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“In this wonderful and compulsively readable book, Jennifer Ouellette finds the signature of
mathematics—and especially calculus, of course—in the most unexpected places, the
gorgeously lunatic architecture of Spain’s Antoni Gaudi, the shimmering arc of waves on a
beach. Just following her on the journey is half the fun. But the other half is learning about the
natural beauty and elegance of calculations. Ouellette’s ever clear and always stimulating voice
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idea humans have ever thought. (Yes, calculus is that big: it’s all about understanding how
things change in space and time, and there just isn’t much that’s more important than that.)
Ouellette’s wit, her elegant wielding of metaphor, and her passion for both math and funky
culture produce this crucial insight: every equation tells a story, she says, and she’s right, and
the tales she tells here will captivate even the most math-phobic.”
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“Back in the day, when I was close to flunking out of calculus class because I couldn’t
understand why it was worth my valuable time to actually understand it, I needed someone like
Jennifer Ouellette to gently explain how I wrong I was. She’s like every English major’s dream
math teacher: funny, smart, infected with communicable enthusiasm, and she can rock a
‘Buffy’ reference. In this book, she hastens the day when more people are familiar with an
integral function than with Justin Bieber.”

—Peter Sagal, host of NPR’s Wait Wait . . . Don’t Tell Me! and author of The Book of Vice

 



 
“As amusing as it is enlightening, The Calculus Diaries is no dry survey of abstractions. It’s a
guide to everyday life—to car trips and roller-coaster rides, diet and exercise, mortgages and
the housing bubble, even social networking. As Ouellette modestly recounts her own learning
curve, she and her husband become characters alongside eccentrics such as Newton and Gaudi
and William the Conqueror. Like a great dance teacher, Ouellette steers us so gently we think
we’re gliding along on our own.”

—Michael Sims, author of Adam’s Navel: A Natural and Cultural History of the Human Form

 
 
“Zombies? Surfing? Gambling? Nobody told me calculus could be like this. To my twelfth-
grade math teacher: I demand a do-over!”

—Carl Zimmer, author of Parasite Rex and The Tangled Bank: An Introduction to Evolution

 
 
“Like the movies Batman Begins, Spider-Man, or Superman, The Calculus Diaries is the story
of how an insightful, creative, and hard-working young person acquires superpowers and uses
them for the benefit of society. Only this tale is true: Jennifer Ouellette can’t fly or spin a web,
but she can spin a yarn. The Calculus Diaries documents the author’s seduction by
mathematics and her conquering of it—Eureka!—to see the world with sharper vision. For too
many people, math—calculus in particular—is an albatross. But Ouellette reveals math for
what it is: a powerful tool for solving problems and the exquisite language we use to describe
nature. Reading this book will make you smarter. And more powerful.”
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For Sean, the sine to my cosine.



Neglect of mathematics works injury to all knowledge, since one who is
ignorant of it cannot know the other sciences, or the things of this world.
And what is worst, those who are thus ignorant are unable to perceive their
own ignorance, and so do not seek a remedy.
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PROLOGUE

I Could Be Mathier

Xander: Giles lived for school. He’s actually still bitter that there are only twelve grades.

Buffy: He probably sat in math class thinking, There should be more math. This could be
mathier.

—“THE DARK AGE,” 
Buffy the Vampire Slayer

 
 
 
Archimedes of Syracuse was the quintessential math nerd. Granted, he
invented many practical devices, including devastatingly effective engines
of war that helped Syracuse beat back an attack by the Roman general
Marcellus in the siege of 212 B.C.—at least temporarily. But his one true
love was pure mathematics, especially geometry. The Roman historian
Plutarch tells how Archimedes’ servants had to forcibly bathe their
preoccupied master, who would sketch geometrical figures in chimney
embers, and in the oils that anointed his naked body after bath time.

That single-minded obsession proved to be his downfall. Eventually
Marcellus overcame Archimedes’ ingenious defenses, and Roman soldiers
swarmed through the city of Syracuse. Historical accounts report that
Archimedes was so engrossed in studying a geometric figure he’d drawn in
the dust that he barely noticed the chaos around him. A Roman soldier “in
quest of loot” marched up to the scholar and demanded that Archimedes
accompany him to Marcellus’s tent. Archimedes demurred, saying he
wished to finish solving his geometrical problem first: “I beg you, don’t
disturb this.” Incensed, the soldier summarily killed him, so that “with his
blood he confused the lines of his art.”1



This account of the death of Archimedes provided inspiration centuries
later, when a young French girl named Sophie Germain read the story in the
late eighteenth century. She concluded that if someone could be so
consumed by a geometric problem, then geometry must be the most
fascinating subject in the world. So Germain set out to learn it, defying her
family’s strictures by studying math in secret under the bedclothes at night.
Later she masqueraded as a male student at the École Polytechnique in
Paris (girls were not admitted), and by the time she died of breast cancer in
1831, she was a highly accomplished mathematician.2

The soldier who killed Archimedes wasn’t quite so inspired. Perhaps
Archimedes reminded him uncomfortably of his high school math teacher,
who may have ridiculed the soldier’s failure to grasp the fundamentals of
geometric proofs in front of snickering classmates. All that pent-up
resentment and frustration boiled over into an impulsive act of rage, making



the Greek scholar an early casualty in the longstanding war between jocks
and nerds.

Pure conjecture, naturally, but many of us can relate—even more so
when we learn that Archimedes came dangerously close to inventing
calculus. Two thousand years later, traumatic memories of high school
calculus evoke powerfully negative reactions among people of all ages,
genders, and backgrounds. Most people would rather be strung up by their
thumbs and systematically tortured with sharp, pointy objects than be
forced ever again to find the antiderivative of a polynomial. Math in
general, and calculus in particular, is something to be avoided like the
plague once we leave high school. An episode of the TV series House
opens with a group of students taking the AP calculus exam. A boy
collapses and is rushed to the hospital. When House is told of the
circumstances of the boy’s collapse, he quips, “That’s the way calculus
presents.”

So calculus has a formidable reputation. I have always been among those
nonmathematical sorts who viewed it with trepidation and preferred to keep
a safe distance. In fact, I avoided taking calculus altogether by cleverly
skipping out on my senior year of high school for early admission to
college. Since I am a science writer who specializes in physics topics, it
surprises many people to learn that I have a lingering phobia about math.
Chalk it up to my English-major roots, but the sight of even a simple
algebraic equation still elicits an involuntary shudder, unless I consciously
counteract it.

I am not alone in my ambivalence. My friend Allyson, in particular,
seems to be a kindred spirit to that long-ago Roman soldier. “My initial
reaction to the word calculus is not unlike a caveman throwing rocks at the
moon in ignorance and fear resulting in blind rage,” she confessed when I
asked about her aversion to all things math. “There is no such thing as
ghosts creeping up behind me on the stairs, but there is such a thing as a
polynomial monster, and it has hooked teeth and causes chronic yeast
infections, I’m sure.”

Our stubborn resistance to calculus is not entirely rational. Frankly, most
of us don’t even know what calculus entails; its reputation for being
difficult and unpleasant precedes it. Calculus is quite simple and
straightforward in concept; the devil is in the details. Essentially it’s a way



of measuring change, whether it be change in position, temperature, or what
have you. Its power comes from its universality: The same basic concepts
can be applied to systems as diverse as a car driving down a road, the stock
market, the Black Death, or surfing. That’s why calculus textbooks are so
thick.

Calculus boils down to two fundamental ideas: (1) the derivative
(differential calculus), which is a way of measuring instantaneous change,
such as finding the speed of a car when you only know its position; and (2)
the integral (integral calculus), which describes the accumulation of an
infinite number of tiny pieces that add up to a whole and can be used, for
instance, to determine the distance a car has traveled when only its speed is
known. Everything else is just a variation on these two themes. The
derivative and the integral are like the two ends of a hammerhead: One is
for pulling out the nails, and the other is for pounding them in. The first is a
process of subtraction and division; the second, a process of multiplication
and addition. Each “undoes” the work of the other. And not every math
problem requires a hammer; sometimes a screwdriver works best. So
calculus is just one tool in a broad arsenal of mathematical instruments,
applicable to specific kinds of problems.

I explained this to Allyson, who responded with an incredulous, “That’s
it? Why can’t math teachers just say that?” In fairness, they probably do;
they just say it in a foreign language. Galileo famously observed, “Nature’s
great book is written in mathematical symbols.” Unfortunately, to the
untrained eye and ear, that language resembles ancient Sanskrit, and math
teachers may as well be speaking gibberish. Most of us never get past the
strange symbols and jargon, and thus meander through life without any
quantitative tools beyond basic arithmetic. We can balance a checkbook, but
have no grasp of statistics, compound interest, or probability, for example—
and this puts us at the mercy of those who do understand them, and thus can
manipulate us at will. Knowledge is power, and we forfeit that power when
we choose to remain willfully ignorant.

The inability to grasp basic algebra and calculus also can be a stumbling
block to many students who otherwise would wish to become scientists.
Take my friend Lee, whose struggles with algebra in high school—despite
top grades in all her other classes—reduced her to tears, and kept her from
becoming a marine biologist. She still loves science, but has a visceral



hatred of mathematics to this day. “It wrecked my self-confidence in a way
nothing else ever did, and still knots my stomach,” she told me. “I’m not
totally innumerate, but anything that looks like an equation makes me break
out into a cold sweat and run screaming in the other direction.”

Ironically, given my distaste for the subject, I succeeded at math, at least
by the usual evaluation criteria: grades. Yet while I might have earned top
marks in geometry and algebra, I was merely following memorized rules,
plugging in numbers and dutifully crunching out answers by rote, with no
real grasp of the significance of what I was doing or its usefulness in
solving real-world problems. Worse, I knew the depth of my own
ignorance, and I lived in fear that my lack of comprehension would be
discovered and I would be exposed as an academic fraud—psychologists
call this “impostor syndrome.”

I might have gone through the rest of my life cringing compulsively at
the mere sight of an equation. But I became a science writer and fell in love
with physics—not the math part, mind you. I loved the rich history, the
people, the funky experiments, and the big ideas. One fateful day, I asked a
physicist named Alan why it was true that all objects fall at the same rate,
regardless of mass, when casual observation would seem to indicate the
opposite. It seemed counterintuitive to me.

This is the basis of a famous experiment proposed by Galileo. If you drop
a coin and a feather under normal (atmospheric) conditions, the coin will hit
the ground first. But Galileo reasoned that another force—air resistance—
slowed down the feather’s descent because it had more surface area than the
coin. In a vacuum, there would be no air resistance, so all objects would
accelerate equally. He didn’t have the techniques for creating a vacuum
back then to test his hypothesis, but Isaac Newton derived Galileo’s
assertion mathematically in the seventeenth century.

Today, vacuum technology is commonplace, and the coin-and-feather
experiment is a staple of physics demonstrations. I had witnessed one such
demonstration, so I knew from experience it was true that objects fall at the
same rate regardless of mass—or did I? I hadn’t built and performed the
experiment myself. How could I know it wasn’t some kind of trick, or a
mistake in the experimental setup?

Alan pondered a moment, stroking his beard, and then pointed out that I
need not take the matter on faith. It would become obvious to me why this



was so if I allowed him to walk me through the equation.
I resisted. Alan persisted: “It’s not real math; it’s just algebra.” He wore

me down eventually, and he was right. On his office whiteboard, he
patiently demonstrated how the little m—for the mass of the object, as
distinct from a big M for the mass of the Earth—on each side of the
equation effectively cancels out, making an object’s mass irrelevant to the
rate of acceleration. And I had my first epiphany that math might actually
be relevant to my life: Among other advantages, mathematics can help us
better grasp the more counterintuitive notions in physics. It is certainly
possible to do so without the benefit of algebra or calculus, but when I saw
that equation worked out, some final piece of insight clicked into place that
I hadn’t even realized was missing. Math finally had a meaningful context.

So began a gradual lowering of my knee-jerk defenses against numbers
and abstract symbols, and the start of a grudging appreciation for the role of
mathematics in the “real world.” It was a tantalizing glimpse into a whole
new way of looking at reality, and for the first time in my mathephobic life,
I wanted to learn more. Armed with a few books,3 a DVD lecture series
from the Teaching Company, and the support of my physicist spouse, I set
out to discover what I’d been missing all those years.

Once I started delving into calculus, I realized that this seemingly arcane
subject is applicable to everything from gas mileage, diet and exercise,
economics, and architecture to population growth and decline, the physics
behind the rides at Disneyland, the probabilities associated with shooting
craps in a Vegas casino—even the I Ching. In fact, one could argue that we
all do some form of calculus all the time, without realizing it. A baseball
outfielder has to estimate where the ball is likely to land after the batter hits
it. Whether he knows it or not, his brain is calculating the trajectory of that
ball, then sending a signal telling the outfielder where to place himself in
order to make the catch. Lurking somewhere in that process is a calculus
problem. Or two.

Even lowly worms do calculus, according to a University of Oregon
biologist named Shawn Lockery. He’s studied roundworms to figure out
how they use their sense of taste and smell to navigate as they forage for
food. He compares the approach to the game of hot-and-cold one might
play with a child, in which one says, “You’re getting warmer (or colder)” to



help said child home in on the target. Roundworms do this, too, changing
direction in response to feedback, but they get their feedback by calculating
how much the strength of different tastes—in this case, salt concentrations
—is changing. In calculus terminology, the worms take a derivative to
figure out how much a given quantity is changing at a certain point in space
and time, and adjust their behavior accordingly.

If worms can do calculus, human beings simply have no excuse for
avoiding it. I think scientists have a valid point when they bemoan the fact
that it’s socially acceptable in our culture to be utterly ignorant of math,
whereas it is a shameful thing to be illiterate. We could all be just a little bit
mathier. We don’t all need to become mathematical prodigies, but we ought
to have some basic understanding of how math in general, and calculus in
particular, fits into our cultural framework, and be able to look at a
rudimentary equation without breaking into a cold sweat. It is an integral
part of our intellectual history, after all.

William Benjamin Smith, a math professor in the late nineteenth century,
observed in the preface to his book Infinitesimal Analysis, “Calculus is the
most powerful weapon of thought yet devised by the wit of man.” Far from
being some static, dead set of rules to be memorized and blindly followed,
calculus is almost an organic entity. Watch any physicists work a problem,
and you’ll see its extraordinary flexibility: They play fast and loose with the
numbers, simplifying and rounding up as needed to complete the task at
hand. They adapt calculus to their needs—not the other way around. The
act of devising a calculus problem from your observations of the world
around you—and then solving it—is as much a creative endeavor as writing
a novel or composing a symphony. Those things are not easy, nor should
they be. As with any art form, the best way to learn and improve is by
diligently practicing that art.

In college, I proudly flaunted my mathematical ignorance by sporting a
T-shirt reading, “English major—you do the math.” I never realized, until
much later, that this defensive, belligerent attitude stood in the way of
acquiring genuine understanding. I have a new T-shirt now to symbolize my
change in mind-set: “You mess with calculus, you mess with me.”
Archimedes certainly felt that way about his geometric diagram.
Mathematics, he knew, was universal, eternal, and to his mind, far more
precious than life.
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To Infinity and Beyond

You take a function of x and you call it y, Take any
x-nought that you care to try, Make a little change
and call it delta-x, The corresponding change in y
is what you find nex’, And then you take the
quotient and now carefully Send delta-x to zero,
and I think you’ll see That what the limit gives us,
if our work all checks, Is what we call dy / dx, it’s
just dy / dx.

—TOM LEHRER, “The Derivative Song”

 
 
 
You never know what you’ll find moldering in a musty old attic: forgotten
photo albums, moth-eaten vintage clothing, discarded toys—or maybe a
rare mathematical manuscript disguised as a humble prayer book. That’s
what one French family discovered in the closet one day in the late 1990s: a
battered and smudged prayer book with the faint outlines of Greek lettering
in the margins, along with an occasional diagram. Sensing a potentially
significant find, the family brought the book to Christie’s auction house of
London for appraisal. It proved a financially astute move: in 1998 the
prayer book sold for $2 million.

What was so special about a tattered ancient prayer book? It took
numerous scientists, digital photography under different wavelengths of
light, and a spot of x-ray fluorescence imaging to fully decipher the
mystery.4 Almost a decade of intensive scientific analysis revealed that
lying just under the surface text of those prayers are the scribblings of



Archimedes. Not just random musings, either: It was two lost texts by the
great mathematician, including one, entitled The Method, that constitutes
the earliest known written work on what would later develop into integral
calculus.

Archimedes wrote The Method on a scroll of papyrus over two thousand
years ago. Eventually someone copied the text onto animal skin parchment
and then set the copy aside to molder in a library in Constantinople until
1229 A.D. It was standard practice in medieval times to reuse parchment, so
one day, when a monk named Johannes Myronas needed fresh writing
materials, he recycled this papyrus, scraping the surface to remove the old
ink and copying his prayers over the remains of the original text. No one
knows what happened to the prayer book after that, but it ended up in the
possession of a Danish philologist named John Ludwig Heiberg in 1908
while he was visiting that Constantinople library. Heiberg was the first to
study the not-quite-erased text under a microscope in hopes of deciphering
it. He finished an initial (incomplete) transcription, at which point the book
disappeared again, until it was uncovered in that dank French closet ninety
years later.

To fully appreciate the significance of this discovery, one needs a bit of
historical context. It all started with the problem of curves. In the beginning,
there was Euclid, whose geometrically simple world consisted of tidy
planes, clean straight lines, and points, with an arc or a circle tossed in now
and then, just to add a bit of variety to the mix. It was all lovingly laid out
in a thirteen-volume treatise called the Elements, perhaps the most
influential mathematical text of all time.5 Conspicuously lacking in
Euclid’s collection of geometric postulates and axioms were curves. He was
certainly familiar with curvy shapes. There is evidence in the writings of a
later Greek mathematician, Apollonius of Perga (circa 160 B.C.) that Euclid
studied cross sections of cones, although any treatise he may have written
on the subject has not survived.

Cones slice and dice into four basic curves: the circle, the ellipse, the
parabola, and the hyperbola. What curve you get depends on the angle of
the plane as you’re slicing. A simple horizontal slice, for instance, will yield
a circle. Tip the plane very slightly, and that circle becomes an ellipse. Tilt
the plane such that it runs parallel to one side of the cone, and that ellipse



becomes a parabola. Finally, if you tilt the plane so that it intersects the
second cone, you end up with a hyperbolic curve.

There are many other kinds of curves, of varying complexity, but they are
much more than mere geometric curiosities. Curves are geometry in
motion. A pendulum swinging back and forth forms the arc of a circle. A
falling apple forms a parabola, as does the trajectory of a baseball. The
planets move about the sun in elliptical orbits, while many comets move in
hyperbolic orbits. A spring bouncing in the absence of friction forms a
periodic sine wave. All these types of motion can be represented
graphically by a smooth, continuous curve, and that curve in turn can be
used to make predictions about the trajectory (path) of a moving object.
That makes geometric curves central to the realm of calculus, so naturally
that’s where I started in my mathematical quest.

DANGEROUS CURVES

Archimedes liked to invent things, and he had a particular knack for
fashioning ingenious weapons of war. Legend has it that he built an array of
gigantic mirrors of bronze or glass and arranged them in such a way that
they were capable of collecting, focusing, and redirecting the sun’s rays in
order to set enemy ships on fire from a distance—a scaled-up version of



frying bugs by focusing sunlight onto them with a magnifying glass.
Ancient historical accounts report that he turned this ingenious “death ray”
device onto invading Roman ships during the siege of Syracuse in 213 B.C.,
reducing them to cinders.6

The best shape for an array of mirrors in order to accomplish this is a
parabola. Being a thorough sort of inventor, Archimedes set about figuring
out how to determine the area under that particular curve. Curves were
knotty problems in Euclidean geometry. It’s a simple enough matter to
determine the area of a triangle or a rectangle, with their clean, straight
lines, but ancient mathematicians wrestled mightily with a means for
determining the area under a curve. One hundred years or so before
Archimedes, a Greek astronomer and mathematician named Eudoxus of
Cnidus figured out that while one couldn’t calculate the area under a curve
exactly, it was possible to approximate that area by filling it in with a
succession of rectangles (see above).

Now you just need to figure out the area for each of those rectangles by
multiplying the width by the height. Then add them up, and the result is a
rough estimate of the area under the curve. That is known as a first
approximation. We refine our calculation by filling in that same area under
the curve with a succession of smaller rectangles, determining their areas,
and adding those values together. The smaller the rectangles, the more will
be needed to fill in that space, and the closer we will get to the actual area.



