm than the solution just given. We obtain a
faster algorithm if we apply the idea of fingerprints. The fingerprint of f(X)
is f(x). x is an argument that we can use in f . For our procedure we choose
the argument x from a finite set A ⊂ Z randomly and compare

f(x) = g(x).

We calculate f(x) =
∏n

i=1(x−αi) with n multiplications without calculating
the coefficients. We get the following algorithm.

Algorithm 1.47.
boolean OnePassPolyIdent(polynomial f, g)
1 choose at random x ∈ A
2 if f(x) ̸= g(x)
3 then return false
4 return true

The element x is called a witness for f(X) ̸= g(X) if f(x) ̸= g(x).
If f(X) = g(X), then f(x) = g(x) is also true, and the result is cor-

rect. If f(X) ̸= g(X), it may well be that f(x) = g(x). In this case,
OnePassPolyIdent is wrong. Now we investigate the probability with which
OnePassPolyIdent is incorrect. For simplicity, we assume that deg(f − g) =
n − 1 and select A from Z with |A| = 2(n − 1) in advance. If f(X) ̸= g(X),
then f(X)−g(X) ̸= 0 is a polynomial of degree n−1 and thus has – allowing
for multiplicity – at most n− 1 zeros. OnePassPolyIdent is wrong if a zero of
f − g is selected in line 1. The probability of this is ≤ (n− 1)/2(n− 1) = 1/2.
Let p be the probability that OnePassPolyIdent computes correctly. So p = 1
if f(X) = g(X) and p ≥ 1/2 if f(X) ̸= g(X). At a first glance, an algorithm
that errs in many cases with a probability up to 1/2 seems to be of little use.
However, the error probability can be made arbitrarily small by independent
repetitions – a standard procedure with randomized algorithms.

Algorithm 1.48.
boolean PolyIdent(polynomial f, g; int k)
1 for i = 1 to k do
2 choose at random x ∈ A
3 if f(x) ̸= g(x)
4 then return false
5 return true

The probability that PolyIdent is wrong k times – for k independent rep-
etitions of the choice of x – is less than or equal to 1/2k. Then the probability
of success is greater than or equal to 1− 1/2k. By appropriate choice of k, we
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achieve that it is arbitrarily close to 1.

A randomized algorithm is called a Monte Carlo algorithm if it produces
a correct result with high probability and a Las Vegas algorithm if it always
returns a correct result. This is formulated more precisely as follows.

Definition 1.49. Let P be a computational problem. A randomized algo-
rithm A for P is called a

1. Monte Carlo algorithm if
a. The result A(x) is very likely correct.
b. The running time is polynomial.

2. Las Vegas algorithm if
a. The result A(x) is always correct.
b. The expected value of the running time is polynomial.

We give an example of a Las Vegas algorithm. The algorithm PolyDif
proves that two polynomials of degree n are different. It is based on the same
facts as the algorithm PolyIdent.

Algorithm 1.50.
boolean PolyDif(polynomial f, g)
1 while true do
2 choose at random x ∈ A
3 if f(x) ̸= g(x)
4 then return true

If f(X) = g(X), the algorithm does not terminate. We calculate the
expected value of the number I of iterations of the while loop in PolyDif for
the case f(X) ̸= g(X). We consider the event E that the random choice of
x ∈ A does not return a zero of f(X)− g(X). If p is the relative frequency of
non-zeros, then p(E) = p. The random variable I is geometrically distributed
with parameter p. The expected value E(I) = 1/p (Proposition A.20).

If the algorithm will be used for practical purposes, the loop must be
terminated at some point. In this case, the algorithm outputs “no result ob-
tained”. Probably the two polynomials are the same. For p = 1/2 after k
iterations the error probability is at most 1/2k.

When calculating f(x) =
∏n

i=1(x − αi) in the algorithm PolyIdent, very
large numbers may occur. Then a multiplication is not an elementary opera-
tion. The effort depends on the length of the numbers. This problem can also
be solved using fingerprints.

1.6.2 Verifying the Identity of Large Numbers

We demonstrate the advantage of the probabilistic method with the problem
of checking whether objects are equal. We consider objects x1 and x2 that are
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elements of a large set X. The task is to determine whether x1 = x2 holds.
For example, x1, x2 can be large numbers or sequences of numbers.

The idea is to use a hash function

h : X −→ Y

and compare h(x1) = h(x2). Hash functions are introduced in Section 3.2.
Usually hash functions map elements of very large sets X – X can even have
infinitely many elements – to elements of sets of moderate size. We call the
hash value h(x) the fingerprint of x. The comparison of elements in Y is
less complicated. Of course, this only brings an advantage if the calculation
of h(x1) and h(x2) and comparing h(x1) = h(x2) costs less than comparing
x1 = x2. We will get to know situations where this is the case. Another
problem is that h(x1) = h(x2) can be valid without x1 = x2. In this case,
we say (x1, x2) is a collision of h (see Definition 3.1). The method of tracing
the comparison of objects x1 = x2 back to the comparison of fingerprints
h(x1) = h(x2) can only be used if for x1 ̸= x2 the collision probability
p(hp(x) = hp(y)) is small (Definition 3.5).

Let x and y be natural numbers with x, y < 2l. We now apply the idea of
fingerprints to determine whether x = y holds.

For the following application, we need hash functions which are multiplica-
tive. Since the universal families from Section 3.2.2 do not have this property,
we specify a suitable family of hash functions.

We randomly select a prime p from a suitable set of primes P and consider
the family (hp)p∈P ,

hp : {0, 1}l −→ {0, . . . , p− 1}, x 7−→ x mod p.

Since the proof of the prime number property is complex, one chooses a ran-
dom number of appropriate size for applications that require a large prime
number, and tests the prime number property with a probabilistic prime num-
ber test such as the Miller-Rabin test ([DelfsKnebl15, Algorithm A.93]). For
composite numbers, this test returns the correct result “composite”. However,
the result “prime number” is only correct with high probability. By repeating
the test independently, we can ensure that the error probability is arbitrarily
small. Probabilistic primality tests are also very efficient when testing large
numbers.

We first specify the set P of prime numbers from which we randomly
select a prime. Let z be a number and

π(z) = |{p Prime | p ≤ z}|.

According the Prime Number Theorem39, for large z

39 For a simple proof of the Prime Number Theorem, see [Newman80].
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π(z) ≈ z

ln(z)

is valid. Since π(z) is unbounded, we can select z so large that π(z) ≈ tl for
each constant t. We consider for this z the set P = {p prime | p ≤ z}.

Proposition 1.51. Let x ̸= y. Then the collision probability for randomly
selected p ∈ P is

p(hp(x) = hp(y)) ≤
1

t
.

Proof. Let x ̸= y and z := x − y. We have hp(x) = hp(y) if and only if
hp(z) = 0. But this is equivalent to p being a divisor of z. Since |z| < 2l, z
has at most l prime divisors. We get

p(hp(x) = hp(y)) ≤
l

|P |
≈ l

tl
=

1

t
.

This shows the assertion. 2

We get the following algorithm that tests numbers for equality.

Algorithm 1.52.
boolean IsEqual(int x, y)
1 choose at random p ∈ P
2 if x ̸≡ y mod p
3 then return false
4 return true

If x = y, then x ≡ y mod p is also true, and the result is correct. If x ̸= y,
it may well be that x ≡ y mod p. In this case, IsEqual is wrong. Its error
probability is ≈ 1

t . By k independent repetitions of the test, we can lower
the error probability to ≈ 1

tk
. For t = 2 the error probability is ≈ 1

2 or ≈ 1
2k
,

respectively.

We now use this probabilistic method in the algorithm PolyIdent to test
f(x) = g(x). The calculation of

hp(f(x)) =

(
n∏

i=1

(x− αi)

)
mod p =

(
n∏

i=1

(x− αi) mod p

)
mod p

can be done modulo p. Exactly the same rule applies to the calculation of
hp(g(x)). For this reason the number of digits in the n multiplications is
limited by log2(p).
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Algorithm 1.53.
boolean OnePassPolyIdent(polynomial f, g; int k)
1 choose at random x ∈ A
2 for i← 1 to k do
3 choose at random p ∈ P
4 if f(x) ̸≡ g(x) mod p
5 then return false
6 return true

If f(X) = g(X), OnePassPolyIdent returns a correct result as before. The
comparison f(x) = g(x), done in the lines 2 – 4 with the probabilistic method
of Algorithm 1.52, is only correct with high probability (≥ 1 − 1/2k). The
probability of success of OnePassPolyIdent decreases slightly in the case
f(X) ̸= g(X) (≥ 1/2− 1/2k). Through independent repetitions the probability
of success – as with PolyIdent – can be brought close to 1 again.

1.6.3 Comparing Multivariate Polynomials

We now discuss the fundamentals necessary to extend the algorithm for com-
paring univariate polynomials to multivariate polynomials.

Proposition 1.54. Let F be a finite field with q elements40, and let
f(X1, . . . , Xn) ∈ F[X1, . . . , Xn] be a polynomial of degree d, d > 0. Let
N(f) = {(x1, . . . , xn) | f(x1, . . . , xn) = 0} denote the set of zeros of f . Then

|N(f)| ≤ d · qn−1.

Proof. We show the assertion by induction on the number n of variables. For
n = 1 the assertion is correct, because a polynomial in a variable of degree d
over a field has at most d zeros. We show that n− 1 implies n. Let

f(X1, . . . , Xn) =

k∑
i=0

fi(X1, . . . , Xn−1)X
i
n, fk(X1, . . . , Xn−1) ̸= 0.

We assume without loss of generality that k ≥ 1; otherwise, we develop
f(X1, . . . , Xn) according to another variable. The polynomial
fk(X1, . . . , Xn−1) has degree ≤ d−k. By the induction hypothesis applied to

N(fk) = {(x1, . . . , xn−1) | fk(x1, . . . , xn−1) = 0},

we get |N(fk)| ≤ (d − k)qn−2. For every (x1, . . . , xn−1) ∈ N(fk), there are
at most q zeros of f(x1, . . . , xn−1, Xn). For every (x1, . . . , xn−1) ̸∈ N(fk),
the polynomial f(x1, . . . , xn−1, Xn) has degree k. Consequently, for each
(x1, . . . , xn−1) ̸∈ N(fk) there are at most k zeros of f(x1, . . . , xn−1, Xn). Then
with l = |N(fk)|
40 The number of elements is a prime power, q = pn. For q = p see Appendix B,

Corollary B.11.
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|N(f)| ≤ l · q + (qn−1 − l)k ≤ (d− k) · qn−1 + k · qn−1 = d · qn−1.

Thus, the assertion is shown. 2

Corollary 1.55. Let F be a finite field and f(X1, . . . , Xn) ∈ F[X1, . . . , Xn]
be a polynomial of degree d, d > 0. Then the probability that an element
(x1, . . . , xn) randomly chosen in Fn is a zero of f is less than or equal to d/q.

Remarks:

1. The preceding corollary allows us to implement a randomized algorithm
for d ≤ q/2 for multivariate polynomials, analogous to Algorithm 1.48.

2. Corollary 1.55 was published independently by Schwartz41 and Zippel42.
In the literature it is called the Schwartz-Zippel Lemma.

3. The preceding corollary has an interesting application in graph algo-
rithms. The problem of whether a given bipartite graph has a perfect
matching is reduced to the question of whether a given polynomial is the
zero polynomial (Proposition 5.8). The randomized algorithm mentioned
in point 1, which tests multivariate polynomials for equality, can be used
to decide this question.

1.6.4 Random Numbers

The algorithms in this section use the statement“choose at random”. An
implementation of this statement requires random numbers. True random
numbers require physical processes such as dice, radioactive decay or quan-
tum effects. A uniformly distributed n-bit random number can be obtained
by tossing a fair coin n times. However, this method is not suitable for imple-
mentation with a computer. We use pseudo-random numbers. Pseudo-random
numbers are generated by a pseudo-random number generator . A generator
is a deterministic algorithm that generates a long sequence of digits (bits)
from a short randomly chosen starting value, called the seed .

There is special hardware for the generation of random numbers. The
Trusted Platform Module (TPM), for example, is a chip that offers basic se-
curity functions as well as the generation of random numbers. Good sources
of randomness that are available without additional hardware are time dif-
ferences between events within a computer that originate from mechanically
generated information, such as timing between network packets, rotation la-
tency of hard disks and timing of mouse and keyboard inputs. A good starting
value can be calculated from a combination of these events.

There are different procedures with regard to the quality of the pseudo-
random numbers and the running time of the generating algorithms. Cryp-
tographic algorithms, for example, require high-quality pseudo-random num-
bers. The security of cryptographic methods is closely linked to the generation

41 Jacob Theodore Schwartz (1930 - 2009) was an American mathematician and
computer scientist.

42 Richard Zippel is an American computer scientist.
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of unpredictable random numbers. The theoretical aspects of the generation
of pseudo-random numbers in cryptography are described comprehensively
in [DelfsKnebl15, Chapter 8].

For our purposes, it is sufficient that the sequence of pseudo-random num-
bers has no obvious regularity and passes certain statistical tests, such as the
χ2- test. These aspects are discussed in detail in [Knuth98].

Example. We consider three 0-1 sequences of length 50. Which of the three
sequences in Figure 1.11 is a random sequence?

..0001011101 1100101010 1111001010 1100111100 0101010100.

0000000000 0000000000 0000001010 1100111100 0101010100

.

0000000000 0000000000 0000000000 0000000000 0000000001

Fig. 1.11: 0-1-sequences.

Although each of the three sequences has the probability 1/250 if we ran-
domly select it in {0, 1}50, intuitively the first sequence appears typical for a
random sequence, the second less typical and the third atypical.

This can be justified as follows. If we create a sequence by tossing a fair
coin, the random variable X that counts the number of ones in the sequence
is binomially distributed with the parameters (50, 1/2) (Definition A.15). The

expected value E(X) = 25 and the standard deviation σ(X) =
√
50/2 = 3.54

(Proposition A.16). A sequence of length 50, where the number of ones (and
thus also the number of zeros) deviates strongly from 25, does not seem
typical for a random sequence. Therefore, the first sequence with 26 ones
seems typical and the third sequence with one untypical.

Another method to decide the above question is by information theory.
For a uniformly distributed random sequence of length 50, the information
content is 50 bits. The information content is closely related to the length of
the shortest coding of the sequence. The information content of a bit sequence
≈ the length of a shortest possible coding of the bit sequence (Proposition
4.39). The third sequence has a short encoding 0(49),1 (49 times the zero
followed by the one).43 Consequently, the information content is small and
so is the randomness involved in generating the sequence. A sequence of 50
bits which was generated like the first sequence with coin tosses cannot be
encoded with fewer than 50 bits if the original sequence is to be decoded
again from the encoded sequence.

The most commonly used pseudo-random generator (for non-cryptograph-
ic applications) is the linear congruence generator . It is determined by the
following parameters: m, a, c, x0 ∈ Z with 0 < m, 0 ≤ a < m, 0 ≤ c < m and
0 ≤ x0 < m. m is called the modulus and x0 is called the start value of the
linear congruence generator. Starting from x0 we calculate according to the
rule
43 The method of encoding used here is called run-length encoding .
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xn+1 = (axn + c) mod m, n ≥ 1,

the pseudo-random sequence. The effects of the choice of the parameters a, c
and m on the safety of the pseudo-random sequence and on the length of the
period are studied in detail in [Knuth98, Chapter 3].

This section serves as an introduction to probabilistic methods, which
we will discuss in the following text. Quicksort, quickselect, search trees and
hash functions are efficient on average. The consequence is that if the inputs
are chosen randomly, appropriate running times can be expected. The idea is
to replace random input by randomness in the algorithm (by using random
numbers). Following this idea, we get probabilistic methods for sorting and
searching in sorted arrays (Algorithm 2.10 and Algorithm 2.30), universal
families of hash functions (Section 3.2.2) and randomized binary search trees
(Section 4.4). We solve the graph problems of computing a minimal cut and a
minimum spanning tree using randomized algorithms (Sections 5.7 and 6.6).

All algorithms, except the algorithm for computing a minimal cut, are Las
Vegas algorithms. Thus, they always deliver correct results. The algorithm
for computing a minimal cut is a Monte Carlo algorithm. For all problems
there are also solutions by deterministic algorithms. However, these are less
efficient.

1.7 Pseudo-code for Algorithms

We formulate our algorithms with pseudo-code. Pseudo-code is much more
precise and compact than a colloquial formulation. Pseudo-code allows us to
formulate the algorithms with sufficient precision without having to go into
the details of an implementation in a concrete programming language – such
as C or Java. On the basis of pseudo-code, conclusions can be drawn about
the correctness and the running time can be calculated.

We agree on the following notation:

1. In our pseudo-code there are variables and elementary data types like in
Java or C.

2. The assignment operator is “←”, the equality operator is “=”.
3. We use control structures, as in the programming languages Java or C. In

detail, it is about for and while loops, conditional statements (if-then-else)
and the call of functions. Unlike in Java or C, for loops always terminate.
After leaving the loop, the run variable has the value that caused the
termination.

4. We make the block structure visible by indenting it. Since the coding of
the algorithms in question always fits on one page, we do not mark the
beginning and end of the block conventionally. In the following algorithm,
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Euclid’s44 algorithm, which calculates the largest common divisor of a
and b, the body of the while loop includes the indented lines 2, 3 and 4.

Algorithm 1.56.
int gcd(int a, b)
1 while b ̸= 0 do
2 r ← a mod b
3 a← b
4 b← r
5 return |a|

5. Elementary data types are value types, i.e., a variable contains the ele-
mentary data object.

6. Structure data types aggregate one or more variables, possibly of different
type. They are reference types. A variable contains a reference (pointer)
to the data object. The structure member operator “.” is used to ac-
cess a component. Besides the declaration of the reference type, the new
operator has to be used to allocate memory for the data object.
We show the definition of structure data types using the definition of a
list element:
type listElem = struct

char c
listElem next

A data object of type listElem consists of the components c and next.
The variable c can store a character and next can store a reference to a
listElem type data object. The definition allows self referencing.
We now use data objects of type ListElem to store the characters A, B
and C in a linked list, as shown in Figure 1.12.
A variable start of type listElem stores a reference to the first data ob-
ject. With start.c you can access the character and with start.next the
reference.
The variable next stores a reference to a data object of type listElem
or null. The null reference indicates that the end of the list is reached.
We use the null reference when a reference variable does not reference an
object.

..

A

.

B

.

C

Fig. 1.12: Linked list.

7. Arrays are reference types (see the point before). Individual elements are
accessed by the [ ] – operator. When defining an array, we specify the

44 Euclid of Alexandria was a Greek mathematician, who probably lived in Alexan-
dria in the third century B.C. Euclid described the algorithm in his famous work
“The Elements” in an equivalent form.
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range of the indices. The expression int a[1..n] defines an array of integers
of dimension n, indexed from 1 to n. Later it is possible to access partial
arrays with a[i..j], 1 ≤ i ≤ j ≤ n. For i = j we access the ith element,
and for short we write a[i]. If an array a[1..n] is defined as a parameter
of a function, it is agreed that we can access the variable n, the length
of the array, inside the called function.

8. Our pseudo-code contains functions similar to those in the programming
languages Java or C. We pass parameters to functions always “by value”,
i.e., the called function receives a copy of the parameter in its own vari-
able. A change of the variable only affects the called function. It is not
visible in the calling function. If x is a reference variable and parameter
of a function, an assignment x ← y only affects the called function; an
assignment x.prop← a is also visible in the calling function.
Variables that we define within a function are only visible in the function.
Variables defined outside of functions are globally visible.

1.8 Textbooks on Algorithms and Data Structures

I used the following textbooks for the preparation of the lectures from which
this book originates. They were a valuable source in the selection and presen-
tation of the algorithms covered. In the text one can surely find traces of the
referenced textbooks.

First I would like to mention “The Art of Computer Programming” (Vol-
umes 1–3) by Knuth ([Knuth97], [Knuth98]), [Knuth98a]). This standard
work presents the treated topics comprehensively. The methodology devel-
oped is very precise. It would be an omission not to use this work in the
preparation of a lecture course on Algorithms and Data Structures.

“Concrete Mathematics” by Graham, Knuth and Patashnik develops
mathematical methods for the analysis of algorithms using numerous exam-
ples ([GraKnuPat94]). This book is an exorbitant treasure trove not only for
computer scientists, but also for friends of “concrete mathematics”.

During my first lectures at the beginning of the 1990s I also used Wirth’s
“Algorithmen und Datenstrukturen” ([Wirth83]). Further, there is the classic
“The Design and Analysis of Computer Algorithms” ([AhoHopUll74]), which
also contains many interesting subjects from today’s point of view, and “Data
Structures and Algorithms” ([AhoHopUll83]), both by Aho, Hopcroft and
Ullman, as well as “Algorithms” by Sedgewick ([Sedgewick88]), which was
published in its fourth edition ([SedWay11]) with Wayne as an additional
author.

Among the newer textbooks is “Introduction to Algorithms” by Cormen,
Leiserson and Rivest ([CorLeiRiv89]), which is available in its third edition,
with Stein as an additional author ([CorLeiRivSte09]) and “Algorithms and
Data Structures” by Mehlhorn and Sanders ([MehSan08]).
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Motwani and Raghavan cover randomized algorithms comprehensively in
“Randomized Algorithms” ([MotRag95]).

The biographical data of persons given in the text are taken from the
respective Wikipedia entries.

Exercises.

1. Show that n = 2k−1
3 , where k ∈ N is even, is a natural number, and that

Algorithm 1.2 terminates with input n.

2. We consider sorting by insertion – InsertionSort.

Algorithm 1.57.

InsertionSort(item a[1..n])
1 index i, j; item x
2 for i← 2 to n do
3 x← a[i], a[0]← x, j ← i− 1
4 while x < a[j] do
5 a[j + 1]← a[j], j ← j − 1
6 a[j + 1]← x

a. Illustrate the operation of the algorithm using appropriate input ar-
rays.

b. Show that InsertionSort is correct.

3. Let A1, A2 and A3 be algorithms with the following running times

T1(n) = c1n, T2(n) = c2n
3 and T3(n) = c32

n,

where the ci, i = 1, 2, 3, are constants. For each algorithm let
mi, i = 1, 2, 3, be the maximum size of the input which can be processed
within a fixed time t on a computer. How do the numbers mi, i = 1, 2, 3,
change if the computer is replaced by a k times faster computer?

4. Arrange the following functions in ascending order with respect to asymp-
totic growth. To do this, estimate the asymptotic growth of each function.
Then compare two consecutive terms of the sequence by calculation. For
all calculations use only the rules for fractions, powers and logarithms.

f1(n) = n,

f2(n) =
√
n,

f3(n) = log2(n),

f4(n) = log2(
√
n),

f5(n) = log2(log2(n)),

f6(n) = log2(n)
2,

f7(n) =
n

log2(n)
,

f8(n) =
√
n log2(n)

2,

f9(n) = (1/3)n,

f10(n) = (3/2)n,

f11(n) =
√
log2(log2(n)) log2(n),

f12(n) = 2f11(n).
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5. For which (i, j) does fi = O(fj) hold?

f1(n) = n2.

f3(n) =

{
n if n is odd,
n3 if n is even.

f2(n) = n2 + 1000n.

f4(n) =

{
n if n ≤ 100,
n3 if n > 100.

6. Let f1(n) = n( n
√
n− 1) and f2(n) =

(
n
k

)
k!.

Determine the orders of f1(n) and f2(n).

7. A capital sum k is subject to an annual interest rate of p %. After each
year, the capital increases by the interest and by a constant amount, c.
Specify a formula for the capital k after n years.

8. Solve the following difference equations:

a. x1 = 1,
xn = xn−1 + n, n ≥ 2.

b. x1 = 0,

xn = n+1
n xn−1 +

2(n−1)
n , n ≥ 2.

9. How often is the string “hello!” output by the following algorithm (de-
pending on n)?

Algorithm 1.58.

DoRec(int n)
1 if n > 0
2 then for i← 1 to 2n do
3 DoRec(n− 1)
4 k ← 1
5 for i← 2 to n+ 1 do
6 k ← k · i
7 for i← 1 to k do
8 print(hello!)

10. Use difference equations to determine how often the string “hello!” is
output by the following algorithm (depending on n).

Algorithm 1.59.

DoRec(int n)
1 if n > 0
2 then for i← 1 to n− 1 do
3 DoRec(i)
4 print(hello!), print(hello!)

11. Let n ∈ R≥0, T (n) = T (
√
n) + r(n) for n > 2 and T (n) = 0 for n ≤ 2.

Calculate for r(n) = 1 and r(n) = log2(n) a closed solution for T (n). Use
Lemma B.23.
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12. Let a ≥ 1, b > 1, d, l ≥ 0 and

x1 = ad+ cbl, xk = axk−1 + c(bl)k for k > 1.

Specify a closed solution to the equation. Use the inverse transformation
k = logb(n) to calculate a solution to the recurrence (R1).

13. Let T (n) = aT
(
⌊n2 ⌋

)
+ nl, T (1) = 1. Specify estimates for a = 1, 2 and

l = 0, 1.

14. The function Fib(n) for calculating the nth Fibonacci number is imple-
mented recursively (analogously to the defining formula). How big is the
required stack in terms of n?

15. Implement TowersOfHanoi iteratively. To do this, examine the tree that
is defined by the recursive calls from TowersOfHanoi.

16. Implement the algorithm Optimum for the task scheduling problem.

17. An amount of n (Euro-)Cents is to be paid out. The coins45 should be
chosen in such a way that the number of coins is minimized. Develop a
greedy algorithm and show that the greedy strategy leads to success.

18. Proposition 1.39 contains a recursive formula for calculating the edit
distance. Convert the formula into a recursive function and specify a
lower limit for the running time.

19. Let a1 . . . an be a string of characters. A substring of a1 . . . an is created by
deleting characters in the string a1 . . . an. Develop an algorithm according
to the dynamic programming method that calculates the length of the
largest common substring for two strings a1 . . . an and b1 . . . bm.

20. Let a1 . . . an be a sequence of integers. f(i, j) =
∑j

k=i ak. We are looking
for

m := max
i,j

f(i, j).

Specify an algorithm using the dynamic programming method that cal-
culates m.

21. Let a = a1 . . . an and b = b1 . . . bm, m ≤ n, be strings of characters.
The problem is to decide whether b is a substring of a, and if so, to
specify the smallest i with ai . . . ai+m−1 = b1 . . . bm. The problem is called
“pattern matching” in strings. Develop a randomized algorithm to solve
the problem using the fingerprint technique.

45 The euro coin series comprises eight different denominations: 1, 2, 5, 10, 20 and
50 cent, 1 e (= 100 cent) and 2 e.
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Let a1, . . . , an be a finite sequence. The elements of the sequence should be
elements of an ordered set. The order relation is ≤. We are looking for a
permutation π of the indices {1, . . . , n}, so that the sequence aπ(1) ≤ aπ(2) ≤
. . . ≤ aπ(n) is arranged in ascending order. More precisely, we are interested
in an algorithm that will bring about this arrangement. We call such an
algorithm a sorting procedure.

Sorting procedures can be divided into sorting procedures for data stored
in main memory and those for data stored in secondary storage. In this
section, we will only consider sorting procedures for data in main memory.
The elements to be sorted are stored in an array a. The sorting should be done
in the array a (except for variables, if possible without additional memory) by
exchanging elements on the basis of comparisons. A measure of the efficiency
of the algorithms is the number of comparisons and exchanges depending on
n. n denotes the length of the array.

When sorting data in main memory, we differentiate between simple sort-
ing methods such as selection sort , insertion sort and bubble sort and the
more efficient methods heapsort and quicksort . The simple methods have a
running time of order O(n2). Quicksort and heapsort run in time O(n log2(n)),
quicksort on average and heapsort in the worst case. We discuss them in detail
in this chapter.

An important application of sorting algorithms is to simplify the subse-
quent search. Unsorted arrays require sequential search. In sorted arrays we
can perform a binary search. The order of the running time improves consid-
erably, from O(n) to O(log(n)). Besides sequential and binary search, we also
deal with the problem of finding the kth-smallest element of a finite sequence.
We can solve this problem by sorting the sequence first and then accessing the
kth element. Quickselect, however, provides a much more efficient solution.

2.1 Quicksort

Quicksort implements the divide and conquer strategy (Section 1.5.2). We
divide the problem of sorting a sequence of length n into smaller subproblems.
A subproblem is to sort a subsequence. The subproblems are of the same type

© Springer Nature Switzerland AG 2020 

H. Knebl, Algorithms and Data Structures, https://doi.org/10.1007/978-3-030-59758-0_2

71

https://doi.org/10.1007/978-3-030-59758-0_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59758-0_2&domain=pdf


72 2. Sorting and Searching

as the overall problem. It is a good idea to solve the subproblems recursively.
The solutions to the subproblems are then combined to form a solution to
the overall problem.

Let F be the sequence to sort. For quicksort, the decomposition of the
problem consists of choosing a pivot element x from F and dividing F into
two sequences F1 and F2. F1 contains only elements that are ≤ x and F2 only
elements that are ≥ x. We then recursively apply quicksort to F1 and F2. In
the case of quicksort, assembling the partial solutions “F1 and F2 sorted” into
the total solution “F sorted” simply consists of outputting the elements of
F1 one after the other in sorted order, then x and finally F2 again in sorted
order.

We store the sequence F to be sorted in an array a. Quicksort sorts on
the basis of comparisons and exchanges in the input array a.

The algorithm quicksort was published by Hoare ([Hoare62]).

Algorithm 2.1.
QuickSort(item a[i..j])
1 item x; index l, r; boolean loop← true
2 if i < j
3 then x← a[j], l← i, r ← j − 1
4 while loop do
5 while a[l] < x do l← l + 1
6 while a[r] > x do r ← r − 1
7 if l < r
8 then exchange a[l] and a[r]
9 l = l + 1, r = r − 1

10 else loop← false
11 exchange a[l] and a[j]
12 QuickSort(a[i..l − 1])
13 QuickSort(a[l + 1..j])

The call QuickSort(a[1..n]) sorts an array a[1..n]. Before the first call of
QuickSort we set a[0] as sentinel.1 The sentinel is chosen such that a[0] ≤ a[i],
1 ≤ i ≤ n.

Example. We consider the application of QuickSort to the sequence 67, 56,
10, 41, 95, 18, 6, 42. Figure 2.1 shows the hierarchy of the QuickSort calls.
The nodes of the tree are formed by partial arrays, which we pass as call
parameters. Each node that is not a leaf has exactly two successors. We
see that recursive calls with one element or even with no element can take
place. This should be avoided when implementing the algorithm. We get the
sequence of the call times by the pre-order output and the sequence of the
termination times by the post-order output of the nodes of the tree (see
Definition 4.4).

1 The sentinel element makes sure that we do not access array a with a negative
index.



2.1 Quicksort 73

..a[1..8].

a[1..4]

.

a[1..3]

.

a[1..1]

.

a[3..3]

.

a[5..4]

.

a[6..8]

.

a[6..7]

.

a[6..6]

.

a[8..7]

.

a[9..8]

Fig. 2.1: Call hierarchy for QuickSort.

The call QuickSort(a[1..1]) terminates as the first call. The smallest ele-
ment is then at the first position.

Below are the pivot elements and their corresponding decompositions.

sequence: 67 56 10 41 95 18 6 42
pivot element: 42
partition: 6 18 10 41 56 67 95
pivot elements: 41 95
partition: 6 18 10 56 67
pivot elements: 10 67
partition: 6 18 56
sorted sequence: 6 10 18 41 42 56 67 95

After termination of the call QuickSort(a[i..j]), the subarray with the indices
i..j is sorted.

Proposition 2.2. QuickSort sorts the array a in ascending order.

Proof. We first show that QuickSort terminates.

1. The while loop in line 5 terminates at the first run at the latest for l = j,
because the pivot element is at the very right.

2. The while loop in line 6 terminates at the first run at the latest for r = i−1
(if the pivot element is the smallest element). The pivot element of the
previous decomposition or the sentinel a[0] (if i = 1) is located at position
i− 1. Therefore, a[i− 1] ≤ a[r] for i ≤ r ≤ j.

3. If l < r, we swap a[l] and a[r]. After incrementing l and decrementing
r, the elements left of a[l] are ≤ x and the elements right of a[r] are
≥ x. Hence, all subsequent passes of the two inner while loops terminate.
After each iteration of the while loop in line 4, the distance r−l decreases.
Therefore, l ≥ r occurs, i.e., the while loop terminates.

Correctness now immediately follows by induction on n, the number of ele-
ments of a. The assertion is obviously true when n = 1. The partial arrays for
which we call QuickSort recursively have at most n− 1 elements. Therefore,
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we may assume by the induction hypothesis that the partial arrays are sorted
in ascending order. After termination of the outer while loop (line 4), we have
i ≤ l ≤ j, a[i], . . . , a[l − 1] ≤ x and a[l + 1], . . . , a[j] ≥ x. Thus, we can store
the element x at the position l in a sorted order. The whole array a is sorted
accordingly. 2

Remarks:

1. After termination of the outer while loop, we have l ≥ r. Since a[l−1] < x
holds, we conclude that l = r or l = r + 1.

2. Let n = j − (i − 1) be the number of elements. There are n or n + 1
comparisons (lines 5 and 6). By a small modification, you can achieve
that n − 1 comparisons with elements of a are sufficient (Exercise 7).
The comparisons with elements from a are called essential comparisons.
Comparisons between indices require less effort, because indices are usu-
ally implemented with register variables and elements in an array have
a complex structure compared to indices. Comparisons between indices,
therefore, are insignificant. We count only essential comparisons. Since
each swap involves two elements, the number of swaps in line 8 is limited
by
⌊
n−1
2

⌋
.

3. In the algorithm above, recursive calls for an array with one or without el-
ements occur. This should be avoided when implementing the algorithm.
Even recursive calls for small arrays should be avoided, because quicksort
is only superior to a simple sorting method such as insertion sort if the
number of elements in the array to be sorted is sufficiently large. There-
fore, it is recommended to use insertion sort if the number of elements is
small, i.e., if it is below a given bound. In [Knuth98a] this is analyzed ex-
actly and a bound for n is calculated. This bound is 10 for the computer
considered there.

2.1.1 Running Time Analysis

We assume that the array a[1..n] to be sorted contains different elements. The
effort for lines 2 - 11 is cn, where c is constant. We split a[1..n] into arrays
of length r − 1 and n− r. For the running time T (n), we get recursively:

T (n) = T (r − 1) + T (n− r) + cn, c constant.

The Best and the Worst Case. The pivot element determines the two
parts during disassembly. Equally large parts or parts of strongly different
sizes can be produced. In extreme cases, one part is empty. This is the case
if the pivot element is the largest or the smallest element. Figure 2.2 shows
the trees that represent the recursive call hierarchy of QuickSort in these two
cases. In the nodes we note the number of elements of the array that we pass
as a parameter. Nodes for which no comparisons take place are omitted. The
first tree represents the case of equal-sized parts. The second tree represents
the case in which in each step one part is empty.
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Fig. 2.2: The best and the worst case.

In the first case, the height of the tree is ⌊log2(n)⌋. On each level of the
tree there are approximately n elements. The sum of all comparisons on the
same recursion level, i.e., in one level of the tree, is approximately n. In total,
the number of comparisons is of order O(n log2(n)).
In the second case, the height of the tree is n. On the ith level n − (i + 1)

comparisons take place. The total number of comparisons is
∑n−1

i=0 n−(i+1) =∑n−1
i=1 i = n(n−1)

2 = O(n2).
Proposition 2.26 states that O(n log2(n)) is a lower limit of the number of

comparisons in the worst case required by a comparison sort algorithm, i.e. an
algorithm that sorts based on the comparison of two elements. The QuickSort
algorithm gives an upper limit on the number of comparisons, which leads to
the following consideration.

Let C(n) be the number of comparisons2 which QuickSort needs to sort
n elements. Then

C(n) ≤ max
1≤r≤⌊n

2 ⌋
C(r − 1) + C(n− r) + (n− 1).

We show by induction on n that C(n) ≤ n(n−1)
2 . For n = 1 no comparison

is necessary, the assertion is true. By applying the induction hypothesis, we
conclude that

C(n) ≤ max
1≤r≤⌊n

2 ⌋

(r − 1)(r − 2)

2
+

(n− r)(n− r − 1)

2
+ (n− 1).

The function on the right, over which we form the maximum, is decreasing for
r ∈ [1, ⌊n2 ⌋]. The induction assertion follows immediately. This shows that the
number of comparisons of QuickSort is limited downwards by O(n log2(n))

and upwards by n(n−1)
2 . Since the running time is proportional to the number

of comparisons, there are analogous limits for the running time.
We investigate the running time of QuickSort in the best and worst case.

2 We consider an optimized version of quicksort that manages with n− 1 compar-
isons (see the remarks after the proof of Proposition 2.2).
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Proposition 2.3. In the best case, the running time T (n) of QuickSort sat-
isfies

T (n) ≤ b2⌊log2(n)⌋ + cn⌊log2(n)⌋,

where b and c are constants. In particular, T (n) = O(n log2(n)).

Proof. The best case occurs when in each recursion step the process delivers
roughly equal quantities. n − 1 elements then break down into

⌈
n−1
2

⌉
and⌊

n−1
2

⌋
elements.

T (n) = T

(⌊
n− 1

2

⌋)
+ T

(⌈
n− 1

2

⌉)
+ cn,

T (1) = b.

We have
⌊
n−1
2

⌋
≤
⌊
n
2

⌋
and

⌈
n−1
2

⌉
=
⌊
n
2

⌋
. Since T is increasing, we get

T (n) ≤ 2T
(⌊n

2

⌋)
+ cn.

We replace “≤” with “=” and get by Proposition 1.28 the formula of the
assertion. 2

QuickSort is in the best case much more efficient than the simple sorting
methods selection sort, insertion sort and bubble sort. The running times of
these methods are of order O(n2). In the worst case QuickSort also runs in
time O(n2).

Proposition 2.4. Let T (n) be the running time of QuickSort in the worst
case, then

T (n) =
c

2
n2 +

( c
2
+ b
)
n− c,

where b and c are constants. In particular, T (n) = O(n2).

Proof. The worst case occurs when in each recursion step the decomposition
process returns an empty array and an (n− 1)-element array.

T (n) = T (n− 1) + T (0) + cn, n ≥ 2, T (0) = T (1) = b,

has according to Proposition 1.15 the solution

T (n) = b+
n∑

i=2

(ci+ b) = bn+ c

(
n(n+ 1)

2
− 1

)
=

c

2
n2 +

( c
2
+ b
)
n− c.

This shows the assertion. 2

Remark. In Algorithm 2.1 the worst case occurs for a sorted array.



2.1 Quicksort 77

The Average Case. The analysis for the average running time is carried out
under the assumption that all elements are pairwise distinct. We designate
the elements to be sorted in ascending order with a1 < a2 < . . . < an. The
probability that ai is at the last position n is 1

n , because there are (n − 1)!

permutations π with π(i) = n and n! permutations in total and (n−1)!
n! = 1

n .
If ai is at the last position, {a1, a2, . . . , an} breaks down into {a1, . . . , ai−1},

{ai+1, . . . , an} and {ai}. First we show that after partitioning there is a uni-
form distribution on {a1, . . . , ai−1} and on {ai+1, . . . , an}.

After the decomposition with the pivot element ai, we get – before exe-
cuting line 11 – the sequence

aπ(1), aπ(2), . . . , aπ(i−1), aπ̃(i+1), aπ̃(i+2), . . . , aπ̃(n), ai.(2.1)

π is a permutation on {1, . . . , i− 1} and π̃ is a permutation on {i+1, . . . , n}.
We now determine the number of arrangements of {a1, . . . , an} that result

after decomposition in the sequence (2.1). For each choice of j positions in
(1, . . . , i− 1) and of j positions in (i+ 1, . . . , n), j ≥ 0, exactly one sequence
is determined which requires j swaps during partitioning and results after
partitioning in the sequence (2.1). Therefore, there are(

i− 1

j

)(
n− i

j

)
(2.2)

output sequences that after partitioning using j swaps result in (2.1).
Let m = min{i − 1, n − i}. The number l of all sequences that result in

the sequence (2.1) after partitioning is

l =
m∑
j=0

(
i− 1

j

)(
n− i

j

)
=

(
n− 1

i− 1

)

(Lemma B.17). The number l is independent of the order of the sequence (2.1).
For all permutations π on {1, . . . , i − 1} and for all permutations π̃ on {i +
1, . . . , n}, we get the same number l. Therefore, all orders on {a1, . . . , ai−1}
and on {ai+1, . . . , an−1} have equal probability. The uniform distribution on
{a1, a2, . . . , an} therefore leads to the uniform distribution on {a1, . . . , ai−1}
and on {ai+1, . . . , an}.

The discussions of the average running time, the average number of com-
parisons and the average number of exchanges are based on [Knuth98a].

Average Number of Comparisons. Our quicksort algorithm makes n or
n + 1 comparisons. However, for n elements, n − 1 comparisons suffice. We
only have to compare the pivot element once with each of the other n − 1
elements. This requires controlling the indices of a in the algorithm. When
determining the average number of comparisons, we assume an optimized al-
gorithm that manages with n−1 comparisons (see the remarks after the proof
of Proposition 2.2). The calculation of the average number of comparisons
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for Algorithm 2.1 is an exercise (Exercise 4). Let C(n) denote the average
number of comparisons and C̃(n, i) the average number of comparisons if the
ith element is the pivot element. We get

C̃(n, i) = C(i− 1) + C(n− i) + n− 1.

C(n) is the average of the C̃(n, i), i = 1, . . . , n:

C(n) =
1

n

n∑
i=1

C̃(n, i)

=
1

n

n∑
i=1

(C(i− 1) + C(n− i) + n− 1)

=
2

n

n−1∑
i=0

C(i) + n− 1, n ≥ 2.

The aim is to transform the recursion C(n) = 2
n

∑n−1
i=0 C(i) + n − 1 by

a suitable substitution into a difference equation. For recursions where the
nth member depends on the sum of all predecessors, this is done with the
substitution

xn =
n∑

i=0

C(i).

Then

xn − xn−1 =
2

n
xn−1 + n− 1.

We get the difference equation

x1 = C(0) + C(1) = 0,

xn =
n+ 2

n
xn−1 + n− 1, n ≥ 2.

This equation has the solution

xn = (n+ 1)(n+ 2)

(
Hn+1 +

3

n+ 2
− 5

2

)
(see page 16, equation (d)). We get

C(n) = xn − xn−1 =
2

n
xn−1 + n− 1 = 2(n+ 1)Hn − 4n.

We summarize the result in the following Proposition.

Proposition 2.5. Let C(n) be the average number of comparisons in quick-
sort, n ≥ 1. Then

C(n) = 2(n+ 1)Hn − 4n.

The average is over all arrangements of the array to be sorted.
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The Average Number of Exchanges. E(n) denotes the average number
of exchanges and Ẽ(n, i) the average number of exchanges in line 8 of Algo-
rithm 2.1 if the ith element is the pivot element. We first calculate Ẽ(n, i)
for n ≥ 2. Let L = {1, . . . , i − 1} and R = {i + 1, . . . , n}. To calculate the
probability p(Ẽ(n, i) = j) for j exchanges, we consider the following exper-
iment. We draw i − 1 numbers z1, . . . , zi−1 from L ∪ R and set a[k] = zk,
k = 1, . . . , i− 1. The result of our experiment requires j exchanges if j of the
numbers were drawn from R and i− 1− j of the numbers were drawn from
L. This is independent of the order in which we draw the numbers. For this
reason

p(Ẽ(n, i) = j) =

(
n−i
j

)(
i−1

i−1−j

)
(

n−1
i−1

) .

The random variable Ẽ(n, i) is hyper-geometrically distributed. By Proposi-
tion A.24 the expected value E(Ẽ(n, i)) satisfies

E(Ẽ(n, i)) = (i− 1)
n− i

n− 1
.

With the last exchange, which brings ai to the ith position (line 11 in Algo-

rithm 2.1), the result is (i−1)(n−i)
n−1 + 1.

Lemma 2.6. The average number of exchanges (without recursion) averaged
over all pivot elements is for n ≥ 2

1

n

n∑
i=1

E(Ẽ(n, i) + 1) =
n+ 4

6
.

Proof. The average number of exchanges (without recursion) averaged over
all pivot elements

1

n

n∑
i=1

E(Ẽ(n, i) + 1)

=
1

n

n∑
i=1

(
(i− 1)(n− i)

n− 1
+ 1

)

=
1

(n− 1)n

n∑
i=1

((n+ 1)i− n− i2) + 1

=
1

(n− 1)n

(
n(n+ 1)2

2
− n2 − n(n+ 1)(2n+ 1)

6

)
+ 1

=
1

6(n− 1)
(n− 1)(n− 2) + 1 =

n+ 4

6
.

This shows the assertion. 2
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For the average number of exchanges Ẽ(n, i) with pivot element ai, we
get

Ẽ(n, i) = E(i− 1) + E(n− i) +
(i− 1)(n− i)

n− 1
+ 1.

Hence, the average number of exchanges E(n) results in

E(n) =
1

n

n∑
i=1

Ẽ(n, i)

=
1

n

n∑
i=1

(E(i− 1) + E(n− i) +
(n− i)(i− 1)

n− 1
+ 1)

=
2

n

n−1∑
i=0

E(i) +
n+ 4

6
, n ≥ 2.

Analogously to above, the substitution xn =
∑n

i=0 E(i) yields

xn − xn−1 =
2

n
xn−1 +

n+ 4

6

and

x1 = E(0) + E(1) = 0,

xn =
n+ 2

n
xn−1 +

n+ 4

6
, n ≥ 2.

This equation has the solution

xn =
(n+ 1)(n+ 2)

6

(
Hn+1 −

2

n+ 2
− 5

6

)
(page 16, equation (d)). We obtain

E(n) = xn − xn−1 =
2

n
xn−1 +

n+ 4

6
=

1

3
(n+ 1)Hn −

1

9
n− 5

18
.

We summarize the result in the following Proposition.

Proposition 2.7. The average number of exchanges E(n) satisfies

E(n) =
1

3
(n+ 1)Hn −

1

9
n− 5

18
,

n ≥ 2. The average number is composed of all arrangements of the array to
be sorted.

Remark. We call exchange in Algorithm 2.1 in line 11 also for l = j. The
calculation of the formula E(n) for the modified algorithm which avoids this
unnecessary call is an exercise (Exercise 5).
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Analogous to the formulas in Proposition 2.5 and Proposition 2.7, we
obtain a formula for the average running time T (n) of QuickSort:

T (n) = 2c(n+ 1)Hn +
1

3
(2b− 10c)n+

1

3
(2b− c),

where b and c are constants. The average is calculated over all arrangements
of the array to be sorted. In particular, T (n) = O(n ln(n)) holds. We set the
recalculation as an exercise (Exercise 6).

2.1.2 Memory Space Analysis

The implementation of function calls uses a stack frame on a memory area, the
stack , that the operating system provides. The call of the function occupies
the stack frame and when the function is terminated it is released again. The
stack frame is used to store the call parameters, the local variables and the
return address. A function call is active at a moment t if the call took place
before t and has not terminated at time t. For each active call, its stack frame
occupies memory on the stack. The recursion depth indicates the maximum
number of active calls of a function. When executing a recursive function, the
memory consumption increases linearly with the recursion depth.

S(n) is the recursion depth of QuickSort, depending on the number n of
elements to sort.

Proposition 2.8. Let S(n) be the recursion depth of QuickSort. Then

S(n)

{
≤ ⌊log2(n)⌋+ 1 in the best case,
= n in the worst case.

Proof.

1. The best case occurs when the n − 1 elements are split into
⌈
n−1
2

⌉
and⌊

n−1
2

⌋
elements. We have

⌊
n−1
2

⌋
≤
⌊
n
2

⌋
and

⌈
n−1
2

⌉
=
⌊
n
2

⌋
. Since S is

increasing,

S(n) ≤ S
(⌊n

2

⌋)
+ 1.

We replace “≤” with “= ” and get the recurrence

S(n) = S
(⌊n

2

⌋)
+ 1,

whose solution by Proposition 1.28 is S(n) = ⌊log2(n)⌋+ 1.
2. In the worst case, a single-element subset is split off in each recursion

step. Thus,

S(n) = S(n− 1) + 1 = . . . = S(1) + n− 1 = n.

This shows the assertion of the proposition. 2
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Remark. The memory consumption varies considerably. We can implement
QuickSort in such a way that the best case always occurs. First the recur-
sive call for the smaller part of the decomposition takes place. The second
recursive call is the last statement in the function. It is a tail recursion. Tail
recursions are generally eliminated by jump statements, with reuse of the
memory for the variables on the stack (Exercise 8). We eliminate the final
recursion. For the implementation that we thereby obtain, the number of
active calls is limited by ⌊log2(n)⌋+ 1.

2.1.3 Quicksort Without Stack

We can convert any recursive function into an iteration by explicitly setting
up a stack, thereby replacing the stack which is supplied by the operating
system and implicitly used by the function calls. Quicksort, however, we
can program iteratively without using an additional stack, i.e., we do not
need any additional memory besides local variables. The problem that needs
to be solved is that we can only process one part immediately after the
decomposition. Information about the other part has to be buffered for later
processing. If we process the right part first, we have to cache the initial index
of the left part. The idea now is to store this information in the array itself.
The quicksort variant without an additional stack is published in [Ďurian86].

We now explain the idea of Ďurian’s algorithm.

1. We are looking at a decomposition that differs slightly from the decom-
position in Algorithm 2.1 (see the quicksort variant, Exercise 11). The
decomposition for the subarray a[i..j] uses a pivot element x. We rear-
range the elements of a so that a[k] < x for i ≤ k ≤ l − 1, a[l] = x and
a[k] ≥ x for l + 1 ≤ k ≤ j. See Figure 2.3.

2. Let a[i..j] be the right part of the decomposition of a[g..j] and x = a[i]
be the pivot element for this decomposition. The elements to the left of
position i are smaller than x, especially a[i− 1] < x, and the elements to
the right of position i are ≥ x i.e., x ≤ a[k], i ≤ k ≤ j.

3. We now split a[i..j] with the pivot element y into the parts a[i..l − 1]
and a[l..j]. We store the pivot element y in position l and swap a[i] with
a[l− 1]. From l we determine i by searching. At position i− 1 is the first
element (to the left of the position l) which is smaller than x (x is at
position l − 1). We determine this element by a sequential search.

..
x

.

i

.

x

.

y

.

l

.

j

Fig. 2.3: Decomposition with additional information.
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4. First we call QuickSort for the right part a[l..j]. After QuickSort termi-
nates for this part, we determine the initial index for the left part as
described in point 3 and process the left part further.

5. QuickSort has now only one recursive call at the very end – a tail recur-
sion. As described above, this is easy to eliminate.

2.1.4 Randomized Quicksort

We have shown that the average running time of QuickSort is of order
O(n log2(n)). We average over all arrangements of the sequence to be sorted.
This implies that if we randomly select the input, we expect a running time of
order O(n log2(n)). This prerequisite is unrealistic in applications. The order
of the input is predefined. The idea now is to provide the assumption about
the randomness of the arrangement by “randomness in the algorithm”. This
kind of randomness can always be guaranteed.

The obvious idea is first to apply a random permutation to the input,
which requires the calculation of a random permutation. To do this, we have
to compute a random number at least n − 1 times. It may be necessary
to exchange elements n times. Less effort would be required to choose the
pivot element at random. Here we only have to determine a random number
once. In the randomized version RandQuickSort (Algorithm 2.10) of quicksort
the function Random(i, j), which returns a uniformly chosen number from
{i, . . . , j}, determines the pivot element.

For each deterministic method of determining the pivot element, there is
a sequence of elements for which the “worst case” – i.e., the running time is
of order O(n2) – occurs. In the randomized version of quicksort there are no
such bad inputs anymore. The probability that we choose the “worst” pivot
element in every recursive call is 1/n!, where n is the number of elements in
the sequence to be sorted. Because of this small probability, we expect that
RandQuickSort will always have good running time behavior.

We assume that all elements in the array a[1..n] which is input into
RandQuickSort are different. We describe the function Random with the
random variable R, which can take values from {i, . . . , j}. R is uniformly
distributed, i.e., p(R = r) = 1

n for i = 1 and j = n. The expected value of
the running time Tn of RandQuickSort is calculated with Lemma A.9:

E(Tn) =
n∑

r=1

E(Tn | R = r)p(R = r).

(Tn | R = r) = Tr−1+Tn−r+cn and the linearity of the expected value imply

E(Tn | R = r) = E(Tr−1) + E(Tn−r) + cn

and hence
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E(Tn) =
n∑

r=1

E(Tn | R = r)p(R = r)

=
1

n

n∑
r=1

(E(Tr−1) + E(Tn−r) + cn)

= cn+
2

n

n−1∑
r=0

E(Tr), n ≥ 2.

Analogously to the average running time of quicksort, we have the following.

Proposition 2.9. Let Tn be the expected running time of RandQuickSort.
Then

E(Tn) = 2c(n+ 1)Hn +
1

3
(2b− 10c)n+

1

3
(2b− c),

where b and c are constants. In particular, E(Tn) = O(n ln(n)) holds.

Algorithm 2.10.
RandQuickSort(item a[i..j])
1 item x; index l, r
2 if i < j
3 then exchange a[j] and a[Random(i, j)]
4 x← a[j], l← i, r ← j − 1
5 while true do
6 while a[l] < x do l← l + 1
7 while a[r] > x do r ← r − 1
8 if l < r
9 then exchange a[l] and a[r]

10 l← l + 1, r ← r − 1
11 else break
12 exchange a[l] and a[j]
13 RandQuickSort(a[i..l − 1])
14 RandQuickSort(a[l + 1..j])

Remark. The random variable Cn, which counts the number of comparisons,
has the expectation

E(Cn) = 2(n+ 1)Hn − 4n.

For the variance Var(Cn), the following formula holds:

Var(Cn) = 7n2 − 4(n+ 1)2H(2)
n − 2(n+ 1)Hn + 13n,

where H
(2)
n =

∑n
i=1

1
i2

3. The full derivation of the formula uses generating
functions (see [IliPen10]).

When calculating the expected value of the number of exchanges, we take
the exchange in line 3 into account. We have

E(En) =
1

3
(n+ 1)Hn +

7

18
n− 41

18
, n ≥ 2.

3 In contrast to the harmonic series, the series
∑∞

i=1
1
i2

converges. The limit is π2

6
.
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2.2 Heapsort

Heapsort belongs to the sorting methods “sorting by selection”. When sorting
by selection, we look for a smallest element x in the sequence F to be sorted.
We remove x from F and recursively apply the sorting method to F without
x. In selection sort, we use the naive method for determining the minimum –
inspect the n elements of the sequence one by one. The running time of this
method is of order O(n). Heapsort uses the data structure of a binary heap.
This essentially improves the running time for determining the minimum
(from order O(n) to order O(log2(n))). The algorithm heapsort was published
by Williams4 in [Williams64], after preliminary work by Floyd5.

We first look at the data structure of a binary heap.

2.2.1 Binary Heaps

Definition 2.11. Elements of a totally ordered set are stored in an array
h[1..n].

1. h is said to be a (binary) heap if

h[i] ≤ h[2i], 1 ≤ i ≤
⌊n
2

⌋
, and h[i] ≤ h[2i+ 1], 1 ≤ i ≤

⌊
n− 1

2

⌋
.

2. The heap h[1..n] conforms to the structure of a binary tree (Definition
4.3) if we declare h[1] as root. For i ≥ 1 and 2i ≤ n, the element h[2i] is
left and for 2i+1 ≤ n, the element h[2i+1] is right successor of h[i]. With
this tree structure, the heap condition is: If n1 and n2 are successors of
k, then ni ≥ k, i = 1, 2.

Remarks:

1. Alternatively, the binary tree structure is described as follows: The first
element h[1] is the root. Then we insert the following elements into the
levels of the tree one after the other from left to right and from top to
bottom. We get a balanced binary tree, i.e., the height is minimum and
the leaves are on at most two levels. The resulting path length from the
root to a leaf is no greater than ⌊log2(n)⌋ − 1 (Lemma 2.16).

2. If a is an arbitrary array, the leaves – the nodes that do not have any
successors (i >

⌊
n
2

⌋
) – fulfill the heap condition.

3. A heap h[1..n] is sorted along each of its paths. In particular, h[1] ≤ h[j]
holds, 1 ≤ j ≤ n, i.e., h[1] is the minimum.

4 John William Joseph Williams (1929 – 2012) was a British-Canadian computer
scientist.

5 Robert W. Floyd (1936 – 2001) was an American computer scientist and Turing
Award winner.
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Example. In Figure 2.4 we give the array 6, 41, 10, 56, 95, 18, 42, 67 the
structure of a binary tree.

..6.

41

.

56

.

67

..

95

.

10

.

18

.

42

Fig. 2.4: Heap with tree structure.

The algorithm DownHeap (Algorithm 2.12) is central and essential for
heapsort. DownHeap is based on the following observation: If the heap condi-
tion is only violated in the root of h, then we can establish the heap condition
for the entire array by “percolating down” – a simple efficient procedure. Per-
colating down means: Start at the root and swap with the smaller successor
until the heap condition is established.

Algorithm 2.12.
DownHeap(item a[l..r])
1 index i, j; item x
2 i← l, j ← 2 · i, x← a[i]
3 while j ≤ r do
4 if j < r
5 then if a[j] > a[j + 1]
6 then j ← j + 1
7 if x ≤ a[j]
8 then break
9 a[i]← a[j], i← j, j ← 2 · i

10 a[i]← x

Remarks:

1. In DownHeap we follow a path that starts at a[l]. We index the current
node with j and the parent node with i.

2. In lines 5 and 6, the smaller successor becomes the current node.
3. If x is less than or equal to the current node, x can be placed at position

i. The insertion position i on the descent path is determined. In line 10
we assign x to a at the position i where a gap exists. The heap condition
is restored at a.

4. If x is larger than the current node, in line 9 we copy the current node
a[j] one position up in the traversed path. This creates a gap in the path
that has been traversed. Then we make the current node the predecessor
and the successor the current node.
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Example. In the left-hand tree in Figure 2.5, the heap condition is only vio-
lated by the root. By percolating down the element 60, we establish the heap
condition. We move the 60 downwards on the path 60-37-45-58 until the heap
condition is established. Here, this is only the case after 60 has been localized
in a leaf.

..60.

37

.

45

.

59

.

58

.

57

.

40

.

42

.

41

..37.

45

.

58

.

59

.

60

.

57

.

40

.

42

.

41

Fig. 2.5: Percolating down of the root.

Heapsort works in two phases to sort an array. In the first phase, we
rearrange the elements of a so that a fulfills the heap condition (BuildHeap).
In the second phase, the actual sorting process takes place. After the first
phase, the minimum is at the first position of a (at the root of the tree).
DownHeap is used by the algorithm BuildHeap to build the heap.

Algorithm 2.13.
BuildHeap(item a[1..n])
1 index l
2 for l← n div 2 downto 1 do
3 DownHeap(a[l..n])

Example. Figure 2.6 shows heap construction for 50, 40, 7, 8, 9, 18, 27, 10,
30, 17, 33.

..50.

40

.

8

.

10

.

30

.

9

.

17

.

33

.

7

.

18

.

27

Fig. 2.6: The heap condition is violated at nodes 40 and 50.

The heap is built with DownHeap from bottom to top and from right
to left. In this order, node 40 is the first node in which the heap condition
is violated. We establish the heap condition in the subtree with root 40 by
percolating down. The result is the first tree of the following figure. Now the
heap condition is only violated at the root. The second tree in Figure 2.7
shows the result after the heap condition is established in the entire tree.
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Fig. 2.7: Establishing the heap condition.

2.2.2 The Sorting Phase of Heapsort

Once a heap has been created, the actual sorting process takes place in the
second phase. After the first phase, the minimum is at the first position of a.
We now swap the first element with the last element and continue with the
first n− 1 elements of a. The heap condition is now only violated at the root.
We restore the heap condition by percolating down the root (DownHeap).
We continue the procedure recursively and get the elements sorted in reverse
order.

Example. Sorting phase of heapsort:

6 41 10 56 95 18 42 67
67 41 10 56 95 18 42 |6
10 41 18 56 95 67 42 |6
42 41 18 56 95 67 |10 6
18 41 42 56 95 67 |10 6
...

The example starts with a heap and shows the first two sorting steps with
the root subsequently percolating down.

Algorithm 2.14.
HeapSort(item a[1..n])
1 index l, r
2 for l← n div 2 downto 1 do
3 DownHeap(a[l..n])
4 for r ← n downto 2 do
5 exchange a[1] and a[r]
6 DownHeap(a[1..r − 1])

The following proposition immediately follows by induction.

Proposition 2.15. Heapsort sorts the array a[1..n] into descending order.

Remark. We sort a into ascending order if we write “>” instead of “<” in
line 5 of Algorithm 2.12 and “≤” instead of “≥” in line 7.
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2.2.3 Running Time Analysis

HeapSort (Algorithm 2.14) consists of two for loops. In each of the two for
loops, the function DownHeap (Algorithm 2.12) is called. The analysis of
HeapSort therefore requires the analysis of DownHeap. The running time of
HeapSort depends essentially on the number of iterations of the while loop
in DownHeap. We capture these with the counters I1 and I2. I1(n) indicates
how often the while loop in Downheap is iterated for all calls in line 3 of
HeapSort. I2 counts the same event for all calls in line 6. I1(n) is also the
number of iterations of the while loop in Downheap, accumulated over all
calls by BuildHeap (Algorithm 2.13, line 3). We give bounds for I1(n) and
I2(n).

To analyze the running time of BuildHeap we need the following lemma.

Lemma 2.16. Let a[1..r] be the input for DownHeap (Algorithm 2.12), 1 ≤
l ≤ r, and let k be the number of iterations of the while loop in DownHeap.
Then

k ≤
⌊
log2

(r
l

)⌋
.

Proof. We get the longest path with the sequence l, 2l, 22l, . . . , 2k̃l, where k̃

is maximal with 2k̃l ≤ r. Thus,

k̃ =
⌊
log2

(r
l

)⌋
.

Since the number of iterations of the while loop in DownHeap is limited by
the length of the path starting at the node a[l], the bound also applies to the
number of iterations. From k ≤ k̃ the assertion follows. 2

Proposition 2.17.

1. Let I1(n) be the number of iterations of the while loop in DownHeap,
accumulated over all calls to Downheap in BuildHeap. Then

I1(n) ≤ 3
⌊n
2

⌋
− log2

(⌊n
2

⌋)
− 2.

2. Let T (n) be the running time of BuildHeap in the worst case, then

T (n) ≤ cI1(n),

where c is a constant. In particular, T (n) = O(n).

Proof. Lemma B.15 implies

I1(n) ≤
⌊n/2⌋∑
l=1

⌊
log2

(n
l

)⌋
≤

⌊n/2⌋∑
l=1

log2

(n
l

)

=
⌊n
2

⌋
log2(n)−

⌊n/2⌋∑
l=1

log2(l)
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≤
⌊n
2

⌋
log2(n)−

⌊n/2⌋∑
l=1

⌊log2(l)⌋

=
⌊n
2

⌋
log2(n)−

((⌊n
2

⌋
+ 1
)
log2

(⌊n
2

⌋)
− 2

(
2⌊log2(⌊n

2 ⌋)⌋ − 1
))

≤
⌊n
2

⌋
log2

(
n⌊
n
2

⌋)− log2

(⌊n
2

⌋)
+ 2

⌊n
2

⌋
− 2

≈ 3
⌊n
2

⌋
− log2

(⌊n
2

⌋)
− 2.

This shows the first statement.6 Statement 2 follows immediately from state-
ment 1. 2

Lemma 2.18. Let n ≥ 2 and I2(n) be the number of iterations of the while
loop in DownHeap, accumulated over all calls in line 6 of HeapSort. Then

I2(n) ≤ n⌊log2(n− 1)⌋ − n+ 2.

Proof. By Lemma B.15 and n ≤ 2 · 2⌊log2(n−1)⌋ follows

I2(n) ≤
n−1∑
r=1

⌊log2(r)⌋ = n⌊log2(n− 1)⌋ − 2
(
2⌊log2(n−1)⌋ − 1

)
≤ n⌊log2(n− 1)⌋ − n+ 2.

Thus, the assertion of the Lemma is shown. 2

We summarize the result of the running time analysis for HeapSort in the
following proposition.

Proposition 2.19.

1. Let T (n) be the running time (in the worst case) of HeapSort. Then

T (n) = c1(I1(n) + I2(n)) + c2(n− 1)

≤ c1

(
3
⌊n
2

⌋
− n+ n⌊log2(n− 1)⌋ − log2

(⌊n
2

⌋)
+ 2
)
+ c2(n− 1),

where c1 and c2 are constants. In particular, T (n) = O(n log2(n)).
2. Let C(n) be the number of the essential comparisons in HeapSort. Then

C(n) = 2(I1(n) + I2(n))

≤ 2
(
3
⌊n
2

⌋
− n+ n⌊log2(n− 1)⌋ − log2

(⌊n
2

⌋)
+ 2
)
.

6 For even n, equality holds in the last line. For odd n, the term can be estimated
by 3

⌊
n
2

⌋
− log2

(⌊
n
2

⌋)
− 1.
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2.2.4 Heapsort Optimizations

The path that is produced by percolating down an element x, i.e., by select-
ing the smaller successor as the next node, is called the path of the smaller
successor . On this path, which leads from the root of the tree to a leaf, lies
the insertion position for x. In one execution of the inner loop, the algorithm
DownHeap determines the next node and checks whether the insertion posi-
tion has already been reached. There are two comparisons in each step (lines
5 and 7 in Algorithm 2.12).

The idea to speed up the algorithm is first to calculate the path of the
smaller successor – from the root to a leaf – (see [Carlson87]). This requires
only one comparison in each execution of the inner loop.

Algorithm 2.20.
index DownHeapO(item a[l..r])
1 index i, j; item x
2 i← l, j ← 2 · i, x← a[i]
3 while j ≤ r do
4 if j < r
5 then if a[j] > a[j + 1]
6 then j ← j + 1
7 i← j, j ← 2 · i
8 return i

Remarks:

1. We indicate the current node with j and the parent node with i.
2. In the while loop, we follow the path of the smaller successor until the

leaf, which is indexed by i after the loop terminates.

Example. In Figure 2.8 the path of the smaller successor is given by the
indices 1, 3, 6, 13, 27 and 55. The smaller number indicates the index of the
respective element.

..15 | 1

.

12

.

5 | 3

.

7 | 6

.

13

.

11 | 13

.

17

.

15 | 27

.

50

.

43 | 55

.

9

Fig. 2.8: The path of the smaller successor.
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We denote the indices of the path from the root to a leaf by v1, . . . , vℓ.
Then

vk−1 =
⌊vk
2

⌋
, 2 ≤ k ≤ ℓ, v1 = 1.

We get the binary representation for vk−1 if we delete the last digit in the
binary representation for vk. The index k of vk also indicates the number of
binary digits of vk. The kth node vk in the path is given by the k highest-
valued bits of vℓ. Therefore, we can immediately access any node on the path
if the index of the last node is known.

We discuss two ways to determine the insertion position.

