

Parlay/OSA

Parlay/OSA
From Standards to Reality

Musa Unmehopa, Lucent Technologies, Bell Labs Innovations, The Netherlands

Kumar Vemuri, Lucent Technologies, Bell Labs Innovations, USA

Andy Bennett, Lucent Technologies, Bell Labs Innovations, UK

Lucent Technologies, Inc. All Rights Reserved

Copyright  2006 Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974-0636, USA

Published by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the

terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright

Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the

Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,

The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or

faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter

covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If

professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears

in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Unmehopa, Musa.

Parlay/OSA : from standards to reality / Musa Unmehopa, Kumar

Vemuri, Andy Bennett.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-470-02595-6 (cloth : alk. paper)

ISBN-10: 0-470-02595-6 (cloth : alk. paper)

1. Telecommunication systems–Management. I. Vemuri, Kumar.

II. Bennett, Andy. III. Title.

TK5102.5.U55 2006

621.382′1–dc22

2005032767

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-02595-6

ISBN-10: 0-470-02595-6

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry

in which at least two trees are planted for each one used for paper production.

www.wiley.com

Trademarks and Permissions

3GPP, PLUGTESTS, TIPHON, and UMTS are trademarks of ETSI.

CORBA, UML, and XMI, and Unified Modeling Language are either registered trademarks

or trademarks of Object Management Group, Inc. in the United States and/or other countries.

J2EE, J2SE, JAIN, and Java are trademarks of Sun Microsystems, Inc. in the United States

and other countries.

ANSI is a registered trademark of the American National Standards Institute.

W3C is a registered trademark of the World Wide Web Consortium, registered in numerous

countries.

Microsoft.NET is either a registered trademark or trademark of Microsoft Corporation in the

United States and/or other countries.

Open Mobile Alliance, WAP Forum, and ‘Wireless Village’ are trademarks of Open Mobile

Alliance Ltd.

Portions of this text pertaining to Parlay APIs and specifications reprinting with permission of The

Parlay Group, Inc.

To Odette and Aron M.U.

To Sai and Family K.V.

To Katie, Eleanor, Ewan and Matthew A.B.

Contents

Trademarks and Permissions v

About the Authors xvii

A Note to the Reader xix

Acknowledgments xxi

End-user Scenarios xxiii

Scenario 1: The Operator’s Perspective xxiii

Scenario 2: The Application Developer’s Perspective xxiii

Scenario 3: End-user Perspective xxiv

Scenario 4: Yet more perspectives xxiv

News Flash (Sometime During 2005–2006) xxiv

Scenario 5: The Future xxv

Part I Background and Introduction 1

1 The Internet is Calling – Today’s Network Ecosystems and Their Evolution 3

1.1 Introduction 3

1.2 Traditional Telephony and Intelligent Networks 4

1.3 Signaling 7

1.3.1 Signaling and Standards Bodies 8

1.3.2 Some Examples of Signaling Protocols 9

1.4 A Foray into Other Network and Service Architectures 10

1.4.1 Voice over the Internet Protocol (VoIP) 10

1.4.2 Converged Networks 11

1.4.3 Internet Access via the PSTN 13

1.5 Wireless Networks and Generations of Technology 13

1.5.1 Cellular Communication 15

1.5.2 Wireless Networks and their Elements 15

1.5.3 Evolution of 2nd Generation Wireless Systems 17

1.5.4 Third Generation Wireless Systems 18

1.5.5 CDMA Network Evolution 18

1.6 The IP Multimedia Subsystem (IMS) 20

1.6.1 A Standards View 20

1.6.2 Simplified View of the IMS Architecture 21

1.6.3 Service Control in IMS 23

x Contents

1.7 Related Technologies 24

1.7.1 WAP Technology 24

1.7.2 Location Based Services 25

1.7.3 Short Message Service and Multi-media Messaging 26

1.8 Summary 27

2 The Need for New Technologies 29

2.1 Introduction 29

2.2 Issues with Networks Today or The Drive to Improve 29

2.2.1 Network Operators 29

2.2.2 Application Provider 32

2.2.3 End-users or Subscribers 34

2.3 Summary: Required Characteristics of a Desirable Solution Technology 34

3 Follow the Yellow Brick Road 37

3.1 Introduction 37

3.2 Of ‘Smoke-Stacks’, Value-Chains, and Service Layers 38

3.3 The Programmable Network 40

3.4 Services and Applications 40

3.5 Developing a Satisfactory Solution Architecture 40

3.5.1 Reducing Integration Costs, Faster Development Cycles 41

3.5.2 More Efficient Application Development, Reuse across Network

Types 43

3.5.3 Lowered OPEX, Shared-hosting Models 44

3.5.4 More Effective Use of Deployed Legacy Systems, Evolution

Independence 44

3.6 Service Mediation and Mediation Gateways 45

3.7 Service Mediation Example 45

3.7.1 User Experience 45

3.7.2 Network Operation 46

3.8 Summary 47

4 Parlay and OSA 49

4.1 Introduction 49

4.2 The Need for Standards 49

4.3 The Parlay Family Tree 50

4.3.1 The Cradle 50

4.3.2 Early Childhood 52

4.3.3 The Wonder Years 53

4.3.4 Maturity? 54

4.3.5 Non-identical Twins 56

4.4 The Standards Themselves 56

4.4.1 The Common UML Model 56

4.4.2 Technology Realizations 57

4.4.3 Versioning Schemes and How They Relate 57

4.4.4 The Specification Series 58

4.4.5 Specifications and Recommendations 58

4.5 Summary 59

Contents xi

5 The Parlay Conceptual Architecture 61

5.1 Introduction 61

5.2 The Client Application 62

5.3 The SCS 63

5.3.1 Translation 63

5.3.2 Beyond Translation 65

5.4 The Framework 66

5.4.1 Are You Really Who You Say You Are? 67

5.4.2 The Access Session 67

5.5 All Together Now 71

5.5.1 SCS Registration and Announcement 72

5.5.2 SCS Discovery 74

5.5.3 Service Selection 76

5.5.4 Signing on the Dotted Line 76

5.5.5 The Parlay Triangle Revisited 77

5.5.6 Managing the Session 77

5.6 The Enterprise Operator 82

5.6.1 Key Parlay Subscription Model Concepts 82

5.6.2 The Enterprise Operator Interfaces 84

5.7 Summary 85

Part II The Standards in Detail 87

6 Standards Capabilities and Directions 89

6.1 Introduction 89

6.2 Part 1 – Overview 89

6.2.1 Versions and Releases 90

6.2.2 Methodology 90

6.2.3 Interface Design Principles 91

6.2.4 Shapes and Forms 91

6.3 Part 2 – Common Data Types 92

6.4 Part 3 – Framework (FWK) 92

6.5 Part 4 – Call Control (CC) 92

6.5.1 GCCS 94

6.5.2 MPCCS 98

6.5.3 MMCCS 99

6.5.4 CCCS 99

6.6 Part 5 – User Interaction (UI) 99

6.7 Part 6 – Mobility Management (MM) 103

6.7.1 User Location 103

6.7.2 User Location Camel 104

6.7.3 User Location Emergency 106

6.7.4 User Status 106

6.8 Part 7 – Terminal Capabilities (TC) 108

6.9 Part 8 – Data Session Control (DSC) 109

6.10 Part 11 – Account Management (AM) 110

6.11 Part 12 – Content Based Charging (CBC) 112

6.11.1 Service Considerations 114

6.11.2 Reliability Considerations 114

xii Contents

6.12 Part 13 – Policy Management (PM) 115

6.12.1 Service Scenarios 115

6.12.2 Operations Scenarios 117

6.12.3 Service Properties versus Policies 118

6.12.4 Business Opportunities 118

6.12.5 The Policy Management Interfaces 118

6.13 Part 14 – Presence and Availability Management (PAM) 120

6.14 Other Standards-defined SCFs 123

6.14.1 The Generic Messaging Service (GMS) 123

6.14.2 The Connectivity Manager (CM) 123

6.14.3 The MultiMedia Messaging Service (MMM) 123

6.15 Support for Non-Standard SCSs and Value-Added Extensions∗ 124

6.15.1 Standards-defined and Proprietary SCSs 124

6.15.2 Standards Directions 124

6.15.3 Example Proprietary SCFs 125

6.16 Summary 126

7 Standards Capabilities and Directions II – Scenarios and Details 127

7.1 Introduction 127

7.2 The Parlay Ecosystem and Value-Chain 127

7.3 Example Scenario 129

7.4 Under the Covers – How it Actually Works 130

7.5 Mapping APIs to Protocols 131

7.6 Toolkits for Application Development 135

7.7 Mixed Mode Applications 136

7.8 Summary 137

8 Standards Capabilities and Directions III – The Lay of the Land 139

8.1 Introduction 139

8.2 Navigation 139

8.3 Parlay in 3GPP Environments 140

8.3.1 The Service Concepts 140

8.3.2 The Overall 3GPP Architecture 141

8.3.3 Services Making Use of OSA 142

8.3.4 The Stages of OSA 142

8.4 Parlay in 3GPP2 Environments 143

8.4.1 The Overall 3GPP2 Architecture 143

8.4.2 OSA in 3GPP2 145

8.5 Summary 145

Part III Building a Service Mediation Gateway 147

9 Alternative Architectures 149

9.1 Introduction 149

9.2 Standard Architectural Alternatives 149

9.2.1 Embedded Approach 150

9.2.2 Gateway Approach 150

Contents xiii

9.2.3 Hybrid Approach 150

9.2.4 Discussing the Merits of Standard Architecture Alternatives 150

9.3 Advanced Architecture Patterns∗ 152

9.3.1 Multiple Cloned SCSs 152

9.3.2 Some Practical Implementation-related Considerations 153

9.3.3 Distributed SCSs 159

9.3.4 Tiering of Multiple Cloned SCSs 162

9.3.5 Getting Practical with Architecture Patterns 163

9.4 Summary 164

10 Considerations for Building ‘Carrier-Grade’ Systems 165

10.1 Introduction 165

10-1 Reflections on the Performance of Implementations 166

10-1.1 Introduction and Scope 166

10-1.2 Performance Aspects 167

10-1.3 Performance Computation – Flow Composition 169

10-1.4 Performance Computation – Transaction ‘Mix’ 170

10-1.5 Performance Computation – Abstract Models∗ 171

10-1.6 Performance Computation – Round Trip Times 172

10-1.7 Performance Verification and Validation – Tuning the Code,

Measurements 172

10-1.8 Performance Engineering for Deployments 172

10-1.9 Summary 174

10-2 Overload Handling Considerations 174

10-2.1 Introduction 174

10-2.2 What is Ideal, What is Practical? 175

10-2.3 General Patterns for Overload Control 176

10-2.3.1 New Work Before Old 176

10-2.3.2 Shed Load at the Periphery 176

10-2.3.3 Evaluate Overload Globally 177

10-2.4 Overload and Parlay Gateways 177

10-2.4.1 Overload Detection, Reporting, and Handling 177

10-2.4.2 Parlay Gateway Related Considerations 177

10-2.5 Summary 179

10-3 On the Scalability and Reliability of Implementations 179

10-3.1 What are High Availability and Reliability? Why Consider Scalability? 179

10-3.2 Reliability and High Availability of Parlay – Applications and

Gateways 180

10-3.3 Scalability and Reliability 181

10-3.3.1 Engineering for Scalability and Reliability 181

10-3.4 Parlay Considerations 182

10-3.4.1 Building HA Parlay Applications 183

10-3.5 Summary 184

10-4 Failure Handling in Parlay/OSA Environments 184

10-4.1 Introduction 184

10-4.2 A Layered Software Architecture – Again. . . 186

10-4.3 A Layered View of Errors? 187

10-4.4 Summary 188

xiv Contents

10-5 Security Aspects 189

10-5.1 Introduction 189

10-5.2 Security and Service Mediation Gateways 189

10-5.2.1 Standards-based Security Support 190

10-5.3 Network-level Security Support 191

10-5.3.1 Securing Service Sessions 191

10-5.4 Summary 192

10-6 Upgrading Field-deployed Systems∗ 193

10-6.1 Introduction 193

10-6.2 Upgrading an SMG 193

10-6.3 The Upgrade Process, and Addressing Inter-Component Dependencies 194

10-6.4 SCS and Service Upgrades 196

10-6.5 ‘Type C’ Upgrades 197

10-6.6 Supporting Different Service Versions Simultaneously; The Proxy

Architecture 198

10-6.7 Summary 198

10.2 Chapter 10 Summary 199

Part IV Realizing Parlay 201

11 Deploying Parlay Gateways 203

11.1 Introduction 203

11.2 Parlez-vous Parlay? 203

11.3 Growing the Parlay Network Footprint 204

11.4 Simplifying the Labors of Hercules 204

11.5 The Value Proposition for the Service Mediation Gateway in Service Provider

Networks∗ 206

11.6 Propositions and Proofs∗ 207

11.7 Conclusion 211

12 Parlay and Legacy Systems – Handling Feature Interactions 213

12.1 Introduction 213

12.2 Out with the Old, In with the New? Not quite 213

12.3 Parlay and Legacy IN Co-existence 214

12.4 Managing Trigger Contention 215

12.4.1 Supporting a ‘Gateway’ Service 216

12.4.2 Service Granules and Intra-service Routing 216

12.4.3 Service Interaction Manager or Service Combination Manager 217

12.5 Service Level Feature Interactions 220

12.5.1 Inter-Service (Parlay) Contention 220

12.5.2 Intra-Service (Parlay) Feature Interactions 221

12.6 Summary 223

13 Application Implementation Perspectives 225

13.1 Introduction 225

13.2 The Theory of Defensive Applications Design 226

Contents xv

13.3 Example Scenario Revisited 227

13.4 Where to Deploy? 229

13.5 Building the Application: Designing High-Level Logic∗ 229

13.5.1 A First Cut View 230

13.5.2 Enhancing the First Cut 231

13.6 On Lower-Cost Testing of Applications across API Interfaces∗ 233

13.7 Summary 235

Part V Advanced Topics and their Implementation 237

14 The Parlay Proxy Manager∗ 239

14.1 Introduction 239

14.2 Prising Open the Parlay Proxy Manager 241

14.2.1 Discussing the Merits of the Parlay Proxy Manager 242

14.3 Applications of the Parlay Proxy Manager 245

14.3.1 Crossing Continents 245

14.3.2 Premium Blend 245

14.4 Taking the Proxy Model Even Further 246

14.4.1 Dynamic Leaves 246

14.4.2 Framework Proxy 246

14.4.3 Application Proxy 249

14.5 Summary 250

15 Multi-Network Deployment Scenarios∗ 251

15.1 Introduction 251

15.2 Some examples 251

15.2.1 Example 1 252

15.2.2 Example 2 252

15.3 Federation: What is it? Why is it a Good Thing? 252

15.4 Models for Multi-Network Deployments of Parlay Gateways 253

15.5 Mobile Virtual Network Operator Scenarios 256

15.6 Revenue Settlement between Federated Entities 257

15.7 Summary 257

16 Parlay/OSA and XML-based Technologies 259

16.1 Introduction 259

16.2 The Acronym Soup 259

16.2.1 A Brief Recap 260

16.2.2 The X-files 260

16.3 Parlay WSDL 260

16.3.1 The UML-to-WSDL Language Mapping 261

16.3.2 Parlay WSDL in Relation to Parlay Web Services 262

16.3.3 Assessment of Parlay WSDL, and Recent Developments 264

16.4 Parlay X 264

16.4.1 Parlay X in Relation to Parlay 265

16.4.2 Parlay X in Relation to Parlay Web Services 265

xvi Contents

16.4.3 The Parlay X Building Blocks 266

16.4.4 Assessment of Parlay X, and Recent Developments 270

16.5 Summary 270

Bibliography 271

List of Abbreviations and Acronyms 273

References 281

Index 289

About the Authors

Musa Unmehopa is a Distinguished Member of Technical Staff in the Wireless Standards depart-

ment of Bell Labs within Lucent Technologies, responsible for service mediation architectures. He

has nine years experience in telecommunications, most recently as a standards manager active in

consortia like 3GPP, 3GPP2, ETSI, IETF, the Open Mobile Alliance (OMA), and the Parlay

Group. Prior to his standards activities, Musa worked as a lead development engineer and sys-

tems engineer of large scale, carrier-grade mobile communications software projects. He has been

involved with Parlay standards since the early inception of OSA technology within 3GPP in 1999

and has held numerous editor and rapporteur positions for the Parlay/OSA specifications. Most

notably, Musa has served on the Joint Working Group management team as the vice chairman of

the 3GPP TSG CN-5 working group, and as such held a seat on the Parlay Technical Advisory

Committee. Musa was part of the early Parlay prototyping activities within Lucent Technologies

and acts as standards consultant to the architecture team of the Lucent MiLife Intelligent Services

Gateway product. Currently, he acts as his company’s alternate member on the Parlay Board of

Directors. In addition, Musa presently serves as the chairman of the Architecture Working Group

within the Open Mobile Alliance, and previously held the position of vice-chairman of the Mobile

Web Services working group of OMA. Musa received his M.Sc in Computer Science from the

Technical University of Twente, the Netherlands, in 1996, has published several papers in the area

of service delivery and service mediation, and has several patents pending.

Kumar Vemuri is a Member of Technical Staff in the CTO Organization of the Applications

Solutions Business Unit of Lucent Technologies. He has several years experience in the telecom-

munications industry, and has been involved in the research, architecture, systems engineering,

prototyping, and design phases of several projects during this time. Most recently, he has worked

on the architecture, analysis, and design of products and standards relating to service mediation.

Kumar has authored several papers in the areas of service mediation, service delivery, network

architectures and converged networking. He holds two patents and has several pending. Kumar

received his M.S. in Computer Science from the University of Cincinnati. He currently resides at

Naperville, Illinois, USA.

Andy Bennett is a Distinguished Member of Technical Staff working in the Wireless Standards

organization within Lucent Technologies. Andy has worked in the telecommunications industry for

15 years, gaining experience in both wireline and wireless technologies. He has held the position

of Parlay Framework Working Group Chair and has worked extensively in the 3GPP CN5 OSA

and SA2 Working Groups. Andy has authored a number of technical papers and presentations for

journals and conferences and has several patents pending on service delivery and mediation.

A Note to the Reader

Books are written for specific target audiences. Sometimes, the material within the books is widely

usable. Some books we keep as references on our desks, while others we enjoy, critique, discuss,

and then move on to other things. A book, any book, that educates, makes one stop and think, and

promotes productive discussion, can be considered successful. We sincerely hope to have written

one of these.

We hope the reader will enjoy the structure and content – the technical and the abstract, the easy

and the difficult parts, the elementary as well as advanced sections. We envisioned, while writing,

that this book would be useful to managers in telecommunications companies trying to keep up

with new technologies, to engineers in the same companies who need to know the gory details, to

product, solutions, and offer managers as well as those that make purchasing decisions in service

provider companies, and their supporting technical staff. And last, but not least, we expect that

application developers who want to learn about Parlay and OSA with a view to acquiring skills to

enable them to build applications utilizing these technologies will be helped by reading this book.

Part I of this book will be useful to all readers without exception. This part gives you a good

grounding of Parlay fundamentals. Part II will be of greater interest to those who need to understand

the evolution of standards, how Parlay has arrived at where it is today, and (the nuts and bolts of)

how Parlay solutions are expected to work. Parts III and IV are intended primarily for technical

readers, the engineers and their management, who are more focused on implementation-related

considerations. These provide a lot of food for thought, though they do not always provide all the

answers. Often, asking the right questions is more important than answering others. We hope to

help the reader make wise design choices through these discussions. Finally, Part V studies some

of the more advanced topics, both with deployments, and with the standards, and looks forward

into the future.

To keep the size of the book reasonable, some discussions are a little succinct, though still

complete. To help readers who may not have all the required background to still follow along

without frustration, some appendices are provided with supporting and background material. These

can be located at the web page accompanying this book: http://www.wiley.com/go/parlay. In these

appendices, we have also attempted to cover supplementary topics related to the book, but not

directly woven into the Parlay story.

We encourage readers to read the entire book. However, we realize some sections are rather

rigorous and there is a little bit of math in the book which may not be everyone’s cup of tea.

Advanced topics that may be skipped on a first reading are therefore helpfully marked with asterisks

in the table of contents. These can be omitted in a first reading with no loss of continuity.

The Authors

Acknowledgments

The journey of a thousand miles begins with a single step.

Ancient Chinese proverb

Writing a book, any book, is a lot of work – even more so when this is a first for some of the

authors. The scope and magnitude of the task is daunting, but as they say, ‘no guts, no glory’;
‘nothing ventured, nothing gained’. Still, it was a long path from concept to completion – from

dreaming about holding a copy of the published work in one’s hand, to seeing the day when the

book is actually available.
The process of writing has been an interesting journey in and of itself, but the learnings, discus-

sions and interactions that took place along the way were at least equally, if not more, valuable. No
man is an island, and our work here has benefited immensely from suggestions, comments and con-

structive criticism from our colleagues. We would like to thank them for their help and acknowledge

their contributions here. We apologize in advance for any people we may have missed. We would
like to thank Michel Grech and Igor Faynberg for a careful review of the entire draft of the book, and

the following people for comments, discussions, insights shared, constructive criticism, corrections,
and for their support of our efforts in particular ways: Shehryar Qutub (the Policy Management part

of Chapter 6), Nick Landsberg (Chapter 10), Ram Batni (for discussions relating to Chapter 12),

Dirk-Jaap Plas (Chapter 13), Ramesh Pattabhiraman (Chapters 16 and additional website material),
Jeroen van Bemmel (Chapter 16 and the Presence appendix), and Rick Hull and Maarten Wegdam

(Chapter 17). For her tireless support with software packages and manuscript preparation, we are

grateful to Viv Weir. We would also like to thank John Stanaway, Ransom Murphy, Julian San-
tander, Rick Lewis, John Reid, Doug Varney, Jack Kozik, Fran O’Brien and Ajit Rudran for their

general help and book-related discussions. Any residual errors of course, remain our very own.
Apart from our colleagues at Lucent Technologies, our work has benefited deeply from our

interactions with our peers at other companies during Parlay and OSA standards meetings. The

Joint Working Group over the past couple of years has provided a challenging environment for
technical debates. Specifically, we would like to thank Chelo Abarca, John-Luc Bakker, and Ultan

Mulligan.
We similarly, and tacitly, also acknowledge the help, understanding, and support of our families

as we spent hours in front of a computer somewhere working on endless drafts of the book – for

missed appointments, and meals eaten alone. A big Thank You! for putting up with this. And we
would like to thank our respective management chains at work for seeing us through some hectic

times as the book was being put together.
No worthwhile book can be published without the help of the editing staff and other support

from the publishing house. We would, last but not least, like to thank Birgit Gruber, Joanna Tootill

and Richard Davies at John Wiley & Sons for the excellent job they did helping and guiding some
novice authors through the intricacies of the book publication process. Copyediting is a thankless

task and we would like to thank Andy Finch for carrying this out.

Portions of this text pertaining to Parlay APIs and specifications are reprinted with permission
of The Parlay Group, Inc.

The Authors

End-user Scenarios

In this preparatory chapter, we present some end-user scenarios. These are meant to be illustrative of

some of the end-user or subscriber and service provider needs, wants and frustrations. They will be

used to motivate the discussions in the first few chapters of the book as we seek to understand first

the requirements of a solution that might better help meet their needs, and later, as we demonstrate

how Parlay/OSA technologies fulfill these requirements.

Scenario 1: The Operator’s Perspective

October 23rd, 2003

Liz ‘Why don’t they just call me Elizabeth’ Montgomery was having one of those days. She was

a senior network engineer for a large Wireless Service Provider, Freedom Wireless. She had just

finished meeting with a third-party application developer who was building a new application for

the Freedom Wireless network.

‘Every time we have to add a new application to our network’, she thought, ‘we go through

this same agonizing process with the third parties who build our applications. Sure, they’ve got

bright ideas, but there is certainly a downside: the painful hand-holding as they try to build, test

and integrate their applications with our billing, management, and provisioning systems (and the

millions of dollars spent to achieve the same). Not to mention the at least six to eight month

window before the service can be rolled out to subscribers. It looked great in Powerpoint so why

did it take so long to roll out field carrier-grade telecommunications applications? There has to be

a better way to do this’.

She had heard some of her colleagues mention how Parlay and OSA technologies could help

alleviate this situation. She was skeptical however. In her 20-odd years of networking experience

she had seen even genuinely exciting technologies fail to deliver on their promises. Would Parlay

really solve her problems? WDTJCME let out a long, drawn-out sigh. A cup of strong coffee was

what she needed.

Scenario 2: The Application Developer’s Perspective

October 25th, 2003

Joe Friday worked for the Acme Computer Applications company. They were systems integrators

and applications providers, and made their revenues by being contracted by large service providers

like Freedom Wireless to systems engineer, build, integrate, test, and trial applications. In fact, Joe

had just come from a meeting with Liz Montgomery, who was not too happy with his proposed

schedule and cost structure, though she seemed excited by the initial idea.

They had deployed applications in several service provider networks before, but each integration

exercise presented its own unique challenges. ‘They’re never clear on requirements,’ Joe said to

himself, ‘They keep changing their minds on what systems we need to integrate with and how

we ought to do it. Feature creep is a big problem. And they have changed some of their legacy

equipment, which means it will take longer to integrate and test some application aspects. And why

do they all insist on sourcing their kit from multiple vendors? Each telecom equipment vendor adds

their own small tweaks to the standard protocols, and if Freedom wants me to use these custom

xxiv End-user Scenarios

extensions, that will take more time and cost more money. . .and yet, they seem to think it already

takes too long to design, build and test new applications, and that our rates are too expensive. Our

margins are low enough as it is. There has to be a better way of doing this’.

Scenario 3: End-user Perspective

December 11th 2003

Allie Dunning was a financial adviser at a securities firm. She had lots of meetings with clients and

prospective clients, and spent most of her time on the phone talking to them, or researching stocks

and company backgrounds on her computer. Time was always an issue and she came to depend

heavily on her calendar. She routinely struggled with getting her calendar aligned with that of her

co-workers, and with using her telephone-based features in synergy with applications available to

her on her computing platform. . .She also often wished there was a means whereby her computer

and telecommunications infrastructure could work together collaboratively to provide her with a

single unified user environment, to enable more effective communications with colleagues. She did

not really care about the details of the underlying networks and the associated difficulties relating

to inter-networking. She just wanted to get her job done as easily and efficiently as possible.

Wouldn’t it be nice, she mused, if colleagues could stop sending me Instant Messages when they

saw I was on the phone and did not want to be disturbed? Or if I could set up a conference call

on the fly by scheduling in their calendars via some kind of shared interface? Or use information

like their location, current mood and mode of accessibility (cell-phone vs. at the desk at work) to

determine what kind of mechanism I can best use to share information with them? Surely, there

has to be a better way?

Scenario 4: Yet more perspectives

May 5th, 2004

Now that he could take his number with him even after switching service providers, thanks to the

magic of number portability, Tom Anderson decided to switch carriers from Freedom Wireless to

Utopia. It’s not really freedom if the poor network coverage meant he could use his cell phone in

the city and at home, but not during his commute or on the road, he thought grimly. He had heard

that Utopia’s coverage was one of the best, and the price plans were almost the same.

Down the street, Eleanor Alsace was doing the exact opposite. Her three-year contract with

Utopia had finally expired, and she could not wait to get on to the Freedom Wireless network.

Coverage was indeed good with Utopia, she admitted to herself, but there was a distinct lack of

exciting end-user services. She had seen friends do some really cool things with their ‘Freedom

phones’, including picture messaging, instant messaging, gaming, and streaming video. She longed

to be able to do the same. Well, now she would.

Jim Singleton had used both Utopia and Freedom Wireless in the past. He liked Utopia’s cov-

erage and Freedom Wireless’ services. He was currently with Utopia, but wondered if it would be

unreasonable for a subscriber to want the best of both networks.

News Flash (Sometime During 2005–2006)

At some point in 2003–2004, Freedom, Utopia, and many other wireless, wireline and high-speed

Internet service providers started supporting Parlay technologies in their networks. All users saw

drastic improvements in their ability to access new services. Service providers were able to develop,

test and deploy new applications much more quickly and cheaply, and grow their revenue bases with

sticky services and by increasing subscriber reliance on the underlying network. Freedom Wireless

and Utopia Networks now competed on coverage and the offered application set. Application

developers were happy too; they could build and integrate telecommunications services more easily,

End-user Scenarios xxv

adding new feature support (within reason) took less time, and they could build an application once,
and sell it to multiple service providers without significant changes, thanks to standardized interface

specifications. The telecommunications industry was finally recovering from the slump of the last

three years, and Parlay/OSA were acting as drivers for growth.

Scenario 5: The Future

December 12th, 2007

Alan Friedman (‘Alfie’ to his friends) woke just in time to catch the tail end of the captain’s
announcement – ‘we’ll be landing at London Heathrow in 20 minutes’. He did not usually sleep

on planes, but he was tired, and the continual monotonous hum of the engines helped him drift into

unconsciousness. Or was it the hours on end of inhaling recycled kerosene exhaust? At any rate,

he was back home now. . .and he loved getting back. What was it that people said? ‘Be it ever so
humble, there’s no place like home’.

Fully awake now, he freshened up, and checked the programming on his cell-phone. Good. It

was ready. A well-maintained schedule of tasks that needed to be done, so he would not have to

key in each one separately.
He had already typed in all his email messages before he took his unplanned nap, and marked

them for immediate dispatch (once a connection was available). His phone was programmed with

his security preferences (end-to-end encryption – his employer had insisted on that), and connection

information.
The limousine company number was also programmed in, along with his reservation code,

destination information and other details. Last, but not least, he had programmed in a call to his

Internet Service Provider (ISP) to enable him to get the latest news and weather reports, stock

quotes for his portfolio, and other information of interest to him. His computer would organize
information gleaned from the various news sources into the format he liked. Now this was what

he called coming home.

He wondered briefly how far things had come technology-wise in the past three years. Wireless

connectivity was almost ubiquitous now, and people seldom used wires for interconnecting devices.

In fact, his laptop case now had a cradle for his cell-phone, and he had a wireless earpiece as well.
True, this sometimes made it difficult to work out whether people were talking to you or into their

phones when you heard them speak, but that was the price of convenience. Now people could talk to

each other at all hours of the day thanks to technology improvements. It was arguable whether their

ability to communicate increased significantly – there were still the same old misunderstandings,
misinterpretations and mis-representations of information, but don’t blame technology for that. At

least now people had higher bandwidth, instant presence updates and media-rich content – this

helped reduce some of the communication gap.

As he left the plane Alfie turned on his cell-phone and dropped it next to the laptop in his
carry-on case. Then he turned on his computer and affixed the earpiece in his ear. Now he was

ready to face the world.

His Automatic Personal Assistant (APA) program was immediately activated. He called the

voice ‘Sandy’. The program was pretty flexible, and he had a choice of settings for her personality,
modes of interaction, etc. There was a second part of the program that ran on his computer – this

enabled the cell-phone and computer to work together in new and interesting ways, leveraging each

other’s capabilities. A third part, which ran on the service provider network, gave him some of the

context-sensitive features that factored in his location, presence, and other information as he got
his services.

He still recalled how long it had taken to provision all these details and configure this application

(some things never change). But it had been worth the trouble. Talking to Sandy almost felt like

conversing with real human being. ‘How was that for a Turing test?’ he thought, smiling to himself.
But of course her domain of expertise was limited, though sufficient for the tasks she was required

to perform.

xxvi End-user Scenarios

He told her to execute the script he’d programmed in. She said there was no signal yet, but told

him he was connected to the network as soon as he exited the plane. She had him connected to

the limo company, and was telling the operator that took the call that Mr. Friedman had arrived

at Heathrow, his reservation number was #89423231, he was headed to Hyde Park in London, and

where would the limo pick him up? Alfie clearly heard that he was supposed to wait outside door

5E (as in ‘Edward’ – he still wondered why they just wouldn’t use the standard phonetic system

‘Alpha’, ‘Bravo’, ‘Charlie’, . . .), and his pickup would be in around 18 minutes. Sandy thanked

the operator and hung up. Of course, he had the option of barging into that conversation at any

time, overriding Sandy if he felt the need to do so – the program was pretty flexible and let the

user assume control anytime he wanted – he liked that. At least Sandy would not be cross, when

interrupted.

Next, ‘she’ called into his corporate network. She always told him what she was doing. A couple

of minutes later, she told him his email messages were on their way (he could read them in the

limo as he was being driven back home). The transfer complete, she informed Alfie, terminated that

connection and set about gathering the news stories and other information based on the configured

options. She used his personal ISP account for this. Then she read him the weather forecast,

and breaking news stories – he liked listening to the news, and she was pretty good at reading

summaries. He interrupted her after the weather and asked her to call home so he could speak to

his wife, which she did with the practiced ease of a seasoned secretary after looking through his

wife’s presence and availability profile, and current location information.

Sandy would screen calls for him too, unless it was from preprogrammed family numbers. The

caller would be asked what the call was regarding, or to enter the APA-override code if Alfie had

given it to them (in which case they were directly connected to him, or to his voice mail). She

would then courteously take their message, ask them to hold briefly while she checked Alfie’s

presence profile preferences, and, if he indicated an interest in taking the call, would connect them

to him. She could be asked to save the conversation for later replay, or even take voice commands

during the call when he asked her by name for assistance with certain tasks (e.g. Sandy, Katie is

not on our conference call yet. Can you check her availability? Can you call her and conference

her in? Thank you.)

Multi-modal services were where personal agents came in truly handy however. He remembered

how, just a couple of days ago, as he took a walking tour of downtown Chicago, she had directed

him along the shortest path which passed by various landmarks, and had told him about each in

turn, while displaying pictures on his cell-phone screen with interesting facts about each of them.

She had led him to the museum of Science and Industry, as she had ‘remembered’ that he had

browsed their web site three times in the past couple of weeks. She even explained how steam

engines worked as he lingered in front of the ‘History of Transport’ display. He had purchased

tickets to the museum, and for the train ride back to his hotel also, through the same interface.

Another day in the life of an average end-user. . .and a powerful reminder of what an effective

confluence of speech, artificial intelligence, and Parlay/OSA technologies could achieve.

Part I

Background
and Introduction

Fasten your seat belts it is going to be a thrilling ride! In this first part of the book, we examine the

current ways of doing things, ecosystems of networks and services, their associated value-chains,

and study possible improvements that could be effected in the present mode of operation. We then

distill a set of requirements from this analysis, synthesize a generic solution, trace the evolution of

standards to Parlay technologies, and discuss how Parlay meets the requirements so derived. After

this, an overview of Parlay operation is presented from a standards perspective.

Chapters 1 to 4 are intended for all readers who want to understand Parlay – technical, business

and marketing alike. Chapters 5 and 6 will be of greater interest to technical readers, though still

accessible to non-technical ones.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

1

The Internet is Calling – Today’s
Network Ecosystems and Their
Evolution

1.1 Introduction

In this chapter we briefly discuss, at a high level of abstraction, the different kinds of telecommu-

nications networks, the technologies in common use in them today, and then explore why newer

technologies continue to remain attractive to users, application developers, and service providers.

Time restrictions, and the need to provide a book that can be carried without the aid of a

wheelbarrow, mean we cannot start at the ‘very beginning’ (since every story starts somewhere

after the ‘Big Bang’). But we will plunge into the history of telecommunications at a point that

will provide readers with some background for the chapters that follow. We have included the key

wireline and wireless network technologies in use today and have tried to give a flavor of each,

emphasizing what makes them unique and picking out those aspects that are most relevant to the

book. This chapter is not intended to be a thorough or complete tutorial and so interested readers

are referred to e.g. [Faynberg 1996, Miller 2002, WAP] for more complete discussions of individual

topics covered in this chapter.

So what is a network? At the highest level, any communications network may be visualized

by the reader as being conformant to the abstract diagram in Figure 1.1. First, there is an access

technology – this gives the user access to the network itself, and the services it hosts. Second, there

is the core network infrastructure. Multiple access networks may ‘hook into’ the same core – this

typically happens as networks evolve, and a strong need is felt to share services across them

either for feature parity (within limits of reason, of course), or for reuse of deployed core network

infrastructure and services across different terminal types or for other different reasons altogether.

Third, there is a services layer that spans the core network as an overlay. This layer provides

the real intelligence and value-add to the core that performs switching and related functions. The

services layer also contributes directly to the end-user experience. Finally, we have gateways to

other networks, for, as we will see in the main body of the chapter, no network can afford to be

an island, and that interconnectedness increases value.

In this chapter, we first explore traditional wired telecommunications networks as this provides

a natural lead into the discussions of wireless, WAP and other network technologies.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

4 Parlay/OSA: From Standards to Reality

Access
Technologies

Core
Network

Services Layer, Data

Access

Technologies

Gateways to
other networks

Users

Figure 1.1 Overall logical network reference model

1.2 Traditional Telephony and Intelligent Networks

Since the dawn of time, man has been a gregarious creature with the need to communicate with

others of his species. Communication has enabled us to transmit beliefs, traditions and inventions

down through the generations and so escape the limits of evolution. People talk, gesture, whisper

or find any means available to communicate ideas, feelings, warnings and secrets, and do so for a

large part of their waking hours (and sometimes when sleeping too). When we have found a need

to communicate over distance we have solved it, using sound (drums), light (beacons along the

Great Wall of China) or electricity (the telegraph and the telephone).

However, it was the last of these, the telephone, that fundamentally changed the way people

communicate. There was magical quality to hearing a person’s voice over hills and valleys, oceans

and seas that separated two people talking to each other. The world hasn’t been the same since

telephony took off in a big way in the third and fourth decades of the last century and things are

only getting better, as newer capabilities to share text, documents, video or other media become

more widely available.

To set up calls between two parties interested in communicating, one needs an element called

a switch. Since not all phones are connected directly to all other phones in the world (the ‘two

cans and string’ model is not very scalable), lines could be connected to a switch, which could link

them together whenever the parties tied to those lines wanted to talk to each other. As the number

of phones grew, so did the number of switches, and switches had to be connected together as well,

to permit users connected to one switch to talk to users connected to others. This led to the birth

of telecommunications networks.

Telecommunications networks started out as interconnected networks of switches that permitted

users to make and receive simple voice calls (this was referred to as POTS – the Plain Old Tele-

phone Service). A network is an ecosystem, defined in Webster’s dictionary as ‘the complex of a

community of organisms and its environment functioning as an ecological unit’. Here, the network

equipment (switches etc.), the user equipment, and interactions between these define the complex

environment of interest. Just as in real world ecosystems, changes need to be carefully handled in

the network.

The Internet is Calling 5

For two parties to communicate using the network as a medium, network elements between the

calling and the called party (sometimes termed the caller and the callee), need to somehow propagate

first the desire to set up the communication path, and then the content of the communication itself,

between the two entities. Note that the path is both physical in terms of the trunks tied up to

carry the conversation, and logical in that the conversation between the two communicating parties

is carried across it. The path between the caller and the callee is not permanent, but needs to

be maintained for the duration of their conversation. Thus, the network elements supporting this

interaction need to track some state associated with this call. This process is referred to as ‘call

processing’.

Every phone call between two parties engaging in a conversation was represented in the network

in terms of a call model or a state machine on each switching element between the source and the

destination1. In other words, each switch in a call path would execute a call model or state machine

as call processing progressed and the two parties trying to communicate were connected.

Gradually, the need for services became more pronounced, due both to end-users maturing in their

use of telephony related technology and in operators’ desire to stabilize and expand their subscriber

bases. To meet this need, additional features were introduced within call models2 [Dobrowolski

2001] whereby special code was executed within the context of individual states in the call pro-

cessing state machine, and new capabilities were provided to the parties involved in the call. These

features, since they executed on the switching elements themselves, were typically referred to as

‘switch side features’.

But there were issues with this architecture. For one thing, as each new feature was introduced,

all switches that needed to support that feature had to be upgraded with this capability. Since there

were many switches in the fabric, this kind of an upgrade was not easy to carry out transparently.

Also, with the greater proliferation of telecommunications, people began to rely rather heavily

on the network, and service outages (both planned outages for the service retrofits, as well as

unplanned outages due to the vulnerability of having to update the entire complex fabric) became

unacceptable.

Another problem was the degree of difficulty involved in making additions to existing switching

logic, and then, testing these additions to ensure that new features did not interact with each other,

and with the already deployed features in strange and undesirable ways. This was a far from

trivial thing to do. Also, the software architecture of switches rarely allowed a sufficient degree of

functional separation of services from the ‘normal’ logic flow and data structures, etc. relating to

call processing. This led to serious issues with switch performance, as well as compromises in the

design of the new feature itself.

To alleviate some of these concerns, and to provide a more flexible environment that could

change more rapidly with the times as new feature capabilities were added, the Intelligent Network

(IN) paradigm was introduced.

In the new (IN) model, switches are no longer merely simple executors of state machines. Service

logic is separated from basic call control logic. Service features that were heretofore limited to being

hosted on, and executed by, switches, are extracted from the switching elements and collocated into

a separate physical element dedicated to execute the enhanced service logic for the newly introduced

feature. Such a physical element is called a Service Control Point or SCP. The call model state

machines at switches were enhanced to support the capability to query this SCP element (using a

well-defined message set) and receive instructions that could be factored into their call processing

operations.

Thus, switches now perform two functions – one (called the Call Control Function or CCF in

the IN Distributed Functional Plane or DFP) that deals with the execution of the Basic Call State

1 For readers unfamiliar with call processing and state machines, a very gentle and accessible introduction

to these topics is provided in Appendix A [Parlay@Wiley].
2 The concept of call models is only very briefly introduced here. Later chapters will expand upon this

concept as they present more details relating to Call Control in the Parlay space.

6 Parlay/OSA: From Standards to Reality

Model (BCSM) that implements the call processing logic, and two (called the Service Switching

Function or SSF in the IN DFP) that is concerned with the ability of the switch to interact with the

SCP, request instructions, receive responses and so on. IN-capable switches are also referred to as

SSPs or Service Switching Points. In Wireless Networks, these are sometimes also called MSCs or

Mobile Switching Centers. But more about Wireless Networks later.

The SCP itself was a physical manifestation of two logical elements from the IN DFP – the SCF

or the Service Control Function, and the SDF or Service Data Function. The former of these refers

to the service logic that executes a relevant feature at the particular point in the call at which the

switch sought SCP assistance, using the data that the switch provided in the request message to

generate a suitable response. The latter refers to the capability whereby subscriber data or other

data pertaining to numbers, translations etc., are hosted in a large database and made accessible to

the service logic for use as appropriate as features execute3.

With the proliferation of IN, one can still build in switch side features, but one has added

flexibility in deploying new features and capabilities to better the end-user experience, through use

of SCPs. Introducing new IN-based services in the network no longer necessitates updating all

switching elements in the fabric. Rather, only the physically separated SCPs needed retrofitting.

Basic service for call connectivity remains unaffected throughout such an update.

These concepts are illustrated in Figure 1.2. The reader is also referred to [Faynberg 1996,

Chapter 5] for more details.

From other
Switches

SCP
SDP

SSP

To other
Switches

Signaling Channel

Bearer Channel

SSF

CCF

SCF
SDF

A

B

C

Legend

A = Inter-switch signaling protocol (e.g. ISUP)

B = Inter-switch bearer (e.g. TDM Trunking)

C = Service Control protocol (e.g. INAP)

Components from the IN Distributed
 Functional Plane Reference Model:

CCF = Call Control Function

SSF = Service Switching Function

SCF = Service Control Function

SDF = Service Data Function

Call Model

Point-in-Call
(PIC)

Detection
Point with
Trigger

Figure 1.2 Switching components and IN call models

3 This latter function may also be supported by a dedicated physical element standalone, in which case it

would be called a ‘Service Data Point’ or SDP.

The Internet is Calling 7

1.3 Signaling

When any two elements communicate they need to use a medium (such as a wire connecting

them, for example), and a language they both understand, called a protocol. Communication may

involve the transmission of data (‘Watson, come here, I need you’) or information pertaining to

the data transmission (end-user Alexander G. Bell wants to connect a call to end-user Dr. Watson).

The former is sometimes referred to as bearer (or payload) information, while the latter is called

signaling.

Several signaling protocols are in existence today. Different networks use different signaling

protocols. Different protocols are used between different types of network elements, and between

the same network elements when they are involved in performing different functions.

Good signaling protocols are designed to be flexible and extensible for the addition of new

parameters, messages or functionality, efficient in the number of bits of information that need to

be transmitted between two communicating elements to share state or other information, and easy

to process with minimal overhead.

Another characteristic of such well-designed protocols is that they are layered, such that each

layer provides specific functional capabilities to the protocol as a whole, and the upper layers build

on capabilities offered by the lower layers. Accessing these lower layer capabilities takes place

through connect points called Service Access Points (SAPs), so they can be used in performing

the tasks of the upper layer. The data unit supported by the protocol, and more specifically at each

layer, is referred to as a Protocol Data Unit (PDU).

A layered architecture that is widely used in the design and operation of protocol stacks, called

the Open Services Interconnect (OSI) data model, was developed by the ITU. This model, as shown

in Figure 1.3, is composed of seven layers, and most protocols in use today adhere closely to it.

The OSI model is discussed in greater detail in [Tanenbaum 2003].

A complete discussion of the design of good signaling protocols merits a book in itself. The

interested reader is referred to [Holzmann 1991].

Signaling can be of different types, depending on where and how it is used. It can be classified

in different ways, and In what follows, we study some of these ways.

One way of classifying signaling considers whether the signaling stream touches any end-user

equipment (e.g. the phone on your desktop). The signaling link between end-user equipment and

the network element (such as a switch) is commonly referred to as UNI or the User-to-Network

Interface. Signaling links between network elements are referred to as NNI or Network-to-Network

Interface.

Physical

Data Link

Network

Transport

Session

Presentation

Application

Transport of bits on the wire,
physical network interconnection

Formatting and sending data frames
dealing with acknowledgments

Network packet transmission
and reception

End to end connectivity
considerations

End to end State Synchronization

Compression, Encryption etc.
(Application support functions)

Application aspects of Networking

Communication
Subnet

Upper Layer
Protocols

(ULP)

Figure 1.3 The Open Systems Interconnection (OSI) model layered protocol reference architecture

8 Parlay/OSA: From Standards to Reality

Another categorization considers the role particular signaling protocols play in the overall call
flow. For example, user equipment to switch signaling, or switch to switch signaling during call
setup, is referred to as call control signaling, while the communication that takes place between
SSP and SCP elements is called service control signaling. Typically, different protocols are used

in networks to fulfill each of these roles.
There are several other ways of categorizing signaling protocols, such as in-band vs out-of-

band, etc. However, we do not study those distinctions for they are best left to books dedicated to

signaling. The categorizations we cover above suffice for the purposes of the concepts we intend
to develop later in this book, i.e. UNI and NNI, and Call Control and Service Control.

1.3.1 Signaling and Standards Bodies

As signaling pertains to communication among disparate elements in a complex networked envi-
ronment, some form of agreement on the definition of these protocols is desired. Enter standards.

Some standards are developed in bodies focused almost exclusively on data networks, while others
are focused on voice communications, and some support working groups (WGs) fall into the gray
area in between the two. In this section, we briefly look at some standards bodies of interest to this
discussion in an attempt to give the reader a better feel for where and how the various signaling

protocols are developed.

1.3.1.1 Telecommunications-oriented Standards Bodies

ITU – The ITU (International Telecommunication Union) is a specialized agency of the United
Nations. With telecommunications networks spanning the globe, there is a need for standardization

and regulation of such networks on the same scale, that is, globally. The mission of the ITU
is to ensure efficient and smooth development and operation of telecommunications technology
worldwide, and the general availability of this technology to the global population. As these globe-
spanning networks were made up of an enormous mixture of national networks, interconnected

by countless, often very specific signaling protocols, the Open Services Interconnect (OSI) data
model, referred to earlier in this chapter, was developed by the ITU as a reference model for
communications networks and their protocols. The development by the ITU of ISUP as the signaling
standard for bearer traffic and INAP as the signaling standard for service control served as a major

catalyst for the global proliferation of digital circuit switched telephony networks. With IP networks
reaching the same ubiquity, the ITU developed H323 as the international standard for session
oriented communication over the Internet [ITU].

3GPP – the 3rd Generation Partnership Project (3GPP) is a partnership of regional standards

bodies that defines the standards for GSM-based wireless networks and for their evolution into
a third-generation UMTS architecture. 3GPP provides several technical specifications aimed at
addressing specific interfaces, services and network elements from within its reference architecture
[3GPP].

3GPP2 – the 3rd Generation Partnership Project2 (3GPP2) is a partnership of regional standards
bodies that defines the standards for CDMA-based wireless networks just as 3GPP performs similar
functions for GSM technologies. Given the large overlap in technical directions and architecture
between 3GPP and 3GPP2, the latter has agreed to reuse the specifications issued by the former

body wherever applicable. In addition, most recently a harmonized reference architecture (called
IMS or the IP Multimedia Subsystem) that melds both the 3GPP and the 3GPP2 models has been
adopted to further drive convergence in the work being done in these two bodies [3GPP2].

1.3.1.2 Data Network-oriented Standards Bodies

IETF4 – The Internet Engineering Task Force (IETF) is an organization that hosts numerous
working groups dedicated to developing protocols and standards that govern network element

4 There is also a research wing that parallels the work done by the IETF, called the IRTF (Internet Research

Task Force) and also run by the same body, the ISOC. This body does more of the ‘forward looking’ work,

The Internet is Calling 9

communications within the Internet, and other Internet Protocol (IP)-based networks. In fact, IP

was itself designed by this body [IETF].

Among the numerous IETF WGs, the following are of immediate interest and relevance to our

current discussion5. A brief summary of the work carried out in each of these groups is provided

below:

1. Iptel – The Iptel working group designs standards for use in supporting telephony over the

Internet Protocol, specifically (inter-domain) routing of voice calls over the Internet.

2. SIP – This WG is focused on developing the base Session Initiation Protocol and extensions

that enable it to be efficiently used in setting up and tearing down multimedia sessions. This

WG was spawned off earlier work accomplished under the charter of the MMUSIC (Multiparty

Multimedia Session Control) WG of the IETF.

3. SIPPING – Session Initiation Protocol Project INvestiGation is dedicated to studying the appli-

cations of SIP and non-base-protocol extensions in support of SIP applications.

4. PINT – The PSTN/Internet Interworking WG deals with scenarios where an end-user connected

to an IP network such as the Internet can request services from an SCP in the PSTN network.

Examples of such services include Click-To-Dial (CTD), where a user clicks on a link or

submits an HTML form and causes a call to be set up between herself and a customer service

representative representing a business.

5. SPIRITS – The Services in PSTN/IN Requesting InTernet Services WG addresses scenarios that

are an exact converse of PINT scenarios. So the focus here is on services in the PSTN/IN

that require IP-host based feature assist capabilities. Internet Call Waiting (ICW) is an example

of such a service. If a user is connected to the Internet via his phone line through a modem,

incoming call notifications can be piped to the user via that Internet connection even though

his phone line is busy at the time. Both PINT and SPIRITS recommend the use of SIP as a

signaling protocol.

6. Sigtran – The Signaling Transport WG has produced several protocols including SCTP (Stream

Control Transmission Protocol) and others that define the lower layers of a protocol stack to

enable the transparent transport of SS7-based protocol payloads over IP. The intent here is to

promote seamless convergence where possible through use of upper layer protocols (OSI layers

four and above) across network types.

7. Megaco – The Media Gateway Control WG developed, in concert with the ITU, the Megaco

protocol (also referred to as H.248.1) that defines the communications between Media Gateway

Controllers and Media Gateways. (See Section 1.4.2 on ‘Converged Networks’ in this chapter

for more details.)

1.3.2 Some Examples of Signaling Protocols

In traditional telephony networks (also called the Public Switched Telephone Network (PSTN) in

wired contexts or Public Land Mobile Network (PLMN) in wireless contexts), switches communi-

cate with each other over SS7 (Signaling System #7)-based signaling protocols [Russell 2002].

For example, switches in the PSTN utilize different protocols for user equipment to switch sig-

naling (e.g. Ear & Mouth (E&M) Protocol, Telephone User Part (TUP)), switch-to-switch signaling

(e.g. ISDN User Part (ISUP)), and switch to SCP signaling (e.g. IN Application Protocol (INAP)).

As explained previously, the first two of these are typically called call processing signaling, while

the last of these is referred to as service control signaling. All these are SS7-based.

and has made significant contributions to protocols in the area of AAA, SPAM-filtering etc. [IRTF]. The AAA

work has since been absorbed into the IETF AAA WG.
5 In later chapters, work being done in other IETF WGs may also be introduced as appropriate. This listing

is merely intended to give the reader a taste for the kind of work the IETF undertakes.

10 Parlay/OSA: From Standards to Reality

The Internet, the largest, most widely prevalent, almost ubiquitous network today utilizes the

Internet Protocol or IP as the basis for communication between computers. Various application

level protocols ride atop IP to provide a range of functional capabilities between communicating

applications on computers connected to this network. Examples of these protocols include Simple

Mail Transfer Protocol (SMTP) for email, File Transfer Protocol (FTP) for file transfers, Hyper Text

Transfer Protocol (HTTP) for Browser to Web Server interactions, etc. Most IP-based protocols

use either Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) as the layer-4

protocol of choice. The reader is referred to [Comer 1999, Comer 2000] for more details on IP.

Both the SS7 and the IP protocol suites are compliant with the OSI model.

1.4 A Foray into Other Network and Service Architectures

In this section, we discuss some other network and service architectures of interest. A good under-

standing of some of these will be useful in later chapters as we address how Parlay and OSA

technologies relate to them. Others are introduced to give the reader an appreciation of how net-

work evolution takes place, and the different generations of related technologies as new standards

are defined.

1.4.1 Voice over the Internet Protocol (VoIP)

Metcalfe’s law states, ‘The usefulness, or utility, of a network equals the square of the number

of users’. The very ubiquity of the Internet, low barriers to the entry of new endpoints, and the

overwhelmingly large number of users, along with its ability to carry various protocols that perform

different functions leads to increased value per Metcalfe’s law, and a positive feedback loop that

continually contributes ever more to its growth.

This, combined with a widespread interest in utilizing the Internet for voice communications,

has led to voice becoming one of the most widely transmitted payloads on the Internet today6. The

use of IP to transport voice is referred to as Voice over IP (VoIP). The Internet’s inherent ability to

transport data, pictures and other visual media such as video in concert, and potentially interleaved

with, voice, leads to a truly powerful multi-media user experience.

As with PSTN/PLMN networks, voice-, or more generally multimedia- session setup requires

some session setup, processing and teardown signaling, in addition to the ability to transport bearer

information over IP. This support signaling can be provided using various protocols. H.323 (devel-

oped in the ITU [H.323 2003]) and SIP (Session Initiation Protocol [RFC 3261], defined by the

IETF) are popular IP-based protocols for this today. The former is still widely used, while the latter,

widely acknowledged to be the protocol of choice for the future, continues to gain in popularity.

IP-based telephony does not have as clear-cut a partitioning between service-related and call-

related signaling. The traditional telephone network supports almost all the user services needed,

with a minimal set actually supported by the user handset in a manner independent of the network. In

contrast, the IP-based telephony model supports a near equal, if not skewed in favor of the handset,

distribution of services between the network and the handset domains. This means end-users have

greater flexibility in the kinds of services they can access (since this is handset dependent), but

also means user reliance on the terminal is greater than in the PSTN world (e.g. user data are

hosted more on the user terminal than on the network, so if the user has to initiate a session from a

6 In fact, with the prevalence of high-speed Internet connections such as those using cable or DSL lines,

VoIP technology is now really taking off in a big way. VoIP service companies like Skype [Skype] and Vonage

[Vonage] are seeing a sharp uptake in their subscriptions over a high-speed Internet access infrastructure. What

seems really interesting with some of these services is that one gets a real phone number assigned to the

‘always on’ high-speed Internet connection, and this number is not ‘geographically bound’ – the user can get

a local phone number in the New York area, while residing in London, and can use this transparently, without

the caller knowing his or her actual physical location. Judicious choice of phone number can cut down on

long-distance bills, especially if one makes more calls within a particular area code.

The Internet is Calling 11

Packet Control &

Bearer Protocols

(e.g. H.323 or SIP, RTP)

SCP
SDP

Service Control

Protocol (e.g. INAP)

Inter-Switch

Call control

Protocol

(e.g. ISUP)

To other

Switches

From other

Switches

Switch

(CO) UNI Call Control

Protocol (e.g. TUP)

Signaling Channel

Bearer Channel

PSTN Network Internet VOIP Domain

Signaling

Gateway

Media

Gateway

IP Network

(e.g. Internet)

With Routers

VoIP Terminal

(e.g. PC)

Media
Gateway

Controller

Hop On/Off

Gateway

SSP

Switch

(CO)

Figure 1.4 The PSTN and IP networks today, and VoIP

different terminal, the experience may be less pleasant than if the data were stored on the network

and available to him transparently).

Lately, some protocols, even in the IP-domain have started adding mechanisms to provide support

for service control related signaling. But rather than define new protocols aimed specifically at

service control, in most cases they have relied on extensions to the base signaling protocol to fulfill

these needs as well. However, it is still possible to draw rough analogies between the traditional

IN architecture in the PSTN and the IP architecture for multimedia call setup (Figure 1.4). Some

of these details for a specific protocol (namely SIP) will be covered in later chapters.

1.4.2 Converged Networks7

Isolated networks of users who cannot communicate with users of other networks still feel isolated,

though not necessarily alone. Ubiquity, ease of network access, and interconnectedness, contribute

towards a feeling of community. The PSTN is useful because it permits a user at any phone

connected to it to call another user at any other phone. Connectivity contributes to value. Recall

Metcalfe’s law.

Definition: Gateway

Where network elements belonging to different networks, and using different protocols, but

providing similar functions within their own network contexts need to communicate, an element

called a gateway, that speaks both protocols, is used to mediate between these two elements.

The gateway element, in its simplest form, functions as a protocol translator, and enables the

7 Networks today include Cable and DSL access technologies as well. These are used, for instance, to support

high-speed broadband Internet Access. In late 2004, in the US, broadband Internet access, for the first time in

networking history, surpassed dialup access to the network. For the sake of simplicity, these Cable and DSL

aspects are not depicted nor explained in any detail in this chapter.

12 Parlay/OSA: From Standards to Reality

two elements, one from each network, to talk to each other. Gateways form the basis for most

convergence in networks today.

When viewed from the perspective of a signaling flow, a gateway through which a flow enters

a given network is typically referred to as a ‘hop on’ gateway, while one through which it exits

is called a ‘hop off gateway’ (Figure 1.4).

As VoIP took off, service providers gradually came to view the Internet, or other managed IP

networks, as a means to offload some of the voice traffic to a more cost efficient, less resource

constrained environment that supported more optimized routing (and tied up less resources during

session setup). In addition, Internet users wanted the ability to call telephones connected to the tra-

ditional PSTN or PLMN. In order to support these and other similar needs, convergent architectures

came into being.

Convergence may be achieved in a variety of areas. Convergence in terms of signaling trans-

formations, as call processing signaling transits an IP to PSTN or PSTN to IP network boundary,

may be carried out at network elements called Signaling Gateways.

Bearer stream transformation as it transits a network boundary of the kind described above is

carried out at network elements called Media Gateways (MG), and is commonly referred to as

transcoding8.

If the signaling stream controls a media or bearer stream associated with it, the Signaling Gateway

is also referred to as a Media Gateway Controller (MGC), for not only is the signaling transformed

as the network boundary is crossed, but the associated media characteristics are also controlled

as this transformation takes place, through interaction with the Media Gateway element where the

bearer stream is being transcoded. Megaco ([H.248.1], jointly developed by the ITU with the IETF)

is the IP-based protocol of choice for MGC to/from MG communication.

Convergence can also be achieved in the services domain. This is of great interest to service

providers and also to end-users. If services originally developed for one network could be transpar-

ently used in another, then this offers great benefits. For one thing, it saves money while promoting

complete and immediate feature parity. And the immediate availability of all existing services in a

new network context does wonders for the end-user experience and in meeting user expectations.

The specific signaling protocols supported both for call/session control and for service control

may vary based on the specific domains being inter-worked. The degree or ease of inter-working

may also vary depending on how closely the call/session and service state models align between

the two types of networks in question.

IP-based telephony might want to reuse IN elements in support of providing deployed features

to VoIP users. This could be supported by carrying the IN service control protocols over IP for

example. This forms the basis of the Sigtran work in the IETF.

IN SCPs could be enhanced to interact with IP-based application servers for new feature logic

that is shared between the IN and IP domains. Work in this area has been done in the IETF

PINT [RFC 2848] and SPIRITS working groups [RFC 3910] to support end-user capabilities such

as Click-To-Dial (CTD) or Internet Call Waiting (ICW). For more on PINT and SPIRITS, the reader

is referred to [Kozik 2000, Gurbani 2003].

These are but two examples of service reuse. Several other elegant models [Vemuri 2000] have

been discussed in the literature. For more information on services for converged networks, the

reader is referred to [Faynberg 2000].

8 Media is typically encoded in some bit format for transport across the network. This encoding is done using

software called a codec. Since voice is encoded using one set of codecs in the Internet domain, and another

different set of codecs in the Telecommunications domain, the operation of switching the encoding scheme or

codecs at the media gateways is referred to as ‘transcoding’.

The Internet is Calling 13

1.4.3 Internet Access via the PSTN

It will be useful for the reader to have a basic understanding of how one may access the Internet

via the PSTN – the so-called ‘dial-up’ Internet access. In this section, we provide a high-level

summary description of the same. Internet access has also evolved with time. Initially, this was

achieved through the use of modems that enabled users to dial in via analog phone lines – this was

somewhat slower, and offered speeds in the 56–128 Kbps range depending on the specifics of the

modems in use. More recently, broadband Internet access has seen widespread growth where the

use of cable modems and digital subscriber lines (DSL) enables subscribers to achieve speeds in

the megabits per second range. Again, in order to keep the discussion simple, and since we merely

aim to give the reader a flavor for how the basic technology works, we explain only the dial-up

access.

An ISP (Internet Service Provider) typically supports modem pools at several geographic loca-

tions called POPs (Points of Presence). When the user dials the phone number associated with a

POP (and if there is one in your area, you may not have to pay long-distance charges) by running

the appropriate dialer software on her computer that talks to her local modem, the modem from the

pool answers the phone. Once the basic call is set up, the PPP protocol (Point to Point protocol,

developed by, you guessed it, the IETF) runs across the link and sets up the data connection.

The modem pool is collocated with a NAS or Network Access Server, which also functions

as the AAA client. This element interacts with a AAA server hosted within the service provider

network (typically over protocols such as TACACS [RFC 1492], or RADIUS [RFC 2138] or,

more recently, DIAMETER [RFC 3588]) to perform end-user authentication, authorization and

accounting procedures, and sets up filters for IP traffic that transit the user connection (PPP link)

and IP network for that session. An IP address may be assigned to the computer for the duration

of the session (for packets to flow back to it), using either a statically assigned pre-configured

ISP-owned address (relatively rare), or a dynamic address obtained through protocols such as

DHCP [RFC 2131] or IPCP [RFC 1332].

Once the session is established, the end-user can transmit and receive data from her computer

over this link. Once done, the user simply hangs up, and the IP address (if dynamically assigned),

becomes free for reuse for other user sessions, as does the port on the modem pool. Figure 1.5

illustrates dial-up access to the Internet.

1.5 Wireless Networks and Generations of Technology

We started this chapter by looking at very abstract network architectures and introduced call/session

control signaling and service control signaling, after which we explored how wireline networks have

evolved specifically in terms of their protocols and interfaces and the network elements processing

these. Now it is time to look at wireless networks.

So far, we have used the term ‘wireless network’ in a rather generic sense to refer to networks

of mobile terminals built to support cellular technology. In this section, we examine these kinds of

networks in a little more detail. We shall briefly introduce the concept of cellular communication

and then describe wireless networks in terms of their network elements, their signaling protocols,

and the service data they store for subscriber services. We shall then look at how the circuit

switched core of wireless telephony networks has been expanded with a packet switched domain

to support mobile access to services residing in data networks. After that, we will describe how

third generation wireless networks are evolving from current mobile communication systems by

introducing a new radio access technology and by further evolving the core network.

Generally speaking, wireless and cellular networks are not strictly the same. Every cellular net-

work is a wireless network, but not all wireless networks need necessarily operate using cellular

technology. WiFi (Wireless Fidelity or IEEE 802.11b wireless networking) is an example of local-

ized wireless networking that does not operate on cellular technology. For the purposes of this

section, we shall use the term ‘wireless’ to mean cellular in a generic sense.

1
4

P
arlay

/O
S

A
:

F
ro

m
S

tan
d
ard

s
to

R
eality

User at PC
with Modem

Other

Switches

To SS7 Network

Terminal Server
with Modem Pool Network Access

Server with AAA
Client

AAA

ISP Network with
AAA Server

Other IP
Networks or

General
Internet Servers connected

to other IP Networks
or the Internet

Firewalls

Switch
(CO)

Switch
(CO)

Figure 1.5 Dial-up access to the Internet

The Internet is Calling 15

1.5.1 Cellular Communication

Wireless (or, to be more precise, cellular) networks are assigned a certain frequency band to use for

setting up radio links to the mobile devices of their subscribers to complete the communication path.

When engaged in a phone call, the mobile device is allocated a certain frequency in the available

spectrum. As radio waves form a shared medium, for the duration of the call, this frequency (or a

timeslot in a specific frequency, depending on the details of the wireless radio technology in use)

is uniquely assigned to that specific mobile device, in order to avoid interference. This means that

the capacity of a mobile network is confined by the number of unique frequencies one can assign

within the available spectrum. Cellular systems address this issue of limited capacity by dividing

the coverage region of a network in largely non-overlapping areas, called cells. Frequencies are

then reused in non-neighboring cells, to increase the overall network capacity.

Cell sizes may vary depending on the area they cover, the technology in use, and in the frequency

spectrum utilized by the technology in question. For example, in rural environments a typical cell

size may be larger than in the city, as the total number of concurrent mobile phone calls can be

safely expected to be lower and hence less reuse of frequencies is required. Also, cells may vary

in shape. In dense urban areas the cells may be evenly shaped and arranged like roof tiles or the

scales of a fish collectively to cover an entire downtown area. Along major highways or subway

and train lines the cells may be stretched in length to offer travelers and commuters continuous

radio coverage, whereas on either side of the route coverage may drop quickly.

Although one tries to achieve ubiquitous coverage with cellular technology, sometimes, in the

interiors of large buildings or such hard to reach places (for the radio signal), no coverage may be

available to make or receive cell-phone calls. Such areas are termed ‘urban canyons’.

1.5.2 Wireless Networks and their Elements

Wireless networks, irrespective of the specific technology deployed, all share a similar network

architecture. This wireless network architecture is depicted in Figure 1.6, in which we also recognize

of course the overall logical network reference model introduced in Figure 1.1, with the separation

of access, core, and services.

One of the most successful wireless network technologies, in terms of global deployment, is

GSM. We will draw on GSM to introduce and further define wireless networks, and their network

elements and signaling protocols. Interested readers are referred to [Mouly 1992] for an excellent

Radio Access
Network

MSC

SS7 Network
with STPs

Other MSCs

SCP
SCP

HLR

Other
registers

New Telephony
Services go here

Subscriber Information
Trigger Address Lists
etc.

Equipment and
related information

Call processing and
Switch-side features

Figure 1.6 Sample wireless network architecture

16 Parlay/OSA: From Standards to Reality

coverage of GSM technology, in its full breadth and depth. Wireless networks based on CDMA

technology will be covered later in the chapter.

GSM networks reuse much of the PSTN and are SS7 networks at their core. Inter-switch signaling

is based on the same SS7 protocols deployed in PSTN networks, allowing for large scale reuse

whilst smoothly facilitating fixed-to-mobile and mobile-to-fixed calls.

Mobile devices communicate with the network via a radio link to a Base Station System (BSS),

consisting of a Base Station Transceiver (BST), or the ‘antenna’, and a Base Station Controller

(BSC). The BSC communicates with the Mobile Switching Center (MSC), connecting the radio

part of the network with the SS7 core of the network. The MSC, which is the telephony exchange in

GSM networks, performs the basic call processing procedures and interconnects with other MSCs or

with the PSTN or ISDN exchanges for network connectivity, via the SS7 core. So mobile telephony

systems like GSM only make use of radio resources at the edge of the network, when completing

the last step of the communication path to the mobile device.

An MSC differs from a PSTN switch in that it serves mobile devices rather than fixed phones. As

mobile subscribers have the freedom of picking up their phone and moving about, contrary to fixed

phones and a PTSN switch, there is no static relationship between a mobile device and a specific

MSC. Depending on the location, a mobile device is served by a given MSC, which is referred to

as the serving MSC. As the serving MSC may alter when the subscriber is changing location, all

information pertaining to mobile subscribers is located in a centralized database, called the Home

Location Register (HLR) – this is a fundamental difference with the PSTN: as terminal mobility is

supported, there is a registry like the HLR that is maintained in wireless architectures. An MSC may

query the HLR to obtain service subscription profiles for a given subscriber, or routing information

required to locate the subscriber in the network in order to complete an incoming call destined for

that subscriber. Originating services are also deployed at the HLR. If for instance the subscriber

is not allowed to receive calls while she is registered with another network in a foreign country9,

this information will be stored in the service subscription data of the subscriber. So in the case

where the HLR will be queried for routing information with the intention of terminating a call to

the subscriber, the HLR will return a decision not to allow further processing of the call and the

attempt will be rejected (or barred).

For the purpose of minimizing the need to perform database queries to the centralized HLR

database, a temporary local copy of the subscriber data is stored in the Visitor Location Register

(VLR) associated with the serving MSC. The VLR record includes information required to page

the mobile device and perform call setup procedures. Information relating to so-called terminating

services is stored in the VLR as well. An example of a terminating service is ‘Call Forwarding on

Not Reachable’, e.g. when a terminal is switched off. This is a terminating service as only after

paging a mobile device, is the not-reachable status for the device established. It is the serving MSC,

using service subscription information from the VLR record, that will perform the service logic

involved with terminating services, without having to interrogate the HLR.

As service subscription data may change over time, the data stored in the VLR need to be

maintained in synchronization with the data kept in the HLR record. Whenever changes occur in

the HLR record, the VLR record gets updated. Also, as subscribers move around, they may cross

MSC boundaries. As VLR records are associated with the serving MSC, such a crossover (or inter-

MSC hand-off) will result in the creation of a new VLR record and the deletion of the old one.

The signaling protocol for HLR to VLR communication is the MAP protocol (Mobile Application

Part), which is an SS7 based protocol.

As is the case in PSTN networks, IN-based services can be applied in GSM networks as

well. In this case, the IN system is referred to as CAMEL (Customized Application for Mobile

Enhanced Logic). The service control protocol between MSC and SCP is the CAP protocol (CAMEL

9 Such a service may serve to protect the subscriber for incurring the additional costs associated with receiving

incoming calls when roaming, or it may be applied by the operator for subscribers who have overdrawn their

user account.

The Internet is Calling 17

Application Part), which, and this will not be a surprise by now, is SS7 based10. Similar consider-

ations also apply to CDMA architectures, which we will see later on.

In addition to the HLR and the VLR, the SCP now introduces a third location for service data

pertaining to the mobile subscriber, and a third location for service logic execution. A MAP (Mobile

Application Part) interface is introduced between the SCP and the HLR to ensure service data does

not conflict and undesired feature interactions are avoided. Also, the trigger address lists for the

CAMEL services of a given subscriber are stored in the HLR.

1.5.3 Evolution of 2nd Generation Wireless Systems

Wireless networks as introduced above are referred to as second generation wireless networks, as

they embody the progression from analog technology (the first generation) to digital communication.

The second generation GSM network is a circuit switched communication system, seeing that a

fixed route through the network is established between the parties, for the entire duration of a call.

With the advent of packet switched technologies, and the type of always-on, IP-based services that

are facilitated by these technologies, GSM networks evolved by adding a packet domain to the

circuit switched core network. The packet domain is used to transport packet data efficiently across

the GSM network, from a mobile device to external packet networks. This new GSM bearer service

is called General Packet Radio Service, or GPRS.

The first order of business in realizing the packet domain is the introduction of packet switches

required to route packet streams. These packet switches are called Serving GPRS Support Nodes,

or SGSNs, and their main function is to route the packets to the mobile device and vice versa. As

with MSCs, a notion of serving SGSN applies and a VLR record is associated with the serving

SGSN. The HLR continues to be the centralized place where subscriber data and service profiles

are stored.

In order for the SGSN to transport the data packets to external packet data networks, a Gateway

GPRS Support Node (GGSN) is introduced. One of the functions of a GGSN is to perform the

translation of GPRS data packets into the data protocol in use within the external packet network.

Similarly, an address scheme conversion is required in order to deliver packets originated in an

external packet network to a mobile device in the GSM network.

Within the GSM network, a GPRS backbone network is in place between the SGSNs and the

GGSNs to carry the data packets. As there may be several external packet networks, e.g. IP or

X.25, packet gateways (GGSNs) are required for each such external network. However on the

GPRS backbone all packets look alike, as external packets are encapsulated and tunneled across

the backbone11. A specific session that may exist within a tunnel on the GPRS backbone, established

between a GPRS-capable mobile device and a specific address in a given external packet network,

is called a Packet Data Protocol Context, or PDP Context. With a PDP Context, a GPRS-capable

mobile device in the GSM network is now addressable by entities in the external packet network,

and payload packets can be exchanged to and fro.

CAMEL capabilities are in place to allow for IN-based service control of PDP Contexts. To

support such service control, a CAP interface exists between the SGSN (or the gprsSSF to be

exact) and the SCP.

GPRS itself evolves to EDGE (Enhanced Data-rates for GPRS Evolution), which is sometimes

informally called 2.75G. This evolved form of GPRS technology results in increased data rates

without any changes to the underlying core network. EDGE is not further discussed in this book.

10 The reader should note that 3GPP Release 4 is also tending towards including support for TCAP/IP type

scenarios as the network continues to evolve. Such work has been in progress for a while in other standards

bodies like the IETF for a few years now, where the underlying transport mechanisms for carrying SS7 protocols

were being developed. The interested reader is referred to [Sigtran] for more details.
11 The signaling protocol used on the GPRS backbone is called the GPRS Tunneling Protocol, or GTP. For

the remainder of the material addressed in this book, GTP is not important.

18 Parlay/OSA: From Standards to Reality

1.5.4 Third Generation Wireless Systems

Two developments characterize the dawning of the third generation in wireless networks. The first

improvement is the launch of a new radio technology introducing higher data rates, advances in DSP

technology and more efficient use of radio spectrum. The second advancement is the establishment

of an all-IP core network.

The radio technologies in use in second generation wireless networks are based on frequency

division multiplexing, where each connection uses its own dedicated radio frequency, or time divi-

sion multiplexing, where each connection uses a dedicated frequency only part of the time, in fixed

time slots. There are generally two drawbacks with FDMA (Frequency Division Multiple Access)

and TDMA (Time Division Multiple Access), and those are that adjacent or nearby frequencies

interfere with each other and the fact that each frequency can only be used for one connection (in

any given time slot).

Determined to condemn such drawbacks to history, spread spectrum technology emerged that

allows multiple mobile devices to use the same time slots and frequencies at the same time.

Interference is avoided by cutting up the speech payload of all active mobile devices into tiny

fragments and transmitting all of them simultaneously over the radio link. A unique code is assigned

to the speech segments of each individual connection. So even though all communication data are

shared over the airwaves, any given mobile device will be able to distinguish and identify the

speech payload destined for it, by means of the unique code for its speech connection. This radio

technology is termed CDMA (Code Division Multiple Access).

The second advancement in third generation wireless networks is the establishment of an all-IP

core network. With the evolution of 2G (second generation) networks we have seen that GPRS adds

the possibility for a mobile device to connect to external packet networks through the GSM network,

and obtain services residing and executed in those external networks. To facilitate the exploitation

of increased efficiency and enriched service capabilities made possible by IP technology, wireless

networks need to advance beyond the capability of offering access to external packet networks.

This trend is visible as an evolution of the nucleus of wireless networks into an IP core. In 3GPP

this core is called the IP Multimedia Subsystem (IMS). The principal objective of IMS is the

realization of an integrated voice and data network infrastructure, capable of delivering multimedia

capabilities, be it real-time or otherwise. IMS is gaining wider industry acceptance and is likely

to see widespread deployment by the time this book is published. Later sections in this chapter

introduce IMS in a bit more detail.

1.5.5 CDMA Network Evolution

Broadly speaking, CDMA networks evolve along similar lines, though the details are somewhat

different (and a discussion of these finer points merits a book in itself). A high-level summary view

is presented here. The 2G CDMA networks evolve forward to support CDMA 1X-RTT (Radio

Transmission Technology) – a technology that provides for more efficient over the air interfaces and

higher bandwidths. An overlay network, called CDMA 1X-EVDO (Evolution for Data Optimized,

sometimes also called Data Only), may also be deployed to support packet traffic as the evolution

continues forward. EVDO was not designed to support voice12, and so CDMA 1X-RTT evolves

forward into an integrated packet infrastructure with CDMA 1X-EVDV (Evolution for Data and

Voice). CDMA evolution, with support for CDMA 1X-EVDO is depicted in Figure 1.7. The reader

interested in learning more is referred to [Viterbi 1995].

CDMA 1X-EVDO supports nodes such as the PCF (Packet Control Function), and the PDSN

(Packet Data Serving Node), and these roughly translate, at the highest layer of abstraction, to

elements similar to the SGSN and GGSN from GPRS networks. While the GPRS networks support

12 Strictly speaking, EVDO evolves towards EVDO Rev A also sometimes referred to as DOrA (read ‘Dora’)

that can in fact support VoIP. EVDV, the next phase of the evolution, provides for higher bandwidth and

increased data rates over and above EVDO.

T
h
e

In
tern

et
is

C
allin

g
1
9

BSS/

PCF

IP core network

AAA

(V)

To traditional
voice network

HA

Home

AAA

SMS

GW
HLR

SCP

ESME

App

Server

A

B C

D

E

F

G
H

I

J

K
L

M

N

O

P

R

S

Q

Web

Server

WAP

GW

J

A CDMA Air Interface (IS-95B)

B Frame Relay/ATM Mesh

C PPP over IP

D AAA-RADIUS

E TCP/IP

F Same as D

G Frame Relay

H ISUP

I Frame Relay

J WML for WAP

K SMDPP over SS7

L ANSI MAP over SS7

M ANSI-41 over SS7

N Same as M

O SMPP over TCP/IP

P Same as O

Q Some protocol (SMTP etc.) over IP

R Some protocol over IP

S Same as R

Legend

MSC IWF

Internet

PDSN

(FA)

SMSC

Figure 1.7 An evolved CDMA network with 1X-EVDO

20 Parlay/OSA: From Standards to Reality

the establishment of PDP contexts for handling end-user sessions, CDMA makes use of PPP (recall

this was used in ‘dial-up’ scenarios). Also, CDMA 1X-EVDO utilizes Mobile IP (designed by the

IETF Mobile IP WG) for mobility management.

The astute reader can conclude from the above sections that conceptually GSM and CDMA

networks operate on the same principles – signaling and radio protocols are different, but at a

high level, they are very similar indeed. So the reader may draw a high level generic model of

mobile networks in her mind. Both networks can be viewed as more detailed instances of the generic

wireless network architecture shown in Figure 1.6. The reader will see, however, that understanding

of some of the differences will help in later chapters as we study Parlay/OSA service capabilities

and mappings of service capability APIs to underlying networking technology details. For now

though, we continue to focus on the similarities by recognizing that whilst the radio access network

technology between 3GPP and 3GPP2 networks differ, the IP core networks of both are harmonized.

Both organizations partner in the development and standardization of the IMS.

1.6 The IP Multimedia Subsystem (IMS)

So far, we have looked at various network ecosystems in place today, and have studied the evolution

of cellular networks, from the current 2G incarnations to the future 3G evolved forms. At times, a

reference was made to an all-IP manifestation of these 3G networks, called the IMS or IP Multimedia

Subsystem in 3GPP. Mention was also made that a similar evolved architecture is supported by

3GPP2 as it describes CDMA evolution into an all-IP environment, and that in the latter case, it

also goes by the same appellation in addition to sometimes being called the Multi-Media Domain

or MMD. We shall use IMS to refer to both.

The IMS architecture is poised to enable the dream of anywhere, anytime communication. What

this means is that IMS will enable every networked device, and the people using them, to commu-

nicate with any other device, over any network – be it wireline or wireless - with any service, in

any media. IMS creates a common core network that can span both wireless and wireline networks,

thereby providing seamless service control and delivery across these two types of networks.

1.6.1 A Standards View

In these sections, we study IMS in some detail. 3GPP defines most of the architecture, require-

ments, and call flows for the IMS in documents such as [3GPP 2002a, 3GPP 2004a, 3GPP 2004b,

3GPP 2005a, 3GPP 2005b] among others13, and 3GPP2 also utilizes these documents as a basis for

its own standards (this enables quicker convergence and reuse) which include the following docu-

ments [3GPP2 2003a, 3GPP2 2003b, 3GPP2 2003c, 3GPP2 2003d, 3GPP2 2003e, 3GPP2 2003f,

3GPP2 2003g, 3GPP2 2003h, 3GPP2 2003i, 3GPP2 2003j]. These documents, just like the 3GPP

documents previously indicated, contain overviews of the IMS architecture, descriptions of refer-

ence points, reference point operational descriptions, and finally, protocol mappings and functional

call flows in support of particular required capabilities. Last but not least, the OMA or Open Mobile

Alliance [OMA] also talks about how the IMS architecture can be supported, albeit more from

a services perspective, in a manner that promotes seamless access and use of IMS capabilities in

both 3GPP and 3GPP2 contexts. The last of these (i.e. the OMA documents on IMS) are covered

by an OMA Enabler Release, called ‘IMSinOMA’ [IMSinOMA 2005]. [Brenner 2005] provides

an introduction into OMA and some of its activities.

In what follows, we shall explore the IMS architecture. This is admittedly a simplified view

of IMS – for a more comprehensive treatment, the reader is referred to the standards documents

13 The interested reader who reads through one or more of these standards documents will soon see how the

documents reference one another, and how one quickly gets drawn in, with greater understanding, into more

and more other standards documents that explain more of the esoteric details. For help in locating standards

documents, the reader is referred to Appendix B, which is included as advanced reading in [Parlay@Wiley].

The Internet is Calling 21

listed above, which total several hundred pages together. But the lightweight treatment of IMS

concepts here shall suffice for most readers to provide a clear view of this all-IP architecture, and

its relevance and relationship to Parlay and OSA technologies.

1.6.2 Simplified View of the IMS Architecture

Figure 1.8 depicts a simplified view of the IMS architecture – a view that covers the most important

service-related aspects and is sufficient for our purposes. As was alluded to earlier in this chapter,

the HLR or Home Location Registry is the centralized repository for service subscription data and

service profiles. With the evolution of cellular networks into their all-IP 3G form, the HLR element

evolves forward into the HSS or Home Subscriber Server. This HSS element stores information

pertaining to subscribers and their subscribed services, among other things, in the 3G environment,

and is accessible to call control elements (called CSCFs or Call Session Control Functions), appli-

cation servers (analogous to SCPs from the traditional IN model), and other authorized network

entities that require this information in processing end-user requests.

The IMS supports SIP as the protocol of choice for all signaling, for call control and for most

service control interactions between the CSCFs and application servers. Generic SIP (as defined

in [RFC 3261]) is used as is, for the most part. The one exception to this is the reference point

between the CSCF and the AS, called the ISC (IMS Service Control) reference point. Along this

interface, the ISC protocol (SIP with some special private header extensions) is used. Interfaces to

the HSS component are normally implemented using the DIAMETER protocol. The main reference

points of interest along with the associated protocols are indicated in Figure 1.8.

Packet Switched
Domain

P-CSCF

HSS

SGSN

Media Gateway
Control Function

GGSN

OSA GW

OSA AS

I-CSCF

Signaling
Media

1 Parlay API
2 ISC (SIP)
3 Sh (DIAMETER)
4 Cx(DIAMETER)
5 Dx(DIAMETER)
6 Mw (SIP)

Media
Resource
Function

IP Networks

PSTN/Legacy
Networks

Media
Gateway

SIP AS Other AS

S-CSCF

2 223
4

5

6 6

1

Radio Access

(UTRAN, GERAN)

Figure 1.8 IMS network architecture

22 Parlay/OSA: From Standards to Reality

1.6.2.1 Application Servers in the IMS Architecture

The IMS architecture defines a service layer that supports different kinds of application servers,

most prominent among them being the SIP AS and the OSA Gateway.14

• The SIP AS supports SIP-based applications and receives SIP (or ISC) messages from the network

and responds with messages in the same protocol to enable further processing of user requests at

the CSCF or to otherwise be able to provide an enhanced end-user experience15. SIP ASs may use

any SIP-based technology (e.g. SIP CGI [RFC 3050], SIP CPL [RFC 3880], SIP Servlets [JSR

116], etc.) as they support the value-added application logic.

• The OSA Gateway is the Service Mediation Gateway or SMG that is referred to in later chapters

in the book. This is a gateway component that implements the standards defined by the Parlay and

OSA specifications. Since 3GPP defines IMS and 3GPP defines OSA, it is logical that references

are made to OSA (and not Parlay) in this context. However, as we will see in Chapter 4, the

two technologies are similar to the point of being virtually indistinguishable.

The OSA gateway serves as a gateway element (as the name suggests), enabling different OSA-

compliant applications that are themselves hosted on application servers (called OSA ASs), access

to network capabilities via the OSA-defined SCF APIs. Since most of the book is dedicated to the

topic of the OSA Gateway (or Service Mediation Gateway, SMG, as we will call it), we do not

discuss that in any more detail here.

1.6.2.2 The Different Types of CSCFs

The IMS architecture classifies CSCFs into three types based on their location and the logical

function they perform in call flows. These are as below:

• Proxy-CSCF or P-CSCF: The Proxy CSCF is the contact point into the IMS for an end-user’s

terminal. The P-CSCF may reside in a visited network, in case the user is roaming. In case the

IMS network is realized as an overlay on top of a GPRS network, the P-CSCF is the first point

of contact after the GGSN that routes to the user’s home IMS network.

• Interrogating-CSCF or I-CSCF: The Interrogating CSCF is the contact point into the user’s home

IMS network from other networks. Its job is to locate the right S-CSCF for the user after querying

the HSS, and then to forward the SIP Registration request to the S-CSCF. Once registration is

completed, and the S-CSCF is known, the I-CSCF is no longer involved, and SIP Invite messages

are forwarded directly from the P-CSCF to the S-CSCF for outgoing calls and vice versa for

incoming calls. There is one notable exception. If for some reason the network operator wishes

to keep their network configuration hidden16, the I-CSCF remains in the path between the P-

CSCF and the S-CSCF. In this case, the I-CSCF performs the function of a Topology Hiding

Inter-network Gateway (THIG).

• Serving CSCF or S-CSCF: The Serving CSCF serves as the SIP session control point for the

end-user’s terminal device and, like the I-CSCF, always resides in the user’s home IMS network.

14 The OSA Gateway will be explained in later chapters in its full breadth and depth. For the moment, we

shall just focus on its position in the overall IMS architecture, and its relation to the HSS and S-CSCF.
15 Unlike the SCPs in traditional IN domains that are limited to providing (rather critical) services to call

processing, ASs in IMS, which can support capabilities in areas other than just call control (think Presence for

example), may be able to provide enhanced end-user experiences even outside immediate call control contexts.

Hence the ‘or’ in this statement.
16 An example for one such reason could be to hide capacity information like the exact number of S-CSCFs

from other networks for competitive motivations.

The Internet is Calling 23

The S-CSCF maintains state information required for the support of services, however, the S-

CSCF does not contain service logic itself. For service logic execution, the S-CSCF refers to

application servers (ASs) using the SIP-based IMS Service Control (ISC) interface. All calls and

sessions go through the S-CSCF and the S-CSCF controls all services, irrespective whether the

end-user is roaming or not, thus ensuring continuous and consistent end-user experience.

1.6.3 Service Control in IMS

Service control in IMS takes place entirely on SIP ASs, as we have seen that the various CSCFs do

not contain any service logic themselves. Determining the sequence and invocation of applications

running on these SIP ASs for a given call may be done in two places: the S-CSCF (service filtering)

and SCIM (service brokering). The procedures for service filtering have been standardized in

detail [3GPP 2005a], whereas the mechanisms for service brokering are largely under-standardized.

Both mechanisms will be explained below.

1.6.3.1 Filter Criteria

For execution of service logic, ASs are involved by the S-CSCF through the ISC interface. So,

like in Intelligent Networking, we see a separation of call or session processing logic and service

control logic. Unlike IN however, delegation of service logic execution to ASs is not based on a

call model or state machine with detection points. Rather, the S-CSCF may decide to forward a

certain SIP message to a particular AS based on a variety of criteria. These criteria include:

• the type of SIP message received (e.g. an INVITE or a REGISTER message);

• whether or not some specific header element is present in the SIP message;

• the content of certain header elements;

• whether the SIP message pertains to an incoming or outgoing call.

These criteria are referred to as filter criteria. Based on the filter criteria, the S-CSCF decides

to forward certain SIP messages to a specific AS for service logic execution, whereas other SIP

messages are processed by the S-CSCF itself for call or session processing. We can distinguish two

types of filter criteria.

