

Copyright	©	2019,	Bocconi	University	Press
EGEA	S.p.A.

EGEA	S.p.A.
Via	Salasco,	5	-	20136	Milan,	Italy
Phone	+	39	02	5836.5751	-	Fax	+39	02	5836.5753
egea.edizioni@unibocconi.it	-	www.egeaeditore.it

All	 rights	 reserved,	 including	 but	 not	 limited	 to	 translation,	 total	 or	 partial	 adaptation,
reproduction,	 and	 communication	 to	 the	 public	 by	 any	 means	 on	 any	 media	 (including
microfilms,	films,	photocopies,	electronic	or	digital	media),	as	well	as	electronic	information
storage	and	retrieval	systems.	For	more	information	or	permission	to	use	material	from	this
text,	see	the	website	www.egeaeditore.it

Given	 the	 characteristics	 of	 Internet,	 the	 publisher	 is	 not	 responsible	 for	 any	 changes	 of
address	and	contents	of	the	websites	mentioned.

First	edition:	February	2019

ISBN	Domestic	Edition	978-88-99902-41-4
ISBN	International	Edition	978-88-85486-86-7
ISBN	Epub	Edition	978-88-85486-87-4

Print:	Digital	Print	Service,	Segrate	(Milan)

mailto:egea.edizioni@unibocconi.it
http://www.egeaeditore.it
http://www.egeaeditore.it

Contents

Preface

Acknowledgements

1 Introduction
1.1 What	is	Python?
1.2 Compiled	vs	Interpreted
1.3 Object-Oriented	Programming
1.4 High-level	Programming	Language
1.5 Static	vs	Dynamic	Semantics
1.6 Installing	Python
1.7 How	Do	You	Interact	with	Python?

1.7.1 Spyder
1.7.2 Jupyter	Notebook
1.7.3 PyCharm
1.7.4 An	outsider:	iPython

2 First	Steps	With	Python
2.1 The	Logic	Behind	A	Code
2.2 Objects	in	Python
2.3 Object	Types

2.3.1 Integers
2.3.2 Floats
2.3.3 Strings
2.3.4 Formal	String-Number	Concatenation
2.3.5 Boolean

2.4 Commenting	the	Code
2.5 Reserved	Keywords
2.6 Exercises
2.7 Read	the	Code
2.8 Code	Bloopers
2.9 Solutions	to	Exercises

3 Tuples,	Lists,	Sets,	and	Dictionaries
3.1 Tuples

3.1.1 Slicing	Tuples
3.1.2 Assigning	and	Chaining	Tuples

3.2 Lists
3.2.1 Updating	a	List
3.2.2 Deleting	a	List	Element
3.2.3 Slicing	Lists

3.3 Indexing
3.4 Exercises	on	Lists
3.5 Python	Methods

3.5.1 Methods	for	Lists
3.5.2 Exercise	on	Methods
3.5.3 The	zip()	function

3.6 Sets
3.6.1 How	to	Create	a	Set
3.6.2 Methods	for	Sets
3.6.3 Exercises	on	Sets

3.7 Dictionaries
3.7.1 How	to	Create	a	Dictionary
3.7.2 Casting	and	Recasting	Objects
3.7.3 Retrieving	a	Value
3.7.4 Setting	Values
3.7.5 Multi-level	dictionaries
3.7.6 Exercises	on	Dictionaries

3.8 Solution	to	Exercises
3.8.1 Solutions	to	Exercises	on	Lists
3.8.2 Solutions	to	Exercises	on	Methods
3.8.3 Solutions	to	Exercises	on	Sets
3.8.4 Solutions	to	Exercises	on	Dictionaries

4 Conditional	Statements	and	Loops
4.1 Indentation
4.2 if	Statements
4.3 else	Statements
4.4 elif	Statements

4.4.1 Condition	Check
4.5 The	for	Loop

4.5.1 For	Loops	On	Determined	Iterables
4.5.2 for	Loops	Over	Iterators
4.5.3 Creating	Lists	Through	for	Loops

4.5.4 Iteration	Over	Multiple	Lists
4.5.5 Exercises	on	for	Loops	Over	Lists
4.5.6 for	Loops	Over	Dictionaries:	Details
4.5.7 for	Loops	With	Multi-Level	Dictionaries
4.5.8 Exercises	on	for	Loops	Over	Dictionaries

4.6 while	Loops
4.6.1 Exercises	on	while	Loops

4.7 List	Comprehension
4.8 An	Alternative	to	for	Loops
4.9 Read	the	Code
4.10 Solutions	to	Exercises

4.10.1 Solutions	to	Exercises	on	for	Loops	Over	Lists
4.10.2 Solutions	to	Exercises	on	for	Loops	Over	Dictionaries
4.10.3 Solutions	to	Exercises	on	while	Loops

5 Functions
5.1 Writing	a	Function	in	Python

5.1.1 Default	Parameters
5.1.2 Functions	With	2	Arguments
5.1.3 The	Parameter	*args
5.1.4 The	Parameter	**kwargs
5.1.5 Formal	Order	of	Parameters

5.2 Functions	Calling	Functions
5.2.1 Logical	Flow	of	the	Problem

5.3 Exercises	on	Functions
5.4 Read	the	Code
5.5 Code	Bloopers
5.6 Useful	Built-in	Functions

5.6.1 lambda	Functions
5.6.2 map()	Function
5.6.3 filter()	Function

5.7 Solutions	to	Code	Bloopers
5.8 Solutions	to	Exercises	on	Functions

6 Object	Oriented	Programming	and	Classes
6.1 Object	Oriented	Programming
6.2 Classes

6.2.1 Writing	a	Class	in	Python
6.2.2 The	Special	Method	__init__()
6.2.3 Adding	More	Methods
6.2.4 Creating	and	Using	a	Class

6.2.5 Class	Inheritance

7 Python	Modules:	pandas
7.1 Installing	and	Importing	a	Module
7.2 Managing	Databases	With	Pandas

7.2.1 Import	External	Files	as	Data	Frames
7.3 Indexing

7.3.1 Columns
7.3.2 Rows

7.4 Adding	new	columns
7.5 Working	with	dates
7.6 Grouping
7.7 Exercises	on	Pandas
7.8 Solutions	to	Exercises	on	Pandas

Preface

Whether	or	not	you	are	 familiar	with	 the	world	of	programming	 languages,	you	would
probably	know	that	there	are	currently	hundreds	of	them.	They	can	serve	very	different	goals
and	their	characteristics	might	change	quite	dramatically.

We	can	be	sure	about	one	thing,	though:	developing	the	correct	mindset	to	start	using	one
of	 these	 languages	 is	 fundamental	 in	order	 to	solve	complex	real-world	problems.	Whether
we	have	to	deal	with	remote	databases	or	with	Social	Media	data,	being	able	to	access	and
manipulate	the	information	contained	in	this	data	is	a	key	competitive	advantage	in	today’s
world.

The	goal	of	this	book	is	to	give	you	an	easy	access	point	to	start	exploring	the	vast	world
of	programming	languages.	In	particular,	in	this	manuscript	we	focus	our	attention	on	one	of
the	most	common	and	versatile	languages,	called	Python.

The	 book	 uses	 a	 very	 simple	 and	 accessible	 language.	 All	 the	 descriptions	 of	 Python
features	come	with	intuitive	examples	to	make	you	learn	by	doing.	This	is	not	a	theoretical
book	and	does	not	cover	some	of	the	most	internal	features	of	Python.	The	intention	of	the
authors	is	to	allow	business	oriented	people	to	start	using	Python.	The	main	reason	for	such	a
choice	of	style	is	due	to	the	increasing	number	of	requests	by	non-technical	professionals	to
solve	daily	problems	and	tasks.	Whether	we	want	to	append	multiple	spreadsheets	or	profile
the	customer	base,	being	able	 to	use	a	 solid	 infrastructure	which	enables	 to	collect,	 check,
process,	analyze	data,	and	report	results	has	become	a	basic	requirement	in	most	industries.

This	work	starts	with	a	brief	introduction	to	the	Python	language	by	presenting	some	of
its	most	important	features.	We	will	learn	how	to	install	Python	and	how	to	start	talking	with
it	 through	 different	 frontends.	We	will	 then	 begin	 to	 define	 objects	 and	 to	 recognize	 their
different	 characteristics	 and	 features.	 Each	 section	 ends	with	 a	 few	 exercises	 to	make	 the
reader	comfortable	with	the	concepts	just	introduced.

This	 book	 comes	 with	 an	 online	 version	 available	 at	 http://mybook.egeaonline.it.	 The
online	version	cannot	be	downloaded	but	it	is	a	color	version	to	facilitate	code	reading.

http://mybook.egeaonline.it

Acknowledgements

We	 are	 enormously	 indebted	 to	 Francesco	 Balocco,	 a	 Research	 Assistant	 at	 Bocconi
University	 in	2013,	who	first	 introduced	us	 to	Python.	The	most	engaging	exercises	 in	 this
book	are	his.	We	would	also	 like	 to	 thank	 the	many	students	 that,	over	 the	years,	 took	 the
Social	Media	Marketing	course	offered	at	Bocconi	University.	Their	feedback,	and	struggles,
were	 instrumental	 in	 refining	 the	material	 that	 ended	 up	 in	 this	 book.	A	 big	 thank	 you	 to
Aulona	 Ulqinaku	 and	 Federica	 Rossetti	 for	 fastidiously	 taking	 notes	 during	 class	 and
providing	the	backbone	of	the	book.

Finally,	 we	 would	 like	 to	 thank	 the	 Bocconi	 MBA	 Class	 of	 2018,	 which	 was	 brave
enough	to	demand	the	first	Python	course	(The	fact	that	they	asked	for	it	in	addition	to	their
normal	course	load	makes	their	request	even	more	exceptional.).	Their	request	validated	our
intuition	that	Python	(and,	in	general,	programming)	is	no	longer	a	technical	add-on,	but	an
essential	tool	for	today’s	managers.

Chapter	1

Introduction

1.1 What	is	Python?
There	 are	 plenty	 of	 ways	 which	 we	 could	 begin	 this	 section	 with.	We	 decided	 that	 a

straightforward	 approach	 to	 understand	what	 Python	 is,	 is	 to	 start	with	 a	 clear	 and	 formal
definition.	So	let’s	borrow	it	from	the	official	website	python.org.

“Python	 is	 an	 interpreted,	 object-oriented,	 high-level	 programming	 language
with	dynamic	semantics.”

Now,	this	is	a	very	clear	definition	for	anybody	who	is	already	familiar	with	all	the	concepts
used	in	the	definition	itself.	This	book	though,	targets	a	different	audience	with	potentially	no
expertise	at	all	on	programming	languages,	so	we	will	go	over	the	concepts	mentioned	in	the
definition.

Let’s	start	with	a	very	general	point	of	view.	Python	is	a	programming	language	which	is
very	 flexible	 and	 adapts	 to	 different	 context.	 Whether	 you	 need	 a	 rapid	 development	 of
applications	up	to	large	scientific	projects	which	require	intense	computations,	this	language
has	your	back.	One	of	Python’s	main	characteristics	is	that	it	is	easy	to	learn	since	its	syntax
generally	 facilitates	 the	 readability	 of	 the	 code.	 Also,	 users	 love	 the	 fact	 that	 in	 many
situations	 the	 syntax	 required	 to	 develop	 a	 given	 set	 of	 instructions	 resembles	 the	 plain
English	which	makes	Python	formidable	in	terms	of	immediate	understanding	of	its	features.

One	 of	 the	 other	 peculiarity	 which	 we	 must	 take	 into	 account	 when	 are	 choosing	 a
programming	language	 is	 its	 flexibility	and	 the	capacity	of	being	extended	to	 increment	 its
features.	This	job	is	carried	out	by	the	so	called	modules.	We	reserve	a	specific	section	of	this
book	to	modules	since	they	play	a	very	important	role	in	code	development.

On	last	important	characteristic	is	that	Python	is	a	multi-platform	environment.	Whether
we	are	using	Windows,	MacOS	or	any	of	the	Linux	distributions,	the	Python	interpreter	can
always	be	installed	and	used.

It	really	seems	that	this	is	the	language	to	learn,	but	remember?	We	have	to	understand	a

http://python.org

bit	of	how	it	works	internally.	In	the	following	sections,	we	briefly	cover	some	of	the	most
important	characteristics	mentioned	in	the	definition.

1.2 Compiled	vs	Interpreted
Do	you	remember	when	we	started	this	book?	One	of	the	first	things	we	said	was	about

how	many	 programming	 languages	 have	 been	 developed	 over	 time.	 The	 point	 is:	 can	we
classify	 all	 those	 languages?	 Is	 there	 a	 way	 to	 group	 a	 given	 language	 by	 referring	 to	 a
specific	 characteristic?	 Of	 course,	 the	 answer	 to	 all	 these	 questions	 is	 yes,	 we	 can.	 For
instance,	 one	 of	 the	 most	 important	 distinctions	 you	 can	 have	 is	 whether	 a	 programming
language	 is	 a	 compiled	 or	 an	 interpreted	 language.	 Let’s	 try	 to	 understand	 the	 main
differences	since	these	two	families	have	different	purposes	as	well	as	pros	and	cons.

A	compiled	language	is	one	where	the	program	has	to	be	converted	into	machine	readable
code.	We	write	the	so	called	source	code	and	then	through	a	compiler	we	compile	the	source
code	to	convert	it	and	express	the	instructions	into	the	readable	code	by	the	target	machine.
For	example,	an	addition	operation	+	in	your	source	code	could	be	translated	directly	to	the
ADD	 instruction	 in	machine	code.	 In	 terms	of	advantages,	we	sure	have	 faster	performance.
This	 is	 ensured	 by	 the	 fact	 the	we	 can	 use	 the	 native	 code	 of	 the	 targeted	machine.	Also,
compiled	languages	offer	quite	powerful	optimization	during	the	compiling	phase.

An	 interpreted	 language	 is	 one	where	 the	 instructions	 are	 not	 directly	 executed	 by	 the
target	machine,	 but	 instead	 are	 read	 and	 executed	by	 some	other	 computer	 program	called
interpreter	(which	normally	is	written	in	the	language	of	the	native	machine).	For	example,
the	same	+	operation	would	be	recognized	by	the	interpreter	at	run	time	and	it	would	then	call
its	own	add(a,b)	function	with	the	appropriate	set	of	instructions	which	would	then	execute
the	 machine	 code	 ADD	 instruction.	 In	 terms	 of	 advantages,	 these	 languages	 are	 easier	 to
implement.	The	reason	is	given	by	the	fact	that	developing	efficient	(i.e.	good)	compilers	can
be	very	hard.	For	those	of	you	who	have	some	kind	of	familiarity	with	compilers,	just	think
about	the	LATEX	compiler	which	is	incredibly	slow.	The	other	good	thing	is	that	we	do	not
need	 to	 run	any	compilation	whatsoever.	 In	other	words,	we	can	execute	code	directly	“on
the	fly”.	Lastly,	they	are	definitely	more	convenient	for	dynamic	languages.

1.3 Object-Oriented	Programming
Object-Oriented	 Programming	 (OOP)	 is	 a	 programming	 language	 model	 organized

around	objects	rather	than	actions	and	data	rather	than	logic.	Historically,	a	program	has	been
viewed	as	a	 logical	procedure	 that	 takes	 input	data,	processes	 it,	and	produces	output	data.
OOP	takes	the	view	that	what	we	really	care	about	are	the	objects	that	we	have	defined	in	our
work	 space.	We	want	 to	manipulate	 those	 objects	 rather	 than	 arguing	 about	 the	 underline

logic	required	to	manipulate	them.
In	OOP,	objects	play	a	major	 role	 then.	They	are	 the	 first	 things	you	 think	about	when

designing	 a	 program.	 Moreover,	 they	 can	 also	 be	 the	 result	 of	 the	 program	 you	 are
developing.	 In	 other	 words,	 we	 work	 all	 the	 time	 with	 objects:	 we	 manipulate	 them	 to
achieve	a	given	data	structure	or	a	given	result,	for	instance.

Objects	can	also	be	grouped	into	even	conceptually	higher	and	more	abstract	structures
called	classes.	We	will	 talk	about	classes	later	on	in	the	book,	so	for	now,	let’s	 think	about
them	as	a	way	to	have	objects	which	belong	to	the	same	class	to	share	some	characteristics.
Each	 object	 can	 be	 seen	 as	 an	 instance	 of	 a	 particular	 class.	 Each	 class	 possesses	 its	 own
methods	or	procedures	and	variables	which	call	all	be	applied	to	whatever	object	belongs	to
the	given	class.

1.4 High-level	Programming	Language
A	 high-level	 language	 is	 a	 programming	 language	 designed	 to	 simplify	 computer

programming	and	the	life	of	the	coder.	The	reason	we	refer	to	this	class	of	languages	with	the
term	“high-level”	is	because	of	the	level	of	abstraction	and	the	simplification	associated	with
it.	A	high-level	language	is	far	away	from	machine	code	which	is	understood	by	the	internal
processor	of	a	computer.

In	general,	these	type	of	languages	have	source	codes	which	contain	easy-to-read	syntax,
often	almost	 in	plain	English.	 It	 is	only	at	a	 later	 stage	 that	 instructions	are	converted	 in	a
language	which	can	be	read	by	a	processor.

This	is	a	fundamental	aspect	since	it	allows	the	coder	to	write	complex	algorithms	using	a
very	intuitive	language	(i.e.	syntax).	To	give	you	a	taste,	this	is	what	you	need	to	do	to	print
the	string	“Hello	World”	in	Assembly,	a	well	known	low-level	programming	language	very
close	to	the	machine	code,	and	in	Python	which	is	a	high-level	language.

print('Hello	World')

##	Hello	World

FIGURE	1.1:	An	example	of	program	to	print	"Hello	World"	in	Assembly.

As	we	can	see,	the	effort	is	much	less	when	using	a	high-level	language	such	as	Python.
All	we	have	to	do	to	print	 the	message	Hello	World	 is	 to	 invoke	a	built-in	 function	called
print().	For	those	readers	who	have	already	some	kind	of	familiarity	with	Python	might	be
aware	of	the	recent	update	in	its	interpreter.	Indeed,	from	Python	3.x.x	the	print	method	has
become	a	function	which	we	call	with	print().	In	older	versions,	namely	2.x.x,	the	call	was
print	'string	to	print'.	This	book	uses	the	more	recent	Python	3.x.x.

1.5 Static	vs	Dynamic	Semantics
Let’s	 start	 by	 thinking	 about	 the	 meaning	 of	 the	 two	 words:	 static	 and	 dynamic.

Intuitively,	something	that	is	static	does	not	change,	while	a	dynamic	entity	of	some	sort	has
some	probability	to	change	over	time.	Also,	we	feel	that	something	that	is	static	would	tend
to	be	less	flexible	than	something	that	is	dynamic.

In	computer	science,	this	difference	plays	a	major	role	and	it	affects	the	way	we	interact
with	the	language	we	decided	to	adopt.	Below,	we	briefly	provide	some	intuitions	about	the
difference	between	the	two	paradigms	and	their	pros	and	cons.

One	 good	 starting	 point	 to	 distinguish	 the	 two	 is	 to	 consider	 the	 static	 semantic	 as	 an
external	world	 that	 represents	 the	 text	of	 the	program	we	are	writing.	This	world	does	not
change,	 hence	 the	 the	 label	 static.	 The	 dynamic	 semantic	 can	 be	 considered	 as	 the	 inner
world	that	represents	the	hardware	status	(i.e.	memory)	at	run-time.	This	world	does	change,
hence	 the	 label	 dynamic.	 Effectively,	 it	 is	 where	 all	 happens	 and	where	 the	 program	 gets
executed.

Static	 objects	 are	 formal	 constructs	 in	 the	 code.	 They	 can	 be	 expressions,	 statements,
structures	 and	 so	 on.	 In	 other	words,	 they	 have	 no	meaningful	 existence	 beyond	 compile-
time.	Dynamic	objects	 instead	are	 instances	of	values	 contained	 in	 those	objects,	 locations
and	 so	 on	 and	 thus	 they	 do	 exist	 at	 run-time	 level	 since	 the	 user	 interacts	 with	 these
manifestations.	One	can	now	start	asking	what	kind	of	interaction,	if	any,	does	exist	between

these	two	objects.	A	link	between	the	worlds	is	called	binding	which	is	direct	consequence	of
declaration.	 This	 allows	 us	 to	 easily	 build	 interactions	 between	 static	 objects	 and	 their
dynamic	counterparts.

One	other	 fairly	 important	concept	 is	 the	environment.	Both	 static	and	dynamic	objects
have	their	own	environments.	These	incorporate	all	the	knowledge	about	the	objects	that	are
defined	and	are	aware	of	all	the	possible	other	relevant	objects,	both	static	and	dynamic.	In
particular,	the	static	environment	must	include	what	is	known	about	each	identifier	from	its
declaration.	 In	 fact,	 the	 static	 environment	maps	each	 identifier	 to	 its	 type	and	 the	kind	of
declaration	it	came	from.	The	static	environment	is	invariant	over	time,	but	varies	according
to	 position	 within	 the	 program	 text.	 The	 dynamic	 environment	 relates	 identifiers	 to	 the
dynamic	objects	 that	will	be	around	at	 run-time.	 In	other	words,	 it	maps	each	 identifier	 to
information	about	constants	or	variables	or	operations	and	so	on.	It	will	vary	over	time,	as	the
program	runs	simply	because	there	will	be	different	objects	at	each	point	in	time	during	the
execution	of	the	program	itself.

One	of	 the	most	 impressive	advantages	of	a	dynamic	 semantics	 is	 the	ability	 to	bind	a
name	to	objects	of	different	types	and	to	do	this	at	run-time	(i.e.	during	the	execution	of	the
program).	 In	 the	 following	 example,	 we	 show	 how	 the	 name	 my_object	 is	 assigned	 an
integer	value	(i.e.	an	integer	type)	and	then	a	string	value	(i.e.	a	string	type).

my_object	=	9

my_object	=	"Hello	World"

In	a	statically-typed	language,	the	above	sequence	of	statements	is	illegal.	The	reason	is	due
to	 the	 static	 nature	 of	 the	 environment	 in	 which	 we	 define	 the	 objects.	 If	 an	 object
(my_object)	had	been	declared	to	be	an	integer,	 then	this	object	cannot	be	changed	at	 later
times.	In	a	dynamically-typed	language	this	sequence	of	instructions	is	perfectly	fine.	As	we
can	see	below,	we	can	ask	Python	to	print	the	value	of	the	object	as	well	as	the	type.	Type	is	a
fairly	new	concept	which	will	be	discussed	in	details	in	later	Sections.	For	now,	it	is	a	way	to
distinguish	between	different	objects.

my_object	=	9

print(my_object)

##	9

print(type(my_object))

##	<class	'int'>

my_object	=	"Hello	World"

print(my_object)

##	Hello	World

print(type(my_object))

##	<class	'str'>

1.6 Installing	Python
Python	 is	 a	 multi-platform	 software	 which	 typically	 comes	 pre-installed	 in	 Unix-like

systems1,	like	Linux	and	MacOS,	but	has	to	be	explicitly	installed	in	Windows	systems.
Regardless	 of	 the	 operating	 system,	 in	 order	 to	 work	 with	 Python	 we	 need	 to	 have	 a

Python	interpreter.	Once	again,	this	book	uses	Python	3.x.x	interpreter.	There	are	a	number	of
different	ways	 in	which	we	can	download	and	 install	 the	 interpreter.	Below	 is	a	 list	of	 the
main	methods:

• Python	 Software	 Foundation:	 Python	 can	 be	 obtained	 from	 the	 official	 website
Python.org2.	 There	 we	 need	 to	 download	 the	 appropriate	 installer	 for	 the	 operating
system	 the	 user	 is	 using	 and	 running	 it	 on	 the	machine.	 This	 is	 the	 best	way	 to	 get
Python	in	Windows	machines.

• MacOS	 comes	 with	 Python	 already	 installed,	 but	 typically	 it	 is	 an	 older	 version
(namely,	2.x.x).	The	best	way	to	install	Python	then	is	through	an	amazing	open	source
package	manager	called	Homebrew3.	The	installation	of	Homebrew	is	very	simple	and
takes	just	one	single	command	from	a	terminal.	One	the	package	manager	is	installed,
you	can	select	additional	libraries	and	make	them	available	for	the	whole	system4.	For
instance,	installing	Python	requires	a	simple:
brew	install	python3

• Linux	systems	come	with	package	managers	which	allow	to	select	single	 libraries	 to
install.	 There	 are	 plenty	 of	 managers	 and	 they	 are	 strictly	 related	 to	 the	 type	 of
distribution	is	in	use.	The	most	common	ones	are	yum	(for	Red-Hat5	or	Fedora6-like
systems),	dpkg	and	apt	(for	Debian7-like	systems)8.

• A	final	method	to	install	everything	you	need	to	start	working	with	Python	is	through	a
suite	 called	 Anaconda9.	 The	 main	 advantage	 of	 such	 thing	 is	 that	 it	 automatically
installs	several	tools	so	you	don’t	have	to	worry	to	get	them	later	on.	To	give	you	an
example,	below	you	find	an	image	of	the	Anaconda	Navigator	interface	which	shows
all	the	available	software.

http://Python.org

FIGURE	1.2:	Anaconda	Navigator	interface	(source:	Anaconda,	Inc.	2018).

1.7 How	Do	You	Interact	with	Python?
In	one	way	or	another,	we	were	able	to	install	everything	and	now	we	are	ready	to	start

coding	in	Python.	Now	let’s	be	fair:	Python	on	its	own	is	really	ugly.	It	is	just	an	empty	and
sad	window	with	almost	no	colors	which	seems	to	be	very	unfriendly	to	newcomers.	If	you
do	not	believe	us,	take	a	look	below.

FIGURE	1.3:	The	raw	Python	terminal	interface.

One	 of	 the	 most	 important	 things	 to	 do	 when	 starting	 to	 work	 with	 a	 programming
language	is	to	choose	an	effective	way	to	interact	with	the	code.	In	other	words,	we	want	to
have	a	graphical	interface	which	makes	it	easier	to	write	the	code,	to	spot	mistakes,	to	debug
the	code,	and	more	broadly	 to	 talk	with	Python.	As	you	can	 imagine,	 there	exist	plenty	of

graphical	interfaces.	We	refer	to	these	software	as	Integrated	Development	Environment(s)	or
IDE(s).	In	the	following	lines,	we	offer	a	brief	tour	through	the	most	common	and	the	most
effective	IDEs	you	can	use.

1.7.1 Spyder
Spyder10	is	for	sure	one	of	the	most	famous	IDEs	which	has	been	around	for	a	while.	It

is	directly	available	with	Anaconda	and	you	can	 lunch	 it	by	opening	Anaconda	Navigator.
Below	you	can	find	the	typical	interface	that	Spyder	offers.
As	you	can	see,	in	just	a	single	window	you	are	informed	about	the	folders	tree	(left	panel),
the	 Python	 code	 you	 are	writing	 (center	 panel)	 and	 the	 different	 objects	 you	 have	 created
during	 the	 current	 session	 (top-right	 panel).	 Also,	 in	 the	 bottom-right	 panel	 you	 have
immediate	access	to	the	Python	console	which	is	exactly	the	one	shown	in	Figure	1.3.

A	 very	 handy	 characteristic	 of	 Spyder	 is	 the	 ability	 to	 execute	 a	 single	 line	 of	 Python
code.	This	 enables	 very	 precise	 control	 of	 the	 flow	when	developing	 a	 code	 and	 it	 is	 also
useful	when	 in	 the	process	of	spotting	mistakes	and	errors.	Since	 it	comes	with	Anaconda,
Spyder	is	a	multi-platform	software.

1.7.2 Jupyter	Notebook
Jupyter	 Notebook11	 (commonly	 just	 called	 Notebook)	 is	 an	 open-source	 web-based

application	which	makes	your	browser	of	choice	the	perfect	IDE	in	which	develop	all	your
Python	 codes.	 Notebook	 is	 a	 lightweight	 environment	 and	 it	 is	 extremely	 portable.	 It	 can
contain	live	code,	equations,	visualizations	as	well	as	descriptive	text.

FIGURE	1.4:	The	Spyder	interface	(source:	The	Spyder	Website	Contributors).

Jupyter	 Notebook	 also	 requires	 a	 bit	 of	 knowledge	 in	 a	 typesetting	 language	 called
Markdown.	A	good	starting	point	to	grasp	this	language	is	Markdown	Guide12.	This	is	a	very
powerful	tool	to	draft	the	documentation	accompanying	the	code.