Sequential Search. If the insertion position lies in the last part of the path,
i.e., in a lower level of the tree, we find the insertion position by sequentially
searching from the end of the path after a few steps.

This modification has a positive effect in the second phase of heapsort. In
the second phase, in each step we copy a large element into the root. This
element then percolates down into the tree. The insertion position lies in the
last part of the path. This variant of DownHeap follows an idea of Wegener7

([Wegener93]).

Algorithm 2.21.
index SequentialSearch(item a[1..n], index v)
1 x← a[1]
2 while x < a[v] do v ← v div 2
3 return v

SequentialSearch determines the insertion place for x from the end node of
the path of the smaller successor by sequential search.

The following function Insert inserts x into the path at position v. The
index v is given by its binary representation v = w1 . . . wℓ.

Algorithm 2.22.
Insert(item a[1..n], index v = w1 . . . wℓ)
1 int k; item x← a[1]
2 for k ← 2 to ℓ do
3 a[w1 . . . wk−1]← a[w1 . . . wk]
4 a[v]← x

Remarks:

1. In the for loop we move the elements on the path of the smaller successor,
which we call P , one position up. To do this, we go through P again from
top to bottom and calculate the nodes of P from the index of the end
node vℓ. The index of the jth node of P is given by the j most significant
bits of vℓ.

7 Ingo Wegener (1950 – 2008) was a German computer scientist.
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2. In DownHeap, there are two comparisons in each node. In DownHeapO,
there’s only one comparison. Let t be the number of nodes in the path
P and t̃ be the number of nodes up to the insertion position. Then
DownHeap makes 2t̃ comparisons and DownHeapO with SequentialSearch
together t + t − t̃ = 2t − t̃ comparisons. If the insertion position is
in the last third of P , the number of comparisons in DownHeapO and
SequentialSearch is smaller, because 2t− t̃ < 2t̃ if t̃ > 2

3 t.
3. Heapsort requires on average 2n log2(n) − O(n) comparisons. With

DownHeapO and SequentialSearch, there are only n log2(n)+O(n) com-
parisons. However, it is complicated to analyze (see [Wegener93]).

Binary Search. We denote the indices of the path from the root to a leaf
by v1, . . . , vℓ. The sequence a[v2], . . . , a[vℓ] is sorted in ascending order. In
this sequence we determine the insertion position by binary search. Starting
from vℓ, we calculate vℓ−⌊ℓ/2⌋

vℓ−⌊ℓ/2⌋ =
⌊ vℓ
2⌊ℓ/2⌋

⌋
= w1 . . . wℓ−⌊ℓ/2⌋,

where vℓ has the binary representation vℓ = w1 . . . wℓ.
The following algorithm determines the index of the insertion position on

the path leading from the root to the node v using the method of binary search
(Algorithm 2.36). The node v is represented by its binary representation
v = w1 . . . wk.

Algorithm 2.23.
index BinarySearch(item a[1..n], index v = w1 . . . wk)
1 index l, r; item x
2 l← 2, r ← k, x← a[w1]
3 while l <= r do
4 m← (l + r) div 2
5 if a[w1 . . . wm] < x
6 then l← m+ 1
7 else r ← m− 1
8 return w1 . . . wl−1

Proposition 2.24. Algorithm 2.23 calculates the insertion position for x =
a[1].

Proof. Let w1 . . . wi be the insertion position for x. The invariant of the while
loop is

l − 1 ≤ i < r.

We show the invariant by induction on the number of iterations of while. The
statement is valid for l = 2 and r = k, so for 0 iterations. For j ≥ 1 we
consider the jth iteration of while. By lj−1 and rj−1 or lj and rj we denote
the values of l and r after the (j − 1)th or jth iteration. By (∗) we denote
the condition l = r.
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First we consider the case that lj−1 and rj−1 fulfill the condition (∗).
According to the induction hypothesis, we have lj−1 − 1 ≤ i < rj−1. From
a[w1..wm] < x follows m ≤ i and lj = m+ 1. Thus, lj − 1 ≤ i. Further, lj =
rj−1+1 = rj+1 holds. From a[w1..wm] ≥ x follows i < m. Because lj = lj−1,
we have lj ≤ i. We set rj = m− 1 (in line 7), so lj = lj−1 = m = rj +1. The
invariant also applies to the jth iteration of while (for a[w1..wm] < x and
a[w1..wm] ≥ x). Further, lj > rj , and while terminates in the next step with
rj = lj − 1. Hence, after termination of while i = l − 1.

If lj−1 < rj−1 holds, 2lj−1 < lj−1 + rj−1 < 2rj−1, and if rj−1 + lj−1

is odd, it follows that 2lj−1 ≤ rj−1 + lj−1 − 1 < 2rj−1. In total, we get
lj−1 ≤ m < rj−1. Either lj = rj follows and in the next loop iteration (∗)
occurs, or lj < rj and rj−lj < rj−1−lj−1. If l ̸= r the distance r−l decreases
with each iteration, thus the case (∗) must occur.

From (∗) and the invariant of the while loop, it follows that w1 . . . wl−1 is
the insertion position for x. 2

Example. In Figure 2.9 we determine the insertion position for a[1] = 15
with Algorithm 2.23. The algorithm terminates with l = 5 and w1w2w3w4 =
1101 = 13.

..15 | 1

.
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.

5 | 3

.

7 | 6

.

13

.

11 | 13

.
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15 | 27
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.

43 | 55

.

9

55 = 1101︸︷︷︸
13

1

︸ ︷︷ ︸
27

1

while-Iteration 0 1 2 3
m 4 5 5

w1 . . . wm 13 27 27
a[w1..wm] 11 15 15

l 2 5 5 5
r 6 6 5 4

Fig. 2.9: Binary search for the insertion position.

We now estimate the number of significant comparisons using DownHeapO
and binary search for the insertion position. Let C2(n) be the number of es-
sential comparisons in the sorting phase of heapsort. Then

C2(n) ≤
n−1∑
r=2

⌊log2(r)⌋+
n−1∑
r=2

(⌊log2(⌊log2(r)⌋)⌋+ 1)



2.2 Heapsort 95

≤ n(⌊log2(n− 1)⌋ − 1) + 3 + (n− 2)(⌊log2(log2(n− 1))⌋+ 1)

= n⌊log2(n− 1)⌋+ (n− 2)(⌊log2(log2(n− 1))⌋) + 1.

The number of elements in a path is ≤ ⌊log2(r)⌋. Therefore, we need
only ⌊log2(⌊log2(r)⌋)⌋+1 essential comparisons for binary search (Algorithm
2.36). We have already estimated the first sum. The second inequality follows
immediately. Since the number of comparisons in the heap build-up phase is
linear, we do not estimate them more precisely. The number C(n) of the
essential comparisons is bounded above by

C(n) ≤ 2
(
3
⌊n
2

⌋
− log2

(⌊n
2

⌋)
− 2
)

+

n⌊log2(n− 1)⌋+ (n− 2)(⌊log2(log2(n− 1))⌋) + 1.

2.2.5 Comparison of Quicksort and Heapsort

We have estimated the number of essential comparisons for two heapsort
variants in the worst case. For quicksort, the average number of comparisons
is 2(n + 1)Hn − 4n (Proposition 2.5). The function graphs in Figure 2.10
represent the limits for the number of essential comparisons for heapsort and
the average number of comparisons for quicksort.

The curves show that heapsort with binary search is clearly superior to
ordinary heapsort. The curve for quicksort displays the lowest number of
comparisons. However, we emphasize again that the graph for heapsort is an
estimate of the worst case, and that for quicksort is the exact solution for the
average number of comparisons.

Fig. 2.10: Comparison of sorting methods.
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2.3 A Lower Bound for Sorting by Comparison

Quicksort and heapsort assume an ordered set, i.e., the ≤-operator can be ap-
plied to the elements to be sorted. Both algorithms exchange elements based
on a comparison with the ≤-operator. Comparison-based sorting algorithms
only use the ≤-operator and no structural properties of the elements to be
sorted. In Exercise 1, we cover situations that allow sorting with the running
time O(n). The algorithms use structural properties of the elements to be
sorted.

Sorting pairwise distinct elements a[1], . . . , a[n] with a comparison-based
algorithm is equivalent to determining a permutation on {1, . . . , n}. This
permutation π returns the sorted order:

a[π(1)] < a[π(2)] < . . . < a[π(n)].

We will determine π using a binary decision tree. In each node a compari-
son using the <-operator is applied. A leaf indicates the sorted order of the
elements. A binary decision tree for n pairwise distinct elements has n! leaves.

Example. Figure 2.11 shows a binary decision tree for a, b and c. It shows the
necessary comparisons to determine the order for a, b, c.

..a < b.

b < c

.

a < b < c

.

a < c

.

a < c < b

.

c < a < b

.

a < c

.

b < a < c

.

b < c

.

b < c < a

.

c < b < a

Fig. 2.11: The decision tree for three elements.

The inner nodes of the tree contain the comparisons; the leaves of the tree
contain all possible arrangements. Each arrangement requires the execution
of the comparisons lying on the path from the root to the respective leaf.
If the result of a comparison is true, the next node of the path is the left
successor, otherwise it is the right successor.

An algorithm that creates the sorted order based on comparisons must
perform the comparisons on the path from the root to the leaf node that
specifies the sorted order. The number of comparisons therefore matches the
length of the corresponding path in the decision tree. A lower limit for the
length of a path connecting the root and a leaf in the binary decision tree
is a lower limit for the number of comparisons that a sorting method which
requires only an ordered set must perform.
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Lemma 2.25. Let B be a binary tree with n leaves. Then the maximum
length of a path from the root to a leaf is greater than or equal to log2(n).

Proof. Let tB be the maximum length of a path from the root to a leaf in B.
Then n ≤ 2tB . This implies tB ≥ log2(n). 2

Proposition 2.26. If a comparison-based sorting algorithm sorts n elements,
then it requires in the worst case at least n log2(n)−O(n) comparisons.

Proof. The number of comparisons is equal to the length of a path in the
decision tree with n! leaves. With Stirling’s8 approximation formula

n! ≈
√
2πn

(n
e

)n
>
(n
e

)n
.

Let C(n) be the number of comparisons in the worst case. Then

C(n) ≥ log2(n!) > n log2(n)− n log2(e) = n log2(n)−O(n).

This shows the assertion. 2

2.4 Searching in Arrays

In this section, we discuss the problem of finding a specific element in an array
a. If a is unsorted, we have to search sequentially , i.e., we inspect the elements
of a one by one until the desired element is found. The running time is of order
O(n). A sorted array allows binary search. The running time of this method is
O(log2(n)). Another method with logarithmic running time is the Fibonacci
search (see Chapter 4, Exercise 11). If the array is searched sufficiently often,
then the computational effort of sorting pays off. In addition to sequential
and binary searches, we also cover the search for the kth-smallest element.
Here we do not specify the element explicitly. We specify the element by a
property.

2.4.1 Sequential Search

The algorithm of the sequential search – SequSearch – searches for an element
x among the first n elements of an array a[0..n]. We inspect the elements from
a[0..n− 1] one after the other until x is found or the end of a is reached. The
algorithm needs the variable a[n] as sentinel element.

Algorithm 2.27.
index SequSearch(item a[0..n], x)
1 index i
2 a[n]← x, i← 0
3 while a[i] ̸= x do
4 i← i+ 1
5 return i

8 James Stirling (1692–1770) was a Scottish mathematician.
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Remarks:

1. At position n in the array we set the searched element x as sentinel
(n ≥ 1). The sentinel prevents us from accessing a with indices > n if x
is not stored in a.

2. The function SequSearch searches for x in a and finds the smallest index
l with x = a[l]. SequSearch returns n if x is not stored.

3. Let I(n) be the number of iterations of the while loop in the worst case.
Then I(n) = n.

4. If all stored elements in a are searched for and the elements in a are
pairwise distinct, the average number of iterations of the while loop is
1/2(n− 1).

2.4.2 Binary Search

The following binary search algorithm, BinSearch, searches for an element
x in a sorted array a with n elements. It follows the divide and conquer
strategy (Section 1.5.2). We compare the element x to be searched for with
the element a[i] in the middle. If the comparison a[i] = x is true, the wanted
element is found. If x is less than a[i], x, if present, is to the left of a[i] and
if x is greater than a[i], it is to the right of a[i]. The subarray in which we
continue to search is about half the size of the original array. The solution to
the problem is reduced to the solution to the subproblem. Therefore, we do
not need to assemble the solutions to the subproblems.

Algorithm 2.28.
index BinSearch(item a[0..n− 1], x)
1 index l, r, i
2 l← 0, r ← n− 1
3 repeat
4 i← (l + r) div 2
5 if a[i] < x
6 then l← i+ 1
7 else r ← i− 1
8 until a[i] = x or l > r
9 if a[i] = x

10 then return i
11 else return − 1

Remarks:

1. a[l..r] contains r− (l−1) = r− l+1 elements. The index i = (l+ r) div 2
references the “middle element” in a[l..r]. BinSearch returns the index
for x or −1 if x is not in a.

2. If there are equal elements in the array, BinSearch returns the index of
any of the equal elements. Then we can simply determine the first or last
of the same elements.
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3. Each iteration of the repeat-until loop contains two comparisons with
array elements. Another version of the binary search (Algorithm 2.36)
optimizes the number of comparisons. There is only one comparison per
iteration. In total, the number of comparisons is halved. It is limited by
⌊log2(n)⌋+ 1.

Example. Figure 2.12 specifies all access paths that are created when search-
ing all elements in a[1..11]. A binary search tree (Definition 4.6) is used for
the navigation when searching in a[1..11].
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Fig. 2.12: All access paths.

Proposition 2.29. Let I(n) be the number of iterations of the repeat-until
loop in the worst case. Then

I(n) ≤ ⌊log2(n)⌋+ 1.

The number of comparisons is 2I(n) and is therefore ≤ 2(⌊log2(n)⌋+ 1).

Proof. In each iteration we divide n − 1 elements into
⌈
n−1
2

⌉
and

⌊
n−1
2

⌋
elements. We have

⌊
n−1
2

⌋
≤
⌊
n
2

⌋
and

⌈
n−1
2

⌉
=
⌊
n
2

⌋
. Since I is increasing,

I
(⌊

n−1
2

⌋)
≤ I

(⌊
n
2

⌋)
.

In the worst case, the repeat-until loop terminates with l > r. I(n) performs
the recursion

I(n) ≤ I
(⌊n

2

⌋)
+ 1, I(1) = 1.

This implies the assertion with Proposition 1.28. 2

2.4.3 Searching for the kth-Smallest Element

Let a1, a2, . . . , an be a finite sequence. An element a of this sequence is called
the kth-smallest element or element of rank k if a could be at position k in a
sorted order of the sequence. If there are several identical elements a in the
sequence, the rank of a is not uniquely determined.

The problem of finding the kth-smallest element in a sequence can of
course be solved by first sorting the elements and then accessing the kth
element. The computational effort to sort the sequence is of order O(n ln(n)),
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e.g., if we use the QuickSort algorithm. We introduce a randomized algorithm
that finds the kth element without sorting. The expected value of its running
time is of order O(n).

We call this algorithm QuickSelect. It is created by modifying QuickSort.
After the call QuickSelect(a[1..n], k) the algorithm returns the element of rank
k. The precondition for QuickSelect is that we can apply the <-operator to
the elements of a and that 1 ≤ k ≤ n holds.

Algorithm 2.30.
QuickSelect(item a[i..j], int k)
1 item x, index l, r, boolean loop← true
2 if i < j
3 then exchange a[j] and a[Random(i, j)]
4 x← a[j], l← i, r ← j − 1
5 while loop do
6 while a[l] < x do l← l + 1
7 while a[r] > x do r ← r − 1
8 if l < r
9 then exchange a[l] and a[r]

10 l← l + 1, r ← r − 1
11 else loop← false
12 exchange a[l] and a[j]
13 if k < l
14 then return QuickSelect(a[i..l − 1], k)
15 else if k > l
16 then return QuickSelect(a[l + 1..j], k − l)
17 return a[l]
18 return a[i]

The running time in the worst case is – as with quicksort – of order O(n2).
In QuickSelect we select the pivot element randomly. The choice of the pivot
element is determined by the random variable R with value range {1, . . . , n}.
R is uniformly distributed, i.e., p(R = r) = 1

n .

Proposition 2.31. The algorithm QuickSelect returns the kth element of a.
The expected value of the running time is linear.

Proof. The statement follows by induction on n. This is certainly true when
n = 1, because QuickSelect returns a[1]. Let n ≥ 2. After termination of the
outer while loop (line 5), we have a[1], . . . , a[l−1] ≤ x and a[l+1], . . . , a[n] ≥ x.
If k < l, then the kth element is to the left of position l, and if k > l,
then the kth element is to the right of position l. By the induction hypoth-
esis, the call QuickSelect(a[1..l − 1], k) returns the kth element and the call
QuickSelect(a[l + 1..n], k − l) the (k − l)th element. In both cases, the kth
element of a is returned. If l = k, a[l] is the kth element.

The expected value of the running time T (n) of QuickSelect is calculated
according to Lemma A.9.
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E(T (n)) =
n∑

r=1

E(T (n) | R = r)p(R = r) + cn

=
∑
r∈I

E(T (n) | R = r)
1

n
+
∑
r/∈I

E(T (n) | R = r)
1

n
+ cn

≤
∑
r∈I

E

(
T

(⌊
3n

4

⌋))
1

n
+
∑
r/∈I

E(T (n))
1

n
+ cn

=
1

2
E

(
T

(⌊
3n

4

⌋))
+

1

2
E(T (n)) + cn.

where I = [n/4, 3n/4] and c is a constant. Thus,

E(T (n)) ≤ E

(
T

(
3n

4

))
+ 2cn.

Set b = 4
3 , n = bk and xk = E(T (bk)). Then x1 = 2c and xk = xk−1 +2cbk =

2c+ 2c
∑k

i=2 b
i = 8cbk − 26

3 c (Proposition 1.15).
For k = logb(n) and by Lemma B.23 follows E(T (n)) ≤ 8cn − 26

3 c = O(n).
2

Exercises.

1. a. An array contains only records with a component that contains only
1 or 2. Specify an algorithm that sorts the array by this component
in situ with running time O(n). Is there an algorithm that sorts the
array in situ with running time O(n) if elements 1, 2 and 3 occur?

b. An array contains records with the keys 1, 2, . . . , n. Specify an algo-
rithm that will sort the array in situ with running time O(n).

2. In this exercise the following statement about the mean value of inver-
sions can be used. Let a[1..n] be an array. (a[i], a[j]) is an inversion if
i < j and a[j] < a[i] holds. In both algorithms, the number of inversions
is equal to the number of exchanges.
For example, (3,1,4,2) has the inversions (3,1), (3,2) and (4,2).
Thus, three exchange operations are necessary.

Averaged over all arrangements, there are 1
2

(
n
2

)
= n(n−1)

4 inversions,
because (a[i], a[j]) is either an inversion in a or an inversion in the reverse
array.
Show that
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Algorithm 2.32.

BubbleSort(item a[1..n])
1 index i, j; item x
2 for i← 1 to n− 1 do
3 for j ← n downto i+ 1 do
4 if a[j] < a[j − 1]
5 then exchange a[j] and a[j − 1]

is correct and analyze the running time and then also the running time
of sorting by insertion (Algorithm 1.57).

3. A sorting algorithm is referred to as stable if the order of identical ele-
ments is not changed. Which of the algorithms insertion sort, selection
sort, bubble sort, quicksort and heapsort are stable?

4. Let C(n) be the average number of comparisons in Algorithm 2.1. Show
that

C(n) = 2(n+ 1)Hn −
8n+ 2

3
.

5. In Algorithm 2.1 in line 11, avoid the unnecessary call of exchange for
l = j and show that for the modified algorithm the average number of
exchanges is

E(n) =
1

3
(n+ 1)Hn −

5n+ 8

18
.

6. Let T (n) be the average running time of QuickSort. Then

T (n) = 2c(n+ 1)Hn +
1

3
(2b− 10c)n+

1

3
(2b− c),

where b and c are constants. The average is calculated over all arrange-
ments of the array to be sorted. In particular, T (n) = O(n ln(n)) holds.

7. Modify Algorithm 2.1 so that it can do with n − 1 comparisons in the
decomposition process. Analyze the number of comparisons in the best
case.

8. Specify and analyze an implementation of the iterative version of quick-
sort.

9. Let a[1..n] be an array of numbers. Specify an algorithm that identifies
in time O(n) the first k elements in a[1..n] for small k

(
k ≤ n/log2(n)

)
without additional memory.

10. The algorithm below is a quicksort variant that is attributed to N. Lo-
muto (see [CorLeiRivSte09]).
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Algorithm 2.33.

QuickSortVariant(item a[i..j])
1 item x, index l
2 if i < j
3 then x← a[j], l← i
4 for k ← i to j − 1 do
5 if a[k] ≤ x
6 then exchange a[k] and a[l]
7 l← l + 1
8 exchange a[l] and a[j]
9 QuickSort(a[i..l − 1])
10 QuickSort(a[l + 1..j])

a. Compare QuickSortVariant with Algorithm 2.1. Discuss their pros
and cons.

b. Specify the invariant of the for loop and show that the algorithm is
correct.

11. Show that the following variant of quicksort is correct and determine its
running time.

Algorithm 2.34.

QuickSort(item a[i..j])
1 index l, r, p, item x
2 if p← Pivot(a[i..j]) ̸= 0
3 then x← a[p], l← i, r ← j
4 repeat
5 exchange a[l] and a[r]
6 while a[l] < x do l← l + 1
7 while a[r] ≥ x do r ← r − 1
8 until l = r + 1
9 QuickSort(a[i..l − 1])
10 QuickSort(a[l..j])

index Pivot(item a[i..j])
1 index l, item x
2 x← a[i]
3 for l← i+ 1 to j do
4 if a[l] > x
5 then return l
6 else if a[l] < x
7 then return i
8 return 0
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12. Modify the QuickSort algorithm to ensure a logarithmically limited re-
cursion depth. Hint: Eliminate the tail recursion in Algorithm 2.34 from
the previous exercise.

13. Develop a formula for the maximum number of assignments when Heap-
Sort is executed, and when running HeapSort with binary search.

14. Give an example that shows that the upper bound
∑⌊n

2 ⌋
l=1

⌊
log2

(
n
l

)⌋
in

estimating the number of iterations of the while loop in DownHeap for
all calls in BuildHeap is attained (see proof of Proposition 2.17).

15. Mergesort. Mergesort splits the array a[i..j] into two almost equal parts
and sorts the two parts recursively. The two parts are then joined to form
a sorted sequence.

Algorithm 2.35.

MergeSort(item a[i..j]; index i, j)
1 index l
2 if i < j
3 then l← (i+ j) div 2
4 MergeSort(a[i..l])
5 MergeSort(a[l + 1..j])
6 Merge(a[i..j], l + 1)

Merge merges the sorted partial arrays a[i..l] and a[l + 1..j].
a. Specify an implementation of Merge. Pay attention to the memory

consumption.
b. Analyze the running time.

16. Let a[1..n] be an array of numbers. Specify an algorithm with running
time O(n) that returns the k smallest elements in a[1..n] without using
additional memory.

17. Compare the following version of the binary search with Algorithm
2.28 and show that the number of significant comparisons is limited by
⌊log2(n)⌋+ 1.

Algorithm 2.36.

index BinSearch(item a[0..n− 1], x)
1 index l, r, i, l← 0, r ← n− 1
2 while l < r do
3 i← (l + r − 1) div 2
4 if a[i] < x
5 then l← i+ 1
6 else r ← i
7 return l
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The number of accesses to search for a stored object is of order O(log2(n))
when using sorted arrays or binary search trees. With hashing, we ideally
find a stored object with one single access. We achieve this by calculating the
address of the object.

In a hash application, we store objects in a hash table. Here we call an
object a data record. A data record contains a key , which is assigned uniquely
to the data record, i.e., the map of the set of data records into the set of keys
is injective.1 When storing these records in a hash table, only the key is
relevant for the organization. We therefore identify the data record with its
key and speak only of keys that we store, search or delete.

We assume that the set of keys is a set of numbers. This is not a restriction,
because we can code the key set over a number system, for example, the binary
numbers.

The efficiency mentioned above can only be achieved by not completely
filling the hash table. A careful analysis shows which running time we achieve
depending on the fill factor of the hash table. Conversely, we can use the
results of this analysis to size the hash table so that we can achieve a desired
running time – for example, a key should be found with a maximum of two
accesses.

3.1 Basic Terms

Definition 3.1. Let X be the set of possible keys. A hash procedure consists
of a hash table H with m cells and a hash function h : X −→ {1, . . . ,m}. For
k ∈ X, h(k) is the table index that we use to store k.

If two keys k1, k2 ∈ X, k1 ̸= k2, are stored and the result is the same
table index, i.e., h(k1) = h(k2), we speak of a collision.

Since hash functions are not injective – hash functions allow collisions –
in addition to the hash table and the hash function, a procedure for handling
collisions is necessary for a hash procedure, as shown in Figure 3.1.

1 A map f : X −→ Y is said to be injective if whenever x, y ∈ X and x ̸= y, then
f(x) ̸= f(y).
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Remark. The set of actual keys K is often not known in advance. One only
knows that K is a subset of a very large set X, the set of possible keys. A
function that injectively maps X is not practical, or is even impossible, if X
requires a hash table whose size exceeds the available memory. Therefore, we
accept collisions. We introduce procedures for handling collisions in Section
3.3. The size of the hash table is approximately the size of K and typically
much less than |X|.

In [Knuth98a], extensive material is provided on hash procedures, and in
[MotRag95], on probabilistic hash procedures that covers the aspects dis-
cussed here.

..

hash function

.

key k

.

hash table

Fig. 3.1: Hash procedures.

3.2 Hash Functions

In a hash procedure, the hash function maps each key to a table location. This
assumes that the hash function can be calculated by an efficient algorithm.
All examples of hash functions that we discuss can be calculated with a few
simple arithmetic operations.

A second requirement for hash functions is that they should minimize
collisions. With universal families of hash functions, quantitative statements
are possible. The underlying assumptions are realizable in applications.

The following example shows that collisions are possible even with a few
keys and a large table.

Example. Let X be a set of people. The function

h : X −→ {1, . . . , 365}

assigns the day on which a person in X has his or her birthday (without
taking leap years into account). We assume that h is a random function, i.e.,
the birthdays appear random to us. If there are more than 23 people, the
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probability of a collision is ≥ 1/2. It is astonishing that we have to expect a
collision with so few people if we choose the birthday at random.

Under this assumption – random choice (with replacement) of the birth-
day from the set of days of a year {1, . . . , 365} – we can calculate the following:
If we choose n elements from an m–element set, the probability p that no
collision will occur

p = p(m,n) =
1

mn

n−1∏
i=0

(m− i) =
n−1∏
i=1

(
1− i

m

)
.

For all real numbers x, we have 1− x ≤ e−x (Corollary B.19). Thus,

p ≤
n−1∏
i=1

e−i/m = e−(1/m)
∑n−1

i=1 i = e−n(n−1)/2m.

The collision probability is 1−p and 1−p ≥ 1
2 if n ≥ 1

2

(√
1 + 8 ln 2 ·m+ 1

)
≈ 1.18

√
m. For m = 365 this results in 1.18

√
365 ≈ 22.5.

3.2.1 Division and Multiplication

The arithmetic operations multiplication and division with remainder (Propo-
sition B.1) provide suitable hash functions. Most processors perform the mul-
tiplication of two numbers much faster than their division.

Definition 3.2 (division with remainder). Let m ∈ N.

h : K −→ {0, . . . ,m− 1}, k 7−→ k mod m.

Example. Let K = {2, 4, . . . , 200}. For m = 100 we have h(k) = h(k + 100).
There are 50 collisions. If we choose m = 101, then 0 collisions take place.
The example suggests that prime numbers are better suited as divisors.

Definition 3.3 (multiplication). Let c ∈ R, 0 < c < 1.

h : K −→ {0, . . . ,m− 1}, k 7−→ ⌊m{kc}⌋,

where for x ∈ R the expression {x} denotes the fractional part of x, i.e.,
{x} := x− ⌊x⌋.

Remark. Let g = 1
2 (1 +

√
5) be the ratio of the golden mean (Definition

1.22). The best results are obtained with a choice of c = 1
g (see [Knuth98a,

Chapter 6.4]).

Although there are real numbers in the definition of h, which are usually
approximated on a computer by floating-point numbers, this function can
easily be implemented with integer arithmetic if m = 2p with p ≤ w, where
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w denotes the word size of the computer. Only a multiplication of two integers
and a shift operation is necessary.

h(k) = ⌊2p{k · c · 2w · 2−w}⌋ = ⌊2p{k(⌊c · 2w⌋+ {c · 2w})2−w}⌋
= ⌊2p{k⌊c · 2w⌋2−w + k{c · 2w}2−w}⌋.

Write
k⌊c · 2w⌋ = q2w + r

and set k{c · 2w}2−w = 0. Then

h(k) = ⌊2p{q + r · 2−w}⌋ = ⌊2p{r · 2−w}⌋.

If k and c are stored in registers of the processor, h(k) results from the p
most significant bits of r, the least significant part of kc. We get these p bits
of r by a right shift operation by w − p bits.

Example. Let w = 8 be the word size of our computer, m = 2p = 26 = 64
the size of our hash table, c = 0.618 = 0.10011110 the used multiplicative
constant and k = 4 = 100 the key that should be stored.
Then h(k) is calculated by

10011110 · 100 = 10|01111000.

So h(k) = 011110 = 30.

3.2.2 Universal Families

Hash functions are designed to minimize collisions. Random functions have
this property. However, they cannot be implemented. Universal families of
hash functions introduced in [CarWeg79] minimize collisions and are easy to
implement. We first look at random functions.

Let X be the set of possible keys, n := |X| and m ∈ N. We define a
random function

h : X −→ {0, . . . ,m− 1}
by the following construction. For each argument x, we randomly choose a
value y ∈ {0, . . . ,m − 1}. We store the pairs (x, y) in a table. The random
function h is described by this table – an entry (x, y) defines the assignment
x 7−→ y. If the function value y = h(x) is to be calculated for x ∈ X, check
the table to see whether x is listed as an argument.

(1) If yes, use the table entry (x, y) and set h(x) = y,
(2) else choose y ∈ {0, . . . ,m − 1} randomly, put h(x) = y and enter (x, y)

into the table.

In the application of a hash function h, the collision probability

p(h(x1) = h(x2)), x1, x2 ∈ X,x1 ̸= x2,

should be small. For a random function h this is true: p(h(x1) = h(x2)) =
1
m .
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Example. A random function distributes points evenly in the plane, as shown
in Figure 3.2.

Fig. 3.2: Coordinates generated by a random function.

The above procedure for constructing a random function generates a spe-
cific function with the probability 1

mn . Thus, we get the uniform distribution
on the set F(X,Y ) of all maps from X to Y .

Another method to get a random function is to randomly choose a func-
tion from F(X,Y ). Both methods yield the uniform distribution on F(X,Y ).
We define random functions as follows.

Definition 3.4. A random function is a function randomly chosen from
F(X,Y ).

Remark. The collision probability now refers to the random choice of h.

p(h(x1) = h(x2)) =
|{f ∈ F(X,Y ) | f(x1) = f(x2)}|

|F(X,Y )|

=
mn−1

mn
=

1

m
.

We can generalize this definition of the collision probability to any family of
functions.

Definition 3.5. Let H be a family of functions h : X −→ Y and x1, x2 ∈
X,x1 ̸= x2. For randomly selected h ∈ H, the collision probability is

p(h(x1) = h(x2)) :=
|{h ∈ H | h(x1) = h(x2)}|

|H|
.

Example. Let X = {0, 1}l and Y = {0, 1}r. We can create a random function
using a table with 2l lines each with r bits. The collision probability is 1

2r .
For example, if l = 64 and r = 16, the collision probability is only 1

216 . To
save a single random function, however, you need 16 · 264 bits = 265 bytes.
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The example shows that random functions are huge objects. Therefore, they
are not implementable.

For a hash function, we are looking for a function whose collision probabil-
ity is small – as with random functions – and which can also be implemented
efficiently. This is achieved by universal families of hash functions. They be-
have like random functions with regard to collisions and can be implemented
efficiently (see Proposition 3.20 and Proposition 3.7).

Definition 3.6. A family H of functions h : X −→ Y is called a universal
family of hash functions if whenever x1, x2 ∈ X and x1 ̸= x2, then for
randomly selected h ∈ H, the collision probability is

p(h(x1) = h(x2)) ≤
1

m
, where m = |Y |.

A hash function h : X −→ Y should distribute the actual keys K ⊂ X
equally, i.e., it should hold that

nh,y := |h−1(y) ∩K| = |K|
m

for all y ∈ Y.

The effort required to handle a collision with a value y depends on the num-
ber of keys mapped to that value. It is proportional to nh,y (Section 3.3).
Ideally, there will be no collisions. This is equivalent to nh,y ≤1 for all y ∈ Y .
If we randomly select the keys or use a random function h, we expect that

nh,y = |K|
m (Exercise 10 and Proposition 3.16). However, random functions

cannot be implemented, and we cannot influence the distribution of keys. The
application in which we use the hash procedure determines the distribution
on the keys. A solution to this problem is to use a universal family of hash
functions.

Universal families of hash functions and their variants also play an impor-
tant role in information theory and cryptography (see [DelfsKnebl15, Chap-
ters 10.1 and 10.3]). There are universal families of hash functions that use
efficient binary arithmetic. Since we do not introduce the finite extension of
F2, we now give two examples of universal families based on the less efficient
modular arithmetic. For a natural number m,

Zm = {[0], . . . , [m− 1]}

denotes the set of residue classes modulo m. We identify Zm with {0, . . . ,m−
1}, the set of remainders modulo m (see Definition B.8). For a prime m = p,
Zp is a field and Zr

p, r ∈ N, a vector space over the field Zp (see Corollary
B.11).

Proposition 3.7. Let p be a prime, let a, b ∈ Zp, m ∈ N, 2 ≤ m ≤ p and

ha,b : {0, . . . , p− 1} −→ {0, . . . ,m− 1}, x 7−→ ((ax+ b) mod p) mod m.

The family H = {ha,b | a, b ∈ Zp, a ̸= 0} is universal.
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Proof. First, we show that |H| = |{(a, b) | a, b ∈ Zp, a ̸= 0}| = p(p − 1). We
distinguish between:

1. Let a, a′, b, b′ ∈ Zp, a ̸= a′. We show that ha,b ̸= ha′,b′ holds.
If a ̸= 0, then the map

fa,b : Zp −→ Zp, x 7−→ (ax+ b) mod p

is bijective.
Consequently, whenever a ̸= a′, then fa,b−fa′,b′ = fa−a′,b−b′ is a bijective
map. For x ∈ Zp with (fa,b − fa′,b′) (x) = [1], we get ha,b(x) ̸= ha′,b′(x).

2. Now let a = a′ and b > b′ (without loss of generality). If m does not
divide b − b′, then ha,b(0) ̸= ha,b′(0). If m divides b − b′, then we have
with y = p− b

ha,b(a
−1y) = ((p− b+ b) mod p) mod m = 0 and

ha′,b′(a
−1y) = ((p− b+ b′) mod p) mod m

= ((p− (b− b′)) mod p) mod m

= (p− (b− b′)) mod m

= p mod m ̸= 0.

We have shown that whenever (a, b) ̸= (a′, b′), then ha,b ̸= ha′,b′ . Therefore,

|H| = |{(a, b) ∈ Z2
p | a ̸= 0}| = p(p− 1).

Let x, y ∈ Zp, x ̸= y. We now show that

|{(a, b) | a, b ∈ Zp, a ̸= 0, ha,b(x) = ha,b(y)}| ≤
p(p− 1)

m
.

Let

φ : Z2
p −→ Z2

p, (a, b) 7−→ A
(
a
b

)
, where A =

(
x 1
y 1

)
Since x ̸= y, φ is bijective (see [Fischer14, Chapter 2]).

φ({(a, b) ∈ Z2
p | a ̸= 0}) = {(r, s) ∈ Z2

p | r ̸= s}

and

φ({(a, b) ∈ Z2
p | a ̸= 0, ha,b(x) = ha,b(y)})

= {(r, s) ∈ Z2
p | r ̸= s, r ≡ s mod m}.

Hence,

|{(a, b) ∈ Z2
p | a ̸= 0, ha,b(x) = ha,b(y)}|

= |{(r, s) ∈ Z2
p | r ̸= s, r ≡ s mod m}|.
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Since each (fixed) r has a maximum of
⌊

p
m

⌋
s with s ̸= r and s ≡ r mod m

(these are the elements r+m, . . . , r+
⌊

p
m

⌋
m) and since there are p possibilities

for r,

{(r, s) ∈ Z2
p | r ̸= s, r ≡ s mod m}| ≤

⌊ p

m

⌋
· p .

From
⌊

p
m

⌋
≤ p−1

m , it follows that
⌊

p
m

⌋
· p ≤ p(p−1)

m . Since |H| = (p− 1)p, the
assertion is shown. 2

Remark. Let m be the desired number of table indices and n = |X|. For a
universal family H = {ha,b | a, b ∈ Zp, a ̸= 0}, a prime number p ≥ n is
necessary. So we need a prime p with about ⌈log2(n)⌉ bits. Further, we need
two random numbers, a and b, each with about ⌈log2(n)⌉ bits. The calculation
of the hash value is done by simple arithmetic operations.

Example. Let X = {0, 1, . . . , 100 000}, p = 100 003 and m = 10 000. p is
a prime number. Randomly choose a, b ∈ Zp, a ̸= 0, and use ha,b(x) =
((ax + b) mod 100 003) mod 10 000 as the hash function. You need only 8
bytes to store the hash function from above.

Proposition 3.8. Let p be a prime, a = (a1, . . . , ar) ∈ Zr
p and

ha : Zr
p −→ Zp, (x1, . . . , xr) 7−→

∑r
i=1 aixi mod p.

The family H = {ha | a ∈ Zr
p} is universal.

Proof. First, we will show that |H| = pr. From ha(x) = 0 for all x ∈ Zr
p, we

conclude ai = ha(ei) = 0 for i = 1, . . . , r, i.e., a = 0.2 Let ha(x) = ha′(x)
for all x ∈ Zr

p. Then ha(x) − ha′(x) = ha−a′(x) = 0 and a = a′ follows. So

|H| =
∣∣Zr

p

∣∣ = pr is shown.
Let x, y ∈ Zr

p be given, x ̸= y. We show

1

|H|
∣∣{a ∈ Zr

p | ha(x) = ha(y)}
∣∣ ≤ 1

p
.

From ha(x) = ha(y) it follows that ha(x− y) = 0 (and vice versa) i.e.,

(a1, . . . , ar)

x1 − y1
...

xr − yr

 = 0.

Since x− y ̸= 0, the linear map defined by x− y has rank 1 and a kernel of
dimension r − 13 (see [Fischer14, Chapter 2]). Thus,∣∣{a ∈ Zr

p | ha(x− y) = 0}
∣∣ = pr−1,

thereby proving our assertion. 2

2 ei = (0, . . . , 0, 1, 0, . . . , 0), where 1 is at the ith position, is the ith unit vector.
3 The vectors perpendicular to a vector ̸= 0 in Zr

p form a subspace of the dimension
r − 1.
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Remark. Let m be the desired number of table indices. For a universal family
H = {ha | a ∈ Zr

p}, a prime number p ≥ m is necessary. So we need a prime
p with approximately ⌈log2(m)⌉ bits. Further, we need r random numbers
a1, . . . , ar with approximately ⌈log2(m)⌉ bits.
To be able to apply ha to x ∈ X, we develop x in the base-p numeral system
(Proposition B.2). r must be selected to be so large that x ≤ pr − 1 is valid
for all x ∈ X (see Lemma B.3). The hash value is calculated by simple
arithmetical operations in Zp.

Procedure Using Universal Families. If we use a universal family H of
hash functions, we turn the hash procedure into a probabilistic procedure.
This is done by randomly selecting the hash function. The random choice
of the hash function h makes the number nh,y of elements from K which h
maps to y into a random variable. Its expected value is similar to that of a

random function |K|
m (see Proposition 3.16 and Proposition 3.20).

We implement the procedure by passing the hash function as a parameter.

1. When initializing the procedure, we randomly select h ∈ H.
2. We then use this function h for the entire run time of the procedure, i.e.,

we perform all insert and search operations with this hash function h.

3.3 Collision Resolution

Designing a hash function that maps possible keys one-to-one to table indices
would be impractical, or even impossible, if there are many more possible keys
than actually stored keys. Hash functions are not injective. Different keys
may be mapped to the same hash value. We call this situation a collision
(see Definition 3.1). Fortunately, there are efficient procedures to resolve the
problems caused by collisions. We discuss the methods chaining and open
addressing.

3.3.1 Collision Resolution by Chaining

The methods for collision resolution by chaining organize the keys which are
mapped to the same hash value in a linearly linked list. When searching
for a key, we search the linked list. Depending on the organization of the
chained lists, we distinguish between chaining with overflow area and separate
chaining.

Chaining With Overflow. We split the hash table into a primary area and
an overflow area. The hash function calculates indices of cells in the primary
table. The cells in the overflow area store keys that do not fit in the primary
area due to collisions.

To manage the colliding keys, we add a field to the entries in the hash
table for an index, which points into the overflow area, as shown in Figure
3.3. We organize all keys with the same hash value in a linked list.
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Memory management must be implemented for the cells in the overflow
area. This can be done using a linked list of free cells.

.
Fig. 3.3: Primary and overflow areas.

Separate Chaining. We store all keys in the nodes of a linked list. The
hash table contains anchors to the linked lists, as shown in Figure 3.4. The
hash function maps keys to indices of the hash table. The node elements for
the linked lists are allocated and released as required.

.
Fig. 3.4: Separate chaining.

Usually the programming language used for implementation supports this.
High-level programming languages often offer dynamic memory management
in the so-called heap memory . The operating system provides a contiguous
memory area, the heap memory, for a running program. A program can al-
locate and release memory blocks from the heap memory at runtime. The
advantage over chaining with overflow area is therefore that no memory man-
agement has to be implemented. Since memory management on heap memory
manages blocks of variable length, it is less efficient than the memory man-
agement adapted to the situation above.

When initializing the hash procedure, it should be known how many data
records can be expected. Then the question arises as to how to define the
dimension of the hash table and possibly the overflow area. The procedure
of separate chaining is only limited by the amount of heap memory available.
However, if we define too small a hash table, long linked lists result. This
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results in poor running time behavior. The problem of dimensioning is dealt
with in Section 3.4.1.

3.3.2 Open Addressing

For open addressing we use a hash table T with m cells. In contrast to
chaining, the entries are without additional information. In case of a collision,
we look for a replacement place within the table T . The replacement place
also depends on the current load of the table. The address is therefore not
fixed from the outset. Therefore, we call this procedure open addressing .

Definition 3.9.

1. By a probing sequence, we refer to a sequence of indices i1, i2, i3, . . . of
the hash table.

2. By a probing sequence for k ∈ X, we mean a probing sequence uniquely
assigned to k, i.e., a map i : X −→ {1, . . . ,m}N defines i(k), the probing
sequence for k ∈ X.

Remarks:

1. Those cells of the hash table that can contain k ∈ X are defined by the
probing sequence for k. Within this sequence, the address is open.

2. Since the table is finite, only finite probing sequences are used.

Before discussing various methods of calculating probing sequences, let
us indicate how we will use these probing sequences. We describe how the
algorithms for inserting, searching and deleting work in principle.

Algorithms For Inserting, Searching and Deleting.

1. Insertion: Inspect the cells with the indices i1, i2, i3 . . ., which are given
by the probing sequence for k, and use the first“empty cell” to store k. If
the index of this cell is il, then i1, i2, . . . , il is the probing sequence used
for k.

2. Searching: Let k ∈ X, and i1, i2, . . . be the probing sequence for k. We
inspect the cells with the indices i1, i2, . . . until we find k or decide that
k /∈ T .

3. Deleting: Search for k. If k is stored, mark the cell containing k as
“deleted”.

Remarks:

1. We can reoccupy deleted cells. However, the indices of deleted cells may
occur in probing sequences of other elements. This cannot happen with
cells that have never been occupied, which we call untouched cells. There-
fore, we have to distinguish between deleted and untouched cells among
the free cells. Deleted cells may not shorten the probing sequences for
other entries.
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2. We can turn deleted cells into untouched cells if the index of the cell does
not occur in any of the used probing sequences for the table entries.

We treat different types of probing sequences. All probing sequences
should meet the following requirements:

1. An efficient algorithm is available for the calculation of each probing
sequence, just as with hash functions.

2. Each probing sequence should contain all free cells of the table.

Definition 3.10. Let h : X −→ {0, . . . ,m− 1} be a hash function.
Linear probing uses the probing sequence

i(k)j = (h(k) + j) mod m, j = 0, . . . ,m− 1.

The probing sequence consists of the indices h(k), (h(k) + 1) mod m,
. . . , (h(k) + m − 1) mod m, where m equals the length of the hash table.
The probing sequence meets the requirements from above. When deleting,
we set a cell to untouched if the following cell is free. However, the problem
of cluster formation occurs, which we explain with an example.

Example. Figure 3.5 shows cluster formation during linear probing. The oc-
cupied cells have a gray background.
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Fig. 3.5: Clustering.

Let pi be the probability that cell i is allocated. We observe:

1. p14 = 5p9 holds if all values are equally probable.
2. If cell 4 is occupied, two clusters unite.

Another method for calculating probing sequences is quadratic probing.

Definition 3.11. Let h : X −→ {0, . . . ,m− 1} be a hash function.
Quadratic probing uses the probing sequence

i(k)j = (h(k)± j2) mod m, j = 0, . . . ,m− 1,

i.e., the sequence h(k), (h(k) + 1) mod m, (h(k)− 1) mod m, . . ..

In quadratic probing, we only consider indices whose distance from the
hash value is a square modulo m.

Proposition 3.12. Let m = p be a prime and p ≡ 3 mod 4. In quadratic
probing modulo p, all indices of the hash table appear in each probing se-
quence.
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Proof. We know from Corollary B.14 that Zp = {±[i2] | i = 0, . . . , (p− 1)/2}.
The translation used in the calculation of a probing sequence by c = h(k)
defines a bijective map on Zp. Thus, all table indices occur in a probing se-
quence with quadratic probing. 2

The problem of primary clustering in linear probing no longer occurs in
quadratic probing. Clustering is not completely suppressed, however, because
the probing sequence deterministically depends on the hash value. The follow-
ing method of double hashing is based on the model in which not only a hash
value, but also the step size of the probing sequence is randomly selected.

Definition 3.13. Let h : X −→ {0, . . . ,m− 1} and h∗ : X −→ {1, . . . ,m− 1}
be hash functions. Double hashing uses the probing sequence

i(k)j = (h(k) + jh∗(k)) mod m, j = 0, . . . ,m− 1,

i.e., the sequence h(k), (h(k) + h∗(k)) mod m, (h(k) + 2h∗(k)) mod m, . . ..

Remarks:

1. The formula is similar to that of linear probing. In double hashing, we
start probing from the hash value h(k) with the increment h∗(k). The
step size is not constant. The hash function h∗ determines the step size
for each key k.

2. It is recommended to select the hash functions h and h∗ independently
(see the remark after Proposition 3.23). For universal families of hash
functions, this means that we select the hash functions h and h∗ randomly
and independently of each other. Consequently, whenever x1, x2 ∈ X and
x1 ̸= x2, then

p(h(x1) = h(x2) and h∗(x1) = h∗(x2)) ≤
1

m2
,

i.e., the probability that the hash values and the step sizes are equal is
less than or equal to 1/m2.

3. The above probing sequence is a linear congruence sequence xn+1 =
(axn + c) mod m, a = 1, c = h∗(k) and x0 = h(k). We use linear congru-
ence sequences to generate pseudo-random numbers (see Section 1.6.4).

Proposition 3.14. If h∗(k) and m are relatively prime, then

|{(h(k) + jh∗(k)) mod m | j = 0, . . . ,m− 1}| = m.

In this situation all table indices occur in a probing sequence.

Proof. Let i, j ∈ {0, . . . ,m − 1}, i > j. Suppose (h(k) + ih∗(k)) mod m =
(h(k)+jh∗(k)) mod m. We conclude that m divides (i−j)h∗(k). Since m and
h∗(k) are relatively prime, m divides the number i−j. This is a contradiction
because i−j < m. Thus, the numbers (h(k)+jh∗(k)) mod m, j = 0, . . . ,m−1,
are pairwise distinct. 2
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Remarks:

1. The prerequisite of the proposition is fulfilled for a prime number m or
for m = 2k and an h∗ with odd values. Then all table indices occur in a
probing sequence.

2. Bertrand’s4 Postulate says that between n and 2n, n ∈ N, there is a
prime number (see [RemUll08]). Thus, there is always a prime number
of suitable size.

Remark. To choose the dimension of the hash procedures, assumptions about
the number of keys to be stored are necessary. If the estimated number is
significantly less than the number actually required, performance problems
arise. The desired property of the hash procedures to provide the operations
insert, search and delete with a constant time requirement is then no longer
fulfilled. In the case of chaining with an overflow area or open addressing,
the procedures fail if the number of keys exceeds the planned capacity. In
practice, this problem is solved by saving the contents of the existing hash
table (including the elements in the separate chains) to a new larger hash
table and deleting the previous table when a certain fill level is reached. This
procedure is often referred to as rehashing .

3.4 Analysis of Hashing

We are interested in the questions of how many comparisons on average are
necessary to find a stored object, and how many comparisons are necessary
to decide that an object is not stored. The two methods of collision resolution
require separate considerations.

3.4.1 Chaining

In the case of chaining, we are not only interested in the number of compar-
isons if the search is successful or unsuccessful, but also in the number of
collisions to be expected. This number must be known in order to adequately
choose the dimension of the overflow area.

Let us first consider the case where the hash function is a random function.
The random experiment consists of inserting n keys with a random function
into an empty hash table. LetX be the set of possible keys. The hash function

h : X −→ {0, . . . ,m− 1}

is a random function, i.e., we choose the values for each argument in
{0, . . . ,m− 1} at random and uniformly distributed (see Section 3.2.2).

4 Joseph Louis François Bertrand (1822 – 1900) was a French mathematician.
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Random functions are not implementable. Universal families of hash func-
tions are a good approximation of random functions. They behave with re-
spect to collisions like random functions (see Section 3.2.2).

By K = {k1, . . . , kn} ⊂ X, we denote the set of keys actually present.

Proposition 3.15. Let h : X −→ {0, . . . ,m− 1} be a random function and
let

nj = |{k ∈ K | h(k) = j}|, j = 0, . . . ,m− 1.

The random variable nj can take the values 0, . . . , n. The probability pi, which
indicates that i keys are mapped to the value j, is

pi := pij = p(nj = i) =
(n
i

)( 1

m

)i(
1− 1

m

)n−i

.

The random variable nj is binomially distributed, with parameters (n, p
= 1

m ) (Definition A.15).

Proof. Assuming that h is a random function, the insertion of n keys is the
independent repetition of the experiment “insertion of one key”. This is a
Bernoulli experiment, and the probability that the index j will occur exactly
i times is given by the binomial distribution. 2

Proposition 3.16. The expected value of the random variable nj is

E(nj) =
n

m
.

Proof. The assertion follows from Proposition A.16. 2

Remark. For the number wi of values with i pre-images, it holds that

wi = |{j | nj = i}| =
m−1∑
j=0

δnji, i = 0, . . . , n,

where δnji = 15 if and only if nj = i, otherwise δnji = 0. If i keys are
mapped to one value, i− 1 of the keys lead to collisions. For the number col
of collisions, the following holds

col =
n∑

i=2

wi(i− 1)

with the random variables wi and col.

Proposition 3.17. Let H be a hash table with m cells in the primary area
and n stored elements. The expected number of values with i pre-images is
mpi. The expected number of collisions is n−m(1− p0).
5 δij denotes the Kronecker delta. Leopold Kronecker (1823 – 1891) was a German
mathematician.
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Proof.

E(wi) = E

m−1∑
j=0

δnji

 =
m−1∑
j=0

E(δnji) =
m−1∑
j=0

p(δnji = 1)

=
m−1∑
j=0

p(nj = i) =
m−1∑
j=0

pi = mpi.

E(col) = E

(
n∑

i=2

wi(i− 1)

)
=

n∑
i=2

(i− 1)E(wi)

=
n∑

i=2

(i− 1)mpi = m
n∑

i=2

(i− 1)pi = m

(
n∑

i=2

ipi −
n∑

i=2

pi

)
= m

( n

m
− p1 − (1− (p0 + p1))

)
= n−m (1− p0) .

We used
∑n

i=1 ipi =
n
m . This follows from Proposition 3.16. 2

Definition 3.18. Let H be a hash table with m cells in the primary area,
and let n be the number of stored elements. We call B := n

m the load factor
of H.

We approximate the binomial distribution by the Poisson distribution (see

page 315) pi ≈ ri =
Bi

i! e
−B and calculate the percentage E(wi)/m·100 = pi·100

of the values occupied by i keys for i = 0, 1, 2 and the percentage E(col)
n · 100

of the keys that cause collisions for B = 0.1, 0.5, 1, 1.5 and 3.

B = 0.1 B = 0.5 B = 1 B = 1.5 B = 3
p0 · 100 90.5 60.7 36.8 22.3 5.0
p1 · 100 9.0 30.3 36.8 33.5 14.9
p2 · 100 0.5 7.6 18.4 25.1 22.4
E(col)

n · 100 4.8 21.3 36.8 48.2 68.3

We can use this table to define the dimensions of the primary and overflow
areas. So we expect with a load factor of 1, i.e., the number of keys is the
same as the number of cells in the primary area, that 36.8 % of the cells in the
primary area remain free and that 36.8 % of the keys lead to collisions. The
dimension of the overflow area must be chosen accordingly. The load factor
influences the performance of the procedure and vice versa. Exact information
can be obtained from the following.

Proposition 3.19. Let h : X −→ {0, . . . ,m− 1} be a random function, K =
{k1, . . . , kn} the set of stored keys and B = n

m the load factor.

1. The expected number of comparisons for a successful search is 1 + 1/2B.
2. The expected number of comparisons for an unsuccessful search is B +

e−B.
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Proof. 1. If we search for all keys of a chain of length i, the number of
comparisons is i(i+ 1)/2. Since there are wi chains of length i, the number of

comparisons, if we search for all keys, is equal to
∑n

i=1
i(i+1)

2 wi. We get for
the number of comparisons per key

V =
1

n

n∑
i=1

i(i+ 1)

2
wi.

For the expected value E(V ), we get

E(V ) =
1

n

n∑
i=1

i(i+ 1)

2
E(wi) =

1

n

n∑
i=1

i(i+ 1)

2
mpi =

1

2

m

n

(
(n− 1)n

m2
+ 2

n

m

)
=

1

2

(
n− 1

m
+ 2

)
= 1 +

n− 1

2m
≈ 1 +

1

2
B.

Here we have used

n∑
i=1

i(i+ 1)pi =
n∑

i=1

i2pi +
n∑

i=1

ipi =
n(n− 1)

m2
+ 2

n

m
.

The last “=” follows by Proposition A.16:

n∑
i=1

ipi =
n

m
and

n∑
i=1

i2pi =
n(n− 1)

m2
+

n

m
.

2. If the search is unsuccessful, we must search the entire linked list. The
linked list has length nj . So nj comparisons are necessary if nj > 0. For nj =
0, one access is necessary. For the number V of comparisons, V = δnj0 + nj

holds. Thus,

E(V ) = E(δnj0) + E(nj) = p0 +
n

m
= e−B +B.

The assertion of the proposition is shown. 2

Instead of a random function h, we will now consider a randomly chosen
h ∈ H, where H is a universal family of hash functions. We get statements for
universal families of hash functions (Corollary 3.21) analogous to Proposition
3.19. Let

δh(x, y) =

1 if h(x) = h(y) and x ̸= y,

0 otherwise.

δh is the indicator function for collisions. The number of elements of {k ∈
K \ {x} | h(k) = h(x)} is calculated as follows

δh(x,K) =
∑

k∈K\{x}

δh(x, k).
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Remark. Let nh(x) = |{k ∈ K | h(k) = h(x)}| be the number of keys k ∈ K
with h(k) = h(x). Then

δh(x,K) =

nh(x) if x ̸∈ K,

nh(x) − 1 if x ∈ K.

We consider δh(x,K) as a random variable depending on h.

Proposition 3.20. Let H = {h : X −→ {0, . . . ,m− 1}} be a universal fam-
ily of hash functions, K = {k1, . . . , kn} the set of stored keys and x ∈ X.
Then the expected value (regarding the uniformly distributed random choice
of h ∈ H) is

E(δh(x,K)) ≤


n
m if x ̸∈ K,

n−1
m if x ∈ K.

In all cases E(δh(x,K)) ≤ n
m is valid.

Proof.

E(δh(x,K)) =
∑
h∈H

1

|H|
δh(x,K) =

∑
h∈H

1

|H|
∑

k∈K\{x}

δh(x, k)

=
1

|H|
∑

k∈K\{x}

∑
h∈H

δh(x, k)

=
∑

k∈K\{x}

|{h ∈ H | h(k) = h(x)}|
|H|

≤ |K \ {x}|
m

=


n
m if x ̸∈ K,

n−1
m if x ∈ K.

The last inequality uses the fact that the collision probability of the family
H is less than or equal to 1/m. 2

Remarks:

1. Let x ∈ K. For the expected value of nh(x), the following inequality holds:

E(nh(x)) ≤ (n− 1)/m+ 1

≈ n/m+ 1.

We expect a randomly selected h ∈ H to distribute the keys evenly among
the table indices. This is independent of the distribution on X according
to which we select the keys.
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2. The effort required for an insert operation (or search operation) for an
element with a hash value h(x) is proportional to nh(x). The bounds

E(nh(x)) ≤ n
m for insert and E(nh(x)) ≤ n−1

m + 1 for a successful search
do not depend on h(x).

3. The probability that δh(x,K) takes values greater than the expected
value is estimated by the inequality of Markov (Proposition A.10). For
each real number r > 0,

p(δh(x,K) ≥ rE(δh(x,K))) ≤ 1

r
.

This means |{h ∈ H | δh(x,K) ≥ rE(δh(x,K))}| ≤ |H|
r .

Let H̃ = {h ∈ H | δh(x,K) ≥ rn/m}. Then |H̃| ≤ |H|
r .

Corollary 3.21. Let H = {h : X −→ {0, . . . ,m− 1}} be a universal family
of hash functions, K = {k1, . . . , kn} the set of stored keys and B = n

m the
load factor. Then

1. The expected value of the number of comparisons for a successful search
is < 1 + 1/2B.

2. The expected value of the number of comparisons for an unsuccessful
search is ≤ 1 +B.

The expected value refers to the random choice of h.

Proof. 1. Let h ∈ H be chosen, x ∈ K and j = h(x). The number of compar-
isons, if we search all keys with hash value j, is equal to (nj(nj + 1))/2. The
expected number of comparisons per key is V = (nj + 1)/2. From the linearity
of the expected value and Proposition 3.20, it follows that

E(V ) = E (1/2 (nj + 1)) ≤ 1/2

(
2 +

n− 1

m

)
< 1 +

1

2
B.

2. Let x ̸∈ K, and let V be the number of comparisons in an unsuccessful
search for x. Then one comparison is necessary if there is no key with hash
value j in K and nj otherwise. Therefore, V = δnj0 + nj . With Proposition
3.20, it follows that

E(V ) = E(δnj0) + E(nj) = p (nj = 0) + E(nj) ≤ 1 +B.

This shows the assertion. 2

3.4.2 Open Addressing

Model. A hash table has m cells and n cells are occupied, where n < m
holds. The choice of a probing sequence i1, . . . , ik of length k corresponds
to the choice of k − 1 occupied places and the choice of one free place. We
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assume that all probing sequences of the length k are equally probable. This
is the assumption of uniform probing or uniform hashing .

We denote by sln the length of a probing sequence to insert the (n+1)th
key. The random variable sln counts how often we have to do the experiment
“select a place” until we reach the first empty place. The sample is taken
without replacing the drawn element.

Proposition 3.22. The probability pj which specifies that sln has length j
satisfies

pj = p(sln = j) =

(
n

j−1

)
(

m
j−1

) m− n

m− (j − 1)
, j = 1, . . . , n+ 1.

Proof. The random variable sln is negatively hyper-geometrically distributed
with the parameters N = m, M = m−n and the bound r = 1 (see Definition
A.25 and the explanation afterwards). M is the number of free cells. sln
counts the repetitions until we probe a free cell for the first time. 2

Proposition 3.23 (uniform probing). In a hash table with m cells, n cells
are used (n < m holds). The load factor is B = n

m .

1. To insert the (n+1)th element, the mean length of a probing sequence is
1

1−B .
2. When searching for an element, the mean length of a probing sequence is

1
B ln

(
1

1−B

)
.

Proof. 1. The expected value of the negative hyper-geometric distribution is
calculated with the notations of Proposition A.26 N = m and M = m− n.

E(sln) =
N + 1

M + 1
=

m+ 1

m− n+ 1
=

m+1
m

m+1
m − n

m

≈ 1

1−B
.

2. There are n elements in the table. sl0, . . . , sln−1 are the lengths of the prob-
ing sequences for the n elements. The mean length sl of a probing sequence
when searching is sl = 1

n

∑n−1
j=0 slj .

E(sl) =
1

n

n−1∑
j=0

E(slj) =
1

n

n−1∑
j=0

m+ 1

m− j + 1

=
m+ 1

n
(Hm+1 −Hm−n+1)

≈ m+ 1

n
(ln(m+ 1)− ln(m− n+ 1))

=
m+ 1

n
ln

(
m+ 1

m+ 1− n

)
≈ 1

B
ln

(
1

1−B

)
.
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We approximated Hn =
∑n

k=1
1
k by ln(n) (see B.5). 2

Remark. If in double hashing the hash functions h and h∗ are independently
selected from a family of universal hash functions, the mean lengths of the
probing sequences are similar to uniform hashing. However, the analysis is
much more complicated. In [SieSch95] it is shown that the mean length of a
probing sequence when inserting an element is 1

1−B +O( 1
m ).

Proposition 3.24 (Linear probing). In a hash table with m cells, n cells are
occupied. B is the load factor.

1. The mean length of a probing sequence is 1
2

(
1 + 1

1−B

)
if the search is

successful.

2. The mean length of a probing sequence is 1
2

(
1 +

(
1

1−B

)2)
if the search

is not successful.

Proof. See [Knuth98a]. 2

We now compare the procedures uniform hashing (UH), double hashing
with a universal family (DU), chaining with a universal family (CU) and
chaining with a random function (CR).
The number of comparisons for a successful search depending on B = n

m , as
shown in Figure 3.6.

Fig. 3.6: Comparison – successful search.
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The number of comparisons for an unsuccessful search depending on B =
n
m , as shown in Figure 3.7.

Fig. 3.7: Comparison – unsuccessful search.

Remark. At a first glance, the procedures with chaining appear to be superior.
However, these methods require memory to store the links. If the memory
required for the links is large compared to the memory required for the data
sets, there may be an advantage to open addressing methods.

Exercises.

1. Let M = {0, . . . ,m− 1} and N = {0, . . . , n− 1}. Specify the percentage
of injective maps f : M −→ N .

2. A hash table has 2,048 cells. Consider multiplication by c = 0.618 as a
hash function. Determine the hash values for all numbers 2k, 0 ≤ k ≤10.

3. Let p be a prime, Zp the field with p elements and a ∈ Zp.

ha : Zp × Zp −→ Zp, (x, y) 7−→ ax+ y.

Show: H = {ha | a ∈ Zp} is a universal family of hash functions.

4. Let p be a prime and Zp be the field with p elements. Show that the set
of linear maps A : Zk

p −→ Zl
p is a universal family of hash functions.

5. Let i(s)j := (s+ j · c) mod m, j = 0, 1, 2, . . ., be a probing sequence.
a. Use this probing sequence to enter the following keys in an initially

empty hash table: 261, 321, 453, 781, 653, 1333, 109, 235, 800. Set
c = 7 and m = 21.
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b. In the probing sequence under point a, not all locations in the hash
table are probed. For which c are all places in the hash table probed
using i(s)j := (s+j ·c) mod m, j = 0, 1, 2, . . .? Justify your statement.

6. 10,000 data records are managed in main memory. A hash procedure with
primary and overflow areas is used. On average, a data record should be
found with two accesses.
a. Determine the load factor.
b. What should be the dimensions of the primary and overflow areas?

7. A hash procedure in main memory is used to manage 1,000 records. Col-
lision resolution is achieved by double hashing. We use the family of
functions

ha,b : {0, . . . , p− 1} −→ {0, . . . ,m− 1}, x 7−→ ((ax+ b) mod p) mod m,

where p = 2, 003 and 2 ≤ m ≤ p. We assume that double hashing behaves
like uniform hashing if h and h∗ are independently selected. On average,
a record should be found with two accesses. How should the dimension of
the hash table be defined to achieve this goal? How should m be chosen?
Specify the smallest suitable m.

8. With LZ77 data compression (Section 4.6.4), finding a matching segment
can be accelerated by the use of hash procedures. Work out the details
of this idea.

9. a. The uniqueness problem is to decide whether n given objects are
pairwise distinct. Specify an algorithm to solve this problem.

b. Given are numbers z1, . . . , zn ∈ Z and s ∈ Z. Specify an algorithm
that decides whether there are two numbers zi and zj with s = zi+zj .

10. Let h : S −→ {0, . . . ,m− 1} be a hash function, and S the set of possible
keys. Assume that h distributes the possible keys evenly:

|h−1(j)| = |S|
m

, j = 0, . . . ,m− 1.

We assume that n keys k1, . . . , kn are randomly selected and stored in a
hash table H with m cells. Let nj = |{si | h(si) = j}|, j = 0, . . . ,m − 1.
Calculate the expected value E(nj).

11. Hash procedures on hard disks. Hash methods can also be used for
data on secondary storage. Records are stored here in blocks. A block
can contain several records. The value set of the hash function is equal
to the set of block addresses. A block contains a maximum of b records.
Let n be the number of records and m the number of blocks. Then we
understand by the load factor β = n

m the number of records per address.
The load factor for the memory is B = n

bm . Perform the analysis of the
hash procedures for the above situation and solve the following task.
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5,000 records are to be stored in a file. A hash method with primary and
overflow areas is to be used. 10,000 records can be stored in the primary
area. Answer the following questions for block sizes 1 and 5:
a. How many blocks remain free in the primary area?
b. How many blocks must be provided in the overflow area?
c. How many records lead to collisions during insertion?