1. Initial Filter Criteria (iFC) are part of the subscription and service profile of the end-user and

are stored in the HSS. The iFC are downloaded from the HSS into the S-CSCF over the Cx

interface, upon registration of the end-user device in the network.

2. Subsequent Filter Criteria (sFC) are determined by the AS, once it has been involved in service

control by the S-CSCF as a result of the iFC. SFC are determined dynamically based on service

logic execution and signaled back to the S-CSCF over the ISC interface.

The iFC are specific for a given Application Server. Hence if the end-user is subscribed to

more than one service, multiple iFCs can be part of the subscriber profile. As part of the iFC a

priority is defined which allows the S-CSCF to determine the order in which to contact the various

Application Servers. Default behavior is also part of the iFC definition in case the AS in question

cannot be contacted.

1.6.3.2 The Service Capability Interaction Manager

The Service Capability Interaction Manager (SCIM) is defined as part of the Application Servers

that provide service control in IMS networks. As any aspect within an Application Server is

left unspecified in 3GPP, providing it handles any SIP exchange appropriately according to ISC

24 Parlay/OSA: From Standards to Reality

definitions, the SCIM is left unspecified as well. The role of the SCIM is that of service broker

in more complex service interaction scenarios than can be supported through the service filtering

mechanism; for example, feature interaction management that provides intricate intelligence, such

as the ability to blend Presence and other network information, or more complex and dynamic

application sequencing scenarios. This added complexity may provide another reason why SCIM

is not fully standardized.

Whereas the service filtering mechanism can be used to manage application interaction and

straightforward sequencing, the SCIM may provide a more enhanced end-user experience by blend-

ing applications with each other and with context-sensitive information like Presence and Location,

and Policy functions. In addition, the SCIM may incorporate multi-session awareness, with a session

context that can comprise multiple sub-sessions for example, for voice, video and data streams.

The SCIM is mentioned here, though underspecified in standards and hence mostly proprietary,

because the Parlay Gateway, in its capacity as Service Mediation Gateway, can be deployed to

fulfill the role and function of the SCIM in IMS networks.

1.7 Related Technologies

Now that we have familiarized ourselves with various networks and their service architectures,

a number of related technologies are introduced here as they provide service capabilities in the

network that Parlay can provide access to. Later chapters in the book will elaborate on the pro-

grammatic interfaces defined by Parlay to make use of these capabilities when building end-user

applications.

1.7.1 WAP Technology

WAP or the Wireless Application Protocol, defined initially by the WAP Forum
17, really came to

the fore around 1997, and was the precursor to some of the more exciting ‘data to mobile handset’

applications of which we will see more as network evolution to 3G continues. A very high-level,

simplified view of WAP operation is presented here. As was previously stated in the section that

discussed Internet access technology, for WAP as well, multiple alternative access paths to WAP-

based services are afforded by the networks of today. In particular, GPRS and EDGE networks

(and their CDMA equivalents) provide for the notion of data-session supporting nodes such as

SGSN/GGSNs and PCF/PDSNs for WAP sessions. To keep explanations simple, and since we are

using the PSTN network and its evolution to drive our discussions, we shall focus on the circuit-

switched based data access path for WAP in this section. The interested reader is referred to [WAP]

for more details.

WAP enables the user to browse the Internet from her mobile terminal. WAP, in concept, is

independent of the radio access or core network technology in use, and can be deployed just as

effectively in CDMA and GSM networks. There are several million users of WAP today. Since the

screen-size of wireless handsets is usually small, and other limitations exist (such as the thin pipe

to the handset over the air interface, etc.), an element called the WAP gateway is introduced into

service provider networks where WAP is deployed, to perform conversions of accessed web page

contents for suitable rendering on handsets, and for transport over the air.

The WAP standards define a complete protocol stack for use between the handset and the WAP

gateway including layers for session control (WSP), security (WTLS), etc., as well as content encod-

ing related aspects. The latter includes a WAP binary format for over the air transmission of accessed

17 This body has since been subsumed under the OMA [OMA]. As Andrew Tanenbaum once remarked, ‘The

one good thing about standards is that there are so many to choose from.’ Lately, market forces have caused

a kind of consolidation of some of these distinct bodies, thereby contributing greater stability, and enabling

vendors to make more judicious choices of which protocols to implement in their products.

The Internet is Calling 25

data, and an encoding format called WML or the Wireless Markup Language – derived from HTML,

which most web pages are written in today – for easy rendering to handset screens and so on.

Figure 1.9 provides a view of the network infrastructure needed to support WAP (recall that

our focus here is primarily on network technologies). The digital switch or MSC is provided with

a connection to an Interworking Function (IWF). All WAP data calls (or dialed calls where the

destination is a WAP service) transit this link. The IWF connects on its other interface to a wireless

service provider hosted IP network (LAN or WAN), to which a WAP gateway is connected. Some

kind of simple handshake takes place between the IWF (representing the user device) and the WAP

gateway as this connection is set up, and user credentials such as the subscriber phone number and

other information are exchanged across this interface at that time.

The WAP gateway maintains the association between the user identity, and the IP address

assigned to this connection, and then works to forward on user requests for web content to web or

WAP servers (also called Origin Servers) either within, or outside, the service provider network.

The WAP gateway then performs the required conversions on the data returned, and forwards it on

along the same path, but in the reverse direction, back to the handset.

The reader should note that here data are being carried over the circuit call established between

the handset and the digital switch. When the session ends, the user simply disconnects the call.

1.7.2 Location Based Services

Of late, there has been an upsurge in location technology and its use particularly in mobile networks,

but sadly, the uptake here in terms of real-world networks has been somewhat sluggish. Location

has been used in wired networks for many years now. The E-911 system in the US, has for example,

relied on reverse directory lookups in databases to advise emergency operators and dispatchers of

the location and routing information from the nearest police/fire station or hospital, so as to better

assist people in distress in more timely a fashion. But use of location technology in networks with

wireless handsets is somehow more appealing, primarily due to the mobility of the terminals in

question.

In their simplest form, location-based services may be classified into two types. One is where

the user himself provides his location while requesting location-specific information from a server.

An example of this is where Bob enters his zip code into an HTML form to obtain local weather

information, and possibly a Doppler radar image of his vicinity. A second, more enhanced service

experience could result if Bob simply asked for location specific information, and his location

were transparently obtained by the server in question (factoring in his preferences and privacy

User at MS

Other
Switches

To SS7 Network

Servers connected
to other IP Networks

or the Internet
Firewalls

IWF Wireless Service
Provider

LAN or WAN

Other IP
Networks or

General
Internet

WAP
GW

Origin
Server

Web
Server

MSC
(digital
Switch)

Figure 1.9 The WAP access model

26 Parlay/OSA: From Standards to Reality

permissions of course), and he were provided with context sensitive information without having to

provide his location explicitly to the service.

The latter could be achieved in several different ways in cellular networks today. Recently,

phones are coming equipped with GPS receivers, thereby enabling them to provide a fairly accurate

location fix that can then be passed on (again, with end-user permission) to network services that

require it. Alternatively, network elements such as MPCs (Mobile Positioning Centers) in CDMA

networks, and GMLCs (Gateway Mobile Location Centers) in GSM networks, which talk to other

Position Determining Equipment (PDE) in the network, are able to obtain location information

(Figure 1.10). Such location information could consist of the cell-ID and cell-sector the handset is

currently in, or even the latitude and longitude (sometimes even altitude) co-ordinates (sometimes

called lat/long or X/Y/Z) determined using various algorithms and triangulation mechanisms such

as AFLT, EFLT or Network Assisted GPS (this uses network information in concert with GPS

information to locate more accurately a handset).

These MPC and GMLC servers can be made accessible to applications either directly, over

protocols such as MLP (Mobile Location Protocol, an XML-based protocol defined by the Location

Interoperability Forum or LIF, now subsumed by the OMA standards body), or indirectly, through

OSA/Parlay capable service mediation gateway elements via the User Location interfaces supported

by such gateways. Regardless of what mechanisms are used, once this information is obtained by the

location-based services, specific context sensitive content can be served to users more transparently.

Furthermore, this technology may be used very effectively to respond to emergency calls made from

cell-phones where the caller either does not know, or is otherwise unable to specify, his or her

location.

1.7.3 Short Message Service and Multi-media Messaging

Messaging capabilities are an intrinsic part of the wireless networks of today. Its most well known

exponent is the Short Message Service (SMS). Given the popularity of SMS and the resulting high

volumes and thus revenues this service generates, it is interesting to consider that the success of

the service was really a fluke. In early GSM deployments, part of the available network capacity

remained unused. Taking advantage of the characteristics of digital technology available in second

generation networks, SMS was introduced as a low-bandwidth, packet-based message exchange

mechanism, mostly bundled by equipment vendors at a discount with GSM voice service as part of

a package deal. Adding SMS messaging services to the more sparsely used frequency bands in the

network allowed network operators to make more use of their available bandwidth, and potentially

increase average revenue per user. So, born as a capacity optimization feature, a killer application

has emerged blinking into the daylight.

PDE

Location
Based

Application

Parlay
Location Based

Application

GMLC
Or MPC

Parlay
Gateway

Parlay/OSA
API

LIF MLP
XML

Figure 1.10 Logical architecture schematic of location-based services

The Internet is Calling 27

User at MS

Other
Switches

To SS7 Network

Servers connected
to other IP Networks

or the Internet

Other IP
Network

MSC
(digital
Switch)

SMSC

SMDPP
Over SS7

ESME

SMS
GW

SMPP
Over IP

Upper Layer Protocols
Over IP

Figure 1.11 SMS network view

The Short Message Service is a store-and-forward message delivery technology, where a Short

Message Service Center is introduced in the GSM network as the message store (Figure 1.11).

SMS uses the wireless network for message transport and delivery. Because of the store-and-

forward nature, SMS basically consists of two point-to-point services, from the originator to the

SMSC (Mobile-originated short message, or MO-SM), and from the SMSC to the destination

(Mobile-terminated short message, or MT-SM).

The SMSC uses the HLR to locate the destination party for an SMS message. The HLR is also

used for supplementary services applicable to the SMS bearer, such as for example the barring of

incoming SMS messages. Short messages are short, as they are transmitted out-of-band, over a low

bandwidth medium. The messages are limited to 160 alphanumeric characters, although messages

may be concatenated. The signaling protocol between the SMSC and the HLR (e.g. to obtain the

location of the destination for the short message) is the SS7-based MAP protocol.

Given its enormous popularity, the basic SMS service has been enhanced in many ways. Simple

examples include the ability to concatenate the short messages, and the addition of point-to-

broadcast to the basic point-to-point capabilities. Enhanced Messaging Service (EMS) adds the

capability to send formatted text messages (including bold and italic fonts), simple pictures and

animations, and ring tones and logos.

The latest step in this process of enhancing the SMS capabilities and building on the success of

the service is the Multimedia Messaging Service (MMS). MMS messages may be used to stream

audio or video to the mobile device, or to exchange photos and download games.

In order to support MMS in the network, the basic SMSC does no longer suffice. An MMS

Relay/Server is introduced to support MMS capabilities. The basic functionality of the MMS

Relay/Server is still the storing and forwarding of messages, MMS messages in this case, but given

the much richer content involved, interfaces are introduced to value added service applications,

content stores, and external networks.

1.8 Summary

In this chapter, we have covered, with a broad brush, many of the networking technologies in use

today. The intent here is to provide the reader with a background and a little more appreciation

of the complexity involved in network architectures, and also to introduce, albeit at a high level,

the kinds of interfaces in existence, and the reference points where programmatic interfaces could

be introduced (this latter point will become more apparent in later chapters). This chapter serves

as the basis for the discussions in the rest of the book – we scatter some magic idea seeds here,

and these grow into a forest of beanstalks in the pages to come. Next, we look at some marketing,

business, and technology drivers for change.

2

The Need for New Technologies

2.1 Introduction

In the last chapter, we studied some of the different kinds of communications networks and the

associated technologies and protocols in common use today, albeit at a high level of abstraction.

Here, utilizing this knowledge along with an understanding of the scenarios presented at the start

of the book, we try to distill a reasonably comprehensive set of requirements that new solutions

should satisfy in order to meet the expectations of various parties that are as yet unfulfilled by the

technologies deployed commercially today.

Note that although the previous chapter covered the various types of networks from a standards

or a ‘reference architecture’ perspective, each deployed network is subtly different from every other,

even where the same technology is used. Each has its own nature if you will, similar in a sense

to how people have different natures and react differently in different situations. The make-up, or

psyche, of the network is determined in large part by the protocols that are used, which vendors’

equipment is deployed in support of which functions, how the various elements are deployed, what

paths are open for inter-element communications, etc. In other words, even where two networks

appear remarkably similar, there may be subtle differences between them. The reader is encouraged

to keep this in mind while reading through the various chapters. The principles covered in this book

are however expected to be applicable in the vast majority of situations.

2.2 Issues with Networks Today or The Drive to Improve

Humankind has always focused on self-improvement. Communications is no exception. In this

space, as in all others, whatever is newer, faster, better, more appealing and meets compelling user

needs while being cost-effective for mass deployment still catches on, and gains wide acceptance.

Let us delve a little bit deeper to study some issues with the networks of today, examining issues

from three perspectives – the network operator, the application provider and the end-user. Please

refer to Figure 2.1 while reading the sections that follow, for additional context.

2.2.1 Network Operators

Network operators are those corporate entities that provide end-users with network connectivity.

These are companies that own, operate and manage communications infrastructure (and are licensed

to perform these functions, an idea that is significant from a regulatory perspective), and are com-

monly referred to as ‘phone companies’. Some network operators also double as service providers

in that they not only provide the ‘dumb’ infrastructure, but also the set of services that execute

atop that base.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

30 Parlay/OSA: From Standards to Reality

$$$!$$$!

Service
In Lab

New Service
Idea

Feasibility
Analysis

Technical
Input

Business
Case

Marketing
Data

Software.
Development

Lifecycle

Integrate
With Network

Trial with
Subscribers

Market the
Service

Service
Generally
Available

Time to Market
for new service

Services

Time to Market
for new service

Services

Present Mode of Operation Gain in Efficiency with new modes of
Operation –Save in Integration Costs,
Concept to Completion Cycles are FASTER!

Integration completed once,
effort reused across services

Build Service Faster Using
Standard Interfaces

Well-defined Service Enablers
easier to determine feasibility

Well-understood enablers
can come up with more new
ideas

Service Enablers offer new
billing models

Service Enablers give
competition a run for
their money

Figure 2.1 Telecom services – potential impact of technological improvements

The traditional telephony features such as call forwarding or call waiting are examples of such

services, but other categories of services such as Click To Dial capabilities, auto-Attendants, etc.

also exist, since operators are not restricted merely to supporting traditional telecommunications

infrastructure any more. For the purposes of this book, unless otherwise specified, we treat service

providers and network operators as a single kind of entity, and shall use the terms network operator,

and service provider, interchangeably.

One instance where they may NOT be the same is in the case of the Virtual Network Operator

(VNO). Your network operator may or may not be the same as the service provider whose name

appears on your telephone bill each month. This is because VNOs (called MVNOs or Mobile Virtual

Network Operators in Wireless contexts) resell access to another network operator’s infrastructure

to end-users. This is supported by a business agreement reached between the VNO and the ultimate

network operator whose infrastructure is used in supporting your telecommunications services. We

leave VNOs and MVNOs out of the picture until later chapters, where some advanced concepts

relating to these entities are presented.

We refer the reader back to Scenario 1. Service providers would like to stabilize and grow their

subscriber bases, thus bringing in more revenue. Doing so requires that they increase end-users’

reliance on the network, by storing profile and preference data within the network context and by

providing compelling user experiences the end-user cannot do without. In addition, they would

like to offer newer, more exciting services more quickly, to attract subscribers from competitors’

networks, and make these services ‘sticky’. In other words, make subscribers reluctant to move to

another service provider. Of late, with the advent of service provider portability, being mandated

by governments in certain countries, it has become very easy for subscribers to switch from one

operator to another (while maintaining their current phone number), and service providers need to

do what they can to maintain and grow their subscriber bases. Services are thus a life-blood of any

network and a critical area for differentiation.

The Need for New Technologies 31

True, one has to spend money to upgrade the services deployed, or deployable (for new tech-

nologies may enable you to deploy services not previously possible) in one’s network. However,

if the right technology, business model1, and related choices are made, one can reap rich rewards.

New services can increase ARPU as well as AMPU2, if the services offer seamless integration of

new capabilities with existing supported features subscribers have come to know and love.

Another aspect of importance here is the fact that in certain markets the opportunity to grow

the subscriber base is limited, even physically constrained, due to the already large uptake in terms

of members of the population being subscribed (i.e. penetration). Penetration is close to 100% or

even larger than 100% in Western Europe. For instance countries like Italy have a penetration of

larger than 100%, indicating that some people own more than one subscription.

When deploying new applications, one common hurdle service providers face is the large num-

ber of communicating legacy systems already deployed. Inevitably each new service or application

needs to interface with a number of them. These could include elements like billing systems, pro-

visioning systems, operations support systems, network management systems, etc. Each integration

point costs money, time and other resources (engineers, who could be assigned other tasks, have to

engage in hand-holding the application developers). Typically this has to be repeated with each new

application that is added since there is very limited reuse of the functionality. This raises costs, and

makes the deployment process slower and more expensive than it could otherwise be. This phe-

nomenon of limited reuse of common functionality across various services (e.g. a billing solution for

location services and a billing solution for presence services) is often termed ‘vertical integration’.

Subscribers that sign up for individual services expect the service provider to provide customer

care support to help them with provisioning, configuration and other related aspects of their accounts

when they get started (and periodically thereafter if and when they have issues with the service).

Unless new applications are closely integrated with the rest of the customer care infrastructure,

support for each new service or application adds to the service provider’s operating expenses.

Typically, the design of telecommunications services and applications requires a detailed working

knowledge of all the various protocols and interfaces connecting to the element hosting the service

logic, and such knowledge is relatively arcane, making trained engineers available to build such

carrier grade applications hard to find. This contributes further to the costs involved as new telecom

applications are built.

Sidebar

Telecommunications services and hardware are typically referenced with adjectives such as

‘carrier-grade’. This means that the service or hardware element has characteristics such as high

availability and reliability (robust, deterministic, and fails very infrequently). It is also used

to indicate that the failure characteristics and recovery or repair times and strategies are well

known and that procedures for these are well defined. Traditionally these characteristics are a

prerequisite of being a telecommunications carrier.

1 Business models are important too. Some revenue- (and risk-) sharing models may involve the service

provider agreeing to deploy a service but giving the application developer a cut of each transaction. Others

may involve the application developer (or enterprise) hosting the new application and paying the service

provider a flat fee per month for access to the latter’s subscribers. Yet other transaction based models may be

used with online or offline revenue reconciliation mechanisms put in place.
2 ARPU and AMPU stand for Average Revenue Per User and Average Minutes (of usage) Per User respec-

tively. Any service that raises ARPU across the user base and brings in more revenue than the amount expended

on providing the service, contributes directly towards profits for the service provider. Similarly, any service

that generates more minutes of use or drives user behavior that results in more usage of existing services is a

significant moneymaker for the service provider.

32 Parlay/OSA: From Standards to Reality

Contrast the shortage of trained engineers with the Internet domain where there are thousands

of qualified programmers who can fairly competently build applications to requirements through

the use of widely liked and deployed technologies such as Java and C++, using Internet Toolkits

for software development. If only there were a way for telecom service providers to tap into

this resource pool, it would alleviate some of the cost related issues with regard to new service

development.

To summarize, what service providers really want is a cheaper, more flexible environment, with

faster ‘concept to completion’ cycles, that leverages the untapped pool of Internet resources and

technologies to provide services more efficiently, and which provides effective dynamic feedback

on new services and applications deployed. If there were also a means by which these services or

applications could be hosted in other domains (with suitable agreements on sharing of responsibility

for service outages), thus enabling them to reduce customer care costs, it would be even better.

2.2.2 Application Provider

Applications are blocks of logic that utilize the service provider supplied service-enablers to provide

value-added capabilities to an end-user context in interactions with other users connected to the

network, or with the network itself. In the IN context, applications such as Voice-VPN (Virtual

Private Network with closed user groups and private numbering plans) are supported using a base

set of Service Independent Building Blocks called SIBBs. Application developers or providers build

these applications, either under contract with service providers, or independently for resale across

service provider customers.

The reader is referred to Scenario 2. There is a small pool of available talent in the pure telecom

applications space, and the stringency of requirements tied to telecommunications applications (very

high availability and reliability are examples of these), coupled with the detailed low-level binary

protocol encoding aspects of application building and one-off repeated integration of each new

application with legacy systems, makes the development procedure extremely involved, less agile,

time-consuming, and very expensive. Application providers also have to build potentially the same

application over and over again, for each new service provider customer, due to network differences

(though this may not be such a bad thing, since each integration job results in a revenue influx).

What applications providers would like is a development environment where they can seamlessly

utilize Internet technologies and toolkits as they build telecommunications grade applications, and

do so more quickly. If they could build an application just once, and then customize it to fit

into various service provider network contexts, this would be even better (not to mention a single

off-the-shelf product contributing to multiple revenue-generating transactions).

Let us illustrate the points from the preceding paragraphs by means of some examples from the

history of telecommunications and networking.

1. The IN model was so successful and saw widespread deployment because now suddenly

it gave service providers (who were previously constrained to developing services within

switches and having to deploy them throughout the network in all switches that had to

provide the capability) the option of building and deploying services in centralized nodes

called SCPs. Telecom-specific development environments, protocols, and technologies were

used to effect this, but it was still a radical improvement from the previous state of the art, so

there was widespread acceptance of IN relatively quickly. Besides, if one operator deployed

The Need for New Technologies 33

IN and started reaping rewards, others would have to follow suit pretty quickly to remain

competitive, and this drove market acceptance. Now, operators whose network properties

span multiple countries simply develop the service once and deploy the same in different

networks subject to cultural and regulatory differences.

2. The Internet, where the number of new nodes grows exponentially, with a burgeoning talent

pool, saw the adoption of new technologies, toolkits and programming languages like Java,

and now. NET, which enable almost anyone to develop programs, applications and services,

and communicate with others. Of late, this has even been facilitated through mechanisms such

as Peer-to-Peer sharing and communication, thereby further overlaying a sense of community

across geographic boundaries, over a physically widely distributed network. The success of

the Internet can be widely attributed to the low barriers of entry.

3. Services like i-mode3 took off quickly in Japan. Introduced via proprietary mechanisms and

protocols, these services were still successful because a movement snowballed where some

‘cool’ services saw a wider following, followed by a wider interest in a larger application

development population to reach out to a larger interested audience, which led to yet more

subscribers and more applications and so on. This positive growth spiral provided service

providers in Japan that came up with this technology with stable and growing subscriber and

revenue bases, provided subscribers with newer, ‘cooler’ services, and provided application

developers with markets found ready for intelligent new concepts and more revenue for the

services they built – a true win-win situation for everyone involved. For service providers,

there is no necessity to come up with the elusive ‘killer application’. Because of the ease of

development and the large developer population, the resulting abundance of new applications

will increase the likelihood that a few winners emerge, while less successful attempts will

falter. It is no longer the burden of the service provider to find the killer application and it

is no longer the risk of the service provider that some applications will not make the grade.

Therefore, opening up their network, their most prized and hence most protected asset, offers

them the ability to reap great rewards.

Parlay/OSA technologies are targeted at exploiting the strong points of all three examples

above:

A. Use of standard interfaces, so application developer risk is reduced, and new services, once

developed, can be sold to a multitude of service provider or enterprise customers.

B. Enabling the large talent pool from the Internet domain to build telecommunications appli-

cations or applications that leverage telecom capabilities.

C. Provide a rapid feedback environment in which newer, more exciting, services could be

built, tested, trialed and deployed, much more quickly than through traditional paradigms

available today.

Additionally, third-party application developers may have some really new and exciting ideas

for converged services that span telecommunications networks and other environments. In today’s

prevailing conditions they are frustrated due to their inability to access or leverage any of the

telecommunications network capabilities in a wider integrated communications services context.

3 i-mode is the mobile Internet access system developed by NTT DoCoMo. For more information, the reader

is referred to [Natsuno 2003].

34 Parlay/OSA: From Standards to Reality

2.2.3 End-users or Subscribers

An end-user or subscriber is a person who owns, leases, or operates end-user equipment, and has a

contract with a Network Operator4. This end-user equipment could be a phone (wired or wireless),

a computer, a PDA, any device that is capable of interacting with any infrastructure-based network.

We exclude ad-hoc networks of roaming wireless endpoints from our discussion since these do

not require service provider hosted equipment, typically (though not always) rely on low range

technologies such as BlueTooth5, and do not generally assume support for network hosted services

accessible via standard protocols.

It is ultimately the end-users who, as a community, decide which of the services and applications

the service provider hosts are successful, and which are not. Of course, lots of factors play into this

dynamic, including the charging or billing model offered, the ease of use of the service in question,

etc., and the technology in question may or may not be a factor in whether a particular service or

application is to the users’ liking.

There are also regulator-mandated services – for instance, there is a government requirement

in many countries today that all wireless networks implement device or handset tracking by a

certain date to provide support for Emergency Services such as 911. Another such requirement

might be the support some governments’ need for wiretaps (also called ‘legal intercept’) and other

communication interception once subpoenas or other legal documentation is provided to authorize

such activity in the interests of national security.

The reader is encouraged to re-read Scenarios 3 and 4. Services, as we have stressed before, are a

service provider’s main avenue for competitive differentiation. However, users would like to get as

much as they can from their communications experiences while spending as little as possible. This

imposes a cap on the amount that service providers can charge for particular features or packages

of features (either per-use or subscription based). Given take-rates and related assumptions this

implies a certain limit is already pre-imposed on what can be spent on a new service or application

even before it is designed and deployed.

There are forces that require that costs be kept low, but also that new services be periodically

deployed to give the end-user a better experience than competitors. What subscribers really want is

a comfortable access to well-integrated services, good customer care facilities, and cheap service

that meets their needs more easily.

2.3 Summary: Required Characteristics of a Desirable Solution

Technology

The last paragraphs in each of the three preceding sub-sections outline the requirements that network

operators, end-users and application providers would like to see resolved. Figure 2.1 indicates

some of the areas in a services definition, development and deployment life-cycle where potential

improvements can be made, and the impact these small changes may have in the overall gains (both

in terms of revenue and stability or growth of the subscriber base) that service providers may be

able to reap. These are briefly summarized below:

• Network Operators – looking for increased revenue from a stable or growing subscriber base.

Attractive services are key, hence Network Operators require a flexible environment based on

Internet technologies, yielding to faster ‘concept to completion’ cycles. Network Operators want

more innovative and attractive services. They want the ability to brand these services to show

“ownership” and differentiation, and they want to leverage capabilities and services already

4 Technically, there is a difference between end-users and subscribers. A subscriber is the one who engages

in a contract with a service provider, i.e. subscribes to the service. An end-user however can be a subscriber, or

for instance an employee of a large enterprise, where the enterprise owns the subscriptions for all its employees.

For the purpose if this book, the distinction between end-users and subscribers is not significant.
5 BlueTooth is a low-range radio technology connecting mobile and handheld devices. Interested readers are

referred to [BlueTooth]

The Need for New Technologies 35

deployed in their network by exposing them in a secure and well-regulated manner, to applications

that can generate new revenue at reduced cost.

• Application Providers – Looking for ways to leverage network service capabilities to develop

revenue-generating services, using Internet technologies and toolkits. Application Providers want

more innovative and attractive services. They want toolkits that enable them to create new

services and applications while allowing them to leverage the knowledge and skills they already

have; they do not want proprietary toolkits with interfaces and capabilities forced by particular

IN vendors.

• End-users – looking for low cost, low maintenance services to enhance their communications

means and enrich their experience. End-users want more innovative and attractive services.

We take these as input requirements, which we then use to construct a suitable solution in the

next chapter. Subsequent chapters will flesh out more details within the solution space as they show

how Parlay/OSA technologies could be employed to meet these and other needs of the three groups

of technology users described above.

3

Follow the Yellow Brick Road

3.1 Introduction

In the previous chapter, we identified some important needs of three different kinds of user com-

munities that are as yet unmet by technologies in common use today. These three kinds of user

communities were Network Operators, Application Providers, and End-users. In this chapter, the

focus is on building a generic solution that may be implemented to fulfill some of these needs in

the cheapest or simplest way possible, so that an elegant, cost-effective and working solution can

be implemented. Attempts are made to address as many of the requirements as possible, while pre-

senting the reader with cogent arguments as architecture choices are discussed, and either selected

(added to the solution set) or discarded from consideration. The solution architecture is no doubt

interesting, but the discussion is important in and of itself, for it illustrates some of the principles

involved in systems architecture and design.

Sidebar: The Most Efficient Solution – of Square Pegs and Round Holes

In many engineering schools, a required course in the first year is one that is sometimes called

‘Engineering Drawing’. Essentially, it is intended to teach visualization, three-dimensional geom-

etry and the ability to think ‘outside the box’ – this experience can be very rewarding, or very

frightening, for new students.

One problem students are often presented with in class is where the teacher challenges them

to come up with the simplest, most elegant, and efficient solution to what is typically called a

‘single plug’ problem. ‘There are two holes in the wall,’ the teacher says, ‘and you must fill

them both with the simplest plug you can devise. One hole is circular in cross section, the other

a square or rectangle. You can imagine them to be of whatever dimensions you like, but the

key is to come up with the most efficient solution.’

Students think long and hard, and come up with various possibilities – a sphere or cylinder

fused to a square peg etc., but the truly astute among them realize the correct answer is simply a

cylinder. Look at a cylinder from two different perspectives. It has a circular cross section when

viewed from one angle, and a square or rectangular cross section when viewed from another 90

degrees away. See Figure 3.1.

Problems have different possible solutions. If we look at problems from different angles or

perspectives, we are able to come up with, and evaluate these, and then perhaps pick the most

efficient one to use. Sometimes, we may stumble upon the most efficient solution serendipi-

tously. In other cases, we may algorithmically or through an extensive search, come to the right

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

38 Parlay/OSA: From Standards to Reality

Light
Source

Light
Source

Cylinder Top View Side View

Figure 3.1 Of square pegs and round holes

conclusion. And in some cases, as in the above example, a square peg may in fact be the right

plug for a round hole.

3.2 Of ‘Smoke-Stacks’, Value-Chains, and Service Layers

In Chapter 1, we studied various network ecosystems, but did so primarily from a technical per-

spective so as to give the reader an appreciation for what happens from a network viewpoint as

she communicates with friends and family or surfs the web, using telephony and related infras-

tructure. In this section, we look at the associated value chain involved. We use this discussion as

a spring-board into how network evolution and support for service enablers, instead of vertically

integrated smoke-stacks of applications, will help drive a wider proliferation of new applications

more quickly into the networks of today. As also previously indicated, the more new services, the

more the subscriber reliance on network hosted capabilities, and hence the greater the ability for

service providers to generate new revenue. But let us examine these statements in a little more

detail.

In the previous chapter, we identified three stakeholders in the communications value chain:

Network Operators (or Service Providers), Application Providers, and End-users. For us to be able

to understand the entire value chain involved, in addition to those corporations that provide the

network and associated services (these are companies such as Sprint, Verizon, Cingular, Vodafone,

NTT DoCoMo, T-Mobile etc.) we need to also recognize the corporations that provide these

Service Providers1 with their switching infrastructure (companies like Alcatel, Ericsson, Lucent

Technologies, Motorola, Nokia, Nortel, and the like). The latter are called Telecom Equipment

Vendors. They architect, design and develop the various network components such as switches,

1 Those providing cellular wireless service are called Wireless Service Providers.

Follow the Yellow Brick Road 39

Handset

Vendors

Handset

Software

Vendors

Handset

Application

Vendors

Handset

Software

Distribution

Network

Equipment

Network

Services

Service

Layer

Equipment

Service

Layer

Software

Parlay/

OSA

Technology

Telecom

Applications

User Space Service Provider Space Application Provider Space

Examples:

Qualcomm’s BREW

Distribution System

Sun’s Java Vending

Machine

e.g. Samsung,

Nokia, Kyocera etc.

e.g. Symbian,

PalmOS etc.

Provided by Telecom

Equipment Vendors

(Lucent, Alcatel, Ericsson etc.)

Provided by Parlay

Gateway Vendors

(e.g. Lucent, AePONA, etc.)

Provided by Application

Integrators

(e.g. IBM, Appium etc.)

Note: All trademarks are the properties of their respective companies.

Figure 3.2 Smoke-Stacks and Value-Chains and how Parlay fits in

HLRs, SCPs, Parlay gateways and so on. Figure 3.2 shows the stakeholders in the value chain and

demonstrates how Parlay fits in.

Service providers purchase and deploy equipment from telecom equipment providers into their

networks. The larger ecosystem thus encourages creativity and innovation on the part of the equip-

ment providers, enabling those with more competitive price and performance to achieve greater

market penetration. Similarly, competition between the Service Providers themselves, for sub-

scribers and subscriber dollars, requires that the service providers promote more attractive offerings,

and lure more end-users to their networks either by providing more services, more minutes, better

end-user experiences, etc. Increasing ARPU and AMPU helps service providers make more money.

And since this is a service provider goal, telecom equipment vendors need to factor in such think-

ing as they develop their own products, solutions, services and offerings, in order for them to be

successful2.

To put it succinctly, revenue flows from subscribers to service providers to telecom equipment

vendors, with associated value flowing in the opposite direction (value has to be paid for) with

equipment vendors providing useful new capabilities to service providers who in turn leverage these

to deliver better user experiences. The perceived value of new capabilities is therefore magnified

several fold at each step. This is a value-chain.

Thus, the ability to more quickly, cheaply and effectively deploy newer and more attractive

services into networks is of paramount importance. Many attempts have been made to make legacy

networks more programmable, since this would lead to shorter ‘concept to completion’ cycles for

new deployments. Most, if not all of these, were based on proprietary technologies in the past, and

sought primarily to tweak existing processes with improvements, not cause paradigm shifts in the

way things were done.

2 Admittedly, there is some difference between customer success and customer satisfaction, but regardless,

one can only succeed if one’s customer succeeds.

40 Parlay/OSA: From Standards to Reality

3.3 The Programmable Network

With the advent of IN, the concept of a service layer gained prominence. However, new services

and applications were still developed in a vertically integrated manner in the form of what is

typically referred to as the ‘smoke-stacks’ model. This is explained in greater detail in the sections

that follow. Here, there is a rat’s nest of interfaces, and repeated costly integration needs to occur

each time a new service has to be deployed. The idea of a service layer was a good one though,

and is being leveraged more and more in network evolution. Enter the service enabler.

Parlay, the latest3, established, new technology in the domain of enhanced programmability of

network-hosted services, attempts to leverage the network capabilities in the form of a service

layer, but does so through a set of standards-defined interfaces designed specifically to support

the existing value chain, but also simultaneously open up the network to a whole new domain of

programming expertise – the Internet. This is what makes this paradigm shift so interesting and

different from previous attempts. The focus here is on positively impacting the programmability

aspects of services and applications through new enablers that can be seamlessly leveraged by them,

while not disturbing other aspects of network operation where investments already made are still

being leveraged to generate revenue.

The Parlay service enablers are the new service layer – more resilient to change, more future-

proof, and capable of supplementing the existing service layer already deployed. Gradual displace-

ment of old services with new technologies with a seamless mechanism for service providers to

tap into new revenue streams is what makes this so attractive. These aspects are covered in much

greater depth from a technical standpoint in later chapters.

3.4 Services and Applications

Before proceeding much further, it is important that the reader understands the distinction between

the terms ‘service’ and ‘application’ that we have, so far, been using synonymously.

A service is (in the context of this book) a core-network supported enabler that permits the

easier development of applications. Examples of services supported by typical telecommunications

networks include user terminal location (X, Y co-ordinates for the cell-phone with number 312-

555-1212), user terminal status (is that phone connected to the mobile network, turned off, or

engaged in an active conversation at this time?), and call control (set up a call between the phone

with number 312-555-1212 and an application that reads out a weather forecast at 312-555-0800).

Services are also sometimes referred to by the term ‘service capability’.

An application makes use of services in providing subscribers with better communications expe-

riences. For instance, Billy could connect via his cell-phone to a weather application, which, without

his providing any additional information, could find his current terminal location via the user ter-

minal location service supported by the service provider, and then perform a dip in a weather

database to generate context-specific content that is then downloaded to his handset. Similarly, a

presence application could let Alice determine Bob’s availability by tracking his handset status and

location, and vice versa, thereby engendering a feeling of community among the users connected

to the network.

3.5 Developing a Satisfactory Solution Architecture

Before trying to design the solution, let us first review some important concepts from Chapter 1 that

we will use here. We have previously discussed how signaling protocols may be broadly classified

as call/session control protocols and service control protocols, with the latter being used between

3 Terms such as ‘latest’ may be subject to some debate. As of this writing, there is a movement afoot in

standards to deploy Parlay (or ‘Parlay-like’) services (and make them accessible) over Web Services or other

XML technologies. This is sometimes referred to as Parlay-WSDL or Parlay-X. Later chapters discuss this in

greater detail.

Follow the Yellow Brick Road 41

core network elements (such as switches) and the service control elements that host service logic

or enablers.

Since most of the requirements under consideration, from what we shall refer to as the ‘problem

domain’ as per Chapter 2, deal with services, it stands to reason that any solution we come up with

must factor in the service control protocols and service control elements.

The requirements for a solution to our problem domain, in Chapter 2, were identified from the

perspective of three user communities. We have seen that these communities may have different

requirements, unique to their environment and situation, yet principally yielding the same ulti-

mate desire: more innovative and attractive services. We therefore generalize the requirements of

Chapter 2 into the following four categories:

a) Reducing Integration Costs, Faster Development Cycles

b) More Efficient Application Development, Reuse across Network Types

c) Lowered OPEX, Shared-hosting Models

d) More Effective Use of Deployed Legacy Systems, Evolution Independence

These four categories are investigated in more details in what follows, where we load up our

shopping cart with architectural components when we shop for a solution to our ‘problem domain’.

3.5.1 Reducing Integration Costs, Faster Development Cycles

In an attempt to reduce integration costs, new service logic can either be hosted on existing service

elements, or on new service elements that can support existing protocols. These two options provide

us with least cost alternatives (in terms of monetary amount required to implement it) in trying

to meet the requirements in question. They are also minimally intrusive in terms of the kinds of

changes that need to be made to networks already in existence.

Let us look at each of these in turn:

1. The former of these requires that new service logic be hosted on existing service elements or

legacy platforms, the obvious benefit being that no new network element has to be integrated

in the network. This could entail however some of the same integration related issues that

application providers and service providers see today in terms of cost, time to market, and inter-

operation with deployed billing, network management, and operations support systems (OSSs).

Besides, more often than not, the integration has to be repeated each time, per newly introduced

application, given the way these legacy platforms are structured, and this still does not permit

the transparent reuse of Internet Toolkits and technologies in service and application design and

deployment. So we ignore this option for now as not really viable for long term evolution.

2. The latter option, i.e. new service logic be hosted on new service elements that can support exist-

ing protocols in communicating with existing network element, is interesting. It may be possible

to build a new platform that factors out the integration aspects into the basic infrastructure,

thereby ‘opening up’ the service logic development and execution environment to third-party

developers via Internet Toolkits. This would permit developers to build applications while not

necessarily having in-depth knowledge of the underlying network protocols in use. Such an

approach would also reduce some of the service provider and application developer concerns

with costs and ‘concept to completion’ schedules for applications.

The second approach seems like it might work, if it meets the other requirements against which

we evaluate our solutions. We therefore retain this option for further consideration, and in subsequent

sections assess whether it indeed meets the other requirements.

We can steal a page from the IN model, and apply it to this design. Core service capabilities are

provided in legacy equipment that is already deployed in today’s networks (Figure 3.3). Telecom

42 Parlay/OSA: From Standards to Reality

Radio Access
Network

MSC

Other MSCs

SCP
SCP

HLR

Other
registers

New Telephony
Services go here

Subscriber Information
Trigger Address Lists
etc.

Equipment and
related information

Call processing and
Switch-side features

SS7 Network
with STPs

Figure 3.3 Sample wireless network architecture

applications provide value in being able to leverage these core services (such as those that provide a

user’s terminal location, the terminal status – active, inactive or busy, the user’s presence and mood,

etc., with the ability to charge a prepaid account for service rendered) and support an integrated

user experience that appears seamlessly to factor these in. The applications provide the controlling

logic for these end-user transactions in truly multimedia domains (voice, video, data etc.) just like

SCPs provide service control for calls in the IN arena. The gateway option we are discussing may

thus be thought of as an SCP-analog for evolving networks (Figure 3.4).

The element in option (2) above is a kind of ‘gateway’ in that it serves on the one hand to support

a flexible services environment, and abstracts away low level protocol details from an application

development perspective, while implementing conversion from the programmatic to the protocol

interfaces, and a common integration with legacy systems on the other4.

Radio Access

Network

MSC

Other MSCs

SCP
SCP

HLR

IP Core Network

Or Overlay

GGSN

SGSN

UTRAN or GERAN

Domain with

Applications

SMG

New services

go here

New applications

go here

Network Evolution

SS7 Network

with STPs

Figure 3.4 Evolved network architecture including a Service Mediation Gateway (SMG)

4 We must emphasize that the problem of integration does not really go away. It is merely reduced. Rather

than integrate each new application and its associated platform with the underlying network each time, the

gateway is integrated once with the rest of the network, and applications are permitted to connect via the

gateway to other network elements on an as needed basis.

Follow the Yellow Brick Road 43

The architecture component we have added to our shopping cart is:

• a Gateway that bridges between the application domain (hosting the new service logic) and the

existing network elements.

3.5.2 More Efficient Application Development, Reuse across Network Types

The reuse of Internet Toolkits in the development environment also implies that the heretofore-

untapped resources and talent from the Internet space can be easily brought to bear in the area

of telecommunications services. More people can now build applications more quickly using tools

that are widely available, to interfaces that they can easily understand, with technologies they know

and like.

Prior to the advent of this model, telecommunications service and application development

required detailed knowledge of the network, of the sometimes rather arcane set of tools, and of

very complicated (many-a-time binary) interfaces. Now, one only requires knowledge of the tools

and the interfaces, and these are now rooted in the much more widely accepted IT (Information

Technology) world.

Application providers may still want to build their applications just once, and sell them to multiple

telecommunications service provider customers to realize greater revenue from their investments.

This can be easily achieved if the programmatic interfaces (also called Application Programming

Interfaces or APIs) supported by the gateway in question were based on some open standard

interface definition. Please see Figure 3.5.

Service providers also benefit from this support for open standards, since it means they now

have a variety of off-the-shelf applications developed by various application providers that they

can choose from to best meet the perceived needs of their subscriber bases.

The architecture components we have added to our shopping cart are:

• programmatic interfaces at the northbound of the gateway that need to play well with Internet

technologies and toolkits;

• programmatic interfaces at the northbound of the gateway that need to conform to open standards;

• abstraction of the details of telecommunications protocols at the southbound of the gateway,

through the programmatic interfaces at the northbound.

Application

Network
Element

Application

Network
Element

Application Application Application Application Application Application

SMG

Current Mode of Operation
Rats Nest of Interfaces
→ Integration PAINS!
→ Costs $$$!

Evolved Mode of Operation
Simplified interfaces to SMG
SMG hosts service enablers
→ Less integration hassles
→ Integration work reused
→ Saves $$$

Network
Element

Network
Element

Network
Element

Network
Element

Network
Element

Network
Element

Figure 3.5 Evolution of services architecture

44 Parlay/OSA: From Standards to Reality

But having a gateway element with support for open, standards-defined APIs is insufficient.
What about costs associated with customer care? Would not the rapid development environment
for new applications require a proportionate increase in the service provider’s operating expenses

(OPEX) budget and outlay? How can this be addressed?

3.5.3 Lowered OPEX, Shared-hosting Models

These issues can be addressed by making the API accessible from remote locations or across an
IP network, through the use of suitable middleware and an appropriate communications protocol

between the applications and the gateway. Applications could be hosted in enterprise or corporate
domains, and still leverage the core service capabilities provided by the service provider network
in their respective applications contexts as they provide service to their end-users5.

A major concern with this approach is security, especially for applications hosted outside the
secure bounds of the service provider network. Service providers would like to make certain that
only authorized applications from external domains were able to access the core network supported
service capabilities, that suitable policies be enforced to ensure that this is so, that external appli-

cations can be billed for service usage, and that the service level agreements between the various
domains are honored as inter-network service usage is supported. We will address this concern of
secure access in later chapters.

A major advantage is that all application management issues, and related expenses, are now the
concern of the enterprise or corporate domains that host the applications in support of subsets of the
service provider subscriber population, and some revenue sharing agreement can be worked between

the service provider and the enterprise to enable the former to realize some income for enterprise
application use of its core capabilities and assets in processing transactions6. Some amount of self-
care can still be provided, if the service provider so desires, at the gateway level for subscribers
that want to control the low-level aspects of service delivery or update their service profiles within

the service provider domain itself. These may not be too extensive, thereby contributing to lowered
OPEX.

The responsibility for providing a good quality application experience now rests, in part, on

both the enterprise domain hosting the applications, and on the service provider that provides the
underlying service components that the application uses – though users may consider the enterprise
ultimately responsible for the quality of their application interaction.

The architecture components we have added to our shopping cart are:

• suitable middleware and an appropriate communication protocol between the gateway and the
application domain;

• security for applications hosted outside the secure boundary of the service provider network;

• means for revenue-sharing between the service provider domain, and the enterprise domain
hosting the applications.

3.5.4 More Effective Use of Deployed Legacy Systems, Evolution Independence

A beneficial by-product of the architecture we have so far come up with is that legacy systems that

could previously only be used by a small number of new applications can now be accessed by a

5 Note that nothing prevents the service provider from simultaneously hosting other applications locally

within the trusted service provider domain as well. We architect the solution for greatest flexibility.
6 It must be noted that the service mediation gateway model provides a great deal of flexibility in that it still

permits service providers to host critical or important applications that service providers want to retain firm

control over, within their networks even as the other benefits that stem from the use of this new paradigm are

realized.

Follow the Yellow Brick Road 45

much larger set of the same, leading to better reuse of capital well-spent in revenue captured from

the application space.

In addition, if the APIs were well designed, and protocol mappings could be easily developed

to the underlying network elements for different network contexts, or to different vendors’ imple-

mentations of the same core network components, the use of a gateway-based architecture enables

the core network to evolve independently of the application layer. This low degree of coupling

is another point in favor of this architecture. Decoupling applications from the specifics of the

underlying network for instance allows for application portability, i.e. reuse of applications across

various underlying networks.

The architecture components we have added to our shopping cart are:

• means to apply the new application domain to legacy systems;

• means to maintain the applications domain independently from underlying network evolution.

3.6 Service Mediation and Mediation Gateways

If we now take our shopping cart and proceed to the checkout counter, we may quickly summarize

our solution architecture as follows:

It provides a gateway that enables applications (located either within the service provider domain or

outside) built to standard Internet protocols and toolkits, to leverage service provider hosted service

capabilities exposed via standards-defined APIs in a secure, policy regulated manner to provide a

better, more integrated, end-user experience.

Such a component is commonly referred to as a ‘Mediation Gateway’ or a ‘Service Mediation

Gateway’ (SMG), and the carefully regulated access it provides to services (using appropriate secu-

rity and policy management mechanisms) is by a process called ‘Service Mediation’. So effectively,

the architecture we have defined in this chapter is a Service Mediation Gateway (SMG) architecture.

Figure 3.6 shows the Service Mediation Gateway architecture that we have derived thus far,

supporting all architecture components needed to meet all the requirements for all three user com-

munities.

3.7 Service Mediation Example

Now that we have come up with what appears to be a working architecture, let us work through

an example scenario to verify that it does indeed meet the requirements we expect our solution to

satisfy.

3.7.1 User Experience

Alice, out on a walk, during a business trip to New York City, exhausted after a long day of

business meetings, would like to find the closest ATM to withdraw cash, and then suggestions for

good Italian restaurants near her hotel.

Using her fully capable handset, she connects to a locator application, and requests information

relating to ATMs. Her handset shows her a street map indicating where she is and ATMs in the

vicinity. She clicks on one and the map zooms in to show her the exact streets to take to get to the

ATM, and if she desires, tracks her progress as she walks there.

After withdrawing the money, Alice simply selects ‘Restaurants – Italian’ from the menu. Her

phone screen now shows another map with small restaurant icons. She can click on any of those

46 Parlay/OSA: From Standards to Reality

SMG

Domain with
Applications

New applications go here
Independent from underlying network

Gateway, bridging applications domain
and existing network elements

Existing network elements
Service capabilities

Programmatic interface
Open standard interface
Middleware

Existing detailed standard protocols

Support revenue sharing
Provide secure,

controlled access

Abstracted service capabilities

Figure 3.6 Service Mediation Gateway – our architecture solution

icons to get more information on menus, wait time, etc. She could even click on the phone number

on the screen to call the restaurant and make reservations for later that night.

3.7.2 Network Operation

The locator application is accessed via WAP. Prior to this scenario taking place, the application

has already established a secure connection with the Service Mediation Gateway in the service

provider network to which Alice is a subscriber. A pre-negotiated business agreement between

the enterprise hosting the application, and the service provider hosting the SMG is in place, and

governs the boundaries within which both can interact.

When it receives Alice’s request, the locator application looks up her location by invoking the

appropriate methods on the service provider hosted Location Capability exposed through the SMG.

If Alice has authorized the application in question to receive her location information (authorization

is important to alleviate privacy concerns), the application request is processed by the elements in the

core of the service provider network and her location returned (either as {X, Y} co-ordinates within

a pre-specified range of accuracy, or as cell ID and sector information, depending on technology) to

the application via the SMG. The SMG talks to southbound network elements in the core network

such as GMLCs or MPCs over suitable protocols to get this information on Alice’s terminal location,

but this happens in a manner that is completely transparent to the locator application.

Follow the Yellow Brick Road 47

The application now factors in Alice’s location as it generates a web page to fulfill the ‘nearest-

X’ query from Alice, first for ATMs, and then for Italian restaurants. Her location may be requested

more times if necessary, to support additional requests she may make. Subsequent pages can merely

use the content store to provide more information relating to the restaurants in question, based on

end-user selection.

Once this call flow concludes, and Alice has signed off, the application may debit Alice’s account

for services rendered (or alternately, this may be a subscribed service where she already pays a

steady fee per billing cycle). In the former case, the application would simply request, via the

SMG, that her prepaid account be debited for a specified amount, and assuming the application

is permitted by Alice to perform this operation (i.e. if Alice is a subscriber to this service), the

transaction is carried out in the network.

The above example clearly shows how a Service Mediation Gateway architecture addresses

Alice’s need to have at her disposal a really cool service and enables the Network Operators to

provide this service to Alice. One could argue that a similar user experience could be supported

through WAP in conjunction with other interfaces available in telecommunications networks today,

and that would be a valid argument for some facets of the call scenario. However, for the complete

flow to be supported, or for easy extensibility of existing deployed services and applications into

new domains, a service mediation type architecture would provide the most cost-efficient solution

since integration performed once can be reused multiple times, thus leading to a reduction of overall

cost. Later chapters will elaborate on how the wish of Application Providers to develop portable

applications that make use of network service capabilities, while utilizing Internet technologies and

toolkits for their development, is granted by the Service Mediation Gateway architecture as well.

3.8 Summary

In this chapter, we have taken the requirements from three user communities and generalized those

into a ‘problem domain’ consisting of four requirement categories. We have assessed and sifted

through these four:

a) Reducing Integration Costs, Faster Development Cycles

b) More Efficient Application Development, Reuse across Network Types

c) Lowered OPEX, Shared-hosting Models

d) More Effective Use of Deployed Legacy Systems, Evolution Independence

Based on that assessment we introduced a generic service mediation based architecture that seems

to satisfy the requirements that network operators, subscribers, and application providers would

like to see met from their communications networks.

The next chapter will explain some of the standards relevant to the context of service media-

tion, and shall broadly outline standards evolution to Parlay and OSA. Subsequent chapters will

pick up this thread on the architecture and develop it more in the context of a standards-defined

implementation.

4

Parlay and OSA

4.1 Introduction

Thus far, we have defined a problem space by introducing a set of requirements that network

operators, end-users, and application providers wish to see resolved regarding service technologies

in use today. We have identified a service mediation based architecture as a solution to this problem

space, and hinted at Parlay and OSA as the technology standards fit for the job. It is time to have

a closer look at this technology, starting with the standard itself and how it evolved from earlier

activities.

The Parlay solution, as captured in the suite of Parlay specifications, is currently being defined in

a collaborative effort of various standards organizations and industry fora. Some of the architectural

concepts that form the ground works of the Parlay solution are based on the foundations that were

provided in other organizations and earlier initiatives. This chapter will start by looking back at

how the Parlay work evolved from standards activities in the past in their effort to reuse some of

the successful and promising concepts devised elsewhere. We will explore the various seemingly

parallel initiatives and introduce the Joint Working Group (JWG) as the main vehicle for ensuring

a single harmonized and technology independent solution.

At the end of this chapter the reader will understand that Parlay and OSA are to a large extent

one and the same and will appreciate how the various standards activities and industry initiatives,

past and present, relate to one another and come together in a single solution.

4.2 The Need for Standards

One may well ask, why do we even need standards? We try to address that issue briefly in this

section.

A basic reason for the need for open, standards defined interfaces was presented in Chapter 2,

where we talked about how application developers can proactively develop applications reusable

across various network types by writing to well-defined interfaces, and can sell these to different

service providers with minimal or no changes. We also discussed how service providers benefit

from having access to a larger pool of applications, and how the ability to support more applications

more cheaply and quickly in their networks enables them to stabilize and grow their subscriber

bases and tap into new revenue streams.

There are other reasons why standards are important. They define a common reference archi-

tecture, set of interfaces and reference points surrounding the element in question. They enable

better interoperability between conformant implementations (as we said before, most networks in

existence today are multi-vendor environments, so this is rather important). This contributes to the

‘usability’ of the technology in question, contributing to its success.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

50 Parlay/OSA: From Standards to Reality

Thus, standards treat the network elements with which they are concerned as black boxes, and do

not typically specify the internal or design level details of particular implementations (or what can

be referred to as ‘white box’ details). This enables the vendors of the element in question to build

competitive differentiation into their products, and thereby distinguish their implementation from

those that others develop. Similar reasoning applies to applications, and other standards compliant

software as well.

While defining standards, one must tread the line between specifying too little information on the

one hand and adding too many requirements on the other. The former will lead to implementations

that will not be interoperable, leading to problems with deployment and other issues relating to the

interpretation on what little is specified, while the latter would stifle innovation, obstruct creativity,

and while it would lead to better interoperability, reduce the number of parties interested in building

the element(s) in question, thereby becoming anti-competitive, and against common-sense.

4.3 The Parlay Family Tree

In order to grasp a full understanding of Parlay it is important to understand its pedigree, i.e. how

and where it originated, how it was influenced, and how it applied influence to others. Writing

good standards documents is like good management, and is therefore also part art and part science.

Micro-management or excessive laxity and over-delegation seldom yield good results. But under a

good manager, a team can perform wonders. Every standard goes through growing pains, but also

becomes stronger with every challenge it faces and overcomes. The following section presents how

Parlay/OSA have gotten to where they are today, starting from humble beginnings indeed.

4.3.1 The Cradle

Undoubtedly, some aspects of the Parlay solution can be traced back in origin to some of the

very basic concepts in communications. For the purpose of this book, however, we will start our

genealogy survey at a place where the most fundamental concepts that differentiate Parlay as a

solution were being conceived and developed. We will look at the developments that directly

contributed to the Parlay technology. From this perspective it is fair to say that the TINA-C

initiatives form the birth ground of Parlay.

4.3.1.1 TINA-C

Tiered communication architectures, where one can identify a services layer, a connectivity layer

(sometimes called core network layer), and an access layer, are well accepted within the industry to

date. The Telecommunications Information Networking Architecture Consortium, or TINA-C, was

one of the first organizations to define a formal service architecture based on this tiered principle.

TINA-C was founded in 1993, while the first TINA workshop already took place in 1990 [TINA].

The TINA architecture covers a large number of aspects of telecommunications in great breadth

and depth. It is predominantly the TINA service architecture that we’ll focus on in this section.

TINA defined two main principles for separation, in order to allow for functional distribution and

separation of concerns. The first TINA separation principle, one we are all familiar with today, is

that of separating service logic from the basic call control or connectivity processing. For instance

the concept of Intelligent Networking, as discussed in Chapter 1, makes use of this first separation

principle. The second TINA separation principle introduces the distinction between the access to

a service and the use of a service. It is this second separation principle that makes one of the

fundamental concepts of the Parlay solution.

The service access and service usage concepts are realized in terms of a so-called access session

and service session. Service access covers the discovery of a service and the request for usage of the

service. It is the access session that implements the business relationship between the application

provider and the network operator. Service usage covers control of service behavior and exchange

of service content. Within the context of an access session, a prospective user of a service, residing

Parlay and OSA 51

Application
(App)

Framework
(Fwk)

Service
(Svc)

Access

Access

Usage

Figure 4.1 Separation of access and usage

in the network, obtains an initial point of access to the network and authenticates and authorizes

itself. Once a prospective user’s identity and privileges have been established by the network, the

user is provided with the means to make use of the service offered by the network, within the

boundaries of the agreed business relationship.

The main architectural benefit of introducing an access session is that functionality like AAA

(Authentication, Authorization, Accounting) and Integrity Management (e.g. Load Control and Fault

Management) can be logically centralized and reused for all services offered by the network.

The main architectural benefit of introducing a service session is that services can be developed

independent from the service access aspects. For instance, this enables exposure of various services

in a coherent and consistent way, as well as the possible outsourcing of service development to

third parties.

Figure 4.1 illustrates the concept of access sessions and service sessions. For more detailed

information on TINA, the reader is referred to [TINA 1995,TINA 1997a,Mampaey 2000].

4.3.1.2 OMG TSAS

The output of TINA-C can be classified as a set of architectural specifications and business and

information models. The Object Management Group (OMG) – an open, not-for-profit organiza-

tion [OMG] that among other specifications has published CORBA, UML, and IDL – took

the work of TINA-C in the area of service access sessions and the Consumer-Retailer relation-

ship [TINA 1997b] and produced an interface specification1. This specification is called OMG

TSAS (Telecommunications Service Access and Subscription) [OMG 2000a]. The TINA-C work

in the area of Consumer-Retailer introduces the concept of subscription management, which deals

with the case where the user of a service is not an end-user, but for instance an enterprise that acts

as a retailer of the service towards its own customer, i.e. its employees. The enterprise operator

(retailer) mediates services on behalf of service providers to its employees (i.e. end-users).

OMG TSAS defined three domains, namely the Consumer Domain, the Retailer Domain, and the

Service Provider Domain (Figure 4.2). Subscription in this scenario deals with information about

services and contractual relationships between these three domains.

Sessions can exist between these domains. For instance access sessions, in OMG TSAS part of

the so-called core segment of interfaces, can exist between a consumer and a retailer and between

a retailer and a service provider. Once an access session is established, a subscription segment can

be used. The core segment and subscription segment, consisting of a set of interfaces, are defined

using OMG IDL.

1 To be precise, the OMG issued an RFI, followed by an RFP, at the end of 1999, inspired by the TINA-C

work on the Access Session and Consumer-Retailer Reference Point specifications. Active TINA-C member

companies then responded, which resulted in the OMG TSAS specification.

52 Parlay/OSA: From Standards to Reality

Consumer

Retailer
Service
Provider

Ret

Ret

Figure 4.2 Three OMG-TSAS domains

[Mampaey 2000] and [Bakker 2000] provide some information on the relationship between

TINA, OMG-TSAS, and Parlay, whereas the entire specification containing all the details can be

found in [OMG 2000a].

4.3.2 Early Childhood

The Parlay Group was founded in 1998 [Parlay], after the completion of TINA phase 1 specifications

at the end of 1997. Although influenced by the work carried out in TINA-C, the group’s objective

was not limited to a mere continuation of that body of work. The goal of the Parlay Group was to

specify open network application programming interfaces that would bridge capabilities from the

IT domain with those of the telecommunications domain. Part of the motivation for the creation of

the group was the expectation that regulatory bodies mainly in Europe would mandate equal and

open access to service capabilities in the network of incumbent operators to third parties.

The interface specifications in the first Parlay release, Parlay v1.22, were rather limited. For

example, it was possible to start a service, but not stop it. The interfaces covered only the relationship

between the Application and the Framework, i.e. Parlay API Interface 1. The Framework v1.2

specification was based on the TINA Retailer Reference Point specification v1.1 [TINA 1999]. Note

that the key concepts of the Parlay architecture, including Framework and Application (Figure 4.3),

will be introduced in a lot more detail in Chapter 5.

3

1

Application
(App)

Framework
(Fwk)

Service
Supplier

5

2

Service
(Svc)

Figure 4.3 TINA-based Parlay architecture

2 The significance of the version number for this particular Parlay release stems from the fact that for

this version of the Parlay API specifications IDL descriptions were published. At a later stage, with the

introduction of the Joint Working Group, IDL descriptions are automatically generated with each release of the

API specifications. Later sections in this chapter will cover IDL and versioning in more detail.

Parlay and OSA 53

The service interfaces in Parlay v1.2 were limited to Generic Call Control, Generic User

Interaction, Mobility, and Connectivity Manager.

The Parlay Group started out as a closed group, consisting of five companies, i.e. British Telecom

(BT), Microsoft, Nortel Networks, Siemens, and Ulticom–formerly DGM&S Telecom. Roughly at

the same time as Parlay v1.2 was being completed, in the autumn of 1999 3GPP (3rd Generation

Partnership Project) created the Open Services Access3 (OSA) Adhoc group, to start looking at

the definition of open network APIs to implement the Virtual Home Environment (VHE) concept.

The work was carried out mainly in parallel, as Parlay documents at the time could not be shared

openly with non-member companies.

4.3.3 The Wonder Years

We have discussed the Parlay cradle, and seen the technology in its infancy (with all due respect

of course). At this stage the concept of open network APIs was becoming more widespread and

accepted in the industry. Among other things, this meant that various activities in this area sprang

up, in parallel to the continuing activities of Parlay and 3GPP. Parlay was entering adolescence; a

defining stage but also sometimes a somewhat confusing stage.

4.3.3.1 Parallel Activities

After publishing Parlay v1.2 a number of events occurred that contributed to a consolidation between

the various parallel efforts in this area. The Parlay Group changed to an open organization, and

in May 1999 various companies joined the ranks, i.e. AT&T, Cegetel, Cisco, Ericsson, IBM, and

Lucent Technologies. Open information sharing between Parlay and, for example, 3GPP was now

possible.

In addition 3GPP disbanded the OSA Adhoc and instead created a dedicated OSA working group

within the Technical Specification Group for Core Networks (TSG CN). 3GPP TSG CN WG5, or

CN5 for short, became responsible for the technical interfaces, or APIs, specific to UMTS OSA.

In parallel, the European Telecommunication Standards Institute (ETSI) had started its own open

API activity, for wired networks [ETSI]. This work was carried out within the ETSI Technical

Committee for ‘Signaling and Protocols for Advanced Networks’ (SPAN), working group 34. In

SPAN, the focus of SPAN 3 was ‘Applications Interfaces for Service Providers and Network

Operators’.

The work of OMG TSAS was fed into the Parlay version 2 effort in an attempt to strengthen

the Framework specification of Parlay v1.2. The interfaces to allow a service to register itself

with the Framework were included to implement Parlay API interface 5 (i.e. between the Service

and the Framework). Furthermore, the Parlay v1.2 definition for Parlay API interface 1 (i.e. between

the Application and the Framework) was further completed by adopting the remainder of the OMG

TSAS interface in this area. With this move, almost all the work of OMG TSAS had found its way

into the Parlay specifications.

4.3.3.2 On Route to Harmonization

The developments outlined above meant a great step in the right direction on the path to a single set

of harmonized open network APIs, applicable to a multitude of underlying network technologies.

3GPP was developing APIs for UMTS based networks, ETSI did the same for ISUP/IN based wire-

line networks, and Parlay continued to address the IT/Enterprise angle. However at this time all

3 Initially OSA was expanded as Open Service Architecture. After 3GPP Release 99 this was changed to

Open Service Access.
4 After the ETSI SPAN reorganization in the autumn of 2000, working group SPAN 3 became SPAN 12. The

most recent development in ETSI is the consolidation of technical committee SPAN with technical committee

TIPHON, into the new technical committee TISPAN.

54 Parlay/OSA: From Standards to Reality

three groups were still working in parallel, having their separate technical working group meetings

and producing their own set of specification documents.

The first consolidation step occurred with the decision of ETSI SPAN 3 to collocate all of their

meetings with 3GPP CN5. These arrangements were rather straightforward, as ETSI is one of the

organizational partners of 3GPP. Hence any company membership issues, and matters related to

intellectual property or copyright, did not exist.

The truly significant achievement was the legal agreement between ETSI and the Parlay Group

at the end of 2001, to formalize the close cooperation both groups had been having at a technical

working group level for the past year and a half. ETSI and Parlay entered into this co-operation

agreement with the intent to develop and publish jointly the Application Programming Interface

specifications for Open Service Access (OSA)5.

Through the close family ties between ETSI and 3GPP, and now with the ETSI-Parlay agreement

in place, the so-called Joint Working Group (JWG) was created. The JWG is the single technical

working group where the API specifications for Parlay and OSA are being developed and main-

tained, based on a collective set of harmonized requirements. The specifications themselves are

jointly published by ETSI and the Parlay Group.

It is important to mention the involvement of the Telecommunication Standardization Section

of the International Telecommunication Union (ITU-T), as this is the main organization for setting

global telecommunications standards. The technical work takes place in study groups (SGs), which

get assigned a group of questions that belong to a broad subject area. SG 11 deals with signaling

requirements and protocols. The question relevant to the Parlay and OSA work is ‘Question 4/11’ on

‘API/Object Interface and Architecture for Signaling’. Question 4 of SG 11 requires the definition

and specification of API interfaces fulfilling a set of telecommunication requirements. As the ITU-T

recognized the activities already ongoing in this area in the organizations involved in the JWG,

they decided not to initiate an overlapping initiative, but rather to refer to the work published by

the JWG. This decision further added to the consolidation and harmonization in the network API

arena.

For a certain period of time, JAIN [JAIN] community members also participated in the Joint

Working Group in the specification of predominantly the Call Control APIs. This book does not

elaborate on the JAIN involvement. The interested reader is referred to [Bennett 2003], which

expands on service mediation standards and the role of JAIN with regards to Parlay.

All these relationships towards consolidation and harmonization are pictorially represented in

Figure 4.4.

4.3.4 Maturity?

Now that Parlay, through the JWG, had published several versions of the API specification set,

and went through various iterations of updates and corrections, as well as requirements extensions,

the technology could be considered maturing. Several interesting developments corroborated this

growing process of Parlay.

4.3.4.1 New Members of the Family

Halfway through the year 2002, the 3GPP2 organization was showing an increased interest in Parlay

technology, for adoption as service architecture in their networks as well. With the publication of the

3GPP2 OSA specification almost a year later in June 2003, in third generation wireless environments

there now was a single service mediation architecture, equally applicable to both W-CDMA as well

5 One of the effects of working together was the introduction of terms like Parlay/OSA and OSA/Parlay.

The reader should now understand that Parlay and OSA are one and the same. For the purpose of this book,

in the remainder we will only use Parlay. Exceptions may be made when referring to the technology in 3GPP

or 3GPP2 specific contexts.

Parlay and OSA 55

TINA-C

Access Usage

OMG-TSAS

Parlay

Legal
Agreement

JWG

ETSI 3GPP

3GPP2

Collocate Collocate

Figure 4.4 Parlay consolidated standards efforts

as cdma2000 networks. An OSA working group was formed within 3GPP2, which joined the ranks

with the JWG. In Chapter 8 we will elaborate on the 3GPP2 specifications for OSA.

4.3.4.2 Closing the Generation Gap – Backwards Compatibility

The chapters later on in the book will deal with the details of Parlay version 4, for reasons of stability

and availability of this release. At the time of writing Parlay 5 is in its completion phase and Parlay 6

requirements are being considered. All these new generations of Parlay API specifications contain

both updates and error corrections to the previous generation, as well as new requirements for

additional functionality. It is not likely, and in fact unwanted, that the new generation will instantly

take over from older generations. The generation gap needs to be closed.

Enter backwards compatibility. Starting with Parlay version 3.2 the Parlay technology was matur-

ing sufficiently, as evidenced by a number of life network operator trials and initial commercial

deployments. The investments associated with these activities needed preserving with the further

advancing of the technology. For any mature and deployed technology, one expects older versions

of applications to remain operational after upgrades of server equipment, such as a Parlay Gateway.

4.3.4.3 Family Gatherings – Interoperability Testing

A last effort on the way to adulthood for Parlay worth mentioning here are the activities regarding

interoperability testing. Interoperability testing is a valuable and effective means in order to ensure

the Parlay technology is fit for commercial deployment in a distributed, multi-vendor environment.

56 Parlay/OSA: From Standards to Reality

ETSI to date has organized two interoperability events where network operators, Parlay appli-

cation providers and Parlay gateway vendors get together, interconnect their products and perform

tests to demonstrate interoperability and standards-compliance. One of the outcomes of these events

is the identification of potential ambiguities in the standard specifications where different companies

have interpreted specified behavior in different ways. These instances have served as invaluable

feedback into the standards process.

Furthermore, the European Union has hosted project OPIUM (Open Platform for Integration of

UMTS Middleware) [OPIUM] with the aim to support the accelerated rollout of commercial 3G

services within Europe. Parlay technology has played a central role in this project, where network

operators, application providers, and gateway vendors came together and participated in a Parlay

test bed.

4.3.5 Non-identical Twins

We started this chapter by saying that Parlay and OSA are to a large extent one and the same. In

fact, we have just agreed to use the term Parlay to cover both Parlay and OSA. The consolidation

efforts described above that have lead to the Joint Working Group provide the foremost explanation

for the striking resemblance. However, Parlay and OSA are not identical twins. The distinction is

minor and you have to know both twins fairly well to spot the differences, as these do not affect the

service mediation architecture introduced by Parlay, or any of the deployment models supported.

For reasons of completeness though we will point out the differences in this section, and continue

after this section by treating Parlay and OSA as one and the same.

Harmonization and alignment of the APIs is of great importance in the specifications produced

by Parlay and OSA, and indeed is one of the most valuable assets. That means that for those

functional areas where both organizations publish API specifications, these specifications are the

same. However, not all interfaces published by Parlay are applicable to a 3GPP OSA environment.

The interfaces in OSA form a proper subset of all the interfaces supported in Parlay. The interfaces

that are not part of the OSA subset are Connectivity Management, the Conference Call Control

interface, and the Enterprise Operator interfaces in the Framework.

4.4 The Standards Themselves

We have provided you with the history leading up to the definition of the Parlay service mediation

architecture and the Parlay APIs (from the cradle to maturity), as well as the environment in

which the Parlay specifications are produced and published (the Parlay family, formed by the Joint

Working Group). Let us now take a peek in the family album, that is, take a look at the Parlay API

specifications themselves.

4.4.1 The Common UML Model

As the Joint Working Group forms the organizational community taking care of alignment and

harmonization in producing a common suite of API specifications, the common UML model ensures

that all publishable artifacts are aligned as well, from a technical point of view. For each Parlay API

there is a formal model specifying the entire interface, its definition, and its behavior. UML (Unified

Modeling Language) consists of a collection of modeling techniques including class diagrams,

sequence diagrams, and state transition diagrams used to model distributed communication systems.

Each of these techniques is used in the definition of Parlay.

The actual textual specification documents are automatically generated from this common Parlay

UML model, using software tools. This ensures that the ETSI and Parlay version of the specifica-

tions is semantically and syntactically exactly the same as the 3GPP version of the specifications,

though each is formatted according to its own conventions and style. ETSI and Parlay publish their

specifications jointly, as European Standards (ES), whereas 3GPP publishes their own specifications

as 3GPP Technical Specifications (3G TS).

Parlay and OSA 57

4.4.2 Technology Realizations

The common Parlay UML model is used to generate more than merely the specification docu-

mentation. Accompanying each API specification document are three technology realizations. The

UML model for Parlay is defined in a technology independent way such that the various technology

realizations can all be generated and derived from this common source. The technology realizations

consist of three communication technologies in which Parlay products can be potentially deployed.

An added benefit from generating both the technology realization as well as the specification

document from a single source is that these two artifacts are aligned as well. There are instances

in IN and CAMEL where the specification document does not quite follow the ASN.1 definitions,

where one artifact got modified without performing the accompanying changes in the other. Without

a single common source, errors will inevitably find their way into the specification document, or the

interface definition. By maintaining a single common source, misalignment is physically impossible.

4.4.2.1 CORBA Technology Realization

The first-born son and oldest technology realization is the CORBA realization. CORBA (Common

Object Request Broker Architecture) is an object-oriented middleware solution for client server

based communications systems. The APIs are defined in IDL, the Interface Definition Language.

The IDL files for the Parlay API specifications form the CORBA Technology realization of Parlay.

In the early stages of Parlay (version 1.2) two more middleware based realizations were available,

i.e. MIDL and DCOM. At that time the common Parlay UML model was not available yet, and

hence all middleware realizations had to be constructed manually. Keeping in mind the fact that

the standards process is contribution driven, and since no MIDL (Microsoft Interface Definition

Language) and DCOM (Distributed Component Object Model) realizations were contributed for

subsequent Parlay versions, CORBA IDL remained for a while the sole technology realization of

Parlay.

4.4.2.2 Java Technology Realization

Once the common Parlay UML model was available, this opened the door for alternative technology

realizations, in addition to CORBA and IDL. Within the Parlay Group, the Java Realization working

group was chartered to address the Java developer community and produce a technology realization

in support of both the Java2 Enterprise Edition (J2EE) and Java2 Standard Edition (J2SE)

programming models. This has resulted in two Java realizations, one for J2EE, defining a Java

equivalent of the IDL realizations, and one for J2SE, providing a local API on the Parlay Application

Server.

4.4.2.3 WSDL Technology Realization

The third technology realization of Parlay is the WSDL (Web Services Definition Language) tech-

nology realization, in recognition of the growing interest in XML-based technologies and Web

Services deployments. The WSDL realization of Parlay will be covered in more detail in Chapter 16.

With these three technology realizations, all three derived from the common Parlay UML model,

organizations wishing to deploy a Parlay solution for their services architecture, are free to pick

and choose the particular technology realization that fits best with their installed legacy base and

systems, specific deployment requirements, or tool environment and skill set of their particular

developer community.

4.4.3 Versioning Schemes and How They Relate

The Parlay history has shown us that the various participating standards organizations joined the

party at different stages. As a result, the version numbers for the various releases are misaligned.

58 Parlay/OSA: From Standards to Reality

Table 4.1 Standards versioning schemes and their relationships

ETSI Version Parlay Version 3GPP Version

N/A Parlay 2.1 3GPP OSA Release 99 (3G TS 29.198 v3.x.y)

ETSI OSA Phase 1 (ES 201 915) Parlay 3 3GPP OSA Release 4 (3G TS 29.198 v4.x.y)

ETSI OSA Phase 2 (ES 202 915) Parlay 4 3GPP OSA Release 5 (3G TS 29.198 v4.x.y)

ETSI OSA Phase 3 (ES 203 915) Parlay 5 3GPP OSA Release 6 (3G TS 29.198 v6.x.y)

This can be cause for confusion and hence in this section we will spend some time relating these

versioning schemes together. Fortunately, although misaligned, at least the version numbers increase

in lock step.

The easiest way to convey this information is in tabular format (Table 4.1).

The legal agreement for joint publication of specifications between ETSI and Parlay was not yet

in place at the time of Parlay 2.1, hence there is no equivalent ETSI phase.

For 3GPP specifications, the specification series number (29.198) does not change between

releases; instead, the first digit in the version number signifies the release. For instance the digit 4

in version 4.x.y tells you this is a 3GPP Release 4 specification. In the case of ETSI, the specification

series number changes from one release to the next.

4.4.4 The Specification Series

In the description of the versioning scheme we referred to specification series, rather than a sin-

gle specification. The reason for this is that the Parlay specification is really a suite of multiple

specification documents, a total of 14 parts within the 29.198 series6. There is a general overview

part (part 1) and a common data type part (part 2) and twelve parts for all the APIs supported by

Parlay7. Chapter 6 ‘Standards Capabilities and Directions’, will further elaborate upon each of the

APIs.

4.4.5 Specifications and Recommendations

Within 3GPP, besides the API specifications in the 3G TS 29.198 series, protocol mapping recom-

mendations are published in the 3G TR 29.998 series. Whereas the API specifications are normative

(hence the TS for Technical Specification), the mapping recommendations are informative (which

is why they are contained in a TR, for Technical Report).

A protocol mapping recommendation takes one of the APIs and provides recommendations on

how to map API method invocations on specific protocol operations in the network. Mapping

recommendations exist for several APIs, and for several standardized signaling protocols. The

mappings are informative recommendations, as there is more than one way to implement the support

for Parlay in any given network. This includes mappings to standardized signaling protocols in ways

not alluded to in the mapping documents, as well as proprietary means to support a specific API

method invocation. Another reason for the mappings being informative is that the Parlay APIs

are designed in a way independent of the underlying network signaling protocols. The Parlay API

provides an abstraction of service capabilities residing in the network. Hence a direct complete

mapping to every conceivable network signaling protocol cannot be presented.

6 We will use the 3GPP publications here in this discussion, as the series number remains a constant across

releases. However, the ETSI specifications, and hence the Parlay specifications as well, also consist of 14 parts.
7 Technically, the parts for Connectivity Manager and Generic Messaging are not contained in the 3GPP

subset. However, for this discussion we will ignore that fact. Furthermore, in order to preserve the part num-

bering scheme across organizations, the part numbers for these parts are not re-allocated within 3GPP and are

left unused.

Parlay and OSA 59

Table 4.2 API to protocol mappings

Mapping Recommendation Title

3GPP TR 29.998-1 Part 1: General Issues on API Mapping

3GPP TR 29.998-04-1 Part 4: Call Control Service; Subpart 1: API to CAP Mapping

3GPP TR 29.998-04-4 Part 4: Call Control Service; Subpart 4: Multiparty Call Control ISC

3GPP TR 29.998-05-1 Part 5: User Interaction Service; Subpart 1: API to CAP Mapping

3GPP TR 29.998-05-4 Part 5: User Interaction Service; Subpart 4: API to SMS Mapping

3GPP TR 29.998-06 Part 6: User Location – User Status Service Mapping to MAP

3GPP TR 29.998-08 Part 8: Data Session Control Service Mapping to CAP

The mapping is performed on a per API method basis, mapping the method to one or more

protocol operations, and mapping the method parameters and data types to the protocol operation

elements and data types. The value of this exercise is to verify whether an API is sufficiently

rich in functionality to make efficient use of network capabilities, as well as ensuring that no

API functionality is defined for which there is little or no network support. The exercise has its

limitations in that the mapping provides a static view of what the possibilities are with a given

API. Dynamic behavior is not described, nor are complete service scenarios included.

The part numbering corresponds to the relevant part number in the 29.198 series. The subpart

number indicates different protocols to map to. The subpart numbering is not consecutive. The

reason for this is that Parlay initially planned multiple protocol mapping recommendations for

each part, and hence subpart number placeholders were put in place. However, not every protocol

mapping was completed, although the allocated numbering was preserved. Table 4.2 shows the

various supported protocol mappings.

4.5 Summary

In this chapter we have attempted to provide some insight into the pedigree of Parlay, how Parlay

arrived at where it is today, and what the organization structure is that ensures the production

and publication of a suite of harmonized APIs. We have also presented some insight into the

specification structure, and its versioning and release schemes.

5

The Parlay Conceptual Architecture

5.1 Introduction

In this chapter, we will look at the conceptual architecture of Parlay. We cover the key logical

elements (Client Application, Service Capability Server and Framework), their roles and the inter-

actions between them. As far as possible we have avoided referencing the methods defined by

Parlay that make up the interfaces between these logical elements. These can be found in the Par-

lay specifications themselves, and will be introduced in some detail in the next chapter. Instead,

this chapter provides a more narrative description that provides an introduction to the key concepts.

The goal of Parlay is to provide a means for end-user services (Client Applications) to gain access

to the functionality (Service Capabilities) available in telecommunications networks. For example,

a tourist may wish to have information about interesting sights delivered to their mobile handset

while they walk around a city or other tourist destination. Clearly, the user will be particularly

impressed if a description of the history St Paul’s Cathedral in London is provided when they

are standing in front of its façade rather than while they’re having coffee and a doughnut five

minutes later. Networks are able to provide the location of the handset (and thus the user, it can be

reasonably assumed). This can be combined with the content (pre-recorded audio, or text perhaps)

to create a useful service to the user.

To allow the Client Application to get at the network functionality, Parlay defines a number of

interfaces, each supporting a different capability of the network. Each defined interface is known as

a Service Capability Function (or just “Service”) which, when implemented, is known as a Service

Capability Server (SCS). A Client Application will make use of functionality from as many or as

few SCSs (and of course any non-Parlay functionality) that it needs in order to be useful to an

end-user.

In our example of a service (Client Application) that acts as a tourist guide around a city, the SCS

being used by the Client Application would be a Location SCS. By adding functionality provided

by the Call Control SCS, the Application could set up a call to a recorded description of each place

of interest as the user approaches it.

The two-way relationship between Client Application and SCS can be considered the primary

one in Parlay since it delivers useful functionality that can be delivered to an end-user. However,

as we have seen in previous chapters, network functionality and the integrity of the network is

something to be prized and protected. For this reason the relationship between a Client Application

and a Service Capability Server must be managed. Thus into the relationship comes a third element:

the Framework. This triangle of entities is central to Parlay and so will be central to the rest of this

chapter. Figure 5.1 shows the Parlay triangle.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

62 Parlay/OSA: From Standards to Reality

Service
Capability

Server

Client
Application Framework

Figure 5.1 The Parlay triangle

Let’s now take a brief look at each of the three major entities, examining their roles and respon-

sibilities in a little more detail. This high-level introduction will prepare us for a deeper look at

the Parlay architecture when we put everything together and walk through a scenario. Later in this

chapter, two further entities (the Service Supplier and the Enterprise Operator) will be described

that are part of the Parlay architecture, but for now we need to focus on the triangle.

5.2 The Client Application

The ultimate purpose of the Client Application is to provide a human-machine interface with one

or more end-users. Since network protocols are rarely a good way for humans to communicate, the

Application must ensure that a request from a user is translated into an operation in the underlying

telecoms network. Similarly, it must ensure that a significant event in the network is translated into

some sort of indication to the user. These interactions are illustrated in Figure 5.2.

Take for example a very simple Client Application, designed to allow the user to make and

receive voice calls while out and about. The user might be presented with a screen via which a

Client
Application

Telecommunications
Network

2: Network Operation

3: Network Event

1: User Request

4: User Indication

Figure 5.2 Client application interacting with the network, on the end-user’s behalf

The Parlay Conceptual Architecture 63

phone number may be entered and a button to press to initiate the call. When the network has

found the destination phone and has started ringing it, the network signals this to the application

and the application will inform the user by providing an audible or visual indication.

Sounds familiar? This is, of course, exactly what software in every mobile phone does right

now. This software talks to the network using network protocols that have been around for some

time. Unfortunately, there are many types of network and corresponding protocols. As we have

seen in previous chapters, Parlay hides the nature of the underlying network, so a Parlay Client

Application translates Parlay operations into user events, and vice versa. The SCS, which we cover

shortly, completes the process by translating Parlay operations into network events.

Of course, since the Client Application interacts with end-users, it needs to manage its relationship

with those users. In the case of an application running in a single user’s device (phone, PDA, laptop)

this relationship is one to one, but an application may have many thousand, or millions, of users.

For example, the user may be using a web page as the user interface to an application. Many other

users are communicating with the application in the same way. The application will probably want

to authenticate each user and will almost certainly have a database of information (subscription

data) on each one. The way in which the authentication occurs and the nature of the subscription

data are generally outside the scope of Parlay.

A Client Application thus provides an interface to its users and makes use of an interface provided

by the SCS to cause things to happen in the network or to be informed of things happening in the

network. The interface to the user is not defined by Parlay. It might be the buttons and screen on

a phone or it might be a graphical user interface on a PDA, but it is not part of the Parlay world.

The interface to the SCS, however, is part of Parlay and the role of the SCS is covered next.

5.3 The SCS

The second of the three entities is the SCS. Essentially the SCS translates from Parlay to the

language of an underlying network, and vice versa. There are, of course, other aspects of the SCS’s

role and some of them will be covered in this section, but that is its purpose in a nutshell so let’s

consider this first.

5.3.1 Translation

Since the SCS translates requests (method invocations) from the Client Application into operations

in the network, the SCS provides the Client Application with an abstracted view of the capabilities

in the underlying network available to it. The Client Application therefore only needs to understand

how the SCS operates and not how the network operates. In fact the SCS may even interact with a

number of different types of networks, all performing the same kind of function (e.g. call control)

but each using a different interface or protocol to achieve it. A Client Application using such an

SCS would be able to control a mobile call, PSTN call or VoIP call using the very same Parlay

operations.

At its simplest though, an SCS will translate to only one underlying network type, as is shown

in Figure 5.3. This still provides significant advantages as this means that in principle a Client

Application written to use a call control SCS offered by one network will be able to use the call

control SCS offered by another network.

A few paragraphs ago we said that the SCS’s job is essentially one of translation. This is by

no means a simple job, however. The underlying network will consist of a number of physical

entities and messages take time to move between them. The state machine governing the behavior

of the network entity will be different to that defined by Parlay for the SCS. It may be that a single

operation over the Parlay interface translates to more than one operation in the network and this

requires the SCS to be able to correlate these operations and deal with what happens if one of these

operations fails.

64 Parlay/OSA: From Standards to Reality

Client
Application

Telecommunications
Network

2: Network Operation

3: Network Event

1: Parlay Request

4: Parlay Response

Service
Capability

Server

Figure 5.3 Service Capability Server interacting with the network, on the Client Application’s behalf

Client
Application

Telecommunications
Network

2: Network Operation

3: Network Event

1: Parlay Request

4: Return Value

Service
Capability

Server

Figure 5.4 Synchronous method invocation

For these reasons the Parlay interfaces offer a mixture of synchronous and asynchronous commu-

nication modes. If it can be guaranteed that a request (method invocation) from a Client Application

results in an immediate response from the underlying network, then the response can be syn-

chronous. That is, the response can be delivered in the return value of the method. A sequence

diagram showing synchronous method invocation behavior is depicted in Figure 5.4.

More generally though, any operation in a network has a finite duration. As a result, a request

from a Client Application will result in a response delivered to the Client Application separately.

For example, if an application requests that a phone call is initiated between two users in the

network the allocation of resources and routing of messages will take a significant amount of time

(100 s of ms). A sequence diagram showing asynchronous method invocation behavior is depicted

in Figure 5.5.

The SCS must keep track of requests by the Application and correlate any responses to them. In

some circumstances, as shown in Figure 5.6, multiple responses may have to be aggregated into a

single reply to the Client Application.

There is also a class of requests that a Client Application can make that result in an indeterminate

number of responses. These can be thought of as the setting of triggers in the underlying network

that fire whenever a particular event or situation occurs. This behavior is outlined in Figure 5.7.

The Parlay Conceptual Architecture 65

Client
Application

Telecommunications
Network

2: Network Operation

3: Network Event

1: Parlay Request

4: Parlay Response

Service
Capability

Server

Figure 5.5 Asynchronous method invocation

Client
Application

Telecommunications
Network

2: Network Operation

3: Network Event

1: Parlay Request

6: Parlay Response

Service
Capability

Server

4: Network Operation

5: Network Event

Figure 5.6 Asynchronous method invocation with aggregated response

An example of this is part of the Location SCS. The Client Application is able to request that

every time a user moves outside a particular geographical area an event is fired. This will continue

to fire until canceled by the Client Application. Of course, this could lead to quite a number of

events if the user is sitting on a carousel straddling the area boundary.

5.3.2 Beyond Translation

An extremely important role of the SCS that isn’t just translation of messages, is that of policy

enforcement. In this context, a policy defines what a Client Application is allowed to do in any

particular situation.

Taken at face value, the Parlay definition of the functionality of a particular SCS would seem to

suggest that a Client Application could invoke anything that the SCS has been implemented to be

capable of doing. The definition of the Call Control SCS includes functionality that allows Client

66 Parlay/OSA: From Standards to Reality

Client
Application

Telecommunications
Network

2: Network Operation

3: Network Event

1: Parlay Request

4: Parlay Response

Service
Capability

Server

5: Network Event
6: Parlay Response

7: Network Event
8: Parlay Response

Figure 5.7 Asynchronous method invocation with multiple responses

Applications to intercept phone call attempts in a network (for example, so that the application can

forward them to a another number if there is no answer). Nothing in the interface definition itself

restricts which phone numbers will be affected by this functionality and so the Client Application

could intercept all phone call attempts. Clearly this may not be what is intended and so the SCS

may be instructed to reject any attempt to request interception of calls unless a limited range of

phone numbers are involved.

Consider a Client Application that supports an insurance company’s sales force. One of its roles

is to forward unanswered calls to a receptionist in the home office so that the caller always gets

through to a real person. Obviously this particular Client Application should only be allowed to

work with the set of numbers belonging to that insurance company’s employees and not start

forwarding calls made to a local pizza delivery service. Or indeed calls that are made to a rival

insurance company’s sales force.