The	Notebook	interface	is	pretty	simple	and	neat.	When	you	lunch	it,	it	opens	up	a	new
tab	in	a	browser	window	where	you	can	immediately	start	writing	your	Python	code.	This	is
one	of	the	best	and	fastest	tool	to	start	developing	code.	If	you	want	to	start	using	it,	we	also
recommend	the	so	called	Notebook	Extensions.	There	are	different	ways	you	can	use	go	with
to	install	these	extensions.	The	Jupyter	Contributions13	is	a	very	good	place	to	learn	how	to
add	them	to	your	default	installation.

FIGURE	1.5:	The	Jupyter	Notebook	interface.

1.7.3 PyCharm
PyCharm14	 is	one	of	 the	most	powerful	and	complete	 IDEs	available.	 It	comes	 in	 two

versions:	the	Community	Edition	(CE)	and	the	Professional	Edition.	The	former	is	available
for	free	and	offers	fewer	features,	the	latter	comes	with	a	commercial	licence.	For	most	users,
the	CE	 is	 the	way	 to	 go,	 especially	when	one	 is	 starting	his/her	 journey	 into	 the	world	 of
programming	languages.
As	you	can	see,	you	have	all	the	information	needed	to	develop	the	code.	It	includes	a	very
helpful	 auto	 completion	 system	and	 a	debugging	 tool	 to	 spot	 bugs	 and	 errors.	PyCharm	 is
definitely	 the	 tool	 to	 use	 once	 the	 code	 is	 in	 its	 final	 version	 and	 can	 be	widely	 used	 and
adopted	both	in	a	research	environment,	but	also	within	a	business	unit	in	a	firm.

FIGURE	1.6:	The	PyCharm	CE	interface.

1.7.4 An	outsider:	iPython
Remember	 the	 first	 picture	 of	 a	Python	 terminal	 shown	 in	Figure	1.3?	Well,	 there	 is	 a

slightly	better	version	which	 is	 just	a	bit	more	 informative	 than	 the	standard	 terminal.	 It	 is
called	 iPython15	 and	 basically	 can	 be	 use	 for	 very	 quick	 deployment	 or	 just	 testing.
Personally,	we	use	it	to	check	that	modules	have	been	installed	correctly.
As	 you	 can	 see,	 iPython	 enhances	 the	 standard	 terminal.	 For	 instance,	we	 do	 have	 syntax
highlighting	here	as	well	as	the	exact	number	of	code	executions	we	run.

FIGURE	1.7:	The	iPython	terminal.

1Even	if	Python	is	already	available	 in	 the	system,	it	can	be	outdated	or	you	might	 just
want	 to	 customize	 the	 original	 installation.	 It	 is	 perfectly	 fine	 to	 overwrite	 the	 original
software.

2https://www.python.org/downloads/.
3https://brew.sh.
4Homebrew	is	a	powerful	tool	for	MacOS.	It	can	be	used	to	manage	almost	any	library	or

package	which	comes	from	Linux	world.	If	you	are	a	Mac	user,	we	strongly	encourage	you	to
check	it	out.

5https://www.redhat.com/en.
6https://getfedora.org.
7https://www.debian.org/index.html.
8The	 main	 difference	 between	 dpkg	 and	 apt	 is	 that	 the	 former	 is	 not	 able	 to	 manage

software	 dependencies.	 Moreover,	 apt	 successfully	 exploits	 multiple	 sources	 to	 get	 the
requested	packages.

9https://www.anaconda.com.
10https://www.spyder-ide.org.
11https://jupyter.org.
12https://www.markdownguide.org.
13https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html.
14https://www.jetbrains.com/pycharm/.
15https://ipython.org.

https://www.python.org/downloads/
https://brew.sh
https://www.redhat.com/en
https://getfedora.org
https://www.debian.org/index.html
https://www.anaconda.com
https://www.spyder-ide.org
https://jupyter.org
https://www.markdownguide.org
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html
https://www.jetbrains.com/pycharm/
https://ipython.org

Chapter	2

First	Steps	With	Python

2.1 The	Logic	Behind	A	Code
Programming	 is	 the	 process	 of	 telling	 a	 computer	 what	 to	 do.	 Learning	 that	 language

allows	us	 to	write	 a	 set	 of	 instructions	 and	 rules,	 potentially	 very	 complex,	which	we	 call
algorithms.	 Algorithms	 are	 procedures,	 namely	 detailed	 descriptions	 of	 how	 to	 do
something.	Think	of	algorithms	as	recipes	that	tell	a	computer	how	to	perform	a	given	task.

A	very	good	question	to	start	with	is:	what	is	the	typical	structure	of	a	recipe?	Well,	we
can	 think	 of	 several	 different	ways	 to	 structure	 a	 recipe	 but	 in	 the	world	 of	 programming
languages,	let’s	consider	two	main	sections:

1. the	 ingredient	 part,	 where	 we	 detail	 all	 the	 ingredients	 that	 we	 need	 to	 gather	 to
prepare	a	dish;

2. the	 instruction	 part,	 where	 we	 detail	 how	 these	 different	 ingredients	 need	 to	 be
combined,	 the	actions	 that	we	need	 to	perform	 to	prepare	 the	dish,	 and	 the	order	 in
which	these	actions	need	to	be	combined.

Codes	 (or	 scripts,	 or	 more	 in	 general	 algorithms)	 are	 very	 similar	 to	 a	 recipe.	 They
consist	 of	 objects	 (i.e.,	 basic	 ingredients)	 and	 statements	 (i.e.	 instructions	 about	 how	 to
combine	these	objects).

2.2 Objects	in	Python
If	you	remember	the	brief	description	we	provided	in	Section	1.3,	we	should	know	that

everything	 in	 Python	 can	 be	 considered	 as	 an	 object.	 Objects	 are	 entities	 which	 we	 can
create,	interact	with,	manipulate	and	so	on.	There	are	plenty	of	objects	that	we	can	create	in
Python.	 An	 object	 in	 Python	 is	 just	 an	 abstraction	 for	 data	 and	 has	 three	 very	 important

characteristics:

1. Identity.	Once	you	create	an	object,	its	identity	does	not	change.

2. Type.	 It	 determines	 the	 type	 of	 operations	 that	we	 can	 perform	with	 an	 object.	 For
instance,	you	can	take	the	average	of	a	string.	As	the	identity,	type	cannot	be	changed
unless	you	force	a	change.

3. Value.	 It	 is	 the	 content	 of	 the	 object.	 Think	 of	 on	 object	 as	 a	 little	 box	which	 the
computer	stores	at	a	specific	memory	location.	The	value	is	what	we	store	in	that	box
and	because	of	the	dynamic	semantics,	the	value	of	a	given	objects	can	be	changed.

Let	 us	 add	 another	 very	 important	 concept	 which	 is	 mutability.	 One	 of	 the	 first
distinctions	that	Python	considers,	regards	the	mutability	of	a	defined	object.	If	the	value	of
an	 object	 can	 be	 modified	 after	 its	 definition,	 then	 we	 refer	 to	 it	 as	 a	 mutable	 object.
Conversely,	 if	 no	 changes	 are	 allowed,	 then	 we	 refer	 to	 immutable	 object.	 Consider	 the
following	example	 in	which	we	have	a	list	and	a	tuple.	Let’s	 ignore	for	now	what	 these
objects	are	but	just	focus	on	their	mutability	skills.

my_list	=	[1,	2,	3]

my_tuple	=	(1,	2,	3)

print(my_list,	my_tuple)

##	[1,	2,	3]	(1,	2,	3)

my_list[0]	=	10

print(my_list)

##	[10,	2,	3]

As	you	can	see,	we	have	been	able	to	modify	the	first	element	of	the	object	my_list	from	the
value	1	to	the	value	10.	Now	let’s	try	to	do	the	very	same	operation	on	the	tuple	my_tuple.

my_tuple[0]	=	10

##	TypeError:	'tuple'	object	does	not	support	item	assignment

In	this	case,	we	simply	get	an	error.	This	is,	in	practice,	the	difference	between	mutable	and
immutable	objects.	There	are	several	types	of	objects	and	we	will	explore	the	most	important
ones	in	the	following	sections.

Creating	 objects	 in	 Python	 is	 really	 easy.	You	 just	 have	 to	 think	 about	 a	 good	 naming
scheme	(we	can	talk	about	naming	convention	if	you	want)	and	then	you	use	the	assignment
operator	=.	For	instance,	we	just	want	to	create	an	object	that	contain	the	year	when	mankind
fist	landed	on	the	Moon.	Here	is	what	you	need	to	do:

landed	=	1969

This	 sounds	 silly	 but	 still,	 how	 do	 we	 change	 the	 value	 of	 a	 variable?	Well,	 we	 just	 use
assignment	 operator	 =.	 Below	 is	 a	 simple	 example	 of	 multiple	 changes	 in	 the	 value	 of	 a
variable.	This	is	pure	dynamic	semantics	at	work.

test_variable	=	1

print(test_variable)

##	1

test_variable	=	3.14

print(test_variable)

##	3.14

test_variable	=	'Hello	World!'

print(test_variable)

##	Hello	World!

2.3 Object	Types
As	in	the	real	world,	objects	can	be	of	different	types.	Intuitively,	an	object	containing	the

value	 1969	 is	 very	 different	 from	 an	 object	 containing	 the	 value	 Houston,	 we	 have	 a
problem.	We	always	need	to	be	aware	of	the	type	of	the	objects	we	are	dealing	with	since	this
allows	certain	operations	and	forbids	others.	So	for	instance,	we	cannot	calculate	the	average
of	Houston,	we	have	a	problem.

In	 the	 following	 sub-sections	 we	will	 introduce	 the	 reader	 to	 the	most	 common	 types
which	are	part	of	the	daily	life	of	a	programmer.

2.3.1 Integers
Integers	are	the	simplest	objects	and	are	the	most	efficient	ones	since	they	consume	the

least	 amount	of	memory.	 Integers	 are	 either	positive	or	negative	numbers	with	no	decimal
digits.	The	mathematical	symbol	to	identify	the	set	of	all	the	integer	numbers	is	ℤ.	Of	course,
since	they	are	numbers	we	are	allowed	to	carry	out	mathematical	operations.

So	let’s	define	an	integer	landed	by	using	the	assignment	operator	=.

landed	=	1969

Now,	we	know	 that	 this	 is	an	 integer	 just	because	we	defined	 it	 this	way.	But,	how	do	we
know	if	an	object	is	an	integer?	More	in	general,	how	do	we	know	the	type	of	a	given	object?
Well,	we	ask	Python	to	show	us	the	type	by	using	the	command	type().	The	way	we	do	this
is	to	explicitly	ask	Python	to	print	the	type	as	follows:

print(type(landed))

##	<class	'int'>

As	we	can	see,	we	are	returned	with	the	information	'int'	which	is	the	Python	way	to	say
integer.	Everything	else	is	the	way	Python	reports	this	information	which	is	always	the	same:
<class	'type	of	class'>.	Another	important	aspect	is	that	we	used	two	functions:	type()
and	print().	Functions	play	a	major	role	in	Python	and	we	will	learn	how	to	use	them	later
on	 in	 the	 book.	 Functions	 are	 always	 applied	 by	 invoking	 them	using	 their	 name	 together
with	parenthesis:	my_function().

We	 learned	how	 to	get	 information	 about	 the	 type.	What	 if	we	want	 to	print	 the	value
contained	in	the	object	landed?	Well,	this	is	very	simple:	we	just	use	print()	together	with
the	object	as	follows:

print(landed)

##	1969

2.3.1.1 Basic	Operations	with	Integers
Just	 remember:	 integers	 are	 number	 so	 you	 are	 good	 to	 go	 to	 carry	 out	 arithmetical

operations	 on	 them.	 All	 we	 have	 to	 do	 is	 to	 provide	 instructions	 to	 Python	 through
statements.	So	 let’s	 suppose	we	want	 to	know	how	many	years	have	passed	 since	 the	 first
manned	Moon	landing.	For	instance,	we	can	defined	another	integer	storing	the	current	year,
this_year,	and	then	subtract	the	year	of	landing.

this_year	=	2018

print(this_year	-	landed)

##	49

If	we	care	about	storing	that	information,	we	can	simply	store	the	value	into	a	new	variable.
Since	the	new	variable,	delta_t,	is	the	result	of	a	simple	subtraction	between	two	integers,	it
will	be	an	integer	as	well.

delta_t	=	this_year	-	landed

print(delta_t)

##	49

print(type(delta_t))

##	<class	'int'>

We	can	do	 lots	of	operations	with	 integers.	All	we	need	 to	know	 is	what	operation	we
want	 to	 do	 and	 the	 corresponding	 Python	 operator.	 Below	 is	 a	 list	 of	 the	 most	 common
mathematical	operations	as	well	as	the	related	operator:

• Addition:	+
• Subtraction:	-
• Multiplication:	*
• Division:	/
• Power:	**
• Modulo:	%
• Integer	division:	//.

2.3.2 Floats
We	are	very	happy	with	 integers	as	 long	as	we	do	not	have	 to	deal	with	decimals.	For

instance,	is	the	number	3.14	an	integer?	Let’s	see:

pi	=	3.14

print(type(pi))

##	<class	'float'>

Well,	it	seems	we	have	to	deal	with	another	type	of	number:	the	float.	A	float	is	basically	a
decimal	number	and	belongs	to	the	set	of	real	numbers	ℝ.	It	can	be	the	results	of	a	division
for	instance.

floating	=	2	/	5

print(floating)

##	0.4

print(type(floating))

##	<class	'float'>

Now,	let’s	complicate	things	a	little	bit	more.	Suppose	we	have	a	floating	number	like	our
beautiful	floating	 variable	we	 just	defined.	What	 if	we	want	 to	 force	 it	 to	be	an	 integer?
Well,	we	can	cast	the	result	as	integer	with	the	method	int().	We	need	to	be	aware	though
that	 Python	 rounds	 the	 result	 to	 the	 lower	 integer.	 This	 is	 not	 the	 regular	 rule	 when
approximating	decimal	points.	See	the	example:

floating_now_integer	=	int(2	/	5)

print(floating_now_integer)

##	0

type(floating_now_integer)

##	<class	'int'>

floating_now_integer	=	int(4	/	5)

print(floating_now_integer)

##	0

type(floating_now_integer)

##	<class	'int'>

2.3.3 Strings
Do	you	remember	when	we	first	started	this	Section?	We	said	that	the	objects	1969	and

Houston,	we	have	a	problem	were	very	different.	We	just	learned	that	the	number	1969	is
an	 integer,	 so	what	 is	 the	 second	 object?	 It	 is	 called	 string	 and	 is	 the	 opposite	 type	 of	 an
integer	or	a	 float	number.	 Intuitively,	 a	 string	 is	a	contiguous	 set	of	characters	 in	 between
quotation	marks.	More	precisely,	the	user	can	specify	a	string	object	by	using	both	double	"
and	single	'	quotation	marks.	As	we	will	see	below,	this	textbook	adopts	both	styles	since	in
Python,	we	can	either	have	single	and	double	quotation	marks.	So	remember:	everything	that
is	in	between	quotation	marks	can’t	be	a	number.

The	very	first	we	 learn	from	strings	 is	 that	we	are	not	allowed	 to	 take	any	arithmetical
operations	on	them.	Let’s	to	back	to	the	Moon	and	define	our	first	string:

problem	=	'Houston,	we	have	a	problem.'

print(type(problem))

##	<class	'str'>

We	 notice	 how	 the	 type	 has	 now	 changed	 to	 str.	 One	 of	 the	most	 particular	 yet	 counter
intuitive	features	of	strings	 is	 that	 they	can	be	number	 too.	Without	adding	confusion	here,
what	 we	 mean	 is	 that	 we	 can	 define	 the	 year	 1969	 as	 a	 string.	 All	 we	 have	 to	 do	 is	 to
surround	it	with	quotation	marks.

landed_string	=	'1969'

this_year_string	=	'2018'

print(type(landed_string),	type(this_year_string))

##	<class	'str'>	<class	'str'>

If	they	are	strings	as	we	just	confirmed,	this	implies	that	we	cannot	do	any	operation,	like	the
subtraction	we	did	before.

this_year_string	-	landed_string

##	TypeError:	unsupported	operand	type(s)	for	-:	'str'	and	'str'

As	we	 can	 see,	Python	 complains	 that	 it	 does	 not	 have	 the	 correct	 operator	 so	 it	 does	 not
know	what	to	do	with	the	above	statement.

One	question	could	then	be:	what	kind	of	operations	can	we	actually	carry	out	on	strings?
We	can	for	example	count	how	many	characters	a	string	contains.	To	do	this,	we	the	method
len()	as	follows:

print(problem)

##	Houston,	we	have	a	problem.

n_char	=	len(problem)

print(n_char)

##	27

If	you	go	ahead	and	try	to	count	the	characters	you	will	notice	that	they	are	not	26.	This	is
because	len()	counts	every	kind	of	characters	including	spaces	and	punctuation.	In	the	string
problem,	we	have	3	spaces	and	1	comma	which	contribute	to	the	total	length	of	the	string	to
get	the	exact	value	of	27.

2.3.3.1 Basic	Operations	with	Strings

Let’s	define	a	new	string	as	follows:

again	=	'This	is	Houston,	say	again	please.'

Now	 suppose	 that	we	want	 to	 concatenate	 the	 string	problem	 with	 the	 string	 again.	 How
should	 we	 proceed?	 There	 are	 different	 ways	 in	 which	 we	 can	 achieve	 our	 goal	 and	 the
simplest	one	is	with	the	operator	+.	This	is	quite	counter	intuitive	since	we	are	accustomed	to
think	that	a	+	just	does	the	sum	between	two	or	more	numbers.	It	turns	out	that	we	can	apply
the	 addition	 operator	 to	 strings	 and	 the	 result	 is	 a	 concatenation	 of	 those	 strings.	 So	 let’s
concatenate	problem	with	again	and	define	a	new	string	call	communication.

communication	=	problem	+	'\n'	+	again

print(communication)

##	Houston,	we	have	a	problem.

##	This	is	Houston,	say	again	please.

Well,	this	is	not	very	elegant	since	we	have	a	very	long	string	which	does	not	fit	in	the	page
and	 we	 do	 not	 know	 who	 is	 talking.	 What	 we	 can	 do,	 is	 manually	 add	 other	 strings	 to
communication	as	follows:

communication	=	'Apollo	13:	'	+	problem	+	'\n'	+	\

																'Base	Houston:	'	+	again

print(communication)

##	Apollo	13:	Houston,	we	have	a	problem.

##	Base	Houston:	This	is	Houston,	say	again	please.

As	we	can	see,	we	now	have	a	more	readable	output.	There	are	two	things	that	happened	in
the	 above	 code	 chunk.	 The	 first	 one	 is	 the	 command	 \n	 which	 tells	 Python	 to	 insert	 a

newline.	The	second	one	is	the	isolated	backslash	\	at	the	end	of	the	first	line.	This	is	a	handy
shortcut	to	tell	Python	that	the	current	instruction	will	be	over	multiple	lines.

2.3.3.2 Concatenate	Strings	and	Numbers
We	just	 learned	how	to	concatenate	two	string.	Now	this	seems	very	fancy,	but	the	real

magic	is	when	you	can	actually	mix	numbers	and	strings.	So	let’s	define	some	other	variables
to	play	with.

callsign	=	13	#	this	is	an	integer

houston	=	'you	are	go	for	transposition	and	docking.'

apollo	=	'Roger	that,	Houston.'

The	goal	here	is	to	define	the	variable	communication	with	the	following	structure:	“13,	you
are	go	for	transposition	and	docking.	-	Roger	that,	Houston.”	The	spirit	of	this	operation	is
very	similar	to	what	we	did	in	the	previous	sub-section.	So,	let’s	try	to	replicate	everything	as
follows:

communication	=	callsign	+	'	'	+	houston	+	'	-	\n'	+	apollo

##	TypeError:	unsupported	operand	type(s)	for	+:'int'and'str'

Ehm.	.	.	.what’s	wrong?	What	did	we	miss?	Python	is	complaining	because	it	is	not	able	to
mix	integers	and	strings.	Look	at	the	error	that	Python	is	throwing:

TypeError:	unsupported	operand	type(s)	for	+:	'int'	and	'str'

So	how	do	we	solve	it?	Well,	remember	that	we	can	change	types,	right?	This	is	exactly
what	we	should	do	right	now.	All	we	want	to	have	is	the	object	callsign	to	be	a	string	and
not	an	integer.	To	achieve	this,	we	have	two	ways:	the	former	is	a	permanent	conversion,	the
latter	is	just	a	temporary	one.	In	this	last	case,	we	understand	that	callsign	is	the	number	13
and	we	want	to	preserve	the	type.	We	want	to	change	it	on-the-fly	and	just	for	this	example.
We	then	use	the	method	str()	directly	when	defining	communication	as	follows:

communication	=	str(callsign)	+	',	'	+	houston	+	\

																'	-	\n'	+	apollo

print(communication)

##	13,	you	are	go	for	transposition	and	docking.	-

##	Roger	that,	Houston.

Even	if	it	does	not	make	much	sense,	we	can	convert	callsign	to	string	in	a	permanent	way
by	 redefining	 the	 variable.	 Of	 course,	 we	 do	 not	 include	 str()	 during	 the	 subsequent
concatenation	of	the	strings.

callsign	=	str(callsign)

communication	=	callsign	+	',	'	+	houston	+	\

																'	-	\n'	+	apollo

print(communication)

##	13,	you	are	go	for	transposition	and	docking.	-

##	Roger	that,	Houston.

As	you	can	see,	the	final	result	is	exactly	the	same.

2.3.4 Formal	String-Number	Concatenation
What	 we	 have	 just	 seen	 is	 a	 quick	 way	 to	 concatenate	 strings	 and	 numbers.	 There	 is

indeed	a	formal	method	to	concatenate	these	types	of	objects.	The	syntax	is	less	intuitive,	but
we	strongly	encourage	you	to	use	this	last	method	which	is	way	more	handy	and	flexible	than
the	first	one.

The	trick	is	the	usage	of	placeholders.	Placeholders	are	just	mute	variables	that	assume	a
specific	 value	 once	 we	 invoke	 the	 method.	 For	 the	 specific	 case	 of	 string-number
concatenation,	we	use	the	method	format().

In	order	 to	show	and	understand	 the	working	principle,	 let’s	 just	 replicate	what	we	 just
did,	but	with	this	new	method.	But	first,	remember	that	we	permanently	changed	callsign	to
string.	To	illustrate	this	method,	we	want	to	cast	it	back	to	an	integer.	So,	here	is	the	tricky
syntax:

callsign	=	13	#	recasting	to	integer

communication	=	'{0},	{1}	-	\n{2}'.format(callsign,

																																										houston,

																																										apollo)

print(communication)

##	13,	you	are	go	for	transposition	and	docking.	-

##	Roger	that,	Houston.

As	you	can	see,	many	things	happened!	To	learn	how	to	apply	this	method,	just	try	to	follow
these	five	steps:

1. First	define	the	structure	of	your	output.	In	our	case	we	want	something	like:
string	comma	space	string	space	dash	space	newline	string

2. Once	you	have	the	structure,	you	use	the	placeholders	with	the	syntax	{0},	where	the
sequence	 must	 start	 with	 0	 since	 Python	 counts	 from	 zero.	 You	 put	 a	 placeholder
instead	 of	 the	 real	 variable,	 whether	 it	 is	 a	 string	 or	 a	 number.	 Your	 structure	 then
becomes:

{0}	comma	space	{1}	space	dash	space	newline	{2}

3. Append	the	command	.format().	The	dot	(.)	is	the	Python	way	to	dispatch	methods
on	a	specific	object	type.	In	this	simple	case,	the	object	is	the	string	structure	we	are
creating.

4. Make	 sure	 you	 respect	 the	order	 of	 the	 structure	 in	.format().	 In	 our	 example,	we
first	want	callsign,	 then	a	comma,	 then	 the	variable	houston,	 then	a	space	a	dash	a
space	and	a	newline	and	then	the	variable	apollo.	Placeholders	{0},	{1},	and	{2}	are
references	 to	 the	 three	defined	objects	callsign,	houston,	and	apollo,	 respectively.
The	command	then	becomes:
{0}	 comma	 space	 {1}	 space	 dash	 space	 newline	 {2}	 .format(callsign,

houston,	apollo)

5. Just	 replace	 spaces,	 punctuation,	 newlines	 and	whatever	 else	with	 real	 characters	 to
obtain	the	final	results	as	follows:
{0},	{1}	-	\n	{2}	.format(callsign,	houston,	apollo)

This	 seems	 very	 complex	 at	 first	 and	 the	 untrained	 reader	 could	 ask:	 what	 is	 the
advantage	of	this	method?	This	is	a	perfectly	legit	question	so	let	us	answer	as	follow:	you
can	forget	about	types!	As	you	can	see,	by	no	meaning	we	had	to	force	callsign	to	a	string
with	str()	or	in	the	permanent	way.	In	other	words,	.format()	handles	types	automatically
which	comes	really	handy	when	we	need	to	structure	complex	concatenations.

2.3.5 Boolean
Outside	a	computer,	life	is	much	easier	in	some	ways.	You	just	have	numbers	and	strings.

In	a	computer	though,	we	can	have	things	which	are	neither	numbers	nor	strings.	An	example
is	the	type	called	boolean.	A	boolean	is	basically	a	flag	which	tells	you	either	True	or	False.

Why	do	we	care	about	this?	Well,	being	able	to	check	that	something	is	true	or	false	is
very	important.	For	instance,	a	boolean	is	what	Python	returns	if	you	ask	it	things	like	2	>	1
or	1	>	2.	This	in	the	end	means	to	compare	two	objects.

print(2	>	1)

##	True

print(1	>	2)

##	False

If	we	want,	we	can	define	booleans	pretty	easily	as	follows:

a_true	=	True

a_false	=	False

output	=	'a_true	is	a	{0}.	\na_false	is	a	{1}.'	\

									.format(type(a_true),	type(a_false))

print(output)

##	a_true	is	a	<class	'bool'>.

##	a_false	is	a	<class	'bool'>.

This	 is	 just	 a	 little	 preview	on	 this	 very	 particular	 type	 of	 object.	 It	will	 return	widely
when	we	will	talk	about	conditional	statements.

2.4 Commenting	the	Code
What	if	we	do	not	want	to	re-run	our	script	from	the	beginning?	What	if	we	want	to	insert

in	 the	 code	 descriptions	 and	 explanations	 of	what	we	 are	 doing?	Right	 now,	 this	 seems	 a
minor	 problem	 as	 it	 takes	 a	 few	 seconds	 to	 re-run	 it.	 However,	 when	 we	 will	 have	 long
scripts,	with	complex	statements,	re-running	the	script	from	the	beginning	may	be	a	serious
drawback	as	it	will	take	a	lot	of	time	to	do	it.

Since	we	do	not	want	to	waste	our	time,	a	quick	solution	is	to	comment	out	that	part	of
script	we	are	not	interested	in	any	longer.	There	are	two	ways	to	achieve	that:

1. Comment	out	a	line:	You	can	simply	insert	the	hashtag	symbol	#	at	the	beginning	of
the	line	you	do	not	want	to	run.

2. If	 we	 want	 to	 comment	 out	 an	 entire	 block	 of	 code	 we	 can	 insert	 triple	 quotation
marks	'''	 before	 and	 after	 the	 block	we	want	 to	 comment	 out.	Even	 this	might	 be
useful,	we	strongly	recommend	to	insert	single	line	comments	only

Let’s	see	 this	with	an	example	 to	 illustrate	how	to	comment	out	one	single	 line.	We	do
not	want	to	print	the	value	of	the	variable	b.

a	=	1

print(a)

##	1

b	=	2

#	print(b)

Let’s	see	this	with	an	example1	to	illustrate	how	to	comment	out	a	block	of	code.	We	do
not	want	to	define	the	variable	b	and	to	print	its	value.

a	=	1

print(a)

'''

b	=	2

print(b)

'''

2.5 Reserved	Keywords
You	 should	 have	 noted	 that	 some	 words	 get	 highlighted.	 Syntax	 highlighting	 plays	 a

major	role	in	code	development	since	it	helps	and	guides	the	programmer	when	drafting	the
code.	 If	 a	word	 is	 highlighted,	 it	means	 that	 the	word	 has	 a	 specific	 intended	 behavior	 in
Python.	There	 exist	 several	 different	 keywords	which	 are	 reserved	keywords.	 This	 implies
that	 you	 are	 not	 allowed	 to	 use	 these	 keywords	 other	 than	 for	 their	 intended	 goal.	 For
instance,	 you	 cannot	 assign	 a	 variable	 with	 the	 name	 print.	 Other	 examples	 of	 reserved
keywords	are:

and,	 break,	 continue,	 else,	 elif,	 except,	 for,	 if,	 import,	 in,	 is,	 list,

not,	or,	pass,	return,	try,	while.