12. Stack symbol tables and hash procedures. Symbol tables are used
to manage the names of a source program in the translation process.
The accesses to symbol tables to be implemented are Insert, Delete and
Search.
An entry in the symbol table consists of
(a) the name of the variables (labels, procedure, . . . ) and
(b) additional information.
The organization of a symbol table as a stack supports the rules for
visibility in languages with a block structure.
The following rules apply to the visibility of names:
a. A name is visible in the block in which it is declared (and also in

subordinate blocks).
b. A name is unique in a block (without nesting).
c. If a name is declared twice in two nested blocks, the inner block refers

to the inner declaration (most closely nested rule).
The translation process is sequential. A block is called active if the com-
piler has passed the beginning of the block (begin block) but not the end
of the block (end block). This results in the following requirements of the
compiler regarding the organization of the symbol tables:
a. Access must only be given to names in active blocks.
b. Names should be arranged according to the nesting structure (from

inside to outside —most closely nested first).
Since the effort required to access symbol tables is significant, efficient
access methods are necessary. A hash procedure is superimposed on the
organization of the symbol tables as a stack. Find out which operations
are necessary at the beginning and end of a block, for inserting, searching
and deleting. Work out the details of the procedure.
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In sorted arrays, you can find a stored element with O(log2(n)) comparisons,
where n is the number of stored elements. Another way to sort elements is
to provide binary search trees. Binary search trees are designed to be used
when elements are inserted or deleted dynamically. It is desirable that the
insertion and deletion operations keep the tree as balanced as possible, i.e.,
the number of levels should be small.

Binary search trees are balanced on average (averaged over all possible
arrangements of the elements to be stored). In the worst case, binary search
trees degenerate into linear lists. Then the number of necessary comparisons
when searching for an element is of order O(n), compared to O(log2(n)) in
the balanced case.

Ideally the number of levels is ⌊log2(n)⌋ + 1, and the leaves are on one
or two levels, where n denotes the number of stored elements. The effort to
achieve this ideal case is not justifiable. Therefore, we do not strive to achieve
this ideal case.

AVL trees are almost balanced (only about 45% worse than ideal). We
achieve this with little additional computational effort. The effort required to
search for an element is comparable to the effort required to search in a sorted
array. Another method to prevent binary search trees from degenerating is
to use randomized binary search trees. The average path length for binary
search trees will become the expected length of paths in randomized binary
search trees. The path length increases by a maximum of 39% compared to
the ideal case.

Binary search trees and their variants are used to organize data in main
memory. For the organization of data in secondary storage, we discuss B-
trees. These are balanced search trees that are designed to minimize disk
I/O operations. B-tree nodes may have many children, hence the number of
levels is small; it is always of order O(log2(n)).

Code trees for the graphical representation of codes for data compression
will complete the chapter. We show that the problem of unique decodability
is decidable and discuss Huffman codes including adaptive Huffman codes,
arithmetic coding and the ubiquitous Lempel-Ziv codes.
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4.1 Rooted Trees

Trees are special graphs (see Chapter 5). A graph is a tree if there is exactly
one path between two nodes that connects them. If we designate a node as
the root of the tree and give the edges a direction, we get a rooted tree. Trees
occur frequently in computer science, and we have already encountered them
in the previous Chapters 1 and 2; see, for example, the branch and bound
method (Section 1.5.5), binary heaps (Section 2.2.1) or decision trees (Section
2.3). We now specify the term rooted tree.

Definition 4.1.

1. A rooted tree B = (V,E, r) consists of a finite set of nodes V , a finite set
of directed edges E ⊂ V × V and a root r ∈ V . We define recursively:
a. A node r is a rooted tree (B = ({r}, ∅, r)).
b. Let B1 = (V1, E1, r1), . . . , Bk = (Vk, Ek, rk) be trees with the roots

r1, . . . , rk. We extend the node set V by a new root r and the edge
set E by the edges (r, ri), i = 1, . . . , k. Then

(V1 ∪ . . . ∪ Vk ∪ {r}, {(r, ri) | i = 1, . . . , k} ∪ E1 ∪ . . . ∪ Ek, r)

is a tree with root r.
The empty tree is explained as deviating from this structure. It has no
nodes and no edges.

2. Let e = (v, w) ∈ E, then v is called the predecessor or parent of w and w
is called the successor or child of v. The edges in B are directed. A node
that has no successors is called a leaf .

3. A path P in B is a sequence of nodes v0, . . . , vn with: (vi, vi+1) ∈ E, i =
0, . . . , n− 1. n is called the length of P .

4. Let v, w ∈ V . The node w is called accessible from the node v if there is
a path P from v to w, i.e., there is a path P = v0, . . . , vn with v0 = v
and vn = w. If w is accessible from v, v is said to be an ancestor of w
and w is said to be a descendant of v.
Each node v of B can be regarded as the root of the subtree of the
nodes accessible from v. If v has the successors v1, . . . , vk, the subtrees
B1, . . . , Bk with the roots v1, . . . , vk are called the subtrees of v.

Remark. In a tree, each node v has exactly one path leading from the root to
v; each node except the root has exactly one predecessor.

Definition 4.2.

1. The height of a node v is the maximum of the lengths of all paths starting
at v.

2. The depth of a node v is the length of the path from the root to v. The
nodes of depth i form the ith level of the tree.

3. The height and depth of the tree is the height of the root. The empty tree
has height −1 and depth −1.
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Remark. Let B be a tree of height h, and let n be the number of nodes of B.
If each node of B has at most d successors, then

n ≤
h∑

i=0

di =
dh+1 − 1

d− 1
.

Definition 4.3. Let B be a rooted tree. If each node v in B has at most two
successors, B is called a binary tree. The two successors are distinguished as
the left successor and right successor and the two subtrees of v as the left
subtree and right subtree.

Remark. Let n be the number of nodes in a binary tree of height h. Then
the number n of nodes satisfies n ≤ 2h+1− 1 or equivalent; the height h is at
least log2(n+ 1)− 1, i.e., ⌈log2(n+ 1)⌉ − 1 ≤ h. The bound is reached for a
binary tree in which all levels are completely filled.

The following algorithms use linked lists of node elements to implement
binary trees. A node element is defined by

type node = struct
item element
node left, right
node parent

The reference parent to the predecessor is optional. We only need it if
we access the predecessor node in an algorithm. A tree is of type tree and
is defined by its root node or a reference to the root node. The access to a
component of node is done with the .-operator (see Section 1.7).

Definition 4.4. We perform depth-first search (DFS) on a binary tree (see
Section 5.4.2 and Algorithm 4.5). Its nodes are output in different sequences.
We define the following alternatives:

1. For pre-order output , first write out the node, then the nodes of the left
subtree, and then the nodes of the right subtree.

2. For in-order output , first write out the nodes of the left subtree, then the
node, and then the nodes of the right subtree.

3. For post-order output , first write out the nodes of the left subtree, then
the nodes of the right subtree, and finally the node.

Each procedure has to be applied recursively starting from the root.

The recursive definition of a tree allows DFS to be easily implemented by
a recursive algorithm.

Algorithm 4.5.
TreeDFS(node a)
1 if a.left ̸= null then TreeDFS(a.left)
2 if a.right ̸= null then TreeDFS(a.right)
3 mark node a as visited
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Example. Figure 4.1 shows depth-first search in a binary tree.

..A.
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H
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I

Fig. 4.1: Depth-first traversal.

The path that starts and ends in node A represents the visit order of the
nodes by Algorithm 4.5. The first entry of the path into the environment Uv

of a node v, which is represented by the dotted circle around v, corresponds to
the call of TreeDFS in v, and the last exit of the environment Uv corresponds
to the termination of this call.

4.2 Binary Search Trees

We use a binary search tree to store an ordered set S if S is in a large
“universe” U , |S| is small compared to |U | and the ability to add or delete
elements is required.

Definition 4.6. A binary search tree for an ordered set S is a binary tree
B = (V,E) with a bijective map l : V −→ S (each node is marked with an
s ∈ S), so that each node v satisfies:

1. Each node w in the left subtree of v satisfies l(w) < l(v).
2. Each node w in the right subtree of v satisfies l(w) > l(v).

Proposition 4.7. DFS with in-order output yields the elements stored in the
nodes of B in sorted order.

Proof. For one node the statement is correct. Since the elements stored in
the left subtree of the root are output before the element stored in the root
and the elements stored in the right subtree of the root are output after the
element stored in the root, the statement follows by induction on the number
of nodes of B. 2
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Example. The in-order output of the binary tree in Figure 4.2 yield a sorted
sequence. The super indices indicate the output order for an in-order traver-
sal.
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Fig. 4.2: Depth-first search and in-order output.

4.2.1 Searching and Inserting

Searching for an element in a binary search tree is analogous to binary search
(Algorithm 2.28). First we check whether the element e to be searched for is
stored in the root. If this is not the case and e is smaller than the element
stored in the root, we continue the search (recursively) in the left subtree of
the root. If e is greater than the element stored in the root, we (recursively)
continue the search in the right subtree of the root. When implementing
the search using the Search function, we avoid recursion. We replace the
recursion with an iteration. When Search is called, the tree and the element
to be searched for must be passed.

Algorithm 4.8.
node Search(tree t, item e)
1 node a← t
2 while a ̸= null and a.element ̸= e do
3 if e < a.element
4 then a← a.left
5 else a← a.right
6 return a

The Insert function is used to insert an element. When Insert is called, a
tree and the element e to be inserted must be passed. Insert first performs a
search for e. If e is already in the tree, there is nothing to do. Otherwise, the
search ends in a leaf b. We add a new node for e at b and store e in it.
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Algorithm 4.9.
Insert(tree t, item e)
1 node a← t, b← null
2 while a ̸= null and a.element ̸= e do
3 b← a
4 if e < a.element
5 then a← a.left
6 else a← a.right
7 if a = null
8 then a← new(node), a.element← e
9 a.left← null, a.right← null, a.parent← b

10 if b = null
11 then t← a, return
12 if e < b.element
13 then b.left← a
14 else b.right← a

4.2.2 Deletion

When deleting an element e, we consider the following cases:

1. There is no node with element e: There is nothing to do.
2. If the node with the element e is a leaf, we can simply remove the node

from the tree. We change the reference in the predecessor to null.
3. We can also remove the node v of e from the chained list if v has only one

successor. The predecessor of v must reference the successor of v. The
binary search tree property is not affected.

4. If the node v of e has two successors, the node v cannot be removed
from the concatenated list. We look in the left subtree of v for the largest
element ẽ. This element is stored in the node which is furthest to the
right in the left subtree of v. The node ṽ of ẽ has at most one (left)
successor. We swap e with ẽ. Then we remove the node ṽ together with
e according to point 3 from the tree. Since ẽ was the largest element in
the left subtree of v, the elements in the left subtree of v are now smaller
than ẽ. The elements in the right subtree of v are larger than e and thus
also larger than ẽ. The binary search tree property is thus fulfilled in v.
The node ṽ of ẽ is called the symmetric predecessor of v.

Example. We will delete the node marked 45 in the first tree of Figure 4.3.
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Fig. 4.3: Deleting an element in a binary search tree.

We implement deleting of an element by the following algorithm.

Algorithm 4.10.
Delete(tree t, item e)
1 node b, a← t
2 a← Search(t, e)
3 if a = null then return
4 if a.right ̸= null and a.left ̸= null
5 then DelSymPred(a), return
6 if a.left = null
7 then b← a.right
8 else b← a.left
9 if t = a

10 then t← b, return
11 if a.parent.left = a
12 then a.parent.left← b
13 else a.parent.right← b
14 b.parent← a.parent
15 return

DelSymPred(node a)
1 node b← a
2 if a.left.right = null
3 then c← a.left, a.left← c.left
4 else b← a.left
5 while b.right.right ̸= null do
6 b← b.right
7 c← b.right, b.right← c.left
8 a.element← c.element
9 c.left.parent← b
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4.3 Balanced Trees

The height of a binary search tree that stores n elements is between
log2(n) and n. It is desirable that the height is close to log2(n). We achieve
this with a little additional computational effort when inserting and deleting
elements. More precisely, while inserting and deleting we maintain the follow-
ing condition for a binary search tree, which is attributed to Adel’son-Vel’skĭi1

and Landis2 (see [AdeLan62]).

Definition 4.11 (AVL condition). A binary tree is said to be balanced if for
each node v the heights of the left and right subtree of v differ at most by 1.
Balanced binary search trees are also called AVL trees.

The Fibonacci trees, which we introduce in the following definition, are
balanced trees. Binary trees are used as navigation structures for binary
search in sorted arrays (see Section 2.4.2). Analogously to binary search trees,
Fibonacci trees serve as navigation structures for the Fibonacci search in
sorted arrays. During Fibonacci search, the array in which the search will
be performed is divided using two consecutive Fibonacci numbers, and the
array is not just halved as with binary search. The details are the subject of
Exercise 11.

Definition 4.12. The sequence of Fibonacci trees (FBk)k≥0 is analogous to
the sequence of the Fibonacci numbers (fk)k≥0 (see Definition 1.19). It is
recursively defined by

1. FB0 and FB1 consist of the node 0.
2. Let k ≥ 2. Choose the kth Fibonacci number fk as root, take FBk−1 as

left and FBk−2 as right subtree.
3. Increase each node in the right subtree by fk.

The height of FBk is k − 1 for k ≥ 1. Therefore, the Fibonacci trees are
balanced.

Figure 4.4 shows FB2 − FB5.
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1 Georgy Maximovich Adel’son-Vel’skĭi (1922 – 2014) was a Russian and Israeli
mathematician and computer scientist.

2 Evgenii Mikhailovich Landis (1921 – 1997) was a Russian mathematician.
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Fig. 4.4: The Fibonacci trees FB2 − FB5

The tree Bk is the tree of the inner nodes of FBk, i.e., the nodes which
are not leaf nodes. The sequence (Bk)k≥0 is analogous to the sequence of the
Fibonacci trees. The start of induction is given by B0 = B1 = ∅. The tree
Bk, k ≥ 2, has fk as root, Bk−1 as left and Bk−2 as the right subtree of the
root. The nodes of Bk−2 are increased by fk, as shown in Figure 4.5.

Inductively we obtain
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Fig. 4.5: The inner nodes B0 − B5 of the corresponding Fibonacci trees.

Bk is a balanced tree of height k − 2 with a minimum number of nodes.
The following proposition provides information about the number of nodes
of Bk.

Proposition 4.13. Let bh be the number of nodes of a balanced tree of height
h with a minimum number of nodes. Then

bh = fh+3 − 1,

where fh+3 is the (h+ 3)th Fibonacci number.



138 4. Trees

Proof. Let Th be a balanced tree of height h with a minimum number of
nodes. The left subtree of the root has height h− 1. Then the right subtree
of the root has height h−2, because we assume a minimum number of nodes.
The number bh of nodes of Th satisfies

b0 = 1, b1 = 2, bh = bh−1 + bh−2 + 1, h ≥ 2.

This is an inhomogeneous second-order linear difference equation with con-
stant coefficients. Such equations are discussed in Section 1.3.2.

We calculate a special solution of the equation by the solution approach
φh = c, c constant, and get c = 2c + 1 or c = −1. The general solution bh
results from the general solution of the homogeneous equation

bh = λ1g
h + λ2ĝ

h, λ1, λ2 ∈ R,

solved in the proof of Proposition 1.21, and the special solution φh:

bh = λ1g
h + λ2ĝ

h − 1, λ1, λ2 ∈ R,

where g = 1/2(1 +
√
5) and ĝ = 1/2(1 −

√
5) are the solutions of x2 = x + 1

(Section 1.3.2, Proposition 1.21).
From the initial conditions b0 = 1, b1 = 2, results

λ1g
0 + λ2ĝ

0 − 1 = 1,

λ1g
1 + λ2ĝ

1 − 1 = 2.

We get

λ2 = 2− λ1,

λ1g + (2− λ1)(1− g) = 3.

This implies:

λ1 =
2g + 1

2g − 1
=

g3√
5
,

λ2 = 2− 2g + 1√
5

= −2g + 1− 2
√
5√

5

= −2(g −
√
5) + 1√
5

= −2ĝ + 1√
5

= − ĝ3√
5
.

In our calculation, we used that g and ĝ solve the equation 2x+1 = x+x+1 =
x+ x2 = x(x+ 1) = xx2 = x3. This results in the following solution

bh =
1√
5

(
gh+3 − ĝh+3

)
− 1 = fh+3 − 1.

2

Proposition 4.14 (Adel’son-Vel’skĭi and Landis). Let h be the height of a
balanced tree with n nodes. Then

h < 1.45 log2(n+ 2)− 1.33.
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Proof. The number n of nodes satisfies

n ≥ bh = fh+3 − 1 = round

(
gh+3

√
5

)
− 1 >

gh+3

√
5
− 2.

This implies
√
5(n+ 2) > gh+3. The result is

h < logg(
√
5(n+ 2))− 3 ≈ 1.45 log2(n+ 2)− 1.33,

thereby proving our assertion. 2

4.3.1 Insert

Since an AVL tree is a binary search tree, we use the search function of a
binary search tree (Algorithm 4.8). When inserting, we first proceed as with
a binary search tree (Algorithm 4.9). The search for the element e to be
inserted ends in a leaf, if e is not stored in the tree. At this leaf, we anchor
a new node and fill it with the element to be inserted. This may violate the
AVL condition. Then we reorganize the tree and restore the AVL condition.
We check for each node n on the search path, starting from the leaf, whether
the tree is balanced at n, i.e., whether the heights of the two subtrees of n
differ at most by 1. If this is not the case, we achieve this by a balancing
operation. The algorithm does not need the heights of the two subtrees of
a node, but only the difference between the two heights, the balance factor
of the node. The binary search tree property must be invariant under the
balancing procedure. We achieve this with rotations, which are sketched in
Figure 4.6.

..b.

a

.

α

.

β

.

δ
right around a

=⇒

left around b
⇐=

..a.

α

.

b

.

β

.

δ

Fig. 4.6: Right, left rotation.

The right rotation around a brings b one level down and a one level up.
The left rotation around b brings a one level down and b one level up. Since
the elements in β are larger than a and smaller than b, the binary search tree
property is preserved by right and left rotations.

Definition 4.15. Let a be a node in a binary tree. The balance factor bf(a)
of a is height of the right minus the height of the left subtree of a. For balance
factors we write − for −1, + for + 1, −− for −2 and ++ for +2.
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Example. In Figure 4.7, the balance factors are the superscripts at each node.
The tree is not AVL-balanced.

..14−.

11−−

.

10−−

.

9−

.

60

...

120

.

15++

..

20−

.

160

.

Fig. 4.7: Balance factors.

Remarks:

1. In a balanced tree, there are only nodes with the balance factors −, 0
and +.

2. A negative (positive) balance factor of a node indicates that the left
(right) subtree has greater height.

Example. We insert 6 into the left-hand tree in Figure 4.8.
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insert 6
=⇒
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right around 9
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.

12

.

15

..

16

Fig. 4.8: Example – insertion with right rotation.

Assume that we insert a node into a balanced tree B, and after insertion
we have bf(a) = −− or bf(a) = ++ for some node a; then the balanced tree
condition is violated at a.
We now discuss the case bf(a) = −−. The symmetrical case bf(a) = ++ is
to be treated analogously. Let a be a node with bf(a) = −− and b be the
root of the left subtree of a.
In general, the following holds for bf(b) before inserting and after inserting a
node in the subtree rooted at b:

before 0 − + −,+
after −,+ −− ++ 0

.
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Because of bf(a) = −− the height of b increased by one after inserting. Since
in both cases of the last column the height of b remains unchanged, these
cases can not occur.

In the cases bf(b) = −− or bf(b) = ++, we continue with the subtree with
root b. Thus, the cases bf(a) = −−, bf(b) = − and bf(a) = −−, bf(b) = +
remain.

We now specify the balancing operation for bf(a) = −− and bf(b) = −.
The height adjustment is done by a right rotation around b. We sketch this
in Figure 4.9.

..a. - -.
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.

β

.

δ

.

α
right around b

=⇒

..b.

β

.

a

.

δ

.

α

Fig. 4.9: Insert with right rotation.

Let h be the height of α. Then the height of δ is equal to h and the height
of β after inserting the node is equal to h+ 1.
After the rotation, we have bf(a) = 0 and bf(b) = 0. Therefore, the right tree
fulfills the AVL condition in the nodes a and b. The height of the considered
subtree is h + 2 before insertion and after rotation. Therefore, no further
balancing operations are necessary.

Example. Figure 4.10 shows a situation where it is not possible to restore the
AVL condition with one rotation.

..14.

9

.

3

.

12

.
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15

right around 9
=⇒

..9.
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.

12

.

10

..

15

Fig. 4.10: A simple rotation does not balance.

Example. In this example we establish the AVL condition by a double rota-
tion – first a left rotation, then a right rotation, as shown in Figure 4.11.
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Fig. 4.11: Example – insert with double rotation.

We now consider the general case for the balancing operation for bf(a) =
−−, bf(b) = +. The height adjustment is done by a left and right rotation,
first left around c, then right around c. We sketch this in Figure 4.12.
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then right around c
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γ2

.

α

Fig. 4.12: Insert with double rotation.

Let h be the height of α. Then the height of β is equal to h and the
heights of γ1 and γ2 before insertion are equal to h−1. Because the height of
b increases by one after insertion, either the height of γ1 or γ2 after inserting
is equal to h. The figure shows the second case.

The following table gives in the first column the balance factor of c after
the insertion and in the further columns the balance factors after reorganiza-
tion.

bf(c) bf(a) bf(b) bf(c)
+ 0 − 0
− + 0 0

Therefore, the right tree satisfies the AVL condition at the nodes a, b and
c. The height of the considered subtree before insertion and of the subtree
after the rotations is h + 2. Therefore, no further balancing operations are
necessary on the insertion path.

The following algorithms implement insertion into an AVL tree. The first
parameter of AVLInsert is the tree, the second parameter the root of the tree
and the third parameter the element e to insert.
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We add to the node object the balance factor component.
type balFac = 0,−,−−,+,++ and

type node = struct
item element
node left, right
node parent
balFac bf

Algorithm 4.16.
boolean AVLInsert(tree t, node a, item e)
1 if e < a.element
2 then b← a.left
3 if b = null then insertNode(b, e), return true
4 if AVLInsert(t, b, e)
5 then if a.bf = + then a.bf ← 0, return false
6 if a.bf = 0 then a.bf ← −, return true
7 if b.bf = −
8 then R-Rot(t, b), return false
9 else c← b.right

10 LR-Rot(t, c), return false
11 else if e > a.element
12 then b← a.right
13 if b = null then insertNode(b, e), return true
14 if AVLInsert(t, b, e)
15 then if a.bf = − then a.bf ← 0, return false
16 if a.bf = 0 then a.bf ← +, return true
17 if b.bf = +
18 then L-Rot(t, b), return false
19 else c← b.left
20 RL-Rot(t, c), return false
21 return false

We specify the algorithms for right and left-right rotation. The left and
right-left rotation are to be implemented analogously.

Algorithm 4.17.
R-Rot(tree t, node b)
1 a← b.parent, c← a.parent
2 a.bf ← 0, b.bf ← 0
3 a.parent← b, b.parent← c, a.left← b.right, b.right← a
4 if c = null
5 then t← b
6 else if c.right = a
7 then
8 c.right← b
9 else c.left← b
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Algorithm 4.18.
LR-Rot(tree t, node c)
1 b← c.parent, a← b.parent, d← a.parent
2 if c.bf = +
3 then b.bf ← −, a.bf ← 0
4 else b.bf ← 0, a.bf ← +
5 c.bf ← 0;
6 a.parent← c, b.parent← c, c.parent← d
7 a.left← c.right, b.right← c.left, c.left← b, c.right← a
8 if d = null
9 then t← c

10 else if d.right = a
11 then
12 d.right← c
13 else d.left← c

Remarks:

1. AVLInsert determines the insertion path and the target leaf by recursive
descent analogously to depth-first search (Algorithm 4.5). Then the func-
tion insertNode adds a new node to the target leaf and stores e in it. On
the way back to the root, the rotations are performed and the balance
factors are corrected.

2. When AVLInsert is executed, the descent path is implicitly stored on
the call stack. The node component parent, which is used by R-Rot and
LR-Rot, is not accessed in AVLInsert.

3. AVLInsert returns true in line 6 or line 16 if the height of the subtree with
root b has increased. It may be necessary to update the balance factor
a.bf . If the balance factor in a is neither 0 nor +, then a.bf = −. So
after termination of the call in line 4, a.bf = − −. Then a right rotation
(R-Rot) or a left-right rotation (LR-Rot) is necessary in this subtree. If
AVLInsert returns false, no further updates are necessary on the descent
path.

4. The lines 15 – 20 following the call of AVLInsert in line 14 are symmetrical
to the lines 5 – 10 for the descent on the right.

5. If e is in the tree. Then e is the element at a node a; neither of the
comparisons in lines 1 and 11 is true. AVLInsert returns false at line 21.

6. With an alternative iterative implementation of AVLInsert, we insert an
element with the algorithm Insert (Algorithm 4.9). To create the AVL
condition, we then pass through the path given by the parent component
of the node. Thereby we carry out the necessary rotations and updates
of the balance factors (compare with Algorithm 4.19).

4.3.2 Delete

The AVL condition and the binary search tree property must be invariant
under deleting. We delete first as in a binary search tree (Algorithm 4.10)
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and then possibly establish the AVL condition by balancing activities.

Example. In Figure 4.13 we delete 16:
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delete 16
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15

right around 11
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.

15

.

Fig. 4.13: Example – delete with right rotation.

To perform the balancing action, we consider the path P which leads from
the root to the predecessor of the node that we remove from the tree. We
denote by a the node furthest from the root at which the tree is no longer bal-
anced. We consider the case bf(a) = −−. The symmetrical case bf(a) = ++
can be treated analogously.

Let b be the root of the left subtree of a and α the right subtree of a. Let
h be the height of α before deleting the node. Because of bf(a) = −− the
height of the subtree α decreases by one after deleting the node. The subtree
with root b and thus the balance factor bf(b) remains unchanged.

We now consider the case bf(a) = −−, bf(b) = − or 0. The height
adjustment is done by a right rotation around b. We sketch this in Figure
4.14.
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Fig. 4.14: Deletion with right rotation.

Then the height of β1 is equal to h and the height of β2 is equal to h− 1
or h (remember bf(b) = − or 0). The figure shows the first case. The height
of the subtree with root a was h+ 2 before deleting the node.

In the right-hand tree, we have bf(a) = − and bf(b) = + if before delet-
ing bf(b) = 0, and we have bf(a) = bf(b) = 0 if before deleting bf(b) = −.
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Therefore, the AVL condition is fulfilled in the right-hand tree at nodes a
and b. In the case bf(b) = −, the height of the reorganized tree decreases. It
only has height h + 1. This may require balancing actions for higher nodes
in the path P .

In the case of bf(a) = −−, bf(b) = +, the height adjustment still remains
to be handled.

Example. In Figure 4.15, a successor of 15 has been removed. At node 14, we
obtain the balance factor − −.
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Fig. 4.15: Example – delete with double rotation.

We will now consider the general case. The height balance is done by a
left-right rotation, first left around c then right around c. We sketch this in
Figure 4.16.
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Fig. 4.16: Deletion with double rotation.

After deleting the node, the subtree α has height h−1. Because bf(b) = +,
the height of the right subtree of b is h, and the height of β is h− 1. Either
one of the subtrees γ1 or γ2 has height h − 1 and the other height h − 2, or
both have height h − 1. The original tree had height h + 2 before the node
was deleted.
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The following table shows the balance factor of c before reorganization in
the first column. The other columns show the balance factors after reorgani-
zation.

bf(c) bf(a) bf(b) bf(c)
0 0 0 0
+ 0 − 0
− + 0 0

Therefore, the right tree fulfills the AVL condition at nodes a, b and c and
has height h + 1. This may require balancing activities for higher nodes in
the path P .

Example. When deleting a node, rotations may occur along the path up to
the root. This occurs for trees consisting of the inner nodes of the Fibonacci
trees (Definition 4.12) when we delete the element furthest to the right. In
Figure 4.17 we delete the element 12 in the tree B8.

..8.

5

.

3

.

2

.

1

..

4

.

7

.

6

..

11

.

10

.

9

..

12

delete 12
=⇒

..8.

5

.

3

.

2

.

1

..

4

.

7

.

6

..

11

.

10

.

9

..

right around 10
=⇒

..8.

5

.

3

.

2

.

1

..

4

.

7

.

6

..

10

.

9

.

11

right around 5
=⇒

..5.

3

.

2

.

1

...

4

.

8

.

7

.

6

..

10

.

9

.

11

Fig. 4.17: Example – delete with multiple rotations.

Balancing requires first a right rotation around 10 and then a right rota-
tion around 5. The last tree shows the result.

To delete an element we use Delete (Algorithm 4.10). Delete must be
modified so that the predecessor a of the removed node b is returned. Fur-
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thermore, the return value contains the information whether b was the left
(bal = +) or right (bal = −) successor of a. After calling AVLRepair with
these parameters, we go through the path P from a to the root. Thereby we
perform the rotations to establish the AVL condition and update the balance
factors. The rotations we use when inserting a node (Algorithms 4.17 and
4.18) have to be adjusted regarding the correction of the balance factors.

The variable h controls whether balancing operations are necessary at
higher nodes.

Algorithm 4.19.
AVLRepair(tree t, node a, int bal)
1 node b, c; int h← bal
2 while a ̸= null and h ̸= 0 do
3 a.bf ← a.bf + h, next← a.parent
4 if a = next.left then h← + else h← −
5 if a.bf = −−
6 then b← a.left
7 if b.bf = −
8 then R-Rot(t, b)
9 else if b.bf = 0

10 then h← 0, R-Rot(t, b)
11 else c← b.right, LR-Rot(t, c)
12 if a.bf = ++
13 then b← a.right
14 if b.bf = +
15 then L-Rot(t, b)
16 else if b.bf = 0
17 then h← 0, L-Rot(t, b)
18 else c← b.left, RL-Rot(t, c)
19 if a.bf = − or a.bf = + then h← 0
20 a← next

Remark. Inserting a node requires a maximum of two rotations. Performing a
rotation requires constant running time. Together with the effort for finding
the insert position, the running time of AVLInsert is O(log(n)). The number
of rotations required to delete an element is limited by the height of the tree.
Since the height of an AVL tree is of order O(log(n)) (Proposition 4.14), the
running time T (n) for deleting an element is O(log(n)).

4.4 Randomized Binary Search Trees

We assume that n elements are stored in a binary search tree. The maximum
number of nodes in a search path is between log2(n) and n, depending on the
tree. We calculate the average number of nodes in a search path.
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Proposition 4.20. If we insert n elements into an empty binary search tree,
then the average number of nodes in a search path P (n) is

P (n) = 2
n+ 1

n
Hn − 3.3

We calculate the average of all search paths and all possible arrangements of
the n elements.

Proof. The probability that the ith element (in the sorted order) vi is the
first element to insert is 1

n .

Let P̃ (n, i) be the average number of nodes in a search path if vi is the root.
In this case, we get the tree in Figure 4.18.

..vi.

l

.

r

Fig. 4.18: A binary search tree.

In the left subtree l of the root, there are i − 1 and in the right subtree
r, there are n− i nodes. Therefore, the following recursive formula holds for
the average number of nodes in a search path with fixed root vi.

P̃ (n, i) =
1

n
((P (i− 1) + 1)(i− 1) + (P (n− i) + 1)(n− i) + 1)

=
1

n
(P (i− 1)(i− 1) + P (n− i)(n− i)) + 1.

P (n) =
1

n

n∑
i=1

P̃ (n, i)

=
1

n

n∑
i=1

(
1

n
(P (i− 1)(i− 1) + P (n− i)(n− i)) + 1

)

= 1 +
2

n2

n−1∑
i=1

iP (i).

The aim is to transform this recurrence into a difference equation by a suitable
substitution. This recurrence is similar to the recurrence we have seen in the

3 Hn is the nth harmonic number (Definition B.4).



150 4. Trees

running time calculation of QuickSort (Section 2.1.1). As in that case, the
nth element depends on all the predecessors. A similar substitution leads to
success.

We set xn :=
∑n

i=1 iP (i) and get the difference equation

xn = nP (n) +
n−1∑
i=1

iP (i)

=
2

n

n−1∑
i=1

iP (i) +
n−1∑
i=1

iP (i) + n

=
2

n
xn−1 + xn−1 + n

=
n+ 2

n
xn−1 + n, n ≥ 2, x1 = P (1) = 1 .

This equation has the solution

xn = (n+ 1)(n+ 2)(Hn+2 +
1

n+ 2
− 2).

(page 16, equation (d)). For P (n) we get

P (n) = 1 +
2

n2

n−1∑
i=1

iP (i) = 1 +
2

n2
xn−1

= 1 +
2

n2
n(n+ 1)

(
Hn+1 +

1

n+ 1
− 2

)
= 2

n+ 1

n
Hn − 3 .

This shows the assertion. 2

Remarks:

1. For large n, P (n) ≈ 2 ln(n). The average number of nodes in a search

path in the optimal case is ≈ log2(n). Since
2 ln(n)
log2(n)

≈ 1.39, the average

number of nodes in a search path is a maximum of 39% greater than in
the optimal case.

2. If we save the elements in a random order, we get the average value as
the expected value for the number of nodes of a search path. The aim is
to construct the search tree as if the elements to be saved were randomly
selected. We achieve this by the following construction.

4.4.1 The Treap Data Structure

The data structure Treap (= Tr(ee) + (H)eap) overlays a binary search tree
with the heap structure (Definition 2.11). Treaps are used in [AragSeid89] to
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implement randomized search trees. The elements e = (k, p) to be stored in
the treap consist of the key component k and the priority component p. In a
binary search tree, the priority is defined by the order in which we insert the
elements into the search tree. In a binary search tree, the element which we
first insert becomes the root. Now the element with the lowest priority should
become the root. We assign the priorities randomly and thus achieve that a
search tree is built just as with randomly selected elements. In particular,
each element has probability 1/n of being the root.

Definition 4.21. A binary search tree is called a treap if for each node, beside
the search tree property, the heap condition is also satisfied:

1. The keys of the elements stored in the right subtree of a node v are
greater than the key of the element of v. This key in turn is larger than
the keys of the elements stored in the left subtree of v.

2. The priority of an element e, stored in node v, is less than the priority
of the two elements stored in the successor nodes of v.

Example. Figure 4.19 shows an example of a treap.
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.

(12,15)

.

(15,17)

Fig. 4.19: A treap.

Proposition 4.22. Let S be a set of elements (k, p) with pairwise distinct
priorities p. Then there is exactly one treap T that stores S.

Proof. We shall prove our assertion by induction on n := |S|. For n = 0
and n = 1, there is nothing to prove. Let n ≥ 1, and let (k, p) ∈ S be the
element of minimum priority. This is the root of the treap. The left subtree
of the root is S1 := {(k̃, p̃) ∈ S | k̃ < k} and the right subtree of the root is
S2 := {(k̃, p̃) ∈ S | k̃ > k}. Then |S1| < n and |S2| < n. By the induction
assumption, there is exactly one treap T1 for S1 and exactly one Treap T2 for
S2. With T1 and T2, also T is uniquely determined. 2

Corollary 4.23. Let S be a set of elements (k, p). Then the treap T that
stores S does not depend on the order in which we insert the elements. If we
consider the priorities for all the elements to be fixed in advance, the result
will be a unique treap independent of the insertion sequence.
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4.4.2 Search, Insert and Delete in Treaps

When searching for elements, we use the search function of a binary search
tree (Algorithm 4.8). When inserting, we first proceed as in a binary search
tree (Algorithm 4.9). In the target node of the search, a leaf, we anchor a
new node and fill it with the element to be inserted. Then we reorganize the
tree in order to establish the heap condition. We move a node up by a left or
right rotation until the heap condition is established.

Example. We insert (13, 7) into the treap in Figure 4.19: First we insert as
in a binary search tree, as shown in Figure 4.20.

..(7,6).

(5,9)

.

(3,11)

.

(1,18)

..

(6,13)

.
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.
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(14,14)

.

(12,15)

..

(13,7)

.

(15,17)

Fig. 4.20: Example for insert.

Then the node(13, 7) is rotated upwards until the heap condition is estab-
lished. The result is shown in Figure 4.21
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.

(14,14)

..

(15,17)

Fig. 4.21: Example – the heap property is established.
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When removing a node, the procedure is the reverse of that for inserting
a node. First we move the node down by left or right rotations. We always
rotate with the successor with the lower priority. At the lowest level, we
simply delete the node.

4.4.3 Treaps with Random Priorities

We examine treaps whose elements have priorities that are random and pair-
wise distinct. Using randomly chosen priorities, we expect a binary tree, like
a tree which emerges from a random choice of keys. The question arises as to
the additional computational effort that needs to be made, i.e., the number
of rotations that are necessary when inserting or deleting an element.

We first consider the deletion of a node in a binary tree in which all levels
are fully occupied. Half of the nodes are at the lowest level. We can delete
one of these nodes without any rotation. A quarter of the nodes are at the
second-lowest level. Deleting one of these nodes requires only one rotation.
We continue counting the rotations and get 1

2 · 0 +
1
4 · 1 +

1
8 · 2 + . . . < 1 as

the mean value.
In the case of a treap with random priorities, the following proposition

also gives information about the expected value of the number of necessary
rotations.

Proposition 4.24. If we insert n elements into an empty treap and randomly
choose the priority of the elements with respect to the uniform distribution,
then the following assertions hold.

1. The expected value P (n) of the number of nodes in a search path is

P (n) = 2
n+ 1

n
Hn − 3.

2. The expected value of the number of rotations for inserting or removing
an element is less than 2.

Proof. 1. The probability is 1
n that the ith element (in the sorted order) has

the lowest priority, i.e., that it is the root of the treap. The proof is analogous
to the proof of Proposition 4.20.
We consider the number of rotations which are necessary to delete a node.
For reasons of symmetry, the number of rotations for inserting a node is equal
to the number of rotations for deleting it. Let the element a to be deleted be
the (k + 1)th element in the sorted sequence.

Let R be the path that starts from the left successor of a and always
pursues the right successor of a node and L be the path that starts from
the right successor of a and always pursues the left successor of a node. Let
R : b, d, . . . , u, L : c, e, . . . , v, R′ : d, . . . , u, L′ : e, . . . , v, and let LTb be the
left subtree of b and RTc the right subtree of c. We consider a right rotation
around b, as shown in Figure 4.22.



154 4. Trees
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Fig. 4.22: Right rotation.

We bring the node a one level lower by executing a right rotation around
b. The number of nodes in R decreases by one; the number of nodes in L does
not change. The situation with left rotations is analogous. Before a reaches
the leaf level, a must rotate around all nodes of L ∪ R. Since we reduce the
number of nodes in L∪R by one for each rotation and L∪R = ∅ is valid for
a leaf node, the number of rotations is equal to the sum of the nodes in the
two paths L and R.

We show for the expected value l of the number of nodes of L and for the
expected value r of the number of nodes of R:

l = 1− 1

k + 1
, r = 1− 1

n− k
.

From these two equations, it follows that l + r ≤ 2 and thus statement 2 of
the proposition is true. By symmetry, it is sufficient to show one formula. We
show the formula for l.

Let x1 < x2 < . . . xk < xk+1 < . . . < xn. Let us now look at the binary
search tree that is created when we randomly permute (x1, x2, . . . , xn) and
insert the elements in the new order. We realize the random permutation
by randomly drawing the elements with respect to the uniform distribution
one after the other from {x1, x2, . . . , xn} (without replacement). This tree is
equal to the tree which we get if we select all priorities in advance and insert
the elements in ascending order (by priority). No rotations are necessary for
this order. The elements are inserted as leaves, taking into account the binary
search tree condition. However, the treap does not depend on this insertion
order.

Let P be the path starting from the root of the left subtree of the node
that stores xk+1 and always pursues the right successor of a node. Let lk
be the expected value of the number of nodes in P . Then l = lk. We want
to determine lk. The problem depends only on the order of the elements
x1, x2, . . . , xk, xk+1. The elements xk+2, . . . , xn are not on P . They are irrel-
evant for this question.

We choose the first element x ∈ {x1, x2, . . . , xk, xk+1} randomly with
respect to the uniform distribution. We distinguish between two cases:

1. x = xk+1.
2. x = xi, 1 ≤ i ≤ k.
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..xk+1.
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Fig. 4.23: Left subtree – right leg.

In Figure 4.23, the listing of possible keys in P has been started. Not all
of these elements must necessarily occur.

An element x is on P if and only if

(1) x < xk+1, i.e., x ∈ {x1, x2, . . . xk} and
(2) x is greater than any element selected before x from {x1, x2, . . . xk}.

Let us consider the first case (x = xk+1). Let l̃k be the random variable
indicating how often condition (2) occurs. Once we have chosen the next
element xi, condition (2) can no longer be fulfilled for x1, . . . , xi−1. Condition
(2) can at most be fulfilled for the k − i elements xi+1, . . . , xk. Recursively,
we get the results: Condition (2) is fulfilled 1 + l̃k−i times. Averaged over all
i we conclude

l̃k =
1

k

k∑
i=1

(1 + l̃k−i) = 1 +
1

k

k−1∑
i=0

l̃i, k ≥ 1,

l̃0 = l̃k−k = 0 (the first element is xk).

To solve this equation we set xk =
∑k

i=0 l̃i. We get

xk = l̃k +

k−1∑
i=0

l̃i =
1

k
xk−1 + xk−1 + 1.

Hence

x1 = l̃1 = 1,

xk =
k + 1

k
xk−1 + 1, k ≥ 2.
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Now we solve the first-order linear difference equation with the methods from
Section 1.3.1. For this, we calculate πk =

∏k
i=2

i+1
i = k+1

2 and

xk =
k + 1

2

(
1 +

k∑
i=2

2

i+ 1

)
=

k + 1

2

(
1 + 2

k+1∑
i=3

1

i

)

=
k + 1

2

(
1 + 2

(
Hk+1 −

3

2

))
= (k + 1)(Hk+1 − 1).

We get
l̃k = xk − xk−1 = Hk.

In the first case (x = xk+1), we have lk = l̃k. In the second case (x =
xi, 1 ≤ i ≤ k), the elements x1, . . . , xi−1 are not on P (they are in the left
subtree of xi). On P there are only elements from {xi+1, . . . , xk}. Recursively,
it follows that the number of elements in P is lk−i. Averaged over all i results:

lk =
1

k + 1
l̃k +

k∑
i=1

1

k + 1
lk−i =

1

k + 1
l̃k +

1

k + 1

k−1∑
i=0

li, k ≥ 1,

l0 = 0.

Now we solve this equation and set xk =
∑k

i=0 li. We get:

xk = lk +
k−1∑
i=0

li =
1

k + 1
xk−1 + xk−1 +

1

k + 1
l̃k.

Thus

x1 = l1 =
1

2
l̃1 =

1

2
,

xk =
k + 2

k + 1
xk−1 +

1

k + 1
l̃k, k ≥ 2.

We reduced the problem to the solution of an inhomogeneous difference equa-
tion of first order. We solve this equation with the methods from Section
1.3.1.

We compute πi =
∏i

j=2
j+2
j+1 = i+2

3 and

xk =
k + 2

3

(
1

2
+ 3

k∑
i=2

l̃i
1

i+ 1

1

i+ 2

)

=
k + 2

3

(
1

2
+ 3

k∑
i=2

l̃i

(
1

i+ 1
− 1

i+ 2

))
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=
k + 2

3

(
1

2
+ 3

(
k+1∑
i=3

l̃i−1
1

i
−

k+2∑
i=4

l̃i−2
1

i

))

=
k + 2

3

(
1

2
+ 3

(
1

3
l̃2 +

k+1∑
i=4

(
l̃i−1 − l̃i−2

) 1

i
− l̃k

k + 2

))

=
k + 2

3

(
1

2
+ 3

(
1

2
+

k+1∑
i=4

1

i− 1

1

i
− Hk

k + 2

))

=
k + 2

3

(
1

2
+ 3

(
1

2
+

k+1∑
i=4

1

i− 1
− 1

i
− Hk

k + 2

))

=
k + 2

3

(
1

2
+ 3

(
1

2
+

k∑
i=3

1

i
−

k+1∑
i=4

1

i
− Hk

k + 2

))

=
k + 2

3

(
1

2
+ 3

(
1

2
+

1

3
− 1

k + 1
− Hk

k + 2

))
=

k + 2

3

(
3− 3

k + 1
− 3

Hk

k + 2

)
= k + 1−Hk+1.

We get

lk = xk − xk−1 = 1− 1

k + 1
.

Since the expected value of lk and rk for each node is less than one, we expect
on average less than two rotations. 2

Remark. AVL trees and randomized binary search trees have similar per-
formance characteristics. Randomized binary search trees provide expected
values; AVL trees always meet the specified limits.

If further operations are required, such as the combination of two trees
T1 and T2, where the keys in T1 are smaller than the keys in T2, this can be
easily implemented with randomized binary search trees. Select a new root
with appropriate key and priority component, make T1 the left and T2 the
right successor of the root and then delete the root.

4.5 B-Trees

B-trees were developed by Bayer4 and McCreight5 to store data on external
storage media (see [BayMcC72]). The external storage media are typically
hard disk drives. These allow “quasi-random” access to the data. With quasi-
random access, we address data blocks – not individual bytes as with random

4 Rudolf Bayer (1939 – ) is a German computer scientist.
5 Edward Meyers McCreight is an American computer scientist.
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access – and transfer them between main memory and external storage. Essen-
tially, the number of accesses to the external memory affects the computing
time of applications for storing data on external storage media. The access
time for two bytes in a single data block is approximately half as long as the
access time for bytes in different data blocks. B-trees minimize the number
of accesses to the external storage medium.

We manage large amounts of data with databases. The data must be
persistently stored and are typically of large volume. Therefore, the use of
secondary storage is necessary. Database systems organize the stored data
using B-trees.

Definition 4.25. A rooted tree is called a B-tree of order d if the following
holds:

1. Each node has a maximum of d successors.
2. Each node other than the root and leaves has at least

⌈
d
2

⌉
successors.

3. The root contains at least two successors if it is not a leaf.
4. All leaves are on the same level.

Remark. Let B be a B-tree of order d and height h. For the minimum number
of nodes of B, we get

1 + 2 + 2

⌈
d

2

⌉
+ . . .+ 2

⌈
d

2

⌉h−1

= 1 + 2
h−1∑
i=0

⌈
d

2

⌉i
= 1 + 2

⌈
d
2

⌉h − 1⌈
d
2

⌉
− 1

.

The maximum number of nodes is

1 + d+ d2 + . . .+ dh =
h∑

i=0

di =
dh+1 − 1

d− 1
.

In total, the number n of nodes is limited by

1 + 2

⌈
d
2

⌉h − 1⌈
d
2

⌉
− 1

≤ n ≤ dh+1 − 1

d− 1
.

We call the nodes of a B-tree pages. The transfer of data from main
memory to the hard disk takes place in blocks of fixed size. The block size
depends on the external storage medium used. We select the size of a page
so that the transfer from main memory to the secondary storage is possible
with one access.

Small-order B-trees are less suitable for organizing data on external stor-
age media due to their small page size. They are another way to efficiently
manage data in main memory. B-trees of order four, for example, are an
equivalent structure to red-black trees (Exercise 17). Red-black trees are an-
other variant of balanced binary search trees (Exercise 10).

To store an ordered set X we use the B-tree structure as follows:
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1. A page contains elements of X in sorted order and addresses of successor
nodes. Addresses are not used in leaf pages.

2. Let d be the order of the B-tree. For each page, it holds that:

number of addresses = number of elements + 1.

This results in the following conditions for the number of elements on a
page.
a. The root contains at least one element.
b. Each node other than the root contains at least

⌊
d−1
2

⌋
(=
⌈
d
2

⌉
− 1)

elements.
c. Each node contains a maximum of d− 1 elements.

3. The logical data structure of a page is given by :

a0 x1 a1 x2 a2 . . . al−1 xl al . . . . . .

where ai, i = 0, . . . , l, denotes the address of a subsequent page and xi,
i = 1, . . . , l, an element stored on the page. We have x1 < x2 < . . . <
xl < . . .. For an element x, lx denotes the address to the left of x, and
rx the address to the right of x. For an address a, S(a) is the page that
is addressed by a. Elements u ∈ S(lx) and z ∈ S(rx) satisfy

u < x < z.

Remark. Due to the arrangement defined above, the elements are stored in
sorted order in the B-tree. If we traverse and output the B-tree “in-order”, i.e.,
(1) start with the first element x of the root page, first output (recursively)
the elements in S(lx), then x and then (recursively) the elements on the page
S(rx), (2) continue the procedure with the second element of the root page,
and so on, then the output is sorted in ascending order.

Example. Figure 4.24 shows a B-tree for the set {A,B,E,H,L,M,N,O,P,Q,R,T,
V,W}.

Fig. 4.24: A B-tree example.

4.5.1 Path Lengths

Since all leaves of a B-tree lie on the same level, all paths from the root to
a leaf have the same length. The length of a path is limited by the height of
the B-tree and determines the number of page accesses required for searching,
inserting and deleting an element.
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Proposition 4.26. Let S be a set stored in a B-tree of order d, |S| = n.
Then the height h of the tree meets

logd(n+ 1)− 1 ≤ h ≤ logq+1

(
n+ 1

2

)
, q =

⌊
d− 1

2

⌋
.

In particular, the height h of the tree is logarithmic in the number of elements
stored in the tree: h = O(log2(n)).

Proof. Let min be the minimum and max the maximum number of elements
in a B-tree of height h. Then

min = 1 + 2q + 2(q + 1)q + . . .+ 2(q + 1)h−1q

= 1 + 2q
h−1∑
i=0

(q + 1)i = 1 + 2q
(q + 1)h − 1

q
= 2(q + 1)h − 1 ≤ n.

Thus, h ≤ logq+1

(
n+1
2

)
.

max = (d− 1) + d(d− 1) + . . .+ dh(d− 1)

= (d− 1)
h∑

i=0

di = (d− 1)
dh+1 − 1

d− 1
≥ n.

This implies logd(n+ 1)− 1 ≤ h. 2

Example. Let d = 127, n = 221 + 1(≈ 2Mio). Then q = 63 and h ≤
log64(2

20 + 1) ≈ 3.3. We store the elements in a B-tree with four levels.

In the next two sections, we study algorithms for searching, inserting
and deleting elements. The efficiency of these algorithms is determined by
the number of necessary accesses to the secondary storage. These, in turn,
depend on the height h of the B-tree. With Proposition 4.26, we conclude
that the number of accesses to secondary storage is of order O(logq+1

(
n+1
2

)
),

where q =
⌊
d−1
2

⌋
, d denotes the order of the B-tree and n denotes the number

of stored elements.

4.5.2 Search and Insert

The pages of a B-tree reside on secondary storage. The root of a B-tree is
always in main memory. More pages are in main memory only as far as
possible and necessary. We address the pages of a B-tree in main memory
with the data type page.

The secondary storage addresses are of type address. Here 1, 2, 3, . . . de-
note valid page addresses; the page address 0 plays the role of null in linked
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lists.

The Find, Insert and Delete algorithms use access functions provided by
the abstract data type B-Tree. These are the following functions:

1. ReadPage(address a) reads the page with address a from secondary stor-
age and returns a reference to the page in main memory.

2. WritePage(address a, page p) transfers a page p from main memory to
secondary storage at address a. If a = 0, WritePage allocates a new
page in secondary storage and returns its address. Otherwise, WritePage
returns a.

3. PageSearch(page p, item e) searches for e in the page that references p
and returns a pair (i, adr). If i > 0 holds, e is the ith element in p. If
i = 0, e is not on the page p. If in this case p is a leaf, PageSearch returns
the address adr = 0. If p is not a leaf, PageSearch returns the address of
the page which is the root of the subtree which could contain e.

The first two functions hide the details about the transfer of pages to and
from secondary storage.

First we specify the function to search for elements. e is the element to
search for and p is the root of the B-tree.

Algorithm 4.27.
(page, index) BTreeSearch(page p, item e)
1 while true do
2 (i, adr)← PageSearch(p, e)
3 if i > 0
4 then return (p, i)
5 else if adr ̸= 0
6 then p← ReadPage(adr)
7 else return(p, 0)

BTreeSearch returns in page the page where e is located. With the returned
index i, we can access e on the page.
If e is not in the B-tree, the search ends in a leaf. BTreeSearch returns 0 in
index (valid indices start at 1). page is the page in which e would be inserted.

When inserting an element e, we first use BTreeSearch to search for the
node which has to store e. Suppose the search with BTreeSearch ends unsuc-
cessfully in a leaf of the B-tree. If the leaf is not yet full, we insert e into
this leaf. If the leaf is full, we allocate a new page. We copy about half of the
elements from the old page into the new page and insert an element together
with the address of the new page into the predecessor page. The insertion of
an element is not limited to the leaves; it may be continued on lower levels.

First, we demonstrate the insertion of an element with the following ex-
ample.
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Example. We insert D into the B-tree of Figure 4.25.

Fig. 4.25: Inserting an element.

Since the page that should store D is already full, we allocate a new page.
The elements A, B, D are distributed on two pages, the middle element C
goes to the predecessor page. Since the predecessor page is full, we allocate
another new page. We distribute the elements C, E, N on two pages; the
middle element H goes to the predecessor page. We get the B-tree which is
shown in Figure 4.26.

Fig. 4.26: Inserting an element.

We now consider the general case of a full page

a0 x1 a1 x2 a2 . . . . . . al−1 xl al

with l = d− 1, where d denotes the order of the B-tree. Insert e, b (b = 0, if
the target is a leaf page):

a0 x1 a1 . . . ai−1 e b xi ai . . . . . . al−1 xl al = ã0 x̃1 . . . . . . ãl x̃l+1 ãl+1

Find the element x̃k in the middle and split into

ã0 x̃1 . . . . . . x̃k−1 ãk−1 and ãk x̃k+1 . . . . . . ãl x̃l+1 ãl+1

We allocate a new page for the right part ãk x̃k+1 . . . . . . ãl x̃l+1 ãl+1 . Let

b̃ be the address of the new page. Insert x̃k, b̃ (in sorted order) into the
predecessor page.
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Because the address to the left of x̃k references the old page, which is now
ã0 x̃1 . . . . . . x̃k−1 ãk−1 , the algorithm preserves the B-tree properties. The
elements stored in it are smaller than x̃k. The B-tree remains sorted after the
division of a node. After splitting a full node, each node has at least

⌊
d−1
2

⌋
elements and at least

⌊
d−1
2

⌋
+1 (=

⌈
d
2

⌉
) successors. Splitting preserves the

lower limit of the number of elements a page must contain.

We extend the abstract data type B-tree by the function

(boolean insert, item f, adr b) PageInsert(page p, item e, address a).

PageInsert inserts the element e with address a on to the page p, which is in
main memory, and writes the page to secondary storage. If the page p is full,
PageInsert allocates a new page, splits the elements and writes both pages to
secondary storage. If the return value insert is true, the case of a full page
has occurred. In this case, an element has to be inserted on to the predecessor
page. This element is (item f, adr b).

Algorithm 4.28.
BTreeInsert(page t, item e)
1 (p, i)← BTreeSearch(t, e)
2 if i ̸= 0 then return
3 b← 0
4 repeat
5 (insert, e, b)← PageInsert(p, e, b)
6 if insert
7 then if p.predecessor ̸= 0
8 then p← ReadPage(p.predecessor)
9 else p← new page

10 until insert = false

Remarks:

1. First, BTreeSearch determines the leaf into which e is to be inserted.
PageInsert then inserts e into the leaf. If insert is true, then we read
the predecessor page from secondary storage. The middle element (e, b)
will be added to the predecessor page as long as the page splits, i.e.,
insert = true.
The algorithm from above reads pages from secondary storage again on
the path from the leaf to the root. However, it is possible to avoid this
by a more careful implementation.

2. If an element is to be inserted into a full root node, PageInsert allocates
a new page and distributes the elements of the old root between the old
root and the new page. In line 9, BTreeSearch allocates a page for a new
root. Then we insert the middle element into the new root (line 5). The
height of the tree increases by one.

3. The balance is not lost because the tree grows from the bottom to the
top.
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4.5.3 Deleting Elements

Deleting an element must be done in accordance with the B-tree structure.
The following points must be observed:

1. Since the condition “number of addresses = number of elements + 1” is
fulfilled for inner pages, it is initially only possible to remove an element
from a leaf page. If the element x to be deleted is not in a leaf, swap x
with its successor (or predecessor) in the sorted order. It is stored in a
leaf. Now, we remove x from the leaf page. After removing x, the sorted
order is restored.

2. If we remove an element and underflow arises, we have to reorganize
the B-tree. Underflow exists if a node different from the root contains
fewer than

⌊
(d− 1)/2

⌋
elements. We first try to balance between directly

adjacent pages. We designate two nodes in the B-tree as directly adjacent
if they are adjacent on the same level and have the same predecessor. If
it is not possible to balance between directly adjacent pages, we combine
two directly adjacent pages into one and then release one of the two pages.
We get an element from the predecessor page, i.e., we continue deleting
recursively. Because⌊

d− 1

2

⌋
− 1 +

⌊
d− 1

2

⌋
+ 1 ≤ d− 1

the elements from the page with underflow, the neighboring page and the
element from the predecessor fit on to one page.
If underflow enters the root, i.e., the root contains no elements, we free
the root page.

3. Balancing between directly adjacent pages S1 (left node) and S2 (right
node) is done via the predecessor node S of both pages. For an element
x ∈ S, we denote by lx the address to the left of x and rx the address
to the right of x. lx references S1 and rx references S2. The elements
in S1 are smaller than x and the elements in S2 are larger than x. We
discuss the case where the balance occurs from S1 to S2. The reverse case
should be treated analogously. The largest element v in S1 (it stands at
the far right) goes to S to the place of x and x goes to S2 and occupies
there the place which lies at the far left. Now, we have to adjust the tree.
We replace the missing address lx in S2 with rv: lx = rv. We delete the
address rv in S1. The elements in S1 are smaller than v, the elements in
S2 are larger than v. The elements in S(lx) are larger than v, but smaller
than x. The B-tree remains sorted after adjustment.

Example. We will now look at examples of the various cases that can occur
during deletion. We delete the element U in the B-tree of order 4 in Figure
4.27.
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Fig. 4.27: Deleting U.

For this, we exchange U with T. Now U is in a leaf, and we can delete U.
We get the B-tree in Figure 4.28.

Fig. 4.28: Deleting an element in a leaf page.

Next, we delete Y. Now underflow occurs; there is a balance with the
direct neighbor. We get the B-tree in Figure 4.29.

Fig. 4.29: Deleting an element with adjustment.

Finally, we delete T. Underflow occurs again, we merge directly adjacent
pages. After another underflow in the predecessor node, a balance is made
with the direct neighbor. We get the B-tree in Figure 4.30.

Fig. 4.30: Deleting an element with internal adjustment.

Finally, we delete A. Because of underflow, we merge directly adjacent
pages. Underflow occurs again in the predecessor node. Since no adjustment
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with the direct neighbor is possible, we again merge directly adjacent pages.
We get the B-tree in Figure 4.31.

Fig. 4.31: Deleting an element with height reduction.

After deleting the root, the height of the B-tree decreases by one.

Algorithm 4.29.
BTreeDel(item e)
1 with page S containing e
2 if S is not a leaf
3 then exchange e with the successor∗ of e in the page S̃
4 S ← S̃ (now S is a leaf and contains e)
5 delete e from the page S
6 while underflow in S do
7 if S = root
8 then free S , return
9 attempt to balance between immediate neighbors

10 if balance successful
11 then return
12 combine directly adjacent pages
13 S ← predecessor of S

∗ The successor in the sorted sequence is located in a leaf.

Remarks:

1. By definition, B-trees are completely balanced. The maintenance of the
B-tree structure during insertion and deletion is ensured by simple al-
gorithms. In the worst case, all nodes of the search path from a leaf
to the root are affected when inserting or deleting an element. The
number of secondary storage operations is of order O(logq+1

(
(n+ 1)/2

)
),

q = ⌊(d− 1)/2⌋, where d is the order of the B-tree and n is the number of
stored elements (Proposition 4.26).
The price for the balance of the tree is that the individual pages may
only be “half” filled.

2. The addresses appearing on the leaf pages all have the value 0 and there-
fore we do not need to store them. However, we note that it is a leaf.

3. When inserting, just like while deleting, it is possible to balance between
directly adjacent pages. Instead of immediately creating a new page if
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a page is full, we first check whether there is still room on a directly
adjacent page. We need a new page if two pages are full. This increases the
utilization of memory; every page except the root is filled to at least 2/3
full. This B-tree variant is called a B∗-tree. In addition to more efficient
memory usage, B∗-trees have a lower height than B-trees for a given
number of stored elements (see Proposition 4.26).

4. Database applications store data records. These records are identified by
keys. The length of the key is often small compared to the length of the
whole data set. We implement an index to speed up access to the data
records. The index consists of search keys, and we organize it as a B-tree.
Due to the lower memory requirements for a search key, it is possible to
store many search keys on a page. This increases the degree of a node and
causes the tree to have lower height. The leaf pages of the B-tree contain
the references to the data pages. This structure, consisting of index and
data pages, is called a B+-tree.
The set of search keys can consist of keys of the data records. In fact, a
search key s in a leaf must separate the keys of the following data pages,
i.e., it must be valid that the keys in the left successor are < s and the
keys in the right successor are > s. Therefore, deleting a record may not
require changing the search keys.
If we organize the data pages in a double linked list, then it is possible to
access the predecessor or successor of a data page in constant time. As
a consequence, we can perform range queries of data very efficiently, i.e.,
output data whose keys lie within an interval.
This type of access is called the indexed sequential access method (ISAM).
It enables both sequential (in a sorted order) and index-based access to
the data records of a database.

Example. Figure 4.32 shows a B+-tree.

Fig. 4.32: B+-tree.
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4.6 Code Trees

In this section, we use code trees to graphically represent codes for data
compression. Therefore, we first introduce basic terms from coding theory.
In the sections on adaptive Huffman coding, arithmetic codes and Lempel-
Ziv codes, we are guided by [HanHarJoh98], an excellent introduction to
information theory and data compression.

Definition 4.30.

1. An alphabet is a non-empty finite set X. The elements x ∈ X are called
symbols.

2. A finite sequence of symbols x = x1 . . . xn, xi ∈ X, i = 1, . . . , n, is called
a word or message over X. |x| := n is called the length of x. ε is the
word without symbols, the empty word . The length of ε is 0, |ε| = 0.

3. X∗ := {x | x is a word over X} is called the set of messages over X.
4. Xn := {x ∈ X∗ | |x| = n} denotes the set of messages of length n over

X, n ∈ N0.

Example. An important example is binary messages. The set of binary mes-
sages is {0, 1}∗ and the set of binary messages of length n is {0, 1}n.

Definition 4.31. Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be alphabets.
An encoding of X over Y is an injective map

C : X −→ Y ∗\{ε},

i.e., different messages receive different codes. By C we also denote the image
of C. It consists of the codewords C(x1), . . . , C(xm) and is called a code of
order m over Y .

Example. Let X = {a, b, c, d}. An encoding of X over {0, 1} is given by:
a 7−→ 0, b 7−→ 111, c 7−→ 110, d 7−→ 101 or
a 7−→ 00, b 7−→ 01, c 7−→ 10, d 7−→ 11.

4.6.1 Uniquely Decodable Codes

When compressing a message from X∗, the encoder generates the coded mes-
sage, a string from Y ∗. In order to encode the symbols from X, a code over
Y is used. To encode a string from X∗, the encoder concatenates the code
words for the symbols that make up the string. The task of the decoder is
to reconstruct the original messages from the coded messages. Uniquely de-
codable means that a string from Y ∗ has at most one decomposition into
code words. Thus, the use of a uniquely decodable code enables the decoder
to determine the sequence of the coded messages. This is why we also call
uniquely decodable codes lossless codes.

Definition 4.32. Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be alphabets
and C : X −→ Y ∗\{ε} an encoding of X over Y .
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1. The extension of C to X∗ is defined by

C∗ : X∗ −→ Y ∗, ε 7−→ ε, xi1 . . . xik 7−→ C(xi1) . . . C(xik).

2. The encoding C or the code {C(x1), . . . , C(xn)} is called uniquely decod-
able if the extension C∗ : X∗ −→ Y ∗ is injective.

We can prove unique decodability, for example, by specifying an algorithm
for unique decoding. A coded string must be unambiguously broken down into
a sequence of code words. By specifying two decompositions of a string, we
show that a code cannot be uniquely decoded.

Example.

1. The code C = {0, 01} is uniquely decodable. We decode c = ci1 . . . cik by

ci1 =

{
0 if c = 0 or c = 00 . . . ,
01 if c = 01 . . . ,

and continue recursively with ci2 . . . cik .
2. C = {a, c, ad, abb, bad, deb, bbcde} is not uniquely decodable, because

abb|c|deb|ad = a|bbcde|bad are two decompositions into code words.

Criterion for Unique Decodability. Let C = {c1, . . . , cm} ⊂ Y ∗ \ {ε}. C
is not uniquely decodable if there is a counterexample to unique decodability,
i.e., for a c ∈ Y ∗ there are two decompositions into code words. More precisely,
if there are (i1, . . . , ik) and (j1, . . . , jl) with

ci1 . . . cik = cj1 . . . cjl and (i1, . . . , ik) ̸= (j1, . . . , jl).

Searching for a counterexample, we start with all codewords that have a
codeword as prefix. For each of these code words, we check whether the
associated postfix either splits another code word as prefix or is prefix of a
code word. We define for a code C the sequence

C0 := C,

C1 := {w ∈ Y ∗ \ {ε} | there is a w′ ∈ C0 with w′w ∈ C0},
C2 := {w ∈ Y ∗ \ {ε} | there is a w′ ∈ C0 with w′w ∈ C1}

∪ {w ∈ Y ∗ \ {ε} | there is a w′ ∈ C1 with w′w ∈ C0},
...

Cn := {w ∈ Y ∗ \ {ε} | there is a w′ ∈ C0 with w′w ∈ Cn−1}
∪ {w ∈ Y ∗ \ {ε} | there is a w′ ∈ Cn−1 with w′w ∈ C0}.

We denote by C1
n and C2

n the sets which define Cn.
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The elements w ∈ C1 are postfixes of code words (the corresponding prefix
is also a code word). We have to look at them further. There are two cases:
(1) Either w ∈ C1 splits off another code word as prefix (the rest of w is in
C2) or
(2) w ∈ C1 is a prefix of a code word c ∈ C and the rest of c is in C2.
We process the elements of C2 recursively, i.e., we form the sets C3, C4, . . ..

We find a counterexample to the unique decodability if

Cn ∩ C0 ̸= ∅ for an n ∈ N.

Example. Again, we consider the code C = {a, c, ad, abb, bad, deb, bbcde} from
above.

C0 C1 C2 C3 C4 C5

a
c
ad d eb
abb bb cde de b ad , bcde
bad
deb
bbcde

Since ad ∈ C5 ∩ C0, we get a counterexample to unique decoding: abbcdebad
has the decompositions a|bbcde|bad and abb|c|deb|ad.

If C can be uniquely decoded, then Cn ∩ C = ∅ for all n ∈ N. The
following proposition, published in [SarPat53], asserts the equivalence of the
two statements.

Proposition 4.33. For a code C = {c1, . . . , cm} the following statements
are equivalent:

1. C is uniquely decodable.
2. Cn ∩ C = ∅ for all n ∈ N.

Proof. LetM =
{
w ∈ Y ∗ | there exists ci1 , . . . , cik , cj1 , . . . , cjl ∈ C with:

ci1 . . . cikw = cj1 . . . cjl and w is a proper postfix of cjl .
}
. We show that

M =
∪
n≥1

Cn.