So we do a third iteration, then a fourth, our rectangles getting smaller and
smaller each time, until we collapse in fatigue. Eudoxus called this the
“method of exhaustion,” and never was a term more apt. Very little is
known about Eudoxus, but he studied under Plato in his youth, walking
seven miles each way from his home in Piraeus to attend Plato’s lectures, so
he was accustomed to exhaustion.

Archimedes found himself adapting Eudoxus’s method to design his
ship-incinerating death ray. He knew quite well how to determine the area
of a triangle. So Archimedes drew a triangle inside the parabola, leaving
two small gaps. He then drew two smaller triangles inside those gaps,
leaving four even smaller gaps, and continued to draw ever-smaller
triangles to fill the ever-smaller gaps. Then he calculated the area of each
triangle and added them together to get an approximation of the area under
the parabola.

Even though the end result was an approximation, it was close enough to
the precise area to suit the Greek inventor’s needs. More important, it was a
critical first step toward defining calculus. With each iteration in the method
of exhaustion, the triangles become smaller and smaller, and thus it takes
more and more of them to fill the area under the curve. When the number of
triangles (or rectangles, in Eudoxus’s original method) becomes infinite,
that is the point where we get the exact area under the curve. And that
process of summing up an infinite series of things is the essence of integral
calculus.



Archimedes actually may have been less successful at building a viable
death ray than he was at estimating the area under a curve. Numerous
attempts have been made over the years to re-create this supposedly pivotal
moment in the siege of Syracuse, most recently in 2005 by a team of
engineering students at MIT. The team built an enormous bronze and glass
reflector on the edge of San Francisco bay and tried to focus sunlight onto a
small fishing boat about 150 feet away, in hopes of setting it on fire. This
didn’t work. So the MIT engineers moved the boat closer, to around 75 feet.
This time they managed to create a small fire, although it quickly fizzled
out.

Part of the problem was cloud cover; the mirrors only work when the sun
is shining. Since Syracuse faced east toward the ocean, Archimedes’ device
would have only been useful in the morning. Then there is the time factor:
the death ray did not work quickly. Shooting flaming arrows at the Roman
ships anchored in the harbor would have been far more practical and
efficient. That was the conclusion of TV’s Mythbusters, who issued the
challenge to MIT after failing in their own attempt to re-create the boat-
burning. Executive producer Peter Rees told the Guardian that the tale of



Archimedes’ death ray is mostly likely a myth: “We’re not saying it can’t be
done. We’re just saying it’s extremely impractical as a weapon of war.”

Even if the weapon proved impractical, the exercise of creating it gave
Archimedes some valuable insights into geometric curves. His array of flat
mirrors formed a makeshift parabola out of straight lines; together they
approximated a parabolic curve. Magnify any curved line sufficiently, and it
looks more and more like a straight line with each level of magnification.
Archimedes realized he could view a circle, for example, dynamically as an
accumulation of an infinite number of smaller pieces added together—
triangles, again, in this case—rather than as a static, unchanging whole.

This is the method he used to prove how to find the area of a circle: half
the product of its radius and its circumference. It’s now a standard maxim in
geometry textbooks. It worked out so well that Archimedes later adapted
Eudoxus’s method to calculate the volume of a sphere (a three-dimensional
circle) by enclosing it in a cylinder. He considered this solution his greatest
achievement, even asking that his tomb be adorned with a sphere contained
in a cylinder. Historical records indicate that Cicero, while visiting Syracuse
in 75 B.C., located the tomb of Archimedes, which did indeed feature a
sphere inside a cylinder.

The problem with the method of exhaustion is that the process literally
could go on forever. One would never be able to calculate the exact area
under a given curve, because how can one draw an infinite number of
rectangles or triangles? Managing infinity is a crucial achievement of
calculus. The ancient Greeks had an imperfect understanding of the concept
of infinity, as do most of us encountering calculus for the first time. It’s not
something easily grasped by our finite human minds. So Archimedes’
methodology still fell short of actually inventing integral calculus. Perhaps
he might have done so, had he not run afoul of that hotheaded Roman
soldier. “Killing Archimedes was one of the biggest Roman contributions to
mathematics,” Charles Seife drily observes in Zero: The Biography of a
Dangerous Idea. “The Roman era lasted for about seven centuries. In all
that time, there were no significant mathematical developments.”

PICTURE THIS



While European mathematics languished in the medieval wilderness, a
veritable renaissance was brewing in the East—specifically the rise of
Baghdad as a cultural mecca for science and mathematics in the ninth
century. The driving force behind this intellectual rebirth was the caliph
Hārūn ar-Rashīd, who ruled the Islamic Empire from 786 to 809. He
insisted on translating the greatest ancient works on math and science from
around the world into Arabic—not just the work of the ancient Greeks, but
also the achievements of scholars in India, South Asia, and China. His
successor, Abu Jafar al-Ma’mūn, went one step further and established the
House of Wisdom (Bayt al-Hikma), a scholarly “think tank” to bring
together the Islamic world’s greatest minds.

One of those minds belonged to Abu Jafar al-Kwarizmi, whom we can
blame for the development of modern algebra. He dreamed up how to use
an equation to describe an unknown, the original x factor. He’s the guy who
invented that tedious exercise of “balancing” both sides of an equation by
adding, subtracting, or dividing by the same amount on both sides, a plague
for high school students to this day. He called his brainchild “comparing
and restoring.” Since the Arabic word for “restoring” is al-jabr, today we
know this discipline as algebra.

Al-Kwarizmi did this without the benefit of one little character, literally,
that we’ve come to take for granted. The equal sign didn’t exist until the
sixteenth century.7 He didn’t use modern algebraic notation, either. Instead,
he expressed his unknowns in words rather than variables, and his equations
in sentences. In essence, that is what a mathematical equation is: a sentence
reduced to a symbolic shorthand so that the quantities can be more easily
manipulated. Algebra is about symbols, while geometry is about shapes, yet
they share a mathematical connection, even though it would take another
several hundred years after al-Kwarizmi’s work before East and West
merged. Two French mathematicians, Pierre de Fermat and René Descartes,
definitively proved the geometry-algebra connection in the early
seventeenth century, thereby forging a crucial link in the development of
calculus.

The son of a leather merchant, Fermat was a lawyer by profession,
working as a counselor to Parliament in Toulouse. He rose quickly through
the ranks, aided by the high death rate of that era, when outbreaks of the



plague swept through the city frequently. Fermat himself contracted the
plague at one point, but proved to be one of the lucky few to survive.
Eventually he became a judge near Toulouse, at a time when heretical
priests were routinely burned at the stake. I’d surmise that the intellectually
minded Fermat appreciated the fact that judges were discouraged from
social interactions, lest they be swayed in their verdicts by conflicts of
interest. This freed him to spend most evenings holed up in his study,
poring over mathematical proofs to his heart’s content.

Sometime in the 1620s, Fermat first encountered a work of Apollonius of
Perga called Plane Loci, exploring two-dimensional curves. Fermat set
about proving (in the rigorous, mathematical sense) some of his ancient
colleague’s results. He discovered that geometric “statements” of the
ancient Greeks could also be rendered algebraically—essentially translating
them into x’s, y’s, and the other accoutrements of symbolic equations.

Any geometric object—a square, a triangle, a curved line—can be
represented by an equation. These are the formulae we all had to memorize
in geometry class: a circle is y 2 + x2 = a 2, for example, while
Archimedes’ killer parabola is y = ax2. Points on a graph are noted as sets
of numbers inside parentheses (x, y) representing a point in space. The x
indicates how far along the horizontal axis a point is located from a point of
origin (0). The y does the same on the vertical axis. If you generate enough
points from the equation and connect the dots, you end up with a curve. The
more points you plot on your Cartesian grid, the smoother the resulting
curve will be.

We know these as Cartesian coordinates because the introverted Fermat
procrastinated on polishing his work into a publishable format; his ideas
didn’t appear until 1637, with the publication of Introduction to Plane and
Solid Loci. That same year, Descartes covered much of the same ground in
a separate treatise entitled simply, Geometry. Born in 1596, Descartes lost
his mother to tuberculosis when he was barely one year old. His father, a
member of his provincial parliament, trusted his son’s education in
philosophy and mathematics to the Jesuit priests at a college in La Flèche.
But after earning a degree in law in 1616, Descartes “abandoned the study
of letters,” opting instead to travel the world to gain as varied experience as
possible.



Yet he retained an interest in philosophy and mathematics, and actively
pursued knowledge in both. One day, the story goes, he lay on his bed
watching a fly buzzing through the air. Descartes realized that its position at
any moment could be described by three numbers representing its distance
along each of three intersecting, mutually perpendicular axes
(corresponding to the lines formed by the intersection of the room’s walls in
a corner). This insight formed the basis of the Cartesian coordinate system.
Descartes—along with Fermat—used this coordinate system to turn figures
and shapes into equations and numbers.

While both Fermat and Descartes independently conceived of the
underlying notion of translating between curves and algebraic expressions,
people liked Descartes’ treatise a bit better, mostly because his notation was
easier to use. But Fermat is the one who realized that it worked both ways:
He could also turn an equation into a graph, and work with the resulting
curve to glean insights that might not be readily apparent from simply
studying the abstract algebra.

Most notably, Fermat realized that converting the expression into
geometry made it easier to find the largest and smallest value within a given
range—the maximum and minimum, as we call them today. At any point on
a curve, it is possible to draw a straight line that just touches it at exactly
that point, called the tangent. You simply study the line that is tangent to the
curve at the point of interest and determine its slope.

If the slope of that tangent line is positive (slanting upward from left to
right), the expression is increasing; if negative (slanting downward), the
expression is decreasing. The steeper the slope, the faster the expression is
increasing or decreasing. Where are the maxima and minima? Wherever the
slope of the tangent line flattens out to zero (becomes horizontal) along that
curve. Like Archimedes before him, who stopped just short of inventing
integral calculus, Fermat came within a hair’s breadth of inventing
differential calculus.

So the area under a curve corresponds to the integral, while the slope of
the tangent line to a point on that curve corresponds to the derivative. With
the merging of algebra and geometry, the stage was set for calculus to make
its grand entrance. Ultimately, the credit for inventing calculus is given
jointly to Isaac Newton and Gottfried Wilhelm Leibniz, who independently



made their revolutionary discoveries in the 1660s and 1670s, giving rise to
an epic intellectual battle for the title of Inventor of Calculus.

CLASH OF THE TITANS

Isaac Newton hardly needs an introduction. He is almost universally
recognized as the father of modern physics via his masterpiece, the
Principia, as well as his work on the nature of light published in Opticks
toward the end of his illustrious career. The Principia is inarguably one of
the most influential scientific books ever written—eighteenth-century
mathematician Joseph-Louis Lagrange declared it “the greatest production
of a human mind”—yet it is one of the least read. Three volumes of
mathematical theory on the nature of gravity and the laws of motion,
rendered in excruciatingly pedantic seventeenth-century Latin prose and
chock-full of equations, are hardly summer beach reading. Apparently



Newton made it deliberately difficult “to avoid being baited by little
smatterers in mathematics.” The Great Newton despised dilettantes.

The son of a yeoman farmer in Lincolnshire, England, who could neither
read nor write, Newton was born in 1642, two months after the death of his
father, and so premature and small that hardly anyone expected him to
survive. His mother, Hannah, married a clergyman named Barnabas Smith
when Isaac was only three years old and promptly moved away with her
new husband to start a new family, leaving young Isaac behind with his
grandparents.

Hannah wanted him to become a farmer, and when the boy was
seventeen, he was expected to take over the family farm. But he proved
disastrous at minding the sheep or cows, feeding the chickens, or taking
produce to market. Invariably he would be found sprawled under a shady
tree with a book, jotting his thoughts down in a notebook, or jumping from
one spot to another in the field, trying to determine the length of those
jumps. He invented methods for producing chalk and gold ink, and a
technique “to make birds drunk,” as well as a phonetic alphabet; he
“contrived water wheels and dams” and dabbled in magic tricks. In short,
he did anything but the various chores a competent farmer must master.

Hannah relented and packed Newton off to Cambridge University to
pursue the life of the mind, where he earned his undergraduate degree in
science and math in 1665. His graduate studies were interrupted by the
outbreak of the plague in Cambridge. Students and professors alike fled the
city, and Newton returned home for the ensuing year, until the panic (and
danger) had passed. He later described this period as “the prime of my age
for invention and minded mathematics and [natural] philosophy more than
at any time since.” He wasn’t exaggerating. Not only did he work out his
three laws of motion and a universal theory of gravity; he also invented the
mathematical tool he needed to achieve those insights: calculus.

“Rather than thinking of a curve as a simple geometrical shape or
construction on paper, Newton began to think of curves in real life—not as
static structures like buildings or windmills, but as dynamic motions with
variable quantities,” Jason Bardi writes in The Calculus Wars. Take that
famous (and possibly apocryphal) anecdote about Newton observing an
apple falling from a tree and coming up with his critical insights into
gravity. The position and speed of the apple are changing at every



moment8: The apple is still on the tree at what physicists call time zero.
(That’s shorthand for “the value of the variable t for time is 0.”) A fraction
of a second later, it has started its fall, and another fraction of a second finds
it midway from branch to ground, and so forth. The apple’s descent
progresses in tiny increments (then called infinitesimals) until it hits the
ground or Newton’s head. Plot each tiny point describing position versus
time along a Cartesian grid, connect the dots, and you end up with one half
of a parabolic curve.

Once he plotted a curve, Newton drew on Fermat’s prior work and
figured out how to find the slope of the tangent line for any point along that
curve—the derivative, which he called the fluxion. Then he realized that
finding the area under the curve (the integral) represented the process in
reverse. Newton’s key insight was the connection between the derivative
and integral. Finding the area under a curve (integration) is the reverse of
finding the slope of a tangent line (differentiation). That is the fundamental
theorem of calculus.

Newton noticed other intriguing connections: The apple’s velocity is the
derivative of its position, while its acceleration is the derivative of its
velocity. This also works for the integral. Add up the accumulated rate of
acceleration over time, and you get the apple’s velocity; add up the
accumulated velocity over time, and you get the apple’s position. Thanks to
the fundamental theorem of calculus, it is possible to change one problem
into another problem. If we have an equation that tells us the position of a
falling apple, from that we can deduce the equation for the velocity of the
apple at any given moment of its fall.

What made Newton’s method so revolutionary was its universality: The
same equations that can be applied to the speed and position of a falling
apple are also applicable to the planets orbiting the sun, the rate at which a
cup of coffee cools, how interest accumulates in a savings account—any
system in which one quantity is changing with respect to another. So
calculus is a nimble beast, a flexible tool that, with lots of practice and a bit
of creativity, can take you from a situation where you only have a little bit
of information, to one where you have deduced a lot more information.

In modern calculus, these quantities—position, velocity, acceleration, and
so forth—are known as functions, a concept that didn’t exist in Newton’s



time. Here’s the kind of textbook definition that, while technically correct,
conveys very little actual meaning to the beginning calculus student: “A
function is a set of ordered pairs where, for every value of x, there is only
one corresponding value for y.” But another way to think of the function is
as a link between cause and effect. The variables x and y, for instance, are
wholly interdependent, such that, if a change occurs in one of them (cause,
or the independent variable), the other changes in response (effect, or the
dependent variable). Calculus describes this rate of change. In economics,
price is a function of market supply and demand, rising and falling with the
whims of consumer appetites. In physics, potential energy is a function of
height: The apple’s potential energy is dependent on how high it is in the
tree’s branches, and as the apple falls, that potential energy is converted into
kinetic energy.

In the case of Newton’s apple, the position function is the entire
collection of points that, taken together, describe the apple’s position at
every single instant during its fall. A similar set of points plotted out for the
apple’s velocity at any given moment in time comprises the velocity
function. But a function is far more than the sum of its parts: It transcends
them.

Functions are powerful tools because they confer the power of prediction.
You no longer need to perform a new calculation to determine the position
or velocity of that apple at each moment in time. With the function, you
know the apple’s position or velocity at every possible moment in time.

Historians generally agree that Newton was the first to state the
fundamental theorem of calculus and was also the first to apply derivatives
and integrals in a single work (although he didn’t use those terms). The
problem is that like Fermat, he suffered from publication procrastination.
Fermat’s dilly-dallying left the field wide open for Descartes to sweep in
and claim shared credit for linking algebra and geometry. Newton didn’t
publish any of his work on calculus until 1704, in an essay entitled “On the
Quadrature of Curves” in the back of Opticks—quadratures being a fancy
name for the areas under curves. By that time, Gottfried von Leibniz’s
version of calculus was already causing a stir in Western Europe. While
Fermat and Descartes had a few testy exchanges, on the whole they
maintained an air of civility in their mathematical debates. In contrast,



Newton’s procrastination led to one of the most bitter controversies in
scientific history, dubbed the calculus wars.

Leibniz was born in Germany in 1646, and he was a stellar student even
as a very young child. “Precocious” could have been his middle name (in
reality, it was Wilhelm). His father died when he was six, so Leibniz was
raised by his mother, who encouraged her son’s intellectual bent. By eight,
he was working his way through his father’s substantial library, teaching
himself Latin and Greek so he could read the great works of Aristotle and
other philosophers. He entered the University of Leipzig at age fifteen and
left two years later with his degree in law. Conspicuously absent from his
formal education was any study of mathematics; he was entirely self-taught
in that discipline.

A chance meeting with the Dutch scientist Christian Huygens ignited
Leibniz’s interest in the study of geometry and the mathematics of motion;
he described their meeting as “opening a whole new world” to him. He
pursued these interests in his spare time, inventing in 1671 a handy little
machine called the step reckoner. A forerunner of the modern calculator, the
device could add, subtract, multiply, divide, and even extract square roots.
His reasoning: “It is unworthy of excellent men to lose hours like slaves in
the labor of calculation, which could be safely relegated to anyone else if
machines were used.” Why waste perfectly good brainpower on lowly
arithmetic?

At Huygens’s urging, Leibniz read Blaise Pascal’s work on
infinitesimals, as well as the work of René François de Sluse, who had
made a rule for constructing tangents to a point on a curve. Leibniz realized
that Pascal’s approach to infinitesimals could be combined with Sluse’s
tangent rule and applied to any geometric curve. That same critical insight
—the universality of the method—led him to create his own version of
calculus independently of Newton.

Leibniz published his first account of differential calculus in 1684,
followed by a discussion of integral calculus two years later. It caused a
sensation, which rankled Newton’s pride; he became convinced that Leibniz
had stolen his ideas from his earlier unpublished papers that had been
circulating privately in academic circles over the years. (He used his new
techniques in his scientific work long before the publication of Opticks.)
There were rumblings of impending conflict in the ensuing years, as



tensions brewed between those in Camp Newton and Camp Leibniz, but
things didn’t erupt into outright war until Newton published his essay in
Opticks.

The opening volley in the calculus wars was an anonymous review of
“On the Quadrature of Curves” that appeared in a European journal early in
1704, implying that Newton had “borrowed” his ideas from Leibniz. While
Leibniz denied it for the rest of his life, historians generally accept that he
was the author. He also engaged in a form of “sock puppetry”: He penned
numerous anonymous attacks on his archrival’s work and then reviewed
those attacks (one assumes favorably) in his own signed papers. At the
time, Newton was by far the more famous scientist, and a prominent
member of the Royal Society of England. While he didn’t engage in sock
puppetry, he wasn’t above using his considerable influence to crush the
scientific competition. In addition to Leibniz, during his long scientific
career he fought with John Flamsteed, with Huygens, and with Robert
Hooke, and each proved to be an acrimonious battle. Newton was not a
people person; no wonder he purportedly died a virgin.

In one letter to Leibniz, Newton offered his “proof ” that he had invented
calculus—but he couched it in a sort of anagram of a Latin sentence. He
took all the individual letters and put them in alphabetical order: six a’s,
two c’s, one d, thirteen e’s, two f ’s, and so forth. To Newton, it was
perfectly obvious: Anyone could simply rearrange all of the letters and find
the proof they sought that he, Isaac Newton, had prior knowledge of the key
concepts. Very few people felt inclined to go to all that trouble, and frankly,
even decoded, the “proof ” wasn’t especially clear. Roughly translated, the
sentence read, “Having any given equation involving never so many
flowing quantities, to find the fluxions, and vice versa.” That was his stab at
summarizing derivatives; Newton would have been a lousy math teacher.

The Royal Society of England sided with Newton on the controversy,
crediting him in 1715 with the discovery of calculus. Leibniz wasn’t given
shared credit until after his death a year later. Today, the consensus seems to
be that the two men represent two complementary approaches to the
discipline they co-invented. Leibniz was the more abstract of the two, and
it’s his system of notation that modern scientists still use today, while
Newton focused on the more practical applications of calculus. Leibniz can



also claim credit for coining the word calculus, named for a type of stone
once used for counting purposes by the Romans.