We	will	learn	the	meaning	of	these	keywords	later	on	in	the	book.

2.6 Exercises

Exercise	1

1. Create	a	string	mood	that	contains	the	description	of	your	mood,	and	a	string	program
that	contains	the	name	of	the	program	that	you	are	learning	right	now.

2. Print	 the	message:	 'I	 am	 <MOOD>	 to	 learn	 <PROGRAM>'	 using	 both	 the	 simple	 +
operator	and	the	.format()	method.

Exercise	2

1. Define	an	integer	called	number	and	assign	it	the	value	5

2. Print	the	message:	'Python	is	the	<NUMBER>th	program	that	I	learn'

3. If	you	feel	very	pythonian,	you	can	modify	the	message	to	comply	with	first,	second
and	third	place.

Exercise	3

1. Define	 a	 string	 variable	course	 and	 an	 integer	 variable	 grade	 and	 give	 them	 some
values	of	your	choice.

2. Print	the	message:	'My	favorite	class	was	<COURSE>	because	I	got	<GRADE>',
by	formatting	the	string	to	use	your	values.

Exercise	4

1. Print:	'I	will	be	100	years	old	in	the	year	<x>'

Please	do	not	create	a	variable	year	with	 the	year	 in	which	you	will	be	100	years	old,	but
find	a	way	to	let	Python	calculate	this	year.

2.7 Read	the	Code
What	are	the	results	of	the	following	codes?
Reading	1

var1	=	5

var2	=	45

var3	=	10

print((var1	+	var2)	/	float(var3))

Reading	2

var1	=	5

var2	=	45

var3	=	2.2

print((var1	+	var2)	/	var3)

Reading	3

brand	=	"Coca	Cola"

competitor	=	"Pepsi"

print('I	prefer	{0}	over	{1}'.format(brand,	competitor))

2.8 Code	Bloopers
Please	fix	the	errors	in	the	following	code.
Blooper	1

name	=	"Ryan"

age	=	19

food	=	"cheese"

print(name	+	"	is	"	+	age	+	"\n."	\

						"His	favorite	food	is	"	+	food)

##	TypeError:	must	be	str,	not	int

2.9 Solutions	to	Exercises

Exercise	1

mood	=	'happy'

program	=	'Python'

print('I	am	'	+	mood	+	'	to	learn	'	+	program)

##	I	am	happy	to	learn	Python

print('I	am	{0}	to	learn	{1}'.format(mood,	program))

##	I	am	happy	to	learn	Python

Exercise	2

number	=	5

print(program	+	'	is	the	'	+	str(number)	+	\

						'th	program	that	I	learn')

##	Python	is	the	5th	program	that	I	learn

out	=	'{0}	is	the	{1}th	program	that	I	learn'.format(program,

																																																					number)

print(out)

##	Python	is	the	5th	program	that	I	learn

Exercise	3

course	=	"Marketing"

grade	=	30

print('My	favorite	course	was	'	+	course	+	\

						'.	I	got	'	+	str(grade))

##	My	favorite	course	was	Marketing.	I	got	30

print('My	favorite	course	was	{0}.	I	got	{1}'.format(course,

																																																					grade))

##	My	favorite	course	was	Marketing.	I	got	30

Exercise	4
Solution	1
From	birth	to	100	(When	was	I	born?	Then	add	100).

age	=	24

now	=	2018

birth	=	now	-	age

print("I	will	be	100	in	the	year	"	+	str(birth	+	100))

#	Alternatively

##	I	will	be	100	in	the	year	2094

print("I	will	be	100	in	the	year	"	+	str(now	-	age	+	100))

##	I	will	be	100	in	the	year	2094

Solution	2
Remaining	years	(how	many	years	do	I	still	have	to	live	to	make	it	to	100?).

remaining	=	100	-	age

year	=	remaining	+	now

print	("I	will	be	100	in	the	year	"	+	str(year))

#	Alternatively

##	I	will	be	100	in	the	year	2094

print	("I	will	be	100	in	the	year	"	+	str(100	-	age	+	now))

##	I	will	be	100	in	the	year	2094

Please	 note	 that	 you	 do	 not	 need	 to	 create	 the	 variable	 birth,	 but	 you	 can	 just	make	 the
calculation	within	the	print	statement.

1The	fact	that	the	statement	print(a)	is	not	executed	is	due	to	issues	of	the	interpreter	to
correctly	 understand	 multi-line	 comments.	 Again,	 try	 to	 avoid	 the	 use	 of	 this	 method	 to
comment	out	the	code.

Chapter	3

Tuples,	Lists,	Sets,	and	Dictionaries

As	we	might	already	know,	Python	is	a	very	handy	programming	language.	This	is	not	to
be	 confused	with	poverty	or	with	 a	 limited	number	of	 features.	Python	 is	 one	of	 the	most
flexible	and	powerful	programming	language	which	contains	tons	of	features.

For	instance,	we	have	just	seen	the	simplest	set	of	objects	that	we	can	play	with:	integers,
floating	numbers,	strings,	and	booleans.	Python	though	is	packed	with	several	other	objects
which	 play	 a	major	 role	 in	 programming.	 In	 this	 chapter,	 we	 are	 going	 to	 focus	 on	more
complex	objects	which	serve	a	specific	need.

3.1 Tuples
A	tuple	is	a	relatively	simple	object.	It	is	just	a	sequence	of	values	separated	by	a	comma.

One	 the	most	 important	 peculiarities	 of	 these	 objects	 is	 that	 they	 are	 immutable.	We	 have
seen	a	preview	of	the	mutability	feature	in	the	previous	chapter	so	we	will	reprise	the	concept
here.

first_tuple	=	1,	2,	3,	4,	5

print(first_tuple)

##	(1,	2,	3,	4,	5)

As	 you	 can	 see,	 putting	 commas	 in	 between	 values	 defines	 a	 tuple.	 Though	 it	 is	 not	 a
requirement,	we	strongly	recommend	to	use	a	more	formal,	and	clear,	definition	as	follows:

first_tuple	=	(1,	2,	3,	4,	5)

print(first_tuple)

##	(1,	2,	3,	4,	5)

The	reason	is	simple:	it	improves	the	readability	of	the	code.	The	minute	we	see	a	sequence

of	values	in	between	parentheses	we	immediately	know	that’s	a	tuple.	If	you	want	to	be	sure
about	 the	 type	of	 the	object,	 you	can	always	 invoke	 the	method	type()	which	works	here
too.

print(type(first_tuple))

##	<class	'tuple'>

Sometimes	 Python	 can	 be	 a	 bit	 nasty	 and	we	 have	 to	 be	 aware	when	 this	 happens.	 In
particular,	we	need	to	pay	attention	to	the	syntax.	Look	at	the	following	example:

test1	=	('a')

test2	=	('a',)

What	is	the	type	of	test1	and	test2?

print(type(test1))

##	<class	'str'>

print(type(test2))

##	<class	'tuple'>

It	 turns	out	 that	 to	define	a	 tuple	with	 just	one	element,	 it	does	not	matter	 the	 type	of	 that
single	element,	we	must	add	a	comma	after	that	element.	If	we	do	not	do	this,	then	Python
thinks	you	are	just	being	verbose	and	assumes	the	original	type	of	the	element	you	are	using.
In	the	case	above,	'a'	is	a	string	so	test1	is	cast	as	a	string.

3.1.1 Slicing	Tuples
Now	that	we	can	deal	with	sequences	of	elements,	one	fair	question	we	can	ask	is:	what	if

we	want	to	extract	the	value	of	the	n-th	element	of	a	tuple?	In	other	words,	how	do	we	access
to	the	tuple’s	elements?	Accessing	to	elements	of	an	object	of	this	type	is	called	slicing	and
Python	allows	you	do	to	this	by	using	brackets	[].	In	particular,	we	type	brackets	right	after	a
tuple	name	and	we	put	 the	position	of	 the	 element	we	want	 to	 extract	 inside	 the	brackets.
Back	to	our	example,	first_tuple,	let’s	extract	element	in	position	3	which	corresponds	to
the	value	3.

print(first_tuple)

##	(1,	2,	3,	4,	5)

print(first_tuple[3])

##	4

Hey,	wait	a	minute!	We	can	count	and	4	is	not	the	value	we	expected.	What’s	wrong	here?
Just	remember,	Python	starts	counting	from	zero	and	not	one.	So	if	we	want	the	third	element
in	a	tuple,	we	have	to	access	to	position	2	as	follows:

print(first_tuple)

##	(1,	2,	3,	4,	5)

print(first_tuple[2])

##	3

Extracting	single	element	is	just	fine,	but	probably	we	would	be	more	interested	in	accessing
to	 a	 sequence	 of	 elements.	 So	 for	 example,	 what	 would	 we	 do	 to	 extract	 the	 first	 three
elements?	We	 introduce	 here	 the	 colon	 operator	 :.	 This	 basically	 tells	 Python	 to	 build	 a
sequence	that	starts	from	the	element	on	the	left	of	:	up	to	the	element	before	the	number	on
the	right	of	:.	 In	mathematical	 terms,	it	means	that	we	have	a	closed	set	on	the	left	and	an
open	set	on	the	right.	Extracting	the	first	three	elements	implies	that	we	want	the	elements	in
position	 zero,	 in	 position	one,	 and	 in	 position	 two.	As	you	 can	 see	 below,	we	have	 to	 tell
Python	to	move	up	to	element	in	position	three	which	is	open	and	it	is	not	extracted.

print(first_tuple[0:3])

##	(1,	2,	3)

So	more	in	general,	if	we	want	to	extract	a	sequence	from	element	in	position	i	up	to	element
in	position	j	we	have	to	specify	the	following	statement:	my_object[i:j+1].

As	you	can	 imagine,	 there	 exist	 plenty	of	ways	 to	 slice	 an	object.	Below	you	can	 find
some	other	examples.

#	Extracting	all	the	elements

print(first_tuple[0:])

##	(1,	2,	3,	4,	5)

#	Extracting	the	reversed	sequence

print(first_tuple[::-1])

##	(5,	4,	3,	2,	1)

#	Extracting	specific	non-contigous	indexes

print((first_tuple[0],	first_tuple[2]))

##	(1,	3)

#	Extracting	just	the	last	element

print(first_tuple[-1])

##	5

3.1.2 Assigning	and	Chaining	Tuples
Because	 tuples	 are	 immutable	 objects,	 we	 are	 not	 allowed	 to	 explicitly	 modify	 their

values.	Let’s	go	back	to	our	tuple	first_tuple	and	try	to	change	the	value	of	first	element	1
with	the	value	10.

first_tuple[0]	=	10

##	TypeError:	'tuple'	object	does	not	support	item	assignment

Any	set	of	multiple	objects	which	is	comma-separated	is	by	default	cast	as	tuple.	This	of
course	 changes	 if	 you	 specify	 something	 else	 (e.g.	 for	 instance	 if	 you	 use	 brackets	 as	 for
lists).

a,	b	=	(1,	2),	(3,	4)

print(a)

##	(1,	2)

print(b)

##	(3,	4)

In	Table	3.1,	we	show	a	quick	and	concise	list	of	possible	operations	we	can	carry	out	over
tuples.

TABLE	3.1:	A	concise	list	of	possible	operations	over	tuples.

Python	Expression Results Description
len((1,	2,	3)) 3 Length
(1,	2,	3)	+	(4,	5,	6) (1,	2,	3,	4,	5,	6) Concatenation
('Hi!',)	*	4 (‘Hi!’,	‘Hi!’,	‘Hi!’,	‘Hi!’) Repetition
3	in	(1,	2,	3) True Membership
for	x	in	(1,	2,	3):	print	x 1	2	3 Iteration

3.2 Lists
A	list	is	nothing	else	than	another	sequence	of	data.	They	are	definitely	the	most	versatile

objects	in	Python	and	you	are	going	to	use	them	quite	a	lot	to	do	all	sort	of	things.	You	can
define	a	 list	pretty	much	 the	same	way	you	define	a	 tuple,	but	 remember,	you	need	 to	use
brackets	[].	 Another	 extremely	 important	 feature	 of	 lists	 is	 that	 they	 are	mutable	 objects.

This	of	course	is	the	opposite	of	tuples	so	now	we	can	actually	modify	the	value	of	a	given
element	in	the	list.	Now	let’s	define	our	first	list:

first_list	=	[1,	2,	3,	4,	5]

print(type(first_list))

##	<class	'list'>

print(len(first_list))

##	5

In	case	you	are	wondering	it,	list,	as	well	as	tuples,	support	all	types	meaning:

a	=	['a',	'b',	'c']

b	=	[True,	False,	True]

c	=	[1,	'a',	True]

print(type(a))

##	<class	'list'>

print(type(b))

##	<class	'list'>

print(type(c))

##	<class	'list'>

Since	they	are	mutable	objects,	we	are	entitle	to	run	more	operations	on	them.	Supported
operations	mimic	the	ones	we	have	seen	for	tuples	but	here	we	find	two	interesting	methods
to	modify	a	list:	append()	and	del.

3.2.1 Updating	a	List
Let’s	suppose	that	we	want	to	update	an	existing	list	meaning	that	we	want	to	add	a	value

to	 this	 list.	The	method	 that	we	have	 to	use	 is	append()	 and	 it	 is	very	 intuitive.	append()
always	the	given	value	at	the	end	of	the	list.

The	list	a	contains	the	first	three	letters	of	the	alphabet.	We	want	to	add	the	fourth	one.

print(a)

##	['a',	'b',	'c']

a.append('d')

print(a)

##	['a',	'b',	'c',	'd']

Beware,	that	if	you	keep	doing	append,	you	will	just	add	the	element	you	are	appending	over
and	over	again.

a.append('d')

a.append('d')

a.append('d')

a.append('d')

print(a)

##	['a',	'b',	'c',	'd',	'd',	'd',	'd',	'd']

As	opposed	to	the	simplest	way	to	define	a	list,	we	can	also	use	a	list	of	variables	to	pass
to	the	list.	Say	for	instance	that	we	want	to	create	a	list	with	the	members	of	a	very	(VERY)
famous	rock	band.	Let’s	do	it!1

band1	=	['Paul	McCartney',	'George	Harrison',

									'John	Lennon',	'Ringo	Starr']

bass	=	'Paul	McCartney'

guitar	=	'George	Harrison'

singer	=	'John	Lennon'

drums	=	'Ringo	Starr'

band2	=	[bass,	guitar,	singer,	drums]

print(band1)

##	['Paul	McCartney',	'George	Harrison',

##	'John	Lennon',	'Ringo	Starr']

print(band2)

##	['Paul	McCartney',	'George	Harrison',

##	'John	Lennon',	'Ringo	Starr']

Now	we	can	ask	Python	to	check	if	the	two	lists	are	identical.

print(band1	==	band2)

##	True

3.2.2 Deleting	a	List	Element
So	far,	we	now	know	how	to	update	a	list	with	the	method	append().	What	if	we	want	to

delete	a	specific	element?	We	can	use	 the	method	del.	For	 instance,	 let’s	delete	one	of	 the
member	 of	 this	 very	 famous	 band.	 We	 want	 to	 delete	 Paul	 McCartney	 who	 is	 the	 first
element	of	the	list.

del	band1[0]

print(band1)

##	['George	Harrison',	'John	Lennon',	'Ringo	Starr']

3.2.3 Slicing	Lists
Intuitively,	we	would	like	to	apply	what	we	learned	for	tuples	to	lists	too.	We	can	retrieve

a	sub-list	by	defining	a	range	of	list	indices,	separated	by	the	colon	operator	:.	Let’s	create	a
list	called	list1	which	we	will	slice	in	different	ways.

list1	=	[3,	5,	7,	9]

#	Slice	one	element

print(list1[0])

#	Slicing	a	sequence

##	3

print(list1[0:3])

#	Slicing	up	to	the	last	element

##	[3,	5,	7]

print(list1[-2:])

#	Slicing	up	to	the	second	element

##	[7,	9]

print(list1[:2])

##	[3,	5]

A	very	handy	shortcut	to	extract	sub-lists	is	by	step	size.	So	far,	we	have	discussed	how	to
slice	 consecutive	 elements	 in	 a	 list.	 But	 what	 if	 we	 are	 interested	 in	 non-consecutive
elements?	 If	 these	 elements	 are	 at	 a	 regular	 distance,	we	 can	 still	 select	 them	by	 adding	 a
third	 parameter	 inside	 the	 slicing	 operator.	 This	 third	 parameter	 is	 called	 step	 size.
Technically,	 this	 third	 parameter	 is	 included	 in	 any	 slice	 operator,	 but	 since	 the	 default	 is
equal	 to	1	we	 typically	do	not	 add	 it	when	we	are	 interested	 in	 consecutive	 elements.	For
instance,	 let	 us	 assume	 that	 we	 want	 to	 print	 all	 the	 elements	 in	 odd	 positions	 in	 list2
defined	as	follows:

list2	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12]

From	the	computer	perspective,	printing	all	the	elements	in	odd	positions	means	that	we	want
elements	 at	 a	 regular	 interval	 of	 2.	 The	 syntax	 we	 use	 follows	 this	 logic:	 starting	 point,
ending	point,	step	size.

print(list2[0:-1:2])

##	[1,	3,	5,	7,	9,	11]

3.3 Indexing

We	have	already	seen	the	concept	of	slicing	objects.	Slicing	allows	us	to	access	or	extract
specific	subsets	of	elements	in	a	given	object.	Each	element	has	a	specific	index	which	marks
its	position	in	the	object.	There	are	many	objects	that	we	can	slice	in	particular	lists.	Lists	are
particularly	helpful	in	a	variety	of	contexts,	which	you	will	appreciate	later.	Most	notable,	we
will	use	lists	to	run	iterations	and	write	more	efficient	algorithms.	As	you	might	imagine,	lists
are	 flexible	 and	 powerful	 objects	 which	 allow	 us	 to	 perform	 operations	 faster	 than	 with
variables.	Indexing	comes	in	three	ways:

1. Forward	 indexing:	 from	 the	 first	 element	 to	 the	 last.	 The	 first	 element	 of	 a	 list	 has
always	index	0.	The	second	element	has	then	index	1	and	so	on	and	so	forth.

2. Negative	 indexing:	 from	 the	 last	 element	 to	 the	 first.	 The	 last	 element	 of	 a	 list	 has
index	 -1.	 This	 indexing	 is	 particularly	 helpful	 when	 we	 do	 not	 know	 how	 many
elements	are	in	the	list,	but	we	just	know	that	we	want	the	last	one.	The	second-to-last
element	has	index	-2,	and	so	on	and	so	forth.

3. Mixed	indexing.	It	is	a	combination	of	the	former	two	ways	of	indexing.

Oh,	 just	 a	 reminder:	 Python	 indexes	 always	 start	 at	 0	 rather	 than	 at	 1.	 This	 is	 a	 powerful
source	of	errors!	Because	of	this,	when	we	want	to	access	to	the	last	element	we	must	use	-1
and	we	can’t	just	invoke	len().	See	the	example	below.

test_list	=	[1,	2,	3,	4,	5]

print(len(test_list))

##	5

Now	we	extract	last	element	which	has	value	5	and	it	is	at	position	4.

#	The	first	one	assumes	you	now	the	exact

#	position	of	the	last	element

print(test_list[4])

##	5

#	This	instead	directly	looks	for	the	last	element

print(test_list[-1])

##	5

print(test_list[len(test_list)])

##	IndexError:	list	index	out	of	range

3.4 Exercises	on	Lists

Exercise	1

1. Create	a	list	of	the	Beatles’	members	and	assign	it	to	the	variable	beatles.
2. Create	 the	variables	bass,	guitar1,	guitar2,	drummer	 that	 stores	 the	names	of	 each

Beatles’	members.	Assign	these	variables	as	elements	of	a	list	list_beatles.

Note:	you	are	allowed	to	google	the	Beatles	if	you	don’t	know	either	members	or	instrument.
Shame	on	you!
Exercise	2
Given	a	list	a	=	[5,	10,	15,	20,	25],

1. create	a	list	b	that	contains	only	the	first	and	last	elements.

Exercise	3
Describe	yourself	using	the	following	set	of	lists:

• ["red",	"brown",	"blond",	"black"]

• ["green",	"brown",	"blue"]

• [50,	55,	60,	65,	70,	75,	80,	85,	90].

Please	do	the	following:

1. Fill	in	the	gaps	with	your	characteristics.	E.g.,	I	have	hair,	.	.	.	eyes,	and	I	weight
less	than.	.	.	kilos.

2. Be	sure	to	use	at	least	two	methods	to	concatenate	strings.

Exercise	4
Given	this	list	b	=	[3,	5,	8,	13,	2,	4,	50,	23,	53,	9,	11],	create	a	list	c	with	the

following	elements:	3,	8,	2,	50,	53.
Exercise	5

1. Create	a	list	with	your	latest	5	grades	so	far.
2. Calculate	the	GPA	of	your	last	three	exams.

Exercise	6	-	Revise	your	GPA

1. You	go	 to	 the	 exam	 review	and	discover	 that	 your	 second-to-last	 grade	 is	 24	 rather

than	27.
2. What	is	your	new	GPA	of	your	last	three	exams?

3.5 Python	Methods
A	formal	definition	of	method	is	the	following:

A	method	is	a	function	which	belongs	to	a	class.

In	other	words,	methods	are	specific	functions	that	can	be	applied	to	specific	objects	that	we
have	created.	A	method	is	a	function	that	is	tightly	coupled	to	some	objects.	Since	we	still	do
not	know	what	a	function	is,	this	definition	will	probably	sound	obscure	at	this	point.	So,	in
plain	terms,	a	method	is	a	shortcut	to	perform	an	operation	on	an	object.

Since	 someone	has	 already	written	 the	 set	 of	 commands	 to	 perform	 that	 operation,	we
simply	invoke	the	method	with	no	need	to	rewrite	the	commands	behind	it.	The	syntax	to	call
methods	is	always	the	same:

object.method(arguments)

To	understand	how	to	apply	methods,	let’s	consider	the	following	logical	steps:

1. We	start	with	the	name	of	the	object.

2. A	dot	.	follows	the	name	of	the	object.	This	is	Python	syntax	so	whenever	you	see	a
dot	.	you	know	you	are	calling	a	method.

3. The	 method	 followed	 by	 parentheses	 ().	 If	 you	 are	 wondering	 why	 you	 need
parentheses,	well.	.	.	a	method	is	a	function.

4. Inside	 the	 parentheses,	 we	 put	 the	 argument(s):	 namely,	 specific	 elements	 of	 the
object	upon	which	we	want	to	perform	the	method.	Argument(s)	can	be	optional	and
for	 some	 methods	 they	 are	 not	 required.	 However,	 even	 if	 we	 will	 not	 pass	 any
argument,	 we	 would	 still	 need	 the	 parentheses.	 If	 you	 don’t	 put	 (),	 Python	 will
complain	a	lot	and	the	command	won’t	be	executed.

The	 syntax	we	 just	 discussed	 is	 general	 and	 applies	 to	 any	Python	object.	Once	 again,
depending	 on	 the	 object	 type	 we	 can	 dispatch	 a	 given	 set	 of	 methods.	 In	 the	 following
Section,	we	go	over	methods	applied	over	lists.

3.5.1 Methods	for	Lists

Let	 us	 now	 introduce	 the	 most	 common	 methods	 for	 lists.	 They	 are	 mostly	 used	 for
fetching,	storing,	and	of	course	analyzing	data.

3.5.1.1 append()

We	have	 already	 seen	 this	method	when	we	were	 discussing	ways	 to	 update	 a	 list.	 So
once	again,	append()	allows	you	to	physically	add	new	information	to	the	current	list.	Let	us
go	back	to	our	list	a:

a	=	['a',	'b',	'c']

We	want	to	add	the	fourth	alphabet	letter	to	a.	We	use	append()	as	follows:

a.append('d')

'a	after	the	append	method	is	{0}'	.format(a)

##	"a	after	the	append	method	is	['a',	'b',	'c',	'd']"

The	careful	reader	could	ask	the	following	question:	why	do	not	we	assign	the	updated	list	to
a	 new	 list	 or	 just	 to	 the	 same	 list?	 The	 concept	 around	 why	 we	 do	 not	 have	 to	 this	 is
fundamental.	Python	applies	the	method	append()	in-place.

3.5.1.2 insert()

append()	is	the	way	to	go	if	you	want.	.	.	well.	.	.	append	an	element	at	the	very	end	of
the	 list.	 Now	 suppose	 that	 we	 are	 interested	 in	 inserting	 a	 new	 information	 at	 a	 specific
position	 which	 might	 be	 in	 the	 middle	 of	 the	 list.	 Well,	 we	 have	 another	 method	 called
insert()	which	handles	this	issue.

The	syntax	is	very	simple	and	it’s	a	good	example	of	the	usage	of	function	arguments:

your_list.insert(index,	element)

This	method	takes	two	arguments:

1. index:	the	index	marking	the	position	where	we	want	to	insert	an	element;
2. element:	the	element	we	want	to	insert.

Let	 us	 suppose	 that	 we	 want	 to	 add	 the	 integer	 15	 in	 position	 3	 to	 our	 original	 list
firs_list.	We	can	do	it	with	the	following	command:

print(first_list)

##	[1,	2,	3,	4,	5]

first_list.insert(2,	15)

out	=	"After	adding	15	in	position	3,	\n"	\

						"first_list	becomes	{0}	".format(first_list)

print(out)

##	After	adding	15	in	position	3,

##	first_list	becomes	[1,	2,	15,	3,	4,	5]

3.5.1.3 extend()

If	instead	of	just	one	single	element,	we	want	to	add	several	elements	to	the	end	of	a	list,
we	would	 use	 the	method	 extend().	 For	 instance,	 let	 us	 assume	 that	we	want	 to	 add	 the
integers	 3,	 13,	 15,	 and	 17	 to	 the	 updated	 first_list.	 First,	 we	 create	 second_list	 that
contains	the	integers	we	want	to	add:

second_list	=	[3,	13,	15,	17]

We	want	to	extend	first_list	with	second_list	as	follows:

first_list.extend(second_list)

out	=	"Updated	first_list	is	{0}".format(first_list)

print(out)

##	Updated	first_list	is	[1,	2,	15,	3,	4,	5,	3,	13,	15,	17]

3.5.1.4 index()

If	we	want	 to	know	 the	 index	of	 an	 element	 in	 a	 list	we	can	use	 the	method	index.	 It
returns	the	index	of	the	first	occurrence	of	an	element	in	a	list.	Thus,	we	can	print	the	index
of	the	element	3	in	first_list	as:

out	=	"The	first	occurrence	of	3	in	first_list	\n"	\

						"has	index	{0}".format(first_list.index(3))

print(out)

##	The	first	occurrence	of	3	in	first_list

##	has	index	3

3.5.1.5 count()

This	method	returns	the	number	of	times	a	certain	element	occurs	in	a	list.	For	instance,
to	print	the	number	of	times	the	element	3	occurs	in	list1	we	can	run	the	command:

print("The	integer	3	occurs	%d	times	in	list1"	\

						%(list1.count(3)))

##	The	integer	3	occurs	1	times	in	list1

This	 is	 probably	 the	most	 complex	 command	we	have	written	 so	 far.	We	have	 learned
how	to	insert	the	results	of	a	method	directly	in	the	print	statement.	However,	this	time	we
are	 adding	 a	 further	 layer	 of	 complexity	 with	 another	 placeholder:	 %.	 You	 can	 learn	 the
meaning	of	a	placeholder	in	the	tip	box.

TIP:	Placeholders
A	placeholder	is	a	pre-formatted	object	into	which	we	can	place	values.	It	is	indicated	with
the	percentage	sign	%.	What	comes	after	the	%	indicates	the	type	of	the	object	we	will	insert	in
the	placeholder:

• %d	acts	as	a	placeholder	for	a	number;
• %s	acts	as	a	placeholder	for	a	string.