The relationship Cn ⊆ M is shown by induction on n. For n = 1 the state-
ment follows directly from the definition of C1. Now assume n > 1, and let
the statement already be shown for n−1, i.e., Cn−1 ⊆M. Let w ∈ C1

n. Then
there is a w′ ∈ C0 with w′w ∈ Cn−1. By the induction hypothesis, there is
a representation ci1 . . . cikw

′w = cj1 . . . cjl , so that w′w and thus also w is a
proper postfix of cjl . Therefore, w ∈M. If w ∈ C2

n, there is a w′ ∈ Cn−1 with
w′w ∈ C0. According to the induction hypothesis, there is a representation
ci1 . . . cikw

′ = cj1 . . . cjl with w′ is a proper postfix of cjl . We add w on both



4.6 Code Trees 171

sides at the end and get the representation ci1 . . . cikw
′w = cj1 . . . cjlw, which

proves w ∈M.
It remains to be shown that M ⊆

∪
n≥1 Cn. For w ∈ M, there is a

representation ci1 . . . cikw = cj1 . . . cjl , where w is a proper postfix of cjl . We
show by induction on k+l that w ∈ Cn for some n ≥ 1. For k+l = 2, we have
k = l = 1, and ci1w = cj1 shows that w ∈ C1. Now let k + l > 2. If l = 1, we
conclude from ci1 . . . cikw = cj1 that ci2 . . . cikw ∈ C1 and ci3 . . . cikw ∈ C2,
and so on, so finally, w ∈ Ck.

There remains the case l ≥ 2. We illustrate this with a sketch:

..

cj1

.

cjl−1

.

cjl

.

w′

.

w

.
ci1

.
cir

.
cik .

There exists an r ≤ k with

|ci1 . . . cir−1 | ≤ |cj1 . . . cjl−1
| < |ci1 . . . cir |

(cjl−1
ends with cir−1 or the end of cjl−1

is in cir ).
Let w′ ∈ Y ∗ \ {ε} with

cj1 . . . cjl−1
w′ = ci1 . . . cir

and
w′cir+1 . . . cikw = cjl ∈ C.

If w′ = cir , then we conclude as above that w ∈ Ck−r+1. In this case, the
assertion is shown.

If w′ is a proper postfix of cir , then the induction hypothesis applied
to cj1 . . . cjl−1

w′ = ci1 . . . cik implies that w′ ∈ Cm for some m. Since
w′cir+1

. . . cikw ∈ C (i.e., w′ is a prefix of a code word), we conclude
that cir+1

. . . cikw is an element of Cm+1, and as above, it follows that
w ∈ Cm+(k−r)+1.

Directly from the definition ofM we conclude that C is uniquely decod-
able if and only if C∩M = ∅. FromM =

∪
n≥1 Cn, it follows that C∩M = ∅

if and only if C ∩ Cn = ∅ for all n ∈ N. 2

Corollary 4.34. Unique decodability is decidable, i.e., there is an algorithm
which decides whether C can be uniquely decoded.

Proof. Let C ⊂ Y ∗ \ {ε} be a code. We design an algorithm to decide
unique decodability with the criterion of the previous proposition. Let m =
maxc∈C |c|. We have |w| ≤ m for all w ∈ Cn, n ∈ N. Therefore, Cn ⊂ Y m

for all n ∈ N. Since Y m has only a finite number of subsets, the sequence
(Cn)n∈N becomes periodic. We have to check condition 2 of Proposition 4.33
for only finitely many n. 2
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Definition 4.35 (graphical representation of a code).

1. Let Y = {y1, . . . , yn} be an alphabet. We assign to all messages Y ∗ =
∪∞k=0Y

k over Y a tree B:
a. The root of the tree is the empty word {ε}.
b. Let y = yi1 . . . yik be a node in B. The node y has the n successors

yi1 . . . yiky1, . . . , yi1 . . . yikyn.
2. Let C ⊂ Y ∗ be a code over Y .

In the tree B of Y ∗, we mark the root, all code words from C and all
paths leading from the root to code words.
The marked elements of B define the code tree of C.

Example. Figure 4.33 shows the code tree for the binary code {00, 001, 110,
111, 0001}. The code words are located in the rectangular nodes.

..ε.

0

.

00

.

000

..

0001

.

001

..

1

..

11

.

110

.

111

Fig. 4.33: A code tree example.

Definition 4.36. A code C = {c1, . . . , cm} ⊂ Y ∗\{ε} is called instantaneous
or a prefix-condition code or a prefix code6 if ci is not a prefix of cj for i ̸= j.

The code words of prefix-condition codes are located in the leaves of the
code tree. Prefix-condition codes can therefore be uniquely decoded. Each
path in the code tree from the root to a leaf corresponds to a code word. We
use the code tree as a parser to split c = ci1 . . . cin into code words. The table
tab assigns a code word to the corresponding message.

Algorithm 4.37.
Decode(code c[1..n])
1 l← 1, m← ε
2 while l ≤ n do
3 node← root, j ← l
4 while node ̸= leaf do
5 if c[j] = 0 then node← node.left
6 else node← node.right
7 j ← j + 1
8 m← m||tab[c[l..j − 1]], l← j

6 Actually a prefix-free code.
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Prefix-Condition Codes for Natural Numbers – the Elias Codes.
Natural numbers are often represented by their corresponding binary repre-
sentation. However, this does not yield a uniquely decodable code. We get a
prefix-condition code, for example, if we encode the numbers in the unary al-
phabet {0} and use 1 to mark the end of a code word (1 = 1, 2 = 01, 3 = 001,
etc.). For the representation of z, we need z bits. The Elias7 codes are prefix-
condition codes for the natural numbers, which manage with considerably
fewer bits. The basic idea of the Elias codes is to precede a binary represen-
tation with an encoding of its length. This leads to prefix-condition codes.

The Elias gamma code Cγ precedes the binary representation of z with
⌊log2 z⌋ 0-bits. The length of the binary representation is calculated with the
formula ⌊log2 z⌋+1. From the ⌊log2 z⌋ prefixed 0-bits, we calculate the length
of the code word for z. For example, 31 has the binary representation 11111.
four 0-bits must be prefixed. We get 000011111. The code word length of the
code for z is 2⌊log2 z⌋+ 1. Figure 4.34 shows part of the code tree for Cγ .
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.

0

.

.

.

2

.

0

.

3

.

1

.

1

.
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.

1

.
1

Fig. 4.34: Elias gamma code.

The Elias delta code Cδ builds on Cγ . In the case of Cδ, we prefix the
binary representation of z with the length of the binary representation of z,
coded with Cγ . Since every binary representation of a number starts with
1, we omit the leading 1 in the encoding of z. For example, 31 has binary
representation 11111. Cγ(⌊log2 z⌋+ 1) = Cγ(5) = 00101. We get 001011111.

Algorithm for decoding:

1. Count the leading zeros. Let n be the number of leading zeros. The first
2n+ 1 bits encode the length l of the binary representation of z.

2. We precede the l−1 following bits by 1 and get the binary representation
of z.

7 Peter Elias (1923 – 2001) was an American information theorist.
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Since Cγ is a prefix-condition code, Cδ is also a prefix-condition code.
The code word length is |Cδ(z)| = 2⌊log2(⌊log2 z⌋+ 1)⌋+ 1 + ⌊log2 z⌋.
For z ≥ 32, we get |Cδ(z)| < |Cγ(z)|.

4.6.2 Huffman Codes

Huffman8 codes use a statistical model of the data to be compressed. The
statistical model is derived from the frequency of occurrence of the code words
in the message to be compressed. The decoder reconstructs the original data
from the compressed data. No information is lost during encoding. It is a
lossless coding .

Definition 4.38. A (memoryless) source (X, p) consists of an alphabet X =
{x1, . . . , xm} and a probability distribution p = (p1, . . . , pm), i.e., pi ∈ ]0, 1],
i = 1, . . . ,m, and

∑m
i=1 pi = 1 (see Definition A.1).

The source sends the symbol xi with the probability p(xi) = pi.

1. In information theory, the information content of xi is defined as
log2

(
1/pi
)
= − log2(pi). The information content or the entropy H(X)

of a source (X, p) is the average information content of its messages, i.e.,

H(X) := −
m∑
i=1

pi log2(pi).

The unit of measurement of the information content is the bit.
2. Let C : X −→ Y ∗ \ {ε} be an encoding of X over Y , then we call

l(C) :=
m∑
i=1

pi|C(xi)|

the average code word length of the code C.
3. A uniquely decodable encoding C : X −→ Y ∗ \ {ε} is said to be com-

pact or minimal if the average code word length l(C) is minimal for all
uniquely decodable encodings C : X −→ Y ∗\{ε}.

The term entropy is defined independently of the encoding of the source.
The connection to the encoding of the source is established by the Noiseless
Coding Theorem of Shannon9.

Proposition 4.39. Let (X, p) be a source and C : X −→ {0, 1}∗\{ε} a unique-
ly decodable encoding. Then

H(X) ≤ l(C).

Furthermore, there exists a prefix-condition code C for X with l(C) < H(X)+
1. This is especially true for every compact code.

8 David A. Huffman (1925 – 1999) was an American computer scientist.
9 Claude Elwood Shannon (1916 – 2001) was an American mathematician. He is
the founder of information theory and is famous for his fundamental work on
coding theory ([Shannon48]) and cryptography ([Shannon49]).
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A proof of the proposition can be found, for example, in [HanHarJoh98].

The Huffman algorithm, published in [Huffman52], constructs for a source
a compact prefix-condition code and the corresponding code tree. First we
assign to each message a node, more precisely a leaf, and weight this node
with the probability of occurrence of the message.

The construction of the code tree now takes place in two phases. In the
first phase, we construct a binary tree from the leaves up to the root. In
each step, the algorithm creates a new node n and selects from the existing
nodes without predecessor two nodes n1 and n2 with the least weights as
successors of n. The weight of n is the sum of the weights of n1 and n2.
In the source, we replace the messages corresponding to n1 and n2 with a
message corresponding to n. The probability of this message is the sum of the
probabilities it replaces. In each step the number of elements of the source
decreases by one. The first phase starts with the leaves associated with the
messages and terminates if the source contains only one element. This element
has a probability of 1 and stands for the root of the code tree.

In the second phase, we calculate the code words from the root down
to the leaves. We assign the empty code word ε to the root. The codes of
the two successors of a node n result from the extension of the code of n
with 0 and 1. This results in longer codes for messages with low probability
of occurrence and shorter codes for messages with a high probability. The
Huffman algorithm thus implements the greedy strategy.

Example. Let X = {a, b, c, d, e, f}, p = (0.4, 0.25, 0.1, 0.1, 0.1, 0.05). In Fig-
ure 4.35 the leaf nodes contain the messages and the occurrence probabilities.
The code of each message is derived from the labels on the edges of the path
connecting the root to the message: C(a) = 0, C(b) = 10, C(c) = 1100,
C(d) = 1101, C(e) = 1110, C(f) = 1111.
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Fig. 4.35: The code tree of a Huffman code.

Now, we describe the general case of the construction of the Huffman
encoding

C : X −→ {0, 1}∗\{ε}
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of a source (X, p), X = {x1, . . . , xm}, p = (p1, . . . , pm). We assume without
loss of generality that m ≥ 2 and pi > 0 for 1 ≤ i ≤ m.

1. m = 2:
X = {x1, x2}. Set C(x1) := 0 and C(x2) := 1.

2. Let m > 2:
Sort the symbols xi of the source by descending probabilities p1 ≥ p2 ≥
. . . ≥ pm.
Let (X̃, p̃) be defined by

X̃ = {x1, . . . , xm−2, x̃m−1},
p(xi) := pi for 1 ≤ i ≤ m− 2,

p(x̃m−1) := pm−1 + pm.

X̃ contains m− 1 symbols. Choose a Huffman encoding

C̃ : X̃ −→ {0, 1}∗ \ {ε}

and get the Huffman encoding

C : X −→ {0, 1}∗\{ε}

by setting

C(xi) := C̃(xi) for 1 ≤ i ≤ m− 2,

C(xm−1) := C̃(x̃m−1)0,

C(xm) := C̃(x̃m−1)1.

Before we show that the construction provides a compact code, we formu-
late two lemmas.

Lemma 4.40. Let C : X −→ {0, 1}∗\{ε} be a compact encoding of (X, p). If
pi > pj, then |C(xi)| ≤ |C(xj)|.

Proof. Suppose that pi > pj and |C(xi)| > |C(xj)|. Swapping the encodings
of xi and xj results in a shorter average code word length. A contradiction.

2

Lemma 4.41. Let C = {c1, . . . , cm} be a compact prefix-condition code. Then
for each code word w of maximum length, there is a code word which matches
w up to the last digit.

Proof. Suppose the assertion of the lemma is not valid. Then a code word
could be shortened and, hence, the code is not compact. 2

Proposition 4.42. The Huffman construction provides a compact prefix-
condition code.
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Proof. It is immediate from the construction that C is a prefix-condition code.
We shall prove our assertion that C is compact by induction on the number
m of elements of the source. The assertion follows at once for m = 2.

Letm > 2 and assume that the assertion is proved form−1. Let (X, p), C,
(X̃, p̃) and C̃ be given as above. By the induction hypothesis, C̃ is compact.
We show that C is compact. Let C ′ = {c′1, . . . , c′m} be a compact code for X.
By Lemma 4.40 we get |c′1| ≤ |c′2| ≤ . . . ≤ |c′m|. According to Lemma 4.41,
we arrange the code words of maximum length in such a way that c′m−1 = c̃0

and c′m = c̃1 for a c̃ ∈ {0, 1}∗. Let C̃ ′ be the following code for X̃:

C̃ ′(xi) := C ′(xi) for 1 ≤ i ≤ m− 2,

C̃ ′(x̃m−1) := c̃.

Since C̃ is compact, l(C̃) ≤ l(C̃ ′). From this we conclude:

l(C) = l(C̃) + pm−1 + pm ≤ l(C̃ ′) + pm−1 + pm = l(C ′).

Thus l(C) = l(C ′). It follows that C is compact. 2

Remark. The Huffman tree is not uniquely defined. Not even the lengths of
the code words are unique (Exercise 20). Only the average code word length
is unique.

We now describe the Huffman procedure by pseudo-code. The Huffman
method assumes that we access the probability distribution prob[1..m] in
descending order. We can do this by using the heap data structure without
sorting prob[1..m] (see Section 2.2). The heap is built by calling
BuildHeap(prob[1..m]) (Algorithm 2.13) and must be done before calling Huff-
manCode. We assign each message xi ∈ X a node which represents a leaf in
the Huffman tree and weight it with p(xi).

Algorithm 4.43.
HuffmanCode(int prob[1..m])
1 if m ≥ 2
2 then p← prob[1], prob[1]← prob[m]
3 DownHeap(prob[1..m− 1])
4 q ← prob[1], prob[1]← p+ q
5 DownHeap(prob[1..m− 1])
6 CreatePredecessor(p, q)
7 HuffmanCode(prob[1..m− 1])

The function CreatePredecessor(p, q) is used to build the Huffman tree. It
creates a new node, assigns the probability p + q, adds the node with prob-
ability p as left successor and the node with probability q as right successor
and marks the edge to the left successor with 0 and the edge to the right suc-
cessor with 1. After executing DownHeap, the heap condition is established
if it was only violated at the root (see Algorithm 2.12). Therefore, we choose
the two lowest probabilities in lines 2 and 4.
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Proposition 4.44. Algorithm 4.43 computes a Huffman code for the source
(X, p). The running time is O(m log(m)).

Proof. The running time of BuildHeap is O(m) and the running time of
DownHeap is O(log(m)) (Proposition 2.17 and Lemma 2.16). CreatePre-
decessor can be implemented with constant running time. The number
of (recursive) calls to HuffmanCode is m − 1. Thus, the running time is
O(m+ (m− 1) log(m)) = O(m log(m)). 2

Coding and Decoding. For encoding, we use the table (xi → ci) defined
by the code tree. In this table, we look up how to encode the individual
symbols. To encode x = xi1 . . . xin ∈ X∗, we replace xij with cij .

The source messages are located in the leaves of the code tree (Figure 4.35).
The Huffman code is a prefix-condition code. We decode with Algorithm 4.37.
In particular, the running time for coding and decoding is linear in the length
of the input.

An Adaptive Huffman Procedure – the Algorithm of Faller, Gal-
lager and Knuth. The Huffman method requires a statistical model of the
data to be compressed. With the adaptive Huffman method, the statistical
analysis is performed concurrently with the coding of the data. The data
to be compressed are read only once. Thus, it is possible to simultaneously
generate a compressed output stream from an input stream. After each pro-
cessed message, we adjust the source frequencies and with it the Huffman
code. Updating the source frequencies is easy. Using the Huffman procedure
to redefine a Huffman code after each update of the source frequencies would
be inefficient. The adaptive Huffman procedure modifies the existing Huffman
code with each new message sent by the source.

The adaptive Huffman method was published by Faller10 in [Faller73].
Later it was extended by Gallager11 and Knuth12. First we characterize Huff-
man codes by an equivalent property, the Gallager order. With this, we show
that the procedure delivers a compact code.

Definition 4.45.

1. A binary tree is called a binary code tree if every node that is not a leaf
has two successors.

2. A binary code tree with a weight function w on the set of nodes is called
a weighted code tree if for each node n with the successors n1 and n2 the
following holds: w(n) = w(n1) + w(n2).

Lemma 4.46. A binary code tree with m leaves has 2m− 1 nodes.

10 Newton Faller (1947 – 1996) was a Brazilian computer scientist.
11 Robert G. Gallager (1931 – ) is an American information theorist.
12 Donald E. Knuth (1938 – ) is an American computer scientist.
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Proof. We shall prove our assertion by induction on m. For m = 1 there is
nothing to prove. Let m > 1 and assume the assertion proved for m − 1.
Let T be a code tree with m leaves, m ≥ 2. We remove two leaves with
the same predecessor, so we get a code tree with m − 1 leaves. According
to the induction hypothesis it has 2(m − 1) − 1 nodes. Therefore, T has
2(m− 1) + 1 = 2m− 1 nodes. 2

Definition 4.47. Let T be a weighted code tree with m leaves and the nodes
{n1, . . . , n2m−1}.

1. T is a Huffman tree if there is an instance of the Huffman algorithm that
generates T .

2. n1, . . . , n2m−1 is a Gallager order of the nodes of T if
a. w(n1) ≤ w(n2) ≤ . . . ≤ w(n2m−1).
b. n2l−1 and n2l, 1 ≤ l ≤ m− 1, are sibling nodes.

The nodes of the weighted code trees in Figures 4.36 and 4.37 are num-
bered consecutively: (1), (2), . . . .

Example. The weighted code tree T in Figure 4.36 has multiple arrangements
of nodes by ascending weights which fulfill the sibling condition. For example,
the arrangements 5, 6, 8, 9, 13, 14, 16, 17, 4, 7, 12, 15, 3, 10, 11, 2, 1 and 13,
14, 16, 17, 5, 6, 8, 9, 12, 15, 4, 7, 3, 10, 11, 2, 1 fulfill the sibling condition.
The code tree T has several Gallager orders.
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Fig. 4.36: Code tree with several Gallager orders.

Example. The weighted code tree in Figure 4.37 has no Gallager order. There
are only two possible arrangements of the nodes according to ascending
weights: 4, 5, 7, 8, 3, 10, 11, 6, 2, 9, 1 and 4, 5, 7, 8, 3, 10, 11, 6, 9, 2,
1. For both arrangements the sibling condition is violated.
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Fig. 4.37: A code tree with no Gallager order.

Proposition 4.48. Let T be a weighted code tree with w(n) > 0 for all nodes
n. Then the following statements are equivalent:

1. T is a Huffman tree.
2. T has a Gallager order.

Proof. We show the statement by induction on the number m of leaves of
T . For m = 1 the statements are obviously equivalent. Let m ≥ 2 and T
be a Huffman tree with m leaves and n1 and n2 be the nodes that were
combined in the first step of the construction of the Huffman tree. n1 and
n2 are sibling nodes with w(n1) ≤ w(n2) ≤ w(n), where n is any node other
than n1 and n2. If we remove the two leaf nodes n1 and n2, the predecessor of
n1 and n2 will be a leaf node, and we get a Huffman tree T̃ with m−1 leaves.
By the induction hypothesis, T̃ has a Gallager order ñ1, . . . , ñ2(m−1)−1. The
arrangement n1, n2, ñ1, . . . , ñ2(m−1)−1 is a Gallager order of T .

Now let m ≥ 2 and n1, n2 . . . , n2m−1 be a Gallager order of T . Then n1

and n2 are sibling nodes and leaves. Let T̃ be the tree we get after removing
n1 and n2 from T . n3, . . . , n2m−1 is a Gallager order of T̃ . By induction, T̃
is a Huffman tree. But then T is also a Huffman tree. 2

Remark. The statement of the proposition and the proof are also correct
under the weaker assumption that one node has weight 0.

We use the following data structure to represent a code tree:
type node = struct

string symbol
int weight
node parent, left, right, prev, next

A node can store a message in the variable symbol. We only use this in
leaf nodes. The variable weight stores the weight of the node. The variable
parent references the predecessor, left the left and right the right successor
in the tree, and prev the predecessor and next the successor in the Gallager
order. A tree is then represented by a linked structure of nodes.
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Let n1 and n2 be nodes in a weighted code tree T . By m̃1 and m̃2, we
denote the predecessors of n1 and n2 in T and by m1 and m2 the predeces-
sors of n1 and n2 regarding the Gallager order. By swapping the variables
n1.parent and n2.parent, n1.prev and n2.prev, n1.next and n2.next, m1.next
and m2.next as well as m̃1.left or m̃1.right with m̃2.left or m̃2.right a new
code tree T̃ is created. The tree T̃ results from T by exchanging the subtrees
with roots n1 and n2. We say T̃ is created from T by exchanging the nodes
n1 and n2. If n1 and n2 have the same weight, i.e., n1.weight = n2.weight,
then T̃ is a weighted code tree.

Lemma 4.49. Let n1, . . . , nℓ, . . . , nk, . . . , n2m−1 be a Gallager order of the
nodes of T , nℓ and nk be nodes with w(nℓ) = w(nk), and T̃ result from T by
exchanging the nodes nℓ and nk. Then

n1, . . . , nℓ−1, nk, nℓ+1, . . . , nk−1, nℓ, nk+1, . . . , n2m−1

is a Gallager order of the nodes of T̃ .

Proof. Because of w(nℓ) = w(nk), the weights of the sequence n1, . . . , nℓ−1,
nk, nℓ+1, . . . , nk−1, nℓ, nk+1, . . . , n2m−1 are sorted in ascending order. The
condition concerning the sibling nodes is also fulfilled. 2

Figure 4.38 shows the exchange of the node A 2 with the subtree with

root 2 and its successors F 1 and E 1 .
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Fig. 4.38: Exchanging two nodes.

We now describe the algorithm of Faller, Gallager and Knuth. The algo-
rithm starts with the NULL node. We depict the NULL node with

0 .

It represents the messages from the source that have not yet been sent. At
the beginning of the algorithm, all messages of the source are represented by
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the NULL node. The NULL node is a leaf, has weight 0, is present in every
code tree and is the first node in the Gallager order.

If the source sends a symbol m for the first time, we call the function
InsertNode(m). InsertNode generates two new nodes n1 and n2 and adds
them to the NULL node. The left successor of NULL becomes n1 – it repre-
sents the new NULL node – and the right successor n2. It represents m. The
old NULL node is now an inner node. We call it n. InsertNode initializes the
nodes n, n1 and n2. In the Gallager order n1 comes first, then n2 and finally
n. Figure 4.39 shows the code trees for the empty message and for a message
A.

0
..1.

0

.

A 1

Fig. 4.39: Code tree for a single element.

After receiving a symbol m, the TreeUpdate algorithm updates the Huff-
man tree.

Algorithm 4.50.
void TreeUpdate(message m)
1 n← leaf node corresponding to m
2 if n is the NULL node
3 then InsertNode(m)
4 n← n.parent
5 while n ̸= root node do
6 ñ← node of equal weight to n of the highest order
7 if n.parent ̸= ñ
8 then exchange n with ñ
9 n.weight← n.weight+ 1, n← n.parent

10 n.weight← n.weight+ 1

Proposition 4.51. The adaptive Huffman method generates a compact code.

Proof. It is sufficient to show that the result of the adaptive Huffman proce-
dure is a code with a Gallager order (Proposition 4.48). We start the proce-
dure with a tree with a Gallager order. Therefore, it is sufficient to show that
the Gallager order is preserved when executing Algorithm 4.50. According to
Lemma 4.49, if two nodes of the same weight are swapped, the Gallager order
is maintained. If we increase the weight of a node by one, it is possible that
we violate the Gallager order. We therefore swap the node with the node of
the same weight and highest Gallager order. At this position we can increase
the weight of n by one without violating the Gallager order. 2
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Example. Figures 4.40 and 4.41 show the insertion of the message F : First
we add a new NULL node and a node representing F (see the second code
tree).
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Fig. 4.40: Inserting F .

We swap the two nodes marked with an arrow and get the first code tree
of the following figure. Then we increment the weights along the path from
the node representing F up to the root. The result is the second code tree in
Figure 4.41.
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Fig. 4.41: Swap two nodes and update weights.

To implement line 6 of Algorithm 4.50 efficiently, we introduce an ad-
ditional data structure, the weight list . This allows us to execute line 6 of
the algorithm in constant time. The weight list contains all weights that are
present in the tree. We organize the list as a double linked list, sorted by
weights.



184 4. Trees

type ListNode = struct
int weight
node highest
int nrNodes
ListNode next, prev

The component highest of ListNode refers to the largest node with respect
to the Gallager order with the weight specified in the component weight; the
variable nrNodes stores the number of nodes with this weight. We extend
the node element of the tree by a reference to ListNode. This references the
node in the weight list that stores the weight of the tree node. Now, we find
the largest node in the Gallager order among the nodes of equal weight in
constant time. Updating the weight list also requires constant time.

Proposition 4.52. The running time of Algorithm 4.50 is proportional to
the depth of the tree. The depth is always ≤ the number of the messages - 1.

Remark. Encoders and decoders construct the code tree with Algorithm 4.50
independently of each other. The encoder compresses symbols present in the
Huffman tree. The first time a symbol occurs, it is sent uncompressed to the
decoder. The decoder can therefore extend the code tree in the same way as
the encoder.

4.6.3 Arithmetic Codes

Arithmetic coding does not use code tables to encode single symbols or blocks
of symbols of fixed length. It assigns a complete message of any length to a
code. We calculate this code individually for each message.

The method of arithmetic coding has its origin in the articles [Pasco76]
and [Rissanen76] from 1976.

An arithmetic code is given by the representation of a number in the base-
b numeral system (see Proposition B.2). For this, we choose the base b ∈ N,
b > 1, of the numeral system which we will use.

Let (X, p), X = {x1, . . . , xm} and p = (p1, . . . , pm), be a message source
and let x := xi1 . . . xin ∈ Xn be a message. First we assign an interval to x:

x 7−→ [α, β[⊂ [0, 1[.

Then we encode x with c = .c1c2c3 . . . ∈ [α, β[ in the numeral system to
base-b. We select c in [α, β[ with a minimum number of digits.
Then the code word is c1c2 . . . ∈ {a0, . . . , ab−1}∗. For b = 2 we get codes in
{0, 1}∗, and for b = 10 we get codes in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗.

Interval assignment. We now describe how to assign a message to an in-
terval. We assign a subinterval of the unit interval [0, 1[ to each symbol. The
length of the subinterval is the probability with which the symbol occurs.
The subintervals obtained in the first step are further subdivided according
to the same procedure in order to obtain the intervals for messages of length
2.
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Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1). Figure 4.42 shows
the intervals assigned to the messages a, b, c, d, e, ba, bb, bc, bd and be.
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Fig. 4.42: Interval assignment.

We now describe the general case for a message source (X, p), X =
{x1, . . . , xm} and p = (p1, . . . , pm).

We introduce the following notations for an interval I = [α, β[.

t+ I := [t+ α, t+ β[ ,

lI := [lα, lβ[ .

Let I := {[α, β[ | [α, β[ ⊂ [0, 1[} be the set of all subintervals of the
interval [0, 1[ which are closed to the left and open to the right. Recursively,
we describe the map which assigns a message to an element of I.

I : X∗ \ {ε} −→ I

is defined by

I(xi) :=

i−1∑
j=1

pj ,

i∑
j=1

pj

 ,

I(xi1 . . . xin) := α+ (β − α)I(xin), where [α, β[ = I(xi1 . . . xin−1
).

Remark. The length of I(xi) equals pi and the length of I(xi1 . . . xin) is
l =

∏n
j=1 pij . The length of the interval is therefore equal to the probability

with which the message xi1 . . . xin occurs. Further, we get

[0, 1[=
∪̇

1≤i≤m
I(xi) and [0, 1[=

∪̇
i1...in

I(xi1 . . . xin).

Consequently, the representation of c in the numeral system with base b for
a prescribed n is within exactly one interval I(xi1 . . . xin). Therefore, c and n
uniquely define xi1 . . . xin , i.e., the arithmetic coding is uniquely decodable.
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Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1).
I(a) = [.0, .3[, I(b) = [.3, .6[, I(c) = [.6, .8[, I(d) = [.8, .9[ and I(e) = [.9, 1[.

1. Calculate I(adeeba):

I(a) = [.0, .3[,

I(ad) = .0 + .3 I(d) = [.24, .27[,

I(ade) = .24 + .03 I(e) = [.267, .27[,

I(adee) = .267 + .003 I(e) = [.2697, .27[,

I(adeeb) = .2697 + .0003 I(b) = [.26979, .26988[,

I(adeeba) = .26979 + .00009 I(a) = [.26979, .269817[.

Represent I(adeeba) by .2698.
2. Calculate I(adeebb):

I(adeebb) = .26979 + .00009 I(b) = [.269817, .269844[.

Represent I(adeebb) by .26982.

Remark. Let (X, p) be a message source. We consider the arithmetic coding
of Xn. As the example from above shows, we generally do not get a prefix-
condition encoding of the product source Xn.

Calculation of the Representative. We now describe the algorithm that
determines the representative of an interval for given interval endpoints. We
consider the interval [α, β[ with α = .α1α2α3 . . . and β = .β1β2β2β3 . . ..
Let αi = βi, for i = 1, . . . , t− 1 and αt < βt.
For all γ = .γ1γ2 . . . ∈ [α, β[, we have γi = αi, i = 1, . . . , t − 1, i.e., each
representative has .α1 . . . αt−1 as prefix.
When determining the representative r with the shortest representation, we
consider the following cases:

1. If α = .α1 . . . αk, αk ̸= 0 and k ≤ t, then .α1 . . . αk is the shortest repre-
sentative.

2. If .α1 . . . αt−1(αt + 1) is still < β, we increment αt by 1.
3. There remains the case .α1 . . . αt−1(αt + 1) = β, i.e., αt + 1 = βt and

βt+1 = βt+2 = . . . = 0.
Let τ be the first position after position t with ατ < b − 1, i.e., αt+1 =
αt+2 = . . . = ατ−1 = b− 1 and ατ < b− 1. Then we set

r =

{
.α1 . . . ατ−1 if 0 = ατ = ατ+1 = . . . ,
.α1 . . . (ατ + 1) otherwise.

Proposition 4.53. Let r(xi1 . . . xin) be the encoding of xi1 . . . xin over
{0, . . . , b− 1}. Then

|r(xi1 . . . xin)| ≤ logb

 n∏
j=1

p−1
ij

+ 1,
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i.e., the length of an encoded message is bounded by the logarithm to base
b of the reciprocal occurrence probability p(xi1 . . . xin)

−1 =
∏n

j=1 p
−1
ij

of the

message plus 1, thus by the information content of the message plus 1 (see
Definition 4.38).

Proof. Let r = r(xi1 . . . xin). We have |r| ≤ logb

(∏n
j=1 p

−1
ij

)
+ 1 if and only

if logb

(∏n
j=1 pij

)
≤ −(|r| − 1). Since β − α =

∏n
j=1 pij , it is sufficient to

show
β − α ≤ b−(|r|−1). (∗)

Let I(xi1 , . . . , xin) = [α, β[, α = .α1α2α3 . . . and β = .β1β2β3 . . .,
α1 = β1, α2 = β2, . . . , αt−1 = βt−1, αt < βt.
αt+1 = . . . = ατ−1 = b− 1, ατ < b− 1, for some τ ≥ t+ 1.

β − α = β − .β1 . . . βt−1 − (α− .α1 . . . αt−1)

= .0 . . . 0βt . . . −
.0 . . . 0αtαt+1 . . . ατ−1ατ . . . .

Since β − α has a digit ̸= 0 for the first time at the tth position after the
point, we conclude β − α ≤ b−(t−1).

If α = 0 then r = 0 and |r| = 1, hence (∗) is fulfilled.
Now let α > 0. Finally, we consider the remaining cases to determine r

(see page 186). In the cases of points 1 and 2, we have |r| ≤ t and therefore
β − α ≤ b−(t−1) ≤ b−(|r|−1).

In the third case β−α ≤ β− .α1 . . . ατ−1 = b−(τ−1). |r| = τ −1 or |r| = τ .
In all cases β − α ≤ b−(|r|−1) is true. 2

Proposition 4.54. Let X be a message source, let C be an arithmetic en-
coding of X∗ over {0, 1}, and let ln be the average code word length, averaged
over all encodings of messages from Xn.13 Then

ln ≤ nH(X) + 1,

where H(X) denotes the entropy of the source X (Definition 4.38).

Proof. Let X = {x1, . . . , xm} and p = (p1, . . . , pm). By Proposition 4.53

|r(xi1 . . . xin)| ≤ log2

 n∏
j=1

p−1
ij

+ 1.

Hence,

13 Xn equipped with the product probability, which is defined by p(xi1 . . . xin) =
p(xi1) · . . . · p(xin) = pi1 · . . . · pin , is a source. We call it the nth power of X.
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ln =
∑

(i1,...,in)

p(xi1 . . . xin)|r(xi1 . . . xin)|

≤
∑

(i1,...,in)

p(xi1 . . . xin)

log2

 n∏
j=1

p−1
ij

+ 1


=

∑
(i1,...,in)

p(xi1 . . . xin)
n∑

j=1

log2(p
−1
ij

) +
∑

(i1,...,in)

p(xi1 . . . xin)

=
n∑

j=1

m∑
ij=1

∑
(i1,...,îj ,...,in)

p(xi1 . . . xin) log2(p
−1
ij

) + 1

=
n∑

j=1

m∑
ij=1

pij log2(p
−1
ij

) + 1 = nH(X) + 1.

We used
∑

(i1,...,îj ,...in)
p(xi1 . . . xij . . . xin) = p(xij ) = pij . 2

Remark. We get ln/n ≤ H(X)+ 1/n for the average code word length per sym-
bol (Proposition 4.54). The comparison with the Noiseless Coding Theorem
(Proposition 4.39), which says H(X) ≤ ln/n, shows that the upper bound of
ln/n differs only by 1/n from the lower bound, which is determined by the
Noiseless Coding Theorem. This shows that the arithmetic coding has good
compression properties.

Rescaling. If the endpoints of the interval have a common prefix, we decre-
ment the number of digits in the display of the endpoints of the interval by
rescaling. Further calculations are then carried out with the interval given by
the shortened representations. For rescaling, replace [α, β[ with

[α′, β′[ := [{bt−1α}, {bt−1β}[ .

Here {x} := x− [x] is the fractional part of x.
Because every number in [α, β[ has α1 . . . αt−1 as prefix, α1 . . . αt−1 =
β1 . . . βt−1 is a prefix of the code word to be calculated.

Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1).
I(a) = [.0, .3[, I(b) = [.3, .6[, I(c) = [.6, .8[, I(d) = [.8, .9[ and I(e) = [.9, 1[.

We calculate the interval I associated with adeeba, the representative of
I and the code for the compressed message.

I(a) = [.0, .3[,

I(ad) = .0 + .3 I(d) = [.24, .27[ −→ 2

= [.4, .7[,

I(ade) = .4 + .3 I(e) = [.67, .7[,

I(adee) = .67 + .03 I(e) = [.697, .7[,
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I(adeeb) = .697 + .003 I(b) = [.6979, .6988[ −→ 69

= [.79, .88[,

I(adeeba) = .79 + .09 I(a) = [.79, .817[ .

Represent [.79,.817[ by .8 and I(adeeba) by .2698.

Remark. If rescaling is used, parts of the code word are already available
during the encoding process. Rescaling reduces the required amount of com-
puting.

Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1).
I(a) = [.0, .3[, I(b) = [.3, .6[, I(c) = [.6, .8[, I(d) = [.8, .9[ and I(e) = [.9, 1[.
We calculate the interval I(baaaa) for the message baaaa.

I(b) = [.3, .6[,

I(ba) = .3 + .3 I(a) = [.3, .39[ −→ 3

= [.0, .9[,

I(baa) = .0 + .9 I(a) = [.0, .27[

I(baaa) = .0 + .27 I(a) = [.0, .081[ −→ 0

= [.0, .81[,

I(baaaa) = .0 + .81 I(a) = [.0, .243[.

Represent [.0,.243[ by .0 and therefore I(baaaaaa) by .300. Without rescal-
ing, I(baaaa) = [0.3, 0.30243[ and r = 0.3. The code word is extended by
rescaling.

Remark. With and without rescaling, the same code word is calculated in
most cases. There is only one exception: If the word w to be encoded ends
with the first element of the alphabet (let’s call it a as in the examples),
superfluous zeros can occur at the end of the code word during rescaling
(as in the second example). Whether it happens depends on the concrete
probabilities of the symbols, but the more a’s there are at the end, the more
likely it is. Of course, you could simply delete the superfluous zeros at the
end. But this does not work anymore if we code an input stream and send the
digits of the code word as soon as they are available (without waiting for the
encoding of the whole message). The phenomenon of superfluous zeros does
not occur if we terminate messages to be encoded with a special character
“EOF” for the end of the message (and EOF is not the first character of the
alphabet). The use of an EOF symbol is helpful for decoding; then a separate
transmission of the message length is no longer necessary (see below).

Underflow. Underflow can occur when the interval endpoints are close to-
gether and rescaling is not possible. In this situation the representation of
the interval endpoints increases with each step. We speak of underflow and
discuss the underflow problem first with an example.
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Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1).
I(a) = [.0, .3[, I(b) = [.3, .6[, I(c) = [.6, .8[, I(d) = [.8, .9[ and I(e) = [.9, 1[.
We calculate the interval for I(bbabacb).

I(b) = [.3, .6[,

I(bb) = .3 + .3 I(b) = [.39, .48[,

I(bba) = .39 + .09 I(a) = [.39, .417[,

I(bbab) = .39 + .027 I(b) = [.3981, .4062[,

I(bbaba) = .3981 + .0081 I(a) = [.3981, .40053[,

I(bbabac) = .3981 + .00243 I(c) = [.399558, .400044[,

I(bbabacb) = .399558 + .000464 I(b) = [.3997038, .3998496[.

Represent I(bbabacb) by .3998.

The interval I(bbab) = [.3981, .4062[. Now it can happen that during the
processing of the further symbols, after each symbol the interval contains the
number 0.4, i.e., α = .39 . . . β = .40 . . .. Then rescaling is not possible. The
interval [α, β[ becomes shorter with each step. The number of digits required
to represent α and β increases with each step. This is a problem if we use in
our computations only finitely many digits. The underflow treatment, which
we now explain, provides a solution to this problem.

Let α = .α1α2α3 . . . and β = .β1β2β3 . . .,
We say underflow occurs if

β1 = α1 + 1, α2 = b− 1 and β2 = 0.

In the case of underflow, r = .r1r2 . . . ∈ [α, β[ satisfies

r2 =

{
b− 1 if r1 = α1,
0 if r1 = β1,

i.e., r2 depends functionally on r1.

Now we describe the algorithm to handle underflow.
We cancel α2, β2 and r2 in the representation of α, β and r. We get α =

.α1α3 . . . , β = .β1β3 . . . and r = .r1r3 . . ..
This operation is translation by .α1(b − 1 − α1) followed by stretching

with factor b. For x ∈ [α, β[, we get

.x1x2x3 → b(.x1x2x3 − α1(b− 1− α1)) = .x1x3.

If underflow occurs, |β − α| < 1
b2 .

The encoding procedure is as follows:
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1. While α1 ̸= β1:
i. As long as there is underflow, we perform the underflow treatment,

i.e., we remove the second digit after the point from α and β and
increment the variable count (it counts how often the second digit
has been removed).

ii. Process the next symbol from the input, i.e., apply the algorithm to
divide the interval based on the next symbol from the input.

2. Output r1 = α1 (here α1 = β1 holds) and count times r2 depending on r1.

During underflow treatment, α1 and β1 do not change. If α1 or β1 change
when processing the next symbol from the input, the case α1 = β1 occurs.
Therefore, the digits removed from r during the underflow treatment are all
the same.

Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1).
I(a) = [.0, .3[, I(b) = [.3, .6[, I(c) = [.6, .8[, I(d) = [.8, .9[ and I(e) = [.9, 1[.
We calculate the interval for I(bbabacb).

I(b) = [.3, .6[,

I(bb) = .3 + .3 I(b) = [.39, .48[,

I(bba) = .39 + .09 I(a) = [.39, .417[,

I(bbab) = .39 + .027 I(b) = [.3981, .4062[ −→ [.381, .462[, count = 1,

I(bbaba) = .381 + .081 I(a) = [.381, .4053[,

I(bbabac) = .381 + .0243 I(c) = [.39558, .40044[ −→ [.3558, .4044[, count = 2,

I(bbabacb) = .3558 + .0486 I(b) = [.37038, .38496[

−→ 399, count = 0, [.7038 + .8496[ −→ 8.

Represent I(bbabac) by .3998.

Rescaling and underflow treatment shorten the representation of the in-
terval limits. This makes it possible to perform the calculations with a fixed
number of digits. In the application an integer arithmetic with 32 bits is suf-
ficient. Floating-point arithmetic is not suitable due to the limited accuracy
and memory that floating-point formats allow.

Decoding. Input is a compressed message cm and its length n. The original
message xi1 . . . xin is searched for. We calculate xi1 . . . xin recursively:

1. We have i1 = j if and only if cm ∈ I(xj).
2. Let xi1 . . . xik−1

and I(xi1 . . . xik−1
) = [α, β[ and l = β − α be calculated.

Then ik = j if cm ∈ α + l I(xj). This again is equivalent to (cm − α)/l ∈
I(xj).

Calculate α and l from I(x) = [αx, βx[ and lx = βx − αx:

αnew = αold + loldαx,

lnew = loldlx.
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Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1).
I(a) = [.0, .3[, I(b) = [.3, .6[, I(c) = [.6, .8[, I(d) = [.8, .9[ and I(e) = [.9, 1[.
Given: .2697, 4.

α l (cm − α)/l x
0 1 .2697 a
0 .3 .899 d
.24 .03 .99 e
.267 .003 .9 e

Decoding with Rescaling. In order to simplify the calculation when de-
coding a message, we apply rescaling. We describe the algorithm using an
example.

Example. Let X = {a, b, c, d, e}, p = (0.3, 0.3, 0.2, 0.1, 0.1).
I(a) = [.0, .3[, I(b) = [.3, .6[, I(c) = [.6, .8[, I(d) = [.8, .9[ and I(e) = [.9, 1[.
Given code: .2698, 6.

cm α l (cm − α)/l x
.2698 .0 1 .2698 a

.0 .3 .8993333 d

.24 .03 .9933333 e
.698 .4 .3

.67 .03 .99333333 e
.98 .7 .3

.97 .03 .3333337 b
.8 .7 .3

.79 .09 .1111111 a

We perform rescaling as soon as common leading digits appear in α and
β. A necessary condition for this is that leading zeros are produced in l. We
multiply α, l and cm by bk, where k is equal to the number of common leading
digits.

Coding the Length of the Message. For decoding, the length n of the
message must be known. We provide the decoder with the length n outside
the encoded message, or we agree on a special symbol “EOF” for the end
of the message. The source sends EOF with a very small probability. The
decoder then recognizes the end of the message. Of course, this additional
symbol slightly lengthens the encoded message.

Adaptive Arithmetic Coding. With adaptive arithmetic coding , the sta-
tistical model is developed with the encoding of the message, just as with
adaptive Huffman coding. In contrast to Huffman coding, the effects of chang-
ing the statistical model on the encoder and decoder are small. The further
division of an already calculated subinterval is simply carried out according
to the newly determined probabilities. We make this clear with an example.
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Example. Let X = {a, b, c, d, e}, p = (1/5, 1/5, 1/5, 1/5, 1/5).
I(a) = [.0, .2[, I(b) = [.2, .4[, I(c) = [.4, .6[, I(d) = [.6, .8[ and I(e) = [.8, 1[.
We calculate the interval I associated with adeeba.

Source Calculation of the Interval
(1/5, 1/5, 1/5, 1/5, 1/5) I(a) = [.0, .2[
(1/3, 1/6, 1/6, 1/6, 1/6) I(ad) = .0 + .2 I(d) = [.132, .166[ −→ 1

= [.32, .66[
(2/7, 1/7, 1/7, 2/7, 1/7) I(ade) = .32 + .34 I(e) = [.61, .64[ −→ 1

= [.2, .4[
(1/4, 1/8, 1/8, 1/4, 1/4) I(adee) = .2 + .2 I(e) = [.35, .7[
(2/9, 1/9, 1/9, 2/9, 1/3) I(adeeb) = .35 + .35 I(b) = [.427, .4655[ −→ 1

= [.27, .655[
(1/5, 1/5, 1/10, 1/5, 3/10) I(adeeba) = .27 + .385 I(a) = [.27, .347[

Represent I(adeeba) by .1113.

Remark. We have discussed two methods of source coding, Huffman coding
and arithmetic coding. With the Huffman method, we create code tables and
use them for encoding and decoding. Arithmetic coding does not use code ta-
bles. Compared to Huffman coding, however, it requires considerable compu-
tational effort. When implementing the procedure, we use integer arithmetic
(in floating-point arithmetic, the coded message is limited by the number of
bytes of the number format and is therefore too small). The compression
efficiency of the two methods is closely related.

4.6.4 Lempel-Ziv Codes

Lempel14 and Ziv15 introduced new techniques for data compression in
[ZivLem77] and [ZivLem78]. In contrast to Huffman or arithmetic coding,
these methods do not require a statistical model.

The methods of Lempel and Ziv are called dictionary methods. The idea
is to store frequently occurring text segments in a dictionary. In the text
to be compressed, we replace the text segments with references to the text
segments. If the reference requires fewer bits than the replaced text segment,
compression occurs.

There are many variants of the two original algorithms, which are called
LZ77 and LZ78 after the year of their origin. These variants are used by pop-
ular compression applications, such as GNU zip or Unix compress, for data
transmission, such as V.42bis, and for compression of graphics formats, such
as Graphics Interchange Format (GIF), Portable Network Graphics (PNG)
or Adobe PDF.

14 Abraham Lempel (1936 – ) is an Israeli computer scientist.
15 Jacob Ziv (1931 – ) is an Israeli information theoretician.
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Lempel-Ziv Algorithm with Sliding Window. The LZ77 algorithm lets
a window of constant size slide over the character string x1 . . . xn to be en-
coded. The window consists of two parts, the text buffer and the preview
buffer. The text buffer contains characters that have already been encoded;
the characters from the preview buffer are still to be encoded. Let w be the
length of the text buffer and v the length of the preview buffer. See Figure
4.43.

..0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 . . ..

text buffer

.

preview buffer

Fig. 4.43: LZ77 compression.

We recursively explain the encoding and assume that the characters
x1 . . . xi−1 are already encoded. The text buffer contains the characters
xi−w . . . xi−1 and the preview buffer the characters xixi+1 . . . xi+v−1. The
main idea now is to find a string that starts in the text buffer and has the
longest match with the string xixi+1 . . . xi+v−1 in the preview buffer.

For k with i− w ≤ k ≤ i− 1, let

ℓk = max{j | j ≤ v and xk . . . xk+j−1 = xi . . . xi+j−1}

and
m = max{ℓk | i− w ≤ k ≤ i− 1}.

The longest match consists of m characters and starts in the text buffer with
xi−j , where ℓi−j = m. It can extend into the preview buffer.

If m ≥ 1, we encode

xi . . . xi+m−1 7−→ (j,m).

We move the window m positions to the right.
If we do not find a match, i.e., m = 0, then we encode

xi 7−→ xi

and move the window one position to the right.
The output stream contains the two different data types, characters and

references, i.e., pairs (j,m), where j indicates the index of the first character
of the match relative to the end of the text buffer, and m indicates the
length of the match. We code both data types with a fixed number of bits
and distinguish them by a leading bit, for example, 0 if a character follows
and 1 if a reference follows. If we represent j with 8 bits and m with 4 bits,
we get a text buffer with 256 bytes and a preview buffer with 16 bytes. To
encode a character we need 7 bits and to encode a reference we need 13 bits.
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In particular, the start of the induction is now explained. At the begin-
ning of the encoding the text buffer is empty. We cannot find any matching
segments; the output stream contains the individual characters.

When implementing, we encode short matching segments through the
individual characters if this results in a shorter output stream. If m is the
number of matching characters, s the number of bits for encoding a character,
t the number of bits for encoding a pair (j,m) and if ms < t, then we encode
the individual characters.

The complex part of encoding is finding the longest matching segment.
Greedy parsing determines the length of a match with each character in the
text buffer as a starting point. Then a longest match is used. However, this
does not ensure that we get the best compression rate overall. This cannot
be achieved due to the complexity of the problem.

Variants of the LZ77 algorithm implement methods that allow matching
segments to be accessed faster. They use a hash method or a binary search
tree to address matching segments. In the text buffer, we no longer check
for matches at every position, but only at positions where earlier matching
segments were found.

Example. We execute the algorithm with the input x = 01101101101, w = 6
and v = 3. Each row of the following matrix corresponds to one step in the
execution of the algorithm. The three characters of the preview buffer are
limited by “|” in the first five lines. In the second column the resulting codes
are noted.

|011|01101101 0
0|110|1101101 1
01|101|101101 (1, 1)
011|011|01101 (3, 3)
011011|011|01 (3, 3)
011|011011|01 (3, 2)

While compression involves a lot of computation, decompression is easy
to perform. Either the codes of the individual characters are available or links
are provided that are easy to evaluate.

If the encoding match extends into the preview buffer, we extend the text
buffer step by step. We will now explain this point in more detail with an
example. Let w = 12, v = 6 and . . . 111110|101010 be the string that was
encoded. The output is then (2, 6). We assume that . . . 111110| is already
decoded and (2, 6) has to be decoded in the next step. We get one after the
other

. . . |111110|10, . . . |111110|1010, . . . |111110|101010.
The dictionary is represented by the text buffer. The sliding window tech-

nique and the constant length of the text buffer ensure that only segments
that have occurred in the recent past are in the dictionary. The adaptation
of the dictionary to changes in the patterns of the data to be compressed is
therefore done automatically.
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Lempel-Ziv Algorithms with Digital Search Tree. We study LZ78 and
a variant of LZ78, the LZW method, in more detail. In both algorithms, we
read the data to be compressed only once. We compress the data and generate
the dictionary. In contrast to LZ77, the dictionary is explicitly constructed.
We implement LZ78 with a digital search tree. The encoder generates this
digital search tree while analyzing the source code. The decoder generates an
identical search tree from the compressed data. We do not have to transmit
any data other than the compressed data from the encoder to the decoder.

The Algorithm LZ78.

Definition 4.55. Let X = {x1, . . . , xn} be a message source and y ∈ Xn. A
Lempel-Ziv decomposition of y,

y = y0||y1|| . . . ||yk,

consists of pairwise distinct yj , 0 ≤ j ≤ k, and is defined by:

1. y0 := ε.
2. For each yi, 1 ≤ i ≤ k, there is exactly one yj in the sequence y0, . . . , yi−1

and one x ∈ X with yi = yj ||x.

We call the substrings yi phrases of y.

We specify an algorithm for constructing a Lempel-Ziv decomposition.
The algorithm uses a digital search tree. First we explain the data structure
of a digital search tree.
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Fig. 4.44: A digital search tree.

A digital search tree is based on an alphabet X. A node of the digital
search tree can have up to |X| successors. Each edge is labeled with a symbol
from X. No two edges starting from the same node are labeled with the same
symbol. See Figure 4.44.

Each node corresponds to a string from X∗. The string results from the
edge labels on the path from the root to the corresponding node. The root
corresponds to the empty word ε. There are two functions associated with
the digital search tree.
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1. Searching for x ∈ X∗ is done from the root by comparing the first char-
acter of x with the edge labels of the edges starting at the root. If there
is a match with an edge label, we recursively continue the search in the
corresponding successor.

2. When inserting characters into a digital search tree, we add new nodes.
If a string x is to be inserted, we perform a search with x starting from
the root. If x is not in the search tree, the search ends in a node without
consuming all characters of x. We call this node k. For each character
of x which was not used in the search, we add another node, and label
the necessary edge with the corresponding character. We append the first
node to k, the second to the first appended node, and the next to the
previously appended node, until all characters of x are used.
In our application, we only add one new leaf at a time.

Example. We demonstrate the algorithm LZ78 with x = 01011010101 . . .,
starting with a tree only consisting of the root. See Figure 4.45. The root
gets the number 0. In each step, we add a leaf to the tree. We number the
nodes in the order of their creation.
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Fig. 4.45: Encoding with LZ78.

In each step, we determine a phrase of the Lempel-Ziv decomposition. It
results from digital searching starting at the root. In the last node k in the
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search path, we extend the tree with an additional leaf. We label the edge to
this leaf with the next character of the input. The phrase found corresponds
to the new node.

The output consists of the last node k in the search path together with
the label of the newly inserted edge. The compressed file consists of the
outputs. The outputs provide the data necessary for the construction of the
tree. Therefore, we can extract the code tree from the compressed file and
then the original data from the code tree.

Processing the tail of the string to be compressed, the search can end at
an inner node. We do not go into the technical details that are then necessary.

Remark. Let p be a probability distribution on X. By a(x) we denote the
number of phrases that occur in a decomposition of x ∈ Xn. The compressed
data then consists of a sequence of length a(x) of pairs (k, c), consisting of
the number k of a node in the code tree and a symbol c. The number of nodes
is then also a(x). The representation of a node k requires log2(a(x)) bits and
the representation of a pair (k, c) requires log2(a(x))+e bits (e is a constant).
Altogether we need

a(x)(log2(a(x)) + e)

bits for encoding the Lempel-Ziv decomposition.
The mean value

ℓn =
1

n

∑
x∈Xn

p(x)a(x)(log2(a(x)) + e),

where p(x1 . . . xn) =
∏n

i=1 p(xi) is the occurrence probability of x1 . . . xn,
gives the average code word length per source symbol from X.

According to the Noiseless Coding Theorem (Proposition 4.39), the en-
tropy of a source is a lower bound for the average code word length of a
uniquely decodable code for the source.

The Lempel-Ziv coding is asymptotically optimal, i.e.,

lim
n→∞

ℓn = H(X)

(see [ZivLem78]).

The LZW Version. The LZW variant was published in 1984 by Welch16.
The implementation of the LZW algorithm uses a digital search tree, just
like the LZ78 algorithm. However, here we start with a tree that has a leaf
for each x ∈ X in level 1 next to the root. We determine a phrase again by
digital search, starting at the root. The search ends in a leaf node n. Now
there are two actions.

1. Output the number of the node n.

16 Terry A. Welch (1939 – 1988) was an American computer scientist.
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2. Add a new leaf node to n. Label the new edge with the next character x
from the input. x is the first character of the next phrase.

Now, phrases found no longer uniquely correspond to the nodes in the code
tree. There can be nodes for which no phrases exist, and the phrases found
are no longer necessarily pairwise distinct.

Compared to LZ78 the advantage of LZW is that the output only consists
of the number of the attached node. It conserves one symbol compared to
the output of LZ78.

Example. We demonstrate the operation of the encoder with the input x =
010110101 . . . in Figure 4.46.
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Fig. 4.46: Encoding with LZW.

The example shows that LZ78 and LZW provide different code trees.

When decoding, we reconstruct the code tree from the node numbers.
This requires further consideration if the encoder uses the last inserted leaf
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to determine the phrase, as in the example for determining the phrase 101
with the output of node number 6.

Figure 4.47 shows the code trees constructed by the decoder. The input
is the node number which is outputted by the encoder. The decoder outputs
the phrase corresponding to the node. After the decoder receives the node
number 6, it first reconstructs the tree that was created in the previous step.
This tree does not contain a node with the number 6.
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Fig. 4.47: Decoding with LZW.

By the exceptional case, we understand the case where the decoder has to
decode a node which is not contained in its code tree. The exceptional case
arises from the fact that the decoder can only construct the code tree with a
delay of one step.

We now specify a procedure for handling the exceptional case. Let
y1|| . . . ||yi be the phrases that the encoder has found so far. The encoder
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inserts a node into the code tree for each phrase. So it has added a total of
i nodes. We assume that the decoder has decoded the phrases y1|| . . . ||yi−1.
The decoder can only reconstruct i − 1 nodes. The only node that the de-
coder does not know is the node that the encoder added when it found the
ith phrase yi, that is, the node with the number i.

Let us further assume that in the next step the encoder uses the node
with the number i. The node is the successor of the node that the encoder
last used, the node belonging to yi−1.

The node with the number i has the phrase yi, but also the phrase yi−1||x,
where x is the first character of yi. Hence, yi = yi−1x, i.e., yi−1 and yi match
in the first character. The decoder can find the “unknown” node by append-
ing a leaf to the node transmitted in the previous step and labeling the edge
with the first character of yi−1.

Only limited memory is available for the dictionary, which we imple-
mented with a digital search tree. Therefore, strategies have to be imple-
mented to adapt the dictionary to changing patterns in the text to be com-
pressed and to prevent the dictionary from becoming full and not being able
to add entries anymore. Possible strategies are to delete the dictionary com-
pletely after a limit of the occupied memory is exceeded or if the compression
rate falls below a given limit. Another option is to monitor the usage of the
entries and remove the entry that has not been used for the longest time.

Exercises.

1. The elements a, b, c, d, e, f, h, j are stored in the nodes of a binary tree.
Pre-order output creates the list c, a, h, f, b, j, d, e, post-order output the
list h, f, a, d, e, j, b, c. How can the binary tree be constructed from these
data? Display the binary tree. Describe your procedure and justify the
individual steps. Under what circumstances is the tree uniquely identified
by the pre-order and post-order outputs?

2. Specify all binary search trees for {1, 2, 3, 4}.
3. A binary tree can be assigned to each arithmetic expression with the oper-

ators + and *. Develop a function that generates an arithmetic expression
with parentheses and postfix notation when traversing the assigned tree.

4. Let v be a node in a binary search tree. By pv we denote the node that
occurs immediately before v in the in-order output (if any). Show: If v
has a left successor (in the tree), pv has no right successor. What is the
equivalent statement for the node sv that occurs immediately after v in
the in-order output?

5. Develop and implement an algorithm that determines whether a given
sequence of nodes of a binary search tree with the keys s1, s2, . . . , sn = s
can occur as a search path for s.
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6. Let T be a binary search tree, x a leaf of T and y the predecessor of
x. The element e is stored in x and the element f is stored in y. Show
that f is either the smallest element in T that is greater than e, or the
largest element in T that is less than e.

7. Let n ∈ N. Show that there is a binary search tree with n nodes of height
⌊log2(n)⌋+ 1.

8. Prove or refute with a counterexample the following statement: For each
AVL tree, there is a sequence of keys that leads to this tree when inserted,
without rotations.

9. The set {1,. . . ,n} is stored in an empty AVL tree in ascending order.
Determine the height of the tree.

10. Let T be a binary search tree. We get T by replacing the null references
with external nodes in T . In T each node that is not a leaf has two
successors and the leaves are the external nodes. A red-black tree is a
binary search tree in which each edge is colored red or black, and in T
the following properties are satisfied:
a. The input edges of leaves are black.
b. In a path, a red edge is always followed by a black edge.
c. All paths from the root to a leaf contain the same number of black

edges.
The red-black conditions guarantee good balance characteristics. Let T
be a red-black tree with n nodes. Show that the height of T is limited by
2 log2(n+ 1).

11. Let (fi)i≥0 be the sequence of Fibonacci numbers. In the Fibonacci search
the division of the sorted array a[1..n], which contains the element to be
searched for, is done with the help of the Fibonacci numbers. First, we
assume that n = fk− 1 holds. The array is then divided into the sections
a[1..fk−1 − 1], a[fk−1] and a[fk−1 + 1..fk − 1] of lengths fk−1, 1 and fk−2.
If the wanted element is not at position fk−1, the search is continued
recursively with a[1..fk−1 − 1] or a[fk−1 + 1..fk − 1]. If n + 1 is not a
Fibonacci number, set the upper limit equal to the smallest Fibonacci
number greater than n+ 1.
Work out the details of the Fibonacci search. Establish the connection
to Fibonacci trees (see Definition 4.12) and analyze the running time of
the algorithm.

12. Let S be the set consisting of key-priority pairs
S = {(1, 4), (2, 1), (3, 8), (4, 5), (5, 7), (6, 6), (8, 2), (9, 3)}.
a. Construct a treap by inserting the key-priority pairs in the following

order:
(8, 2), (9, 3), (2, 1), (5, 7), (3, 8), (1, 4), (4, 5), (6, 6).

b. Insert the new element (7, 0) and specify all relevant intermediate
steps.

c. Delete the element (8, 2) and specify all relevant intermediate steps.
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d. Which treap is created if (7, 0) had been inserted instead of (8, 2)?

13. Show that there are cn := 1
n+1

(
2n
n

)
, n ≥ 0, binary trees with n nodes.

The numbers cn are called Catalan numbers17.

14. A B-tree B stores in alphabetical order in the root j and w, and in the
first level a, c, f, i, o, r, u, v, y and z.
a. Display B graphically.
b. Specify the possible orders of B.
c. Insert the elements x, p, k, q, e and l one after the other and sketch

the tree after each step.

15. A B-tree B stores in alphabetical order the element m in level 0, the
elements e, h, t and x in level 1 and the elements b, f, l, r, u, v, w and y
in level 2.
a. Sketch B and state the order of B.
b. Delete h and l one after the other from B, then delete b from the tree

you get after you have completed the preceding deletion. Describe
the essential steps.

16. Prove or disprove the following statement: For a given set S, the number
of nodes of a B-tree that stores S is unique.

17. We construct a binary search tree from a B-tree of order 4. We map the
B-tree pages as follows:

a −→ a, b c −→
..b.

c

, d e f −→

..e.

d

.

f

.

In order to obtain a binary search tree, we add the edges of the B-tree.
We color the input edges of a, b, e black and the input edges of c, d, f red.
Assign a red-black tree to the B-tree from Figure 4.24 (see Exercise 10).
Using the defined mapping rule, show that red-black trees and fourth-
order B-trees are equivalent structures. Specify the inverse transforma-
tion of the above mapping rule that assigns to each red-black tree a B-tree
of order four.

18. Which of the two codes
(a) C1 = {c, bb, bbd, dea, bbaa, abbd, aacde},
(b) C2 = {c, bb, bbd, dea, abbe, baad, bbaa, aacde}
is uniquely decodable? Justify your answer and give a counterexample if
possible.

19. Let n1, . . . , nℓ ∈ N and C a prefix code over Y of order n. C has ni words
of length i, i = 1, . . . , ℓ. Show that ni ≤ ni − n1n

i−1 − · · · − ni−1n, i =
1, . . . , ℓ.

17 Eugène Charles Catalan (1814 – 1894) was a Belgian mathematician.
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20. A source has the elements {x1, x2, x3, x4, x5, x6, x7} and the probabilities
p1 = 2

7 , p2 = p3 = p4 = p5 = 1
7 , p6 = p7 = 1

14 .
a. Is the code c1 = 00, c2 = 11, c3 = 010, c4 = 100, c5 = 101, c6 =

0110, c7 = 0111 (ci encodes xi for i = 1, . . . , 7) compact?
b. Are there compact codes over {0,1} for the above source with different

word lengths? Specify such a code if possible.

21. The Huffman algorithm can be extended to any alphabet Y . How to
construct the code?

22. Let (X, p) be a message source. X = {x1, . . . , x256} and pi = 1
256 . Is

C = {c1c2c3c4c5c6c7c8|ci ∈ {0, 1}} a compact code for (X, p)?

23. Given is a message source (X, p). p = (p1, . . . , pk) and pi = 1
2νi , νi ∈

N, i = 1, . . . , k. Specify a compact code C for (X, p) and the average
code word length l(C).

24. Let (X, p) be a source. ℓ1, . . . , ℓn are the lengths of the code words of a
compact code over {0,1}. Show:

n∑
i=1

ℓi ≤
1

2
(n2 + n− 2).

25. A source has the elements {a,b,c,d,e,f,g} and the probabilities
(0.3, 0.14, 0.14, 0.14, 0.14, 0.07, 0.07). Messages from {a,b,c,d,e,f,g}∗ are
arithmetically encoded over {0, 1, . . . , 9}.
a. Compute the code for the message acfg.
b. Decode 1688 if the message length is 6.

26. Let k = 2l, l ∈ N, X = {x1, . . . , xk} and pi = 1
k , i = 1, . . . , k. Which

word lengths occur for messages of length n when encoded by arithmetic
codes over {0, 1}∗.

27. Given is a message source (X = {a, b}, p = (1 − 1
2k
, 1
2k
)). Provide an

arithmetic code for bna, n ∈ N, over {0, 1}∗.
28. An LZ77 procedure is implemented with a text buffer of length r. Spec-

ify an alphabet X and a message x ∈ X∗ where the compression rate
|C(x)|/|x| of the LZ77 encoding C(x) of x is maximum.



5. Graphs

Graph theory is part of discrete mathematics. As a mathematical discipline,
it has an extensive, abstract, theoretical part. But it also has interesting,
application-relevant, algorithmic aspects.

Many everyday problems, such as the search for a short route in a traf-
fic or communication network, the representation of the World Wide Web
(www), consisting of the web pages and their interconnections by means of
links, the description of the timing of assembly operations by priority graphs,
the design of electronic circuits, semantic networks to represent knowledge
or the modeling of the dependencies of work packages in a project lead to
a representation with graphs. The structural characteristics of algorithmic
problems can often be described using graphs. This enables the solution of
these problems by graph algorithms.

We study graph algorithms in the following two chapters. We cover the
basic algorithms breadth-first search and depth-first search for systemati-
cally searching a graph. These two algorithms are used in many other graph
algorithms. We use them to compute spanning trees, the distances between
nodes, the connected components of a graph and the strongly connected com-
ponents of a directed graph, test for cycles and sort acyclic directed graphs
topologically. A randomized algorithm for the computation of a minimal cut
completes the chapter.

5.1 Modeling Problems with Graphs

In this section, we will formulate a series of popular problems by using graphs.