Perhaps a more vivid illustration of the need to limit Client Application activities relates to calls

to emergency numbers such as 999, 112 or 911. It would clearly not be a good thing for a Client

Application to be able to accidentally or maliciously intercept such emergency calls.

These simple examples illustrate why an SCS needs to be able to restrict the behavior of Client

Applications. There are many other policies that could be defined, and all would need to be agreed

before the Client Application starts to use the SCS. Policies may be a set of provisioned rules

making up part of the implementation of the SCS, or the SCS may make use of an external entity

such as a Policy Management SCS.

The SCS can thus be thought of as the gatekeeper of the network. As well as giving access to

the capabilities of the network it must enforce agreements, prevent deliberate or accidental abuse

of the network and manage the behavior of the Client Application. In all of this, it is guided in

part by the information it receives from the third member of the Parlay triangle and the subject of

the next section.

5.4 The Framework

In previous sections we have looked at the Service Capability Server and the Client Application

as two elements of the Parlay architecture. We have seen that a Service Capability Server provides

The Parlay Conceptual Architecture 67

Client Applications with managed access to the functionality previously locked up in telecoms

networks. It would be possible for the architecture to be simply a client-server interaction between

these two entities. However, we shall see in the coming sections that, to allow the system to be

robust and flexible, there are a number of functions that are sensibly separated into another logical

entity, and that entity is known as the Parlay Framework. We shall examine why it is sensible to

separate out these functions later, but first we need to introduce them.

Clearly there are security implications in providing access to the network functionality that an

SCS exposes. Huge sums of money have been invested in the network infrastructure and great

effort is dedicated to ensuring high reliability and available capacity. As we have seen previously

it is the SCS’s job to protect the network by limiting what a Client Application does. There will

be certain limits on behavior that will apply to any Client Application so in order to treat each one

differently (different functionality or capacity limits for example) its identity must be known. This

is where authentication comes in.

5.4.1 Are You Really Who You Say You Are?

The Framework authenticates the Client Application in order to confirm its identity, to confirm that

the Client Application is what it says it is. The correct policies can then be applied as it makes use

of the SCS. One of the aims of Parlay is that the Framework and Client Applications can all be

in different security domains so the Client Application also needs to be sure that it is interacting

with a genuine Framework. For this reason authentication is mutual (though always initiated by the

Client Application).

It is also the aim of Parlay that an SCS can also be in a security domain different to the Framework

and Client Applications. So, of course, mutual authentication can also be applied between the

Framework and the SCS (initiated by the SCS).

If mutual authentication has completed successfully, the Client Application or SCS is considered

to have established an Access Session with the Framework. For as long as this Access Session

is in place the client, whether Client Application or SCS, is able to make use of the services, or

interfaces, offered by the Framework. These services are covered in some detail shortly, but some

examples are Event Notification, Integrity Management, Service Discovery and Service Agreement

Management.

In summary, authentication occurs between the Client Application and the Framework and

between the SCS and the Framework. It is the first step in ensuring that the use of network

resources is properly managed. Authentication is mutual in each case and is used to establish the

identity of each entity involved. Once this mutual authentication is successful, the Client Applica-

tion or SCS is considered to have established an Access Session with the Framework and can start

to use the Framework interfaces.

5.4.2 The Access Session

The Client Application (or SCS) and Framework have mutually authenticated and an Access Session

is in progress, but what does this allow the Framework’s client to do?

From the Client Application’s perspective probably the most important ability that it now has is

that it can attempt to start using an SCS (start a Service Session). There are a number of supporting

functions that the Client Application makes use of before and during a Service Session. These can

help it find the appropriate SCS in the first place (Discovery), and maintain and monitor the session

once it is in progress (Fault, Load and Heartbeat Management).

From the SCS’s perspective, the Access Session it has with the Framework provides similar

capabilities, but its role is a more passive one (the terms of the Service Agreement will determine

which functions it needs to make use of). It doesn’t need to start a Service Session because this is

initiated by the Client Application.

68 Parlay/OSA: From Standards to Reality

Service
Capability

Server

Client
Application

Framework
Access Session

Access SessionService Session

Figure 5.8 Access sessions and service session forming the sides of the triangle

We shall see then that Access Sessions form two sides of a Parlay triangle1, and can be used to

set up and manage the third side (the Service Session), as represented in Figure 5.8.

5.4.2.1 Discovery (and Registration)

All of the proceeding functionality has assumed that the Client Application knows which SCS,

or SCSs, it wishes to use. One of the aims of Parlay is that it should be possible to support an

‘open market’ of SCSs, all providing functionality of use to Client Applications and competing for

their business. For a Client Application to make an informed decision in such a market requires an

ability to gather information about the nature of the SCSs.

This is where Discovery comes in. The Framework provides an interface to allow a Client

Application to specify what kind of SCS it wants and what characteristics are important to it. For

example, one of the SCSs defined by Parlay is the Location SCS. Such an SCS allows the location

of a particular user (or at least the user’s device) to be queried by the Client Application. Since

there are different ways that a network can determine the location, this can result in different levels

of accuracy. Some Client Applications only need a limited degree of accuracy (for example to

determine which town or city a user is in) whereas others (navigation services) may need to locate

the user within a few meters. Another characteristic that may be relevant is the rate at which the

location information can be updated. Since a frequent update of the information is likely to put a

load on the SCS providing it, there may be a higher cost passed on to the Client Application. These

characteristics of accuracy and cost are thus ways that one SCS can be distinguished from another.

In order to be able to provide information about an SCS, the Framework needs to have obtained

it from somewhere. That somewhere is the owner of the SCS (in Parlay terms the Service Supplier)

and the process of obtaining the information is known as Registration. In our example of a Location

SCS, the owner of the SCS has a Service Supplier entity that establishes an Access Session (with

the Framework) and uses the Registration interfaces of the Framework to provide the relevant

information (location accuracy, cost and minimum location refresh interval, for example). This

1 For completeness, it is worth mentioning that there are two further Parlay entities (the Service Supplier and

the Enterprise Operator), in addition to the three central entities that we have already described. They too use

the Framework and as a result make use of Access Sessions. The Service Supplier is described shortly and the

Enterprise Operator will be described later.

The Parlay Conceptual Architecture 69

information is stored by the Framework and given to Client Applications that are seeking a Location

SCS, upon Discovery time.

In conclusion, Registration and Discovery provide the means for the Framework to put Client

Applications in touch with SCSs – a lonely hearts club of sorts. Assuming a Client Application has

found the SCS of its dreams, they now need to arrange to meet up and talk to each other.

5.4.2.2 Starting a Service Session

The establishment of an Access Session gives the Client Application access to the services (inter-

faces) offered by the Framework. Ultimately though this can be seen as just a means to an end,

since what it really wants is access to an SCS. The Service Agreement Management interface

provides the means to get that access.

The procedure is initiated by the Client Application when it decides, perhaps after performing

service discovery, on a particular SCS that it wants to use. The Framework and Client Application

mutually (and electronically) sign agreement text covering the use of the SCS (the Service Agree-

ment) and the Framework then provides the Client Application with an interface that allows it to

start using the SCS. A Service Session has now started.

The Client Application can go on to start Service Sessions with other SCSs available via the

Framework, but it will only ever have one session at a time with a particular SCS.

Before we move on, a brief word is necessary to explain what a Service Agreement is. Parlay

defines it as a string of text that can be electronically signed using a mutually agreed signing

algorithm. No structure or content is defined by the Parlay specification. In the case where a human

operator is involved in the Service Agreement process, the text may be read and checked before

signing but otherwise it exists only as proof that an agreement has taken place. This may be used

at a later point if any dispute between the parties arises.

In summary then, use of the Service Agreement Management interface enables a Client Applica-

tion to start a Service Session with one or more SCSs and this session allows the Client Application

to start using the functionality of the underlying network. The third side of the Parlay triangle is

in place.

5.4.2.3 Fault and Load Management

The Fault and Load Management interfaces, along with the Heartbeat Management interfaces cov-

ered in the next section, can be used by the Client Application, Framework and SCSs to check and

maintain the health of the sessions that have been set up. Collectively they are referred to as the

Integrity Management interfaces.

Looking back at the last two sections, we see that during a Service Session (between Client

Application and SCS) there are in place three sessions that are intimately related. In addition to

the Service Session itself, there is the Access Session set up by the Client Application with the

Framework and the Access Session set up by the SCS with the Framework. The latter two can be

thought of as the conduits of the Fault and Load Management information. That applies not only

to information about the health of the Access Sessions themselves but also to the health of the

Service Session. No load or fault information flows directly from Client Application to SCS.

The Framework then acts as a middleman for collection of load and fault information and the

information can be thought of as flowing from Client Application to SCS (or vice versa) via the

Framework. In addition, load and fault information about the Framework itself can be obtained by

the Client Application and SCS (and vice versa), thus checking and maintaining the health of the

Access Sessions.

The reality is a little more complex than that as we shall soon see, but first let’s return to a

question we left hanging earlier: why is a separate Framework entity required? Isn’t it possible to

70 Parlay/OSA: From Standards to Reality

incorporate the functions we have just described into the Client Application and Service Capability

Service? To answer this, let’s consider life without the Framework.

Without the Framework, a Client Application trying to find an SCS (or set of SCSs) would not

have a single point of contact. Since it can be assumed that in general there are many more SCSs

than ‘groups’ of SCSs (for example, SCSs owned by a single Network Operator), the problem of

finding SCSs is harder without the Framework.

Having found an SCS, a Client Application still doesn’t know whether it has the capabilities

it wants. With no Framework in place, it has to ask each SCS that it finds (using the discovery

interface) what it supports, rejecting those that aren’t suitable. This is significantly more time

consuming for the Client Application. It is also a burden on the SCS since it potentially has to field

enquiries from multiple Client Applications itself, rather than registering once with the Framework

and letting the Framework shoulder the burden from then on.

The Framework thus seems to be a good idea as far as discovering SCSs is concerned. We

have left a factor out of the above description that makes the benefit of having a Framework

even more clear – authentication. If there were no Framework, each Client Application would need

to authenticate with each SCS on which it wants to perform Discovery (and subsequently use

if suitable). Performing mutual authentication is a significant burden on both parties (especially

considering that a match has not been made yet, and some SCSs will be discarded by the Client

Application) and the absence of a Framework multiplies this burden. Figure 5.9 illustrates this.

Similar arguments can be applied to the other functions performed by the Framework. This

partition of functionality thus seems to be a valid architectural decision. It may also be worth

pointing out at this stage that the Parlay architectural entities are of course logical entities. If

desired, it would be possible for example for an implementation to include the interfaces and

functionality of both an SCS and a Framework, if that made sense in a particular case.

CA1

Framework
CA2

CA3

SCS1

SCS2

SCS3

CA1

CA2

CA3

SCS1

SCS2

SCS3

Figure 5.9 The framework as a single point of contact

The Parlay Conceptual Architecture 71

Having introduced the key entities and procedures of Parlay now is probably the time to bring

together the Framework, some Applications and some SCSs to see in detail how they interact.

Before leaving this section, however, we outline in broad logical terms, a pictorial view of the

capabilities the Framework offers applications and SCSs in Figure 5.10. The specific handshake

interaction diagrams with particular methods in each case are represented in [3GPP 2004f], sections

six and eight. The interested reader is referred to those sections of the standard for a method level

description of the operation of the Framework. The logical sequence diagrams that follow, however,

provide an abstracted view of the useful Framework capabilities in each case.

5.5 All Together Now

Let’s use a hypothetical scenario to help illustrate how a Parlay ecosystem works. There are three

Client Applications (CA1, CA2 and CA3). CA1 and CA2 are owned by one entity and CA3 is

owned by another. There are three SCSs (SCSA, SCSB and SCSC, naturally enough) and all are

part of a mobile network operator’s network. The Framework (FWK) isn’t owned by the network

operator in this case. It has an agreement with the network operator that it can offer (for a price)

the network operator’s SCSs and hence is effectively reselling the functionality provided by the

network operator.

Client
Application

Parlay/OSA
Framework

Parlay/OSA
SCS

Initiate Authentication Handshake

Negotiation of Authentication Parameters

(Mechanism, Protocol, etc.)

Authentication request

Outcome: Success/Failure
Authentication

Procedure

Request other interfaces,

Agree on signing algorithms

Authentication may be
done within the API,
or using lower layer
technology constructs

Discover services

List of discovered services

Select services

Sign service agreement handshake

Select services and sign
service agreements

Service session

Integrity Management

Interactions

Terminate Access Session
Handshake

Register the service

Announce the service Service is now
discoverable and
selectable by
the application

New service manager
creation handshake

De-register and un-announce
service

Sometime later…

Sometime later…

Figure 5.10 Framework abstract functional sequence flows

72 Parlay/OSA: From Standards to Reality

SCSA

CA2

CA1

SCSAi3 SCSAi2

SCSB

SCSBi2 SCSBi1

SCSC

SCSCi1

CA3
Framework

Figure 5.11 The Parlay ecosystem in a hypothetical scenario

We will see that SCSB is a Location SCS whereas SCSA and SCSC are both Call Control SCSs.

Let us have a look at Figure 5.11. How did this picture come about? What were the steps required

by each of the entities involved? The previous sections provided a high-level view but we will now

dig deeper.

Now if you have been following the discussions closely in the previous sections, something about

Figure 5.11 won’t look quite right since the three Service Capability Servers (SCSA, SCSB and

SCSC) appear to have some inner workings. In order to lay the foundations of an understanding

of the Parlay entities, we have made some simplifications. Perhaps the most important of these

was to leave unmentioned the Service Instance (there were other simplifications that will become

apparent as you read on). We have previously stated that Client Applications set up Service Sessions

with SCSs. Though at one level this is correct, the reality is somewhat more complex. When a

Client Application signs a Service Agreement to use an SCS, a Service Instance is created in order

to handle all operations performed by that Client Application. When other Client Applications

subsequently set up Service Sessions, a Service Instance is created for each of them. Thus we

see in Figure 5.11 that SCSC has one Service Instance (SCSCi1) and SCSA and SCSB have two

Service Instances running (SCSAi1, SCSAi2, and SCSBi1, SCSBi2 respectively), one for each

Client Application.

This concept of Service Instances being created for each Service Session between a Client

Application and an SCS is a very important one to grasp, since it is essential to understanding the

detailed operation of the interfaces between the Parlay entities.

5.5.1 SCS Registration and Announcement

There could be a vast array of SCSs offering different functionality, reliability, cost and capacity

to Applications. Faced with such an array of potential suitors, an Application needs to be able to

distinguish between them. This leads to the need for a description of each SCS to be available in

the Framework for the Client Application to discover. The information is placed in the Framework

and then made viewable (and the SCS accessible) in two steps.

The Parlay Conceptual Architecture 73

The first of these steps (Registration) provides the Framework with information about the SCS
(its properties). The second step (Announcement) makes the SCS visible to (discoverable by)

Applications.
We have seen previously that it isn’t the SCS itself that performs these steps, rather it is an entity

acting in the role of supplier, or owner, of the SCS; the Service Supplier. At a time prior to the

online Registration and Announcement of the SCS, the Service Supplier will have contacted the
owner of the Framework (if they are indeed separately owned) and set up a business relationship.

The SCS owner will be armed with a Service Supplier ID and a set of keys – authentication
information – to go with it.

Before the Service Supplier interacts with the Framework, it must of course authenticate itself. It
makes use of the pre-agreed authentication information in a two-way handshake with the Framework

in order that both entities can trust each other. Once authenticated, the Service Supplier may begin

an Access Session and is able to choose to do a number of things, but in this case, we are using
the Registration and Announcement functions.

Registration, as has been mentioned before, involves providing the Framework with infor-
mation about the SCS that describes its nature, or characteristics. It will tell its potential suit-

ors – Applications – what it does, and for how much (this is a commercial relationship after all).

There isn’t a blank slate on which to write, however. The description must fit a template that
the Framework knows about and in turn that the Applications can find out about. This is known as

the Service Type and is a way of specifying what the properties of a Service of this type might, or
must, have. The reason for defining known types is of course to allow selection algorithms to be

implemented in the Client Applications rather than requiring human intervention (which would be
required if the description of the SCS was unstructured).

Service Types have been defined for each of the SCFs defined by Parlay. Each has a name and

list of properties that can be used to describe any SCS of that type. For example, all Multi-Party
Call Control SCSs are of type ‘P MULTI PARTY CALL CONTROL’. There are a number of

properties that all Service Types include, such as the Service Name, Service Version and Operation
Set. In addition, there are a number of specific properties applicable only to Multi-Party Call Control

in this example, such as Maximum Call Legs per Call and Dynamic Event Types. These properties
define what is special about the Service Type and the values that the properties can have allow one

SCS of that type to be differentiated from another.

Depending on the implementation of the SCS (and perhaps the capabilities of the underlying
telecommunications network), different SCSs will register different values for the properties. Our

example Call Control SCSs differ in that SCSC can only offer a maximum of two call legs, whereas
SCSA can offer up to six (though at the price of being more expensive to use).

It is important to keep in mind that all of the Parlay-defined entities are logical entities. In other
words, a physical implementation of them can take many forms and can be as complex or simple

as is needed to support the functionality of an entity. For a Service Supplier then, there is the

opportunity to take a single physical implementation of an SCS and register it with a Framework as
a range of different SCSs. This would allow advertising different functionality and correspondingly

different price bands to the Application, while keeping the underlying implementation essentially
the same.

Therefore, having chosen a Service Type (template) to work with, the Service Supplier can

now register the Service (SCS) by providing the Framework with a set of values for each of the
properties. Having received these values and verified that they conform to the Service Type, the

Framework allocates an ID that identifies the Service (and returns the ID to the Service Supplier).
The Service is now registered.

At this point, the Service is known to the Framework. It has a name (the Service ID) and it
has a description. However, it is not yet visible to Applications (it cannot be Discovered) and as

a result, Service Sessions cannot be started. Another step is required: Announcement. This can

happen immediately after the SCS has been registered, or it can occur at some later point. But
either way, the Service is invisible to Applications until the announcement is complete.

74 Parlay/OSA: From Standards to Reality

Once Announcement is complete, the SCS is discoverable by Client Applications and so the
Framework must be in a position to allow Service Sessions to be started. Thus, Announcement

involves the Service Supplier providing the Framework with the means to create a Service Instance.

The Service Supplier sends the address of an entity known as the Service Factory or Service Instance

Lifecycle Manager (SILM) and the sole role of the Service Factory is to create Service Instances
when requested to by the Framework. More of this later.

It may not be immediately obvious why the procedure is broken into two steps, since it would

seem quite possible to combine Registration and Announcement into a single step. The reason
for the split becomes apparent when the reverse procedure is considered: unannouncement and

deregistration. Imagine that an SCS needs to be taken out of service (perhaps it is being replaced

by a new version, or needs a software upgrade). While an SCS continues to be ‘announced’, it

can be found by Applications and the SCS’s Service Factory needs to be ready to create Service
Instances. Unannouncing an SCS prevents new Applications from finding it but allows existing

sessions to continue (and contracts to be honoured) and allows information about the SCS (and the

Service ID) to be retained. Once the necessary changes have been made (a software upgrade or fix

to the SCS for example) it can be announced again.
Having registered and announced the Service, the Service Supplier can now end its Access

Session with the Framework, its job done (for now). Of course, this Service Supplier may have

other Services to register and announce, or other Service Suppliers may have their own Services
to offer via the Framework.

In our example ecosystem, all three SCSs are owned by a single Service Supplier so it proceeds

to Register and Announce SCSA, SCSB and SCSC. After Registration and Announcement, our

Parlay ecosystem now looks something like Figure 5.12.
Not much happening, but there’s a lot of potential. Enter three Applications in need of an SCS.

5.5.2 SCS Discovery

We have touched on the need for an Application to find an appropriate SCS, or SCSs. It has a
job to do and knows what it needs from a Service (or Services) to get it done. We have seen

that Parlay offers a flexible way (Service Discovery) to identify those Services purely from the

description held by the Framework. It is always possible for an Application to have obtained the

identity (Service ID) of an SCS through offline communication between the Framework operator
and Application owner (of course they may be one and the same, in which case this communication

is pretty straightforward). This short cut may be desirable in some circumstances and Parlay can

support it.

SCSA SCSB SCSC

Framework

Figure 5.12 Example ecosystem: registration and announcement

The Parlay Conceptual Architecture 75

In order to start the discovery process, the Client Applications must authenticate with the Frame-

work of course. In our scenario, the owner of CA1 and CA2, and the owner of CA3, will have

set up a business relationship of some nature with the Framework owner. This may have involved

detailed face-to-face discussions, with extensive agreements being drawn up, policies determined,

etc. On the other hand, it could be as simple as the Application owner visiting a web page and

providing billing and contact information in return for an Application ID, authentication keys and

information on how to contact and authenticate with the Framework.

Whatever the nature of the business relationship, and however that relationship has been arrived

at, the owner of the Application is armed with an identifier (the Application ID) and authentication

information (keys, etc.). It makes use of authentication information in a two-way handshake with

the Framework in order that both entities can trust each other.

Once authenticated an Application may begin an Access Session. As with the Service Supplier,

the Access Session opens up a number of possibilities, a number of ways forward. The first of

these in our case is SCS Discovery.

As previously described, the SCSs that the Client Application wants to find out about will have

been registered against a Service Type. The Client Application can retrieve a list of these Services

Types and a list of the properties that define them. A well thought-out set of properties will give the

Client Application sufficient information to be able to determine whether the Services registered

against this Service Type might just be interesting. The SCSs so far registered and announced with

the Framework belong to two types: Location and Call Control. CA1 provides its users with the

location of the mobile phones belonging to their children, so it will select the Location Service Type.

Having selected the Location Service Type, CA1 can now plug in some desired property values

and ask the Framework to find suitable candidates. There is only one Location SCS (SCSB) in our

ecosystem and luckily, it is just what CA1 is after.

It is worth bearing in mind that the process of discovery may be controlled by an algorithm

running in a piece of software or may be fully or partially controlled by a human looking at the

property values presented to them. The former approach clearly requires that Service Types and

the properties that make them up are well defined and machine-parsable.

The Framework may of course have some, one, or no SCSs currently registered and announced

that match the requirements of the Client Application. In the latter case, the Client Application

may opt to lower its standards somewhat until a match is found, but clearly there may be some

requirements it just isn’t prepared to relax. If this is the case, the Client Application can either

choose to end its access session with this Framework and look into what other Frameworks may

be able to offer, or can try again at a later point in time. To help in this, the Framework is able

to inform the Client Application of new announcements of SCSs of a chosen Service Type, if the

Client Application so wishes.

In our scenario though, CA1 has managed to find a SCS that meets its criteria. All three Client

Applications want Call Control SCSs and since two are available, each Client Application will

have to make a decision between them based on their needs. As it turns out CA1 only needs a

maximum of two call legs on each call (it sets up a call between the parent and their child if they

stray outside a ‘safe’ area) so SCSC is just right. CA2 and CA3 both need to be able to set up

conference calls and so SCSA meets their needs since it supports up to six call legs.

CA2 also wants a Location SCS, so once it has also discovered the SCSB, all three of our Client

Applications have the Service IDs of the SCSs they want and since they want to get on and start

earning money, they begin the process of starting Service Sessions with them2.

2 Once a Client Application (CA) has the Service ID of a suitable SCS it can choose to start a Service

Session immediately, or wait until some later point. The danger with the latter course of action is that the SCS

might not still be there to be used so it is generally a good idea to perform Discovery as close to using the

SCS as possible.

76 Parlay/OSA: From Standards to Reality

5.5.3 Service Selection

Service Selection is the process of choosing an SCS and starting a session with it. A straightforward

activity in principle, but in Parlay there are a number of steps to be followed, and for very good

reasons.

Naturally, the first step is to indicate to the Framework exactly which SCS is of interest. The

process of discovery described in the previous section is one way in which the Client Application

can obtain the Service ID that uniquely identifies the SCS. There are other ways, outside the

confines of Parlay, which can achieve the same result: web page, email or word of mouth perhaps.

However obtained, the Service ID is passed to the Framework and in return the Client Application

receives another (temporary) identifier known as the Service Token. This is the ID that is used for

the rest of the process and can be given a limited lifetime by the Framework. If it expires before

being used, the Client Application must perform Service Selection again.

5.5.4 Signing on the Dotted Line

The next step involves an exchange of agreements (Service Agreements) with the Framework. Both

parties must electronically sign these agreements, thus providing both parties with a record of the

transaction. During this handshake, at the point that the Client Application has signed the agreement

text sent to it by the Framework, it is given a reference to an entity called a Service Manager. This

is the first piece of the Service Instance seen by the Client Application and implements an interface

that can be used to obtain all the functionality promised. In fact, the terms Service Manager and

Service Instance are often used interchangeably.

Where did this Service Manager come from? Yes, the Framework gives a reference to it to the

Client Application, but the Service Manager is an instantiation of the SCS. It is created by the Ser-

vice Factory that was provided for the Framework’s use when the SCS is Announced. Once the other

Client Applications have exchanged signed Service Agreements with the Framework, our ecosystem

looks much more complete. Figure 5.13 shows the ecosystem as we have derived it so far.

SCSA

CA2

CA1

SCSAi3 SCSAi2

SCSB

SCSBi2 SCSBi1

SCSC

SCSCi1

CA3
Framework

Figure 5.13 Example ecosystem: service selection and signing of the service agreement

The Parlay Conceptual Architecture 77

The reason why all of the preceding steps exist is to start a Service Session between the Client

Application and an SCS. The network functionality that the SCS delivers during this time is what

the Client Application needs to deliver in terms of value to its users. At this point, it really is worth

money exchanging hands – from the end-user to the Client Application owner and from the Client

Application owner to the SCS owner3.

For this reason, regardless of the nature of the Client Application and the SCS, it may well

be worth monitoring the health of the session and providing the means to maintain the quality of

service provided. This is one reason why the Parlay Framework provides support for load and fault

management of the session, as well as monitoring of both entities involved in the session. We will

return to this a little later.

Now let’s examine the Service Manager that the Framework has given to the Client Application

in a little more detail. No matter what Service Type the SCS is, a Service Manager is the initial

instantiation of it and provides the functionality from which all other aspects of the SCS can

be obtained. For example, SCSC is a Call Control SCS, providing the ability to control (set up,

intercept, or terminate) calls in the underlying network. The Service Manager created for CA1

allows it to create and manage call objects or set up requests for notification that a call to a certain

party has begun. All of these operations are part of the Service Manager interface.

5.5.5 The Parlay Triangle Revisited

The essential preliminaries are over. Let’s pause at this point and take some time to summarize

what is now in place before moving on to examine the life of a Service Session.

There are three basic kinds of entity that are interacting, forming the triangular relationships

that are the key to understanding how Parlay works. We have the Client Application, delivering a

service to a (hopefully large) group of users. It is interacting with a Service Instance (or Service

Manager) of an SCS in order to have access to telecoms network functionality, such as the ability

to make a phone call. Enabling, creating and managing this relationship is the Framework.

Reflecting this triangle, forming the sides, are three sessions. The Client Application and Service

Instance can each have an Access Session in progress with the Framework. The Application and

Service Instance have a Service Session with each other. All of the network functionality is delivered

by the Service Session; the directly useful work if you like. The two Access Sessions are there to

bring this Session into existence and keep it there for as long as necessary.

5.5.6 Managing the Session

The Client Applications are now using their respective Service Instances. Calls are being made, or

locations retrieved perhaps. These activities are as a result of the Client Application’s own end-

users calling friends, for example, or locating their nearest restaurant. Presumably, they are paying

the application owner for the privilege and in return, they probably expect a reliable service. Of

course, this expectation of the end-user affects in turn what the Application expects of the Service,

and of the Parlay Gateway as a whole.

To help Client Applications and SCSs ensure that the Service Session is there when it is needed,

a set of functionality is available. Collectively this is known as Integrity Management. Although use

of these interfaces is optional, a robust system is likely to require at least some of the functionality.

If on the other hand the Client Application can withstand some downtime, isn’t willing to pay for

high availability or has some other proprietary means to achieve the same ends, then it is perfectly

reasonable to do without.

Earlier we introduced some of the concepts of Integrity Management and that it consists of three

main elements: Load Management, Fault Management and Heartbeat Management. We will shortly

look at each of these in some detail to see what they provide and why they are useful (or in some

3 Parlay doesn’t define how to determine what each party bills each other.

78 Parlay/OSA: From Standards to Reality

cases, essential), but first, how does the Service Instance of an SCS or a Client Application get access

to them. The Framework is always involved in Integrity Management and so the functionality can

be accessed as part of an Access Session. For the Client Applications in our ecosystem the Access

Sessions are already in place but the Service Instances haven’t yet needed one. The process for a

Service Instance to set up an Access Session is exactly the same as for a Client Application. Once

our five Service Instances have done this, our ecosystem is complete. Therefore, in Figure 5.14

we now have gently derived the complete Parlay ecosystem as somewhat abruptly introduced in

Figure 5.11.

5.5.6.1 Load Management

In an ideal world (quite often to be found projected on a screen during presentations) the imple-

mentation of the Client Application, SCS and Framework entities in our ecosystem would enable

them to support unlimited demands on their services. Unfortunately, no one has managed to figure

out a way to do this yet. In the meantime the entities need a way to indicate whether the demands

placed on them are going beyond what has been agreed, or even what they are physically capable

of delivering. The Load Management interfaces are used to do this.

The information exchanged allows the entities to modify their behavior in the event of system

overloads. For example by using the Load Management interfaces, CA1 can be informed that

Service Instance SCSBi1 is overloaded. It may then decide to stop creating new calls, or in extreme

circumstances terminate existing calls. It could even decide to start looking for another SCS.

The Framework plays a central role here. We have met before the idea that it acts as a ‘mid-

dleman’ through which all Integrity Management information flows. If CA2 wishes to obtain load

information from Service Instance SCSBi2, it asks the Framework. If Service Instance SCSBi1

wishes to obtain information about CA1, it asks the Framework. And yes, it is sometimes important

that a Service Instance knows whether the Client Application using it is overloaded, for example.

In such circumstances, it could decide that there is little point sending information to the Client

Application until the Client Application is in a position to process it.

SCSA

CA2

CA1

SCSAi3 SCSAi2

SCSB

SCSBi2 SCSBi1

SCSC

SCSCi1

CA3
Framework

Figure 5.14 The Parlay ecosystem in a hypothetical scenario, derived in logical steps

The Parlay Conceptual Architecture 79

Let’s see how this works in a little more detail. There are two principle types of information

that can be obtained via the Load Management interfaces and the Framework’s role is somewhat

different in each case.

Load Level

The Load Level represents a real-time indication of the load on a particular entity. The Load Level

is only reported when it changes, up or down. If an Application wishes to know how loaded a

Service Instance is, it requests the Framework to report any changes in Load Level. This request

triggers the Framework to ask that Service Instance to report Load Level changes to it. In other

words, a change in Load Level is reported by the Service Instance to the Framework and the

Framework reports this to the interested Application.

The Load Level can take on one of three values: 0, 1 and 2. 0 indicates that the entity is normally

loaded, 1 indicates that the entity is overloaded and 2 that it is severely overloaded. It is on the face

of it a very simple and apparently coarse measure of load. It is worth examining the meaning and

significance of each of these values in some detail, as it is important to understand that they are not

absolute measurements. They may for example be relative to some pre-agreed number of location

requests being processed by Service Instance SCSBi2 or an indication that part of the hardware

platform that SCSBi1 is running on has crashed and needs some breathing space to recover.

Staying with the above example, a Load Level of 0 (Normal Load) means that a Client Appli-

cation is using the SCS (or rather, a particular Instance of it) as per prior Service Agreements. For

CA1 this may mean that it is setting up no more than five calls per second when using SCSC.

For CA2 using SCSA the Normal Load may be up to 20 calls per second. In both cases, the Load

Level is 0 and the Client Application can assume that it can continue as it is.

Load Levels 1 and 2 both indicate an abnormal condition. Load Level 1 (Overload) is the Client

Application’s first indication that something is wrong. A threshold has been reached and a change

of behavior may be needed. For example, it may decide not to set up any further calls until the

Load Level returns to 0. In general, the Service Agreement between Client Application and SCS

will define the expected behavior.

Load Level 2 (Severe Overload) is an indication that despite efforts by the Client Application

to reduce the load on the Service Instance (or because of a change in the resources available to the

Service Instance) the overload condition has worsened to the point that even existing operations by

the Application cannot necessarily be supported. The Application may need to take steps to cancel

operations until the Load Level reduces to 1.

Of course, the Client Application too can become overloaded and its load level changes can be

supplied to the SCS via the Framework in the same way. One example of an action that an SCS

can do to take the heat off an overloaded application is the gapping of or stopping its responses to

asynchronous requests.

As you read through the last few paragraphs it may have occurred to you that if load levels

are relative to some pre-agreed figure for simultaneous calls or CPU occupancy, then why not just

have the load level directly reflect that agreement? For example, if the pre-agreed normal limit for

simultaneous calls is 20 then the Service Instance could provide a report of the number of calls and

the Client Application could match that against the known limit. There are a number of reasons

why this turns out not to be such a good idea.

First, a failure in the Service Instance (loss of hardware, etc) could mean that temporarily it is

unable even to support the pre-agreed limit.

Second, having to compare a measurement with a limit requires that the Client Application needs

to be provisioned with the limit and implement the comparison.

Lastly, the measurement (or measurements) on which the limit is based could take many forms

and thus require the load level to be able to support many kinds of data.

Ultimately what matters is that one entity is able to tell the other either that the situation is

normal or that it isn’t and something needs to change. Though we have focused on the Client

80 Parlay/OSA: From Standards to Reality

Applications and SCSs generating Load Level notifications, the Framework is also a critical part

of the system and so it too can send them.

Load Statistics

Unlike the Load Level notifications just described, the second type of load information exchanged

is non real-time. Load Statistics are historical load measurements that Client Applications and

Service Instances are able to request from the Framework. Thus CA1 can make a request that the

Framework should ask SCSBi1 for the load statistics for the last 24 hours, for example. SCSBi1

may also decide that it wants statistics about the load experienced by CA1 recently. As with Load

Level notifications the Framework may also be asked to provide load statistics about itself.

Since such load statistics may take some time to compile, the operation is asynchronous. In other

words, the results aren’t returned immediately but will be sent to the requesting entity at some later

point. This allows the Service Instance, for example, to prioritize its resources and only calculate

the statistics when there is nothing more critical to take care of.

Therefore, what is the information contained in the Load Statistics? The two kinds of load

information are the Load Level, which we have already met, and the Load Value, which is a

percentage. You might ask: how is this percentage figure arrived at and what does it mean? Parlay

doesn’t define how it is measured since this would be an almost impossible task. It all depends

what the limiting resource is for a particular entity. For example for SCSA it may be disk space, for

SCSB it may be CPU occupancy and for SCSC it may be a limitation in the underlying network.

Indeed the limiting resource for an entity may change over time. As with the Load Level then, there

is no absolute meaning to the Load Value and so it can be seen as providing a more fine-grained

measurement of the load on the entity than the Load Level can.

What the requesting entity will see when the Framework replies to its request is a list of Load

Levels and Load Values, with an associated timestamp indicating when the load measurement was

made. Thus this information shows the history of the Load Level and Load Values changes over a

particular time interval. Parlay doesn’t define how this information is used.

The Last Resort

There remains one further aspect of Load Management that we should look at. This is the ability

for an entity to ask the Framework not to send it any more Load Level notifications for a while.

For example, if CA2 was experiencing a critical overload condition, the last thing it wants to have

to do is process Load Level notifications from the Framework. It may also need to reduce activity

on the Access Session interfaces, of which Load Management is one. Therefore, it can also ask

the Framework not to send it any more notifications. Clearly, this is a desperate act as it prevents

potentially valuable information from reaching it, but since CA2 may not be able to do anything

with it, it might as well ask the Framework to stop.

5.5.6.2 Fault Management

In the same ideal world that we met in the introduction of Load Management section, the imple-

mentation of the Client Application, SCS and Framework entities would be such that they would

never go wrong. Of course, this ideal world doesn’t exist, so there needs to be a way for information

about problems to be communicated between these entities so that the appropriate actions can take

place. The Fault Management interfaces are used to do this.

The purpose of the fault management interfaces is to allow fault information to be exchanged

between entities in the Parlay triangle (Application, Framework and Service Instance). This infor-

mation allows the entities to modify their behavior in the event of system errors.

Again, the Framework plays a central role. If CA2 wishes to obtain fault information from a

Service Instance SCSBi2, it asks the Framework. If Service Instance SCSBi2 wishes to obtain

information about CA2, it asks the Framework. In other words, all fault information passes through

the Framework.

The Parlay Conceptual Architecture 81

We now need to dive into this in a little more detail.

The Fault Management interfaces can be thought of as providing three types of functionality.

Broadly, they fall into the categories of ‘we have a problem’, ‘are you still working?’ and ‘tell me

about yourself’.

‘We have a problem’

For a Client Application, the ‘We have a problem’ category allows it either to tell the Framework

that it has a problem of its own, or to tell the Framework that it can’t use the Service Instance with

which it has a Service Session. In the first case, the application may have lost communication with

an internal resource, for example. This is a controlled (graceful) failure, since the Client Application

is still functioning well enough to communicate, and it is a failure that may be recoverable. In the

second case, the application will have noticed either that an SCS has stopped responding, or that

it cannot continue to use the SCS for internal reasons.

The Framework and the SCS can also use this category of functionality to indicate that there is

a problem.

‘Are you still working?’

If a Client Application does notice that the Service Instance has stopped responding, one thing

it can try to do to check the situation is try an ‘are you still working’ request. This instructs the

Framework to instruct the SCS to carry out a self-test and report the result (if it can). If the SCS

is unable to respond to the Framework or the self-test fails, then steps are taken to end the Service

Session. The Client Application may also have concerns about the status of the Framework so it

can also ask the Framework to carry out a self-test.

As with the ‘we have a problem’ category, the Framework and SCS can also use this functionality

to investigate whether the entities they are communicating with are still working correctly.

‘Tell me about yourself’

The final category of requests belonging to the Fault Management interfaces is ‘tell me about

yourself’. This allows one entity to ask for a record of fault statistics from any of the other entities

it is using. Again, the Framework is responsible for gathering the fault statistics and giving them

to the Client Application.

There fault statistics contain information about four types of fault. One is a local failure, one is a

gateway failure and one is a protocol failure. The fourth type covers faults that aren’t defined – in

other words faults that don’t fall into any of the other three categories.

The Fault Management interfaces thus allow problems to be reported, diagnostic checks to be

requested, or fault statistics to be gathered. While it is possible to have Service and Access Sessions

running without using these interfaces, it is much harder to design a system that handles problems

gracefully unless they are used.

5.5.6.3 Heartbeat Management

The Fault Management interfaces just described make an assumption that the entities have a means

to tell whether there are problems with the other entities. Ideally, an entity will detect a problem

in itself and report this, but this won’t necessarily happen. Alternatively, an entity might decide to

request periodically activity tests by the other entities. This has a number of possible drawbacks.

A complex activity test puts demands on the requester and any request/response exchange puts

additional demands on the requestor. This is likely to mean that activity tests are requested only

after a problem is suspected or at infrequent intervals. Heartbeat Management provides an alternative

approach.

The Heartbeat Management interfaces allow an entity (the requestor) to ask another entity to

start (and also stop) sending it signals (known as pulses, naturally enough) that it is still around.

82 Parlay/OSA: From Standards to Reality

The time interval between pulses is specified (and can be changed) by the requestor and so if that

amount of time has passed since the last pulse, the requestor knows it should start to worry.

There is a very important difference between the Load and Fault Management interfaces and

the Heartbeat Management interfaces. Unlike load level reports, activity test requests and so on,

requests to send pulses and the pulses themselves are not propagated through the Framework. In

other words, the Framework can request the Client Application to send it pulses (and vice versa)

and the Framework can request the SCS to send it pulses (and vice versa) but the Client Application

can’t get the SCS to send it pulses, even indirectly.

For that reason Heartbeat Management might at first sight be thought of as only being useful

for monitoring the Access Sessions and not the Service Sessions. This is not quite true as the

Framework can use Heartbeat Management to monitor the SCS and report that it is unavailable if

the pulses stop arriving. Similarly, the Framework can monitor the Client Application and report a

heartbeat failure to the SCS.

5.6 The Enterprise Operator

We have described the three main Parlay entities (Client Application, SCS and Framework) and

how they can be thought of as forming the Parlay Triangle. We have also briefly examined the role

of a fourth entity (the Service Supplier) in Registering and Announcing SCSs with the Framework.

In passing, a fifth entity, the Enterprise Operator was mentioned. We will now describe this entity,

and some of the functionality available to it.

In Parlay terms, an Enterprise Operator is an entity, which owns (and/or manages) a set of

applications. It can be independent of the Framework owner and therefore must be able to manage

its relationship with the Framework and manage its applications’ use of services provided by the

Framework. A set of interfaces is defined by Parlay to allow it to do just that. Once a business

relationship has been set up (offline) between the Enterprise Operator and the Framework (and the

Enterprise Operator has been authenticated in the usual way) the Framework’s Enterprise Operator

interfaces can be used to manage the main entities controlling an application’s service use: Contracts,

Profiles and Subscription Assignment Groups.

5.6.1 Key Parlay Subscription Model Concepts

By no means all implementations of Parlay will include the Enterprise Operator interfaces, but the

underlying data model that they use to manipulate is something that many Gateways will choose

to implement at least partially since it is linked to a number of the other interfaces. For that reason

we include here details of some of the key aspects of that data model.

5.6.1.1 Service Contracts

In general, the use of an SCS by a Client Application is governed by a contract of some sort.

There are contracts and there are Service Contracts. The latter is a Parlay-defined data structure.

It contains fields such as the Service Start and End Dates (the period during which an Application

may use an SCS), Service ID (the ID of the SCS) and the Billing Contact (a person responsible for

billing issues). These, and other fields, are common to all Service Contracts. In addition to these

is a set of fields that correspond to the Service Type of the SCS. An implementation of a Parlay

Gateway can choose to make use of these Parlay-defined data structures whether the Enterprise

Operator interfaces are implemented or not. Naturally, if these interfaces aren’t implemented then

some other method of populating the data will be provided.

As we have seen before, a Client Application can Discover SCSs via the Framework and decide

to use them. For this to happen there must have been an agreement of some nature between the

owner of the Client Application and the owner of the Framework in order that Application IDs can

be created, security information exchanged and billing arrangements made. This offline agreement

The Parlay Conceptual Architecture 83

is a contract of some description. It typically covers the details of a Client Application’s use of

SCSs owned by the Framework and may be as simple as a statement that any of the SCSs may be

used and the functionality provided by the services will be as described in the service description.

This truly gives complete freedom for the Client Application to Discover suitable SCSs with no

restriction. On the other hand, owners of Client Applications may prefer to have the means to

pre-define what services its Client Applications can use and place additional restrictions on the

functionality offered by the services over and above the service description registered with the

Framework by the Service Supplier. This is where the Parlay Service Contract comes into play.

Rather than Client Applications attempting to Discover what Services are suitable for it to use, the

Enterprise Operator decides what Services should be used ahead of time using a Service Contract.

As we have seen from the common fields that every Service Contract includes, the Enterprise

Operator can also determine the time period during which a Service may be used but it can also

determine what service property values apply. A call control Service may have the ability to include

up to five call legs but an Enterprise Operator may decide that this should be restricted to just three

for a particular Client Application (as a result perhaps limiting the money paid to the Service

Supplier). This restriction can be included in a Service Contract.

5.6.1.2 Service Profiles

A Service Profile is, in essence, a Service Contract modifier. A Service Contract can be defined

that can be applied to every Client Application using an SCS. If this approach isn’t flexible enough

for an Enterprise Operator, Profiles are used to further control what functionality is available to

each application. In fact, Service Profiles are used even if there is only one application and there

are no modifications of available functionality to be applied, but in general, a Service Profile may

apply to a number of applications. This is managed through the use of Subscription Assignment

Groups, which is the topic of the next section.

5.6.1.3 Subscription Assignment Groups

A Subscription Assignment Group (SAG) is a mechanism for grouping together Client Applications

that should be treated in a similar way (from a subscription point of view). Each SAG has a set

of Service Profiles associated with it, one per SCS to be used by members of the SAG. Thus, a

SAG can be thought of as a convenient way to link a list of Client Applications with a set of

Service Profiles that apply to all of them. For example, all of the Client Applications owned by an

Enterprise Operator may use the same SCSs but one set of these applications may be considered

mission-critical whereas another set are less important. Two SAGs would be created and two sets

of Service Profiles associated with them.

Figure 5.15 attempts to illustrate the relationship between Client Applications, SAGs and Service

Profiles. It shows two SAGs, one containing three Client Applications and one containing two. SAG

1’s Client Applications (the three that have already been assigned, plus any others assigned in the

future) have subscriptions to four SCSs. The nature of the subscriptions for each of the SCSs is

described in the corresponding Service Profiles. SAG 2’s Client Applications have subscriptions to

two of the SCSs that SAG1’s applications have subscriptions to (SCS2 and SCS3). However, their

subscriptions differ since they belong to a different SAG and therefore the profiles are different.

If one of SAG1’s Client Applications (CA1 for example) was to be removed and assigned

instead to SAG2 its subscriptions to SCS2 and SCS3 would change and it would no longer be

subscribed to SCS1 or SCS4. On the other hand, if Service Profile 1a was updated it would change

the subscription for the use of SCS1 for all the Client Applications in SAG1.

It is worth noting that in all likelihood the Enterprise Operator that owns all of the Client

Applications in these two SAGs would have just one Service Contract for each of the SCSs. For

example, Service Profile 2a and 2b would both be derived from a single Service Contract for SCS2.

84 Parlay/OSA: From Standards to Reality

Subscription Assignment Group 1

CA1

CA2

CA3

SCS1

SCS2

SCS4

SCS3

Service Profile

1a

Service Profile

2a

Service Profile

4a

Service Profile

3a

Subscription Assignment Group 2

CA4

CA5

SCS2

SCS3

Service Profile

2b

Service Profile

3b

Figure 5.15 Client applications, SAGs and service profiles

5.6.2 The Enterprise Operator Interfaces

The preceding sections have described at a high level the three key entities making up the Parlay

Subscription data model: Service Contracts, Service Profiles and Subscription Assignment Groups.

Parlay defines a number of interfaces that can be used to manage this subscription data. The

Enterprise Operator is able to create, modify and delete Service Contracts and Service Profiles.

The Service Profiles can be assigned to Service Assignment Groups (or deassigned) and Client

Applications can be added to (or removed from) these SAGs. Naturally, the interfaces also allow

the Enterprise Operator to list the details of any previously created Contracts, Profiles and SAGs.

Although we have said previously that it is possible to manage the subscription data using non-

Parlay means, the Enterprise Operator interfaces do provide a natural way to do so, and certainly an

understanding of these interfaces is necessary for an understanding of the underlying data model.

It may at first sight appear that management of subscription data is only necessary when Client

Applications are pre-subscribed to SCSs by their owner. After all, this is the main reason why the

interfaces exist. Looked at slightly differently, however, the same interfaces could be used by the

owner of a Framework in order to manage Client Applications owned by other entities. As we

have seen, use of Service Contracts and Profiles can even apply where a Client Application uses

the Discovery interface to find a suitable SCS. This ensures that the application has permission to

use the SCSs it has discovered.

This has been a whirlwind tour of the Enterprise Operator entity and the interfaces defined for

it. We have seen that there are three key concepts (Service Contracts and Profiles and Subscription

Assignment Groups) and associated interfaces that allow the way a SCS is used by a Client

Application (or group of Client Applications) to be managed. In principle, these interfaces are

The Parlay Conceptual Architecture 85

aimed at entities that are independent of the owner of the Framework but they can still be used by

a Framework owner to manage Client Application subscription in general.

5.7 Summary

This chapter has tried to give an overview and an insight into the Parlay architecture. We have

avoided going into detail regarding the exact nature of the interfaces, methods and data types that

make up the architecture (these details are readily available in the next chapter of this book and in

the Parlay specifications themselves) and instead have taken an alternative, narrative approach.

We have seen that there are three key logical entities (Client Application, Service Capability

Server and Framework) that can be considered to be at the core of Parlay. They form a triangle of

relationships that are at the heart of the architecture. Additional logical entities (Service Supplier

and Enterprise Operator) play necessary supporting roles to this ‘big three’. In explaining the

nature and role of all of these Parlay entities a number of key concepts (Access Sessions, Service

Sessions, Integrity Management, Registration and Discovery, Subscription) have been introduced

that are fundamental to allowing Parlay systems to be implemented that provide an environment

for the rapid development and deployment of exciting new telecom-based end-user services.

Part II

The Standards
in Detail

Standards promote interoperability and seamless inter-working between compatible components

developed by different vendors. They enable users of technology products to be able to choose

elements from different sources with a reasonable expectation that they will work together without

too much bother.

Do Parlay standards measure up to these requirements? Is the standard well enough defined to

be worth all this trouble? How does Parlay as a technology really work? What makes it tick? These

and related questions are addressed in Part II.

This part of the book is targeted primarily at a technical audience, but a business or marketing

oriented non-technical reader can also benefit from some of the examples discussed in Chapters 6

and 7, and the brief technical summaries of standards in Chapter 8.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

6

Standards Capabilities and
Directions

6.1 Introduction

The previous chapters have introduced Parlay as a technology poised to capitalize on the model of

Service Mediation. This took a little working on, as we meticulously followed the yellow brick road

that originated with the various network technologies in use today, passed the Parlay pedigree, via

the issues faced by the various stakeholders, finally to arrive at the Parlay triangle of Framework,

Client Application, and Service Capability Server. Now that we have this under our belt we are

fully equipped to start exploring the wide range of Service Capability Features spanning the breadth

of the Parlay portfolio. And for that story we must embark on another chapter. We will now shift

gears and raise the description of the Parlay technology to the next level.

The Parlay solution is a modular architecture where Service Capabilities are exposed in a secure,

controlled and billable manner to application developers. In total, the Parlay solution comprises of

twelve Service Capability Features. This section will introduce and discuss each of them, using the

specification document structure as outlined in Chapter 4, i.e. the parts of the 3G 29.198 series. For

each SCF we will discuss issues relating to how the SCF has evolved, the level of maturity and

backwards compatibility, and possible future directions, all from a standards perspective. We will

also provide some background information on the various specification versions and the relationship

between them.

For the purpose of this book, the 3GPP Release 5 specifications will serve as a basis for the

descriptions of the standards capabilities in this chapter. The main reason underpinning this decision

is that 3GPP Release 5 is the latest and greatest public release at the time of writing this book. It

is not the intention to repeat any of the information contained in the API specifications, and hence

this chapter will not contain method signatures with all their parameters and data types, along with

their description in full detail. Readers interested in this level of detailed information are referred

to the standards specifications themselves.

Table 6.1 lists the exact versions of the Parlay specifications referenced in this chapter.

6.2 Part 1 – Overview

The first part in the series of Parlay API specifications is the Overview [3GPP 2004d]. This specifi-

cation ties together all parts of the entire suite and provides additional information applicable to all

parts. For instance, the abbreviations used and definitions applicable in all parts are only contained

in the Overview, and referred to from all the other parts.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

90 Parlay/OSA: From Standards to Reality

Table 6.1 Parlay specification versions used in Chapter 6

Part name Specification version

Part 1 – Overview 29.198-1 V5.7.0 (2004–09)

Part 2 – Common Data 29.198-2 V5.8.0 (2004–09)

Part 3 – Framework 29.198-3 V5.8.0 (2004–09)

Part 4-1 – Call Control Common Definitions 29.198-4-1 V5.7.0 (2004–09)

Part 4-2 – Generic Call Control 29.198-4-2 V5.8.0 (2004–09)

Part 4-3 – Multiparty Call Control 29.198-4-3 V5.8.0 (2004–09)

Part 4-4 – Multimedia Call Control 29.198-4-4 V5.8.0 (2004–09)

Part 5 – User Interaction 29.198-5 V5.8.0 (2004–09)

Part 6 – Mobility Management 29.198-6 V5.6.0 (2004–09)

Part 7 – Terminal Capabilities 29.198-7 V5.7.0 (2004–09)

Part 8 – Data Session Control 29.198-8 V5.7.0 (2004–09)

Part 11 – Account Management 29.198-11 V5.6.0 (2004–09)

Part 12 – Content Based Charging 29.198-12 V5.7.0 (2004–09)

Part 13 – Policy Management 29.198-13 V5.6.0 (2004–09)

Part 14 – Presence and Availability Management 29.198-14 V5.7.0 (2004–09)

Some of the more important pieces of overall introductory information that serve as a lead-in to

the remaining parts covering the various Service Capability Features are summarized below.

6.2.1 Versions and Releases

In Chapter 4 we have already alluded to the relationship and correspondence between the various

release schedules and versioning schemes in use by the participating organizations in the Joint

Working Group. A much more detailed discussion of these relationships is included in the Overview

specification, capturing the information at the granularity of point releases, and per 3GPP plenary

publication cycle. The table for 3GPP Release 5 is reproduced in Table 6.2.

6.2.2 Methodology

The Parlay APIs are modeled, designed and specified using the UML methodology. In order to aid

in this process, and to ensure consistency in look and feel across all the various SCFs, a number

of agreements have been laid down and recorded in the Overview.

The namespace root for Parlay is ‘org.csapi’. This namespace is used to scope constants and

data types, and is used as root for the hierarchical package of all SCF interface and data type

definitions. For instance, org.csapi.mm.idl contains the definitions for all the Mobility Management

Table 6.2 Specification versions for OSA Release 5

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version

– – Release 5, March 2002 Plenary

ES 202 915 v.1.1.1 (complete release) Parlay 4.0 Release 5, September 2002 Plenary

ES 202 915 v.1.2.1 (not parts 9, 13, 14) Parlay 4.1 Release 5, March 2003 Plenary

– – Release 5, June 2003 Plenary

– – Release 5, September 2003 Plenary

– – Release 5, December 2003 Plenary

– – Release 5, March 2004 Plenary

– – Release 5, June 2004 Plenary

ES 202 915 v.1.3.1 (complete release) Parlay 4.2 Release 5, September 2004 Plenary

Standards Capabilities and Directions 91

SCFs, whereas org.csapi.SP MY CONSTANT scopes a proprietary constant definition for use

within Parlay implementations.

Naming conventions are defined for interfaces, method names, exceptions, parameters, data types

such as sets and structures, etc. For instance, you will see that all Parlay types have the prefix ‘Tp’,

whereas all interface names start with ‘Ip’. Such naming conventions improve the readability of

the detailed API specifications and introduce conformity across all interface definitions within the

Parlay suite.

Whilst uniformity and structure are two reasons for such conventions as introduced above, other

conventions are in place to allow for as many technology realizations as possible and avoid any

unnecessary restrictions in the use of specific languages. One example of such a principle is for

methods to use return values rather than out parameters, as out parameters may not be supported

in some of the languages to which one may wish to map the API definitions.

6.2.3 Interface Design Principles

Apart from conventions, the Overview document also summarizes a number of the design principles

applied across the definition of the Parlay APIs. A varied collection of principles is amassed in the

Overview specification, some examples of which include the use of NULL values and the use of

the service factory pattern.

In this section we shall discuss in detail one of the more noteworthy principles which deals with

notification handling and the use of callbacks for event notifications. Two classifications for noti-

fications are introduced. One classification distinguishes notifications based on who enables them.

Notifications can be created upon specific request by the Client Application, using the createNotifi-

cation method. Notifications can also be provisioned by the network operator as a management or

service provisioning operation. Examples where this latter mechanism may be preferable include

for instance when user data for target addresses (that is, those end-users for which notifications

need to be generated) is stored in a network user data store and the Client Application has no

access to this store. Or consider for instance the case where bulk provisioning of the triggers is

much more efficient using some offline means, rather than using a Parlay method invocation by

the Client Application. Once the notifications are provisioned by the network operator, the Client

Application invokes the enableNotification method to arm the triggers.

The second means of distinguishing notifications is by their monitor mode. Notifications can

either be used to merely inform an interested Client Application of the occurrence of an event of

interest (MONITOR mode), or processing in the network can be suspended and the notification

doubles as a request to the Client Application on how to continue SCS operation (INTERRUPT

mode). We have seen examples in Chapter 5 where an insurance Client Application may be notified

of a call attempt and decide to forward the call to an alternative destination.

6.2.4 Shapes and Forms

We have familiarized ourselves with the three technology realizations for the Parlay API interfaces

in Chapter 4. The Overview specification contains three annexes each describing patterns, principles,

conventions, and mapping rules for each of the technology realizations.

The OMG IDL annex describes for instance how certain straightforward Parlay data types map

to CORBA primitive types (e.g. TpString to string). Some less clear-cut mappings are outlined as

well, where some misalignment may exist between OMG IDL and CORBA data types. For instance

an OMG IDL sequence maps to a CORBA struct.

The W3C WSDL annex describes all Parlay WSDL namespaces, and the root Parlay WSDL

namespace (http://www.csapi.org). Furthermore, the UML to WSDL mapping rules are defined,

which we will discuss in further detail in Chapter 16.

The Java Realization annex describes how a local J2SE API and a Java RMI J2EE API are

generated from the technology independent UML model. Most of the work is performed in the area

92 Parlay/OSA: From Standards to Reality

of adapting the Parlay API patterns into usage patterns that are more common in the Java developer

community, as well as converting towards naming conventions and best practices commonplace in

a Java environment. Especially for the J2SE specific conventions, with the creation of the local

API, the transformations and conversions are rather involved. For more detail, the reader is referred

to Annex C Java Realization API [3GPP 2004d].

6.3 Part 2 – Common Data Types

Part 2 of the specification set [3GPP 2004e] again does not define an SCF, but rather defines a

number of data types that are common across two or more SCF specifications.

Data type definitions may be common for several reasons.

1. There are quite a number of base data types that are either used a lot in most all SCFs directly,

or used to create more complex compound data types. Examples include data definitions for

Boolean, string, and integer.

2. Other data types are defined explicitly in anticipation of frequent use, in order to ensure confor-

mity across the board. For instance the data types for user addresses, time and date, and price

and amount related types belong to this category.

3. Yet other data types start out as SCF specific, but are reused in subsequent SCF definitions. This

is for instance the case with QoS parameters that were introduced for Data Session Control, and

then later reused in Call Control.

4. Last of all there are data types that are intrinsic to the definition of an interface specification,

and hence common by definition. These include the address of a generic interface instance, and

the reference to such an address.

The language definition files for the common data types may be included in or referenced from

each of the definition files of the specific interfaces.

Reuse of common data types not only ensures a consistency in look-and-feel across the entire

set of APIs. It also facilitates composite applications that make use of multiple Parlay service

interfaces to offer a more feature rich and integrated service experience. Service attributes obtained

through one Parlay service interface may be provided as input to a second Parlay interface in

order to acquire the attribute of interest. Or multiple attributes of interest, each obtained through

individual Parlay service interfaces, may be presented to the end-user in a consolidated fashion.

Using the same data type definitions and encodings for the attributes spurs such composite Parlay

applications, as well as facilitates interoperability between Parlay applications.

6.4 Part 3 – Framework (FWK)

Part 3 is the first part that actually specifies a Parlay SCF [3GPP 2004f]. Specifically, it specifies the

Framework SCF. The functionality that the Framework performs has already been covered in quite

some detail in Chapter 5 and therefore will not be repeated here. In this section, we will suffice by

enumerating the interface groupings that together make up the Framework SCF, in Figure 6.1.

Some of the interfaces are replicated between the Application and the Framework, and between

the Framework and the Service Capability Servers. In order to distinguish between these two group-

ings, the interfaces between Application and Framework are prefixed with IpXXX and IpAppXXX,

while the interfaces between Application and SCS are prefixed with IpSvcXXX and IpFwXXX.

6.5 Part 4 – Call Control (CC)

The Parlay specifications include a suite of SCFs providing the application with control of

connection-oriented calls in the network, the so-called Call Control SCFs. The Call Control SCFs

can be divided in two classes.

Standards Capabilities and Directions 93

Framework

Framework to Application

IpServiceDiscovery

IpAppServiceManagementAgreement

IpAppFaultManager

IpAppHeartbeatMgmt

IpAppHeartbeat

IpAppLoadManager

IpAppOAM

IpAppEventNotificatio n

Framework Access Session

IpInitial

IpAccess

IpClientAccess

IpAuthentication

IpAPILevelAuthentication

Framework to Servic e

IpServiceInstanceLifeCycleManager

IpSvcServiceRegistration

IpSvcServiceDiscovery

IpSvcFaultManager

IpSvcHeartBeatMgm t

IpSvcLoadManager

IpSvcOAM

IpSvcEventNotification

Application to Service

All other Parlay SCFs

Client

Application

SCS

Figure 6.1 Interfaces supported by the Framework

1. Generic Call Control.

The Generic Call Control SCF (GCC) offers a simple means of controlling a call in the network,

without the ability to manipulate the call legs to the individual parties in the call [3GPP 2004h].

GCC includes an event notification mechanism, which enables simple call related services like

call forwarding to voice mail, or the barring of calls to certain destinations.

2. Enhanced Call Control.

In order to offer more capabilities and richer functionality to the application developer, above

and beyond GCC, the Multi-Party Call Control SCF (MPCC) supports a more advanced call

model [3GPP 2004i]. The call legs to individual call parties can now be controlled separately,

allowing for instance to apply distinct charges to all parties involved, play voice recordings to

a specific party in the call, etc.

The Multi-Media Call Control SCF (MMCC) extends MPCC, by adding the ability to attach

media streams to a call [3GPP 2004j]. For instance a video stream can be added to an already

existing voice call. The charging capabilities are expanded by the introduction of volume based

charging, in addition to time based charging.

A further extension to MPCC and MMCC is provided by the Conference Call Control SCF

(CCC), which adds the ability to set up conferences, reserve conference resources such as a bridge,

splitting off sub conferences, and some basic floor control functionality [ETSI 2005a].

Both GCC and MPCC have been under development within the Parlay standards community for

a number of years now, and hence have reached functional maturity as well as operational stability.

The derivatives of MPCC, i.e. MMCC and CCC, are more recent additions to the suite of Parlay

Call Control SCFs, and have therefore been among the last Parlay capabilities to reach a state of

94 Parlay/OSA: From Standards to Reality

GCCS

MMCCS

CCCS

Parlay Root

MPCCS

Figure 6.2 Parlay Call Control inheritance structure

maturity. We may expect that they are currently in the process of undergoing the detailed level of

scrutinized peer review and developer feedback to make them sufficiently stable for commercial

deployment. Minor modifications and corrections may still be anticipated.

All SCFs in the Call Control suite were initially designed as specializations of one another,

starting at GCCS all the way through to CCCS. However, being the first call control API to be

defined for Parlay, GCCS was very much tailored towards the capabilities of the CAMEL phase

2 specifications defined in 3GPP Release 99. In order to allow derivative Call Control SCFs to

be defined with more flexibility and protocol independence, a decision was made to break the

direct inheritance structure between these SCFs. This is depicted in Figure 6.2. This decision then

allowed the Parlay community to be very conscious of the growing number of GCCS applications

in the market. The availability of deployed application puts in place additional restrictions on the

amount and severity of functional additions and error corrections. For this reason, only essential

error corrections are applied to GCCS, whilst functional additions, feature enhancements and new

requirements are considered for the parallel inheritance path only. Despite the two inheritance tracks

for call control APIs, there remains a common root, exemplified by a number of common data types

and definitions used by both tracks [3GPP 2004g].

6.5.1 GCCS

As explained in Chapter 1, phone calls in a network are represented in terms of a call model or

state machine. After 125 years of evolving the telephony systems, with the profusion of bells and

whistles, abundance of value added services, and myriad regulatory required features, the telephony

state machines can make your head explode when you try to model and document them. And this

is only PSTN. Imagine having to familiarize yourself intimately with the call models of a multitude

of popular communication technologies in order to ensure as large an addressable market for your

call control application as possible. You will quickly come to the realization that there is enormous

value to be gotten in a simple abstraction that effortlessly hooks into all of these models.

A gentle introduction to Call Models can be found in Appendix A [Parlay@Wiley]. In this

section we shall demonstrate how abstraction of complex call models may aid in the design of call

control applications.

The diagram in Figure 6.3 shows the state machines for the Originating Basic Call State Model, or

O-BCSM, in IN (on the left) and the state transition diagram for the Originating Call Model of the

MultiParty Call Control SCF in Parlay (on the right). It is not the intention here to provide a detailed

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

9
5

Initiating

Analyzing

Active

ReleasingAll States
release

network

Release

network

Release

network

Release

originatingCallAttemptAuthorized

originatingCallAttempt

originatingCallAttempt-

 -Authorized

addressCollected

addressCollected

addressAnalyzed

originatingService_code

addressAnalyzed

originatingService_Code

release

“call object deassigned”

Orig_Denied

Invalid_Info

Route_Select_Failure

Auth_Failure

Collect_Timeout

O_Conn_Failure

Orig_Attempt_Auth

O_Term_Seized

1

2

4. Analyze_Info

5. Select_Route

6. Auth_Call_Setup

7. Call_Sent

8. O_Alerting

9. O_Active

O
_

C
al

li
n

g
_

P
ar

ty
_

D
is

co
n

n
ec

t

&
 O

_
A

b
an

d
o

n
2

1

1. O_Null

3. Collect_Info

10. O_Disconnect

11. O_Exception

2

0 O_Disconnect_Complete

1

8

1

8

1

8

1
9

1
6

1
4

1
1

9

7

O_Disconnect

O_Answer

Orig_Auth

Route_Selected

Analyzed_Info

1

3

5

Orig_Attempt

Collected_Info

2

4

6

8

1

0

1

3

1

5

1

7

O_Called_Party_Busy

O_No_Answer

Route_Failure

O_Mid_Cal
l

O_Mid_Cal
l

O_Mid_Ca
ll

2.Auth_Orig_Attempt

Figure 6.3 Originating call models compared: IN and Parlay

96 Parlay/OSA: From Standards to Reality

description of the IN O-BCSM; interested readers are referred to [Faynberg 1996]. The diagram

is shown to demonstrate what we mean by saying that the Parlay Call Control SCF provides an

abstracted view of the call control models in the network, in this case IN. Without explaining the

O-BCSM, it is quite evident, if you hold this page of the book at arms length and sort of squint

your eyes, that the view of call control behavior as abstracted by Parlay is clearly less complex.

Yet another means of demonstrating the implication of abstraction is by looking at the type of

specific network events that can be conveyed through the abstraction to the Client Application.

Parlay has opted for both the case to abandon certain protocol specific event types that have no

significance in other service control protocols, as well as the case to include certain protocol specific

event types that have proven to be extremely useful in one protocol, though not supported in others.

In Table 6.3 we provide examples for the IN and SIP protocols.

It is interesting to note how different protocol characteristics are hidden because of the abstraction.

For instance, Parlay events are the result of a trigger firing in a CAP scenario, whereas in the case

of an IMS network, these are the result of SIP protocol messages being forwarded by the S-CSCF

based on so-called filter criteria1. Towards the application this is all transparent. Whether there was

a CAP Release or a SIP BYE because of the destination party hanging up the phone, the applica-

tion will observe this as the Parlay event P CALL ATTEMPT TERMINATING RELEASE. This

transparency caused by abstraction is depicted in Figure 6.4. For an interesting approach on how

to combine the service creation capabilities of Parlay with the session control facilities of SIP, the

reader is referred to [Kozik 2003,Unmehopa 2002a].

The GCCS SCF adheres to the principle of ‘single point of control’. This means that although

several applications may have registered interest in a single call in the network, only one of them can

actually apply control through the Parlay Call Control API. Effectively, all interested applications

receive notification of the occurrence of the event (through the method invocation callEventNotify),

but only one of them receives the event in INTERRUPT mode. The remaining applications get

notified in MONITOR mode. The single point of control principle ensures that no unpredictable

behavior will take place. Consider for example two applications that have registered their interest in

any subscriber who is roaming into a given foreign city. Application A is an application deployed

by the city government, welcoming the visitor to their city, whilst Application B is an application

operated on behalf of the local grocery chain drawing the visitor’s attention to special discounts for

Table 6.3 Abstracted event types in Parlay

Parlay Events IN Events SIP Events

P CALL ATTEMPT ORIGINATING CALL ATTEMPT OriginatingCallAttempt INVITE

P CALL ATTEMPT TERMINATING CALL ATTEMPT TerminatingCallAttempt INVITE

P CALL ATTEMPT ADDRESS COLLECTED AddressCollected INVITE

P CALL ATTEMPT ORIGINATING CALL ATTEMPT AUTHORIZED Originating-

CallAttemptAuthorized

INVITE

P CALL ATTEMPT TERMINATING CALL ATTEMPT AUTHORIZED Terminating-

CallAttemptAuthorized

INVITE

P CALL ATTEMPT ADDRESS ANALYZED AddressAnalyzed INVITE

P CALL ATTEMPT ALERTING Alerting 180 Ringing

P CALL ATTEMPT ANSWER Answer 200 OK

P CALL ATTEMPT ORIGINATING SERICE CODE Midcall N/A

P CALL ATTEMPT TERMINATING SERICE CODE

P CALL ATTEMPT ORIGINATING RELEASE Release, NetworkRelease BYE, CANCEL

P CALL ATTEMPT TERMINATING RELEASE Release, NetworkRelease BYE, 3xx, 4xx,

5xx

P CALL ATTEMPT REDIRECTED N/A 3xx

P CALL ATTEMPT QUEUED N/A 182 Queued

1 The service filtering mechanism in IMS networks is briefly explained in Chapter 1.

Standards Capabilities and Directions 97

S-CSCF MSC

SIP Server

SCF

gsmSCF

SCF

SCS SCS

…

ISC (SIP) CAP

Parlay

ASP Domain

IMSS S7

Figure 6.4 Parlay abstraction of IMS and SS7 network events

tourists or business travelers. If both these applications wish to push their content to the unwary

visitor through a voice announcement that is being played as soon as the visitor connects for her

first call in the new city, things will go awry. Which application will receive control over the call

object representing the call in the network may depend on service provider policies, service level

agreements, etc.

The single point of control principle is enforced by the SMG by checking for overlapping trigger

criteria, as depicted in Figure 6.5. The criteria may overlap if both originating and terminating

address ranges overlap, and if the same numbering plan is used and applies to the same notification

type (i.e. applies to the originating or terminating call model). But this alone is not enough. Some

events are mutually exclusive in that they can never both occur during the same call, and hence

will never lead to applications interested in these events to compete for control over the call. For

instance, a person cannot at the same time answer and not answer a call, and therefore the events

for ‘busy’ and ‘answer’ will never both occur during the same call and therefore are said not

to overlap.

The Generic Call Control service has a number of limitations in terms of the functionality and

control it provides. For example, only two call legs can be modeled (prohibiting for instance the

modeling of conference calls) and these legs cannot be controlled individually (prohibiting for

instance the playing of an advice-of-charge announcement to one part in the call only). Application

initiated calls (sometimes referred to as third party calls) cannot be supported either. The reason for

this is historic and is a consequence of modeling GCCS closely after the CAMEL service in 3GPP

networks. Since the InitiateCallAttempt operation from the IN-CS2 model is not supported in the

CAP protocol, there is no standardized mapping towards the createCall API method supported in

GCCS. Invoking createCall results in the creation of an IpCall object in the Call Control SCS, and

not to the creation of an actual call in the network

The IpCallControlManager interface provides the manager interface for the GCCS service. Trig-

ger Detection Points can be armed using enableCallNotification and, if fired, are reported up to

98 Parlay/OSA: From Standards to Reality

App A App B App C App n

CC_Mgr

Other
MSC

SCP

SSP

SMG

Trigger criteria App A

Trigger criteria App B

Trigger criteria App C

Trigger criteria App n

1 Network event
2 callEventNotify (Monitor Mode)
3 callEventNotify (Interrupt Mode)

1

2 2 23 Overlapping trigger criteria

ASP Domain

Network
Operator
Domain

Call Model

Call Model

Switch)

(digital
Switches

Other
Switches

Figure 6.5 Single point of control

the application using callEventNotify. For an introduction of Trigger Detection Points and Even

Detection Points, the reader is referred to Appendix A on Call Models [Parlay@Wiley]. In addition

to the management and reporting of static triggers, the IpCallControlManager interface can be used

to perform load control on calls in the network controlled using the GCCS APIs.

Event Detection Points are armed in the network using the routeReq method of the IpCall inter-

face of GCCS, and hence are reported back up to the application using the routeRes method. Since

multiple Event Detection Points can be armed for the same call, the routeRes method may be

invoked multiple times for the same call. Time-based call supervision, for the purpose of prepaid

charging, is supported through the superviseCallReq method. Further charging capabilities are sup-

ported through setAdviceOfCharge, to allow the sending of call charging information to the caller,

and setCallChargePlan, to set a specific charge plan for the call. Furthermore, additional digits can

be collected, using getMoreDialledDigitsReq.

6.5.2 MPCCS

There are many similarities between GCCS and MPCCS. For instance, we see the overload control

capability in the manager interface, and the call supervision and charging capabilities in the call

interface recurring. We see them recurring, since as you recall the inheritance relation between

GCCS and MPCCS was broken.

In addition to similarities, however, there are also significant differences. For instance, the pattern

for notifications in the manager interface is different. In addition to the mechanism to arm Trigger

Detection Points and report them back to the application (createNotification and reportNotification),

Standards Capabilities and Directions 99

there is also support for enabling of triggers that were bulk provisioned via some offline OA&M

mechanism (enableNotifications and disableNotifications). We see this new pattern for the manage-

ment of notifications return throughout the Parlay Service Capability Features.

As in GCCS, call supervision, advice of charge, and charge plan functionality is supported on

the IpMultiPartyCall object. Routing to individual parties in the call is performed by invoking the

createAndRouteCallLegReq method. There is no support for a createAndRouteCallLegRes method,

as the arming of Event Detection Points occurs per individual leg, and hence is supported on the

IpCallLeg interface.

The createAndRouteCallLegReq method is a so-called convenience function, as it combines the

functionality of creating an IpCallLeg object (createCallLeg) with routing it to a specific destination.

As the MultiParty Call Control Service provides leg manipulation capabilities, in addition to the

IpMultiPartyCall interface, there is the IpCallLeg interface to control individual parties in the call.

The routing function now occurs on the level of the CallLeg object, rather than the Call object, as

was the case with GCCS. There is no routeRes method supported, as the arming and reporting of

Event Detection Points occurs through the eventReportReq and eventReportRes methods.

In order to build multiparty calls incrementally call leg object can be attached (attachMediaReq)

and detached (detachMediaReq) from their associated call object.

6.5.3 MMCCS

The MultiMedia Call Control Service inherits from the MultiParty Call Control Service, and hence

includes all the leg manipulation functionality. The IpMultiMediaCallControlManager interface, in

addition, supports notification specific to media streams. This includes for instance the direction of

the stream, certain audio codecs (e.g. G-711) in the case of an audio stream and video codecs (e.g.

MPEG-1) in the case of a video stream.

The call object for MMCCS (IpMultiMediaCall) introduces call supervision based on volume,

rather than based on time.

6.5.4 CCCS

The Conference Call Control service allows the client application to setup multimedia conferences

(multimedia, as this interface inherits from MMCCS). Conference resources are managed via the

IpConfCallControlManager interface.

The CCC SCF provides management capabilities for the entire conference, such as basic floor

control, chair selection and speaker appointment, as well as management of sub-conferences, includ-

ing the ability to create, merge, and split sub-conferences and move parties from one sub-conference

to another.

Sub-conferences may be used for instance to build up a large conference out of smaller confer-

ences, or can be used for a subset of participants to have a private consultation. Conferences can be

created at a specific time determined in advance, based on a reservation, or can be created directly,

through the invocation of the createConference method. Several conferencing policies can be sup-

ported through the changeConferencePolicy method. For example, participation in the conference

may be upon invitation only. In another example policies may determine whether the video stream

is assigned by the conference chair, or automatically assigned to the conference participant who

has the floor at the time.

6.6 Part 5 – User Interaction (UI)

One straightforward way of making applications more personalized and adapted to a subscriber’s

specific wishes or preference profiles, and thereby enhancing the end-user experience, is by directly

interacting with the subscriber when deploying and delivering the application. User interactions

can be used to guide subscribers through a decision process or menu structure (press ‘1’ for hot,

100 Parlay/OSA: From Standards to Reality

‘2’ for cold), as a kind of heartbeat or pacing instrument (press ‘OK’ to continue), explicitly to
solicit input (please enter your 4-digit PIN), or to provide feedback on the ongoing session (‘you

are being redirected, please hold’, or ‘you have 8 dollars and 20 cents left’).
Network capabilities used to realize user interactions may range from recorded voice announce-

ments and playing DTMF tones in band and SMS or USSD out of band from the traditional

telecommunications world, to pop-windows, or menu-driven and browser-based dialogues in the
packetized data communications world. Another way to express this distinction in possibilities is

to recognize two categories of user interactions: those that occur within the context of a call and
those that do not. The first category is referred to as Call Related User Interaction, whereas the

second category is termed Non-Call Related User Interaction.
In a Parlay context, the User Interaction SCF [3GPP 2004k] provides an important capability that

may be leveraged in the context of a charging call flow, to obtain user approval for a transaction

that impacts her account balance. It is also useful that users be notified of events important to
them, such as when certain location-based applications are trying to obtain their location in order

to provide location-specific content to them. In either case, a means has to exist for the SCS to
notify the user of a certain occurrence during application request processing, and to obtain her

approval, feedback, or other type of input if needed. Another example of where this may be used

is to notify users of changes in the presence or availability status of other users, etc.
Such a capability presents the Service Mediation Gateway with a convenient mechanism to

push alerts to a handset and receive responses to these notifications and take these contents into
considerations during further request processing.

A specific example may be a WAP Push alert to a user’s handset, sent by the UI SCF through
communication with a WAP Push Proxy [WAP Push]. The user may generate responses by loading

the URL reference from the alert, and interacting with the server that hosted this page via HTML

forms, while the server in turn extracts these data using a CGI-script, and making the message con-
tents available to the UI SCF in question. This innovative user interface enables users to personalize

features and services on their phone very easily.
The User Interaction SCF is the link between Parlay applications and their users. The User Inter-

action SCF allows client applications to send notifications to an end-user and to play announcements
and collect information from an end-user. Users can access an application from different devices

(PCs, mobile phones) using different presentation protocols (HTML, VoiceXML, SMPP) and using

other network resources, e.g. Intelligent Peripherals. The purpose of the User Interaction SCF is to
provide client applications with a generic interface to handle these different access types.

Figure 6.6 shows pictorially an example of how Call Related User Interaction can be used to
play an application-initiated announcement to Alice, the end-user. The panel in Figure 6.6 shows

the sequence of steps involved in the example scenario.
An example scenario for an application using the Non-Call Related User Interaction capabilities

to push content to end-user Alice is illustrated in Figure 6.7. Here, the User Interaction SCF interacts

with the GMSC in the network to govern the delivery of SMS stock quotes.
There are striking similarities in design and use of patterns between the call-based User Inter-

action service and the Call Control APIs, which makes the UI SCS easy to understand. One
exception that is immediately obvious is the different naming convention for the method in the

manager interface to report on the firing of trigger. The IpAppUIManager interface supports the

reportEventNotification, whereas, according to naming conventions, we would have expected report-
Notification. The reason for this is backwards compatibility and not supporting method overloading.

In case an error is found in the definition of a specific method, this is corrected in the standards
specifications. However, because of backwards compatibility considerations, existing methods can-

not be updated thereby creating two methods of the same name with slightly different behavior.
Hence, a new and correct method is introduced, with a new but similar name. The existing and

incorrect method will be deprecated.

When looking at sample User Interaction scenarios, one quickly realizes there is a close rela-
tionship between the Call Control service and the User Interaction service. For instance, the UI

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

1
0
1

Time App n

CC

SCP

SSF

SMG

0 The ‘Time’ application performs the Framework handshake
 and discovers the Call Control and User Interaction SCF

1 The Time application creates a Call Control Manager and
 subscribes to call origination events

2 The time application creates a UICall object
3 Alice makes a call to 1-800-TIME
4 The SSF sends the CAP InitialDP operation to the SCP
5 The SCP notifies the CC SCF via proprietary means
6 The CC SCF notifies the Time application by invoking the
 callEventNotify method

7 The Friends application instructs the UI SCF to play a voice
 announcement, by invoking sendInfoReq

8 The UI SCF communicates this request to the SCP via
 proprietary means

9 The SCP sends the CAP ConnectToResource operation to the
 SRF

10 The SCP sends the CAP PlayAnnouncement operation to the
 SRF

11 The announcement gets played to Alice, notifying her of the
 correct time

12 Once the announcement has completed, the SRF sends a CAP
 SpecializedResourceReport to the SCP

13 The SCP notifies the UI SCF of the successful announcement
 via proprietary means

14 The UI SCF notifies the Friends application by invoking the
 sendInfoRes method

ASP Domain

Network Operator
Domain

SRF

MSC
(digital
Switch)

FWK UI

0
1 2

3

4

5

6 7

9

10

11

12

8

13

14

Other
Switches

Other
Switches

Figure 6.6 Call-related user interaction: announcement example

1
0
2

P
arlay

/O
S

A
:

F
ro

m
S

tan
d
ard

s
to

R
eality

Stock
Quote App n

UI

Other
Switches

Other
Switches

SMS
GMSC

SMG

0 The StockQuoteapplication performs the Framework handshake
 and discovers the User Interaction SCF

1 The StockQuoteapplication creates a UI object and instructs the
 UI SCF to send an SMS by invoking the sendInfoReq method

2 The UI SCF relays the request to the SMS-GMSC via
 proprietary means

3 The SMS-GMSC sends the MAP SendRoutingInfoFor SMreq
 to the HLR to find the serving MSC for Alice

4 The HLR responds with the MAP Send RoutingInfoForSMconf
 containing the routing info for Alice

5 The SMS-GMSC uses the routing info to send the MAP
 MTForwardShortMessage to the serving MSC

6 The serving MSC delivers the SMS with the stock quote to Alice

7 The MSC reports the successful delivery by sending the MAP
 MTForwardSMConfto the SMS-GMSC

8 The SMS-GMSC forwards this acknowledgement to the UI SCF
 via proprietary means

9 The UI SCF completes the transaction by invoking the sendInfoRes
 method

ASP Domain

Network Operator
Domain

MSC
(digital
Switch)

FWK

0
1

2

9

6

HLR3 4

5

7

8

Figure 6.7 Non-call-related user interaction: SMS example

Standards Capabilities and Directions 103

SCF can be used to play a recorded voice announcement to parties in a call setup using the CC

SCF. Upon closer inspection, we see the relationship is even tighter. The createUICall method is

used to create a new user interaction object for call related purposes. It takes as input the identifier

of the call or call leg object representing the call with which the user interaction is associated. So

we see the call or call leg object’s reference is passed to the UI Call object to provide means to

correlate those two in the Parlay gateway. Note that no standardized API exists for sending the

object reference from one SCS to another, and proprietary means would be required. If both SCSs

are supported on the same physical node, this may be easy to realize. But if both are supported on

different physical nodes, or provided by different manufacturers, this may not be possible. When

deploying a Parlay solution in your network, or when designing your Parlay Gateway platform,

these considerations are important to bear in mind

The IpUICall interface provides the application with the ability to prompt the end-user for input

and subsequently record a message (recordMessageReq). The sendInfoReq method on the IpUI

interface can be used to play back the recorded message. Previously recorded messages can be

deleted using deleteMessageReq.

6.7 Part 6 – Mobility Management (MM)

If one feature can be said to characterize mobile networks, it is of course the fact that the users are

mobile. That is rather obvious, but it does introduce the complex task of mobility management to

the already involved procedures of basic call processing in telecommunication networks. Hand-over

of voice channels needs to occur when a user moves between coverage areas, users have to be

paged before a call attempt can be terminated, roaming agreements are required to be in place

when changing networks, subscriber data are copied from the home location to whichever switch is

serving the user at a particular moment in time, etc. However, the result of these added complexities

is that it is possible to know where a mobile user is and this knowledge can serve as a value-

add to applications. Indeed this feature is often presented as the hallmark of mobile applications.

Information related to the position of a user can be taken advantage of and be embedded in the

service logic of location aware applications. Both behavior of an application as well as the content

may be adapted depending on the user’s whereabouts. The Mobility Management SCF of Parlay

covers both the user location as well as the user status [3GPP 2004l]. User Location, as the name

suggests, pertains to the location of a user, be it geographical location or network location, whereas

User Status concerns the network availability of a user.

Before we take a more detailed look at the various mobility management interfaces, we first

introduce a number of communication patterns used across these interfaces. The asynchronous

request pattern, constructed by the triplet of Request, Response, and Error, is a common pattern

across the entire Parlay suite as we have seen, and is supported on each of the interfaces within

the Mobility Management SCF. This pattern can be used for one-off or irregular location or status

requests. The triggered request pattern allows the arming of a trigger for the generation of reports,

based on for example entering or leaving a given location area, or a change in status. The triggered

request pattern supports a start and a stop request on the server interface, an error message and the

actual triggered report on the application interface. The periodic request pattern is a variant of the

triggered request pattern where the trigger is generated by the time out of a periodic timer. Like

the triggered request pattern, the periodic request pattern supports a start and a stop request on the

server interface, an error message and the report itself on the application interface.

6.7.1 User Location

The User Location SCF allows the application to obtain the geographical location of both mobile

as well as fixed subscribers, although perhaps periodic location reports may reveal a certain lack of

moving about regarding these latter types of users. Two types of asynchronous location requests are

supported, i.e. a simple request for the location of one or more users and a more advanced location

104 Parlay/OSA: From Standards to Reality

request. The simple request merely takes one or more user addresses as input, and delivers the

location. The location is provided in terms of geographical location coding as defined in [WGS84]2,

which defines a location as a certain shape or surface (an ellipsoid3) at a given latitude-longitude

pair. The advanced location request, called extended location request, allows the application to be

more specific when requesting the location. For instance the application has the ability to specify

a certain response time for the report or accuracy of the returned location data. As a result of such

an extended request, the returned report is also more involved, i.e. in addition to the geographical

position as returned with the simple request, the additional information indicated in the extended

request is returned as well.

The current whereabouts of a given subscriber is privacy sensitive information. In most cases,

unlawful, unsolicited, or inappropriate access to privacy information is safeguarded by local,

national or regional authorities or regulatory organizations. Access to location information by third

party applications, through the User Location SCF, is bounded by the privacy restrictions imple-

mented in the network due to such regulations. For instance in 3GPP networks, a distinction is made

between various service types seeking to access location information. Access must be granted to

emergency services (as we will see later in this chapter), the network operator may access location

data for the routing of calls, but access may be prohibited for tracking services or location based

information services. In addition to regulatory provisions in the network regarding access rights

to location data, the Service Level Agreement between the Parlay application and the network

operator, for use of the User Location SCF, may add auxiliary restrictions to safeguard further the

privacy of user data.

The User Location SCF supports both the triggered as well as the periodic request pattern. Both

these requests return the extended location reports, rather than the simple location reports. The

supported criteria for triggered requests, which are contained in a separate interface IpTriggere-

dUserLocation, are either the entering or leaving of a certain location area, again defined using

geodetic location coding [WGS84].

Figure 6.8 provides an example of the use of the User Location SCF, where the Parlay API invo-

cations are mapped towards the LIF MLP operations towards the GMLC. The network architecture

and protocol aspects of Location Based Services were introduced in Chapter 1.

6.7.2 User Location Camel

As opposed to the User Location SCF, which retrieves geographical information for the application,

the User Location Camel SCF provides the ability to attain network-related location information.

This network location information, such as a Cell Identifier, has no direct relation to geographical

location. The User Location Camel SCF supports all three patterns of direct asynchronous, triggered

and periodic location requests.

The trigger criteria differ from those of the User Location SCF, as geographical areas have no

significance here. Rather, network location reports can be generated as a result of a location update

occurring within a given VLR area, or when a user moves from one VLR area to another.

The returned location reports differ as well. Network location information is returned to the

application, as opposed to geographical information. The CAMEL location report may contain a

VLR number, which gives a very crude and far-flung indication of location. The CAMEL location

report may also contain a slightly more accurate location indication, in the form of a Cell Global

Identification (CGI) or a Location Area Identification (LAI). A LAI consists of a mobile country

code, a mobile network code, and a location area code. A CGI consists of the same, and in

addition a cell identification. Network location information provided by the CGI or LAI can be

mapped onto geographical coordinates, although the granularity of latitude-longitude can never be

2 WGS84 is a location positioning reference system used for GPS satellite navigation and air traffic control

systems. It is useful as it provides a way to express any given location in a universal manner.
3 An ellipsoid is a smooth mathematical surface that best fits the irregular shape of the earth’s surface.

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

1
0
5

MSC
(digital
Switch)

Other
Switches

Other
Switches

HLRGMLC

WRUASP Domain

SMG

FWK UL

1

2

3 4

5

6

7

8

9
0

Steps involved:

0 WhereAreYou (WRU) application performs the
 Framework handshake

1 WRU uses the UL SCF to request the location for
 Alice

2 UL SCF uses the LIF MLP protocol to send the
 location request to the GMLC in the network

3 GMLC performs a query to the HLR to find the
 serving MSC for Alice

4 HLR responds with the MSC address

5 GMLC requests Alice’s location from the serving
 MSC

6 MSC pages Alice’s terminal device

7 MSC returns Alice’s location to the GMLC

8 MSC packages Alice’s location in the result to the
 LIF MLP location request in (2)

9 UL SCF packages the LIF MLP return into a
 Parlay location report as a response to (1)

Network Operator
Domain

Figure 6.8 User location: location based services example

106 Parlay/OSA: From Standards to Reality

achieved. However, depending on for instance the size of the particular cell site a certain precision
can be reached. More specific information on CGI or LAI encoding can be found in [3GPP 2004c].