The	 syntax	 to	 replace	 a	 placeholder	 is:	%s	%d	(name,	 number).	 Inside	 the	 parentheses	we
insert	the	value	we	want	to	place	in	the	placeholder.	When	we	have	multiple	placeholders,	the
value	 of	 each	 placeholder	 is	 separated	 by	 commas.	 As	 usual,	 respecting	 the	 order	 is
important!

QUESTION:	can	you	suggest	a	case	in	which	we	would	like	to	use	this	approach	instead	of
format()?

In	Table	3.2,	you	can	find	a	quick	list	of	methods	for	lists.

TABLE	3.2:	A	quick	list	of	methods	for	lists.

3.5.2 Exercise	on	Methods

Exercise	1

1. Create	a	group	with	you	and	the	person	on	your	right.
2. Now,	add	the	person	on	your	left	to	the	group.

Exercise	2
Add	the	person	in	front	of	you	AND	the	person	on	your	left/right.

3.5.3 The	zip()	function
We	can	zip	together	two	or	more	lists	to	create	a	list	of	tuples.	The	result	has	the	length	of

the	shortest	zipped	list,	other	items	are	ignored:

names	=	["Kirs",	"Paul",	"Mark"]

grades	=	[29,	30,	22,	25,	26]

students	=	zip(names,	grades)

print(students)

##	<zip	object	at	0x10fabca08>

print(type(students))

##	<class	'zip'>

students_tuple	=	tuple(students)

print(type(students_tuple))

##	<class	'tuple'>

Look	carefully	at	your	new	list.	What	do	you	notice?

3.6 Sets
Now	we	are	taking	one	further	step	forward	in	complexity.	We	have	seen	tuples	and	lists

and	we	learned	that	they	are	basically	sequence	of	values	of	either	the	same	type	or	different
one.	 What	 we	 have	 also	 seen	 is	 that	 it	 is	 perfectly	 fine	 to	 have	 a	 list	 which	 contains
repetitions.	 Think	 about	 grades.	 .	 .	 it	 is	 quite	 common	 that	more	 than	 one	 student	 get	 the
same	grade	so	you	have,	say,	26	repeated	for	all	the	students	that	got	26.

Now	were	 are	 changing	 this	 last	 behavior.	Sets	 are	 an	unordered	collections	 of	 unique
elements.	Conversely	from	lists	that	may	contain	repeated	elements,	a	set	does	not	allow	that.
Moreover,	they	are	immutable	objects	like	tuples.	We	cannot	change	the	elements	of	a	set.	So
lets’	wrap	everything	up:

A	set	is	an	immutable	and	unordered	collection	of	unique	elements.

3.6.1 How	to	Create	a	Set
We	know	that	the	=	is	our	friend	when	we	need	to	create	an	object	so	we	know	that	we

have	 to	 use	 it.	 But	 now	we	 also	 need	 to	 explicitly	 declare	 the	 type	 of	 object	 we	want	 to
create.	Whether	with	tuples	and	lists	Python	provides	us	with	shortcuts	like	()	and	[],	this	is
not	the	case	with	sets.	.	.	almost.

We	then	create	a	set	by	calling	the	function	set()	and	applying	it	to	a	list	as	follows:

set1	=	set([1,	2,	3,	3,	4,	4,	5,	5,	6,	7,	8,	9,	0])

print(set1)

##	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9}

If	you	do	not	want	to	waste	too	much	time	or	simply	do	not	want	to	be	too	verbose,	we	can
use	the	following	shortcut:

set2	=	{1,	2,	3,	3,	4,	4,	5,	5,	6,	7,	8,	9,	0}

print(set2)

##	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9}

print(type(set2))

##	<class	'set'>

Do	you	see	the	nice	curly	braces	encapsulating	our	set?	Well,	that’s	your	shortcut!
The	diligent	reader	may	have	noticed	a	contradiction	here:	we	say	that	sets	are	collections

of	unique	elements	but	then	in	set1	we	have	several	non-unique	elements.	Let	us	see	if	we
really	have	non-unique	elements	in	set1	by	counting	how	many	elements	are	in	it:

print(len(set1))

##	10

Python	returns	10,	which	is	the	number	of	unique	elements	in	set1.	Hence,	even	though	we
may	have	non-unique	elements	in	a	set,	Python	always	consider	each	element	just	once.	This
property	 of	 sets	 will	 turn	 particularly	 helpful	 when	 downloading	 large	 amount	 of	 data	 in
several	batches,	 so	 to	avoid	counting	 the	 same	element	 (e.g.,	 a	Twitter	 account’s	 follower)
twice.	 Common	 uses	 of	 sets	 include	 membership	 testing,	 removing	 duplicates	 from	 a

sequence,	and	standard	math	operations	on	sets	such	as	 intersection,	union,	difference,	and
symmetric	difference.

3.6.2 Methods	for	Sets
As	lists,	sets	too	have	their	own	methods	that	facilitate	performing	operations	with	them.

We	look	in	detail	at	two	of	them,	union	and	intersection.	Set	methods	follow	the	general
syntax	for	methods	so	we	will	invoke	them	through	..

3.6.2.1 union()

Given	two	sets,	we	may	be	interested	in	knowing	the	elements	that	belong	to	both	 sets.
For	 instance,	 let	us	suppose	 that	we	are	promoting	an	event	related	to	soccer	 in	Milan.	We
have	 two	 sets,	 milan	 and	 inter,	 which	 contains	 the	 top	 3	 supporters	 of	 each	 team,
respectively.	We	can	create	a	third	set	mail	which	is	the	mailing	list	of	all	the	supporters	of
the	two	teams.	Let’s	do	this:

milan	=	set(["Kirs",	"Paul",	"Frank"])

inter	=	set(["Javier",	"Mauro",	"Kirs"])

print("Milan	is	supported	by",	milan)

##	Milan	is	supported	by	{'Kirs',	'Frank',	'Paul'}

print("Inter	is	supported	by",	inter)

##	Inter	is	supported	by	{'Kirs',	'Mauro',	'Javier'}

mail	=	milan.union(inter)

print("The	union	of	Milan	and	Inter	supporters	is\n",	mail)

##	The	union	of	Milan	and	Inter	supporters	is

##	{'Paul',	'Mauro',	'Javier',	'Kirs',	'Frank'}

Please	 note	 that	 we	 can	 compute	 the	 union	 of	 more	 than	 one	 set	 at	 the	 same	 time.	 For
instance,	if	we	had	another	set	real	that	contains	the	top	2	supporters	of	Real	Madrid,	we	can
compute	 the	union	 of	 the	 three	 sets	 by	 adding	 real	 as	 a	 second	 argument	 of	 the	method
union()	as	follows:

real	=	set(["Jorge",	"Sergio"])

print("Milan	U	Inter	U	Real	is\n",	milan.union(real,	inter))

##	Milan	U	Inter	U	Real	is

##	{'Paul','Jorge','Javier','Mauro',

##	'Kirs','Frank','Sergio'}

3.6.2.2 intersection()

This	method	returns	the	elements	that	are	common	to	all	sets.	If	we	want	to	know	all	the
supporters	in	common	between	Milan	and	Inter,	we	type:

print("Milan	IN	Inter	is",	milan.intersection(inter))

##	Milan	IN	Inter	is	{'Kirs'}

If	we	want	to	know	all	the	supporters	who	root	for	the	three	teams,	we	type:

print("Milan	IN	Inter	IN	Real	is",	\

						milan.intersection(inter,	real))

##	Milan	IN	Inter	IN	Real	is	set()

By	combining	what	we	have	learned	so	far,	can	you	tell	Python	to	print	a	sentence	like	this:
"Milan,	Inter,	and	Real	have	<x>	supporters	in	common"?

print("Milan,	Inter,	and	Real	have	%d	supporters	in	common"	\

						%(len(milan.intersection(inter,	real))))

##	Milan,	Inter,	and	Real	have	0	supporters	in	common

In	Table	3.3	you	can	find	a	quick	list	of	methods	for	sets.

TABLE	3.3:	A	quick	list	of	methods	for	sets.

3.6.3 Exercises	on	Sets

Exercise	1	-	Find	the	Murderer
Victor	Plum	was	killed	in	the	studio	with	a	knife	by	one	of	his	heirs!	Find	the	murderer!

1. The	following	people	are	Plum’s	heirs:	Diane,	Eleanor,	Kassandra,	Jacob.
2. The	following	people	were	in	the	studio:	Eleanor,	Jack,	Diane.
3. The	following	people	own	a	knife:	Jacob,	Diane,	Kassandra.

3.7 Dictionaries
It	is	now	the	time	to	add	another	layer	of	complexity.	All	we	have	seen	till	now	involves

sequence	 of	 values,	 whether	 they	 are	 numbers	 or	 strings,	 unique	 or	 not,	 immutable	 or
mutable.	In	this	Section,	we	want	to	associate	keys	with	all	those	values.	Whenever	we	have
keys,	we	have	a	dictionary.	In	other	words,	a	dictionary	associates	keys	with	values.	They	are
named	after	ordinary	paper	dictionaries	because	they	work	analogously.	A	key	(the	word	you
want	 to	 look	 up)	 is	 associated	 with	 a	 value	 (the	 definition	 of	 a	 word).	 Let’s	 review	 the
definition:

A	dictionary	associates	a	unique	key	with	a	specific	value.

3.7.1 How	to	Create	a	Dictionary
Long	 story	 short,	we	define	 dictionaries	 using	{}	 or	dict().	We	need	 to	 pay	 attention

here	since	the	symbol	{}	has	been	already	used	to	define	sets.	Here	we	have	keys	though	and
this	 marks	 the	 difference	 between	 sets	 and	 dictionaries.	 Python	 uses	 the	 same	 symbol	 to
define	both	the	object	types.	To	associate	keys	with	values	we	use	the	colon	operator	:.	Let’s
define	the	dictionary	grades	as	follows:

grades	=	{"Kirs":	29,	"Paul":	30,	"Mark":	22}

print(grades)

##	{'Kirs':	29,	'Paul':	30,	'Mark':	22}

print(type(grades))

##	<class	'dict'>

One	question	we	could	ask	is:	what	if	we	want	to	create	an	empty	dictionary?	We	simply	use

{}	and	as	you	can	see	we	get	a	dict	type.

grades	=	{}

print(type(grades))

##	<class	'dict'>

Keys	are	unique	within	a	dictionary	while	values	may	not	be.	The	values	of	a	dictionary
can	 be	 of	 any	 type,	 but	 the	 keys	 must	 be	 of	 an	 immutable	 data	 type	 such	 as	 strings	 or
integers.	 Keys	 cannot	 be	 lists	 because	 they	 can	 be	 changed	 after	 their	 creation.	 So	 key
duplication	 is	not	allowed	but	 let’s	 see	what	happens	when	we	use	 the	 same	key	 twice.	 .	 .
here	you	go!

grades	=	{"Kirs":	29,	"Paul":	30,	"Mark":	22,	"Kirs":	18}

print(grades)

##	{'Kirs':	18,	'Paul':	30,	'Mark':	22}

As	you	can	see,	grades	returns	the	last	value	associated	with	the	duplicated	key	which	in	this
case	is	"Kirs“	with	value	18.

3.7.2 Casting	and	Recasting	Objects
In	this	Section,	we	focus	on	moving	from	one	object	type	to	another.	Let	us	assume	that

we	 have	 two	 lists:	 names	 and	 grades	 which	 store	 the	 names	 of	 three	 students	 and	 their
grades,	 respectively.	We	want	 to	create	 the	dictionary	student_grades	 that	has	 the	defines
names	as	keys	and	grades	as	values.	But	first,	let’s	create	the	two	lists:

names	=	['Kirs',	'Paul',	'Mark']

grades	=	[29,	30,	22]

If	you	remember,	we	have	seen	a	very	useful	function	called	zip().	This	function	returns
by	default	 a	 list	of	 tuples.	We	also	know	 that	 if	we	want	 to	change	 the	default	 type	of	 the
object	returned	by	zip(),	we	need	to	recast	it	to	what	we	are	requiring.	In	this	case,	we	want
to	move	from	a	list	to	a	dictionary	as	follows:

student_grades	=	dict(zip(names,	grades))	print(student_grades)

##	{'Kirs':	29,	'Paul':	30,	'Mark':	22}

print(type(student_grades))

##	<class	'dict'>

This	 is	 exactly	 what	 we	 wanted	 to	 do.	 To	 check	 we	 are	 doing	 everything	 correctly,	 let’s

manually	define	 the	dictionary	and	compare	 the	 two.	We	expect	a	True	as	output	 from	the
last	line	below:

student_grades_manual	=	{"Kirs":	29,	"Paul":	30,	"Mark":	22}

print(student_grades	==	student_grades_manual)

##	True

Now	we	start	to	realize	that	Python	is	really	smart.	We	also	start	to	realize	why	this	is	a
high-level	 programming	 language.	 If	 we	 analyze	what	 Python	 just	 did,	 we	 can	 appreciate
how	by	just	declaring	that	we	wanted	a	dictionary	as	outcome,	it	immediately	interpreted	the
first	 argument,	 names,	 as	 keys	 and	 the	 second	 argument,	 grades,	 as	 values.	 This	 is	 very
powerful	 and	 it	 allows	 us	 to	 focus	 on	 the	 manipulation	 of	 the	 data,	 their	 analyses	 and
modelling	rather	than	just	thinking	about	the	logic	behind	each	instruction.

3.7.3 Retrieving	a	Value
Accessing	a	value	works	similar	as	indexing	in	lists,	but	instead	of	the	index	given	as	an

integer	 number,	 we	 use	 the	 defined	 key(s).	 Of	 course,	 we	 always	 use	 the	 brackets	 []	 as
follows:	dictionary_name[key].	Let	us	see	how	to	retrieve,	for	instance,	the	value	(grade)	of
Paul:

print(student_grades["Paul"])

##	30

What	if	the	key	did	not	exist?

print(student_grades["John"])

##	KeyError:	'John'

Python	complains	and	informs	you	the	there	is	a	KeyError.

3.7.4 Setting	Values
Dictionaries	are	mutable	objects	 so	we	can	add	new	entry	 to	a	dictionary	or	change	an

existing	one	as	follows:

print(student_grades)

##	{'Kirs':	29,	'Paul':	30,	'Mark':	22}

student_grades["Abbie"]	=	27	#	add	a	new	entry

print(student_grades)

##	{'Kirs':	29,	'Paul':	30,	'Mark':	22,	'Abbie':	27}

student_grades["Mark"]	=	27	#	change	existing	entry

print(student_grades)

##	{'Kirs':	29,	'Paul':	30,	'Mark':	27,	'Abbie':	27}

3.7.5 Multi-level	dictionaries
Dictionaries	 are	 complex	 objects,	meaning	 that	 they	 can	 have	 complex	 structures.	 For

instance,	 if	 the	 values	 of	 a	 dictionary	 are	 dictionaries	 themselves,	 we	 have	 a	multi-level
dictionary2.

So	let’s	define	a	more	complex	dictionary	in	which	we	are	interested	in	both	grades	and
skills	 of	 the	 students.	 The	 keys	 in	 the	 first	 level	 are	 the	 names	 of	 the	 students	 and	 their
associated	values	are	dictionaries	with	the	keys	grades	and	skill.

students	=	{"Kirs":	{"grades":	29,	"skill":	"Engineering"},

												"Paul":	{"grades":	30,	"skill":	"Math"},

												"Mark":	{"grades":	22,	"skill":	"Latin"}

											}

print(students)

##	{'Kirs':	{'grades':	29,'skill':'Engineering'},

##	'Paul':	{'grades':	30,	'skill':	'Math},

##	'Mark':	{'grades':	22,	'skill':	'Latin'}}

3.7.6 Exercises	on	Dictionaries

Exercise	1
Refer	to	the	dictionary	students	defined	above.

1. Retrieve	all	the	information	about	Paul.
2. Now,	retrieve	Paul’s	skill.

3.8 Solution	to	Exercises

3.8.1 Solutions	to	Exercises	on	Lists

Exercise	1

1. Create	a	list	of	the	Beatles’	members	and	assign	it	to	the	variable	beatles.
2. Create	 the	variables	bass,	guitar1,	guitar2,	drummer	 that	 stores	 the	names	of	 each

Beatles’	members.	Assign	these	variables	as	elements	of	a	list	list_beatles.

Note:	you	are	allowed	to	google	the	Beatles	if	you	don’t	know	either	members	or	instrument.
Shame	on	you!
Solution	1

beatles	=	["Paul","John",	"George",	"Ringo"]

print(beatles)

##	['Paul',	'John',	'George',	'Ringo']

Solution	2

bass	=	"Paul"

guitar1	=	"John"

guitar2	=	"George"

drummer	=	"Ringo"

list_beatles	=	[bass,	guitar1,	guitar2,	drummer]

print(list_beatles)

##	['Paul',	'John',	'George',	'Ringo']

Exercise	2
Given	a	list	a	=	[5,	10,	15,	20,	25],

1. create	a	list	b	that	contains	only	the	first	and	last	elements.

a	=	[5,	10,	15,	20,	25]

b	=	[a[0],	a[-1]]

print(b)

##	[5,	25]

Exercise	3
Describe	yourself	using	the	following	set	of	lists:

1. ["red",	"brown",	"blond",	"black"]

2. ["green",	"brown",	"blue"]

3. [50,	55,	60,	65,	70,	75,	80,	85,	90].

Please	do	the	following:

1. Fill	in	the	gaps	with	your	characteristics.	E.g.,	I	have	hairs,	.	.	.	eyes,	and	I	weight
less	than.	.	.	kilos.

2. Be	sure	to	use	at	least	to	methods	to	concatenate	strings.

hair	=	["red",	"brown",	"blond",	"black"]

eyes	=	["green",	"blue",	"brown"]

weights	=	[50,	55,	60,	65,	70,	75,	80,	85,	90]

Solution	1

print("I	have",	hair[-1],

						"hair,",	eyes[1],	"eyes,	and	I	weight	less	than",

						weights[-2],	"kilos.")

##	I	have	black	hair,	blue	eyes,	and	I	weight	less	than	85	kilos.

Solution	2

out	=	'I	have	{0}	hair,	{1}	eyes	and	I	weight	less	than	'	\

						'{2}	kilos.'.format(hair[-1],

																										eyes[1],

																										weights[-2])

print(out)

##	I	have	black	hair,	blue	eyes	and	I	weight	less	than	85	kilos.

Solution	Exercise	4
Given	 this	 list	b	=	[3,	5,	8,	13,	2,	4,	50,	23,	53,	9,	11],	create	a	 list	c	with	 the
following	elements:	3,	8,	2,	50,	53.

b	=	[3,	5,	8,	13,	2,	4,	50,	23,	53,	9,	11]

c	=	b[:-2:2]

print(c)

##	[3,	8,	2,	50,	53]

Solution	Exercise	5

1. Create	a	list	with	your	latest	5	grades	so	far.
2. Calculate	the	GPA	of	your	last	three	exams.

Solution	1

grades	=	[30,	28,	25,	27,	30]

gpa	=	(grades[-1]	+	grades[-2]	+	grades[-3])	/	3.

print(gpa)

##	27.333333333333332

Solution	2

grades	=	[30,	28,	25,	27,	30]

gpa	=	sum(grades[-3:])	/	3.

print(gpa)

##	27.333333333333332

Solution	Exercise	-	Revise	your	GPA	6

1. You	go	 to	 the	 exam	 review	and	discover	 that	 your	 second-to-last	 grade	 is	 24	 rather
than	27.

2. What	is	your	new	GPA	of	your	last	three	exams?

Solution	1

grades[-2]	=	24

gpa	=	sum(grades[-3:])	/	3.

print(gpa)

##	26.333333333333332

3.8.2 Solutions	to	Exercises	on	Methods

Exercise	1

1. Create	a	group	with	you	and	the	person	on	your	right.
2. Now,	add	the	person	on	your	left	to	the	group.

group	=	["Marco",	"Arianna"]

group.append("Frank")

print(group)

##	['Marco',	'Arianna',	'Frank']

Exercise	2

1. Now,	add	the	person	in	front	of	youAND	the	person	on	your	best	friend.

new_members	=	["Nico",	"Francesco"]

group.extend(new_members)

print(group)

##	['Marco',	'Arianna',	'Frank',	'Nico',	'Francesco']

3.8.3 Solutions	to	Exercises	on	Sets

Exercise	1	-	Find	the	Murderer
Victor	Plum	was	killed	in	the	studio	with	a	knife	by	one	of	his	heirs!	Find	the	murderer!

1. The	following	people	are	Plum’s	heirs:	Diane,	Eleanor,	Kassandra,	Jacob.
2. The	following	people	were	in	the	studio:	Eleanor,	Jack,	Diane.
3. The	following	people	own	a	knife:	Jacob,	Diane,	Kassandra.

heirs	=	set(["Diane",	"Eleanor",	"Kassandra",	"Jacob"])

studio	=	set(["Eleanor",	"Jack",	"Diane"])

knife	=	set(["Jacob",	"Diane",	"Kassandra"])

murderer	=	heirs.intersection(studio,	knife)

print(murderer)

##	{'Diane'}

3.8.4 Solutions	to	Exercises	on	Dictionaries

Exercise	1
Refer	to	the	dictionary	students	defined	above.

1. Let	 us	 assume	 that	 we	 want	 to	 retrieve	 all	 the	 information	 about	 Paul.	 As	 we	 did
before,	 we	 will	 use	 the	 related	 key	 from	 the	 higher-level	 dictionary	 students	 as
follows

print("All	we	know	about	Paul	is",	students["Paul"])

##	All	we	know	about	Paul	is	{'grades':	30,	'skill':	'Math'}

2. Now,	 let	 us	 assume	 that	 we	want	 to	 retrieve	 Paul’s	 skill.	 Inside,	 the	 sub-dictionary
Paul,	we	need	to	add	the	lower-level	key	skill	as	follows:

print("Paul's	skills	is",	students["Paul"]["skill"])

##	Paul's	skills	is	Math

1We	invite	 the	reader	 to	 ignore	 the	for	 loops	here.	These	are	used	with	 the	sole	aim	at
making	the	Python	output	more	readable.

2A	case	in	which	you	can	find	this	structure	is	when	we	retrieve	data	from	Twitter.

Chapter	4

Conditional	Statements	and	Loops

To	understand	what	a	conditional	statement	does,	just	think	about	what	an	if	does	in	real
life.	 For	 instance,	 let’s	 suppose	 that	 you	want	 to	 be	 noticed	 about	 how	many	 coffee	 your
coffee	shop	sold	 if	 the	number	of	coffee	sold	is	higher	than	10.	In	other	words,	we	want	to
have	something	along	the	following	lines:

“If	we	sell	more	than	10	coffee,	just	let	me	know	it.”

There	may	be	cases	when	you	need	 to	execute	a	block	of	code	 several	 times	 in	a	 row.
When	this	is	the	case,	conditional	statements	are	not	enough.	We	need	to	use	slightly	more
complex	 structures	 called	 loops.	 Loops	 are	 literally	 everywhere,	 so	 it	 is	 fundamental	 to
understand	how	they	work.

In	this	chapter,	we	discuss	two	very	common,	but	important	loops:

1. for	loops;
2. while	loops.

So	let’s	try	to	built	a	simple	code	that	mimics	the	sentence	above.	In	order	to	be	able	to
use	 conditional	 statements	 correctly,	we	must	 add	one	more	very	 important	 concept	 called
indentation.

4.1 Indentation
If	you	remember,	last	time	we	discussed	an	unusual	Python	characteristic:	the	complete

absence	of	parentheses	which	delimit	a	given	block	of	 instructions.	We	also	discussed	 that
most	of	the	programming	languages	use	curly	braces	{}	 to	address	this	specif	issue.	So	the
question	is:	how	do	we	define	a	block	of	instructions	in	Python?

The	magic	concept	which	comes	in	handy	here	is	called	indentation.

Python	 understands	 that	 if	 a	 given	 instruction	 is	 indented	with	 respect	 to	 the	 previous
one,	this	implies	that	it	belongs	to	a	separated	block	of	instructions.	In	general,	a	new	block
starts	right	after	a	special	command	which	 is	 represented	by	colons	 :1.	Usually,	most	 IDEs
will	help	you	 in	getting	 the	 right	 indentation.	Where	 it	 is	manually	needed,	 just	 remember
that	 the	 correct	 indentation	 is	 given	 by	 pressing	 the	 TAB	 key	 once,	 or	 by	 putting	 four
consecutive	spaces.

4.2 if	Statements
To	visualize	the	statement,	let’s	take	a	look	at	Figure	4.1	which	depicts	the	logic	behind

an	if-statement.
Going	back	 to	our	coffee,	 let’s	pretend	 that	using	print()	will	do	 the	 job	of	 signaling	 the
number	of	coffee	sold.	We	just	need	to	put	the	if	in	place	so	that	Python	understands	when	to
invoke	 the	print().	The	 syntax	 for	if	 statements	 is	very	 simple:	 you	 just	 need	 to	use	 the
reserved	keyword	if.

FIGURE	4.1:	The	Conceptualization	of	if-statement.

Let’s	do	this:

n_coffee	=	5

if	n_coffee	>=	10:

		print('You	just	sold	more	than	10	coffee')

Please	note	here	the	indentation	after	the	if	statement.	As	you	can	see,	Python	didn’t	print
anything	since	we	have	sold	just	5	coffee.	Below,	we	sold	20	so	the	condition	in	the	if	is	true
so	Python	correctly	prints	the	message.

n_coffee	=	20

if	n_coffee	>=	10:

				print('You	just	sold	more	than	10	coffee')

##	You	just	sold	more	than	10	coffee

As	you	can	 imagine,	 there	are	several	ways	 to	use	if	 statements	meaning	 that	you	can
have	different	condition	controls.	In	Table	4.1	you	can	find	a	quick	list	of	the	most	common
operators.

TABLE	4.1:	A	quick	list	conditional	operators.

Expression Mathematical	Symbol Python	Expression

Less	than < <

Greater	than > >

Less	than	or	equal ≤ <=

Greater	than	or	equal ≥ >=

Equals = ==

Not	equal ≠ !=

Also,	in	Table	4.2,	we	can	compare	objects	in	the	following	way:

TABLE	4.2:	A	quick	list	of	types	of	object	comparisons.

Expression Python	Expression

x	and	y	are	the	same	object x	is	y

x	and	y	are	different	objects x	is	not	y

x	is	a	member	of	y x	in	y

x	is	not	a	member	of	y x	not	in	y

In	 case	 you	 want	 to	 concatenate	 multiple	 conditions,	 you	 can	 use	 the	 additional
commands	and	and	or.	For	instance,	you	can	request	to	being	informed	if	you	sold	between
10	and	20	coffees	as	follows:

n_coffee	=	19

if	n_coffee	>=	10	and	n_coffee	<=	20:

				print('You	just	sold	between	10	and	20	coffees')

##	You	just	sold	between	10	and	20	coffees

Alternatively,	you	always	have	an	or	condition	which	gives	you	just	two	different	option.
For	instance,	you	just	want	to	know	if	you	sell	less	than	10	coffee	or	more	than	20	as	follows:

n_coffee	=	2

if	n_coffee	<=	10	or	n_coffee	>=	20:

				print('You	just	sold	less	than	10	or	'	\

										'more	than	20	coffees')

##	You	just	sold	less	than	10	or	more	than	20	coffees

4.3 else	Statements
If	statements	can	solve	several	problems.	One	question	you	can	ask	though	is:	how	can

we	have	a	way	out?	Meaning,	how	can	we	code	something	like:

“If	 we	 sell	 more	 than	 10	 coffee,	 just	 let	 me	 know	 it	 otherwise	 apply	 a	 10%
discount.”

The	word	otherwise	 is	 translated	 in	 Python	 by	 the	 reserved	 keyword	 else.	 and	 the	 use	 is
similar	to	if.	Of	course,	there	wouldn’t	be	any	otherwise	without	an	if	so	the	else	command
works	in	conjunction	with	if.	Let’s	write	in	Python	the	above	statement:

n_coffee	=	5

if	n_coffee	>=	10:

				print('You	just	sold	more	than	10	coffees')

else:

				print('Buy	a	coffee	with	10%	discount!')

##	Buy	a	coffee	with	10%	discount!

As	you	can	 see,	Python	checked	 the	 first	 condition	given	by	 the	if	 and	 found	 it	 to	be
false.	Then	it	checked	the	way	out	given	by	the	else	and	found	it	to	be	true	so	it	printed	the
message.