Königsberg Bridge Problem. We explain the Königsberg1 bridge prob-
lem with the sketch in Figure 5.1, which shows the river Pregel in the city
of Königsberg. Seven bridges are drawn between the banks and the two is-
lands. A bridge connects the two islands. One of the islands is connected by
a bridge with the suburb and the old town. From the other island there are
two bridges leading to each of the suburb and the old town. The question of
whether it is possible to choose a walk that returns to the starting point and

1 The former German town Königsberg, today Kaliningrad, was the capital of
Ostpreußen.
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crosses each bridge exactly once, is said to have served as entertainment for
the citizens of Königsberg.

..K. W.

A

.

V

.......

Fig. 5.1: Königsberg bridge problem.

The figure on the right shows the facts of the sketch as a multigraph.2

Here we abstracted from the topographical properties, which are irrelevant
for the problem. We consider only two object types, nodes and relations
between nodes, which we call edges. We represent the four areas by the nodes
{A,K,V,W}. Two nodes are related if they are connected by a bridge. So there
are seven edges, which we represent by the two nodes that are related to each
other. The edges are given by {A,K}, {A,K}, {K,V}, {K,V}, {A,W}, {K,W},
{V,W}. The mathematical notation reduces the problem to its essentials and
thus facilitates its solution.

The solution to the problem was published by Euler3 in 1736. This work
in which Euler presented the Königsberg bridge problem in mathematical
notation is regarded as the first work on graph theory. In honor of Euler,
we call a closed path in a graph which contains each edge exactly once an
Eulerian cycle. Euler’s work gives a necessary and sufficient condition for the
existence of an Eulerian cycle. A graph has an Eulerian cycle if and only if
all nodes have even degrees4 (to show this is Exercise 1). This condition is
not fulfilled for the Königsberg bridge problem.

House-Utility Problem. The house-utility problem consists of three houses
H1, H2, H3 and three Utilities, one each for gas (G), water (W) and electricity
(E). The graph representing this situation in Figure 5.2 is a bipartite graph. In
a bipartite graph, the set of nodes is divided into two parts (disjoint subsets).
The two endpoints of an edge are located in different parts. A bipartite graph
where each part has three elements and where each node from the first part
is connected to each node from the second part is called K3,3.

2 Multigraphs permit multiple edges between two nodes.
3 Leonhard Euler (1707 – 1783) was a Swiss mathematician and physicist.
4 The degree of a node is the number of edges incident on it.
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The supply lines intersect in the two arrangements outlined in Figure 5.2.
Counted with multiplicity, they intersect in the first figure at nine points; in
the second figure there is only one point with multiplicity 3. The question
arises whether it is possible to find an arrangement without intersections.
This question leads to the concept of a planar graph.
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H3

......... ..G. H2
.
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W

. E.

H3

.........

Fig. 5.2: House-utility problem.

Planar Graphs. By a planar graph we mean a graph that we can draw
in the plane without crossing edges. This works for the complete graph5 K4

with four nodes. With K5, the complete graph with five nodes, this does not
seem to be possible, as Figure 5.3 shows.

..A. B. C.

D
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..A. B. C.

D
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..........

Fig. 5.3: K4 and K5.

The Theorem of Kuratowski6 gives a necessary and sufficient criterion for
planar graphs. This criterion shows that K5 and K3,3 are not planar.

The algorithm of Hopcroft7-Tarjan8 serves to test the planarity of a graph
and to embed a planar graph into the plane. Planar graphs are treated, for
example, by [Jungnickel13] or [Gould88].

Four-Color Problem. The four-color problem is easy to formulate. It reads:
Is it possible to color each map with four colors so that neighboring countries
have different colors?

5 A graph is called complete if each node is connected to every other node by an
edge. It is thus determined by the number of nodes.

6 Kazimierz Kuratowski (1896 – 1980) was a Polish mathematician and logician.
7 John Edward Hopcroft (1939 – ) is an American computer scientist and Turing
Award winner.

8 Robert Endre Tarjan (1948 – ) is an American computer scientist and Turing
Award winner.
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The problem can be formulated with graphs. The nodes represent the
capitals of the countries. We connect the capitals of neighboring countries
with an edge. Since neighboring countries have a common border, there is
an edge that runs entirely on the territory of the two countries. Thus, it is a
planar graph.

Formulated with graphs, the four-color problem is: Can each planar graph
be colored with four colors so that neighboring nodes have different colors?
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Fig. 5.4: Four-color problem.

We can color the graph in Figure 5.4 with four colors: the nodes A and E
with blue, F and D with green, C with yellow and B with red. Neighboring
nodes are colored with different colors.

The four-color problem is one of the popular problems of graph theory.
It has a long history. Reportedly, it was formulated by Francis Guthrie9 in
1852. Caley10 presented the problem to the London Mathematical Society in
1878. Appel11 and Haken12 proved in 1976 that every planar graph can be
colored with four colors, so that neighboring nodes have different colors.

The proof uses a reduction method developed by Birkhoff13 and Heesch14.
This method reduces the general case to 1482 cases, which were solved with
extensive use of computers. A more recent proof using the same techniques
is published in [RobSanSeyTho97].

Minimum Spanning Trees, Distances, Chinese Postman and Travel-
ing Salesman Problems. We explain the problem of computing minimum
spanning trees, the distance problem, the Chinese postman problem and the
traveling salesman problem with Figure 5.5.

The nodes vi in the graph in Figure 5.5 model places (cities or intersections
of roads), the edges model connections between places, and the label di on
an edge indicates the length or cost of that connection.

9 Francis Guthrie (1831 – 1899) was a South African mathematician.
10 Arthur Cayley (1821 – 1895) was an English mathematician.
11 Kenneth Appel (1932 – 2013) was an American mathematician.
12 Wolfgang Haken (1928 – ) is a German mathematician.
13 George David Birkhoff (1884 – 1944) was an American mathematician.
14 Heinrich Heesch (1906 – 1995) was a German mathematician.
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Fig. 5.5: Several graph problems.

1. To construct a minimum spanning tree, all nodes must be connected by
edges (see Definition 6.23). The sum of the costs has to be minimized.
We study several algorithms for the computation of a minimum spanning
tree (Algorithms 6.26, 6.29, 6.34 and 6.50).

2. The distance problem is to find a shortest path between two nodes vi
and vj or between all pairs of nodes. We solve this problem in Section
6.2 and Section 6.7.

3. A Chinese postman tour is a path which starts and ends at a node vi and
runs through each edge at least once. The Chinese postman problem is:
Find a shortest Chinese postman tour in a given graph (see [Schrijver03,
Chapters 29.1, 29.11g]).

4. The Traveling Salesman problem reads: We are looking for a shortest path
which starts and ends at a node vi and goes through each node at least
once. The traveling salesman problem is also discussed in [Schrijver03,
Chapter 58]. It is important in operations research and theoretical com-
puter science.

Non-Symmetric Relationships. In the previous problems, we used graphs
for modeling. They represent symmetrical relationships. Non-symmetric rela-
tionships are modeled by directed graphs. We explain such a problem with
Figure 5.6.
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Fig. 5.6: Non-symmetric relationships – dependencies.
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The nodes of the graph represent work packages of a project. If the work
package Ai requires the result of the work package Aj , Aj must precede Ai.

We draw a directed edge Aj
aj−→ Ai, where aj is the time effort required to

process Aj . This gives us the dependency graph of the work packages. Of
course, the dependency graph must not contain any cycles (see Definition
5.3). When carrying out a project, one is interested in the longest paths in G.
The work packages on a path have to be processed sequentially, one after the
other. A delay in processing the work packages on a longest path delays the
completion of the project. Therefore, a longest path is also called a critical
path. The calculation of a critical path is presented as an exercise in Chapter
6 (Exercise 3).

5.2 Basic Definitions and Properties

The basic concepts of graph theory are clear and easy to understand. We now
present the basic definitions and properties that we need in the following. A
graph consists of nodes or vertices and edges that represent relationships
between nodes. We specify the terms in the definition below.

Definition 5.1.

1. A directed graph is a pair G = (V,E), where V is a non-empty finite set
and E ⊂ V × V \ {(v, v) | v ∈ V }. V is the set of nodes and E is the set
of (directed) edges.
A node w is called a neighbor of v or adjacent to v if (v, w) ∈ E.
v is called the start node and w the end node of the edge (v, w).

2. For an (undirected) graph, the edges have no direction. E ⊂ P2(V ), the
set of the two-element subsets of V . The nodes v, w ∈ V are neighbors
or adjacent if {v, w} ∈ E; v and w are called end nodes of the edge
e = {v, w}. The edge {v, w} is called incident to v and w.

3. Let v ∈ V . Uv := {w ∈ V | w adjacent to v} is called the environment
of v. The number |Uv| of the elements of Uv is called the degree of v, or
deg(v) for short. The number |V | of nodes is called the order of G.

Remarks:

1. |V | and |E| measure the size of a graph. The running time of algorithms
depends on |V | and |E|.

2. A directed graph can be associated with an (undirected) graph, the un-
derlying graph, by associating the edge (v, w) with the edge {v, w}. We
get the directed graph assigned to a graph if we replace each edge {v, w}
with the edges (v, w) and (w, v).

Definition 5.2. Let G = (VG, EG) be a (directed) graph.

1. A graph H = (VH , EH) is said to be a subgraph of G if VH ⊂ VG and
EH ⊂ EG.
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2. Let H be a subgraph of G. H is called a G spanning subgraph if VH = VG

holds.
3. Let S ⊂ VG, and let ES be the set of edges in E whose end nodes (or start

and end nodes in the directed case) are in S. The graph ⟨S⟩ := (S,ES)
is called the subgraph generated by S.

Examples: Figure 5.7 shows subgraphs H and I of G, I is the subgraph of G
generated by {A, B, C, D}, and H is a spanning subgraph (tree) of G.
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Fig. 5.7: Various graphs.

Paths. Paths are special subgraphs of a graph. With paths, we define im-
portant terms for graphs such as connectivity and distance.

Definition 5.3.

1. Let G = (V,E) be a graph. A path P is a sequence of nodes v0, v1, . . . , vn,
where {vi, vi+1} ∈ E, i = 0, . . . , n− 1. v0 is called the start node and vn
the end node of P . n is called the length of P .
w is accessible from v if there is a path P with start node v and end node
w. If there is a path from v to w for every pair of nodes v, w ∈ V , then
G is said to be connected .
A path P is simple if vi ̸= vj for i ̸= j and 0 ≤ i, j ≤ n. A path P is
closed if v0 = vn. A closed path P is simple if vi ̸= vj for i ̸= j and
0 ≤ i, j ≤ n−1.
A simple closed path of length ≥ 3 is called a cycle or circle. A graph G
without cycles is called acyclic.

2. For a directed graphG, we explain the terms analogously. In a path P , the
edges have the appropriate direction, i.e., (vi, vi+1) ∈ E, i = 0, . . . , n− 1.
For a cycle it is required that the length is ≥ 2.
The nodes v, w are mutually accessible if v is accessible from w and w
from v. If each two nodes v, w are mutually accessible in V , G is called
strongly connected .

Remarks: Let G = (V,E) be a graph.

1. Let {v, w} ∈ E. The path v, w, v is a simple closed path, but no cycle.
2. Let v ∈ V . v is a (closed) path from v to v. In particular, v is accessible

from v.
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3. The relation “accessible” defines an equivalence relation15 on V . For a
directed graph G = (V,E), the relation “mutually accessible” is an equiv-
alence relation on V (“accessible” is not symmetric for a directed graph).

4. Two closed paths P = v0, . . . , vn and P ′ = w0, . . . , wn with:

wi = v(i+j)mod(n+1), for fixed j and i = 0, . . . , n,

define the same cycle. The condition states that P and P ′ differ only in
the selection of the start node.

Example. Closed paths can be concatenated, as shown in Figure 5.8.
..1.

2

.

3

.

4

. 6. 5.......

z1 = 3, 2, 1, 6, 3; z2 = 3, 4, 5, 6, 3; z3 = 3, 2, 1, 6, 3, 4, 5, 6, 3; . . ..

Fig. 5.8: Many closed paths.

With the help of paths, we explain the distance of nodes.

Definition 5.4. Let G = (V,E) be a (directed) graph and v, w ∈ V . The
distance d(v, w) between the nodes v and w is the length of a shortest path
connecting v and w, i.e., a path with the minimum number of edges. If there
is no path from v to w, we set d(v, w) =∞.

Remark. For a connected graph G = (V,E), the definition of the distance d
of nodes obviously fulfills the axioms of a metric (see Definition B.24). For a
strongly connected directed graph, the “axiom of symmetry” d(u, v) = d(v, u),
u, v ∈ V , may be violated.

Definition 5.5.

1. Let G be a graph, and let C be an equivalence class16 of the relation “ac-
cessible”. The graph ⟨C⟩ generated by C is called a connected component
of G.

2. Let G be a directed graph, and let C be an equivalence class of the
equivalence relation “mutually accessible”. The graph ⟨C⟩ generated by
C is called a strongly connected component of G.

Remark. Let Ki = (Vi, Ei), i = 1, . . . , l, be the connected components of
G = (V,E). Then V = ∪li=1Vi, Vi ∩ Vj = ∅ for i ̸= j, and E = ∪li=1Ei,
Ei ∩ Ej = ∅ for i ̸= j.
15 A relation ∼ on V which is reflexive (v ∼ v, v ∈ V ), symmetrical (v ∼ w implies

w ∼ v) and transitive (u ∼ v and v ∼ w implies u ∼ w) is called an equivalence
relation.

16 An equivalence class of an equivalence relation ∼ consists of all elements equiv-
alent to a given element v ({w |w ∼ v}).
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Trees. We already met rooted trees in Chapter 4. Trees are a special class
of graphs. They occur in most of the algorithms which we study in the two
chapters on graphs.

Definition 5.6. An acyclic connected graph G is called a (free) tree. If G
has more than one connected component, we speak of a forest .

Remark. A free tree can be assigned to a rooted tree. To do this, we mark
a node as root and provide each edge with an orientation in the direction
away from the root. The ith level of the tree consists of the nodes which have
distance i from the root. See Figure 5.9.
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Fig. 5.9: Miscellaneous trees.

Proposition 5.7. For a graph T = (V,E) the following statements are equiv-
alent:

1. T is a tree.
2. T is connected and |E| = |V | − 1.

Proof. Let n = |V | and m = |E|. First we show that statement 2 follows
from statement 1. A tree T is by definition connected. By induction on n,
we conclude that m = n − 1. The base case is for n = 1. When n = 1, we
have m = 0. Let n > 1 and assume the assertion proved for < n. Let T be a
tree of order n and e = {v, w} an edge in T . Let T \ {e} be the graph that
results from T when we remove the edge e in T . Since T is acyclic, there is no
path in T \ {e} that connects v with w. After removing an edge, the number
of connected components increases by a maximum of 1. Therefore, T \ {e}
breaks down into two components (trees) T1 = (V1, E1) and T2 = (V2, E2).
We have m = |E| = |E1|+ |E2|+1 = |V1| − 1+ |V2| − 1+1 = |V | − 1 = n− 1.

To show the other direction, let T be connected and m = n− 1. Suppose
T has a cycle Z. Let e ∈ Z. Then T \ {e} is connected and has n− 2 edges,
a contradiction, because in order to connect n nodes, you need at least n− 1
edges. 2

Bipartite Graphs. A graph G = (V,E) is said to be bipartite if the set of
nodes V splits into parts V1 and V2, i.e., V = V1 ∪ V2, V1 ∩ V2 = ∅, such that
each edge of G has one end node in V1 and the other in V2.
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A perfect matching for G consists of a set of edges that define a bijective
map from V1 to V2. The following proposition specifies for a bipartite graph
with |V1| = |V2| a criterion for the existence of a perfect matching.

Proposition 5.8. Let G = (V,E) be a bipartite graph with parts V1 =
{v1, . . . , vn} and V2 = {w1, . . . , wn}, and let the Xij, 1 ≤ i, j ≤ n, be in-
determinates. The matrix A = (aij)1≤i,j≤n is defined by

aij =

{
Xij if {vi, wj} ∈ E,
0 otherwise.

G has a perfect matching if and only if det(A) ̸= 0.

Proof. The determinant of A is defined by the formula

det(A) =
∑

π∈Sn

sign(π)a1π(1) · · · anπ(n).

All permutations π from the symmetric group Sn are summed up, i.e., all
bijective maps on {1, . . . , n} are to be build (see [Fischer14, Chapter 3]).

If G has a perfect matching that defines π, then the summand

a1π(1) · · · anπ(n) = X1π(1) · · ·Xnπ(n) ̸= 0. (∗)

Since the summands in det(A) are pairwise distinct, det(A) is also ̸= 0. If vice
versa det(A) ̸= 0, it follows that at least one summand a1π(1) · · · anπ(n) ̸= 0.
Then (∗) follows; in other words: π defines a perfect matching. 2

Remarks:

1. det(A) is a polynomial with the coefficients +1 or −1 and the indeter-
minates Xij , 1 ≤ i, j ≤ n. In Section 1.6.3, we developed a Monte Carlo
algorithm to test the identity of two polynomials (see Corollary 1.55). We
can use this algorithm to test det(A) = 0. The efficiency of the method
which results from Proposition 5.8 is dominated by the algorithm used
to calculate the determinant. The calculation according to the defining
formula based on Leibniz17 or by the expansion theorem of Laplace18 is
of order O(n!) and therefore unsuitable. Modern methods have a running
time of order O(n3) or better.

2. Let G = (V,E) be a graph and Z ⊂ E. Z is called a perfect matching
if each node of V is incident to exactly one edge of Z. The question of
whether any graph G = (V,E) with the node set V = {v1, . . . vn}, where

17 Gottfried Wilhelm Leibniz (1646 – 1716) was a German philosopher, mathe-
matician and polymath. He is the co-founder of the infinitesimal calculus and is
considered to be the most important universal scholar of his time.

18 Pierre-Simon Laplace (1749 – 1827) was a French mathematician, physicist and
astronomer.
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n is even, has a perfect matching can be answered with a Tutte19 matrix.
Let Xij be indeterminates. The Tutte matrix A = (aij)1≤i,j≤n of G is
defined by

aij =

Xij if {vi, vj} ∈ E and i < j,
−Xji if {vi, vj} ∈ E and i > j,
0 otherwise.

A graph has a perfect matching if and only if the determinant of its Tutte
matrix det(A) is not zero. The proof of this fact, however, is not as simple
as with bipartite graphs. There are randomized algorithms not only for
testing the existence of a perfect matching, but also for determining a
perfect matching (see [MotRag95, Chapter 12.4]).

5.3 Representations of Graphs

For a graph G= (V,E) we consistently write n = |V | for the number of
nodes and m = |E| for the number of edges of G. For a graph, it holds that
0 ≤ m ≤

(
n
2

)
, and for a directed graph, it holds that 0 ≤ m ≤ n(n − 1). In

the following, we often assume that V = {1, . . . , n}. This does not restrict
the generality of the algorithms.

Definition 5.9.

1. A (directed) graph G = (V,E) is called complete if each node is connected
to every other node by an edge.

2. If G has many edges (m large compared to
(
n
2

)
or n(n − 1)), then G is

called dense.
3. If G has few edges (m small compared to

(
n
2

)
or n(n − 1)), then G is

called sparse.

Remark. Let G = (V,E) be a complete (directed) Graph. Then |E| = n(n−1)
if G is directed, and |E| =

(
n
2

)
if G is undirected.

Definition 5.10. Let G = (V,E) be a directed graph with V = {1, . . . , n}.
1. The adjacency matrix adm is an n× n–matrix,

adm[i, j] :=

{
1 for (i, j) ∈ E,
0 otherwise.

2. The adjacency list adl[1..n] is an array of lists. For each node j ∈ V , the
list adl[j] is defined by

i ∈ adl[j] if and only if (j, i) ∈ E.

The list adl[j] contains the nodes that are adjacent to j.
3. The parent array p[1..n] is used if G is a rooted tree or a forest of rooted

trees. p[i] stores the predecessor of i or the value 0 if i is a root of a

19 William Thomas Tutte (1917 – 2002) was a British-Canadian cryptologist and
mathematician.
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component of G.
4. A graph is represented by the adjacency matrix or adjacency list of the

associated directed graph.

Example. Adjacency matrix. See Figure 5.10.

..1. 2.

3

.

4

.....  0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


..1. 2.

3

.

4

.....  0 1 0 1
0 0 1 1
0 0 0 1
0 0 0 0


Fig. 5.10: Graph and directed graph – each with adjacency matrix.

Remarks:

1. The adjacency matrix adm of a graph is symmetric and it needs n2

memory locations. This is also true if G has only a few edges, i.e., if G is
sparse.

2. There are 2m entries in the adjacency list of a graph. A directed graph
has m entries.

3. An entry in an adjacency matrix requires less memory than an entry
in the equivalent adjacency list. Therefore, an adjacency matrix is more
suitable for dense graphs, whereas the adjacency list is more suitable for
sparse graphs. See Figure 5.11.

Example. Adjacency list.

..1. 4.

3

.

2

.....
1 : 2, 4
2 : 1, 3, 4
3 : 2, 4
4 : 1, 2, 3

..1. 4.

3

.

2

.....
1 : 2, 4
2 : 3, 4
3 :
4 : 3

Fig. 5.11: Graph and directed graph – each with adjacency list.

We implement an adjacency list by a linked list of list items. The variable
adl[j], j = 1, . . . , n, contains a reference to the first element of the linked
list or null. The null reference specifies that adl[j] does not reference a list
element, i.e., we assign the empty list to the node j. A list element is defined
by

type vertex = 1..n
type node = struct

vertex v
node next

The definition specifies that a vertex of the graph can take the values
from the set {1, . . . , n}. A list element has variables v of type vertex and
next of type node. v stores a node of the graph and next a reference to a list



5.4 Basic Graph Algorithms 217

element of type node or null. The null reference indicates that the end of the
list is reached. The access to v and next is done with the structure member
operator “.” (see Section 1.7).

5.4 Basic Graph Algorithms

Depth-first search and breadth-first search provide two different methods
for traversing a graph. Traversing means systematically running through the
edges of the graph in order to visit all nodes of the graph. Depth-first search
and breadth-first search are applied to graphs and directed graphs. They are
fundamental to many further graph algorithms.

5.4.1 Breadth-First Search

First, we describe the algorithm breadth-first search, BFS for short, infor-
mally.

(1) Select a start node.
(2) Starting from this node, visit all neighbors n1, n2, . . . and then
(3) all neighbors of the first neighbor n1 and then
(4) all neighbors of the second neighbor n2,
(5) and so on . . . . . .
(6) If we do not reach all nodes of the graph, we continue breadth-first search

with another start node, a node that has not yet been reached. We repeat
this until all nodes are visited.

Example. In Figure 5.12, the sequence of visits is along the dashed path that
begins at the center, orbits it twice and ends at the outer node at northeast.
The starting node of the path is explicitly selected.

....................................................

Fig. 5.12: Breadth-first search.

The visit sequence results in levels for each start node. Level 0 consists
of the start node. Level i, i ≥ 1, consists of the nodes that are adjacent to a
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node at level i− 1, but not to a node at levels 0, . . . , i− 2.

We divide the nodes V = {1, . . . , n} of the graph into three disjoint
groups:

VT : visited nodes,
Vad: nodes adjacent to nodes from VT , but not in VT ,
VR: V \ (VT ∪ Vad).

Nodes from Vad are marked for visiting. The assignment of a node to VT , Vad

and VR changes during the execution of BFS:
Start: VT = ∅, Vad = {startnode}, VR = V \ {startnode}.
When visiting j ∈ Vad, we set

VT = VT ∪ {j},
Vad = (Vad \ {j}) ∪ (Uj ∩ VR),

VR = V \ (VT ∪ Vad),

where the environment Uj of j consists of the nodes adjacent to j.

Construction of a Breadth-First Forest. For each start node, we get a
rooted tree inductively.
Start: T = ({startnode}, ∅).
Let T = (VT , ET ) be constructed. When visiting j, we set

T = (VT ∪ (Uj ∩ VR), ET ∪ {{j, k} | k ∈ Uj ∩ VR}).

The node j becomes the parent node for all nodes k ∈ Uj ∩ VR. These nodes
change from VR to Vad. Since for each connected component the number of
edges is equal to the number of nodes minus 1, the construction results in a
tree for each connected component.

Example. Figure 5.13 shows a graph with its breadth-first tree. The super-
scripts at the nodes indicate the visit order.
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Fig. 5.13: Breadth-first search with breadth-first tree.

Altogether, we get a spanning forest. This is not unique. It depends on
the choice of starting nodes and the order in which we treat adjacent nodes.
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Managing the Nodes from Vad with a Queue. We use a queue to
cache elements from Vad. Elements stored in the queue cannot be accessed at
random. The principle “first in, first out” (FIFO principle) is applied. This
means that we can remove the elements in the order in which they were saved
i.e., we can remove the element that has been in the queue for the longest
time.

We define a queue by the access functions:

1. ToQueue(vertex k) stores k in the queue.
2. FromQueue returns and removes the element from the queue that has

been longest in the queue.
3. QueueEmpty checks the queue for elements.

We implement VT , Vad and VR using the array where[1..n] and the
breadth-first forest by the array parent[1..n].

where[k]

> 0 if k ∈ VT ,
< 0 if k ∈ Vad,
= 0 if k ∈ VR.

parent[k] = j if j is the predecessor of k.
Our pseudo-code follows [Sedgewick88].

Algorithm 5.11.
vertex parent[1..n]; node adl[1..n]; int where[1..n], nr

BFS()
1 vertex k
2 for k ← 1 to n do
3 where[k]← 0, parent[k]← 0
4 nr ← 1
5 for k ← 1 to n do
6 if where[k] = 0
7 then Visit(k), nr ← nr + 1

Visit(vertex k)
1 node no
2 ToQueue(k), where[k]← −1
3 repeat
4 k ← FromQueue, where[k]← nr
5 no← adl[k]
6 while no ̸= null do
7 if where[no.v] = 0
8 then ToQueue(no.v), where[no.v]← −1
9 parent[no.v]← k
10 no← no.next
11 until QueueEmpty
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Remarks:

1. Calling Visit(k) in BFS (line 7) results in visiting all previously unvisited
nodes that can be reached from k, because starting from k all neighbors
of k are visited and then all neighbors of the neighbors, and so on, that
is, all nodes from VR that are accessible from k.

2. The while loop in Visit examines the environment of k.
3. After the termination of BFS, where[k] contains the number of the com-

ponent of the spanning forest in which k lies.
4. A node k is the root of a component of the spanning forest if after termi-

nation parent[k] = 0 is valid.

BFS with an Adjacency Matrix. We delete the variable no and replace
in Visit the lines 5–10 with:

for j ← 1 to n do
if where[j] = 0 and adm[k, j]
then ToQueue(j), where[j]← −1, parent[j]← k

Now, breadth-first search works if the graph is given by an adjacency matrix.

Running Time Analysis of BFS. Let G = (V,E) be a graph, n = |V |,
m = |E| and T (n,m) the running time of BFS. Since we fetch each node
exactly once from the queue, the repeat-until loop (lines 3 – 11 of Visit) is
repeated n times. When represented by an adjacency list, the while loop for
each node k (lines 6 – 10 of Visit) is passed through deg(k) times. In particular,
the number of iterations of while is equal to

∑
k deg(k) = 2m for all nodes.

The total running time for an adjacency list is T (n,m) = O(n+m)20.
When represented by an adjacency matrix, the number of iterations of

the first statement of the for loop is n2. For the running time, it follows that
T (n,m) = O(n2).

More Benefits of BFS.

1. Test for cycles on graphs. If we find a node j with where[j] ̸= 0 and
parent[j] ̸= k (in line 7 of Visit), while investigating the environment of
a node k, the edge {k, j} leads to a cycle because j is already in the tree.
We can find the corresponding cycle by looking for the lowest common
ancestor of k and j in the breadth-first subtree represented by the parent
array. We study a solution to this problem in Section 6.1.3.

2. Determination of distances. Using the algorithm BFS, the distances for
all nodes to the root of the respective subtree can be determined. The
following modification is necessary:
a. We define a global array int dist[1..n].
b. In BFS dist is initialized. We insert dist[k]← 0 in line 3.
c. In Visit, line 9, we insert dist[no.v]← dist[k] + 1.

After termination, the distances to the respective roots are stored in dist.
20 By Definition 1.12, this means that there exist n0, m0, c ∈ N such that T (n,m) ≤

c(n+m) for n ≥ n0 or m ≥ m0.
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5.4.2 Depth-First Search

First, we describe the algorithm depth-first search, DFS for short, informally.

(1) Select a start node.
(2) Starting from this node, visit the first neighbor n1 and then
(3) the first neighbor n2 of n1 and then
(4) the first neighbor n3 of n2,
(5) and so on . . . until all first neighbors are visited.
(6) Visit the second neighbor from the last visited node,
(7) and so on . . . .
(8) If we do not reach all nodes, we continue depth-first search with another

start node, a node that has not yet been reached. Now, we visit all the
nodes from the set of unvisited nodes that can be reached from this node.
We repeat this until all nodes are visited.

Example. Figure 5.14 shows the sequence of visits along the dashed path,
which starts at the center, rounds it once and ends at the outer node at
northeast.

.................................................

Fig. 5.14: Depth-first search.

For a graph with node set V = {1, . . . , n} we specify our procedure as
follows.

Algorithm 5.12.
vertex parent[1..n], node adl[1..n], boolean visited[1..n]
int btime[1..n], etime[1..n], time

DFS()
1 vertex k
2 for k ← 1 to n do
3 visited[k]← false , parent[k]← 0
4 time← 0
5 for k ← 1 to n do
6 if not visited[k]
7 then Visit(k)
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Visit(vertex k)
1 node no
2 btime[k]← time, time← time+ 1
3 visited[k]← true
4 no← adl[k]
5 while no ̸= null do
6 if visited[no.v] = false
7 then parent[no.v]← k, Visit(no.v)
8 no← no.next
9 etime[k]← time, time← time+ 1

Remarks:

1. The call Visit(k) in line 7 of DFS causes Visit to be called recursively for
all nodes accessible from k that have not yet been visited. In total, for
each node of G exactly one call of Visit is made.

2. We only need the arrays btime and etime to analyze the algorithm.
3. Construction of a depth-first forest . For each node k for which Visit

is called by DFS, Visit constructs a rooted tree. The node k is the prede-
cessor of the node v if the call of Visit(v) is made while the environment
of k is inspected. All calls to Visit in DFS generate a spanning forest for
G, which is represented by the array parent. If parent[k] = 0, k is the
root of one of the subtrees of the depth-first forest.
This forest depends on the implementation of DFS. The degrees of free-
dom are the selection of the node used to call Visit in DFS and the order
of the nodes in the adjacency list.

Example. Figure 5.15 shows a directed graph with its depth-first tree. The
superscripts at each node indicate the visit order.
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Fig. 5.15: Depth-first search with depth-first tree.

For a node k of G, we set tb(k) := btime[k] (begin time – call time) and
te(k) := etime[k] (end time – termination time) with respect to a depth-first
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traversal. The activation interval

I(k) := [tb(k), te(k)]

specifies the time period in which the (recursive) call of Visit(k) is active.

Proposition 5.13. Let G = (V,E) be a (directed or undirected) graph and
let j, k ∈ V .

1. If I(j) ∩ I(k) ̸= ∅, then I(j) ⊂ I(k) or I(k) ⊂ I(j).
2. I(j) ⊂ I(k) if and only if k is an ancestor of j in the corresponding

depth-first tree.

Proof.

1. Let I(j) ∩ I(k) ̸= ∅. We assume without loss of generality tb(j) < tb(k)
and tb(k) < te(j). Then we visit k during the recursive descent from j.
Consequently, Visit must first terminate in node k and then in node j.
Thus, it follows that I(k) ⊂ I(j).

2. We have I(j) ⊂ I(k) if and only if tb(k) < tb(j) and te(j) < te(k).
This in turn is equivalent to the condition k is an ancestor of j in the
corresponding depth-first tree.

The assertions of the proposition are proven. 2

Definition 5.14. Let G = (V,E) be a directed graph, and let T be a depth-
first forest of G. An edge e = (v, w) ∈ E is called a tree edge if e is also an
edge in T . It is called a backward edge if w is an ancestor of v in T and it is
called a forward edge if w is a descendant of v in T . All other edges from E
are called cross edges.

Example. Figure 5.16 shows a directed graph and a depth-first tree with
drawn cross, backward and forward edges.
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Fig. 5.16: Cross, backward and forward edges.

Remark. An edge (v, w) with tb(w) < tb(v) is a cross edge if te(w) < tb(v).
The end node w is located in another part of the graph that has already been
traversed.
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Running Time Analysis of the Algorithm DFS. Let G = (V,E) be a
graph, n = |V |, m = |E| and T (n,m) be the running time of DFS. Then we
have T (n,m) = O(n+m).

The computational effort for lines 3 and 6 in DFS is of order O(n). Since
Visit is called exactly once for each node, the number of calls to Visit is
n. The number of iterations of while in Visit is given by the degree of the
corresponding node. The sum of the degrees of all nodes is 2m. Overall, it
follows that T (n,m) = O(n+m).

Remark. In depth-first search, the sequence of visits is determined by the
recursive calls. The call stack is implicitly linked to this. If the recursion is
replaced by an (explicit) stack, the visit sequence is determined by the LIFO
principle (last in first out) in contrast to the FIFO principle (first in first
out), which we use for breadth-first search. Here you can see that the area
of visited nodes during depth-first search goes into the depths of the graph.
In breadth-first search, the range of visited nodes extends evenly along the
boundary between already visited and not yet visited nodes.

5.5 Directed Acyclic Graphs

We use a directed acyclic graph (DAG) to model the individual steps of
production processes, the dependencies between the chapters of a book or
of files in include mechanisms. Another example is the representation of the
structure of arithmetic expressions.

Example. Figure 5.17 shows the structure of an arithmetic expression with
repeated partial expressions:

(a+ b) ∗ c ∗ ((a+ b) ∗ c+ (a+ b+ e) ∗ (e+ f)).
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Fig. 5.17: Syntax graph of an arithmetic expression.

You can use the depth-first algorithm to test a directed graph for cycles.
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Proposition 5.15. A directed graph is acyclic if and only if DFS does not
produce backward edges.

Proof. Each backward edge closes a cycle. Conversely, if v1, . . . , vn is a cycle
and vi is the first node for which DFS is called, then I(vi−1) ⊂ I(vi), i.e.,
vi−1 is a descendant of vi in the corresponding depth-first tree (Proposition
5.13). Thus, the edge (vi−1, vi) is a backward edge in the depth-first forest. 2

Topological Sorting. The nodes of a directed acyclic graph are partially
ordered. We can arrange a partially ordered set linearly, in accordance with
the partial order. This is captured by the following proposition.

Definition 5.16.

1. (M,≤) is called a partially ordered set if for m1,m2,m3 ∈M we have
a. m1 ≤ m1 (reflexivity).
b. If m1 ≤ m2 and m2 ≤ m1, then follows m1 = m2 (antisymmetry).
c. If m1 ≤ m2 and m2 ≤ m3, then follows m1 ≤ m3 (transitivity).

2. By a topological sort of a partially ordered set M , we understand a linear
ordering that respects the partial order, that is, if w ≤ v, then w precedes
v in the linear ordering.

Remarks:

1. Let G = (V,E) be a directed acyclic graph and v1, v2 ∈ V . We define
v1 ≤ v2 if and only if v2 is accessible from v1. This defines a partial order
on V .

2. If we complete a linear ordering of the nodes with all edges of the graph,
then the linear ordering is a topological sorting if and only if all edges
are directed from left to right.

Example. Topological sortings of the nodes of the graph in Figure 5.18 are
J,K,L,M,A,C,G,H,I,B,F,E,D and A,B,C,F,E,D,J,K,L,M,G,H,I.

..A. B.

C

.

D

.

E

.

F

.

G

. H. I.

J

.

K

.

L

.

M

...............

Fig. 5.18: Topological sortings.
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Figure 5.19 shows that J,K,L,M,A,C,G,H,I,B,F,E,D is indeed a topologi-
cal sorting of the nodes of the graph in Figure 5.18.

..J. K. L. M. A. C. G. H. I. B. F. E. D...............

Fig. 5.19: Topological sorting – linear ordering.

The following algorithm, a modification of DFS, sorts the nodes V =
{1, . . . , n} of a directed acyclic graph topologically.

Algorithm 5.17.
vertex sorted[1..n]; node adl[1..n]; boolean visited[1..n]; index j

TopSort()
1 vertex k
2 for k ← 1 to n do
3 visited[k]← false
4 j ← n
5 for k ← 1 to n do
6 if not visited[k]
7 then Visit(k)

Visit(vertex k)
1 node no
2 visited[k]← true
3 no← adl[k]
4 while no ̸= null do
5 if not visited[no.v]
6 then Visit(no.v)
7 no← no.next
8 sorted[j] := k, j := j − 1

Proposition 5.18. After termination of TopSort, the array sorted contains
the nodes of G in a topological sorting.

Proof. Let w < v. This means that there is a path from w to v. We show
that w is placed before v in the array sorted. Let us first consider the case
tb(w) < tb(v). Since there is a path from w to v, I(v) ⊂ I(w) (Proposition
5.13). Therefore, te(v) < te(w). Since we fill the array sorted from the end
in the order of termination, w is placed before v in sorted. In the case of
tb(v) < tb(w), we have I(v) ∩ I(w) = ∅. Otherwise, if I(v) ∩ I(w) ̸= ∅, then
I(w) ⊂ I(v) would follow (loc. cit.). Therefore, w would be accessible from
v. A contradiction to G acyclic. Thus, te(v) < te(w), and w is placed before
v in the array sorted. 2
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5.6 The Strongly Connected Components

A strongly connected component of a directed graph G is a maximum sub-
graph of G with respect to the equivalence relation “mutually accessible” (see
Definition 5.5). We discuss two algorithms for determining the strongly con-
nected components. Both algorithms are based on depth-first search, applied
to a directed graph. The first algorithm is named after Tarjan. The second
algorithm was developed by Kosaraju21, but not published. Independently of
Kosaraju’s discovery, the algorithm was published by Sharir22 in [Sharir81].

In this section, T denotes a depth-first forest of G (Section 5.4.2). The
graph T depends on the order of the nodes k in which Visit(k) is called by
Algorithm 5.12. Let v be a node of G. By Tv we denote the subtree of T which
consists of the nodes that we discover during the recursive descent from v.
These are the nodes w with tb(w) ∈ I(v).

The Algorithm of Tarjan. The algorithm of Tarjan results from a modi-
fication of the Visit function in Algorithm 5.12. It computes successively the
strongly connected components of a directed graph. The strongly connected
components result as subtrees of T . If C is a strongly connected component
of G, and if u is the first node of C in which we call Visit, then all nodes
of C are in the subtree Tu, the subtree with root u. We call u the root of
the strongly connected component C. Tarjan’s algorithm determines the roots
of the strongly connected components and thus also the strongly connected
components. Let G = (V,E) be a graph with the node set V = {1, . . . , n}.

Algorithm 5.19.
vertex component[1..n], adl[1..n]; boolean visited[1..n]
int where[1..n], dfs[1..n], low[1..n], num

TarjanComponents()
1 vertex k
2 for k ← 1 to n do
3 visited[k]← false , component[k]← 0, where[k] = 0
4 num← 1
5 for k ← 1 to n do
6 if not visited[k]
7 then Visit(k)

21 Sambasiva R. Kosaraju is an Indian and American computer scientist.
22 Micha Sharir (1950 – ) is an Israeli mathematician and computer scientist.
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Visit(vertex k)
1 node no
2 dfs[k]← num, low[k]← num, num← num+ 1
3 Push(k), where[k]← −1, visited[k]← true
4 no← adl[k]
5 while no ̸= null do
6 if visited[no.v] = false
7 then Visit(no.v)
8 low[k] = min(low[k], low[no.v])
9 else if where[no.v] = −1
10 then low[k] = min(low[k], dfs[no.v])
11 no← no.next
12 if low[k] = dfs[k]
13 then repeat
14 k′ ← Pop, where[k′]← 1, component[k′]← k
15 until k′ ̸= k

Remarks:

1. In line 3 of Visit, we push the node k with Push(k) on a stack. We
note this in the variable where[k] (line 3: where[k]← −1). The variable
where[k] is defined by

where[k] =

 0 if k has not yet been visited,
−1 after k has been pushed on the stack,
1 after k has been removed from the stack.

2. The while loop (line 5 of Vist) inspects the environment of k. For nodes
that have not yet been visited, the recursive call of Visit is performed.
After the call terminates, low[k] is updated (line 8). If there is a node on
the stack that is adjacent to k and has already been visited, an update
of low[k] (line 10) is also performed.

3. After the completion of the inspection of the environment of k (the while
loop terminates), we check whether k is the root of a strongly connected
component. If this is the case (line 12: low[k] = dfs[k]), the nodes of
this strongly connected component are on the stack in the reverse order
of the recursive descent. In the repeat-until loop, for each of the nodes
of this strongly connected component, we enter the root of the strongly
connected component into the array component.

For a node v, the subtree Tv ⊂ T with root v and the set of backward
edges

Rv = {(u,w) | u ∈ Tv and w is an ancestor of v in T}

are defined.
Let v be a node of G, and let te(v) be the termination time of Visit

regarding v. Let C1, . . . , Cl be the strongly connected components discovered
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at this time, i.e., those connected components whose roots have already been
determined. At this point we define for a node v of G and the subtree Tv ⊂ T
with root v the subset Qv of active cross edges

Qv = {(u,w) | u ∈ Tv, w /∈ Tv, w /∈ C1 ∪ . . . ∪ Cl and (u,w) /∈ Rv}.

We number each node v of the graph during the depth-first traversal with
tb(v) and set

low(v) =

{
min{tb(w) | (v, w) ∈ Qv ∪Rv} if Qv ∪Rv ̸= ∅,
tb(v) otherwise.

In line 9, Visit detects end nodes of active cross edges and end nodes of
backward edges starting from v. In line 10, the value low[v] is updated for
these nodes.

If low[v] results from a backward edge or an active cross edge that starts
from a descendant of v, we calculate low[v] recursively from the low value of
the successor (line 8).

Example. Figure 5.20 shows a directed graph and an associated depth-first
tree with drawn backward and cross edges. Cross edges are (D,A) and (K,F ).
The last edge is an active cross edge at the time of its discovery. Next to each
node k is superscripted tb(k), low(k).
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Fig. 5.20: Strongly connected components with Tarjan’s algorithm.

In the depth-first forest, we remove any edge entering a root of a strongly
connected component. The resulting subtrees form the strongly connected
components {A,B,C}, {D,F,G, J,K}, {H, I} and {E}.

Lemma 5.20. Let v ∈ V and Tv be the subtree of T with root v. Then v is
the root of a strongly connected component of G if and only if Qv ∪ Rv = ∅.
We consider the set Qv after Visit(v) has completed the inspection of the
environment Uv.
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Proof. If Qv ∪ Rv = ∅, v cannot belong to a strongly connected component
whose root is an ancestor of v. For this reason, the node v is the root of a
strongly connected component.

If Rv ̸= ∅, there is a backward edge from a descendant of v to an ances-
tor w of v. v and w belong to the same strongly connected component. We
have tb(z) ≤ tb(w) < tb(v) for the root z of this strongly connected compo-
nent. Because of this, the node v is not the root of its strongly connected
component.

If Qv ̸= ∅ is valid, there is a cross edge (u,w). Let z be the root of the
strongly connected component of w. Then tb(z) ≤ tb(w). The call of Visit(z)
is not yet terminated when the cross edge (u,w) is inspected, because other-
wise the strongly connected component with root z would be discovered as
a strongly connected component. The node z is therefore an ancestor of v.
Hence, the node v belongs to the strongly connected component with root z.

2

Lemma 5.21. A node k is the root of a strongly connected component if and
only if low(k) = tb(k).

Proof. A node k is the root of a strongly connected component if and only if
Qk ∪Rk = ∅ (Lemma 5.20). This in turn is equivalent to low(k) = tb(k). 2

Proposition 5.22. Let G be a directed graph, and let n be the number of
nodes and m the number of edges. The algorithm TarjanComponents com-
putes the strongly connected components of G. The running time T (n,m) of
TarjanComponents satisfies T (n,m) = O(n+m).

Proof. From Lemmas 5.20 and 5.21, it follows that the algorithm TarjanCom-
ponents is correct. The running time of DFS is O(n+m) and the additional
running time for the repeat-until loop in Visit is O(n), accumulated over all
calls of Visit. In total, TarjanComponents runs in time O(n+m). 2

The Algorithm of Kosaraju-Sharir. Let G be a directed graph and Gr

be the assigned reverse graph, the graph with the same nodes but inverted
edges. The algorithm uses the fact that the strongly connected components of
G and Gr match. Let te(v) be the numbering of the nodes of G with respect
to the termination of Visit. Then the node v with the highest te number is
the root of the component last entered by DFS. In the reverse graph, we
determine the strongly connected component containing v by calling DFS
with v as start node. We get the following algorithm:
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Algorithm 5.23.
1. Execute DFS in G and number each node v with te(v).
2. Construct the graph Gr = (V,Er) from G.
3. Perform depth-first search in Gr; start Visit with the node v with

the highest number te(v). The first strongly connected component
of G consists of all nodes which we reach from v. If we do not
reach all nodes, we start Visit again with the node v with the
highest number te(v) of the remaining nodes. The nodes that we
now access form the second strongly connected component of G.
We repeat this until all nodes in Gr are visited.

Steps 1 and 3 run in time O(n + m); the running time for step 2 is
O(m). Overall, it follows that the running time is of order O(n+m).

Example. Figure 5.21 shows a graph G and the assigned reverse graph Gr.
Start depth-first search DFS in the node A of G. The superscripts indicate the
depth-first numbering. We get the strongly connected components {A,C,G},
{B}, {H, I}, {J}, {K}, {L,M} and {F,D,E} by executing DFS in Gr.
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Fig. 5.21: Strongly connected components with Kosaraju-Sharir.

Proposition 5.24. The nodes of the components of Gr, computed by Algo-
rithm 5.23, correspond to the nodes of the strongly connected components of
G.

Proof. If v and w are in a strongly connected component of G, there is a
path from w to v and from v to w in G and thus also in Gr. For this reason,
v and w are also in the same component of Gr.

Let v be the root of the spanning tree of a component of Gr and w be
another node in that component. Then we have a path from v to w in Gr, thus
also a path from w to v in G. We show that v and w are mutually accessible in
G. Without restriction, we assume v ̸= w. Suppose that tb(w) < tb(v). Since
there is a path from w to v in G, it follows that te(v) < te(w). A contradiction,
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because the root v has the highest number te(v). So tb(v) < tb(w). Since
te(w) < te(v), it follows that I(w) ⊂ I(v). Hence, v is an ancestor of w in
the corresponding depth-first tree of G (see Proposition 5.13). Thus, there is
a path from v to w in G. v and w are mutually accessible. Consequently, any
two nodes v and w from a component of Gr are mutually accessible in G. By
definition, v and w belong to the same strongly connected component of G.

2

5.7 A Randomized Min-Cut Algorithm

The following algorithm MinCut (Algorithm 5.33) is a Monte Carlo algorithm
(see Definition 1.49). It is based on a simple idea. The algorithm SimpleMin-
Cut, which follows immediately from this idea, has a low success probability.
With a remarkable idea, we can considerably increase the success probabil-
ity. Through independent repetitions, a standard procedure for randomized
algorithms, the probability of success is further increased. The algorithm was
first published in [Karger93]. Our presentation follows [KarSte96]. We study
another method for computing a minimal cut in Section 6.8 (see Proposition
6.67).

Definition 5.25. Let G = (V,E) be a connected multigraph.23 A subset
C ⊂ E is called a cut of G if the graph G̃ = (V,E \C) splits into at least two
connected components. A cut C is called a minimal cut if |C| is minimal for
all cuts of G.

Remark. Let C be a minimal cut of G. Then

|C| ≤ min
v∈V

deg(v).

C can also be < minv∈V deg(v).

Definition 5.26. Let G = (V,E) be a connected multigraph. Let e =
{v, w} ∈ E. The multigraph G/e results from G by contraction of e if all
edges between v and w are removed and the nodes v and w are identified.

The following algorithm RandContract randomly selects an edge e in a
graph G = (V,E) with n = |V | and m = |E| and calculates G/e. G is given
by an integer adjacency matrix adm[1..n, 1..n]. adm[i, j] = k if and only if
there are k edges between i and j. Additionally, there is an array a[1..n] with
a[i] = deg(i). It holds that

∑n
i=1 a[i] = 2m. We think of the edges starting

from each of the nodes 1 to n numbered in this order from 1 to 2m. Each
edge has two end nodes and thus also two numbers. The following algorithm
randomly selects the number r ∈ {1, . . . , 2m} of the edge to be contracted
and performs the contraction of the edge.

23 Multiple edges are allowed between two nodes.
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Algorithm 5.27.
graph RandContract(graph G)
1 int i← 0, j ← 0, s← 0, t← 0
2 choose r ∈ {1, . . . , 2m} at random
3 while s < r do
4 i← i+ 1, s← s+ a[i]
5 s← r − s+ a[i]
6 while t < s do
7 j ← j + 1, t← t+ adm[i, j]
8 s← 0
9 for k ← 1 to n do

10 adm[i, k]← adm[i, k] + adm[j, k]
11 adm[k, i]← adm[i, k], s← s+ adm[i, k]
12 a[i]← s− adm[i, i], a[j]← 0, adm[i, i]← 0

Remarks:

1. In line 2, we randomly select a number r ∈ {1, . . . , 2m}. Then we deter-
mine the node from which the rth edge originates (lines 3 and 4).

2. After line 5 has been executed, s contains the number of the rth edge in
the sequence of the edges which leave node i.

3. In lines 6 and 7, we determine the other end node of the rth edge.
4. The ith and jth rows (and columns) are to be “merged” (lines 9, 10 and

11) and a[i] and a[j] are to be recalculated.
5. The running time of RandContract is of order O(n).
6. a[k] = 0 means that node k was identified with another node during

contraction. The kth row and the kth column of the adjacency matrix
are invalid. We think of the kth row and the kth column as deleted.
RandContract can repeatedly operate on adm and a. adm describes a
multigraph. The valid rows and columns of adm are noted in a.

7. RandContract can easily be adapted for a representation of the multi-
graph by an adjacency list. The union of the adjacency lists of the nodes
i and j is possible in time O(n) if these lists are sorted.

The idea of the algorithm SimpleMinCut is to contract edges one after
the other until only two nodes v and w are left. Let C be a minimal cut of G.
C survives the contractions of SimpleMinCut if we do not contract an edge
from C. Then the edges from C remain as edges between v and w. If a graph
with two nodes is the result of repeated contractions, and no edge of a certain
minimal cut is contracted, then SimpleMinCut computes a minimal cut. But
the probability of success of SimpleMinCut is very small (Proposition 5.29).

Example. SimpleMinCut calculates a minimal cut if in Figure 5.22 the edge
{C,G} is not contracted.
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Fig. 5.22: SimpleMinCut.

Algorithm 5.28.
edgeset SimpleMinCut(graph G)
1 graph I ← G
2 while I has more than two vertices do
3 I ← RandContract(I)
4 return EI

Proposition 5.29. Let G be a graph with n nodes. The success probability
of SimpleMinCut satisfies

p(SimpleMinCut calculates a minimal cut ) ≥ 2

n(n− 1)
.

Proof. Let C be a minimal cut of G, k = |C|, and let

G = I0 = (V0, E0), I1 = (V1, E1), . . . , In−2 = (Vn−2, En−2)

be the sequence of multigraphs that results from contractions by SimpleMin-
Cut, where Ii is the result after the ith iteration.

pr := p(SimpleMinCut computes a minimal cut)

≥ p(SimpleMinCut returns C).

The last probability is equal to the probability that RandContract in line 3
does not choose an edge from C.

p(SimpleMinCut returns C) =

n−3∏
i=0

|Ei| − k

|Ei|
=

n−3∏
i=0

1− k

|Ei|
.

If we do not select an edge from C in the first i iterations, the cardinality of
a minimal cut of Ii is equal to k. The degree of every node in Ii is ≥ k. For

this reason, |Ei| ≥ (n−i)k
2 , or, equivalently, 1− k

|Ei| ≥ 1− 2
n−i . Thus,

pr ≥
n−3∏
i=0

(
1− 2

n− i

)
=

n−3∏
i=0

n− i− 2

n− i
=

2

n(n− 1)
,

thereby proving the assertion of the proposition. 2
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Remark. Each minimal cut in K3, the full graph with three nodes (and three
edges), consists of a pair of edges. The lower bound for the probability that
SimpleMinCut calculates a given minimal cut is attained by K3.

The probability that the selected edge is not in C is highest for the first
selected edge and decreases for every further edge. In order to increase the
success probability, we apply the following idea. Perform only so many con-
tractions that about n√

2
nodes are left (instead of n−2 contractions with two

nodes left) and continue the procedure recursively. Perform a total of two
independent repetitions. As we will see in a moment, this will considerably
increase the likelihood of success.

Algorithm 5.30.
edgeset L(graph G)
1 graph I ← Ĩ ← G

2 int t←
⌈

n√
2
+
(√

2− 1
)⌉

3 if t ≤ 10
4 then enumerate all cuts and return a minimal cut
5 while |VI | ≥ t+ 1 do
6 I ← RandContract(I)
7 while |VĨ | ≥ t+ 1 do

8 Ĩ ← RandContract(Ĩ)
9 EI ← L(I), EĨ ← L(Ĩ)

10 if |EI | ≤ |EĨ |
11 then return EI

12 else return EĨ

Proposition 5.31. Let G be a graph with n nodes, and let T (n) denote the
running time of L. Then

T (n) = O
(
n2 log2(n)

)
.

Proof. The running time T (n) of L is defined by the recurrence

T (n) = 2T

(⌈
n√
2
+
(√

2− 1
)⌉)

+ cn2.

We have
⌈

n√
2
+
(√

2− 1
)⌉

< n+2√
2
. We consider

T̃ (n) = 2T̃

(
n+ 2√

2

)
+ cn2.

Set α = 2√
2−1

, n =
√
2k + α and xk = T̃

(√
2k + α

)
. Then
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xk = T̃
(√

2k + α
)

= 2T̃
(√

2k−1 + α
)
+ c

(√
2k + α

)2
= 2xk−1 + c

(√
2k + α

)2
,

x1 = b.

By Proposition 1.15 and formula (F.5) in Appendix B, we get

xk = 2k−1

(
b+ c

k∑
i=2

2i + 2α
√
2i + α2

2i−1

)

= b2k−1 + c(k − 1)2k + cα2
(
2k−1 − 1

)
+

2αc√
2− 1

√
2k
(√

2k−1 − 1
)

= O(k2k).

Let k = 2 log2(n− α). Then by Lemma B.23

T̃ (n) = O
(
2 log2(n− α)22 log2(n−α)

)
= O

(
n2 log2(n)

)
.

Because T (n) ≤ T̃ (n), T (n) is also of order O
(
n2 log2(n)

)
. 2

Proposition 5.32. Let G be a graph with n nodes. The success probability
of L satisfies

p(L computes a minimal cut ) ≥ 1

log2(n)
.

Proof. Let C be a minimal cut of G, k = |C|, t =
⌈

n√
2
+
(√

2− 1
)⌉
, and let

(Vi, Ei) be Ii or Ĩi, i = 0, . . . , n− t,

be the sequence of multigraphs created by contraction while L is executed.
Let pr be the probability that C is a minimal cut of I or Ĩ. Then

pr =
n−t−1∏
i=0

|Ei| − k

|Ei|
=

n−t−1∏
i=0

(
1− k

|Ei|

)
≥

n−t−1∏
i=0

(
1− 2

n− i

)

=
n−t−1∏
i=0

n− i− 2

n− i
=

t(t− 1)

n(n− 1)
≥ 1

2

(see the proof of Proposition 5.29).
The probability of success of L is determined by two independent phases.

The first phase consists of the repeated contractions. The probability that a
cut C with |C| = k will survive the contractions is ≥ 1/2. The second phase
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consists of the recursive executions of L.
Let prG := p(L computes a minimal cut of G). Since the probability that L
computes a minimal cut of G with I or Ĩ is greater than or equal to 1

2prI or
1
2prĨ , and the two events are independent, we get

prG ≥ 1−
(
1− 1

2
prI

)(
1− 1

2
prĨ

)
.

Actually, this formula depends only on n = |VG| and on t = |VI | = |VĨ |. We
replace prG by prn, prI and prĨ by prt and get

prn ≥ prt −
1

4
pr2t .

As above, we set α = 2√
2−1

, n =
√
2k + α and xk = pr

(
√
2k+α)

. Algorithm

5.30 computes a minimal cut for small n, thus x1 = 1.

xk = xk−1 −
1

4
x2
k−1.

We set yk := 4
xk
− 1. Then xk = 4

yk+1 and

yk = yk−1 +
1

yk−1
+ 1.

This is a simple non-linear first-order difference equation.24

We show by induction on k that

k < yk < k +Hk−1 + 3.

For y1 = 3 the inequality is fulfilled. Further, according to the induction
hypothesis for k − 1

yk = yk−1 +
1

yk−1
+ 1 > k − 1 +

1

k +Hk−2 + 3
+ 1 > k

and

yk = yk−1 +
1

yk−1
+ 1 < k − 1 + Hk−2 + 3 +

1

k − 1
+ 1 = k +Hk−1 + 3.

Then xk = 4
yk+1 > 4

k+Hk−1+4 and

prn = x2 log2 (n−α) >
4

2 log2(n− α) + H⌈2 log2(n−α)−1⌉ + 4
>

1

log2(n)
.

24 This is a special case of the logistic difference equation for which (except in
special cases) no closed solution can be specified (see [Elaydi03, page 13]).
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2

In order to increase the success probability, we now use a standard pro-
cedure for randomized algorithms. Through independent repetitions of L we
can make the error probability arbitrarily small. We repeat L l = k⌈log2(n)⌉
times. k is a constant and determines the success probability (see Proposition
5.34).

Algorithm 5.33.
edgeset MinCut(graph G; int l)
1 edgeset Ẽ, E ← EG

2 for i = 1 to l do
3 Ẽ ← L(G)
4 if |Ẽ| < |E|
5 then E ← Ẽ
6 return E

Proposition 5.34. Let T (n) be the running time of MinCut. Then T (n) =
O(n2 log2(n)

2) and the probability of success of MinCut satisfies

p(MinCut calculates a minimal cut ) > 1− e−k.

Proof. The statement about the running time follows immediately from
Proposition 5.31. The error probability perr of L satisfies perr < 1 − 1

log2(n)
.

The probability pr that L is wrong in every iteration satisfies

pr <

(
1− 1

log2(n)

)k⌈log2(n)⌉

≤
(
1− 1

log2(n)

)k log2(n)

.

Since the sequence
(
1− 1

n

)n
converges strictly increasing to e−1 (Proposition

B.18), (
1− 1

log2(n)

)k log2(n)

converges strictly increasing to e−k. Hence, pr < e−k follows. L always cal-
culates a cut. However, this need not necessarily be minimal. If one of the
executions of L calculates a minimal cut, it is the execution that returns
the result with the least number of edges. The probability that at least one
calculation is correct is > 1− e−k. 2

Exercises.

1. Show that a graph contains an Eulerian cycle if and only if it is connected
and all nodes have even degree.
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2. Let G be a connected planar graph, v be the number of nodes of G and e
be the number of edges of G. By f we denote the number of regions into
which G divides the plane. Show Euler’s polyhedron formula for planar
graphs:

v − e+ f = 2.

The unrestricted region must also be counted.

3. Let G = (V,E) be a graph. ∆ = maxv∈V deg(v) denotes the maximum
degree of G. Show that G can be colored with ∆ + 1 colors so that
neighboring nodes have different colors.

4. Show that in a graph, the number of nodes of odd degree is even.

5. Let [x], [y] ∈ Z21. We define [x] ∼ [y] if and only if x ≡ y mod 7. Show
that this defines an equivalence relation. Display it with a graph and
characterize the equivalence classes.

6. Let G = (V,E) be a graph, n = |V |, m = |E|. Show:
a. If G is connected, then m ≥ n− 1.
b. Whenever m ≥

(
n−1
2

)
+ 1, it follows that G is connected.

7. Let G = (V,E) be a graph with |V | ≥ 2. Show that the following state-
ments are equivalent:
a. G is a tree.
b. G is acyclic and has exactly |V | − 1 edges.
c. G is acyclic and adding an edge always results in a cycle.
d. G is connected and G \ {e} := (V,E \ {e}) splits up into exactly two

components for all e ∈ E.
e. For every two nodes k and l, there is exactly one path that connects

k and l.

8. Let G = (V,E) be a graph and |V | = 6. Show that there are three nodes
so that the subgraph generated by them is complete, or there are three
nodes so that the subgraph generated by them consists of isolated nodes.

9. Let G = (V,E) be a graph and n = |V | ≥ 3. For each two nodes k and l
which are not adjacent, we have deg(k) + deg(l) ≥ n. Show that G has a
Hamiltonian25 circuit, i.e. a cycle that contains each node exactly once.
This result is attributed to Ore ([Gould88, Theorem 5.2.1]). In particular,
a graph with deg(v) ≥ n

2 for v ∈ V has a Hamiltonian circuit.

10. Let V = {I1, . . . , In} be a set of intervals. We assign to V the interval
graph G = (V,E): {Ii, Ij} ∈ E, 1 ≤ i, j ≤ n, i ̸= j, if and only if Ii∩Ij ̸= ∅.
Specify an efficient algorithm that generates the interval graph G for a
given V . Analyze your algorithm.

25 William Rowan Hamilton (1805 – 1865) was an Irish mathematician and physi-
cist, known primarily for his contributions to mechanics and for his study of
quaternions.
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11. Alcuin was a scholar at the court of Charlemagne and one of his most
important advisers. A collection of mathematical problems attributed to
Alcuin contains the following task [Herrmann16, page 259]: A man wants
to cross a river with a wolf, a goat and a head of cabbage. He has a boat
at his disposal in which only an animal or the head of cabbage can be
placed besides himself as a rower. If goat and wolf are alone, the wolf eats
the goat. If goat and head of cabbage are alone, the goat eats the head
of cabbage. How can the man bring the wolf, goat and head of cabbage
safely to the other shore?

12. Develop a non-recursive version of DFS.

13. We classify the edges of a graph analogously to Definition 5.14. Which
types of edges (tree, forward, backward or cross edges) are caused by the
type of traversing (BFS or DFS) of graphs and directed graphs?

14. Which of the linear arrangements (1) A,G,H,I,B,F,D,E,J,C,K,L,M
(2) A,B,J,K,L,M,C,G,H,I,F,E,D (3) A,B,J,K,L,M,G,C,H,I,F,E,D are topo-
logical sortings of the graph from the example on page 225. Specify the
calls of Visit for the topological sortings. Can every topological sorting
of V be created by TopSort?

15. Show that a directed acyclic graph G has at least one node into which no
edge enters, and further show that there is exactly one node into which
no edge enters if G is a directed tree, i.e., there is one node from which
all other nodes can be reached.

16. Let G = (V,E) be a directed graph, V1, . . . , Vr its strongly connected
components. Gred = (Vred, Ered), where Vred = {V1, . . . , Vr}, Ered =
{(Vi, Vj) | i ̸= j and there exists v ∈ Vi, w ∈ Vj : (v, w) ∈ E}, the
reduced graph associated with G. Show that Gred is acyclic.

17. Let A be the adjacency matrix of a directed graph G and Ar the rth
power of A, r ≥ 1.
a. Show that G has Ar[i,j] different directed paths from i to j of length

r. In particular, G is a directed acyclic graph if there is an r ∈ N
with Ar = 0 (i.e., A is nilpotent).

b. Let A ∈ M(n × n, {0, 1}), A[i, i] = 0, i = 1, ..., n. Specify an efficient
algorithm that decides whether A is nilpotent.

18. Let (M,≤) be a finite partially ordered set, i.e., for a, b, c ∈ M holds:
a ≤ a, from a ≤ b and b ≤ a it follows that a = b, from a ≤ b and
b ≤ c it follows that a ≤ c. Because of the transitivity of the ≤ relation,
all relations can be obtained from relations of the form a < b, a ̸= b
and there is no c with a < c < b. We assign (M,≤) to a directed graph
G = (V,E): V = M,E = {(a, b)|a < b, a ̸= b and there is no c with
a < c < b}.
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a. Let M = {a, b, c, d, e, f} and a < b, a < c, a < d, a < e, a < f , b < c,
b < f , c < e, c < f , e < d, e < f .
Draw the directed graph associated with (M,≤).

For the following subtasks, (M,≤) is an arbitrary finite partially ordered
set.
b. Does the directed graph associated with (M,≤) have cycles? What

are its strongly connected components?
c. How do you determine for a ∈M all b ∈M with b > a and all b ∈M

with b < a using the directed graph associated with (M,≤)?
19. Let G = (V,E) be a connected graph, |V | ≥ 3 and T a DFS tree of G with

root r. R denotes the set of backward edges. A node v ∈ V is called an ar-
ticulation point if G\{v} := (V \{v}, E\{e ∈ E | v end node of e}) is not
connected. A graph without articulation points is called bi-connected or
not separable. A block of a graph G is a maximal non-separable subgraph
of G.
a. Use a sketch to figure out the terms.
b. Show that v is an articulation point of G if there are u,w ∈ V \ {v}

such that every simple path from u to w goes through v.
c. Show that r is an articulation point if r has at least two successors.
d. Let v ∈ V, v ̸= r. Show that v is an articulation point if there is a

successor v′ of v and for all (u,w) ∈ R w is not an ancestor of v if u
is a descendant of v′ or v′.

e. low(v) := min({tb(v)} ∪ {tb(w)|(u,w) ∈ R and u is a descendant of
v or u = v}).
Show that v ∈ V, v ̸= r, is an articulation point if there is a successor
v′ of v with low(v′) ≥ tb[v].

f. Specify an algorithm to calculate low(v) for all v ∈ V and find the
articulation points.

20. Let G = (V,E) be a connected graph, |V | ≥ 3. Show that G is bicon-
nected if and only if for every two nodes there is a cycle that contains
both.
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In this chapter, we discuss weighted graphs, that is, graphs for which each
edge has an associated positive weight. In detail, we deal with minimum
spanning trees, the distance problem and the computation of the maximum
flow in a network.

In the first section, we study algorithms that we will apply later. Among
these are priority queues, the union-find data type, the LCA problem and a
more efficient procedure for the RMQ problem from the first chapter. Prior-
ity queues are implemented applying binary heaps. We use the Ackermann
function to analyze the union-find data type. The LCA problem is to deter-
mine the lowest common ancestor of two nodes in a rooted tree. Solving this
problem in linear running time is a prerequisite for the algorithm of King for
verifying a minimum spanning tree in linear running time.

The algorithms of Bor̊uvka, Kruskal and Prim construct minimum span-
ning trees, and the algorithm of Dijkstra solves the single-source distance
problem. The algorithms of Prim and Dijkstra generalize breadth-first search
from Chapter 5. In its implementation, the priority queue replaces the queue
that we use for breadth-first search. The union-find data type is used in
Kruskal’s algorithm.

The randomized algorithm of Karger, Klein and Tarjan computes a mini-
mum spanning tree in linear time. An algorithm that performs the verification
of a minimum spanning tree in linear time is essential for this.