Calculus did not find immediate acceptance within the scientific
community; there was one final missing piece. The method worked, in that
it gave the right answer, but mathematicians found the notion of the
infinitesimal deeply troubling. Once again, the problem of infinity raised its
ugly head. For instance, Newton relied on a bit of magical hand-waving to
make his method work: He argued that since his fluxion units were so small
—infinitely close to zero but not exactly equal to zero—they could be
ignored for all practical purposes. In his equations, they effectively vanish
for no reason. A rigorous explanation for what happens to those fluxion
units when an equation is solved would not be found for another hundred
years.

Leibniz adopted a symbolic notation—Δx, which stands for a tiny
increment—that preserved the infinitesimals yet still enabled
mathematicians to manipulate them as if they were actual numbers. (In
modern notation, scientists often use dx to represent an infinitesimal.) Yet
this approach seemed to many mathematicians to be a bit of a cheat. Chief
among the naysayers was an Irish bishop named George Berkeley, who in
1734 (seven years after Newton’s death) criticized Newton and Leibniz for
their fudging of the method, calling infinitesimals “ghosts of departed
quantities” and observing that if they were comfortable with that sort of
thing, they “need not, methinks, be squeamish about any point in divinity.”

TAKE IT TO THE LIMIT

A fictionalized Albert Einstein (portrayed by the late Walter Matthau) plays
mischievous matchmaker between his egg-head niece, Catherine Boyd, and
a good-hearted auto mechanic named Ed Walters in the charming 1994
romantic comedy I.Q. Some might object to the considerable liberties taken
with historical fact and illustrious personages, but there’s a lot to admire in
the film, if for no other reason than its inclusion of Einstein’s real-life
cronies, Kurt Gödel, Boris Podolsky, and Nathan Liebknecht, as supporting
characters. As Ed introduces Einstein to Frank, one of his co-workers at the



garage, he declares, “This is Albert Einstein, the smartest man in the
world!” Intones Frank in his best Joisey accent, “Hey, how they hangin’?”

There is a lovely scene in a diner, where Catherine tries to explain to Ed
the gist of one of Zeno’s paradoxes. Zeno was a Greek philosopher living in
the fifth century B.C. who thought a great deal about motion. Specifically,
he speculated that all motion is illusory, and came up with a famous set of
arguments to “prove” it. Catherine explains it thus: If she takes one step
forward, and then halves the distance traveled with her next step, then
halves it again, and so forth, such that the progression goes on for infinity,
she will never be able to reach Ed. The distance between them will get
smaller and smaller but will never reach zero. The subtext here is
Catherine’s belief that there is no way to bridge the gap between the
couple’s intellectual differences and social status. But the practical-minded
Ed simply steps over the imaginary line to close the gap: “So how did I do
that?” A confused Catherine stammers, “I . . . I don’t know.” But if she
knows her calculus (and she should), the “mystery” should be easy to solve.

Perhaps you’ve encountered some variation on Zeno’s paradoxes before;
I certainly had. It pains me to admit this publicly, but I did not realize it was
tied to the essence of calculus. In one paradox, Zeno used an arrow flying
through the air toward a target9—say, your high school calculus teacher—
to illustrate his points, rather than a young couple in a diner, but the basic
idea is the same: To reach the target, the arrow must first cover half the
distance, then half the remaining distance, and so on, moving an infinite
number of times. By that logic, the distance between the arrow and the
target would keep getting smaller and smaller, and yet the arrow could
never close the gap completely in order to actually reach the target. Your
calculus teacher lives to torment you another day.

There’s an equally paradoxical corollary: At any given moment in time,
the arrow has a specific fixed position—it can only be in just one place at
any given time—which means it is technically at rest (not moving) at that
particular instant, even though, taken all together, those individual points
add up to an arrow in motion. Motion, after all, is basically the measure of
how an object’s position has changed over time. But break down motion
into infinitely small increments—similar to the individual frames in a film



reel—and you find yourself trying to determine how far it traveled in zero
amount of time: instantaneous motion. Ergo, the paradox.

In the real world, this doesn’t happen, Eventually, the arrow will find its
mark, and the calculus teacher will curse the limit with his or her last
breath. Ed will close the distance with Catherine, and the two will live
happily ever after. This makes the argument a little flimsy by the standards
of common sense. But Zeno never intended his paradoxes to be taken
literally. The Greeks may have lacked strictly mathematical solutions to the
problems, but they certainly recognized the need to reconcile the paradoxes.

Mathematically speaking, the problem is this: Zeno’s paradoxes rest on
the assumption that the progression will go on for infinity and has no
ultimate goal, or limit. But in physical reality, there can be some kind of
limit even to an infinite series. That endless series can have a finite sum. In
the case of the arrow’s tip and its target, as the distances between points
become smaller, so does the elapsed time, even if speed remains constant.

The problem of infinity stumped the greatest mathematical minds for two
millennia. The Greeks lacked the concept of zero and failed to grasp the
idea that a finite distance between two points can be divided into an infinite
number of pieces in between. For them, the continuous motion of an arrow
in flight is divided into an infinite number of discrete steps, and because
there must be an infinite number, the Greeks presumed the arrow would
continue flying toward its target forever.

Aristotle tried to get around the difficulty by drawing a distinction
between what he called the potential infinite and the actual infinite, arguing



that the latter didn’t exist. It was fine if a line could always be extended—
that would be potentially infinite. But an actual infinitely long line? That
would be impossible. Archimedes followed Aristotle’s lead: He never
claimed that the method of exhaustion would result in the exact value for
the area of a curved object; this would require an actual infinite number of
triangles or rectangles. He simply said one could refine the approximation
as much as one liked—a concept he likewise called potential infinity.

Or so historians and mathematicians believed. That is why the
rediscovery of the Archimedes palimpsest in the 1990s is so significant.
Heiberg had been unable to transcribe the relevant pages in 1908 because
they were so badly damaged. Modern analytic methods uncovered that
long-hidden text. This time around, the task of transcribing the fully
restored text fell to Reviel Netz, a professor of mathematical history at
Stanford University. Netz’s transcription hints that Archimedes had a far
more sophisticated understanding of the infinite than historians have
generally credited him with. In particular, the Greek mathematician flirted
with the notion of actual infinity while calculating the volume of a
fingernail-shaped figure.

This is not the same as fashioning a rigorous mathematical proof to deal
with infinity, however. The man who gets the credit for resolving the
problem of infinitesimals is an eighteenth-century mathematician named
Jean le Rond d’Alembert. D’Alembert’s life story is fodder for an Oscar-
worthy biopic. He was a foundling who took the name of the church in
Paris on whose steps he was found: Saint Jean Baptiste le Rond. He was
raised by a glazier but later discovered his birth parents were a general and
a noble-woman.

D’Alembert’s insight into Zeno’s problem of motion seems obvious in
retrospect: that arrow shot from a bow is on a journey, and it makes that
journey in an infinite number of smaller steps, but its travel does not
continue indefinitely—it has a destination, namely, your calculus teacher’s
heart. That ultimate destination is the limit, even though the arrow makes an
infinite number of subjourneys before arriving. All those subjourneys,
added together, mean that the arrow hits its mark—and that summing
process is integral calculus.



Let’s go back to Catherine and Ed to illustrate. Ed moves closer and
closer to Catherine, halving the distance between them with each step. We
can add those numbers together: 1 + ½ + ¼ + ⅛ + , and so on, and notice
that the sum of this “infinite series” gets closer and closer to exactly 2. We
can check this by “taking the limit”: if 2 is the limit, then 2-1 = 1, 1-½ = ½,
½-¼ = ¼, and so on into infinity. With each iteration, the result gets closer
and closer to 0. Ed still crosses a distance of 2 feet, but he does it in an
infinite number of steps.

This gives rise to one of the most common stumbling blocks for the
beginning calculus student: the notion that 0.9999 . . . is actually equivalent
to 1. My mind, too, balked at accepting this mathematical fact when my
spouse, Sean, patiently explained it to me late one night as I was struggling
to understand the limit. Intuitively, we think of a fraction as being a finite
sum. We have all eaten one-ninth of a pie, after all. But we also learn about
irrational numbers—like π, or the so-called golden ratio, ø—where the
string of numbers in the decimal expansion really does go on forever.

That was my mistake: assuming that 0.999 . . . is like an irrational
number, and therefore represents a sequence of numbers that get closer and
closer to 1 but never reaches it exactly. Such is not the case; it is a rational
number, in which the same decimal number endlessly repeats, and thus can
have a finite sum. Eventually the limit of the sequence equals 1, and that
means 0.999 . . . has a fixed value, rather than being an infinite progression.
It might seem paradoxical, but two very different mathematical expressions
can nonetheless represent the same number. Ergo, to a calculus teacher,
0.999999 . . . is just another way of writing 1.10

One could argue that calculus itself was invented via tiny infinitesimal
bits of accrued knowledge that, taken together, added up to a revolutionary
new whole. But like the function, calculus is far more than the sum of its
parts, making it possible to understand the world around us in dynamic,
rather than static terms. “We live in a world of ceaseless growth and decay,
with things in fretful motion on the surface of earth, planets wheeling in the
sky,” mathematician David Berlinski writes in A Tour of the Calculus.
“Geometry may well describe the skeleton, but the calculus is a living
theory and so requires flesh and blood and a dense network of nerves.” Life
is constantly moving and changing. Life, in short, is curvy.



2

Drive Me Crazy

We apprehend time only when we have marked
motion . . . not only do we measure movement by
time, but also time by movement because they
define each other.

—ARISTOTLE

 
 
 
Abrooding shot of a long, straight desert highway, shimmering slightly in
the heat and stretching far into the horizon, opens Ridley Scott’s classic
1991 film Thelma and Louise. It’s become an iconic image, foreshadowing
the women’s glorious demise as they drive off a cliff in the Grand Canyon
in their 1966 Thunderbird convertible, immortalized forever in celluloid
history.

The portion of I-15 that runs between Los Angeles and Las Vegas doesn’t
stretch quite so dramatically into infinity, but after three long hours of
driving under a relentless midsummer sun, it’s starting to feel like it could
go on forever, particularly since traffic has slowed to a crawl. We have road
construction to thank for the delay: The state of California is adding a
southbound lane just for trucks, and for some reason, this is also slowing
down traffic on the northbound side. Thelma and Louise would have just
floored it and blasted their way out, but we are wimpy, law-abiding citizens,
and meekly accept our fate.

We’re on I-15 in our shiny red Prius because we’re hard-core Vegas fans:
Taking a weekend jaunt now and then to play some poker, do some
shopping, and perhaps indulge in a spot of fine dining or a spa treatment



proves quite refreshing. But the road trip also provides an excellent
example of calculus in action. Calculus deals with rates of change. Motion
is, in essence, change in position with respect to time—however slowly that
position is currently changing thanks to the impeded traffic. In fact, at this
point, we’re barely moving at all, inching along at a scant 10 mph while our
stomachs rumble in anticipation of savoring the world’s best gyros11 and
falafel at the Mad Greek Cafe in the tiny town of Baker, California
(population 600).

There’s precious little to do on a road trip, creeping along a desert
highway while breathing in exhaust fumes, with nothing but dusty hills,
tumbleweeds, and a long line of rear bumpers as scenery. So I figure it’s as
good a time as any to muddle through the basics of derivatives and
integrals; I’m already bored, hungry, and cranky. Also, it occurs to me that
our predicament is reminiscent of Zeno’s paradox, outfitted in
contemporary garb—exchanging Zeno’s trademark toga and sandals for
acid-washed Levi’s and snazzy ostrich-skin boots, if you will.

Think about it: If our motion is divided into infinitely smaller increments
of time and distance—as it would be in a calculus class—in what sense can
I claim we are “moving” at all? I can solve this modern paradox by using
the tools of calculus to determine our instantaneous speed—how fast we are
going at any brief, fixed moment in time—even though our position in time
and space is constantly changing. Assuming I know our instantaneous speed
(velocity) at every possible moment, can I then use that information to
determine how far we’ve traveled—our position—without cheating and
looking at our trusty odometer? Calculus says I can.

ROAD TO NOWHERE

Let’s start with a bit of precalculus to demonstrate the concept of
instantaneous speed, using the simplest possible example with highly
idealized conditions. In my mind’s eye, I-15 magically morphs into that
endless, perfectly straight road in Thelma and Louise, except rather than
stretching into eternity, it runs between our home in Los Angeles and the
Luxor Hotel in Las Vegas, with an infinite number of points in between.



Imagine that a squad car pulls up as we drive into the Luxor entrance.
The officers claim Sean ran a red light a few miles away. Sean denies it. As
proof, they show us a time-stamped photograph taken by a traffic camera,
showing the Prius just before its nose passes through the intersection. Fair
enough, says Sean, but all that proves is that the Prius was at that particular
point at that particular time. It merely shows our position, not our velocity.
How can they prove that the car was actually moving at that point, rather
than stopped at the light? He is a scientist. He demands evidence. He also
doesn’t want to pay the imaginary fine. To prove he ran the red light, he
insists, the officers need to offer compelling proof of the car’s instantaneous
speed at the moment that photograph was taken.

The officers don’t have a radar gun, which measures velocity directly, but
unfortunately for Sean, they are well versed in math. They do have a time-
stamped photograph of the Prius at a similar intersection one minute before.
So it’s a simple matter for the officers to show where we were at the traffic
light—the two-minute mark—and subtract our position at the previous
intersection (the one-minute mark) to determine how far the Prius traveled
in that time: in this case, one mile. Then they can divide that by the time it
took to travel that one mile, and this gives them the car’s average speed:
one mile per minute, or 60 mph.

Ah, but Sean doesn’t give up so easily; he has one more argument to
make. The officers are assuming the Prius was moving at a constant speed.
Yet every experienced driver knows that one’s speed is rarely constant. Just
because our average speed was 1 mile per minute doesn’t necessarily mean
that was our instantaneous speed at the moment we crossed the intersection.

The officers remain undaunted. They don’t have access to the
information recorded by our trusty speedometer and odometer, so they have
supplemented this imaginary stretch of road with some pretty cutting-edge
technology, dividing it into intervals at every possible distance and placing
tiny nanosize traffic cameras at each and every interval. Call it willing
suspension of disbelief, although at the rate nanotechnology research is
currently progressing, a scenario quite close to this may one day become a
reality.

Thanks to our imaginary nanocameras, the officers have an infinite
number of time-stamped still shots of our humble Prius, taken at
infinitesimally small intervals along this extremely high-tech futuristic road.



This is incontrovertible ocular proof 12 of the car’s position at every given
point in time since we left home: In calculus terminology, this is our
position function. We know the position of the Prius as a function of time.
The cameras reveal that there was less time between equal intervals as the
Prius approached the light—which means we were actually accelerating.

The basic concept is the same whether we’re talking about driving down
the imaginary highway at a constant rate or about a more complicated real-
world scenario in which our speed is constantly changing. Even though the
Prius is accelerating, it still has one specific speed at each instant, and I can
use the same highly repetitive process of accumulating evidence to prove it,
showing where the car was at all times. I run the same calculation outlined
above over and over, for ever smaller intervals, to show how fast the car
was going at any given moment in time.

This time, there is a crucial difference: Instead of getting the same
answer each time—as in the constant-speed scenario—I get slightly
different answers each time. But as the intervals get shorter and shorter,
those answers get closer to a point of convergence: 2 miles per minute. The
answer is never exactly 2. But the answers are clearly converging toward a
single answer, to a very close approximation. The limit rears its ugly head. I
can safely conclude that the car’s instantaneous speed at the moment in
question must be 2 miles per minute.

Ingenious, isn’t it? Hats off to Newton, Leibniz, and untold
mathematicians before and after them who repeated the same exact process
of calculation, over and over again, until they’d compiled sufficient proof
that the derivative formula works. Thanks to their collective effort, we can
simplify this incredibly repetitive process by taking the derivative of our
known position function, which will give us our velocity function.13 Then
we can revert to basic algebra: We take the value for the point in time that
we’re interested in, and we just plug it into that equation. That will give us
our speed at that instant. Behold the power of calculus!

None of this, alas, helps Sean avoid an imaginary traffic ticket. He
grudgingly admits defeat. The mark of all good scientists is the willingness
to abandon a pet hypothesis if the experimental evidence contradicts it—but
that doesn’t mean they have to be happy about it.



THE SUM OF ALL THINGS

Taking a derivative is pretty straightforward. Finding the integral is trickier.
Conceptually, it’s just the flip side of the derivative: With the derivative, I
can figure out my car’s speed based on how its position changes over time.
With the integral, I should be able to determine how far we’ve traveled in
the Prius based only on measurements of its speed at given locations along
our high-tech highway.

Thanks to modern technology, I can just use the car’s odometer and built-
in GPS system to find the answer. But what if the odometer is broken, the
computer has malfunctioned, and we find ourselves stranded in the middle
of nowhere, with no other cars in sight? These highfalutin hybrids with their
onboard computers and hordes of sensors are pretty sensitive, after all.

Assuming our cell phones still work, we can call AAA, but we need to be
able to tell them our precise position. There are no obvious landmarks.
“Third tumbleweed on the left next to the giant boulder” isn’t going to
narrow things down sufficiently. We know we haven’t passed Baker. Even
if you missed the Mad Greek Cafe—despite the fact that it is gaily painted
with the colors of the Greek flag and adorned with plaster replicas of naked
Greek statues out front—you’d certainly notice Baker’s other main
attraction: the World’s Tallest Thermometer. Baker is located at the 188-
mile mark between our Los Angeles loft and the Luxor in Vegas. Let’s say
that an hour before we got stranded, we stopped for coffee in Barstow,
which is at the 110-mile mark. So I know we are somewhere between 110
miles and 188 miles from our home in Los Angeles.

Had our speed been perfectly constant, this would be a simple task, and
we would have no need for calculus. Assuming a constant speed of 60 mph,
for instance, and knowing that exactly one hour has elapsed since we left
home, I can multiply our speed by the time and conclude that we have gone
60 miles. It’s probably a pretty good approximation. But that doesn’t reflect
actual driving conditions; a car’s speed is constantly changing, even more
so if there are spots of heavy traffic, and if my lead-footed spouse drives
faster than 60 mph to make up for lost time whenever traffic clears.

The only concrete information I have about our velocity is from
monitoring the speedometer. Fortunately that’s all I need to figure out how



far we’ve traveled and thus pinpoint our location for AAA. The
speedometer has displayed our speed at every instant along our journey;
taken together, this gives me our velocity function. So I should know
exactly how fast I was going at any given moment.

How do I take the variation in speed into account? I set boundaries
around the correct answer to get a workable range for determining the
distance. First, I do a series of calculations based on the slowest (starting)
speed—in this case, at the point where we left Barstow—breaking that
journey into smaller and smaller increments of time and adding up the
pieces to arrive at a close approximation to the total distance traveled. But
this will be an underestimate. So I also need to do the same labor-intensive
process for the fastest speed the car was traveling over our entire one-hour
journey. The resulting approximation will be an overestimate of how far we
went, but at least I know that the correct distance is somewhere in between
those two values. I then go through the same process for different speeds
within the minimum and maximum to further narrow the range. The shorter
the intervals of time that I choose to employ, the better, because the speed is
less likely to vary by much over tiny times and distances.

In a perfect world, I would have the patience of Job and would continue
doing this unbelievably repetitive process at smaller and smaller intervals,
thereby getting ever finer approximations of the likely distance traveled.
The range becomes smaller and smaller, converging toward a single answer
without ever reaching it exactly. In this case, the answer converges toward
172 miles, where the highway intersects with (I kid you not) Zzyzx Road.
(Memo to road planners: Buy a vowel already.) Now it is a matter of
subtracting the 110-mile mark—our last stop in Barstow—from 172. We
traveled 62 miles since stopping in Barstow an hour ago.

I don’t determine a precise location via any single division of the interval
of time; I get the answer via an infinite number of increasingly improved
approximations. Although this exercise in precalculus merely gives me a
series of approximations, at some point the intervals become so small that
the difference between approximations becomes trivial. AAA can probably
find us if we tell them we’re within five feet and ten feet of the intersection
of I-15 and Zzyzx Road. Integral calculus can simplify matters greatly.
Fully integrating speed over time using the velocity function would give me



an exact answer for my position. Think of it as Eudoxus’s method without
his exhaustion.