4.4 elif	Statements
Now	let’s	add	one	more	step.	How	can	we	code	something	like:

“If	we	sell	more	than	10	coffee,	just	let	me	know	it	but	if	we	sell	more	than	20
then	we	offer	an	orange	juice	for	free.	Ah	yes,	if	we	sell	less	than	10	coffee	then
apply	a	10%	discount”

Multiple	options	in	Python	are	managed	by	elif.	As	else	this	works	only	when	if	is	already
in	place.

n_coffee	=	124

if	n_coffee	>=	10:

				print('You	just	sold	more	than	10	coffees')

elif	n_coffee	>=	20:

				print('Here	is	your	free	orange	juice	for	you!')

else:

				print('Buy	a	coffee	with	10%	discount!')

##	You	just	sold	more	than	10	coffees

Hey,	what’s	wrong	here?	Why	the	code	doesn’t	enter	in	the	elif	block?	Well,	20	is	always	>=
than	10,	so	the	first	condition	will	always	be	true.	We	need	to	fine	tune	the	first	if	and	put	an
upper	bound	as	follows:

n_coffee	=	124

if	n_coffee	>=	10	and	n_coffee	<	20:

				print('You	just	sold	more	than	10	coffees')

elif	n_coffee	>=	20:

				print('Here	is	your	free	orange	juice	for	you!')

else:

				print('Buy	a	coffee	with	10%	discount!')

##	Here	is	your	free	orange	juice	for	you!

4.4.1 Condition	Check
Whenever	we	want	 to	use	if	and	elif,	we	need	 to	 remember	 that	Python	enters	 in	 the

subsequent	block	of	instructions	if	and	only	if	the	condition	is	satisfied.	In	other	words,	if	the
condition	 that	 the	 statement	 is	 checking	 is	 found	 true.	 This	 is	 why	 whenever	 we	 do
comparison	with	the	list	of	operators	in	the	table	above,	we	get	a	boolean	as	a	response.

4.5 The	for	Loop
A	 loop	 is	 a	mechanism	 for	 which	 computer	 repeats	 the	 same	 block	 of	 codes	multiple

times.	We	depict	the	logic	behind	a	for	loop	in	Figure	4.2.

FIGURE	4.2:	The	Conceptualization	of	the	for	Loop

Let’s	 assume	 that	 we	 want	 to	 print	 each	 element	 contained	 in	 a	 given	 sequence	 of
numbers.	Our	sequence	goes	from	1	to	5.	How	can	we	get	Python	to	print	all	elements?	Well,
we	can	do	it	manually	by	remembering	that	Python,	as	well	as	other	programming	languages,
executes	the	instructions	sequentially.	So	the	code	at	line	n	−	1	will	always	come	before	the
code	at	line	n.

my_sequence	=	(1,	2,	3,	4,	5)

print(my_sequence[0])

##	1

print(my_sequence[1])

##	2

print(my_sequence[2])

##	3

print(my_sequence[3])

##	4

print(my_sequence[4])

##	5

You	 immediately	 realize	 how	 simple	 is	 to	write	 a	 loop.	But	what	 if	 the	 sequence	was
made	 by	 104	 elements?	Well,	 we	 can	 use	 the	 for	 function	 to	make	 Python	 automatically
scroll	through	each	element	of	the	sequence	so	that	we	could	execute	a	given	instruction	step
by	step.	Let’s	print	all	the	elements	of	my_sequence	with	the	help	of	for:

my_sequence	=	(1,	2,	3,	4,	5)

for	ith_element	in	my_sequence:

				print(ith_element)

##	1

##	2

##	3

##	4

##	5

As	you	can	see,	several	things	happened.	Let’s	proceed	with	order:

1. the	syntax	of	a	for	loop	is	as	follows:

for	<element>	in	<iterable>:

				<instructions>

2. for	and	in	are	reserved	keywords.	One	the	structure	of	the	loop	has	been	defined,	just
remember	 to	 use	 the	 operator	 :	 at	 the	 end	of	 the	 line	 and	 to	 indent	with	 a	TAB	 or	 4
spaces	in	the	new	line;

3. <element>	 is	a	mute	variable	which	only	exists	within	 the	for	 loop.	 In	 the	example
above,	ith_element	corresponds	to	the	physical	values	in	my_sequence;

4. <iterable>	 is	 the	 object	 which	 we	 want	 to	 scroll.	 An	 iterable	 is	 a	 collection	 of
elements	 which	 can	 be	 either	 fully	 determined	 like	 for	 tuples,	 lists,	 sets,	 and
dictionaries,	or	a	conceptual	iterator	 like	a	range	of	numbers.	We	will	see	that	a	for
loop	only	works	with	iterable	objects;

5. <instructions>	represents	the	block	of	instructions	which	will	be	executed	in	the	for
loop;

6. it’s	less	verbose	than	before;

7. we	don’t	have	to	pay	attention	at	specifying	the	element	we	want	to	access;

8. we	are	getting	direct	access	to	the	elements	of	my_sequence.

4.5.1 For	Loops	On	Determined	Iterables
We	anticipated	 the	 concept	 of	 fully	 determined	 iterables	 and	 now	 it	 is	 time	 to	 explore

what	this	means.	Whenever	you	have	a	tuple,	a	list	or	a	dictionary,	we	can	run	the	for	loop
directly	on	those	objects,	which	are	fully	determined.

We	need	to	pay	lot	of	attention	on	the	type	of	iterable	we	are	dealing	with	since	each	has
its	 own	 different	 behavior.	 In	 order	 to	 better	 understand	 the	 concept,	 take	 a	 look	 at	 the
following	examples.

4.5.1.1 for	Loops	Over	Tuples	and	Lists
Looping	over	these	objects	has	the	same	effect	that	we	have	already	seen.	Let’s	create	a

tuple	and	a	list	both	containing	a	sequence	from	1	to	5	and	print	each	element

my_tuple	=	(1,	2,	3,	4,	5)

my_list	=	[1,	2,	3,	4,	5]

my_list.append(6)

#	Loop	over	a	tuple

for	_i	in	my_tuple:

				print(_i)

##	1

##	2

##	3

##	4

##	5

#	Loop	over	a	list

for	_j	in	my_list:

				print(_j)

##	1

##	2

##	3

##	4

##	5

##	6

We	 can	 also	 try	 to	 print	 both	 sequences	 using	 just	 one	 loop.	 In	 this	 case,	 the	 two
sequences	must	have	the	same	length

print('Both	Sequences')

##	Both	Sequences

for	_i	in	my_tuple,	my_list:

				print(_i)

##	(1,	2,	3,	4,	5)

##	[1,	2,	3,	4,	5,	6]

As	you	probably	noted,	<element>	is	a	given	name	with	the	prefix	'_'.	This	is	a	convention
we	 use	 a	 lot	 to	 explicitly	 and	 visually	 state	which	 is	 the	mute	 variable	 that	 we	 are	 using
within	the	loop.

In	Python	there	is	a	handy	way	to	access	both	to	indexes	and	values	when	looping	over
an	object	by	using	the	function	enumerate().	This	takes	an	iterable	object	and	as	<element>,
you	can	specify	both	the	index	position	and	the	related	value	as	follows:

for	_i,	_val	in	enumerate(my_list):

				print(_i,	_val)

##	0	1

##	1	2

##	2	3

##	3	4

##	4	5

##	5	6

As	 you	 can	 see,	 _i	 represents	 the	 indexes,	 while	 _val	 represents	 the	 values	 at	 a	 specific
index.

4.5.1.2 for	Loops	Over	Strings
What	happens	when	we	have	a	string	and	we	use	a	for	 loop	over	it?	Well,	you	need	to

think	the	string	as	a	sequence	of	elements	given	by	characters.	The	for	loop	will	scroll	over
them	as	follows:

my_string	=	['Hello	World']

for	_i	in	my_string:

				print(_i)

##	Hello	World

4.5.1.3 for	Loops	Over	Dictionaries
We	 should	 remember	 that	 a	 dictionary	 is	 a	 sequence	 of	 pairs	 given	 by	 the	key	 and	 its

value.	When	we	loop	over	dictionaries,	we	use	just	the	keys	and	not	the	values.	Let’s	loop
over	the	dictionary	representing	the	Beatles.

beatles	=	{'bass':	'Paul	McCartney',

											'guitar':	'George	Harrison',

											'singer':	'John	Lennon',

											'drummer':	'Ringo	Starr'}

for	_i	in	beatles:

				#	print	the	key

				print(_i)

				#	print	the	value	at	that	key

				print(beatles[_i])

##	bass

##	Paul	McCartney

##	guitar

##	George	Harrison

##	singer

##	John	Lennon

##	drummer

##	Ringo	Starr

We	can	print	dictionary	values	by	slicing	the	dictionary	using	its	keys.

for	_i	in	beatles:

				print('Key	{0}	with	value	{1}'.format(_i,	beatles[_i]))

##	Key	bass	with	value	Paul	McCartney

##	Key	guitar	with	value	George	Harrison

##	Key	singer	with	value	John	Lennon

##	Key	drummer	with	value	Ringo	Starr

4.5.2 for	Loops	Over	Iterators
What	if	we	wanted	a	for	loop	over	an	iterable	without	directly	accessing	its	elements.	In

other	words,	we	want	 to	scroll	 the	iterable	through	its	 indexes.	What	makes	the	job	here	is
range()	applied	over	the	whole	length	of	the	iterable	as	follows:

my_list	=	[1,	2,	3,	4,	5]

print(range(len(my_list)))

##	range(0,	5)

print(len(range(len(my_list))))

##	5

print(type(range(len(my_list))))

##	<class	'range'>

for	_i	in	range(len(my_list)):

				temp	=	_i	+	1

				print(temp/5)

##	0.2

##	0.4

##	0.6

##	0.8

##	1.0

4.5.3 Creating	Lists	Through	for	Loops
What	if	we	want	to	create	a	new	list	that	stores	the	results	of	each	iteration	(rather	than

printing	 it)?	You	should	remember	a	very	 important	method	for	 lists	called	append().	This
what	we	are	about	to	apply.

Let’s	 create	 a	 list	with	 some	 numbers	 in	 it.	We	want	 to	 create	 a	 two	more	 lists	which
contain	the	squared	values	and	the	square	root	of	the	elements	of	the	first	list.

my_list	=	[2,	4,	12,	15,	25]

my_list_squared	=	[]

my_list_sqrt	=	[]

for	_i	in	my_list:

				temp	=	_i**2

				my_list_squared.append(temp)

print(my_list_squared)

##	[4,	16,	144,	225,	625]

Or.	.	.

for	_i	in	range(len(my_list)):

				temp	=	my_list[_i]**(1/2)

				temp	=	round(temp,	2)

				my_list_sqrt.append(temp)

print(my_list_sqrt)

##	[1.41,	2.0,	3.46,	3.87,	5.0]

4.5.4 Iteration	Over	Multiple	Lists
The	goal	here	is	to	iterate	over	two	lists	at	the	same	time.	Let’s	create	a	list	with	the	first

names	of	some	soccer	players	and	a	second	list	with	their	last	names.	We	want	to	print	their
full	names.

first_names	=	["Franco",	"Marco",	"Paolo",	"Pippo"]

last_names	=	["Baresi",	"Van	Basten",	"Maldini",	"Inzaghi"]

for	_i	in	range(len(first_names)):

				print(first_names[_i],	last_names[_i])

##	Franco	Baresi

##	Marco	Van	Basten

##	Paolo	Maldini

##	Pippo	Inzaghi

Please	note	that	this	kind	of	iteration	works	just	with	for	loops	over	iterators.

4.5.5 Exercises	on	for	Loops	Over	Lists

Exercise	1
You	are	the	instructor	in	a	class	with	5	students.

1. Create	the	list	grade1	that	contains	the	grades	of	the	mid-term	exam	(you	are	allowed
to	choose	5	different	grades	by	yourself).

2. Curve	the	grades	by	adding	to	2	points	to	each	grade.
3. Print	each	grade	through	an	iterable.
4. Print	each	grade	through	an	iterator.

Exercise	2
Consider	the	example	above	about	AC	Milan	players.

1. Define	the	new	list	legends	which	contains	the	full	names.
2. Print	the	new	list.

Exercise	3
You	have	 the	Beatles	 in	 your	 classroom.	This	 is	 awesome,	 but	 you	 also	 get	 the	 chance	 to
know	their	grades:	30,	28,	25,	18.

1. Please	create	a	new	list	beatles_grades	with	their	names,	last	names,	and	grades.
2. Print	the	new	list.

E.g.,	Paul	McCartney:	30;	George	Harrison:	28.	.	.

name	=	["Paul",	"George",	"John",	"Ringo"]

surname	=	["McCartney",	"Harrison",	"Lennon",	"Starr"]

grades	=	[30,	28,	25,	18]

beatles_grades	=	[]

Exercise	4

1. Print	 a	 list	with	 the	names	 of	 your	 best	 friends,	 one	with	 their	gifts,	 and	 one	with
costs.

The	final	result	should	read:	I	will	give	name	a	gift.	It	costs	price.

name	=	["Paul",	"Kirsten",	"David",	"Debbie"]

gifts	=	["watch",	"smartphone",	"kindle",	"book"]

price	=	[100,	300,	100,	30]

christmas_list	=	[]

4.5.6 for	Loops	Over	Dictionaries:	Details
We	have	already	seen	the	behavior	of	a	for	 loop	over	a	dictionary.	You	basically	scroll

over	 keys	 and	 not	 values,	 at	 least	 directly.	 We	 have	 also	 seen	 that	 in	 order	 to	 access	 a
dictionary’s	value	we	need	to	use	[]	and	slice	the	dictionary	itself.	Let’s	now	assume	that	we
want	to	print	the	following	sentence:

KEY’s	grade	is	VALUE

So	let’s	create	a	one-level	dictionary	in	which	we	have	4	students	with	their	grades	and	we
store	them	in	student_grades.

student_grades	=	{'Kirs':	29,

																		'Paul':	30,

																		'Mark':	22,

																		'Abbie':	27}

print(student_grades)

##	{'Kirs':	29,	'Paul':	30,	'Mark':	22,	'Abbie':	27}

We	 need	 to	 remember	 that	 a	 dictionary	 is	 an	 iterable.	 For	 this	 reason,	 we	 can	 use	 a
specific	method	called	items().	Because	the	dictionary	comes	with	two	iterable	objects	in	it,
KEYS	and	VALUES	all	we	have	to	do	is	to	specify	two	elements	as	follows:

for	_key,	_value	in	student_grades.items():

				print(_key,	_value)

##	Kirs	29

##	Paul	30

##	Mark	22

##	Abbie	27

The	behavior	is	pretty	similar	 to	the	one	of	enumerate().	We	have	to	mute	variables,	_key
and	_value,	which	represent	KEYS	and	VALUES,	 respectively.	Of	course,	we	can	achieve	 the
same	result	by	simply	looping	over	the	KEYS	and	slicing	the	dictionary.	The	choice	of	method
depends	on	the	task	you	are	trying	to	solve.

for	_i	in	student_grades:

				print(_i,	student_grades[_i])

##	Kirs	29

##	Paul	30

##	Mark	22

##	Abbie	27

Even	more,	we	can	print	more	meaningful	statements	by	concatenating	strings	 in	 the	usual
way:

for	_key,	_value	in	student_grades.items():

				print('{0}\'s	grade	is	{1}'.format(_key,	_value))

##	Kirs's	grade	is	29

##	Paul's	grade	is	30

##	Mark's	grade	is	22

##	Abbie's	grade	is	27

Please	note	that	since	we	want	to	explicitly	print	the	symbol	',	a	quotation	mark,	we	need
to	 escape	 it	 using	 a	 backslash	 \.	 This	 is	 mandatory	 otherwise	 Python	 would	 treat	 the
quotation	mark	as	if	we	were	defining	a	string	so	as	a	formal	quotation	mark.

4.5.7 for	Loops	With	Multi-Level	Dictionaries
So	far,	we	have	already	seen	what	a	one-level	dictionary	is:	you	have	a	key	paired	with

one	value.	Now,	let	us	assume	that	we	have	the	dictionary	students	and	we	want	to	print	the
skills	associated	with	each	student.	In	the	language	of	dictionaries,	this	means	that	we	have
the	first	level	key	which	indicates	the	name	of	the	student.	The	value	associated	with	this	key
is	another	dictionary	which	contains	both	 the	grades	and	 the	 skills.	students	 is	defined	as
follows:

students	=	{"Kirs":	{"grade":	29,	"skill":	"engineering"},

												"Paul":	{"grade":	30,	"skill":	"math"},

												"Mark":	{"grade":	22,	"skill":	"Latin"}

											}

Now	let’s	iterate	over	keys	and	values	of	this	dictionary.

for	_key,	_value	in	students.items():

				print(_key,	_value)

##	Kirs	{'grade':	29,	'skill':	'engineering'}

##	Paul	{'grade':	30,	'skill':	'math'}

##	Mark	{'grade':	22,	'skill':	'Latin'}

We	immediately	notice	that	we	have	three	sub-dictionaries,	one	for	each	student.	Inside	this
for	 loop,	each	sub-dictionary	is	 indicated	with	the	key	_key.	Each	sub-dictionary	_key	has
two	more	sub-keys:	grade	and	skill.	This	 time,	we	 are	 interested	 in	 retrieving	 the	values
associated	to	the	sub-key	skill.	We	know	from	previous	sections	that	the	syntax	to	retrieve
this	value	is	_key['skill']	so	we	just	plug	this	inside	the	for	loop	as	follows:

for	_key,	_value	in	students.items():

				print('{0}\'s	best	skill	is	'	\

											'{1}'.format(_key,	students[_key]['skill']))

##	Kirs's	best	skill	is	engineering

##	Paul's	best	skill	is	math

##	Mark's	best	skill	is	Latin

4.5.8 Exercises	on	for	Loops	Over	Dictionaries

Exercise	1
Consider	the	dictionary	students.

1. Print	the	following	statement:

STUDENT	got	GRADE	and	the	best	skill	is	SKILL.
E.g.,	Kirs	got	29	and	best	skill	is	engineering.

4.6 while	Loops
We	have	just	learned	a	way	to	sequentially	execute	certain	operations.	What	if	instead	of

following	a	sequence,	we	want	to	repeat	a	block	of	instructions?	The	method	that	addresses
this	is	issue	is	called	while.	The	rational	under	the	while	loop	is	very	simple	and	we	depict
the	logic	behind	it	in	Figure	4.3.	In	words,	the	concept	of	this	loop	goes	as	follows:

While	 this	condition	 is	 true,	keep	executing	 the	 following	block	of	 instructions.
As	soon	as	the	condition	is	not	met	anymore,	so	it	is	false,	do	something	else.

FIGURE	4.3:	The	Conceptualization	of	While	Loop.

The	 indented	 body	 of	 the	 while	 loop	 repeats	 as	 long	 as	 the	 predicate	 following	 the
keyword	is	true:

while	<pred>:

				<instructions>

Let’s	see	an	example	of	a	while	loop.	The	following	call	is	executed	till	the	length	of	the
input	 list	 is	>	 0.	 So	 as	 soon	 as	 there	 are	 no	more	 elements	 in	 the	 list,	 the	 while	 loop	 is
terminated.	Also,	we	get	to	know	a	new	method	for	lists	which	is	called	pop().	pop()	deletes
and	returns	the	last	element	of	a	list.

beatles	=	['Ringo',	'John',	'George',	'Paul']

while	len(beatles)	>	0:

				beatles_popped	=	beatles.pop()

				print(beatles_popped	+	'	left	the	Beatles')

				print('There	are	{0}	Beatles	left'.format(len(beatles)))

##	Paul	left	the	Beatles

##	There	are	3	Beatles	left

##	George	left	the	Beatles

##	There	are	2	Beatles	left

##	John	left	the	Beatles

##	There	are	1	Beatles	left

##	Ringo	left	the	Beatles

##	There	are	0	Beatles	left

As	you	can	see,	this	entails	that	something	has	to	happen	in	the	loop	in	order	to	change
the	 condition!	 This	 is	 one	 possible	 way	 to	 terminate	 a	 while	 loop.	 Another	 way	 is	 the
following.	Let’s	consider	the	idea	of	just	printing	natural	numbers	till	a	given	upper	bound.

count	=	0

while	(count	<	11):

				print('The	count	is:	{0}'.format(count))

				count	+=	1

##	The	count	is:	0

##	The	count	is:	1

##	The	count	is:	2

##	The	count	is:	3

##	The	count	is:	4

##	The	count	is:	5

##	The	count	is:	6

##	The	count	is:	7

##	The	count	is:	8

##	The	count	is:	9

##	The	count	is:	10

As	you	can	see,	we	define	an	initial	counter	called	count	set	to	zero.	The	condition	says	that
we	print	till	count	=	10.	At	the	end	of	each	iteration	we	increment	the	value	of	count	by	1
using	the	operator	+=.

4.6.1 Exercises	on	while	Loops

Exercise	1
Calculate	the	square	of	each	number	from	1	to	10.

4.7 List	Comprehension

Creating	 list	 in	 Python	 is	 very	 easy.	 .	 .	 but	 it	 can	 pretty	 quickly	 turn	 into	 something
tiresome.	For	instance,	typing	in	all	the	values	separately	can	take	quite	some	time	and	you
can	 easily	make	mistakes.	We	are	 lucky	 enough	 though	 since	Python	 comes	with	 a	 handy
tool	called	list	comprehension.	This	offers	you	a	way	to	mimic	the	mathematical	notation	and
to	translate	it	into	Python’s	instructions.

In	order	to	explain	what	we	mean,	let’s	consider	the	sets,	tuples,	and	vectors	which	are	all
mathematical	objects.	Through	 the	mathematical	notation,	we	can	describe	 these	objects	as
follows:

S	=	{x2	:	x	in	{0,	.	.	.	,	9}},
V	=	1,	2,	4,	8,	.	.	.	,	212	,
M	=	{x	|	x	in	S	and	x	even}.

We	read	these	objects	as	follows:

1. The	sequence	S	is	actually	a	sequence	that	contains	values	between	0	and	9	included
that	are	raised	to	the	power	of	two.

2. The	 sequence	V,	 on	 the	 other	 hand,	 contains	 the	 value	 2	 that	 is	 raised	 to	 a	 certain
power.	For	the	first	element	in	the	sequence,	this	is	0,	for	the	second	this	is	1,	and	so
on,	until	you	reach	12.

3. Lastly,	the	sequence	M	contains	elements	from	the	sequence	S,	but	only	the	even	ones.

A	bit	hard	to	digest,	right?	In	Python	we	would	do	the	following:

S	=	[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

V	=	[1,	2,	4,	8,	16,	32,	64,	128,	256,	512,	1024,	2048,	4096]

M	=	[0,	4,	16,	36,	64]

So	let’s	build	the	three	lists	using	the	list	comprehension	way	as	follows:

S	=	[x**2	for	x	in	range(10)]

V	=	[2**i	for	i	in	range(13)]

M	=	[x	for	x	in	S	if	x	%	2	==	0]

print(S)

##	[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

print(V)

##	[1,	2,	4,	8,	16,	32,	64,	128,	256,	512,	1024,	2048,	4096]

print(M)

##	[0,	4,	16,	36,	64]

It	worked!	What	the	code	is	actually	telling	you	is	the	following:

1. The	list	S	is	built	up	with	the	square	brackets	that	you	read	above	in	the	first	section.
In	those	brackets,	you	see	that	there	is	an	element	x,	which	is	raised	to	the	power	of
10.	Now,	you	just	need	to	know	for	how	many	values	(and	which	values!)	you	need	to
raise	to	the	power	of	2.	This	is	determined	in	range(10).	Considering	all	of	this,	you
can	derive	that	you’ll	raise	all	numbers,	going	from	0	to	9,	to	the	power	of	2.

2. The	list	V	contains	the	base	value	2,	which	is	raised	to	a	certain	power.	Just	like	before,
now	you	need	to	know	which	power,	i,	is	exactly	going	to	be	used	to	do	this.	You	see
that	i	in	this	case	is	part	of	range(13),	which	means	that	you	start	from	0	and	go	until
12.	All	of	this	means	that	your	list	is	going	to	have	13	values	-	those	values	will	be	2
raised	to	the	power	0,	1,	2,.	.	.	all	the	way	up	to	12.

3. Lastly,	the	list	M	contains	elements	that	are	part	of	S	if-and-only-if	they	can	be	divided
by	2	without	having	any	leftovers.	The	modulo	needs	to	be	0.	In	other	words,	the	list	M
is	built	up	with	the	equal	values	that	are	stored	in	list	S.

We	have	just	learned	for	loops	and	as	you	can	see	this	is	a	keyword	that’s	coming	back
in	 list	 comprehension.	Also,	 the	 keyword	in	 plays	 a	major	 role	 here	 since	 this	 reflects	 its
mathematical	 formulation.	 To	 conclude,	 the	 general	 syntax	 of	 a	 list	 comprehension	 is	 as
follows:

my_list	=	[x	for	x	in	<iterable>]

Or	in	other	words:

[<expression>	for	<item>	in	<list>]

4.8 An	Alternative	to	for	Loops
The	main	purpose	of	a	for	loops	is	to	repeat	a	block	of	code	a	fixed	number	of	times.	List

comprehensions	are	actually	good	alternatives	 to	for	 loops,	 as	 they	are	more	compact	 and
directly	reflect	a	mathematical	formulation.

Consider	the	following	example	that	starts	with	the	variable	numbers,	defined	as	a	range
from	0	up	until	10	(not	included).	The	trick	here	is	that	the	number	you	pass	to	range()	 is
actually	 the	 number	 of	 integers	 you	want	 to	 generate.	And	 remember,	 the	 sequence	 starts
from	zero.	Let’s	try	it:

n_elements	=	20

numbers	=	range(n_elements)

print(numbers)

##	range(0,	20)

Let’s	pretend	we	want	to	generate	a	new	list	called	new_list	which	contains	the	square
of	just	the	even	numbers.	Let’s	use	a	for	loop	here	since	we	know	how	to	do	it.

#	Initialize	`new_list`

new_list	=	[]

#	Add	values	to	`new_list`

for	n	in	numbers:

				if	n%2	==	0:

											new_list.append(n**2)

#	Print	`new_list`

print(new_list)

##	[0,	4,	16,	36,	64,	100,	144,	196,	256,	324]

Well,	 as	 expected	 we	 now	 master	 the	 for	 loops	 and	 the	 conditional	 statements	 and	 we
achieved	the	intended	result.	Now	let’s	try	to	do	the	same	task	but	with	list	comprehension.
We	can	clearly	see	the	neater	and	more	compact	notation.

#	Create	`new_list`

new_list	=	[n**2	for	n	in	numbers	if	n%2	==	0]

#	Print	`new_list`

print(new_list)

##	[0,	4,	16,	36,	64,	100,	144,	196,	256,	324]

Let’s	consider	another	example	around	sets.	Let	A	and	B	be	two	sets,	the	cross	product	(or
Cartesian	product)	of	A	and	B,	written	A	×	B,	is	the	set	of	all	pairs	wherein	the	first	element	is
a	member	of	the	set	A	and	the	second	element	is	a	member	of	the	set	B.	Mathematically	we
have:

A	×	B	=	(a,	b)	:	a	belongs	to	A,	b	belongs	to	B.

colors	=	["red",	"green",	"yellow",	"blue"]

things	=	["house",	"car",	"tree"]

colored_things	=	[(a,	b)	for	a	in	colors	for	b	in	things]

#	we	use	a	for	loop	to	print	because

#	of	printing	layout

for	_i	in	colored_things:

				print(_i)

##	('red',	'house')

##	('red',	'car')

##	('red',	'tree')

##	('green',	'house')

##	('green',	'car')

##	('green',	'tree')

##	('yellow',	'house')

##	('yellow',	'car')

##	('yellow',	'tree')

##	('blue',	'house')

##	('blue',	'car')

##	('blue',	'tree')

Let’s	now	consider	a	final	example	in	which	we	put	if-else	statements	as	well.

obj	=	["Even"	if	i%2	==	0	else	"Odd"	for	i	in	range(10)]

for	_i	in	obj:

				print(_i)

##	Even

##	Odd

##	Even

##	Odd

##	Even

##	Odd

##	Even

##	Odd

##	Even

##	Odd

4.9 Read	the	Code

Reading	1

list1	=	[3,	5,	7,	8,	10]

for	element	in	list1:

				element1	=	element	+	1

				print(element1)

Reading	2

list1	=	[3,	5,	7,	8,	10]

for	element	in	list1:

				element1	=	element	+	1

print(element1)

Reading	3

brand	=	["CocaCola",	"Pepsi",	"MountainDew"]

account	=	["@CocaCola",	"@pepsi",	"@MountainDew"]

followers	=	[300000,	200000,	45000]

for	_i	in	range(len(brand)):

				print('The	Twitter	account	of	{0}	is	{1}	and	has	{2}'	\

											'followers.'.format(brand[_i],

																															account[_i],

																															followers[_i]))

4.10 Solutions	to	Exercises

4.10.1 Solutions	to	Exercises	on	for	Loops	Over	Lists

Exercise	1
You	are	the	instructor	in	a	class	with	5	students.