Warshall’s algorithm determines the transitive closure of a graph and
Floyd’s algorithm the distance matrix. The algorithms of Ford-Fulkerson and
Edmonds-Karp solve the flow problem in networks.

First, we clarify the concept of a weighted graph.

Definition 6.1. A graph G = (V,E) with a map w : E −→ R>0 is called a
weighted graph. The map w is called the weight function. For e ∈ E, w(e) is
said to be the weight of e. The weight of G is the sum of the weights of all
edges, w(G) =

∑
e∈E w(e).

To describe weighted graphs, we use the adjacency list and adjacency
matrix data structures – as with the description of graphs. We only need to
extend the definitions slightly.

1. An adjacency matrix adm is an n×n–matrix with coefficients from R≥0,
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adm[i, j] :=

{
w({i, j}) if {i, j} ∈ E,
0 otherwise.

2. In the list elements of the adjacency list, we will save the weight of an
edge. Therefore, we extend the list element for graphs on page 216 with
the component weight.

6.1 Basic Algorithms

In this section, we study basic algorithms which we will apply in the rest of
the chapter. These are priority queues and the union-find data type, which
belong to the advanced data structures and can be applied in many situations.

We treat the LCA problem, which is linearly equivalent to the RMQ prob-
lem (see Section 1.5.4), as an independent problem. It is a basic algorithmic
problem that has been intensively studied. The computation of the lowest
common ancestor (LCA) of two nodes in a rooted tree is an essential input
into a linear-time verification algorithm for minimum spanning trees, which
we study in Section 6.5.

6.1.1 The Priority Queue

The priority queue generalizes the abstract data type queue. With a queue,
the elements leave the queue in the same order in which they were stored (first
in, first out – FIFO principle). With a priority queue, we assign a priority to
each element when it is saved. Our later application requires the priority of
a stored element to be lowered. The element with the lowest priority leaves
the queue next. A priority queue is defined by the following functions:

1. PQInit(int size) initializes a priority queue for size elements.
2. PQUpdate(element k, priority n) inserts k with priority n into the prior-

ity queue. If k is already in the priority queue and k has a higher priority
than n, then PQUpdate lowers the priority of k to n. PQUpdate returns
true if an insert or update operation has occurred, otherwise false.

3. PQRemove returns the element with the lowest priority and removes it
from the priority queue.

4. PQEmpty checks the priority queue for elements.

When implementing the priority queue, we use the following data types:
type element = 1..n, type index = 0..n and
type queueEntry = struct

element elem
int prio .

We implement a priority queue by using the two arrays
prioQu[1..n] and pos[1..n] and organize the array prioQu – ordered by prior-
ity – as a heap (Section 2.2.1), i.e., with a[i] := prioQu[i].prio we have
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a[i] ≤ a[2i] for 1 ≤ i ≤
⌊n
2

⌋
and a[i] ≤ a[2i+ 1] for 1 ≤ i ≤

⌊
n− 1

2

⌋
.

In order that an element k in prioQu can be reached with one access (and
does not need to be searched for), we require the array pos[1..n]. The variable
pos[k] contains the position of the element k in prioQu. If the element k is
not stored, pos[k] contains the value 0.

A change of the priority of element k requires the priority of the
queueEntry in prioQu at the position r = pos[k] to be changed. This may
violate the heap condition at position ⌊r/2⌋ and further places. The function
UpHeap operates on the array prioQu[1..n] and restores the heap condition.

Algorithm 6.2.
UpHeap(index r)
1 index : i, j; item : x
2 i← r, j ← ⌊ i2⌋, x← prioQu[i]
3 while j ≥ 1 do
4 if x.prio ≥ prioQu[j].prio
5 then break
6 prioQu[i]← prioQu[j], i← j, j ← ⌊ i2⌋
7 prioQu[i]← x

The organization of prioQu[1..n] as a heap underlays prioQu[1..n], the
structure of a binary tree of minimum height with n nodes (see Section 2.2.1).
The number of iterations of the while loop in UpHeap and in DownHeap is
limited by ⌊log2(n)⌋ (Lemma 2.16).

UpHeap is implemented analogously to DownHeap (Algorithm 2.12).
UpHeap and DownHeap operate on the arrays prioQu and pos. If elements
are rearranged in prioQu, the new positions must be entered in pos. An actual
implementation of UpHeap must be supplemented by this point.

We first insert new elements after the last element of the queue. UpHeap
then brings the element to the right place in the heap. If we remove the
element of minimum priority, we put the last element in the first place. With
DownHeap we restore the heap condition. We now specify the algorithms
PQUpdate and PQRemove more precisely.

Algorithm 6.3.
int nrElem; queueEntry prioQu[1..n]; index pos[1..n]
element PQRemove()
1 element ret
2 ret← prioQu[1].elem
3 pos[prioQu[1].elem]← 0
4 prioQu[1]← prioQu[nrElem]
5 pos[prioQu[nrElem].elem]← 1
6 nrElem← nrElem− 1
7 DownHeap(1)
8 return ret



246 6. Weighted Graphs

boolean PQUpdate(element k; int prio)
1 if pos[k] = 0
2 then nrElem← nrElem+ 1
3 prioQu[nrElem].elem← k, prioQu[nrElem].prio← prio
4 UpHeap(nrElem)
5 return true
6 else if prioQu[pos[k]].prio > prio
7 then prioQu[pos[k]].prio← prio
8 UpHeap(pos[k])
9 return true
10 return false

Remark. The running time T (n) of PQUpdate and of PQRemove is of the
same order as the running time of UpHeap and of DownHeap, that is T (n) =
O(log2(n)).

6.1.2 The Union-Find Data Type

The union-find data type, also known as the disjoint-set data structure, sup-
ports dynamic partitioning of a set V = {v1, . . . , vn} in subsets Vi ⊂ V ,
i = 1, . . . , l, i.e.,

V =
l∪

i=1

Vi, Vi ∩ Vj = ∅ for i ̸= j.

For each subset Vi, a representative ri ∈ Vi is chosen, i = 1, . . . , l.
The union-find data type provides the following operations:

1. Find(element x) returns for x ∈ Vi the representative ri of Vi.
2. Union(element x, y) returns false if x and y are in the same subset Vi

and otherwise true. If x and y are in distinct subsets Vi and Vj , Union
replaces Vi and Vj with Vi ∪ Vj and chooses a representative for Vi ∪ Vj .

3. FindInit(element v1, . . . , vn) initializes subsets Vi = {vi}, i = 1, . . . , n.
The representative of Vi is vi.

The union-find data type and its implementations have been studied in-
tensively. A significant part is attributed to Tarjan. We follow [Tarjan99] and
[HopUll73].

We assume without loss of generality that V = {1, . . . , n}. We implement
V1, . . . , Vl using rooted trees. Each Vi corresponds to a rooted tree Ti. The
elements of Vi are stored in the nodes of Ti. The representative of Vi is the
element stored in the root. Let T := ∪li=1Ti be the forest that the Ti form.
We describe T by the array parent[1..n]. Then:

1. The elements i and j belong to the same Vi if i and j belong to the same
tree, i.e., have the same root. Each root w is encoded by parent[w] = 0.

2. Two components with roots i and j are combined into one component
by parent[j]← i (or parent[i]← j).
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3. FindInit(n) allocates memory for the parent array and initializes each
cell of parent to 0.

We are going to present pseudo-code for Find and Union.

Algorithm 6.4.
int Find(int i)
1 while parent[i] > 0 do
2 i← parent[i]
3 return i

boolean Union(int i, j)
1 ret← false
2 i← Find(i)
3 j ← Find(j)
4 if i ̸= j
5 then parent[i]← j, ret = true
6 return ret

With this implementation of Union, trees can degenerate. In the worst
case, linear lists are the result. We now discuss two techniques – union by
height and path compression – that prevent this.

Union by Height. When applying union by height , we make the node with
the greater height the new root. In the following algorithm, this is done in
lines 5 – 10, which replace line 5 in Algorithm 6.4. The height only increases
by 1 if both trees have the same height. We use the array rank[1..n] to store
the height of a node. In FindInit, we set rank[i] = 0, i = 1, . . . , n.

Algorithm 6.5.
boolean Union(int i, j)
1 ret← false
2 i← Find(i)
3 j ← Find(j)
4 if i ̸= j
5 then ret = true
6 if rank[i] > rank[j]
7 then parent[j]← i
8 else parent[i]← j
9 if rank[i] = rank[j]

10 then rank[j] = rank[j] + 1
11 return ret

Remark. After a node i has become the successor of a node j, rank[i] re-
mains unchanged. This also holds when we apply path compression. But
then rank[i] no longer stores the height of i.
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Path Compression. The idea behind path compression is to replace the
parent node of a node with the root of the tree. If we apply this idea con-
sistently, we have to completely reorganize one of the two trees at union.
This is too time-consuming. Therefore, we only change the branching in Find
along the path from i to the root. We use path compression along with union
by height. Path compression can change the height of a tree. Now, rank[i]
no longer stores the height of the node i. The number rank[i] is called the
rank of the node i. The rank of the node i approximates the logarithm of
the number of nodes in the subtree with root i (Lemma 6.7, statement 2).
We use the rank as a criterion for balancing the tree. We call the procedure
union by rank. Additionally, we extend Find by path compression. We first
demonstrate this as shown in Figure 6.1.

Example. Using path compression, we replace the parent node of a node with
the root of the tree.
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Fig. 6.1: Path compression.

Algorithm 6.6.
int Find(int i)
1 int k ← i
2 while parent[k] > 0 do
3 k ← parent[k]
4 while parent[i] > 0 do
5 m← i, i← parent[i], parent[m]← k
6 return i

Remark. The algorithm Union only needs the rank of the root nodes. We can
store the rank k of the root i as −k in parent[i]. We can now recognize roots
by negative entries or by the value 0. Thus, we can save the array rank. In
the following, we write rank[u] = rank(u) as a function.

We now consider the union-find algorithm after n− 1 Union and m Find
calls. One step consists of calling one of the two functions above. Altogether
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there are n− 1 +m steps. After l steps of the algorithm have been executed,
i.e., after the lth call terminates, for a node u we denote by Tu the subtree
with root u, by rank(u) the rank of the node u and by Ur := {u | rank(u) = r}.
The value rank(u) increases with the number of steps.

Lemma 6.7. We have for 0 ≤ l ≤ n− 1 +m:

1. The function rank(u) is strictly increasing along the path from a node to
the root of the subtree.

2. We have rank(u) ≤ ⌊log2(|Tu|)⌋ ≤ ⌊log2(n)⌋. In particular, the height of
the tree is at most log2(n).

3. |Ur| ≤ n/2r.

Proof.

1. If u is followed by v in the ascending path, v was defined as the root
of the subtree Tu. Then rank(v) > rank(u). In the further progress, the
rank of u remains constant, while the rank of v can increase. Since path
compression does not change the rank of a node, and since after path com-
pression a node can only become the child of a node with a higher rank,
the statement also holds after path compression has been performed.

2. We show the assertion by induction on l. For l = 0 (after FindInit)
rank(u) = 0 and log2(|Tu|) = 0; the assertion is therefore correct. After
a call to Union, when the union of components is carried out either the
rank remains the same, in which case the inequality also holds after the
union of the trees, or the rank increases by one. Then

rank(u)new = rank(u) + 1 = log2(2
rank(u)+1)

= log2(2 · 2rank(u)) = log2(2
rank(u) + 2rank(v))

≤ log2(|Tu|+ |Tv|) = log2(|T̃u|),

where v is the root of the second tree and T̃u is the union of Tu and Tv.
From |Tu| ≤ n follows the second inequality from statement 2. With the
first statement, we get the statement about the height.

3. If rank(u) = rank(v), then by statement 1 Tu ∩ Tv = ∅. Hence,

n ≥ |
∪

u∈Ur

Tu| =
∑
u∈Ur

|Tu| ≥
∑
u∈Ur

2r = |Ur| · 2r.

The lemma is therefore proven. 2

Running Time Analysis. The running time analysis of the union-find al-
gorithm (see Proposition 6.10) uses the Ackermann function (Algorithm 1.5).
Therefore, we derive properties of the Ackermann function. First, we show
that the Ackermann function
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A(m,n) =

n+ 1 if m = 0,
A(m− 1, 1) if n = 0,
A(m− 1, A(m,n− 1)) otherwise,

is increasing and give an equivalent definition for this purpose. We define a
family of functions Am(n) by

A0(n) = n+ 1,

Am(n) = An+1
m−1(1) = Am−1 ◦ . . . ◦Am−1︸ ︷︷ ︸

n+1

(1).

Lemma 6.8. We have:

1. Am(n) = A(m,n) for m,n ≥ 0.
2. Am(n) ≥ n+ 1 for m,n ≥ 0.
3. Am(n+ 1) > Am(n) for m,n ≥ 0.
4. An

m(1) ≥ n+ 1 for n ≥ 0.

Proof.

1. We set A(m,n) = Ãm(n). Then

Ãm(n) = Ãm−1(Ãm(n− 1)) = Ãm−1(Ãm−1(Ãm(n− 2))) . . . =

Ãn
m−1(Ãm(0)) = Ãn

m−1(Ãm−1(1)) = Ãn+1
m−1(1).

Since Am and Ãm satisfy the same recursion, and since A0(n) = Ã0(n)
is valid, Am(n) and Ãm(n) = A(m,n) agree for all m,n ≥ 0.

2. We show the assertion by induction on m. For m = 0, we have A0(n) =
n + 1. The induction hypothesis is Am−1(n) ≥ n + 1 for m ≥ 1 and all
n ≥ 0. We have to show that Am(n) ≥ n+1 for all n ≥ 0. We shall prove
this by induction on n. For n = 0, according to the induction hypothesis
for m, we have Am(0) = Am−1(1) ≥ 2. Let m ≥ 1 and assume the
assertion proved for m− 1.
Then Am(n) = Am−1(Am(n − 1)) ≥ Am(n − 1) + 1 ≥ n + 1. The first
inequality follows by the induction hypothesis for m and the second by
the induction hypothesis for n.

3. For m = 0, we have A0(n + 1) = n + 2 > A0(n) = n + 1. For m ≥ 1,
it holds that Am(n + 1) = Am−1(Am(n)) ≥ Am(n) + 1 > Am(n) (with
point 2).

4. An
m(1) = Am(An−1

m (1)) ≥ An−1
m (1) + 1 ≥ . . . ≥ A0

m(1) + n = n+ 1.

The lemma is shown. 2

Lemma 6.9. The function A(m,n) is strictly increasing in both arguments
and grows faster in the first than in the second. More precisely

Am+1(n) ≥ Am(n+ 1) ≥ Am(n) + 1

for all m,n ≥ 0.



6.1 Basic Algorithms 251

Proof. Let m ≥ 0.

Am+1(n) = Am(An
m(1)) ≥ Am(n+ 1) = Am−1(Am(n)) ≥ Am(n) + 1.

This shows the assertion of the lemma. 2

Now we introduce some functions that we will use when analyzing the
union-find data type. Let u be a node different from a root. We define

(1) δ(u) = max{k | rank(parent(u)) ≥ Ak(rank(u))}.

Since rank(parent(u)) ≥ rank(u) + 1 = A0(rank(u)) (Lemma 6.7), δ(u) is
welldefined, and we conclude that δ(u) ≥ 0.

(2) r(u) = max{r | rank(parent(u)) ≥ Ar
δ(u)(rank(u))}.

Because of Lemma 6.7, we have

(3) ⌊log2(n)⌋ ≥ rank(parent(u)) ≥ Aδ(u)(rank(u)).

If δ(u) ≥2, we conclude with Lemma 6.9 that

(4) ⌊log2(n)⌋ ≥ Aδ(u)(rank(u)) ≥ Aδ(u)−2(rank(u) + 2) ≥ Aδ(u)−2(2).

Let α(n) be defined by

α(n) = min{k | Ak(2) ≥ n}.

Since Aδ(u)−2(2) ≤ ⌊log2(n)⌋ < n (see (4)), it follows immediately with the
definition of α that

(5) δ(u) ≤ α(⌊log2(n)⌋) + 2.

The function α(n) is essentially the inverse function of Am(2). It is an
extremely slow-increasing function. We have

A0(2) = 3, A1(2) = 4, A2(2) = 7, A3(2) = 25 − 3 = 29, A4(2) = 265536 − 3.

Therefore,

α(0) = . . . = α(3) = 0, α(4) = 1, α(5) = α(6) = α(7) = 2,

α(8) = . . . = α(29) = 3, α(30) = . . . = α(265536 − 3) = 4.

The number 265536 is a binary number with 65,537 bits. This is about 20,000
decimal digits. The function α takes a value ≤ 4 for all practically occurring
inputs.

Proposition 6.10. The union-find algorithm, with union by rank and path
compression, has a worst-case running time of order O((m + n) · α(n)) for
n− 1 Union and m Find calls.
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Proof. The running time for a Union call is constant, except for the two Find
calls. There are n− 1 Union calls. The time complexity tU for all executions
of the function Union (without the Find calls) is therefore O(n).

We now estimate the running time for all Find executions. We first look
at the call Find(u) for a u. Let P : u = u1, . . . , ur = v be the path from u
to the root v before the lth execution of Find. The running time of Find is
distributed equally among the individual nodes on P . The effort is constant
for each node. We assume a time unit for it. We now set up time counters: for
each node u the counter tu and for the function Find the counter tF . With
these counters we record the effort for all executions of Find. We consider the
lth step and the nodes ui on P , i = 1, . . . , r.

1. We increase tui by one if ui ̸= u and ui ̸= v (i.e., ui is neither leaf
(rank(ui) ≥ 1) nor root) and if some j > i exists with δ(uj) = δ(ui).

2. We increase tF by one if (a) ui is a leaf or a root, or if (b) δ(uj) ̸= δ(ui)
for all j > i.

The running time for all Find executions is tF +
∑

u tu.

We consider the first case. Let i < j with δ(ui) = δ(uj) = k. Then

rank(v) ≥ rank(parent(uj)) ≥ Ak(rank(uj))

≥ Ak(rank(parent(ui))) ≥ Ak(A
r(ui)
k (rank(ui)))

= A
r(ui)+1
k (rank(ui)).

The first inequality uses the monotonicity of rank along paths, the second
inequality follows by the definition of δ(ui), the third inequality by the mono-
tonicity of rank along paths and the monotonicity of Ak, and the fourth
inequality uses (2) and the monotonicity of Ak. After terminating Find,
parent(ui) = v and

(6) rank(parent(ui)) ≥ A
r(ui)+1
k (rank(ui)).

Each time the first condition for ui occurs and tui is increased by one, the
exponent of Ak in (6) increases by at least one. If the case r(ui) = rank(ui)
occurs, then

rank(parent(ui)) ≥ A
rank(ui)+1
k (rank(ui)) ≥ A

rank(ui)+1
k (1) = Ak+1(rank(ui)).

The first inequality follows from (6), the second uses the monotonicity of Ak.
Consequently,

rank(parent(ui)) ≥ Ak+1(rank(ui)).

From the definition of δ(ui), we conclude that δ(ui) ≥ k+1 (see (1)). Further,
δ(ui) ≤ α(⌊log2(n)⌋) + 2 (see (5)). Thus,

tui
≤ rank(ui)(α(⌊log2(n)⌋) + 2).
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We sum up all tu and summarize nodes with the same rank. With Lemma
6.7 and the formula for the derivative of the geometric series (Appendix B
(F.8)), we conclude that∑

u

tu ≤
∞∑
r=0

r · (α(⌊log2(n)⌋) + 2)
n

2r

= n(α(⌊log2(n)⌋) + 2)

∞∑
r=0

r

2r

= 2n(α(⌊log2(n)⌋) + 2).

We now consider the second case. For the nodes u and v together, we increase
tF by 2. Each node u satisfies δ(u) ≤ α(⌊log2(n)⌋) + 2 (see (5)).

We are looking at a k ≤ α(⌊log2(n)⌋)+2. Then condition 2 (b) is only
fulfilled for the last node ũ in path P with δ(ũ) = k (case 1 occurs for
all preceding nodes). Thus, for each value k ≤ α(⌊log2(n)⌋) + 2 there is
at most one node which satisfies case 2 (b). Accordingly, tF increases by a
maximum of α(⌊log2(n)⌋)+4 when Find is executed. Form executions follows
tF ≤ m(α(⌊log2(n)⌋) + 4). We get

tU + tF +
∑
u

tu ≤ c(m+ n)α(⌊log2(n)⌋) = O((m+ n) · α(n)),

thereby proving the proposition. 2

6.1.3 The LCA and the RMQ Problem

We first consider the problem of computing the lowest common ancestor
(LCA) of two nodes in a rooted tree. Let u and v be nodes in a rooted tree.
The lowest common ancestor of u and v is the common ancestor of u and v
that has the greatest distance from the root.

Figure 6.2 shows the lowest common ancestor (filled) of the two filled leaf
nodes.

.......................

Fig. 6.2: Lowest common ancestor.
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Tarjan’s Algorithm for Computing the Lowest Common Ancestor.
The following algorithm LCA, published in [Tarjan79], computes for each
node pair {u, v} from a list Q having m elements the lowest common an-
cestor in a rooted tree T . We describe T with node set {1, . . . , n} by the
adjacency list adl[1..n]. In the implementation of LCA, we demonstrate a
first application of the union-find data type.

The user calls LCA with the root of the tree as parameter and provides
a union-find data type initialized with FindInit(n). LCA uses the boolean
array marked[1..n], which is predefined with “false”.

Algorithm 6.11.
node adl[1..n]; boolean marked[1..n]
vertex ancestor[1..n], lca[1..n, 1..n]
LCA(vertex k)
1 node no
2 ancestor[k]← k, no← adl[k]
3 while no ̸= null do
4 LCA(no.v)
5 Union(k, no.v), ancestor[Find(k)]← k
6 no← no.next
7 marked[k]← true
8 for each {u, k} from Q do
9 if marked[u]

10 then lca[u, k]← ancestor[Find(u)]

Remarks:

1. LCA traverses T using depth-first search (Algorithm 5.12). Let k be a
node of T and v0, v1, . . . , vl = k the path P in T from the root v0 to the
node k. P consists of the ancestors of k. Figure 6.3 reflects the moment t
at which the processor has executed for the call LCA(k) all instructions
including line 7.

..v0.

v1

.

v2

.

.

.

vl−1

.

k

.

V0

.

V1

.

V2

.

Vl−1

.

Vl

..........

Fig. 6.3: LCA computation.
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Let L = {v ∈ T | the call LCA(v) terminated up to the moment t}.
These are the nodes to the left of the path v0, . . . , vl−1 and below vl = k.
Let

Vi = {v ∈ L | v is a descendant of vi}, i = 0, . . . , l.

For the nodes v ∈ Vi, vi is the last common ancestor of v and k.
2. At the moment t, the nodes from {vi} ∪ Vi form a Union-Find partition.

Find(v) returns the root of the partition where v is located. Since vi is
the ancestor of the nodes of this partition, ancestor[Find(v)] = vi was
previously set (line 5).

3. For all node pairs {u, k} from Q where the node u is already marked, we
determine the lowest common ancestor (lines 9 and 10). Since lca[u, v] is
only set if u and v are marked, line 10 is executed exactly once for each
node pair {u, v} ∈ Q.

4. Depth-first search runs in time O(n) for a tree. This also holds for lines
1 – 7 of LCA, because the Union and Find calls can be assumed to run
in total time O(n) (see Proposition 6.10). We have to add the running
time for lines 8 – 10, which is O(m) in total, if Q is represented so that
for each k the pair {u, k} can be retrieved in constant time. So the time
complexity is O(n+m).

Summarizing, we get the following.

Proposition 6.12. For each pair of nodes from Q, the algorithm LCA com-
putes the lowest common ancestor in time O(n+m).

We now discuss another method to solve the LCA problem; we follow the
presentation in [BeFa00].

Reduction Algorithm for the LCA Problem. We reduce the LCA prob-
lem to the calculation of the minimum in an array. More precisely, let a[1..n]
be an array of numbers. An algorithm for the range minimum query (RMQ)
problem (Section 1.5.4) computes for indices i and j with 1 ≤ i ≤ j ≤ n an
index k with i ≤ k ≤ j and

a[k] = min{a[l] | i ≤ l ≤ j}.

The following algorithm reduces the LCA problem for a rooted tree T
with node set {1, . . . , n} to the RMQ problem by a depth-first search in T .

Algorithm 6.13.
vertex parent[1..n], no[1..2n− 1]; node adl[1..n]; index ino[1..n]
int depth[1..n], de[1..2n− 1]

Init()
1 index i← 1, parent[1]← 0, depth[0]← −1
2 Visit(1)
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Visit(vertex k)
1 node no
2 depth[k]← depth[parent[k]] + 1
3 de[i]← depth[k], no[i]← k, ino[k]← i, i := i+ 1
4 node← adl[k]
5 while node ̸= null do
6 parent[node.v]← k
7 Visit(node.v)
8 de[i]← depth[k], no[i]← k, i := i+ 1
9 node← node.next

Remarks:

1. The tree T with the node set {1, . . . , n} is given by the adjacency list adl.
The list stores the successors for each node. The algorithm Visit performs
a depth-first search in T .

2. After calling Visit, for each node an entry is added to the arrays de, no
and ino. The variable de[i] stores the depth of the node no[i] and ino[k]
stores the index of the first occurrence of k in no. Therefore, no[ino[k]] =
k is valid. For each node, there is an additional entry in the arrays de
and no for each of its successors (see line 8).

3. The arrays de, no and ino require one entry for each node and the arrays
de and no another entry for each successor. Since there are n nodes and
a total of n− 1 successors, de and no require 2n− 1 places.
Visit traverses each edge twice, shown in the following example by the
path that starts and ends at node A. For each pass of an edge, an entry
is entered in de and no, with an additional entry for the start node.

Example. Figure 6.4 shows an example of reduction of the LCA problem to
the RMQ problem by depth-first search.

..A.

B

.

D

.

E

.

F

.

G

.

C

.

H

.

I

.

J
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i : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
de : 0 1 2 1 2 3 2 3 2 1 0 1 2 1 2 1 2 1 0
no : A B D B E F E G E B A C H C I C J C A

node : A B C D E F G H I J
ino : 1 2 12 3 5 6 8 13 15 17

Fig. 6.4: Reduction of the LCA problem to the RMQ problem.

Proposition 6.14. Let k and l be nodes of T with ino[k] < ino[l]. The LCA
computation in T is traced back to the RMQ computation in the array de:

lca(k, l) = no[rmqde(ino[k], ino[l])].

Proof. Let k and l be nodes of T with ino[k] < ino[l]. Let v be the lowest
common ancestor of k and l. The nodes k and l are located in Tv, the sub-
tree of T with root v. The depth of v is minimal for all nodes in Tv. Since
these are all nodes that lie between the first and last occurrences of the node
v in the array no, the depth dv of v is minimal in [de[ino[k]..ino[l]]], i.e.,
no[rmqde(ino[k], ino[l])] = v. 2

Proposition 6.15. Let T be a rooted tree with n nodes. After preprocessing
with running time of order O(n), m LCA requests referring to T can be an-
swered in time O(m). In total, we get an algorithm to solve the LCA problem
that runs in time O(n+m).

Proof. Algorithm 6.13, which reduces the RMQ problem to the LCA prob-
lem, runs in time O(n). It computes an array of length 2n− 1. To solve the
RMQ problem, we apply the linear-time algorithm from the following section.
It has a preprocessing time of order O(n) (Proposition 6.16). Then an RMQ
request and thus also an LCA request can be answered in constant time. Al-
together, we get an algorithm that answers m requests in time O(m), after a
preprocessing time of order O(n). 2

The array de[1..2n−1] has the property that two consecutive entries differ
only by +1 or −1. Such arrays are called incremental arrays. We specify an
algorithm to solve the RMQ problem for such arrays.

A Linear-Time Algorithm for the Incremental RMQ Problem. Let
a[0..n− 1] be an incremental array of numbers and k :=

⌈
log2(n)/2

⌉
. We split

a into partial arrays of length k. We get m = ⌈n/k⌉ partial arrays, where the
last partial array can have length ≤ k. In order to simplify the following ex-
planations, we assume that the decomposition works without remainder, i.e.,
all partial arrays have length k. The resulting partial arrays are designated
starting from the left by a0, . . . , am−1.
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Let i < j be indices for a, γ =
⌊
i/k
⌋
, the index of the partial array in

which i is located and δ =
⌊
j/k
⌋
, the index of the partial array in which j lies,

as shown in Figure 6.5. Then i mod k is the position of i in aγ and j mod k
the position of j in aδ.

..

γ

.

i

.
i mod k

.

δ

.

j

.
j mod k

Fig. 6.5: Decomposition into sub-arrays.

The minimum mi,j in a[i..j] is

mi,j = min{mα,mµ,mω},

where

mα = min aγ [i mod k..k − 1],

mω = min aδ[0..j mod k] and

mµ =
δ−1
min
l=γ+1

al[0..k − 1].

The partial arrays a0, . . . , am−1 are incremental arrays. Therefore, we
specify an algorithm for the RMQ problem for an incremental array b[0..k−1].
Without loss of generality, we may assume that b[0] = 0 (otherwise, replace
b[i] with b[i] − b[0], i = 0, . . . , k − 1). Since b[0] and the sequence of the
differences −1,+1 of two successive entries determine the array b[0..k − 1],
there are 2k−1 assignments (with −1,+1) for an incremental array b of length
k with b[0] = 0. We consecutively number the assignments. For the lth as-
signment, we store in a table Tl for all index pairs i < j the position of the
minimum of b[i..j]. There are (k − 1)k/2 index pairs i < j. Thus, Tl is an array
of length (k − 1)k/2. We get the sequence Ta = (T1, . . . , T2k−1). Using Ta we
can now look up requests. The assignment of b determines l and thus Tl, and
the indices i, j determine the entry in Tl. The table Ta depends only on k.
Therefore, we can use it for all partial arrays a0, . . . , am−1 of a. In particular,
we can now look up the positions of mα and mω.

To calculate mµ we use an array c[0..m− 1] and an array p[0..m− 1]. We
look up the position of the minimum of al in Ta and store the minimum in
c[l] and its position in p[l]. Then

mµ = min c[γ + 1..δ − 1].

Using the table Tc we can determine rmqc(γ+1, δ−1) by looking up Tc twice
(Proposition 1.37).

Figure 6.6 visualizes the tables for the calculation of

rmqa(i, j) = min{rmqa(i mod k, k−1), rmqa(0, j mod k), rmqc(γ+1, δ−1)}.
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..

Tc

.
c

.

Ta

.

a

.

i

.

j

Fig. 6.6: The incremental RMQ Problem.

We now discuss the running time needed to calculate Ta and Tc. The cal-
culation of each of the components Tl from Ta = (T1, . . . , T2k−1) can be done
by an algorithm, in k log2(k) steps (Proposition 1.37). For the calculation of
the running time Ta, we get the result:

c · 2k−1 · k · log2(k) = c · 2⌈log2(n)/2⌉−1 ·
⌈
log2(n)

2

⌉
· log2

(⌈
log2(n)

2

⌉)
< c ·

√
n log2(n)

2 = O(n).

The effort to calculate Tc is m log2(m), where m is the length of the array c
(Proposition 1.37).

m =
⌈n
k

⌉
=

 n⌈
log2(n)

2

⌉


and therefore

m log2(m) = O

(
n

log2(n)
log2

(
n

log2(n)

))
= O(n).

Thus, we can also calculate Tc by an algorithm that runs in time O(n). We
summarize the result in the following proposition.

Proposition 6.16. Let a[0..n−1] be an incremental array of length n. Every
RMQ request for a can be answered in constant time, after preprocessing with
running time of order O(n).

Reducing the RMQ Problem to the LCA Problem. We reduce the
RMQ problem for any integer array a[1..n] to the LCA problem. To do this,
we assign a cartesian tree B to the array a. RMQ requests for a are then
traced back to LCA requests for B. The construction of B from a is done
in time O(n). We define the term cartesian tree and describe the individual
steps of the reduction.
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Definition 6.17. Let a[1..n] be an array of integers. A binary tree B which
stores the elements a[1], . . . , a[n] is called the cartesian tree assigned to a if

1. B meets the heap condition (see Definition 2.11).
2. The result of the in-order output of B is a[1], . . . , a[n] (see Definition

4.4).

Remark. The cartesian tree B assigned to a is uniquely determined. The heap
condition uniquely determines the root, and the in-order output uniquely
determines the left and right subtree of the root. The uniqueness of B follows
by recursion.

We use linked lists of node elements of type node to implement B (see
page 131). The following algorithm creates the cartesian tree assigned to an
array.

Algorithm 6.18.
tree BuildCartesianTree(int a[1..n])
1 node rnode, nd, b
2 b← new(node)
3 b.element← a[1], b.left← null
4 b.right← null, rnode← b
5 for i← 2 to n do
6 nd← new(node)
7 nd.element← a[i]
8 nd.right← null
9 rnode← UpHeap(rnode, a[i])

10 if rnode ̸= null
11 then nd.left← rnode.right
12 rnode.right← nd
13 else nd.left← b, b← nd
14 rnode← nd
15 return b

Remarks:

1. The code of lines 2-4 creates the root node and stores a[1] in the root
node.

2. The for loop iterates over the elements of a. At the beginning of the
ith iteration the cartesian tree for a[1..i − 1] is constructed. In the ith
iteration, we store the element a[i] in the allocated tree node nd (line 7).

3. Here, the implementation of Upheap (called in line 9) requires the adap-
tation of Algorithm 6.2 to the changed representation of the tree. The
input of Upheap is the last-inserted node rnode (line 4, line 14). Upheap
determines the lowest node on the path from rnode to the root for which
rnode.element ≤ a[i] is valid. If all elements stored on the path are > a[i],
UpHeap returns null. In this case, the new node nd becomes the root of
the tree (line 13). The previous tree becomes the left subtree of the new
root (line 13).
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4. Otherwise, we add the new tree node as the right successor of rnode (line
12). The node rnode.right becomes the left successor of nd (line 11).

5. After each insertion of a node into the tree, the heap condition is retained.
The condition for the in-order output is fulfilled because we insert the
node nd into the tree in such a way that after insertion, it is the rightmost
node.

Proposition 6.19. The running time of Algorithm 6.18 is O(n).

Proof. The running time of BuildCartesianTree is proportional to the number
of comparisons which we make in Upheap over all iterations of the for loop.
We anchor the next node in line 12 or 14 as the last node in the path P which
consists of the nodes lying furthest to the right. UpHeap traverses the path P
until the insertion position is found. For each comparison made in UpHeap,
we insert a node into P or remove a node from P . Each node is inserted only
one time into P and removed only one time from P . Therefore, the number
of comparisons in UpHeap over all iterations of the for loop is of order O(n).

2

To reduce the RMQ problem to the LCA problem, we assign the array
a to a cartesian tree B. A node of B now stores the pair (i, a[i]). The sort
order of these elements is defined by the order on the second component.

In order to be able to access the node k that stores (i, a[i]) for an index
i in constant time, we introduce the array pos: pos[i] stores a reference to k.
The implementation of BuildCartesianTree and Upheap must update pos.

Example. The cartesian tree assigned to a = {7, 4, 5, 11, 3, 6} is shown in
Figure 6.7.

..(5,3).

(2,4)

.

(1,7)

.

(3,5)

..

(4,11)

.

(6,6)

Fig. 6.7: The assigned cartesian tree.

Proposition 6.20. Let a[1..n] be an array of integers, and let i, j ≤ n be
indices. Let B be the cartesian tree assigned to a.

1. Then
rmqa(i, j) = lca(pos[i], pos[j]),

where lca(pos[i], pos[j]) denotes the first component of the element stored
in the lowest common ancestor of the nodes referenced by pos[i] and
pos[j].
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2. Our investigations show that we can implement an algorithm that answers
m RMQ requests for an integer array of length n in time of order O(m),
after preprocessing in time O(n).

Proof. The node that stores (k, a[k]) is an ancestor of the nodes that store
(i, a[i]) and (j, a[j]) if and only if a[k] < a[i], a[k] < a[j] and i ≤ k ≤ j, and it
is the lowest common ancestor if and only if a[k] = min(a[i..j]) and i ≤ k ≤ j.
This shows the first statement.

We first trace RMQ requests back to LCA requests (Section 6.1.3) and
then trace LCA requests back to incremental RMQ requests (Proposition
6.14). Both reductions run in time O(n). The statement about the running
time now follows from Proposition 6.19 and Proposition 6.15. 2

6.2 The Algorithms of Dijkstra and Prim

The algorithm of Dijkstra, published in [Dijkstra59], solves the single-source
distance problem for a node in a weighted graph, i.e., the algorithm computes
the distances from a fixed node to all other nodes. The algorithm of Prim1

constructs a minimum spanning tree (see [Prim57]). Before we explain the
algorithms, we specify the first problem.

Definition 6.21. Let G = (V,E) be a weighted graph and let v, w ∈ V . Let
v = v1, . . . , vn+1 = w be a path P from v to w. The length of P is

l(P ) :=
n∑

i=1

w({vi, vi+1}).

The distance d(v, w) of v and w is defined by

d(v, w) := min{l(P ) | P is a path from v to w}.

Remark. A shortest path from v to w is a simple path. Since there are only
finitely many simple paths from v to w, the distance d(v, w) is defined. One
can easily check that for a connected graph the map d fulfills the axioms of
a metric (Definition B.24). We are interested in an algorithm that not only
computes the distances d(v, w) from a given node v to all other nodes w, but
also stores together with d(v, w) a shortest path from v to w.

The Algorithm of Dijkstra. Let G = (V,E) be a connected weighted
graph and v ∈ V . Dijkstra’s algorithm finds a path of minimum length from
v to w for all w ∈ V . It constructs a G spanning tree T = (VT , ET ) with root
v. The path from v to w in T is a path of minimum length from v to w in
G, i.e., dT (v, w) = d(v, w) for all w ∈ V , where dT denotes the distance in T .
Such a tree is called a shortest-path tree, or SPT for short.

1 In the literature the algorithm is referred to as the algorithm of Prim, although
it was already published in 1930 in a paper by Vojtěch Jarńık (1897 – 1970), a
Czech mathematician working in the field of number theory and analysis.
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Algorithm. Let G = (V,E) be a connected weighted graph and v ∈ V .
Dijkstra’s algorithm computes the distances d(v, w) for all nodes w of G and
a shortest-path tree for G:

1. Start: Set T := ({v}, ∅).
2. Construction step: Let T = (VT , ET ) be constructed.

Choose w ∈ V \ VT with d(v, w) minimum for all w ∈ V \ VT and a path
P of minimum length v = v1, . . . , vk−1, vk = w from v to w in G. Set
T := (VT ∪ {w}, ET ∪ {vk−1, w}).

3. Repeat step 2 until VT = V is valid.

We now perform the algorithm on the graph in Figure 6.8.
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Fig. 6.8: SPT computation with Dijkstra’s algorithm.

Remark. Dijkstra’s algorithm searches in each step for a solution that seems
optimal at the moment. We choose a node that has a minimum distance
from the start node v. A locally optimal solution should result in an optimal
solution. Dijkstra’s algorithm refers to the knowledge available at the time of
the choice. These are the distances to the nodes of the already constructed
tree and to nodes adjacent to tree nodes.

This strategy does not always succeed. With Dijkstra’s algorithm this
works if all edges have a positive weight. If negatively weighted edges are
allowed, this strategy fails (Exercise 2).

Algorithms that work according to this strategy are called greedy algo-
rithms (see Section 1.5.3). Further greedy algorithms are the algorithms of
Kruskal and Bor̊uvka (Algorithms 6.3 and 6.4) and the algorithm of Prim
(Algorithm 6.2), which we will study subsequently.

Proposition 6.22. Let G be a connected weighted graph. Dijkstra’s algorithm
computes a shortest-path tree for G.

Proof. We show the assertion by induction on the number j of iterations.
Let Tj be the tree constructed in the first j iterations. We show that Tj is
a shortest-path tree for the subgraph of G which is generated by Tj . For
j = 0 the assertion is valid. Let P be the path v = v1, . . . , vk−1, vk = w of
minimum length selected in the jth iteration. We show that v2, . . . , vk−1 ∈
VTj−1

. Suppose for the purpose of contradiction that there exists an i ∈
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{2, . . . , k − 1} with vi /∈ VTj−1
. Then, it follows that d(v, vi) < d(v, w), a

contradiction to the choice of w. Since v2, . . . , vk−1 ∈ VTj−1
, it follows from

the induction assumption that dTj−1
(v, vk−1) = d(v, vk−1). After the choice

of P , we have dTj (v, w) = d(v, w), i.e., Tj is a shortest-path tree for the
subgraph of G generated by the nodes of Tj . This shows the assertion. 2

Remark. The algorithm of Dijkstra also computes for a directed graph the
distances from a fixed node v to all other nodes that are accessible from v.
The implementation we will discuss also works for directed graphs.

The Algorithm of Prim. We explain the concept of a minimum spanning
tree2 for a connected weighted graphG = (V,E). For this purpose we consider
the set of all spanning subgraphs

SP := {S = (V,ES) | ES ⊂ E,S connected}.

We are looking for an S ∈ SP with minimum weight w(S) for S ∈ SP . Such
an S is a tree.

Definition 6.23. A tree that spans G and has minimum weight is called a
minimum spanning tree (MST) for G.

Remark. If identical weights occur, a minimum spanning tree is not necessarily
uniquely determined. Figure 6.9 shows two minimum spanning trees of a
graph.
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Fig. 6.9: The MST is not uniquely determined.

Algorithm. Let G = (V,E) be a connected weighted graph. The algorithm
of Prim computes a minimum spanning tree T = (VT , ET ) for a connected G
in the following steps:

1. Start: Choose v ∈ V and set T := ({v}, ∅).
2. Construction step: Let T = (VT , ET ) be constructed.

Choose an edge e = {v, w} with w(e) minimum for all nodes v ∈ VT and
w /∈ VT . Set T := (VT ∪ {w}, ET ∪ {e}).

3. Repeat step 2 until VT = V holds.

2 “Minimum spanning tree” is shortened from “minimum-weight spanning tree”,
also called a “minimum-cost spanning tree”.
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We now perform the algorithm on the graph in Figure 6.10.
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Fig. 6.10: MST computed with Prim’s algorithm.

Lemma 6.24 (cut property). Let G = (V,E) be a connected weighted graph,
U ⊂ V , U ̸= V and

EU = {{v, w} ∈ E | v ∈ U,w /∈ U}.

For each edge e ∈ EU of minimum weight, there is a minimum spanning tree
T = (V,ET ) for G with e ∈ ET .

Proof. Let e ∈ EU be an edge of minimum weight, T be a minimum spanning
tree for G and e = {u, v} /∈ ET . The graph T ∪ {e} has a cycle Z. Beside
e there is another edge e′ = {r, s} ∈ Z with r ∈ U and s /∈ U . T ′ =
(T ∪ {e}) \ {e′} is a tree and spans G. Since e is of minimum weight in EU ,
w(T ′) = w(T ) + w(e) − w(e′) ≤ w(T ). Since T is a minimum spanning tree
for G, we conclude that w(T ′) = w(T ). Thus, T ′ is a minimum spanning tree
for G which contains the edge e. 2

Remark. The graph G splits into two components when we remove all edges
from EU . Therefore, we say EU defines a cut in G. The statement of Lemma
6.24 in this notation is: For each edge e of minimum weight in a cut, there is
a minimum spanning tree containing e.

Proposition 6.25. Let G = (V,E) be a connected weighted graph. Prim’s
algorithm computes a minimum spanning tree for G.

Proof. Let T be the spanning tree constructed with Prim’s algorithm. T =
({v1, . . . , vn}, {e1 . . . , en−1}), Ui = {v1, . . . , vi}, i = 1, . . . , n. The Ui form an
ascending chain U1 ⊂ U2 ⊂ . . . ⊂ Un = V . We have Ui ̸= Uj for i ̸= j because
ei has one end node in Ui and the other in Ui+1 \ Ui.
Let Tmin be a minimum spanning tree for G. As in the proof of Lemma
6.24, construct for i = 1, . . . , n − 1 for every Ui and ei an edge fi ∈ E. The
edge ei is an edge of minimum weight for the cut EUi

. Set T0 = Tmin and
Ti = (Ti−1∪{ei})\{fi}, i = 1, . . . , n−1. Since an end node of fi is in Ui+1\Ui,
but both end nodes of ej are in Ui for j = 1, . . . , i− 1, fi /∈ {e1, . . . , ei−1}. It
holds that w(Ti) = w(Tmin), i = 1, . . . , n− 1. Since T = Tn−1 holds, T is also
a minimum spanning tree for G. 2
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The Implementation of the Algorithms of Dijkstra and Prim. The
following implementation of the two algorithms does not assume that the
graph G is connected. For each connected component of G, it solves the
single-source distance problem or computes a minimum spanning tree. Both
algorithms start with T = ({v}, ∅). In each step, we extend T . We select a
node and connect it with an edge to a node from T if it is possible.

We divide the nodes V = {1, . . . , n} of G into three disjoint groups:

VT : nodes of T.

Vad : = {w ̸∈ VT | there’s a u ∈ VT : {u,w} ∈ E}.
VR : V \ (VT ∪ Vad).

For both algorithms, the selected node is a node from Vad that satisfies a
minimum condition or the start node for the next connected component. We
call this element an element of minimum priority.

In Dijkstra’s algorithm, we choose a path P starting from a root node v
which has minimum length over all nodes w /∈ VT as end node. Then w ∈ Vad

and d(v, w) is the priority of w (see the proof of Proposition 6.22). In Prim’s
algorithm, it is the weight w({u,w}) of an edge {u,w} for which u ∈ VT and
w /∈ VT . Both algorithms select a node w ∈ Vad of minimum priority.

We get an implementation of the algorithms when we replace the queue
in Algorithm 5.11 with a priority queue. We replace the principle “first in,
first out” with the principle “priority first”. The priority queue identifies
the element of minimum priority at any time. During the execution of the
algorithm, the priority of nodes from Vad can be lowered. In this case, a
priority update must take place.

While we actually use the priority queue from Section 6.1.1 if the graph is
represented by an adjacency list, it is only conceptually present if the repre-
sentation is by an adjacency matrix. We determine the element of minimum
priority explicitly in the algorithm. Here, this is done without reducing the
efficiency of the algorithm.

We realize both algorithms, essentially by one implementation. Our
pseudo-code follows the presentation in [Sedgewick88].

1. First all nodes are in VR. During the execution of the algorithm they first
move to Vad and then to VT .

2. Construction step:
Either select a node k of minimum priority prio from Vad, where

prio := prio(k) :=

{
min{w({v, k}) | v ∈ VT } for Prim,
d(v, k) with a starting node v for Dijkstra,

if Vad ̸= ∅, or the start node for the next component.
3. We mark in the array priority to which of the sets VT , Vad or VR a node

k belongs:
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priority[k] ≥ 0 if k ∈ VT .

−infinite < priority[k] = −prio(k) < 0 if k ∈ Vad.

priority[k] = −infinite if k ∈ VR.

The constant infinite is greater than any occurring value for prio(k).
4. The forest T is implemented by the array parent[1..n].

We first specify an implementation if the graph is given by an adjacency
matrix.

Matrix Priority-First Search. MatrixPriorityFirst implements both algo-
rithms.

Algorithm 6.26.
int adm[1..n, 1..n], priority[1..n]; vertex parent[1..n]
const infinite = maxint −1

Init()
1 vertex k
2 for k ← 1 to n do
3 priority[k]← −infinite, parent[k]← 0
4 priority[0]← −(infinite + 1)

MatrixPriorityFirst()
1 vertex k, t, min
2 Init(), min← 1
3 repeat
4 k ← min, priority[k]← −priority[k], min← 0
5 if priority[k] = infinite
6 then priority[k] = 0
7 for t← 1 to n do
8 if priority[t] < 0
9 then if (adm[k, t] > 0) and (priority[t] < −prio)

10 then priority[t]← −prio
11 parent[t]← k
12 if priority[t] > priority[min]
13 then min← t
14 until min = 0

prio := adm[k, t] (Prim) or prio := priority[k] + adm[k, t] (Dijkstra).

Remarks:

1. Init initializes the arrays priority and parent. The value infinite can-
not occur as a true priority. priority[0] serves as a marker. We access
priority[0] in line 12 with min = 0. Each value in the array priority[1..n]
is > −(infinite + 1).
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2. The start node is node 1 (line 2: min ← 1). We first solve the problem
for the connected component which contains node 1. The next connected
component is defined by the first node t for which priority[t] = −infinite
is valid (line 12).

3. repeat-until loop: In line 4, we setmin = 0. The variablemin specifies the
element of minimum priority if min ̸= 0. In each iteration of the repeat-
until loop, we include a node k in VT (line 4: priority[k] turns positive).
At this point, in the case of Dijkstra, we have d(v, k) = dT (v, k), where
v is the corresponding root of T , i.e., T is a shortest-path tree for the
subgraph of G generated by the nodes of T .
Lines 5 and 6 are only needed for the algorithm of Dijkstra. We accumu-
late distances in priority[k]. Therefore, in line 6 we set priority[k] = 0.
In line 13, we set min = t as long as there is a t ∈ {1, . . . , n} with
priority[t] < 0. If this is not the case, the repeat-until loop terminates.
So we repeat it n times.

4. for loop: In the for loop (lines 12 and 13), we determine the element of
minimum priority for the elements from Vad (−infinite < prio < 0) or VR

(prio = −infinite). We include the element of minimum priority as the
next node in VT . The mark priority[0] = −(infinite+1), which is smaller
than any other element in the priority array, gives a simpler code.

5. In the for loop (lines 9, 10 and 11), for a node t which is adjacent to k
but not in VT we update priority and parent (priority update) if this is
necessary (lines 10 and 11).

6. The array priority satisfies after termination of MatrixPriorityFirst:

priority[k] =

w({k, parent[k]}) for Prim,
d(r, k) for Dijkstra,
0 if parent[k] = 0,

where r is the root of the component of k.
7. The running time of MatrixPriorityFirst is O(n2).

List Priority-First Search. ListPriorityFirst implements both algorithms
if G is represented by an adjacency list.
We keep the nodes from Vad in a priority queue.

Algorithm 6.27.
int priority[1..n]; vertex parent[1..n]; node adl[1..n]
const infinite = maxint− 1

ListPriorityFirst()
1 vertex k
2 for k ← 1 to n do
3 priority[k]← −infinite
4 for k ← 1 to n do
5 if priority[k] = −infinite
6 then Visit(k)
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Visit(vertex k)
1 node no
2 if PQUpdate(k, infinite)
3 then parent[k]← 0
4 repeat
5 k ← PQRemove, priority[k]← −priority[k]
6 if priority[k] = infinite
7 then priority[k]← 0
8 no← adl[k]
9 while no ̸= null do
10 if priority[no.v] < 0
11 then if PQUpdate(no.v, prio)
12 then priority[no.v]← −prio
13 parent[no.v]← k
14 no← no.next
15 until PQEmpty

prio = no.weight (Prim) or prio = priority[k] + no.weight (Dijkstra).

Remarks:

1. The return value of PQUpdate(k, infinite) in line 2 is true if k is the root
of a tree.

2. The call Visit(k) creates a spanning tree T for the connected component
of k. The first start node is node 1. For a connected G, there is only this
start node.

3. repeat-until loop: In each iteration of the repeat-until loop, we include a
node k in VT (line 5: priority[k] becomes positive). At this point, in the
case of Dijkstra we have d(r, k) = dT (r, k), where r is the corresponding
root of T , i.e. T is a shortest-path tree for the subgraph of G generated
by the nodes of T .

4. while loop: In the while loop (lines 10-13), we add a node t which is
adjacent to k but not from VT to the priority queue. We update the
priority and parent arrays for all adjacent nodes /∈ VT (priority update)
if this is necessary (lines 12, 13).

5. After termination of ListPriorityFirst, the array priority satisfies

priority[k] =

w({k, parent[k]}) for the algorithm of Prim,
d(r, k) for the algorithm of Dijkstra,
0 if parent[k] = 0,

where r is the root of k’s component.
6. PQUpdate and PQRemove run in time O(log2(n)) (Section 6.1.1). There-

fore, the running time of ListPriorityFirst is of order O((n+m) log2(n)).
7. If instead of binary heaps, Fibonacci heaps were used to implement a

priority queue, the operations PQInit and PQUpdate can be implemented
with constant running time and PQRemove with running time O(log2(n))
(see [CorLeiRivSte09, Chapter 20]), and the order of the running time of
Algorithm 6.27 improves to O(m+ n log2(n)).
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6.3 The Algorithm of Kruskal

The algorithm of Kruskal3, published in [Kruskal56], computes for a con-
nected weighted graph G = (V,E) a minimum spanning tree T = (V,ET ).
First we describe the algorithm informally.

1. Start: Let T := (V, ∅).
2. Construction step: Let T = (V,ET ) be constructed.

Find an edge e ∈ E \ ET so that T ∪ {e} is acyclic and w(e) is minimal.
Set T := (V,ET ∪ {e}).

3. Repeat step 2 until |ET | = |V | − 1 holds.

Figure 6.11 shows the result of the algorithm on an example graph.
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Fig. 6.11: MST computed with Kruskal’s algorithm.

Proposition 6.28. Let G = (V,E) be a connected weighted graph. Kruskal’s
algorithm computes a minimum spanning tree for G.

Proof. Directly from the construction it results that the algorithm creates a
spanning tree for G. Let T = (V,ET ) be the tree created with Kruskal’s al-
gorithm. ET = {e1, . . . , en−1}, w(ei) ≤ w(ei+1) for i = 1, . . . , n − 2. Let
Tmin = (V,Emin) be a minimum spanning tree for G with |Emin ∩ ET |
is maximum. We assume Tmin ̸= T . There is an i with 1 ≤ i ≤ n − 1,
e1, . . . , ei−1 ∈ Emin and ei /∈ Emin. The graph H = Tmin ∪{ei} is not acyclic.
Let Z be a cycle of H and e ∈ Z \ ET . H \ {e} is a tree. Since Tmin is a
minimum spanning tree, w(H \ {e}) = w(Tmin) + w(ei) − w(e) ≥ w(Tmin).
Consequently, w(ei) − w(e) ≥ 0. The edge ei is chosen in Kruskal’s algo-
rithm with the property w(ei) is minimal and (V, {e1, . . . , ei}) is acyclic. Since
(V, {e1, . . . , ei−1, e}) is acyclic, w(e) ≥ w(ei) holds. In total, w(e) = w(ei) and
w(H \{e}) = w(Tmin) follows. Thus, H \{e} is also a minimum spanning tree.
The number of common edges of H \{e} and ET is greater than |Emin∩ET |.
This is a contradiction to the assumption Tmin ̸= T . Hence, T is a minimum
spanning tree for G. 2

3 Joseph B. Kruskal (1928 – 2010) was an American mathematician.
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Implementation of Kruskal’s Algorithm. We sort the edges in ascending
order by weight. Then we process the sorted list. Let V be the set of nodes of
G. T has the components T1, . . . , Tl. Vi is the set of nodes of Ti, i = 1, . . . , l.

We use the union-find data type to decide whether T ∪{e}, e = {v, w}, is
acyclic. This is true if the end nodes v and w of e are in different components.
So it must be decided whether v, w ∈ Ti for an i. If this is not the case, i.e.,
v ∈ Ti and w ∈ Tj for i ̸= j, connect the components Ti and Tj with e, in
other words form Ti ∪ Tj . The union-find data type provides a solution to
this problem (see Section 6.1.2).

As noted before, Kruskal’s algorithm requires all edges of the graph. We
define the data structure of an edge by

type edge = struct
vertex v1, v2
weight w

Algorithm 6.29.
edge ed[1..m]
Kruskal()
1 int i
2 Sort(ed), FindInit(n)
3 for i← 1 to m do
4 if Union(ed[i].v1, ed[i].v2) = true
5 then Insert(ed[i])

The procedure Insert inserts the edge ed[i] into the tree.

Remark. Sort runs in time O(m log2(m)) (Chapter 2), FindInit in time O(n),
the effort for all Union calls is of order O(m) (Proposition 6.10) and Insert
runs in constant time (with a suitable data structure for trees). Altogether,
we get that Kruskal’s algorithm runs in time O(n+m log2(m)).

6.4 The Algorithm of Bor̊uvka

The algorithm of Bor̊uvka4 is another deterministic algorithm for comput-
ing a minimum spanning tree for a weighted graph. Bor̊uvka formulated the
MST problem in 1926 in connection with the design of a network for the
electrification of Moravia, a part of today’s Czech Republic ([Bor̊uvka26]).
His algorithm is regarded as the first algorithm for the solution of the MST
problem.

Let G = (V,E) be a weighted graph. If the weights w(e), e ∈ E, are
pairwise distinct, there is only one sequence of edges, sorted descending by
weights. In this case, the minimum spanning tree is uniquely determined.

4 Otakar Bor̊uvka (1899 – 1995) was a Czech mathematician.
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If some weights are identical, we introduce the min-max order on the set of
edges, which is explained analogously to the length-lexicographical order. We
define

{u, v} < {ũ, ṽ} if and only if

w({u, v}) < w({ũ, ṽ}) or
w({u, v}) = w({ũ, ṽ}) and min{u, v} < min{ũ, ṽ} or
w({u, v}) = w({ũ, ṽ}) and min{u, v} = min{ũ, ṽ} and
max{u, v} < max{ũ, ṽ}.

Since the algorithms in Sections 6.4 – 6.6 do not depend on the actual weights
of the edges, we can always consider the min-max order on E. Therefore, we
assume in the following that two edges have different weights. A minimum
spanning tree with respect to the min-max order is uniquely determined and
a spanning tree with minimal weight (in the usual order).

Let v ∈ V and e = {v, w}. The edge e is called a minimal incident edge5

of v if e is the smallest incident edge of v. The minimal incident edge of v is
uniquely determined and leads to the nearest neighbor of v. An edge e ∈ E
is called a minimal incident edge of G if e is a minimal incident edge for a
v ∈ V . By EMI we denote the set of all minimal incident edges of G. EMI is
uniquely determined. Since an edge can only be a minimal incident edge for
two nodes, it follows that n > |EMI| ≥ n/2.

Contraction of the Minimal Incident Edges. The basic idea of
Bor̊uvka’s algorithm is the contraction of all minimal incident edges. Let
G = (V,E) be a connected graph with at least two nodes and e = {v, w} ∈ E.
To contract the edge e means to identify the end nodes v and w, i.e., to com-
bine them into one node. This identification can result in loops and multiple
edges. We remove all loops and for multiple edges we remove all but the small-
est edge. Let G̃ = (Ṽ , Ẽ) be the graph that results from G = (V,E) when we
contract all edges of EMI in G. We write G̃ = G/EMI for the result. When
contracting all minimal incident edges, we identify the nodes that are in a
connected component C of (V,EMI). We select a representative R(C) ∈ V
for each connected component C and define Ṽ as the set of these selected
representatives. So we regard Ṽ ⊂ V . The transition from G to G̃ is called
the contraction of G.

Lemma 6.30. The contraction of a connected graph G = (V,E) with at least
two nodes reduces the number of nodes by at least half.

Proof. The contraction identifies the nodes in each connected component of
(V,EMI). Since each component contains at least two nodes, after the contrac-
tion there will remain at most n/2 nodes. The number of nodes is therefore
at least halved. 2

5 “Minimal incident edge” is shortened from “incident minimal-weight edge”.
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Example. Figure 6.12 shows a weighted graph with its minimal incident edges
(drawn solid) and the resulting contraction.
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Fig. 6.12: Contraction of the minimal incident edges.

We are going to specify an algorithm for the contraction.

Algorithm 6.31.
(graph,edges) Contract(graph G)
1 EMI ← set of minimal incident edges of G
2 Ṽ ← {R(C1), . . . , R(Ck)} ← {connected components of (V,EMI)}
3 Ẽ ← edges of Ṽ
4 return ((Ṽ , Ẽ), EMI)

Remarks: We will take a closer look at the implementation of Contract if the
graph G is described by an adjacency list.

1. The determination of the minimal incident edges EMI requires an inspec-
tion of the adjacency list. The effort is of order O(m).

2. We determine the connected components of (V,EMI) by breadth-first
search in (V,EMI). The effort is of order O(n). The roots of the resulting
spanning trees serve as representatives of the corresponding connected
components. For each node, we add a reference to the root of the tree of
its connected component.

3. Determining the edges of Ṽ requires another inspection of the adjacency
list of V . If the end nodes of an edge are in different connected com-
ponents, we insert an edge between the roots of the two spanning trees
into the adjacency list of Ṽ . If an edge already exists, the weight will be
updated if the new edge has a lower weight.

The addition of the running times under point 1 – point 3 shows that Contract
runs in time O(n+m).

Lemma 6.32. Let G = (V,E) be a weighted graph and EMI be the set of
minimal incident edges. Then

1. There is no cycle that only consists of minimal incident edges.
2. The edges of EMI are edges of every minimum spanning forest of G.
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Proof.

1. We assume a cycle Z = v0, v1, . . . , vl = v0 consisting of minimal incident
edges. Let (vi, vi+1) be the largest edge. Then (vi−1, vi) < (vi, vi+1) and
(vi+1, vi+2) < (vi, vi+1) (the indices have to be calculated modulo l). The
edge (vi, vi+1) is therefore not a minimal incident edge. A contradiction.

2. Let e = {u, v} ∈ EMI. The nodes u and v are in the same component
C of G. Suppose there is a minimum spanning tree T for C that does
not contain the edge e. The edge e is a minimal incident edge for u or v,
suppose without loss of generality for u. Let P be a path from u to v in
T . Let e′ be the first edge in this path. T ′ arises from T by adding e and
removing e′. Then T ′ is also a spanning tree of C and since all edges have
different weights, w(T ′) < w(T ) holds. Therefore, T is not a minimum
spanning tree. A contradiction.

This shows the assertions. 2

Remark. Bor̊uvka’s algorithm implements a greedy strategy. This follows from
statement 2 of Lemma 6.32. Start with n nodes and select the minimal inci-
dent edges for the edge set. Apply this recursively to the graph that results
from the contraction of all minimal incident edges. More precisely we have
the following.

Proposition 6.33. Let G = (V,E) be a weighted graph, EMI be the set of
minimal incident edges, and T̃ be a minimum spanning forest of G̃ = G/EMI.
Then

T = (V,ET̃ ∪ EMI)

is a minimum spanning forest of G. If G is connected, then T is a minimum
spanning tree.

Proof. Lemma 6.32 shows that T is acyclic. If G is connected, then the con-
struction of T immediately implies that T is also connected. 2

Bor̊uvka’s algorithm starts with T = (V, ∅) and G = (V,E). Let T =
(V,ET ) and G = (V,E) be constructed. In the next step we consider the
components V1, . . . , Vl of (V,EMI). If V has only one component left, we are
done. Otherwise, we choose for each component Vi the smallest edge ti which
has an end node in Vi and the other end node in the complement of Vi.
We continue the procedure recursively with T = (V,ET ∪ {t1, . . . , tl}) and
G = G/EMI.

We now implement this idea for a connected weighted graph using the
discussed contraction technique.

Algorithm 6.34.
edges Boruvka(graph G)
1 if |V | ≥ 2
2 then (G,EMI) = Contract(G)
3 return EMI ∪ Boruvka(G)
4 return E
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Proposition 6.35. Bor̊uvka’s algorithm computes a minimum spanning tree.
The number of (recursive) calls of Boruvka is at most ⌊log2(n)⌋+ 1 and the
running time is O((n+m) log2(n)).

Proof. By applying Proposition 6.33 inductively, we conclude that Boruvka
computes a minimum spanning tree. Contract reduces the number of nodes
by more than a half (Lemma 6.30). Let T (n) be the number of calls of the
function Boruvka, depending on n. Then

T (1) = 1, T (n) ≤ T
(⌊n

2

⌋)
+ 1, n ≥ 2.

By Proposition 1.28, it follows that T (n) ≤ ⌊log2(n)⌋+1 = O(log2(n)). Since
the running time of Contract is O(n + m), it follows that Boruvka runs in
time O((n+m) log2(n)). 2

Example. In the graph in Figure 6.13, the first call of Boruvka contracts the
(incident minimal-weight) edges {1, 4}, {2, 3}, {3, 7}, {5, 6} and {5, 8}. In the
resulting graph, the recursive call contracts the edges {1, 2} and {6, 7}. The
resulting MST is shown on the right of the figure.
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Fig. 6.13: MST with Bor̊uvka’s algorithm.

Construction of the Bor̊uvka Tree. Let Boruvkai, i = 1, . . . , l, be the
ith execution of Boruvka (Algorithm 6.34). We set G0 = G and denote by
Gi = (Vi, Ei) the value of the variable G and by Ei

MI ⊂ Ei−1 the value of
the variable EMI after the execution of line 2 in Boruvkai. The nodes Vi of
Gi are the components of (Vi−1, E

i
MI). A component C of Gi−1 can also be

interpreted as a subset of V :

1. The components of G0 are the nodes V of G, i.e., single-element subsets.
2. We assume that the components of Gi−1 are identified with nodes from

V . A component Ci = {c1, . . . , ck} of Gi consists of nodes ci of Vi, i =
1, . . . , k. The nodes ci are components of Gi−1. Therefore, we can identify
them by recursion with nodes from V . We identify Ci with ∪kj=1cj ⊂ V .

In this view, Bor̊uvka’s algorithm combines two or more components into
a new component in one step.
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Let v ∈ V , and let Ci(v) be the component of Vi that contains v, i =
1, . . . , l. Then C0(v) = {v} ⊂ C1(v) ⊂ . . . ⊂ Cl(v) = V . In the following,
we consider a component Ci(v) of Gi as a subset of Vi or as a subset of V ,
without distinguishing in its naming.

Using Algorithm 6.34, we assign to G the following weighted tree B:

1. The nodes of the ith level of B are the nodes Vl−i of Gl−i, i = 0, . . . , l.
In particular, the leaves of B are the nodes V of G.

2. A node u in level i − 1 is the predecessor of a node v in level i if u =
R(C(v)) is a representative of the component C(v), i = 1, . . . , l. Each
node in the (i− 1)th level has at least two successors in the ith level. Let
ev be the minimal incident edge in the ith execution of Boruvka with end
node v. The weight of the edge (u, v) ∈ B is wB(u, v) := w(ev).

3. The edges between levels i− 1 and i in the Bor̊uvka tree, including their
weights, correspond to the minimal incident edges contracted in the ith
execution of Boruvka. We get a map

ε : EB −→ EG,

which assigns an edge in EB to the corresponding edge in EG. If a con-
tracted edge e is a minimal incident edge for both end nodes, there are
two edges in B which correspond to e. This map is in general neither
injective nor surjective.

4. If we apply the Bor̊uvka algorithm to a tree, all edges are contracted.
The map ε is surjective. During the construction of the Bor̊uvka tree, we
save the description of ε in a table for later use (in Section 6.6).

Definition 6.36. We call the tree B the Bor̊uvka-tree assigned to G or for
short the Bor̊uvka tree of G.

Example. Figure 6.14 shows a weighted graph with assigned Bor̊uvka tree.
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B = {1, 4}, C = {2, 3, 7}, D = {5, 6, 8} and A = {1, 2, 3, 4, 5, 6, 7, 8}.