DERIVER’S ED

If we can closely approximate our instantaneous speed and position using
the precalculus methods outlined above, it’s reasonable to ask why we need
calculus at all. It all comes down to functions. Rather than performing an
infinite series of calculations for every point along a given curve, the
function gives us the value for each of those points all at once, saving us
considerable effort and time. Functions confer tremendous predictive
power. More important, functions are connected to each other in valuable
ways: Velocity is the derivative of position, and acceleration is the
derivative of velocity. We integrate acceleration over time to find the
velocity function, and we integrate velocity over time to find our position
function. These connections let us make inferences based on what we do
know, to figure out what we don’t know.

In Zero, Charles Seife compares a standard equation to a machine in
which you punch in a number and get another number back. That’s what
functions do. Plug any number into a function, and it will give you a new
number. Taking a derivative or an integral does the same thing, except you
feed the machine a function and it sends back a new function. It’s just a
higher level of abstraction. That is how, using calculus, we can transform
one problem into another. “Nature doesn’t speak in ordinary equations. It
speaks in differential equations, and calculus is the tool you need to pose
and solve these differential equations,” Seife writes. “Plug in an equation
that describes the conditions of the problem . . . and out pops the equation
that encodes the answer.”

The “plug and chug” method might get you through high school
geometry and algebra, but rote memorization of every function, along with
its derivative and integral (if known), won’t be enough to succeed at
calculus. At its core, calculus is about creating and solving logic problems
—a most creative endeavor. In fact, constructing a calculus problem is akin



to telling a story; we’re just doing it with numerical symbols instead of
words.

Every narrative has a logical progression, and so does every calculus
problem. You identify your central characters and sketch an outline of the
plot to create a structural framework. Then you color in the details as you
go. The story can be as simple and straightforward as The Cat in the Hat or
as complicated as James Joyce’s Finnegan’s Wake, but in each case it
evolves naturally from the starting point of setting the narrative parameters.
Writers and physicists alike spend a great deal of time staring at a blank
sheet of paper (or computer screen), waiting for inspiration to strike. This
phenomenon can be witnessed firsthand on any given night at our house.

Let’s revisit our two idealized scenarios from the perspective of a
narrative. Who is my main character? In the first example (Sean attempting
to avoid an imaginary traffic ticket), it would be position, because that is the
accumulation of data available to us—what we already know. At every
point in time, our Prius has a position on the road; all those points taken
together comprise the position function (position as a function of time),
which we can represent algebraically as p(t), where p stands for position,14
and t stands for time. Note that I picked p because it’s easy to remember; I
could have called it x or q or even Sally, and it would still stand for the
exact same thing in this context: position. It is the context that gives a
particular variable its meaning.

We can graph every single value for p as a point on a Cartesian grid and
connect the dots to get a curve. Now we have a “face” for our main
character, the position function. That means we can plug different values
into this equation to find where we are at any point in time using basic
algebra.

Sean admits that usually, collecting data from the real world doesn’t give
us a simple function, “but as physicists we often find it useful to
approximate the messy real world by some simple function that we can
write down cleanly.” Fair enough: Plenty of writers take liberties with
narratives, too, if it makes for a better story.



What is the main character’s ultimate goal? Given the “clues” about our
known position, we want to figure out how fast we are traveling at a
particular point on our trip. There is even a central conflict: How does the
main character reach that goal? It’s a process of deduction, using the clues
we’ve been given: namely, our position function. We can take the derivative
of the position function—a process of subtraction and division—to find the
corresponding velocity function, which we can use to determine our
instantaneous speed at any given point. To do this, we start with our current
position (p), take our position a tiny bit into the future, then subtract the two
to find out how far we went. Then we divide the distance traveled (Δp) by
the small change in time (Δt) and we get the average velocity during that
short interval.

We can approach the same question geometrically. Remember that the
derivative also gives us the slope of the tangent line on a curve. If our curve
represents the position of the Prius at every point in time, then the slope of
the tangent line to that curve at a specific point will tell us how fast the
Prius was traveling then: the instantaneous speed. If the car is moving
forward, that motion will be represented on the graph by a tangent line
slanting upward; if the car is moving backward, the tangent line will slope
downward. The steeper that line, the faster the car is traveling. The
minimum or maximum of the graph has slope 0, which means the car is
stopped.



How do you find the exact slope of the tangent line? You draw a straight
line between two points on the graph and then look at how much that line
rises or falls (the y axis) over that set distance (the x axis) between two
points. We get the derivative by looking at ratios—for example, a difference
in the position of a moving car at two separate times—so the slope of that
line is the fraction of the change in position divided by the change in time.
You do the same thing again with two closer points; and so on, until all
those straight lines converge to a tangent line whose slope is equivalent to
our instantaneous speed. The closer those points are to one another, the
closer we can approximate the slope; we have the exact answer when there
is no distance between those two points. This is a visualization of the limit:
the difference in height goes to zero and so does the distance between the
two points.

Now let’s revisit the integral via the second example: figuring out how
far we have driven based on our velocity. We are telling the same story
from another character’s point of view, and it changes the “narrative” in
some crucial ways. In this case, our main character is the velocity function.
We don’t know the position; we know the velocity, and we want to deduce
our position from that. We’ve seen that it is possible to figure out how far
we’ve driven knowing just the velocity of the Prius at each instant along the
road—the velocity function—using that tediously time-consuming
precalculus method. Since we have a “face” for our function, we can
determine the area under that curve between the two points of interest via
our old friend Eudoxus and the method of exhaustion.

There is a shortcut: I would get exactly the same answer if I simply
subtracted our beginning position from our ending position. Of course, I
don’t know our exact ending position, which complicates matters. All I have
is the velocity function and my known starting position. My myriad
calculus books assure me that all I need to do is figure out which position
function generates the known velocity function by taking an integral, then
use that position function to determine where we are when our Prius has its
hypothetical breakdown.

How do physicists find the integral they need in the real world? They
usually look it up. Seriously. A lot of this work has already been done by
the generations of mathematicians who came before us, bless their detail-
oriented souls, so why waste valuable time recrunching all those numbers?



Most standard calculus textbooks contain tables of known functions for
both derivatives and integrals to assist beleaguered students—or their
teachers provide them with formula sheets. Sean ditched his calculus
textbook long ago; instead, he has a big blue book called Standard
Mathematical Tables, filled with nothing but a bit of explanatory text and
lots of incomprehensible notations. It’s now also possible to download
calculus apps for your iPhone. The problem is that it is impossible to list
every single integral. Even Standard Mathematical Tables soberly admits its
own shortcomings: “No matter how extensive the integral table, it is a fairly
uncommon occurrence to find in the table the exact integral desired.”15

Occasional patterns do emerge. For instance, there is a mathy trick we
can use to help us find the desired derivatives and integrals for any constant
times x. Remember that the derivative and integral are opposite processes:
Each undoes the work of the other. The integral is a process of
multiplication and addition. If we are given the function 2x (2 is the
constant, meaning it is unchanging), an integral of 2x is the function x2.
Because the derivative is a process of subtraction and division, that means
that the derivative of x2 is 2x. Similarly, for 2x, the derivative is the
function 2. Indeed, Sean explains that this is pretty much a universal rule.†

I know what you’re thinking: I thought 2 was a constant. How can it also
be a function? That confused me, too, at first. Sean explained that in the
above example, 2 plays different roles, depending on the context. It plays a
constant in the function 2x. But then we took a derivative, an operation that
gives us a new function back: Now 2 is playing the role of a function.
Technically, it’s the dependent variable (generically represented by y). Plug
in any random number (x, or the independent variable), and the function
will send that number to 2. Think of it as an ordered pair (x, 2), where x can
be any random number. The point is, in this particular scenario (a constant
times x), whenever we have a derivative formula, we can automatically find
an integral formula.

Once we’ve identified the integral we need, we don’t have to resort to the
tedious process of dividing up the area under the curve into tiny pieces and
multiplying and adding ad nauseam. Instead, we just subtract the value of
the integral at the end of the curve from the value at the beginning of the



curve to get the answer. Let’s say we want to take the integral from 1 to 4 of
the function x 4. We can rely on our little trick above to determine that an

integral for x4 is Now we simply plug in the highest and lowest values for
x in the range of interest (1 to 4) and subtract the results. Our answer: 1,023
divided by 5, or 204.6. This means that we have gone 204.6 miles between
those two points—or that the area under the curve between point 1 and
point 4 along the x axis is 204.6.

A physicist who blogs anonymously at Gravity and Levity describes
physics and calculus at the high school level as a kind of game. “It was like
a little logic puzzle where the rules of the game were given to you (usually
on a formula sheet) and you were asked to use them cleverly to come up
with a solution,” he says. “A friend of mine once put it succinctly: ‘Physics
is all about finding out which variables you know and which variable you
want, and then searching through your formula sheet for an equation that
has all of those letters in it.’ That, more or less, was the physics game. You
rearrange some symbols on a paper and you come up with an answer.
Instant gratification.”

Some students take to the game quite naturally; others, like me, do not.
But none of us will realize the full power of calculus until we move beyond
treating it as a game and learn how to use it creatively to solve real-world
problems.

YOUR MILEAGE MAY VARY

Even if we lose at the poker tables, I’ve gained something tangible from our
weekend excursion: a valuable insight into the fundamentals of calculus.
The derivative and integral are two different ways of looking at the same
situation, namely, our Prius driving down a straight, level road. I can use the
derivative to find our speed from our position and use the integral to figure
out how far we’ve traveled based on our speed.

The speedometer and odometer in the Prius do these sorts of calculations
all the time. It was quite ingenious of human beings to build these handy
little devices whose primary purpose is to determine the exact information



about speed and position that early mathematicians so meticulously
calculated by hand. What is their secret? They have much more real-time
data at their disposal. Both the speedometer and odometer are designed to
collect every possible data point (for speed and distance, respectively) that
it can in real time. The speedometer gives us a velocity function; the
odometer gives us a position function. We can pretty much find out
anything we need to know with this information, with no need to resort to
calculus.

Speedometers measure the speed of a car by counting every single
rotation of the tires. In older cars, they are mechanical, connected to a drive
cable snaking its way from the transmission to the dashboard instrument
cluster. The drive cable is basically a cluster of tightly wound coil springs
wrapped around a center wire. When the wheels of a car turn, the gears in
the transmission turn, and their rotational speed is sent down to the
speedometer, where it can be measured and displayed.

The Prius speedometer is electronic (as is the odometer) and gets its
rotational data from a vehicle speed sensor mounted to the crankshaft,
rather than a drive cable. The sensor is little more than a toothed metal disk
and a simple detector covering a coil that emits a magnetic field. The teeth
interrupt the magnetic field as the disk rotates past the coil, creating a series
of pulses, which are sent to the car’s computer via a single wire. The
computer counts the magnetic pulses as each tooth of the metal disk passes
by the coil. The real-time speed is displayed on the speedometer, so we can
keep track of how fast we are traveling. The speedometer is linked to the
digital odometer, so for every forty thousand pulses, the odometer adds one
mile.

In fact, the Prius onboard computer goes even further: It combines the
data on speed and distance with data collected from sensors monitoring gas
usage to determine how many miles the car is traveling for each gallon of
gas it consumes—both in real time, and on average over a given period. All
this information is processed and presented in a colorful digital display that
constitutes a real-time video game, showing how much gas you use at any
given moment, and how your driving behavior can change that consumption
for better or worse. Really, it’s a miracle that we Prius drivers manage to
avoid plowing into ditches and rear-ending other cars all the time, given



how distracting it is to have that constantly changing dynamic information
on display before us.

Let the naysayers knock my plucky little hybrid if they must, but thanks
to that real-time graphic display, I am now hyperaware of how much energy
I consume when driving, and how much even tiny changes in driver
behavior, type of terrain, or weather conditions can affect my overall
mileage. By virtue of constant feedback on your fuel-efficiency
performance, the Prius trains you to be a more energy-conscious driver. For
instance, accelerate gradually, and you’ll use less energy than if you put
pedal to the metal in a vain attempt to go from 0 to 60 in a few seconds.

Also, traveling at a steady speed, even in heavy traffic, is better than
jerkily starting and stopping, because every time you restart after a full stop,
you have to overcome the car’s inertia all over again. I try to leave a bit of
extra distance between my car and the vehicle just ahead, so I can coast a
little rather than brake suddenly. Under the best conditions, the difference
can be as significant as getting 75 miles per gallon versus 25 mpg. I reflect
on that whenever I feel frustration at Los Angeles’ notoriously congested
freeways. I might be inching along at a snail’s pace, but I reap the benefit
by averaging many more miles per gallon, even if it takes longer to reach
my destination. Collectively, these practices have become known as
hypermiling.

Even traveling at a steady speed, in general, the faster you go, the more
energy it takes to maintain that speed because of increased air resistance
(drag). The engine has to work constantly to overcome the resulting drag
and thus consumes more fuel. It’s tough to correctly calculate the drag
coefficient for anything but the simplest of shapes, but in general, at high
speeds, the drag force increases as the square of the velocity. In plain
English, this means that if you’re traveling at 100 mph, you’ll experience
four times the drag force you’d experience if you were traveling at 50
mph.16

Small increments in improved fuel efficiency can add up significantly
over time. So driving just at (or slightly under) the speed limit can result in
considerable energy savings in the long term. Back in 1974, the federal
government instituted a 55 mph speed limit on highways, not because it was
safer17 but because it conserved fuel at a time when oil was scarce.



Similarly, driving uphill uses more energy than coasting downhill—any
avid bicyclist could tell you that—as does driving into a strong headwind.
Certain driving conditions are beyond one’s control. Don’t even get me
started on what a ten-hour drive from Salt Lake City to Los Angeles in
gusting crosswinds through a mountain pass did to my average miles per
gallon.

Why doesn’t everyone ditch their current gas-guzzling cars for a Prius or
similar hybrid? The answer might surprise you. It turns out that many of us
assume that saving gas (and therefore money) corresponds linearly with
miles per gallon. But according to a June 20, 2008, article in Science by
Richard Larrick and Jack Soll at Duke University’s Fuqua School of
Business, the gas used per mile is actually inversely proportional to miles
per gallon. They call this the mpg illusion.

Let’s say you own two cars: one with a 34 mpg rating, like Sean’s old
Toyota Corolla, and another with an 18 mpg rating, like my father’s beat-up
Chevy pickup. Should you replace the 34 mpg Corolla with a pricey 50
mpg hybrid, or the 18 mpg pickup for a cheaper 28 mpg nonhybrid vehicle,
in order to achieve optimal savings? You want to optimize those gas savings
to recoup your initial capital investment as quickly as possible. Run the
numbers, and it becomes apparent that replacing a 34 mpg car with a hybrid
that gets 50 mpg will save you 94.1 gallons of gas per 10,000 miles; in
contrast, replacing the 18 mpg truck with a 28 mpg vehicle will save you a
whopping 198.4 gallons per 10,000 miles.

That means you’re much better off replacing the lower mpg vehicle (the
Chevy pickup) with a cheaper alternative to the Prius to get the biggest cost
savings. This seems counterintuitive. After all, you’re getting a 16 mpg
improvement in the first example, and only a 10 mpg improvement in the
second. But if you put this data into graph form, you can clearly see the gas
used per mile is inversely proportional to miles per gallon.



There is a steeper slope at lower mpg ratings and gradually diminishing
returns as one moves up the graph to increasingly higher mpg ratings. So
even such seemingly simple numbers can be deceptive, particularly since
most of us are sadly deficient in our grasp of basic mathematical concepts.
And in this case, our ignorance could prove costly.

That’s why I resist the occasional twinge of Prius envy when I read about
the 2010 Prius with the solar-powered sunroof and even better mileage.
Based on the above calculations, it simply isn’t cost-effective to replace my
2007 model with the newer model; it would take much longer to recoup that
capital investment. I’m better off just driving my existing Prius into the
ground.

MODEL BEHAVIOR

If digital speedometers and odometers do a better job than manual
calculations of speed and distance, why do we still need calculus at all?
Calculus is a vital part of almost every field of science because it enables
scientists to construct mathematical models to study complicated real-world
systems—including traffic patterns. Like the computer dashboard displays
in the Prius, mathematical models are visual representations of abstract



concepts, with the added advantage of enabling scientists to make useful
real-world predictions.

Admittedly, not all mathematical modeling has a practical application.
Topologists, for example, are interested in studying imaginary
multidimensional shapes that simply couldn’t exist in our four-dimensional
space-time. But much of the appeal of mathematical modeling for less
exalted minds lies in how it can help make predictions about how a system
is likely to behave, so we can make better, more informed decisions—such
as whether to stay on a clogged freeway and wait out the congestion or try
to find an alternate route to avoid any more potential slowdowns up the
road. (The latter is not an option on I-15. There is no alternate route.)

The more data points you have to work with, the more accurate your
models will be. Ideally you would like a continuous stream of real-time data
rather than a collection of discrete data points. That’s why state and federal
agencies spend about $750 million each year on traffic monitoring to gather
better data in hopes of building better predictive models of traffic flow. For
instance, several state transportation agencies—Maryland, Virginia,
Missouri, and Georgia—are experimenting with software that uses radio
signals from drivers’ cell phones as tracking devices to monitor traffic
patterns. The phones just need to be turned on; the agencies swear they are
not monitoring actual conversations.

“Listening posts” are placed throughout a designated region; they are
capable of detecting but not sending radio signals. A post will pick up a
cell-phone signal and time-stamp the signal’s arrival. By analyzing how
long it takes the radio wave to reach the listening post from the cell phone,
a computer can calculate almost precisely where that phone is located on
the highway. You need data from three such listening posts to determine a
two-dimensional position of a given cell phone user. Adding radio tags
along the highways to time when vehicles pass between given points can
determine the car’s location and speed. Berkeley, California, has a test-bed
project dubbed Smart Cars and Smart Roads, whereby participating cars are
equipped with wireless technology to pick up signals transmitted from
sensors embedded in the road on which they are traveling. In this way, they
can relay critical information, such as whether there’s been an accident up
ahead, and also serve as anonymous data collectors.



Traffic jams are a bit like the process of freezing. On a sparsely
populated highway the cars are far apart and can move freely at whatever
speed they choose while maneuvering between lanes—much like the
movement of molecules in a gas. In heavier traffic, the “car molecules” are
more densely packed, with less room to maneuver, so cars move at slower
average speeds and traffic behaves more like a liquid. If the car molecules
become too densely packed, their speed is reduced and their range of
movement is restricted to such an extent, they can crystallize into a solid,
akin to that critical temperature/ pressure point at which water turns into
ice.

It’s a useful analogy, but the reality is a bit more complicated. A physicist
named Boris Kerner has analyzed data collected from several years of
traffic monitored along German highways and found that traffic tends to
follow the rules of self-organization. His model breaks down traffic into
three basic categories: freely flowing, jammed (a solid state), and a bizarre
intermediate state he calls synchronized flow, in which densely packed car
molecules move in unison, like members of a marching band. When all the
cars are traveling at roughly the same average speed because of the vehicle
density on the roadway, they become highly dependent on one another, or
“highly correlated.”

When cars are highly correlated, a tiny perturbation will send little
ripples of slowdowns through the entire chain of cars behind the offending
vehicle. What happens if the law-flouting driver in the Audi ahead of you
decides to text his girlfriend and then has to brake too suddenly when he
looks up and realizes he’s about to rear-end the BMW just ahead? That
makes you brake too suddenly, and the person behind you, and so on.

That’s one reason why traffic jams are so common at freeway entrance
and exit ramps, or—like on the I-15—when lanes are closed due to road
construction (or a major accident). A state of steady synchronized flow,
punctuated by these tiny ripple effects, can persist indefinitely, but the
balance is delicate and highly unstable. If the volume of cars continues to
increase, the density also continues to increase, and eventually you get a
“pinch effect”: that frustrating stop-and-go phenomenon we are
experiencing on the road to Vegas, in which you escape one narrow traffic
jam only to encounter another a little farther down the road, until they all
converge into a single wide jam. Traffic comes to a standstill.



Given world enough and time, even the worst traffic jams eventually
unsnarl. We finally break free of the construction zone, and Sean gleefully
accelerates to full speed. Zzyzx Road can eat our dust. Soon we’re happily
chowing down on gyros and falafel at the Mad Greek Cafe, bagging some
tasty pistachio baklava for the road, as well as some Alien Beef Jerky from
the tiny store decked out in UFO paraphernalia down the street. (Baker’s a
pretty colorful town.) An hour or so later, our hunger sated, we are cruising
down the infamous Las Vegas Strip toward the Luxor Hotel, where Lady
Luck—and the calculus of probability—will determine our fortunes in the
casinos.
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Casino Royale

The theory of probabilities is at bottom nothing but
common sense reduced to calculus.