The astute reader will have noticed that the User Location Camel SCF runs aground in the
shallow waters of network dependence. It is fair to comment that the User Location Camel SCF

violates one of the basic design principles of Parlay. The reason for this is historic, if you will. The
User Location Camel SCF was designed in the days when 3GPP and Parlay were not yet working

together in unison, as they are now in the Joint Working Group. 3GPP required a location API that
could expose the somewhat limited location capabilities supported by the CAP and MAP protocols.

There was not yet any 3GPP network support for the collection and dissemination of geographical

data. For practical purposes and for reasons of backwards compatibility, the User Location Camel
SCF continues to be supported. Finally it is worth mentioning that the User Location SCF can

be implemented on a CAMEL based system as well, however, the accuracy of the geographical
information returned is restricted by the granularity of the network user location information.

Figure 6.9 shows the same WhereAreYou (WRU) application as in Figure 6.8, though in this
example scenario the network capability is provided through CAMEL functionality.

6.7.3 User Location Emergency

Emergency calls in mobile networks are treated as a special type of call. For instance they use a
specific numbering plan (e.g. ‘911’ in North America does not adhere to the scheme of local and

long distance numbers) and often have a higher priority in the network than regular calls (or may
even pre-empt ongoing calls), to ensure guaranteed completion of the emergency call in busy hours.

Often there are regional regulatory requirements that mandate the support for retrieving location
information regarding the user placing the emergency call, such as the FCC’s E911 requirements.

Such additional information accompanying an emergency call originated from a mobile phone will
aid in timely dispatching emergency medical support or law enforcement staff to respond to the

emergency call, in case urgency is required or in case a victim is incapacitated and unable to
provide the location.

Location requests for emergency calls are obviously only applicable to wireless users. For a

fixed line phone call to an emergency number, the location is known in advance as any fixed line
is registered at a given address (‘just follow the wire’).

The User Location Emergency SCF allows an application to obtain the location of a mobile user
who initiated an emergency call, using the information that accompanied the original emergency

call. This information may include generally available data such as the user’s phone number and
mobile phone equipment identifier. The information may also include very specific emergency

service related parameters. An example is the telephone number of the emergency service provider
(such as a dispatcher) and its associated Location Services (LCS) client, or the telephone number

used to route the emergency call from the switch where the call originated to the emergency service
provider. The actual location request itself is the same as used with the extended location request

in the User Location SCF, that is, the very accurate geographical position.
The application also has the possibility to subscribe to triggered emergency location reports,

based on whether emergency calls are originated or released. Such a subscription does not relate to
an individual emergency call, but to all emergency calls by all possible mobile users placed during

the time of the subscription.

Here again we see that Parlay seems to have strayed from the network and protocol indepen-
dence design principle, however arguably for better reasons than is the case with User Location

Camel. A conscious decision was made to depart from the principle in order to fulfill very specific
requirements, and mandated regulatory requirements at that.

6.7.4 User Status

A telephony switch maintains data on the status of a user for the purposes of both basic call
processing as well as switch-based or IN services. Such network user status may for instance indicate

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

1
0
7

HLRSCP

WRUASP Domain

SMG

FWK UL

3

4

5 6

2

1

7

8
0

Steps involved:

0 WhereAreYou (WRU) application performs the
 Framework handshake

1 Alice’s terminal device registers with the MSC

2 The MSC updates Alice’s HLR record with Alice’s
 current network location

3 WRU requests the network location of Alice

4 The UL SCF relays this Parlay request via some
 proprietary means to the SCP

5 The SCP queries the HLR for Alice’s network
 location using a MAP AnyTimeInterrogation
 operation

6 The HLR responds with Alice’s network location

7 The SCP relays this information via some
 proprietary means to the UL SCF

8 The UL SCF packages the information in the User
 Location CAMEL report, as a response to (3)

Network Operator
Domain

MSC
(digital
Switch)

Other
Switches

Other
Switches

Figure 6.9 User location Camel: CAMEL example

108 Parlay/OSA: From Standards to Reality

that a given user is already engaged in a telephone call (‘busy’ status), and hence completing the

voice path for a call attempt to that user would be wasteful of processing and scarce resources.

Instead, the switch could send a call waiting indication to the user. Similarly, a network user status

of ‘not reachable’ may be used to redirect a call attempt to that user’s voice mailbox.

Since such network user status is maintained and available in the network, it may be considered a

service capability. Applications may employ the User Status SCF to obtain the network user status

of a given user. Three possible values for user status are supported, i.e. ‘reachable’, ‘not reachable’,

and ‘busy’. Note that this is network user status, that is to say the status of a user as it is perceived

by the network. A user that shows as ‘reachable’ may still be unavailable to take a call. Use cases

that make use of the status and availability as experienced or indicated by the user are dealt with

when discussing the Presence and Availability Management SCF later on in this chapter.

The User Status SCF supports the direct asynchronous request pattern, and the triggered request

pattern. No trigger criteria are set by the applications, as a simple change in network user status

would result in a triggered status report to the application.

6.8 Part 7 – Terminal Capabilities (TC)

Just as context sensitive applications may make use of knowledge of a user’s whereabouts, avail-

ability or personal preferences to enhance the user experience, information about the equipment

currently in use by a subscriber can enrich an application and boost its appeal. Advances in the

capabilities of, for instance, mobile phones, sporting ever-increasing high-resolution color displays,

allow application providers to exploit these device features and offer their end-users attractive

applications and compelling user experiences. At the same time, older, less capable devices are

deployed in the market in their millions and are expected to remain in wide use for some time

to come. It is therefore equally important to adjust the delivery of an application, for instance, to

suit the presentation on a small footprint, monochrome device. In fixed wireline environments the

diversity in devices is even more abundant, ranging from simple POTS phones to sophisticated and

highly capable VOIP clients on powerful high-end desktop PCs.

The Terminal Capabilities SCF [3GPP 2004m] provides the application with the ability to attain

such capabilities of the end-user equipment. The application has two means to retrieve the terminal

capabilities, either via a direct synchronous request, or through enabling triggered terminal capability

reports. Reports can be triggered by a mixture of changes, including hardware changes or even

complete handset replacements (i.e. placing the SIM in a new model) and software updates, ranging

from firmware retrofits to alterations in user preferences or terminal configurations.

In addition to polling for characteristics, the Terminal Capabilities SCF offers the application the

ability to be notified of changes in the terminal capabilities, using the methods supported on the

IpExtendedTerminalCapabilities interface.

The capacity to support the functionality offered through the Terminal Capability SCF is itself

bound by the qualifications of the terminal as well. That is, the end-user device has to be capable

to notify its capabilities to an entity requesting it. If the device does not support the dissemination

of its features and functional attributes, it does not make sense for an application to ask for them.

There is of course the possibility to store such features and attributes in a static database and have

the application consult the database, however such an approach would never be able to cater for

dynamic changes and would have to deal with issues revolving around keeping such data up to date.

But perhaps more importantly, this scenario relies on a one-to-one relation between an end-user

and her terminal device, whereas a typical end-user can be connected to the network using any

number of devices.

The requested terminal capabilities are returned to the application in the form of a Composite

Capabilities/Preference Profile header (CC/PP). CC/PP headers can be used to express presentation

and input capabilities of the device such as the dimensions of the display, the number of colors,

or the input device (a touch pad, a keyboard, or just the numeric phone key pad), as well as

communication capabilities of the device, such as the supported video codecs (e.g. MPEG-1, H.261)

Standards Capabilities and Directions 109

or the supported bearers (e.g. SMS, USSD, GPRS). In addition CC/PP can be used to articulate

end-user preferences. For instance, the browser on a device may be capable of displaying rich

marked-up text, but the end-user may prefer to read text messages in black and white plain text.

Or the device may support a Java virtual machine and be capable of software download, but for

security reasons the user does not wish to accept the download of Java scripts.

Note should be taken that the terminal capabilities are returned to the application in a format

defined as a string. As CC/PP headers conform to a specified and published schema, the application

can unambiguously interpret the string data element and consequently no a priori arrangements

have to take place between network operator and application developer to avoid interoperabil-

ity problems.

Summarized, the Terminal Capabilities SCF provides the application with the ability to retrieve

the capabilities of the terminal, in order to be able to adapt both content as well as delivery

mechanism to best address the terminal in use by the subscriber and offer a personalized, context

aware, user experience.

6.9 Part 8 – Data Session Control (DSC)

The Parlay specifications support the notion of a ‘data session’ and provide APIs to facilitate

application control of such sessions. This Data Session Control SCF [3GPP 2004n] enables third-

party applications to provide value added interception, intermediation and content-based billing

related capabilities in data session contexts. In this section we study the API itself, the functions it

supports, and then present a simple example to illustrate how it may be used.

The Parlay Data Session Control APIs enable an application to initiate and control a data session

on behalf of an endpoint. In other words, the end-user can request the establishment of a data

session. When the application receives this request, it utilizes the Data Session Control APIs to

request the setup and control of the associated session characteristics. The API supports two logical

objects for Data Session Control – a data session manager (that manages data sessions), and a data

session (that indicates characteristics of particular sessions and associated methods). A given data

session manager can control multiple data sessions, but any given data session is controlled by only

one manager.

The DSC SCF predominantly builds off of GPRS PDP Context establishment, defined in 2.5 G

GSM networks. The functionality supported includes connection setup and tear down, volume

based supervision (for Prepaid charging), notification of quality of service (re-)negotiation, and event

notifications (session setup, session established, and QoS changed). Other core network technologies

that may provide support for DSC include Internet Content Adaptation Protocol (ICAP) [RFC 3507]

and Open Pluggable End-Services (OPES) [RFC 3835,RFC 3897] capabilities being defined in the

IETF.

Services developed using the DSC API may vary from one network to another based on the

capabilities afforded by the supporting infrastructure components. Generally speaking however

examples include:

a) generic content-based billing;

b) re-writing URLs and redirecting HTTP requests (e.g. block inappropriate content to minors);

c) supporting Credit-Earning scenarios (browse some web pages, get credit for calls);

d) interjecting advertisements, coupons and other content into HTTP responses.

DSC thus enables service providers to leverage more profitably their partnerships with content

providers and charge for content requests on their behalf in a totally seamless manner supporting

capabilities such as content based charging and billing based on time of day, data volume, flat

rate with ceiling, web site accessed, quality of service (QoS), per event, per percentage of retail

purchases, etc. Switching from flat-rate to content based billing greatly improves profitability.

110 Parlay/OSA: From Standards to Reality

Data sessions are distinguished from Call sessions, as supported by the family of Call Control

interfaces, in that data sessions are connection-less whereas call sessions are connection oriented. In

other words, data sessions provide a logical connection between two endpoints without a dedicated

bearer path being setup along which the packets are sent. Although this pulls against the cardinal

virtue of underlying network technology independence, the attributes and features of data sessions

and call sessions differ significantly such that distinct control mechanisms are required and hence

justified.

Examples of these differences include:

• Call sessions are typically charged for the duration of the connection whereas data sessions are

by and large charged for the volume of data exchanged.

• The state machines for data sessions and call sessions are different and hence the events associated

with state transitions are different as well. This implies that the events reported through the

manager interface differ. For instance, when it comes to data sessions there is no equivalent of

the ‘off-hook’ event, which is so common and familiar in call sessions.

• The connectionless nature of data sessions means that endpoints are connected through setting up

packet links between various hops in the networks, whilst connection oriented denotes that calls

are routed, in traditional telephony networks, through a fixed path from origination to destination.

Despite these differences, in terms of interface patterns there are striking similarities between the

DSC SCF and for instance the GCCS SCF. Both these SCFs sport a manager interface; and both

feature a session interface (be the session a Call session or a Data session) that supports setting

up connections, charging for those connections (supervision), resuming sessions after interrupts,

tearing down sessions and cleaning up resources.

An example scenario of where the Data Session Control SCF can be used is pointed up in

Figure 6.10. A ParentalGuideApplication (PGA) regulates access to certain content in external data

networks by Beth, Alice’s daughter. Here, DSC uses the network’s capabilities to control GPRS

connections to either restrict or allow access to certain content from being completed.

6.10 Part 11 – Account Management (AM)

The Account Management SCF [3GPP 2004o] is neither about Customer Relationship Management

(CRM) and the management of sales accounts, nor about managing user accounts for network

access, as the name may suggest. Rather, the Account Management SCF pertains to the account

governing the user’s payment for both communication charges as well as imbursements for goods

and value added services acquired through electronic transactions using the network. Whereas the

Content Based Charging SCF deals with the usage of an end-user account (such as credit and debit

operations), the Account Management SCF provides the application with management capabilities

regarding the end-user account. The Account Management SCF allows the application to view and

monitor account data and view credit availability for a given user. Both SCFs could have been

combined into a single SCF, as both present the application with access to the same object, the

end-user account. However, as the nature of the operations differs, and hence the target applications

are expected to differ as well, the functionality is allotted across separate SCFs.

Such separation allows for distinct Service Level Agreements and differentiation in for instance

authorization stringency. For example this separation allows a network operator to provide an

application with the means to debit an end-user account for a service rendered, without revealing

information on the transaction history for the account. Transaction history could be used to predict

which customers are most likely to respond to a particular product or service promotion. Including

the ability to retrieve the transaction history for a specific end-user account in the Account Man-

agement SCF, allows only properly authenticated and authorized applications to access account

information.

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

1
1
1

Other
Switches

PGAASP Domain

SMG

FWK DSC

3

1

5
0

Steps involved:

0 ParentalGuideApplication (PGA) performs the
 Framework handshake

1 Alice’s daughter, Beth, attempts to setup an
 Internet connection to access certain content

2 The SGSN reports the session set-up event to the
 DSC SCF

3 The DSC SCF sends a reportNotification to PGA

4 PGA verifies the URL and decides to block access
 to the requested content and re-direct the
 connection

5 PGA sends a connectReq, with the new URL, to the
 DSC SCF

6 The DSC SCF instructs the connection to proceed
 towards the new URL

7 The DSC SCF monitors the QoS of the connection

8 The GGSN sets up the connection to the content
 server in the external PDN

9 If Beth disconnects, the DSC SCF instructs all
 media streams to be torn down

Network Operator
Domain

SGSN

SGSN GGSN

External PDN

Content

Content

Blocked
content

Notice

2

4

6 77

8

9
99

Figure 6.10 Data session control: content access restriction example

112 Parlay/OSA: From Standards to Reality

The transaction retrieval request is an asynchronous operation, as some slow filing systems may

need to be consulted for backed up records, and the history may have to be composed by pulling

records from different stores. As such a transaction history may be quite lengthy, depending on

the age of the account, or the frequency of transactions, the application has the ability to specify a

time interval for which the history is to be supplied.

Apart from retrieving the transaction history, an application is offered the means to view the

account balance for a given end-user. This is again an asynchronous operation, as the execution

may involve a database query to some offline financial system or account repository. Only monetary

accounts can be queried4.

The Account Management SCF also supports a notification mechanism that allows the appli-

cation to receive notifications of events regarding the end-user account. The account management

application can ask to be notified when another application is charging (debiting) the end-user

account, or whether the end-user has topped up the account. Furthermore the account management

application may subscribe to be alerted when a given end-user account dips below a certain thresh-

old or is exhausted (empty). Finally, a notification can be triggered when the account of an end-user

is being disabled.

The pattern used for the notification mechanism is the same as the one used in other SCFs

that implement a manager interface. However, despite the use of this pattern, and notwithstanding

the fact that the name of the interface (IpAccountManager) adheres to the naming convention of

manager interfaces, Account Management SCF does not employ a true manager interface. We have

seen that manager interfaces serve as a factory to create on demand, session related objects that have

a limited life span. A better name thus should have been IpAccountManagement, and perhaps a

different pattern for the notification mechanism may have avoided this potential cause of confusion.

Figure 6.11 shows the example scenario where, depending on the domain hosting the application,

access to certain network capabilities and the information stored in the network is either permitted

or barred.

6.11 Part 12 – Content Based Charging (CBC)

Rolling out innovative, value added applications to attract new customers and to reduce subscriber

churn is of paramount importance to service providers in the highly competitive and de-regulated

telecommunications market. But this objective misses the overall target of any commercial outfit if

that subscriber base does not generate any revenue. The service provider would require a means to

charge for those applications; it would require an instrument to charge for the value-add, presented

through the application. Not only transport or communication costs (either duration or volume-

based) are of interest, the service provider would also want to recover charges for the provided value-

add, the content. And also, for the purpose of retaining and growing the subscriber-base, the ability

to charge and bill your customers accurately, timely, and transparently is imperative. In addition,

charging for applications is used to recover financial investments in networking infrastructure,

application hosting facilities, and the like.

The Content Based Charging API [3GPP 2004p] would interface to billing systems that collect,

rate, and calculate charges for use of applications and the content delivered through them. Of

course, as for many other programmatic interfaces, the API towards the billing systems of a service

provider could be proprietary. However, even more so than for other SCFs, an open and standard

interface for charging is a crucial enabler in order for the third party access paradigm to take off

in any significant way. The reason is that it is unlikely to see a proliferation of applications, many

of them developed by small and independent software vendors, if they all need to undergo the

tedious, complex, and hence costly integration process with arcane and proprietary back-end billing

systems, for each network where the application gets deployed.

4 In the Content Based Charging SCF later on, we will see the support for both monetary (amount) as well as

non-monetary (unit) accounts. Non-monetary charging may include such systems as loyalty points or air miles.

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

1
1
3

WatchDog App X

ASP Domain

SMG

FWK AM

1
0

Steps involved:

0 The WatchDog application, hosted within the
network operator’s domain, performs the
Framework handshake

0a Unauthorized third party applications will not be
 able to discover the Account Management SCF

1 WatchDog wishes to check Alice’s account, by
 invoking the queryBalanceReq method

2 The Account Management SCF performs a
 database query on the billing system

3 The billing system returns the balance on Alice’s
 account

4 The Account Management SCF returns the balance
 as part of the queryBalanceRes method invocation

5 Alice tops up her account

6 The billing systems notifies the AM SCF via
 proprietary means

7 The AM SCF informs the WatchDog application
 via the reportNotification method invocation

Network Operator
Domain

Billing
System

4

Balance threshold

Current balance

App A App B App X

2

3

0a

5

6

7

Figure 6.11 Account management: account information access example

114 Parlay/OSA: From Standards to Reality

In order to plug revenue leakages (caused by careless or unrefined management of account bal-

ance thresholds) and to increase revenue generation capabilities, the Parlay Content Based Charging

solution needs to offer a multitude of pricing, rating and billing options. Such options include one

time fees, subscription fees, BOBO (billing on behalf of), free trials, discounts, bundling, time based,

volume based, event based, flat fee, reverse charging (coupons, rebates), monetary charging versus

unit charging, prepaid versus post-paid, direct charging versus reservation-based charging, etc.

6.11.1 Service Considerations

We will now have a closer look at the Parlay solution to these requirements. The Content Based

Charging interfaces support an IpChargingManager and IpAppChargingManager to enable the appli-

cation to create a management object and request the beginning of a charging session. Once such

a session is created, the associated objects IpChargingSession and IpAppChargingSession are used

to invoke charging related events.

Content Based Charging allows the service provider to monitor a subscriber’s credit level (e.g.

getAmountLeft) and take appropriate action against a particular subscriber if needed. Rating capa-

bilities (rateReq) exist that allow an application to request an item to be rated by the charging

service, to find out how much a subscriber should pay for an application transaction.

Content Based Charging supports the notion of reservations on a subscribers account (e.g.

reserveAmountReq). Reservations can be extended both in terms of time, as well as in terms of

the amount reserved. Additional credits may be requested or unused balances returned, according

to subscriber activity.

Based on usage patterns and the subscriber’s purchasing history, the service provider can antic-

ipate and inform subscribers, e.g. through the User Interaction SCF, when they are about to reach

their minimum balance thresholds. As an example, prepaid user access to the customer care center

may continue for a limited duration after expiration of the account, whereas premium revenue

generating services such as video downloads are suspended and only resumed after the account is

topped up.

6.11.2 Reliability Considerations

In addition to all the required functionality for charging and the flexibility in terms of billing

options, there are very stringent requirements on reliability of transactions as well. There is a greater

perceived need for the Content Based Charging SCS to address failure and recovery scenarios

more carefully and completely than other SCSs mainly because Content Based Charging deals

with monetary transactions. It is also rather more important for Content Based Charging to recover

from failures in a more timely fashion and restore user balances to their pristine, uncorrupted,

accurate state in recovering from as many errors as possible. Charging is a critical application

where transactions either need to be idempotent, or there needs to be a clean way of handling

rollback and commit operations. Callback functions are used to indicate to the application whether

each charging request was successful or failed for some reason (e.g. directDebitAmountRes). If the

callback fails due to a network error, the server knows to rollback the charge, since the application

will assume that the charge request did not go through.

Transaction idempotence refers to the concept of enforcing the appropriate kind of retry semantics

that holds in all cases, even in case of failures. There are several different kinds of retry semantics

in general, such as ‘at most once’, ‘at least once’ and ‘exactly once’. Since we need to ensure that

a given user is billed only once for each kind of transaction, we need to support the ‘exactly once’

retry semantics for the Content Based Charging SCS for balance affecting transactions.

This is achieved by adding the notion of a requestNumber to every transaction. The CBC SCF

tracks this requestNumber for the duration of the transaction and for some residual period thereafter.

The Content Based Charging APIs only permit one outstanding operation per charging session in

Standards Capabilities and Directions 115

progress. This is implicit in how the APIs are defined, but will not be obvious to the unwary reader.

The API requires that the requestNumber be used when a request is made, but the request number

for the next request is only made available with the ‘res’ or ‘err’ method, which implies that no

new requests can be made until a final response to the original request has been issued to the Client

Application by the Content Based Charging SCS (this is so because the request number for the

next request is needed for the next request that the Client Application may make).

Figure 6.12 demonstrates an example for the use of the Charging SCF. The Charging SCF can

be used by the MoviesForYou (M4U) application to bill Alice’s account for content delivered to

her terminal device.

6.12 Part 13 – Policy Management (PM)

Policy Management in Parlay [3GPP 2004q] pertains to the use of policies at the services layer. In

particular, it pertains to the role of policies in creating and managing high-level communications

services in networks that allow access to third party applications. [Hull 2004] provides a good

discussion on policy enabling the services layer. The origins of Policy Management are deeply

rooted in the area of Quality of Services (QoS) management of differentiated networks and resource

and configuration management for network equipment such as routers. In Parlay the concepts of

Policy Management are now applied to the area of services and applications.

The Parlay model, as we have seen in previous chapters, represents tremendous revenue potential,

but also the risk that accompanies relatively open access to network resources by third party

applications. The use of policies to express and enforce service criteria is a valuable addition in

the set of tools that are being used to define and design next generation services architectures

and associated products. At the same time, however, the model exposes a number of challenges

especially those that relate to network integrity, security and performance. The use of policies entails

the need to manage these challenges. The scope of policy management increases considerably when

we allow third party applications to access network services.

Policies are formalisms that are used to express business, engineering or process criteria. We

are familiar with their use in specifying routing or triggering criteria, e.g., as in routing tables for

network routers or as expressions for call triggers in network switches. To ensure that policies

are well defined, a policy information model is needed. Similarly an architecture that supports the

creation, storage and execution of policies is needed.

This section will introduce some service scenarios and use cases to illustrate how Policy Man-

agement can add value to Application Service Providers deploying third party services to end-users

subscribed to a communications network. A distinction is made between the use of policies in

Parlay service specific business logic and the use of policies in the operations and deployment of

a Parlay Gateway.

6.12.1 Service Scenarios

To some extent, policies can already implicitly be implemented and used by an application without

the explicit support of a Policy Management API. Certain policies can be implemented and enforced

as an embedded part of the business logic of an application. A frequently cited example is the check

for sufficient credit of a subscriber for an e-commerce application. As part of the business logic, this

application may verify the prepaid credit of a subscriber given the current charge of the transaction,

before allowing the actual transaction to take place. Not only does this check have to be performed

for each subscriber for every transaction, similar e-commerce applications involving chargeable

transactions would in all likelihood have to perform analogous checks. Rather than embed this

credit check in the business logic of each and every application in its service offering, a third party

Application Service Provider (ASP) may decide to facilitate a Policy Rule to be hosted in the Policy

Engine of the Network Operator. Each time a transaction is requested, the Network operator will

1
1
6

P
arlay

/O
S

A
:

F
ro

m
S

tan
d
ard

s
to

R
eality

Other
Switches

M4U App XASP Domain

SMG

FWK DSC

3

1

0

Steps involved:

0 MoviesForYou (M4U) performs the
 Framework handshake, and obtains references to
 the DSCF SCF and CBC SCF.

1 Alice attempts to setup an Internet connection to
 access certain content

2 The SGSN reports the session set-up event to the
 DSC SCF

3 The DSC SCF sends a reportNotification to M4U

4 M4U requests a reservation against Alice’s account

5 CBC SCF makes the reservation in the billing
 system

6 The CBC SCF reports the successful reservation to
 M4U

7 M4U instructs the DSC SCF to continue to
 connection

8 The connection to the content server in the
 external PDN is setup

9 Additional credit requests, that would result in the
 balance threshold being reached, are disallowed

10 If Alice disconnects, the DSC SCF instructs all
 media streams to be torn down

11 The account will be debited and session closed

Network Operator
Domain

SGSN GGSN

External PDN

Billing
System

Content

2

8

10

CBC

7

10

4

5

Balance threshold

Current balance

6

8 8

9

11

11

10

Figure 6.12 Content based charging: third party charging for content example

Standards Capabilities and Directions 117

perform the credit check on behalf of the Application Service Provider. So commonality and reuse

may be a reason for farming out policy enforcement to the Network Operator. Another motive

could be efficiency. The verification of a subscriber’s prepaid account for sufficient credit may be

executed far more efficiently directly on the prepaid system, i.e. the policy enforcement takes place

on the prepaid system, the application is notified of the result, and the policy decision subsequently

takes place in the application.

A second example shows the use of policies in a Messaging application. A familiar feature

of messaging applications is the ability to filter incoming messages according to certain filtering

criteria. This capability can be realized using policies, where the filter criteria, i.e. the policy rules,

are enforced in the network on behalf of the messaging application, rather than in the messaging

application itself. Personal filters, specific to individual subscribers, are most likely to be enforced in

the application itself, e.g. using preference settings. An example is a filter to separate business related

email from private emails in different message folders. Policies common to the entire messaging

application, for instance for performance reasons, or policies common to the Application Service

Provider’s business policies, for instance for legal reasons or based on the SLA between the ASP

and Network Operator, are candidates to be enforced in the network. An example is the screening of

incoming messages for adult content. This message filter criterion may need to be applied (enforced)

on every incoming message for every subscriber based on legal agreements recorded in the Service

Level Agreement (SLA). An example of a policy enforced for performance reasons is an upper

limit on the size of attachments to incoming messages.

6.12.2 Operations Scenarios

The previous section provided some example deployment scenarios for the use of policies by third

party applications. This section presents the use of policies for operational and business aspects of

the Service Mediation Gateway itself.

Parlay introduces the concept of providing third party applications with open, secure, and reg-

ulated access to core network service capabilities, while maintaining the integrity of the network.

Policy Management can provide the mechanisms and infrastructure for ensuring regulated access

and network integrity preservation. Consider the following example. During the discovery process,

the application is polling the Framework on whether it supports certain Service Capability Servers

(SCSs), based on a set of service property values provided by the application. The Framework will

try and match these service property values with those of registered Service Capability Servers.

In normal operation, the Framework will conclude the discovery process by returning the service

identifiers of those SCSs with matching property values. One could think through a number of

motivations why a Framework operator does not wish to disclose all SCSs that fit the profile of the

request by the application. For instance a particular SCS could be a high performance, fault tolerant

SCS only available to a limited number of mission critical applications, hosted within the Network

Operator’s domain. Or a particular SCS could be a system under test only to be accessed by a

trusted group of system testers. Another rationale could be privacy constraints. It is imaginable that

not all third party applications are allowed to discover the User Location SCS, as a subscriber’s

exact geographic whereabouts may be subject to privacy regulations.

Using policies to provide a more mature, user-friendly, stable and feature rich Service Mediation

Gateway product can be regarded as another example of non-service related employment of Policy

Management. Consider for instance the situation where the Framework is unable to create Service

Managers for a specific Service Capability Feature on a Service Instance Lifecycle Manager (SILM).

Normal operation specifies that an exception must be raised towards the Framework. However the

behavior towards the application is not clearly defined. Should the application try again after

receiving such an exception? Even more, the behavior towards other applications that wish to use

the same SCS is unspecified as well. A policy can be introduced to ensure that a failure to create a

Service Manager on a Service Instance Lifecycle Manager, results in the SCS being ‘unannounced’

by the Framework so that the SCS is no longer discoverable by third party applications.

118 Parlay/OSA: From Standards to Reality

6.12.3 Service Properties versus Policies

Before the introduction of Policy Management in Parlay, the only way to configure and tune an

SCS according to certain behavior definitions, technical limitations or business criteria was to

use service properties. The predominant difference between service properties and policies is the

level of flexibility to express these criteria. Service properties are static and are assigned at the

time when SCSs register themselves with the Framework. Policies can be installed at registration

time, application provisioning time, but also dynamically at application run time. Let’s have a

look at a Call Control service property defining the maximum number of parties that can be

involved in a single call. As service property, this upper bound on the number of involved parties

is instantiated when the SCS registers with the Framework. The application becomes aware of this

upper bound at service discovery time. The implementation of the application business logic needs

to be constrained by this upper bound. Defined in terms of a policy rule, however, the upper bound

can vary dynamically. For example, the upper bound may be further limited based on changing

load statistics in the network, previous behavior of the application, credit history of the ASP, etc.

6.12.4 Business Opportunities

The service and operations scenarios outlined above showed use cases where Policy Manage-

ment can be used to manage policy rules, either on behalf of the application, or on behalf of the

Framework. As such, Policy Management can be used to further enhance the existing roles and

relationships defined in the Parlay architecture. However, a whole new interesting employment of

Policy Management looks beyond just managing policy rules, and extends to managing the Parlay

client application itself. This provides new business opportunities for the Service Mediation Gate-

way operator. For instance, the feature of enabling and disabling policy rules can be incorporated

and exploited in a Service Creation Environment. Client applications can be tailored to address

specific end-user audiences or deployment scenarios, using network hosted policy rules. As another

example of new business opportunities, consider the case where policies are used to enforce certain

QoS related contracts defined in the SLA, e.g. where the Application Service Provider (ASP) has

agreed to pay for a specific throughput. Based on collected traffic statistics and usage profiling,

the Service Mediation Gateway operator may discover that the client application is running at its

transaction limits, and additional traffic may result in increased data loss and delay. The Service

Mediation Gateway operator may wish to notify the ASP of this fact and offer the possibility to

upgrade dynamically to a higher QoS class and change the SLA accordingly. With the function-

ality provided by Policy Management, such scenarios can be supported in a flexible, non-service

interrupting way.

6.12.5 The Policy Management Interfaces

The interface classes supported in the Policy Management SCF are quite extensive, with some

classes consisting of fifteen to twenty methods. The interested reader is referred to [3GPP 2004q].

Policies, or policy rules, capture operational or business criteria that can be managed, defined,

and executed by the Policy Management SCF. Within the scope of Parlay PM, policy rules are

defined by the Policy Rule interface. The semantic used by the Policy Rule interface to represent

these policies is of the form of productions, i.e. ‘If Condition then Action’. Hence, interface classes

are introduced for policy conditions and policy actions. Creating a condition and an action, and

associating the condition and action with the rule, create policy rules. The functionality to associate

the condition and action with a rule is provided by methods defined in the Policy Rule interface.

The creation of conditions is done through the use of the Policy Condition interface classes, whereas

the creation of actions is achieved via the Policy Action interface classes.

Three types of conditions are supported, each defined by their own interface:

1. Expression Condition – The Expression Condition interface is used to define a condition in terms

of an expression that needs to be evaluated.

Standards Capabilities and Directions 119

2. Event Condition – The Event Condition interface is used to define events that can trigger the

evaluation of a policy rule.

3. Time Period Condition – The Time Period Condition interface offers a means of representing

time periods for which a policy rule is valid.

Complex conditions can be built from single conditions, either using Disjunctive Normal Form

(i.e. an ORed set of ANDed conditions) or Conjunctive Normal Form (i.e. an ANDed set of ORed

conditions), offering maximal flexibility in the definition of conditions. A BNF (Backus Naur Form)

grammar is supported, which allows an expression to be defined in terms of variables of certain

types (e.g. integers or strings) and some arithmetic and comparison operators (e.g. ‘+’ and ‘>=’).

An example of an expression condition could be ‘call legs.allowed > call legs.requested’.

Two types of actions are supported, again each with their own interface, i.e. Expression Action

and Event Action. An action list can be constructed using several individual actions, each possibly

assigned with a priority indicating the relative order in which the actions need to be executed. The

Event Action can be defined to generate events, e.g. to report back to the application the result of

a policy rule evaluation. The Expression Action interface is used to define an action in terms of an

expression that needs to be evaluated. The possible expressions are somewhat more limited than

the expression conditions, i.e. a more limited BNF is supported. Also, no comparison operators are

supported, but instead the assignment operator is supported. An example of an expression action

could be ‘call legs.assigned = call legs.allowed’.

An example of a policy rule that could be constructed using these interfaces could be [IF

‘call legs.allowed > call legs.requested’ THEN ‘call legs.assigned = call legs.allowed’]. In this

example the Parlay application attempts to request a call to be set up to more call parties than is

allowed according to the Service Level Agreement. In that case, the number of call legs assigned

to the call is reduced to equal the upper bound agreed in the SLA.

Policies can be grouped and managed at certain levels of granularity. The highest level of

grouping is a Policy Domain (IpPolicyDomain interface). Within a domain, certain Policy Groups

may be created (IpPolicyGroup interface). The Policy Rules themselves (IpPolicyRule) exist within

a Policy Group. Rules then, as we have seen, consist of Policy Actions and Policy Conditions.

Policy Domain ‘Call Control’

Policy Group ‘3rd Party Call Control’

Policy Rule ‘Maximum Number of Legs’

Policy Condition
‘# allowed > # requested’

Policy Action
‘call allowed’

Figure 6.13 Grouping and management of policies

120 Parlay/OSA: From Standards to Reality

Several administrative type of methods are supported in all these interfaces, for instance iterators to

search through groups, the ability to create and delete groups and domains, and to find the domain

for a specific group, etc. The grouping relationships are depicted in Figure 6.13.

Figure 6.14 illustrates how the Policy Management SCF can be used to policy-enable the Frame-

work and the User Location SCF. In this particular example, full access to location information

of all subscribers is restricted to ‘Gold’ applications, whereas ‘Bronze’ applications are granted

somewhat reduced access.

6.13 Part 14 – Presence and Availability Management (PAM)

Everyone has played a game of phone tag at some point (‘Hi, I got your message about my message,

please call me back’) or has been involved in a high-speed chase on the electronic highway (‘I

sent you an email and left messages on your mobile and desk phone about the SMS I sent you,

where are you?’). Your communication experience could be greatly enhanced if you could simply

‘see’ when your colleagues or family and friends are online and available, and how they prefer to

be reached. There is tremendous value in real-time information about the ability and willingness

of contacts to communicate and about the best means for that communication. Such information is

often available in the network for various basic communications processes (e.g. handset registration,

call processing) but often dispersed across various repositories and locked in through the use

of dedicated protocols. The goal of Presence and Availability Management [3GPP 2004r] is to

establish a standard for collecting and mining information about identities throughout the network,

and maintaining and publishing the information about these identifies towards applications.

The benefits for end-users clearly involve an enhanced user experience, as it allows you more

accurately and predictably to contact other people, as well as provide you with means to manage

and filter inbound communications more flexibly. For network operators there are gains to be had as

well. The capability can make communication more efficient owing to more intelligent call routing

based on preferences expressed in terms of presence and availability information. For example there

is no need to page a mobile using scarce radio resources if that subscriber has indicated not to be

available for communication. Moreover, providing a caller with alternative means to reach a certain

subscriber may result in increased successful and hence billable sessions in the network, compared

to just a single incomplete attempt to a destination where the subscriber happens to be unavailable.

The concepts of presence and availability are related though subtly different. Presence denotes

whether a subscriber is able (e.g. online/offline) and capable (e.g. busy/idle) of communicating.

Availability further refines that information by indicating the subscriber’s ability and willingness to

share information about him or herself or to communicate with another subscriber. Availability can

be established through aspects like the mode of communication (‘Redirect to voice mail if I have

roamed out of coverage’), who is trying to reach you (‘Out of all my colleagues, only my boss can

call me in the weekend’), or subscriber preferences put in place by the addressee (‘During my daily

commute I do not wish to be disturbed’). So although presence is a prerequisite to availability, a

subscriber might be present but not available (to some).

Figure 6.15 demonstrates how the PAM SCF can be utilized to realize the Friends application

that allows Alice to manage her availability towards her buddies, based on her user preferences.

After working hours, Alice is available to friends only. Any call attempts by colleagues for instance

during the weekend are notified by the network towards the Friends application, and subsequently

barred.

The PAM Access SCF consists of four interface classes. There are interfaces to get and set

presence (IpPAMIdentityPresence), get or set availability (IpPAMAvailability), and to compute

availability in a given context (IpAppPAMPreferenceCheck). In addition, there is a manager inter-

face (IpPAMPresenceAvailabilityManager) to obtain access to the PAM service.

The PAM Event SCF deals with registration to presence events. This SCF supports an event

handler (IpPAMEventHandler) and a manager interface (IpPAMEventManager).

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

1
2
1

App A
(Gold)

App B
(Bronze) App n

FWK

Other
Switches

Other
Switches

MSC
(digital
Switch)

SMG

0 Both applications sign Service Level Agreements with
 the Framework. App A has a ‘gold’ agreement, while
 App B has a ‘bronze’ agreement

1 The Policy Management SCF is used to policy enable
 other SCFs, in this case FWK and UL

2 App A has full access to location information for all
 subscribers, enforced though policies

3 App B has limited access to location information for
 some subscribers, enforced through policies

0

ASP Domain

Network Operator
Domain

Policy
Mgmt UL

PDP

PEPPEP

HLRGMLC

0

2

3

1 1

Figure 6.14 Policy management: policy-enabling example

1
2
2

P
arlay

/O
S

A
:

F
ro

m
S

tan
d
ard

s
to

R
eality

Friends

PAM

Other
Switches

Other
Switches

MSC
(digital
Switch)

SSP

SMG

0 The Friends application performs the Framework
handshake, and discovers and selects the PAM and CC
SCFs. Alice creates a buddy list and adds Bob to her ‘friends’
category and Jack to her ‘work’ category. According to Alice’s
preference, friends are allowed to call her after work hours

1 Jack wants to call Alice, but sees in his presence application
that Alice is not available

2 Bob wants to call Alice, and sees in his presence application
that she is available

3 The SCP is notified of the call attempt through a CAP InitialDP
operation

4 The SCP notifies the CC SCF using proprietary means

5 The CC SCF invokes the callEventNotify method on the Friends
 application

6 The Friends application consults the PAM SCF regarding the

availability of Alice, using the getAvailability method

7 Bob is listed as ‘friend’ on Alice’s buddy list, and it is after working
 hours (5 PM), hence the call attempt can be allowed

8 The PAM SCF returns the availability of Alice towards the Friends
 application

9 The CC SCF is instructed to proceed with the call attempt

10 The CC SCF notifies the SCP via proprietary means

11 The SCP sends the CAP Continue operation to the SSP

12 The call from Bob to Alice is completed

1

3

Alice’s Buddy List

ASP Domain

Network Operator
Domain

FRIENDS

Bob

Jim

WORK

Jack

Jill

FWK

Alice

Bob Jack

Alice

Jane

Jim

Jack

Alice

Jane

Jim

Bob

6

0

2

SCP

4

CC

5
8 9

10

11

12

7

Figure 6.15 Presence and availability management: buddy list example

Standards Capabilities and Directions 123

6.14 Other Standards-defined SCFs

In addition to the ones covered thus far in this chapter, there are more SCFs that are part of the

Parlay standards specification suite. They are not covered in dedicated sections on their own in any

amount of detail, for one of two reasons: the SCF is considered dormant or the SCF is only a recent

addition to the entire suite and hence deemed to be still maturing. In the subsequent sub-sections,

these SCFs are briefly summarized, for the purpose of completeness.

6.14.1 The Generic Messaging Service (GMS)

The Generic Messaging Service [ETSI 2005b] has existed outside of the 3GPP subset of Parlay

specifications, as the messaging requirements within the 3GPP domain could be satisfactorily ful-

filled using the User Interaction SCF. Partly as a result of this circumstance, no standards attention

in the form of detailed peer review, input contributions or developer feedback has been paid to the

GMS SCF for a number of years. As such, the GMS SCF is considered to be dormant. This is

despite the fact that it is generally recognized and accepted that a number of faults, ranging from

minor to significant, are contained in the API definitions. In addition to the errors, the GMS API

is considered complex for simple messaging use. A good example to illustrate this point is the

necessity to create a mailbox object, followed by a folder object, followed by a message object in

order to send even a simple message. It is quite evident this layered design provides a processing

overhead for Instant Messaging applications.

Given the popularity of messaging applications, new requirements for messaging were defined

for Parlay. Rather than performing a major design overhaul of GMS, the Parlay standards commu-

nity has decided to design a messaging API from scratch, reflecting the improved understanding

of messaging technologies and fulfilling newly evolved and more advanced requirements. This

MultiMedia Messaging Service (MMM) SCF is described in Section 6.14.3.

6.14.2 The Connectivity Manager (CM)

The Connectivity Manager SCF [ETSI 2005c], like the Generic Messaging Service SCF, is not part

of the 3GPP subset of Parlay specifications. And like GMS, it has been a dormant specification

since its initial publication. For the purposes of this book, we shall suffice with a brief description

of its functionality.

The Connectivity Manager SCF provides an enterprise operator with the ability to manage its

network, which is being physically realized by resources and assets in the network of the Network

Operator. For instance, functionality is provided to setup and manage a Virtual Private Network

(VPN) consisting of virtual leased lines. The VPN can be made up of multiple sites, and the

Connectivity Manager SCF allows the enterprise operator to manage the VPN’s quality of service

(QoS) characteristics, and to manage individual pipes in the VPN.

In addition, the Connectivity Manager SCF can be used by the Network Operator to offer the

enterprise operator various templates for a virtual pipe in the VPN. Templates may be defined for

instance for high quality video conferencing or voice quality audio traffic, using QoS attributes

specified by both the enterprise operator and the network operator. The templates are then used to

create the virtual pipes in the network, on behalf of the enterprise operator.

6.14.3 The MultiMedia Messaging Service (MMM)

The MultiMedia Messaging service [3GPP 2005c] is the most recent addition to the Parlay speci-

fication set5. It has been designed in honor of the newly evolved and more advanced requirements

for messaging functionality and in recognition of the shortcomings and dormant state of the GMS

5 Note that the MultiMedia Messaging SCF is added in 3GPP Release 6, whereas for the purposes of this

book the discussion of all other SCFs is based on their 3GPP Release 5 version.

124 Parlay/OSA: From Standards to Reality

SCF. Since the MultiMedia Messaging service can still be considered to be maturing as a standards

specification, for the purpose of this book we will not include a detailed description of its func-

tionality. Rather, we will suffice with presenting an overview of its main design characteristics and

a brief summary of the functionality it provides.

The MMM SCF provides the client application with the ability to send, receive, and store

messages. Various messaging mechanisms are supported, including multipart messages (where the

header and the body parts can be accessed independently), text messages, mail messages (including

voicemail and email), and multimedia messages. Additional address parameters typically used for

messaging, like a cc-address and a reply-to-address, are defined for the MMM SCF.

For the mailbox messaging paradigm, mailbox management in the form of creating, opening

and closing of mailboxes, and the management of various folders within mailboxes, is supported.

Use of the mailbox interface however is optional so that non-mailbox messaging paradigms are

efficiently supported as well.

6.15 Support for Non-Standard SCSs and Value-Added Extensions

As we have seen in the previous sections of this chapter, the OSA standards define a set of 13 SCFs,

each of which provides programming interfaces to a given functional domain. Examples of these

include User Location, User Status, Presence and Availability Management, Charging, etc. However,

Service Providers might want to pre-package functional capabilities tied to other network element

assets (from non-OSA functional domains) and make them more easily accessible to application

developers with a view to leveraging their investments more efficiently. Alternatively, they might

want to access additional non-OSA-defined capabilities from even the standards-defined SCSs.

These requirements may be easily met through the development of non-OSA SCSs, and through

value added extensions to OSA-compliant SCSs. These topics are discussed in what follows.

6.15.1 Standards-defined and Proprietary SCSs

Service Providers that have certain network elements already deployed may decide they would like

the capabilities supported by these elements to be exposed to third party application developers to

enable them to build applications that can utilize this functionality, thereby leveraging their deployed

assets more efficiently, and using them more effectively in increasing subscribers’ reliance on their

networks.

Wherever these functional capability sets fall within the context of the standards-defined Service

Capability Function (SCF) specifications, it is indeed possible for a Service Capability Server (SCS)

vendor to build an SCS with targeted device specific mappings over suitable protocols to use the

network element in question.

When the functions provided by the network element do not relate directly to the standards-

defined SCFs, however, Service Provider requests for an API abstraction to the underlying functional

set through interfaces similar to those defined by Parlay may still be met. Service Providers and

Network Operators are typically more interested in these kinds of scenarios when they find there are

no standards-defined SCFs for the specific functional capabilities they want to make immediately

accessible as they start deploying Parlay/OSA-based solutions.

This is achieved by building a programmable interface atop the protocol primitives supported

by the underlying network element in a manner that ‘appears’ similar to (i.e. has the same overall

structure as) how the Parlay/OSA SCFs are defined. These SCSs are commonly referred to as

proprietary, non-standard, or non-Parlay SCSs.

6.15.2 Standards Directions

Again, as we have stated in previous sections, the Parlay specifications define a modular and exten-

sible architecture, whereby service capabilities can register themselves with the Parlay Framework

Standards Capabilities and Directions 125

in order to make themselves discoverable by client applications. Registration occurs based on a

name (e.g. P USER LOCATION) and a set of service properties. Properties can be generic (e.g.

‘service version’ and ‘supported interface operations’) as well as service type specific (e.g. ‘sup-

ported address plans’ and ‘support of GPS positioning’). A client application obtains the interface

definition for a given service capability (e.g. the IDL definitions, or the WSDL files), and then

contacts the Parlay Framework to discover whether such a service capability is available, and what

the specific service properties are.

The Parlay specifications have standardized this mechanism for a dedicated set of service capa-

bilities (i.e. the Parlay SCFs), by defining a set of service type names and the service properties, for

each of the service capabilities. However, the mechanism supports proprietary service capabilities

as well. Service Providers can extend the set of service capability names, by adding the name of

the proprietary service capability to the set of standardized service type names, and by defining a

specific set of service properties. In addition, the service interface definition needs to be published

to the client application.

Proprietary Service Capability Features that are registered with the Framework through the

aforementioned standardized mechanism can be discovered by client applications like any other

standardized SCF. Furthermore, the Framework will support all the Integrity Management func-

tionality such as Load and Fault Management for the proprietary SCF, in exactly the same manner

as it would for any standardized SCF.

Service Providers and Network Operators now have a means to provide client applications with

access to their existing value added service capabilities as well, in a controlled, secure, manage-

able, and billable fashion, through the provisions of the Parlay standardized architecture. This can

open up new revenue streams for existing assets. Furthermore, new proprietary value added ser-

vice capabilities can be integrated horizontally into the Parlay service layer, reusing the common

infrastructure and offering the same look and feel towards client applications.

6.15.3 Example Proprietary SCFs

This section provides three examples and possible rationales for a Service Provider to include

proprietary SCFs into their overall Parlay infrastructure. The reader should note that these examples

are indicative only, as there may indeed be several reasons to deploy proprietary SCFs.

1. The standards process typically takes time (e.g. involving multiple design iterations, scrutinized

reviews, etc.), sometimes creating a tension between being first to market and waiting for a

standards solution that enables a larger total addressable market. A Service Provider may opt,

while waiting for the standards process to take its due course and publish a standardized API

specification, to deploy a proprietary version of the SCF being standardized. The proprietary

deployment may serve to capture initial market share as well as to supply proof of concept. Initial

feedback may be submitted to the standards process, thereby adding rigor to the SCF design

and definition. Once the standards specification is published, the Service Provider may decide

to register the newly available SCF and replace the proprietary one. Needless to say, updates

are required to the client application, possibly resulting in a temporary disruption of service.

2. One of the design principles of Parlay is to be agnostic of specific communication protocols and

to design abstract interfaces. One of the benefits is the applicability of your client application

to a multitude of underlying network protocols and architectures. If however a Service Provider

will ever only deploy their highly customized client application using a given specific protocol

in their network, an abstracted API may result in loss of certain parameters and hence reduced

level of control and functionality. A proprietary SCF, expressly designed to take advantage of

certain specific protocol characteristics most effectively, may be the best solution in such a case.

In all likelihood, only niche applications will be able to benefit from such a proprietary SCF.

3. Parlay APIs expose network capabilities towards third party applications. For application deliv-

ery, however, also non-network capabilities may provide useful functionality. For example, a

126 Parlay/OSA: From Standards to Reality

User Interaction application may use the sendInfoReq method to send binary data to the end-

user’s terminal. The binary data may contain an MPEG encoded audio file. A particular Service

Provider may decide to offer a proprietary SCF, exposing an MPEG audio encoding API to the

client application, as part of its overall service delivery platform. The client application may

use this API to encode the binary data element to be sent using sendInfoReq, interacting with a

single integrated Parlay infrastructure, incorporating a proprietary SCF.

6.16 Summary

It’s been a long time coming, but this chapter finally introduced the Parlay APIs. We have chosen

not to provide a laundry list of all Service Capability Features in terms of the interface classes

and their methods. For this, the interested reader is referred to the standards specifications. Rather,

a general description of the functionality the APIs offer to applications is discussed, along with

examples and explanations.

7

Standards Capabilities
and Directions II – Scenarios
and Details

7.1 Introduction

In the first chapter of this book, the reader was exposed to various scenarios that discussed the

problems, uncertainties, frustrations and doubts faced by service providers, application developers

and end-users of the different networks. In the chapters that followed, we have looked at various

factors that contribute towards costs of building and integrating new services and applications into

today’s networks, the value these changes and new additions offer (revenue acceleration is typically

the main business driver behind this constant evolution), and how enhanced end-user experiences

result from this. Subsequently, we derived a set of requirements that would enable a quicker, more

cost-effective integration of new services and applications into networks, and demonstrated how

Parlay and OSA technologies try to meet these goals.

In this chapter, we first study the Parlay ecosystem and value chain, tying this to the discussion

of value-chains and service models from Chapter 3. We will build upon the technical content of the

discussions from these previous chapters to drive home these points, through a simple (but powerful)

and illustrate just what a difference standards-based programmatic APIs can make in terms of end-

user experience – this is our primary focus here. There are other lower level aspects of application

deployment relating to application stability, certification, high availability, reliability, performance,

and so on, and these are relegated to a later chapter dedicated to these issues (Chapter 13). Similarly,

deployment considerations for Service Mediation Gateways themselves merit separate discussion

on their own, and these are addressed in Chapter 11.

7.2 The Parlay Ecosystem and Value-Chain

In Chapter 3, we discussed various service models, and how the one that defined a set of service

enablers hosted within a services layer, is the one finding more widespread use today. We also

talked about how reuse of components from this services layer enabled the transition from the

paradigm that required re-integration of applications with individual lower level protocol elements

(‘the smoke stacks’ model) to one where the integration was done once and then leveraged multiple

times from within the context of a standards-defined API.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

128 Parlay/OSA: From Standards to Reality

Subsequent chapters, Chapter 5 and Chapter 6 in particular, have provided more background

around this, illustrating how a given application might leverage multiple SCSs as it processes a

single transaction from an application or end-user context.

The Parlay value chain may be viewed as the set of ‘tentacles’ that the application has into the

services layer – one to each SCS. The more tentacles, the more value is provided by the gateway.

Applications grow like mold on bread – the service mediation gateway is the substrate, and the

richness of the services layer (the number, type and usability of services) contributes directly to

the value provided to the applications. Admittedly, there is some symbiosis here as well, since the

greater the number of applications that ‘grow on’ this substrate, the greater the value the service

provider realizes for the SMG investment. A later section in this chapter will discuss the idea of

‘mixed mode applications’, which will serve to clarify further how both the applications and the

gateway can co-evolve to provide best value end-to-end.

Let us take one more look at the Parlay ecosystem. So far, we have concluded that two

components exist in this – the Parlay-compliant application, and the Service Mediation Gateway.

Obviously, the end-user is part of the equation somewhere (he/she connects to the application), but

is not directly involved in the ecosystem per se.

If we were to take a closer look, we see that from a business standpoint, each component in the

Parlay ecosystem individuates into separate elements – both the SMG and the Parlay application

software need to be implemented atop some platform. Telecom networks normally require ‘carrier-

grade’ (or high availability, high reliability equipment. The term ‘carrier-grade’ is explained in

more detail in Chapter 10) platforms upon which to host these components.

Thus, we have four parties that are involved in any service layer build-up – the providers of

the carrier grade platforms for services and applications (which may be the same), the provider of

the SMG software, and the provider of application software. The platform supplier may provide

value added capabilities such as application server containers, application hosting capabilities,

OAM&P1 tools and features, etc., to entice more application and service vendors to use its, instead

of competitors,’ platform. This extended Parlay value chain is depicted in Figure 7.1.

It is important for the reader to note that there are several companies that specialize in one

or more of these areas today, and some areas are getting more crowded than others as Parlay

technology takes off in a big way, while others have seen some form of consolidation over time

already. For instance, the application servers have been in use for some time, and that technology

was not developed to be Parlay specific. Thus, there has been some consolidation in that area already

with two or three clear winners emerging. A similar process is in the offing for Parlay gateway

and application vendors, with the more traditional Telecom Equipment Vendors2 and Application

Integrator firms well positioned to take the lead. Of course, as with all other classifications, there

are exceptions, and some small companies have been successful in making inroads with customers

outside their more traditional bases with their differentiating capabilities. Since this book is not a

report on the state of the industry today, nor a competitive intelligence report, we do not endorse

any particular products in any of these areas.

1 The term OAM&P is commonly used in telecom parlance to refer to Operations, Administration, Man-

agement and Provisioning. These capabilities are critical to the development of any telecom-grade service

and often Telecom Equipment Vendors will spend large sums of money building these capabilities into their

products. In many cases, Service Providers take these capabilities and features for granted, and assume that no

telecom-grade service will ever be delivered without them.
2 We posit that these companies are better poised because of their deeper understanding of network integration

issues and due to their wealth of experience in handling the arcane and involved aspects of the details of the

underlying telecommunications protocols, many of which require very specialized knowledge. However, at the

same time we concede that given the new free market economy, and the post Internet bubble talent dispersal,

such knowledge is no longer limited to Telecom Equipment Vendors, though it is still likely to be concentrated

there. The Telecom industry has been through some rather turbulent times in the past few years.

Standards Capabilities and Directions II 129

Application
Layer

Software

Carrier-grade Gateway Platform Hardware
provided by e.g. SUN, HP

Service Mediation Gateway Software
provided by e.g. Lucent, AePONA etc.

Application Server Platform equipment
provided by e.g. IBM, BEA, Appium

Application Software (Applications)
provided by e.g. Appium, IBM

Handset
Vendors

Handset
Software
Vendors

Handset
Application

Vendors

Handset
Software

Distribution

Network
Equipment

Network
Services

Service
Layer

Equipment

Service
Layer

Software

Service
Layer

Gateway

User Space Service Provider Space Application Provider Space

Note: All trademarks are the properties of their respective companies.

Service
Gateway
Software

Application
Layer

Equipment

Figure 7.1 The expanded Parlay value chain

7.3 Example Scenario

Scenario: Alfie goes to town!

Alfie was in Chicago on business and was staying at an expensive downtown hotel. After a

long day of meetings, he decided to take a walk and see some of the sights. Being a frequent

traveler, he had subscribed to the ‘Tourism Genie’ application offered by Utopia! Wireless. He

had noticed how Utopia!, not really a leader in services just a few years back, was now able

to offer so many new applications to their subscribers so quickly. Come to think of it, this

just started happening since their press release a few months back stating they had integrated a

Parlay/OSA service mediation gateway into their network.

Alfie did not know much about Parlay technologies, and quite frankly, he didn’t care. What

he did appreciate though, were the services offered to him. He was spending quite a few pounds

more on communications services these days, he smiled to himself, well, that was the price of

convenience. Tourism Genie came bundled along with a number of other services, and now he

was finding out that it alone was worth the price of the full bundle.

Alfie exited his hotel, and started walking down the street. His mobile was out and on, and

he activated the Tourism Genie (TG) program as he stepped out. Nice weather, he thought,

as he clipped his blue-tooth earpiece and microphone on. TG asked him if he wanted to take

a walking tour of the neighborhood. He said he’d very much like to. The application took a

moment to initialize factoring in its new surroundings, and was then ready to act as his tour

guide.

Alfie told TG he did not want to be disturbed during the walking tour by phone calls from

business associates, though he’d still like to take calls from his wife and son if they were to call

130 Parlay/OSA: From Standards to Reality

him. TG assented. TG interacted with him in multiple modes – some cues were visual and sent

to his mobile’s screen, while others were auditory. Many were synchronized. TG guided him

along Jackson Street to the river, and waited as he stood there on the bridge, looking down at

the ferries. After a minute or two, TG started telling him about the river, history, other details,

just as a real tour-guide would. Alfie knew he had the option to shut down the commentary at

any time, by simply staying ‘Stop!’. He could similarly use a vocal cue to restart the narrative

at any point in their journey as he wished.

Next, he asked TG for a list of points of interest in the vicinity. TG splashed a map onto

his screen with these clearly marked out with icons. He asked for a brief summary description

of each, and chose to walk by the Sears Tower, the Art Institute of Chicago, the Buckingham

Fountain, Lake Michigan, and the Field Museum, as TG read through the summaries. In response

to his request, TG dutifully plotted the optimal course past these landmarks indicating his

approximate tour duration, and also indicated other landmarks that may be visible along with

photographs on the mobile screen so Alfie could identify them.

As he passed by the Sears Tower, TG asked Alfie if he wanted to go in to the Skydeck, and

observe the City from there. If so, he could buy the ticket through the program, and save some

time (no waiting in line to purchase tickets). Alfie thought this was a good idea, and made the

purchase – this would appear on his phone bill. Utopia! TG had deals with many tourism hubs,

and he even got a discount on the purchase. A voucher receipt and code were presented to Alfie,

so agents there could verify payment prior to his being permitted onto the Skydeck.

As he walked around on the Skydeck, TG continued to present him with facts, pictures, etc.

relating to the Sears Tower, thereby making his experience more enjoyable. Returning to street

level again, Alfie was exhilarated with the quality of the experience. He saw the jealous stares

he received from several other tourists as he walked out.

TG guided him next along Adam’s Street past the Art Institute. He was asked if he wanted

to visit that too, but declined. He wanted to take his time and visit it properly later, rather than

rush through the exhibits. It was getting late. He told TG he wanted to drop the Field Museum

from his trip now, just see the lake and return to his hotel. TG agreed and re-computed his

route.

Alfie walked past the flowerbeds at Buckingham Fountain, and spent some time sitting on a

bench overlooking Lake Michigan absorbing some of the serenity from the atmosphere there.

TG asked him to look to his right, and pointed out the Field Museum, the Adler Planetarium and

the Shedd Aquarium to him along with pictures on his mobile so he identified the landmarks

correctly.

Finally, he got up. It was getting close to dinnertime, and he wanted to grab a bite to eat at

a nearby restaurant before returning to his hotel room. TG was only too glad to oblige with a

listing of nearby eateries once Alfie had provided preference information. TG connected Alfie

to the restaurant where he made reservations, and then guided Alfie towards the place. Nice

to have technology you can rely on, thought Alfie. First, GPS receivers in cars so you didn’t

get lost driving around, and now helpful interactive agents for tourists in cities new to them. I

wonder what they will think of next.

7.4 Under the Covers – How it Actually Works

The TG application from the above scenario looks very complicated, but in reality, it is rather

simple to implement with Parlay technology (or to be more fair in our assessment, it is rather

simpler to implement with Parlay technology than without).

The entire user experience from that scenario can be implemented with support for just four

Parlay service SCSs – User Location (UL, part of the Mobility SCS), Presence and Availability

Management (PAM), Charging (CH), and Call Control (CC). As the reader will see, simpler versions

Standards Capabilities and Directions II 131

of the TG service could be implemented with subsets of these SCSs, though the user experience

would be modulated somewhat by the constraining choices of such an implementation.

The TG application essentially uses network information for the following functions:

1. to locate Alfie and then correlate his progress on a map that indicates his walking tour circuit;

2. push relevant context-sensitive information to the mobile regarding points of interest, pho-

tographs, restaurants, maps etc.;

3. to charge Alfie’s prepaid phone account for any purchases he may make along the way (or

permit him to recharge his account with more money as he deems appropriate);

4. block or allow calls from the many people Alfie knew, and who were listed in his address book

under folders labeled family, friends, business associates etc.;

5. connect Alfie to various businesses such as hotels and restaurants from within the context of his

current experience.

Of these, (1), (3), (4) and (5) could be easily accomplished through SCSs – (1) by UL (Mobility),

(3) through CH, (4) through a careful usage of PAM profiles and preferences, and (5) by CC.

(2) could just as easily be implemented through usage of the non-call-related User Interaction

SCS – through suitable mechanisms such as WAP or SMPP to the handset, but it is expected that

applications as sophisticated as TG would want to control their own access channels to the handset

for more efficient user interactions.

Let’s look more specifically at the usage of the various SCFs in the application call flow (please

refer to Figures 7.2 and 7.3). From the previous chapter, we know that the User Location SCF

offers applications the ability to request periodic reports on the location of a particular cell-phone.

This method could be used by TG to locate Alfie as the tour progresses (1).

The CH SCF provides a method for the direct debit of prepaid or postpaid accounts via the

DirectDebitAmountReq() method call once a charging session is established for the user with the

SCF by the application. TG can use this technique to bill Alfie for purchases made along the way

(3). Other methods in the API could be used to support credits for refunds (say he bought a ticket

to the Skydeck but later changed his mind), or recharges if Alfie asked that more money be added

to his account by billing it to his credit card.

The PAM SCF supports a number of different methods that deal with application access to provi-

sioned preference information. These are included in the PAM Access SCF and enable applications

to set or retrieve the presence and availability parameters of individual users. When Alfie indicated

he did not want to be disturbed, TG could simply mark him as ‘unavailable’ to his friends and

business associates, but mark him still as accessible to his family. The SetIdentityAttributes() and

SetAgentAttributes() method calls, for example, could be used to achieve this in (4).

Last, but not least, the CC SCF gives applications the capability to set up calls between two

parties for third-party call control (see, for example, the createCall() API call). This enables TG to

connect Alfie with other businesses as needed for (5).

Figures 7.2 and 7.3 show ‘call flow blocks’ on a functional basis per SCS, though the actual

application implementation will most likely interleave method invocations to the various SCSs to

enable access to the network hosted capabilities on an as needed basis as user requests to the

application are processed.

7.5 Mapping APIs to Protocols

The above is all well and good from an API perspective for programmability, but a full appreciation

of what truly happens is only possible if we also explore how network capabilities are leveraged

as the scenario progresses.

The standards documents in 3GPP, in particular – recall that in Chapter 4 we studied how 3GPP

provides standards documents for the OSA APIs – provide two views of the API. The first view,

in the documents in the 3GPP TS 29.198 series, is a description of each SCF and its API in detail,

1
3
2

P
arlay

/O
S

A
:

F
ro

m
S

tan
d
ard

s
to

R
eality

User Handset Parlay Application Framework User Location PAM Charging Call Control

User connects to
TG Application

Application accepts user, then
establishes voice and data paths
using some access technology

.

.

.

.

.

.

.

.

.

.

Other User-Application
interactions at various points

Application
initializes

Framework handshake sub-flow
(authentication, service discovery, service

selection, service agreement signing)

Service Registration and Announcement sub-flow
(each SCS needs to register and announce itself with the Framework

before it becomes discoverable)

Framework establishes service sessions with individual SCSs
for the TG Parlay Application

triggeredLocationReportingStartReq ()

triggeredLocationReport ()

triggeredLocationReport ()

triggeredLocationReportingStop ()

.

.

.

.

.

Location reporting sub-flow

To/From
GMLC/MPC

createChargingSession ()

directDebitAmountReq ()

directDebitAmountRes ()

Charging Aspects sub-flow

To/From
Prepaid system

Figure 7.2 TG Application scenario call flow sample with sub-flows per SCS

S
tan

d
ard

s
C

ap
ab

ilities
an

d
D

irectio
n
s

II
1
3
3

User Handset Parlay Application Framework User Location PAM Charging Call Control

.

.

.

.

.

Other User-Application
interactions at various points

.

.

.

.

.

getAuthToken ()

obtainInterface ()

obtainInterface ()

setIdentityAttributes ()

setAgentAttributes ()

PAM Interaction sub-flow

Other User-Application
interactions at various points

createCall ()

setCallback ()

createCallLeg ()

eventReportReq ()

routeReq ()

eventReportRes ()

createAndRouteCallLeg ()

eventReportRes ()

A and B Parties talk

callLegEnded ()

callEnded ()

.

.

.

Multi-Party Call Control sub-flow

Figure 7.3 TG Application scenario call flow sample with sub-flows per SCS (continued)

134 Parlay/OSA: From Standards to Reality

including method parameters and related details, which is very useful to application developers that
build these Parlay/OSA-compliant applications. This series of documents is normative and binding
on implementations from a standard interface perspective. A second view is also available – this
latter one in the 3GPP 29.998 series of documents, provided merely as informative guidance to
implementers of service mediation gateway elements (such as telecom equipment vendors), is a

set of API to protocol mappings for the most frequently used protocols in today’s networks, that
can enable service providers to leverage deployed infrastructure for Parlay services. Let us now
look at our example from the network point of view. This theme is also touched upon in the next
chapter, which explains how one could navigate most effectively through the large set of standards
documents.

When the application requests the UL SCS to provide periodic updates to Alfie’s location, this
SCS interacts with network elements such as the GMLC (in GSM networks) or MPC (in CDMA
networks), the HLR, the MSC, etc., (with the HLR and MSC either directly or indirectly – the
GMLC/MPC may interact with these instead) and gets location reports including details such as
the X/Y/Z co-ordinates of the mobile’s location, the cell ID and sector, and other information.
Various location-finding algorithms such as AFLT, EFLT, Network Assisted GPS etc., are used

by the underlying network elements to achieve this. The reader will recall that this was briefly
discussed in Chapter 1.

Once a location fix is obtained, it is propagated back in the reverse direction by the network
element, eventually to arrive at the TG application. TG can now use this location and factor it into
any context sensitive information it wants to provide Alfie. For instance, it may do an application

database dip, and generate a new set of web pages with points of interest, photographs, new
summary narratives for these etc., and then feed them to Alfie via the interfaces available to it.

Similarly, when Alfie makes purchases, the TG application would invoke debit methods on the
CH SCF interface as previously described, and these would translate within the service provider
network to directives to be executed by the prepaid application hosted within. Standard or prepaid
vendor proprietary interfaces could be used for this (depending on deployment), so long as a decent

mapping between the CH API and the underlying protocol is possible (although there may be a
wide degree of variance in the capabilities supported by different vendors for a prepaid solution,
there are some common aspects to these). When TG learns a debit was successfully made, it can
then make the purchase on behalf of Alfie and send him the voucher to his handset as proof of
payment.

As far as blocking calls from unwanted parties during the tour is concerned, simply marking
Alfie as unavailable to buddies such as friends and business associates would merely discourage
these parties from making phone calls, but not prevent them from doing so. Calls may be blocked
if suitable policies were set to influence the operation of the CC SCS, or through the support for
other, more advanced, code based routing schemes3 through the use of the user interaction SCS,
during call setup. Blocked calls could be courteously transferred to voice mail. For simplicity, these

aspects are not covered in this example in any detail.
As far as TG application initiated calls are concerned, the CC SCS could issue the appropriate

directives (acting in the role of an SCP from the traditional IN model) over the service control
protocol to have the switch initiate two call legs, one to Alfie’s phone, another to the target business,
and then bridge them. These kinds of operations typically require the use of a network element

called a Service Node (SN) to perform these operations. The SN implements the SRF and CCF
functional elements from the traditional IN call model (please see Chapter 1 and Chapter 4 for
more details) and bridges the call legs and tracks call progress.

3 Code-based routing schemes are gaining in popularity. Alfie’s wife, Joanna, calls him, say, from a payphone,

but the system offers her the opportunity to enter a code to talk to Alfie. There may be different codes Alfie

gives out – one for family, one for friends, one for business associates and so on. Once the code is entered,

depending on the policies that are set for that user group, Joanna’s call may or may not go through. In our

example above, Alfie would receive her call while on tour, because he has indicated he wishes to be able to

take calls from family. Bob, his boss, would not be able to get through.

Standards Capabilities and Directions II 135

Application developers and service providers alike would be wise to pay close attention to the

protocol to API mapping considerations, however. Sometimes, the underlying protocols do not

support a clean mapping for some capabilities required by certain applications, which are available

by the standards-defined API. For example, the ANSI-826 protocol used in CDMA networks, does

not provide for third-party call control capabilities, so the techniques described in the previous

paragraph cannot be used seamlessly to achieve the desired goals. In such cases, other workarounds

may be used to provide the same end-user experience, or the application itself may be configured

or dynamically configures itself to operate in degraded mode, thereby providing the best user

experience possible given the current network circumstances. These, and other related issues, are

addressed in Chapter 13.

7.6 Toolkits for Application Development

As can be seen from the above description, there are several tasks that different applications perform

that are common, need to be done repeatedly, and can be re-factored and reused from a coding

standpoint. If this is done, then common procedures could simply be re-linked, re-compiled into,

or re-invoked, thereby further reducing development and testing costs through a sharing of usable

software assets across multiple applications. This is so because the re-factored libraries (also called

Software Development Kits or SDKs) that contain code that is commonly used across many or

most applications need only be developed and tested once, and then reused seamlessly over and

over again.

This leads to a schism or split in the way application logic may be perceived. Application soft-

ware now consists of two parts – one, the common component that performs the required generic

functions (available from the SDK), procedures such as (for example) application authentication,

service discovery, selection and service agreement signing with the Framework, and two, the busi-

ness logic that intelligently drives the methods available from the common component as well

as provides any additional value add and competitive differentiators when compared with similar

application business logic from other competing offerings.

These Application SDKs for Parlay/OSA APIs may be made available by Parlay Gateway vendors

themselves4. They may do this to promote their own products with application development shops

thereby leveraging these re-factored technological components also as an effective marketing tool

for their gateways. However, if the gateway element is truly standards-compliant, it is rather likely

that the Application SDK components provided by one vendor will be transparently and seamlessly

reusable even as the developed applications interact with other vendors’ gateways – though indeed

some peculiarities in particular vendors’ implementations of the gateway and SDK components will

be observed as these kinds of interoperability tests are performed. This is also largely due to the

fact that the standards themselves specify merely the interfaces, not the behavioral aspects of the

interactions between the client application and gateway (server) components of the architecture.

This is as it should be, since standards are meant to drive interoperability, push through wider

adoption and deployment of new technologies and promote innovation, not stifle creativity. It

is this very degree of freedom that provides more impetus for new products and new ways of

leveraging technology to build still newer and more exciting applications.

We must also note that as this pattern of re-factoring and multi-use of software is becoming

more prevalent in the Parlay/OSA domain, a number of gateway vendors are now applying similar

techniques to the server components as well – some productize these capabilities and make them

4 It is relatively easy for application developers to incorporate standards-defined informative IDL mappings

into their code. An SDK may provide convenience classes to simplify further application development, as well

as provide a complete environment including an IDE (Integrated Development Environment) or the ability to

integrate seamlessly provided classes into a general purpose IDE. These are additional advantages. In fact,

some rather complete SDKs are provided with simulators of actual SCSs developed by the vendor. Such SDK

packs are all the more useful since they can serve not just as development but also as test environments for

new applications that developers might wish to build and deploy in said vendors’ environments.

136 Parlay/OSA: From Standards to Reality

available to their service provider customers while others treat this as an internal capability that

gives them a competitive edge in being able to more quickly, effectively and cheaply build and

deploy new services or SCSs than their competitors.

7.7 Mixed Mode Applications

As Parlay/OSA applications are developed, capabilities defined within the various SCF APIs are

leveraged advantageously to obtain network and other contextual data for use within the transaction-

processing logic. In certain deployments, additional capabilities may be available in terms of either

additional proprietary or specialized, not-too-widely-deployed SCSs that can be used to perform

the required operations even more efficiently, or (on the flip side) some capabilities expected by

the application when it was designed, may not be available due to a certain type of SCS not being

deployed in that network.

This opens up a number of interesting issues relating to the design, development and testing of

applications in different network contexts, and some of the more advanced topics in that area are

discussed in Chapter 13. Here, we study a few design patterns in common use today to accommodate

either ‘still in progress’, developing or not-so-mature SCF APIs, more flexible deployment options

(these permit the application vendor to have a greater ‘total addressable market’ (TAM) with the

single offering, though at a greater investment), and ease of accounting for some network or protocol

peculiarities in particular situations.

Let us revisit the same example from earlier on in this chapter. We have seen how the TG Appli-

cation may invoke method calls on the UL SCS to obtain Alfie’s (the user’s) location information

and factor this into its transaction processing. An application developer may decide to either imple-

ment this functionality completely independent of the UL SCS by letting his application talk directly

to underlying network elements such as the GMLC or MPC using some protocol such as LIF MLP5

to obtain this information from the network, while continuing to use Parlay APIs for all other capa-

bilities offered by the application. Alternatively, he may choose to implement both modules – the

one that leverages the Parlay UL SCS and the one that utilizes the LIF MLP interface – with

some kind of provisioned or configurable flag or parameter that dictates which mechanism would

be enabled in each particular network deployment. The latter option offers greater flexibility and

TAM (thereby contributing to access to larger sources of potential revenue) but also at greater

development cost.

The key idea from this section is that Parlay/OSA-compliant applications that employ additional

alternative mechanisms to get at network context information also available through the Parlay

APIs may be called ‘mixed mode’ applications. They may do so for flexibility, to attract wider

deployment, or to overcome some obscure protocol issues in cases where the Parlay API defined

functional set does not map well with the underlying protocol. This does happen, though rarely, and

where it does occur, it is generally because someone wants to use a protocol to perform functions

it was not specifically designed to do, thereby force-fitting it to the API.

Mixed mode implementations are quite prevalent today, since some SCF interface definitions

are much more mature and well developed from a technical standpoint than others from the Parlay

family. Those better defined are more widely used, and functional capabilities from those still in

development are incorporated into logic that will gradually evolve to utilize the standards-defined

method calls as that API matures. This enables Parlay to be successful and gather momentum as

a technology as it ‘crosses the chasm’ into wider acceptance, while other capabilities can continue

to be developed to meet as yet unforeseen needs, thereby permitting greater penetration and even

more widespread usage in the time to come.

5 The reader will recall that this protocol was explained in Chapter 1 in Section 1.7.2 on ‘Location-based

Services’. LIF MLP is an XML-based protocol – MLP is Mobile Location Protocol – developed by the Location

Interoperability Forum or LIF, a consortium defining standards, since subsumed by the OMA or the Open Mobile

Alliance.

Standards Capabilities and Directions II 137

7.8 Summary

In this chapter, we have discussed a simple example to illustrate the value of Parlay services, and

their impact on the end-user experience. From the description here it should be clear to the reader

that as more Parlay-compliant applications are built, and the services infrastructure gets used more

and more, new application development becomes easier, cheaper and faster and the gateway pays

for itself as more revenue is collected through these new and exciting applications.

Now that we understand at the highest level of abstraction how Parlay applications work, and how

they may be built to leverage network capabilities, in the next section of the book, we shall discuss

service mediation gateways, implementation considerations for these from both the standards and

development and deployment perspectives, and then similar issues for client applications before

moving on to more advanced topics such as the Parlay Proxy Manager, Feature Interaction issues,

Web Services etc., in the rest of the book. But first, the next chapter reinforces some of the standards

learnt in this section of the book while also helping the reader make sense of the large number

of standards documents by summarizing their contents and explaining their relationship with each

other.

8

Standards Capabilities
and Directions III – The Lay
of the Land

8.1 Introduction

In Part II ‘The standards in Detail’ so far we have focused mainly on the Parlay API specifications

themselves and the service mediation architecture and interfaces they define. This chapter will

expand that view somewhat. We aim to summarize other related standards documents and try to

demonstrate how they contribute towards a deeper understanding and appreciation of Parlay and

the application of the Parlay APIs. The chapter is not intended however to cover any complete

network architecture and every specification describing it, as provided in great breadth and depth

by various standards development organizations, like for instance 3GPP. But rather we aim to show

how Parlay fits in with its environment, and interacts with it.

8.2 Navigation

Standards specifications form a landscape that is difficult to navigate without some basic directions

and a few landmarks. This section will provide some insight into the numbering scheme in use and

the categorization of specifications into stages, which will hopefully help the reader take the helm

and pilot her way through the sometimes rough terrain of standards documentation.

Three stages are used to categorize standards specifications, each targeted at a different audience

and produced by another part of the standards community. A ‘Stage 1’ specification contains the

high-level service requirements for a given service, from a service-user’s point of view. A ‘Stage

2’ specification is the architecture document for a given service, and provides an analysis of the

problem into functional elements and the information flows between these elements. A ‘Stage

3’ specification defines the actual definition of the protocols or interfaces between the physical

elements onto which the functional elements, identified in Stage 2, have been mapped.

The 29.198 series, with parts for each of the Parlay APIs, collectively forms the Stage 3 for

Parlay. The concept of specification stages is used by 3GPP1 and 3GPP22, but not the Parlay Group.

1 3GPP specifications can be found at http://www.3gpp.org/specs/numbering.htm, see also Appendix B

[Parlay@Wiley]
2 3GPP2 specifications can be found at http://www.3gpp2.org/Public html/specs/index.cfm, see also Appendix

B [Parlay@Wiley]

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

140 Parlay/OSA: From Standards to Reality

Table 8.1 3GPP specification numbering

scheme

Stage Series

Service aspects (‘stage 1’) 22 series

Technical realization (‘stage 2’) 23 series

Signaling protocols (‘stage 3’) 29 series

The Parlay Group, through ETSI, publishes the API specifications, in conjunction with a number of

informative white papers, whereas 3GPP and 3GPP2 introduce the Parlay APIs as part and parcel

of the suite of normative technical specifications defining a comprehensive service architecture in

a third generation wireless network environment.

3GPP uses a numbering scheme to support the specification categorization, where the first two

digits in any specification number, also called the series, signify the particular stage. The remaining

three digits are merely a sequence number within the series. Table 8.1 shows this numbering scheme.

8.3 Parlay in 3GPP Environments

None of the sections that follow do the specifications they describe any justice by even the flimsiest

of criteria. However, the intention is to provide the backdrop against which to tell the tale of

Parlay. In isolation, Parlay may be just another interface. In its natural habitat, however, we can

fully appreciate how this technology is entirely comfortable in and perfectly adapted to a multitude

of network environments. References are provided for the interested reader wishing to explore the

specifications in all their gory detail.

Figure 8.1 shows the 3GPP environment for Parlay.

8.3.1 The Service Concepts

3G TS 22.101 ‘Service Principles’
This specification [3GPP 2004s] describes the service philosophy for networks specified by 3GPP,

which is defined as the ability to provide subscribers of 3GPP networks with the ability to use

Service Principles
(22.101)

Open Service Access
API – Stage 1

(22.127)

Open Service Access
API – Stage 2

(23.127)

Open Service Access
API – Stage 3

(29.198)

Network Architecture
(23.002)

IM Call Model −
Stage 2

(23.218)

Location Services
Architecture

(23.271)

Other 3GPP Services
(23.XYZ)

Services and Service
Capabilities

(22.105)

Virtual Home
Environment

(22.121)

Open Service Access
API – Mappings

(29.998)

MAP Protocol
(29.002)

CAP Protocol
(29.078)

Figure 8.1 OSA as part of the 3GPP specification set

Standards Capabilities and Directions III 141

personalized communication services based on the multimedia capabilities offered by the network.

These services should allow for efficient use of network resources, be compatible with global

standards, support service evolution from second to third generation wireless networks, and support

roaming users, while complying to regulator requirements regarding for instance emergency calls

and national numbering plans.

3G TS 22.105 ‘Services and Service Capabilities’
This specification [3GPP 2002b] describes the principle of standardizing service capabilities, rather

than fully specifying and normalizing individual services, in order to allow for increased service

differentiation and product innovation. A service capability is defined by any means on resource

available in the network that can be utilized to realize a service. These include core network

elements and their protocols, certain bearers and their parameters, and network repositories. When

offering a standardized application interface to access its capabilities, a service capability is referred

to as a Service Capability Feature, or SCF. An SCF then forms a building block, which, either

stand-alone or in composition with other SCFs, can be used to compose end-user services.

3G TS 22.121 ‘The Virtual Home Environment’
This specification [3GPP 2002c] introduces the concept of Virtual Home Environment (VHE) as

one particular application of the service concepts outlined in the two specifications above. The VHE

concept is defined as presenting the end-user with a consistent service experience, in terms of both

behavior as well as appearance, irrespective of which network the end-user has currently roamed

to, and independent of the device currently in use (though within the capabilities of the device and

the network). Parlay is one of the service toolkits identified as means to realize the VHE concept.

8.3.2 The Overall 3GPP Architecture

3G TS 23.002 ‘Network Architecture’
This specification [3GPP 2003] describes how the 3GPP PLMN is configured of various architec-

tures and sub-architectures, comprising the functional entities and their interfaces. Interfaces are

defined between PLMN entities themselves, and between PLMN entities and entities in domains

external to the PLMN, including user equipment, access networks, and different service platforms.

A high-level view of the 3GPP network architecture has been provided in Chapter 1. In Chapter 4

we introduced the protocol mapping recommendations and explained the informative nature of these

mappings. Given that there is typically more than one way to deploy a Service Mediation Gateway

in any network, using a variety of standardized signaling protocols or proprietary interfaces, the

basic 3GPP PLMN configuration in 3G TS 23.002 does not contain any Parlay entities or interfaces.

However, certain sub-architectures and configurations include Parlay explicitly, specifically in

those cases where Parlay is an unequivocal part of the architecture, or where the Parlay API is a

defined interface. Such instances include the Parlay API as interface between the OSA SCS and

an external LCS client (Location Services), and the functional architecture for service provision in

the IP Multimedia Sub-system (IMS), where the IMS Service Control (ISC) interface is defined

between the S-CSCF and the OSA SCS, and where a reference point is defined between the HSS

and the OSA SCS.

3G TS 23.218 ‘IP Multimedia (IM) Session Handling; IM Call Model; Stage 2’
This specification [3GPP 2005r] further elaborates on the functional architecture for service pro-

vision in the IMS, as part of the IMS call model. The IMS service architecture supports three

mechanisms for service delivery, each aiming to address a different category of applications. First

of all, continued, seamless support for legacy CAMEL based services is provided through an Appli-

cation Server serving as an IM-SSF (IP Multimedia Service Switching Function). SSFs have been

introduced in Chapter 1 as the Intelligent Network component that interacts with the SCP for the

delivery of IN-based services to the end-user. Incorporating an IM-SSF in the IMS architecture

allows the reuse of SCP based IN services to any end-user connected the IMS network. Second,

lightweight SIP based applications are intended to be supported through the inclusion of a SIP

142 Parlay/OSA: From Standards to Reality

SIP AS OSA SCS IM SSF

S-CSCFHSS

OSA AS CSE

Sh ISC

OSA CAP

Figure 8.2 OSA Service Control as part of the IM Session Handling

Application Server to the IMS architecture. The third option pertains to an OSA Service Capability

Server (SCS) for the support of more feature-rich, value added applications, possibly in the third

party domain. These three options are depicted in Figure 8.2.

8.3.3 Services Making Use of OSA

3G TS 23.271 ‘Functional Stage 2 Description of Location Services (LCS)’
This specification [3GPP 2004t] provides the architecture to support location services in 3GPP

networks. Even though there is no standardized protocol mapping available between the OSA SCS

and the GMLC, OSA is explicitly included in the LCS architecture as one of the two possible

interfaces towards an external LCS client application, as shown in Figure 8.3.

8.3.4 The Stages of OSA

3G TS 22.127 ‘Stage 1 Service Requirement for the Open Service Access (OSA)’
This OSA Stage 1 specification [3GPP 2002d] contains the service requirements for OSA, namely

it defines functional requirements that are to be fulfilled by the OSA Service Capability Features.

GMLC

OSA SCS

External LCS Client

Le OSA

Proprietary mapping

Underlying Network

Figure 8.3 OSA as part of 3GPP Location Service Architecture

Standards Capabilities and Directions III 143

The service capabilities are defined such that network functionality supported in 3GPP networks

can be exposed to application developers in order to build applications.

The OSA Stage 1 does not specify whether certain requirements should be supported by a

separate single SCF or distributed over several SCFs. Particular service requirements may naturally

exclude specific design options or may be most efficiently realized using specific communication

patterns, but no such mandates are included in the Stage 1 and the decision is ultimately left to the

Stage 2 or Stage 3 specifications.

In addition to functional requirements for both the Framework as well as the Network SCFs,

the Stage 1 includes more general requirements on for instance network, programming language,

and operating system independence, harmonization and alignment with other standards bodies (e.g.

ETSI and the Parlay Group), and general FCAPS3 considerations such as the need for secure,

scalable and extensible systems.

3G TS 23.127 ‘Virtual Home Environment/Open Service Access’
This Stage 2 specification [3GPP 2002e] defines the OSA architecture, in support of the service

requirements outlined in the Stage 1 specification. The OSA architecture is defined in terms of the

three-way model now familiar to us, i.e. OSA Client Application, Services, and the Framework. We

will not repeat that discussion here and the reader is encouraged to go back to Chapters 4 and 5, if

required. The grouping of functionality into Service Capability Features is described in the Stage

2 as well, and these will correspond to the parts in the Stage 3 29.198 series.

The more advanced architecture deployments outlined in the OSA Stage 2 specification are

addressed in more detail in Chapter 9 ‘Alternative Architectures’.

3G TS 29.198-X ‘OSA; Application Programming Interface (API); Part X’
This specification suite consists of multiple parts, one for each network Service Capability Feature,

or Service, one for the Framework, one for the common data types, and an overview. These

specifications have been introduced in Chapter 4 and described in great detail in Chapter 6.

3G TR 29.998-X ‘OSA; Application Programming Interface (API) Mapping for OSA; Part X’
This collection of recommendations encloses the protocol mappings for a number of the Service

Capability Features, and a number of protocols. The mapping recommendations have been intro-

duced in Chapter 4. For more detail, the reader is referred to [3GPP 2002f, 3GPP 2002g, 3GPP

2002h, 3GPP 2002i, 3GPP 2002j, 3GPP 2002k, 3GPP 2004u].

8.4 Parlay in 3GPP2 Environments

3GPP2 has been introduced in Chapter 1 as the partnership project for the creation and publication

of specifications for CDMA and ANSI based 3G networks. In Chapter 4 we have seen that Parlay

is endemic to 3GPP2 networks since the start of 3GPP2 participation in the Joint Working Group.

The position of Parlay in the set of 3GPP2 specifications is depicted in Figure 8.4.

8.4.1 The Overall 3GPP2 Architecture

3GPP2 P.S0001-B ‘Wireless IP Network Standard’
This specification [3GPP2 2002a] defines the overall requirements on all architecture entities

involved in a 3G wireless packet network based on cdma2000 spread spectrum access technol-

ogy. These overall high level requirements can be considered as the Stage 1 for 3GPP2 networks,

addressing capabilities needed to support Quality of Service, Security, Accounting, and Mobility

Management. It provides the context and background for all service related specifications for 3GPP2

network, including OSA, as we shall see.

3 Fault Management, Configuration Management, Accounting Management, Performance Management, Secu-

rity Management

144 Parlay/OSA: From Standards to Reality

Wireless IP
Network Standard

(P.S001-B)

Network
Architecture Model

(S.R0037-0)

Multimedia Domain
Overview

(X.S0013-000)

Open Service Access
API

(X.S0017)

Multimedia Domain
IMS Stage 2

(X.S0013-002)

Figure 8.4 OSA as part of the 3GPP2 specification set

3GPP2 S.R0037-0 ‘IP Network Architecture Model for cdma2000 Spread Spectrum Systems’
This specification [3GPP2 2003k] describes the 3GPP architecture model and hence in scope is

quite similar to 3G TS 23.002 from 3GPP. The 3GPP2 architecture model describes the network

entities and all reference points that exist between them and which collectively comprise the 3GPP2

All-IP network.

The OSA SCS is positioned in the 3GPP2 All-IP network in exactly the same way as in the

3GPP All-IP network. That is, the OSA SCS is supported through the ISC (IMS Service Control)

interface to the S-CSCF. Effectively this means that from the perspective of the OSA SCS, the

underlying network, be it an All-IP network from either 3GPP for UMTS access technology or

3GPP2 for cdma2000 access technology, is transparent. That is, the OSA SCS communicates with

the resources in the network through the ISC interface, irrespective whether these resources are

built to 3GPP or 3GPP2 specifications. This transparency is illustrated in Figure 8.5.