Fig. 6.14: A graph with assigned Bor̊uvka tree.
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Definition 6.37. A rooted tree T is said to be full branching6 if all leaves
of T are on the same level and each node that is not a leaf has at least two
successors.

Remark. The Bor̊uvka tree assigned to a graph is full branching.

Lemma 6.38. Let T be a full branching tree with levels 0, . . . , l, and let n be
the number of leaves of T . Then

1. The number ni of nodes in the ith level satisfies ni ≤ n/2l−i.
2. The number of nodes of T is ≤ 2n.
3. The depth l of T satisfies l ≤ ⌊log2(n)⌋.

Proof. Since nl = n and ni ≤ ni+1/2, we get ni ≤ n/2l−i, i = 0, . . . , l. From
n0 ≤ n

2l
, we conclude that l ≤ ⌊log2(n)⌋. The number of nodes is

l∑
i=0

ni ≤
l∑

i=0

n

2l−i
= n

l−1∑
i=0

1

2i
= n

(
2− 1

2l

)
≤ 2n

(Appendix B (F.5)). 2

6.5 Verification of Minimum Spanning Trees

LetG = (V,E) be a connected weighted graph and T = (V,ET ) be a spanning
tree for G. To decide whether T is a minimum spanning tree for G, we use
the following criterion: If each edge e /∈ T is the edge of maximum weight on
the cycle which results in T ∪ {e}, then T is a minimum spanning tree. This
can be computed with one comparison if for each path in T which results in a
cycle by adding an edge from E \ET , the edge of maximum weight is known.
Consequently, it is sufficient to develop an algorithm for this problem, the
so-called tree-path-maximum problem.

Let T be a weighted tree, let l be a list of pairs of distinct nodes u and
v in T . The tree-path-maximum problem is to find for each pair (u, v) on the
list l an edge of maximum weight on the (unique) path which connects u and
v in T . An algorithm that solves this problem with linear running time can
be used to implement a linear running time algorithm to verify whether a
given spanning tree is a minimum spanning tree.

First, we reduce the solution of the tree-path-maximum problem to the
class of full branching trees.

6 János Komlós (1942–), a Hungarian-American mathematician, introduced this
term in [Komlós85].
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Reduction of the Tree-Path-Maximum Problem to Full Branching
Trees. The following proposition, published in [King97], reduces the tree-
path-maximum problem for a tree T to the problem of computing the max-
imum weight edge on a path in the Bor̊uvka tree assigned to T . First, let’s
consider the running time needed to compute the associated Bor̊uvka tree.

Lemma 6.39. Let T be a weighted tree with n nodes. Bor̊uvka’s algorithm
applied to T runs in time O(n). In particular, the running time for computing
the Bor̊uvka tree of T is O(n).

Proof. In the case of a tree T , we have n+m = 2n− 1 = O(n). If we apply
Contract to a tree, the result is again a tree. Let T0 = T , and let T1, . . . , Tl be
the trees that arise during the execution of Boruvka. Let ni be the number
of nodes and mi = ni−1 the number of edges of Ti, i = 0, . . . , l. The running
time for depth-first search to determine the components of Ti and thus also
the running time of Contract and the running time of an iteration of Boruvka
is cni, where c is constant. We sum over all iterations and get that

l∑
i=0

cni ≤ c
l∑

i=0

n

2i
≤ 2cn = O(n)

is valid because ni ≤ n/2i (see Appendix B (F.8)). 2

Example. Figure 6.15 shows a tree with the assigned Bor̊uvka tree:
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Fig. 6.15: A tree with assigned Bor̊uvka tree.

Proposition 6.40. Let T = (V,E) be a weighted tree (with pairwise distinct
weights) and u, v ∈ V . By PT (u, v) we denote the path from u to v in T
and by PB(u, v) the (undirected) path connecting the leaves u and v in the
Bor̊uvka tree B assigned to T . Then

max
e∈PT (u,v)

w(e) = max
ẽ∈PB(u,v)

wB(ẽ).
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Proof. Let PT (u, v) : u = u0, . . . , ur = v be the path connecting u and v
in T and f = {ui, ui+1} the edge with maximum weight on PT (u, v). We
assume that the contraction of f occurs in the jth execution of Boruvka.
Let C ⊂ Tj−1 be the component containing ui and C ′ ⊂ Tj , the component
containing the nodes ui and ui+1 after the contraction of f (see the section
Construction of the Bor̊uvka tree, page 275). Without loss of generality, we
may assume that f is a minimal incident edge of the component C (otherwise,
consider the component which contains ui+1, . . . , ur = v). Since the edges of
the sub-path PT (u, ui) that connects u to ui have a lower weight than w(f),
it follows that PT (u, ui) ⊂ C. So there is a path from u to C in B. The edge
(C ′, C) corresponds to f and lies on the path PB(u, v). Therefore, it follows
that maxe∈PT (u,v) w(e) ≤ maxẽ∈PB(u,v) wB(ẽ).

It remains to show that the reverse inequality also holds. Let f̃ = (x̃, ỹ)
be an edge of PB(u, v), let x̃ be the end node of f̃ with the greater depth,
and let f be the image of f̃ under the map ε : EB −→ ET (see page 276).
We show that f is an edge of PT (u, v). Since the lowest common ancestor
of u and v in B is not equal to x̃, it follows that u ∈ x̃ and v /∈ x̃ holds (x̃
now denotes the component corresponding to x̃ in T ). T \ {f} breaks down
into two components T1 = T ∩ x̃ and T2 = T ∩ x̃. Since u ∈ T1 and v ∈ T2,
the path PT (u, v) also breaks down into two components. Thus, f ∈ PT (u, v).
From this we conclude that maxe∈PT (u,v) w(e) ≥ maxẽ∈PB(u,v) wB(ẽ). 2

To solve the tree-path-maximum problem for a tree, it is sufficient to
determine the edge of maximum weight in a non-directed path connecting
two leaves v and w in a full branching tree B. Then, we compute the lowest
common ancestor u of the two nodes v and w in B with the algorithms
underlying Proposition 6.15. This is done, with preprocessing of order O(n),
in constant time (Section 6.1.3). Now, we trace the computation of the edge of
maximum weight of the undirected path from v to w back to the computation
of the edge of maximum weight on the two directed paths from u to v and
from u to w. In total, the tree-path-maximum problem for a tree can be
reduced to directed paths in the assigned Bor̊uvka tree in preprocessing time
O(n). Then a query will be answered in constant time.

Tree-Path-Maximum Problem for Full Branching Trees. Let T =
(V,E) be a full branching tree with root r, and let (u1, v1), . . . , (um, vm) be
pairs of nodes, where vi is a leaf and ui is an ancestor of vi, i = 1, . . . ,m. Let
pi be the path that connects ui with vi and Q = {p1, . . . , pm} the set of these
paths.

We develop an algorithm that determines an edge of maximum weight
on each path from Q. The solution outlined here is based on work by King
([King97]) and Komlós ([Komlós85]).

In a first step, for each node v we store in a list M [v] the start nodes of the
paths from Q which go through v, i.e., those paths which start at an ancestor
of v and contain v. Each node u ∈M [v] defines a path, namely the path from
u to v. We identify the start nodes with these paths and therefore also speak
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of the paths in M [v]. We compute M [v] from bottom to top, starting with
the leaves.

The list M [vi], i = 1, . . . ,m, contains the start nodes of all paths from Q
that end in vi. For all other nodes v, we set M [v] equal to the empty list.

Starting from M [v1], . . . ,M [vm], we compute M [v] for all v lying on one
of the paths from Q. Let w1, . . . , wk be the successors of v, and let M ′[wi] be
the list which we get when we remove all elements v from M [wi]. We define
M [v] to be the concatenation of the lists M ′[wi],

M [v] := M ′[w1]|| . . . ||M ′[wk].

We compute the list M [v] by a modified depth-first search in T (Algorithm
5.4.2).

In a second step, we compute further lists, starting from the root r. For
a node v and a path p ∈ Q, we consider the restriction p|v from p to the
levels 0, . . . , d(v) from T , where d(v) is the depth of v. We designate the set
of these paths as

P [v] = {p|v | p ∈ Q and p goes through v}.

The start nodes of these paths are in M [v]. We first describe properties of
the list L[v]v∈V and then specify how we compute this list.

The list L[v] contains one entry for each node that is an ancestor of v and
the start node of a path p|v from P [v]. This entry consists of the end node of
an edge of maximum weight of p|v. The list L[v] is sorted in descending order
with respect to the following order on the set V , defined by v < w if and
only if the weight of (parent(v), v) is less than the weight of (parent(w), w).
parent(v) denotes the predecessor of a node v in T .

We compute the list L[v]v∈V top-down starting from the root (e.g., on
the basis of breadth-first search, Algorithm 5.11). For the root r, L[r] is the
empty list.

Let u be the predecessor of v. We compute the list L[v] from L[u]. The
edge (u, v) is an element of P [v] if u is the start node of a path from P [v] that
consists only of one edge. All other paths in P [v] are the paths from P [u] that
branch to v in the node u, in other words, these paths from P [v] are formed
from a path p̃ ∈ P [u] by extending it with the edge (u, v). Let P̃ [u] ⊂ P [u] be
the subset of those paths and L̃[v] ⊂ L[u] be the list of the end nodes of edges
of maximum weight of the paths from P̃ [u]. L̃[v] can be computed from L[u]
with the help of M [u] and M [v]. Using M [u] and M [v], we identify the paths
from M [u] that go through v. We need these to determine L̃[v]. The list L̃[v]
is sorted in descending order. We now describe in detail how the calculation
is performed.

Using binary search we determine the elements in L̃[v] that are less than v.
These represent the end nodes of edges of maximum weight, whose weights
are smaller than the weight of the edge (u, v). Therefore, they have to be
replaced by v.
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Now the paths only consisting of one edge (u, v) have to be considered.
For each u ∈M [v], we extend L̃[v] by one v. The result is the list L[v]. With
L̃[v], L[v] is also sorted in descending order.

The list L[vi], i = 1, . . . ,m, contains for each of the paths from P [vi], the
set of paths from Q ending in vi, the lower end node of an edge of maximum
weight. We can answer a path maximum query with the lists M [v] and L[v]
in constant time.

Example. We compute the lists M [v]v∈V and L[v]v∈V for the example tree
shown in Figure 6.16. The query paths are given by their start and end nodes:
(A, 8), (A, 14), (A, 17), (B, 5), (C, 13), (C, 17) and (H, 17).
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Fig. 6.16: Tree-path-maximum problem for a full branching tree.

We specify the list elements fromM [v]v∈V , L̃[v]v∈V and L[v]v∈V for nodes
on query paths. The entries in the list L̃[v] stem from entries in the list
L[parent(v)].

M [5] : B M [8] : A M [13] : C
M [14] : A M [17] : A,C,H
M [F ] : B,A M [G] : A M [H] : C,A,C
M [B] : A M [C] : A,A
M [A] :

L[A] :

L[B] :
(
A
B

)
L[C] :

(
A
C

)
,
(
A
C

)
L̃[F ] :

(
A
B

)
L̃[G] :

(
A
C

)
L̃[H] :

(
A
C

)
L[F ] :

(
A
F

)
,
(
B
F

)
L[G] :

(
A
G

)
L[H] :

(
A
C

)
,
(
C
H

)
,
(
C
H

)
L̃[5] :

(
A
F

)
L̃[8] :

(
A
F

)
L̃[13] :

(
C
H

)
L̃[14] :

(
A
G

)
L̃[17] :

(
A
C

)
,
(
C
H

)
L[5] :

(
B
F

)
L[8] :

(
A
8

)
L[13] :

(
C
H

)
L[14] :

(
A
G

)
L[17] :

(
A
C

)
,
(
C
17

)
,
(
H
17

)
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For the remaining nodes, the list elements are empty. Here, the list L stores
the end node of the maximum-weight edge in the second component and in
the first component the start node of the query path.

Lemma 6.41. For a full branching tree with n leaves, the list L[v]v∈V to
answer m maximum weight edge queries can be generated with O(n + m)
comparisons.

Proof. We denote by Vi the set of nodes v of B at the ith level which fulfill
L̃[v] ̸= ∅, and we set ni = |Vi|, i = 0, . . . , l. The number Ni of comparisons
using Algorithm 2.36 for binary search for all nodes of level i satisfies

Ni ≤
∑
v∈Vi

(log2(|L̃[v]|) + 1) ≤ ni + ni

∑
v∈Vi

log2(|L̃[v]|)
ni

≤ ni + ni log2

(∑
v∈Vi
|L̃[v]|

ni

)
≤ ni + ni log2

(
m

ni

)
.

We have
∑

v∈Vi

1
ni

= |Vi| 1ni
= 1, therefore the inequality in the second line

follows from Jensen’s inequality, applied to the concave function log2 (Lemma
B.22). Since each query path passes through exactly one node of the ith level
and the number of elements of L̃[v] is less than or equal to the number of
query paths passing through v,

∑
v∈Vi
|L̃[v]| ≤ m holds. Therefore, the fourth

inequality follows.
We then sum up all levels i = 0, . . . , l

l∑
i=0

ni ≤
l∑

i=0

n

2l−i
≤ n

l∑
i=0

1

2l
≤ 2n

(using Lemma 6.38 and Appendix B (F.8)).

l∑
i=0

ni + ni log2

(
m

ni

)
≤ 2n+

l∑
i=0

ni log2

(
m

n
· n
ni

)

= 2n+
l∑

i=0

ni log2

(m
n

)
+ ni log2

(
n

ni

)

≤ 2n+ 2n log2

(m
n

)
+

l∑
i=0

ni log2

(
n

ni

)
≤ 2n+ 2m+ 3n = O(n+m).

The function
x 7→ x log2

(n
x

)
is increasing for x ≤ n

4 . Hence,
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= nl log2
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n

nl

)
+ nl−1 log2
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+
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i=0

ni log2

(
n
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)

≤ n+
l−2∑
i=0

n

2l−i
log2

(
2l−i

)
≤ n+ n

∑
i≥0

i

2i
≤ 3n (Appendix B (F.8)).

This shows the second inequality. 2

Remark. By skillfully encoding the vectors M [v]v∈V and L[v]v∈V as bit vec-
tors, the complete calculation of L[v]v∈V is possible using bit operations in
time O(n+m). For the details, we refer to an article by King ([King97]). As
a result, for a full branching tree with n leaves we get an algorithm which
computes an edge of maximum weight for m paths with a running time of
order O(n+m).

Let G = (V,E) be a connected weighted graph with n nodes and m edges.
The verification of a minimum spanning tree T = (V,ET ) for G is done as
follows.

Algorithm 6.42.
boolean MSTVerify(graph (V,E), tree (V,ET ))
1 B ← BoruvkaTree(V,ET )
2 Q1 ← E \ ET

3 Q2 ← LCA(B,Q1)
4 MaxEdgeInit(B,Q2)
5 for each edge e = {u, v} ∈ Q1 do
6 if e.weight < MaxEdge(u, v).weight
7 then return false
8 return true

Remarks:

1. LCA(B,Q1) reduces the calculation of the lowest common ancestors of
the end nodes of the edges from Q1 in the tree B to the solution of the
RMQ problem and executes
a. Algorithm 6.13 to reduce the LCA problem to the RMQ problem.
b. The algorithms to initialize the tables for the solution of the RMQ

problem (page 257).
c. LCA queries for all {u, v} ∈ Q1. For {u, v} ∈ Q1 the list Q2 contains

the lowest common ancestor LCA(u, v) of u and v in B.
2. MaxEdgeInit computes the lookup table L from this section (page 280).
3. For an edge {u, v} ∈ Q1 MaxEdge computes the edge of maximum weight

on the path connecting u and v in T . For nodes u and v in B, the max-
imum weights of the resulting sub-paths from u to LCA(u, v) and from



284 6. Weighted Graphs

LCA(u, v) to v are looked up in the table L and the edge of maximum
weight of the complete path is computed. With the map ε : EB −→ ET ,
which is defined on page 276, the edge in T is determined which corre-
sponds to the edge of maximum weight in B.

4. We can modify Algorithm 6.42 and record for all edges e from Q1 whether
the comparison for e in line 6 is fulfilled or not.

Proposition 6.43. Let G = (V,E) be a connected weighted graph with n
nodes and m edges. The verification of a minimum spanning tree T for G is
done by Algorithm 6.42 in time O(n+m).

Proof. The generation of the Bor̊uvka tree B (Lemma 6.39), the reduction of
the LCA problem to the RMQ problem by Algorithm 6.13 and the creation
of the tables for the solution of the RMQ problem (Proposition 6.16) is done
with running time of order O(n). All LCA queries are executed in time O(m)
(Proposition 6.15). The Algorithm MaxEdgeInit initializes the table L in time
O(n +m) (see Lemma 6.41 and the following remark). We perform a query
MaxEdge in constant time (loc. cit.). The number of edges |E \ ET | is < m.
The running time of Algorithm 6.42 is therefore of order O(n+m). 2

6.6 A Randomized MST Algorithm

The running time of Prim’s and Bor̊uvka’s algorithm is of order O((n +
m) log2(n)). Kruskal’s algorithm runs in time O(n + m log2(m)). By using
probabilistic methods, it is possible to specify an algorithm to solve the prob-
lem which has a better running time.

The algorithm of Karger, Klein and Tarjan – we call it KKT-MST – com-
putes a minimum spanning tree for a connected graph (see [KarKleTar95]).
The expected value of the running time of the algorithm is O(n + m). To
achieve this, we use the function Contract from Bor̊uvka’s algorithm and a
probabilistic method that samples a subgraph using random bits. This step
is used to identify edges that cannot occur in a minimum spanning tree.

First, we prove a property of minimum spanning trees and introduce no-
tations that we will need later.

Lemma 6.44 (circle property). Let G be a connected graph, Z a cycle in G
and e ∈ Z an edge with w(e) > w(e′) for all e′ ∈ Z, e′ ̸= e. Then e cannot be
an edge of a minimum spanning tree.

Proof. Let T be a minimum spanning tree for G and e = {u, v} an edge of
maximum weight in Z. Suppose e ∈ T . If we remove e, T breaks down into two
components Tu and Tv. Because Z is a cycle, there is an edge e′ = {u′, v′} ∈ Z
with u′ ∈ Tu and v′ ∈ Tv. Then T ′ = (T \ {e}) ∪ {e′} is a spanning tree and
w(T ′) = w(T )− w(e) + w(e′) < w(T ), a contradiction. 2
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Definition 6.45. Let G = (V,E) be a weighted graph, F ⊂ G an acyclic
spanning subgraph. For nodes u, v from the same component of F , the F–
path between u and v is the (uniquely determined) path between u and v
that runs entirely in F .

wF (u, v) :=


∞ if u and v lie in different components of F,

max1≤i≤l w({vi−1, vi}), with the F–path
P : u = v0, . . . , vl = v connecting u and v.

An edge e = {u, v} ∈ E is said to be F–heavy if w(e) > wF (u, v) and F–light
if w(e) ≤ wF (u, v).

Remark. An edge e = {u, v} is F–heavy if all edges of the F–path connecting
u and v have weight < w(e). Edges connecting different components of F
and edges of F are all F–light.

Lemma 6.46. Let G = (V,E) be a weighted connected graph, F ⊂ G be an
acyclic subgraph and e ∈ E be an F–heavy edge. Then e does not occur as an
edge in a minimum spanning tree for G.

Proof. Let the edge e = {u, v} be F–heavy, and let P : u = v0, . . . , vl = v
be the path from u to v in F . The weight w(e) is greater than the weight of
each edge on the path P . According to Lemma 6.44, e cannot be an edge of
a minimum spanning tree. 2

Since an F–heavy edge e in a graph G does not occur in any minimum
spanning tree for G, G and G \ {e} have the same minimum spanning tree.
Therefore, when computing an MST, we may first remove the F–heavy edges
of the graph.

We now describe how to identify the F–heavy edges of a graph G with n
nodes and m edges.

Let F ⊂ G be a spanning acyclic subgraph, and let T1, . . . , Tl be the
connected components of F . By ni we denote the number of nodes of Ti

and by mi the number of edges e = (u, v) of G \ F whose end nodes lie
in the same tree Ti. For all these edges, we can compute an edge of max-
imum weight on the path connecting u with v in Ti with running time in
O(ni +mi) (see remarks to Algorithm 6.42). We run the modified algorithm
MSTVerify for each component Ti and get the F–heavy edges of G in time
O(
∑l

i=1 ni +
∑l

i=1 mi) = O(n+m).

The probabilistic part of the algorithm of Karger, Klein and Tarjan is
the algorithm SampleSubgraph, which randomly generates a subgraph H of
G = (V,E).
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Algorithm 6.47.
graph SampleSubgraph(graph G)
1 H ← (V, ∅)
2 for each e ∈ E do
3 if coinToss = heads
4 then H ← H ∪ {e}
5 return H

The subgraph H of G is not necessarily connected. The expectation is that
the (uniquely determined) minimum spanning forest F of H is a good ap-
proximation of a minimum spanning tree for G, i.e., only a few edges of G
that do not lie in F are F–light.

Proposition 6.48. Let G = (V,E) be a graph with n nodes and m edges, H
the result of SampleSubgraph(G) and let F the minimum spanning forest of
H. Then the expected number of edges of H is m/2 and the expected number
of F–light edges in G is at most 2n.

Proof. Let X denote the number of edges of H and let Y denote the number
of F–light edges in G. The random variable X is binomially distributed with
parameter (m, 1/2). Therefore, E(X) = m/2 (Proposition A.16).

In order to estimate the expected value of Y , we modify SampleSubgraph
and simultaneously calculate from H the minimum spanning forest of H
according to Kruskal’s method (Algorithm 6.29). The modified algorithm
decides like SampleSubgraph for each edge e, based on a coin toss, whether
e is taken as an edge of H.

Algorithm 6.49.
SampleSubgraphMSF(graph G)
1 H ← (V, ∅), F ← (V, ∅), Y ← 0
2 {e1, . . . , em} ← sort(E)
3 for i← 1 to m do
4 if ei is F–light
5 then Y ← Y + 1
6 if coinToss = heads
7 then H ← H ∪ {ei}
8 F ← F ∪ {ei}
9 else if coinToss = heads

10 then H ← H ∪ {ei}

Kruskal’s algorithm requires that the edges of G are sorted in ascending
order. For each F–light edge of G, we decide on the basis of a coin toss (with
a penny) in line 6 whether to choose it for H and F . The variable Y counts
the number of F–light edges and, after termination, contains their overall
number. If the end nodes of the edge ei which we consider in the ith step,
are in the same component of F , ei is F–heavy (since the edges are sorted in
ascending order, all edges of EF have weight < w(ei)). If ei has its end nodes
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in different components of F , ei is F–light (note wF (ei) =∞). We compute
– analogously to the method of Kruskal’s algorithm (Algorithm 6.3) – the
minimum spanning forest F of H. In line 9, we decide for an F–heavy edge
ei based on a coin toss (with a nickel) whether we choose ei for H. An edge
ei which we select in line 7 is also F–light after terminating SampleSubgraph,
since the weight of an edge that will later be added to F is > w(ei).

Our random experiment consists of two phases. In phase 1, we run the
algorithm SampleSubgraphMSF. Since F is acyclic and has n nodes, after
termination of SampleSubgraphMSF we have |EF | ≤ n − 1. In phase 2, we
continue tossing the penny and also denote by Y the random variable which
counts all penny-flips. We end phase 2 as soon as the event “heads” occurs
n times (together in phase 1 and phase 2).

The random variable Y counts the number of repetitions until the event
“heads” occurs n times. It is negative binomially distributed with parame-
ter (n, 1/2). The expected value of Y satisfies E(Y ) = 2n (Proposition A.22).
Since the number of F–light edges is bounded by Y , the expected value of
the number of F–light edges in G is ≤ E(Y ), thus also ≤ 2n. 2

The input of the algorithm KKT-MST is a weighted (not necessarily con-
nected) graph G = (V,E). The result is a minimum spanning forest for G.
KKT-MST reduces the size of the graph G in two steps. In the first step,
we consecutively apply Contract (Algorithm 6.31) three times. The result is
G1 = (V1, E1). In the second step, we delete edges in G1 that cannot occur
in any minimum spanning tree. We call the result G3 = (V3, E3).

Algorithm 6.50.
edgeset KKT-MST(graph G)
1 F1 ← ∅
2 for i← 1 to 3 do
3 (G1, EMI)← Contract(G)
4 F1 ← F1 ∪ EMI, G← G1

5 if |V1| = 1 then return F1

6 G2 ← SampleSubgraph(G1)
7 F2 ← KKT-MST(G2)
8 G3 ← DeleteHeavyEdges(F2, G1)
9 return F1 ∪KKT-MST(G3)

Proposition 6.51. Let G be a weighted connected graph with n nodes and m
edges. The algorithm KKT-MST returns the edges of a minimum spanning
tree for G and it’s expected running time is O(n+m).

Proof. Let Gi = (Vi, Ei), i = 1, 2, 3. First we show that KKT-MST computes
a minimum spanning tree. From Proposition 6.33, it follows that the edges
of F1 belong to the minimum spanning tree of G. If G1 has only one node,
the edges of F1 form the minimum spanning tree. F2 is acyclic and therefore
also an acyclic subgraph of G. According to Lemma 6.46, the F2–heavy edges
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do not belong to a minimum spanning tree for G1. Therefore, the minimum
spanning trees for G1 and G3 match. Since |V2|, |V3| < n and |E2|, |E3| < m,
the recursive calls of KKT-MST terminate. According to the induction hy-
pothesis, the call KKT-MST(G3) computes a minimum spanning tree for G3.
In Proposition 6.33, we have learned that F1∪KKT-MST(G3) is a minimum
spanning tree for G.

It remains to be shown that the expected value of the running time of
KKT-MST is O(n +m). The following holds: |V1| ≤ n/8 (Lemma 6.30) and
|E1| < m, |V1| = |V2| = |V3|, E(|E2|) = m/2 (Proposition 6.48) and E(|E3|) ≤
2 · n/8 = n/4 (loc. cit.). The running time for Contract, SampleSubgraph and
DeleteHeavyEdges is of order O(n + m). Consequently, the expected value
T (n,m) of the running time of KKT-MST fulfills

T (n,m) ≤ T
(n
8
,
m

2

)
+ T

(n
8
,
n

4

)
+ c(n+m)

for a constant c. We consider the recurrence that we get when we replace “≤”
with “=”. It is easy to verify that 2c(n+m) is the solution of this equation.
Consequently, T (n,m) ≤ 2c(n+m). 2

Remark. Algorithm 6.50 is a minor modification of the original algorithm,
which goes back to [MotRag95]. It leads to the recurrence above, for which
a solution is easy to specify.

6.7 Transitive Closure and Distance Matrix

The set of edges E of a directed graph G = (V,E) defines a relation ∼ on
the set of nodes V : u ∼ v if and only if (u, v) ∈ E. This relation is generally
not transitively closed.7 The algorithm of Warshall8 computes the transitive
closure of this relation. The transitive closure describes for each node v ∈ V
which nodes w are accessible from v.

The algorithm of Floyd9 determines the distances for all pairs (v, w) of
nodes in a directed graph.

Both algorithms, published in 1962 in [Floyd62] and [Warshall62], have
the same structure. They are summarized as the Floyd-Warshall algorithm
and are inspired by an algorithm for regular expressions by Kleene10 from
1956.

The Floyd-Warshall algorithm is designed according to the design method
of dynamic programming (see Section 1.5.4).

7 Transitively closed means if u ∼ v and v ∼ w, then u ∼ w.
8 Stephen Warshall (1935 – 2006) was an American computer scientist.
9 Robert W. Floyd (1936 – 2001) was an American computer scientist and Turing
Award winner.

10 Stephen Cole Kleene (1909 – 1994) was an American mathematician and logician.
He is known for the Kleene closure of a formal language and the Kleene operator
∗.
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Definition 6.52. Let G = (V,E) be a directed graph. The graph

Gc = (V,Ec) with Ec := {(v, w) | w accessible from v and w ̸= v}

is called the transitive closure or transitive envelope of G.

Remarks:

1. G is a subgraph of Gc and Gc is the smallest transitively closed graph
that contains G.

2. For graphs, the transitive closure is defined by the connected compo-
nents: w is accessible from v, i.e., (v, w) ∈ Ec, if v and w are in the same
connected component of G. We compute with breadth-first search (Al-
gorithm 5.11) all connected components and thus the transitive closure
with running time of order O(n+m) or O(n2).

3. For directed graphs, the node w is accessible from v if w is in Cv, the
connected component of v. The determination of Ec corresponds to the
determination of Cv for all v ∈ V . The effort is of order O(n3) or O(n(n+
m)) if we use depth-first search (Algorithm 5.12) or breadth-first search
(Algorithm 5.11).

The Algorithm of Warshall. Let G = (V,E) be a directed graph, and let
a be the adjacency matrix of G. Warshall’s algorithm computes a sequence of
matrices a0, a1, . . . , an, n = |V |, with coefficients from {0, 1}. This sequence
is defined by the recurrence

a0 := a,

ak[i, j] := ak−1[i, j] or (ak−1[i, k] and ak−1[k, j]) for k = 1, . . . , n.

The matrices ak have a descriptive interpretation by means of the follow-
ing definition and the following proposition.

Definition 6.53. A simple path from i to j which contains except i and j
only nodes ≤ k is called a k–path.

Proposition 6.54. For the matrix ak, 1 ≤ k ≤ n, the following statements
are equivalent:

1. ak[i, j] =1 for i ̸= j.
2. There is a k–path from i to j for i ̸= j.

In particular, an describes the transitive closure of G.

Proof. We show the assertion by induction on k. For k = 0 we have a0[i, j] = 1
if and only if there is a 0-path (an edge) from i to j. Let k ≥ 1 and assume
the assertion proved for k − 1. ak[i, j] = 1 if and only if ak−1[i, j] = 1 or
(ak−1[i, k] = 1 and ak−1[k, j] = 1). This in turn is true if there is a (k − 1)–
path from i to j, or there is a (k− 1)–path from i to k and from k to j. The
last statement holds if and only if there is a k–path from i to j.

Since the set of n–paths includes all paths, we get the last statement of
the proposition. 2
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Example. Figure 6.17 shows the calculation of the transitive closure by dy-
namic programming with the algorithm of Warshall.

..1. 2.

3

.

4

....

a0 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

, a1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

,

a2 =

 0 1 1 0
0 0 1 0
0 0 0 1
1 1 1 0

 , a3 =

 0 1 1 1
0 0 1 1
0 0 0 1
1 1 1 0

 , a4 =

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Fig. 6.17: Transitive closure with Warshall’s algorithm.

Remarks:

1. Ones remain ones in subsequent matrices (because of the or operator),
therefore we consider for an iteration only zeros outside the diagonal.

2. By definition ak[i, k] = ak−1[i, k] or (ak−1[i, k] and ak−1[k, k]). Since
ak−1[k, k] = 0, we get ak[i, k] = ak−1[i, k]. Analogously, it follows that
ak[k, j] = ak−1[k, j]. Therefore, we can perform the calculation with one
matrix (memory).

Algorithm 6.55.
Warshall(boolean a[1..n, 1..n])
1 vertex i, j, k
2 for k ← 1 to n do
3 for i← 1 to n do
4 for j ← 1 to n do
5 a[i, j] = a[i, j] or (a[i, k] and a[k, j])

Remark. The outer for loop computes the matrices a1, a2, . . . , an. Then we
calculate the matrix ak for fixed k by the two inner for loops. The running
time of Warshall is of order O(n3).

The Algorithm of Floyd. We can calculate the distances for all pairs of
nodes in positively weighted graphs by applying Dijkstra’s algorithm with
every node as start node (Section 6.2). The following algorithm of Floyd
does this also for graphs with negative weights if no cycles with negative
weights occur.

Let G = (V,E) be a weighted directed graph. We represent G with the
adjacency matrix a.

a[i, j] :=

w(i, j) if (i, j) ∈ E,
∞ if (i, j) /∈ E, i ̸= j,
0 if i = j.
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The distance matrix ad of G is defined by

ad[i, j] := d(i, j) :=

{
length of a shortest path from i to j,
∞ if no path exists.

To calculate the distance matrix ad from a, we define a sequence of ma-
trices a0, . . . , an by the recurrence

a0 = a,

ak[i, j] = min{ak−1[i, j], ak−1[i, k] + ak−1[k, j]} for k = 1, . . . , n.

Proposition 6.56. For the matrix ak, we get that ak[i, j] is the length of a
shortest k–path from i to j or ak[i, j] =∞ if no k–path from i to j exists. In
particular, an defines the distance matrix for G.

Proof. We shall prove our assertion by induction on k. For k = 0, a0[i, j]
is the length of a 0–path (an edge) from i to j. Let k ≥ 1 and assume the
assertion proved for k− 1. Let Mk[i, j] be the set of k–paths from i to j, and
let P ∈Mk[i, j] be a path of minimum length. We consider two cases.

1. If k /∈ P , then P ∈ Mk−1[i, j] and P is of minimal length, so according
to the induction hypothesis l(P ) = ak−1[i, j]. Since P is a k–path of
minimal length, l(P ) ≤ ak−1[i, k]+ak−1[k, j], and consequently, ak[i, j] =
min{ak−1[i, j], ak−1[i, k] + ak−1[k, j]} = ak−1[i, j] = l(P ).

2. If k ∈ P , decompose P into P1 ∈ Mk−1[i, k] and P2 ∈ Mk−1[k, j]. P1

and P2 are (k−1)–paths of minimum length. According to the induction
hypothesis l(P1) = ak−1[i, k] and l(P2) = ak−1[k, j]. Since P is a k–path
of minimum length, l(P ) = ak−1[i, k] + ak−1[k, j]. There is no shorter
(k − 1)–path, so ak−1[i, k] + ak−1[k, j] ≤ ak−1[i, j], and consequently,
ak[i, j] = min{ak−1[i, j], ak−1[i, k]+ak−1[k, j]} = ak−1[i, k]+ak−1[k, j] =
l(P ).

This shows the assertion. 2

Remarks:

1. Due to ak[i, k] = ak−1[i, k] and ak[k, j] = ak−1[k, j] we can perform the
calculation with one matrix (memory).

2. If negative weights are allowed but no cycles with negative lengths occur,
Floyd works correctly because then the path of shortest length is a simple
path.

Example. Figure 6.18 shows the calculation of the distance matrix with
Floyd’s algorithm using the dynamic programming method.
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a0 =


0 5 10 ∞
7 0 2 ∞
∞∞ 0 4
3 12 8 0

, a1 =


0 5 10 ∞
7 0 2 ∞
∞∞ 0 4
3 8 8 0

,

a2 =

 0 5 7 ∞
7 0 2 ∞
∞ ∞ 0 4
3 8 8 0

 , a3 =

 0 5 7 11
7 0 2 6
∞ ∞ 0 4
3 8 8 0

 , a4 =

 0 5 7 11
7 0 2 6
7 12 0 4
3 8 8 0

 .

Fig. 6.18: The distance matrix computed with Floyd’s algorithm.

Algorithm 6.57.
Floyd(real a[1..n, 1..n])
1 vertex i, j, k
2 for k ← 1 to n do
3 for i← 1 to n do
4 for j ← 1 to n do
5 if a[i, k] + a[k, j] < a[i, j]
6 then a[i, j]← a[i, k] + a[k, j]

Remark. The outer for loop computes the matrices a1, a2, . . . , an one after
the other. Then we calculate the matrix ak for fixed k in the two inner for
loops. The running time T (n) of Floyd is of order O(n3).

Computing the Shortest Paths. We modify Floyd’s algorithm to allow
the reconstruction of all shortest paths. For this purpose we use an n × n—
matrix P . In P [i, j] we store the largest node on a shortest path from i to j.
Again we proceed iteratively. We initialize P0[i, j] = 0. In Pk[i, j] we store the
largest node of a shortest k–path from i to j. In P [i, j] = Pn[i, j] the largest
node on a shortest path from i to j is stored. We replace line 6 in Floyd with

a[i, j]← a[i, k] + a[k, j];P [i, j]← k.

We can get all shortest paths from P .

Algorithm 6.58.
Path(vertex i, j)
1 vertex k
2 k ← P [i, j]
3 if k > 0
4 then Path(i, k), print(k), Path(k, j)
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For i, j with ad[i, j] ̸= ∞, the procedure Path returns all nodes k of a
shortest path from i to j which are between i and j. An upper limit on the
number of nodes in all simple paths is n3. The method used here only requires
an n× n–matrix to store all shortest paths.

6.8 Flow Networks

We will study the problem of computing a maximum flow in a flow network.
We discuss the algorithm of Ford11-Fulkerson12 in the variant of Edmonds13-
Karp14. The original algorithm was published in [FordFulk56] and the opti-
mization in [EdmoKarp72]. Our presentation is based on [CorLeiRivSte09].
There are many real situations that can be modeled using a flow network.
Examples are networks for the distribution of electrical energy or the pipe
system of a city’s canalization. Both have in common that the capacity of the
pipelines is limited and that the nodes do not have storage. In a power grid,
this is Kirchhoff’s15 first law. First, we clarify the problem with an example.

Example. In Figure 6.19, there are pumping stations n1, n2, s1, s2, s is an oil
well, t is a refinery and the edges are oil pipes that transport the oil from the
oil well to the refinery. The labeling on the edges indicates the capacity of
each line.

..s.

n1

.

s1

.

n2

.

s2

. t.
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Fig. 6.19: A flow network.

The problem to be solved is: How much do we have to pump through the
individual pipes so that the amount transported from s to t becomes maxi-
mum?

The following constraints for the flow have to be considered:

1. No more can be pumped through a pipe than the capacity allows.

11 Lester Randolph Ford (1927 – 2017) was an American mathematician.
12 Delbert Ray Fulkerson (1924 – 1976) was an American mathematician.
13 Jack R. Edmonds (1934 – ) is a Canadian mathematician and computer scientist.
14 Richard Manning Karp (1935 – ) is an American computer scientist.
15 Gustav Robert Kirchhoff (1824–1887) was a German physicist.
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2. For a node n, different from s and from t, all that flows into n must also
flow out again.

We state the situation of the previous example more precisely in the
following

Definition 6.59.

1. A flow network or network N = (V,E, s, t) consists of a weighted directed
graph (V,E). The weight function

c : E −→ R>0

is called the capacity . s ∈ V denotes the source, t ∈ V denotes the sink .
2. Let S ⊂ V .

In(S) := {(v, w) ∈ E | v /∈ S,w ∈ S}.
Out(S) := {(v, w) ∈ E | v ∈ S,w /∈ S}.

3. A flow for N is a map f : E −→ R≥0 with
a. f(e) ≤ c(e) for e ∈ E (capacity constraint).
b. ∑

e∈In(v)

f(e) =
∑

e∈Out(v)

f(e)

for v ∈ V \ {s, t} (flow conservation16).
4.

F =
∑

e∈In(t)

f(e)−
∑

e∈Out(t)

f(e)

is called the total flow associated with f . It is the flow from s to t.
5. A subset S of V is said to be a cut of N if s ∈ S and t /∈ S.

C(S) :=
∑

e∈Out(S)

c(e)

is called the capacity of the cut defined by S.
S defines a cut of minimum capacity if C(S) is minimum for all cuts S.

Example. In the network in Figure 6.20, S = {s, n1} defines a cut of minimum
capacity with C(S) = 600.

16 Flow conservation is also called Kirchhoff’s first law.
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Fig. 6.20: {s, n1} is a cut of minimum capacity.

Remarks:

1. For the source s and sink t, we do not require that In(s) = ∅ or Out(t) = ∅.
However, we do not maintain flow conservation in s and t.

2. Since nodes that do not lie on a path from s to t do not contribute to
the total flow, we assume that each node in N lies on a path from s to t.
In particular, N is connected and t is accessible from s.

3. A cut S defines a disjoint decomposition of the nodes V = S ∪ (V \ S)
into two proper subsets. The following proposition shows that the total
flow must flow over every cut.

Proposition 6.60. Let N = (V,E, s, t) be a network, S a cut of N , f a flow
with associated total flow F . Then

F =
∑

e∈Out(S)

f(e)−
∑

e∈In(S)

f(e).

Proof.

F =
∑

v∈V \(S∪{t})

 ∑
e∈In(v)

f(e)−
∑

e∈Out(v)

f(e)

+
∑

e∈In(t)

f(e)−
∑

e∈Out(t)

f(e)

=
∑

v∈V \S

∑
e∈In(v)

f(e)−
∑

v∈V \S

∑
e∈Out(v)

f(e)

=
∑

e∈In(V \S)

f(e)−
∑

e∈Out(V \S)

f(e) =
∑

e∈Out(S)

f(e)−
∑

e∈In(S)

f(e).

We explain the individual steps of the calculation above. In line 2, there is
no edge e = (x, y) with x, y ∈ S. For edges e = (x, y) ∈ E with x, y /∈ S,
it holds that e ∈ Out(x) and e ∈ In(y). As a result, the flows along these
edges cancel each other and make no contribution to the sum. The remaining
edges are In(V \ S) and Out(V \ S). Let e = (x, y) ∈ E with x ∈ S, y /∈ S.
Then e ∈ In(V \ S) ∩ Out(x). If e = (x, y) ∈ E with x /∈ S, y ∈ S then
e ∈ Out(V \ S) ∩ In(y). The assertion is thus shown. 2
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Corollary 6.61. Let N = (V,E, s, t) be a network, f a flow with associated
total flow F . Then

F =
∑

e∈Out(s)

f(e)−
∑

e∈In(s)

f(e).

Proof. The corollary follows from Proposition 6.60 with S = {s}. 2

Remark. If F < 0, we exchange s and t. So we may always assume F ≥ 0.

Corollary 6.62. Let N = (V,E, s, t) be a network with flow f and associated
total flow F . Then for a cut S

F ≤ C(S).

Proof. We have

F =
∑

e∈Out(S)

f(e)−
∑

e∈In(S)

f(e) ≤
∑

e∈Out(S)

f(e) ≤
∑

e∈Out(S)

c(e) = C(S).

This shows the corollary. 2

Algorithm of Ford-Fulkerson. The algorithm of Ford-Fulkerson con-
structs a flow f forN such that the total flow F associated with f is maximum.
The algorithm starts with the zero flow and increases the flow step by step.

The method of increasing the total flow is to find a path from s to t that
allows us to increase the flow for each of its edges. Edges with flow > 0 can
also be included in the path in the reverse direction to the edge direction. An
increase of the flow along an edge is possible if the current flow is less than
the capacity constraint, or if the edge has the reverse direction (and the flow
is decreased). We will first show the procedure using an example.

Example. In Figure 6.21 the first number in the edge labels is the capacity,
the second the flow. Augmenting paths are P = s, s1, s2, t (augmentation =
50) and P = s, n1, s2, t (augmentation = 100).
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Fig. 6.21: Augmenting paths.

The residual graph is used to model augmenting paths.



6.8 Flow Networks 297

Definition 6.63. Let N = (V,E, s, t) be a network and f : E −→ R≥0 a flow
for N . The directed graph Gf := (V,Ef ), where

Ef := {(v, w) ∈ V 2 | ((v, w) ∈ E and f(v, w) < c(v, w))

or ((w, v) ∈ E and f(w, v) > 0)},

is called the residual Graph of N relative to f .
cf : Ef −→ R+,

cf (v, w) :=

 c(v, w)− f(v, w) for (v, w) ∈ E, (w, v) /∈ E,
f(w, v) for (v, w) /∈ E, (w, v) ∈ E,
c(v, w)− f(v, w) + f(w, v) for (v, w) ∈ E, (w, v) ∈ E,

is called the residual capacity of N relative to f .

Remark. An edge (v, w) ∈ E can lead to the edges (v, w) and (w, v) in the
residual graph. If neither (v, w) nor (w, v) are edges in G, then there is also
no edge between v and w in the residual graph. Therefore, |Ef | ≤ 2|E|.

Example. In Figure 6.22 we explain the construction of the residual graph
using an example of a network with edge labeling “capacity, flow”:
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Fig. 6.22: Network with flow and residual graph.

Definition 6.64. Let N = (V,E, s, t) be a network, f be a flow for N and
Gf be the residual graph of N relative to f . Let v0, v1, . . . , vk be a (directed)
path P in Gf .

∆ := min{cf (vi, vi+1) | i = 0, . . . , k − 1}.

P is called a path P in N with augmentation ∆ if ∆ > 0.

Proposition 6.65. Let P be a path with augmentation ∆ from s to t and
e = (v, w) ∈ E. e = (w, v). ∆e = min{c(e)− f(e),∆}.
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g : E −→ R≥0,


w(e) := f(e) for e /∈ P,
w(e) := f(e) +∆ for e ∈ P, e ∈ E, e /∈ E,
w(e) := f(e)−∆ for e ∈ P, e /∈ E, e ∈ E,
w(e) := f(e) +∆e,
w(e) := f(e)− (∆−∆e) for e ∈ P, e ∈ E, e ∈ E.

g is a flow for N and Fg = Ff +∆.

Proof. The assertion follows directly from the construction. 2

Remark. Let v0, . . . , vk be a path P with augmentation ∆. After computing
g, the edges (vi, vi+1) of P with cf (vi, vi+1) = ∆ no longer appear as edges
in the residual graph Gg.

Proposition 6.66. Let N = (V,E, s, t) be a network, f a flow with associated
total flow F . The following statements are equivalent:

1. F is maximum.
2. For every path P from s to t, the augmentation ∆ = 0.

Proof. If for a path P the augmentation ∆ > 0, then F can be increased
and is therefore not maximum. This shows that the second statement is a
consequence of the first statement.

To show the reverse conclusion, let

S = {w ∈ V | there is a path P from s to w with augmentation ∆ > 0}∪{s}.

Then s ∈ S, t /∈ S. For e ∈ Out(S), we have f(e) = c(e) and for e ∈ In(S) we
get f(e) = 0. Otherwise, a path could be extended by e beyond S. Hence,

F =
∑

e∈Out(S)

f(e)−
∑

e∈In(S)

f(e) =
∑

e∈Out(S)

c(e) = C(S).

Let F ∗ be a maximum flow and S∗ ⊂ V be a cut of minimum capacity.
Then

F ≤ F ∗ ≤ C(S∗) ≤ C(S).

From F = C(S), it follows that F = F ∗ and C(S∗) = C(S). 2

The proof shows the following in addition.

Proposition 6.67 (theorem of maximum flow – cut of minimum capacity).
The value of the maximum total flow is equal to the value of a cut of minimum
capacity. The connected component of the source s in the residual graph of
the network with maximum flow is a cut of minimum capacity.

The algorithm of Ford-Fulkerson increases the total flow by means of
augmenting paths. The algorithm consists of the following steps:

1. Look for an augmenting path P from s to t.
2. Increase the flow along P with the formulas of Proposition 6.65.
3. Repeat step 1 and step 2 as long as an augmenting path exists.

If no augmenting path exists, the total flow is maximum.
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Example. In Figure 6.23 the first number in the edge labeling indicates the
capacity, the following number the flow at the start of the algorithm. The
next numbers indicate the flows after flow expansion using the paths

P = s, s1, s2, t with ∆ = 5,

P = s, n1, s2, t with ∆ = 7,

P = s, n1, s2, n2, t with ∆ = 3.

F = 60 is the maximum total flow. S = {s, n1} is a cut of minimum capacity.
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Fig. 6.23: Maximal flow – cut of minimal capacity.

Algorithm 6.68.
real adm[1..n, 1..n], flow[1..n, 1..n]; vertex path[1..n]
FordFulkerson()
1 vertex j, k; real delta, delta1
2 for k = 1 to n do
3 for j = 1 to n do
4 flow[k, j]← 0
5 while delta = FindPath() ̸= 0 do
6 k ← n, j ← path[k]
7 while j ̸= 0 do
8 delta1← min(delta, adm[j, k]− flow[j, k])
9 flow[j, k]← flow[j, k] + delta1

10 flow[k, j]← flow[k, j]− (delta− delta1)
11 k ← j, j ← path[k]

Remarks:

1. If an augmenting path P from s (= 1) to t (= n) exists (return value
delta > 0), FindPath finds the path and stores it in the array path, where
path[k] stores the predecessor of k in the path P . The while loop in line
7 passes P starting from t and updates the flow for the edges of P .
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2. If the capacity c is assumed to have values in N, then the residual capacity
cf will also only take values in N. If we perform a flow increase for a flow
with values in N using an augmenting path, the resulting flow has values
in N. For a path with augmentation ∆, we get ∆ ≥ 1. Since in each
iteration of the while loop in line 5 the flow is increased by at least one,
the while loop and thus the algorithm terminates.

3. Ford and Fulkerson give in [FordFulk62] a (theoretical) example with ir-
rational capacities, so that for finitely many iterations of the construction
with an augmenting path no termination occurs. The construction uses
powers of 1

g , where g is the ratio of the golden mean (Definition 1.22).
If the augmenting path is selected according to the method of Edmonds-
Karp, the algorithm always terminates (see below).

4. The efficiency of FordFulkerson essentially depends on the choice of the
augmenting path.

..s.
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c

. 1.

c

.

c

If we alternately choose s, n,m, t and s,m, n, t for the augmenting path,
Ford-Fulkerson terminates after 2c iterations (independent of |V | and
|E|).

Algorithm of Edmonds-Karp. Algorithm 6.68 does not specify which
method is to be used to determine an augmenting path. This step has a
significant influence on the running time. The suggestion of Edmonds and
Karp for the choice of the augmenting path is: At each step of Ford-Fulkerson,
select an augmenting path from s to t with a minimum number of edges.

The augmenting paths from s to t in N are the directed paths from s
to t in the residual graph Gf . A shortest directed path (minimum number
of edges) can be determined by breadth-first search in Gf (Algorithm 5.11).
The running time is O(n + m) if the graph is given by an adjacency list
and of order O(n2) if the graph is defined by an adjacency matrix (n = |V |,
m = |E|).

We now determine the number of iterations of the while loop in line
5 of Algorithm 6.68, when choosing an augmenting path according to the
suggestion of Edmonds and Karp. Let N = (V,E, s, t) be a network with
flow f and let v, w ∈ V .

δf (v, w) = distance between v and w in Gf ,

where all edges in Gf must be weighted by one.

Lemma 6.69. Let f1, f2,. . . be the flows in a network that we construct using
augmenting paths after Edmonds-Karp. Then δfi(s, v) is increasing in i for
v ∈ V \ {s}.
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Proof. Suppose there is a w ∈ V \ {s} and i ∈ N with

δfi+1
(s, w) < δfi(s, w).

Set f := fi, f
′ := fi+1 and

U = {u ∈ V \ {s} | δf ′(s, u) < δf (s, u)}.

Since w ∈ U , it follows that U ̸= ∅.
Let y ∈ U such that δf ′(s, y) ≤ δf ′(s, u) for all u ∈ U , and let P ′ be a

shortest path from s to y in Gf ′ .

P ′ : s = v0, . . . vl−1, vl = y.

Set x = vl−1. Since δf ′(s, x) = δf ′(s, y) − 1, we conclude according to the
choice of y that x /∈ U . First we show that (x, y) /∈ Ef . Suppose that (x, y) ∈
Ef , then

δf (s, y) ≤ δf (s, x) + 1 ≤ δf ′(s, x) + 1 = δf ′(s, y),

a contradiction to y ∈ U .
Thus, (x, y) /∈ Ef . We now show that (y, x) ∈ Ef . We consider two cases:

1. If (x, y) ∈ E, then f(x, y) = c(x, y). It follows that (y, x) ∈ Ef .
2. If (x, y) /∈ E, then (y, x) ∈ E and f(y, x) = 0. Consequently, f(y, x) <

c(y, x) and (y, x) ∈ Ef .

Since (x, y) /∈ Ef and (x, y) ∈ Ef ′ , the augmenting path P used to con-
struct f ′ from f contains (y, x) (in the direction from y to x).

Since P is a shortest path and x /∈ U , we conclude that

δf (s, y) = δf (s, x)− 1 ≤ δf ′(s, x)− 1 = δf ′(s, y)− 2 < δf ′(s, y),

a contradiction to the choice of y ∈ U . Therefore, U = ∅ and the assertion of
the lemma is shown. 2

Proposition 6.70. Let N = (V,E, s, t) be a network, n = |V |, m = |E|
and T (n,m) be the number of iterations of the while loop (line 5) in Ford-
Fulkerson when using Edmonds-Karp. Then T (n,m) = O(nm).

Proof. Let P be a path in Gf with augmentation ∆. An edge e of P is said
to be minimal with respect to P if cf (e) = ∆. Let f ′ be the flow created from
f by adding ∆. The minimal edges of P no longer occur in Ef ′ .

We estimate how often an edge e ∈ E can become a minimal edge. Let
e = (u, v) be minimal for an iteration of Ford-Fulkerson (construction of f ′

from f). Since e is an edge of a shortest path in Gf , it follows that δf (s, v) =
δf (s, u) + 1.

Before (u, v) can again become an edge of an augmenting path, (v, u)
must be an edge of a shortest augmenting path, i.e., (v, u) ∈ Ef̃ with a

later-calculated flow f̃ . Then it follows from Lemma 6.69 that
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δf̃ (s, u) = δf̃ (s, v) + 1 ≥ δf (s, v) + 1 = δf (s, u) + 2

If the edge e was a minimum edge r times before the calculation of f , we
have

2r ≤ δf (s, u).

We have δf (s, u) ≤ n − 2 because on a shortest path from s to u there can
be at most n− 1 nodes (u ̸= t).

We obtain

r ≤ n− 2

2
,

i.e., an edge can be at most n−2
2 times a minimum edge. From |Ef | ≤ 2|E| =

2m, it follows that the number of minimum edges is less than or equal to
(n − 2)m. Since in every iteration of Ford-Fulkerson at least one minimum
edge disappears, the assertion is shown. 2

Exercises.

1. Recalculate the following formulas for Ackermann’s function:
a. A(1, n) = n+ 2.
b. A(2, n) = 2n+ 3.
c. A(3, n) = 2n+3 − 3.

d. A(4, n) = 22
2
. .

.
2

︸ ︷︷ ︸
n+3 times

−3.

2. Given is a graph G weighted with integers:

1 : (2, 1), (3, 1), (4, 4), (5, 2) 4 : (1, 4), (3, 2), (5, 5)
2 : (1, 1), (3, 2), (5,−2) 5 : (1, 2), (2,−2), (4, 5)
3 : (1, 1), (2, 2), (4, 2)

The length of a path in G is the sum of the weights of the edges that be-
long to the path. The distance between the two nodes i, j is the minimum
of the lengths of the paths from i to j.
a. Does the definition above yield a metric on the set of nodes of G? If

this is not the case, then list all axioms of a metric that are violated.
b. Does Dijkstra’s algorithm return a shortest path for every pair of

nodes? State the individual steps in the determination of the paths.
c. Does the algorithm of Kruskal yield a minimum spanning tree of G?

If this is the case, does this apply to all graphs with negative weighted
edges? Justify your statement.

3. Let G be a directed weighted acyclic graph. Develop an algorithm that
determines a longest path between two nodes of G (a critical path).
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4. Design an algorithm that calculates for an acyclic directed graph G the
distances from one node to all other nodes with the running time O(n+
m).

5. With Kruskal’s algorithm, the constructed MST depends on the selection
of an edge among all edges of the same weight. Is it possible to generate
every MST of a graph by appropriately selecting an edge in each step?
Justify your answer.

6. a. How are the priorities to be assigned for a priority queue to work as
a stack or a queue?

b. The data type priority queue should support the union of queues in
addition to the specified access functions. Specify an algorithm and
discuss the running time.

7. Develop a procedure for “updating” an MST for a graph G if
(1) an edge is added to G,
(2) a node with several incident edges is added to G.

8. Let G be a weighted graph and T a minimum spanning tree for G. We
change the weight of a single edge of G. Discuss the effects on T .

9. We model a communication network with bidirectional connections with
a weighted graph G = (V,E). The nodes are nodes in the communication
network and the edges are communication links. The weight of an edge
(u, v) is the failure probability p(u, v) ∈ [0, 1] for the connection (u, v).
We assume that these probabilities are independent of each other. The
probability that a connection v = v0, . . . , vn = w from v to w will fail is
1 −

∏n
i=1(1 − p(vi−1, vi)). Specify an algorithm to calculate paths with

the least probability of failure.
10. Four people P1, P2, P3 and P4 want to cross a bridge in the dark. The

bridge can only be crossed if a torch is carried. The four persons only have
one torch and the bridge carries a maximum of two persons. The people
run at different speeds. P1 takes five minutes to cross, P2 ten minutes,
P3 twenty minutes and P4 twenty-five minutes. If two people cross the
bridge together, the time required depends on the slower runner. In what
order do the four people have to cross the bridge in order to get everyone
to the other side and to minimize the amount of time needed?
a. Model the problem with a graph.
b. What algorithm can be used to solve the problem?
c. Specify a solution to the problem.

11. Let G = (V,E) be a connected graph.
d(G) := max{d(i, j) | i, j ∈ V } is called the diameter of G.
e(i) := max{d(i, j) | j ∈ V } is called the excentricity of i.
r(G) := min{e(i) | i ∈ V } is called the radius of G.
i ∈ V is called the center of G if i satisfies e(i) = r(G).
a. Show: r(G) ≤ d(G) ≤ 2r(G)
b. Develop algorithms to calculate d(G), r(G) and determine all centers.
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c. What do you do if you are only interested in the centers?

12. All cities in a country are to be connected by magnetic levitation trains.
When building the rail network, care should be taken to minimize the
length of the rails to be built.
a. How do you determine those cities that are to be connected by a

railway line?
b. What does the structure look like?
c. After the rail network has been created, parliament decides to relo-

cate the capital. The sum of the travel times from the new capital to
all other cities with the magnetic levitation train should be minimal.
Develop an algorithm to identify all cities in the country that meet
the above condition. Assume that each route is bidirectional and that
the travel times are the same in both directions.

d. Explain your approach using an example with five cities.

13. Verification of a shortest path tree in linear time. Let G = (V,E) be a
connected weighted graph, r ∈ V and T a subtree with root r that spans
G. Develop an algorithm with linear running time that checks whether
the paths in T are the shortest paths in G.

14. Let X = {x1, . . . , xn} be a set of boolean variables. We consider boolean
expressions of the form b = b1 ∧ . . .∧ bn with bj = bj1 ∨ bj2, j = 1, . . . , n,
and bj1, bj2 ∈ L = {x1, . . . , xn, x1, . . . , xn}.
The term v ∨ w is equivalent to v =⇒ w and w =⇒ v. Instead of v ∨ w
we write the implications v =⇒ w and w =⇒ v.
We assign to a boolean expression b a directed graph G = (V,E). We set
V = L. Each term v ∨ w in b defines the edges (v, w) and (w, v).
Using G, specify an algorithm that determines whether an expression b
is satisfiable, that is, whether there is a vector (x1, . . . , xn) ∈ {0, 1}n so
that b(x1, . . . , xn) = 1. This is called the 2-SAT problem.17

15. A network is defined by the adjacency list

A: (B,25,15),(F,5,5) B: (F,15,15), (T,5,0)
D: (H,10,0),(F,30,30) F: (T,35,35), (J,20,15)
H: (J,20,15) J: (T,30,30)
S: (A,20,20),(D,50,30),(H,20,15) T:

.

An entry is given by (node, capacity, flow). Determine a maximum flow
and a cut of minimum capacity.

16. We consider a system consisting of two processors P,Q and n processes.
Communication takes place between two processes. Some of the processes
must run on P and some must run on Q. The rest of the processes should

17 The 3-SAT problem is NP complete ([HopMotUll07]). It consists of deciding
whether a boolean expression b = b1∧. . .∧bn with bj = bj1∨bj2∨bj3, j = 1, . . . , n,
and bj1, bj2, bj3 ∈ L is satisfiable.
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be distributed between the processors in such a way that the effort for
information transfer from P to Q is minimized.
a. How to model the problem?
b. What algorithm can be used to determine the distribution of pro-

cesses?

17. We consider a network with n sources S1, . . . , Sn and m sinks T1, . . . , Tm.
Solve the maximum flow problem for such a network. Perform your solu-
tion using the example in Figure 6.24.

..S1

.

S2

.

S3

. N1

.

M1

.

L1

. N2

.

M2

.

L2

. T1

.

T2

.

T3

.

8

. 8.

24

.

10

.

12

.

8

.

8

.

12

.

20

.
16

.

20

.

10

.

18

. 8. 8.

10

.

14

.

12

.

10

.

8

.

8

.

8

Fig. 6.24: Variant.

18. Let G = (V ∪W,E) be a bipartite graph, and let Z ⊂ E. Z is a matching
in G if each node is at most the end node of one edge. A maximum
matching is a matching with a maximum number of edges. Obviously,
a flow network N can be assigned to G. Work out the details. Show
that the problem of calculating a maximum matching can be reduced to
calculating a maximum flow in N .
Determine a maximum matching in the following bipartite graph.

1 : 6, 7, 8 4 : 8, 9, 10 7 : 1, 3 10 : 2, 4
2 : 6, 9, 10 5 : 6 8 : 1, 4
3 : 6, 7 6 : 1, 2, 5, 3 9 : 2, 4

19. Let G = (V1 ∪ V2, E) be a bipartite graph, N = (V,E, s, t) the assigned
network, Z a matching in G and f the assigned local flow in N . Let
P = s, v1, ..., vn, t be an augmenting path. Show:
a. P has an odd number of edges.
b. Let ei = (vi, vi+1), i = 1, ..., n − 1. Then e2i−1 ∈ Z, i = 1, ..., n

2 , and
e2i /∈ Z, i = 1, ..., n−2

2 .
c. In the algorithm for constructing a maximum matching, the number

of edges of the matching increases by one in each step.
d. Determine the order of the number of iterations of Ford-Fulkerson to

compute a maximum matching.



A. Probabilities

We summarize some basic notations and results from probability theory, in-
cluding probability spaces, random variables and special discrete distribu-
tions. We will apply these when analyzing algorithms. An introductory text-
book on probability theory is [Feller68].

A.1 Finite Probability Spaces and Random Variables

For the analysis of algorithms, we can usually restrict ourselves to finite
probability spaces.

Definition A.1.

1. An n-tuple of real numbers

p = (p1, . . . , pn), 0 ≤ pi ≤ 1, with
n∑

i=1

pi = 1

is called a probability distribution, or distribution for short.
If pi =

1
n , i = 1, . . . , n, then (p1, . . . , pn) is the uniform distribution.

2. A probability space (X ,pX ) consists of a finite set X = {x1, . . . , xn} with
a probability distribution p = (p1, . . . , pn). pi is the probability of xi, i =
1, . . . , n. We write pX (xi) := pi and consider pX as the map X → [0, 1]
which assigns xi ∈ X its probability pi. We call pX a probability measure
on X .

3. An event E is a subset E of X . We extend the probability measure to
events; pX (E) or for short p(E) is defined by

pX (E) =
∑
y∈E

pX (y).

Remark. Let (X ,p) be a probability space, and let A and B be events. Defi-
nition A.1 immediately implies

1. p(X ) = 1 and p(∅) = 0.
2. p(A ∪ B) = p(A) + p(B) if A ∩ B = ∅.
3. p(X \ A) = 1− p(A).
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Example. A standard example is throwing a die. If you throw a die, then
it can fall six ways, each of which is equally likely if the die is fair. Thus,
the result set X = {1, . . . , 6} and p =

(
1
6 , . . . ,

1
6

)
. An event is a subset of

{1, . . . , 6}. For example, the probability for the event “even number of pips”
is 1

2 .

Remark. For our applications, the model for random experiments defined
in Definition A.1 is sufficient. Kolmogorov1 defined a general model that is
today common in probability theory.

The set X of elementary events is not necessarily finite and the set of
events is a subset A of the power set of X , a so-called σ–algebra. A probability
measure p assigns to each A ∈ A a probability p(A) in the interval [0, 1] ⊂ R
of real numbers. p is additive, i.e., p(A ∪ B) = p(A) + p(B), if A ∩ B = ∅,
and p(X ) = 1. A similar property holds for countable disjoint unions, given
the additivity property. Our model is a special case of the general model.

Definition A.2. Let X be a probability space, and let A,B ⊆ X be events
with p(B) > 0. The conditional probability of A under the assumption B is

p(A|B) := p(A ∩ B)
p(B)

.

In particular,

p(x |B) =
{

p(x)/p(B) if x ∈ B,
0 if x ̸∈ B.

Remark. The conditional probabilities p( |B) define a probability distribution
on X . It describes the probability of x assuming that the event B occurs.
This concentrates the probability measure p on B. We get p(B|B) = 1 and
p(X \ B|B) = 0.

Example. Again, we consider the example from above of throwing a die with
the probability distribution p =

(
1
6 , . . . ,

1
6

)
. Let B be the event “even num-

ber of pips”. Then p(B) = 1
2 . We get on X the (conditional) probability

distribution
(
0, 1

3 , 0,
1
3 , 0,

1
3

)
under the assumption B.

Definition A.3. Let X be a probability space, and let A,B ⊆ X be events.
A and B are called independent if p(A∩B) = p(A) · p(B). For p(B) > 0 this
condition is equivalent to p(A|B) = p(A).

Proposition A.4. Let X be a finite probability space, and let X be the dis-
joint union of the events E1, . . . , Er ⊆ X , with p(Ei) > 0 for i = 1 . . . r. Then

p(A) =
r∑

i=1

p(Ei) · p(A|Ei)

for each event A ⊆ X .
1 Andrey Nikolaevich Kolmogorov (1903 – 1987) was a Russian mathematician.
One of his great contributions was the axiomatization of probability theory.
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Proof. We have A = ∪ri=1(A∩Ei), (A∩Ei)∩ (A∩Ej) = ∅ for i ̸= j. Therefore,

p(A) =
r∑

i=1

p(A ∩ Ei) =
r∑

i=1

p(Ei) · p(A|Ei).

2

Definition A.5. Let (X ,pX ) be a probability space and Y be a finite set. A
map X : X −→ Y is called a Y –valued random variable on X . We say X is
a real random variable if Y ⊂ R and a binary random variable if Y = {0, 1}.

Example. Again, we consider the die experiment from above. The map
X : {1, . . . , 6} −→ {0, 1} which assigns to an even result 0 and to an odd
result 1 is a binary random variable.

Definition A.6. Let X : X −→ Y be a real random variable.

1. The weighted mean value

E(X) :=
∑
y∈Y

p(X = y) · y,

where p(X = y) = p({x ∈ X | X(x) = y}), is called the expectation value
of X.

2. The expectation value of the random variable (X − E(X))2 is called the
variance of X.

Var(X) := E((X − E(X))2).

Variance is a measure of the expected value of the square of the deviation
of a random variable from its expected value.2

3. The standard deviation of X is

σ(X) =
√
Var(X).

The standard deviation is the measure of the dispersion of a random
variable.

Example. We consider the random variable X from the previous example,
X : {0, . . . , 6} −→ {0, 1}, which assigns to an even result of the die experiment
0 and to an odd result 1. The expectation value is E(X) = 1/2. The random
variable (X − 1/2)

2 has the value 1/4 for all numbers. Therefore, Var(X) = 1/4

and σ(X) = 1/2.