1. Create	the	list	grade1	that	contains	the	grades	of	the	mid-term	exam	(you	are	allowed
to	choose	5	different	grades	by	yourself).

2. Curve	the	grades	by	adding	to	2	points	to	each	grade.
3. Print	each	grade	through	an	iterable.
4. Print	each	grade	through	an	iterator.

Solution	1

grade1	=	[23,	25,	28,	26,	30]

for	_g	in	grade1:

				print(_g	+	2)

##	25

##	27

##	30

##	28

##	32

Solution	2

for	_g	in	range(len(grade1)):

				print(grade1[_g]	+	2)

##	25

##	27

##	30

##	28

##	32

Exercise	2
Consider	the	example	above	about	AC	Milan	players.

1. Define	the	new	list	legends	which	contains	the	full	names.
2. Print	the	new	list.

first_names	=	["Franco",	"Marco",	"Paolo",	"Pippo"]

last_names	=	["Baresi",	"Van	Basten",	"Maldini",	"Inzaghi"]

legends=[]

for	_i	in	range(len(first_names)):

				temp	=	first_names[_i]	+	'	'	+	last_names[_i]

				legends.append(temp)

for	_i	in	legends:

				print(_i)

##	Franco	Baresi

##	Marco	Van	Basten

##	Paolo	Maldini

##	Pippo	Inzaghi

Exercise	3
You	have	 the	Beatles	 in	 your	 classroom.	This	 is	 awesome,	 but	 you	 also	 get	 the	 chance	 to
know	their	grades:	30,	28,	25,	18.

1. Please	create	a	new	list	beatles_grades	with	their	names,	last	names,	and	grades.
2. Print	the	new	list.

E.g.,	Paul	McCartney:	30;	George	Harrison:	28.	.	.

name	=	["Paul",	"George",	"John",	"Ringo"]

surname	=	["McCartney",	"Harrison",	"Lennon",	"Starr"]

grades	=	[30,	28,	25,	18]

beatles_grades	=	[]

Solution	1

for	_i	in	range(len(name)):

				beatles_grades.append(name[_i]	+	"	"	+	surname[_i]	+	\

																										":	"	+	str(grades[_i]))

for	_i	in	beatles_grades:

				print(_i)

##	Paul	McCartney:	30

##	George	Harrison:	28

##	John	Lennon:	25

##	Ringo	Starr:	18

Solution	2

beatles_grades	=	[]

for	_i	in	range(len(name)):

				beatles_grades.append('{0}	{1}:	{2}'.format(name[_i],

																																																surname[_i],

																																																grades[_i]))

for	_i	in	beatles_grades:

				print(_i)

##	Paul	McCartney:	30

##	George	Harrison:	28

##	John	Lennon:	25

##	Ringo	Starr:	18

Exercise	3

1. Print	 a	 list	with	 the	names	 of	 your	 best	 friends,	 one	with	 their	gifts,	 and	 one	with
costs.

The	final	result	should	read:	I	will	give	name	a	gift.	It	costs	price.

name	=	["Paul",	"Kirsten",	"David",	"Debbie"]

gifts	=	["watch",	"smartphone",	"kindle",	"book"]

price	=	[100,	300,	100,	30]

christmas_list	=	[]

Solution	1

for	_i	in	range(len(name)):

				complete	=	"I	will	give	"	+	name[_i]	+	"	a	"	+	\

															gifts[_i]	+	".	It	costs	"	+	str(price[_i])

				christmas_list.append(complete)

for	_i	in	christmas_list:

				print(_i)

##	I	will	give	Paul	a	watch.	It	costs	100

##	I	will	give	Kirsten	a	smartphone.	It	costs	300

##	I	will	give	David	a	kindle.	It	costs	100

##	I	will	give	Debbie	a	book.	It	costs	30

Solution	2

for	_i	in	range(len(name)):

				complete	=	'I	will	give	{0}	a	{1}.	'	\

															'It	costs	{2}'.format(name[_i],

																																					gifts[_i],

																																					price[_i])

				christmas_list.append(complete)

for	_i	in	christmas_list:

				print(_i)

##	I	will	give	Paul	a	watch.	It	costs	100

##	I	will	give	Kirsten	a	smartphone.	It	costs	300

##	I	will	give	David	a	kindle.	It	costs	100

##	I	will	give	Debbie	a	book.	It	costs	30

##	I	will	give	Paul	a	watch.	It	costs	100

##	I	will	give	Kirsten	a	smartphone.	It	costs	300

##	I	will	give	David	a	kindle.	It	costs	100

##	I	will	give	Debbie	a	book.	It	costs	30

4.10.2 Solutions	to	Exercises	on	for	Loops	Over	Dictionaries

Exercise	1
Consider	the	dictionary	students.

1. Print	the	following	statement:

STUDENT	got	GRADE	and	the	best	skill	is	SKILL.
E.g.,	Kirs	got	29	and	best	skill	is	engineering.

for	_key,	_value	in	students.items():

				print('{0}	got	{1}	and	the	best	skill	'	\

											'is	{2}'.format(_key,

																											students[_key]['grade'],

																											students[_key]['skill']))

##	Kirs	got	29	and	the	best	skill	is	engineering

##	Paul	got	30	and	the	best	skill	is	math

##	Mark	got	22	and	the	best	skill	is	Latin

4.10.3 Solutions	to	Exercises	on	while	Loops

Exercise	1
Calculate	the	square	of	each	number	from	1	to	10.

count	=	1

while	(count	<	11):

				print(count**2)

				count	+=1

##	1

##	4

##	9

##	16

##	25

##	36

##	49

##	64

##	81

##	100

print("Done!	:-)")

##	Done!	:-)

1We	have	seen	colon	operator	when	we	were	slicing	tuples	and	lists.	The	use	here	is	very
different.

Chapter	5

Functions

One	of	the	most	important	thing	to	remember	when	coding	is	the	ability	to	not	just	save
the	code,	but	also	reuse	it.	Python	is	a	functional	programming	language	in	the	sense	that	it’s
been	conceived	to	work	with	functions.

A	function	is	a	block	of	reusable	code	that	is	used	to	perform	a	single	action.	The	term
function	is	borrowed	from	the	math.	You	pass	an	input	to	a	“mathematical”	function	and	you
get	an	output.	Pretty	much	like	mathematical	functions,	we	can	use	a	Python	function	over
and	over	again	and	we	can	expect	that	its	behavior	doesn’t	change	with	time.

When	we	want	 to	use	a	 function,	we	say	we	call	or	 invoke	 the	 function.	Functions	are
everywhere	in	Python	and	we	have	already	seen	few	of	them	which	are	built-in	like	print(),
len(),	 type().	 As	 you	 can	 imagine,	 we	 can	 create	 our	 own	 functions	 which	 satisfy	 our
needs.	These	functions	are	called	user-defined	functions.

Functions	in	Python	have	two	main	core	elements:

1. header:	the	characteristics	that	defines	the	function:

1. the	reserved	keyword	def	to	start	declaring	the	function;
2. the	 function	name,	 followed	by	parentheses	()	 (remember,	 it’s	 a	 function)	 and	 a

colon	:;
3. Inside	()	you	can	include	optional	parameters	which	are	named	entities	that	specify

an	argument	that	the	function	can	accept;

2. body:	all	the	indented	code	we	write	after	the	definition	line:

1. any	instruction	the	function	executes;
2. the	 reserved	 keyword	 return.	 The	 return	 statement	 passes	 a	 value	 out	 of	 the

function.	It	also	stops	Python	from	running	the	rest	of	the	code	in	the	function.	In
other	words,	return	is	the	last	instruction	executed	by	the	function.

The	general	function	syntax	looks	like	this:

def	<name>(<arguments>):

				<statements>

				return	<value>

To	call	a	function,	we	use	its	name,	followed	by	the	parentheses.	We	have	seen	this	with
the	built-in	 function	len().	As	with	 built-in	 functions,	 inside	 the	 parentheses,	we	 pass	 the
target	object	upon	which	the	function	will	be	applied.

5.1 Writing	a	Function	in	Python
Let	us	assume	that	we	want	to	create	a	function	called	pow2()	that	multiplies	any	number

by	2	and	return	the	result.	We	can	define	the	function	as	following:

def	pow2(n):

				a	=	n*2

				return	a

n	 is	a	parameter	of	 the	function.	In	order	 to	get	 the	function	to	work,	we	need	to	specify	a
value.

Please	note	how	the	set	of	instructions	is	indented.	The	final	command	is	return	which
signals	the	end	of	the	function.	After	return,	no	more	lines	of	code	are	executed.	The	object
a	exists	in	the	function’s	scope	only.	For	instance,	if	we	want	to	call	a	outside	the	function,
unless	we	already	defined	somewhere	before	in	the	code,	Python	will	complain	that	a	does
not	exist.	We	can	apply	our	function	pow2()	simply	as	follows:

out	=	pow2(n	=	10)

print(out)

##	20

We	can	also	chain	the	outcome	of	our	function	with	other	operations.	For	example,	here	we
are	summing	100	and	10.

out	=	pow2(10)	+	10

print(out)

##	30

5.1.1 Default	Parameters
The	function	that	we	just	created	takes	one	single	parameter	and	returns	a	single	value.

What	if	we	do	not	pass	a	value	to	the	function?	Let’s	try	it:

pow2()

##	TypeError:	pow2()	missing	1	required	positional	argument:	'n'

As	you	can	see,	Python	complains	because	it	expects	an	argument.	Of	course,	we	can	solve
this	problem	by	defining	a	default	parameter.	For	instance,	in	the	absence	of	a	specification,
the	argument	is	zero.

def	pow2(n	=	0):

				a	=	n**2

				return	a

out	=	pow2()

print(out)

##	0

5.1.2 Functions	With	2	Arguments
Now,	let	us	assume	that	we	want	to	create	a	function	mult()	that	takes	two	numbers	and

returns	the	result	of	their	multiplication.	Multiple	parameters	functions	can	be	defined	in	the
same	exact	way	as	single	parameter	ones.	We	just	need	to	separate	arguments	with	a	comma
as	follows:

def	mult(arg1	=	0,	arg2	=	0):

				a	=	arg1	*	arg2

				return	a

Now	we	pass	3	and	4	as	parameters	and	we	print	the	result.

out	=	mult(arg1	=	3,	arg2	=	4)

print(out)

##	12

5.1.3 The	Parameter	*args
The	question	we	have	in	mind	when	writing	this	paragraph	is:	what	are	all	 the	possible

use	 cases	of	 the	 function	we	are	writing?	The	 short	 answer	 is:	we	have	no	 idea.	What	we
would	like	to	have	though	is	options.	We	want	to	have	the	most	flexible	code	and	we	would
like	to	interact	with	it	in	the	easiest	and	most	general	way	possible.

For	instance,	it	could	be	that	a	user	would	like	to	give	to	our	function	a	variable	number
of	 parameters.	 In	Python,	 the	 single-asterisk	 form	of	*args	 can	 be	 used	 as	 a	 parameter	 to
send	 a	non-keyworded	variable-length	 argument	 list	 to	 functions.	What	 is	 really	 important
here	is	 just	 the	asterisk	*	since	the	name	arg	 is	 there	by	convention,	so	you	are	allowed	to
choose	your	favorite	one.

Let’s	go	back	to	our	two-parameters	function	mult().	What	if	we	pass	three	parameters?

mult(3,	4,	5)

#	Simplìfy	error	output

##	TypeError:	mult()	takes	2	positional	arguments

##	but	3	were	given

Well,	 Python	 is	 very	 clear:	 there	 is	 an	 unexpected	 keyword	 since	 mult()	 only	 takes	 two
parameters	 but	 we	 are	 passing	 three.	 Let’s	 update	 the	 definition	 of	 the	 function	 by
introducing	*args	as	follows:

def	mult(*args):

				a	=	1

				for	num	in	args:

								a	*=	num

				return	a

Now	we	apply	this	updated	version	using	a	variable	set	of	parameters:

out1	=	mult(3,	4)

out2	=	mult(3,	4,	5)

out3	=	mult(2,	5,	10)

out4	=	mult(12,	3,	2,	4)

print(out1,	out2,	out3,	out4)

##	12	60	100	288

Using	*args	to	send	a	variable-length	argument	list	to	our	function,	enable	to	pass	in	as
many	arguments	as	we	wish	 into	 the	function	call.	This	makes	 the	code	way	more	flexible
and	even	more	readable.

5.1.4 The	Parameter	**kwargs
We	can	pass	even	more	complicated	arguments	to	a	function	by	using	the	double	asterisk

form	of	**kwargs.	This	allows	us	to	pass	in	a	keyworded	variable-length	argument	dictionary
to	a	function.	Again,	the	important	element	here	is	**,	as	the	word	kwargs	is	conventionally
used.	We	adopt	this	convention	to	signal	that	this	is	a	keyworded	argument	in	the	form	of	a

dictionary.	Similar	 to	*args,	**kwargs	 can	 take	as	many	arguments	 as	we	want.	However,
**kwargs	differs	from	*args	because	we	have	to	assign	keywords.

To	make	 it	 simple	and	easy	 to	 follow,	 let’s	 start	by	defining	a	 function	which	print	 it’s
own	arguments	using	**kwargs	as	follows:

def	func_kwargs(**kwargs):

				print(kwargs)

				return

The	 first	 thing	 that	we	 note	 is	 that	we	 can	 actually	 access	 to	 the	 object	which	 defines	 the
parameters	names	kwargs	(without	the	double	asterisks).	The	second	thing	we	note	is	even	if
the	instruction	is	just	a	simple	print,	we	use	the	return	command	anyway	with	no	additional
argument.	 We	 encourage	 to	 always	 include	 a	 return	 at	 the	 end	 of	 a	 custom	 function,
especially	in	the	beginning	phases	of	your	learning	process.	Let’s	pass	some	arguments	then
and	see	what	happens1:

func_kwargs(first	=	'Richard',	last	=	'Feynman',	grade	=	30)

##	{'first':	'Richard',	'last':	'Feynman',	'grade':	30}

As	you	can	see,	the	parameters	are	organized	in	a	dictionary	in	which	the	keys	are	given
by	the	parameter	names	(i.e.	first,	last,	grade)	and	the	values	are	given	by	the	parameter
values	(i.e.	'Richard',	'Feynman',	30).	What	is	important	now	is	that	we	can	manipulate	this
dictionary	in	the	same	exact	way	we	did	when	we	first	introduced	this	object	type.	This	is	a
formal	dictionary	so	it	inherits	all	the	related	methods.	So	for	instance	we	can	loop	over	the
parameters	as	follows:

def	func_kwargs(**kwargs):

				for	_key,	_value	in	kwargs.items():

								out	=	'The	key	is	{0},	'	\

														'the	value	is	{1}'.format(_key,	_value)

								print(out)

				return

func_kwargs(first	=	'Richard',	last	=	'Feynman',	grade	=	30)

##	The	key	is	first,	the	value	is	Richard

##	The	key	is	last,	the	value	is	Feynman

##	The	key	is	grade,	the	value	is	30

5.1.5 Formal	Order	of	Parameters
There	is	a	formal	order	we	have	to	respect	when	working	in	combination	of	positional,

keyword	 arguments	 and	 the	 two	 special	 arguments	 *args	 and	 **kwargs.	 The	 order	 is	 the
following:

1. formal	positional	arguments	(i.e.	arg1	etc.);
2. *args;
3. keyword	arguments	(i.e.	dictionaries);
4. **kwargs.

So,	 when	 working	 with	 formal	 positional	 arguments	 like	 arg1	 and	 arg2	 in	 the	 function
mult(),	the	order	is	as	follows:

def	custom_func(arg1,	arg2,	*args,	**kwargs):

				#	some	amazing	instructions

When	working	with	positional	parameters	along	with	named	keyword	parameters	in	addition
to	*args	and	**kwargs,	the	custom	function	would	look	like	this:

def	custom_func(arg_1,	arg_2,	*args,

																kw_1	=	'hello',	kw_2	=	'world',	**kwargs):

				#	some	amazing	instructions

In	conclusion,	whenever	we	are	not	sure	about	the	number	of	arguments	a	function	can
accept	 or	 just	 receive,	 we	 can	 use	 the	 special	 syntax	 of	 *args	 for	 standard	 positional
arguments	and	**kwargs	for	dictionary-like	arguments.	We	define	these	in	the	same	way	as
standard	parameters.

As	a	general	advice,	we	recommend	using	this	approach	when	you	are	creating	functions
that	 accept	 a	 limited	 number	 of	 inputs	 within	 the	 argument	 list.	 The	 primary	 use	 of	 both
*args	 and	**kwargs	 is	 to	 increase	 the	 readability	 and	 convenience	 of	 the	 code.	Use	 them
with	care	since	these	methods	can	be	tricky.

5.2 Functions	Calling	Functions
Python	 is	 a	 functional	 language	which	means	 that	 it	 is	 really	 handy	 to	 define	 custom

functions	which	 can	 be	 used	 broadly.	One	 of	 the	 possible	 use	 could	 involve	 the	 call	 of	 a
function	inside	another	function.

In	order	to	show	the	concept,	we	want	to	apply	the	already	defined	functions	pow2()	and
mult()	 one	 into	 another	 one.	 The	 idea	 is	 to	 pass	 two	 parameters	 to	 mult()	 to	 get	 their
multiplication	elevate	to	the	power	of	two	the	result.	Below,	we	show	again	the	definitions	of
the	functions	and	the	definition	of	the	new	nested	function	called	mult_pow2().

def	pow2(n):

				a	=	n**2

				return	a

def	mult(arg1,	arg2):

				a	=	arg1	*	arg2

				return	a

def	mult_pow2(arg1	=	0,	arg2	=	0,	n	=	0):

				multiplication	=	mult(arg1,	arg2)

				out	=	pow2(multiplication)

				return	out

Let’s	apply	this	new	function	as	follows:

out	=	mult_pow2(2,	3)

print(out)

##	36

As	you	can	see,	the	function	computes	the	multiplication	between	2	and	3	which	gives	6,	and
then	computes	its	second	power	which	leads	to	36.

5.2.1 Logical	Flow	of	the	Problem
We	have	just	seen	a	very	simple	example.	Let’s	assume	you	want	to	calculate	your	final

grade,	which	depends	on:

• mid-term	grade	(30%);
• final	exam	grade	(60%);
• class	participation	(10%);

As	usual,	before	rushing	to	Python,	it	is	important	to	decompose	the	problem	into	logical
steps.	Only	 after	 the	whole	 procedure	 is	 clear,	we	will	 be	 able	 to	write	 a	 Python	 code	 to
compute	our	final	grade.	The	problem	can	be	split	into	sub-problems	as	follows:

1. calculate	the	grade	of	the	mid-term	exam	as:	mid-term	*	percentage	mid-term;

2. calculate	the	grade	of	the	final	exam	as:	final	*	percentage	final;

3. calculate	the	class	participation	grade	as:	participation	*	percentage	participation;

4. sum	all	the	grades.

We	are	now	ready	to	translate	 the	human	logic	into	a	Python	code.	We	will	first	define
three	 functions	 that	 compute	 the	mid-term	grade,	 final	 exam	grade,	 and	 class	 participation
grade,	 respectively.	 Then,	 we	 will	 define	 a	 final	 function	 grade()	 that	 calls	 these	 three

functions	and	returns	the	final	grade.

def	midterm(mgrade,	mperct):

				midg	=	mgrade	*	mperct

				return	midg

def	finalterm(fgrade,	fperct):

				finalg	=	fgrade	*	fperct

				return	finalg

def	participation(pgrade,	pperct):

				participg	=	pgrade	*	pperct

				return	participg

def	grade(mgrade,	mperct,	fgrade,	fperct,	pgrade,	pperct):

				out	=	midterm(mgrade,	mperct)	+	\

												finalterm(fgrade,	fperct)	+	\

												participation(pgrade,	pperct)

				return	out

print(grade(28,	0.3,	27,	0.6,	30,	0.1))

##	27.6

5.3 Exercises	on	Functions

Exercise	1
Create	a	function	square	that	calculates	the	square	of	5,	8,	and	9	HINT:	You	take	the	power	of
a	number	with	the	**	operator.
Exercise	2
Create	 a	 function	power	 that	 compute	 the	p	 power	of	 a	number.	Then	 call	 this	 function	 to
calculate:

• 5	to	the	power	of	3;
• 8	to	the	power	of	4;
• 9	to	the	power	of	2.

Exercise	3
Please	calculate	the	cost	of	your	Easter	vacation	by	using	the	following	inputs:

1. The	trip	lasts	4	nights	and	5	days;
2. A	night	in	the	hotel	costs	$100;
3. The	airplane	ticket	costs	$300;
4. Renting	a	car	costs	$50	per	day,	and	you	will	need	a	car	for	5	days;
5. Each	breakfast	will	cost	$5	(5	breakfasts);

6. Each	lunch	will	cost	$20	(5	lunches);
7. Each	dinner	will	cost	$45	(5	dinners).

How	much	will	you	spend?

5.4 Read	the	Code

Reading	1

def	guess1(n):

				g1	=	n	-	4

				return	g1

print	(guess1(5))

Reading	2

def	guess2(n,	m):

				g2	=	n*m	/	3

				return	g2

print	(guess2(5,	6))

Reading	3

def	guess3(n,	m):

				g3	=	n	*n	+	m

				return	g3

print	(guess3(3,	5))

5.5 Code	Bloopers

Blooper	1

def	power(n,	power):

				a	=	n**p

				return	a

print	(power(5,	3))

print	(power(8,	4))

print	(power(9,	2))

Blooper	2

def	cost(varcost,	units,	fixedcosts):

				costs	=	(varcost	*	units)	+	fixedcosts

				return	costs

Blooper	3

def	cost(varcost,	units,	fixedcost):

				costs	=	(varcost*units)	+	fixedcost

				return	costs

print	(costs(5,	10,	3))

Blooper	4

def	power	=	(base,	exponent):

				a	=	base**exponent

				return	a

print(power(5,	3))

Blooper	5

def	power(base,	exponent):

a	=	base**exponent

return	a

print	(power(5,3))

Blooper	6

def	to_the_power(n):

				out	=	n*4

				return	out

5.6 Useful	Built-in	Functions

5.6.1 lambda	Functions
lambda	operator	or	lambda	function	is	used	for	creating	small,	one-time	and	anonymous

function	objects	in	Python.
Anonymous	 means	 that	 they	 don’t	 have	 a	 proper	 name,	 you	 just	 call	 them	 lambda

functions.	These	functions	come	in	handy	when	you	need	to	do	something	on	the	fly	or	when
you	are	working	your	way	to	solve	a	problem	and	you	need	additional	resources	to	solve	it.
But	 you	 don’t	 want	 to	 formally	 define	 them.	 For	 instance,	 you	 can	 call	 lambda	 functions
inside	a	well	defined	functions	 to	help	you	solving	 the	problem.	The	syntax	 is	very	simple
and	goes	as	follows:

lambda	<arguments>:	<expression>

The	lambda	function	can	have	any	number	of	arguments,	but	it	can	have	only	one	expression.
In	other	words,	we	can	have	multiple	parameters	that	we	can	pass	in	to	the	function	but	it	has
to	 do	 just	 one	 single	 operation.	 It	 cannot	 contain	 any	 statements	 and	 it	 returns	 a	 function
object	which	can	be	assigned	to	any	variable.	Now	you	see	why	they	cannot	solve	complex
problems.	You	have	to	consider	them	as	handy	tools	to	help	you	solve	the	little	chunks	that
belong	to	a	bigger	problem.

So	let’s	define	a	formal	function	with	name	that	computes	the	power	of	a	number.

def	give_me_power(n,	p):

				return	n**p

out	=	give_me_power(2,	2)

print(out)

##	4

Can	we	do	the	same	operation	with	a	lambda	function?

my_lambda	=	lambda	n,	p:	n**p

out	=	my_lambda(2,	2)

print(out)

##	4

As	 you	 can	 see,	 we	 get	 the	 same	 result	 and	 as	 confirmed	 by	 the	 chunk	 below,	 we	 also
confirm	that	both	the	definitions	lead	to	type	function.

print(type(give_me_power)	==	type(my_lambda))

##	True

print(type(my_lambda))

##	<class	'function'>

Now,	 what	 if	 we	 wanted	 to	 do	 two	 operations?	 We	 just	 modify	 the	 function
give_me_power()	to	make	it	add	10	to	the	result	as	follows:

def	give_me_power(n,	p):

				power	=	n**p

				out	=	power	+	10

				return	out

out	=	give_me_power(2,	2)

print(out)

##	14

my_lambda	=	lambda	n,	p:	power	=	n**p;	out	=	power	+	10

#	Simplify	error	output

##	Error:	can't	assign	to	lambda

5.6.2 map()	Function
map()	 function	 expects	 a	 function	 object	 and	 any	 number	 of	 iterables	 like	 lists,

dictionaries,	etc.	The	powerful	thing	is	that	you	can	pass	to	map()	any	function	which	will	be
then	applied	to	the	iterable.	The	function	you	pass	will	be	executed	for	each	element	in	the
sequence	and	returns	a	type	map.	If	you	want	to	have	your	results,	remember	to	cast	map()	to
a	list	using	list().	The	syntax	is	as	follows:

map(<function>,	<iterable1>,	<iterable2>,	...)

Let’s	say	that	we	want	to	take	the	square	root	of	a	given	sequence.

def	give_me_sqrt(n):

				return	n**0.5

my_map	=	map(give_me_sqrt,	[_i	for	_i	in	range(11)])

print(my_map)

##	<map	object	at	0x10f2bbfd0>

print(type(my_map))

##	<class	'map'>

my_map_to_list	=	list(my_map)

for	_i	in	my_map_to_list:

				print(_i)

##	0.0

##	1.0

##	1.4142135623730951

##	1.7320508075688772

##	2.0

##	2.23606797749979

##	2.449489742783178

##	2.6457513110645907

##	2.8284271247461903

##	3.0

##	3.1622776601683795

my_map	=	map(lambda	x:	x**0.5,	[_i	for	_i	in	range(11)])

print(my_map)

##	<map	object	at	0x10f2ab198>

print(type(my_map))

##	<class	'map'>

my_map_to_list	=	list(my_map)

for	_i	in	my_map_to_list:

				print(_i)

##	0.0

##	1.0

##	1.4142135623730951

##	1.7320508075688772

##	2.0

##	2.23606797749979

##	2.449489742783178

##	2.6457513110645907

##	2.8284271247461903

##	3.0

##	3.1622776601683795

5.6.3 filter()	Function
filter()	 function	expects	 two	arguments,	a	function	and	an	iterable.	The	function	you

passed	returns	a	boolean	value	and	it	is	called	for	each	element	of	the	iterable.	filter()	then
returns	only	those	element	for	which	the	function	you	passed	returns	True.

filter(<function>,	<iterable>)

Please,	remember	that	filter()	accepts	just	one	single	iterable	object.	So	let’s	extract	all	the
even	numbers	out	of	a	sequence	of	numbers.

my_list	=	[_i	for	_i	in	range(11)]

my_filter	=	filter(lambda	x:	x	%	2	==	0,	my_list)

print(my_filter)

##	<filter	object	at	0x10f2ba2b0>

print(type(my_filter))

##	<class	'filter'>

my_filter_to_list	=	list(my_filter)

for	_i	in	my_filter_to_list:

				print(_i)

##	0

##	2

##	4

##	6

##	8

##	10

5.7 Solutions	to	Code	Bloopers

Blooper	1
We	are	using	the	parameter	p	instead	of	power.
Blooper	2
The	colon	:	at	the	end	of	the	first	line	is	missing.
Blooper	3
We	are	printing	the	argument	costs,	but	not	the	function	cost.
Blooper	4
The	=	sign	should	not	be	in	the	function	header.
Blooper	5
The	function	body	must	be	indented.
Blooper	6
The	correct	operator	is	**	and	not	*	which	just	multiplies	two	numbers.