S-CSCF S-CSCF

3GPP2 All-IP network ‘cloud’ 3GPP All-IP network ‘cloud’

OSA SCS

OSA AS

ISC

OSA API

Figure 8.5 3GPP/2 network Independence through ISC interface

Standards Capabilities and Directions III 145

SIP AS OSA SCS

S-CSCFAAA

OSA AS

Sh ISC

OSA

Figure 8.6 OSA Service Control as part of MMD Session Handling

Similar to the All-IP Stage 2 specification for 3GPP, the All-IP Stage 2 specification for 3GPP2
specifically defines an interface between the OSA SCS and the Position Server (compare GMLC

in the 3GPP case).

3GPP2 X.S0013-002-0 ‘All-IP Core Network Multimedia Domain – IP Multimedia

Subsystem – Stage 2’
This specification [3GPP2 2003b], which follows from [3GPP2 2003a], defines the elements, pro-
tocols, and flows in order to support the IP Multimedia call models in 3GPP2 networks. It can be

considered as the equivalent of 3G TS 23.218 [3GPP 2005r], and as such describes a similar role
for OSA service control as part of MMD (Multimedia Domain) session handling. This is depicted

in Figure 8.6, which bears close resemblance to Figure 8.2 but without the support for legacy IN
services.

8.4.2 OSA in 3GPP2

3GPP2 X.S0017-0 ‘Open Service Access (OSA) – Application Programming Interface (API)’
This specification [3GPP2 2003l] provides the Stage 3 descriptions for Open Service Access APIs in
cdma2000 based systems, and as such is intended to aid developers in interpreting the applicability

of the 3GPP OSA specifications in a 3GPP2 environment and infrastructure. In the spirit of reuse
and to avoid re-inventing the proverbial wheel, the OSA Stage 3 for 3GPP2 is defined as a so-

called delta document. This means that the document does not duplicate or redefine any of the API
definitions, but rather limits itself to pointing out where there are additions or exclusions. True to

the objective for harmonization, the delta document does not define any additions or exclusions
from the OSA API definitions. Or in other words, the OSA API for 3GPP and 3GPP2 is one and

the same. The only recorded differences apply to the reference sections of each part of the OSA
specification set, or to specific informative examples. For instance, a CAMEL Pre-Paid example

would not be applicable to 3GPP2 networks.

8.5 Summary

In this chapter we have aimed to summarize standards documents other than the Parlay API inter-
face definitions and tried to demonstrate how they contribute towards a deeper understanding and

appreciation of Parlay. A sneak preview, if you will, of various standards specifications from both
3GPP and 3GPP2, with the sole purpose of placing Parlay/OSA in its natural environment. With

these navigational pointers, the reader will hopefully get a feel for the standards landscape and may
feel comfortable to wander around beyond the Parlay specifications themselves.

Part III

Building a Service
Mediation Gateway

This is a small but important part of the book. It deals with some of the more practical issues

relating to how Service Mediation Gateway components utilizing Parlay and OSA technologies

may be constructed. The emphasis here is on giving the reader a lot of ‘food for thought’ and

helping people think, rather than attempting to give them all the answers (good answers usually

depend heavily on the context associated with particular questions). This section is intended for

technical readers and designers.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

9

Alternative Architectures

9.1 Introduction

In Part I, we showed how the concept of Service Mediation fulfills the objectives we have set for

the solution to our problem statement. By means of service abstraction and controlled access we

have seen that service capabilities in a communications network can be unlocked by the network

operator to a large community of software developers to build converged applications that are both

innovative and attractive from an end-user perspective, as well as portable, billable and manageable

from a network operator perspective.

The overall system architecture of Parlay, as an embodiment of the Service Mediation concept,

has been introduced and explained in Chapter 5. We have outlined its three main components, i.e.

Client Applications, Services Capability Servers, and the Framework. For any given architecture it

is important that the structure and composition is sound, i.e. the architecture defines the foundations

of the system you are going to build and deploy. Mistakes in the architecture can merely be covered

up or kludged at a later stage. It is significantly more costly and mostly even impossible actually

to solve architectural problems or oversights during the build or deploy phase.

In this chapter we will demonstrate the flexibility of the Parlay system architecture by outlining

several architectural alternatives as defined in the Parlay standards. We will then discuss more

advanced architecture patterns and explore several detailed and broken down architectures appli-

cable to each of the high-level architecture alternatives. The aim is to validate the Parlay system

architecture and establish its applicability in real-time, high performance, and scalable network

deployments. Does the architecture hold up and can we reasonably expect commercially attractive,

high-performance systems to be built off this blueprint.

9.2 Standard Architectural Alternatives

The high level Parlay system architecture, as defined in its most simple form in the Parlay standards

specifications, consists of Client Applications, Service Capability Servers, and the Framework. We

shall leave the Enterprise Operator out of the scope of this discussion for the purpose of brevity. This

simple architecture makes no statements about deployment models. Applicability to a broad range

of existing communication network architectures with a multitude of stakeholders is an important

aspect in order for the architecture to achieve wide industry acceptance. No single deployment, or

limited subset of possible deployments, should be mandated in any open standard.

The basic architecture model supports full flexibility in terms of potential groupings among the

three basic components, or possible integration with existing network elements, without impact-

ing the specified Parlay Application Programming Interfaces. Considerations like performance

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

150 Parlay/OSA: From Standards to Reality

characteristics, especially throughput and reliability, as well as specific characteristics of the network

or cost aspects will have a bearing on the chosen deployment architecture and will render a certain

architecture alternative more viable or desirable than others. It all depends. The following sections

will introduce various approaches for deployment and discuss the respective merits and drawbacks

of each of these approaches.

9.2.1 Embedded Approach

You will recall from Chapter 4 that the role of the SCS is to translate service requests from the

Parlay Client Application into operations that can be performed by certain elements in the network.

One obvious way of deploying Parlay Service Capability Servers then, is to collocate the SCS

physically with the network element it interacts with, such as an HLR or an SCP, in order to

fulfill a service request from the Parlay Client Application. Or put another way, Parlay Client

Applications can be supported by extending the appropriate network entity, or entities, with a

Parlay Application Programming Interface. We will term this architectural deployment alternative

the embedded approach as the Parlay layer is embedded into the actual network element.

9.2.2 Gateway Approach

Opposite to the embedded approach of fully integrating the SCS with the network entities one could

envisage an approach where the SCS is fully separated. The network operator may opt to deploy

Parlay by introducing a new node in the network physically separate from any of the supported

network entities. This new node then implements the Service Capability Servers and interacts with

the network entities required to fulfill a service request from the Parlay Client Application, through

standardized communication protocols native to those network entities. The new node acts as a

service mediation gateway, and hence we will term this approach the Gateway approach. In this case

the gateway supports the Parlay Application Programming Interface, whereas the existing network

entities remain Parlay agnostic and continue to communicate through their native protocol(s).

9.2.3 Hybrid Approach

Within the range delimited by the opposite approaches outlined above, several variations can be

conceived. Consider for instance a network deployment where several gateway nodes are supported

instead of just one monolithic gateway. Or a network deployment where some SCSs are embed-

ded while others are operated on physically separate nodes, essentially combining the embedded

approach and the gateway approach in a single deployment. Such architecture deployment varia-

tions are collectively referred to as the hybrid approach. There may be several reasons that would

yield a hybrid approach. An operator may have implemented a multi-vendor policy where specific

vendor solutions impose a mixed architecture deployment. Or for reasons of proof of concept an

operator may go for a small scale embedded SCS, before implementing a phased rollout covering

the whole network, which evolves into a hybrid architecture deployment.

In each of the above three architecture alternatives, outlined in Figure 9.1, there is one logical

Framework for all SCSs. The Framework itself can be embedded into a network element, deployed

as part of a Gateway solution, or operate as a stand-alone entity. Similar considerations will apply

as outlined above for the SCSs.

9.2.4 Discussing the Merits of Standard Architecture Alternatives

When looking at one of the more evident distinctions between the embedded approach and the gate-

way approach we can draw a comparison with the Intelligent Network architecture considerations,

as discussed in Chapter 1.

In the embedded approach there is an obvious close coupling of the capabilities of the Parlay

SCS with the existing network node in which it is embedded. The advantage is that optimizations

A
ltern

ativ
e

A
rch

itectu
res

1
5
1

Switch

SCS

ContentSubscriber
Data

SCS

SCP

SCS

…

SCS

App A …

Switch

SCS

ContentSubscriber
Data

SCS

SCP

SCS

…

App A …

OSA API

SCP

SCS

…

App A …

OSA API

Switch

SCS

OSA API

A Embedded approach

B Gateway approach

C Hybrid approach

A

B

C

ContentSubscriber
Data

SCS

Figure 9.1 Standard architectural alternatives

152 Parlay/OSA: From Standards to Reality

specific to the existing network node can be efficiently exploited by the Parlay Client Application

accessing the embedded Parlay SCS. The embedded Parlay SCS can make the most of the service

features supported on the existing network node. Speed is also an advantage. The benefit of this

optimization and tailored SCS deployment however comes at the expense of Client Application

portability, as the Client Application is confined by the features and service capabilities of the

specific network element.

In the gateway approach, much like the Intelligent Network architecture, a mediation gateway

is introduced to decouple the Parlay Client Applications from the network nodes. The Parlay

Client Applications can now communicate and interact with a multitude of network nodes in the

underlying fabric. The mediation gateway, supporting the Parlay SCS, accesses the network nodes

through some southbound communication protocol that is native to the nodes, allowing the nodes

in the fabric to remain Parlay agnostic. As with the Intelligent Network architecture, in this model

of separation, introducing new Parlay-based services in the network no longer necessitates updating

all switching elements in the fabric. Rather, only the physically separated mediation gateway needs

retrofitting. Basic service as performed by the existing network elements is not impacted and can

continue transparently during the time of the update. There is of course an implied impact on

performance, however, this is outweighed by the advantage gained through loose coupling.

9.3 Advanced Architecture Patterns

So far in this chapter we have introduced some high-level architecture alternatives supported in

the standards, adhering to the one basic Parlay system architecture of Client Application, Service

Capability Server, and Framework. This has given us a simple architecture, which supports various

deployment models. So far so good, however, we not only wish to use the architecture to model

deployments or design APIs. The goal is to build commercial systems. The further success of this

architecture will rely in part on characteristics such as performance and fault tolerance through the

support for e.g. redundancy and distribution. This is where the use for multiple service instances

comes in. Load can be shared across multiple service instances, whereas redundancy through repli-

cated service instances reduces the vulnerability that would result from single-component failures.

In the remainder of this discussion we shall make use of the concept of service sessions, as

introduced in Chapter 5. A brief recap is provided here. You will recall that a service session was

defined as the time during which a Parlay Client Application has use of a Service, in order to provide

value towards the end-user. Service sessions are set up between the Parlay Client Application and

the Service making use of the reference to the service instance, which the application has obtained

from the Framework. All service requests pertaining to the execution and delivery of this specific

Parlay Client Application take place within the context of this service session. Chapter 5 also

explained the Parlay Integrity Management interfaces. We have seen that Integrity Management is

performed at the granularity of a service session, and hence of a service instance. So why is this

useful? Or asked in another way, why would one support multiple service instances?

9.3.1 Multiple Cloned SCSs

When looking at load sharing, an initial and perhaps trivial solution that springs to mind in order

to be able to use multiple service instances, would be to support multiple clones of the same SCS.

Here SCS clones are defined as multiple identical SCSs, of the same service type and with the

same service properties. Each of the SCS clones is registered with the Framework, and a Client

Application discovers each clone individually and engages in a Service Agreement with each and

every one of them. As each clone is a full-blown SCS in its own right, it will feature a service

factory. Client Applications can engage in service sessions with the SCS clone, which will instruct

its service factory to spawn service instances on that SCS clone. Business as usual. However,

now the Client Application has the ability to perform load sharing using the multiple clones it has

discovered, each featuring their own service instances. When one clone fails, other clones can be

Alternative Architectures 153

contacted by the Client Application and new service sessions can be set up to continue operation.

In addition, reliability improvements can be realized by keeping multiple clones simultaneously

alive, that is, the Client Application has concurrent service sessions with more than one clone.

Genesis of the term ‘Clone’

The term ‘SCS instance’ is often misused to refer to particular instances of a given type of

SCS deployed in an SMG configuration (the term ‘instance’ here is used in the generic object

oriented sense – the SCSs of a given type constitute a ‘class’, and each SCS of that type, that

belonged to that class, is referred to as an ‘instance’). For example, if an SMG deployment

supported three types of SCSs – for User Location (UL), User Status (US) and Call Control

(CC), in addition to the mandatory Framework, with two SCSs of each type, sometimes each

of the SCSs is referred to as an instance of that particular type (i.e., we have two SCS instances

of UL, two of US, and two of CC, and so on).

Unfortunately, this definition is overloaded, since the Parlay and OSA specifications already

use this terminology to refer to instances of service sessions supported by an SCS. In other

words, when the specification refers to an ‘SCS instance’, it refers not to particular SCSs of a

given type, but to a service manager spawned by an SCS of a given type.

It is not difficult to see that usage of the term ‘instance’ without setting the right context could

lead to confusion. We therefore, as explained in previous sections, designate particular SCSs

of a given type to be clones or copies of each other, and utilize the Parlay standards-defined

terminology of instances to refer to particular service session instances – for example, if clients

A and B are connected to the same Call Control SCS, then there are two instances of Call

Control that are active, one corresponding to the service session and service manager for client

A, and the other for B.

A shortcoming of the Multiple Clone SCS pattern, shown in Figure 9.2, is that load sharing

and improved reliability is not transparent to the Client Application. The burden of distributing

service requests across the multiple clones is placed entirely in the application domain. Integrity

Management and safeguarding of the Service Agreement has to be performed on a bilateral basis

with each of the clones.

9.3.2 Some Practical Implementation-related Considerations

In this section, we present three distinct but connected problems relating to SCS implementations:

SCF Nesting, Dual SCSs, and FSM Synchronization. These issues impact all Parlay/OSA gateway

implementations, and, if not carefully addressed, could have adverse impacts on seamless interoper-

ability across different vendors’ SCS implementations. It is therefore important clearly to document

the behavior of individual SCSs and note precisely how they function with respect to the content

already specified in the standards documents. Here, we focus on attempting to capture adequately

the issues themselves, and present areas for exploration so a solution may be devised. Particulars

of designed solutions may vary, and provide competitive advantages to products.

9.3.2.1 SCF Nesting

As we have seen in earlier chapters of this book, the Parlay specifications present, in each docu-

ment, the API for a particular SCF or Service Capability Feature. Physical manifestations of these

functional components are called SCSs or Service Capability Servers. A single SCS may implement

one or more SCFs.

154 Parlay/OSA: From Standards to Reality

SCS – Clone A

App A …

OSA API

Service
Factory

Service

Instance

Service

Instance

Service

Instance

SCS– Clone B

Service
Factory

Service

Instance

Service

Instance

Service
Instance

Network Resources

SCS load SCS load

App A is notified of an overload situation in
SCS Clone A. App A explicitly changes
application traffic to a service session with a
service instance created on SCS Clone B

Figure 9.2 Multiple cloned SCSs

Broadly, each document from within the specification describes a single functional entity.

Table 9.1 summarizes the kinds of SCSs currently supported by the standard, and the associated

service type tags.

Each one of the SCFs defined in individual standards documents supports a single functional

area, but supports, in many cases, multiple nested SCFs, each providing particular capabilities.

Further, as illustrated in Table 9.1, each of these functional capabilities supports one or more

directly accessible interfaces.

When a service registers with the framework component, it is expected to register with a name

from the set indicated in column 3 of Table 9.1. Upon successful registration, a Service ID is

assigned to that particular service type. Note that some proprietary or customized service provider

defined SCFs are also supported. These are identified through tags that begin ‘SP ’, and could be

used to represent either non-standard SCF types or SCF super-types or agglomerations of more

than one nested SCF capability where such an implementation is being referenced.

Unless super-types are used, this also means that if we implement a UL SCS that supports all

three kinds of User Location capabilities, then the Service Instance Lifecycle Manager (SILM) or

Service Factory of the UL SCS must register and announce itself thrice with the framework, once

for each of the UL capabilities it supports. Three different Service IDs are then assigned to it, and

the Framework makes these three nested SCFs independently discoverable and selectable by third

party client applications. Also, when the client applications select a service, and a service manager

is to be created, the Framework communicates the service type with the service factory (SILM) and

the desired kind of service manager instance is created to process queries over that service session.

Alternative Architectures 155

Table 9.1 SCSs currently supported by the Parlay standard

OSA

Specification

SCS TpServiceTypeName Supported ‘SCF Manager’

Interfaces

29.198-04 Call Control P GENERIC CALL CONTROL IpCallControlManager

P MULTI PARTY CALL CONTROL IpMultiPartyCallControlManager

P MULTI MEDIA CALL CONTROL IpMultiMediaCallControlManager

P CONFERENCE CALL CONTROL IpConfCallControlManager

29.198-05 User Interaction P USER INTERACTION IpUIManager

29.198-06 Mobility IpUserLocation

User Location P USER LOCATION IpTriggeredUserLocation (intended

to be used as an extension to

IpUserLocation)

P USER LOCATION CAMEL IpUserLocationCamel

P USER LOCATION EMERGENCY IpUserLocationEmergency

User Status P USER STATUS IpUserStatus

29.198-07 Terminal Capabilities P TERMINAL CAPABILITIES IpTerminalCapabilities

29.198-08 Data Session Control P DATA SESSION CONTROL IpDataSessionControlManager

29.198-09 Generic Messaging P GENERIC MESSAGING IpMessagingManager

29.198-10 Connectivity Manager P CONNECTIVITY MANAGER IpConnectivityManager

29.198-11 Account Management P ACCOUNT MANAGEMENT IpAccountManager

29.198-12 Charging P CHARGING IpCharingManager

29.198-13 Policy Management P POLICY MANAGEMENT IpPolicyManager

29.198-14 PAM P PAM PRESENCE AND AVAILABILITY IpPAMPresenceAvailabilityManager

P PAM EVENT MANAGEMENT IpPAMEventManager

P PAM PROVISIONING IpPAMProvisioningManager

(excluded from the 3GPP

specification)

Notes:

1. The first three parts of the 29.198 series of specifications are dedicated to an Overview, Common Data, and the Framework

aspects respectively (this is also explained in Chapter 4).

2. The SCS column merely lists the SCSs that could be built given the standards defined functional areas or SCF APIs. As we

have seen in previous chapters, the Parlay standards define functional APIs and implementations can build one or more of

these SCF APIs into physical manifestations called SCSs. The SCS column indicates examples of how functional interfaces

can be wrapped into physical envelopes.

3. Not all the SCFs listed above are in all the specifications – there remain some minor differences between the 3GPP, ETSI

and Parlay APIs in terms of supported SCFs, and these, while highlighted above, are subject to change with time (also

explained in Chapter 4 in more detail).

When service managers are created, it is expected that they each implement one of the nested

SCFs defined in column 3 of Table 9.1. This means that in the UL SCS example above, an

application can request the creation of a service manager for P USER LOCATION, another for

P USER LOCATION CAMEL, and yet another for P USER LOCATION EMERGENCY, all

from the same Mobility SCF implemented in a single UL SCS.

Note also that the inheritance structure of the interface definition needs to be carefully studied as

an SCF is being implemented. This has a bearing on the implementation architecture. For example,

in CC, a Conference Call Control (CCC) SCS is also a Multiparty Call Control (MPCC) SCS as

CCC inherits (via Multi-media CC (MMCC)) from MPCC. There is no need to register a CC SCS

for each of MPCC, MMCC and CCC, although you could still register them separately. That is an

implementation option.

Likewise, the Triggered UL (ULTr) interface inherits from the User Location interface, and is

not considered a different SCF (it’s treated simply as an auxiliary capability extension) but the

other Mobility-related SCFs each inherit from IpService and are therefore different SCFs.

156 Parlay/OSA: From Standards to Reality

Where there are nested SCFs whose interfaces may not be independently registered with the

Framework, (e.g. MPCC/MMCC/CCC and UL/ULTr, depending upon the particular implementa-

tion), the OPERATION SET property would indicate what is actually supported.

9.3.2.2 The ‘Manager’ Pattern

The standards have previously utilized the Manager pattern to support streamlined interface access

in cases where a single SCF contained multiple subtended interfaces. In such cases, the application

would first obtain a reference to a service manager that implemented the ‘Manager’ interface,

and then perform ‘obtainInterface() ’ operations upon that interface to get access to other SCF

‘sub’-interfaces. In fact, some SCFs still support this – for example, the PAM SCF, which now has

three nested SCFs, supports managers for each of these three capabilities, whereby further ‘sub’-

interfaces can be obtained. However, this pattern is not applied consistently throughout the standards

specification. This leads to some confusion. This cannot be fixed now in the standards, except for

newer SCSs such as PAM, since most of the SCF API definitions have already been baselined.

(Note that only two of the three manager interfaces are available from the 3GPP version of the PAM

specification – the IpProvisioningManager interface is not made available in the 3GPP specification,

though it is supported by ETSI. There are several such minor differences between various standards

versions and these need to be carefully studied by anyone attempting to build a standards-compliant

implementation or desirous of certification testing, or testing for interoperability.)

If super-types alluded to above are indeed supported by an implementation, one may simply

build an SCS that registers with a super-type (say SP LOCATION), and then returns a ‘manager’

interface (say ‘Location Mgr’) that supports an ‘obtainInterface() ’ function which the application

can then use to obtain either of the three nested UL SCF Ip interfaces. The service manager could

be defined to support one or more of these based on the set of properties passed along to the service

factory at service manager creation. One issue with this is that although the implementation itself

is simpler (in terms of SCS state machine management if nothing else), it is (at least in terms of

SCF access) not standards-compliant in how the various nested SCF interfaces are derived.

The problem therefore becomes: how is one to support multiple nested SCFs in the implemen-

tation? We have already examined two different ways of doing so. A third (not quite so elegant)

option would be to support three different service factories, each of which is capable of returning

just one kind of service manager. The benefits of having three different service factories hosted

within the same binary are not obvious, and it is clearly not beneficial to be able to support such

closely related nested SCF capabilities into separate SCSs.

Generally, it is advantageous if SCFs with nested SCFs are implemented as a single SCS with a

single service factory that registers with the Framework once per nested SCF, and can serve multiple

types of service managers based on the nested SCF selected by the client application. This, although

slightly more involved in the short term, offers some protection from any interoperability issues in

the mid- to long-term.

It is perhaps also interesting to note that some implementations segregate the UL and US SCFs

(part of the Mobility SCF in the standards) into separate UL and US SCSs. This is an example

of a case where a single Parlay defined SCF is implemented as two separate physical SCSs. The

opposite problem is of greater interest, however, and forms the basis for the next section.

9.3.2.3 Dual SCSs

The above discussion provides a good lead into the second problem, namely that of dual SCSs. In

some cases, the Parlay specifications have defined separate SCFs for closely related capabilities.

Implementations could benefit from supporting these SCFs in a single SCS binary since the data

models and processing capabilities are very close to each other from a functional perspective.

An example of this is found in implementations of a CHAM (Charging and Account Management)

SCS. The Charging and Account Management parts were defined as separate functional entities in

Alternative Architectures 157

the specification primarily due to a distinct set of security requirements, but some implementations
may choose to build them into one SCS to save on development and deployment costs, especially

since they are so functionally related.
There are five different options here in terms of how the service factories may be implemented.

Some implementations may build the Charging and Account Management capabilities as two dif-
ferent SCSs (they each have their own service factory) but contained within the same binary, thus

making them a single orderable item. This provides some of the benefits of separate SCSs, but at
the same time, tries to leverage a common data model most effectively.

There are several different options for building such SCSs, especially with respect to how many
service factories are supported, and what those service factory implementations are capable of. Let

us say there are two SCFs that need to be supported – K1 and K2. The following options then
become available:

a) Support these two functions in two separate kinds of SCSs, one of which returns service managers
of the kind K1 only, and the other of which returns service managers of the kind K2 only; or

b) Support a single SCS with a single service factory that can serve up two different kinds of
service managers – K1 and K2, depending on the specific needs of the requesting entity as

made known to the service factory at ‘createServiceManager()’ time; or
c) Support a true ‘dual SCS’ like the above referenced implementation of the CHAM SCS, with two

different service factories, each of which can return only a single kind of service manager – K1
or K2; or

d) Support only a single service manager K that supports both the interfaces for K1 and K2
simultaneously. (K is the union of K1 and K2.) This is similar to the ‘Manager’ pattern applied to

non-standard IDL as discussed above for PAM (K will now support methods that the application
can invoke to get access to either or both of K1 and K2 for further use); or

e) Support a single service factory that can support the existing standards-defined Parlay interface
(K1) with a single method extension that may be used to request and receive a reference to an

interface of type K2, which the client application may then utilize for K2 implemented functions.
Note that this will require internal proprietary modifications to the Parlay inheritance hierarchy.

Note that (c) is logically and functionally equivalent to (a), the only difference is the implementation

as a single binary from a functional standpoint, though other characteristics such as scaling also
differ.

Option (d) merits some additional discussion too. Here, the standard interface is expanded to
support proprietary extensions so that clients aware of these extensions could use them while

all other clients would simply receive standard Parlay treatment. Thus, this technique could be

used to provide some good value-add and differentiators while remaining standards-compliant in
implementation.

When we talk of ‘dual SCSs’ we normally mean implementations that build to the pattern defined
in (c). The failure characteristics of such dual SCS implementations are such that the two SCFs are

a single process, and they fail and recover as a single element. Note that the issues here, although
similar to a single SCF with two nested SCFs implemented in a single SCS, are not the same, at

least not from a functional standpoint, though similar implementation constructs could be used to
solve both problems.

9.3.2.4 FSM Synchronization

An interesting challenge in the above cases from an implementation perspective is the mapping of

state machines. Generally speaking, SCSs support three different kinds of state machines from a
Parlay perspective:

a) There is one FSM that governs the operation of the SCS itself – functions such as startup

and initialization, registration and announcement of services with the framework, and eventual
shutdown (be it graceful or abrupt).

158 Parlay/OSA: From Standards to Reality

b) There is another FSM that governs the establishment, control, management, and teardown of

service sessions on the SCS. This state machine is only operational when the SCS itself is in the

operational state, when the SCS has registered and announced itself with the framework, and is
implemented by the Service Factory or Service Instance Lifecycle Manager (SILM) component.

The Framework then has the ability to request (on behalf of subtended client applications

that have an access session with it), that the SCS create a service manager to host a service

session for that particular application, and can pass along one or more parameters that govern

the operation of the service session.

Later, after using the service, when the client application wishes to tear down the service

session, it simply requests the Framework to tear it down via the established access session, and

the Framework instructs the service factory to do the necessary, and this causes the termination

of the service manager state machine associated with that particular service session, and the

freeing up of the associated objects.
Service session control and management is achieved through support for the integrity man-

agement APIs, coupled to the created service managers themselves, which are useful in reporting

load, fault conditions and pulsing heartbeats at periodic intervals to convey session health and

sanity to the Framework.

c) A third, but no less important set of state machines is implemented by the service manager.

These are ‘ephemeral’ state machines – one per transaction, that support the processing logic

involved. These state machines implement the transaction model, are created when a request is

received, and die when a final response is sent back.

Some of these machines live longer than others – for instance, a periodic or triggered location

request state machine has a longer TTL (Time To Live), since the request is generally alive until
the client issues a ‘Stop’ directive on it. A one-shot location request, on the other hand, has a

relatively short lifetime.

We consider only state machine (a) here in greater detail, since it is directly related to the content

of this section.

As can be seen from Figure 9.3, it is relatively easy to draw this state machine for a simple SCS

implementation (with no nested SCFs, no dual SCS agglomeration). Now, let us see how these

other cases may be addressed.

START/INIT

REGISTER
SCF

SCF
REGISTERED

ANNOUNCE
SCF

SCF
ANNOUNCED

New
Session
Request

UN-ANNOUNCE
SCF

UN-REGISTER
SCF

Session
Ends

ERROR
ABEND

Transition
(dotted)

SCF State Machine
(No Nested SCFs)

Notes:

1. Sessions already in progress can end
 in any of the previous states.

2. The dotted transition on Critical Error
 or ABEND can cause the SCS to be
 restarted. This holds for ALL SCS
 state machines.

Figure 9.3 SCF state machine (no nested SCFs)

Alternative Architectures 159

START/INIT

REGISTER
Nested SCFREGISTERING

REGISTER
SCF

ALL Nested
SCFs Registered

SCF

REGISTERED

ANNOUNCE
SCF

ANNOUNCE
Nested SCFANNOUNCING

ALL Nested
SCFs Announced

SCF

ANNOUNCED

UNREGISTER
Nested SCF

UN-REGISTER
Nested SCF

ALL Nested SCFs
Un-registered

UNANNOUNCE
Nested SCF

ALL Nested SCFs
Un-announced

UNANNOUNCE
Nested SCF

New
Session
Request

Session
Ends

ERROR/ABEND
Transition (dotted)

SCF State Machine
(ALL OR NOTHING Nested SCFs

AND Dual-SCSs)

Notes:

1. Sessions already in progress can end
 in any of the previous states.

2. Nested SCFs cannot be selectively
 deregistered while others are still
 in the announced state.

Figure 9.4 SCF state machine (ALL OR NOTHING nested SCFs AND dual-SCSs)

In the case of the scenario of the CHAM SCS (described above), there are two different SCFs

implemented within it, and two different service factories, each of which is only capable of serving

up a single type of service manager (one for Charging only, one for Account Management only),

but where the two SCFs behave as one logical entity in the sense that either both SCFs are

simultaneously available, or in case of failure, neither is available. This FSM is as shown in

Figure 9.4.

Finally, let us consider the UL SCS – a case where it has a single service factory that registers

thrice with the Framework, once per nested SCF, but is capable of serving out three different kinds

of service managers based on the parameters passed into the SILM at createServiceManager() time.

The FSM for this case is as depicted in Figure 9.5. The state map essentially remains the same

from a functional perspective, but one that indicates mappings to specific state instances of each

type cannot be generated unless certain other constraining assumptions are made with regard to the

operation and behavior of the associated SCS.

9.3.3 Distributed SCSs

So far we have discussed the Multiple SCS Clone pattern as more advanced architecture for high

performance deployments. The pattern consisted of distributing multiple identical SCS clones.

A second pattern to achieve load sharing or increased reliability through redundancy consists of

physically distributing components of a single SCS across different nodes that make up a gateway

cluster and have each node take its share of the load. With this pattern, the Parlay Client Application

is no longer tasked with the responsibility to distribute its service requests among various physical

160 Parlay/OSA: From Standards to Reality

SCF State Machine with Nested, Independent SCFs

START/INIT

REGISTER
SCF

SCF
REGISTERED

ANNOUNCE
SCF

SCF
ANNOUNCED

New
Session
Request

UN-ANNOUNCE
SCF

UN-REGISTER
SCF

Session
Ends

ERROR
ABEND

Transition
(dotted)

SCF
REGISTERED

SCF
ANNOUNCED

Notes:

1. Sessions already in progress can end in any of the
 previous states.

2. Nested SCFs can be selectively deregistered while
 others are still in the announced state.

Figure 9.5 SCF state machine with nested, independent SCFs

SCS components. Indeed, it may not have any knowledge of the SCS deployment architecture

in the network, or may not even care. Let us take a closer look at a possible solution to support

physically distributed SCSs. Physical distribution of SCSs should be transparent to the Parlay Client

Application.

In the simple scenario, featuring a monolithic SCS, such an SCS would host a service factory,

which creates service sessions based on service requests initiated by the various Parlay Client

Applications. Nothing new here, we have already covered this ground in Chapter 5. As we are

dealing with a monolithic SCS, the service instances are created on the same physical node as the

one hosting the service factory.

In order to support physical distribution of SCS components across different nodes, we introduce

the notion of a primary SCS. The other nodes available for distribution are subsequently referred

to as the secondary nodes. The primary node is distinguished from the secondary nodes, as it is the

node that hosts the service factory spawning the service sessions based on service requests initiated

by the various Parlay Client Applications. However, this time the service instances are not created

on the same physical node that hosts the service factory (i.e. primary SCS), but distributed across

the secondary SCSs. Transparency towards the Parlay Client Application is ensured, as a service

session can exist only between a single application and a single (secondary) SCS. However the

load of the total number of service sessions for applications running on a Parlay Application Server

can now be distributed across multiple secondary SCSs.

As it is the primary SCS node that hosts the service factory, it is the primary SCS node that

performs Integrity Management, including load balancing. Integrity Management is still performed

at the granularity of a service session, but now the service sessions, and hence service instances,

are physically distributed. This is illustrated in Figure 9.6.

Distribution of service sessions is based on some distribution policy hosted on the primary node.

The service factory executed on the primary SCS node may evenly allocate sessions among the

A
ltern

ativ
e

A
rch

itectu
res

1
6
1

Primary SCS

App A …

OSA API

Service
Factory

Service

Instance

Service

Instance

Service
Instance

Secondary SCS

Service
Instance

Service
Instance

Service
Instance

Network Resources

SCS load SCS load

1 The service factory in the Primary SCS node
 creates a service instance on the Secondary
 SCS node.

2 The service factory returns a reference to the
 created service instance to App A.

3 App A engages in a service session with the
 service instance on the Secondary SCS.

1

2 3

Figure 9.6 Distributed SCSs

162 Parlay/OSA: From Standards to Reality

available secondary nodes, for example, using a random or round robin mechanism. With some

added intelligence, however, more sophisticated policies can be envisaged. For instance when

allocating new service sessions, the service factory could temporarily skip the secondary node

which is operating above a certain capacity threshold in an attempt to prevent overload and hence

failure. Graceful service degradation can be supported by re-allocating the service sessions of a

failing secondary node equally among the remaining available secondary nodes still operating within

their specified load constraints.

The solution of physically distributed SCSs presented above provides transparency towards the

Parlay Client Application, as it conforms to the basic Parlay system architecture, and does not

require any modifications to the specified Parlay APIs. The distribution of SCSs is not visible

to the Parlay Client Application, but the Parlay Client Application does benefit from increased

perceived service availability and fault tolerance.

As service sessions with the Parlay Client Application are distributed across the secondary SCS

nodes, the granularity of the load balancing mechanisms is limited to the level of service sessions.

That is, there are no mechanisms for the primary SCS node to allocate individual service requests to

different subtended secondary SCS nodes. Load sharing on a per request basis is not supported. In

some cases this level of control will be sufficient, however, there are examples where finer grained

control may be required.

Consider for instance an application that is engaged in a service session with a User Status SCS

in order to monitor the status for a set of end-users. The application has subscribed to triggered

status reports for a large set of users. Both the subscription as well as the triggered reports are part

of the same service session. During normal network operation and end-user behavior, the triggered

reports, reporting a change in status, will be generated by the network and hence processed by the

SCS spread over time fairly equally or in some predictable pattern. But as we all know we cannot

design a system for sunny day scenarios only. When the network becomes operational again after an

unplanned outage, the status for all end-users that are being monitored will simultaneously change

from ‘not reachable’ to ‘reachable’. This could cause an overload situation when all triggered reports

are processed by a single SCS component. In such a scenario the Gateway would benefit from a

distribution scheme where individual service requests can be shared among SCS nodes. Whether

the poor Parlay Client Application will be able to deal with the large number of triggered status

reports coming in from a number of SCS nodes, neatly distributed according to some sophisticated

load balancing scheme, is of course an entirely different matter. But we will worry about that in

another section.

9.3.4 Tiering of Multiple Cloned SCSs

The Multiple Clone SCS and Distributed SCS patterns can be applied irrespective of the architecture

alternative chosen. That is to say, both patterns can be applied in order to build an SCS, be they

deployed using the embedded, or gateway, or hybrid approach. The possibilities however for an

SCS to distribute for instance load (or service requests) across various network elements, in the

case where the SCS is embedded with one specific such element, obviously has its limitations.

Also, supporting multiple instances of the embedded SCS on the same physical element for reasons

of reliability or performance does not overcome the single point of failure of the physical element

itself. The Gateway approach on the other hand provides more promising opportunities for further

architecture decomposition in order to validate the support for real-time, high performance, and

scalable network deployments. In Chapter 14 we will further explore the possibilities of the Gateway

approach, and introduce a new architecture pattern that can be considered a combination of the

Distributed SCS and the Multiple Clone SCS patterns – the Parlay Proxy Manager.

The most distinctive feature of the distributed SCSs is the existence of a primary node, hosting the

service factory, and a number of secondary nodes. A single service factory is supported in this set-

up. We have seen that this implies that Integrity Management is performed on a per service session

basis. A logical next stage would be to take this model one step further. Imagine the case where all

Alternative Architectures 163

SCS nodes support a service factory. A straightforward service session is set up between the Parlay

Client Application and the primary SCS node, just like in the basic scenario (the reader might also

want to refer back to Chapter 4 for more details). In fact, so far this architecture is the same as the

Multiple Clone SCS pattern. Now here comes the novel part; the primary SCS node subsequently

sets up service sessions with one or more of the secondary nodes (which are SCS clones), rather

than creating service instances on these secondary nodes, as would have been the case with the

Distributed SCS pattern. This second tier of service sessions is used to distribute individual service

requests within the context of the single first tier service request between application and primary

node, across the various secondary SCS nodes. The service factory hosted on the secondary SCS

node will then create a service instance on that secondary node. As we can see it is now possible to

perform load sharing at the granularity of individual service requests, rather than at service session

level as was the case with the distributed SCS case. We shall refer to this architecture option with

service factories on all SCS nodes as Tiered Multiple Clone SCSs. The secondary SCS nodes in

the tiered multiple clone SCS configuration are called leaf SCSs, whereas the primary SCS node is

called the Parlay Proxy Manager SCS. We chose the name Parlay Proxy Manager because in the

multiple clone SCS configuration the PPM SCS acts as an ordinary SCS from the point of view

of the Parlay Client Application, and conversely as a Parlay Client Application towards the leaf

SCSs.

The Parlay Proxy Manager will be described in greater detail in Chapter 14.

9.3.5 Getting Practical with Architecture Patterns

We have looked at architectural alternatives naturally from an architectural perspective, discussing

architecture deployments and design patterns to achieve certain improvements in performance. That

is, we have approached this as an engineering problem using theoretical arguments. Let us look

now at the Application Programming Interfaces and see whether our elegant architectural solutions

hold by looking at some practical use case scenarios.

When discussing load distribution of individual service requests, we have made an implicit

assumption that all service requests are both alike as well as independent of each other, and hence

can be distributed without consequences. For some Service Capability Features such an assumption

may be more valid than for others. For instance, one could envisage a requirement where all method

invocations pertaining to a single charging session should be distributed to the same leaf SCS. Such

method invocations have a functional relationship. Service requests or method invocations could

also have a logical relationship, for instance a request to stop notifications should be issued on

the same leaf SCS to which the notification start request was dispatched, as state information is

maintained on that leaf SCS node. So we see that logical or functional relationships between service

requests may impact whether certain requests can be freely distributed across SCS nodes.

Another implicit assumption we have made is that the distributing entities have knowledge of

the load impact of individual service requests. Such knowledge may require complex intelligence

on the part of the distributing entity. For instance, will a distributing entity recognize the difference

in load demands between a request to arm triggers for address range ‘ + 1 61∗’ and address range

[‘ + 1 613 1000’ − ‘ + 1 613 9999’]? And how about even more complex behavior. Do we allow a

primary node SCS to break up a request to arm triggers for address range [‘ + 1 613 1000’ − ‘ +

1 613 9999’] into range [‘+1 613 1000’−‘+1 613 4999’] and range [‘ + 1 613 5000’ − ‘

+ 1 613 9999’]? Preferably, such a procedure would not impact the application ID for the trig-

ger arming request to the Client Application. The two separate trigger arming requests would exist

only locally between primary SCS and leaf SCSs and then the primary SCS would have to aggregate

resulting event notifications towards the Client Application.

These examples show that the theoretical performance benefits from alternative architectural

options and design patterns, though providing significant performance enhancements, may not be

fully achievable in real-life deployments.

164 Parlay/OSA: From Standards to Reality

9.4 Summary

In this chapter, we have validated the flexibility of the Parlay system by outlining several archi-

tectural alternatives as defined in the Parlay standards. We have then explored increasingly more

advanced architecture patterns to address issues like performance management and reliability of

implementations. The concepts introduced in this chapter have also laid the ground works for an

even deeper dive of architecture considerations in Chapter 14 on the Parlay Proxy Manager, pushing

the envelope of architectural possibilities of the Parlay standards even further.

10

Considerations for Building
‘Carrier-Grade’ Systems

10.1 Introduction

This chapter is organized into six separate sub-chapters1, each focusing on a single aspect of ‘sur-

round’ capabilities that are normally assumed to be part of any carrier-grade or telecommunications

grade equipment or solution.

As we have seen in previous chapters, Parlay/OSA technologies do in fact provide an excellent

means to leverage Internet technologies and toolkits as one builds newer and more exciting services

and applications that use such services, leveraging network context information in transaction

processing logic. However, it is not sufficient to have services that are new and exciting. After

all, the investment that service providers make in new technologies is with a view to tapping

into as yet unrealized revenue potential. This can only happen when the infrastructure hosting

these services and applications is sound and operates to the expected guidelines of performance,

reliability, scalability, overload control, etc. that all parties – the service providers, and subscribers,

among others – have come to expect of telecommunications systems.

As technology gets more seamless and ubiquitous, one tends to expect that it works more reliably

without failure. For example, you get rather annoyed when your landline phone for some reason,

offers no dial tone. As cellular technology gets more prevalent, subscribers will be more unforgiving

of lost or dropped calls during cell handoffs, roaming or other scenarios. As technology crosses the

proverbial chasm [Moore 2002], and sees more widespread use, these ‘surround’ aspects have to

be addressed as well, or subscribers will reject the solution (even a very good one in theory) and

look for alternatives that better meet their needs.

This chapter focuses on some of what are considered ‘*-ilities’ in common telecom parlance.

The term originates with sometimes overlooked but very important elements such as scalability,

reliability, etc. that all have the common ‘-ility’ suffix. Other elements that fall into the same

category and are of interest here (but lack the suffix that lends its name to this category) include

performance, error handling, and upgrades.

We emphasize that this chapter merely addresses some of the important issues, and is not an

exhaustive listing of all possible items worthy of consideration in the design of telecommunications

1 The organization of this chapter presented its own unique challenges. Several topics need to be covered

here, but they are not so closely related as to be sections within a larger chapter, and not so disparate and

disjoint that they merited their own individual chapters. A compromise structure, using sub-chapters, therefore

seemed the most appropriate to use.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

166 Parlay/OSA: From Standards to Reality

systems. We do try to give the reader an appreciation for the kinds of things that merit closer
inspection, and offer up some ideas in each case as candidate architectures are analyzed, but do

not provide specific answers in most cases.
The reason for this is twofold:

1. Many of the issues discussed are critical to the development of telecommunications systems in

general and service mediation gateways in particular. Specific choices or sequences of choices
made can make or break a product and can either give you or take away capabilities for com-

petitive differentiation.

2. Choices one makes as one builds more of the product depend on choices made previously, and
many of the decisions need to factor in non-technical aspects such as the amount invested, the

timelines for development, the staffing requirements etc., and to some extent, the culture of the
company. One size certainly does not fit all.

This chapter is focused on the service mediation gateway component. However, generally speak-

ing very similar, if not the same, conditions apply to client application architecture, design and
development as well. We have tried to point out applicable elements wherever possible, in the

narrative. We do expect that the astute reader will extract and also apply similar patterns to client
application design.

With this introduction in mind, let us go through some of this material with a view to educating

ourselves on considerations for building efficient Parlay/OSA gateway solutions.

10-1

Reflections on the Performance of
Implementations

10-1.1 Introduction and Scope

In this sub-chapter, we study issues associated with the performance of implementations. A good

comprehension of performance is important for many reasons: it enables people actively and con-

sciously to factor concepts and ideas relating to maximizing performance into their designs; it gives
them a view into optimizing implementations already in existence; and more generally it enables

them to grasp more efficiently which sub-processes in transaction processing take what amounts of
the total time, and what their contributions to the overall latencies tend to be.

Performance engineering, like all other important subjects, is both an art and a science. The
scientific aspects are codified in reusable patterns (both architectural and mathematical) that are

applied over and over again, in various projects, as engineers, designers and developers attempt to
squeeze out every iota of slack from code to make it as taut and efficient as it can be. It is an art,

in that sometimes the beauty of an improvement comes not from local optimizations, but rather
global design changes that may, in some cases, even seem counter-intuitive at first glance.

High-performing systems are built that way from the ground up. Trying to engineer in perfor-

mance as an after-thought typically does not work. The reader would do well to factor in aspects
of performance engineering as he/she designs the Parlay-compliant SMG or application element.

Considerations for Building ‘Carrier-Grade’ Systems 167

This sub-chapter cannot claim to do justice to the topic of performance optimizations in the

general sense, nor completeness in coverage of either the art or the science aspects of this important

topic. We merely attempt to give the reader a good understanding of some of the sound principles

surrounding performance engineering of Parlay/OSA-based systems, including SMG components

and Parlay-compliant client applications.

10-1.2 Performance Aspects

There are at least two aspects of performance of which an engineer should be aware, as he or she

takes on this exercise. The first deals with defining models to compute the expected performance

of a given piece of software being written, and identifying optimizations, while the second is more

focused on ensuring the implementation actually performs within the bounds prescribed by the

model.

Before one undertakes the first step, however, one has to decide clearly what one wants to

achieve. What does success look like? What are the items worth measuring? What are the prescribed

boundaries for parameter variations? And are these reflective of reality?

As can be seen, some of these can be answered using knowledge and experience accumulated

from previous projects, but modified to apply to peculiarities of the Parlay/OSA context. How per-

formance engineering is actually carried out varies from person to person, and from one corporation

to another, with success being determined by the processes followed, the experience one brings to

the task at hand, and how rigidly or flexibly the models used have been designed.

Typically, two parameters that are factored into performance computations include the transac-

tions per second (TPS) or busy hour call attempts (BHCA) rating of the software in question, and

the end-to-end (e2e) latencies observed when typical transactions are run. The TPS or BHCA rat-

ings are both representative of what may more generally be called Xpd (Transactions per duration)

parameters, since they each specify, using different units, the number of transactions the software

in question can process, per specified time interval.

Other performance engineers like to work with metrics such as ‘milliseconds per transaction’,

which is an example of a Dpx (duration per transaction) parameter.

A computing platform’s CPU performs important functions like provisioning support, operations

and administrations support (sometimes collectively referred to as OAM&P – Operations, Admin-

istration, Maintenance and Provisioning) etc., among other things. In addition, a CPU needs some

spare room to be able to handle overloads gracefully. It is therefore unreasonable to expect that the

entire 100% of the CPU capacity would be dedicated to processing transactions. The engineer for

that reason picks a suitable allocation of CPU cycles for transaction processing and proceeds to com-

pute the available milliseconds from that, and can then calculate the TPS from the ms/transaction

rating for the software in question.

Let us illustrate this by means of an example. Consider any quad processor symmetric multipro-

cessing system. Since this has four CPUs, the total processing capacity is the equivalent of 4000 ms

per second of real time. Now, symmetric multiprocessing overheads account for some percentage

of the CPU cycles (let’s say 15%), which leaves 3400 ms/sec for use by applications. As we said

before, some percentage of those are needed for other tasks such as OAM&P and overload control,

etc., so we allocate say 20% of the remainder for that. 2720 ms are now available. Next, we allo-

cate some 10% (say) for future growth and expansion. This leaves around 2448 ms/sec for actual

transaction processing2. We call this the CPU Transaction Processing milliseconds per second of

processing time (CPUTP).

2 Note that the percentages used here are made up values that serve to drive home the points we are trying to

make. In reality, there are usually guidelines individual corporations or engineers use as they design systems.

Conservative estimates and allocations to transaction processing will doubtless yield lower TPS systems, but

these ratings will be more stable, and almost certainly achievable in real deployments. Very aggressive models

will yield systems that look good on paper, but which may fail to meet expectations in the field.

168 Parlay/OSA: From Standards to Reality

But all this raises a fundamental question: What exactly is a transaction? For if we do not know

what it is, how can we even begin to measure it?

Transactions can mean different things to different people, so what appears to be a low TPS

system in one context may actually be a high throughput system in another – it may merely be

counting transactions differently. When comparing two systems, one must necessarily ensure that

the two are using the same, or at least, a very similar, definition of transactions for it to be an

apples-to-apples comparison (as opposed to an apples-to-oranges or an oranges-to-basketballs one).

Unfortunately, the standards documents provide no guidance on the definition of transactions in

the Parlay/OSA space. So we come up with our own definition(s). We define the following terms:

Definition: Transaction

Given that Parlay/OSA supports both synchronous and asynchronous responses to requests, and

also asynchronous notifications to applications on subscribed events, we define a transaction as

comprised of:

1. a synchronous request response pair; or

2. an asynchronous request or notification and its associated asynchronous response, even if a

synchronous answer is returned to the original request; or

3. an asynchronous notification, for which no response needs to be accounted.

Definition: User Transaction

This is a transaction that starts with the issuance of a user request to the application software,

and ends when the user equipment receives a final response to that request. The Parlay/OSA

client application may, or may not, perform additional processing after the final user response

for the transaction has been returned.

Definition: Application Transaction

This is a transaction that starts with the issuance of a user request to the application software,

and ends when the application software had completed processing that request. The application

may, or may not, keep transaction state after the transaction ends.

Definition: SCS Transaction

This is a transaction that starts with the issuance of an application request to the SCS software,

and ends when the SCS software returns a final response to the client application. The SCS

may, or may not, keep transaction state after the transaction ends.

Let us illustrate these three definitions by means of examples (Figure 10.1). Alice connects

to the Weather application and requests the weather forecast. This is the beginning of both the

Application and User Transaction. The application formulates an appropriate request using some

form of identifier (such as MIN or MSISDN) for Alice’s terminal, and passes along this request to

the User Location SCS on the SMG. This starts an SCS transaction.

The UL SCS processes the request by interacting with network elements such as GMLCs/MPCs

and provides the response back to the client application. This ends the SCS transaction on UL. The

application then takes the provided location fix, computes location specific content with that, and

sends it to Alice’s terminal. This ends the user transaction.

The application then (if it does not support a subscription-based billing model, but more a

pay-per-use scheme) makes a request to the Charging SCS to debit Alice’s prepaid account for

services rendered. This is another SCS transaction that ends once the appropriate action has been

taken. Once this is completed, the application-transaction for Alice’s request ends. Note that the

Considerations for Building ‘Carrier-Grade’ Systems 169

Application
Transaction

User Transaction

SCS Transaction

1 2 3 4 5 6

A
lic

e
co

nn
ec

ts

Req
ue

st
pa

ss
ed

 to
 U

L

SCS

U
L S

CS p
as

se
s G

M
LC

re
sp

on
se

 b
ac

k

A
pp

lic
at

io
n

co
m

pu
te

s

lo
ca

tio
n

sp
ec

ifi
c

co
nt

en
t a

nd

se
nd

s t
o

A
lic

e

A
pp

lic
at

io
n

re
qu

es
ts

to
 d

eb
it

A
lic

e’
s

ac
co

un
t

A
lic

e’
s a

cc
ou

nt
 is

de
bi

te
d

Figure 10.1 Performance aspects – transactions

application could have done this before sending Alice the requested content, thereby requiring two

SCS transactions in processing a single user transaction.

As can be seen, one or more SCS transactions may be invoked by client applications either

within or outside a single user transaction. But they are always invoked within the context of a

single application transaction (asynchronous notifications are an exception).

If Alice were to request tracking of her handset on a map, the application transaction would

begin with a periodic location request to the UL SCS, and end with an acceptance of that request

by the SCS. The user transaction has the same lifetime, and ends once the application informs

the user that it will perform the requested operation. At periodic intervals, the application would

receive notifications from the UL SCS, each an SCS transaction in itself, and each tied to its

own application transaction (and updates sent to Alice’s handset would constitute their own user

transactions). Once the user requests monitoring to cease, this opens a new user transaction, a new

application transaction as the application turns off the periodic location reports on the SCS, and a

new SCS transaction as this de-activation is completed. As responses are sent by the SCS to the

application, and from the application on to the end-user, the SCS, application, and user transactions

are closed.

Now that we have our terminology defined, let us look at how performance may be computed.

10-1.3 Performance Computation – Flow Composition

Each call flow, from the user to the application, the application to the SCS, and the SCS processing

itself, can be composed into its constituent elements. These can then be timed or estimated based

on prior experience. Which aspects of a call flow are considered for this exercise may vary based

on what the engineer is trying to do. An SCS designer and performance engineer will likely focus

more on SCS transactions, leaving the application designer to worry about the timing of application

and user transactions.

170 Parlay/OSA: From Standards to Reality

Let us say the transaction in question requires three database dips, invokes two procedures for

pre- and post-processing of the initial query and final response parameters, and performs one other

special function. Once this is known, and suitable millisecond values assigned based on CPU time

to each of these elements, and a transaction schedule (that accounts for parallelism across these

constituent processes) has been put together, a total ms cost for this transaction can be computed.

Thus, flow composition helps one assess where the time is being spent in the transaction, and

how long a transaction should take in terms of CPU cycles. Once this is known, TPS can be easily

computed as CPUTP/(total milliseconds needed to process a single transaction).

10-1.4 Performance Computation – Transaction ‘Mix’

As discussed in Chapter 6, each SCS supports several different kinds of transactions, each with its

own processing steps. Some of these involve more processing than others and consume more CPU

cycles. We need to account for this in our modeling.

This may be done in two ways:

1. We select the simplest transaction for the SCS, or across all SCSs, as a benchmark, and assign

a ‘complexity index’ to all other transactions as a multiple of that, using the closest whole

numbers wherever possible. Then, we compute the processing capacity of an SCS and state it

as so many benchmark transactions per second.

If we are then asked, how many transactions of types A, B, C etc., can be supported, this is

easy to compute, by setting up an equation of the form

a ∗ 3x + b ∗ x + c ∗ 4x = CPUTP

where a, b, c = number of transactions of type A, B, C respectively that can be accommodated;

x is the milliseconds per transaction for the benchmark transaction (in this case, B); and 3 and 4

represent the multiplicative index indicating how much more complex A and C really are than

the benchmark.

As can be seen, this equation has no single solution, but a range of suitable solutions can

be obtained. Note that the above analysis assumes the entire transaction processing capacity is

available to the SCS in question. If not, the appropriate fraction of CPUTP should be used on

the right hand side of the equation above.

2. We choose suitable ‘mixes’ of transactions, say 25% of type A, 55% of type B, 20% of type C,

that reflect most closely the estimated proportionate realistic use of this SCS, and then compute

the number of each type that can be supported given the CPUTP rating. One may use flow

compositions for each transaction type or a complexity index as indicated above to compute the

required value.

Using flow compositions, and assuming x ms per transaction of type A, y for each of type

B, and z for C, the equation becomes a ∗ (25x + 55y + 20z) = CPUTP, where a indicates the

multiplier. Solving this equation, we conclude that 25a transactions of type A can be supported

at the same time as 55a transactions of type B, and 20a transactions of type C. Use of complexity

ratings in performing similar computations is left as an exercise to the reader3.

The above procedure may need to be repeated for different mixes, as different types of

applications with different behaviors are supported by the same underlying SCSs over time.

3 This chapter is intentionally vague on some of the details relating to performance optimizations. Specific

processes used contribute to competitive differentiation, and are unlikely to be revealed by any developer of

either Parlay applications or Parlay gateways.

Considerations for Building ‘Carrier-Grade’ Systems 171

10-1.5 Performance Computation – Abstract Models

The above discussion sets the stage for a slightly tangential discussion on the mathematical models

themselves. This section is meant to give the reader a better appreciation for some of the complexity

involved in the computations, and to help him or her visualize the procedures being carried out.

Consider an N-dimensional hyperspace, with each axis indicating a given transaction type for a

given SCS type (for example, an implementation of the User Status API in an SCS could support

the ‘single-shot’ request for the status of a terminal as well as the ‘triggered reporting’ mechanism

for terminal status – each is an example of a different transaction type supported by that same SCF

API). The methods outlined in the earlier sub-section serve to establish a kind of ‘convex hull’ if

you will, a hyper-surface that bounds the capacity of the SCS in various dimensions (i.e. in terms

of transaction types). Figure 10.2 demonstrates these concepts pictorially.

So long as the true load experienced by the SCS is within those bounds, it will operate as

predicted by the model. Behavior outside those bounds is indeterminate. Since software needs to

have fail-safes built into it, especially in carrier-grade implementations, engineers typically tend

to build-in safety factors in various ways. These, when accounted for in our model, may appear

to support another convex hull or hyper-surface, parallel to the first (though not necessarily so,

since the tolerance values can be different along different dimensions), but contained completely

within it. Typically, if load exceeds the inner hull, but lies within the outer boundary, overload

control and throttling mechanisms would ensure that the outer hull is not ‘breached’, and the

system performance remains within desirable ranges and behavior continues as specified. Similar

considerations apply to client applications as well.

Outer hull
Inner hull

‘Safe’ performance

Inner hull is ‘breached’,
but performance

still within desirable ranges

Figure 10.2 Performance computation – abstract models

172 Parlay/OSA: From Standards to Reality

10-1.6 Performance Computation – Round Trip Times

Round Trip Times (RTT), also referred to as Turn-Around-Times (TAT), specify the duration it takes

in real time, not CPU time, in getting a transaction through the system. In traditional telephony,

typically components are designed to satisfy a 300 ms latency requirement in terms of a ‘last bit in,

first bit out’ metric. This metric is derived from the maximum delay tolerance in voice connections.

A delay in excess of 300 ms is audible to the human ear and is experienced as a hindrance in

voice conversations. Actual end-to-end latencies may vary based on network transmission delays,

the number of components strung together in the call flow, etc.

In Parlay scenarios, one does not have specified latencies per network element, but it stands to

reason that carrier-grade systems would mirror these requirements closely, though perhaps, due to

the fact that these are not, strictly speaking, telecommunications equipment, the requirements could

be relaxed a little.

Call flow composition in an end-to-end manner along with a sharp focus on individual elements

and load assessments under stable state could help compute these figures, and then appropriate

plans for tuning and optimizations can be made, as in the case with processing times. Some degree

of variability typically exists in RTT measurements, due primarily to the fact that these times vary

based not just on the conditions of the specific elements involved in the processing path, but also

more generally on network related factors such as load on particular LAN segments or across the

WAN as packets are transmitted back and forth.

10-1.7 Performance Verification and Validation – Tuning the Code,

Measurements

Application behavior may be modeled, and the 80/20 rule applied, where a certain type of transaction

is processed 80% of the time. Similar rules may be applied to each SCS, where a certain transaction

is executed in an overwhelming majority of cases as opposed to others, or in SCS flow compositions

where a certain constituent operation is invoked in the vast majority of all SCS transactions.

These ‘most often used’ sections of code, or transactions, are those that need to be optimized

first. Application developers and performance engineers would be well advised to focus their (often

times limited) resources in performance tuning and optimization on those aspects. Later, the rest

of the code could be made more efficient as well, as time permits.

In general, it is considered good practice for the makers of carrier-grade products (both software

and hardware) to perform performance tests including load and stress tests of their software, along

with stability tests for memory growth, etc., over extended periods of time, and compare the

measured performance per transaction type in the stable state against that predicted by the models

in question.

These numbers should be within the tolerance limits established by the models. If they aren’t, one

needs to revisit the models, and verify what elements, so critical to computations, were mistakenly

ignored.

10-1.8 Performance Engineering for Deployments

While deploying gateways or applications in service provider networks, one needs to go the extra

mile beyond engineering considerations for individual SCSs. This process involves computing

expected utilizations per service type across the deployed set of applications, using expected trans-

action mixes, and then scaling the SMG component deployments to meet these service provider

needs for the required throughput. The models discussed previously in the section on transaction

mixes can be easily applied with minor modifications to support this process as well.

Communications Networks are always designed with some judicious performance assumptions.

For instance, the PSTN is designed with the assumption that no more than a certain percentage of

all phone lines will be in use at any given point in time. If half the phones in the world were to call

the other half at the exact same time, the system would not be able to cope with the load, but this

Considerations for Building ‘Carrier-Grade’ Systems 173

is not typically a problem, and overload controls are built in to handle some of these pathological

situations. Building to the worst case often results in unaffordable solutions.

Similarly judicious assumptions need to be made in Parlay capacity engineering. Different appli-

cations have different behaviors, and offer different services to their end-users. They also have

different ‘busy hours’ – the times during the day that they are most utilized and offer the most load

to the underlying SMG element. Where this information is available, it can be used to engineer the

networks to support the required capacity in most non-pathological situations. For the rest, suitable

overload controls can be built into the products in question to provide graceful service degradation,

or rejection of new requests. These, and other factors, are discussed in the next sub-chapter of

this set.

We leave the reader with a simple example on SMG engineering. Let’s say Freedom Wireless

wants to deploy a Parlay gateway and five applications. Their details are as indicated in Table 10.1.

The 2nd column in Table 10.1 indicates not just the peak hours where 100% of the capacity

needed is expected to be used, but also the average load estimated at all other times during the

day. Note that these patterns may vary from one day to the next, or on weekdays versus weekends.

The performance engineer must account for that.

Using this information, the engineer then constructs a graph of the expected load per applica-

tion during the day, and computes the peaks per service type, using the superposition principle

(adding the waveforms for individual services across all the applications). The cumulative wave-

forms for each Service Type (recall that in Chapter 5, we have discussed how each SCS registers

and announces itself using one or more of the standards-defined (‘P ’) or proprietary (‘SP ’) ser-

vice types) indicate the total maximum Xpd capacity needed across all the applications for that

service.

Next, he factors in a multiplier, to account for growth, say 20%, and computes the Xpd rat-

ing needed per service, for the applications to be deployed in that network. Once he knows this

value, and the Xpd ratings in the same units for individual SCSs, it is a simple matter to factor

in the number of clones (recall the discussion of this in Chapter 9) of each service, or the scal-

ing factor needed for the deployed SMG to support the service provider required configuration

satisfactorily.

Let us consider a simpler, more intuitive example for this as well. Here, there are two applica-

tions, A and B, that each use SCS X. These are the only applications in the network that use that

SCS. The usage characteristics of this SCS by these applications are depicted in Figure 10.3.

This Figure indicates the required number of benchmark transactions that need to be processed

(on average) during each hour of the day. The engineer applies the superposition principle to come

up with the composite total number of transactions needed for that SCS (service of type X). This

is repeated for each SCS hosted by the Service Mediation Gateway in the network (recall from

earlier examples in Chapters 6 and 7 how each application may use one or more services). From

Figure 10.3, it is clear that the maximum Xpd rating needed is 55, and that this occurs around 10

AM. The engineer may now add a safety factor to this, and indicate that a capacity of around 80

Table 10.1 Freedom Wireless: application performance characteristics

Application Busy Hour (Peak Period) Service Types used Capacity needed per Service Type

Application 1 7–8 AM, 10% average A, B, C A – 80 Xpd; B – 100 Xpd; C – 50 Xpd

Application 2 8–10AM, 10% average B, D, E B – 150 Xpd; D – 20 Xpd, E – 10 Xpd

Application 3 9–11AM, 10% average A, C, E A – 10 Xpd, C – 200 Xpd, E – 5 Xpd

Application 4 4–7 PM, 5% average D, F, G D – 10 Xpd, F – 10 Xpd, G – 10 Xpd

Application 5 6–9 PM, 25% average F, G, H F – 30 Xpd, G – 200 Xpd, H – 35 Xpd

174 Parlay/OSA: From Standards to Reality

0,0 6
AM

12
Noon

6
PM

12 (0)
Midnight

10

20

30

40

50

Application A

Application B

Summation
Waveform

Figure 10.3 Usage characteristics of SCS X on a typical day

Xpd is needed. If each clone of SCS X can handle 30 Xpd, the engineer concludes that to provide

the required capacity, 80/30 or 3 (rounding up) clones need to be deployed4.

Of course, as new applications are added, or as existing applications are enhanced to support new

capabilities and therefore new call flows, some or more of this analysis may have to be repeated

based on usage and take rates in each case.

10-1.9 Summary

In this sub-chapter, we have illustrated some of the performance engineering guidelines for Parlay-

components and deployments with a view to enabling the practitioner to develop reasonable

procedures to maximize the performance of Parlay-compliant implementations.

10-2

Overload Handling Considerations

10-2.1 Introduction

Growing up, children are told a folk tale where a donkey, used to carry loads, was once burdened

with sacks of salt. As it was crossing a stream, it ducked into the water, and its load got lighter. It

4 Please note that this computation only considers capacity and not the reliability or high availability require-

ments that may also apply to the service. That aspect is addressed in sub-chapter 10-3 on scalability and

reliability aspects of deployments.

Considerations for Building ‘Carrier-Grade’ Systems 175

repeated this over and over much to the owner’s chagrin. Then the owner once filled the donkey’s

bags with sponges and thereby taught it a lesson – sponges soak up water thus gaining in weight,

unlike salt that dissolves to lighten the load. Henceforth, the donkey was careful while crossing

the river.

Overload control in deployed network systems has some similarities. Systems that are not well

designed exhibit performance that drops precipitously when they are heavily loaded; everything

seems fine under light or moderate load, but things fall apart when the presented load crosses a

certain threshold.

Overload handling routines may also be viewed to be designed as a means of ‘self-protection’

for the system in question. This is somewhat similar to Asimov’s Third Law of Robotics, which

indicates that ‘A robot must protect its own existence as long as such protection does not conflict

with the First or Second Law’. Functionality is paramount, but while it services requests, the system

should also try to take care to ensure that its continued well-being (and ability to service more

requests into the future) is not adversely impacted.

In this sub-chapter, we shall examine some considerations involved in designing systems that

behave more predictably and deterministically during times of heavy load. As with the other com-

panion sub-chapters in Chapter 10, we will discuss issues of relevance here with a view to giving the

reader things to think about. Specific answers to individual questions or design choices that work for

particular situations are not presented since there are competitive advantages to be gained through

use of these techniques, and as such, are closely guarded secrets by various telecom equipment

vendor manufacturers5.

The focus of this sub-chapter, as with the other adjoining sub-chapters, shall be on service

mediation gateways, though the astute reader will note that similar considerations will also apply

to the design of Parlay-capable or compliant applications.

10-2.2 What is Ideal, What is Practical?

The study of overload conditions is very involved, and merits a book in its own right. In fact several

books abound [Hanmer 2000] on this very topic, and the treatment tends to be very mathematical

factoring in elements of queuing theory and other related fields. We take a simpler, more intuitive,

though not quantitative approach to the matter at hand. The intent here is to give the reader an

appreciation for what overload is, some associated design patterns to think about for alleviating these

conditions in systems to be built, and raise awareness of the importance of overload considerations

from a performance and capacity engineering standpoint.

Addressing overload involves three steps – those of overload detection, overload reporting, and

overload handling. The first of these deals with detecting that overload has occurred – to achieve

this, some process or element in the system must keep track of the current load of the system

at every point in time (or some suitable intervals), and the threshold beyond which the system

may be considered overloaded (for how else would one know that overload conditions were preva-

lent?) or by some similar means. The second deals with reporting these overload conditions to

other processes, administrators or users who may be able to modify their behaviors or expecta-

tions appropriately, or take suitable steps to alleviate the condition. The third of these deals with

empowering the system itself to take steps to defuse the situation and bring the system back to a

more stable state.

It is important to note that overload should not be a commonly occurring condition in the system.

If overload conditions occur very frequently, it is typically an indication that the system has not

been engineered appropriately for capacity or performance or both. It may also happen that the

system was initially well-engineered with those metrics in mind, but as more and more services

5 Just like how the secret formula behind a well-known caffeine based soda-pop is a trade-secret worth a

lot of money to that company, or how some cooks try to keep back ‘magic’ ingredients from their soup so it

makes it harder for rivals to equal them.

176 Parlay/OSA: From Standards to Reality

and applications were deployed, the infrastructure was not upgraded to keep up with the growing

demand. In such situations, overload control, although still helpful, cannot resolve the forces that

cause these repeated conditions. A more permanent solution would have to be identified.

Catastrophic failures during overload do happen every so often in systems where reliability is

expected. In the case of natural disasters or acts of terrorism for example, many people may want to

call their friends or loved ones in affected areas, and the telephone system may not be able to cope

with the presented load. The PSTN is designed with the expectation that no more than a certain

percentage of supported users will want to make a call at any given point in time. If all users in

an area were to go off-hook at the exact same instant, it is unlikely that the poor switch at the

central office would be able even to provide them with simple dial tone. But the design principle

is a valid one – cost-effective network design requires that one make judicious choices in terms of

capacity engineering factoring in aspects such as cost, capacity, and ability to meet the busy hour

loads presented to the system.

So, given these constraints, what does one want ideally in a well-designed system? A good

requirement would be that the system should not demonstrate a precipitous fall in performance as

load crosses a certain threshold, and that it should throttle sources equitably when under heavy

load. Several design patterns have been defined in literature today for use in systems design in

dealing with overload considerations. Some of these are explored in sections that follow. Another

requirement would be that as load increases, the transaction-processing rate remains as nearly

constant as possible. All real world systems will see some degradation, but the ability to degrade

gracefully (and not precipitously) goes a long way towards alleviating overload conditions.

10-2.3 General Patterns for Overload Control

As we said before, overload control and issues relating to it are well understood and mechanisms

for the same are widely documented in literature as design patterns etc. In this section, we discuss a

couple of these, though merely to give the reader an appreciation for what load management entails.

The interested reader is referred to [Rising 2001] for more on pattern languages for communications

software. We also note that this treatment is not exhaustive and that several other equally interesting

patterns are also extant. What follows is merely a high-level description of some of the patterns

that are applicable – for a more in-depth treatment including the details of the pattern, the pattern

language, relationship to related patterns, the forces resolved, application context, etc., the interested

reader is directed to [Hanmer 2000].

10-2.3.1 New Work Before Old

In telephony systems, delays in the processing of a request would result in a user abandoning the

request and then retrying. Therefore, the more times a request has already spent in a queue, the

more likely it is that it would be abandoned. Similar patterns also apply to systems, which have

well-defined timers and timeouts. If a request has waited too long, perhaps the server is better

ignoring it in favor of a more recent request, for processing it and having a ready answer for the

client after the client timer has expired is indeed worse than not having processed the request at

all. The client cannot use the response, the system resources utilized in processing the request are

completely wasted, and the client may re-issue the exact same request again when the pre-computed

response may no longer be usable.

10-2.3.2 Shed Load at the Periphery

If multiple systems are involved (say) sequentially in the processing of each transaction, then

overload at one or more points along the chain would lead to traffic backing up at other places

as well. As more traffic backs up, more nodes get overloaded, and this is a recipe for overall

system failure. This design pattern advises systems to shed load at the periphery. If the external

Considerations for Building ‘Carrier-Grade’ Systems 177

interface systems were to start rejecting requests or throttling them when they saw that internal

systems were overloaded, and only passed along messages associated with transactions already

in progress, thereby enabling those to complete (completion of existing transactions contributes

towards lessening load), this helps handle the overload condition.

10-2.3.3 Evaluate Overload Globally

Often, it makes no sense for a system of cooperating processes or entities to take on new work in an

overloaded state when one or more of the component processes is overloaded. Stated another way,

since a chain is only as strong as its weakest link, and the overloaded nature of one component

may very well propagate across the system to translate into overload conditions in neighboring

components and so on, there is some logic to evaluating overload globally across the system as a

whole and then taking steps to manage these conditions also on a global basis if possible.

10-2.4 Overload and Parlay Gateways

With a general introduction of overload considerations and patterns for overload control under our

belt, let us now explore how these concepts apply to Parlay Gateways.

10-2.4.1 Overload Detection, Reporting, and Handling

As we have said before, overload detection deals with determining whether an overload condition

exists, and is typically implemented through the use of a monitoring process that tracks system

resource consumption across various contributing elements like memory, CPU cycles, I/O channel

consumption, etc. When a pre-defined threshold is crossed, the system may be configured to raise

alarms or otherwise report overload conditions to administrators or communicating processes.

Many protocols include in their design some overload handling routines. For instance, some IN

protocols support the notion of an Automatic Code Gapping (ACG) component that the SCP can

issue to the switch telling it not to send any more requests for a certain period. Other systems

support yet more mechanisms for overload handling by responding to only a certain percentage of

received requests – say K out of every N for a given duration from each source. These mechanisms,

where supported by the underlying protocols, must be leveraged by the systems to throttle sources

that present excessive load.

Some overload handling routines are more equitable than others. In SIP, for example, one may

support source throttling through the use of a final response (something suitable like 480 Temporarily

Unavailable, 486 Busy, 503 Service Unavailable, etc.) along with a ‘retry-after’ header that specifies

when the source of the transaction may retry the same to get a processed response. Now, this

throttling could be applied either in a context sensitive manner (i.e. depending on the source) or

in a completely context agnostic manner (throttle all sources equally during overload). Some may

be more equitable than others, and as Andrew Tanenbaum says in his excellent text on Computer

Networks [Tanenbaum 2003] ‘fairness and optimality are like motherhood and apple-pie’, and the

details of how this is supported may vary from one SIP implementation to another. Thus, the

protocol itself gives the developer the flexibility to build in overload controls, but also leaves the

door open for the developer to differentiate her implementation from someone else’s. This is as it

should be, for standards are meant to promote interoperability while encouraging creativity, yet not

stifle innovation.

10-2.4.2 Parlay Gateway Related Considerations

Parlay gateways present some unique challenges to the overload control. From a network perspec-

tive, SCSs need to be able to react to throttling from the underlying network elements whenever

the protocol mappings support such capabilities. Since this determination needs to be made on a

178 Parlay/OSA: From Standards to Reality

case-by-case basis, we do not explore this issue any further in this chapter, though we acknowledge

that these kinds of considerations are of significant importance.

From an API perspective, load control and throttling mechanisms are supported, though the

controls and notification mechanisms are distributed within the Integrity Management APIs defined

for load management along the SCS to Framework and Framework to Client Application interfaces.

In addition, the Service Agreement digitally signed by the Framework and Client Application that

could contain within it the governing parameters for the load-related contractual agreements between

the two communicating parties (namely the Client Application and the SCS) may be used to enforce

some degree of load control.

For example, the client X may be permitted to run 30 transactions per second (TPS) to the CH

SCS, 20 TPS to the UL SCS, and 5 TPS to the PAM SCS. Client Y may have a different profile

and be permitted to run 20 TPS to PAM and 2 TPS to the AM SCS. It would be wise to design

the SCSs such that when new service managers were created to handle specific service sessions,

they each try to honor the specific service contracts associated with the client application they

are dedicated to serving. All excessive load incident on the service manager, regardless of spare

capacity on the rest of the SCS, could be throttled6, and a suitable exception such as one indicating

‘resources unavailable’ may be returned. Since this throttling takes place on a per-client session

basis, it remains equitable.

If a Parlay gateway were not engineered with adequate capacity, situations may arise where

none of the individual service agreements were violated with an overload condition, but that the

overall cumulative load on the SCS in question is still too large for the poor clone to handle alone.

In such situations, an equitable scheme might be to throttle individual applications in proportion

with their allocated service agreements. For instance, in the example from the previous paragraph,

if PAM were to be in overload, throttling in the ratio of 1:4 would be applied across the inbound

traffic from applications X and Y respectively to be in keeping with their service agreements. Note

however that such conditions should be remedied by growing the capacity of the gateway – adding

more nodes, more clones of particular services – for it is not a good idea to violate contractual

agreements through proportionate load throttling just to satisfy immediate overload concerns. All

attempts must be made to meet contractual obligations in all cases.

Similar situations may occur in deployments where multiple SCSs were deployed together on a

common hardware platform because their load characteristics were thought to be well understood

(until the next new application that causes subtle but interesting changes in these is innocently

introduced). The reader is referred back to the graph from the previous sub-chapter that shows such

a load characteristic across a 24-hour period. Or consider the case where a new SCS is deployed on

an existing node that was thought to be under-utilized: one may suddenly be faced with a situation

where each SCS appears to be well within its configured load parameters, but the node as a whole

is in overload (running out of CPU cycles).

Throttling may need to be done intelligently for it to have the desired effect. For instance, there are

some transactions defined in Parlay SCFs whereby the transaction is long-lived, and is only closed

when the client issues such a ‘closure directive’. An example of this is the periodic user location

request in the User Location part of the Mobility SCF. The transaction starts when the client issues

a periodicLocationReportingStartReq () and remains open (with the client receiving notifications

periodically) until the corresponding periodicLocationReportingStop () method is invoked. Thus,

although SCSs can implement patterns such as ‘Shed Load At The Periphery’, exactly which

methods to reject needs to be carefully factored in, as the processing of certain methods (such as

the periodicLocationReportingStop () mentioned above) can actually reduce overall traffic and help

with overload mitigation.

As was previously indicated, Parlay also provides load management APIs that enable clients

to query the load of particular SCS clones or for the SCSs themselves to report their load to the

6 Alternatively, service providers may choose to support this overload if spare capacity beyond the negotiated

parameters was available, but then bill for these transactions at premium rates.

Considerations for Building ‘Carrier-Grade’ Systems 179

Framework. These load management API methods (as described in Chapter 5), contain a parameter

that permits the SCSs to specify their load in terms of a percentage or a number indicating load

level (0 for normally loaded, 1 for overloaded, 2 for severely overloaded). These load reports are

generated per service session, not per the SCS as an aggregate, though such an aggregate can be

computed by the Framework (which knows about all the service sessions anyway) if need be.

In implementations, each service manager on the SCS could be created with knowledge of the

maximum load a client can present per the pre-negotiated service agreement, then compute the load

level threshold values as pre-defined percentages of the total value. Anti-hysteresis mechanisms may

need to be built into the load control scheme dealing with load level transitions so as to prevent

repeated and frequent load reports and level changes that result when a particular client presents

heavy load, gets throttled, falls below the overload threshold, then presents the same load again,

rises above the threshold and repeats this cycle in a loop.

The aggregate load reports if computed by the Framework, could be used by it with other

heuristics or algorithms to distribute incoming service session requests across the different SCS

clones for that service, thereby ensuring a more equitable loading of the various servers that

constitute the gateway.

Thus, the Framework can apply the ‘Evaluate Overload Globally’ pattern, albeit to a limited

extent, since it controls coarser granularity control (at the session level, in being able to assign

particular service sessions to particular SCSs). There is no finer granularity mechanism defined

in the standard in support of this pattern. However, implementations are free to explore creative

means to achieve this end.

For a more quantitative and simulation-oriented treatment of Overload related considerations in

the Parlay/OSA space, the reader is referred to [Andersson 2004].

10-2.5 Summary

In this sub-chapter, we have examined some of the issues relating to overload monitoring and

detection, reporting, and control or handling. Specific ideas relating to the Parlay context, and how

these apply to Parlay gateway implementations, were also discussed.

10-3

On the Scalability and Reliability of
Implementations

10-3.1 What are High Availability and Reliability? Why Consider

Scalability?

Telecommunications systems, as previously mentioned in Chapter 1, have become central to the

operation of a free society. One relies heavily on this basic infrastructure, and almost takes it for

granted. There is no doing without it.

Given this kind of critical role that telecom plays in people’s day-to-day lives, service providers

absolutely require the highest levels of availability and reliability of their systems deployed to

180 Parlay/OSA: From Standards to Reality

support these basic communications services. These characteristics are typically expressed in a

rating of ‘9s’. A five 9s system is 99.999% available; that is, planned and unplanned service

downtime (i.e. the time when service is not available to end-users) should never exceed 0.0001%
of the total system time. To make this characteristic more tangible, 0.0001% of the total system time

equates to 5 minutes a year. Similarly, 99.99% (or a four 9s reliable system) permits you to have a

downtime (both planned and unplanned) of 50 minutes per year. As can be seen, the requirement

for higher nine systems (five 9s and above) are very stringent indeed, and rather difficult to meet in

real-world systems (but almost all telecommunications equipment and services are in fact designed

to these exacting standards).

The computation above is performed as follows:

There are 365.25 days in a year (accounts for leap years) and 24 hours in a day, each of which

consists of 60 minutes. There are therefore 525960 minutes in each year. Now, 0.001% of that is

∼5 minutes of downtime per year (for a five 9s system) and so on.

Purists will object to our description in the previous few paragraphs, and rightly so. High Avail-

ability, or HA as it is sometimes called, is distinct from reliability from a pure technical perspective.

It can be argued that the ‘9s’ referred to above are a measure of high availability, not of reliability.

This would be an accurate criticism.

One can have very high availability services that are not very reliable, and vice versa. Imagine,
for instance, a service that fails every thirty minutes, but recovers within two seconds each time.

The service is available a large percentage of the time (unavailable only two out of 1800 seconds,

or 0.11% of the time), but not very reliable. Consequently, it cannot be called ‘carrier-grade’. In

this chapter, we are concerned with both aspects of Parlay services – namely both the reliability

and high availability characteristics. We also briefly cover aspects relating to the scaling of services

supported by Parlay gateways, and related concepts. Although scalability aspects are not directly

related to availability, one must take care to ensure that systems that are designed should not suffer

from a degradation in availability and reliability characteristics as the deployment is scaled up or

down to meet the required capacity needs.

In what follows, we first discuss, at a high level of abstraction, some important issues relating to
the availability, reliability and scalability of Parlay components, including engineering aspects for

deployments. Then we delve down deeper into standards patterns that can be leveraged to build some

of these capabilities into real-world implementations. This sub-chapter is slightly different from the

others in Chapter 10 in that while the others focus more pointedly on engineering considerations,

here the discussion also factors in some aspects from the standards to present a more complete

picture of what is required.

10-3.2 Reliability and High Availability of Parlay – Applications and

Gateways

The stringency of these aforementioned requirements directly indicates that the hardware and soft-

ware elements required to support services for communications networks need to be very carefully

designed indeed. Similar considerations apply to Parlay/OSA systems as well – more directly to

the Parlay-compliant SMGs that are deployed directly into the service provider networks, and per-

haps less so to the application servers hosting Parlay-based applications in the enterprise domains

(after all, this latter set of elements are Internet domain components that are not directly influ-

enced by the same set of restrictions). We do note however that some Parlay/OSA applications

may be directly hosted within the service provider domain itself, or the service provider may have
sub-contracted a service bureau type arrangement with the enterprise domain hosting the applica-

tion, and in either of these cases, since the application contributes directly to the expected service

provider revenue streams, stricter requirements on the operation of these application elements may

be imposed.

Considerations for Building ‘Carrier-Grade’ Systems 181

This typically means that both the physical box7 on which the SMG is built, and the middleware

platform on which it runs, need to be carefully selected. A resilient system is only as strong as its

weakest component. In addition, systems built to satisfy such stringent requirements are built with

off-board or on-board monitor processes that continually track their health and sanity, and restart

processes when they appear to be malfunctioning. And there is an escalation scheme built in where

critical failures of a node would result in it being restarted to bring back the service in a form

usable to subscribers just as soon as possible.

It perhaps needs to be emphasized that high-availability (HA) and reliability are quite different

concepts, though frequently used interchangeably in informal discussions. Software can be highly

available, without being too reliable (refer back to our example from the previous section). Consider

the case of software that fails often, but where the Mean Time To Repair (also called Mean Time

To Recovery or MTTR – the average time between a failure and its repair) is very short. It is

therefore available most of the time, but not very reliable.

Some terms used to gauge the reliability and availability of software include: MTTR (described

above), and MTBF (Mean Time Between Failures – the average time between successive observed

failures of an element). Generally speaking, the larger the MTBF, and the smaller the MTTR, the

more reliable and highly available the system is. Of course, sufficient field data need to be available

before these values can be computed. [Shooman 1983] gives a good mathematical background in

availability and reliability computations for different kinds of systems.

10-3.3 Scalability and Reliability

Scalability refers to the ability of a component to support very small and then very large deployments

either in terms of subscriber capacity, or in terms of throughput requirements. From the definition,

it is apparent that scaling small (also sometimes called ‘scaling down’) is just as important as

scaling up. The former permits an equipment- or application-vendor to provide a cost effective

low-end configuration, while the latter enables them to extend already deployed systems to take on

greater volumes of load in as transparent a manner as possible (sometimes this may involve adding

additional boxes, new software, or the removal of an old box and its replacement with a new box

with greater capabilities – what is sometimes referred to as a ‘forklift upgrade’).

Scalability and reliability go hand in hand. In the sub-chapter on SMG performance, we described

how the SMG can be designed to handle the load requirements of the applications supported by the

service provider network. This is typically done, as described in that sub-chapter, by considering

the aggregate load across all applications to be supported, on a per service basis, and then using

the TPS metrics of these service types to figure out the number of clones of each service (say N)

needed to meet the throughput requirements. Scalability calculations seemed simple enough.

But those calculations assumed that the services themselves, and the nodes that host them, are

always operational. Sadly, however, the real world does, at times, operate in keeping with Murphy’s

law: ‘Anything that can go wrong, will go wrong’.

10-3.3.1 Engineering for Scalability and Reliability

When services or the nodes that they are hosted on fail, or the network becomes inaccessible, or a

data server is no longer reachable, or some other catastrophe occurs, one still has to have a means

to provide as reasonable access to service as the service provider requires. Thus, scaling just to

meet the needs of peak hour transaction processing is no longer sufficient. One has to anticipate,

and plan for some level of failure, and factor that into scalability assessments.

7 Hardware fault-tolerance is also of great importance. NEBS-compliant (NEBS stands for Network Equip-

ment Building Standards) elements are typically used in telecom equipment design. The details of hardware

aspects are outside the scope of this book. See [NEBS 2002] for more.

182 Parlay/OSA: From Standards to Reality

This is typically achieved through Markov Chain modeling. What one does here is assume a

certain probability for failure of each individual element and then derive a mathematical function that

enables one to compute the level of redundancy needed to provide a certain guaranteed availability

assuming K concurrent failures. [Norris 1998] provides a good overview of Markov Chain theory
and the associated models.

Once this analysis is complete, in conjunction with the scaling exercise based on performance

metrics previously described, one gets a good sense for both the N and the K values for the number

of replicas of a given type of element needed in a deployment (N) to support the throughput

requirements for a service at a given level of availability. The output of this exercise looks something

like: ‘To provide 99.97% availability of the Call Control SCS at the required 2800 TPS system

rating, we need to deploy five replicas or clones of this service, each capable of processing 700

TPS, each with an availability rating of xx.xx%.’8 Here, N is 4 (derived as 2800/700 and rounded

up where necessary, since one cannot deploy fractional systems in the real world) and K is 1

(intended to provide resiliency with no capacity degradation after one failure).

N is 4 here because a minimum of four systems each capable of processing 700 TPS are needed

to support an overall capability of 2800 TPS for the deployment as a whole9. The K is 1 because,

even though four boxes are together able to meet the capacity requirement, we need an extra box to

support the availability requirement for the service. This resultant configuration is thereby able to

support a total of one failure and a guaranteed capacity of 2800 TPS even under those conditions.

It can more easily support 2800 TPS in situations where there are no failures.

In N + K architectures, all the N + K nodes concurrently process traffic. Thus, the cluster as a

whole has some spare capacity when all nodes are active and available. But even after there is

a failure, the total capacity of the system as a whole does not go below the required 2800 TPS
for which it is engineered. If more than one concurrent failure occurs, degraded operation may

result with a loss of capacity, and if greater resilience is required, one needs to simply increase the

number K (with a proportionate increase in the cost of the deployment).

The astute reader will note that there are two levels of availability that need to be factored together

to provide the metric used in the above calculation – one is the availability of the node/box/physical

hardware itself, along with its middleware platform, the second is the availability of the application

or service that runs on that hardware element. The cumulative availability of the two elements

together is what needs to be considered as Markov Chain related computations are made.

10-3.4 Parlay Considerations

In Chapter 5, we have studied how applications react to failures of SCSs with which they are

connected, and how they can detect and report these failures to the Framework using the appropriate

Fault Management methods. We also saw how applications can be monitored by the Framework
using the Heartbeat Management interfaces provided as part of the standards.

Client applications can also be designed to exacting availability standards if the enterprises so

choose, or if the service providers enabling network connectivity so require. Application providers

may persist service references in a data store, make them accessible across replicas of the appli-

cation, and resort to other such tricks. So long as the various replicas appear as one application

8 The computation referred to here (particularly the one pertaining to how K is calculated) is interesting,

but is beyond the scope of this book. The value of K is computed while factoring in the kind of model in

use (e.g. the Parallel Redundancy model), the number of repair facilities, etc. (since these contribute towards

how quickly a failure can be repaired on average). [NIST 2005] provides a nice brief description of the ideas

involved here.
9 Depending on implementation, sometimes, SCS clones that provide the same service, or SCS clones that

provide different services, may need to share information amongst themselves. This inter-clone messaging

also has a potential impact on the performance and capacity of the system as a whole, and needs to be

carefully factored in as these computations are done. Given this depends on particular vendor architectures and

implementations of the gateway components in question, a generalized model cannot be presented here.

Considerations for Building ‘Carrier-Grade’ Systems 183

instance to the Parlay components on the SMG, this is all well in keeping with the defined standards,

and offers yet another avenue for application providers to differentiate themselves from the com-

petition as Parlay technology takes off, and the marketplace gets inundated with a large number of

Parlay applications.