Proposition A.7. Let X and Y be real random variables, a, b ∈ R. Then

1. E(aX + bY ) = aE(X) + bE(Y ).
2. Var(X) = E(X2)− E(X)2

2 In fact, we are interested in the expected value E(|X − E(X)|). Since absolute
values are difficult to handle, Var(X) is defined by E((X − E(X))2).
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Proof. Let x1, . . . , xn denote the values of X and y1, . . . , ym the values of Y .
Then

E(aX + bY ) =
∑
i,j

p(X = xi ∩ Y = yj) · (axi + byj)

= a
∑
i,j

p(X = xi ∩ Y = yj) · xi +

b
∑
i,j

p(X = xi ∩ Y = yj) · yj

= a
∑
i

p(X = xi) · xi +
∑
j

p(Y = yj) · yj

= aE(X) + bE(Y ),

(note, p(X = xi) =
∑

j p(X = xi ∩ Y = yj) (Proposition A.4)) and

E((X − E(X))2) = E(X2 − 2XE(X) + E(X)2) = E(X2)− E(X)2.

2

Definition A.8. Let X be a random variable and E be an event in the
corresponding probability space. The distribution of the random variableX |E
is defined by the conditional probabilities p(X = x |E).

Lemma A.9. Let X and Y be finite random variables. The value set of Y is
{y1, . . . , ym}. Then

E(X) =
m∑
i=1

E(X | Y = yi)p(Y = yi).

Proof. With Proposition A.4 we conclude

p(X = x) =

m∑
i=1

p(X = x | Y = yi)p(Y = yi).

The value set of X is {x1, . . . , xn}. Then

E(X) =
n∑

j=1

p(X = xj)xj

=
n∑

j=1

(
m∑
i=1

p(X = xj | Y = yi)p(Y = yi)

)
xj

=
m∑
i=1

 n∑
j=1

p(X = xj | Y = yi)xj

p(Y = yi)

=
m∑
i=1

E(X | Y = yi)p(Y = yi).
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This shows the assertion. 2

Proposition A.10 (Markov’s Inequality). Let X be a random variable that
only has non-negative integers as values. Then for every real number r > 0
we get

p(X ≥ rE(X)) ≤ 1

r
.

Proof. From

E(X) =
∑
i≥1

i · p(X = i) ≥
∑

i≥rE(X)

i · p(X = i)

≥ r · E(X)
∑

i≥rE(X)

p(X = i)

= r · E(X) · p(X ≥ r · E(X))

the assertion follows. 2

A.2 Special Discrete Distributions

In this section, we study examples of random variables that we will use when
analyzing algorithms. First, we extend our model for random experiments.
We consider the more general situation of a discrete random variable. The
value set of X consists of the non-negative integers 0, 1, 2 . . .. For a random
variable X with value set W({0, 1, 2 . . .}, we set p(X = m) = 0 for m /∈ W ,
so finite random variables are also included. We demand that

∞∑
i=0

p(X = i) = 1

holds true. The probability space associated with X with the distribution
p = (p(X = i))i≥0 is countable and no longer finite. The definitions and
propositions from Section A.1 are transferable to the more general situation.
If the series

E(X) =

∞∑
i=0

i · p(X = i)

converges, E(X) is the expectation value of the discrete random variable X.

Example. The series
∑∞

i=1
1
2i converges to 1 (Appendix B (F.8)). Conse-

quently,
(

1
2i

)
i≥1

defines the distribution of a discrete random variable X.

The series
∑∞

i=1 i ·
1
2i converges to 2, so X has the expected value 2 (loc. cit.).
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Definition A.11. Let X be a random variable that only takes non-negative
integers as values. The power series

GX(z) =
∞∑
i=0

p(X = i)zi

is called the generating function of the random variable X.3

For |z| ≤ 1 the power seriesGX(z) converges and represents within the conver-
gence range an infinitely often differentiable function. The derivation results
from differentiating every term separately ([AmannEscher05, Chapter V.3]).

GX(z) =
∞∑
i=0

p(X = i)zi implies that p(X = 0) = GX(0).

G′
X(z) =

∞∑
i=1

ip(X = i)zi−1 implies that p(X = 1) = G′
X(0).

G′′
X(z) =

∞∑
i=2

i(i− 1)p(X = i)zi−2

implies that p(X = 2) =
1

2
G′′

X(0).

...

G
(k)
X (z) =

∞∑
i=k

i(i− 1) . . . (i− k + 1)p(X = i)zi−k

implies that p(X = k) =
1

k!
G

(k)
X (0).

In addition to the power series representation, often another representa-
tion of the generating function is known, for example, as a rational function
(proofs of Propositions A.16, A.20 and A.22). Then, from this representation
we can obtain formulas for the derivatives and the coefficients of the power se-
ries by differentiating this representation of GX(z). The generating function
GX(z) implicitly contains the complete distribution of X. From an explicit
representation of GX(z), for example, as a rational function, a formula for
the expected value and variance of X can be derived.

Proposition A.12. Let X be a random variable with generating function
GX(z). The first and second left-sided derivatives should exist for GX(z) at
z = 1. Then

E(X) = G′
X(1), E(X2) = G′′

X(1) +G′
X(1) and

Var(X) = G′′
X(1) +G′

X(1)−G′
X(1)2.

3 The random variable zX takes on the value zi with the probability p(X = i). So
GX(z) = E(zX).
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Proof. The formulas follow directly from the observation above with state-
ment 2 of Proposition A.7, which also applies to discrete random variables. 2

We now apply Proposition A.12 to the Bernoulli distribution, the bino-
mial distribution, the negative binomial distribution, the Poisson distribution,
the geometric distribution, the hyper-geometric distribution and the negative
hyper-geometric random variable.

Definition A.13. A random variable X is called Bernoulli4 distributed with
parameter p, 0 < p < 1, if X takes on one of the values 0, 1 and

p(X = i) = pi(1− p)1−i

holds.

Proposition A.14. Let X be a Bernoulli distributed random variable with
parameter p. Then

E(X) = p, E(X2) = p and Var(X) = p(1− p).

Proof.
GX(z) = pz + (1− p), G′

X(z) = p and G′′
X(z) = 0.

The first two assertions follow immediately.

Var(X) = E(X2)− E(X)2 = p− p2 = p(1− p).

2

Definition A.15. A random variable X is said to be binomially distributed
with parameters (n, p), n > 0, 0 < p < 1, if X takes on one of the values
0, 1, 2, . . . , n and

p(X = i) =
(n
i

)
pi(1− p)n−i

holds.5

Example. Figure A.1 shows the distribution of the number X of ones in a
random 0-1 sequence that we generate tossing a fair coin (Section 1.6.4). X
is binomially distributed with parameters n = 50 and p = 1/2. The expected
value is 25 and the standard deviation is 3.54.

4 Jacob Bernoulli (1655 – 1705) was a Swiss mathematician and physicist.
5 ∑n

i=0

(
n
i

)
pi(1− p)n−i = (p+ (1− p))n = 1 (Appendix B (F.3)).
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Fig. A.1: Distribution of ones in a random sequence.

Let E be an event of a random experiment that occurs with the probability
p(E) = p > 0. We consider n independent repetitions of the experiment.
We call such an experiment a Bernoulli experiment with the event E and
probability p.

Let X be the random variable that counts how often the event E occurs.
The event occurs with probability pi(1− p)n−i for n independent repetitions
at i given positions of the sequence. There are

(
n
i

)
possible ways to select

i positions from n positions. We get p(X = i) =
(
n
i

)
pi(1 − p)n−i. X is

binomially distributed with parameters (n, p).

Proposition A.16. Let X be a binomially distributed random variable with
parameters (n, p). Then

E(X) = np, E(X2) = n(n− 1)p2 + np and Var(X) = np(1− p).

Proof. The generating function for the binomial distribution follows from the
binomial theorem (Appendix B (F.3)) by expanding (pz + (1− p))n.

GX(z) =
n∑

i=0

(n
i

)
pi(1− p)n−izi = (pz + (1− p))n,

G′
X(z) = np(pz + (1− p))n−1 and

G′′
X(z) = n(n− 1)p2(pz + (1− p))n−2.

The first two statements follow immediately.

Var(X) = E(X2)− E(X)2 = n(n− 1)p2 + np− n2p2 = np(1− p).

2

Example. Figure A.2 shows the distribution of the number N of keys mapped
to a hash value by a random hash function for a hash table with 60 places
and 50 records. The variable N is binomially distributed with the parameters
n = 50 and p = 1/60 (Proposition 3.15).

We expect that E(N) = 5/6 keys are mapped to a hash value. The variance
Var(N) = 250/36 ≈ 6.9 and the standard deviation σ(N) ≈ 2.6.
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Fig. A.2: Distribution with a random hash function.

For the binomial distribution, we consider the limit for n → ∞ where
n · p = λ should be kept constant, i.e., we set p = λ/n:

lim
n→∞

(n
i

)
pi(1− p)n−i = lim

n→∞

(n
i

)(λ

n

)i(
1− λ

n

)n−i

=
λi

i!
lim
n→∞

n(n− 1) . . . (n− i+ 1)

ni

(
1− λ

n

)n−i

=
λi

i!
lim
n→∞

(
1− λ

n

)n

lim
n→∞

(
1− 1

n

)
. . .

(
1− i− 1

n

)(
1− λ

n

)−i

=
λi

i!
e−λ

(for the last “=” see Proposition B.18).
The Poisson distribution approximates for a small occurrence probability

p = λ
n of an event and for a large number n of repetitions of a Bernoulli

experiment the probability with which the event occurs i times. Therefore,
the Poisson distribution is sometimes called the distribution of rare events.

Definition A.17. A random variable X is called Poisson distributed6 with
parameter λ, λ > 0, if X takes on one of the values 0, 1, 2, . . . and

p(X = i) =
λi

i!
e−λ

(note,
∑∞

i=0
λi

i! e
−λ = e−λ

∑∞
i=0

λi

i! = e−λeλ = 1).

Proposition A.18. Let X be a Poisson distributed random variable with
parameter λ. Then

E(X) = λ, E(X2) = λ2 and Var(X) = λ.

6 Siméon Denis Poisson (1781 – 1840) was a French mathematician and physicist.
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Proof.

GX(z) =
∞∑
i=0

λi

i!
e−λzi = e−λ

∞∑
i=0

(λ · z)i

i!

= e−λeλz,

G′
X(z) = λe−λeλz and G′′

X(z) = λ2e−λeλz.

The first two assertions follow immediately.

Var(X) = E(X2)− E(X)2 = λ2 + λ− λ2 = λ.

2

Definition A.19. A random variable X is said to be geometrically dis-
tributed with parameter p, 0 < p < 1, if X takes on one of the values 1, 2, . . .
and

p(X = i) = p(1− p)i−1

holds.7 The name is explained by the fact that the generating function of X
is a geometric series (see below).

We consider a Bernoulli experiment with event E and success probability
p. Let X be the random variable that counts the necessary attempts until
E occurs for the first time. E occurs for the first time at the ith repetition
if E occurs at the ith repetition, but not at the i − 1 preceding repetitions.
The probability of this is p(1−p)i−1, i.e., X is geometrically distributed with
parameter p.

Example. The termination of a Las Vegas algorithm often depends on the
first occurrence of an event. This is determined by the geometric distribution.
Figure A.3 shows for Algorithm 1.50 and for p = 1/2 the distribution of the
number of iterations until the termination condition occurs.

Fig. A.3: Termination of a Las Vegas algorithm.

7 ∑∞
i=1 p(1− p)i−1 = p

∑∞
i=0(1− p)i = 1 (Appendix B (F.8)).
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Proposition A.20. Let X be a geometrically distributed random variable
with parameter p. Then

E(X) =
1

p
, E(X2) =

2− p

p2
and Var(X) =

1− p

p2
.

Proof. By the geometric series (Appendix B (F.8)), we get

GX(z) =

∞∑
i=1

p(1− p)i−1zi =
p

1− p

∞∑
i=1

((1− p)z)
i

=
p

1− p
·
(

1

1− (1− p)z
− 1

)
,

G′
X(z) =

p

(1− (1− p)z)2
and G′′

X(z) =
2p(1− p)

(1− (1− p)z)3
.

The first two assertions follow immediately.

Var(X) = E(X2)− E(X)2 =
2(1− p)

p2
+

1

p
− 1

p2
=

1− p

p2
.

2

Definition A.21. A random variable X is said to be negative binomially
distributed with parameters (r, p), r > 0, 0 < p < 1 if X takes on one of the
values r, r + 1, . . . and

p(X = k) =

(
k − 1

r − 1

)
pr(1− p)k−r

(note,
∑

k≥r p(X = k) = GX(1) =
(

p
1−(1−p)

)r
= 1 (see below)).

Remark. Let k = r + i. The identity(
k − 1

r − 1

)
=

(
r + i− 1

r − 1

)
=

(
r + i− 1

i

)
= (−1)i

(
−r
i

)
explains the term “negative binomial distribution” (Lemma B.17).

We consider a Bernoulli experiment with event E and success probability
p. Let X be the random variable that counts how many times we have to
repeat the experiment until the event E occurs r times. We get p(X = k) =

p
(

k−1
r−1

)
pr−1(1 − p)k−r =

(
k−1
r−1

)
pr(1 − p)k−r. Consequently, X is negative

binomially distributed with parameters (r, p).
The negative binomial distribution with parameters (1, p) gives the ge-

ometric distribution. Conversely, we get the negative binomial distribution
with parameters (r, p) as the sum of r independent geometrically distributed
random variables with parameter p.
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Example. The number of F–light edges in a random graph with r nodes
is dominated by a negative binomially distributed random variable with the
parameters (r, 1/2) (Proposition 6.48). Figure A.4 shows the negative binomial
distribution for r = 50 and p = 1/2.

Fig. A.4: The distribution of an upper bound on the number of F–light edges.

Proposition A.22. Let X be a negative binomially distributed random vari-
able, with parameters (r, p). Then

E(X) =
r

p
, E(X2) =

r2

p2
+

r

p2
− r

p
and Var(X) =

r(1− p)

p2
.

Proof. From the formula for the binomial series (Appendix B (F.4)) follows
with Lemma B.17, q = 1− p and r + i = k

(1− qz)−r =
∞∑
i=0

(
−r
i

)
(−qz)i =

∞∑
i=0

(−1)i
(
−r
i

)
qizi

=
∞∑
i=0

(
r + i− 1

i

)
qizi =

∞∑
i=0

(
r + i− 1

r − 1

)
qizi

=

∞∑
k=r

(
k − 1

r − 1

)
qk−rzk−r.

Multiplying by (pz)r yields

GX(z) =
∞∑
k=r

(
k − 1

r − 1

)
prqk−rzk =

(
pz

1− qz

)r

.

Then

G′
X(z) = r

(
pz

1− qz

)r−1
p(1− qz) + pqz

(1− qz)2
= rp

(
(pz)r

(1− qz)r+1

)
and

G′′
X(z) = rp2

(
(pz)r−2

(1− qz)r+2

)
(r − 1 + 2qz).
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We obtain

E(X) = G′
X(1) =

r

p
,

E(X2) = G′′
X(1) +G′

X(1) =
r

p2
(r + 1− 2p) +

r

p
=

r2

p2
+

r

p2
− r

p
,

Var(X) = E(X2)− E(X)2 =
r2

p2
+

r

p2
− r

p
−
(
r

p

)2

=
r(1− p)

p2
.

2

Definition A.23. A random variable X is said to be hyper-geometrically
distributed with the parameters (n,M,N), n,M ≤ N , if X takes on one of
the values 0, 1, 2, . . . ,M and

p(X = k) =

(
M
k

)(
N−M
n−k

)
(

N
n

)
holds.

The hyper-geometric distribution describes an urn experiment “drawing
without replacement”, where the urn contains N balls. Of these N balls, M
balls have a certain property M. The probability that k of the drawn balls
have the property M after n draws (without replacement) results from the

number of positive cases
(

M
k

)(
N−M
n−k

)
divided by the number of possible

cases
(

N
n

)
. The normalization condition

∑
k p(X = k) = 1 follows from

∑
k

(
M

k

)(
N −M

n− k

)
=

(
N

n

)
(Lemma B.17).

Example. Figure A.5 shows the distribution of the number E of exchanges
in the quicksort partitioning for an array of 100 elements, and with pivot
element at position 60. The variable E is hyper-geometrically distributed
with the parameters n = 59, M = 40 and N = 99 (Section 2.1.1).
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Fig. A.5: A distribution occurring in quicksort partitioning.

Proposition A.24. Let X be a hyper-geometrically distributed random vari-
able with the parameters (n,M,N). Then

E(X) = n
M

N
and Var(X) = n

M

N

(
1− M

N

)
N − n

N − 1
.

Proof.

GX(z) =
∑
k

(
M
k

)(
N−M
n−k

)
(

N
n

) zk.

G′
X(z) =

∑
k

k

M
k

(
M−1
k−1

)(
N−M
n−k

)
N
n

(
N−1
n−1

) zk−1

= n
M

N

∑
k

(
M−1
k−1

)(
N−M
n−k

)
(

N−1
n−1

) zk−1.

G′′
X(z) = n

M

N

∑
k

(k − 1)

M−1
k−1

(
M−1
k−1

)(
N−M
n−k

)
N−1
n−1

(
N−2
n−2

) zk−2

= n(n− 1)
M

N

M − 1

N − 1

∑
k

(
M−2
k−2

)(
N−M
n−k

)
(

N−2
n−2

) zk−2.

From

G′
X(1) = n

M

N
and G′′

X(1) = n(n− 1)
M

N

M − 1

N − 1

follow the formulas for the expected value and variance ofX. We used Lemma
B.17 for our calculations with binomial coefficients. 2
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Remark. We consider the limit for N →∞ and p = M/N constant.(
M
k

) (
N−M
n−k

)
/
(
N
n

)
=

M !

k!(M − k)!
· (N −M)!

(n− k)!(N −M − n+ k)!
· (N − n)!n!

N !

=
(n
k

)M

N
. . .

M − k + 1

N − k + 1
· N −M

N − k
. . .

N −M − (n− k − 1)

N − k − (n− k − 1)
.

Each of the first k fractions converges for N → ∞ to p and each of the last

n − k fractions to 1 − p. Thus, the quotient
(
M
k

) (
N−M
n−k

)
/
(
N
n

)
converges for

N → ∞ to
(
n
k

)
pk(1 − p)n−k, where we keep M/N constant. The binomial

distribution describes the independent repetition of the urn experiment “draw
with replacement”. For large N , replacement has very little impact on the
probabilities.

Definition A.25. A random variableX is said to be negative hyper-geometri-
cally distributed with the parameters (r,M,N), r,M,N ∈ N, 0 < r ≤ M ≤
N , if X takes on one of the values r, . . . , r +N −M and

p(X = k) =

(
k−1
r−1

)(
N−k
M−r

)
(

N
M

) .

The negative hyper-geometric distribution describes an urn experiment
“drawing without replacement”. The urn contains N balls. Of these N balls
M balls have a certain property M. Let r ≤ M . The random variable X
counts how often we have to repeat the experiment so that exactly r drawn
balls have property M. X = k holds if the rth ball with property M is
drawn in the kth draw, and if in the k − 1 preceding draws r − 1 balls have
the propertyM. We call the last event E . Then p(X = k) is the conditional
probability that we will draw a ball with M in the kth draw under the
condition E . We get for k = r, . . . , r +N −M

p(X = k) =

(
M
r−1

)(
N−M
k−r

)
(

N
k−1

) M − (r − 1)

N − (k − 1)
.

A simple calculation gives the correspondence with the defining formula in
Definition A.25.

Since p(X = k) defines a (conditional) probability distribution, the nor-
malization condition

∑
k p(X = k) = 1 is fulfilled, i.e.,

r+N−M∑
k=r

(
k − 1

r − 1

)(
N − k

M − r

)
=

(
N

M

)
.
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Proposition A.26. Let X be a negative hyper-geometrically distributed ran-
dom variable with parameters (r,M,N). Then

E(X) = r
N + 1

M + 1
and Var(X) = r

(N + 1)(N −M)(M + 1− r)

(M + 1)2(M + 2)
.

Proof. The generating function for X is

GX(z) =
1(
N
M

) r+N−M∑
k=r

(
k − 1

r − 1

)(
N − k

M − r

)
zk.

The derivative of GX(z) is

G′
X(z) =

1(
N
M

) r+N−M∑
k=r

k

(
k − 1

r − 1

)(
N − k

M − r

)
zk−1

=
r(
N
M

) r+N−M∑
k=r

(
k

r

)(
N − k

M − r

)
zk−1

=
r(
N
M

) r+N−M+1∑
k=r+1

(
k − 1

r

)(
N − (k − 1)

M − r

)
zk−2.

The derivative G′
X evaluates at z=1 to

G′
X(1) =

r(
N
M

) r+1+(N+1)−(M+1)∑
k=r+1

(
k − 1

r

)(
N + 1− k

M + 1− (r + 1)

)

=
r(
N
M

)(N + 1

M + 1

)
= r

N + 1

M + 1
.

Thus, the formula for the expected value for X is shown.

The second derivative of GX(z) is

G′′
X(z) =

r(
N
M

) r+N−M+1∑
k=r+1

(k − 2)

(
k − 1

r

)(
N − (k − 1)

M − r

)
zk−3.

Thus, we obtain

G′′
X(1) =

r(
N
M

)( r+N−M+1∑
k=r+1

k

(
k − 1

r

)(
N + 1− k

M −m

)

−2
m+N−M+1∑

k=m+1

k

(
k − 1

m

)(
N + 1− k

M + 1− (m+ 1)

))
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=
m(
N
M

)((m+ 1)
m+N−M+2∑

k=m+2

(
k − 1

m+ 1

)(
N + 2− k

M + 2− (m+ 2)

)

−2
(
N + 1

M + 1

))
=

m(
N
M

) ((m+ 1)

(
N + 2

M + 2

)
− 2

(
N + 1

M + 1

))

= m
N + 1

M + 1

(
(m+ 1)

N + 2

M + 2
− 2

)
.

For the variance of X, we get

Var(X) = r
N + 1

M + 1

(
(r + 1)

N + 2

M + 2
− 1− r

N + 1

M + 1

)
= r

(N + 1)(N −M)(M + 1− r)

(M + 1)2(M + 2)
.

The assertion of the Proposition is therefore shown. 2

Example. Figure A.6 shows the distribution of the number of attempts sln
necessary to insert the (n + 1)th key into a hash table with 100 places for
n = 80. The variable sln is negatively hyper-geometrically distributed with
the parameters r = 1, M = 20 and N = 100. (Proposition 3.22).

Fig. A.6: Distribution during uniform probing.

Remark. For N → ∞ and p = M/N constant, the negative hyper-geometric
distribution converges to the negative binomial distribution:

lim
N→∞

N/Mconst.

(
k−1
r−1

)(
N−k
M−r

)
(

N
M

) =

(
k − 1

r − 1

)
pr(1− p)k−r.
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Probability theory, especially the binomial distribution, the Poisson distri-
bution and the negative hyper-geometric distribution, are used for the analy-
sis of hash procedures in Section 3.4, for random functions (Proposition 3.19),
in the model of uniform probing (Proposition 3.23) and for universal families
of hash functions (Corollary 3.21). We also use the binomial distribution to
determine the endpoints of random walks (Section 1.6). With the help of the
geometric distribution, we determine the expected value of the termination
of Las Vegas algorithms (Algorithm 1.50). The hyper-geometric distribution
is used in the analysis of quicksort (Section 2.1.1) and the negative binomial
distribution in the analysis of random graphs (Proposition 6.48).



B. Mathematical Terminology and Useful
Formulas

When analyzing algorithms, we often apply elementary formulas, such as for-
mulas for the geometric series, the binomial coefficients, and the exponential
function. In the following section, we will summarize some useful formulas
and mathematical notations.

Natural Numbers. We designate by N = {1, 2, . . .} the set of natural num-
bers and by N0 = {0, 1, 2, . . .} the set of non-negative integers.

Proposition B.1 (division with remainder). For z, a ∈ N0, a ̸= 0, there are
unique numbers q, r ∈ N0 with: z = q · a+ r, 0 ≤ r < a.

Proof. We show the existence of the representation by induction on z. If
0 ≤ z < a, z = 0 · a+ z is the desired representation. Let z ≥ a. Then by the
induction hypothesis z − a = q · a+ r, 0 ≤ r < a. We get z = (q + 1) · a+ r.
In order to show the uniqueness, we assume that z has two representations

z = q1 · a+ r1 = q2 · a+ r2.

Then 0 = (q1 − q2) · a+ (r1 − r2). Thus, a divides the number r1 − r2. From
|r1 − r2| < a we get r1 = r2 and q1 = q2. 2

Remark. The number q is the integer quotient and r = z mod a is the remain-
der of dividing z by a.

We can represent the natural numbers in a numeral system with respect
to any base b ∈ N, b > 1.

Proposition B.2 (numeral system to base b). Let b ∈ N, b >1. Then every
number z ∈ N0 can be represented by

z =
n−1∑
i=0

zib
i, zi ∈ {0, . . . , b− 1}.

The representation of z in the base-b (numeral) system is unique. b is also
known as the radix and the coefficients zi are called digits of the (numeral)
system.
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Proof. The existence of the representation is obtained by continued division
with remainder.

z = q1b+ r0, q1 = q2b+ r1, q2 = q3b+ r2, . . . , qn−1 = 0 · b+ rn−1.

Set z0 := r0, z1 := r1, . . . , zn−1 := rn−1. Then 0 ≤ zi < b, i = 0, . . . , n − 1,
and z =

∑n−1
i=0 zib

i.
To show the uniqueness, let’s assume that z has two representations. Then
the difference of the representations is a representation of 0 with coefficients
|zi| ≤ b − 1. It is therefore sufficient to show that the representation of 0 is
unique. Let

z =

n−1∑
i=0

zib
i, |zi| ≤ b− 1,

be a representation of 0. Then z mod b = z0 = 0 and z/b mod b = z1 = 0, and
so on. Altogether, we get zi = 0, i = 0, . . . , n − 1, i.e., the representation of
0, and hence the representation of z is unique. 2

If z has the representation z =
∑n−1

i=0 zib
i, then we write

z = (zn−1 . . . z0)b or simply z = zn−1 . . . z0,

if the base b is clear from the context.

Lemma B.3. The maximum value of a number to base b with n digits is
bn−1. The number of digits of a representation of z in base b is ⌊logb(z)⌋+1.

Proof. The maximum value zmax of a number with n digits

zmax =

n−1∑
i=0

(b− 1)bi = (b− 1)

n−1∑
i=0

bi =

n∑
i=1

bi −
n−1∑
i=0

bi = bn − 1.

If z is displayed with n digits and the leftmost is not 0, then bn−1 ≤ z < bn.
Then n− 1 ≤ logb(z) < n, i.e., n = ⌊logb(z)⌋+ 1. 2

Harmonic Numbers. Harmonic numbers often occur in the analysis of
algorithms. The following notation has been established.

Definition B.4. The number

Hn :=

n∑
i=1

1

i

is called the nth harmonic number .

The harmonic series
∑∞

i=1
1
i diverges. However, it diverges very slowly.

The following estimation describes the growth of the harmonic numbers in
more detail.

Lemma B.5. ln(n+ 1) ≤ Hn ≤ ln(n) + 1.
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Proof. From

n∑
i=1

1

i
≥
∫ n+1

1

1

x
dx = ln(n+ 1) and

n∑
i=2

1

i
≤
∫ n

1

1

x
dx = ln(n)

the assertion follows. 2

Remark. More precisely:

(F.1) Hn = ln(n) + γ +
1

2n
− 1

12n2
+

1

120n4
− ε, 0 < ε <

1

252n6
.

Where γ = 0.5772156649 . . . is Euler’s constant1 (see, for example, [Knuth97,
page 75]).

Remark. Due to the formula (F.1) we consider Hn :=
∑n

i=1
1
i to be a closed

formula, although a sum occurs.

Lemma B.6. A formula for the sum of the first n harmonic numbers:

n∑
i=1

Hi = (n+ 1)Hn − n.

Proof.
n∑

i=1

Hi = n+ (n− 1)
1

2
+ . . .+ (n− (n− 1))

1

n

=
n∑

i=1

(n− (i− 1))
1

i
= (n+ 1)Hn − n.

2

Residues Modulo n. Next to the ring Z of the integers, the ring Zn of the
residues modulo n is also of great importance.

Definition B.7.

1. Let n ∈ N, n ≥ 2. We define an equivalence relation on Z: a, b ∈ Z are
called congruent modulo n, written as

a ≡ b mod n,

if n divides a− b, i.e., a and b have the same remainder when divided by
n.

2. Let a ∈ Z. The equivalence class [a] := {x ∈ Z | x ≡ a mod n} is called
the residue class of a and a is called a representative for [a].

3. Zn := {[a] | a ∈ Z} is called the set of residue classes.

1 In contrast to Euler’s number e, a transcendent number, it is not even known
whether γ is a rational number. The book [Havil07] deals with this question.
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Remarks:

1. For each x ∈ [a] we have [x] = [a].
2. It is easy to show that an equivalence relation is actually given by Def-

inition B.7, point 1. Since division by n with remainder results in the
residues 0, . . . , n− 1, there are n residue classes in Zn,

Zn = {[0], . . . , [n− 1]}.

The numbers 0, . . . , n− 1 are called natural representatives.

Definition B.8. We introduce addition and multiplication on Zn:

[a] + [b] = [a+ b], [a] · [b] = [a · b].

The independence from the choice of representatives a and b is shown by a
simple calculation.

The ring axioms in Z are inherited by Zn. Zn becomes a commutative
ring with the unit element [1]. It is called the residue class ring of Z modulo
n.

Definition B.9. Let x ∈ Zn. x is said to be a unit in Zn if there is a y ∈ Zn

with xy = [1]. Obviously, the units in Zn form a group together with the
multiplication. This group is called the prime residue class group modulo n
and is denoted by Z∗

n.

Proposition B.10. Let [x] ∈ Zn. [x] is a unit in Zn if and only if x and n
are relatively prime, i.e., the largest common divisor of x and n is 1.

Proof. See, for example, [DelfsKnebl15, Proposition A.17]. 2

Corollary B.11. For a prime p, Zp is a field.

Proof. A commutative ring with unit element is a field if every element ̸= 0 is
a unit. Since for a prime number n = p all numbers 1, . . . , p− 1 are relatively
prime to p, the assertion follows from Proposition B.10. 2

Remark. We also denote Zp by Fp. Another term for a finite field is a Galois2

field.

Quadratic Residues in Zn. We apply quadratic residues in hash proce-
dures (see Section 3.3.2).

Definition B.12. A number j ∈ {0, . . . , n − 1} is called a square number
modulo n if there is an i ∈ N with j ≡ i2 mod n. If j is a square number
modulo n, we call [j] a square in Zn.

2 Évariste Galois (1811 – 1832) was a French mathematician. He is known for his
work on the solution of algebraic equations, the so-called Galois theory, which
from today’s point of view investigates field extensions.
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Example. We identify the squares in Z∗
11 and Z∗

13.

1. [1], [3], [4], [9], [10], [12] are all squares in Z∗
13. −1 ≡ 12 mod 13, so [−1] is

a square and also [−3], [−4], [−9], [−10], [−12] are squares in Z13.
2. [1], [3], [4], [5], [9] are all squares in Z∗

11. 2 (≡ −9), 6 (≡ −5), 7 (≡
−4), 8 (≡ −3), 10 (≡ −1) modulo 11 are not squares modulo 11.

While in the first case the negatives of squares are again representatives of
squares, this does not happen in the second case.

Whether all free cells occur in a probing sequence during quadratic prob-
ing (Definition 3.11) is closely related to identifying all squares and the neg-
ative squares and their quantities. This is done by the following result.

Proposition B.13. Let p >2 be a prime. Then

1. The numbers i2 mod p are pairwise distinct, i = 1, . . . , p−1
2 . Each square

in Zp has a representative of this form.
2. Let p = 4k + 3, k ∈ N0. Then [−1] is not a square in Zp.

Proof. 1. Let 0 ≤ i < j ≤ p−1
2 . If i2 mod p = j2 mod p, then p divides

j2− i2 = (j− i)(j+ i). Hence, p also divides j− i or j+ i. This is a contradic-
tion, as j−i < p−1 and j+i < p−1. Consequently, the numbers i2 mod p are
pairwise distinct, i = 1, . . . , p−1

2 . Let y ∈ N, y = kp+ x, 0 ≤ x ≤ p− 1. Then
y2 = (kp)2+2kpx+x2 ≡ x2 mod p and (p−x)2 = p2−2px+x2 ≡ x2 mod p.
Therefore, all squares are of the desired form.
2. Let p ≡ 3 mod 4. Then p−1

2 is odd. Assume [−1] is a square, i.e.,

−1 ≡ n2 mod p, then by Fermat’s3 Little Theorem −1 ≡ (−1)(p−1)/2 ≡
np−1 ≡ 1 mod p. Thus, 2 ≡ 0 mod p. A contradiction. 2

We can now specify all numbers that are suitable as a modulus for
quadratic probing.

Corollary B.14. Let p = 4k + 3, then

Zp = {±[i2] | i = 0, . . . , (p− 1)/2}.

Proof. The inverse element of a square and the product of two squares is
again a square. The elements of {[i2] |∈ Zp | i = 1, . . . , (p− 1)/2} are pairwise
distinct and squares. If [−1] is not a square, the negative of a square is not
a square, i.e., the elements {[−i2] | i = 1, . . . , p−1

2 } are also pairwise distinct
and not squares. Therefore, the statement of the corollary is shown. 2

Remark. The condition p = 4k+3, k ∈ N0 is even equivalent to the fact that
[-1] is not a square in Zp.

4 If prime numbers p are used that do not fulfill the
condition, not all table positions are probed with quadratic probing.
3 Pierre de Fermat (1607 – 1665) was a French mathematician. Fermat’s Little
Theorem: For a prime number p and a number n relatively prime to p, np−1 ≡
1 mod p.

4 This statement can be proven with the Legendre symbol from elementary number
theory (see, for example, [DelfsKnebl15, page 422]).
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Finite Sums and Partial Fraction Decomposition. First we compile
formulas for special finite sequences.

n∑
i=1

1 = n,

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

2i = n(n+ 1),
n∑

i=1

(2i− 1) = n2,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

.

With these formulas we can directly derive formulas for finite sums of poly-
nomial values for polynomials up to degree 3.

The summation of rational functions is analogous to the integration of
rational functions by means of partial fraction decomposition. Division with

remainder returns for a rational function f(n) = p(n)
q(n) the representation

f(n) = s(n) +
r(n)

q(n)
with polynomials r(n) and s(n) and deg(r) < deg(q).

We apply partial fraction decomposition to r(n)
q(n) . We distinguish whether the

zeros of the denominator polynomial q(n) are pairwise distinct or whether
there are multiple zeros.

1. Simple zeros: q(n) =
∏l

k=1(n− nk), ni ̸= nj , i ̸= j.
For different zeros there is a decomposition in the form

(F.2)
r(n)

q(n)
=

l∑
k=1

ak
n− nk

.

We determine the coefficients ak by comparing the coefficients.
If, for example,

∑n
i=2

1
i(i−1) is to be calculated, we set 1

i(i−1) as

1

i(i− 1)
=

a

i
+

b

i− 1
.

Multiplying both sides by i(i− 1) we get

1 = a(i− 1) + bi = −a+ (a+ b)i.

A coefficient comparison returns −a = 1 and a+ b = 0. So a = −1, b = 1,
and so we have the partial fraction decomposition

1

i(i− 1)
=
−1
i

+
1

i− 1
.

The result is then
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n∑
i=2

1

i(i− 1)
=

n∑
i=2

(
−1
i

+
1

i− 1

)
= −

n∑
i=2

1

i
+

n−1∑
i=1

1

i
= 1− 1

n
.

2. Multiple zeros: If nj is an l-fold zero, then we have to enter for nj in the
partial fractional decomposition l fractions as follows:

a1
n− nj

+
a2

(n− nj)2
+ . . .+

al
(n− nj)l

.

If, for example,
∑n

i=1
1

i2(i+1) is to be calculated, we take the following

approach:
1

i2(i+ 1)
=

a

i
+

b

i2
+

c

i+ 1
.

The first two fractions come from the double zero. Comparing the coeffi-
cients yields a = −1, b = 1, c = 1 and thus

1

i2(i+ 1)
=
−1
i

+
1

i2
+

1

i+ 1
.

A Closed Formula for a Finite Sum of Logarithms.

Lemma B.15.
n∑

r=1

⌊log2(r)⌋ = (n+ 1)⌊log2(n)⌋ − 2
(
2⌊log2(n)⌋ − 1

)
.

Proof. We shall prove our assertion by induction on n. For n = 1, both sides
of the equation yield 0. Let n > 1 and assume the assertion is proved for n -
1. For ⌊log2(n+ 1)⌋ = ⌊log2(n)⌋ follows

n+1∑
r=1

⌊log2(r)⌋ = (n+ 1)⌊log2(n)⌋ − 2
(
2⌊log2(n)⌋ − 1

)
+ ⌊log2(n+ 1)⌋

= (n+ 2)⌊log2(n+ 1)⌋ − 2
(
2⌊log2(n+1)⌋ − 1

)
.

If ⌊log2(n+1)⌋ = ⌊log2(n)⌋+1, then (n+1) is a power of 2, i.e., n+1 =
2⌊log2(n+1)⌋ and

n+1∑
r=1

⌊log2(r)⌋ = (n+ 1)⌊log2(n)⌋ − 2
(
2⌊log2(n)⌋ − 1

)
+ ⌊log2(n+ 1)⌋

= (n+ 1)(⌊log2(n+ 1)⌋ − 1)

−2
(
2⌊log2(n+1)⌋−1 − 1

)
+ ⌊log2(n+ 1)⌋

= (n+ 2)⌊log2(n+ 1)⌋ − (n+ 1)− 2
(
2⌊log2(n+1)⌋2−1 − 1

)
= (n+ 2)⌊log2(n+ 1)⌋ − 2⌊log2(n+1)⌋ − 2⌊log2(n+1)⌋ + 2

= (n+ 2)⌊log2(n+ 1)⌋ − 2
(
2⌊log2(n+1)⌋ − 1

)
.

The lemma is shown. 2
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Binomial Coefficients. If you choose k elements from a set of n elements
without replacement, there are

(
n
k

)
ways to do this if you do not consider the

order.

Definition B.16. Let n ∈ R, k ∈ Z. We set

(n
k

)
=

{
n·(n−1)·...·(n−k+1)

k·(k−1)·...·1 if k ≥ 0,

0 if k < 0.(
n
k

)
is called the binomial coefficient and is pronounced “n choose k”.

The binomial coefficients occur when (x+y)n is expanded as a polynomial
in x and y. According to the binomial theorem

(F.3) (x+ y)n =
n∑

k=0

(n
k

)
xkyn−k.

Let α ∈ R. The binomial series
∑∞

k=0

(
α
k

)
xk converges for |x| < 1 and

(F.4) (1 + x)α =
∞∑
k=0

(α
k

)
xk.

The binomial series results from the Taylor series5 of the general power func-
tion x 7→ xα at x = 1. ([AmannEscher05, Chapter V.3]). The binomial series
was discovered by Newton6.

For α ∈ N, the binomial coefficients vanish if k is larger than α. The for-
mula (F.4) then results from the binomial theorem. If you replace x with −x
you get for α = −1 the geometric series because of

(−1
k

)
= (−1)k (Appendix

B (F.8)).

Lemma B.17. We state formulas for the binomial coefficients.

1. Let n, k ∈ N, n < k. Then (n
k

)
= 0.

2. Let n ∈ R, k ∈ Z. Then(n
k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
.

3. Let r, k ∈ N, r > k > 1. Then( r
k

)
=

r

k

(
r − 1

k − 1

)
.

5 Brook Taylor (1685 – 1731) was an English mathematician.
6 Isaac Newton (1642 – 1726) was an English universal scholar. He is the co-founder
of the infinitesimal calculus and is famous for his law of gravity.
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4. Let r, s ∈ N, n ∈ Z. Then∑
k

( r
k

)( s

n− k

)
=

(
r + s

n

)
.

5. Let r, s ∈ N, n ∈ Z. Then∑
k

( r
k

)( s

n+ k

)
=

(
r + s

r + n

)
.

6. Let r, s ∈ N, m = min(r, s). Then

m∑
k=1

k
( r
k

)( s
k

)
= s

(
r + s− 1

r − 1

)
.

7. Let k, n ∈ Z. Then (
n+ k − 1

k

)
= (−1)k

(
−n
k

)
.

8. Let n,m ∈ N, m < n. Then

n∑
k=0

(
k

m

)
=

(
n+ 1

m+ 1

)
.

Proof.

1. The assertion is immediately obtained from the definition of the binomial
coefficients.

2. For k < 0 the assertion follows at once. Let k ≥ 0.(n
k

)
+

(
n

k + 1

)
=

n · (n− 1) · . . . · (n− k + 1)

k · (k − 1) · . . . · 1
+

n · (n− 1) · . . . · (n− k)

(k + 1) · k · . . . · 1

=
n · (n− 1) · . . . · (n− k + 1)(k + 1 + n− k)

(k + 1) · k · . . . · 1

=
(n+ 1) · n · (n− 1) · . . . · (n− k + 1)

(k + 1) · k · . . . · 1

=

(
n+ 1

k + 1

)
.

3. ( r
k

)
=

r!

k!(r − k)!
=

r

k

(r − 1)!

(k − 1)!(r − k)!
=

r

k

(
r − 1

k − 1

)
.

4. Multiplying (x+ 1)r(x+ 1)s = (x+ 1)r+s we get∑
n

( r
n

)
xn
∑
n

( s
n

)
xn =

∑
n

∑
k

( r
k

)( s

n− k

)
xn =

∑
n

(
r + s

n

)
xn.
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Thus ∑
k

( r
k

)( s

n− k

)
=

(
r + s

n

)
.

5. Using point 4 we get∑
k

( r
k

)( s

n+ k

)
=
∑
k

( r
k

)( s

s− n− k

)
=

(
r + s

s− n

)
=

(
r + s

r + n

)
.

6. From point 3 and point 4, it follows that∑
k

k
( r
k

)( s
k

)
= s

∑
k

( r
k

)( s− 1

k − 1

)
= s

(
r + s− 1

r − 1

)
.

7. (
−n
k

)
=
−n(−n− 1) · . . . · (−n− k + 1)

k!

= (−1)k n(n+ 1) · . . . · (n+ k − 1)

k!

=

(
n+ k − 1

k

)
.

8. By induction on n, we see immediately

n+1∑
k=0

(
k

m

)
=

n∑
k=0

(
k

m

)
+

(
n+ 1

m

)
=

(
n+ 1

m+ 1

)
+

(
n+ 1

m

)
=

(
n+ 2

m+ 1

)
(see point 2).

2

Geometric Series. We state for x ̸= 1 formulas for the nth partial sum of
the geometric series and its derivatives.

(F.5)

n∑
i=0

xi =
xn+1 − 1

x− 1
.

We differentiate the nth partial sum, and we get

(F.6)

n∑
i=0

ixi−1 =
nxn+1 − (n+ 1)xn + 1

(x− 1)2
.

If we multiply the equation by x, we get

(F.7)

n∑
i=0

ixi =
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2
.
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We differentiate the last equation and obtain

n∑
i=0

i2xi−1 =
n2xn+2 − (2n2 + 2n− 1)xn+1 − (n+ 1)2xn − x− 1

(x− 1)3
.

If we multiply the equation by x, we get

n∑
i=0

i2xi =
n2xn+3 − (2n2 + 2n− 1)xn+2 − (n+ 1)2xn+1 − x2 − x

(x− 1)3
.

From the formulas above, we get for |x| < 1

(F.8)

∞∑
i=0

xi =
1

1− x
,

∞∑
i=0

ixi−1 =
1

(1− x)2
and

∞∑
i=0

ixi =
x

(1− x)2
.

Exponential Function. The exponential function is usually defined by the
power series

ex :=

∞∑
n=0

xn

n!
,

which converges for all real numbers. But we can also define it as the limit
value of an increasing sequence.

Proposition B.18. For all x ∈ R the sequence((
1 +

x

n

)n)
n∈N

converges strictly increasing to ex.

Proof. We compute ln
((
1 + x

n

)n)
= n ln

(
1 + x

n

)
. Then

lim
n→∞

ln
(
1 + x

n

)
x
n

= ln′(1) = 1.

The sequence
ln(1+ x

n )
x
n

(
= ∆y

∆x

)
is the sequence of the slopes of the secants for

∆x = x
n → 0. It converges for x > 0 strictly increasing and for x < 0 strictly

decreasing to the slope of the tangent. From this follows that n ln
(
1 + x

n

)
is

strictly increasing and

lim
n→∞

n ln
(
1 +

x

n

)
= lim

n→∞
ln
((

1 +
x

n

)n)
= x.

Hence,
(
1 + x

n

)n
is strictly increasing and

lim
n→∞

(
1 +

x

n

)n
= ex.

This shows the assertion. 2

Corollary B.19. We have 1− x ≤ e−x for x ∈ R.
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Proof. For x ≥ 1 we have 1 − x ≤ 0 < e−x, and for x < 1 we have
1 − x ≤ 1 − x/2 ≤ . . . ≤ e−x. The last inequality follows with Proposition
B.18. 2

Jensen’s Inequality. Jensen’s7 inequality is an elementary inequality for
convex and concave functions.

Definition B.20. Let f : I −→ R, I be an interval. f is said to be concave
if there is a map λ : I −→ R such that

f(x) ≤ f(x0) + λ(x0)(x− x0), for all x, x0 ∈ I.

Lemma B.21. Let f : I −→ R be a function that is twice continuously dif-
ferentiable and let f ′′ < 0. Then f is concave.

Proof. We expand f at the point x0 according to the Taylor formula:

f(x) = f(x0) + f ′(x0)(x− x0) +R1(x)

with the Lagrange8 remainder

R1(x) =
(x− x0)

2

2!
f ′′(ξ),

where ξ is between x and x0. Since f ′′ < 0, the assertion follows. 2

Lemma B.22 (Jensen’s inequality). Let f : I −→ R be a concave function,
a1, . . . , an ∈ R, ai > 0, i = 1, . . . n, and

∑n
i=1 ai =1. Then for x1, . . . , xn ∈ I

we get
n∑

i=1

aif(xi) ≤ f

(
n∑

i=1

aixi

)
.

Proof. Set x0 =
∑n

i=1 aixi. x0 ∈ I. Since f is concave,
aif(xi) ≤ aif(x0) + aiλ(x0)(xi − x0), i = 1, . . . , n. From this follows

n∑
i=1

aif(xi) ≤
n∑

i=1

aif(x0) + aiλ(x0)(xi − x0)

= f(x0)
n∑

i=1

ai + λ(x0)

(
n∑

i=1

aixi − x0

n∑
i=1

ai

)

= f

(
n∑

i=1

aixi

)
.

This shows the lemma. 2

7 Johan Ludwig Jensen (1859 – 1925) was a Danish mathematician.
8 Joseph-Louis de Lagrange (1736 – 1813) was an Italian mathematician and as-
tronomer. Among other things, he is responsible for the Lagrange formalism of
classical mechanics.
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Transformation to Solve Recurrences. There are recurrences which can
be transformed by a variable transformation into a difference equation (re-
mark after Corollary 1.27, proof of Proposition 2.31 and of Proposition 5.31).
From a closed solution of the difference equation – if we can continue the solu-
tion to R≥0 – we can compute a closed solution of the recurrence by applying
the inverse transformation. In our applications, the solution is usually de-
fined by functions whose domain consists of the positive real numbers and is
restricted to N. Therefore, in these cases the continuation is canonically given.

Let f : N× R≥0 −→ R≥0 be a function and

yk = y(k) = f(k, y(k − 1)) for k > 1, y(1) = b,

a first-order difference equation.9 Let Ly be a closed solution for y(k), i.e.,
y(k) = Ly(k) for k ∈ N. Suppose that the function Ly has a continuation on
R≥0, which we again call Ly.

Lemma B.23. Let t : R≥0 −→ R≥0 be invertible, and let x : R≥0 −→ R≥0 be
a function such that for all k ∈ N

y(k) = x(t(k))

holds. Let Ly be a continuation of the closed solution for y(k) with y(k) =
Ly(k) for k ∈ R≥0. Then Lx = Ly ◦ t−1 is a closed solution for x(n), i.e.,
x(n) = Lx(n) for n ∈ R≥0.

Let t be an increasing transformation and Ly = O(g) for a function g.
More exactly we require Ly(n) ≤ cg(n) for all n ∈ R≥0 and n ≥ n0 for
constants c and n0. Then Lx = O(g ◦ t−1) for all solutions Lx.

Proof.

x(n) = x(t(t−1(n))) = Ly(t
−1(n)) = Ly ◦ t−1(n) = Lx(n)

for n ∈ R≥0.
The statement about the order follows from

Lx(n) = Lx(t(t
−1(n))) = Ly(t

−1(n)) ≤ cg(t−1(n)) = c(g ◦ t−1)(n)

for n ∈ N with n ≥ t(n0). 2

Remark. The formula for Lx depends on the choice of the extension Ly. Re-
gardless of the choice of Ly, the following applies: x(t(n)) = Ly(n) for n ∈ N.
The statement about the order of Lx does not depend on the choice of the
continuation Ly.

9 To get the definition of a first-order linear difference equation (see Section 1.3.1),
which is a special case of this notation, we set f(k, y(k − 1)) = akyk−1 + bk.
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Metric Spaces. In a Euclidean vector space, such as the Rn, the distance
between two points can be calculated using the scalar product and the Theo-
rem of Pythagoras10. The distance function defined in this way has values in
the positive real numbers, it is symmetrical and the triangle inequality holds.
For three points in the plane that form a triangle, this means that the sum
of the lengths of two sides of the triangle is always greater than the length of
the third side of the triangle. If you take these properties as axioms of a map
on X ×X, for a set X, then you get the definition of a metric and a metric
space.

Definition B.24 (metric space). Let X be a set. A map

d : X ×X −→ R

is called a metric or distance function on X if for arbitrary elements x, y and
z ∈ X the following axioms are fulfilled:

1. d(x, y) ≥ 0, and d(x, y) = 0 exactly if x = y (positive definite).
2. d(x, y) = d(y, x) (symmetry).
3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

X is called a metric space if a metric is defined on X.

Examples of (finite) metric spaces are connected graphs (Chapters 5 and
6). Conversely, every finite metric space has a representation by a positively
weighted graph.

10 Pythagoras of Samos (c. 570 B.C. – after 510 B.C.) was an ancient Greek philoso-
pher. There are no reliable sources about his life.
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Symbols

page

N natural numbers: {1, 2, 3, . . .}
N0 non-negative integers: {0, 1, 2, 3, . . .}
Z integers

Q rational numbers

R real numbers

R≥0 non-negative real numbers x ≥ 0

R>0 positive real numbers x > 0

∅ empty set

A ∩B intersection of sets A and B

A ∪B union of sets A and B

A∪̇B disjoint union, A ∪B if A ∩B = ∅
A \B difference set, A without B

G ∪ {e} extending the graph G by the edge e

G \ {e} reduction of graph G by removing edge e

Hn nth harmonic number 326

n! n! = 1 · 2 · . . . · n, n–factorial(
n
k

)
binomial coefficient, “n choose k” 332

g ◦ f composition of maps: g ◦ f(x) = g(f(x))

idX identical map: idX(x) = x for all x ∈ X

f−1 inverse map of a bijective map f

ln(x) natural logarithm of a real number x > 0

log(x) logarithm to base 10 of a real number x > 0

log2(x) logarithm to base 2 of a real number x > 0

|x| length of a bit string x

ε empty string

|X| number of elements of the set X

Xn set of words of length n over X

X∗ set of words over X, X∗ = ∪n≥0X
n
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page

H(X) entropy of a source X 174

l(C) average word length of a code C 174

{0, 1}∗ bit strings of any length

a||b concatenation of strings a and b

Zn residue class ring modulo n 328

a div n integer quotient of a by n 325

a mod n remainder of a modulo n 325

Fq finite field with q elements∏n
i=1 ai product a1 · . . . · an∑n
i=1 ai sum a1 + . . .+ an

[a, b], ]a, b], [a, b[, ]a, b[ intervals (closed, half-open and open)

i..j sequence i, i+ 1, . . . , j

a[i..j] partial array a[i..j] 65

min a[i..j] minimum in partial array a[i..j]

a.b structure member operator “.” 65

⌊x⌋ biggest integer ≤ x

⌈x⌉ smallest integer ≥ x

O(f(n)) O notation 10

p(E) probability of an event E 307

p(x) probability of an elementary

event x ∈ X 307

p(E |F) conditional probability of E
assuming F 308

E(X) expected value of a random variable X 309

Var(X) variance of a random variable X 309

σ(X) standard deviation of a random variable X 309

GX(z) generating function of a random variable X 312



Index

algorithm
– algorithm design 31
– – branch and bound with backtracking

47
– – divide and conquer 33
– – dynamic programming 39
– – greedy 36
– – recursion 32
– breadth-first search 217
– computing the nth Fibonacci number

20
– correctness 2
– – postcondition 2
– – precondition 2
– depth-first search 131, 221
– efficient algorithm 13
– fast exponentiation 20
– LZ77 194
– LZ78 196
– LZW 198
– randomized algorithms 54
– – binary search trees 148
– – Las Vegas algorithm 58
– – min-cut algorithm 232
– – Monte Carlo algorithm 58
– – MST algorithm 284
– – quicksort 83
– – quickselect 99
algorithm of
– Bor̊uvka 271
– Dijkstra 262
– Edmonds-Karp 300
– Faller, Gallager and Knuth 178
– Floyd, maximal flow 290
– Ford-Fulkerson 296
– Huffman 175
– Karger, Klein, Tarjan 284
– Kosaraju-Sharir 230
– Kruskal 270
– Prim 264
– Strassen 30
– Tarjan, LCA 254

– Tarjan, strongly connected compo-
nents 227

– Warshall/Floyd 289

backtracking 47
Bellman’s optimality equation 39
binary search, see searching in arrays
binomial coefficient, see formulas
binomial series, see formulas

Catalan numbers 203
codes 168
– alphabet 168
– arithmetic codes 184
– – adaptive arithmetic coding 192
– – calculation of the representative 186
– – coding the length of the message

192
– – decoding 191
– – decoding with rescaling 192
– – interval assignment 184
– – rescaling 188
– – underflow treatment 189
– average code length 174
– code tree, see tree
– compact or minimal 174
– criterion for unique decodability 169
– dictionary methods 193
– Elias delta code 173
– Elias gamma code 173
– encoding of X over Y 168
– entropy 174
– Huffman codes 174
– – adaptive procedure 178
– – encoding and decoding 178
– – Huffman algorithm 175
– – Huffman tree 179
– – weight list 183
– immediate codes, see prefix codes
– information content 174
– Lempel-Ziv codes 193
– lossless coding 168
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– message 168
– prefix codes 172
– run-length coding 63
– source (without memory) 174
– symbol 168
– uniquely decodable codes 169
– word 168
– – empty word 168
computational problems
– 2-SAT problem 304
– Chinese postman and traveling

salesman problem 208
– distance problem 262, 290
– eight queens problem 47
– halting problem 3
– house-utility problem 206
– knapsack problem
– – 0,1 knapsack problem 50
– – capacity 50
– – fractal knapsack problem 50
– – profit density 50
– – profit vector 50
– – weight vector 50
– Königsberg bridge problem 205
– LCA problem 253
– minimum-spanning-tree problem

(MST problem) 264
– RMQ problem 40, 253
– – incremental 257
– shortest paths 262
– task-scheduling problem 36
– tree-path-maximum problem 277, 279
concave 337
contraction, see graph, -edge
cycle, see graph

data structures
– priority queue 244
– queue 219
– treap 150
– union-find 246
– – path compression 248
– – running time analysis 249
– – union by rank 248
decidable 3
difference equations, see linear

difference equations

edit distance 44
entropy, see codes
Euler’s constant 327
exponential function 336

Fibonacci numbers 18

finite sums and partial fractional
decomposition 331

formulas 325
– binomial coefficient 332
– binomial series 332
– geometric series 335
– – derivation - partial sum 335
– – partial sum 335
– harmonic number 326
four-color problem 207

golden ratio 21
graph 205, 243
– accessible 211
– acyclic 211
– adjacency list 215
– adjacency matrix 215
– adjacent 210
– articulation point 241
– assigned directed graph 210
– bipartite 206, 213
– center 303
– circle 211
– circle property 284
– complete graph 215
– connected 211
– – bi-connected 241
– connected component 212
– critical path 210
– cut 232, 294
– – capacity of a cut 294
– – minimum 232
– cut property 265
– cycle 211
– dense 215
– diameter 303
– distance of nodes 212, 262
– directed acyclic graph 211, 224
– directed graph 210
– degree of a node 210
– eccentricity 303
– edge 210
– – backward edge 223
– – contraction 232, 272
– – forward edge 223
– – incident edge 210
– – minimum incident-edge 272
– – cross edge 223
– – tree edge 223
– elementary graph algorithms 217
– – breadth-first search, see algorithms
– – depth-first search, see algorithms
– environment of a node 210
– Eulerian cycle 206
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– F–heavy edges 285
– flow network 294
– – capacity 294
– – cut of minimum capacity 294
– – path with augmentation 297
– – residual capacity 297
– – residual graph 297
– – sink 294
– – source 294
– – total flow 294
– forest 213
– Hamiltonian circuit 239
– interval graph 239
– matching
– – maximum matching 305
– – perfect matching 214
– minimum spanning tree 264
– mutually accessible 211
– node 210
– not separable 241
– order 210
– path 211
– – closed 211
– – length 211, 262
– – simple 211
– planar graph 207
– priority-first search
– – list priority-first search 268
– – matrix priority-first search 267
– radius 303
– reduced graph 240
– representation 215
– reverse graph 230
– shortest-path tree 262
– sparse 215
– strongly connected 211
– strongly connected component 212,

227
– – root 227
– subgraph 210
– – generated subgraph 211
– – spanning subgraph 211
– test of acyclicity 225
– topological sorting 225
– total flow, see graph, -flow network
– transitive closure 289
– underlying graph 210
– weight function 243
– weighted graph 243

harmonic number 327
hash procedure 105
– analysis
– – chaining 118

– – open addressing 123
– collision 59, 105
– collision probability 108
– collision resolution 113, 105
– – chaining 113
– – double hashing 117
– – linear probing 116
– – probing sequence 115
– – quadratic probing 116
– fingerprint 59
– hash function 59, 105, 106
– – division and multiplication 107
– – procedure when using universal

families 113
– – universal family 108, 110
– hash table 105
– insert, search and delete 115
– key 105
– load factor 120
– overflow area 113
– primary area 113
– procedure for handling collisions 105
– – chaining with overflow area 113
– – open addressing 115
– – separate chaining 114
– rehashing 118
– uniform probing 124
heap memory 114
heapsort 85
– binary heaps 85
– build heap 86
– optimizations 91
– – binary search 93
– – sequential search 92
– running time analysis 89
– sorting phase 88
Huffman procedure, see codes,
-Huffman procedure

increasing function 25
– strictly increasing function 25
incremental array 257
in-order output, see tree, -binary tree
intermediate minimum 6
invariant of the loop 2
inversion 101
indexed sequential access method
(ISAM) 167

Levenshtein distance 47
linear congruence generator 63
– starting value 63
linear difference equations 13
– assigned homogeneous equation 14
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– characteristic polynomial 23
– closed solution 14
– contraction 24
– expanding the right-hand side 14
– first-order 14
– general solution 22
– initial condition 14
– method of variation of constants 15
– second-order 19
– solution for the initial condition 22
– special solution 23
– transformation to solve recurrences

338
logistic difference equation 237

master theorem 27
matroid 36
– exchange property 36
– hereditary property 36
metric space 338
– distance function or metric 338
modeling of problems by graphs 205
multiplication of two square matrices

29
multivariate polynomials 61

NP-complete problems 50
numeral system to base b
– coefficient 326
– maximum value 326

O-notation 9
optimization problem 37
– optimal solution 37

parent array 215
partial fraction decomposition 331
partially ordered set 225
path compression, see data structures,
-union-find

perfect matching 214
phrase 196
post-order output, see tree, -binary tree
predicate 3
pre-order output, see tree, -binary tree
primitive recursive 4
probabilities 307
– conditional probability 308
– distribution 307
– – rare events 315
– event 307
– – independent events 308
– Markov’s inequality 311
– probability measure 307

– probability space 307
– random variable 309
– – binary 309
– – discrete 311
– – expected value 309, 311
– – generating function 312
– – real 309
– special discrete distributions 311
– – Bernoulli distributed 313
– – binomially distributed 313
– – geometrically distributed 316
– – hyper-geometrically distributed 319
– – negative binomial distribution 317
– – negative hyper-geometrically

distributed 321
– – Poisson distributed 315
– standard deviation 309
– variance 309
program verification 3
pseudo-code for algorithms 64
pseudo-random number generator 62
pseudo-random numbers 62

quicksort 71
– memory space analysis 81
– pivot element 72
– running time analysis 74
– – average case 77
– – average number of comparisons 77
– – average number of exchanges 79
– – best and worst-case 74
– without stack 82

random function 109
random numbers 62
random walk on a straight line 55
recursion depth 25, 81
recursion, see algorithms, -design

methods
– tail recursion 82
reduction
– LCA problem to the RMQ problem

255
– RMQ problem to the LCA problem

259
– tree-path-maximum problem to full

branching trees 278
running time 5, 9
– average case 9
– exponential 13
– instance of size n 8
– logarithmic, linear, quasi-linear,

quadratic 13
– polynomial running time 13
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– worst-case 9

searching in arrays 97
– binary search 98, 104
– Fibonacci search 202
– kth-smallest element 99
– sequential search 97
seed 62
sorting 71
– exchanging (bubble sort) 102
– insertion sort 67
– selection sort 2
– comparison of quicksort and heapsort

95
– heapsort, see heapsort
– mergesort 104
– quicksort, see quicksort
– stable sorting algorithm 102
square number 330
stack frame 81
symbol, see codes

treap 151
– random priorities 153
– search, insert and delete 152
tree 129, 213
– ancestor 130
– B-tree 158
– – deleting an element 164
– – directly adjacent pages 164
– – page 158
– – path length 159
– – search and delete 160
– – underflow 164
– balanced tree 136
– – balance factor 139
– – insert 139
– – delete 144
– – rotations 139
– BFS forest 218
– binary code tree 178
– binary search tree 132
– – delete 134
– – search and insert 133

– – symmetric predecessor 134
– binary tree 131
– – in-order output 131
– – post-order output 131
– – pre-order output 131
– Bor̊uvka tree 276
– cartesian tree 260
– code tree 168
– descendant 130
– depth of a node 130
– depth-first search 131
– DFS forest 222
– digital search tree 196
– – insertion 197
– – searching 197
– empty tree 130
– full branching 277
– height and depth of a tree 130
– height of a node 130
– leaf node 130
– left (right) subtree 131
– left (right) successor 131
– lowest common ancestor 253
– node 130
– path length 130
– predecessor 130
– red-black tree 202
– subtrees 130
– successor 130
– rooted tree 130
– verification of minimum spanning

trees 277
– weighted code tree 178

variable
– reference type 65
– value type 65
verification
– identity of large numbers 58
– identity of polynomials 56
– minimum spanning tree 277
– shortest path tree 304

witness 57


	Preface
	Contents
	1. Introduction
	1.1 Correctness of Algorithms
	1.2 Running Time of Algorithms
	1.2.1 Explicit Formulas
	1.2.2 O-Notation

	1.3 Linear Difference Equations
	1.3.1 First-Order Linear Difference Equations
	1.3.2 Fibonacci Numbers

	1.4 The Master Method for Recurrences
	1.5 Design Techniques for Algorithms
	1.5.1 Recursion
	1.5.2 Divide and Conquer
	1.5.3 Greedy Algorithms
	1.5.4 Dynamic Programming
	1.5.5 Branch and Bound with Backtracking

	1.6 Randomized Algorithms
	1.6.1 Comparing Polynomials
	1.6.2 Verifying the Identity of Large Numbers
	1.6.3 Comparing Multivariate Polynomials
	1.6.4 Random Numbers

	1.7 Pseudo-code for Algorithms
	1.8 Textbooks on Algorithms and Data Structures

	2. Sorting and Searching
	2.1 Quicksort
	2.1.1 Running Time Analysis
	2.1.2 Memory Space Analysis
	2.1.3 Quicksort Without Stack
	2.1.4 Randomized Quicksort

	2.2 Heapsort
	2.2.1 Binary Heaps
	2.2.2 The Sorting Phase of Heapsort
	2.2.3 Running Time Analysis
	2.2.4 Heapsort Optimizations
	2.2.5Comparison of Quicksort and Heapsort

	2.3 A Lower Bound for Sorting by Comparison
	2.4 Searching in Arrays
	2.4.1 Sequential Search
	2.4.2 Binary Search
	2.4.3 Searching for the kth-Smallest Element


	3. Hashing
	3.1 Basic Terms
	3.2 Hash Functions
	3.2.1 Division and Multiplication
	3.2.2 Universal Families

	3.3 Collision Resolution
	3.3.1 Collision Resolution by Chaining
	3.3.2 Open Addressing

	3.4 Analysis of Hashing
	3.4.1 Chaining
	3.4.2 Open Addressing


	4. Trees
	4.1 Rooted Trees
	4.2 Binary Search Trees
	4.2.1 Searching and Inserting
	4.2.2 Deletion

	4.3 Balanced Trees
	4.3.1 Insert
	4.3.2 Delete

	4.4 Randomized Binary Search Trees
	4.4.1 The Treap Data Structure
	4.4.2 Search, Insert and Delete in Treaps
	4.4.3 Treaps with Random Priorities

	4.5 B-Trees
	4.5.1 Path Lengths
	4.5.2 Search and Insert
	4.5.3 Deleting Elements

	4.6 Code Trees
	4.6.1 Uniquely Decodable Codes
	4.6.2 Huffman Codes
	4.6.3 Arithmetic Codes
	4.6.4 Lempel-Ziv Codes


	5. Graphs
	5.1 Modeling Problems with Graphs
	5.2 Basic Definitions and Properties
	5.3 Representations of Graphs
	5.4 Basic Graph Algorithms
	5.4.1 Breadth-First Search
	5.4.2 Depth-First Search

	5.5 Directed Acyclic Graphs
	5.6 The Strongly Connected Components
	5.7 A Randomized Min-Cut Algorithm

	6. Weighted Graphs
	6.1 Basic Algorithms
	6.1.1 The Priority Queue
	6.1.2 The Union-Find Data Type
	6.1.3 The LCA and the RMQ Problem

	6.2 The Algorithms of Dijkstra and Prim
	6.3 The Algorithm of Kruskal
	6.4 The Algorithm of Boruvka
	6.5 Verification of Minimum Spanning Trees
	6.6 A Randomized MST Algorithm
	6.7 Transitive Closure and Distance Matrix
	6.8 Flow Networks

	A. Probabilities
	A.1 Finite Probability Spaces and Random Variables
	A.2 Special Discrete Distributions

	B. Mathematical Terminology and Useful Formulas
	References
	Symbols
	Index