5.8 Solutions	to	Exercises	on	Functions

Exercise	1
Create	a	function	square	that	calculates	the	square	of	5,	8,	and	9	HINT:	You	take	the	power	of
a	number	with	the	**	operator.

Solution

def	square(n):

				a	=	n**2

				return	a

print	(square(5))

##	25

print	(square(8))

##	64

print	(square(9))

##	81

Exercise	2
Create	 a	 function	power	 that	 compute	 the	p	 power	of	 a	number.	Then	 call	 this	 function	 to
calculate:

• 5	to	the	power	of	3;
• 8	to	the	power	of	4;
• 9	to	the	power	of	2.

Solution

def	power(n,p):

				a	=	n**p

				return	a

print	(power(5,3))

##	125

print	(power(8,4))

##	4096

print	(power(9,2))

##	81

Exercise	3
Please	calculate	the	cost	of	your	Easter	vacation	by	using	the	following	inputs:

1. The	trip	lasts	4	nights	and	5	days;
2. A	night	in	the	hotel	costs	$100;
3. The	airplane	ticket	costs	$300;
4. Renting	a	car	costs	$50	per	day,	and	you	will	need	a	car	for	5	days;
5. Each	breakfast	will	cost	$5	(5	breakfasts);
6. Each	lunch	will	cost	$20	(5	lunches);
7. Each	dinner	will	cost	$45	(5	dinners).

How	much	will	you	spend?
Solution

def	hotel(hcost,	nights):

				accomodation	=	hcost	*	nights

				return	accomodation

def	car(ccost,	days):

				rental	=	ccost	*	days

				return	rental

def	eating(bcost,	lcost,	dcost,	days):

				eat	=	(bcost	+	lcost	+	dcost)	*	days

				return	eat

def	vacation(hcost,	nights,	ccost,	days,

													bcost,	lcost,	dcost,	airfare):

				out	=	hotel(hcost,	nights)	+	car(ccost,	days)	+	\

								eating(bcost,	lcost,	dcost,	days)	+	airfare

				return	out

result	=	vacation(100,	4,	50,	5,	5,	20,	45,	300)

print(result)

##	1300

1Depending	on	which	Python	version	you	are	using,	 the	order	of	 the	parameters	might
change.	From	version	3.6	on,	we	have	a	 sorted	dictionary	based	on	 the	order	 in	which	we
passed	the	parameters	in	the	function.

Chapter	6

Object	Oriented	Programming	and	Classes

One	of	 the	 first	 concepts	we	mentioned	at	 the	very	beginning	of	 this	book	was	Object
Oriented	Programming,	or	OOP.	OOP	is	a	fairly	tough	concept	to	understand	especially	for
beginners.	It	is	though	absolutely	important	in	order	to	fully	exploit	all	Python	capabilities.

6.1 Object	Oriented	Programming
What	we	 have	 learned	 throughout	 the	 book	was	 related	 to	 the	 creation	 of	 objects.	We

have	seen	that	there	exist	several	types	of	these	objects	and	that	each	type	comes	with	a	set	of
pre-defined	methods	which	we	 can	 use.	What	we	 are	 going	 to	 do	 in	 this	 chapter	 is	 to	 go
behind	the	scenes	to	discover	and	understand	what’s	beneath	each	object.

There	are	basically	two	things	which	we	do	not	typically	see	in	a	front-end:	the	first	one
is	 some	 sort	 of	 data	 representation	which	 tells	Python	how	 to	 represent	 the	object	 and	 the
second	one	tells	us	what	are	the	ways	we	can	interact	with	the	object.	Whenever	we	create	an
object	we	get	three	information	about	it:

1. the	type;
2. an	internal	data	representation;
3. an	interface	which	defines	a	set	of	procedures	 (i.e.	methods)	for	 interacting	with	 the

object.

An	object	is	an	instance	of	a	type	so	if	we	consider	the	number	1969	we	say	that	this	is	an
instance	of	an	int	type	while	'Hello	World'	is	an	instance	of	a	str	type.

Everything	in	Python	is	an	object,	including	functions	that	we	introduced	in	the	previous
chapter.	An	object	has	a	particular	 type	so	we	can	create	as	many	objects	as	we	want	with
that	 type.	We	 can	manipulate	 these	 objects	 and	we	 can	 also	 destroy	 them.	A	 fundamental
question	we	want	to	address	in	this	chapter	is:	what	are	objects?	In	Python,	objects	are	just	a
data	abstraction	which	gathers	some	others	information.

In	order	to	better	illustrate	this	concept,	let’s	consider	all	the	possible	flight	paths	of	the
planes	 that	 land	 at	 and	 take-off	 from	 a	 given	 airport.	 First	 thing	 we	 probably	 note	 is	 the
variability	in	the	trajectories,	but	more	importantly,	we	see	planes	coming	in

in	different	colors,	shapes,	sizes	and	so	on.	In	this	example,	 the	object	 is	a	plane.	Now,
let’s	 focus	 on	 just	 one	 particular	 manufacturer	 that	 builds	 a	 particular	 type	 of	 plane.	 The
manufacturer	will	probably	have	a	blueprint	of	 the	plane	or	some	sort	of	schematics	which
provides	information	about	plane’s	attributes.

Going	back	to	Python,	a	blueprint	provides	an	internal	representation	of	the	object	plane.
From	this,	we	can	have	general	representation	data	as	 the	 length,	 the	wingspan,	 the	height,
how	many	engines,	how	many	seats	and	so	on	so	forth.	All	this	information	tells	us	what	data
represents	the	plane.

Of	course,	we	are	also	interested	in	how	we	can	interact	with	the	object.	There	are	many
ways:	we	can	 fly	a	plane,	make	 it	blue	or	 red,	 switch	on	and	off	 lights.	This	 is	part	of	 the
interface	layer	which	tells	us	what	methods	are	available	to	interact	with	the	object.

Now	let’s	move	back	to	Python	and	try	to	apply	these	concepts.	Consider	an	object	L	of
type	 list.	 In	 particular,	 L	 =	 [1,	 2,	 3,	 4].	 We	 ask	 two	 questions:	 what	 is	 the	 data
representation	of	a	list?	How	do	you	interact	and	manipulate	an	object	of	type	list?	In	Figure
6.1	we	can	see	a	representation	of	a	 list	 in	Python.	We	note	how	this	object	 is	made	up	by
two	components:

1. boxes	with	values.	For	instance,	at	index	zero,	we	have	the	value	1;
2. boxes	with	pointers	represented	by	the	symbol	->.	Pointers	tell	Python	where	exactly

is	the	memory	location	where	you	can	access	a	given	element	of	the	list.

We	basically	observe	that	the	representation	of	a	list	is	just	a	chain	of	values	and	pointers.

FIGURE	6.1:	Representation	of	an	object	of	type	list.

What	we	 need	 to	 understand	 now	 is	 how	 do	we	 interact	with	 a	 list.	Well,	 we	 already
know	 this	 since	we	have	been	discussing	 it	quite	a	 lot	 in	previous	chapters.	We	know	 that
when	 we	 have	 a	 list	 in	 Python,	 we	 can	 exploit	 several	 methods	 to	 manipulate	 it	 like	 the
following:

• L[i],	L[i:j],	+;
• len(L),	min(L),	max(L),	del(L[i]);
• L.append(),	L.extend(),	L.count(),	L.index(),	L.insert(),	L.pop(),	L.remove(),

L.reverse(),	L.sort().

So	far,	we	explored	the	internals	of	objects,	in	particular	lists.	Why	is	this	so	important?
Well,	 this	 is	 the	 beauty	 of	OOP:	we	 are	 not	 forced	 to	 know	 the	 internal	 representation	 of

these	methods	as	well	as	the	data	representation	of	the	object	itself.	We	do	not	need	to	know
how	these	things	have	been	coded.	We	just	use	them.

6.2 Classes
In	this	section	we	are	going	to	go	a	little	bit	deeper.	We	want	to	know	how	an	object	can

be	crafted.	With	 this,	we	are	not	 referring	 to	 the	simple	creation	of	a	given	object	with	 the
assignment	operator	=.	Here	we	will	 talk	about	 the	definition	of	 the	blueprint	 that	provides
the	data	representation	as	well	as	the	related	methods.	We	are	introducing	a	new	object	which
functions	as	an	object	constructor	called	class.	The	way	we	create	classes	resembles	the	one
we	introduced	for	functions.

One	of	the	biggest	advantages	of	OOP	is	the	ability	to	bundle	in	one	single	entity	called
class	both	 the	data	 representation	and	 the	procedures	which	we	can	use	 to	 interact	with	an
object	 that	 belongs	 to	 the	 defined	 class.	Moreover,	 this	way	 allows	 to	write	more	 general,
more	reusable	and	more	readable	codes	in	the	future.

When	we	think	about	classes	we	really	should	think	about	two	different	steps.	The	first
step	should	be	dedicated	in	understanding	and	learning	how	to	define	a	class.	In	other	words,
we	want	 to	 know	 how	 to	write	 a	 class.	 The	 second	 step	 should	 focus	 on	 how	 to	 use	 the
defined	 class	which	 in	 turns	means	how	we	 access	 to	 the	 set	 of	 procedures	 defined	 in	 the
class.

6.2.1 Writing	a	Class	in	Python
There	are	basically	two	steps	we	need	to	take	care	of	when	we	want	to	first	create	a	class:

1. define	 a	 class	 name.	 We	 recommend	 you	 to	 choose	 a	 meaningful	 name	 which
resembles	what	the	class	represents	or	does;

2. define	 class	 attributes.	Write	 all	 the	methods	 associated	 with	 the	 class	 you	 defined
which	enable	the	interaction	with	the	class	itself.

After	the	class	has	been	implemented,	it	 is	time	to	use	it.	Using	a	class	implies	that	we
can	create	new	instances	of	objects	which	have	our	class	name	as	type.	Also,	we	can	use	the
set	of	procedures	and	methods	we	wrote	in	the	class	to	interact	with	objects	belonging	to	that
class.	 If	 we	 go	 back	 to	 the	 list	 shown	 in	 Figure	 6.1,	 we	 know	 that	 someone	 has	 already
created	the	class	list	and	that	this	contains	methods	like	len(L)	to	compute	the	number	of
elements	in	the	list	L	or	L.append(5)	to	append	the	number	five	at	the	end	of	the	list	L.

For	 the	purpose	of	 explaining	how	Python	classes	work,	 let’s	 create	 a	brand	new	class
called	Person	which	defines	a	set	of	attributes	of	a	person.	In	order	to	do	that,	we	need	to	use
the	 reserved	keyword	class	 followed	by	 the	class	name	Person	 and	a	colon	:.	The	 initial

code	will	look	like	the	following:

class	Person:

				'''This	is	the	class	Person'''

				#	Put	some	attributes	here

Please	note	that	we	used	the	triple	quotes	here.	In	the	context	of	class	definition,	but	also	for
functions,	 this	 is	 called	 docstring.	 The	 docstring	 serves	 as	 a	 specification	 on	 how	 a	 user
should	use	the	class.

After	we	defined	the	class,	we	can	start	putting	attributes.	These	are	the	components	of
the	class	and	define	the	data	and	the	different	procedures	that	belong	only	to	our	class,	in	this
case	Person.	We	can	create	as	many	attributes	as	we	want.	For	this	example,	we	want	to	keep
things	simple	and	just	use,	the	first	and	last	names,	the	age,	and	favorite	rock	band.	These	are
the	objects	that	are	contained	in	the	class,	so	for	us	they	are	the	data	that	make	up	the	class.
Together	with	data,	we	have	something	else	 that	you	should	already	be	aware	of:	methods.
Methods	are	 functions	 that	only	work	with	 this	class	and	 they	basically	define	 the	way	we
interact	with	objects	belonging	to	the	class.

6.2.2 The	Special	Method	__init__()
Let’s	move	on	with	the	creation	of	the	class	Person.	First	thing	we	want	to	do	is	to	define

data	 attributes.	 In	 Python,	 we	 generally	 define	 attributes	 inside	 a	 class	 with	 a	 particular
function	 called	 __init__()1.	 This	 is	 a	 special	 method	 which	 serves	 to	 initialize	 data
attributes.	The	__init__()	method	is	the	first	function	which	is	dispatched	(i.e.	used)	when
we	first	create	an	object	of	type	Person.	Because	it	is	the	first	function	that	gets	executed,	we
put	 it	 right	 after	 the	 class	 initialization.	 Also,	 since	 it	 is	 a	 function,	 we	 use	 the	 reserved
keyword	def	to	create	it	and	then	we	define	the	parameters	we	want	to	use	in	the	function.	In
this	 case,	 these	 are	 the	 data	 attributes	we	want	 to	 attached	 to	 a	 person.	 So,	 the	 class	 gets
populated	as	follows:

class	Person:

				'''This	is	the	class	Person'''

				def	__init__(self,	first,	last,	age,	band):

								self.first	=	first

								self.last	=	last

								self.age	=	age

								self.band	=	band

As	you	 can	 see,	we	 have	 our	 four	 parameters	 that	 describe	 a	 person	 but	we	 also	 have
another	parameter	named	self.	This	parameter	needs	a	bit	of	attention	since	this	is	the	way
we	 tell	Python	how	we	want	 to	 access	 to	 the	object’s	properties	 inside	 the	method.	 If	 you

noted,	when	we	define	the	different	parameters	we	always	use	the	standard	notation	of	self..
So	when	we	invoke	self.first	we	are	saying:	look	at	the	data	attribute	first	that	belongs
to	the	class	Person2.	So	remember,	for	methods	that	belong	to	the	class,	the	first	parameter	is
always	going	 to	be	self3.	All	 the	other	parameters	 specify	what	data	 initializes	 the	object
Person.

One	question	could	be	asked	here:	how	do	we	make	sure	that	those	parameters	are	of	the
correct	types?	This	is	a	fair	legitimate	question	and	we	are	going	to	answer	in	two	ways:

1. you	can	clearly	explain	what	type	each	and	every	parameter	must	be	in	the	docstring.
You	can	also	warn	 the	user	 that	any	deviation	 from	what	 is	 suggested	might	 lead	 to
unintended	or	unexpected	behaviors;

2. you	can	explicitly	write	asserts	in	the	__init__()	method	to	enforce	the	use	of	correct
types.

6.2.3 Adding	More	Methods
What	we	are	about	to	do	now	is	to	add	some	others	features	to	our	class.	In	particular,	we

have	a	parameter	for	the	age	of	the	person,	but	we	do	not	know	right	away	the	year	of	birth.
So	let’s	define	another	function	which	implements	this	very	simple	transformation.	What	we
need	to	do	is	to	add	the	new	function	called	year_of_birth()	below	the	method	__init__()
as	follows:

class	Person:

				'''This	is	the	class	Person'''

				def	__init__(self,	first,	last,	age	=	None,	band	=	None):

								self.first	=	first

								self.last	=	last

								self.age	=	age

								self.band	=	band

def	year_of_birth(self,	current_year):

				self.current_year	=	current_year

				yob	=	self.current_year	-	self.age

				return	yob

Please	note	how	we	refer	to	the	age	of	the	person	using	self.age.	This	is	because	age	is	a
defined	attribute	in	the	class	Person.

6.2.4 Creating	and	Using	a	Class

It	is	now	time	to	use	the	class	and	create	an	object	of	class	Person.	In	this	case,	we	are
creating	an	object	call	franz	with	the	following	attributes:

franz	=	Person(

				'Francesco',

				'Grossetti',

				35,

				'Pink	Floyd'

)

#	we	want	to	check	the	type

print(type(franz))

##	<class	'	__main__.Person'>

This	instruction	executes	the	__init__()	method	we	defined.	As	you	can	see,	when	we	print
the	type	we	get	a	different	message	now	which	does	not	completely	resemble	what	we	were
accustomed	to.	Without	going	into	too	many	details,	the	reason	why	we	get	this	message	and
not	just	the	name	of	the	class	is	because	we	did	not	define	some	components	in	the	class.	If
we	want	to	get	a	cleaner	message,	we	can	specify	the	following	instruction:

print(type(franz).__name__)

##	Person

The	 object	 franz	 has	 all	 the	 attributes	 we	 defined	 in	 __init__().	 We	 can	 access	 to	 the
attributes	with	the	usual	dot	operator	as	follows:

print(franz.first)

##	Francesco

print(franz.last)

##	Grossetti

print(franz.age)

##	35

print(franz.band)

##	Pink	Floyd

Before	 we	 move	 on,	 there	 are	 few	 things	 worth	 noting.	 Firstly	 (1),	 even	 if	 we	 set	 a
parameter	named	self,	we	do	not	use	it	explicitly	when	we	call	Person.	The	reason	is	due	to
the	fact	that	Python	automatically	manages	this	parameter	by	assigning	it	to	the	object	we	are
defining,	in	this	case	franz.	All	we	have	to	specify	then	are	the	remaining	four	parameters.
Secondly	 (2),	we	naturally	 respect	 the	order	of	 the	parameters	 in	__init__().	This	 sounds
trivial,	but	could	lead	to	bugs	and	errors.	Since	we	are	the	creators	of	the	class	Person,	we
know	exactly	what’s	inside	__init__()	and	we	know	the	order	in	the	parameters	definition.
To	show	you	how	this	could	lead	to	 issues,	 let’s	define	another	object	franz2	 in	which	we

change	the	order	of	the	first	and	last	names.	We	then	access	to	the	attributes	first	and	last
to	check	their	values.

franz2	=	Person(

				'Grossetti',

				'Francesco',

				35,

				'Pink	Floyd'

)

#	This	should	be	the	first	name,	but	it's	not!

print(franz2.first)

#	This	should	be	the	last	name,	but	it's	not!

##	Grossetti

print(franz2.last)

##	Francesco

So,	how	do	we	solve	this	issue?	What	if	we	want	to	specify	a	different	order	just	because	we
like	 it	more	or	 it	 is	 just	 easier	 for	us	 to	 remember?	Well,	 it’s	very	 simple,	we	use	=.	Let’s
define	franz2	again	by	putting	last	name	in	the	first	place:

franz2	=	Person(

				last	=	'Grossetti',

				first	=	'Francesco',

				age	=	35,

				band	=	'Pink	Floyd'

)

#	This	should	be	the	first	name,	and	it	is!

print(franz2.first)

##	Francesco

print(franz2.first)

#	This	should	be	the	last	name,	and	it	is!

##	Francesco

print(franz2.last)

##	Grossetti

If	you	remember,	we	also	defined	a	method	called	year_of_birth()	which	takes	a	single
parameter	and	computes	the	person’s	year	of	birth	according	to	the	specified	age.	The	way
we	use	this	method	once	again	is	with	the	dot	operator:

print(franz2.year_of_birth(2018))

##	1983

6.2.5 Class	Inheritance
At	this	point	of	the	book,	we	should	all	be	aware	of	the	incredible	potential	of	Python.	In

particular	with	classes,	we	understood	how	we	can	generate	an	object	with	specific	properties
and	pre-defined	methods	to	interact	with.

When	we	created	the	class	Person	we	were	probably	thinking	about	giving	a	quick	and
general	description	of	a	person.	What	we	want	to	do	in	this	Section	is	to	go	a	bit	deeper	and
introduce	 the	 concept	 of	 inheritance.	 Inheritance	 means	 that	 a	 given	 entity	 possesses	 the
same	attributes	of	another	entity.	If	we	re-think	this	concept	in	terms	of	Python	classes,	when
we	create	another	object	of	class	Person,	say	gaia,	this	object	will	have	the	same	attributes
as	the	object	franz.	Please	note	that	we	are	not	talking	about	values.	Values	are	going	to	be
different	because	they	are	what	make	a	person	different	from	another.

6.2.5.1 Parent	Classes

The	 concept	 of	 inheritance	 goes	 along	 with	 parent	 and	 child	 classes4.	 As	 the	 name
suggests,	 parent	 classes	 create	 a	 pattern	 out	 of	 which	 child	 classes	 can	 be	 based	 on.	 For
example,	the	class	Person	is	a	parent	class.	We	define	parent	classes	by	simply	using	class
and	a	name	 for	 that	 class.	We	know	 that	we	have	 a	__init__()	method	 and,	 in	 principle,
other	methods	as	well.

6.2.5.2 Child	Classes
Suppose	 that	we	want	 to	 include	 information	about	what	 type	of	 job	a	person	does.	we

can	 either	 include	 the	 job	 type	 as	 an	 attribute	 in	 the	 parent	 class	 Person	 or,	 more
appropriately,	we	can	define	a	child	class	Occupation	which	instantiates	some	methods	based
on	 the	 job	we	 specify.	Child	 classes	 inherit	 all	 the	 attributes	 of	 parent	 class,	 but	 they	 can
implement	new	methods	as	well.	Intuitively,	we	understand	how	a	pilot	would	have	a	method
called	flying(),	while	a	teacher	could	have	a	method	called	teaching().

Let’s	 start	 by	 creating	 a	 child	 class	 of	 Person	 called	 Occupation	 with	 no	 additional
methods.	This	means	that	Occupation	 inherits	all	the	methods	of	Person.	To	define	a	child
class	which	inherits	all	the	attributes	and	the	methods	of	its	parent,	we	simply	put	the	name
of	 the	 parent	 class	 in	 parenthesis	 and	 inside	 the	 scope,	we	 just	 declare	 pass.	 Look	 at	 the
example	below	where	we	define	the	child	class	Occupation	which	inherits	from	Person.

class	Occupation(Person):

				pass

To	check	that	Occupation	really	inherited	all	the	attributes,	we	simply	invoke	them	without
using	Person	class.

new_person	=	Occupation(

				first	=	'Miles',

				last	=	'Davis',

				age	=	58,

				band	=	'myself'

)

print(type(new_person))

##	<class	'	__main__	.Occupation'>

print(new_person.first)

##	Miles

What	is	really	powerful	is	that	we	can	add	new	attributes	and	methods	independently	to
child	 classes.	 The	 class	 Occupation	 seems	 to	 be	 a	 bit	 too	 general	 for	 our	 purposes.	 For
instance,	 let’s	 consider	 a	 teacher	 and	 a	 commercial	 pilot.	 They	 clearly	 have	 very	 different
occupations,	 so	what	we	would	 like	 to	 do	 is	 to	 add	 specific	 attributes	 and/or	methods	 for
these	two	new	classes.

To	 add	 attributes	 and	methods	 to	 a	 class,	we	 proceed	 similarly	 to	what	we	 did	 for	 the
class	Person.	Let’s	start	with	the	teacher’s	class:

class	Teacher(Person):

				'''This	is	the	class	Teacher'''

				def	__init__(self,	n_students,	n_classes,

																		n_hours_week,	subject,

																		first,	last,	age	=	None,	band	=	None):

								self.n_students	=	n_students

								self.n_classes	=	n_classes

								self.n_hours_week	=	n_hours_week

								self.subject	=	subject

								super().	__init__(first,	last,	age,	band)

				def	avg_n_student_per_class(self):

								out	=	self.n_students	/	self.n_classes

								return	out

				def	avg_n_hours_per_week(self,	n_days):

								self.n_days	=	n_days

								out	=	self.n_hours_week	/	self.n_days

								return	out

For	 this	 class,	we	 added	 four	more	 attributes:	n_students,	n_classes,	n_hours_week,	 and
subject.	 These	 all	 describe	 the	 specific	 job	 of	 a	 teacher	 by	 providing	 information	 on	 the
number	of	students	and	the	number	of	classes	the	teacher	have,	the	number	of	working	hours
per	 week	 and	 the	 subject	 that	 the	 teacher	 teaches.	 In	 addition,	 we	 have	 two	 methods:
avg_n_student_per_class()	 and	 avg_n_hours_per_week()	 which	 computes	 the	 average
number	of	students	per	class	and	the	average	number	of	working	hours	per	day.

Now	we	create	a	class	for	a	commercial	pilot	and	we	call	it	Pilot.	We	add	in	attributes

for	 the	number	of	passengers,	 the	scheduled	number	of	hours	 that	 the	pilot	has	 to	fly	for	a
given	week,	the	total	number	of	hours	the	pilot	flew	in	his/her	career	and	the	type	of	plane
he/she	flies.

class	Pilot(Person):

				'''This	is	the	class	Pilot'''

				def	__init__(self,	n_passengers,	scheduled_hours,

																		total_hours,	plane,

																		first,	last,	age	=	None,	band	=	None):

								self.n_passengers	=	n_passengers

								self.scheduled_hours	=	scheduled_hours

								self.total_hours	=	total_hours

								self.plane	=	plane

								super().	__init__(first,	last,	age,	band)

				def	compute_total_hours(self):

								out	=	self.scheduled_hours	+	self.total_hours

								return	out

6.2.5.3 The	super()	Function
Before	creating	two	instances	for	 these	new	classes,	 it	 is	 important	 to	note	 this	specific

line	of	code	which	we	find	in	the	two	definitions	of	our	child	classes:

super().	__init__(first,	last,	age,	band)

This	line	basically	tells	Python	to	add	the	parent	class	__init__()	attributes	to	the	child	class
too.	In	other	words,	with	the	super()	function	we	can	gain	access	to	inherited	methods	that
have	been	overwritten	 in	 a	 class	object.	The	super()	 function	 is	 typically	 used	within	 the
__init__()	method.	In	fact,	here	is	the	place	where	we	would	like	to	add	specific	behaviors
of	 child	 classes	 and	 then	 we	 complete	 the	 initialization	 from	 the	 parent	 class	 using	 the
super()	function.

When	we	use	 the	super()	 function,	we	 are	 invoking	 a	method	or	 attributes	which	has
been	 defined	 in	 the	 parent	 class	 into	 a	 child	 class.	 This	 is	 very	 useful	 and	 powerful	 and
allows	to	generalize	the	code	even	more.	The	most	intuitive	use	is	to	override	one	aspect	of
the	parent	class	and	maybe	add	or	 just	modify	a	given	functionality.	At	 the	same	 time,	we
want	to	be	sure	we	can	call	all	the	original	methods.

In	 the	 examples	 above,	 we	 added	 some	 descriptors	 for	 the	 parent	 class	 Person	 by
defining	two	child	classes,	Teacher	and	Pilot,	with	their	specific	attributes	and	methods	but
retaining	the	original	attributes	of	the	parent	class.	Let’s	apply	everything	then:

a_teacher	=	Teacher(

		first	=	'Richard',

		last	=	'Feynman',

		subject	=	'Physics',

		n_hours_week	=	30,

		n_students	=	100,

		n_classes	=	10

)

print(a_teacher.avg_n_student_per_class())

##	10.0

print(a_teacher.avg_n_hours_per_week(4))

##	7.5

a_pilot	=	Pilot(

		first	=	'Amelia',

		last	=	'Earhart',

		age	=	40,

		n_passengers	=	2,

		scheduled_hours	=	100,

		total_hours	=	1000,

		plane	=	'Lockeed	L-10	Electra'

)

print(a_pilot.n_passengers)

##	2

print(a_pilot.scheduled_hours)

##	100

print(a_pilot.total_hours)

##	1000

print(a_pilot.compute_total_hours())

##	1100

1	__init__()	is	sometimes	called	the	object’s	constructor,	because	it	mimics	the	way	that
constructors	are	used	in	other	languages.	For	technical	reasons,	this	is	not	entirely	correct.	It
is	better	to	call	it	the	initializer.

2The	 fact	 that	 we	 are	 using	 self.first	 to	 be	 assign	 to	 the	 parameter	 first	 is	 not
mandatory.	We	can	change	the	name	of	the	data	attribute	though	we	recommend	to	use	the
same	names	for	better	readability	and	interpretability	of	the	code.

3The	name	self	is	a	convention.	You	can	call	this	parameter	the	way	you	want,	but	we
strongly	recommend	to	stick	with	the	Python	naming	convention.

4Sometimes	parent	and	child	classes	are	called	base	classes	and	sub-classes,	respectively.

Chapter	7

Python	Modules:	pandas

One	of	 the	most	 important	 features	of	Python	is	 that	 it	comes	with	plenty	of	additional
libraries	which	 can	 be	 used	 to	 solve	 specific	 tasks.	These	 libraries	 are	 called	modules	and
their	 aim	 is	 to	 add	 features	 to	 base	 Python.	 In	 this	 chapter,	 you	will	 learn	 how	 to	 install,
import	and	work	with	new	modules.	We	will	also	focus	on	one	specific	and	very	important
module	called	pandas.