—PIERRE-SIMON DE LAPLACE

 
 
 
Legendary Vegas gambler Nick the Greek (aka Nicholas Andrea Dandolos)
won and lost over $500 million in his lifetime by his own estimation,
moving from rags to riches and back again countless times. Along the way,
he met pretty much everyone, from Al Capone and Bugsy Siegel to the
Marx Brothers, Ava Gardner, and John F. Kennedy. Every celebrity who
visited Vegas wanted to meet the last of the true high rollers. So when the
world’s most famous physicist, Albert Einstein, came to town for a
symposium, naturally he sought out Nick the Greek, while indulging in a
spot of gambling himself at the craps and roulette tables.18 Realizing that
his gambling cronies would have no idea who Einstein was, Nick the Greek
simply introduced him as “Little Al from Princeton—controls a lot of the
action around Jersey.”

Sean is tickled when I tell him this (possibly apocryphal) story. Any
serious gambler should have a cool nickname, he declares, and promptly
dubs himself S-Money for the duration of our stay. We normally focus on
poker when in Vegas, but this time, we’re interested in learning craps,
because it is a natural fit for discussing the calculus of probability. Much of
probability theory emerged from attempts to analyze games of chance,
particularly those involving the throwing of dice, sticks, or bones. There is
even a theorem known as the craps principle, dealing specifically with



event probabilities under repeated trials. And what better way to explore
that principle than to hit the craps tables in a bona fide casino?

There are many online guides to playing craps, some with in-depth
analysis of all the related probabilities, but these tend to be dense and
jargon-heavy. There are also online computer craps games where you can
practice placing bets and rolling virtual dice without risking any actual
money. But sooner or later, you have to step up and put your wallet on the
line. Craps doesn’t really begin to make sense until you get your hands dirty
and play the game in a real-world setting—like Las Vegas.

Craps is a raucous, fast-moving game—there is one roll of the dice every
twenty seconds or so—and this pace can be intimidating for the average
newbie still struggling to grasp the rules. So we have opted to take one of
the daily introductory classes offered by the New York, New York casino.
Our instructor is a dapper man, slight of build, with tidy salt-and-pepper
hair, wire-rimmed glasses, and a wry sense of humor, whom I dub Dominic.
Dominic has been a dealer for thirty years and is happy to share not just the
rules of craps but colorful anecdotes from Las Vegas history.19

He starts with basic protocol: how one handles the dice. When a new
craps table opens, for instance, the dealer opens a fresh, factory-sealed pack
of five dice, from which the inaugural “shooter” must select two.
“Whatever you do, don’t grab all five dice, toss them across the table, and
yell, ‘Yahtzee!’ ” Dominic cautions. Then everyone will know you’re a
rube.

The dice must be held in one hand, to prevent players from
surreptitiously switching in loaded dice. You aren’t allowed to rub the dice
between both hands for the same reason, or kiss the dice (“You don’t know
where they’ve been,” quips Dominic), and while it’s fine to lightly blow on
the dice for good luck, we were advised not to get spittle on them, out of
courtesy for the next shooter. By order of the Nevada gaming commission,
the casino also requires that both dice bounce off the far wall of the table on
each roll, lest certain players try to “rig” the roll. We all take turns
practicing this. Dominic warns us not to throw the dice too hard, but that
doesn’t stop one overexcited shooter from tossing them so forcefully that
they bounce off the table—narrowly missing a drop down a buxom
brunette’s cleavage.



THE DUKES OF HAZARD

Some version of craps has been around for centuries, although historical
accounts quibble over the details. Did craps derive from an old game called
hazard, popular with English knights during the Crusades as they laid siege
to a castle called Hazarth in 1125 A.D.? Perhaps the game is Arabic in
origin (al-zar in Arabic translates as “the dice”). Or does craps reach further
back in history to the Roman Empire, when soldiers fashioned rough-hewn
dice out of pig knucklebones? There are certainly references to the game in
Chaucer’s Canterbury Tales, and it was hugely popular in France by the
seventeenth century, especially among the aristocracy.

We can credit a French-Creole American nobleman with the tongue-
twisting moniker of Bernard Xavier Philippe de Marigny de Mandeville for
bringing craps to America. The son of a count, Marigny was born to wealth
and privilege on the family’s New Orleans plantation in 1785, and his
upbringing did much to foster a sense of entitlement. Local lore tells of the
1798 visit to the Marigny estate by the Duc d’Orléans, Louis-Philippe (later
crowned king of France in 1830), and his two brothers, and the lavish revels
that ensued, including the manufacture of special gold dinnerware. In a
show of excessively wasteful extravagance, the gold place settings were
purportedly tossed into the river when the festivities ended, for no one
would be worthy to eat from any plate used by Louis-Philippe. (One hopes
the poverty-stricken locals trawled the river bottom and scavenged the
discarded loot.)

With such role models before him, it is small wonder that young Master
de Marigny matured into a spoiled, dissolute, and extravagant young man,
coming into his substantial inheritance at the tender age of fifteen after the
death of his doting father. His long-suffering guardian despaired of
controlling the headstrong teenager and shipped Marigny off to London in
hopes that there he might learn some temperance. Instead, Marigny
frequented any number of gambling dens, most notably the infamous
Almack’s. That’s where he learned the game of hazard, bringing a
simplified version of it back home to New Orleans a few years later. In
local dialect, the game was dubbed crapaud, from a derogatory term for the
French in New Orleans, Johnny Crapaud. English-speakers later shortened



the name to craps.20 The game quickly spread to the Mississippi riverboats
and beyond.

Bernard de Marigny died penniless in 1868, having repeatedly
subdivided his once vast plantation into numerous land parcels, selling them
off to cover his ever burgeoning gambling debts. He is largely forgotten, but
two legacies remain: the Faubourg Marigny neighborhood of New Orleans
(built on the site of the old Marigny estate), and the game of craps, which is
more popular today than ever. In fact, there is a street in the Faubourg
Marigny district named Craps, reflecting its founder’s place in gambling
history.

There have been many refinements to the rules of craps over the
centuries, but the fundamentals remain unchanged. Each player takes turns
being the shooter, rotating around the table as each individual game comes
to an end. Every game starts with a “come-out” roll: Players place their
initial bets on the “pass” line (required in order to play), and the shooter
rolls the dice. If the shooter rolls a 7 or 11, everyone who placed a pass bet
wins outright. If the shooter rolls a 2, 3, or 12, everyone loses outright. If
the shooter rolls any other number, that number becomes the “point” for the
duration of the game.

Our first shooter is a middle-aged man of Eastern European descent—
let’s call him Yuri—visiting Vegas with his wife. He starts off strong,
rolling a 7 right off the bat, and the table cheers in victory. We collect our
winnings, place new line bets, and Yuri rolls again. It’s an 8; this becomes
the point, and the game’s afoot. Now that a point has been established, we
keep betting and Yuri keeps rolling until he rolls the point again (an 8) or he
rolls a 7 (craps). If the former, we win; if the latter, we lose. Either way, the
game ends, a new shooter takes over, and the cycle begins anew.21

If that were all there were to craps, it would become boring very quickly.
So as the game evolved, additional types of bets were added, each with its
own set of odds. For instance, as an alternative to the standard pass bet on
the come-out roll, a player can place a “don’t-pass” bet—essentially betting
against the shooter and the rest of the table. One caveat: This will make you
very unpopular. It’s a very social game, and players tend to bond at a craps
table, because people’s fortunes rise and fall with the shooter’s. Betting
against the shooter is a buzzkill. For don’t-pass bets, the win-lose rules are



reversed. If the shooter rolls a 2 or 3, a don’t-pass bet will win outright,
while the rest of the table loses. If the shooter rolls a 7 or 11, a don’tpass bet
will lose outright—and everyone at the table who placed pass bets will
revel in Schadenfreude.

The key difference is if the shooter rolls a 12. In that case, a don’t-pass
bet will neither win nor lose; it would be a “push.” This is simply a means
of maintaining the house advantage: Three numbers are losers while two are
winners on the come-out roll if you place a pass bet. In contrast, two
numbers are losers and two are winners if you place a don’t-pass bet on the
come-out roll. One might be tempted to conclude, therefore, that the odds of
winning the come-out roll with a don’t-pass bet are 50/50. One would be
mistaken. Probability is more complicated than that, even for a relatively
simple game like craps, which is why the field has fascinated scientists and
mathematicians for centuries.

CHANCE ENCOUNTERS

Among the first to analyze games of chance with an eye toward odds and
winning strategies was a sixteenth-century physician, astrologer, and
mathematician named Gerolamo Cardano. Born in 1501, his was not the
most auspicious of beginnings. His mother, having already borne three
children and clearly being fed up with parenthood, tried to abort him with a
brew of wormwood, barleycorn, and tamarisk. Gerolamo survived but
promptly contracted bubonic plague when he was just a few months old—
usually a death sentence at the time, particularly for an infant.
Astoundingly, he survived that, too. (His wet nurse and three half-brothers
perished.)



His father, Fazio, wanted the teenage Gerolamo to study law, but the boy
longed to study medicine instead. He initially supported his studies by
tutoring others in geometry, alchemy, and astronomy, as well as casting
horoscopes. (Astrology and alchemy were still considered legitimate fields
of study.) But then he developed a taste for gambling and found he had a
gift for beating the odds. He quickly amassed winnings of 1,000 crowns,
more than enough to pay for his education, and in 1520 began writing a
treatise, The Book on Games of Chance, which he kept revising right up
until his death.

Cardano was a better gambler than a physician, it seems—or rather, he
lacked the business acumen to market himself to prospective patients. He
struggled mightily to support his family early in his career, and soon found
himself resorting to gambling again to make ends meet. Eventually Fortune
seemed to smile on him: He published a series of successful books and by
1550 became the renowned physician he’d always dreamed of being.



If only he hadn’t had children. Cardano’s appalling offspring were a trio
of bad seeds whose behavior would make Caligula blush. His daughter
Chiara seduced her older half-brother, Giovanni, at the age of sixteen,
became pregnant, aborted the fetus, and continued to philander even after
her marriage, eventually contracting syphilis. That same brother was later
convicted of poisoning his wife; Cardano spent a fortune on his defense, to
no avail. Giovanni was summarily executed, most likely deservedly so. The
younger son, Aldo, became a torturer for the Spanish Inquisition, testifying
against his own father so that Cardano briefly landed in jail. Cardano finally
died in September 1576, penniless and quite mad, having burned more than
half of his manuscripts before shuffling off this mortal coil.

Among his surviving manuscripts was The Book on Games of Chance,
finally published in 1663, almost a century after Cardano’s death. By that
time, others had replicated and out-paced Cardano’s analysis, but the
beleaguered physician with the rotten luck deserves his minor place in the
annals of probability theory. In chapter 14, titled “On Combined Points,”
Cardano laid out what we now know as the law of the sample space. The
sample space is simply the set of all possible outcomes of a random process
(like the roll of the dice or flipping a coin). Cardano reasoned that the
probability of winning a roll of the dice, for example, is equal to the
proportion of winning outcomes. A die can land on any one of its six sides,
and those six potential outcomes make up the sample space. Place a bet on
one such number, and your chance of winning is 1 in 6; place bets on three
such numbers, and your odds improve to 3 in 6.

His methodology served him well as a gambler, but Cardano’s analysis
was rather flawed. He assumed that all outcomes were equally likely; in
fact, different outcomes have different probabilities. Galileo Galilei
demonstrated this in the early seventeenth century in a short paper entitled
“Thoughts About Dice Games.” Galileo wasn’t especially interested in
probability theory, preferring to roll balls down inclined planes and time
their rate of travel. But his patron, the Duke of Tuscany, was an inveterate
gambler and thus keenly interested in the question of why—for games
played with three dice—the number 10 seemed to occur a tad more
frequently than the number 9. Galileo concluded (correctly) that this
occurred because there were more combinations that yielded a 10 than
yielded a 9. There are twenty-seven ways to roll a 10 with three dice,



compared to twenty-five possible combinations for a 9. It’s now an
established tenet of probability theory that the odds of a particular outcome
are dependent on the number of ways in which it can occur.

Galileo took his analysis no further; his research interests lay elsewhere.
Yet wealthy and titled patrons with gambling problems continued to push
for advances in probability theory, most notably a social-climbing French
essayist named Antoine Gombaud, who adopted the title chevalier after the
character in his many dialogues who represented the author: Chevalier de
Mere.

Gombaud was a man of letters who fancied himself an amateur
mathematician, and in 1654 he found himself pondering what is known as
the problem of points: How do you determine how the stakes in a game of
chance should be divided if, for some reason, the players were interrupted
and never finished their game? It was first proposed in 1494 by an Italian
monk named Luca Pacioli in his treatise Summa de arithmetica, geometria,
proportioni et proportionalita. (Yes, even monks fell victim to the lure of
gambling. They didn’t have television in the Middle Ages.) So this question
had been knocking around gambling circles for nearly two hundred years by
the time Gombaud decided enough was enough—he wanted a solution to
the conundrum.

Gombaud turned to a young mathematician named Blaise Pascal, who
had taken up gambling when his doctors advised him to abandon mental
exertions for the sake of his health. Pascal suffered from chronic stomach
pain, nausea, migraines, and partial paralysis of the legs, among other
ailments. Intrigued, Pascal quickly realized he would need to invent an
entirely new method of analysis to solve the puzzle, because the solution
would need to reflect each player’s chances of victory given the score at the
time the game was interrupted. Thus began his legendary correspondence
with fellow mathematician Pierre de Fermat, which over the course of
several weeks, laid the foundation for modern probability theory. They
quickly realized that in order to solve the problem it would be necessary to
list all the possibilities and then determine the proportion of times that each
player would win.

Caltech mathematician Leonard Mlodinow gives one of the clearest
explanations of how to solve the problem of points in his book The
Drunkard’s Walk, using the example of the 1996 World Series, in which the



Atlanta Braves beat the New York Yankees. Atlanta won the first two
games, but what were the odds of a Yankee comeback at that point? To get
the answer, you would need to count every scenario in which the Yankees
could have won and compare that to the number of scenarios in which they
could have lost. By that reckoning—which assumes that the Yankees and
the Braves had equal chances of winning each subsequent game—the
chance of an overall Yankee victory would have been 6 in 32, or around 19
percent, compared to 26 in 32, or about 81 percent, for an Atlanta victory.
“According to Pascal and Fermat, if the series had been abruptly
terminated, that’s how they should have split the bonus pot, and those are
the odds that should have been set if a bet was to be made after the first two
games,” Mlodinow concludes.

Pascal’s bank account may have suffered during this period of his life,
but his health was never better. Ironically, the mental exertions of his
correspondence with Fermat triggered a “trance” a few weeks later, from
which Pascal never fully recovered. He became deeply religious, eschewing
his former “corrupt” ways, and died of a brain hemorrhage at thirty-six.
Maybe he should have stuck with gambling.

RISK AND REWARD

What happens in Vegas stays in Vegas, or so the advertising tagline goes—
and more often than not, your money stays too. For craps, the probabilities
are fairly straightforward because there are only two dice with six sides
each, so there are only 36 possible combinations: six possibilities for each
of the two dice (6 × 6 = 36). Yet not all outcomes are created equal, and
therein lies the secret of the house advantage. There are more ways to roll a
7 than a 2, for example. To roll a 2, you would need to roll snake eyes (1 +
1). In contrast, there are three different combinations that total 7: 1 + 6, 2 +
5, and 3 + 4. Furthermore, because each die is distinct, probability also
includes the combinations 4 + 3, 5 + 2, and 6 + 1. Ergo, 7 is the most likely
number to be rolled. It’s no accident that the losing roll (craps) is 7 once the
game gets under way.



How does this play out when one takes into account the odds and payoffs
for the various bets in craps? For the pass and don’t-pass bets, the payoff
odds are one to one: Winners receive one dollar for each dollar they bet.
This does not mean you have a 50/50 chance (0.5) of winning a pass-line
bet; the actual probability is exactly 0.49293—just slightly less than a 50/50
chance, giving the house an edge of about 1.42 percent.

Once the point has been established, the next most favorable side bet to
further narrow the house’s edge is called a “freeodds” bet. For example,
before the next roll, S-Money would add between one and three extra chips
behind his original pass bet. While line bets have a one-to-one payoff, the
payoff for a free-odds bet is determined by the exact mathematical odds
against winning the bet. If the point is either a 4 or a 10, the odds against
winning are 2 to 1; ergo, the payoff if the shooter rolls the point before a 7
is 2 to 1. So if S-Money bet $10 as a free-odds bet, he would win $20. If the
established point is a 5 or a 9, the odds against winning are 3 to 2, so the
same $10 free-odds bet would win $15. And if the point is a 6 or an 8, the
odds against winning are 6 to 5, so a $10 free-odds bet would bring in $12.

Dominic assures us that the free-odds bet gives the house the smallest
possible advantage, and thus is an excellent way to maximize one’s
winnings. But there’s still just a single number (the point) by which you can
win. You could increase your chances of winning if there were more
possible winning numbers. That’s where the “come” bets and “point” bets
come in. For a come bet, you place a chip in the come section of the table
before the next roll, and whatever number the shooter rolls becomes a new
point for that particular chip. So now you can win on this point or on the
original point established on the come-out roll. If the shooter rolls a 7, of
course, you lose outright—because the game is over.

There are some disadvantages to the come bet. First, it is a “contract bet,”
meaning it remains in place until the end of the game, just like the pass and
don’t-pass bets. (You can also place don’t-come bets, once again betting
against the shooter.) Second, you are at the mercy of a roll of the dice to
determine the new point. If you want to be able to pick your own number to
be the new point, and have the freedom to add or remove chips at will, you
should make a point bet. The payoff odds aren’t quite as good as the come
bets, but you have more control over the board. There are plenty of other,
higher-risk bets, but these are really the only bets you can make in craps



with reasonable odds. You’ll still lose money in the long run, but you’ll lose
it much more slowly.

Now it’s time to play the game for real. The casino graciously sets up a
small-stakes table just for the newbies for one hour so we can practice our
newfound skills. S-Money being the more math-savvy in our household, he
shrewdly opts to take Dominic’s advice and maximize the size of his odds
bets in relation to his line bet, thereby reducing the house edge to a whisker
(although not eliminating it entirely). Because we’re experimenting, I
choose to focus on placing come bets and point bets, trading better payoff
odds for more control over the board, to see how these two strategies
compare.

From a psychological standpoint, craps is an ingeniously designed game.
The odds are certainly rigged in the casino’s favor, but they are not rigged
too heavily in that direction. That would be no fun at all. Players need a
sense of reward, even if it’s just the illusion of winning once in a while.
That’s what makes the game so addictive. I soon notice that we do win
rolls, sometimes several in a row, but in all but a few cases, the money we
win never quite adds up to the money we spend placing even the minimum
bets. The result: At best, playing craps is a slow bleed that one can easily
not notice, because the tiny amounts won in between losses blind players to
the long-term financial hemorrhage that is taking place.

Yet somehow we walk away one hour later with combined winnings of
$145. (I win $45, S-Money wins $100—a neat illustration of how the
various odds play out, albeit purely anecdotal.) My interpretation is that we
hit a streak of good luck, and had the sense to quit playing while we were
still ahead. Ever the physicist, S-Money loftily informs me that, according
to probability theory, “hot” or “cold” streaks are merely a perception. Each
roll is independent of the previous and subsequent rolls; that is the nature of
true randomness. So the odds are the same for each roll, even if the shooter
has rolled the point twenty or two hundred times in a row; the outcome of
the last roll does not affect what happens next. There is no such thing as
being “due” for a win (or a loss).

Still, it is possible to figure out how often we are likely to have a winning
session of craps. Translating this concept into actual calculus is tricky, in
part because throwing dice falls into the realm of discrete events—
analyzing event probabilities under repeated trials—whereas calculus, by



definition, deals with continuous things. If you plot the probability of the
outcomes of individual rolls, you’ll get a shape resembling a pyramid—a
perfectly good shape, but not one that represents a continuous function.

However, if you throw the dice two thousand times (or more), add up
how much you win and how much you lose each time, and plot it all out on
a Cartesian grid, the result is a standard bell curve, also known as a normal
distribution curve. For any random sample—say, many random rolls of the
dice—you will get a distribution of values clustered around an average (or
“mean”) value. That mean value is the peak, or highest point, of the curve,
where the most data points cluster together; there are fewer and fewer data
points as we move out to the edges. In craps, big wins or big losses happen
very infrequently, and would be found at the extreme edges of the bell
curve, while outcomes with smaller wins and losses would cluster near the
peak of the curve.

Now that we have a pretty bell curve, we can use calculus to determine
how often we will have a winning session in craps. First we need to
understand what it is we are calculating; we have to set up the story. Every
time we throw the dice, the probabilities for rolling a specific number don’t
change from the odds outlined above; there is still a 1 in 6 chance of rolling
a 7 with each and every roll, as represented by the pyramid. We are asking a
different question: Given that we know we will throw the dice two thousand
times, what is the probability that we will win or lose?