10-3.4.1 Building HA Parlay Applications

As we have seen first in Chapter 5 and then in more detail in Chapter 6, the Parlay standards define

interfaces whereby the client application can register a callback interface and issue asynchronous

requests to the server. Once the server completes the processing of the request, it can issue a

callback with the response, on the previously registered callback interface.

The standards permit the client to register more than one such callback address to which the

response may be sent. Where multiple alternative callbacks are registered, the last registered or most

recent one is used first by the Parlay server or SCS, and if some kind of failure indication results,

then the server may attempt to use the other back-up callback addresses to transmit the response

before giving up with some kind of failure indication (if necessary, even to the Framework).

This mechanism can be very cleverly utilized by client applications to support HA constructs,

see Figure 10.4. If we explore the concept of ‘application replicas’ alluded to in passing from the

previous section, we can conceive of situations where multiple application replicas each register:

a) their own local callback reference as the primary and then b) a replica’s callback reference as

the secondary callback address, with the SCS to which the primary has a service session.

Parlay
Client

Application

Parlay SMG
Framework

Parlay SMG
Services

Access
Session

Service
Session

Parlay
Client

Application

Clone 1
SCS X

Access
Session

Clone 2
SCS X

Clone 2
SCS Y

Multiple Service sessions to a given
SCS for Service HA and reliability

A. B.

Parlay
Client

Application

Clone 1
SCS X

Access
Session

Clone 2
SCS X

Clone 2
SCS Y

Replicas may register each others’ call backs as
backup call back references for application HA

C.

Parlay SMG
Framework

Parlay
Client

Application

Access
Session

Database with State
Check-pointing

Application
Replica #1

Application
Replica #2

Note: Other configurations are possible, the above is merely illustrative of possibilities.
A. Simple figure of a Parlay client interacting with a Service Mediation Gateway (SMG)
B. Figure showing details of multiple clones, configuration for Service-level HA
C. Figure showing Application Replicas for Application-level HA

Parlay SMG
Framework

Parlay SMG
Framework

Figure 10.4 Examples of Parlay configurations in multi-cloned SCS scenarios

184 Parlay/OSA: From Standards to Reality

In such a situation, one very elegantly achieves higher availability of the application entity for,

if the primary application replica were to fail, or if its callback address were to become suddenly

unavailable, the SCS would notify the secondary replica of the response or of an asynchronous,

subscribed network event. In either case, the application as a whole could update its transactional

context and function in spite of the failure of some subset of its registered replicas.

Admittedly, the viability of such a strategy depends on many factors, not the least of which is the

level of context sharing between the various application replicas, how frequently they communicate

with each other, how the transactional state is stored, etc. But the standards do provide a mechanism

for high-availability support as a beneficial side effect of this mechanism of enabling multiple

concurrent optional callback addresses.

Although this standards-specified mechanism for achieving HA in the application domain is

elegant and simple, it is not a firm requirement. Implementations (both of the client application and

the server or SCS) are free to use whatever options or alternatives they deem most appropriate. In

CORBA-based implementations, for example, Parlay components may be built to use fault-tolerant

CORBA and related constructs. We do note, however, that although various technology-specific

options for HA exist, the standards do in fact provide some capabilities that are generic, useful and

technology neutral, for achieving the desired goals.

10-3.5 Summary

In this chapter, we briefly considered some aspects relating to scalability, reliability and high-

availability aspects of Parlay deployments. The focus here, as in the other adjoining sub-chapters

of Chapter 10, has been more on providing the reader with things to think about, rather than

prescribing particular solutions to the issues raised. There is a wide variability in applicable solutions

to problems in this space, with ample scope for competitive differentiation as desired.

10-4

Failure Handling in Parlay/OSA Environments

10-4.1 Introduction

As more applications are built to comply with Parlay/OSA technologies and as gateway deployments

become more pervasive and prevalent, smooth interoperation of products from different vendors

in Multi-Vendor Environments (MVEs) becomes increasingly important. Transparent and efficient

identification and resolution of failure scenarios takes on more importance and gets more attention,

deservedly so. Careful planning in this regard, on the part of the standards bodies, and those that

build the gateways and applications in question would enable the Parlay/OSA technologies to cross

more easily the ‘technological chasm’10.

10 Reference is made here to the book ‘Crossing the Chasm’ by Geoffrey Moore [Moore 2002]. In that

classic, in a chapter focused on the maturation cycle for various technologies, Moore argues that there is a

certain point in the technology lifecycle where the technology gathers a mass appeal and wide following, and

this causes a sudden upsurge in interest and demand in it, which causes it to become very widely used and

Considerations for Building ‘Carrier-Grade’ Systems 185

The ETSI standards body, with a view to ‘greasing the skids’, so to speak, and enabling easier

interoperability of implementations (which theoretically should be seamlessly interoperable anyway,

since all compliant products are built to the same set of standards-defined interfaces), has conducted

over the past few years, events called ‘plug tests’ (which previously used to be called ‘bake-

offs’11) for OSA/Parlay. At these gatherings, people from different companies could go in with their

implementations of gateways, applications or other components that implemented the Parlay/OSA

interfaces, and then test their components with those built by other vendors.

During these events, it is not uncommon for developers to discuss and argue interpretations of

the standards themselves, and then make appropriate fixes collaboratively, or to come up jointly

with standards change requests (CRs) for submission to the bodies that publish these documents, as

they ensure interoperability between their respective implementations. In addition, these events are

valuable because it is fairly typical for service providers to want to deploy products from different

vendors in their network to hedge their bets, and in such cases, the degree of effort involved in

testing interoperability and compliance of implementations to the standards in a service provider

setting is simplified if the products involved have been interop tested at events such as plug tests.

Both in live networks, and in situations where interoperability is merely being tested in a lab-

setting, it is often valuable for the product to return appropriate failure indications so that the

application, operator, administrator or user (as the case may be) is aware of what is happening, and

why, and which, if any, corrective action may need to be taken. The error indications themselves

may be of different types, and at different levels of detail, depending on who is expected to react

to them.

For instance, a user presented with a ‘blue screen of death’, and an error which says ‘Error

231X in memory location 231F:123E:21BC:0AFD, press ¡Enter¿ to reboot’, is rather helpless

when it comes to de-bugging the application or divining the cause of failure, unless he or she is

a programmer or has access to a manual. (Users do not like being told to ‘Read The Forgotten

Manual’ – the infamous RTFM fix for all non-sunny-day scenarios.) This error is in turn better

than one where the computer reboots itself without giving an error indication at all.

On the other hand, an application dealing with a gateway would prefer to receive an error indica-

tion or error code it can understand (e.g. 231X) without too much supporting text or explanation, for

the program logic is, more often than not, keyed off the error indication or error number received.

The explanation, if any, is normally either used offline by the concerned administrator (who exam-

ines the application logs), or is passed on to the user, as the case may be, though the application

itself probably makes best use of just the error code.

OSA/Parlay products, like all other software, will, from time to time, face error situations12, and

are expected to gracefully recognize, isolate, react to, log, and then recover from, these kinds of

situations. Errors can be of many types, and may occur at different layers of software and different

points in the operation of systems. Here, we study some of them with a view to giving the reader

a somewhat finer appreciation of what exactly is involved in designing a reasonably stable, usable

also very successful. Technology itself may be very attractive but marketing can only push it so far, beyond

that, it is up to the demand-pull that is exerted by consumers that really makes or breaks it.
11 It’s rather interesting to note that the term ‘bake-off’, which was widely used for a number of years to

denote events of this type (especially with regard to SIP implementation interoperability), had to be changed to

‘PLUGTESTS’ because the term ‘bake-off’ was apparently copyright-protected by a popular pastry/baking

products company, and its use in the technical arena was discouraged by them in an effort to protect their

copyright.
12 There is no such thing as ‘error free’ software. Testing can be extremely methodical, follow all the right

techniques, and try to ensure that all the normally used program legs are error free. But programs may behave

differently in different situations, under different kinds of load, when security attacks are in progress, when they

interact with different kinds of servers or clients, when they see different unrecognized codes or responses, etc.,

and any scenarios not considered during testing can cause problems later on. Software engineers are frequently

surprised when they hear laymen talk about ‘perfect’ software.

186 Parlay/OSA: From Standards to Reality

system from an error handling perspective. Although this chapter appears in the section on gateway

design, the contents here apply equally well to the design of Parlay/OSA client applications.

10-4.2 A Layered Software Architecture – Again. . .

Figure 10.5 indicates the layers of software that are typically involved when one builds a carrier

grade system. It must be emphasized that the figure merely indicates what is typical, and the actual

product architecture can vary widely from one vendor to another, based upon factors such as history,

design choices previously made, company technical culture, reuse of existing assets factored in,

reuse of legacy company platforms or interfaces to such components sold together in an offer, etc.

We have examined this layered software architecture, rather informally in previous chapters, but

take a closer look here, to set the context for our discussion of failure handling.

In Figure 10.5, the lowest layer represents the hardware platform and associated software drivers

etc. This layer also includes operating system software, protocol stacks ‘plugged into’ the system

and so on. Capabilities and services provided by this layer are used by the layers13 above it (the

astute reader will note that these concepts are similar to those in the OSI layered protocol model,

where services from one layer are made accessible to the layer above via Service Access Points or

SAPs).

The next layer up contains the platform and services middleware. Vendors typically tend to use

the platform middleware layer to give their products the robustness and other carrier class capabil-

ities for reliability, availability, redundancy, failure detection and recovery, etc. This middleware

provides the supporting standard platform capabilities, interconnection mechanisms, binding to

operating system capabilities, and related features to upper layers. Platform middleware with more

years of field data from actual deployments (giving MTBF, MTTR and other such information) is

typically considered more hardened and this serves as more of a metric of the reliability of the

implementation than any claims the vendor might make.

Hardware Platform, Operating System,
Driver Software

Protocol Stacks

Middleware
Layer

Platform Middleware

Services Middleware

Service or Application Logic

Figure 10.5 Generic layered architecture for carrier-grade systems (nodal view)

13 The novice reader can be forgiven for wondering: ‘what is it with engineers and these layers in every

model we see?’ Engineering is often an exercise in management of complexity. Layering is a tool that enables

the engineer to partition the problem, simplify it into a view of smaller, interconnected problems at different

levels of abstraction, solve these sub-problems (even share sub-problems amongst team members, one or two

each), then put the whole thing back together. If the problem is amenable to this kind of treatment (and it

often is), the solution works. In other words, layering is a kind of ‘divide and conquer’ technique, applied

simultaneously across different levels of complexity.

Considerations for Building ‘Carrier-Grade’ Systems 187

Services middleware, on the other hand, is used to provide the base infrastructure for the actual

service logic that runs on the node. For instance, Parlay/OSA gateways or applications could be

built to use any one of several service middleware technologies such as CORBA, SOAP/XML,

Microsoft MIDL or DCOM, COM etc. These would constitute the services middleware layer. One

or more middleware technologies could be utilized by any given implementation.

Finally, at the top of the stack, comes the services or application logic itself. This is the soft-

ware intelligence that actually runs the node. One or more services or applications can co-exist (of

course, the engineer must, needless to say, factor in other considerations such as capacity, perfor-

mance etc. while doing this) on a given node, and reuse the same underlying infrastructure. If we

consider Parlay/OSA applications, this layer would implement the standards-defined interfaces, the

programmatic APIs, and the logic that lies behind them, including that needed for handling error

cases.

10-4.3 A Layered View of Errors?

Now that we have looked at the different layers of an implementation from a software perspective,

let us also look at the different kinds of errors that might be reported at each of these.

From a bottom up perspective, the first kind of error we encounter are simple protocol errors.

For instance, failures of TCP connections to remote nodes, buffer overruns, timing errors, etc.

Some of these may be reported to application logic so appropriate corrective action may be taken,

while others may be localized problems in the protocol stacks or driver software, and need fixes

or patches from the vendors that provided those components.

The platform middleware might report errors in inter-process communication infrastructure, fail-

ures of critical processes, and so on. In such cases, the middleware may itself take corrective action

such as trying different strategies for recovery perhaps escalating eventually to a nodal reboot after

termination of resident applications: all this, in the interests of keeping the node healthy and oper-

ational to the best of its abilities. Or it may simply generate alarms and ensure that some human

administrator would eventually notice and initiate such action manually. Generally platform errors

are not propagated to the application layer, especially for hardened, thoroughly tested applications,

and are few and far between. But this depends, as we said before, on how hardened the platform

software itself is, and how capable it is, in terms of dealing with the kinds of real-world network

conditions it may be subject to in the field on its own.

Services middleware, being somewhat less resilient and less tightly coupled with the platform

than the platform middleware, may see errors from time to time, and will generally pass these errors

on to the service or application logic that executes on the node. For example, it is not uncommon

for an OSA application to see occasional CORBA errors if, for instance, it were to invoke a

method from the defined standards interface on a server, where the server did not implement that

method and does not even support it in its view of the same interface. Section 13.6 in Chapter 13,

which discusses the least cost testing of Parlay interfaces, considers these issues in greater detail.

Normally, it is recommended that clients and servers implement all the methods in the standards-

defined interfaces if they implement any method in said interface at all – if nothing else, a dummy

implementation with no real service logic is still better than no implementation.

Perhaps the most important kind of error is that which occurs directly at the application or

services layer. The programmer must ensure that he or she deals with these errors in the code,

and that every expected situation is provided for programmatically, and that there is at least some

logic to handle unexpected errors in strange situations. The standards help to a large extent here, in

defining the error conditions that may arise when these interfaces are used, along with error codes,

associated cause codes, and diagnostics. The standards also provide flexibility to define user- or

administrator-readable error text that can be put into logs by the recipient for later use.

In the Parlay APIs, such application layer errors are dealt with either by exceptions or by explicit

error return methods. Exceptions can be thrown by any method. In order to structure exceptions

188 Parlay/OSA: From Standards to Reality

and minimize the need to define exceptions exhaustively for each method, an exception hierarchy

is introduced. The hierarchy consists of common exceptions and service specific exceptions. The

common exceptions, as their name suggests, are applicable to every method (e.g. P METHOD NOT

SUPPORTED in case an invoked method is not implemented on the server, or may not be invoked

according to the Service Level Agreement). Service specific exceptions are limited in scope to

a specific service only (e.g. P REQUESTED ACCURACY CANNOT BE DELIVERED in case

a location report request is issued with an accuracy of location details that is not supported in

the network). In addition to the standards-defined exception types, each exception may provide

additional information to the application programmer, in the form of free-format text strings. For

example, when the exception P INVALID STATE is thrown by the service to indicate that a method

is invoked in an unexpected or invalid state of the state machine executing on the gateway, the

gateway may provide additional explanation on that current state.

Errors can also be reported in the asynchronous response to a specific request. For example the

method locationReportErr in the IpAppUserLocation interface returns an error cause and diagnostic

towards the application. In case certain privacy consideration are enforced by the regional or national

regulatory body, a location report request might fail with error cause P M UNAUTHORIZED

APPLICATION and diagnostic P M DISALL BY LOCAL REGULAT REQ.

Admittedly, although the programmer may do his or her utmost to deal with all kinds of error

situations that may arise, some will be overlooked; which is why the default error-handling clause

(i.e. some default logic so the code does not choke when it sees a new kind of error arising in a

particularly infrequent condition) is necessary. Any client server system deals with communicating

state machines – one at the client side, and the other at the server end, and each end essentially

performs its functions based on its view of its own state and its perceived view of the state of

the other interacting component. The standards-defined interface and (real or perceived) behavior

underlying it govern the interactions between these communicating components, and the software

at either end must be in a position to handle situations when perceptions of their state as viewed

by the other parties may not agree with their own14.

Contrary to popular wisdom, doing the same thing over and over, when dealing with software

systems, may actually result in different outputs. The output is, in some cases, not just a function

of the input, but also of the state of the other element with which one is interacting. Of course, if

the output is not what is desired, and the user (person or application) has no view of the internal

logic or states of the other entity, this knowledge is of little consolation.

The astute reader will note that errors in lower layers, if they are not caused by the controlling

logic in the highest layer, will be caught and ironed out more quickly, since these lower layers

are utilized more. Stated another way, the more particular software is used, the more likely that

obscure errors will be caught and reported, since this software is tested under varying conditions

more frequently, in different deployments. This also explains why the number of hours of field data

collected on lower layer software components, particularly those that deal with platform reliability

and availability, etc., contribute directly to how hardened those components are.

10-4.4 Summary

In this chapter, we have studied the different kinds of errors, a possible classification of these from

a layered software perspective, and then examined how software can be better constructed to handle

error situations that occur, with a focus on Parlay/OSA applications and services.

14 People, in similar situations, either argue, or agree with each other, though each person’s view of the

agreement is different (setting the grounds for later arguments). Software at a node either throws immediate

errors or starts diverging from its peer in its view of the other’s FSM state, which could lead to errors later

on in their communications. Just like there are no perfect people, there is no perfect software. Sometimes, the

errors cannot be localized, but some blame attaches on both ends.

Considerations for Building ‘Carrier-Grade’ Systems 189

10-5

Security Aspects

10-5.1 Introduction

Security is of paramount importance in various communications networks in general, and in telecom-

munications networks in particular. Historically, telecommunications networks have had a higher

barrier to entry than packet-based networks such as the ubiquitous Internet and have used more

esoteric protocols and variants carried over SS7 that restricted connectivity to a smaller set of

nodes capable of speaking these protocols. Telecommunications service development also used to

be an arcane skill, almost a kind of ‘black art’ requiring deep expertise of very specialized domain

knowledge.

As we have seen in previous chapters, with convergence, and service-centric network support,
and the need felt by service providers to bring in ever newer and more exciting services and

applications and make them available to end-users to retain subscribers and grow subscriber bases,

this picture is rapidly changing.

Open standards like Parlay and OSA are leading to service provider hosted service capabilities

being exposed to third party client applications, developed with Internet toolkits and technologies,

that can effectively leverage these to enhance the end-user experience in new and interesting

ways. Even service provider supported SS7 capabilities are now accessible (albeit indirectly) to

applications via IP-based API interfaces via network elements like Service Mediation Gateways.

Openness is good, but service providers want assurances that this new model does not compro-

mise existing security and safety requirements. After all, if new services are made available to their
subscriber base, but they result in serious heavy spamming or the download of viruses or other

malware to their handsets, or in the exposure (accidental or otherwise) of end-user privacy informa-

tion, or in billing/charging fraud, these so-called ‘improvements’ would be counter-productive. A

good security model goes a long way towards addressing these concerns. In this and the following

sections, we discuss some ideas in this regard.

10-5.2 Security and Service Mediation Gateways

In earlier chapters we have discussed how policy management may be supported to provide greater
dynamism and flexibility in the processing of requests received by the SMG element deployed in

a service provider network. The Finite State Machine or FSM that indicates the processing to be

carried out for each received request on the server element, may be enhanced to support a policy

query, so that a rules engine (supported by the architecture for example) may be requested to render

a decision, and this decision is then enforced by the SCS that now acts as a Policy Enforcement

Point or PEP.

Policies themselves can encompass a wide variety of applications, and one such application

may be security associated with the authentication and authorization of applications, and privacy

enforcement so end-users’ rights are safe-guarded and only authorized application elements are

given access to their information.
Note however that policies are useful once an underlying basic infrastructure exists, and then

this infrastructure is enhanced to become policy-conscious. Thus, although policies themselves are

very useful, core elements supportive of security must already be present. SMG implementations

may address security from two distinct standpoints:

190 Parlay/OSA: From Standards to Reality

1. standards-based support for SMG security via the defined interfaces

2. network level security for SMG deployments utilizing ‘surround’ elements

Let us look at each of these in turn, in some detail.

10-5.2.1 Standards-based Security Support

In Chapter 5, we have briefly outlined in Figure 5.10 how security support is provided by the

OSA/Parlay APIs. The access session, established between the client application and the Framework

SCS, typically provides session-level security, and carefully regulates application access to service

provider hosted services and SCSs. The defined interfaces support two kinds of authentication

models:

a) P AUTHENTICATION: whereby the actual authentication process may take place at the network

level or utilizing mechanisms other than those defined explicitly in the Parlay API, but where

the results of said authentication may be utilized within the Parlay application context; and

b) P OSA AUTHENTICATION: whereby the authentication procedure utilizes the capabilities

specified within the API directly, for performing authentication and authorization functions.

The API indicates that the Challenge Handshake Authentication Protocol (CHAP), originally

defined mainly for the authentication of computers over dialup lines [RFC 1994], should be used in

client application authentication. As mentioned in Chapter 6, part 3 of the specification defines the

Framework APIs or the Trust and Security SCF. This specification indicates how the CHAP packet

is to be constructed, disassembled and parsed at the destination, and the identity validated. A hashing

scheme (also called a trapdoor function, like MD5 or SHA1) is used along with a shared secret,

to establish the identity of the parties being authenticated. The shared secret is established during

an out-of-band pre-negotiation phase between the enterprise domain fielding the client application

and the service provider domain hosting the SMG element.

Mutual authentication is supported, whereby the client and the server authenticate each other.

This is useful because it ensures the client is not tricked into revealing security information to

unknown malicious servers that attempt to masquerade as the SMG. Transparent re-authentication

is also supported, whereby the Framework can periodically (based on a service provider supported

policy, for example) require the re-authentication of client applications if these clients want to

continue to avail themselves of the services offered via the SMG.

During the service discovery and service selection phases, the Framework may enforce security

policies that are defined, to ensure that clients are only able to ‘see’ and select that particular subset

of offered services that are in keeping with the service level agreement previously agreed between

the enterprise operator offering the client application in question and the service provider. Also as

previously discussed, Service Agreements need to be digitally signed between the client application

and the Framework, re-affirming the terms of service usage between the two interacting parties.

The specification supports the use of asymmetric cryptography and digital signature algorithms

such as RSA and DSA for these purposes. Some implementations also support a NULL cipher-

suite for authentication – it is not recommended that this be used in actual deployments unless

there are other security mechanisms already in place, but this support for the NULL algorithm

does provide a convenient means for interoperability testing at various plug tests and other such

gatherings.

Other aspects of security, including ‘surround’ or related capabilities pertaining to key genera-

tion, key storage, key exchange, key management, etc., are outside the scope of the Parlay/OSA

specification and are not addressed by the standard. It is assumed that well-understood, widely

deployed implementations of mechanisms from those domains are supported by individual SMG

deployments. (As can be seen, although the standards do offer a lot of capabilities packaged

Considerations for Building ‘Carrier-Grade’ Systems 191

neatly into APIs, there is adequate scope for differentiation and innovation among different ven-

dors’ products.)

Where the P AUTHENTICATION model is supported, the discussion ties in rather closely with

what kinds of network-level security mechanisms are utilized in particular service provider network

contexts to provide assurances of security. This is the case because, as previously indicated, the

P AUTHENTICATION model utilizes the results of authentication carried out outside the scope

of the Parlay/OSA APIs themselves. We shall study this in the next section.

10-5.3 Network-level Security Support

Whether or not security is built into the SMG element deployed in a service provider network,

it is wise to support other security mechanisms, elements, or constructs so the design principle

of ‘defense in depth’ is closely followed. Doing so ensures that the compromise of one layer of

security does not lead to the total compromise of the system as a whole, since there are other

safe-guards in place that can still protect the system as compromised elements are detected and

fixed.

Thus, typically, SMG deployments would be shielded from the general Internet behind one or

more firewalls (since the SMG will typically be hosted in the inner network, not in the de-militarized

zone (DMZ) that exists between the inner and outer firewalls along the network periphery that

typically hosts web servers and other such elements). Service providers could support VPN Security

Gateways between their own networks and external enterprise domains that host applications,

and utilize OSI layer 3 IPsec ESP tunnel-mode VPN tunnels between these different networks to

guarantee the integrity, authenticity and confidentiality of traffic transiting these connections [RFC

2401]. Figure 10.6 shows possible security configurations.

It is to be expected that in such cases, the service providers will require all ‘connected’ enter-

prise domains to take some minimal set of precautions to ensure that their individual networks

are not subject to compromise, thereby heightening security for the entire ‘network of networks’

as a whole. We have said it before: a chain is only as strong as its weakest link. Similarly, ser-

vice providers may also require these enterprise domains to respect a common privacy policy

with regard to use of subscriber information – any violations of the specified policy could be pun-

ished with forfeiture of service connectivity and the resultant loss of associated revenue through

operations.

If so configured, or if alternative mechanisms such as TLS/SSL15 are used, and credentials shared

via digital certificates are utilized in the context of widely deployed cryptographic handshakes for

mutual authentication, the Framework SCS may be instructed to permit client applications access

to services without explicit API-level authentication.

10-5.3.1 Securing Service Sessions

Providing security to access sessions is nice, but is not necessarily sufficient. One may want

to prevent some client applications from accessing particular methods from within the service

interfaces. As indicated in Chapter 5, the parameter list passed by the Framework to the SCS SILM

during the createServiceManager () invocation may be used to constrain the method set that is

accessible to clients, in keeping with pre-negotiated service level agreement parameters.

Of course, the ‘surround’ elements supported for network traffic security between the enterprise

and service provider domains apply to all traffic exchanged between these two networks, including

15 It is to be noted that TLS v1.0 and SSL v3.0, the OSI layer 4 mechanisms, are typically more widely used

in the context of Web Services and other technologies more amenable to their support. TLS and SSL are not as

readily usable in CORBA contexts, since support for these typically requires the use of ‘ORB-gateways’ and

‘SSL-packs’ that are developed with vendor-specific features and capabilities that are not defined by the OMG

standards for CORBA.

192 Parlay/OSA: From Standards to Reality

SMG

Framework
SMG

Framework
SMG

Framework

SMG

SCS
SMG

SCS
SMG

SCS

Client

Application

#1

Client

Application

#2

Client

Application

#3

DMZ

Service Provider

Network

P_AUTHENTICATION

handshake

Internet

P_OSA_AUTHENTICATION

handshake

Enterprise Domain #1 Enterprise Domain #2

Managed

IP Network

P_AUTHENTICATION

handshake

IPSEC

TEP

IPSEC

TEP

IPSEC

TEP

IPSEC

TEP

Notes:

1. TEP is a Tunnel End Point. IPSEC is used as an example of security protocol

2. Figure shows possible configurations only, other alternatives exist

3. Figure depicts access sessions only, security for service sessions may also be

provided by implementations

Figure 10.6 Possible security configurations

the service sessions. In addition, service sessions connected to service managers hosted by policy-

aware SCSs could dynamically enforce policy decisions rendered by a rules engine. The rules

decision mechanism or Policy Decision Point may be accessed by the application or indeed by the

SCS itself, via a separate service session to the Policy Management (PM) SCS. In such cases, the

PM SCS may be a part of the same SMG hosted by the service provider network.

Rules may be service provider specific (e.g. enterprise applications require P OSA AUTHENTI-

CATION and need to sign service agreements with 512-bit RSA), end-user specific (e.g. Alice does

not wish to permit application X access to her location information), application specific (e.g.

application X in an enterprise domain can only get some user data, application Y in the service

provider network is trusted and has access to the complete user profile), or a combination of the

above.

10-5.4 Summary

To sum up, security is important in SMG deployments. The newfound openness supported by the

Parlay/OSA model needs to be tempered with regulated access and secure usage of hosted services.

Some API support for security is embedded into the Parlay and OSA standards, but generally

speaking, it is wise to utilize these capabilities within the context of a larger set of complementary

technologies and mechanisms to ensure greater end-to-end security. In this chapter, we have briefly

studied some of the issues involved in such deployments.

Considerations for Building ‘Carrier-Grade’ Systems 193

10-6

Upgrading Field-deployed Systems

10-6.1 Introduction

As described in sub-chapters 10-1 and 10-3, a Service Mediation Gateway could be developed

as a distributed, extensible, modular system of N + K autonomous, spared and redundant Service

Capability Server clones over a cluster of hardware nodes. Alternatively, it may be build to consist

of extensible distributed SCS processes that subsume service managers that may be spawned on

different nodes within the cluster, with these various nodes communicating with each other over

some proprietary protocol, and the primary node supporting a service factory or service instance

lifecycle manager (SILM) and interactions with the Framework.

In addition, a Service Provider may decide to deploy SCS and Framework components from

different vendors into a true multi-vendor-environment (MVE). Also, since the SMG is a modular,

extensible system, the service provider may choose to upgrade selective services or particular SCSs.

Given that the SMG cluster may host not just Parlay/OSA SCSs but also proprietary, non-Parlay

SCSs, it is important that a generic upgrade plan be made available that covers all the details of

how such a process may be carried out.

An SMG, though a complete system in itself, does not operate in isolation. It is interconnected

to network elements along the southbound direction and with Parlay/OSA client applications along

its northbound interfaces16. It therefore stands to reason that when talking about upgrades, one must

also consider client applications.

10-6.2 Upgrading an SMG

Let us first understand what is meant by the term ‘upgrade’. As standards evolve, it is likely that

more functionality would be added to existing interfaces, or that interface definitions may change

from one version to another.

Since Parlay/OSA have base-lined the intended structure of the various SCS APIs in Parlay 3.1

and OSA R4 (what is sometimes referred to as the ‘anchor’17 release), it is very unlikely that any

future changes to the API would result in incompatibilities with previous versions subsequent to

this base or anchor release. In other words, the standards committees are working hard to ensure

backwards compatibility with versions starting with Parlay 3.1/OSA R4. In fact, this is even a

stated requirement.

Parlay 3.1, 3.2, etc. are essentially maintenance releases that fix minor bugs with the base release

from Parlay 3.0. There have been significant IDL structure and mapping changes from Parlay 2.1

to Parlay 3.0, but again, given that Parlay 3.1 (with minor revisions introduced to Parlay 3.0)

is the anchor release, only minor changes to existing APIs are permitted, though some existing

method signatures may be deprecated/modified or replaced where errors are found. New methods

16 Quite possibly, it also connects via some proprietary or standard interfaces to service provider OA&M

systems; and all SCSs, we know, have to interface to the Parlay Framework.
17 The term ‘base release’ applies to all the X.0 versions of the specifications. The term ‘maintenance

release’ applies to bug-fix releases – the X.1, X.2, etc. The term ‘anchor release’ refers to a release version that

is guaranteed to be the basis for all future work, while simultaneously promising to be a version with which

all future versions will be backwards compatible.

194 Parlay/OSA: From Standards to Reality

and interfaces can, of course, still be introduced. And the Parlay body has finally put in place some

well-defined rules relating to what kinds of changes can be made in what kinds of releases, and

how method deprecations should be handled.

If the implementation of particular functions within a given SCS changes, so as to provide added

functionality (or provide bug-fixes) while building to the same interface, this would qualify as an

upgrade of the SCS being replaced with the next version. (Note that, in general, the SCS version

and the version of the standard that it implements are two different things – for instance, v3 of

a vendor’s UL SCS is an implementation of the Parlay/OSA UL API, providing capabilities or

performance above and beyond what was possible with v2; but both the v2 UL SCS and the v3

UL SCS may in fact build to the same Parlay 3.1 API, but with v3 building more of the functions

in the API than v2.)

The above paragraph presents what is meant by the term ‘SCS upgrade’. A ‘Service Upgrade’

refers to the case where ALL SCSs of a given kind are upgraded within a particular time frame.

Note that as particular elements (of a given service type) are upgraded, the newer version of the

service is available to client applications from those SCS clones. Once all SCSs of a given type

are replaced with newer instances, the only version of the service available to clients is the one

offered by the newer SCS version. This is what we refer to as a service upgrade.

In an analogous fashion, upgrading the Framework might imply replacing an existing Framework

implementation with another version that provides a different, possibly better, or more efficient

implementation. An ‘upgrade’ necessarily implies that some positive change in terms of added

functionality or better client application experience results after the process is complete.

All the above processes (for Framework upgrades) work beautifully, in a manner totally indepen-

dent of each other unless there are changes to the API or associated IDL for the interface between

the SCS and the Framework. We define the term ‘system upgrade’ to cover this case. This is the

most complicated of all the upgrade scenarios and essentially is expected to occur only when the

SMG transitions from one base release of the specification to another, where there are significant

changes between base releases of specifications from Parlay/OSA.

To summarize, upgrades always result in the deployment of a new SCS to replace an existing

SCS, but may be classified into different types based on whether this results in:

a) changes to the SCS functionality but no changes to the supported interfaces (other than possibly

the southbound protocol/API interface);

b) changes to the SCS northbound interface;

c) changes to the SCS to Framework interface; or

d) combinations thereof.

These cases will be referred to in the sections to follow as ‘Type-X’ upgrades, where ‘X’ refers

to the letter from the above classification. Figure 10.7 illustrates these cases, and describes how

upgrades may be carried out. The reader may refer to this figure while reading the rest of this

chapter.

10-6.3 The Upgrade Process, and Addressing Inter-Component

Dependencies

Upgrading traditional telecom system services is a non-trivial undertaking. To cite a completely

different example, when upgrading pre-paid systems, one has to ensure that all the network elements

involved in an end-to-end flow are identified, that their inter-dependencies in terms of both protocol

operation, data storage, and changes are well-understood, and that very minimal (if any at all) service

disruption be visible to subscribers who try to use the service during the upgrade period. Upgrades

are also very carefully and meticulously scheduled to be completed in well-defined maintenance

C
o
n
sid

eratio
n
s

fo
r

B
u
ild

in
g

‘C
arrier-G

rad
e’

S
y
stem

s
1
9
5

SMG
Framework

vP

SMG
Framework

vP

SMG
SCS
vP

SMG
SCS
vP

SMG
Client

vP

SMG
Client

vP

SMG
Framework

vQ

SMG
Framework

vQ

SMG
SCS
vQ

SMG
SCS
vQ

SMG
Client

vQ

SMG
Client

vQ

A. Parlay Ecosystem (Initial Configuration) B. Parlay Ecosystem (Desired Eventual Configuration
after Upgrade completed globally)

SMG
SCS
vP

SMG
SCS
vP.X

C. Type A Upgrade
Service clone upgraded, no Parlay changes
Southbound mapping more efficient

New southbound mapping
No Parlay interface change

Upgrade

SMG
SCS
vP

SMG
SCS
vQ

D. Type B Upgrade
Service clone upgraded, Parlay interface to
Client changes

Upgrade

SMG
SCS
vQ

SMG
SCS
vP

E. Type C Upgrade
Service clone upgraded, Parlay interface to
Framework changes

Upgrade

SMG
Framework

vP

SMG
Framework

vQ

SMG
SCS
vP

SMG
SCS
vQ

SMG
Client

vP

SMG
Clien

vQ

F. Parlay Ecosystem (Intermediate State)

Figure 10.7 Upgrading field-deployed Parlay systems

196 Parlay/OSA: From Standards to Reality

windows18 that are of fixed duration at well-established time-slots. These time windows are typically

pre-scheduled by the operator during times of lowest network activity. This helps minimize any

revenue leakage or loss due to calls completed as the upgrade is in progress.

Typically, once the upgrade process is completed on a given system, verified to be properly done,

and the updates ‘committed’, the upgraded system is ‘under observation’ for a period of time, even

as it handles traffic. After the service provider is convinced it is behaving as it should, the rest

of the same type of systems in the network could then also be upgraded. Given upgrades have

the potential to be revenue impacting if something were to go wrong, the whole procedure is very

carefully designed, analyzed, tested, and only then applied – first to impact markets or systems

with smaller loads, and then, as greater confidence is gained in the process, to other elements in

the network.

10-6.4 SCS and Service Upgrades

For SMGs, we simply require that upgrades may be done at any time when the SCS has no service

sessions connected to it. If an operator absolutely has to reset an SCS and upgrade it within a

specified time window (due to other network element upgrades that result in an SCS change being

necessitated), the operator could explicitly bring down the SCS by invoking appropriate commands

on an administrative console. The operator must however note that this explicit shutdown of the

SCS would not be transparent to the associated client applications, and would appear to them as a

failure, and the associated service level agreements may be violated as a result of this action. Once

the active SCS has been taken out of service, it may be deleted from the node being upgraded, and

once this has been done, the new SCS package may be installed, configured, and made active19.

In general, if an SCS is shut down explicitly as a result of operator action, existing service

session data may be stored in a persistent data store for later recovery. Also, the SCS itself, if

properly programmed, may send out a svcUnavailableInd() to the Framework for each service

session instance before tearing down the associated service managers, and then un-announce and

deregister itself with the Framework. Clients are thus informed of the service manager exiting, and

can make alternative arrangements (e.g. by selecting another SCS and signing a service agreement

with it) to avail themselves of the same service, with other SCS clones of the same type.

Once the new SCS software is installed and made active, it starts providing service by first

registering, and then announcing its service reference (IOR, if CORBA, or some other appropriate

reference if programmed to use a different kind of middleware technology) with the Framework,

once per nested SCF it supports. Re-registration is required because we expect that the new SCS

instance could register a new set of properties that are different from, and possibly a super-set

of, the properties registered by the previous version of the same service (though the mandatory

properties may remain the same).

Client applications that have been made aware of this change may then utilize these properties

to identify and select new versions of the service for use. Other client applications would not

factor these new properties into their selection. This raises an interesting and important issue. If

the operator were systematically upgrading SCSs one by one in a given SMG configuration, it is

18 A maintenance window is a period of time the operator or service provider agrees to take down a system

briefly for routinely scheduled maintenance. Upgrades may also be scheduled to happen during this time.

Operators would typically require that there be minimal service disruption during the time a given system is

down, and this may be addressed by alternative routing to other clones of the system undergoing maintenance,

or by other means.
19 This section takes a very simplistic view of the procedures involved. Vendors may support more sophis-

ticated procedures that minimize service disruption, and provide near transparent cutover from one version of

the software to another (e.g. issues like database schema changes etc. need to be very carefully addressed).

However, these steps tend to be carefully guarded secrets, since they provide for competitive differentiation

between vendors’ products.

Considerations for Building ‘Carrier-Grade’ Systems 197

possible that a particularly unfortunate client application would be bounced off (disconnected from)

each new service session it tries to establish with SCSs of that type as these SCSs are upgraded

one after the other, before finally settling on an already upgraded version that operates in a stable

manner from that point on (since the upgrade was already completed on that node).

This is perhaps best explained by thinking through a simple physical model. Consider a set of N

large red marbles. Each marble represents an old version of an SCS. Consider another set of small

red marbles one or more of which are connected to each large red marble. These represent client

applications of the same version as the SCSs. Now, as an SCS is upgraded, the large red marble

is disconnected from the smaller marbles, and replaced with a large blue one. The smaller marbles

previously connected to this then attach themselves with another large red marble. As more of the

large red marbles get replaced with blue ones, the application marbles get shuttled to other old SCSs

to connect with. An unlucky application marble may have to re-connect N-1 times as the upgrade

is carried out across the set of SCSs. Gradually, for applications to retain their ability to utilize the

service, the smaller marbles also need to change to blue ones to be compatible with newer SCS

versions (but this depends on whether or not the blue version was backwards compatible with the

red interfaces for client to SCS interactions). Do you still have all your marbles?

Of course, if the northbound SCS API interfaces change between versions, unless client appli-

cations are aware of these changes, the entire service (or selected portions20 of it, depending on

how the changes are integrated into the API) may become inaccessible to client applications.

10-6.5 ‘Type C’ Upgrades

As noted in previous sections, these are the upgrades that result in the deployment of new SCS

versions where the SCS-to-Framework interfaces also change, in addition to other modifications in

behavior and/or implementation.

If the SCS-to-Framework interfaces change, then, in order for this kind of SCS to be able to

register and otherwise communicate with the Framework, either a Framework that supports the new

variant of the interface must first be incorporated into the cluster (through a Framework upgrade),

or a proxy architecture (see next section) needs to be supported within the cluster before the SCS

itself may be upgraded. Alternatively, the SCS clones may be upgraded first, but may be unable

to register or announce themselves till a suitable ‘new version’ Framework becomes available

(this latter case impacts capacity, since the upgraded SCS clones are now unavailable to client

applications until the Framework is upgraded, and thus, this scheme may be undesirable).

This raises an additional issue. If there are also changes between the old and new versions

of the client application to Framework interfaces, there is an inherent partitioning of the set of

Frameworks into two subsets – one that conforms to the older version of the interface, and the

second that conforms to the newer version. This partitioning also occurs even if there are no client

application visible changes, if the SCS to Framework interface requires that the SCSs register

with only particular Frameworks that implement the new version of the interface – so new service

managers on these upgraded SCSs can only be created (or destroyed) by conformant Frameworks.

This also means that these upgraded SCS instances may only be discoverable and selectable by

client applications that have access sessions with the upgraded Frameworks (or that all Frameworks

are no longer equivalent).

Changes of this magnitude could be done by taking the entire SMG down for the duration of the

upgrade. Alternatively, if Framework changes were backwards compatible, one could first upgrade

all the Frameworks, and then proceed to upgrade individual SCSs. If changes were not backward

compatible, but a Framework implementation supported overloaded methods (using object oriented

20 An example of this could be through adding in additional proprietary capabilities into an SCS implemen-

tation. The entire Parlay/OSA-defined service capability API could be supported, but additional proprietary

methods can be seamlessly integrated into the API so as to be transparently accessible to client applications

that are aware of these capabilities.

198 Parlay/OSA: From Standards to Reality

techniques such as polymorphism for instance) so that the appropriate method version would be

invoked in communicating with selected services, again seamless upgrades may be achieved. Once

the service upgrades were completed for all SCSs and across all service capabilities supported

by the SMG, the Frameworks could then again be upgraded with cleaner implementations that

supported only the new version of the Framework to SCS interface21.

If there are changes in the Framework to client application interface across versions (an especially

difficult class of ‘Type B’ upgrades), this is a much harder problem, and the ‘mixed version’ (MV)

mode of operation would have to be supported over extended periods of time before the Frameworks

could be upgraded again to cleaner instances that implement just the new version of the interface.

This is because it is non-trivial or even undesirable or impossible to transition over the entire set

of third party applications from one version of the interface to another.

Rule of Thumb: The set of Frameworks MUST be stable across SCS and service upgrades. If

necessary, in cases where there are significant changes to interfaces including possibly the interface

between the SCSs and the Framework, the entire set of Frameworks may be upgraded before the

SCSs themselves may be upgraded. There may be some service disruption in such cases.

10-6.6 Supporting Different Service Versions Simultaneously; The Proxy

Architecture

Some service providers may want to support multiple versions of the API simultaneously: one

method has already been discussed in the previous section, involving support for interim imple-

mentations of the Framework that implement overloaded functions.

Another, more transparent solution involves supporting a proxy in the communications path

between the Framework and the SCSs and possibly also between the client application and the

Framework. This way, Framework upgrades may be performed in a manner that is de-coupled

from upgrades to other SMG components such as SCSs. This however requires that the proxy be

able to convert between the two versions of the interface transparently, so the Framework continues

to operate as it usually does. Note that this approach is limited in application to only those situations

where the delta between the versions of the interface does not require too many changes to the

statefulness of the associated transactions.

Figure 10.8 shows an example of an inter-version Proxy Architecture, used for upgrades. The

figure shows a proxy for the Framework. Similar Proxy Architectures for proxies to the SCS can

also be used.

This may also be used as a very simple, but rather ugly technique to resolve implementation

differences between SCSs and Frameworks from different vendors that are deployed into a given

service provider network to ensure interoperability and compatibility between the various products.

In the authors’ opinion, such differences of implementation should be resolved between the various

equipment vendors involved through bake-offs, implementation changes, etc., rather than resort to

such proxy implementations.

10-6.7 Summary

The mixed mode, multi-step upgrade process is more involved, but it is the preferred implementation

where an SMG upgrade cannot be done by bringing down the entire SMG and then bringing up

particular nodes with the upgraded SCSs. The service provider may want to notify enterprise

domains (that administer applications) of the time and duration of these upgrade and maintenance

windows. The proxy architecture may seem very simple but makes future upgrades more and more

difficult, as more significant changes are rolled in.

21 It must be pointed out however that adding more steps to an upgrade only increases its complexity, and

that is to be avoided as far as possible.

Considerations for Building ‘Carrier-Grade’ Systems 199

SMG

Framework

vQ

SMG

Framework

vP
Taken down

for upgrade

Parlay SCS

vP

Parlay Client

vP

Parlay SCS

vQ

Parlay Client

vQ

vP to vQ

Proxy

vP Interfaces

vQ Interfaces

This interface is tricky, and could

vary by implementation (not defined

in standards). Depends on whether

Frameworks are federated

Two versions: vP (old), and vQ (new)

Some SCSs and applications have been upgraded, others have not.

Figure 10.8 Proxy Architecture for upgrades

10.2 Chapter 10 Summary

In this chapter and all its sub-chapters, we have tried to give the reader some flavor for the

various kinds of real-world issues involved in building products for telecommunications networks.

No claims are made that the considerations covered here are exhaustive, merely that they are

indicative of the kinds of things that need to be addressed as carrier-grade products are designed

and architected. The intent here was mainly to stimulate thought and provoke discussion on the

kinds of questions that engineers should ask as they try to design, build and deploy systems; the

specifics of one’s solution architecture, ‘surround’ technical choices, environment, and to some

extent, corporate culture, would dictate the solutions that one chooses to resolve issues in each of

the above areas.

Part IV

Realizing Parlay

So you’ve built a Parlay product and are evaluating applications to host atop your gateway. Or

you are negotiating with application vendors to determine if you want to partner with them. Or

you have developed a new and exciting Parlay application that you now want to use in different

network contexts. Or you want to deploy a newly acquired gateway into your network but not risk

your existing revenue or infrastructure. How to go about this?

These are the questions covered in this section. The focus here is on deploying Parlay gateways

and applications, application testing, usability of Parlay components in different network contexts,

etc. Technical readers, especially those working as application developers or in telecom equipment

provider or service provider companies, will appreciate and relate to this technical content more

easily.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

11

Deploying Parlay Gateways

11.1 Introduction

So far, we have discussed the benefits of Parlay technologies to end-users, service providers and

application developers, Parlay standards, and issues relating to Parlay gateway product implemen-

tation. But what about actual deployments in real-world networks? Do implementations really meet

the goals that the standards set out to achieve? How? Is the promise and potential realized? These

and other such questions are considered in this chapter.

Furthermore, in the concluding sections of this chapter, we shall present a simple mathematical

model that attempts to ‘prove’ the value proposition of Service Mediation Gateways in service

provider networks, and show why the investment in these gateways can be easily recouped while

simultaneously enabling such a deployment to tap into new revenue streams.

11.2 Parlez-vous Parlay?

By now, the reader should have a fairly good understanding of what Parlay is, how Parlay-based

systems work, and what the technology promises to do. However, building systems conformant to

the standards-defined specifications is only one part of the puzzle. The proof of the pudding, they

say, is in the eating. Let us therefore look at how systems, once built, can be deployed in networks,

what deployment considerations this entails, and how this is simpler than doing so with traditional

systems. In later sections of this chapter we present a theoretical proof of the Parlay gateway value

proposition. Here, we try to ground those arguments in more concrete reality.

Speaking loosely, there are two types of Parlay deployments – one, where the network does not

possess a well-defined services infrastructure, and is ‘starting out’ with Parlay as the technology of

choice (also called a ‘green field’ deployment1), and the second, more prevalent situation, where

the network already has a well-defined, widely used services layer employing legacy components

that provide end-user services. As Parlay deployments get more widespread, there will also be a

third type of deployment, namely that wherein a new Parlay gateway or other components are

deployed in a network that already has another Parlay gateway or components in place, possibly

from another vendor. Each of these presents its own challenges from an integration perspective.

1 There aren’t very many of these kinds of networks extant today. Virtually every telecommunications operator

network in existence has an IN implementation. However, as new access technologies become more prevalent,

and other kinds of networks besides the telephone networks are used to carry voice traffic, there may be

opportunities to evolve such ‘green field’ networks to support additional services through Parlay and OSA

technologies.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

204 Parlay/OSA: From Standards to Reality

Where Parlay is used to complement, then supplement, and finally displace legacy services

infrastructure, unless services are carefully designed and deployed to ensure that there is no con-

flict between the legacy and new components put in place, trigger contention and feature interaction

or feature interference issues might arise in such networks. The feature interaction and trigger con-

tention problems merit closer study, and are discussed separately in Chapter 12, which is dedicated

to those issues. Here, we consider what needs to happen from a network perspective for Parlay

deployments to be possible, even if such contention were avoided from a services standpoint.

For example, if a service mediation gateway were deployed with User Location and Charging and

Account Management SCSs and the Framework only, but without any call control related capability,

then the potential for trigger contention with existing SCP infrastructure elements could be avoided.

We consider situations such as these in this chapter. In a sense, there is some commonality between

‘green field’ deployments and these kinds of deployments, though there may be some integration

considerations that apply to the latter, though not the former.

11.3 Growing the Parlay Network Footprint

Service providers may start out small, with a small subset of offered or available Parlay SCSs

deployed on their gateways, and then grow these as demand for these technologies picks up or as

competition heats up to offer more services more quickly and at lower prices (thereby mobilizing

the large pool of Internet-based developer talent), and the struggle to offer feature parity becomes

an issue. As we have seen in previous chapters, several alternative candidate architectures could be

used to achieve the same from a gateway software architecture perspective.

Some SCF APIs are also more tightly coupled to the underlying network technology than others.

The former may require more integration effort than the latter. For example, Call Control (CC)

SCFs require a lot more integration work than the GMS SCF APIs. CC APIs utilize service control

protocols and the SCF needs to interface with core network infrastructure that is tied to switching

and related critical functions, while the GMS SCF merely uses IP-based infrastructure with less real-

time sensitive service characteristics. A different variant of the CC SCS may need to be developed

to interface to switches in the CDMA, GSM, SIP and other environments, whereas the same GMS

SCS could be deployed independent of core network technology in use (since it depends only on

there being support for SMTP or IMAPv4 or equivalent protocols over IP in the network, and

is independent of core network technology). These differences also factor into costs associated

with deployments. But, as is the case with all other things, you get what you pay for – the more

tightly coupled systems tend to be the ones that deliver greater value. At any rate, it is likely that

service providers will start with one or two SCSs that they perceive to be of greatest value to their

networks, and then grow from there.

11.4 Simplifying the Labors of Hercules

We have discussed in previous chapters how Parlay simplifies the integration problem by reducing

the one-off integration required in networks today where each application needs to be separately

interfaced and connected with the underlying network component, before it is able to provide any

value to end-users in terms of end-to-end flows. And also how, with the gateway being deployed,

this integration is done only once, but this time with the SCS hosted by the gateway, which later

interfaces to other northbound client applications. Thus, there is a simplification, and once things

work with one clone of the service, the process can be made transparent to other clones that are

then deployed. Complexity is reduced, but it is not eliminated. Rather than hand-hold multiple

independent application developers, the service provider now has to help the gateway vendor hook

into the core network infrastructure.

Green-field networks offer the gateway vendor greater flexibility in which provisioning, billing/

charging, or administration infrastructure may be used. Legacy networks do not. In the latter case, in

addition to the integration with core network components to support end-to-end call flows, the SCS

Deploying Parlay Gateways 205

may also have to interface with deployed element management, OA&M and billing and charging

systems. This will require additional work and perhaps some amount of customization on the part

of the gateway vendor. But let us look at the advantages here – with Parlay, the gateway vendor has

to perform this added layer of integration; the application developer is completely exempt from it2.

Again, this is an N-way simplification, for the same gateway is used by multiple applications.

Once the integration is done, the vendor that has carried out the task is in a good position to repeat

the process with other new SCS elements the service provider may be interested in acquiring,

especially where support for these interfaces transcends the functional characteristics of the SCS

in question. (For example, both the GMS SCS and the CC SCS may be required to interface to

the same element management system. In such cases, if the vendor has already deployed the GMS

SCS in the network and completed the integration with the element management system he will

be in a better position to manage the integration of the CC SCS more quickly than otherwise3).

Similar arguments may be made for customization, if any, required for call detail records (CDRs),

service detail records (SDRs) or event detail records (EDRs) that are generated by the service.

Parlay manages to make the core network evolution completely transparent to the application

domain. Core network infrastructure may change, new network elements may be deployed, etc.,

but the application view can be kept reasonably constant4 if so desired. SCS mappings from the

northbound API to the southbound protocol may change quite drastically, but the applications

remain unaffected. SCS changes incur costs, but each of these costs is masked behind an N-way

savings, since it need not be done once per deployed application. These points are further illustrated

by means of the following case study.

Case Study: Utopia goes Parlay!

Jim Chase, senior VP at Utopia, was aware of subscriber perceptions that they trailed their

competitor, Freedom Wireless, rather badly when it came to services. It was universally acknowl-

edged that their coverage was much better than their competition, but coverage without services

was starting to cost them. They were losing subscribers, and it was beginning to worry the

company.

‘We are at par with Freedom Wireless as far as traditional IN services go,’ he thought, ‘Where

Freedom really differentiate themselves is in the area of “surround” capabilities. We too have

WAP, SMS, and other infrastructure in place, but haven’t yet bothered to integrate them into

neat service bundles and offer value added capabilities around them, and that is what Freedom

seems to be doing so well.’ He subscribed to Freedom Wireless to experience first-hand the

services they offered, and liked what he saw.

2 Admittedly, the application developer has to perform some integration with the gateway itself, but this

process is much simpler than having to perform said integration with the network elements. This is so because

gateway elements built to the same standards-defined interfaces, though they may have some quirks, would be

relatively very similar to each other. Network elements on the other hand could vary widely from one network

to another, and some may even rely on the use of proprietary protocols. Also, as indicated in previous chapters,

some gateway vendors provide SDKs with simulators that give application developers easy access to a test

environment that closely parallels the real SCS they may encounter in the actual deployment.
3 Note how the same argument does not immediately hold for multi-vendor environments. Some hand-holding

is needed for each new vendor whose gateway integrated into the system, but since the number of gateway

vendors whose components are integrated is still likely to be far less than the number of supported client

applications, there is a proportionate reduction in the scale of the problem, making it still a viable solution.
4 We say ‘reasonably constant’ because, in some cases, if old network elements are replaced with new ones

this is not network evolution, this is more like node upgrade for capacity purposes, and as additional capabilities

become available, the service provider may choose to have the SCSs upgraded to make those new capabilities

accessible to applications via proprietary API extensions. In such cases, greater flexibility and control of the

underlying elements may be achieved, but at the expense of seamlessness and transparency.

206 Parlay/OSA: From Standards to Reality

At a recent executive meeting, they decided to give Parlay technology a try, investing

cautiously at first, perhaps running concurrent three month trials with multiple vendor gateways,

and a small subset of subscribers interested in newer applications and willing to take the chance

with beta-grade services on a trial basis at no charge, and then, if all went well, explore acqui-

sition, integration, administration and maintenance costs for a full-blown deployment with a

selected vendor. They had looked at alternative technology possibilities, but could find no other

way to achieve their goals at anything approaching a reasonable cost.

Truth be told, this was a change in paradigm for the company. Utopia was known to be very

cautious when it came to accepting new technologies. But they did not seem to have any other

choice. The integration costs for new applications developed separately were way too high, and

the concept to deployment cycle took much longer than they had planned for. They had to

deploy services within the next six months to remain competitive. They had to act NOW!

They liked the gateway manufactured by Luminant. This vendor also had partnerships with

several application developers that had built client applications interfacing to SCSs that Luminant

developed, and one of these was an address book, content push and end-user alerting service

very similar to the one that drew so many subscribers to Freedom Wireless. The three-month

trial got rave reviews from the participating test groups (subscribers trying out the beta-grade

services). And Luminant promised more services through their partners at very competitive

rates, at very short intervals. Jim liked what he saw very much.

Next, Utopia had them integrate the trial system with their legacy billing, charging, OA&M

and element management infrastructure. Here, they faced the usual problems they saw each time

a new application was deployed in their network. Long hours for Luminant engineers, and some

hand-holding by Utopia employees to ensure all the integration was carried out properly. But

then, once the integration was done, the end-to-end call flows ran flawlessly. To prove their point

Luminant offered to trial another application that used the same SCSs, already deployed in the

trial setting. Users could perform a limited form of collaborative browsing with their buddies

over the WAP infrastructure. Jim was ecstatic. He was completely sold on this technology,

though he still advised that more thorough testing of the new application take place before it

was offered officially.

Utopia decided to go with a medium capacity deployment with only three SCSs – PAM

for explicit user presence sharing across subscribers, a WAP Push SCS built to leverage the

UI SCF for non-call related near real-time content push, and a Framework for access control.

Luminant assured them that new SCSs could be added at any time should Utopia want to provide

API access to new or other services for applications, or open up other network elements via

programmatic APIs. The marketing blitz started as Utopia was going through the final stages of

their integration and end-to-end testing. Subscribers that were about to leave Utopia for Freedom

Wireless decided to give them another chance. And good news through word of mouth did more

for Utopia over the next few months than all the advertising in the world.

Freedom Wireless tried to keep pace, but started falling behind. Suddenly Utopia started

offering new applications very, very frequently. Jim Chase had saved his company. ‘Until the

next disruptive technology comes along,’ he thought, with satisfaction.

11.5 The Value Proposition for the Service Mediation Gateway in Service

Provider Networks
For any new technology, there is always interest in evaluating its value proposition to ensure that
the promise and potential of the technology can in fact be realized in actual real-world deployments.
So far, in this book we have looked at the value of Parlay technologies to end-users, application

developers and service providers. We have studied how Parlay gateways can be built, and how
applications can leverage these exposed standards-defined APIs to enhance end-user experiences.
We have studied examples.

Deploying Parlay Gateways 207

This section tries to ‘prove’ the value of such gateways in today’s networks. This is not meant

to be a business case statement, nor is it input to the business case for Parlay/OSA. This is merely

a somewhat rigorous treatment of the properties associated with the SMG in real-world network

deployments, and is intended to demonstrate how the SMG adds value to customer networks from

both qualitative, as well as quantitative, perspectives.

The intent here is to present an engineering view, not an accountant or a mathematician’s

viewpoint. Simple mathematical models based on elementary arithmetic are used to drive points

home. We advise the reader not to be intimidated by the complex looking mathematical formulations.

The word ‘proof’ is used somewhat loosely. However, the arguments are expected to be convincing

and to stand on their own merit.

This is intended to make a convincing case for every single technical argument made in favor of

Parlay/OSA Service Mediation Gateways in general (in our discussions from previous chapters, for

example), for service provider network deployments. The various propositions and their associated

proofs are covered as granular components to a) isolate errors, and b) use proved propositions as

building blocks for other proofs. Also, some parts of the ‘proof’ are more rigorous than others.

We acknowledge that perhaps more cogent, complete arguments for the model presented herein, or

perhaps even altogether different models may be constructed to drive home the same, or similar

points, more forcefully. This is ‘a’ view, and a good way to look at things, even if not the only way.

11.6 Propositions and Proofs

Proposition 1. New applications serve as new generators of revenue for Service Providers.

Proof:

Assume a Service Provider network that has a set of applications A = {a1, a2, a3, . . . , aN}. Let us

further assume that these services are of two types: a) subscribed applications (SA) where subscribers

can sign up for them and get billed for them independent of usage characteristics; and b) pay-per-use

applications (PPUA), where the subscriber is billed for each use when a usage statement is issued

at the end of each billing cycle. True, other charging and discounting models can be supported,

but we restrict our considerations to these two kinds of applications from a modeling perspective,

further stating for simplicity that no given application simultaneously falls into both the subscribed

and pay-per-use categories (if this assumption does not hold, simply treat that application as two

distinct applications, one in each category).

A = SA ∪ PPUA (11.1)

SA ∪ PPUA = ∅ (11.2)

Revenue from Subscribed Applications =

k
∑

i=1

C(Ai) ∗ Si (11.3)

Revenue from Pay-per-Use Applications =

N
∑

i=k+1

T r(Ai) ∗ F(Si) (11.4)

With these assumptions, the following statements hold.

Equations (11.1) and (11.2) are self-evident and do not require any further explanation. (11.3) in-

dicates that the revenue from subscribed applications (k of the total N applications in number) is

the sum of the products of the individual subscription fee per application (C(Ai)) and the number

of subscribers for each application Si. (11.4) indicates that the revenue that is obtained from the

remaining (N − k) Pay-per-Use applications is the sum of the products of the transaction processing

fee per application Ai (Tr(Ai)), and the number of transactions each application Ai sees, which are

a function of the number of subscribers that can use Ai (indicated by F(Si), potentially the total

subscriber pool if unrestricted access is permitted to particular services).

208 Parlay/OSA: From Standards to Reality

The total revenue obtained from deployed applications is given by the sum of the terms in the

RHS of Equations (11.3) and (11.4). If more applications are added, assuming there is at least

one user in the billing cycle for each new application, there are more product terms in at least

one of the component equations, and therefore there is an increase in the associated realized

revenue. QED.

Note: The above analysis looks at revenue from applications only, not at the expenses involved in

deploying and maintaining deployed applications, and associated costs. The costs may over-shadow

the revenue and the applications may not bring in sufficient money even to break-even. That is,

however, not something the current proposition is concerned with.

Proposition 2. ‘Context Aware’ services improve the end-user experience and further accelerate

revenue recovery.

Proof:

In order to assert the verity of this self-evident statement, we must first define what we mean by

the ‘context’ of a service or an application in a given network context.

A Wireless Service Provider (WSP) subscriber has the following kinds of information associated
with her ‘identity’ as known to the network:

a) at least one agent, and potentially multiple agents, with their associated information;

b) (relatively static) profile information and preferences associated with the user identity, each of
the associated agents, billing IDs, and policies that govern user interaction within the network

context;

c) (relatively dynamic) information tied to the immediate ‘user environment’ as the user operates

within the network context – this includes elements such as location, presence, availability,

terminal status, etc.

We define the union of these three elements to form what we call the user’s ‘self-context’. Metcalfe’s

law states that ‘the usefulness, or utility, of a network equals the square of the number of users’. A

network of users is, in effect, a community, and both a given user’s own self-context and a sub-set

of elements from those of the user’s buddies together provide information that could be leveraged

by applications to provide significantly greater value in enhancing the end-user experience.

Some of this value is an ‘intangible’ adder to the end-user experience in that it cannot be exactly

quantified. However, let us attempt to assign some metrics to this in order to be able to illustrate

that context aware services do in fact provide value above and beyond that which is normally

perceived by end-users.

Every application provides the end-user with an output – some kind of information in response

to an immediate or pre-established request (e.g. in the case of Push services). In every case, useful

output is a result of some input. Or, to state this another way, the information received (the output)

is a function (�) of one or more inputs provided.

Output(O) = �(I1, I2, . . . , Ik) (11.5)

Ideally, the user would like to get this same output while explicitly providing as little input as

possible.

Now, if some subset of these parameters {I1, I2, . . . , Ik} is part of either the user’s own or her

buddies’ contexts in the network environment, this subset need not be provided by the user as

input, if the application can derive this information from the network. Thus, we have

Output(O) = �(I1, I2, . . . , Ip, {network context information}) (11.6)

where, p < k. The application is now able to perform the same set of computations as before, but

with less explicit user input. This argument, though convincing, is not yet complete.

Deploying Parlay Gateways 209

We also consider new services that can be provided given the ability to leverage network context

information that could not have been provided earlier. In (11.6), for example, there could be

elements within the network context information of which either the user is unaware, or does not

know, and so cannot provide this information to applications that could use this to provide a better

user experience. If these applications are authorized to access this information however, with the

user having control over who is able to get at the information at any given point in time, this

enables WSPs to support whole new classes of ‘context aware’ applications capable of leveraging

user-related dynamic context data, that would otherwise not have been possible. This adds further

value to the end-user experience through support for more compelling service scenarios.

Last, but not least, the more user context information stored in the network, and the greater the

facility afforded to authorized applications to leverage these data in providing end-users service,

the harder it would be for users to switch carriers, thereby retaining existing subscribers (customer

loyalty) who may end up spending more per billing cycle as the number of compelling applications

increase. This also accelerates revenue recovery. QED.

Proposition 3. The SMG enables a Service Provider to build applications more cheaply.

Proposition 4. The SMG serves as a catalyst to the deployment of new applications.

Proposition 5. The SMG facilitates quicker development and deployment lifecycles, and faster

time to market for new applications.

Proof:

Since these three propositions are closely related, and tied to the SMG, we try to prove all three

of these together. Before we start, however, we must first define what we mean by a ‘catalyst’.

Here is the definition we will use: ‘a substance that enables a chemical reaction to proceed at a

usually faster rate or under different conditions (as at a lower temperature) than otherwise possible;

an agent that provokes or speeds significant change or action’.

Also, since we are now talking specifically about a Parlay/OSA-based service mediation envi-

ronment, the words ‘service’ and ‘application’ are no longer as freely interchangeable as in the

previous context, and we shall use them in the strictest and most correct sense from this point on.

We also use two other terms in what follows: PMO (Present Mode of Operation), which refers

to the mechanism of deploying point solutions that are tightly coupled with network elements that

they leverage to extract user context information used in the processing of their transactions, and

FMO (Future Mode of Operation), which refers to the support for a common mediation platform

such as the SMG that is used by multiple applications.

Let us assume it takes ki man-months of effort to support the integration of protocol Pi into a

given application. Proposition 2 already proves how the effective use of multiple components from

a user’s current network context may be used to provide a more satisfying and compelling user

experience.

Since different components of the user context are normally distributed across or ‘known to’

different network elements, each of which could potentially require a separate specialized protocol

to support application queries, it is likely that applications which provide a more compelling user

experience would need to interface to more network elements than those that do not.

In the PMO scenario, the total WSP effort required to support the integration of a single appli-

cation into the network in the context of a point solution is given by

PMO Integration Effort per Application (E) =

N
∑

i=1

Pi ∗ ki (11.7)

where N is the number of protocols that the application utilizes in providing a user experience.

210 Parlay/OSA: From Standards to Reality

As more applications are deployed that use some of the same interfaces, it is apparent from

(11.7) that some of the same product terms appear in the integration efforts of each of these

applications. The picture is slightly different in the case of FMO scenarios. Here, the following

holds instead

FMO Integration Effort per Protocol (E) = Pi ∗ ei (11.8)

where ei indicates the costs of integrating a protocol stack with the service mediation gateway.

Technical details dictate that ei is not very significantly different from ki for any protocol where the

API provides a good degree of semantic correlation between the functional characteristics supported

by each. Note that the integration effort in (11.8) is amortized across a set of applications that utilize

the protocol, and the cost per application is thereby reduced.

FMO Integration Effort per Application (E) =

N
∑

i=1

(Pi ∗ ei)

Ai

(11.9)

where Ai is the number of applications that utilize the protocol across the entire set of WSP deployed

applications, and N is the number of protocols needed for the application in question to function

(as in (11.7)). The RHS of (11.9) is typically less than that of (11.7), and gets smaller each time a

new application that utilizes a particular protocol binding is deployed. Thus, as more applications

are deployed, the savings accumulate, reducing the break-even point of each application lower.

This proves Proposition 3. QED.

Notes:

1. One may be able to extend the case to cover even the first deployed application that utilizes a

given protocol, but this case is harder to make, since this varies based on the particulars of the

protocol and the characteristics of the API on a case by case basis. Typically, the ratio (ei/ki) is

expected to be larger than one, but less than two, and depending on how much it is fractionally

greater than one, it would be possible to make judgments per protocol.

2. This proof only considers application development and deployment costs. A more complete

analysis should also factor in capital and operating expenses to make the case more strongly.

Proposition 1 indicates that new applications are new sources of revenue for WSPs. Proposition

2 shows how context aware services provide a more compelling user experience, generate customer

loyalty, help increase revenue (in terms of subscriptions and transaction processing fees), and attract

more subscribers. Proposition 3 proves that new, context aware applications can be developed and

deployed most cheaply when a service mediation gateway is supported. The three statements taken

together prove Proposition 4 that the SMG serves as a catalyst to the deployment of new applications

since all WSPs are continually interested in increasing their revenue streams. QED.

Assuming that the WSP has S engineers available to support the integration effort, the total time-

line to support the integration of each application is given by PMO(E)/S, assuming an equal division

of work across the entire support staff (an assumption that does not generally hold for software

development – ‘Adding more people to an already late software project makes it later’ [Brooks

1995]). This severely limits the WSPs ability to deploy applications more rapidly.

In contrast, since all the integration in FMO scenarios is carried out once per protocol, and the

applications themselves are all built to standardized API interfaces, the need for hand-holding or

one on one partnering with each application provider is obviated. There may be small incremental

costs associated with certifying that applications work as intended, but this is typically a function

supported by the vendor of the service mediation gateway and the costs involved are not that

significant to begin with. There are no limits on the number of applications that can be deployed

since this is only constrained by the number of developers that can build these applications, and is

in no way constrained by the WSP support staff.

Deploying Parlay Gateways 211

In other words:

PMO timeline per Application (T) =

N
∑

i=1

(Pi ∗ ki)

S
(11.10)

FMO timeline per Application (T) = ϑ(D) (11.11)

PMO (T)α

(

1

S

)

(11.12)

FMO (T)α

(

1

D

)

(11.13)

D ≫ S (11.14)

The FMO development and deployment timeline is a function of the number of developers D

trained in technologies such as XML, Java and C++ that can build to the standards-defined API

interfaces. (11.12) and (11.13) merely reiterate that the greater the number of developers available,

the smaller the development and deployment intervals. Given that the number of developers D

is significantly greater than the WSP support staff S, it stands to reason that the time intervals

involved in developing and deploying applications in the FMO case is much smaller than those

involved in the PMO case. This proves Proposition 5. QED.

11.7 Conclusion

The Service Mediation Gateway provides real, quantifiable value to a Wireless Service Provider

network. The best time to deploy service mediation gateways into a network is during a ‘moment of

change’ – the time immediately preceding the rapid addition of new applications to the network – so

that costs incurred in deploying new components such as service mediation gateways are defrayed

by their effective distribution across a larger number of application elements. The current time,

when many Wireless Service Providers are transitioning to support new core network technologies

such as CDMA 1XEVDO, etc. provides an excellent opportunity to drive through service mediation

gateway sales. Parlay is crossing the technical chasm at this time.

It is inevitable that as service providers come to rely more and more heavily on Parlay technolo-

gies a gradual ‘Parlay-ification’ of their network will occur. Once a tipping point is reached and

the new application floodgates open, all major new service infrastructure additions will be made

primarily in the Parlay arena and legacy equipment will be gradually subsumed and deprecated in

its favor. As of this writing, there are a number of Parlay deployments in service provider networks

across the world, and there seems to be a rather strong demand not just for the SCSs based on

standards-defined functional APIs, but also for new SCSs built to conform specifically to operator

requirements.

12

Parlay and Legacy
Systems – Handling Feature
Interactions

12.1 Introduction

In previous parts of this book, we have discussed some of the hopes, fears and frustrations of

engineers building and deploying services and applications, and of consumers who want access

to more ubiquitous communications capabilities and are willing to pay for them. In the last few

chapters, we have studied some of the more practical issues relating to the architecture, design and

development of both service mediation gateway elements and of the client applications themselves,

with a view to better understanding how the more theoretical aspects of the solution as defined in

the standards can be implemented in real world systems.

In this chapter, we focus on yet another practical aspect as it relates to deployments of Parlay

technology, looking at things first more from a network perspective, and then from a services

angle. The focus here is on how Parlay-based systems can be made operational in network contexts

and how interactions with other services and with existing legacy network hosted elements can

be managed.

12.2 Out with the Old, In with the New? Not quite

As we have seen already in Chapter 11, generally speaking, there are two kinds of deployment

scenarios extant today. One is what is referred to as a ‘green field’ network environment, where

the components being introduced have no parallel or peer in the network, or the network itself is

being built from the ground up, and there is little that needs to be done from the perspective of

getting the new equipment to interoperate with legacy elements already deployed. These kinds of

environments are easier to handle from a new services/applications/network elements deployment

point of view, but these kinds of situations are also very rare.

More often than not, however, engineers – both those working for the service provider and

those that build the gateway while working for the telecommunications equipment provider – have

to contend with issues relating to how the new solution component can be ‘plugged into’ their

existing network, and made to work without disrupting the existing services and applications.

In earlier chapters we have seen how Parlay/OSA technologies improve the overall concept to

completion cycles for new services. However, for the gains to be immediately realized, and for this

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

214 Parlay/OSA: From Standards to Reality

new technology to be feasible from a practical perspective, it is rather important that the gateway,

when deployed, operates seamlessly within the network context and does not break existing services.

It is also unacceptable if deploying the gateway entails the re-deployment of all legacy services

and applications within the context of the new paradigm.

Thus, we need to address issues pertaining to the simultaneous support for Service Mediation

Gateways (SMGs) and elements such as Service Control Points (SCPs) from traditional IN in the

telecommunications networks of today.

Service mediation gateways are manifestations of new technology that is unlikely to be deployed

in a ‘direct cut-over’ mode whereby legacy technology elements are replaced all together or all at

once. An SMG is not a consumer gadget, where you need to have the latest and sexiest model to

secure your standing with the in-crowd, and older models are instantly written off (‘That model is

so last year’). It is rather more likely that these SMG elements and legacy entities such as SCPs

will co-exist in networks for some time to come, with a gradual migration of services from the

older equipment onto the newer infrastructure components.

There needs to be a strong, non-technical impetus that drives the acceptance of new technologies.

After all, it is unreasonable to expect service providers to invest large sums of money in upgrading

infrastructure for the ‘technical elegance’ that the new solution will afford them. Deployment of IN

into telecommunications networks was an early ‘moment of change’. This technology let service

providers build and deploy new services more cheaply than previous models would allow. The

driving force in the case of Parlay and OSA comes from the ability to build and deploy services

even more quickly and cheaply than in the IN context, in large numbers (leveraging the large

Internet application development talent pool, perhaps even buying some off the shelf), and then

experience a sharp intake of new revenue while growing one’s subscriber base.

12.3 Parlay and Legacy IN Co-existence

It is not only probable, but also very likely, that SMGs will be deployed in networks that already host

a number of elements that play the role of an SCF (Service Control Function) from the Distributed

Functional Plane in the generic Intelligent Network architecture. These elements, introduced in

Chapter 1, receive requests from Service Switching Points or other call-processing elements in the

network and return appropriate responses back to them. In traditional wireline networks or AIN1,

these messages are INAP encoded. In other networks, different protocols may be used to support

analogous functions.

Since the SMG provides functions in a similar capacity, though however, not restricted to call

control, it becomes important to specify how the two components – namely the SMG and the more

traditional (or legacy) peer entity – may communicate with each other and/or otherwise interact.

In legacy (e.g. IN) systems, whenever a trigger on a switching element fires, a message is for-

mulated in the appropriate protocol and addressed to the destination element capable of processing

this message. This destination element is identified by a pre-configured point code. Different des-

tinations may be specified on a per-trigger, per-user basis. Sometimes, multiple features need to

be invoked in response to the firing of a single trigger (this is commonly referred to as ‘trigger

contention’ between the services involved).

To an extent, switch-based functions are standardized, and therefore a priority can be defined for

the inter-relationship between these in the standards. But with a plethora of third party applications,

without knowledge of one another, dynamically provisioned and brought into and taken out of

service, an a priori priority scheme can never be defined. This is why the feature interaction

1 AIN or Advanced Intelligent Networks is a variant of IN developed and marketed by Telcordia (earlier Bell

Core) and deployed primarily in the NAR (North American Region). There are some differences between AIN

and other IN flavors such as those defined by ETSI used in Europe, though we shall treat these as equivalent

from the standpoint of this book.

Parlay and Legacy Systems – Handling Feature Interactions 215

problem exists (even in traditional IN contexts). It is also why solutions are designed to try to

minimize, mitigate or eliminate it at some expense (given that these SCP-hosted services provide

that much more value to the network in terms of new and exciting applications for subscribers)

and why we keep it despite its downsides.

In such cases where trigger contention occurs, some logic has to be specified that indicates

which services are to be executed, in what order, and how their responses are to be processed.

Several solutions are possible, and as is always the case, each solution has its own advantages and

demerits. The key point to note, however, is that trigger contention is not a new problem that is

caused by the introduction of Parlay solutions into the network; this is a potential issue even in

networks that rely only on IN technology, and has to do more with how the triggers are used, what

services are deployed, and more importantly, which services need which triggers and how these

trigger messages are processed.

Sidebar

The trigger contention problem is widely known, has been well studied, and a lot of literature

exists that documents both the desirable and un desirable effects it has on user experience [FIW

2003]. Features deployed in telecommunications networks need to be tested rigorously to ensure

that all undesirable ‘feature interactions’, also sometimes called ‘feature interference’ situations,

are somehow managed, or even eliminated. For instance, if an end-user subscribes to both ‘call

forward on busy’ and the ‘voice mail’ feature, unless some priority order is defined between

these two services for that user profile, unexpected behavior or call treatment may occur, leading

to end-user dissatisfaction.

Appropriate treatment logic needs to be specified somewhere in the network to ensure that

such situations are dealt with properly. It must be emphasized that the feature interaction problem

has no generic solution, and all potential interactions for deployed services must be examined

carefully and addressed either through provisioning logic (Alice cannot subscribe to both services

A and B at the same time), or some kind of implicit priority ordering of selected conflicting

capabilities (Service A has a ‘gold’ SLA, and hence takes precedence over ‘silver’ service B,

or, the good old First Come First Serve mechanism).

In some contexts, the feature interaction problem is addressed by selling pre-packaged sets

of features together. These feature sets contain features that are already prioritized within

them, with the possible interactions or interference between elements of the set eliminated

or carefully designed out of the call flow. Here, elements of the technical solution (focused

on ‘avoidance’) are percolated through via marketing, to ensure that subscriber satisfaction is

not impacted.

Note that this chapter is focused primarily on the SS7 domain (where most of these kinds of

interactions between legacy and new equipment occur), so SS7 concepts useful to the develop-

ment of the SIM (Service Interaction Manager) idea are examined in greater detail. However,

by no means is trigger contention restricted to the SS7 domain. As more VoIP networks are

built and supporting services deployed, mechanisms to address trigger contention in these other

environments will also get more attention.

12.4 Managing Trigger Contention

Besides the ‘avoidance’ approach described in the previous section, several other technical options

exist and are used in practice today to address trigger contention related issues. In this section, we

look at three of these. Other techniques also exist, and the three described here are by no means

the only possibilities. However, an understanding of the techniques presented here will give the

reader a flavor for the kinds of solutions in use. Each of these utilizes some mechanism to prioritize

216 Parlay/OSA: From Standards to Reality

service access to trigger information where contention occurs, tries to route the messages to these

services in the sequence that makes the most sense, then collate responses from there and generate

a single response to the underlying switching element that made the service request. Let us look at

these techniques in greater detail.

12.4.1 Supporting a ‘Gateway’ Service

When this technique is used, if services A and B both need the same trigger to be able to pro-

vide appropriate call processing or service related treatment information to the switching element,

one of the two services A or B is designated the ‘gateway’ service, and is given priority. This

service (say B) then implements additional logic to feed the request on to the other service

(in this case A), the message from the switching element, appearing to the other service as a

switch, while appearing to the switch as some combination of both services (A and B). When the

other service returns a response, the gateway service receives it, parses it, factors it into its own

response to the service requestor, generates a consolidated response message, and sends it back to

the requestor.

Thus, the switch sees only one service, namely the gateway service, and assumes that single

service provides both the individual capabilities required. The gateway service acts as a smart proxy

for the incoming request and performs not only its local service processing but also the collation

of the responses from one or more other services, and generates a single response sent back out to

the switching element.

Sounds simple in principle, but there are some issues with this:

1. Handling a large fan-out of secondary services is more difficult, as is the associated collation of

returned responses.

2. This solution only works in networks where the gateway service is deployed. If there are other

network deployments where trigger contention is still an issue but the gateway service is not

deployed, then the ‘gateway’ or proxy logic has to be ported onto another service in that network

so trigger contention resolution can take place as required.

3. The performance of the gateway service suffers because it is doing additional work besides just

what it is required to do to provide service. Thus, the service provider may need to deploy

additional elements that can provide the functional capabilities associated with the gateway

service.

Therefore, this solution, although used in many networks, can perhaps be improved on.

12.4.2 Service Granules and Intra-service Routing

Another approach that is sometimes used is one where new service logic is implemented within

an existing service (let us call each piece of service functionality a ‘granule’) and an intra-granule

router is also built into the ingress of the service logic. Here, any request that is destined for this

service is first processed by the intra-granule router. This module decides which granules need

to be invoked, and in what order, and whether in sequence or in parallel. Once all this work

has been completed, and responses from these various service granules are received, the router

then stitches together a consolidated response and generates the final message that is sent back

to the service requestor. The astute reader will note that this is very similar to the pattern used

in the ‘gateway’ service example above. The main difference here is that the gateway service

and the other services are integrated into one logical service component, and the router is shared

across them.

It may not be practical to implement services and applications in this way all the time, how-

ever, since there may be reasons why particular services need to be deployed separately (provided

Parlay and Legacy Systems – Handling Feature Interactions 217

by a different vendor, on a different platform, etc.) and in such cases, this mechanism may

not work.

12.4.3 Service Interaction Manager or Service Combination Manager

A network element called the SIM (Service Interaction Manager) or SCM (Service Combination

Manager) may be used to provide capabilities for feature interaction management, essentially pro-

viding the same generic capability as that of the ‘gateway’ service, but completely decoupled

from the service logic of any of the required functional capabilities so as to mitigate some of the

drawbacks we listed in such scenarios.

Where a SIM is used, it can be specified as the destination for such requests where trigger

contention is an issue. The SIM would then mediate between multiple SCPs to get the request

processed and responses from these different SCPs are then collated and combined at the SIM into

a single response that is then forwarded back to the originating entity2.

Since the fan-out is handled at the SIM and not a ‘gateway’ service, service degradation from a

functional standpoint for any one service (that would otherwise have to act itself as a gateway) is

not observed. Also, the SIM could be deployed into any network where there is feature interaction

(obviously with some customization or re-development done in each case to handle the specifics of

each interaction to be addressed), thereby becoming a re-usable component. The SIM is an entity

dedicated to resolving trigger contention, so costs associated with it will have to be borne. However,

a good SIM would be extensible, and when new services are deployed, if additional contention

results, the SIM could perhaps be modified to handle those cases as well at lesser cost.

12.4.3.1 SIM Deployment Configurations

Figure 12.1 depicts four service flows. Part (a) illustrates the simplest case – namely that of direct

SSP-SCP interactions. Part (b) depicts the role of the SIM in mediating service request interactions

between multiple SCP elements. The SMG may be viewed as an SCP peer, or may itself be used to

support SIM functions as well – Part (c) depicts the SMG as an SCP peer while Part (d) indicates

how the SMG provides not just SCP-like functionality, but also the SIM capability, and incorporates

logic that indicates how the SCP returned responses are to be factored into the single response that

is sent back to the original requesting entity.

In theory, any element playing the role of an SCF from the IN DFP (e.g. the SCP or its peer

the SMG) can act as a SIM. However, the SMG can effectively take on the SIM role rather more

easily, since it is a network element that not only supports policy-based processing of requests, but

also supports a whole series of external interfaces thereby enabling it to interact with other network

elements as required.

Does this mean supporting SIM capabilities is an essential requirement of all Parlay/OSA Service

Mediation Gateways? Definitely not. In fact, there may be advantages in some network environ-

ments to having a separate SIM entity completely disjoint from the SMG. As remarked earlier,

feature interactions and trigger contention issues exist in networks today. Solutions already in

place (which may include one or more of those discussed in this chapter) should not be disturbed

as an SMG is deployed. Telecommunications equipment vendors would do well to factor in the

needs of individual networks as they design or configure their products to operate in particular

environments.

Thus far, we have discussed how the message routing to and from the services needs to happen.

Where a SIM is used, request message forking and response collation may be done by specifying a

routing key for the SIM service (hosted on the SMG or to the separate network element hosting the

2 Here, we introduce two terms – SIM and SCM. In sections that follow, we use the two terms interchangeably

to mean the same thing.

2
1
8

P
arlay

/O
S

A
:

F
ro

m
S

tan
d
ard

s
to

R
eality

SS7 Network

SSP or other
Switching Element

SCP

(a) Simple SSP-SCP interaction

SSP or other
Switching Element

SCP A

SCP B
SIM/
SCM

SS7 Network
(b) SSP-SCP interaction

multiple SCPs
SIM used for multi-service triggers

(c) SSP-SCP interaction
multiple SCPs and an SMG
SIM used for multi-service triggers

SSP or other
Switching Element

SCP A, B, C

SIM/
SCM

SS7 Network

SMG

Client
Application

(d) SSP-SCP/SMG interaction
SMG performs SIM function
for a limited trigger set

SSP or other
Switching Element

SCP A

SMG

SS7 Network

Client
Application

Figure 12.1 SIM deployment configurations

Parlay and Legacy Systems – Handling Feature Interactions 219

SIM capability). Switching elements that require support for multi-service triggers are provisioned

to use that routing key and the SIM destination point code.

12.4.3.2 Support for Global Title Translation (GTT)

In order for a network element effectively to play the role of a SIM, it needs to be able to act as a

proxy between an SSP and an SCP. It needs to do so in a manner that is transparent to that SSP

and SCP (recall that the SSP and SCP are legacy elements). This objective can be achieved by

making use of the Global Title translation mechanisms.

Global Title Translation (GTT) is a procedure whereby the destination point code (identifying

the signaling point), and subsystem number are not explicitly specified by the entity originating

the request message, but are derived based on the digits and other information encoded as message

parameters and translation tables.

The Signaling Transfer Points (STPs) in the network of SS7 nodes provide this Global Title

Translation (GTT) function. Therefore the originating entity need not necessarily know the specific

destination node to which a particular request message is to be routed. Only the STPs need to

maintain tables that associate particular services with specific point codes and subsystem numbers

of possible destinations.

GTT mechanisms may also therefore be used to route messages that originate at various switch-

ing elements in the network to the SIM. These mechanisms may also be advantageously used

when the SIM forwards messages on to other IN SCF (Service Control Function from the IN

DFP, not Service Capability Feature from Parlay) entities hosted by the network. Where the

SIM is the SMG, it can also mediate between IN SCFs and Parlay SCFs or Applications, the

former through SS7 mechanisms, the latter through implementation differentiators built into the

SMG product.

The details of the inter-application interference from a Parlay application perspective are ad-

dressed in Chapter 14 where we introduce the idea of the Parlay Proxy Manager (PPM). How-

ever, feature interference between Parlay SCFs merits some discussion, and we look at this in a

later section.

12.4.3.3 Complicating Factors

In the preceding sections, we have discussed some of the issues with feature interactions and

trigger contention, and have looked at some possible solution techniques to mitigate, and resolve

the problem, or to avoid it completely. From the foregoing, it appears the SIM solution is perhaps

the most flexible and versatile, but we would be lax if we were not also to point out some of

the other issues related to SIM development. Knowledge of these issues does not take away from

the niceness of the SIM solution, it only serves to highlight some of the difficulties with handling

feature interference, and why a general solution to this problem is not yet prevalent. The devil is,

after all, in the details.

As we have seen in Chapter 1, different service control protocols are used in different networks.

These are typically some variants of INAP over TCAP for SS7. However, these protocols vary in

some important respects based on network context (CDMA, GSM or other network type). In some

network contexts, each exchange between the switch and the SCP is a separate transaction, while

in others a single transaction is supported whose lifetime coincides with the duration of the call.

Since trigger contention can occur each time a trigger fires at the switch element, depending on the

services supported in each network context, these considerations of transaction duration need to be

factored into the design of the SIM.

For instance, in networks where the transaction is long lived, the SIM may have to proxy only

some messages associated with the transaction (for triggers where there is contention) to other

network elements, while not others. Or it may have to proxy forward all messages associated with

220 Parlay/OSA: From Standards to Reality

the transaction to all services, but only selectively process responses from these services based on

where they are best able to provide instructions that can affect further call processing. This may

depend on factors such as network context, the service control protocol in use, how the services

themselves are implemented, etc.

Last but not least, there may be cases where service providers wish to make services developed

for one network, accessible to switching elements in another, thereby employing the SIM as some

kind of protocol converter proxy. These kinds of situations pose their own unique problems and

the relative characteristics of the two network environments need to be factored in carefully. The

reader is referred to [Vemuri 2000] for a more in-depth treatment of this subject.

Note: The IMS standards (recall mention of the IP Multimedia Subsystem from Chapter 1?)

also refer to a component similar in scope to the SIM discussed earlier in the chapter, called a

SCIM (Service Capability Interaction Manager) that mediates event distribution and service control

between Application Servers in the IMS harmonized network architecture. A description of this

component and related details are discussed in Chapter 1, which describes the important aspects

of IMS.

12.5 Service Level Feature Interactions

Thus far, in this chapter, we have studied how feature interactions occur and are handled from a

network perspective. Let us now look at some related considerations from a services angle, and

how these may be addressed.

Service level feature interactions can occur in service mediation gateway scenarios from two

perspectives – at the Inter-Service level (between two services), and the Intra-Service level (between

multiple instances of the same service). These, and their associated considerations for management,

are addressed in the sections that follow.

12.5.1 Inter-Service (Parlay) Contention

Someone once said, ‘In theory, there is no difference between theory and practice, in practice, there

is’. There may be situations in real-world deployments where there are overlaps between different

Parlay SCFs where multiple distinct services need to be notified of the same network event. Let us

illustrate this by means of an example.

The User Status (US) interface of the Mobility SCF could be implemented as a separate US

SCS, as we have seen in Chapter 9. The US SCS may be required, in a certain deployment, to

report the changes in user status based on when a subscriber goes off-hook and makes a call, and

again when he goes on hook or disconnects. Such call-trigger tracking may be useful, for example,

in reporting subscriber presence information.

Now, the Call Control (CC) SCS, or even legacy call control applications may want the same

network events in order to provide call processing related support. In many cases, the switching

element or other network component can only issue one message each time a network event occurs.