7.1 Installing	and	Importing	a	Module
Since	a	module	is	 just	an	additional	software,	before	we	can	use	it,	we	need	to	make	it

available	in	the	system.	In	other	words,	we	need	to	install	it.	There	are	basically	two	ways	to
do	this1:

1. install	it	via	pip	with	the	command:

pip	install	"module_name"

2. install	 it	 via	Anaconda	 using	 virtual	 environments.	 To	 know	 a	 little	 bit	more	 about
virtual	environments	we	suggest	this	guide2.	Once	the	environment	has	been	created,
simply	install	the	module	with:

conda	install	"module_name"

Once	 the	modules	have	been	 installed	 in	your	system,	you	can	 load	 them	in	Python	by
invoking	 the	 command	 import.	 There	 are	 some	 conventions	 in	 the	 naming	 which	 we
encourage	 you	 to	 follow.	 For	 example,	 a	 well	 known	 module	 for	 scientific	 computing	 is

numpy.	Typically,	we	import	it	as	follows:

import	numpy	as	np

As	you	can	see,	we	added	the	keyword	as	and	then	we	specified	a	shorter	name	as	np.	This
allows	us	 to	access	 to	numpy	methods	by	simply	calling	np.my_method()	 instead	of	calling
numpy.my_method().	 In	 other	 words,	 this	 is	 just	 a	 less	 verbose	 way	 to	 access	 to	 features
within	a	given	module.

7.2 Managing	Databases	With	Pandas
One	 of	 the	 most	 important	 tasks	 the	 we	 have	 to	 carry	 out	 on	 a	 daily	 basis	 is	 the

management	 of	 databases.	 Databases	 can	 come	 in	 all	 sort	 of	 structures.	 Typical	 file
extensions	are	Microsoft	Excel,	or	 .csv	 (i.e.	 comma	separated	values)	 files.	These	 types	of
files	are	very	handy	since	they	have	a	rectangular	structure	in	which	we	have	observations	in
rows	and	features	in	columns.

In	Python,	 there	 is	 a	 incredibly	powerful	module	which	has	been	conceived	 to	process
and	manipulate	rectangular	data	structures	called	pandas.	pandas	is	well	maintained	and	you
can	 find	 lots	 of	 tutorials	 and	 resources	 online.	 We	 suggest	 to	 start	 at
https://pandas.pydata.org.	What	we	would	like	to	do	is	being	able	to	import	an	Excel	file	into
Python	 and	 process	 it	 with	 pandas.	 Before	 we	 start	 this,	 we	 have	 to	 import	 the	 required
modules	as	follows:

import	pandas	as	pd

import	numpy	as	np

As	you	can	see,	we	imported	both	pandas	masked	as	pd	and	numpy	masked	as	np.	Since	we
will	 explore	data,	we	would	also	 like	 to	do	 some	visualizations.	One	of	 the	most	 common
modules	for	graphics	is	matplotlib.	Hence,	we	import	it	as	follows:

#	Plot	libraries

from	matplotlib	import	patheffects

import	matplotlib.pyplot	as	plt

#	the	line	below	configures	some

#	plotting	parameters

plt.rcParams["figure.figsize"]	=	(12,12)

As	you	can	tell,	here	we	used	another	keyword	which	is	from.	In	this	way,	we	explicitly	tell
Python	 the	exact	method	we	want	 to	make	available.	 In	 the	example	above,	we	are	saying

https://pandas.pydata.org

that	 from	 the	 whole	 matplotlib	 module,	 we	 just	 want	 patheffects.	We	 also	 import	 the
method	matplotlib.pyplot	and	we	mask	it	with	the	conventional	name	plt.

7.2.1 Import	External	Files	as	Data	Frames
We	 are	 now	 ready	 to	 physically	 import	 an	 external	 file	 into	 the	 Python	 environment.

pandas	 is	able	 to	 ready	 from	a	variety	of	different	 file	 formats	 like	CSV,	Excel,	SQL.	The
module	comes	with	built-in	methods	 to	 read	 in	data	specifically	designed	 to	work	with	 the
different	file	formats.	The	general	syntax	to	import	a	file	is	as	follows:

#	For	CSV	files

df_csv	=	pd.read_csv('path/to/file.csv')

#	For	Excel	files

df_excel	=	pd.read_excel('path/to/file.xlsx')

#	For	SQL	files

df_sql	=	pd.read_sql("SELECT	*	FROM	table",	con)

Please	 note	 that	 when	 we	 read	 in	 a	 SQL	 database,	 we	 have	 to	 have	 a	 valid	 and	 active
connections	which	we	named	con.	One	way	to	define	a	connection	to	a	database	is	through
the	module	sqlite3	as	follows:

con	=	sqlite3.connect('my_sql_db')

Now	that	you	are	more	familiar	with	Python,	it	is	easier	to	understand	the	syntax.	Even	if
we	are	using	a	module,	pandas,	we	can	see	that	we	call	functions	(i.e.	methods)	belonging	to
the	module	with	 the	 usual	 dot	 operator	 ..	 So	writing	 pd.read_csv('path/to/file.csv')
call	the	function	read_csv()	contained	in	pandas	which	allows	us	to	import	a	.csv	file.	The
string	'path/to/file.csv'	represents	the	location	of	the	file	we	want	to	import	on	the	local
drive.	The	example	we	are	going	to	use	is	a	csv	file.	In	order	to	import	it	we	have	to	use	the
pd.read_csv()	function	as	follows:

df	=	pd.read_csv("data/twitter_lockout.csv")

We	now	have	an	object	of	type	Data.Frame	named	df.	Data.Frame(s)	are	the	typical	objects
which	you	are	going	to	use	on	a	daily	basis.	You	can	find	them	in	almost	every	programming
languages	 and	 they	 are	 typically	 called	 data.frame(s).	 So	 whenever	 we	 refer	 to	 a	 pandas
object,	we	immediately	know	that	this	object	will	be	of	type	Data.Frame.

As	you	can	imagine,	 there	are	plenty	of	operations	we	can	carry	out	on	this	object.	For
instance,	 we	 can	 now	 have	 look	 at	 the	 data	 with	 the	 function	 head(),	 which	 by	 default

displays	just	the	first	5	rows	in	our	database.	Just	remember:	a	Data.Frame	assumes	we	have
observations	 in	rows	and	features	 in	columns.	If	you	want	 to	display	a	different	number	of
rows,	just	specify	the	number	you	want	as	an	argument	as	follows3:

#	defeault	5	rows

df.head())

Or	just	the	first	two	rows:

df.head(2))

One	could	be	interested	in	looking	at	the	bottom	rows.	In	order	to	do	so,	you	can	use	the
function	tail().	As	you	probably	guessed,	by	default	tail()	display	the	bottom	5	rows,	so
once	again,	you	can	specify	a	custom	number	as	an	argument	of	the	function.	For	instance,
let	us	display	the	bottom	2	rows:

df.tail(3)

7.3 Indexing
Let	 us	 now	 learn	 how	 to	 identify	 specific	 columns	 or	 rows	 in	 a	 data	 frame.	 In	 other

words,	 we	 want	 to	 apply	 the	 so	 called	 indexing.	 Indexing	 is	 helpful,	 we	 should	 say
fundamental	to	perform	any	operation	on	columns	or	rows.

7.3.1 Columns
The	 first	 thing	 we	 want	 to	 do	 is	 to	 understand	 what	 columns	 are	 in	 our	 Data.Frame

object.	We	simply	use	the	columns	method,	without	parenthesis4.

df.columns

##	Index(['hndl',	'date',	'tweetsent',	'followers',	'retweet'],

##	dtype='object')

We	can	also	put	all	the	columns	into	a	list,	should	we	need	it,	with	tolist().

df.columns.tolist()

##	['hndl',	'date',	'tweetsent',	'followers',	'retweet']

After	seeing	 the	columns	 in	our	data	frame,	 let	us	 learn	how	to	select	 just	one	column.
Similarly	 to	what	we	did	 to	access	elements	 in	 lists,	we	can	access	columns	with	a	 square
bracket	[].	With	 lists,	we	 indicate	each	element	with	 its	 index.	 In	data	 frames,	we	 indicate
each	column	with	its	name.	Thus,	to	access	the	column	followers	we	would	write:

df['followers']

##	0 722

##	1 634

##	2 6525

##	3 178

##	4 554

##	5 3616

##	6 6

##	7 188

##	8 4813

##	9 2978

##	10 535

##	11 62

##	12 361

##	13 15044

##	14 12537

##	15 268

##	16 626

##	17 195

##	18 751

##	19 97781

##	20 2089

##	21 3973

##	22 294

##	23 813

##	24 482

##	25 1423

##	26 1125

##	27 3148

##	28 11512

##	29 498

...

##	46361 105

##	46362 12

##	46363 1091

##	46364 3337

##	46365 253

##	46366 10441

##	46367 1264

##	46368 106

##	46369 10

##	46370 340

##	46371 1497

##	46372 1400

##	46373 121

##	46374 767

##	46375 179

##	46376 2955

##	46377 282

##	46378 319

##	46379 1900

##	46380 1883

##	46381 2677

##	46382 2523

##	46383 250

##	46384 331

##	46385 806

##	46386 439

##	46387 93

##	46388 2315

##	46389 653

##	46390 90

##	Name:	followers,	Length:	46391,	dtype:	int64

We	are	not	going	to	print	it	because	it	would	be	a	very	long	list.	However,	remember	that
you	can	always	slice	columns	in	the	same	way	as	we	sliced	lists.	For	instance,	we	can	access
the	first	3	rows	of	the	column	followers	as:

df['followers'][:3]

##	0 722

##	1 634

##	2 6525

##	Name:	followers,	dtype:	int64

Alternatively,	 you	 can	 treat	 the	 name	 like	 an	 attribute	 of	 the	 data	 frame	df	 and	 use	 a	 dot
operator	to	access	a	column,	like	this:

df.followers

##	0 722

##	1 634

##	2 6525

##	3 178

##	4 554

##	5 3616

##	6 6

##	7 188

##	8 4813

##	9 2978

##	10 535

##	11 62

##	12 361

##	13 15044

##	14 12537

##	15 268

##	16 626

##	17 195

##	18 751

##	19 97781

##	20 2089

##	21 3973

##	22 294

##	23 813

##	24 482

##	25 1423

##	26 1125

##	27 3148

##	28 11512

##	29 498

...

##	46361 105

##	46362 12

##	46363 1091

##	46364 3337

##	46365 253

##	46366 10441

##	46367 1264

##	46368 106

##	46369 10

##	46370 340

##	46371 1497

##	46372 1400

##	46373 121

##	46374 767

##	46375 179

##	46376 2955

##	46377 282

##	46378 319

##	46379 1900

##	46380 1883

##	46381 2677

##	46382 2523

##	46383 250

##	46384 331

##	46385 806

##	46386 439

##	46387 93

##	46388 2315

##	46389 653

##	46390 90

##	Name:	followers,	Length:	46391,	dtype:	int64

Are	we	sure	that	the	two	notations	yield	the	same	output?	Let	us	check!

text1	=	df['followers']

text2	=	df.followers

#	check	whether	the	Series	are	the	same

print(text1	is	text2)

##	True

Let	us	now	see	what	type	of	object	we	have	created:

print(type(text1))

##	<class	'pandas.core.series.Series'>

print(type(text2))

##	<class	'pandas.core.series.Series'>

As	you	can	see,	we	have	created	an	object	called	Series.	We	can	convert	this	Series	to	a
list	with	the	usual	function	tolist()	as	we	have	done	before	to	put	the	names	of	the	columns
in	a	list

followers_list	=	df['followers'].tolist()

print(type(followers_list))

##	<class	'list'>

We	 might	 be	 interested	 in	 doing	 something	 more	 than	 just	 selecting	 more	 than	 one
column.	In	order	to	do	that,	we	need	to	pass	the	names	of	the	columns	we	are	interested	in	as
a	list:

df2	=	df[['date','tweetsent']]

df2.head(2)

date tweetsent

##	0 2018-02-21	15:40:58 8999

##	1 2018-02-21	15:40:58 48791

date tweetsent

2018-02-21	15:40:58 8999

2018-02-21	15:40:58 48791

Please	note	that	the	first	[]	allows	the	access	to	the	data	frame,	while	the	second	[]	allows
you	to	select	the	columns.	This	selection	returns	another	Data.Frame	object.	To	select	more
than	one	column,	we	can	use	the	first	method	only.	This	makes	sense	since	the	dot	operator
makes	 a	 direct	 link	 with	 that	 very	 column	 you	 specified	 and	 it	 won’t	 allow	 any	 other
specifications.

After	all	 these	operations,	one	thing	has	been	left	over:	what	is	the	size	of	this	data?	In
other	words,	how	many	rows	and	columns	are	in	your	data	frame?	One	thing	to	note	is	that

there	is	an	extra	column	at	the	very	beginning	of	our	data	frame,	which	does	not	come	from
the	original	csv	file	that	we	uploaded.	This	initial	column	is	called	index	and	it	is	a	fixed	ID
that	 identifies	 each	 row	of	 the	 data	 frame.	This	 index	 is	 created	 by	 default	 by	pandas	 the
minute	we	import	a	data	set.	Whatever	operations	we	carry	out	on	our	data	frame,	the	index
will	never	change.	The	only	way	we	have	to	access	this	column	is	through	the	dot	operator.

The	simplest	way	to	know	how	many	observations	are	in	a	column,	we	can	ask	its	length
with	the	usual	function	len()	as	follows:

print(len(df.index))

##	46391

print(len(df["followers"]))

##	46391

As	we	pointed	out	before,	the	following	code	will	return	an	error	since	we	are	trying	to
access	the	column	index	using	a	list.

print(len(df["index"]))

Indeed,	there	is	no	column	called	index.

7.3.1.1	Series	functions
We	can	of	course	analyze	a	Series	object.	For	instance,	we	can	get	some	descriptive	with

describe()	by	once	again	using	the	usual	dot	operation.	The	intuition	here	is	 to	just	chain
the	instructions	one	after	another	one.	In	the	following	chunk,	you	can	see	how	first	we	select
the	column	retweet	and	then	(i.e.	with	.)	we	ask	for	its	description.

print(df["retweet"].describe())

##	count 46391.000000

##	mean 881.653036

##	std 1502.878469

##	min 0.000000

##	25% 6.000000

##	50% 234.000000

##	75% 870.000000

##	max 7060.000000

##	Name:	retweet,	dtype:	float64

You	could	also	call	one	specific	descriptive	with	the	corresponding	function,	e.g.,	count(),
mean(),	max()	or	min().

print(df["retweet"].max())

##	7060

7.3.2 Rows
Retrieving	a	row	is	also	possible,	but	we	have	to	use	a	different	method	called	iloc.	This

method	requires	the	exact	row	number	as	input.	For	instance,

print(df2.iloc[2])

##	date 2018-02-21	15:40:57

##	tweetsent 17585

##	Name:	2,	dtype:	object

Alternatively,	 you	 can	 use	 the	 loc	 method.	 While	 iloc	 is	 primarily	 integer	 position
based,	loc	is	primarily	label	based.

print(df2.loc[2])

##	date 2018-02-21	15:40:57

##	tweetsent 17585

##	Name:	2,	dtype:	object

7.4 Adding	new	columns
We	can	create	new	columns	in	the	same	way	we	create	objects	in	Python.

df["name_of_the_column"]	=	<instructions	here>

Let’s	create	a	column	called	reach	that	is	the	ratio	between	the	number	of	re-tweets	and
number	of	followers.	We	can	do	it	by	just	accessing	the	two	columns	we	are	interested	in	and
computing	the	ratio:

df["reach"]	=	df["retweet"]	/	df["followers"]

To	check	what	we	have	done,	 let	 us	 print	 just	 the	 first	 5	 rows	of	 the	 columns	followers,
retweet,	and	reach.	First,	we	pass	the	three	columns	we	want	to	access	as	a	list:

df[["followers","retweet",	"reach"]]

followers retweet reach

##	0 722 0 0.000000

##	1 634 662 1.044164

##	2 6525 586 0.089808

##	3 178 84 0.471910

##	4 554 199 0.359206

##	5 3616 1749 0.483684

##	6 6 4589 764.833333

##	7 188 4589 24.409574

##	8 4813 124 0.025764

##	9 2978 0 0.000000

##	10 535 4424 8.269159

##	11 62 340 5.483871

##	12 361 4 0.011080

##	13 15044 1 0.000066

##	14 12537 0 0.000000

##	15 268 1320 4.925373

##	16 626 10 0.015974

##	17 195 1 0.005128

##	18 751 0 0.000000

##	19 97781 0 0.000000

##	20 2089 728 0.348492

##	21 3973 626 0.157564

##	22 294 0 0.000000

##	23 813 1 0.001230

##	24 482 1683 3.491701

##	25 1423 2269 1.594519

##	26 1125 223 0.198222

##	27 3148 229 0.072745

##	28 11512 0 0.000000

##	29 498 0 0.000000

##

##	46361 105 0 0.000000

##	46362 12 1115 92.916667

##	46363 1091 13 0.011916

##	46364 3337 24 0.007192

##	46365 253 1115 4.407115

##	46366 10441 1 0.000096

##	46367 1264 1499 1.185918

##	46368 106 1115 10.518868

##	46369 10 1242 124.200000

##	46370 340 2733 8.038235

##	46371 1497 77 0.051436

##	46372 1400 625 0.446429

##	46373 121 24 0.198347

##	46374 767 0 0.000000

##	46375 179 973 5.435754

##	46376 2955 1248 0.422335

##	46377 282 858 3.042553

##	46378 319 0 0.000000

##	46379 1900 118 0.062105

##	46380 1883 981 0.520977

##	46381 2677 283 0.105715

##	46382 2523 941 0.372969

##	46383 250 444 1.776000

##	46384 331 0 0.000000

##	46385 806 273 0.338710

##	46386 439 2 0.004556

##	46387 93 2 0.021505

##	46388 2315 35 0.015119

##	46389 653 444 0.679939

##	46390 90 0 0.000000

## 	 	 	

##	[46391	rows	×	3	columns]

Then,	select	the	first	5	rows.	You	have	four	options	here:

#	option	1

print(df[["followers","retweet",	"reach"]].head(5))

followers retweet reach

##	0 722 0 0.000000

##	1 634 662 1.044164

##	2 6525 586 0.089808

##	3 178 84 0.471910

##	4 554 199 0.359206

#	option	2

print(df[["followers","retweet",	"reach"]][:5])

followers retweet reach

##	0 722 0 0.000000

##	1 634 662 1.044164

##	2 6525 586 0.089808

##	3 178 84 0.471910

##	4 554 199 0.359206

#	option	3

print(df[["followers","retweet",	"reach"]].loc[5])

##	followers 3616.000000

##	retweet 1749.000000

##	reach 0.483684

##	Name:	5,	dtype:	float64

#	option	4

print(df[["followers","retweet",	"reach"]].iloc[5])

##	followers 3616.000000

##	retweet 1749.000000

##	reach 0.483684

##	Name:	5,	dtype:	float64

Now,	let	us	create	another	column	named	author_followership,	which	is	a	categorical
variable	to	indicate	the	size	of	each	author’s	followership	as	follows:

• small:	if	the	number	of	followers	is	below	the	average;
• big:	otherwise.

First,	we	need	to	figure	out	the	mean	number	of	followers.	How?	Well,	we	access	the	column
followers	and	then	ask	for	its	mean	with	the	function	Series.mean().

avg_followers	=	df["followers"].mean()

print(avg_followers)

##	4412.800694100149

Then,	we	apply	the	function	pd.cut()	to	the	column	followers.	This	function	has	three
main	arguments:

• x:	the	input	array	to	bin
• bins:	the	criteria	to	bin	by	(i.e,	the	bin	edges);
• labels:	specifies	the	labels	for	the	returned	bins.

We	 first	 store	 our	bins	 and	labels	 in	 two	 separate	 lists.	 Then,	we	 apply	pd.cut()	 to	 the
column	followers	as	follows:

bins	=	[0,	avg_followers,	np.inf]

labels	=	['small',	'big']

df['author_followership']	=	pd.cut(x	=	df['followers'],

																																			bins	=	bins,

																																			labels	=	labels)

7.5 Working	with	dates
pandas	has	a	nice	built-in	method	 to	work	with	date:	datetime.	First,	we	create	a	new

column	date1	that	convert	our	column	date	into	a	datetime	format:

df["date1"]	=	pd.to_datetime(df["date"])

Then,	we	can	create	columns	containing	the	year,	month,	day,	and	even	minutes	and	seconds,
with	the	function	Series.dt():

df['year']			=	df['date1'].dt.year

df['month']		=	df['date1'].dt.month

df['day']				=	df['date1'].dt.day

df['hour']			=	df['date1'].dt.hour

df['minute']	=	df['date1'].dt.minute

df['second']	=	df['date1'].dt.second

Now	let’s	explore	the	new	structure:

#	calling	a	head

df.head()

7.6 Grouping
We	 can	 group	 our	 data	 according	 to	 the	 value	 of	 one	 column	 with	 the	 function

groupby().	It	takes	as	an	argument	the	name	of	the	column	we	want	to	use	to	group	our	data.

df.groupby(column_name)

Just	using	groupby()	creates	a	groupby.DataFrameGroupBy	object.	To	obtain	a	specific
statistics,	we	need	to	specify	it	after	groupby().	These	are	just	some	of	the	possibilities:

• sum()

• count()

• mean()

• median()

• min()

• max()

For	instance,	each	hour,	we	can	compute	the	mean	of	each	numeric	column	in	our	data
frame	with	the	function	mean().

df.groupby('hour').mean()

Now,	let	us	have	a	 look	at	 the	authors	who	wrote	the	most	 tweets.	We	use	the	function
Series.value_counts()	that	returns	the	number	of	times	each	author	posted	a	tweet.

counts	=	df["hndl"].value_counts()

print(type(counts))

##	<class	'pandas.core.series.Series'>

The	object	counts	that	we	just	created	is	basically	a	pandas	Series	with	one	column	that
contains	the	number	of	tweets	each	author	posted.	The	index	is	the	name	of	the	author.	We
can	print	it	in	the	same	way	we	print	a	data	frame:

print(counts.head())

##	rhoho1118 62

##	MulfacASMR 48

##	redrevcorp 48

##	honeybunchesof8 37

##	rentonMagaUK 36

##	Name:	hndl,	dtype:	int64

If	 we	 want	 to	 print	 the	 percentages	 instead	 of	 the	 absolute	 numbers,	 we	 can	 just	 passing
normalize=True	as	an	argument	of	value_counts.

counts	=	df["hndl"].value_counts(normalize=True)

print(counts.head())

##	rhoho1118 0.001336

##	MulfacASMR 0.001035

##	redrevcorp 0.001035

##	honeybunchesof8 0.000798

##	rentonMagaUK 0.000776

##	Name:	hndl,	dtype:	float64

7.7 Exercises	on	Pandas

Exercise	1
Print	the	first	four	rows	of	the	columns	followers	and	author_followership.

7.8 Solutions	to	Exercises	on	Pandas

Solution	to	Exercise	1
Solution	1

print(df[["followers",	"author_followership"]][:4])

followers author_followership

##	0 722 small

##	1 634 small

##	2 6525 big

##	3 178 small

Solution	2

print(df[["followers",	"author_followership"]].loc[:4])

followers author_followership

##	0 722 small

##	1 634 small

##	2 6525 big

##	3 178 small

##	4 554 small

Solution	3

print(df[["followers",	"author_followership"]].iloc[:4])

followers author_followership

##	0 722 small

##	1 634 small

##	2 6525 big

##	3 178 small

1Please,	note	that	the	quotation	marks	are	not	required	in	the	commands	below.
2https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv.
3Please	 note	 that	 the	 print()	 function	 is	 used	 here	 just	 to	 ensure	 the	 correct	 output.

When	 working	 with	 pandas	 functions	 like	 head()	 or	 tail()	 automatically	 displays	 the
information.	In	other	words,	the	print()	function	is	not	strictly	required.

4The	fact	that	to	call	this	method	we	do	not	have	to	use	the	usual	parenthesis	is	out	of	the
scope	of	this	book.	You	will	learn	that	some	functions	require	them,	other	do	not.

https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv

	Title Page
	Copyright
	Contents
	Preface
	Acknowledgements
	1. Introduction
	1.1. What is Python?
	1.2. Compiled vs Interpreted
	1.3. Object-Oriented Programming
	1.4. High-level Programming Language
	1.5. Static vs Dynamic Semantics
	1.6. Installing Python
	1.7. How Do You Interact with Python?
	1.7.1. Spyder
	1.7.2. Jupyter Notebook
	1.7.3. PyCharm
	1.7.4. An outsider: iPython

	2. First Steps With Python
	2.1. The Logic Behind A Code
	2.2. Objects in Python
	2.3. Object Types
	2.3.1. Integers
	2.3.2. Floats
	2.3.3. Strings
	2.3.4. Formal String-Number Concatenation
	2.3.5. Boolean

	2.4. Commenting the Code
	2.5. Reserved Keywords
	2.6. Exercises
	2.7. Read the Code
	2.8. Code Bloopers
	2.9. Solutions to Exercises

	3. Tuples, Lists, Sets, and Dictionaries
	3.1. Tuples
	3.1.1. Slicing Tuples
	3.1.2. Assigning and Chaining Tuples

	3.2. Lists
	3.2.1. Updating a List
	3.2.2. Deleting a List Element
	3.2.3. Slicing Lists

	3.3. Indexing
	3.4. Exercises on Lists
	3.5. Python Methods
	3.5.1. Methods for Lists
	3.5.2. Exercise on Methods
	3.5.3. The zip() function

	3.6. Sets
	3.6.1. How to Create a Set
	3.6.2. Methods for Sets
	3.6.3. Exercises on Sets

	3.7. Dictionaries
	3.7.1. How to Create a Dictionary
	3.7.2. Casting and Recasting Objects
	3.7.3. Retrieving a Value
	3.7.4. Setting Values
	3.7.5. Multi-level dictionaries
	3.7.6. Exercises on Dictionaries

	3.8. Solution to Exercises
	3.8.1. Solutions to Exercises on Lists
	3.8.2. Solutions to Exercises on Methods
	3.8.3. Solutions to Exercises on Sets
	3.8.4. Solutions to Exercises on Dictionaries

	4. Conditional Statements and Loops
	4.1. Indentation
	4.2. if Statements
	4.3. else Statements
	4.4. elif Statements
	4.4.1. Condition Check

	4.5. The for Loop
	4.5.1. For Loops On Determined Iterables
	4.5.2. for Loops Over Iterators
	4.5.3. Creating Lists Through for Loops
	4.5.4. Iteration Over Multiple Lists
	4.5.5. Exercises on for Loops Over Lists
	4.5.6. for Loops Over Dictionaries: Details
	4.5.7. for Loops With Multi-Level Dictionaries
	4.5.8. Exercises on for Loops Over Dictionaries

	4.6. while Loops
	4.6.1. Exercises on while Loops

	4.7. List Comprehension
	4.8. An Alternative to for Loops
	4.9. Read the Code
	4.10. Solutions to Exercises
	4.10.1. Solutions to Exercises on for Loops Over Lists
	4.10.2. Solutions to Exercises on for Loops Over Dictionaries
	4.10.3. Solutions to Exercises on while Loops

	5. Functions
	5.1. Writing a Function in Python
	5.1.1. Default Parameters
	5.1.2. Functions With 2 Arguments
	5.1.3. The Parameter *args
	5.1.4. The Parameter **kwargs
	5.1.5. Formal Order of Parameters

	5.2. Functions Calling Functions
	5.2.1. Logical Flow of the Problem

	5.3. Exercises on Functions
	5.4. Read the Code
	5.5. Code Bloopers
	5.6. Useful Built-in Functions
	5.6.1. lambda Functions
	5.6.2. map() Function
	5.6.3. filter() Function

	5.7. Solutions to Code Bloopers
	5.8. Solutions to Exercises on Functions

	6. Object Oriented Programming and Classes
	6.1. Object Oriented Programming
	6.2. Classes
	6.2.1. Writing a Class in Python
	6.2.2. The Special Method __init__()
	6.2.3. Adding More Methods
	6.2.4. Creating and Using a Class
	6.2.5. Class Inheritance

	7. Python Modules: pandas
	7.1. Installing and Importing a Module
	7.2. Managing Databases With Pandas
	7.2.1. Import External Files as Data Frames

	7.3. Indexing
	7.3.1. Columns
	7.3.2. Rows

	7.4. Adding new columns
	7.5. Working with dates
	7.6. Grouping
	7.7. Exercises on Pandas
	7.8. Solutions to Exercises on Pandas