This reduces the question to an either-or option, assuming even odds—
and remember that the game of craps is not even odds; we’re just making
that assumption for the sake of simplicity. In this case, for every roll, there
is a 50/50 chance that we will win or lose, and each outcome is separate
from those before and after. It’s known as a random walk or, as many
mathematicians like to call it, the drunkard’s walk. The probability that any
one session of craps is an overall win or a loss approaches the distribution
of this smooth bell curve the more times we throw the dice. If we throw the
dice an infinite number of times, our win-loss rate will match the bell curve
exactly.

How do we determine that likelihood? We take an integral. The actual
formula for the integral from one point to another on a bell curve has never
been explicitly written down; it is usually calculated with a computer. But
here is the gist of the concept. Imagine a number line that runs from
negative infinity (on the left) to infinity (on the right), with 0 smack in the
middle, and a standard bell curve peaking at 0. This represents the
distribution of outcomes for a 50/50 chance of winning or losing. The
probability of losing will be the area under the curve that spans from minus
infinity to 0, while the probability of winning will be the area under the
curve from 0 to infinity. Each is equal to one half in this simplified
example. The more times we roll the dice, the closer we will come to
matching those probabilities. With 50/50 odds, for an infinite number of
rolls, we will break even.

We can be even more specific by picking a random point on the x axis—
say, 500—to determine the likelihood that we will either lose money or win
up to $500. The answer will be the area under that portion of the curve that
runs from negative infinity to 500. If we want to know the likelihood that
we will win more than $500, we determine the area under that portion of the
curve that runs from 500 to infinity.

The biggest problem when it comes to craps is that the odds are not
50/50. Let’s say the house has a slight edge, making the odds 49/51. Now
our bell curve is shifted slightly to the left on our grid, making it slightly
more likely that we will lose; and the longer we play, the closer we will get
to that distribution. We also need to specify the size and type of bet for each
roll, because the probabilities in craps are linked not just to the outcomes of
the rolls of the dice, but also to the payoff rates for different kinds of bets.



GAMING THE SYSTEM

We won at craps because we got lucky in the short term: We hit a
probabilistic sweet spot by pure random chance and had the sense to quit
while we were ahead. Vegas notoriously attracts gamblers convinced they
have discovered a “system”—a perfect strategy to beat the house. They are
deluding themselves. Even assuming these perennial optimists have taken
every single variable into account for their calculations, it takes only the
tiniest house advantage to tip the scales irrevocably. We played for just one
hour. Play the game long enough, and eventually you will lose everything.
The occasional perceived hot streak or lucky break doesn’t alter that fact.
The casinos are very up front about this. Another craps dealer in the New
York, New York casino—let’s call him Vito—didn’t mince any words on
that score: “Everyone thinks they got a system. You think you’re gonna beat
this table? Go ahead and try. We got ATMs all over the casino, just for
people like you.” Listen to the wisdom of Vito, my friends. Forewarned is
forearmed.

Even if the odds are in your favor, there’s no guarantee you’ll win. Let’s
imagine the situation were reversed, and the players had the slightest
advantage; it wouldn’t necessarily translate into an automatic win. You
must pay just as much attention to your bankroll as the odds of winning; if
the odds are good but you’re betting a substantial portion of your bankroll
on each roll of the dice, it’s enough to wipe out any advantage pretty
quickly. That’s the essence of a little exercise called gambler’s ruin. It’s a
favorite of University of Washington physicist Dave Bacon—better known
to the blogosphere as the Quantum Pontiff—who became fascinated with
cataloging the outcomes of repeated throws of dice as a child. He admits
this made him an übergeekazoid, but it probably saved him a lot of money
in the long run.

Gambler’s ruin begins with the assumption—a false one, when it comes
to craps—that the player has a slight advantage in a game of chance and
should win slightly more than half the time. Say you have a bankroll of x
dollars. For every dollar you bet, you win another dollar or lose the original
dollar, depending on the outcome. (This is the same payoff rate as the pass
and don’t-pass bets in craps.) What is the probability that you will run out



of money, even with that slight advantage, rather than increase your
bankroll by, say, doubling your money?

Drawing on that childhood fascination, Bacon devised a handy formula
and plugged in a few values to see if a pattern emerged. He found that even
with a fairly large advantage—say, 55/45—if you only start with $10 and
make a fixed bet each time, there is an 11.8 percent chance of being ruined
before you succeed in doubling your money. If you have a 51/49 advantage
and a starting bankroll of $178, your chances of ruin before doubling up
decrease to 0.1 percent, or 1 in 1,000. In craps, of course, you don’t have an
advantage. Bacon has crunched those numbers, too. If the house has the
usual edge of 1.42 percent, and you start with $100 and want to double it,
your probability of ruin is 98.2 percent. That’s why casinos make such a
killing.

So the first rule of gambling, for those who have studied the odds, is
simply, Don’t.22 Still, craps is quite a lot of fun, provided you view it as
harmless entertainment, rather than a get-rich-quick scheme to pad your
401(k). A good rule of thumb is to budget a set amount you are willing to
lose and just chalk it up to the price of a day’s entertainment. Once you lose
that amount, suck it up and walk away, and maybe explore a few of the
other delights of Vegas.

Admittedly, this is easier said than done. For one thing, casinos employ a
stickman at every craps table, whose job is to talk up the game and
encourage players to make the riskier bets. For another, a 2008 paper in the
Journal of Marketing Research reported on a study by two professors at the
University of California. They found that even if people went into the
casino determined to stay within their gambling budget, the pain of losing
would usually cause them to bet more money in hopes of recouping their
losses. Those who won tended to keep to their budget.

If someone develops a gambling addiction, the problem is even worse. In
2007, a Nebraska businessman named Terrance Watanabe lost nearly $127
million in a yearlong binge at the Caesars Palace and Rio casinos, blowing
most of his personal fortune. When parent company Harrah’s Entertainment
sued him for nonpayment of his gambling debt, Watanabe counter-sued,
claiming casino staff plied him with drinks and encouraged him to gamble
while intoxicated, thereby impairing his judgment. There could be an



element of truth to that: High rollers like Watanabe—“whales” in the jargon
of casino staff—are a lucrative source of income for casinos. As such,
casinos treat them very well, doling out all manner of luxuries, free of
charge, to keep them happy. But there are rules: Nevada gaming regulations
stipulate that someone who is clearly intoxicated should not be allowed to
gamble. In fact, Watanabe claimed he was barred from the Wynn casino for
compulsive drinking and gambling; the Harrah’s establishments welcomed
him with open arms.

Watanabe’s spectacular downfall is a rare occurrence. It is certainly
possible to maximize your fun playing craps in a casino without breaking
the bank. Just follow this basic principle: You want to play as long as
possible with a fixed amount of money. That means losing as little as
possible with each bet by choosing those bets with the most favorable odds
and pay-outs. It’s easy to determine the optimal percentage of your bankroll
you should bet in order to maximize your long-term return without busting
out, using something called the Kelly criterion.

Born in Texas, John L. Kelly was a Naval Air Force pilot during World
War II who survived a plane crash into the ocean and eventually earned a
PhD in physics from the University of Texas-Austin. He found work in the
oil industry, using his scientific training to identify likely oil sites. But his
employer’s instincts were better than Kelly’s models, so Kelly decided the
oil business was best left to those with a nose for hidden deposits and found
himself working for Bell Labs, one of the most prestigious research centers
in the United States. He cut a colorful figure among his fellow physicists,
with his Texas drawl, passion for guns, and penchant for taking calculated
risks.

It was a hugely popular television game show called The $64,000
Question that inspired Kelly to devise his famous formula in the 1950s.
People would place bets on the most likely contestants to win. But there is a
three-hour time difference between New York City—where the show was
produced and aired live—and the West Coast. Kelly heard a rumor that one
gambler on the West Coast had a partner back east tell him the winners by
phone so that he could place bets before the show aired in the West, giving
said gambler an inside track. This spurred Kelly to ponder probabilities and
gambling. He reasoned that if a gambler with an inside track bets
everything he or she has on the basis of those tips, the gambler will lose



everything the first time he or she gets a bad tip. But if the same gambler
makes just the minimum bet for each tip, that insider information no longer
confers much of an advantage. Recognizing the importance of how much
someone bets in fashioning a winning strategy, Kelly determined that
dividing your edge by the odds tells you what percentage of your bank roll
you should bet each time.

The odds determine how much profit you make if you win; the edge
describes the amount you expect to win on average if you make the same
wager repeatedly under the same probabilities. Remember the lesson of
gambler’s ruin: Even if the odds are in your favor, you still don’t want to
bet your entire bankroll in one fell swoop; your odds of losing everything
on one roll are much higher. Play it safe and bet too little, however, and
your return won’t be sufficient to make up for the inevitable losses. Kelly’s
formula reveals the optimal betting strategy for maximizing long-term
returns. For a bet with even odds, Kelly tells us to bet a fraction of our
bankroll that is determined by 2p -1, where p is our probability of winning.

When it comes to playing craps in a Vegas casino, it will be a
discouraging answer unless you have the good fortune to be the house.
Players usually have an edge of zero at best (a 50/50 chance) and more
often it is slightly less. In either case, the Kelly criterion says that the best
way to maximize your long-term return in craps is to bet 0 percent of your
bankroll—that is, not to play. But that is just a detached, mathematical
analysis that doesn’t take into account the fun factor, the sheer pleasure one
derives from playing craps.

We can tweak this problem a little to take that subjective quality into
account by assigning it a quantitative value: Let’s say the odds are 49/51,
giving the house a 2 percent edge, but the fun factor is 3 percent, giving us
a net edge over the casino of 1 percent. That corresponds to a winning
probability of 0.51, so the Kelly criterion tells us to bet 2 percent of our
bankroll. Now, we can place our bets accordingly to optimize our fun—that
is, play as long as possible by maximizing our long-term gains. We’ll still
most likely lose in the end, but we will be getting the most bang for our
buck.

There is a downside to the Kelly criterion, or rather, a kind of trade-off:
Following the Kelly criterion exactly leads to a lot of volatility in the
outcomes. In the long term, it works; in the short term, it can lead to intense



anxiety over the wild fluctuations in one’s fortunes. For those who prefer a
bit less drama in their gambling, a popular middle-ground strategy is to bet
half of what the Kelly criterion recommends. This optimizes your return to
within three fourths that of the Kelly criterion while greatly reducing the
volatility. It seems apt that the optimal formula for long-term gain would
increase short-term risk, considering that the man himself was a bit of a
daredevil. Ironically, Kelly never actually put his method to the test: He
died of a brain hemorrhage in 1965 at the age of forty-one while walking
down a Manhattan sidewalk. What were the odds of that?

NEEDLE IN A HAYSTACK

We round out our wild Vegas weekend with several hours of good old-
fashioned poker—a game of skill and strategy, as opposed to pure random
chance, wherein the casino takes a cut of the pot instead of relying on a
built-in house edge. What have I learned? “Craps” is an apt moniker. Also?
I can’t bluff worth a damn at Texas hold ’em. But in the end, we emerge
from the weekend with our wallets relatively unscathed.

Relaxing over cocktails at the Bellagio that evening, I ponder the fact that
probability theory and gambling are also linked to fortune-telling and one of
the most famous “natural” numbers, π. In Philip Pullman’s The Amber
Spyglass, fictional Oxford physicist Mary Malone finds she can
communicate with the mysterious, conscious particles collectively named
Dust using the yarrow-stick casting methods of the I Ching (it’s also
possible to use coins). For those who scoff that a physicist would never
express any appreciation for a “supernatural” method of divination,
consider this: When he was knighted, Neils Bohr included the yin-yang
symbol in the design for his coat of arms, to reflect his appreciation for the I
Ching’s ingenious use of probabilistic concepts.

Mary Malone’s divination method has a real-world counterpart in one of
the oldest problems in geometrical probability, known as Buffon’s needle.
This experiment was the brainchild of a French naturalist and
mathematician named Georges-Louis Leclerc, Comte de Buffon. Born and
raised on the Côte d’Or, the young George-Louis started off studying law



before getting side-tracked by mathematics and science. It’s not clear that
he ever earned a degree, because he was forced to leave the university after
getting tangled up in a duel. He then toured Europe, only returning when he
heard his father had remarried—not so much out of familial devotion as
concern over collecting his inheritance.

Buffon fils is best known for writing the Histoire naturelle, a whopping
forty-four volumes of encyclopedic knowledge that covered everything
known at that time about the natural world. A full hundred years before
Charles Darwin’s Origin of Species, Buffon noted the similarities between
humans and apes and mused on the possibility of a common ancestry,
concluding that species must have evolved since that common point. He
never proposed an actual mechanism for this evolution, but his tome was
translated into numerous languages and certainly influenced Darwin, who
described Buffon—in the foreword to the sixth edition of Origin—as “the
first author who in modern times has treated it in a scientific spirit.”

Buffon’s quirky contribution to probability theory lies in a paper he
published in 1777 entitled, Sur le jeu de franc-carreau [On the Game of
Open-Tile]. He first considered a small coin—an ecu, for all you crossword
puzzle buffs—thrown randomly on a square-tiled floor. It was all the rage in
Buffon’s social circles to place bets on whether the coin would land entirely
within the bounds of a single tile or across the boundaries of two tiles right
next to each other. Buffon had a bit of an advantage over his peers thanks to
his mathematical interests. He realized he could figure out the odds of the
wager using calculus, making him the first person to introduce calculus into
probability theory.

Buffon noted that the coin would land entirely within a tile whenever the
exact center of the coin landed within a smaller square—and that smaller
square’s side was equal to the side of a floor tile minus the diameter of the
coin used in the toss. He concluded that the probability of the coin landing
entirely inside a single tile could be expressed mathematically as the ratio
of the area of the tile to the area of the smaller square.

Buffon performed the same experiment using a sewing needle and a
checkerboard—hence the name Buffon’s needle. Drop the needle onto the
checkerboard, and one of two things happens: Either the needle crosses or
touches one of the lines, or it doesn’t cross any lines. (This assumes parallel



lines or squares spaced about one inch apart, and the use of a needle one
inch long.)

Buffon dropped the needle over and over again, keeping track of how the
needle randomly landed each time. His found that the probability that a
dropped needle (or tossed coin) would cross a line is approximately 2
divided by π. He divided the number of crossing needles by the total
number of needles, and realized that the more times one drops the needle,
the closer one would approach the value of the probability—that is, the
closer one would come to the value of π.

There are many online versions of this experiment, wherein the player
can repeat the “toss” as many times as desired: five hundred, a thousand,
even a hundred thousand times. Once again, the more times you repeat the
experiment—the more times you roll the dice at the craps table, or spin the
roulette wheel—the more closely you will approach the calculated
probability. There may be winning or losing streaks in the short term, but
the more you play, the more predictable things become. It’s just a quirky
little oddity that the value relates to π.



With an infinite number of tosses, the value will be exactly π—that is the
limit of that infinite series of tosses. The mathematician Pierre-Simon de
Laplace definitively proved this in 1812. This is also the essence of what
Mary Malone discovers in The Amber Spyglass. A seemingly random
scattering of needles (or yarrow sticks) over a sheet of lined paper can
nonetheless give you a very precise number in the end. Such is the power of
calculus.
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The Devil’s Playground

Mechanics is the paradise of mathematical science
because here we come to the fruits of mathematics.

—LEONARDO DA VINCI

 
 
 
It is a bright and sunny Sunday afternoon inside Disneyland’s California
Adventure theme park. Visitors meander blithely through the broad
“streets,” nibbling on ice cream and occasionally pausing for photo ops
with life-size characters from popular animated features like Monsters, Inc.,
The Incredibles , or Lilo & Stitch. They seem oblivious to the ominous
shadow cast by the Tower of Terror, looming nearly two hundred feet above
the ground, or the screams emanating from within the structure. Blackened
scorch marks decorate the crumbling facade, where lightning supposedly
struck in 1939, with tragic results.

Of course, nothing in Disney’s many theme parks is real. Those are
screams of exhilarated delight, not abject terror, piercing the grim walls.
Inspired by the classic TV series Twilight Zone, the Tower of Terror is
Disney’s theatrical twist on the classic free-fall ride. We’ve been waiting in
line for nearly forty-five minutes to experience those few fleeting moments
of thrills and chills.

Inside we encounter the faded glory of a bygone era: Sagging overstuffed
furniture, layers of dust, cracked plaster, and glass chandeliers laced with
fake cobwebs grace the “lobby.” We gradually shuffle our way to a
boarding dock for mock elevators, where an employee dressed as a bellhop
ensures we are all tightly strapped into our seats. Our elevator rises midway



to the top and stops, and we are treated to Rod Serling’s disembodied voice
regaling us with the saga of a dark and stormy night on October 31, 1939,
when five hotel guests stepped into an elevator and were launched into . . .
the Twilight Zone!

Before we can snicker at the cheesy effects, our elevator makes a sudden
gut-churning drop back to the ground floor and then shoots up all the way
to the top of the structure (ostensibly the thirteenth floor), the acceleration
pushing us into our seats. We pause just long enough to glimpse the rest of
the park spread out two hundred feet below, before the elevator car plunges
again—one short drop followed by one longer drop, each accompanied by a
glorious moment of weightlessness. Then we hurtle back up to the top for
one final free fall back down to the “basement,” where the faux bellhop
waits to usher us back out into the Southern California sunshine. As the ride
ends, Sean turns to me and gleefully exclaims, “Hey! We made a parabola!”

Everyone should visit Disneyland with a physicist in tow, just for the
novelty; it’s an entirely new way of looking at the Magic Kingdom. (Motto:
“All headgear is improved by the addition of mouse ears.”) I guarantee that
nobody else on that ride found their thoughts wandering to calculus and
parabolic curves; they were too busy screaming with joy at the free fall.
Sean had never been to Disneyland, and I decided it was time to rectify that
gap in his cultural development, insisting that it is a slice of Americana that
must be experienced firsthand—and besides, what better place to find
examples of calculus and classical mechanics in action?

Amusement-park physics is all the rage among high school physics
teachers desperate for novel ways to engage their easily distracted young
charges. Case in point: Every year, on Physics Day, more than four
thousand high school students swarm Six Flags America in Largo, Virginia,
armed with homemade accelerometers (devices to measure acceleration)
and stopwatches, eager to experience the park’s extreme roller coasters—
and perhaps learn a little physics along with the adrenalin rush. So Sean
good-naturedly agreed to spend a Sunday at Disneyland, being dragged
from one long queue to another, filled with overexcited youngsters, frazzled
parents, and purple-haired hipsters with multiple piercings doing their
damnedest to look bored and act as though they were Really Just There for
the Irony.



FREE-FALLIN’

That diverse mix of young and old is exactly what Walt Disney had in mind
when he first dreamed up the notion of a “magical park” in the late 1930s.
World War II put his plans on hold, but by 1953, he had found one hundred
acres just outside Los Angeles where he could build his Magic Kingdom.
On July 19, 1955, Disneyland held its official grand opening. It was a
disaster. Disney had intended the day to be an exclusive, invitation-only
event for a select 6,000 people. But counterfeit invitations were quickly
forged and snapped up by eager hordes. People began lining up at the park
gates as early as two A.M., and by midafternoon, over 28,000 “ticket
holders” had swarmed the park. Vendors ran out of food, and all the rides
were overcrowded. A few desperate parents tossed their wailing offspring
over the shoulders of bystanders blocking the way, just to get them onto the
King Arthur Carousel.

The weather didn’t cooperate either. The mercury hit 110 degrees
Fahrenheit, part of a fifteen-day heat wave that baked the greater Los
Angeles area that July. Newly laid asphalt hadn’t had time to set, so
women’s high heels got stuck in the melting tar, and hardly any of the
park’s water fountains worked because of an ongoing plumber’s strike.23
Adding insult to injury, there was a gas leak that forced the afternoon
closure of Adventureland, Frontierland, and Fantasyland; only
Tomorrowland emerged from the debacle unscathed. But Disneyland
proved hugely successful in the long run. By the time the park celebrated its
tenth anniversary in 1965, over 50 million people had visited.

Disneyland is much better at crowd management these days, even though
lines remain long for the most popular rides. And the Disney empire has
expanded and gone global. Within the original park, in Anaheim, there is
now New Orleans Square, Critter Country, and Mickey’s Toontown, in
addition to the original four “lands.” Florida has Disney World, and there
are now Disney theme parks in Paris, Tokyo, and Hong Kong. The
California Adventure theme park opened adjacent to Disneyland in 2001;
the Tower of Terror can be found in the Hollywood Pictures Backlot section
of the park.