The question then becomes, which element should get this message? Does US have priority or does

CC/Legacy IN?

Typically, such situations can be cleanly addressed by noting that only one element can have

control of the call at any one time. CC/Legacy IN applications are normally3 required to provide

some kind of response back to the switch on such messages, while US merely needs to be notified

of this event. So CC/Legacy IN takes precedence and the SIM can be programmed appropriately

3 Please note that IN triggers are of different types – there are R or request triggers, and N or notification

type triggers. The former require the SCP to issue a response back, and call processing on the switch halts till

an SCP-generated response is received. The latter are simply SCP notifications, and call processing proceeds

while the SCP is notified of the event from within the call-processing context. For more, the interested reader

is referred to [Faynberg 1996].

Parlay and Legacy Systems – Handling Feature Interactions 221

to route the messages and notifications of this network event to the various parties in keeping with

this knowledge. Of course, there may be cases where multiple applications tied to the CC SCS

may want access to the same trigger. Issues of this latter nature are addressed in Section 12.5.2 on

‘Intra-Service (Parlay) Feature Interactions’.

12.5.1.1 Managing Service Clones

In Chapter 9, we discuss architectures that implement multiple cloned SCSs. A question might arise

here: how does one handle event distribution across clones? If a network event is received at clone

#1 of the service, and clone #3 is the only one that has an interested client application attached,

what is one to do? This is indeed an interesting question and needs to be handled by means of

communication between the clones.

The quality of an SMG implementation depends on many factors – the degree of coverage of

the API, standards-compliant behavior, ease of interoperability with different application types,

support for useful, efficient and compatible API mappings with underlying network protocols and

so on. A key element that defines quality in multiple cloned SCS implementations is the degree of

seamlessness the gateway offers to applications from a services perspective. The more the clones

are able to communicate and appear as a cohesive whole that provides a service, rather than as

fragmented servers of functionality, the more useful the gateway would appear to be from an

application perspective.

While saying this, we do note that some aspects simply cannot be made seamless. Service

sessions are to individual clones in such architectures and not to the cohesive set of all SCSs of

that service type. However, looking from the underlying network up towards the service layer, it

is highly advisable that a single network event sent to one of the clones should be made available

to an interested Parlay application connected to another clone of the same type.

12.5.2 Intra-Service (Parlay) Feature Interactions

In the previous section, we have studied how feature interactions can occur between different

services or SCSs supported by the SMG component deployed in a service provider network. Here,

we shall examine how, if at all, there could be interference between different elements at the

services layer and above. For this, we need to look at two things:

1. Inter-Application Interference, and

2. Multi-clone Architectures.

12.5.2.1 Inter-Application Interference

Events that are reported to client applications may be classified into two types just like triggers in

call models can be of two types (please see Appendix A for details pertaining to ‘N’ and ‘R’ type

detection points [Parlay@Wiley]). The type of the trigger defines the exclusivity characteristics of

the associated event. Let us illustrate by means of an example.

Applications A and B both use, among other SCSs, the CC SCS for call control operations (call

control is the best example since one can most easily draw parallels between this and the discussion

of traditional call models). Per the API specifications, A and B can define a set of criteria for events

to be reported to them from call contexts. This reporting can be done in one of two modes, called

‘monitor modes’ – ‘INTERRUPT’ and ‘NOTIFY’. These are explained in Chapter 6, in the section

on Call Control, but let us look at them again briefly.

In the former (‘INTERRUPT’), the client application requests that it be notified of the event and

that it retain control of the call context as it may wish to alter the outcome. Call processing on the

switch is put on hold till the application responds. At any point in the life-cycle of the call, the

application can relinquish control by simply invoking the deassignCall() method.

222 Parlay/OSA: From Standards to Reality

In the latter (‘NOTIFY’), the client application merely requests to be notified of the occurrence

of the event even though it does not have, or indeed require, any control or influence over the

further processing of the call.

It will be immediately apparent to the astute reader that the event being reported has different

exclusivity characteristics in the two cases. There can only be one entity that controls a call at any

given time to eliminate contention. The standards specification today explicitly forbids more than

one application from subscribing to a given event in the INTERRUPT mode, though potentially

many applications could subscribe to the same event in the NOTIFY mode at the same time4. This

is called ‘overlapped criteria handling’.

Thus, event contention at the intra-service (within the CC service in our example) is eliminated

by defining rules that do not permit the condition to exist in the first place. Stated another way,

overlapped criteria conditions are eliminated by the standards by a careful definition of what is

permitted by the specifications.

12.5.2.2 Multi-clone Architectures

We have studied in Chapter 9 how the SMG could be constructed of multiple SCS clones each

providing the same type of service. Each clone contributes towards the total required capacity. Each

clone independently registers and announces itself, can be upgraded independently, and can be put

into and taken out of service independently of its peers. Each clone supports its own set of service

sessions to client applications directly connected to it.

The question then naturally arises, if the clones behave independently of each other, but provide

the same (say CC) service, how is the event exclusivity model implemented across the set of clones

as a whole? After all, if Applications A, B and C are connected to clone X, and Applications D and

E to clone Y, what prevents A and D from subscribing to the same event with the same criteria?

How is the criteria overlap avoided here?

Obviously, there needs to be some kind of solution, for otherwise, we have the same problem

the standards have so carefully eliminated from a conceptual perspective. We need to find a means

to support the standards-defined solution from an implementation viewpoint. This is quite simply

achieved through a sharing of event subscription, the events themselves, and associated reporting

responsibilities across the various clones within the set. Some kind of inter-clone communication

mechanism needs to be defined for this, along with techniques to manage race conditions, failure

cases and other such scenarios.

Let us look at a couple of examples of the kinds of issues a solution here needs to address:

1. Race conditions: Applications A and B both subscribe to an event X in INTERRUPT mode

at nearly the same time, A at clone P and B at clone Q. The clones need to communicate as

each INTERRUPT mode subscription request comes in, to ensure that only one of A or B’s

subscription requests is accepted, and the other rejected. The behavior across the set of clones

needs to be deterministic and repeatable. There must be a mechanism to ‘break ties’ even if two

applications were to make their requests at the exact same time. And it would appear that since

time considerations factor into the equation, some kind of clock synchronization mechanism

(e.g. NTP – the IETF defined Network Time Protocol [RFC 1305]) is put in place between the

various clones providing the service.

2. Failure cases: Different kinds of failure cases may occur. For example, a clone may die suddenly,

all subscriptions associated with clients connected to it may be lost, and need be recovered (no

point locking out applications from accessing those events when there are no other conflicting

4 In fact, a combination of the two conditions is also possible, so long as there is only one application

subscribed to the event of interest in INTERRUPT mode at any given time. Note that although call control

is the example used here, other SCSs like DSC (Data Session Control) also support the same type of event

exclusivity model.

Parlay and Legacy Systems – Handling Feature Interactions 223

applications that can receive them anyway). In fact, the applications that get disconnected when

a clone terminates abruptly might want to discover, select, and connect to another clone and

re-establish subscriptions for the same set of events.

Another situation that may occur is that somehow the inter-clone messaging mechanism is broken

or disabled – how does one get the clones to share information on INTERRUPT mode subscriptions

now? This is commonly referred to as the ‘cluster-partitioning problem’.

It must be noted that these are merely examples of two kinds of issues that merit consideration.

Developers will need to address these and more, and the attention each issue merits may vary

significantly from one implementation context to another based on some of the design decisions.

The details of solutions used vary from one vendor’s implementation to another and form the

basis for (you guessed it) product differentiation. These are often closely guarded secrets, though

the effectiveness of each solution can be compared and contrasted by service providers as they test

different vendors’ products with a test suite of different failure cases.

12.5.2.3 Advanced Parlay Scenarios

Some vendors are not satisfied with the ‘elimination’ techniques defined in the standards for ‘over-

lapped criteria handling’ and strive to provide greater value-add in their solutions. They achieve this

by adding more sophisticated logic to the event distribution mechanism across the set of clones.

This can be done by maintaining lists of interested subscribers for events in the INTERRUPT

mode just like these lists are maintained for NOTIFY mode event reporting, and then assigning a

priority-based ordering for events based on some criteria.

Recall that in Chapter 6, we talked about the use of the Policy Management SCS to policy-enable

various applications and services. Policies could also be used to design conveniently a priority-

based event distribution and communications mechanism between the various component parts of

a solution.

12.6 Summary

In this chapter, we have studied a challenge pertaining to the deployment of a Service Mediation

Gateway into service provider networks, namely that of trigger contention resolution and feature

interactions among deployed services, and potential solutions for the same. The objective here was

merely to provide the reader with a good understanding of the issues involved, not necessarily to

present all the details of associated solutions. Such solutions could vary widely based on the partic-

ular needs of, or constraints imposed by, individual service providers and their respective networks.

13

Application Implementation
Perspectives

13.1 Introduction
Parlay is designed around the principle that applications can be written once to utilize particular
network capabilities in a completely network and protocol independent manner, and could then be

deployed across different network types (technologies and generations), different gateways, different
service providers, etc. with minimal or no changes. Also, as described in previous chapters, Parlay
based development could allow for more rapid development and deployment of services (since the

integration aspects of service deployments are centralized in the gateway, and reused over and over
again, thereby saving on costs).

These factors could have great impact on the extensibility and testing of applications. Parlay

also provides a rapid feedback environment for one to build, test and deploy applications, and get
a relatively quick sense of whether a particular application is successful (has adequate take-rate to
justify its continued existence in the network or not). Sometimes, depending on the life span of the

application in question, or as a result of customer demand, it may need to be extended with added
capabilities, and this is more easily accomplished in some cases than in others.

Does this technology really live up to its promises? Yes, but it does assume that although the

application developers themselves need no longer possess a detailed knowledge of telecommu-
nications networks and protocols, they do design their applications defensively to ensure that the
end-user experience is invariant across core network protocol changes, Parlay gateway peculiarities,
and idiosyncrasies associated with particular service provider deployments.

Applications that are not built defensively will:

a) require more ‘custom’ support per gateway;
b) will have a hard time interoperating with different gateways;
c) will be less ‘adaptive’ to missing or unsupported functionality in particular gateway implemen-

tations.

This also inherently implies that such applications will reduce the overall value or cost-savings that

result from the use of Parlay technologies.
In this chapter, we study the art of defensive application design1. We pick up the example

from Chapter 7 once more, and look at it in greater detail and examine not just the business logic

1 Defensive application design and implementation, like defensive driving, is an acquired skill and something

of an art. It requires that the developer build more resiliency into his implementation so that unforeseen behavior

from the other end of the interface is handled ‘appropriately’.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

226 Parlay/OSA: From Standards to Reality

aspects, but also some ‘surround’ capabilities dealing with High Availability, scalability, application

deployment considerations, etc. Finally, we look at some considerations for minimizing the costs

of the testing of Parlay applications while trying to maximize the effectiveness of the testing.

13.2 The Theory of Defensive Applications Design

How would one go about designing an application? What are the design goals? Application devel-

opers want to be able to sell their application as widely as possible. They want to build it once and

run it on any Parlay gateway across any network type within limits of reason. What ideas merit

consideration as we proceed?

a) We identify a basic set of application transactions and identify the needed set of methods

associated with these: Let’s say {a.a1(), a.a3(), c.c4(), d.d2()} where a, c and d are interfaces

within the standards, in either one or distinct SCF APIs, and the element after the ‘.’ is a method

from within that interface.

b) Next, we construct simple call flows for the scenarios we want to support using these method

calls and ensure we have the complete set that we need. We compose examples around them.

c) Once the sunny day scenarios are dealt with, we work on failure legs for those flows – failures

may be either those that result from error legs during application logic execution, or as a result

of exceptions thrown in the Parlay context due to unsupported or poorly supported methods

in the gateway2 or an SCS not being included in a given service provider deployment of a

mediation gateway.

d) Good application design philosophy requires that we now build alternative flows that enable

the application to provide an invariant user experience (or as invariant as possible, given the

circumstances), even with a degraded gateway, and try hard to hold to this invariance as much

as possible when the network and/or gateway do not co-operate with the application intent in

specific cases. The designer therefore now considers an expanded method set to account for

some of this. Updated method set: {a.a1(), a.a3(), a.a5(), c.c4(), c.c5(), d.d2()}.

e) Since invariance cannot always be guaranteed, and there are limits to how far one can plan

for these cases, the application designer should also consider cases that result in degraded user

experience, ‘stubbing off’ some aspects of operation that may not be emulated easily across

different network types.

Thus, application developers would use Internet technologies when building Parlay applications,

but they are still bound by telecommunication users’ and their service providers’ expectations of

truly carrier-grade service experiences. After all, Parlay claims to alleviate the need for telecom spe-

cific technical expertise, not to get rid of requirements that are implicitly demanded of applications

by every phone user.

Here is a simple model that brings out this idea more clearly with a little more rigor in the

presentation.

Let us denote an application’s use of the network by AU.

AU = f n (GW,P r, Z) (13.1)

2 This happens, for example, when the Parlay gateway vendor does not implement the method and a

P METHOD NOT SUPPORTED exception is thrown when the application invokes it, or, the method is

supported as best it can be within a network context that does not provide the required capability. As an

example of the latter case, consider support for 3rd Party Call Control (3PCC) in the ANSI context. The

ANSI service control protocol does not support this implicitly, so a work-around technique using service nodes

may need to be built instead.

Application Implementation Perspectives 227

where GW denotes gateway capabilities, Pr denotes network protocol capabilities, and Z denotes

all other variable aspects that impact the applications usage of the network – including service

provider deployment peculiarities.

Now, we can define a User Experience Index or UEx as a function of AU.

UEx = g(AU) (13.2)

If an application is robust (as previously explained), UEx will remain invariant regardless of how

AU changes. In other words

UEx = g(AU) = CONSTANT, or

UEx = g (f n (GW, P r, Z)) = CONSTANT (13.3)

As can be seen, fn (GW, Pr, Z) may vary widely from one application deployment to another,

but the overall UEx index should remain the same because users will be unsympathetic to why the

application functions differently, they will demand parity. Good applications will seek to minimize

user visible disparities across network deployments.

In reality, UEx will vary slightly from one deployment to another for even the best-designed

applications, but one can use this metric to measure application quality. The smaller the range in

UEx, the better the application. Of course, if an application was written specifically for a particular

service provider deployment, all bets are off if it has to be later reused in a completely different

network context.

Now that we have looked at the theory behind the principles of good application design, let us

look at an example.

13.3 Example Scenario Revisited

Let us go back to the example we used to explain the operation of Parlay applications in Chapter 7.

There, Alfie, our end-user, visits Chicago and takes a walking tour downtown with the assistance of

an application called Tourism Genie (TG) which communicates with him over the various interfaces

supported by his cell-phone or mobile. In that chapter, we studied how the application may be built

from a purely functional perspective – how the various SCF APIs available from the standards could

be used, how the protocol mappings may be leveraged transparently for the end-to-end call flows

to work, etc. Here, we look at other aspects surrounding the call flow: aspects such as availability,

reliability, performance, etc. that we discussed from a service mediation gateway perspective in

previous chapters can also be examined from the perspective of application design.

Let’s say the Acme Computer Applications Company built the TG application for Utopia! Wire-

less but retained the right to resell it to other service providers per the business agreement. Now,

if Acme tried to deploy this application into a different network type where 3rd Party Call Control

(3PCC) primitives were not supported by the service control protocol, either custom integration

into this network would be required or only a degraded end-user experience could be supported.

Let us assume that the new service provider customer did not want to invest in custom integration

just yet. In such a situation, Acme could still reuse the same TG software, but configure it such

that when the 3PCC method call failed, it would simply present the user with the phone number

of the restaurant to be called, and let the user make the call herself.

Various other shortcomings or differences from one deployment to another could be dealt with

in similar ways. Even if the same set of required SCSs were deployed in different networks, there

are no guarantees that the different deployments have the same reliability characteristics. SCS com-

ponents in one network may fail more frequently than another – good applications will be able to

deal with these failures by providing degraded user experiences, even as they try to access backup

or alternative SCS clones from within the network that are capable of providing the same service.

If a particular SCS is very critical to its operation, an application may go so far as to set up

228 Parlay/OSA: From Standards to Reality

multiple service sessions – each one to a separate clone of an SCS of a given type – to ensure that
there is adequate coverage to address overload and reliability considerations. This way, individual

SCS failures and overloads are kept hidden from the end-user – there is no visible impact to their
perceived quality of service.

Thus, the application can use knowledge of the service provider service mediation gateway
deployment configuration, even very high-level information, to good effect. In the preceding para-

graph, Acme engineers are able to utilize the knowledge that the service mediation gateway supports
an ‘N + K’ deployment architecture to set up multiple simultaneous service sessions – each to a

separate clone – to achieve the required capacity3 and High Availability (HA) requirements from
a client application perspective. Of course, if this kind of setup is permitted by the gateway imple-
mentation, the service provider will want to ensure that the right kind of service agreements are

put in place for that application’s use of network hosted capabilities. Note also that Acme does
not necessarily have to know about the HA constructs used in the gateway implementation, but

application engineers may be able to put this information to good use if they did know it.
Of all these aspects, HA merits particularly careful consideration. Different service mediation

gateways may support different mechanisms for high availability in their implementations. For
example, some may use fault-tolerant CORBA4 or other fault-tolerant middleware capabilities.

Others may use yet other mechanisms – does this mean Acme will have to re-write the application
each time it interfaces with a different service mediation gateway in a service provider network?

Not necessarily. If the gateways themselves are standards-compliant, standards-defined HA mech-
anisms should be transparently available to client applications for their use. Standards documents

provide the ability for a single application to provide multiple callback references so SCSs can
report asynchronous responses to them through alternative means if the primary callback inter-

face registered by the application were to fail or become unreachable for some reason. These and
related concepts from the API could be used by applications to their advantage to provide the

desired HA characteristics. The interested reader is referred back to sub-chapter 10-3 on Scalability
and Reliability for more details.

Does this discussion imply that this absolves the server of providing a high-availability carrier-
grade implementation? Absolutely not. As we said before, the intent behind building applications
defensively is to account for unexpected situations that might arise in the interactions between

clients and servers (perhaps even in different networks), and to provide deterministic reactions to
such situations. Each end bears some responsibility, and here we are simply focusing on what a

client could do to make the overall user experience more pleasant and reliable.
Let’s continue on with our example. When TG is deployed in a third network, Acme engineers

realize that no prepaid system was ever deployed by that service provider. All transactions are
postpaid, and this customer tells Acme that although they very much like the TG application,

they are not comfortable letting people make all kinds of purchases and then charge them to their
telephone bill for each monthly cycle. Acme chooses to utilize the credit card recharge module

(already in place to support the recharging of depleted prepaid accounts) to enable customers from
this service provider networks to pay for ticket purchases and the like. Since the service provider

does not support the required underlying infrastructure, the application uses an alternative means
to try to provide similar capabilities.

3 Application throughput in terms of the number of transactions it may be able to process per given time

duration is a function of both the network and the application itself. Although Parlay/OSA enables transactions

to be designed independently in the application and services domains, as is evident from our discussions on

performance in earlier chapters, optimal call flows will require that optimizations be made in both compo-

nents – optimized network and application transactions are best, always better than those that optimize only

one but not the other.
4 CORBA, or the Common Object Request Broker Architecture, is an object-oriented technology that is widely

used in the industry today to support remote API invocations, location transparency and object access. This

technology is particularly relevant to Parlay/OSA implementations. The interested reader is referred to [Henning

1999,Schmidt 2004] for more details.

Application Implementation Perspectives 229

We also note that some capabilities are central to the operation of a given application – the TG

application, for instance, cannot operate without some form of location input to it. Loss of location

capability severely reduces the value of the application and Acme may choose not to deploy this

application in networks where location capabilities are not available. There are no workarounds in

some situations.

13.4 Where to Deploy?

Someone once remarked insightfully, ‘There is no such thing as bad weather, only inappropriate

clothing’. True, Parlay gives you many options regarding the deployment of applications, but

one must ensure that wise choices are made to ensure that maximum benefit accrues in each

case. As described in the previous section some choices need to be made as applications are

developed – these include things how HA, reliability, performance and related characteristics are

met. Other decisions need to be made when an application is being deployed, and sometimes,

assumptions relating to these aspects needs to be factored into application design as well. And

yes, sometimes, it is the act of choosing that matters most, not the choice itself – there are cases

where either of the possible choices may be equally appropriate, but it is crucial that the choices

be made in time so that the application is developed, tested and ready to deploy in a timeframe

that meets the ever important market window. Miss the market window and sometimes even the

best application may not succeed.

Let’s go back and look at some deployment time considerations. Parlay applications can be

deployed either within the secure confines of the service provider network boundaries (i.e. within

the service provider network) or outside, in enterprise domains with some kind of secure transport

between the two domains. The choices here could be important.

Applications deployed in service provider networks may offer better round-trip time (RTT)

behavior, seeing as how the applications are closer to the services they leverage and given that some

security restrictions can be relaxed slightly (resulting in less overhead for service session setup). In

addition, the service provider is itself responsible for the maintenance, administration and operations

aspects of the application, which means that the desired HA and reliability characteristics can be

engineered into the deployment following some of the same principles outlined in Chapter 10 for

services supported by the SMG.

On the other hand, service providers may decide not to host applications (to save on Oper-

ating Expenses – commonly referred to as OPEX), and instead either let the application vendor

themselves host it, and provide the required ‘carrier-grade’ aspects for the application, or farm out

the application management aspects to a completely different third party charged solely with this

responsibility. A business relationship can be established between the two parties based on some

kind of revenue-sharing agreement per transaction processed, or based on a flat-fee. This last model

of outsourced application management is typically termed a ‘service bureau’.

13.5 Building the Application: Designing High-Level Logic

In Chapter 7, we studied an application scenario and then the call flows to understand how it really

works under the covers. The last few sections of this chapter have discussed some considerations for

application design. Here, we look at how one might go about putting this knowledge into practice,

engineering in the ‘surround’ aspects of an application, factoring in some ideas we picked up in

Chapter 10. In this section, we first start out with a simple view of what the application might look

like, and see how that view morphs into one that is more robust, as other criteria associated with

factors not directly related to business logic are considered one by one, to make the application

more ‘deployment ready’.

Some readers may consider what follows to be ‘pseudo-code’. But there is pseudo-code, and

then there is pseudo-code. Sometimes, pseudo-code comes very close to real code that is simply

language agnostic. Readers expecting that level of detail here are likely to be disappointed. Hence

230 Parlay/OSA: From Standards to Reality

the section title makes no pretence of actually providing the pseudo-code itself, but guidelines on

how to go about building the application.

13.5.1 A First Cut View

Begin Application

A. Application Initialization Routine

1. Perform variable initialization

2. Establish connectivity to various local systems – application-based subscriber information

database, databases for maps, configuration tables etc.

3. Indicate readiness to administrator if required

B. Connect to the Service Mediation Gateway(s)

1. Note: This section depends on deployment characteristics.

2. If application is hosted in the service provider network, the SMG to connect to may simply

be the one in that network. If it is hosted in an enterprise domain, and is shared across

multiple service provider networks, it may have to connect to multiple SMGs, one from each

network.

3. Application implements code to authenticate and authorize itself with each SMG, to discover

the services it needs – in the TG example from Chapter 7 this would include SCSs for

Mobility (User Location), Charging, Presence and Availability Management, and Multi-Party

Call control.

4. Code to sign service agreements digitally with each SMG to which it connects for the service,
to initiate service sessions with SCSs in each service provider network.

5. Code to report errors to the application administrator per gateway, per service provider

network – what services it was unable to connect to, in which environments, and whether

degraded call flows can be supported in those cases. In some cases, the degraded mode

of operation may have been necessitated by the SCSs deployed in that particular network,

in which case the configuration file in A.2 should provide guidance on the exact flow the

application should use in processing requests – this is known prior to deployment, and the

application design should make allowances for it.

In other cases, the ‘inability to acquire an SCS’ may be a result of SCS failure in the network,

and a well-designed application will tell the administrator whether it is possible for it to provide

service in that network context, if so, what call flow it will use, and if not, what error it will return

to end-users who make requests of it.

6. Logic to indicate it is ‘ready to go’ to the administrator at the console if it is, based on

checks performed thus far.

C. Listen for end-user requests and process them

1. This is where the revenue comes in, with end-user requests. End-users may be authenticated

by the application, and then authorized5 to ensure only requests of the type they are permitted

to make are serviced. This requires appropriate service logic to perform local database dips

as necessary.

2. A threading model – thread pool or something similar6 – may be put in place to support a

concurrent server for efficient processing of incoming transactions from a multitude of users.

5 One could argue that the end-user be provided only with interfaces that expose only those features they are

permitted to invoke, per their profiles. This ties in to usability engineering for the handset-side components or

of the web-based graphical user interface the user can use. These considerations are not treated in any detail

in this book.
6 Quite a few threading libraries (e.g. POSIX) are available today, depending on the particulars of the platform

and operating system (and other environment details) of the system being used for application development

and hosting. Various patterns or models relating to multi-threaded servers are also extant. The reader is referred

to [Hyde 1999,Robbins 2003] for more details.

Application Implementation Perspectives 231

This is often very convenient since Parlay, as we have learnt in Chapters 5 and 6, supports a

number of asynchronous operations (some of which may be long-lived, for example, periodic

or triggered location reporting requests), and it is generally more efficient not to have code

that blocks frequently expected responses.

3. Leverage the threading model to process new requests. In the case of the TG application,

this would involve, for each user:

a) accessing end-user preferences from the application database and those stored in the

network (common to multiple applications including TG) – the application stored pref-

erences may be used to authenticate and authorize the user, and determine which of the

subtended network contexts to use to process the requests in that user’s session;

b) setting up a periodic user location query with the network;

c) keeping a loop open for user input via voice or dialed digits on the phone;

d) consulting the application map database to access and download to the user handset

content that may be relevant, while playing the correct voice content describing the same,

offering options, factoring them into further business logic related processing;

e) accessing the user’s prepaid account and making debits to it for tickets or other purchases

the user may make during his session along with charges for using the service, if any;

f) performing lookups of phone directories in the area for restaurants etc. in the application

space;

g) utilizing the network provided Call Control capabilities to set up a call to the party or

parties (e.g. restaurants) with which the user wants to communicate, and associated call

management.

Some of these transactions (a), b), e), g)) are Parlay based and involve communication with the

underlying gateway. Others (a), c), d), f)) are purely application business logic related: a) has

aspects of both. In some networks, the call flow may differ or be degraded, as described in B.5,

and may miss some steps, or add others. But the design should be clear in what flows are supported,

and how the application logic will handle user interactions in each subtended network context.

13.5.2 Enhancing the First Cut

So the above is a simple logical flow of the application. But this just shows the absolute bare bones

requirements for the application to be practical (admittedly, we have embellished the basic structure

with some nice capabilities in step B.5 and C.3 to make it more appealing to the reader). Application

developers may want to enhance this structure further to provide additional capabilities or improve

the user experience through ‘surround’ features. These could be wholly in the application space, or

also factor in some aspects of the communication with the gateway. For example:

1. Step A.3 could be modified to support different kinds of authentication handshakes depending

on network type, supporting P OSA AUTHENTICATION or P AUTHENTICATION and the

use of different support ciphers as required, to make the application more usable across network

contexts7.

2. For service level HA, step B.4 could be enhanced to support multiple service sessions (to

different clones in a multi-clone (see Chapter 9) SCS SMG deployment) between the client

application and a given type of SCS in a particular service provider network.

3. Step C.3 could be modified to use more advanced primitives exposed by the API where they

are available. For instance, e) could utilize the reservations capability if the prepaid system

supported it, thereby holding some money from the user account for the duration of the session,

enabling him to make multiple purchases of small amounts (or use this to charge for content

7 If something like this is done, it must necessarily be done very carefully so that weaknesses in an authentica-

tion handshake being used with one service provider cannot be exploited by malicious interlopers to compromise

other interactions. As they say ‘A chain is only as strong as its weakest link’.

232 Parlay/OSA: From Standards to Reality

downloaded, depending on the billing model) and then refunding the remainder at the end of
the session.

4. A whole new series of steps could be added as ‘Section D’ in the application logic, which

provide support for application replicas for application level HA. The mechanisms in the so-
called Section D, could, among other things, support check-pointing of user session state, the

sharing of callback references with other replicas of the service, the ability to pick up sessions
in the middle and support user requests within, in case of sudden replica failure, inter-replica

communication, and other such capabilities making the application truly more robust.

5. Other optional Parlay features such as those for Integrity Management, as described in Chapter 5,
including, say, heartbeat management, fault management and load management could also be

added further, to a ‘Section E’ of the application logic, thereby enabling each application replica

to monitor services, communicate with the Framework, and be monitored by the Framework
(and perhaps other replicas locally).

As can be seen, once the basic application is built, enhancements can be made not just to
the business logic, but also to surround capabilities from a Parlay perspective to make it more

attractive to service providers that might want to deploy them. Well-designed applications strive to
strike a balance between just doing things right, and doing things well. . . and they do this without

over-whelming the user with the number of options or configuration aspects that may need to be

programmed.
Applications are designed and built by engineers, but engineers would be well advised to be

mindful of the fact that for an application to be successful, the logical flow of the interaction must

be very intuitive to even the most naı̈ve of users. An application that requires the user to have a
PhD in order for him or her to derive maximum benefit is one that will likely fail from a market

acceptance (and even marketability) perspective. Parlay gives developers great power to do things
well from an application standpoint, but, as they say, ‘with great power comes great responsibility’.

Some enhancements can be added over time, as the application evolves, and market needs

change. Others, however, need to be factored in from the beginning or the application will be
difficult to modify, or there may be a significant amount of ‘throw-away work’. Sometimes, the old

adage ‘measure twice, cut once’ does indeed hold. Thus, good application design, just like good

gateway design, and all other things worthwhile, is an art form that has its beginnings in some
sound engineering principles that we have tried to cover in Chapter 10 and in the earlier sections

of this chapter.

Sidebar: Application Extensibility

Elevators are seldom stand-alone. Typically, they are deployed in banks. An elevator bank

generally offers a single control panel where the user can press the up or the down button, and

in response to that input one of the elevators eventually stops at the floor and the user can get

on. Elevators are programmed to react to requests coming in for rides from various floors, and

from requests coming in locally from within each car for where users want to get off. (Elevator

algorithms are interesting in their own right, some computer operating systems use algorithms

derived from elevator operations to handle disk seeks in computers.)

A teacher in a programming class challenged her students to write a simple algorithm for

elevator operation (with a very restricted feature set), which they did. After they turned in their

assignments, she asked them to think if their solutions would continue to work if their elevator

was one of a bank. Of course they would not. But some solutions would adapt to support that

late requirement more easily than others. It would appear that tracking some problem context

information and proactively allowing for some ‘feature creep’ might be one way of dealing with

change (or evolution) that may be unavoidable. As they say ‘change is the only constant’. But

design for change is only beneficial for applications that have a relatively long lifetime.

Application Implementation Perspectives 233

13.6 On Lower-Cost Testing of Applications across API Interfaces

(The reader is encouraged to note the title carefully – one cannot guarantee ‘least cost’ in all cases)

Now that we have briefly looked at client application design considerations, let us also briefly look

at software testing, certification, and related issues. There are some patterns or concepts in the area

of application testing across API interfaces that could perhaps be applied to reduce the time and

effort involved with a view to ensuring interoperability across implementations.

Let us consider an SCS X that implements a single SCF Y (recall from Chapter 5 that an SCS

is the physical manifestation of one or more SCFs or APIs defined in the standards). For the

sake of simplicity in explanation, let us assume that Y supports only a single interface I , with k

methods, marked {M1,M2, . . . ,Mk}. Similar arguments as those presented below apply to SCSs

that implement more than one SCF each, but the focus here is on trying to uncover the patterns of

interest, so some complicating factors are ignored.

Each application that uses this SCS X (i.e. invokes methods on the implemented SCF Y) would

invoke a certain method or set of methods in some sequence (or in parallel, though if this is the

case, due to idempotence and state management considerations, a serial schedule can be produced

per transaction with the invoked methods cataloged into one or more possible strings of method

invocations).

The serial schedule per invoked method would vary per transaction type (for example, at the

simplest level, the User Location SCF supports three transaction types – single-shot queries, peri-

odic queries, and triggered location queries) that was supported by the application. It could also

potentially vary based on the application’s reactions to responses or input received either from the

end-user (EU), or from other SCSs (OS), or from other sources not known to the service mediation

gateway (UkS).

So a transaction’s serial schedule as seen by a service mediation gateway SCS is:

SCS X transaction view (f or transaction x) = Fn (EU, OS,UkS) (13.4)

(we abbreviate this as SCS X T xV (x))

However, one can compute the ‘closure’ of a transaction view by first generating the sunny day

scenario serial schedule, and then branching out from that scenario at appropriate points to handle

the various special cases.

For example, let us say that partner application A that uses SCS X (among other SCSs), supports

three types of application transactions, a, b, and c.

For each of these transactions, one can generate a serial schedule for the sunny day scenario,

for SCF Y, but in a manner that is totally independent of the underlying protocol bindings for the

SCS.

This results in something like the following:

SCF Y T xV (a) = [M1, M3, M5] (13.5)

SCF Y T xV (b) = [M2, M4]

SCF Y T xV (c) = [M1, M2, M6]

Note that these were generated from what the application expects to invoke on the SCS as it

processes each type of transaction. Now, one can compute the ‘closure’ of each transaction sequence

by determining the branching out of the ‘sunny day sequence’ for exception cases. For example,

this might lead to something like

234 Parlay/OSA: From Standards to Reality

SCF_Y_TxV(a) = [M1, M3, M5]

M4
(c1)

M2, M3
(c2)

(c3)

(13.6)

(c1, c2 and c3 indicate various exception conditions that occur as the methods from the sequence

are invoked. Note that there may be multiple branches from each state, though only a single one

is depicted for simplicity – an example of this is where the same method could return different

results based on the kinds of input it gets, the underlying protocol bindings, etc.)

From this, one can extract the ‘complete’ set of test cases (this assertion needs to be taken with a

grain of salt – not all exception cases can be planned for in all cases, since the graph could get too

complex, and sometimes the cost of testing involved – including the cost of setting up a suitable

test environment and then designing and executing tests that simulate the desired behavior – does

not justify the benefits; one needs to make judicious choices here):

Sunny day scenario : [M1, M3,M5]

Other cases : [M1, M4], [M1,M3, M2, M3], [M1, M3,M5, M3,M5], (13.7)

and the loop[M1, M3, (M5,M3)∗, M5]

In the last case, one needs to check there is a terminating condition so the loop does not cycle

forever, but that is an application requirement; the SCF will continue processing each transaction

it sees as an independent one so long as it does not conflict with the transaction state it sees.

The SCS itself may only implement a subset of the set of methods defined in the API for SCF

Y (it may not implement M2 and M5, for example). In such a case, Equations (13.5–13.7) could

be re-written with ‘SCF Y ’ replaced with ‘SCS X ’, and the sequences in (13.7) properly adjusted

to factor in the missing methods. This may not necessarily be as simple as deleting the unavailable

Ms from the sequence, since the application designer needs to factor in application behavior as the

unsupported methods are invoked and result in errors.

If the closure in (13.6) were computed accurately, a resulting simplified graph extracted from it

could be easily built to account for the missing methods from an implementation. Note that this is

the step where different protocol bindings for SCF Y can be accounted for in the test schedule.

For example, if two SCSs (say from different vendors), X and X′ implement the same SCF

Y, but build support for different subsets of methods (due to underlying protocol capabilities),

the two closures can be computed on paper per application transaction tr, as SCS X TxV(tr) and

SCS X’ TxV(tr).

The two can then be contrasted and tests run a single time for application A against a single

SCS of the type that implements SCF Y (either X or X′). One can be confident that the application

behavior would remain the same for all other SCSs of the same type (for SCF Y, independent of

southbound protocol mappings) that implement that subset of methods, with potentially incremental

testing only required in cases where additional methods were also supported, or for those methods

sequences that could not be tested in their entirety from earlier SCS implementations.

For this to work, one needs to be able to configure the SCS (or equivalent simulator) to provide

the set of responses that each of the real SCS implementations is likely to return. Some of these

may in fact be made possible by changing the input set of variables to a method, though perhaps

some other cases cannot be handled as easily that way. For cases where input variable changes

can subsume other aspects of the behavior, the more complete the SCS implementation used in

the test, the more confident one can be with the results across SCS tests for that SCF. Ideally, the

Application Implementation Perspectives 235

application should be modifiable (where the SCS is not) to encode it with the equivalent of ‘method

Mx invocation returned a “method not supported” exception’, or ‘method Mx invocation returned

a CORBA exception’ as the case may be.

The same scheme could be applied across application transactions as a whole, subsuming the

operation of multiple SCFs, through a simple extension of the concepts discussed above. However,

soon one hits the problem of combinatorial explosion with unwieldy graphs, if the transactions are

not reasonably simple.

We conclude that it would be advantageous if, in testing service mediation gateway compatible

applications, the testing could be done once against an SCS of a given type, with reasonable

assurances that it would exhibit expected behavior when deployed with another implementations of

the same type of SCS (same SCF, different protocol binding) in a network. A framework, such as

that described above, could help reduce costs for such interoperability testing between applications

and Service Mediation Gateway implementations.

The more rigorous treatment of this testing aspect in the last section is along the lines of what

was covered in the previous section, relating to how the TG application may be tested, modified, or

reconfigured to adapt itself to provide the best possible end-user experience in different networks.

13.7 Summary

Anything worth doing is worth doing well. In Chapter 7, we had studied an example of a Parlay

application with a view to understanding how the application works, what happens beneath the

covers, and how the call flow holds together. In this chapter, we took a deeper look, building

on the knowledge of the last few chapters, to understand some of the finer aspects relating to

application engineering and design. Merely building functioning Parlay applications is not enough,

one needs to test them to ensure they can function and be reused in network contexts that may vary

in terms of their relative sophistication of support for functional capabilities. Thus, we have also

explored how some of these issues could be factored in as new applications are designed. Now that

we have studied how service mediation gateways and Parlay applications may be built, we cover

more advanced topics in the Parlay/OSA domain in Part V of the book.

Part V

Advanced Topics
and their
Implementation

As we have indicated before, in common with most standards, Parlay doesn’t mandate a particular

deployment architecture. This leaves implementers free to exercise their creativity in building

systems that meet a particular set of requirements. These may put a priority on lowest cost and

highest performance, or some other set of conflicting criteria. Each set of criteria can lead the

implementer towards a particular implementation architecture. Part V illustrates this aspect by

describing some of these architectures.

We start out with a discussion of a new Parlay architecture entity called the Parlay Proxy

Manager. Then we study federation and multi-network operator scenarios. Chapter 16 focuses on

Parlay and related Web Services technologies. An additional chapter is included on the web site

[Parlay@Wiley] as advanced reading, and covers future evolution paths for the standards.

This part of the book will be of greatest interest to technical readers (such as architects and

designers) who want to learn more not just about the technical aspects of today’s new solutions but

also about their possible evolution into the future. The discussion of federation and multi-network

scenarios will also be of interest to business and marketing audiences.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

14

The Parlay Proxy Manager

14.1 Introduction

Chapter 9 introduced the concept of the Parlay Proxy Manager1. As we have seen it is an entity

that looks – to the ‘outside world’ – as if it is a single Parlay SCS. This simple, single appearance

hides a complex underbelly, however, as we shall now explain.

If a Client Application needs a highly reliable and flexible location information provided to it by

a Parlay Gateway, it may be necessary for the gateway to provide a number of individual Location

SCSs. The Client Application can then distribute its requests across these SCSs and switch to using

the remaining SCSs if one of them fails. Figure 14.1 illustrates this scenario.

Clearly the Client Application bears a great deal of responsibility for managing its relationships

with the individual SCSs and is required to perform the load balancing itself. In an ideal world it

would not need to do this. Step forward the Parlay Proxy Manager.

The concept of the Parlay Proxy Manager is fairly simple, as illustrated in Figure 14.2. From the

point of view of Client Applications it seems to be a Parlay SCS like any other. The Client App

can discover it and start sessions with it as it does with any other SCS. The Client App doesn’t

see, however, that the PPM doesn’t typically provide any SCS functionality directly but instead

is in communication with a set of SCSs of the same type. This communication takes the form of

standard Parlay interactions between a client application (the PPM) and a set of SCSs. In other

words the PPM has two roles; it is both an SCS and a client application.

For example, the PPM may appear to be a Location SCS. Although it has no intrinsic Loca-

tion SCS functionality of its own (it doesn’t interface directly to a network element such as a

GMLC) it is able to behave as a Location SCS by proxying the functionality provided by other

Location SCSs.

So why bother? After all, this introduces an extra layer of software (and hardware to run

it on) and thus introduces something else that can go wrong and increases the delay in pro-

cessing messages from, or to, a Client Application. The answer is complexity, or rather the

hiding of complexity. A key tenet of Parlay is that it should be possible to make life as sim-

ple as possible for Client Applications whilst still delivering the functionality or performance they

require. As we shall see the PPM concept is one way of keeping life simple for the Application

while at the same time improving the performance and reliability of the functionality delivered

to it.

1 Note that the Parlay Proxy Manager is not an entity defined by Parlay.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

240 Parlay/OSA: From Standards to Reality

SCS A

…

OSA API

SCS B SCS C

App A

Service
Instance

Service
Instance

Service
Instance

Figure 14.1 Client Application accessing three Location SCSs

Leaf SCS A

App A …

OSA API

Service

Instance

Leaf SCS B

Service
Instance

Leaf SCS C

Service
Instance

SCS

App

PPM
Instance

PPM Client
Application

OSA API

Parlay Proxy Manager

Figure 14.2 Client Application accessing three Location SCSs via a PPM

The Parlay Proxy Manager 241

14.2 Prising Open the Parlay Proxy Manager

Cloned SCSs were introduced in Chapter 9. They are SCSs of the same type and can be used to

provide load-balancing functionality, for example. They are a useful solution but have a number of
drawbacks, principal among these is that the Client Application is responsible for managing all of

its relationships with these multiple SCSs. The result is a complex Client Application. Chapter 9

went on to introduce the idea that this problem of Client Application complexity can be solved by

hiding the SCSs behind a single SCS (the PPM).

Assume we have a set of SCSs of a given type distributed across a set of nodes within a Parlay
Gateway. We call these the leaf SCSs. The leaf SCSs do not necessarily have to be homogeneous,

i.e. the set can consist of any combination of monolithic and distributed SCSs, as long as they

are of the same type: the leaf SCSs must have the same service type and the same set of service

properties (though we see later that there can be some exceptions to this). For example, the leaf

SCSs might all be MultiParty Call Control SCSs supporting a maximum of three call legs within
a single call. The Parlay Proxy Manager SCS is identical in this respect to any of the leaf SCSs,

though one additional service property denotes it to be a PPM SCS. For now we will assume that

the PPM SCS and all leaf SCSs are trusted entities from the point of view of the Framework to

avoid over-complicating the discussion.

At system initialization time let us assume that all SCSs, including the PPM SCS and the leaf
SCSs, register with the Framework. Again, this keeps our initial description simple but we will

examine more dynamic situations later. In addition to the standard set-up (registration) the PPM

SCS enters into a service discovery sequence with each of the leaf SCSs. The sequence includes

service discovery, service selection, and the creation of service sessions between the PPM SCS

and the discovered leaf SCSs, i.e. service instances are created on each of the leaf SCSs. The PPM
SCS now knows of a population of suitable leaf SCSs and has a relationship (service session) with

each of them.

As we noted earlier the PPM SCS behaves as a Parlay Client Application towards the leaf SCSs.

The Framework will grant the service sessions, provided all policies can be successfully applied.

The fact that this particular Parlay Client Application is in fact an SCS as well, engaged in a service
session of its own with the original Parlay Client Application, is completely transparent to the leaf

SCSs. At this stage, service sessions are in place between the Parlay Proxy Manager SCS and each

of the subtended leaf SCSs. Figure 14.2 shows these service sessions as lines between the PPM

and the Service Instances it is using (one per leaf SCS).

The Parlay Client Application (the one offering a service to the end-user, not the one that the
PPM SCS is performing towards the leaf SCSs) then sets up its service session with the PPM SCS,

using the reference to the service factory of the PPM SCS it has obtained from the Framework2.

The PPM SCS can now, based on some local policies or load-sharing algorithm, farm out service

requests to the various subtended leaf SCS nodes with which it has previously set up service

sessions. The fact that it is the leaf SCS that is executing the service request towards the network
entities is again completely transparent to the Parlay Client Application. The Parlay Proxy Manager

SCS effectively functions as a ‘man in the middle’.

The Multiple Clone SCS configuration, introduced in Chapter 9, presents a simple and elegant

architectural solution. It achieves both the distribution of SCSs as well as Integrity Management

capabilities at the granularity of individual service requests. Through application of the proxy
pattern, the configuration is not only powerful but also provides a seamless extension of Parlay

compliant implementations. Due to the achieved transparency, no modifications to the standards-

defined interfaces are required in order to support multiple clone SCSs.

2 It can be a Framework policy only to expose Parlay Proxy Manager SCSs during the service discovery

phase and thus only return service factory references of Parlay Proxy Manager SCSs to client applications.

Alternatively, the Framework may expose PPM SCSs and leaf SCSs alike. The case where a client application

selects a leaf node for the establishment of a service session, rather than a PPM SCS, is the degenerate case;

i.e. it defaults to the standard Parlay scenario as introduced in Chapter 5.

242 Parlay/OSA: From Standards to Reality

14.2.1 Discussing the Merits of the Parlay Proxy Manager

As always, there are of course some drawbacks as well. In what follows we will describe some of

the more important ones.

14.2.1.1 A Single Point of Failure?

The first question that would spring to mind is what would happen if the primary node3 or proxy

node fails? It is a fair question. We claim increased service availability through distribution and

redundancy, but at the same time seem to introduce a single point of failure.

In the case of distributed SCS configuration, presented in Chapter 9, where only the primary

node hosts a service factory, we have a problem. Ongoing service sessions can continue, as the

primary node is not involved anymore once the service session is in place between the Parlay

Client Application and the secondary SCS. New requests for service session establishment can

no longer be honored though, as the only node hosting a service factory is down. This still

provides a performance improvement over the monolithic SCS configuration, where failure of

the monolithic SCS means that the service session(s) with the application are lost and all bets

are off.

In the multiple cloned SCS configuration both the PPM SCS as well as the leaf SCSs host service

factories. Therefore, failure of the PPM SCS does not impact the ability of the application to engage

in new service sessions. Ongoing service sessions though are lost, of course, as PPM SCS failure

implies that the service session between application and PPM SCS, as well as the service sessions

between PPM SCS and leaf SCSs, are dropped. The Framework needs to supply the application

with references to service factories on the leaf SCSs in order for new service sessions to be set up.

If at service discovery time the Framework had only exposed PPM SCSs towards the application,

the recovery scenario gets a bit more involved. In that case the entire Parlay handshake may be

required to engage in service level agreements before the Framework will provide the service

factory references.

14.2.1.2 What’s Your Policy?

As we have seen before, all SCSs have a set of policies (whether implicit or explicit) that guide

their behavior depending on the Client Application using them. This is true of each of the leaf

SCSs and, for appropriate policies to be applied, the SCS needs to be able to differentiate between

the Client Applications interacting with it. Remember though that when the PPM is being used it

is the PPM that is the Client Application as far as the leaf SCS is concerned.

This could present a problem. In the scenario that we described earlier, the PPM discovers

and starts sessions with each of the leaf SCSs at system initialization. Clearly at that point it

cannot (necessarily) know which Client Applications will come along at a later point and so the

PPM supplies its own AppID when starting these service sessions. Effectively all interactions from

Client Applications will be treated exactly the same by the leaf SCSs since there is only one

Application (the PPM) interacting with them.

As an illustration (Figure 14.3), consider two Client Applications: A and B. They both want to

use the same leaf SCS. At system start the PPM will have started a session with the leaf SCS and

so when the two Client Applications start using the PPM they are in general forced to abide by

the same policies and Service Level Agreements as each other since only one session with the leaf

SCS is in existence.

Note that there was an ‘in general’ inserted in the last sentence. That is because it isn’t entirely

true that they have to be bound by exactly the same policies and SLAs. It would be possible to

construct a PPM such that it would perform policy enforcement based on whether, in our example,

3 This term has been introduced in Chapter 9.

The Parlay Proxy Manager 243

App A App B …

OSA API

Leaf SCS A

Service
Instance

SCS

App

PPM Client
Application

OSA API

Parlay Proxy Manager

PPM
Instance A

PPM
Instance B

Figure 14.3 Two Client Applications; PPM acts as a single Client Application

Client Application A or B is making a request. For example, if the PPM has an agreement with the

leaf SCS that it can perform up to 50 transactions per second, it could establish policies with the

Client Applications such that A can perform up to 30 transactions per second and B can perform

up to 20 transactions per second. There is one big drawback to this approach, however. Since the

leaf SCS doesn’t know that the PPM has performed policy enforcement already, it will perform it,

wastefully, for the second time.

To avoid either the restriction that identical policies are to be applied or the performance (and

complexity) disadvantage that the PPM has to perform policy enforcement, another approach needs

to be found. Fortunately this isn’t too hard to find. All that needs to happen is that the PPM

can pretend to be more than one Client Application. One way for it to do this, as depicted in

Figure 14.4, is to assume the identities of each of the Client Applications (literally, since it uses

the AppIDs) when interacting with the leaf SCSs. This solution does however require that the

procedures followed on system initialization be changed.

Rather than the PPM starting service sessions with each of the leaf SCSs on system initial-

ization, it will wait until a Client Application interacts with it to start a service session. At

this point it knows the AppID and uses this when starting a service session with one of the

leaf SCSs.

In fact the PPM can start sessions with the leaf SCSs regardless of whether the PPM is going to

use multiple AppIDs or not. This is described in more detail in Section 14.4.1, ‘Dynamic Leaves’.

244 Parlay/OSA: From Standards to Reality

App A App B …

OSA API

Leaf SCS A

Service
Instance

SCS

App

PPM
CA A

OSA API

Parlay Proxy Manager

PPM
Instance A

PPM
Instance B

PPM
CA B

Service
Instance

Figure 14.4 Two Client Applications; PPM acts as separate Client Applications

14.2.1.3 Lack of Integrity?

The preceding discussions have avoided discussing the important issue of Integrity Management.

In the simple PPM scenario the PPM will start using the Integrity Management interfaces when

it begins a session with the leaf SCS. Load and Fault information will be reported by the leaf

SCS and will reach the PPM via the Framework. Similarly, Load and Fault information will be

reported by the PPM and will reach the leaf SCS via the Framework. When the Client Applications

(A and B, from above) start to use the PPM they will also start using the Integrity Management

interfaces, but this time the flow will be from PPM to Framework to Client Application (and

vice versa).

So what happens when the leaf SCS goes into overload? It may be that this information will

be sent to the PPM and the PPM will send it to the Client Applications. However, that assumes

that there is only one leaf SCS, or that only one leaf SCS can be used by the PPM to fulfill

requests from the Client Applications. Such an arrangement wouldn’t be a particularly good use

of the architecture. It is more likely that a number of leaf SCSs can be used and that the report of

a particular leaf SCS going into overload wouldn’t necessarily result in the PPM having to report

that it has gone into overload.

In general, therefore, a Client Application’s interactions with the PPM will be distributed to

one or more of the leaf SCSs. The load or fault information from one of these leaf SCSs will be

The Parlay Proxy Manager 245

reported to the PPM and may be used by the PPM when making decisions but in general won’t

translate directly to load or fault information reported to the Client Application.

So does this also apply to the dynamic mode of operation? As we have seen there are a number

of ways in which the dynamic mode can be used. In the example above the PPM assumed the

identities of the Client Applications. As far as the leaf SCS is concerned the PPM is the Client

Application. When the leaf SCS reports load and fault information this will be passed to the

Framework as usual. Now the report from the leaf SCS doesn’t indicate which Client Application

this information is destined for. It is up to the Framework to make the association, and it does

this by keeping track of which Application started the service session. In our case it is the PPM

that started the service session and not the Client Applications so it is the PPM that receives the

Integrity Management information.

We can extend this argument to the use of the dynamic mode in general. Since the PPM

is the entity that started the service sessions with the leaf SCSs, it is the PPM that receives

the Integrity Management information, regardless of what AppID it uses to identify itself to the

leaf SCSs.

14.3 Applications of the Parlay Proxy Manager

In this section, we discuss some examples of how the Parlay Proxy Manager could be used in real

world deployments. Some of the more advanced ideas merit their own chapter and are covered in

Chapter 15, so here we present only the highest level conceptual description with a forward pointer

to the later chapter where the details are presented.

14.3.1 Crossing Continents

There are a number of network operators (particularly mobile network operators) that own networks

in more than one country. This situation lends itself to economies of scale and the potential for

reusing successful ideas across the different networks that an operator owns.

Parlay Gateways can be used in each of these networks to allow new Services to be rolled out

in each. If one of these Services becomes particularly popular there is the possibility to deploy

it quickly and easily on one or more of the other networks by having it installed on the Parlay

systems in those networks. This is the basic advantage of Parlay as technology. The Parlay Proxy

Manager (PPM) concept takes this a step further. If the operator group wants to deploy a Service on

more than one network, it can do so very easily by deploying a PPM that sits between the Service

(Client Application) and the SCSs that it wants to use in each of the networks, as illustrated in

Figure 14.5.

14.3.2 Premium Blend

Extending the scenario from the previous section even further, in some cases, multi-network deploy-

ments may be such that certain SCSs are run in some networks, but the operator wants to make these

available to other network operators (for a fee, of course, or in keeping with reciprocal agreements),

so that those operators can in turn expose these services to their own client applications, thereby

enabling every party to become part of the end-to-end value chain (and thereby make money). The

Parlay Proxy Manager is indeed quite well suited to this kind of situation. An example of this kind

of deployment – ‘Proxy-regulated Window-to-the-World Model’ – is illustrated in Section 15.4 of

Chapter 15.

Alternatively, in some cases, a Mobile Virtual Network Operator (MVNO) (recall the discussion

of these in Chapter 2?) may be permitted to access the service capabilities exposed via the PPM by

the service provider hosting them, thereby supporting new business models for service usage, selling

services ‘wholesale’ to parties that may broker them further to their own clients. This scenario is

a variant of the one previously referenced in this section, and is also described in Chapter 15.

246 Parlay/OSA: From Standards to Reality

Network C

…

SCS A

Network A

SCS B

Network B

App A

PPM

SCS C

Figure 14.5 Using PPM to deploy a Client Application on other networks

14.4 Taking the Proxy Model Even Further

Naturally the proxy design pattern can be applied to other elements of the Parlay architecture. Some

of these are explored in the sections that follow. First though we return to the PPM concept that

we met earlier and describe an enhancement that makes it even more flexible.

14.4.1 Dynamic Leaves

The simple PPM-based Parlay implementation described earlier involves the PPM discovering and

starting service sessions with leaf SCSs when the system is initialized. In effect the configuration

and behavior (policies to be applied) of such a system is fixed at initialization.

This fixed configuration makes it impossible to gain full advantage from a PPM-based archi-

tecture. In the real world we would like to be able to replace leaf SCSs that have failed or have

been withdrawn. We would also like to be able to increase or decrease the overall capacity of the

system, increasing or decreasing leaf SCSs as needed. This is all possible with some alterations in

the behavior (and if necessary the design) of the PPM.

As well as starting sessions at system initialization, the PPM starts sessions with new leaf SCSs

during its lifetime. This process may be triggered by certain conditions (the failure of an existing leaf

SCS perhaps, or the announcement of the existence of a new leaf SCS) or may be a regular activity

running at some appropriate interval. Existing Parlay mechanisms (Framework Event Notifications

for example) can provide all of these triggers and functionality.

If the analogy can be pushed a bit further, the picture that emerges is of a system resembling

a coniferous tree. Leaves (needles) are constantly lost and replaced and extra leaves added when

times are good. The tree itself always looks much the same despite this constant growth and loss

and it adapts to the prevailing conditions. (It should be noted that designing a system modeled after

an oak or beech is probably less of a good idea.)

Having explored the nature and usefulness of the proxy model as applied to SCSs, it is only

natural to consider whether this model can be applied to the other key Parlay entities. The next

two sections do just that, starting with the Framework.

14.4.2 Framework Proxy

We have explored how applying the proxy model to the Parlay SCS can bring benefits in terms

of reliability, scalability and Client Application simplicity. Could we also gain similar benefits in

The Parlay Proxy Manager 247

Client
Application

Service
Capability

Server

Framework

Figure 14.6 The Parlay triangle

proxying the Framework? To determine this we first need to understand what a Framework Proxy

is. Consider the Parlay triangle of entities: Client Application, SCS and Framework (Figure 14.6).

Now when we proxy one of these roles, the proxy must implement two roles. We have seen that

the PPM (an SCS proxy) takes on the role of both an SCS and a Client Application. Similarly a

Framework Proxy must take on the role of both a Framework and of one of the other two entities.

In other words it must also be an SCS or Client Application. Figure 14.7 shows a Framework Proxy

that is a Framework and an Application.

Figure 14.8 shows a Framework Proxy that is a Framework and an SCS.

Note that by extension the last two diagrams could be combined as shown in Figure 14.9. Note

that in each case the service session always runs between the Client Application and the SCS.

So much for the theory. Do any of these configurations make sense? Are they useful for anything?

The purpose of a proxy of any kind is to ‘hide’ some complexity from the entity using it. The

interfaces the Framework Proxy provides can only be standard Framework interfaces. We therefore

need to examine the functionality provided by a Framework and then consider how the life of an

Application or SCS might be made easier by using a Framework Proxy.

Let’s consider things from a Client Application’s perspective first. Beginning at the start, a

Client Application needs to find a Framework and authenticate with it. If the owner of the Client

Client
Application

Service
Capability

Server

Framework
Framework

Proxy

Figure 14.7 Framework Proxy as Framework and Client Application

248 Parlay/OSA: From Standards to Reality

Client
Application

Service
Capability

Server

Framework

Framework
Proxy

Figure 14.8 Framework Proxy as Framework and SCS

Service

Capability

Server

Client

Application
Framework

Framework

Proxy

Framework

Proxy

Figure 14.9 Framework Proxies towards both Client Application as well as SCS

Application provides a Framework Proxy then it is this proxy that is found (and in fact may

well be provisioned into the Application software). A real Framework is still required and so the

Framework Proxy is responsible for finding one, using any of the possible discovery methods. Not

a great benefit to the Client Application on its own, so we need to look at what else might be

provided.

The next thing the Client Application needs to do is authenticate. If the Framework Proxy is in

the same security domain as the Client Application this authentication can be quite simplistic and

so the Client Application isn’t obliged to implement some of the more complex algorithms. Instead

the Framework Proxy implements any security algorithms required by the real Framework(s). This

provides a clear benefit to the Client Application.

The remaining functionality of the Framework can be broadly split into finding a suitable SCS,

starting a service session with it and maintaining this service session using the Integrity Management

interfaces. Let’s consider discovery of SCSs first.

There isn’t much in the Discovery interfaces in themselves that can usefully be simplified by a

proxy. However, let’s think about the purpose of Discovery: to find SCSs. The wider the available

set of SCSs the more likely it is that a good match can be found. A Framework Proxy could expand

The Parlay Proxy Manager 249

the available set by making contact and setting up an Access Session with more than one other

Framework. The Client Application is of course blissfully unaware of them, and the Framework
Proxy takes each of the discovery requests and sends them to the other Frameworks. This is depicted

in Figure 14.10.

In summary then, a Framework Proxy can be used to hide functional complexities such as

Framework ‘discovery’ methods and security algorithms or it can be used to hide topographical

complexities such as the existence of multiple Frameworks.

14.4.3 Application Proxy

By concentrating on the SCS and Framework entities, our exploration of the proxy model has to
a certain extent ignored the needs of the owner(s) of the Client Applications. Of course, we have

seen that using a PPM can allow the complexities of a resilient and flexible Gateway to be hidden

from the Client Applications, but there other issues that need to be addressed.

One barrier to any new technology, such as Parlay, is that there are many existing applications

implemented using older technologies that have already been deployed and are operating success-

fully, generating revenue. Typically there is a financial imperative to be able to continue to operate

(and profit from) them and rewriting them is impractical.
One solution is to provide translation between the existing interfaces implemented by an appli-

cation and the Parlay interfaces. In other words, requests by a non-Parlay application are routed to

a function that performs a translation into a Parlay request and forwards it onto the Parlay Gate-

way. Any responses from the Gateway are of course translated into the non-Parlay format. Such a

translation function can be termed an Application Proxy.

For example, an enterprise operator may have a set of applications that don’t support Parlay but

they would like them to gain access to network functionality via a Parlay Gateway. Re-writing the
applications would be prohibitively expensive so the development of an Application Proxy that can

translate between the two technologies is a reasonable investment.

The success of such an Application Proxy depends on a number of factors. Clearly the Parlay

and non-Parlay interfaces must be somewhat similar in nature. The closer they are in terms of

semantics the easier it is to implement a translation.

Service
Capability

Server

Client
Application

Framework A

Framework
Proxy

Framework B

Framework C

Figure 14.10 Framework Proxy ‘hiding’ Framework complexity

250 Parlay/OSA: From Standards to Reality

Of course, if the existing applications have been implemented in a well-partitioned way it may be

feasible to remove the existing interface implementation and replace it with a Parlay-compliant one.

This has clear benefits in terms of performance since it avoids the additional layer of translation.

The preceding paragraphs have included an implicit assumption that it is the owner of the non-

Parlay applications that implements and operates the Application Proxy. This is certainly a valid

approach and is particularly suitable when the existing interfaces are very proprietary in nature.

If, however, the existing interfaces are in accordance to a popular standard or are a widely used

proprietary technology (a de facto standard) then there may be alternative solutions. In this case the

same Application Proxy may be usable with a number of applications owned by a number of Enter-

prise Operators. It may make sense for the network operator (or the owner of the Parlay Gateway,

if different) to implement (or buy into) the Application Proxy and deploy it in its own domain.

Such an approach does have implications for security. Where the Application Proxy is owned

and deployed by the Enterprise Operator it looks, to the Network Operator, as if it is a standard

Parlay Client Application and all of the Parlay rules and solutions apply. If the Application Proxy

is part of the Network Operator’s domain then clearly a security solution is needed for operating

the non-Parlay interfaces across the domains.

14.4.3.1 Application Proxy 2, or is it an SCS Proxy?

We have seen previously how there can be requirements on SCSs to be reliable and flexible in

terms of capacity. Overall reliability and capacity for a system is determined by all of the elements

in that system, and limited by the weakest link. Since the Client Application is part of the overall

system, it may be necessary to design it to match the SCS in reliability and capacity terms.

One last illustration of the proxy pattern is to use an Application proxy of a somewhat different

nature to those examined in the previous section. The proxy in this case appears to be a standard

Parlay Client Application as far as the SCS is concerned. In reality, however, it is an SCS as

far as another set of Client Applications is concerned. This set of Client Applications provides

the reliability and flexibility that is desired by distributing requests and responses across them

as appropriate.

In effect what appears to be a highly reliable Application as far as the SCS in the Network Oper-

ator’s network is concerned is in fact another Parlay system. This system consists of a Framework,

an SCS (the Application Proxy) and a number of Client Applications.

This may appear to be stretching the proxy pattern a little, but it is intended to be an illustration

to show how Parlay can be applied to many different situations.

14.5 Summary

We have seen in this chapter that applying the proxy concept to Parlay opens up many powerful

options to the designer of a Parlay system and we have examined some of them in detail. These

options (and many more that we are sure the creative reader will be able to devise) enable a range

of business and deployment models to be supported. At the same time they keep the life of the

Client Application implementer as simple as possible, which for Parlay is what it’s all about.

15

Multi-Network Deployment
Scenarios

15.1 Introduction

As more and more Parlay gateways are deployed, more applications will be built in support of this

model. This leads to more revenue being generated as subscriber experiences improve and new

subscribers are attracted and retained through the availability of newer and more exciting services.

Aspects of federation, data sharing and interaction between networks also rise in importance as this

happens.

This is not unusual. Recall Metcalfe’s law from Chapter 1: the interconnectedness of networks

contributes directly to their value. An application connected to a network of networks is accessible

to more users than one tied to a single lonely isolated one. Groups of users in an isolated setting

are still somewhat alone, though not necessarily lonely. Community is key. Enter the federation.

Also, many of the larger service providers typically tend to own multiple properties. Some

of these may be geographically dispersed, while others may be geographically close but built to

support different technologies. In the former case, the service provider might want to support more

efficiently the roaming of their subscribers from one of their networks to another. The objective is

to provide to the user in the visited network an experience as close as possible to the one the user

would get at home, within the limits of reason, by sharing whatever data are necessary between

their subsidiaries to make this feasible. In the latter case, they may want to hide network protocol

peculiarities from the application or services domains to enable a single application to operate

seamlessly across network types, and permit subscribers using differing underlying technologies to

have the same end-user experiences. As we have seen before, Parlay definitely supports that goal.

In fact, one might even argue that Parlay was conceived especially to meet these needs.

In this chapter, we study these and related issues. What makes Parlay a technology that can bridge

networks? How can Parlay gateways and applications straddle network boundaries and support the

notion of federated networking? How can end-users benefit, and how will this translate to benefits

for the service providers?

15.2 Some examples

We will try and illustrate the concept of seamless service operation by means of two examples that

it is hoped will help towards an improved appreciation of the value that federation, data sharing,

and interaction between networks can bring to subscribers.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

252 Parlay/OSA: From Standards to Reality

15.2.1 Example 1

Alexandra Darden traveled a lot on business. What she really liked about her service with Freedom

Wireless was that the services she subscribed to worked the same way when she was in France

as they did at home in England. She would connect to the WeatherHere application and it would

give her the local forecast. She would look up the nearest Italian restaurant or ATM machine or

directions to a local destination and things would always work seamlessly without a hitch. She

could even track the presence of her buddies in England and could chat with them via instant

messaging sessions with no trouble at all. She was truly impressed with how well the business

agreements between Freedom Wireless and their French service provider partner were working out.

They had a reciprocity agreement where the tariffs were distributed based on the average number of

subscribers transiting networks in each direction (computed over the past year), and so the charges

were almost the same as she had to pay for the service when she was in her home network.

15.2.2 Example 2

Jimmy Buffett enjoyed shopping these days. He would buy something from one online store and

get coupons that could be used in other stores (online or otherwise) that belonged to the same

federation. He wondered when the idea really took off. It seemed so natural it was hard to imagine

the practice was not as prevalent just a couple of years ago.

It had all started with inter-working agreements between network operators and a technology

called Parlay that everyone was talking about but no one seemed to understand very well. But

it did work wonders from an ‘average user on the road’ viewpoint. Service providers were in an

all-out war initially, trying to best each other to grab subscribers and revenue. But once things

settled down a bit, there was a notion of sharing, open, boundaryless, unrestrained freedom where

the subscriber could roam across regions and get their favorite services unhindered . . . and billions

of dollars of business was being done in the mobile commerce arena these days.

Groups of firms selling diverse products got together and formed federations with one or more

service providers, and together these parties all leveraged the wonders of Parlay, the open application

development environment, to sell to the vast addressable market of mobile cell-phone subscribers.

15.3 Federation: What is it? Why is it a Good Thing?

As we said before, the value of a network increases with the number of users and the number

of nodes it connects. A federation overlays business relationships that drive revenue atop a core

network and makes a large customer pool available to merchants (such as Internet-based vendors

like Amazon.com, and even ‘brick-and-mortar’ stores that provide an Internet portal); and it makes

these merchants accessible to end-users who want convenient, secure access to their products in a

seamless way. Services and applications can be easily and most naturally infused into this setting to

make the user experience very natural, very intuitive. And with this kind of added value, everybody

wins.

However, for such a model to be successful, several requirements need to be met:

1. Businesses involved must agree to a common set of privacy and security rules and not be anti-

competitive, for that would stifle co-operation and collaboration and fragment the nature of the

federation.

2. Data sharing, wherever possible, is encouraged, to promote the seamlessness of the end-user

experience while reducing ‘ownership’ related issues (admittedly, this would be difficult to do,

at least in the initial stages, for although a lot of data really belong to an end-user, not many

businesses would see it that way)

3. Business agreements that enable synergistic relationships to develop across the federation as a

whole are set up so growth in some areas fuels growth in others and so on.

Multi-Network Deployment Scenarios 253

4. The network, which provides the life-blood of the dynamic aspects of end-user interactions, is

actively leveraged, with the network operators being adequately recompensed for their contri-

butions towards making this vision a reality.

These are but some of the constraints that need to be satisfied for a truly beneficial federation to

exist. Now, although end-users may provide information to individual businesses as they go about

their transactions, centralization of critical information would ensure that Single Sign On (SSO) and

similar capabilities could be provided to make their experiences as effortless as possible without

compromising security or privacy constraints that are so important to the end-user view.

SSO allows an end-user to register and authenticate (i.e. log on) only once while entering

the federation of service providers and gaining seamless access to the applications of all service

providers belonging to the federation, as opposed to having to provide their credentials to each and

every individual application time and again.

For the remainder of this chapter ‘federation’ is defined as a multilateral affiliation of various

administrative domains (i.e. service provider domains) to create a community all trying to achieve a

common goal. Contracts or business agreements need to be in place between the domains, defining

the terms of the relationship.

As an example of federation and how it supports SSO, let us look at Vanessa, a Freedom Wireless

subscriber. Vanessa is a user of services from a federation to which Freedom Wireless belongs.

Other members of this federation include Renter’s World Rent-A-Car, Galaxy Coffee, and the

Walton Group of hotels. Now, all her accounts (where she has them) across these various distinct

corporate entities are linked together, along with her profiles and preferences with each vendor.

There is careful sharing of her information based on previously established business agreements

between the members of the federation. Vanessa benefits by having to sign into just one service

in the federation and then seamlessly accessing services from multiple vendors. Also, now she

no longer has to remember separate passwords for each vendor’s site. So, while logged on to her

Freedom Wireless service, Vanessa could access the online reservation system of the Walton in

Chicago to book a stay over the weekend and arrange for a Rent-A-Car convertible to be delivered

to the hotel for her to pick up, all while having provided her authentication credentials only once.

And a truly great federation would access Vanessa’s preference profile at Galaxy, and make sure

her favorite blend was available next to her in-room coffee machine.

Parlay promotes federation – consider deployments where other parties in a federation could

leverage telecommunication network hosted capabilities to provide value added services, for

instance. But the true power of federation is only realized when Parlay is coupled with other

standards such as those defined by the Liberty Alliance [Liberty] in this arena. In what follows, we

focus on how Parlay technology promotes federation at various levels. Details pertaining to Liberty

Alliance and other such standards are outside the scope of this text.

15.4 Models for Multi-Network Deployments of Parlay Gateways

Service providers may see the need to support multi-network deployments of Parlay gateways

for a variety of reasons. As also previously mentioned, a single corporation may own wireline

and wireless properties and may want to interconnect the services infrastructures for the two. . .Or

they may own exclusively wireless properties, each of which operates on a different technology

but where it appears service efficiencies may be derived through support for a common services

infrastructure. . . Or multiple different corporations may make agreements to share hosted service

capabilities in a carefully regulated way.

In each of these cases, Parlay provides a means for how this ‘sharing’ can happen and how it

may be controlled. The reader should note that Parlay merely functions as a facilitator for these

kinds of architectures and that some amount of roaming support is already built into many of the

underlying protocols that operate in the core telecommunications network behind the Parlay APIs.

254 Parlay/OSA: From Standards to Reality

For instance, you can call any phone in the world from any other phone in the world – you are not

bound by technological or network boundaries. The networks themselves are connected ‘at lower

levels’ to make this possible. Parlay support for federated architectures merely serves to provide

parallels from a services perspective.

Several distinct models exist for multi-network and multi-operator deployments of Parlay gate-

ways and include the following:

1. Federation of Frameworks: Frameworks from different networks each accept registration and

announcement requests from service capability servers (SCSs) in their local networks. The

registration databases are then shared across networks that have business agreements in place

between them. Thus the Frameworks from different networks are federated, share knowledge of

registered and announced services, and can make these discoverable to client applications that

connect with them regardless of network boundaries. Thus, a Framework in Operator A’s network

is able to broker accesses to SCSs registered and announced with Operator B’s Framework.

This is depicted in Figure 15.1. Service providers may define policies on which services are

shared with which networks and under what conditions (i.e. access may be closely regulated,

perhaps using policies).

2. Cross-Boundary Service Registration: In this model, Frameworks do not share data, but selected

services (meant to be shared across service provider network boundaries) are configured with

the addresses of Frameworks in other networks, and are permitted to register and announce

themselves with them. This way, these selected services are now visible to client applications in

other networks during discovery and may be selected for use in service sessions if the supported

capabilities match the selection criteria. Here too, policy enforcement may be used to regulate

the visibility of particular services at the network where discovery operations are performed.

This is depicted in Figure 15.2, where applications register both with local and remote Frame-

works. Subscriber data, as in the Federation of Frameworks scenario, may still be shared across

service provider boundaries.

In this model, SCS B service in Operator B’s network is provided with the addresses for

Frameworks in both Operator A and Operator B networks, and registers and announces itself

with both of them. Now, client applications talking to Frameworks in either network can discover
and use the service in keeping with the service agreements in place.

3. Application-level Federation: Applications connect to different Frameworks in two or more

totally disjoint networks and utilize service capabilities exposed by each network in a manner

that is totally transparent to the end-users.

This is best illustrated by means of an example. Alice is a Freedom Wireless subscriber, while

Bob is a customer of Utopia. However, both Alice and Bob use IMNow! for instant messaging.

The application seamlessly connects to the Frameworks in both the Freedom Wireless and Utopia

Network Elements

Services

Generalized Framework

Applications

Network Elements

Services

Generalized Framework

Applications

CapabilityCapabilityCapabilityCapability
CapabilityCapabilityCapabilityCapability

Framework
Component

Framework
Component

ApplicationApplicationApplication
ApplicationApplicationApplication

GMLC, HLR, MSC etc. GMLC, HLR, MSC etc.
Operator A Operator B

Figure 15.1 Federation of Frameworks

Multi-Network Deployment Scenarios 255

Network Elements

Services

Generalized Framework

Applications

Network Elements

Services

Generalized Framework

Applications

CapabilityCapabilityCapabilityCapability
CapabilityCapabilityCapabilityCapability

Framework
Component

Framework
Component

ApplicationApplicationApplication
ApplicationApplicationApplication

GMLC, HLR, MSC etc. GMLC, HLR, MSC etc.

Operator A Operator B

Figure 15.2 Cross-boundary Service Registration

networks (which may not have any business arrangements with each other) and is able to provide

Alice and Bob with the presence and availability information they need about each other as IM

buddies. We call this the ‘buddies across boundaries’ scenario.

Figure 15.3 illustrates Application-level Federation, a federated architecture through data shar-

ing at the application level. The databases in Figure 15.3 could represent data shared across

multiple replicas or instances of a single application (implemented that way for high availability

and redundancy reasons) or between multiple applications that share dynamic network context

information within a federation so this can be reused in different application contexts to provide

value-added services to end-users. Any of the other federation schemes (Federation of Frame-

works, Cross-boundary service registration, and the Proxy Manager model described below) can

be supported in conjunction with Application-level Federation.

4. Proxy-regulated ‘Window to the World’ Model: In Chapter 14 we discussed the Parlay Proxy

Manager (PPM) component that, among other things, enabled gateway vendors to provide higher

availability, transaction-level load balancing, and service proxy capabilities using a PPM com-

ponent that appeared to be an SCS to client applications and an application to the subtended

SCSs. This PPM element can also be used to open up selectively services to other networks

while limiting the exposure of individual leaf SCSs to external Frameworks. Hence the term

‘Window to the World’, since only the proxy is registered and announced with external Frame-

works and the leaf SCSs themselves are not. This limits exposure or dissemination of network

service capabilities and topology related information outside the network, while providing all

the flexibility naturally inherent in the PPM model.

Network Elements

Services

Generalized Framework

Applications

Network Elements

Services

Generalized Framework

Applications

CapabilityCapabilityCapabilityCapability
CapabilityCapabilityCapabilityCapability

Framework
Component

Framework
Component

ApplicationApplicationApplication
ApplicationApplicationApplication

GMLC, HLR, MSC etc. GMLC, HLR, MSC etc.

Operator A Operator B

Figure 15.3 Application-level Federation

256 Parlay/OSA: From Standards to Reality

Network Elements

Services

Generalized Framework

Applications

Network Elements

Services

Generalized Framework

Applications

CapabilityCapabilityCapabilityCapability
CapabilityCapabilityCapabilityCapability

Framework
Component

Framework
Component

ApplicationApplicationApplication
ApplicationApplicationAppliction

GMLC, HLR, MSC etc. GMLC, HLR, MSC etc.

Operator A Operator B

P
P
M

P
P
M

Figure 15.4 Proxy Manager Federation

Figure 15.4 presents the Proxy Manager model for federation, where the PPM serves to expose

selectively service capabilities to external Operator networks and applications.

It must be emphasized that these are but examples of models that can be implemented to support

multi-operator Parlay gateway deployments. In some cases, multiple models may be applied con-

currently, for different services, or for inter-connection with different service provider networks,

or altogether different feasible models may be designed to meet most optimally the needs of the

business agreement between two collaborating networks.

The models described above have far-reaching implications for gateway providers, service

providers, application providers and subscribers or end-users:

• Gateway providers need to realize that the Parlay series of standards do not constrain an imple-

mentation to within the strict boundaries of a service provider network and that there are

opportunities to build standards-compliant solutions that promote and support federation across

operator networks.

• Service providers have several network architecture options to choose from, can leverage Parlay-

based solutions to their advantage, and can further increase revenues by leveraging federation

capabilities.

• Application providers can, through support for models such as those providing for federation

support in the application layer (option 3 above), drive up their own revenues while providing

better end-user experiences.

• End-users probably have the most to gain: seamless access to services from within the federation;

support for single or reduced sign-on flows; greater security since less personal information

is needed to transit the network; perhaps cheaper services overall since the reuse of services

data and infrastructure across the federation drives costs down for everybody, etc. Through this

process, the cell-phone or mobile device also grows to a greater importance, also in keeping with

Metcalfe’s law.

15.5 Mobile Virtual Network Operator Scenarios

In Chapter 2, a passing reference was made to Mobile Virtual Network Operators or MVNOs, and

how they were different from the more traditional service providers. MVNOs function as resellers

of services hosted by service providers and thus effectively increase the subscriber base that might

end up utilizing the network capabilities and infrastructure from any given service provider network.

MVNOs typically do not host any network infrastructure other than perhaps a portal through which

the services are made available. MVNO architectures fit in nicely with the Parlay model and in this

section we will look at these in more detail.

Multi-Network Deployment Scenarios 257

The Parlay Framework is the entity that authenticates client applications and ‘secures the perime-
ter’ so to speak for access to network hosted service enablers or SCSs. It may informally be referred
to also as a ‘traffic cop’ since it regulates service session distribution among clones of a given
service.

A reseller (or MVNO) could host just the Framework and broker access to services hosted by
the service provider if the SCSs from within the service provider network were registered with the
Framework in the MVNO domain per business agreements between the MVNO and the service
provider. In this way, the MVNO hosts a minimal amount of service infrastructure and is able to
resell access to the service provider network capabilities (if the MVNO hosts both the Framework
and SCSs in the MVNO Parlay gateway) or just the service provider SCSs (if the MVNO Parlay
gateway only hosts the Parlay Framework but no SCSs) to client applications from third parties.

Client applications can now negotiate with the MVNO (that resells services) for use of particular
services and the MVNO could then permit these clients to discover and select services for SCSs
(from one or more subtended underlying service provider networks). Once service selection is
complete, and the service agreement signed by the client and MVNO Framework, the MVNO
Framework could invoke the createServiceManager() method on the SILM of the selected SCS
located within the service provider domain. Technically speaking, this appears exactly the same
as option 2 from the previous section (Cross-Boundary Service Registration), where the service
provider hosting the MVNO Framework does not support any services or SCSs within its own
network.

In such a scenario, the access session between the client and the Framework would be to
the MVNO domain, while the actual service session itself would be directly established between
the client application and the SCS in the service provider domain. Thus, ‘the Parlay triangle’ as
described in Chapter 5, which normally transits just two domains, now potentially covers three, but
the overall operational model itself remains virtually unchanged.

15.6 Revenue Settlement between Federated Entities

All businesses (except perhaps non-profit organizations) are founded with the objective of making
money and delivering value to their customers and shareholders (if the company is publicly held).
Federation, we have seen from previous sections, does help significantly to drive up business and
sales for members of the collective. However, what does the service provider gain in all this? After
all, dynamic user data may be queried by one member of the federation and then shared with others.
Does this not result in a loss of service provider revenue? And what about MVNO situations?

Appropriate business arrangements should be put in place to address this scenario. More value can
be obtained per service mediation gateway transaction in a federation scenario than in other cases
with stand-alone applications. The data sharing arrangements must factor in not just the number of
transactions but also the value of the data to the collective, to ensure that service providers grow
their revenue in proportion to the growth of business across the federated collective.

Similarly, reciprocal agreements between multiple service providers that share services using
either the Federated Framework or Cross-Boundary Service Registration or Proxy Manager models
must be supported so that as business grows, and service access becomes truly seamless between
the various interconnected networks, it translates to a win-win scenario for all the concerned parties
(including the end-users).

15.7 Summary

As Parlay technology finds greater market penetration and more widespread acceptance and deploy-
ment, service providers who have already individually deployed Parlay gateways and supporting
infrastructure will want to find ways of exploiting partnership agreements with each other or part-
nering with businesses to accelerate further revenue generation. Federation acts as a simple but
powerful enabler to support such scenarios. In this chapter, we have explored architectures in
support of federated deployment of Parlay gateways.

16

Parlay/OSA and XML-based
Technologies

16.1 Introduction

One of the objectives of Parlay is to enable large communities of practitioners to design and build

value-added business solutions in a complex telecommunication network. The idea here is to attract

developers with a knack for creating innovative applications, without necessarily being privy to

the often arcane and privileged information on complicated call models and extensive signaling

protocols. Even though thus far in the book we have shown that Parlay has very successfully lowered

the threshold for application development and deployment, through abstraction and mediation, we

owe it to ourselves to recognize that there may still be parts of the developer community who find

the remaining complexity too daunting. There are two ways to combat this and pull this remaining

contingent of developers onto the Parlay bandwagon; even higher levels of abstraction and realizing

the Parlay technology using the tools of their trade.

This chapter deals with Parlay and the Web Services technology realization of the Parlay inter-

faces. Two efforts can be distinguished, each with their own objective, but related in their use of

XML-based technologies. These two efforts are called Parlay WSDL and Parlay X. Both are aimed

at realizing the Parlay concepts in the tools and technologies more familiar to the score of Internet

savvy application developers. We shall explain each in detail and point out how they relate and

where they differ.

In order to be able to distinguish between these newer Parlay efforts and the Parlay API specifica-

tions as covered thus far in this book, we will refer to the latter as the existing Parlay interfaces, or

simply Parlay, whereas the newer initiatives will always be identified by the additional qualification,

i.e. Parlay X and Parlay WSDL.

As with any technology area, Web Services comes with its own vocabulary of acronyms and this

acronym soup gets real thick real soon. So before we get to the good stuff, we need to introduce

a number of terms and technologies.

16.2 The Acronym Soup

This section is intended to provide the reader with sufficient understanding of the Web Services

lexicon required to fully appreciate the discussion of Parlay WSDL and Parlay X. It is specifically

not the goal of this section to be a tutorial in this vast and exiting new technology area. Interested

readers are referred to the various available excellent textbooks for a more complete introduction

and coverage of these individual topics. [Newcomer 2002] is provided here as a good example.

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

260 Parlay/OSA: From Standards to Reality

16.2.1 A Brief Recap

Some of the terms and acronyms have already been introduced, mainly in Chapter 4, but will be

reiterated here briefly for the benefit of the reader.

• UML – The Unified Modeling Language serves as the formal analysis model used to define the

Parlay APIs. UML consists of a collection of modeling techniques including class diagrams,

sequence diagrams, and state transition diagrams. The UML model for Parlay is defined in a

technology independent way such that the various technology realizations can all be generated

and derived from this common source.

• IDL – The Interface Definition Language is used to specify the CORBA realization of the Parlay

APIs and is automatically generated from the Parlay UML model, using standardized language

mapping rules. IDL is often prefixed with the name of the body that standardized it, i.e. OMG

IDL.

• OMG – The Object Management Group is an industry consortium, which has published, among

other technologies, the specifications for UML, CORBA and IDL.

• CORBA – The Common Object Request Broker Architecture is an Object-Oriented middleware

technology for distributed computing. CORBA uses IDL to define the interfaces between remote

objects.

16.2.2 The X-files

The aim of this section is to aid the reader in navigating through the new and vast vocabulary in

use in the Web Services field.

• XML – The eXtentable Markup Language is a textual syntax, or markup language, designed to

describe data, using tags you can define yourself. In order to describe the data, XML makes use

of either a Document Type Definition (DTD) or XML Schema Definition (XSD).

• DTD – A Document Type Definition is a template describing the structure of XML documents.

Since an XML document is just a text file, a DTD can be used to validate whether an XML

document is constructed correctly, made up of allowed elements and using the defined tags.

• XSD – The XML Schema Definition defines XML Schema, which is an XML based alternative

to Document Type Definitions (DTD), and describes the structure of an XML document. XSD

is in itself an XML document.

• XMI – XML Metadata Interchange defines rules for the generation of XML DTD representation

from formal models.

• SOAP – The Simple Object Access Protocol is an XML-based communication protocol for

exchanging messages between applications.

• UDDI – Registry where Web Service descriptions and definitions can be registered by service

providers and discovered by businesses or end-users.

• WSDL – The Web Services Definition Language is an XSD-based language specifically designed

to describe Web Services.

• Web Service – A piece of software, its interfaces described in WSDL, which can be accessed

over the Internet, using SOAP.

Now that we have recapitulated some of the acronyms introduced earlier in this book, as well

as providing an initial understanding of some of the Web Services lingo, we are all geared up to

sink our teeth into the main subject of this chapter, i.e. Parlay and XML-based technologies.

16.3 Parlay WSDL

Parlay WSDL is the term that we choose to assign to the WSDL technology realization of the

Parlay interfaces. The reader will recall that this is the third Parlay technology realization, next to

Parlay/OSA and XML-based Technologies 261

the CORBA technology realization (using OMG IDL) and the Java technology realization (using

J2EE and J2SE).

The Parlay WSDL technology realization was proposed in September 2001 in recognition of the

rising popularity of SOAP and XML as an alternative distribution mechanism to the CORBA/IDL

approach. This effort can be seen in the support of the high level objective of Parlay to be inde-

pendent of the transport technology or distribution mechanism. The approach, as introduced earlier

in Chapter 4, can be summarized as defining an XML definition of the Parlay methods and data

types, to allow for interoperability between elements in the Parlay architecture that are using an

XML-based RPC protocol such as SOAP or XML-RPC as transport mechanism.

Since this body of work is based on UML-to-WSDL language mappings, we speak of WSDL

technology realization, rather than Web Services-enabling Parlay. This is an important distinction

with the Parlay X initiative, as described in the next section. As with all technology realizations

supported by Parlay, the WSDL technology realization is functionally equivalent with its IDL and

Java (J2EE) counterparts. This includes the support of for instance the asynchronous communication

patterns and the associated callbacks, and the use of (object- and interface-) references. We shall

come back to this later, when assessing the values of Parlay WSDL and discussing the most recent

developments in standards.

16.3.1 The UML-to-WSDL Language Mapping

This section provides some more information on the UML-to-WSDL language mapping rules

developed by Parlay and used for the automatic generation of the Parlay WSDL definitions.

The Parlay UML-to-WSDL language mapping rules are based on the OMG XMI (XML Metadata

Interchange) specification [OMG 2002a], which defines rules for the generation of XML DTD

representation from formal models, including analysis models like UML. XMI defines rules for

the generation of XML DTDs from a formal object model and rules for the generation of XML

documents from the objects themselves (i.e. the instances of that formal object model). The OMG

has defined an extension to XMI [OMG 2003a], which adds rules for the generation of XML

Schema (XSD). Parlay in turn has extended these rules to generate WSDL, which is based on

XSD.

In general, data type definitions, like ‘constant’ or ‘enumeration’ are mapped to XSD constructs,

whereas API components such as ‘interface’, ‘method’, or ‘exception’ are mapped to WSDL con-

structs. For example, a UML Structure is mapped to an XSD sequence element, whereas a UML

interface class is mapped to a WSDL portType.

Formalizing these UML-to-WSDL language mapping rules allows the automatic generation of the

WSDL definition files for every Parlay interface once a new version of the standards specification

is available and the UML model is updated. Semantic and functional equivalence between the

technology realizations, which are all generated automatically from the UML model based on

formalized language mappings, is thereby guaranteed.

The UML-to-WSDL language mapping rules are contained in the Parlay WSDL Style

Guide [Parlay 2002a]. The WSDL that is produced using the best practices, guidelines, and mapping

rules from this Parlay WSDL Style Guide is conformant to the Basic Profile published by the Web

Services Interoperability organization [WSI 2004]. This ensures that the Parlay X Web Services are

consistent with the tools available on the market and can be deployed on most commercial Web

Services platforms.