Human beings have thrilled to the sensation of free fall for centuries,
with occasionally dire results. Witness the enormous popularity of bungee
jumping, which has its roots in the ancient Aztec ritual of the Danza de los
Voladores de Papantla; the danza is still practiced today by “Papantla
flyers.” In the 1950s, British documentary filmmaker David Attenborough
took his BBC film crew to Pentecost Island in Vanuatu, where they
recorded several young tribal men who jumped from tall wooden platforms
with vines tied to their ankles as a test of courage. It was only a matter of
time before extreme sports enthusiasts had the brilliant notion of harnessing
themselves to bungee cords and jumping off tall structures for fun (and the
occasional profit).24 Bungee jumping quickly spread around the globe,
despite numerous accidents and the odd fatality.

For those (like me) who prefer a more sedate form of thrill-seeking, there
are mechanical free-fall rides with, shall we say, more rigorous safety
constraints. Six Flags Great Adventure introduced one of the first true free-
fall experiences in 1983. The L-shaped structure featured a four-passenger
car lifted via hydraulics to the top of a 130-foot tower and suspended for a
few seconds. At the buzzer, the car would plunge down the drop track and
onto the horizontal exit track to end the ride. The latter was necessary
because coming to a sudden stop at the end of the drop would most likely
cause serious injuries. The deceleration period dissipates all that kinetic
energy over a longer period of time so it isn’t transferred all at once to the
passengers.



The Tower of Terror is a variation of a “drop tower” ride that gradually
has replaced the classic free-fall design since the 1990s, largely because it is
closer to a true free-fall experience, and there is less mechanical wear and
tear. A gondola or car—in this case, the mock elevator—is propelled
upward toward the top of a large vertical structure and then falls back
toward the ground. The brakes kick in before impact, slowing the ride,
although the Tower of Terror essentially “bounces” its riders a few times
before finally coming to rest.

Technically, we enter free fall when there is no longer any force (other
than gravity) acting directly on us. Think of tossing an apple into the air.
The moment it leaves your hand and you stop applying that upward force, it
is in free fall. It continues traveling up, moving more slowly as gravity
overpowers its upward motion, has a brief moment of hang time (that
period of weightlessness), then begins its descent. Our car in the Tower of
Terror follows the same trajectory. It receives an initial push from the
hydraulics, but at some point that force is removed and we finish our ascent
using pure momentum. That brief, exhilarating period of weightlessness
occurs because riders fall at the same rate as their surroundings—in this
case, their seats. NASA’s infamous “vomit comet” follows a parabolic
trajectory while in flight, taking such extreme lifts and dips that it can
achieve about twenty to thirty seconds of weightlessness for every sixty-
five seconds of flight.

Thrills aside, the Tower of Terror provides an excellent example of
calculus as it applies to classical mechanics. True, our physical motion is
straight up and down. But if we plot our change in height (position) over
time point by point on a Cartesian grid—both ascending and descending
trajectories—and connect the dots, we end up with the telltale parabolic
curve that so delighted Sean at the ride’s end. (The same is true for the
apple.)

How does this work? We begin with our starting velocity. It is not 0,
because we are specifying our starting velocity at the moment we enter
freefall, not at the start of the ride (when it would be 0). We need a
speedometer to tell us how fast we are traveling at that moment, and that
number becomes our starting velocity (a constant). Let’s imagine the Tower
of Terror tracks acceleration for us. We can take an integral of our



acceleration to get our velocity, essentially adding the acceleration—in this
case, the gravitational constant—at each moment in time.

The result, when we graph it out, is a straight downward-sloping line.
This is our velocity function. We can use that to determine our position
(height) by taking another integral, adding together how far we traveled at
each point in time. Plot each position as a function of a time and you get a
pretty parabola. Now that we have a position function, finding our height at
any given point in time is a snap.25

Many years ago, I went to Six Flags New Jersey with a group of friends,
and we all went on the Devil Dive—a cross between bungee jumping and a
really big tire swing. Three of us were strapped into one big harness and
lifted to the top of a 200-foot tower. That might not sound very high unless
you happen to be one of the people hanging precariously at the top of it;
then terra firma seems a very long way down. One of my cronies had just
enough time to nervously remark, “Um, maybe this wasn’t such a good idea
after a—AUUGHH!” The buzzer sounded, the catch released, and we
plummeted, screaming, toward the ground.

Just as we were about to hit the ground, the harness caught and swung us
outward in a sweeping pendulum motion, moving through space along the
trajectory of an arc of a circle. We swung back and forth like a three-person
pendulum, until we slowed down sufficiently for the ride operators to grab
us and release us from the harness.

The Devil Dive gives us a double dose of Galileo. First, there is the free
fall. It is roughly the same problem outlined above, except in this case our
position as a function of time forms only half a parabola, because we don’t
enter true free fall until we begin our descent. Our acceleration is −32 feet
per second per second at any time (t) after our drop begins. (The sign is
negative because we are falling and our height is decreasing.) We can take
an integral to get our velocity, and then integrate the velocity to get our
position function, just as we did before.

Second, there is the pendulum motion at the end of the ride. An oft-told
anecdote from Galileo’s youth tells of the seventeen-year-old future
scientist growing bored during Mass in a drafty cathedral in Pisa. He noted
a chandelier hanging from the ceiling swaying in the breeze. Sometimes it
barely moved; other times, it swung in a wide arc. This proved more



interesting to the teen than the priest’s sermon, and he began timing the
swings with his pulse, with a surprising result: It took the same number of
beats for the chandelier to complete one swing, no matter how wide or
narrow the arc. Granted, the chandelier moved faster during wider arcs, but
it completed its arc of motion in the same amount of time. The same motion
can be seen in playground swings and the arc we make at the end of our
Devil Dive. But there is a twist: Don’t be misled by that arc-like motion. If
we plot our changing position with respect to time during this portion of the
ride, we get a periodic sine wave. The fact that the pendulum swings in
predictable periods is why it became the basis for the pendulum clock.

There is another relevant curve called the Witch of Agnesi, named after
eighteenth-century mathematician Maria Gaetana Agnesi. The eldest of
twenty-one children,26 Agnesi was known in her family as the Walking
Polyglot because she could speak French, Italian, Greek, Hebrew, Spanish,
German, and Latin by the time she was thirteen. Agnesi had the advantage
of a wealthy upbringing; the family fortune came from the silk trade. And
she also had a highly supportive father, who hired the very best tutors for
his talented eldest daughter and insisted she participate in regular
intellectual salons he hosted for great thinkers hailing from all over Europe.

The young Maria delivered an oration in defense of higher education for
women in Latin at the age of nine; she translated it from the Italian herself
and memorized the text. Contemporary accounts suggest that Agnesi
loathed being put on display, even though her erudition earned her much
admiration. One contemporary, Charles de Brosses, recalled, “She told me
that she was very sorry that the visit had taken the form of a thesis defence,
and that she did not like to speak publicly of such things, where for every
one that was amused, twenty were bored to death.”

De Brosses admired her intellectual prowess greatly, and was horrified
upon learning that she wished to become a nun. She did become a nun, but
not before spending ten years writing a seminal mathematics textbook,
Analytical Institutions, published in 1748—the first surviving mathematical
treatise written by a woman. She was also the first woman to be appointed a
mathematics professor at a university (the University of Bologna), although
there is no record she ever formally accepted the position. She died a
pauper in 1799, having given away everything she owned.



But her work lives on. One of the curves featured in Analytical
Institutions is the Witch of Agnesi. Agnesi dubbed it la versiera, a nautical
term meaning “a rope that turns a sail”—an allusion to the motion by which
the curve is drawn.

At some point, a harried English translator misinterpreted the word as
l’avversiera, “she-devil” or “witch.”

What does this have to do with the pendulum motion of the Devil Dive?
Among other things, this curve describes a driven oscillator near resonance
—a swinging pendulum that is being poked or prodded to keep it in motion,
for example, like someone pushing a child on a swing. When the rate of
prodding matches the rate of the pendulum’s swing, it is said to be in
resonance. If the rate of prodding is very, very close to the rate of the swing,
the amplitude (height) of the swing, plotted as a function of frequency,
forms the Witch of Agnesi. We’ve already seen that the physical motion of
a pendulum forms an arc, while plotting its position as a function of time
gives us a periodic sine wave. So had someone (or something) been pushing
us during the pendulum phase of the ride at almost the exact same rate as
our swing, the Witch of Agnesi would describe our amplitude as a function
of forced frequency (rate of prodding).

V IS FOR VECTOR

Making our way into Fantasyland, we find the King Arthur Carousel and
the Dumbo-inspired flying-elephant ride, both excellent examples of
rotation around a fixed axis. But it is the Mad Tea Party—usually called the
spinning teacup ride—that provides us with an unusual illustration of



vectors: motion in specific directions. A vector is technically defined as any
quantity having both direction and magnitude. In physics, vectors typically
describe force, velocity, acceleration, or similar three-dimensional
properties. How the different vectors combine determines their net strength;
one must take into account not just how strong a given force might be, but
also in what direction it is pushing.

It is easiest to illustrate the concept in one dimension. Picture your
standard number line. An object moving in a straight line has a direction,
depicted by a small arrow above the number. If it starts at 0 and ends at 5,
this is called vector (5); it’s the same as any other number along that line,
except we have specified a direction. Because it’s moving left to right, it is
a positive number. A vector pointing from right to left would be a negative
number. Vectors can be added together or subtracted, just like regular
numbers. Combine vector (5) with vector (−5), and the two cancel each
other out completely; combine it with vector (−3), and you end up with
vector (2); combine it with vector (4), and you end up with vector (9). And
so on.

Frankly, vectors aren’t very interesting in the one-dimensional realm of
the number line: There is no real difference between them and ordinary
numbers. In two dimensions, vectors are pairs of numbers (Cartesian
coordinates) that describe the direction of movement in a plane. In three
dimensions, they describe directional motion through space using three
coordinates.

Here is how vectors apply to the Mad Tea Party. Any rotating body’s
motion has a vector that is constantly changing, because the direction shifts
at each point in the turn. The teacup ride in Disneyland consists of a series
of rotating circles, or turntables, each moving along its own vector that is
constantly changing its direction because of the rotational motion. There is
one big circular moving platform that rotates clockwise. Within that circle
are three smaller ones that rotate independently, counterclockwise, and
within each of those circles are individual teacups that rotate clockwise,
independently from the two bigger circles.

The riders can spin their teacups as fast as they want by turning the metal
wheel at the center of the cup, applying a torque to increase the teacup’s
angular momentum, and hence the rate of spin. As Sean and I strain
mightily to spin our teacup as fast as possible, I notice something



intriguing. Every now and then we achieve an especially sharp, fast
rotation, whereas at other points, no matter how hard we pull that metal
wheel, we can’t achieve much rotation at all. Sean explains that this is
because of dueling vectors. Sometimes the vectors work against each other,
pulling in different directions and canceling each other out, to varying
degrees. At other times in the rotation, they add together, all pulling in the
same direction, so we spin that much faster.

Space Mountain—Tomorrowland’s main attraction—provides us with the
quintessential example of a calculus problem involving vectors. When Walt
Disney first designed Tomorrow-land, he noted that it would be out of date
almost immediately. By twenty-first-century standards, the “future” it
envisions is downright quaint, harking back to a more innocent era.
Tomorrowland didn’t even have a roller coaster until Space Mountain
opened in May 1977, after the original ride proved so popular at Disney
World. Disney didn’t live to see it completed. Space Mountain took two
years to build and cost upwards of $20 million, and the park set an
attendance record the first weekend the ride opened. Six of the original
seven Project Mercury astronauts were on hand for its inauguration.27



In the 1968 film 2001: A Space Odyssey, astronaut Dave Bowman
(played by Keir Dullea) walks down a long white circular tunnel to the
space ship that will carry him on his mysterious mission into deep space.
It’s difficult not to recall Kubrick’s masterpiece while waiting in the long
line for Space Mountain. The ride’s interior is eerily similar in design. We
follow winding metal ramps down into the bowels of the coaster,
encountering the occasional video screen showing famous astronauts
talking about their missions. Finally, we reach the front of the line and take
a seat inside our little rocket-shaped car.

We rise to the top of first one, then another lift hill, winding through a
passage that features glowing red bars that seem to be rotating. At the top of
the third and final lift hill, our rocket pauses briefly as we gaze out into the
vast darkness of “space”—there appear to be thousands of stars and
galaxies, when in fact it is simply a clever effect achieved with mirror balls
scattered throughout the ride’s interior. A voice announces, “You are go for
launch,” and pure gravity takes over as our rocket begins its rapid descent,
accelerating through the remainder of the track. The sensation is enhanced
by gusts of wind from strategically placed air vents as we careen and lurch
through the darkness. When it is time for our “reentry,” we decelerate and
return to the docking station.

For all its futuristic trappings, Space Mountain is a classic roller coaster,
from a physics standpoint.28 Roller coasters operate on inertia, gravity, and
acceleration—and the greatest of these is gravity. Our rocket builds up a
large reservoir of potential energy while being towed up those three initial
lift hills. The higher we rise, the greater the distance gravity must pull it
back down, and the greater the resulting speeds. As our rocket starts down
the first hill, all that accumulated potential energy is converted into kinetic
energy and our car speeds up, building up enough kinetic energy by the
time it reaches the bottom to overcome gravity’s pull and propel the car up
the next hill. And so on for the rest of the ride.

Sean likes Space Mountain. A lot. Apart from the obvious fun factor, he
declares that we can use calculus to determine our trajectory (the path we
took) when all we know is our acceleration. Space Mountain has none of
the intricate maneuvers that have become standard among more extreme
coasters: fancy corkscrews, loops, and so forth. Instead, it relies on a series



of shorter dips and sharp turns in near-total darkness. Because we can’t see
the track, we can’t anticipate where we are likely to go next or prepare for
the sudden shifts in velocity. The few visual cues we are given are
deliberately misleading.

We can still figure out which path we took, because we can feel the
physical effects of acceleration on our bodies and deduce our trajectory
from that data. These are the g forces that describe how much force the
rider is actually feeling; g is a unit for measuring acceleration in terms of
gravity. Our rocket is constantly accelerating over the course of the ride:
forward and backward, up and down, and side to side. Our inertia is
separate from that of our rocket, so when it speeds up, we feel pressed back
against the seat because it’s pushing us forward, accelerating our motion.
When the rocket slows down, our bodies continue forward at the same
speed in the same direction, but the restraining bar decelerates us to slow us
down. All this acceleration produces corresponding variations in the
apparent strength of gravity’s pull. For example, 1 g is the force of Earth’s
gravity: what the rider feels when the car is stationary or moving at a
constant speed. Acceleration causes a corresponding increase in weight, so
that at 4 g’s you will experience a force equal to four times your weight.

That gives us an intuitive sense of our trajectory throughout the ride, but
for a truly rigorous analysis, we should have had the foresight to bring
along a makeshift accelerometer. As electronic components have continued
to shrink, accelerometers became easier to embed. Our matching his-and-
hers iPhones come with built-in accelerometers, which is how the device
knows when to adjust the screen from a vertical to a horizontal view when
you turn the phone on its side. If our little rocket came equipped with a
built-in accelerometer—yes, there is an app for that—that accumulation of
data would give us our acceleration function.

Let’s start with a simplified version of this standard textbook problem,
assuming that we are moving in a perfectly straight line. How can we figure
out our trajectory—our position as a function of time—knowing just our
acceleration? Our acceleration accumulates over time to give our velocity,
Sean explains; we accumulate our increasing speed at each moment in time
to determine our final velocity. So that means velocity is the integral of
acceleration. Velocity in turn increases over time to give position, so
position is the integral of velocity. “You just have to integrate the



acceleration twice to figure out position as a function of time,” Sean
concludes triumphantly—just like our free-fall problem.

However, there is a complicating factor: The rockets move left and right
and up and down, not just forward in a straight line. So not only are the
rocket sleds constantly shifting between potential and kinetic energy, but
every time we shift direction, we also are shifting vectors—our direction of
movement is constantly changing. Thanks to an unjustly obscure
nineteenth-century British mathematician and physicist named Oliver
Heaviside, we have the tool to solve this complex conundrum: vector
calculus.

A product of the London slums that also produced Charles Dickens, the
red-haired, diminutive Heaviside fell ill with scarlet fever as a child, which
left him partially deaf. His social skills seem to have suffered as a result: He
didn’t get along with the other children at school in Camden Town,
although he was a top student in every subject save geometry. Perhaps
traditional education couldn’t contain his eccentric genius: He dropped out
at sixteen to continue his schooling at home. It helped that his uncle was Sir
Charles Wheatstone, who co-invented the telegraph in the 1830s and was a
recognized expert in the new field of electromagnetism. Within two years,
young Oliver found himself working as a telegraph operator, quickly
advancing to chief operator. It was the only full-time employment he ever
experienced.

One could blame James Clerk Maxwell, the prominent physicist who first
formulated the set of equations for electromagnetism that still bear his
name, for Heaviside’s sudden shift into the ranks of the chronically
unemployed. Heaviside discovered Maxwell’s seminal treatise in 1873 and
was so enthralled by the work that he quit his job the following year to
study it full-time, moving back into his parents’ home in London. (History
has not recorded his parents’ reaction.) Once he’d grasped the essential
points, “I set Maxwell aside and followed my own course,” Heaviside later
recalled. In the end, he reduced Maxwell’s equations from twenty down to
four vector equations and built upon that work to develop vector calculus.

Few objects move in a straight, flat line. We don’t drive down straight
roads with no turns or hills, and a roller coaster would be a very dull ride
indeed if it only moved in flat, linear motion. Vector calculus lets us solve
the same calculus problem in three dimensions: retracing our path by



determining our position at each instant over the course of the ride. We
describe position in three-dimensional space with three Cartesian
coordinates (x, y, and z), so there are now three numbers involved in our
calculations. Nothing else has changed from the previous example: Our
trajectory is still position as a function of time, and thanks to the data
gathered by our accelerometer, we know our acceleration as a function of
time. Acceleration builds up to give us our velocity, which in turn builds up
to give us our position at any moment. It’s just more complicated because
our movement has a constantly changing direction. We must keep track of
three directions at once, and each has its separate position, velocity, and
acceleration.

Heaviside never gained the recognition he deserved until after his death
in 1925; he was justly bitter about this. He became quite eccentric in his
later years, spending the last two decades of his life as a virtual recluse in
Torquay, near Devon. He suffered bouts of jaundice and the tormenting of
neighborhood children, who threw stones at his window and scrawled
graffiti on his front gate. Neighbors reported that his home was furnished
primarily with huge granite blocks. Otherwise scruffy and unkempt, he took
to painting his impeccably manicured fingernails bright pink, and signing
letters with the mysterious initials W.O.R.M. after his name—providing
ample fodder for future armchair psychoanalysts as to what the letters might
have meant to him. Perhaps he would have found comfort in the fact that,
over a hundred years later, his method of vector calculus would one day
shed light on a budding calculus student’s encounters with the rides at
Disneyland.

MAKING A SPLASH

By late afternoon, we have worked our way over to Critter Country, where
the skyline is dominated by the soaring peak of Splash Mountain. Splash
Mountain is a “log flume” ride. Loggers used to transport logs down
mountains to a sawmill by floating them down the river. Eventually
someone had the brilliant idea of hollowing out those logs and using them
as makeshift boats. The first artificial log-flume ride—called El Aserradero



(The Sawmill)—opened in 1963 at the Six Flags theme park in Arlington,
Texas. The Disneyland version is a large plaster mountain housing canals
(or flumes) filled with water, and artificial hollow logs that can seat up to
six people. The flow of water along the flumes propels the log boats
forward, with a little help from mechanical chains and pulleys to hoist the
logs up the hills. Just as with a roller coaster, good old-fashioned gravity
does the rest.

Nothing says Disney like plaster facades and cheesy animatronics. This
ride takes its inspiration from Song of the South, with scenes depicting the
adventures of Br’er Rabbit. The robotic critters 29 lining the “banks” of the
faux canal snaking through Splash Mountain serenade us as we float along,
with a jaw-clenching ditty about positive thinking, finding your “laughing
place,” and having a zip-a-dee-doo-dah day! Just as I am wishing I had a
stun gun capable of overloading their circuitry with an electromagnetic
pulse, we come to a sudden drop and plunge into the depths of the
cavernous “briar patch.”

SPLASH! The front of the canoe hits the bottom and displaces a large
amount of water. Sean is drenched from head to toe, and instantly regrets
his chivalrous offer to take the front seat instead of me. Nor does the
dousing end there. We soon experience another sudden drop with
accompanying splash, and another, and then must endure the shrieking
laughter of the animatronic animals reveling in our plight. They have gone
from abrasively cheery to vaguely sinister; we even spot Br’er Rabbit on
the bank, tied up and struggling, about to be eaten by Br’er Fox. And those
mechanical vultures with glowing red eyes look eager to gnaw with
abandon on our sodden bones. The animals have found their laughing place,
and it is called Das Haus von Schadenfreude.