The WSDL interface definition files are added as a single separate archive file to the archive

for each part of the 3G TS 29.198 series. For instance, the WSDL technology realization for the

Multiparty Call Control SCF in 3GPP Release 5, dated September 2004 [3GPP 2004i], can be

found as archive 2919804-03V580WSDL.zip in the archive for the specification itself (28198-

04-3-580.zip). The WSDL archive in turn contains a separate WSDL file for the data definitions

(mpcc data.wsdl) and one for the interfaces themselves (mpcc interfaces.wsdl).

262 Parlay/OSA: From Standards to Reality

16.3.2 Parlay WSDL in Relation to Parlay Web Services

As mentioned before, Parlay WSDL is not entirely the same as Web Services-enabling Parlay. The

Parlay WSDL technology realizations merely provide a realization of Parlay in a definition language,

which is used in Web Services deployments. This is where the Parlay Web Services working group

comes in. The Parlay Web Services working group does not publish any specifications but rather has

produced a number of white papers outlining how Parlay Web Services interfaces, such as Parlay

WSDL, are deployed in a Web Services environment. Specifically the Application Deployment

Infrastructure white paper from Parlay covers a number of deployment models for the registration,

discovery, and use of Parlay X Web Services [Parlay 2002b].

Any Parlay Web Services environment requires the presence of a Parlay Web Services Gateway.

This is a new entity, implementing a Web Services interface, for instance Parlay WSDL1. The

Parlay Web Services Gateway may be realized either as an integrated part of the Parlay Gateway

(Figure 16.1), or as a separate proxy element (Figure 16.2).

When acting as a proxy element, the Parlay Web Services gateway will translate Parlay WSDL

requests to the Parlay technology realization in use by the Parlay Gateway and hence act as

Parlay application towards the Parlay Gateway. As explained before in Chapter 9 this is completely

transparent to the Parlay WSDL Client Application (as well as to the Parlay Gateway), and hence

for reasons of brevity here we will only cover the integrated deployment

The first deployment scenario covered here in Figure 16.3 is deployable today with published

Parlay and Web Services technologies to date and is applicable in both trusted as well as untrusted

domains. What follows is a brief description of an end-to-end scenario, from the publish phase

until the service usage, involving a Parlay Web Services Gateway.

As a first step the Parlay Web Services Gateway publishes itself in the UDDI registry to make

itself available for discovery by a Parlay application: that is, it ensures it can be found. Subsequently,

Web Service
(Application)

Parlay Web Services Gateway

Network Resource

Network Resource
Web Service Interface Network Protocols

UDDI
Registry

Figure 16.1 Parlay Web Services Gateway – Integrated deployment

Web Service
(Application)

Parlay Web
Services Gateway

Parlay Gateway

Network Resource

Network Resource
Web Service Interface Parlay Interface Network Protocols

UDDI
Registry

Figure 16.2 Parlay Web Services Gateway – Proxy deployment

1 In later sections we will see that Parlay X Web Services are applicable here as well.

Parlay/OSA and XML-based Technologies 263

UDDI
Registry

Parlay Web Services Gateway

Network Resource

Network Resource
Parlay WSDL Service Interface

Parlay WSDL Framework Interface

Parlay Service Logic

Parlay Framework Logic

Web Service
(Application)

1
2

3

4

5

Figure 16.3 Parlay Web Services Gateway – Combined deployment

in step 2, the Parlay Web Services application consults the UDDI registry and finds one or more

service providers. The application then selects a specific service provider that supports a Parlay Web

Services Gateway deployment. The application will then enter the ‘bind’ step (step 3), where the

application will perform the Parlay Framework handshake, through its Parlay WSDL realization, for

authentication, authorization and the signing of a Service Level Agreement. Once a contract is in

place between the application and the service provider operating the Parlay Web Services Gateway,

the application can in step 4 perform the processes of service discovery and selection. The Parlay

WSDL service interfaces implemented on the Parlay Web Services Gateway are available for this

process. Step 5 can now take place, which is the usage of the Parlay service capabilities by the

Web Service application for service execution.

In the deployment scenario above, the Gateway publishes itself, and subsequently the authenti-

cation with the service provider as well as discovery of available services takes place through the

Parlay Framework mechanisms. Hence the deployment scenario above is applicable for untrusted,

third party access. The following deployment scenario, depicted in Figure 16.4, makes use of Web

Services technologies only, and hence the controlled access to network capabilities provided through

the Parlay Framework mechanisms is no longer available.

The first step (step 0) in this untrusted deployment scenario is the publication of the Parlay

WSDL technology realizations in the UDDI registry within the Parlay namespace. In step 1 the

service provider now not only publishes the availability of its Parlay Web Services Gateway but

also all its Parlay WSDL Services, which comply to the WSDL realizations published before in step

0. The application can now simultaneously find in step 2 both the Parlay Web Services Gateway

as well as all Parlay WSDL Service interfaces it supports. At this stage, the application is all set to

commence using the Parlay network capabilities in step 4. In order to still provide some form of

UDDI
Registry

Parlay Web Services Gateway

Network Resource

Network ResourceParlay WSDL Service Interface Parlay Service Logic

Web Service
(Application)

1
2

3

WSDL
Files

0

4

Figure 16.4 Parlay Web Services Gateway – Web Services deployment

264 Parlay/OSA: From Standards to Reality

secure communication between the application and the Parlay Web Services Gateway (recall that

no Parlay Framework handshake has taken place), a simple web log-on or some more involved

means of authentication may be required.

16.3.3 Assessment of Parlay WSDL, and Recent Developments

We have seen that Parlay WSDL is a true technology realization of the Parlay APIs, as defined in

the Parlay UML model. Any design construct or communication pattern, as laid down in the UML,

is ported as is to the specific language used for a given realization. Two examples we have already

mentioned are the support for the asynchronous communication patterns and associated callbacks,

and the use of object and interface references. For this reason we have called Parlay WSDL

a WSDL technology realization rather than a Web Services technology realization. Chapter 17,

which is included as advanced reading at [Parlay@Wiley], will provide more insight in the Web

Services paradigm and its applicability in the telecommunications domain. Here, we suffice by

observing that a realization of a given technology using only the language of another technology

may possibly yield less than optimal results. After all, a communication paradigm is more than

just its interface definition language. For a more detailed analysis of the issues with the WSDL

realization of Parlay, the reader is referred to [Lagerberg 2002].

The Parlay WSDL realization is an elegant and non-intrusive means to deploy already supported

Parlay capabilities in a Web Services infrastructure, as depicted for instance in Figure 16.3. Opera-

tors wishing to expose their already deployed Parlay assets as Web Services, or wishing to integrate

their Parlay assets with a larger Web Services based service environment, may successfully utilize

the Parlay WSDL technology realization.

Since the introduction of Parlay WSDL, however, significant changes have occurred in Web

Services technologies as that technology matured and gained a foothold in the mainstream of service

paradigms. As a result, the understanding of how best to apply Web Services as a realization of

Parlay has changed accordingly. For this reason, the Parlay WSDL realization is not continued

in later versions of the Parlay Release 5 specification set. As the technology further matures,

future standards activities may provide a replacement for the Parlay WSDL realization, reflective

of the improved understanding and increased experience with the Web Services technology and its

expected usage.

16.4 Parlay X

The Parlay X Working Group was created in September of 2001. The requirement for Parlay X was

born out of the desire to define even simpler interfaces (or indeed a more natural mapping to Web

Services technology), targeted towards application developers without even a basic understanding

of network signaling protocols, network state machines, etc. These include for instance applications

from the financial domain (e.g. banking, insurance), content creation domain (e.g. music, motion

pictures), retail (e.g. online stores), etc. We have seen that, even though for instance the Parlay

Call Control interfaces make it simpler for application developers to build call related applications

without specific signaling protocol expertise, some state behavior is still involved. Also, for instance,

the asynchronous subscribe-notify pattern requires state and is a communications pattern, though

common in telecommunications, that is not intuitive to most application developers. Applications

in which the communications component is only a small part merely require primitives like ‘make

a call’ or ‘give me a location’. For such applications the existing Parlay Call Control API and the

Parlay User Location API may be too heavyweight in terms of functionality and complexity. The

Parlay X initiative in part builds on the success of scripting language based interfaces to service

capabilities. Some examples include SIP CPL [RFC 3880], and VoiceXML [W3C 2004]. The

reader is referred to [Bakker 2002] for an overview of the evolution of scripting and XML-based

technologies in service creation.

Parlay/OSA and XML-based Technologies 265

The objective of Parlay X is to define a set of powerful and imaginative building blocks, defined

at a chosen level of simplicity and abstraction, so that developers and the IT community can generate

new, innovative applications without the long learning curve typically involved with ‘old-school’

telecommunications protocols. The basic idea is to define each Parlay X building block as an

abstraction of the service capabilities exposed through the existing Parlay interfaces. The Parlay X

building blocks are specifically aimed to fuel the development of innovative third party applications,

not necessarily by developers skilled in the area of telecommunications, but more by the heretofore

untapped vast pool of developers in the IT community. Simplicity of the interfaces, coupled to the

use of tools and technologies familiar to this particular audience, is of key significance to the success

of the Parlay X initiative. The motivation for Parlay X is also described in [Lofthouse 2004].

16.4.1 Parlay X in Relation to Parlay

The Parlay X Web Services are designed from the ground up as Web Services, rather than a Web

Services realization of a technology neutral interface specification.

The Parlay X effort builds on some of the design principles of the existing Parlay interfaces

but differs in other areas. This section outlines how the Parlay X solution is differentiated from

the Parlay solution. Whereas the existing Parlay interfaces, defined for the various SCFs, are

homogeneous in terms of their capabilities (e.g. Presence is separate from Location), the Parlay

X building blocks may be heterogeneous if so desired (e.g. Presence may be combined with

Location). Another desired feature of the Parlay X interfaces is to design each interaction as a

simple synchronous message exchange, e.g. the request-response pattern, and not use asynchronous

exchange patterns, or triggered exchange patterns. The underlying thought is to adhere to the KISS-

principle, i.e. keep it simple stupid. Other Parlay design principles, for instance the principle that

the SCFs are defined application independent, are maintained. In fact, the Parlay X building blocks

will attempt to address a wider application range, rather than trying to achieve feature richness

and high functionality. This is referred to as the ‘80/20’ rule, i.e. compared to the existing Parlay

interfaces the Parlay X building blocks are designed to address 80% of the application space while

defining only 20% of the interface functionality. The challenge here is to minimize the complexity

of the API while not needlessly reducing the addressable application space. Note that the ‘80/20’

rule serves more as a guiding principle than as a strict, true rule.

Although it is the strong desire to define each Parlay X building block as an abstraction of the

service capabilities exposed through the existing Parlay interfaces, in order to allow for evolutionary

solutions as well as preventing parallel competing approaches, some exceptions are present in the

Parlay X specifications. In those cases where there is a compelling use case to define extended

capabilities, Parlay X has allowed such instances to occur (Figure 16.5).

16.4.2 Parlay X in Relation to Parlay Web Services

Parlay X defines Web Services, that is, service capabilities deployable in a Web Services envi-

ronment. Parlay X does not define that environment or specify the means by which to deploy

these service capabilities in such an environment. Issues like security for Parlay X Web Services,

registration and discovery of Parlay X Web Services are addressed by the Parlay Web Services

activity.

The deployment infrastructure for Web Services technologies only (i.e. not making use of the

Parlay Framework capabilities) as outlined above in the description of the relation between Parlay

WSDL and Parlay Web Services is equally applicable to Parlay X, where the Web Services interface

implemented on the Parlay Web Services Gateway is the Parlay X interface, rather than the Parlay

WSDL interface. This deployment scenario is described in detail in [Parlay 2002c] and summarized

diagrammatically below.

266 Parlay/OSA: From Standards to Reality

Parlay Gateway

Parlay Application Parlay X Gateway

Parlay X Application

Network Capabilities

Parlay X interface

Parlay APIs

Network Protocols

Figure 16.5 Parlay X in relation to Parlay

16.4.3 The Parlay X Building Blocks

The first public Parlay X Web Services specification, v1.0, was published as part of Parlay version

4.0, in May 2003 [Parlay 2003]. This specification contains the interface definition of eight Parlay

X Web Services, which are briefly introduced below.

16.4.3.1 Terminal Location

The Terminal Location Parlay X Web Service provides applications with the means to request the

location for a given end-user’s terminal device. The Web Service operation getLocation returns the

location in terms of a latitude-longitude pair, a time stamp, and an indication of location accuracy2.

The Terminal Location Parlay X Web Service is a good example of how the 80/20 design

principle has been applied successfully. Whereas the User Location API’s support for instance

triggered reports, and periodic reports, as well as location to be returned in all sorts of formats3, the

Parlay X Web Service interface simply supports a synchronous request for the lat-long coordinates

for a given user. This serves the purpose of most non-telecommunication applications requiring

location information as part of the overall service they provide.

16.4.3.2 User Status

The User Status Parlay X Web Service is intended for application scenarios that require information

on the status of an end-user terminal device, e.g. ‘busy’ or ‘offline’. A single operation is supported

on this Web Service interface, getUserStatus. There are not many differences when it comes to

2 The accuracy can be requested and is returned in one of three values Low, Medium, High. The Parlay

X specification does not specify exactly, for instance, Medium accuracy. It is therefore required to make

proprietary arrangements between an application provider and a Parlay X Gateway operator to agree upon the

value ranges for these accuracy indications.
3 The formats include network location information (e.g. cell ID, VLR number), geodetic position (e.g. a

slice of an elliptic sector), and geographical coordinates (e.g. latitude-longitude pair).

Parlay/OSA and XML-based Technologies 267

the equivalent functionality in the User Status API, other than the fact that the User Status API

provides an asynchronous means for obtaining the status, and that the status request can be issued

for a set of users rather than just a single user.

However the User Status API provides more functionality above and beyond the single status

request, e.g. User Status Parlay X Web Service does not support triggered status requests. Again,

the 80/20 design principle was put to good use for this Parlay X Web Service.

16.4.3.3 Third Party Call

The Third Party Call Parlay X Web Service is used to support application-initiated calls from a

Web Service environment. Using the Parlay Call Control API to support an application-initiated

call would require the application to request the call manager object on the gateway to instantiate a

call object and request routes (or call legs) to be set up to both parties in the call. Each request for

a route to be set up can be accompanied with a variety of additional requests, such as requesting

reports on the call’s progress, including for instance ‘alerting’. This pretty much reflects how such

functionality would be realized in basic call processing in the network.

The Third Party Call Parlay X Web Service however simply provides a single request for a call

to be set up between two identified parties, makeACall. In addition, operations are provided to end

a call (endCall), or to cancel a previous request for a call to be set up (cancelCallRequest).

A fourth operation is supported by the Third Party Call Parlay X Web Service to allow an

application to retrieve information regarding an application-initiated call set up previously on its

behalf, getCallInformation. The operation returns information on the state of the call in progress

(e.g. ‘connected’ or ‘terminated’) as well as a call termination cause, when applicable. One could

argue that simple use cases for application-initiated calls would settle for knowing whether a call

ended normally, or abnormally, or even just for whether it ended or not. However, the termination

causes supported for this Parlay X Web Service include ‘no answer’, ‘busy’, and ‘not reachable’

for both parties, as well as ‘hang-up’ and ‘aborted’. The use cases for this operation do require

more than just superficial knowledge of basic call processing in telephony networks, though not as

much as when using the Parlay Call Control APIs.

16.4.3.4 Network-Initiated Third Party Call

The Parlay X Web Service for Network-Initiated Third Party Call provides Web Service applications

with the means to control and influence the progress of calls initiated by subscribers in the network.

Of course if you wish to exercise control over a call and its progress in the network, you would have

to have some idea of the stages a call typically goes through during its lifetime. Some knowledge of

state behavior and service control protocols seems essential to know where you can interrupt in the

flow and what you are allowed to do when the flow is interrupted. This makes Network-Initiated

Third Party Call both an interesting as well as a challenging candidate for realization as Parlay X

Web Service.

Service control in communication networks is typically managed by using event driven state

machines (see also Appendix A on Call Models [Parlay@Wiley]). Certain events are only valid in

certain stages of the call and some events may cause a transition from one state to the next. The

Call Control APIs provide applications with the means to control and influence the progress of a

call in the network by providing an application view of these state machines. In order to be notified

of certain events, the application would have to register for them.

The Parlay X effort has addressed the issue of state and asynchronous communication by intro-

ducing atomic stateless operations that provide a synchronous response to events from the network.

For instance, when a subscriber places a call to another subscriber who is already engaged in a

call, the Parlay X gateway will ask the application what to do using the operation handleBusy.

The action recommended by the application is provided in the synchronous return of this operation.

268 Parlay/OSA: From Standards to Reality

Similar operations are available for the ‘not reachable’, ‘no answer’, and ‘off hook’ network events,

and for calls initiated to a specific destination number.

The model described above does present Web Service applications with an easy means to perform

service control on calls originated in the network, without requiring an in-depth understanding of

the service control mechanisms. Of course, application subscription to these network events still

need to take place, however, this is left out of the scope of Parlay X, to be dealt with through

offline means. So in a sense the asynchronous nature of this service control mechanism is made to

fit a synchronous model by reducing the scope to the synchronous requests for action.

16.4.3.5 Payment

The Payment Parlay X Web Service is spread over four packages and supports Web Service inter-

faces for both direct as well as reserved amount charging, and both direct as well as reserved

volume charging.

The Amount Charging package provides operations for crediting and debiting an account associ-

ated with an end-user. The Volume Charging package provides similar functionality but for volumes

rather than amounts4. The Reserved Amount Charging package provides operations for amount

charging where a reservation is required, including reserving an amount, charging the reserva-

tion, and releasing the reservation. The Reserved Volume Charging provides similar functionality,

but again for volumes rather than amounts. Both volume-based packages support one additional

operation to convert volumes to amounts.

The functionality supported by the Payment Parlay X Web Service is rather involved and may

be perceived as unbalanced when compared to the other Parlay X Web Services. We believe the

statement that the 80/20 design principle was applied to Payment with less rigor to be a valid

point of critique. As a result of this the Payment Parlay X Web Service package approaches the

functionality provided by the Web Services technology realization of the Parlay Content Based

Charging API to the extent that differentiation between the two is less apparent. On the other hand

one could argue that any service architecture that does not provide a mature and fully functional

charging solution will be a less likely candidate for commercial success and large market uptake.

In addition, charging may be considered less telecommunication specific than, for instance, call

control, and hence an understanding of its principles and functionality is more widespread.

Compared to the Parlay Content Based Charging API, the Payment Parlay X Web Service has

dropped support for sequence management using request numbering and omitted the reservation

lifetime management. Also, there is no support for unit charging in the Payment Parlay X Web

Service.

16.4.3.6 Account Management

The Account Management Parlay X Web Service provides an application with the ability to manage

the account of a pre-paid subscriber. Although the Account Management Parlay X Web Service

and the Parlay Account management API share the same name, there is a difference in approach.

Whereas the existing Parlay feature supports solely management functionality for an end-user

account, the Parlay X version provides application access to the account in addition to the manage-

ment capabilities. Furthermore, the management functionality of the existing Parlay API is intended

for use by the network operator whereas the Parlay X Web Service addresses the third party domain.

For this reason, the concept of an end-user PIN is added to the Parlay X Web Service.

Three operations are supported in the management category of functionality, i.e. the ability to

request the current balance of an end-user’s account (getBalance), the ability to request the expiry

4 The Parlay X specification does not specify what types of volumes are supported (e.g. number of bytes

transmitted), and hence these need to be negotiated between the application provider and the Parlay X Gateway

operator via some offline means.

Parlay/OSA and XML-based Technologies 269

date of an end-user’s account (getCreditExpiryDate), and the ability to request the transaction

history of an end-user’s account (getHistory).

The direct operations supported for the end-user’s account in the Account Management Parlay X

Web Service are the ability to update the balance using a voucher (voucherUpdate) and the ability

to top up the balance directly (balanceUpdate).

A part of the simplification with respect to the existing Parlay API for Account Management is

obtained through a reduction of the complexity of the data types involved.

16.4.3.7 SMS

The SMS Parlay X Web Service provides the application with the means to send and receive

SMS messages. Three packages are supported: the Send SMS API, the SMS Notification API,

and the Receive SMS API. Whereas in the existing Parlay APIs, generalized messaging and user

interaction mechanisms can be used to achieve the same functionality, the SMS Parlay X Web

Service is specifically designed for the SMS service. Dedicated operations are supported for the

sending of an SMS message (sendSms), the sending of an SMS ring tone (sendSmsRingtone) and

the sending of an SMS logo (sendSmsLogo). Each of these three operations implicitly requests a

delivery status for the sent message. In the absence of support for asynchronous communication

patterns, an application has to poll explicitly for the SMS delivery status. These operations are

supported in the Send SMS package.

SMS messages that are delivered to the message store for a given subscriber can be retrieved

from that store using the operation getReceivedSms. This operation is supported in the Receive

SMS API package.

The application is notified of the availability of a received message for a given subscriber at

the message store by the operation notifySmsReception. As this is a synchronous operation, this

Web Service needs to be implemented at the application in order for the Parlay X Gateway to

be able to invoke this operation. Supporting Web Services at the application has heretofore been

avoided in Parlay X as it introduces a whole suite of complexities for the application developer.

The omission of asynchronous communication patterns so far is partly a result of attempting to

avoid this additional complexity. The inclusion of the SMS Notification API can be interpreted as

straying from the design principles for Parlay X.

So for SMS we see that the details of the underlying messaging technology, which is a store-

and-forward mechanism, cannot be shielded from the application. The delivery status report for

a sent message and the availability notification of a received message are typical examples of

asynchronous events inherent to the store-and-forward mechanism for SMS.

16.4.3.8 Multimedia Message

Whereas the SMS Parlay X Web Service was specifically designed for a single messaging technol-

ogy, i.e. SMS, the Multimedia Message Parlay X Web Services is intended to be applicable to a

multitude of messaging technologies. Examples include MMS, EMS, and also SMS.

The Multimedia Messaging Parlay X Web Service also consists of three packages: the Send

Message API, the Message Notification API, and the Receive Message API.

As opposed to the Send package in the SMS Parlay X Web Service, here only a single sendMes-

sage operation is supported. The content, that is the actual message, is sent as a SOAP-Attachment

[W3C 2000], encoded as either MIME [RFC 2045] or DIME [Nielsen 2002]. The sendMessage

operation of the Multimedia Parlay X Web Service can also be used to send an SMS message, and

hence we here have two ways of achieving the same functionality.

The Receive Message API consists of three operations. The application has the ability to retrieve

messages from the message store individually (getMessage), in a bulk (getReceivedMessages), or

using URIs that point to specific message parts of a multipart message (getMessageURIs).

270 Parlay/OSA: From Standards to Reality

Also, similar to SMS, the MultimediaMessage Parlay X Web Service supports a Message Noti-

fication package, containing a notifyMessageReception operation. Again, in order to support this

package, a Web Service needs to be implemented at the application side.

16.4.4 Assessment of Parlay X, and Recent Developments

The Parlay X effort has been initiated to address the requirements of a developer community more

familiar and at home with IT toolkits and development environments. In conjunction with this, such

a developer community typically sports less affinity with telecommunications skills and expertise

and hence the resulting requirement for an even higher level of abstraction than is provided through

the Parlay APIs. This is a good development as it furthers the pooling of application development

talent and creativity with the feature rich service capabilities from the telecommunications domain,

potentially leading to more innovative and compelling applications.

One of the lessons learned though is that intrinsically difficult matters are not easily simplified

through abstraction. Also, not every dynamic behavioral model can be force-fitted into a stateless,

synchronous mold. Having said that, the set of Parlay X Web Services do offer more simplified

building blocks for the controlled access of network capabilities.

One possible scenario is that application developers from an IT background get acquainted with

the vast potential of incorporating network service capabilities in their application suite through the

use of Parlay X Web Services. As they get more familiar with those capabilities they might get

compelled to tap even further into the broad range of network service capabilities to enrich further

their applications through the use of the full-fledged suite of Parlay APIs, be it in their WSDL

realization or some other deployment choice.

In September 2004, the specifications for the Parlay X building blocks were submitted and

approved as 3GPP technical specifications. Together, they comprise the 3G TS 29.199 series. In

addition, the initial set of Parlay X building blocks was extended to a total of 13 Parlay X Web

Services. Some existing Parlay X Web Services were extended, although a number of completely

new Parlay X Web Services were introduced to augment the Parlay X suite. The most notable

additions are Multimedia conference, Address list management, and Presence. The interested reader

is referred to the set of Parlay X Web Services specifications in 3GPP Release 6 [3GPP 2005d,

3GPP 2005e, 3GPP 2005f, 3GPP 2005g, 3GPP 2005h, 3GPP 2005i, 3GPP 2005j, 3GPP 2005k,

3GPP 2005l, 3GPP 2005m, 3GPP 2005n, 3GPP 2005o, 3GPP 2005p, 3GPP 2005q] for the complete

description and details on these latest additions to the Parlay X Web Services specification set.

16.5 Summary

Parlay X Web Services have been designed with the objective of enabling large communities of

Internet-savvy practitioners to design and build communications applications on complex network

infrastructure. They are kept intentionally lightweight and follow the service mantra of the Inter-

net whereby applications are developed using common IT toolkits and widespread protocol and

middleware paradigms. Parlay X Web Services need to be powerful enough for skilled telecom-

munication protocol programmers, yet easy enough for students. And there is ample justification

for this approach. A nimble interface, which does one thing and does it well, certainly deserves a

chair on the sun deck with the more capable and functional interfaces. However, extreme care must

be taken to keep the Parlay X Web Services at an even higher level of abstraction than the Parlay

interfaces. Otherwise, although we have fully functional interfaces and more abstract interfaces in

theory what we really have is both a belt and suspenders.

Bibliography

There are several books available on the topic of programmable networks and value-added applica-

tions. In what follows, we present a brief overview of the more relevant. Together with our book,

it is hoped this provides a solid and comprehensive description of the field of play.

[Mueller 2002] offers an extensive survey of the protocols and APIs for voice services over

converged networks and the software required to implement them. The book presents example

protocol message exchanges and code fragments. The last chapter, Chapter 14, is dedicated to

Parlay, taking the Parlay 2.1 Framework and Call Control APIs to walk through a good and detailed

example of how a simple Call Processing application is set-up, and goes through the Framework

handshake.

A deep and elaborate coverage of open network APIs is presented in [Jain 2004]. This book

covers in detail the APIs defined by JTAPI, JAIN JCC and JCAT, and Parlay, and concludes with a

description of XML programmability initiatives, including Parlay X and SPIRITS. The focus is on

Call Processing and Call Models, with an in-depth coverage of the design patterns used to model

the call processing behavior in the network. Running examples, code fragments and call flows are

provided to expand the understanding of each of the technologies covered.

[Zuidweg 2002] describes the evolution of intelligence in the network that is available to create

services and applications. The book show the evolution of IN and CAMEL and leads to interactions

between IN and Internet (e.g. PINT and SPIRITS). The author then spends a chapter on Parlay and

OSA. The focus of the book is on Service Logic and Service Creation.

In addition to the books described above, several papers have appeared in a number of journals

and conference proceedings, either on Parlay in general or addressing dedicated topics of inter-

est within Parlay. Some of the more prevalent general papers include [Stretch 2001,Unmehopa

2002b,Moerdijk 2003].

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

List of Abbreviations
and Acronyms

2G 2nd Generation

3G 3rd Generation

3GPP 3rd Generation Partnership Project

3GPP2 3rd Generation Partnership Project 2

AAA Authentication, Authorization and Accounting

ACG Automatic Code Gapping

AFLT Advanced Forward Link Trilateration

AM Account Management

AMPU Average Minutes Per User

ANSI American National Standard Institute

API Application Programming Interface

ARPU Average Revenue Per User

AS Application Server

ASP Application Service Provider

ATM Asynchronous Transfer Mode or Automated Teller Machine

BCSM Basic Call State Model

BHCA Busy Hour Call Attempt

BNF Backus Naur Form

BOBO Billing on behalf of

BSC Base Station Controller

BSS Base Station System

CA Client Application

CAMEL Customized Application for Mobile Enhanced Logic

CAP CAMEL Application Part

CBC Content Based Charging

CC Call Control

CC/PP Composite Capabilities/Preference Profile

CCC Conference Call Control

CCCS Conference Call Control Service

CCF Call Control Function

CDMA Code Division Multiple Access

CDR Call Detail Record

CGI Cell Global Identifier or Common Gateway Interface

CH Charging

CHAM Charging and Account Management

CHAP Challenge Handshake Authentication Protocol

CIPID Contact Information for Presence Information Data format

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

274 List of Abbreviations and Acronyms

CN Core Network

CO Central Office

COM Component Object Model

CORBA Common Object Request Broker Architecture

CPIM Common Profile for Instant Messaging

CPL Call Processing Language

CPP Common Presence Profile

CPU Central Processing Unit

CPUTP CPU Transaction Processing

CR Change Request

CRM Customer Relationship Management

CS Capability Set

CSCF Call Session Control Function

CSE Camel Service Environment

CTD Click-to-Dial

CUI Call User Interaction

DCOM Distributed Component Object Model

DFP Distributed Functional Plane

DHCP Dynamic Host Configuration Protocol

DIME Direct Internet Message Encapsulation

DMZ De-Militarized Zone

DP Detection Point

DP-N Detection Point – Notification

DP-R Detection Point – Request

Dpx Duration per transaction

DSA Digital Signature Algorithm

DSC Data Session Control

DSL Digital Subscriber Line

DSP Digital Signal Processor

DTD Document Type Definition

DTMF Dual Tone Multiple Frequency

E&M Ear and Mouth

e2e End-to-End

E911 Enhanced 911

EAI Enterprise Application Integration

EDGE Enhanced Data-rate for GSM Evolution

EDP Event Detection Point

EDP-N Event Detection Point – Notification

EDP-R Event Detection Point – Request

EDR Event Detail Record

EFLT Enhanced Forward Link Trilateration

EH Event Handling

EMS Enhanced Message Service

ESC Event State Compositor

ESME External Short Message Entity

ESP Encapsulating Security Payload

ETSI European Telecommunication Standards Institute

EVDO Evolution for Data Optimized

EVDV Evolution for Data and Voice

List of Abbreviations and Acronyms 275

FA Foreign Agent

FCAPS Fault Management, Configuration Management, Accounting Management,

Performance Management, Security Management

FCC Federal Communications Commission

FDMA Frequency Division Multiple Access

FMO Future Mode of Operation

FSM Finite State Machine

FTP File Transfer Protocol

FWK Framework

GAA Generic Authentication Architecture

GCC Generic Call Control

GCCS Generic Call Control Service

GERAN GSM Enhanced Radio Access Network

GGSN Gateway GPRS Support Node

GLMS Group List Management Server

GMLC Gateway Mobile Location Center

GMS Generic Messaging Service

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile communications

gsmSCF GSM Service Control Function

GTP GPRS Tunneling Protocol

GTT Global Title Translation

GUI Generic User Interaction

HA High Availability or Home Agent

HLR Home Location Register

HSS Home Subscriber Server

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HTTPS Hypertext Transfer Protocol over Transport Layer Security

I/O Input/Output

ICAP Internet Content Adaptation Protocol

I-CSCF Interrogating Call Session Control Function

ICW Internet Call Waiting

ID Identifier

IDL Interface Definition Language

IETF Internet Engineering Task Force

iFC Initial Filter Criteria

IM Instant Messaging or IP Multimedia

IMAP Internet Message Access Protocol

IMS IP Multimedia Subsystem

IM-SSF IP Multimedia – Service Switching Function

IN Intelligent Networking

INAP IN Application Protocol

IOR Interoperable Object Reference

IP Internet Protocol

IPCP IP Control Protocol

IPsec IP Security

IRTF Internet Research Task Force

276 List of Abbreviations and Acronyms

ISC IMS Service Control

ISOC Internet SOCiety

ISP Internet Service Provider

ISUP ISDN User Part

IT Information Technology

ITU International Telecommunication Union

ITU-T International Telecommunications Union – Telecommunication Standardization

Sector

IWF InterWorking Function

J2EE Java 2 platform, Enterprise Edition

J2SE Java 2 platform, Standard Edition

JWG Joint Working Group

KISS Keep It Simple Stupid

LAI Location Area Identifier

LAN Local Area Network

LCS Location Service

LIF Location Interoperability Forum

LIF MLP LIF Mobile Location Protocol

LPDP Local Policy Decision Point

M4U Movies For You

MAP Mobile Application Part

MEP Message Exchange Pattern

MG Media Gateway

MGC Media Gateway Controller

MIDL Microsoft Interface Definition Language

MIME Multipurpose Internet Mail Extensions

MIN Mobile Identification Number

MLP Mobile Location Protocol

MM Mobility Management

MMCC MultiMedia Call Control

MMCCS MultiMedia Call Control Service

MMD MultiMedia Domain

MMM MultiMedia Messaging

MMS Multimedia Message Service

MO-SM Mobile Originated Short Message

MPC Mobile Positioning Center

MPCC MultiParty Call Control

MPCCS MultiParty Call Control Service

MPEG Motion Pictures Expert Group

ms millisecond

MS Mobile Station

MSC Mobile Switching Center

MSISDN Mobile Subscriber ISDN Number

MSRP Message Session Relay Protocol

MTBF Mean Time Between Failure

MT-SM Mobile Terminated Short Message

MTTR Mean Time Till Repair

MVE Multi-Vendor Environment

MVNO Mobile Virtual Network Operator

List of Abbreviations and Acronyms 277

N/A Not Applicable

N/W Network

NAS Network Access Server

NEBS Network Equipment Building System

NNI Network-to-Network Interface

OA&M Operations, Administration and Maintenance

OAM&P Operations, Administration, Maintenance and Provisioning

O-BCSM Originating Basic Call State Model

OMA Open Mobile Alliance

OMG Object Management Group

OO Object Oriented

OPES Open Pluggable End-Services

OPEX Operational Expenses

OSA Open Service Access

OSI Open Systems Interconnection

OSS Operations Support Systems

PA Presence Agent

PAG Presence and Availability Group

PAM Presence and Availability Management

PC Personal Computer

PCF Packet Control Function

PCIM Policy Core Information Model

P-CSCF Proxy Call Session Control Function

PDA Personal Digital Assistant

PDE Position Determining Equipment

PDP Packet Data Protocol or Policy Decision Point

PDSN Packet Data Serving Node

PDU Protocol Data Unit

PE Policy Enforcer

PEEM Policy Evaluation, Enforcement and Management

PEP Policy Enforcement Point

PGA Parental Guidance Application

PIC Point In Call

PIN Personal Identification Number or Policy Ignorant Node

PINT PSTN/Internet Interworking

PLMN Public Land Mobile Network

PM Policy Management

PMO Present Mode of Operation

PNA Presence Network Agent

PoC Push to talk over Cellular

POP Point of Presence

POTS Plain Old Telephony Service

PPM Parlay Proxy Manager

PPP Point to Point protocol

PPUA Pay-Per-Use Application

PS Presence Server

PSTN Public Switched Telephone Network

PUA Presence User Agent

QoS Quality of Service

278 List of Abbreviations and Acronyms

RADIUS Remote Authentication Dial-In User Service

RFC Request For Comments

RHS Right Hand Side

RMI Remote Method Invocation

RPC Remote Procedure Call

RPID Rich Presence Information Data format

RSA Rivest-Shamir-Adelman

RTFM Read The Forgotten Manual

RTP Real-time Transport Protocol

RTT Radio Transmission Technology or Round Trip Time

SAG Subscription Assignment Group

SAP Service Access Point

SCF Service Capability Feature or Service Control Function

SCM Service Combination Manager

SCP Service Control Point

SCS Service Capability Server

S-CSCF Serving Call Session Control Function

SCTP Stream Control Transmission Protocol

SDF Service Data Function

SDK Software Development Kit

SDP Session Description Protocol

SDR Service Detail Record

sFC Subsequent Filter Criteria

SGSN Serving GPRS Support Node

SIBB Service Independent Building Block

SILM Service Instance Lifecycle Manager

SIM Service Interaction Manager or Subscriber Identity Module

SIMPLE SIP for Instant Messaging & Presence Leveraging Extensions

SIP Session Initiation Protocol

SIPPING Session Initiation Protocol Project INvestiGation

SLA Service Level Agreement

SMDPP Short Message Delivery Point-to-Point protocol

SMF Service Management Function

SMG Service Mediation Gateway

SMPP Short Message Peer to Peer protocol

SMS Short Message Service

SMS GW SMS Gateway

SMSC SMS Service Center

SMTP Simple Mail Transfer Protocol

SN Service Node

SOAP Simple Object Access Protocol

SPAN Signaling and Protocols for Advanced Networks

SPIRITS Services in PSTN/IN Requesting InTernet Services

SS7 Signaling System nr. 7

SSF Service Switching Function

SSL Secure Sockets Layer

SSO Single Sign-On

SSP Service Switching Point

STP Signal Transfer Point

List of Abbreviations and Acronyms 279

TACACS Terminal Access Controller Access-Control System

TAM Total Addressable Market

TAT Turn Around Time

TC Terminal Capabilities

TCAP Transaction Capabilities Application Part

TCP Transmission Control Protocol

TDM Time-Division Multiplexing

TDMA Time Division Multiple Access

TDP Trigger Detection Point

TDP-N Trigger Detection Point – Notification

TDP-R Trigger Detection Point – Request

THIG Topology Hiding Inter-network Gateway

TINA-C Telecommunications Information Networking Architecture Consortium

TLS Transport Layer Security

TPS Transaction Per Second

TR Technical Recommendation

TS Technical Specification

TSAS Telecommunications Service Access and Subscription

TUP Telephone User Part

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

UI User Interaction

UL User Location

ULC User Location Camel

ULE User Location Emergency

ULP Upper Layer Protocol

ULTr Triggered User Location

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

UNI User-to-Network Interface

URI Unique Resource Identifier

URL Universal Resource Location

US User Status

USSD Unstructured Supplementary Service Data

UTRAN UMTS Terrestrial Radio Access Network

VHE Virtual Home Environment

VLR Visitor Location Register

VNO Virtual Network Operator

VoIP Voice over IP

VPN Virtual Private Network

W3C World Wide Web Consortium

WAN Wide Area Network

WAP Wireless Application Protocol

WAP GW WAP Gateway

WG Working Group

WiFi Wireless Fidelity

WRU Where Are You

WSDL Web Services Description Language

WSP Web Service Provider or Wireless Service Provider or Wireless Session Protocol

280 List of Abbreviations and Acronyms

WSR Web Service Requester

WTLS Wireless Transport Layer Security

WV Wireless Village

XCAP XML Configuration Access Protocol

XMI XML Metadata Interchange

XML eXtensible Markup Language

XMPP Extensible Messaging and Presence Protocol

Xpd Transaction per Duration

XSD XML Schema Definition

References

Web References

[3GPP] http://www.3gpp.org/

[3GPP2] http://www.3gpp2.org/

[BlueTooth] https://www.bluetooth.org/

[ETSI] http://www.etsi.org/

[IETF] http://www.ietf.org/

[IRTF] http://www.irtf.org/

[ITU] http://www.itu.int/

[JAIN] http://java.sun.com/products/jain/

[OMA] http://www.openmobilealliance.org/

[OMG] http://www.omg.org/

[OPIUM] http://www.ist-opium.org/

[Parlay] http://www.parlay.org/

[Parlay@Wiley] http://www.wiley.com/go/parlay

[Skype] http://www.skype.com/

[TINA] http://www.tinac.com/

[Vonage] http://www.vonage.com/

Main References

[3GPP 2002a] 3GPP TS 22.228, 3rd Generation Partnership Project; Technical Specification Group Services and

System Aspects; Service requirements for the IP Multimedia; Core Network Subsystem (Stage 1) (Release

5), Version 5.6.0 (June 2002), URL: http://www.3gpp.org/

[3GPP 2002b] 3GPP TS 22.105, 3rd Generation Partnership Project, ‘Services and Service Capabilities’, Version

5.2.0 (July 2002), URL: http://www.3gpp.org/

[3GPP 2002c] 3GPP TS 22.121, 3rd Generation Partnership Project, ‘The Virtual Home Environment’, Version

5.3.1 (July 2002), URL: http://www.3gpp.org/

[3GPP 2002d] 3GPP TS 22.127, 3rd Generation Partnership Project, ‘Stage 1 Service Requirement for the

Open Services Access (OSA)’, Version 5.5.0 (December 2002), URL: http://www.3gpp.org/

[3GPP 2002e] 3GPP TS 23.127, 3rd Generation Partnership Project, ‘Virtual Home Environment (VHE)/Open

Service Access (OSA)’, Version 5.2.0 (June 2002), URL: http://www.3gpp.org/

[3GPP 2002f] 3GPP TR 29.998-01, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Appli-

cation Programming Interface (API) Mapping for OSA; Part 1: General Issues on API Mapping’, Version

5.0.0 (June 2002), URL: http://www.3gpp.org/

[3GPP 2002g] 3GPP TR 29.998-04-1, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Appli-

cation Programming Interface (API) Mapping for OSA; Part 4: Call Control Service Mapping; Subpart 1:

API to CAP Mapping’, Version 5.0.0 (June 2002), URL: http://www.3gpp.org/

[3GPP 2002h] 3GPP TR 29.998-05-1, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Appli-

cation Programming Interface (API) Mapping for OSA; Part 5: User Interaction Service Mapping; Subpart

1: API to CAP Mapping’, Version 5.0.0 (June 2002), URL: http://www.3gpp.org/

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

282 References

[3GPP 2002i] 3GPP TR 29.99805-4, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Appli-

cation Programming Interface (API) Mapping for OSA; Part 5: User Interaction Service Mapping; Subpart

4: API to SMS Mapping’, Version 5.0.0 (June 2002), URL: http://www.3gpp.org/

[3GPP 2002j] 3GPP TR 29.998-06, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Applica-

tion Programming Interface (API) Mapping for OSA; Part 6: User Location – User Status Service Mapping

to MAP’, Version 5.0.0 (June 2002), URL: http://www.3gpp.org/

[3GPP 2002k] 3GPP TR 29.998-08, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Appli-

cation Programming Interface (API) Mapping for OSA; Part 8: Data Session Control Service Mapping to

CAP’, Version 5.0.0 (June 2002), URL: http://www.3gpp.org/

[3GPP 2003] 3GPP TS 23.002, 3rd Generation Partnership Project, ‘Network Architecture’, Version 5.12.0

(October 2003), URL: http://www.3gpp.org/

[3GPP 2004a] 3GPP TS 23.228, 3rd Generation Partnership Project; IP Multimedia Subsystem (IMS); Stage 2

(Release 5), Version 5.13.0 (December 2004), URL: http://www.3gpp.org/

[3GPP 2004b] 3GPP TS 24.228, 3rd Generation Partnership Project; Signalling Flows for the IP Multimedia

Call Control Based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3

(Release 5), Version 5.13.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2004c] 3G TS 29.002, 3rd Generation Partnership Project, ‘Mobile Application Part (MAP) Specifica-

tion’, Version 5.10.0 (June 2004), URL: http://www.3gpp.org/

[3GPP 2004d] 3G TS 29.198-1, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Application

Programming Interface (API); Part 1: Overview’, Version 5.7.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2004e] 3G TS 29.198-2, 3rd Generation Partnership Project, ‘Open Service Access (OSA)

Application Programming Interface (API); Part 2: Common Data’, Version 5.8.0 (September 2004), URL:

http://www.3gpp.org/

[3GPP 2004f] 3G TS 29.198-3, 3rd Generation Partnership Project, ‘Open Service Access (OSA)

Application Programming Interface (API); Part 3: Framework’, Version 5.8.0 (September 2004), URL:

http://www.3gpp.org/

[3GPP 2004g] 3G TS 29.198-4-1, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Application

Programming Interface (API); Part 4: Call Control; Subpart 1: Common Call Control Data Definitions’,

Version 5.7.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2004h] 3G TS 29.198-4-2, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Application

Programming Interface (API); Part 4: Call Control; Subpart 2: Generic Call Control Data Service Capability

Feature (SCF)’, Version 5.8.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2004i] 3G TS 29.198-4-3, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Applica-

tion Programming Interface (API); Part 4: Call Control; Subpart 3: Multi-party Call Control Data Service

Capability Feature (SCF)’, Version 5.8.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2004j] 3G TS 29.198-4-4, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Application

Programming Interface (API); Part 4: Call Control; Subpart 4: Multimedia Call Control Service Capability

Feature (SCF)’, Version 5.8.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2004k] 3G TS 29.198-5, 3rd Generation Partnership Project, 3rd Generation Partnership Project, ‘Open

Service Access (OSA) Application Programming Interface (API); Part 5: Generic User Interaction’, Version

5.8.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2004l] 3G TS 29.198-6, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Application

Programming Interface (API); Part 6: Mobility’, Version 5.6.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2004m] 3G TS 29.198-7, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Applica-

tion Programming Interface (API); Part 7: Terminal capabilities’, Version 5.7.0 (September 2004), URL:

http://www.3gpp.org/

[3GPP 2004n] 3G TS 29.198-8, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Applica-

tion Programming Interface (API); Part 8: Data Session Control’, Version 5.7.0 (September 2004), URL:

http://www.3gpp.org/

[3GPP 2004o] 3G TS 29.198-11, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Applica-

tion Programming Interface (API); Part 11: Account Management’, Version 5.6.0 (September 2004), URL:

http://www.3gpp.org/

[3GPP 2004p] 3G TS 29.198-12, 3rd Generation Partnership Project, ‘Open Service Access (OSA)

Application Programming Interface (API); Part 12: Charging’, Version 5.7.0 (September 2004), URL:

http://www.3gpp.org/

References 283

[3GPP 2004q] 3G TS 29.198-13, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Application

Programming Interface (API); Part 13: Policy management SCF’, Version 5.6.0 (September 2004), URL:

http://www.3gpp.org/

[3GPP 2004r] 3G TS 29.198-14, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Applica-

tion Programming Interface (API); Part 14: Presence and Availability Management (PAM)’, Version 5.7.0

(September 2004), URL: http://www.3gpp.org/

[3GPP 2004s] 3GPP TS 22.101, 3rd Generation Partnership Project, ‘Service Principles’, Version 5.13.0 (March

2004), URL: http://www.3gpp.org/

[3GPP 2004t] 3GPP TS 23.271, 3rd Generation Partnership Project, ‘Functional Stage 2 Description of Location

Services (LCS)’, Version 5.13.0 (December 2004), URL: http://www.3gpp.org/

[3GPP 2004u] 3GPP TR 29.998-04-4, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Appli-

cation Programming Interface (API) Mapping for Open Service Access; Part 4: Call Control Service Mapping;

Subpart 4: Multiparty Call Control ISC’, Version 5.0.3 (June 2004), URL: http://www.3gpp.org/

[3GPP 2004v] 3GPP TS 23.141, 3rd Generation Partnership Project, ‘Presence Service; Architecture and Func-

tional Description’, Version 6.7.0 (September 2004), URL: http://www.3gpp.org/

[3GPP 2005a] 3GPP TS 23.218, 3rd Generation Partnership Project; IP Multimedia (IM) Session Handling;

IM Call Model; Stage 2 (Release 5), Version 5.8.0 (March 2005), URL: http://www.3gpp.org/

[3GPP 2005b] 3GPP TS 24.229, 3rd Generation Partnership Project; IP Multimedia Call Control Protocol based

on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3 (Release 5), Version

5.13.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005c] 3G TS 29.198-15, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Application

Programming Interface (API); Part 15: Multi-media Messaging (MM) Service Capability Feature’, Version

6.2.0 (July 2005), URL: http://www.3gpp.org/

[3GPP 2005d] 3GPP TS 29.199-1, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 1: Common’, Version 6.2.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005e] 3GPP TS 29.199-2, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 2: Third Party Call’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005f] 3GPP TS 29.199-3, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 3: Call Notification’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005g] 3GPP TS 29.199-4, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 4: Short Messaging’, Version 6.3.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005h] 3GPP TS 29.199-5, 3rd Generation Partnership Project, ‘3rd Generation Partnership Project,

Open Service Access (OSA) Parlay X Web Services; Part 5: Multimedia Messaging’, Version 6.3.0 (June

2005), URL: http://www.3gpp.org/

[3GPP 2005i] 3GPP TS 29.199-6, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 6: Payment’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005j] 3GPP TS 29.199-7, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 7: Account Management’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005k] 3GPP TS 29.199-8, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 8: Terminal Status’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005l] 3GPP TS 29.199-9, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 9: Terminal Location’, Version 6.2.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005m] 3GPP TS 29.199-10, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 10: Call Handling’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005n] 3GPP TS 29.199-11, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 11: Audio Call’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005o] 3GPP TS 29.199-12, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 12: Multimedia Conference’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005p] 3GPP TS 29.199-13, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 13: Address List Management’, Version 6.1.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005q] 3GPP TS 29.199-14, 3rd Generation Partnership Project, ‘Open Service Access (OSA) Parlay X

Web Services; Part 14: Presence’, Version 6.2.0 (June 2005), URL: http://www.3gpp.org/

[3GPP 2005r] 3GPP TS 23.218, 3rd Generation Partnership Project, ‘IP Multimedia (IM) Session Handling;

IM call model’, Version 5.8.0 (March 2005), URL: http://www.3gpp.org/

[3GPP2 2002a] 3GPP2 P.S0001-B, 3rd Generation Partnership Project 2, ‘Wireless IP Network Standard’,

Version 1.0.0 (October 2002), URL: http://www.3gpp2.org/

284 References

[3GPP2 2002b] 3GPP2 S.R0061-0, 3rd Generation Partnership Project 2, ‘Wireless Immediate

Messaging – Stage 1 Requirements’, Version 1.0 (October 2002), URL: http://www.3gpp2.org/

[3GPP2 2002c] 3GPP2 S.R0062-0, 3rd Generation Partnership Project 2, ‘Presence for Wireless Systems – Stage

1 Requirements’, Version 1.0 (October 2002), URL: http://www.3gpp2.org/

[3GPP2 2003a] 3GPP2 X.S0013-000-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain – Overview’, Version 1.0 (December 2003), URL: http://www.3gpp2.org/

[3GPP2 2003b] 3GPP2 X.S0013-002-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain – IP Multimedia Subsystem – Stage 2’, Version 1.0 (December 2003), URL: http://www.3gpp2.org/

[3GPP2 2003c] 3GPP2 X.S0013-003-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain; IP Multimedia (IMS) Session Handling; IP Multimedia (IM) Call Model – Stage 2’, Version 1.0

(December 2003), URL: http://www.3gpp2.org/

[3GPP2 2003d] 3GPP2 X.S0013-004-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain; IP Multimedia Call Control Protocol Based on SIP and SDP, Stage 3’, Version 1.0 (December 2003),

URL: http://www.3gpp2.org/

[3GPP2 2003e] 3GPP2 X.S0013-005-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multime-

dia Domain; IP Multimedia Subsystem Cx Interface Signaling Flows and Message Contents’, Version 1.0

(December 2003), URL: http://www.3gpp2.org/

[3GPP2 2003f] 3GPP2 X.S0013-006-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain Cx Interface Based on the Diameter Protocol; Protocol Details’, Version 1.0 (December 2003), URL:

http://www.3gpp2.org/

[3GPP2 2003g] 3GPP2 X.S0013-007-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multi-

media Domain; IP Multimedia Subsystem – Charging Architecture’, Version 1.0 (December 2003), URL:

http://www.3gpp2.org/

[3GPP2 2003h] 3GPP2 X.S0013-008-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain; IP Multimedia Subsystem – Accounting Information Flows and Protocol’, Version 1.0 (December

2003), URL: http://www.3gpp2.org/

[3GPP2 2003i] 3GPP2 X.S0013-010-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain; IP Multimedia Subsystem Sh interface; Signaling flows and message contents – Stage 2’, Version

1.0 (December 2003), URL: http://www.3gpp2.org/

[3GPP2 2003j] 3GPP2 X.S0013-011-0, 3rd Generation Partnership Project 2, ‘All-IP Core Network Multimedia

Domain; Sh Interface based on Diameter Protocols; Protocol Details – Stage 3’, Version 1.0 (December 2003),

URL: http://www.3gpp2.org/

[3GPP2 2003k] 3GPP2 S.R0037-0, 3rd Generation Partnership Project 2, ‘IP Network Architecture Model for

cdma2000 Spread Spectrum Systems’, Version 3.0 (August 2003), URL: http://www.3gpp2.org/

[3GPP2 2003l] 3GPP2 X.S0017-0, 3rd Generation Partnership Project 2, ‘Open Service Access

(OSA) – Application Programming Interface (API) – OSA API’, Version 1.0.0 (June 2003), URL:

http://www.3gpp2.org/

[Andersson 2004] Andersson, J.K., ‘Overload Control and Performance Evaluation in a Parlay/OSA Environ-

ment’, Department of Communication Systems, Lund Institute of Technology, 2004, 82 pp.

[Bakker 2000] Bakker, J.-L., McGoogan, J.R., Opdyke, W.F. and Panken, F.J., ‘Rapid Development and Deliv-

ery of Converged Services using APIs’, Bell Labs Technical Journal, 5(3), 2000, 12–29.

[Bakker 2002] Bakker, J.-L., Tweedie, D. and Unmehopa, M., ‘Evolving Service Creation; New Developments

in Network Intelligence’, Telektronikk 98(4), 2000, 58–68.

[Bennett 2003] Bennett, A.J., Grech, M.L.F., Unmehopa, M.R. and Vemuri, K.V., ‘Service Mediation

Standards’, Bell Labs Technical Journal, 7(4), 2003, 77–90, Published by Wiley Periodicals, Inc.

[Brenner 2005] Brenner, M.R., Grech, M.L.F., Torabi, M. and Unmehopa, M.R., ‘The Open Mobile Alliance

and Trends in Supporting the Mobile Services Industry’, Bell Labs Technical Journal, 10(1), 2005, 59–75,

Published by Wiley Periodicals, Inc.

[Brooks 1995] Brooks, F.P., ‘The Mythical Man-Month: Essays on Software Engineering’, Addison-Wesley

Professional, 1995, 336 p.

[Comer 1999] Comer, D.E. and Stevens, D.L. ‘Internetworking with TCP/IP, Vol 2: Design, Implementation,

and Internals’, 3rd Edition, Prentice Hall, 1999, 660 pp.

[Comer 2000] Comer, D.E., ‘Internetworking with TCP/IP Vol.1: Principles, Protocols, and Architecture, 4th

Edition’, Prentice Hall, 2000, 755 pp.

[Dobrowolski 2001] Dobrowolski, J. and Vemuri, K. ‘Internet-based Service Creation and the Need for a VoIP

Call Model’, draft-dobrowolski-voip-cm-01.txt, IETF Internet Draft, Expired (May 2001). A copy can be

downloaded from: http//www.potaroo.net/ietf/old-ids/draft-dobrowolski-voip-cm-01.txt

References 285

[ETSI 2005a] ETSI Standard ES 202 915-4-5, ‘Open Service Access (OSA) Application Programming Interface

(API); Part 4: Call Control; Sub-part 5: Conference Call Control SCF’, Version 1.3.1 (March 2005), URL:

http://portal.etsi.org/

[ETSI 2005b] ETSI Standard ES 202 915-9, ‘Open Service Access (OSA) Application Programming Interface

(API); Part 9: Generic Messaging SCF’, Version 1.2.1 (March 2005), URL: http://portal.etsi.org/

[ETSI 2005c] ETSI Standard ES 202 915-10, ‘Open Service Access (OSA) Application Programming Interface

(API); Part 10: Connectivity Manager SCF’, Version 1.3.1 (March 2005), URL: http://portal.etsi.org/

[Faynberg 1996] Faynberg, I., Gabuzda, L.R., Kaplan, M.P. and Shah, N.J., ‘The Intelligent Network Standards:

Their Application to Services’, 1996, McGraw-Hill Professional, New York, 236 pp.

[Faynberg 2000] Faynberg, I., Gabuzda, L. and Lu, H., ‘Converged Networks and Services: Internetworking

IP and the PSTN’, John Wiley & Sons, Inc. 2000, New York, 347 pp.

[FIW 2003] Seventh International Workshop on Feature Interactions in Telecommunication and Software Sys-

tems (FIW’03), URL: http://www.site.uottawa.ca/fiw03/

[Gurbani 2003] Gurbani, V.K., Brusilovsky, A., Faynberg, I., Lu, H-L., Sun, X-H. and Unmehopa, M., ‘Inter-

net Service Execution for Telephony Events’, Proceedings of the 8th IEEE International Conference on

Intelligence in Next Generation Networks, ICIN2003, Bordeaux, France, April 2003

[H.248.1 2002] ITU-T Recommendation H.248.1, Telecommunication Standardization Sector of ITU, Series H:

Audiovisual and Multimedia Systems, ‘Gateway Control Protocol: Version 2’, May 2002

[H.323 2003] ITU-T Recommendation H.323, Telecommunication Standardization Sector of ITU, Series H:

Audiovisual and Multimedia Systems, ‘Packet-based Multimedia Communications Systems’, July 2003

[Hanmer 2000] Hanmer, R., ‘Real Time and Resource Overload Language’, 7th Pattern Languages of Programs

Conference (PLoP 2000), 13–16 August 2000, Monticello, Illinois, USA

[Henning 1999] Henning, M. and S. Vinoski, ‘Advanced CORBA(R) Programming with C + +’, Addison-

Wesley Professional, 1999, 1120 pp.

[Holzmann 1991] Holzmann, G.J., ‘Design and Validation of Computer Protocols’, Prentice Hall PTR, 1991,

Upper Saddle River, NJ, 512 pp.

[Hull 2004] Hull, R.B., Kumar, B.B. Qutub, S.S., Unmehopa, M.R. and Varney, D.W., ‘Policy Enabling the

Services Layer’, Bell Labs Technical Journal, 9(1), 2004, 5–18, Published by Wiley Periodicals, Inc.

[Hyde 1999] Hyde, P., ‘Java Thread Programming’, Sams Publishing, Indianapolis, Indiana, USA, 1999, 528

pp.

[IMSinOMA 2005] Open Mobile Alliance, Utilization of IMS Capabilities Architecture Candidate Version

1.0 (2005), URL: http://www.openmobilealliance.org/

[Jain 2004] Jain, R., Bakker, J.-L. and Anjum, F., ‘Programming Converged Networks: Call Control in Java,

XML, and Parlay/OSA’, Wiley-Interscience, 2004, 268 pp.

[JSR 116] JSR-000116 SIP Servlet API Specification 1.0 Final Release (2003), URL: http://www.jcp.org/en/jsr/

detail?id=116

[Kozik 2000] Kozik, J., Faynberg, I. and Lu, H-L., ‘On Opening PSTN to Enhanced Voice/data Services – The

PINT Protocol Solution’, Bell Labs Technical Journal, 5(3), 2000, 153–165

[Kozik 2003] Kozik, J., Unmehopa, M.R. and Vemuri, K.V., ‘A Parlay and SPIRITS-based Architecture for

Service Mediation’, Bell Labs Technical Journal, 7(3), 2003, 105–122, Published by Wiley Periodicals, Inc.

[Lagerberg 2002] Lagerberg, K., Plas, D-J. and Wegdam, M., ‘Web Services in Third-generation Service Plat-

forms’, Bell Labs Technical Journal, 7(2), 2002, 167–183, Published by Wiley Periodicals, Inc.

[Liberty] Liberty Alliance Project, Liberty Alliance Specifications, URL: http://www.projectliberty.org/

resources/specifications.php

[Lofthouse 2004] Lofthouse, H., Yates, M.J. and Stretch, R., ‘Parlay X Web Services’, BT Technology Journal,

22(1), 2004, 81–86, Springer Science and Business Media.

[Mampaey 2000] Mampaey, M. and Couturier, A., ‘Using TINA Concepts for IN Evolution’, IEEE Communi-

cations Magazine, 2000, 94–99

[Miller 2002] Miller, M.A., ‘Voice Over IP Technologies: Building the Converged Network’, 2nd edition, John

Wiley & Sons Ltd., 2002, 552 pp.

[Moerdijk 2003] Moerdijk, A.J. and Lucas Klostermann, ‘Opening the Networks with Parlay/OSA: Standards

and Aspects behind the APIs’, IEEE Network, 17(3), 2003, 58–64.

[Moore 2002] Moore, G.A., ‘Crossing the Chasm’, 2002, Collins (Revised Edition), 256 pp.

[Mouly 1992] Mouly, M. and Pautet, M-B., ‘The GSM System for Mobile Communications’, Telecom Pub-

lishing, 1992, 701 pp.

[Mueller 2002] Mueller, S.M., ‘APIs and Protocols for Convergent Network Services’, McGraw-Hill Profes-

sional, New York, 2002, 445 pp.

286 References

[Natsuno 2003] Natsuno, T., ‘The i-mode Wireless Ecosystem’, John Wiley & Sons Inc. (2003), NJ, US

[NEBS 2002] GR-63-CORE, ‘Network Equipment-Building System (NEBS) Requirements: Physical Protec-

tion’, Issue 02 (April 2002).

[Newcomer 2002] Newcomer, E., ‘Understanding Web Services: XML, WSDL, SOAP, and UDDI’, Addison-

Wesley, Independent Technologies Guide (D. Chappell, series editor), 2002, 368 pp.

[Nielsen 2002] Nielsen, H.F., Sanders, H., Butek, R. and Nash, S., ‘Direct Internet Message Encapsulation

(DIME)’, draft-nielsen-dime-02, IETF Internet Draft, Expired (June 2002)

[NIST 2005] National Institute of Standards and technology, NIST/SEMATECH e-Handbook of Statistical

Methods [online], URL: http://www.itl.nist.gov/div898/handbook/ (Accessed July 2005). Please see, in par-

ticular, section 8.1.8.4, which explains ‘R out of N’ systems or N + K spared arrangements

[Norris 1998] Norris, J.R., ‘Markov Chains’, Cambridge Series in Statistical and Probabilistic Mathematics,

Cambridge University Press, 1998, 237 pp.

[OMG 2000a] Object Management Group (OMG) Telecom Service Access & Subscription Specification, Ver-

sion 1.0 (October 2002), URL: http://www.omg.org/

[OMG 2002a] Object Management Group (OMG) XML Metadata Interchange (XMI) Specification, Version

1.2 (January 2002), URL: http://www.omg.org/

[OMG 2003a] Object Management Group (OMG) XML Metadata Interchange (XMI) Specification, Version

2.0 (May 2003), URL: http://www.omg.org/

[Parlay 2002a] Parlay Web Services WSDL Style Guide, Version 1.0 (November 2002), URL: http://www.parlay.

org/

[Parlay 2002b] Parlay Web Services – Application Deployment Infrastructure Version 1.0 (October 2002), URL:

http://www.parlay.org/

[Parlay 2002c] Parlay Web Services Overview, Version 1.0 (October 2002), URL: http://www.parlay.org/

[Parlay 2003] Parlay 4.0 – Parlay X Web Services Specification, Version 1.0 (May 2003), URL: http://www.

parlay.org/

[RFC 1305] Mills, D.L., ‘Network Time Protocol (Version 3) Specification, Implementation and Analysis’,

IETF RFC 1305, March 1992

[RFC 1332] McGregor, G., ‘The PPP Internet Protocol Control Protocol (IPCP)’, IETF RFC 1332, May 1992

[RFC 1492] Finseth, C., ‘An Access Control Protocol, Sometimes Called TACACS’, IETF RFC 1492, July

1993

[RFC 1994] Simpson, W., ‘PPP Challenge Handshake Authentication Protocol (CHAP)’, IETF RFC 1994,

August 1996

[RFC 2045] Freed, N. and Borenstein, N., ‘Multipurpose Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies’, IETF RFC 2045, November 1996

[RFC 2131] Droms, R., ‘Dynamic Host Configuration Protocol’, RFC 2131, March 1997

[RFC 2138] Rigney, C., Rubens, A., Simpson, W., and Willens, S., ‘Remote Authentication Dial In User Ser-

vice (RADIUS)’, IETF RFC 2138, April 1997

[RFC 2401] Kent, S., and Atkinson, R., ‘Security Architecture for the Internet Protocol’, IETF RFC 2401,

November 1998

[RFC 2848] Petrack, S. and Conroy, L. ‘The PINT Service Protocol: Extensions to SIP and SDP for IP Access

to Telephone Call Services’, IETF RFC 2848, June 2000

[RFC 3050] Lennox, J., Schulzrinne, H. and Rosenberg, J., ‘Common Gateway Interface for SIP’, IETF RFC

3050, January 2001

[RFC 3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M.

and Schooler, E., ‘SIP: Session Initiation Protocol’, IETF RFC 3261, June 2002

[RFC 3507] Elson, J. and Cerpa, A., ‘Internet Content Adaptation Protocol (ICAP)’, IETF RFC 3507, April

2003

[RFC 3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G. and Arkko, J., ‘Diameter Base Protocol’, IETF

RFC 3588, September 2003

[RFC 3835] Barbir, A., Penno, R., Chen, R., Hofmann, M. and Orman, H., ‘An Architecture for Open Plug-

gable Edge Services (OPES)’, IETF RFC 3835, August 2004

[RFC 3880] Lennox, J., Wu, X. and Schulzrinne, H., ‘Call Processing Language (CPL): A Language for User

Control of Internet Telephony Services’, IETF RFC 3880, October 2004

[RFC 3880] Lennox, J., Wu, X. and Schulzrinne, H., ‘Call Processing Language (CPL): A Language for User

Control of Internet Telephony Services’, IETF RFC 3880, October 2004

[RFC 3897] Barbir, A., ‘Open Pluggable Edge Services (OPES) Entities and End Points Communication’, IETF

RFC 3897, September 2004

References 287

[RFC 3910] Gurbani, V., Brusilovsky, A., Faynberg, I., Gato, J., Lu, H. and Unmehopa, M., ‘The SPIRITS

(Services in PSTN requesting Internet Services) Protocol’, IETF RFC 3910, October 2004

[Rising 2001] Rising, L., ‘Design Patterns in Communication Software’, Cambridge University Press, 2001,

548 pp.

[Robbins 2003] Robbins, K. and Robbins, S., ‘Unix Systems Programming: Communication, Concurrency and

Threads’, Prentice Hall (2nd Edition), 2003, 912 pp.

[Russell 2002] Russell, T., ‘Signaling System #7’, 4th edition, McGraw-Hill Professional, 2002, 495 pp.

[Schmidt 2004] Schmidt, D.C., ‘CORBA Tutorials’ [online], URL: http://www.cs.wustl.edu/∼schmidt/tutorials-

corba.html (August 2004) (accessed July 2005)

[Shooman 1983] Shooman, M.L., ‘Software Engineering: Design, Reliability, and Management’, McGraw-Hill,

Inc. New York, NY, USA, 1983, 704 pp.

[Sigtran] IETF Signaling Transport Working Group Charter, accessed July 2005, URL: http://www.ietf.org/html.

charters/sigtran-charter.html

[Stretch 2001] Stretch, R., ‘OSA and Other Related Issues’, BT Technology Journal, 19(1), 2001, 80–87,

published by Kluwer Academic Publishers

[Tanenbaum 2003] Tanenbaum, A.S., ‘Computer Networks’, 4th edition, Prentice Hall PTR, Upper Saddle

River, NJ, 2003, 912 pp.

[TINA 1995] Telecommunications Information Networking Architecture Consortium (TINA-C), Overall Con-

cepts and Principles of TINA, Version 4.0 (Feb. 1995), URL: http://www.tinac.com/

[TINA 1997a] Telecommunications Information Networking Architecture Consortium (TINA-C), Service Archi-

tecture, Version 5.0 (June 1997), URL: http://www.tinac.com/

[TINA 1997b] Telecommunications Information Networking Architecture Consortium (TINA-C), TINA Busi-

ness Model and Reference Points, Version 4.0 (May 1997), URL: http://www.tinac.com/

[TINA 1999] Telecommunications Information Networking Architecture Consortium (TINA-C), Ret Reference

Point Specifications, Version 1.1 (April 1999), URL: http://www.tinac.com/

[Unmehopa 2002a] Unmehopa, M., Vemuri, K., Brusilovsky, A., Dacloush, E., Zaki, A., Haerens, F.,

Bakker, J.-L., Chatras, B., and Dobrowolski, J., ‘On selection of IN Parameters to be carried by the SPIRITS

Protocol’, IETF Internet Draft draft-ietf-spirits-in-03.txt (July 2002, expired)

[Unmehopa 2002b] Unmehopa, M.R., Grech, M.L.F., Dobrowolski, J.A. and Stanaway, Jr., J.J., ‘The Support

of Mobile Internet Applications in UMTS Networks Through the Open Service Access’, Bell Labs Technical

Journal, 6(2), 2002, 47–64, published by Wiley Periodicals, Inc.

[Vemuri 2000] K.V. Vemuri, ‘SPHINX: A Study in Convergent Telephony and Advanced Scenarios for H.323-

SIP Interoperation’, Workshop on IP Telecom Service (IPTS), Georgia, USA, September 2000 URL: http://

www.research.att.com/conf/ipts2000/

[Viterbi 1995] Viterbi, A.J., ‘CDMA: Principles of Spread Spectrum Communication’, Addison-Wesley Wireless

Communications, 1995, 272 pp.

[W3C 2000] World Wide Web Consortium (W3C), SOAP Messages with Attachments, W3C Note (December

2000), URL: http://www.w3.org/TR/SOAP-attachments/

[W3C 2004] Voice eXtensible Markup Language (VoiceXML) W3C Recommendation, Version 2.0 (March

2004), URL: http://www.w3.org/TR/2004/REC-voicexml20-20040316/

[WAP] Open Mobile Alliance, the WAP specifications. URL: http://www.openmobilealliance.org/

[WAP Push] WAP Push Architectural Overview, Version 03-July-2001, WAP-250-PushArchOverview-

20010703-a

[WGS84] US Defense Mapping Agency (DMA) TR 8350.2, ‘Department of Defense World Geodetic System

1984: Its Definition and Relationships with Local Geodetic Systems’, 2nd Edition, 1991, 169 pp.

[WSI 2004] Web Services Interoperability Organization (WS-I.org) Basic Profile, Version 1.1 (August 2004),

URL: http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[Zuidweg 2002] Zuidweg, J., ‘Next Generation Intelligent Networks’, Artech House Telecommunications

Library, Norwood, MA, USA, 2002, 366 pp.

Index

*-ilities 165
.NET 33
1X-EVDO 18, 20
1X-EVDV 18
1X-RTT 18
2G 18
2.5G 17
2.75G 17
29.198 series 89, 139
2nd Generation Wireless 17
3G 21
3GPP 8, 17, 20
3GPP2 8, 20, 54
3PCC 226
80/20 rule 172
9’s availability 180
AAA 13, 14, 51
AAA-RADIUS 19
Abstract model 171
Access network 3
Access session 67–69, 71, 73–75, 77, 78, 80–82
Access technologies 4
Account management 110, 268
Accounting 51
ACG 177
Activity Test Request 82
Address range overlap 97
AFLT 26
AIN 213
All-IP 21
Always on 10, 17
AMPU 31, 39
Anchor release 193
Announcement 72–75
ANSI MAP 19
Antenna 16
API 43
Application 7, 51, 40
Application designer 169
Application federation 254
Application ID 75, 82
Application owner 74, 75, 77
Application provider 32, 35
Application proxy 249
Application replica 183
Architecture pattern 152, 163
Area code 10
ARPU 31, 39

AS 21
Asimov’s Third Law 175
ASN.1 57
ASP 115, 117, 118
Asynchronous communication 64, 65
ATM 19, 45, 47
Attribute 92
Authentication 51, 190, 63, 67, 70, 71
Authentication, Authorization, and Accounting

(AAA) 9
Authentication information 73, 75
Authentication Keys 75
Authorization 51

Backwards compatibility 89, 193
Bake-offs 185
Barrier-to-entry 189
Base release 193
Basic Call State Model 6
BCSM (see Basic Call State Model) 6
Bearer 7
BHCA 167
Big Bang 3
Bill on behalf of (BOBO) 114
Billing Contact 82
Black box 50
Blue Tooth 34
BNF 119
BREW 39
BREW Distribution System 39
Broadband internet access 11
Browser 10
BSC 16
BST 16
Business case 30
Business model 31
Busy 108
Busy/idle 120

C++ 32
Cable 11, 13
Call Control 5, 8, 53, 63, 83, 92
Call Control Function 5
Call Control SCS 61, 65, 72, 134
Call flow 8

Parlay/OSA: From Standards to Reality Musa Unmehopa, Kumar Vemuri, Andy Bennett

Copyright  2006 Lucent Technologies Inc. All Rights Reserved

290 Index

Call forwarding 16
Call forwarding on not reachable 16
Call model 5
Call processing 5, 220
Call related user interaction 100
Call session 110
Callback 114
Callee 5
Caller 5
CAMEL 16, 17, 57, 97, 106
CAP 17, 106
Carrier-grade 31, 180
CCC(S) 93, 94, 99, 155
CCF (see Call Control Function) 5
CC/PP 108, 109
CDMA 8, 17, 18, 26, 219
CDR 205
Cell handoff 165
Cell ID 26, 46
Cell sector 26
Cellular 13, 15
CGI 106
CGI (Cell Global Identification) 104
CGI-script 100
CHAM 156
Change requests 185
CHAP 190
Click to Dial 9
Client Application 61–85
Clone 153
Cloned SCS 152
Close coupling 150
Closure 233
Cluster-partitioning problem 223
CO 14
Codec 12
COM 187
Comer 10
Communication Subnet 7
Competitive differentiation 34
Compression 7
Concept to completion 32, 34
Concurrent failure 182
Conference 93
Conference call control 56
Confidentiality 191
Connection supervision 110
Connectivity manager 53, 123
Consumer 52
Content based charging 112
Content-based billing 109
Context aware services 208
Context-sensitive 24
Contracts 84
Converged network 9, 11
Conversation 5
Convex hull 171
CORBA 51, 91, 187, 228, 260
Core 3
Core network 4
Cost per application 210
CPU 167
Cross-boundary service registration 254

Crossing the chasm 184
CS2 97
CSCF 21
CTD (see Click to Dial) 9, 12
Cumulative waveform 173
Customer care 31
Cx interface 23

Data Link 7
Data Network 8
Data session control 92
Data sharing 252
Data Structures 5
DCOM 57, 187
Defensive application design 225
Deregistration 74
Detection Point 6, 98
DFP (see Distributed Functional Plane) 5
DHCP 13
Dial tone 165
Dialup 13
DIAMETER 13, 21
Differentiation 30, 50
Digest 190
Direct cut over 213
Discovery 68, 70, 74, 84
Disjunctive normal form 119
Distributed Functional Plane 5
Distributed SCS 159
DMZ 191
Domain 32
Doppler radar 25
DoRA 18
DP (see Detection Point) 6
Dpx 167
DSA 190
DSC 109
DSL 10, 11
DSP 18
DTD 260
DTMF 100
Dual SCF 156
Dynamic address 13
Dynamic Event Types 73
Dynamic feedback 32
Dynamic leaves 246

e2e 167
E-911 25, 106
E&M 9
e-commerce 115
Ecological unit 4
Economies of scale 245
Ecosystem 4
EDGE 17
EDR 205
EFLT 26
Ellipsoid 104
Embedded approach 150
Emergency number 66

Index 291

EMS 27
Enabler 30
Encryption 7
End-user 35, 37
End-user equipment 7
End-user experience 3
End user service 61, 85
Enhanced call control 93
Enterprise Operator 62, 68, 82, 84
Error 103
ESME 27
ESP 191
ETSI 53, 56
Evaluate overload globally 177
Event Notification 67
Evolution 43
Evolution independence 41, 44
Exceptions 188

Failure handling 184
Fault Management 77, 80, 82
Faynberg 3, 6
FCAPS 143
FCC 106
FDMA 18
Feasibility analysis 30
Feature creep 232
Feature interaction 204, 215
Feature interference 215
Feature parity 3
Federation 251
Filter criteria 23
Firewall 14
Fixed-to-mobile 16
Flat-rate billing 109
Floor control 93
Flow composition 169
FMO 209
Frame relay 19
Framework 51, 92, 117, 66, 69
Framework federation 254
Framework interfaces 67
Framework operator 74
Framework proxy 247
FSM 157, 188, 189
FTP 10
Functional separation 5

G-711 99
Gateway 4, 11, 42
Gateway approach 150
Gateway service 216
GCC(S) 93, 94, 97, 98
Generation 13
Generic call control 93
Generic messaging service 123
Generic user interaction 53
GERAN 21, 42
GGSN 17, 22
Global Title Translation 219

GMLC 26, 46, 104, 142, 168
GPRS 17, 18, 24, 109, 109
gprsSSF 17
GPS 26
Green field 203, 213
Growth spiral 33
GSM 8, 15, 16, 18, 24, 219
GTP 17
GTT (see Global Title Translation) 219

H.248.1 9
H.261 108
H.323 8, 10
HA 183, 228
Handset software 39
Handshake 71, 73, 75, 76
Harmonization 53
Harmonized Reference Architecture 8
Heartbeat management 67, 81, 182
High-speed Internet 10
HLR (see Home Location Register) 16, 17, 19, 21,

27
Home Location Register 16
HSS 21, 22
HTML 9, 25
HTTP 10, 109
Hybrid 150

ICAP 109
I-CSCF 22
ICW 9, 12
Idempotence 114
Identity management 67, 69, 71, 77, 253
IDL 51, 57, 91, 260
IEEE 802.11b 13
IETF 8, 12, 13
iFC 23
IMAPv4 204
I-mode 33
IMS 22, 24, 141, 220
IMS (see IP Multimedia Subsystem) 8, 18, 20
IMSinOMA 20
IM-SSF 141
IN 11, 12, 40, 57
IN (see Intelligent Networking) 5
IN events 96
IN model 32
INAP 6, 8, 9
Information Technology 43
Infrastructure 29
Integrity management 160
Intelligence 3
Intelligent Networking 5
Inter-clone communication 222
Interconnectedness 3
Internet 8, 10
Internet Service Provider 13
Internet Toolkit 32, 41
Interoperability testing 55
Interrupt mode 91, 96, 222

292 Index

Intra-service routing 216
Invariants 226
INVITE 23
IOR 196
IP 8, 10, 11, 12, 17
IP core 18
IP Multimedia Subsystem 8
IPCP 13
IPSec 191
Iptel 9
IRTF 8
ISC 21, 22, 23, 141
ISDN 9, 16
ISOC 8
ISP (see Internet Service Provider) 13, 14
ISUP 6, 8, 19
IT (see Information Technology) 43
ITU 12, 10
ITU (International Telecommunications Union) 8
ITU-T 54
IWF 25

J2EE 57, 91
J2ME 261
J2SE 57, 91, 261
JAIN 54
Java 32
Java realization API 92
Java Vending Machine 39
JSR 22
JWG 49, 143

Kbps 13
Key management 190
Killer application 33

LAI 104, 106
LAN 25, 172
Latency 167, 172
Lat/long 104
Layering 186
LCS 142
Leaf SCS 163
Legacy system 41, 44
Legal intercept 34
Liberty Alliance 253
LIF 26
LIF MLP 136
Load Level 79
Load Level Reports 82
Load Management 69, 78, 80
Load Statistics 80
Load Value 80
Location 24
Location SCS 68, 131
Location-specific content 100
Logic flow 5
Loose coupling 152

M4U 115
Maintenance window 196
Manager pattern 156
Man-in-the-middle 239
MAP 16, 17, 106
Market penetration 31
Markov chain 182
Media Gateway 12, 9
Media Gateway Controller 9
Media stream 93
Megaco 9, 12
Metcalfe’s law 10, 251
Method invocations 63, 64
Middleware 44, 56
MIDL 57, 187
Miller 3
MIN 168
Mixed mode applications 136
Mixed version mode 198
MLP 104
MMCC(S) 93, 94
MMD 20, 145
MMM 123, 124
MMS 27
MMUSIC 9
Mobile IP 20
Mobile Switching Center 6
Mobile-to-fixed 16
Mobility 53
Mobility management 103
Modem pool 13, 14
Modular architecture 89
Moment of change 213
Monitor mode 91, 96
MO-SM 27
MPC 26, 46, 168
MPCC(S) 93, 94, 98, 155
MPEG 99, 108
MS (Mobile Station) 25
MSC 15, 16, 19, 42
MSC (see Mobile Switching Center) 6
MSISDN 168
MTBF 181, 186
MT-SM 27
MTTF 181
MTTR 181, 186
Multimedia message 269
Multi-party call control 59, 73
Multi-vendor environment 49, 184
Murphy’s Law 181
Mutual authentication 67, 70, 190
MVE (see Multi-vendor environment)

49
MVNO 30, 245, 256, 257

NAR 213
NAS 13
Native protocol 150
Navigation 139
NEBS 181
Nested SCF 156

Index 293

Nesting 153
Network 3
Network assisted GPS 26
Network Event 62, 64–66
Network environment 8
Network footprint 204
Network level security 191
Network operation 62, 64–66
Network operator 29, 34, 37, 70, 71
Network protocols 63
Network status 108
Network to Network Interface 7, 7
New work before old 176
N+K sparing 182, 228
NNI (see Network to Network Interface) 7, 8
Non-call related user interaction 100
NTP 222
N-type trigger 220
N-way simplification 205

OA&M 99
OAM&P 167, 206
O-BCSM 94
Off-hook event 110
Offline agreement 82
OMA 20, 24
OMG 51, 91, 260
Operation Set 73
OPES 109
OPEX 41, 44, 229
OPIUM 56
Optimization 150
ORB-gateway 191
OSA 10, 21
OSA Gateway 22
OSA/Parlay 26, 54
OSI 8, 10, 191
OSI model 7
OSS 41
Overlapping trigger criteria 97, 222
Overload 162
Overload handling 174

PAM 131
Parallel redundancy model 182
Parlay 5, 10
Parlay API 21
Parlay ecosystem 71, 127
Parlay events 96
Parlay Gateway 82
Parlay Group 139
Parlay pedigree 89
Parlay Proxy Manager 163, 239
Parlay triangle 61, 62, 77, 94
Parlay value chain 129
Parlay WSDL 259
Parlay-WSDL 40
Parlay X 259
Parlay-X 40
Payload 7

Payment 268
Pay-per-Use 207
PCF 24
P-CSCF 22
PDA 34
PDE 26
PDP 20
PDP Context 17
PDSN 24
PDU (see Protocol Data Unit) 7
Peer-to-Peer 33
PEP 189
Performance 166
Periodic request 103
PGA 110
Phone company 29
Physical 7
PIC (see Point-In-Call) 6
PIN 100
PINT 9, 12
Plain Old Telephone Service (POTS) 4
PLMN 141
PLMN (see Public Land Mobile Network)

10, 12
Plug-tests 185
PMO 209
Point-In-Call 6
Policies 66
Policy 189
Policy engine 115
Policy information model 115
Policy management 115
Policy Management SCS 66
Policy rule 115, 118
POP 13
POSIX 230
POTS (see Plain Old Telephone Service) 4
PPP 13
Presence 24
Presence and availability management

108, 120
Presentation 7
Primary SCS 163
Product differentiation 223
Programmable network 40
Proof 207
Proposition 207
Proprietary SCS 124
Protocol 7
Protocol bindings 234
Protocol Data Unit 7
Protocol mapping 59
Proxy 219
Proxy architecture for upgrades 198
Proxy-level federation 255
Pseudo-code 229
PSTN 9, 10, 11, 12, 16, 24
PSTN call 63
Public Land Mobile Network 10

QoS 92, 115

294 Index

Race condition 222
Radio Access Network 15
Radio frequency 15
RADIUS 13
RAN 42
RAN (see Radio Access Network) 15
Reference Architecture 7, 29
REGISTER 23
Registration 68, 72
Registration interfaces 68
Releases 90
Reliability 114
Request 103
Response 103
Retailer 52
Retry semantics 114
Revenue-generating 32
Revenue settlement 257
Roaming 165
RSA 190
RTP 11
RTT 172, 229
R-type trigger 220
Russell 9

SAG 83
SAP (see Service Access Point) 7, 186
SCF (see Service Capability Feature) 92, 103, 108,

124
SCF (see Service Control Function) 6
SCF super-type 154
SCIM 23, 24, 220
SCM (see Service Combination Manager) 217
SCP (see Service Control Point) 5, 8, 9, 12, 17, 19,

21, 22, 42
SCS proxy 250
S-CSCF 22
SCTP 9
SDF (see Service Data Function) 6
SDK 135, 205
SDP (see Service Data Point) 6
SDR 205
Secondary service 216
Security 189
Self-test 81
Semantic 56
Service 40, 51
Service Access Point 7
Service Agreement Management 67, 69
Service brokering 23
Service capability 41, 61
Service Capability Function 61
Service Capability Server 61
Service clone 221
Service Combination Manager 217
Service Contract 82
Service control 8
Service Control Function 6
Service Control Point 5
Service Data Function 6
Service Data Point 6
Service degradation 173

Service Description 83
Service Discovery 67, 74
Service End Date 82
Service Factory 74
Service granule 216
Service ID 73, 154
Service Instance 72
Service Instance Lifecycle Manager 74
Service Instance Lifecycle Manager (SILM) 117
Service Interaction Manager 215, 217
Service layer 38
Service level feature interaction 220
Service Manager 76
Service Mediation 149
Service Mediation Gateway 22, 24, 45, 100, 117,

167, 168
Service Name 73
Service Node 134
Service Profile 83
Service provider 34, 37, 52
Service Selection 76
Service Session 67, 69
Service supplier 52, 62, 68, 73
Service Supplier ID 73
Service Switching Function 6
Service Switching Point 6
Service Token 76
Service Version 73
Services 30
Services layer 3, 4
Session 7
Session control 40
sFC 23
SGSN 17
Shared hosting 44
Shed load at the periphery 176
SIBB 32
Signaling 7
Signaling protocols 7, 15
Sigtran 9
SILM 154, 158, 191, 257
SIM 108, 219
Single plug 37
Single point of control 98
Single point of failure 242
Single Sign On (SSO) 253
SIP 9, 11, 21
SIP AS 22, 23
SIP CGI 22
SIP CPL 22, 264
SIP events 96
SIP Servlets 22
SIPPING 9
Skype 10
SLA 117, 118, 215, 242
SMDPP 27
SMG (see Service Mediation Gateway) 22, 42, 43,

46, 97, 172, 180, 183, 190, 190, 191, 192, 209,
213, 217, 230

Smoke-stack 38, 40
Smoke Stack 127
SMPP 19, 27, 100, 131
SMS 26, 100, 109, 269

Index 295

SMS gateway 27
SMSC 27
SMTP 10, 19, 204
SOAP 260
Software development lifecycle 30
SPAM 9
SPAN 53
SPIRITS 9, 12
Spread spectrum 18
Square peg and round hole 37
SRF 101
SS7 9, 10, 16, 219
SSF (see Service Switching Function) 6
SSL 191
SSL-pack 191
SSP (see Service Switching Point) 6, 8
Stage 1 139, 2 139, 3 139
Standards 49, 8
Standards bodies 8
State checkpointing 183
State machine 5
STP 15, 42
Subscriber base 30, 213
Subscription 34
Subscription Assignment Groups 82
Subscription data 84
Subscription Model 82
Switch 4
Switching 3
Switching element 6
Switching fabric 5
Switch-side feature 5
Synchronization 7, 16, 157
Syntactic 56

TACACS 13
TAT 172
TCAP/IP 17
TCP 10
TDM 6
TDMA 18
Technological chasm 184
Technologies 3
Technology co-existence 213
Telecom 31
Telecommunications 3
Telecommunications networks 3
Telephony 4
Terminal capabilities 108
Terminal Location 266
Terminal Server 14
THIG 22
Third Party Call 267
Thread pool 230
Threading model 230
Throw-away work 232
Tiered communication architecture 50
Tiering 162
Time to market 30
TINA 50, 51
TINA-C 50
TLS 191

TPS 167, 181
Transaction 32, 168
Transaction mix 170
Transcoding 12
Transmission 7
Transport 7
Trapdoor function 190
Trigger 100, 98
Trigger Address List 15, 42
Trigger contention 204, 213, 215
Triggered report 103, 162
Triggered UL 155
Trunks 5
TSAS 51
TTL 158
Tunnel 191
TUP 9
Two cans and string model 4

UDDI 260, 262
UDP 10
ULP (see Upper Layer Protocols) 7
UML 51, 56, 57, 91, 260
UMTS 8
Underlying network 63, 64
UNI (see User to Network Interface) 7, 8
Upgrade 193
Upgrade type 193
Upper Layer Protocols 7
Urban canyon 15
URL 109
User location 103
User location CAMEL 104
User location emergency 106
User status 106, 266
User to Network Interface 7
USSD 100, 109
UTRAN 21, 42

Value-added extension 124
Value-chain 38, 39
Veritical integration 31
Versioning schemes 57
Versions 90
VHE 53, 141
Video conferencing 123
Virtual Network Operator 30
Visited Location Register 16
VLR 104
VLR (see Visited Location Register)

16, 17
VNO (see Virtual Network Operator) 30
Voice over Internet Protocol 10
Voice-VPN 32
VoiceXML 100, 264
VoIP (see Voice over Internet Protocol)

10, 12, 18
Vonage 10
VPN 123, 191
VPN (see Virtual Private Network) 32

296 Index

W3C 91
WAN 25, 172
WAP 3, 24, 131
WAP-binary 24
WAP Push Proxy 100
W-CDMA 54
Web Service 260
WGS84 104
White box 50
WiFi 13
Wireless 3
Wireless Network 6, 13
Wireless Service Provider

38, 208

WML 19, 25
Working Groups 8
WRU 106
WSDL 57, 260
WSP 24
WTLS 24

X.25 17
XMI 260
XML 26, 57, 260
XML-RPC 261
Xpd 167
XSD 260