There is one last lift and one final, fifty-foot drop, accompanied by yet
another dousing. This is one of the fastest rates of descent in the entire park.
While we know from our exercise with free-fall rides that the collective
weight of everyone in our log does not affect the rate at which we fall, it
does help determine how wet we are likely to get on this final splash,
because the amount of water displaced is proportional to that collective
weight.



The good news is that despite being drenched, our log boat floated and
didn’t sink, because our average density was less than that of water. Had we
sunk, we would have faced a dilemma reminiscent of our old friend
Archimedes.

When not drawing countless rectangles under curves, he was having
spontaneous epiphanies in his bathtub. Legend has it that Archimedes
accepted a challenge from a local tyrant, Hiero of Syracuse. Tyrants are not
trusting by nature, and Hiero was no exception. He was convinced a local
goldsmith he had hired to make a golden wreath as a gift to the gods had
cheated, replacing some of the gold with silver. No self-respecting deity
would accept a cheap alloy. But how could he prove dishonesty? Hiero
turned to Archimedes for help, who promptly went to the public baths for a
good long think. He noticed that the more his body sank into the water, the
more water was displaced.

The weight of an object pushes water out of the way, Archimedes
reasoned, and the water in turn pushes back. So the buoyant force exerted
by a fluid, like water, is equivalent to the weight of the fluid displaced. This
gave him an idea for how to test the golden wreath: Gold weighs more than
silver, so a crown mixed with silver would need more bulk to achieve the
same weight as a crown made of purest gold. He could weigh the crown and
submerge it in water to measure its volume, and from that he could
calculate the density. Archimedes had stumbled on a way to calculate the
volume of irregular objects very precisely. Euphoric over this critical
insight, he leaped out of the tub and ran stark naked into the street, shouting
“Eureka! Eureka!”30 Once he determined the crown’s volume, then the
ratio between its weight and its volume would indicate its density and
answer Hiero’s question of purity.

So let’s imagine that, instead of floating, the log boat sank with all its
passengers. We can ask everybody to hold their breath while we use
Archimedes’ principle to determine the total volume and from that, to
calculate their average density. But even had I convinced Disneyland (and
my fellow passengers) to let me do that experiment despite the liability
issues, I would still lack another crucial piece of the puzzle—I had failed to
note the weight of all the other passengers. This is an object lesson in why



it’s so important to carefully collect one’s raw data while doing the
experiment.

If we know the combined weight of the passengers and the log we are
riding in, the volume of our log, and the collective density (in units of
grams per cubic centimeters), we can divide the total weight by the total
density to get our volume in cubic meters. We also need to know the density
of water; a quick Google search reveals that one liter of water has a density
of 1 kilogram. Now we multiply the volume of our log and its passengers
by the density of the water to find the volume of water displaced. Those
hollow plastic logs hold six riders of varying weights. Assuming an average
weight of 150 pounds per passenger (150 × 6, plus the weight of the log
itself), that gives us a pretty substantial volume—and a substantial
displacement of water when we hit the bottom of that final plunge. No
wonder we’re completely soaked by the ride’s end.

Sodden jeans and sneakers are not a pleasant sensation. It is a cool,
cloudy day for Anaheim and late enough in the afternoon that our clothing
takes longer to dry than it would on a warmer day. While we wait, Sean
explains that there is a calculus problem in our current plight: The rate at
which our clothing dries—that is, the rate of evaporation of water from the
fabric—forms an exponential decay curve. It is similar to the rate at which a
cup of hot coffee cools until it reaches thermal equilibrium with its
surroundings.

The coffee cools off very quickly at first, but as it gets closer to thermal
equilibrium, that rate of cooling slows down and eventually levels off. This
is because the amount of heat lost is proportional to the temperature of the
coffee: It is determined by the ratio of the excess heat to the lower
temperature limit—how cool the coffee can get, usually ambient room
temperature. So as the coffee cools down and gets close to room
temperature, there is less excess heat and thus a smaller ratio between the
two variables. And the rate of cooling levels off.

The same thing happens with the evaporation of the moisture in our
clothing. Plot the rate of evaporation as a function of time, and you can see
this in the resulting curve: There is a steep drop initially, followed by a
gradual leveling off. The alert reader will note that because we are dealing
with a rate of change, we must be taking a derivative. That means we can
find an answer to the question, “How fast is the water in our clothes



evaporating at x time?”—a form of the velocity function, similar to
determining our instantaneous speed in chapter 2—by finding the slope of
the tangent line along that particular point on our curve.

We experience this exponential decay curve firsthand and soon find
ourselves wondering, Will we forever be slightly damp? It is beginning to
feel that way, and we have dinner reservations in an hour at the Blue Bayou
restaurant—the sole fine dining establishment in Disneyland, situated just
inside the Pirates of the Caribbean ride. We end up squishing our way over
to the gift shops in New Orleans Square in search of a change of clothes,
where the sales clerk assures us this happens all the time. They do a brisk
business, thanks to Splash Mountain.

And thus we find ourselves, an hour or so later, seated in the Blue
Bayou’s fake outdoor grotto in matching Pirates of the Caribbean hooded
sweatshirts, my outfit completed by a jaunty newsboy cap with a skull-and-
crossbones motif to hide my hopelessly tangled hair. By this time Sean is
very much in need of a drink, and the Tinkerbell Fruit Punch with a fairy
light garnish simply isn’t going to cut it. Alas, there is no alcohol to be
found in the Magic Kingdom, depriving us of a prime opportunity to work
out the calculus of inebriation. (Oh yes, it can be done.) We content
ourselves with a sugar rush instead and split the signature dessert: a boat-



shaped “cookie” with an edible sail featuring the obligatory skull and
crossbones. It is a pirate’s life, indeed.



5

Show Me the Money

It is clear that economics, if it is to be a science at
all, must be a mathematical science . . . simply
because it deals with quantities. . . . As the
complete theory of almost every other science
involves the use of calculus, so we cannot have a
true theory of economics without its aid.

—W. S. JEVONS

 
 
 
Like beauty, an object’s intrinsic value rests in the eyes of the beholder. One
man’s priceless treasure is another man’s culinary delight. In seventeenth-
century Holland, a hungry sailor mistook a rare tulip bulb that was on
display for an onion and stole it from a local merchant. The merchant
chased him down Amsterdam’s busy streets, catching up just in time to find
the sailor “eating a breakfast whose cost might have regaled a whole ship’s
crew for a twelvemonth.” That was the going rate for a single bulb at the
height of what is now called tulip mania. Incensed, the merchant had the
sailor thrown into prison for his crime.

That is one of the more outlandish anecdotes about tulip mania
popularized in the nineteenth century with the publication of Charles
Mackay’s Extraordinary Popular Delusions and the Madness of Crowds.
Today, the excesses of tulip mania are the stuff of legend, trotted out as a
cautionary tale whenever economists find themselves analyzing
catastrophic bubble markets.31 Modern economists dispute many details of
Mackay’s account, which was based on dubious source material, but it



makes for lively reading. And while the sailor’s story might not be true, it
epitomizes the kind of irrational exuberance and frenzied overvaluation of
assets that so often serve as harbingers of economic disaster.

How did the tulip become such a collector’s item in the first place?
Holland is widely known as the land of colorful tulips, and one would think
the bulbs would be a cheap commodity. But the bright bell-shaped flower is
actually a relative newcomer to the country. In 1593, a Dutch botanist
named Carolus Clusius returned from a trip to Constantinople with a few
precious tulip bulbs and planted them in his garden, supposedly to study
them for medicinal purposes. Then his neighbors broke into the garden and
stole some of the bulbs, figuring—correctly—that the exotic flora would
bring in a pretty penny. Thus was born the Dutch tulip trade and the onset
of a collective mania that drove prices to dizzying heights.

One recorded list of items traded for a single tulip bulb included a bed,
some clothing, and a thousand pounds of cheese, but prices rapidly
escalated beyond such humble items. In 1624, a buyer offered 3,000
guilders (equivalent to a year’s earnings) to a man in Amsterdam in
exchange for a dozen specimens of the rarest tulip, known as Semper
Augustus and identifiable by its blue-black petals accented with streaks of
crimson and a sprinkling of white. A sale of forty bulbs for 100,000
guilders was recorded in 1635. The most expensive bulbs were far too
valuable to be planted, so instead it became the fashion among their (once)
wealthy owners to display the plain bulbs—well away from the gaze of
famished sailors.

Speculators were desperate to cash in on the gravy train, mortgaging
whatever they could to raise capital to invest in a few “starter bulbs,” in
hopes of jump-starting a lucrative business in the tulip trade. One
transaction records the trade of a farmhouse in 1633 in exchange for three
rare bulbs. There was even a thriving futures market for tulip bulbs, with
business often being conducted in local taverns; at the height of the frenzy,
one bulb changed hands ten times in a single day. But the tulip bubble burst
almost as quickly as it formed. One day a buyer didn’t show up with the
cash, and panic set in and spread. Within days, bulbs that had sold for
staggering sums were now “worth” roughly one-hundredth of their former
value.



Such are the harsh realities of supply and demand. Those Dutch tulip
speculators might have benefited from a spot of calculus. (Unfortunately it
hadn’t been invented yet.) The tools of calculus are particularly well suited
to the financial sector, which deals heavily in rates of change: inflation,
interest rates, mortgage rates, and the impact of supply and demand on
pricing can all be described by functions linking one feature to another. We
can use the derivative to determine the rate at which one factor changes
relative to another, and we can employ the integral to determine the
cumulative effect of any ongoing process. In the case of tulips—or any
product, for that matter—supply and demand are interdependent quantities:
A change in one affects the other, and choices about production and supply
affect the profit you make. The integral comes into play when calculating
interest, whether accumulating interest on a savings or retirement account
or calculating the interest on a mortgage loan.

TIPTOE THROUGH THE TULIPS

Why did the tulip market go boom, then bust? There were several
contributing factors, but it had mostly to do with simple supply and
demand. The tulip bulb was a rare commodity from the start, although
ordinary bulbs were often sold by the pound. Then some of the tulips
contracted a mosaic virus that altered the color of the blooms, streaking
their petals with scarlet. Those varieties were even more rare, attracting
wealthy collectors and commanding an even higher price. Demand grew so
rapidly that the supply of bulbs could not keep pace, and prices rose and
rose.

Dutch residents were flush with extra cash after the end of hostilities with
Spain. Amsterdam’s merchants were thriving at the center of the lucrative
East Indies trade, earning profit margins as high as 400 percent in a single
voyage. So the market could absorb—temporarily—the outrageously high
prices demanded for tulip bulbs. But no market can sustain that kind of
exponential growth rate indefinitely. Eventually the price became so high
that very few buyers were able to meet it. Once that first buyer didn’t show
up for the sale, a domino effect occurred. Demand dropped suddenly, panic



ensued, and the bubble burst, with dire economic consequences for those
who had speculated on the market.

Let’s imagine that I am a tulip dealer in seventeenth-century Holland,
eager to turn a tidy profit in this burgeoning industry. I am drawn to tulip
bulbs because they command a hefty price and there are still a substantial
number of buyers willing to pay that price. Also, flowers are pretty. I just
have to be careful not to raise the price so much that I chase away
prospective buyers; if prices get too high, demand will drop, and my profits
will never materialize. Ideally, I want to maximize my profit—which will
be the gross revenue I bring in with the sale of my exotic tulip bulbs, less
the associated costs I incur to obtain them—and minimize my production
costs. Calculus can help me do this.

The cost of producing a given product depends on how many items are
produced. If I decide to print flyers advertising my tulip bulbs, there is a
basic cost I will incur for setting up the equipment to do so. It’s probably
not worth that initial cash outlay to print only a hundred flyers; I’m better
off printing twelve thousand flyers and stocking up for the future. Or am I?
There might be storage costs to consider, and these must be offset against
the money I save by printing more flyers. Perhaps it would be better to
make two print runs of six thousand flyers each. I need to strike just the
right balance between these two factors.

Assume I have fixed setup costs of $2,000 for the printing press. The cost
of storing twelve thousand flyers is minimal—$3 per year—but I still need
to factor that into my financial planning. With these two bits of information,
I can devise an equation that gives me the total cost of maintaining
inventory plus the produced and setup costs. I designate y as the number of
print runs, and each run costs $2,000. The number of flyers produced and
stored is represented by x. But it’s not going to be $3 constantly; x
fluctuates over time, unlike y, which is fixed. My storage space is full after
every production run, but as I hand out flyers over time, the number in
storage steadily decreases, until all the flyers are gone and my storage costs
are back to zero. So I take the average storage cost, which will be half of
$3: $1.50.32

I end up with a total cost of ($2,000y) + 1.5x. Multiply x and y—the
number of flyers I produce with each print run times the number of print



runs—and I get the total number of flyers printed over the course of one
year: 12,000. I can simplify my equation by eliminating y entirely, because
it is equivalent to 12,000 over x. This means I can rewrite the total cost
equation as $2,000 times 12,000 over x, plus 1.5x, to get my “cost
function,” and once I have that, it’s a relatively straightforward process to
determine how often I should order a print run. I just need to minimize the
sum of the storage costs plus the setup costs. I can find that “sweet spot” on
the graph by setting the derivative of the cost function equal to 0 and then
figuring out what value of x gives that answer. In this case, my best bet
would be to make three print runs of 4,000 flyers each over the course of a
year.

Now we estimate the expected revenue based on how much of a product I
produce. How do I price my tulip bulbs in order to maximize my profit?
Tulip bulbs incur a lot of initial costs, unless I opt for the sneaky alternative
of stealing them from my globe-trotting neighbor, Carolus Clusius. Even
then, my theft would yield a very limited supply. But it might bring in
sufficient revenue to finance my little start-up venture. It takes about seven
years to grow tulips from seeds: There would be costs associated with
renting a greenhouse, buying fertilizer, watering the seeds, and so forth,
over the seven-year incubation period for producing the tulip bulbs. And
each bulb can produce only a few clones before expiring, so there will
always be a limited supply of bulbs. (Only bulbs produce genetically
identical offspring; seeds introduce genetic variability.)

Let’s assume that my fixed cost will be $100,000 and that it costs around
$30 per bulb on top of that to “make” my product (the bulbs). So my
function for cost is $100,000 + 30q, where q stands for the quantity of
bulbs. The change in cost is called the marginal cost; it measures the
incremental expense of producing one more tulip bulb. Then there is the
marginal revenue, the rate at which the revenue increases with the
production of one extra bulb—in other words, it’s a derivative.

Starting with an estimated production of 20,000 bulbs, I can determine a
maximum and minimum price ( p), where at a given price, approximately
20,000 − 50p bulbs will be sold. At a maximum price of $400, there would
be no buyers, and if I gave away the bulbs for free, all 20,000 bulbs would
find a home with a buyer—if someone who pays nothing can be described
as a buyer. If I sold them for $100, however, 15,000 bulbs would be sold,



according to my spiffy formula (100 × 50 = 5,000, which we then subtract
from the 20,000 total bulbs). So my revenue R is equivalent to the price per
bulb multiplied by the number of bulbs I sell, or $1.5 million.

We want to set the marginal cost equal to the marginal revenue. That’s
where the maximum profit will be. If the marginal revenue is greater than
the marginal cost at a particular production level, then growing one more
tulip means the increase in revenue will be greater than the increase in cost,
and I make more profit. If the marginal cost is greater than the marginal
revenue, I will also increase my profit, this time by growing fewer bulbs,
because I will reduce my costs more than I will reduce my revenue. The
answer: I should grow 9,250 bulbs and sell them at $215 each in order to
maximize my profits.

That’s roughly how the market should work under ideal conditions, but
we do not live in a simple world. Something has gone seriously amiss when
a rare tulip bulb possesses more value than a farmhouse. The exponential
decay curve decreases rapidly initially and then gradually slows its rate of
change; the exponential growth curve exhibits similar behavior in reverse.
But when a bubble forms, the result is a so-called boom-and-bust curve:
Growth starts out increasing exponentially but peaks and collapses quite
suddenly. Those who enter a hot new market early may reap enormous
profits, but as more and more people enter the fray over time and prices go
up and up, there are fewer and fewer buyers. Eventually the market will hit
a peak and collapse—and the “decay” will be steep and sudden. That’s what
happened with tulip mania. What happens when the bubble mentality comes
to real estate and literally hits people where they live?

HOME SWEET HOME

It’s a bit disheartening to tour a foreclosed home; a sense of loss seems to
permeate the space. Despite being only four years old, the town house we
are touring has seen better days: The floors are scuffed, the window screens
are torn, and the previous owners have absconded with the appliances as
compensation for losing their home. While the unit is spacious, the interior
feels cramped and dingy on this overcast afternoon, particularly since the



electricity has been turned off. But the building is in a prime location, a few
blocks from many of our favorite shops and restaurants.

Two years after moving to Los Angeles, we have joined the ranks of
nervous house hunters, cautiously dipping a toe into the volatile Southern
California real estate market to test the waters. We are in no hurry. Our
rental apartment is sufficient for the short term: It’s in a very walkable
location in downtown Los Angeles, with free parking in the garage across
the street, and a friendly full-time concierge named Mike. But we are
running out of space, having merged two households when we got married.
Most of our books are in storage. The dining-room table is strewn with
Sean’s books and physics papers, while the second bedroom performs
double duty as my office and a cramped guest room. And there isn’t nearly
enough closet space.

It is both the best and worst of times to buy. We have been patiently
waiting for prices to drop to more affordable levels, and in the wake of the
economic collapse of September 2008, housing values are plummeting. The
median home price in California dropped 41 percent—more than double the
16 percent decline in median home prices for the United States as a whole
—between February 2008 and February 2009, according to the California
Association of Realtors, as a tidal wave of foreclosures drove down values.
Nobody knows how much farther prices will fall, and that uncertainty
means everyone is a wee bit skittish, particularly the banks: Loans are much
harder to come by, even for highly qualified buyers. The process is fraught
with anxiety—starting with the search for a suitable home.

Every prospective home buyer knows there is no such thing as the perfect
place. The exercise of touring several homes helps us get a sense of the
market, what we can afford, and the factors that matter most to us. We know
we need three bedrooms (or two bedrooms with a den), with parking for
two cars. We prefer central locations with shops and restaurants within easy
walking distance. Such areas tend to have higher housing costs, so we know
we will have to make a trade-off between square footage and prime
location. We like to entertain, so a spacious living area with open kitchen is
desirable. And we don’t want to do any heavy remodeling. Can we find the
optimal combination of our desired features—within our price range?

One unit has an awkward layout. Another boasts a dramatic curving
staircase in the foyer, but there is no extra space for an office—a prime



consideration for a professional writer. I like a faux-Spanish townhouse, but
it is less to the taste of my more modernist spouse. One home has bizarre
blue plastic kitchen cabinetry; in another, the bathtubs are freakishly small
for my six-foot-one-inch spouse; and yet another suffers from cheap
flooring and astronomical home association fees. All are preferable to the
dingy “penthouse” unit with stained carpets, chipped tiles, and a “rooftop
deck” lined with sticky tar paper. As for that first battered foreclosure, we
decide the living/ dining area is too cramped for our needs.

House hunting is the ultimate experiment in comparison shopping:
weighing different variables and seeking the optimal combination of those
factors. In a sense, we are doing conceptual calculus. Mathematicians
merely take this process to the next level by quantifying everything and
organizing that data into an equation. In principle, we can turn our house-
hunting experience into a multivariable optimization problem, similar to
what we did to determine the optimal price for our tulip bulbs in order to
maximize profit. We just need to find some way to quantify our subjective
criteria.

Because we need a continuous curve, we’ll assume we have an infinite
number of houses to choose from. Anyone who has undertaken serious
house hunting knows it can feel like infinity sometimes. Calculus will help
us narrow the search by optimizing our happiness with our final choice. For
simplicity’s sake, we will restrict our variables to two easily quantifiable
qualities: square footage (q) and walkability (w), the latter based on an
online “walkability score” algorithm. That gives us our function: f(w,q).
The “curve” for this will look much different from the graph for a function
with a single variable: It will be a contoured surface floating above a plane.

Think of a map that only shows your location with two intersecting
points: latitude and longitude, or the place where Wilshire Boulevard meets
Figueroa Street in downtown Los Angeles. What is lacking is the altitude.
Bringing in a second variable to our optimization problem is like adding
altitude to a map, so we can tell not just where we are, but the elevation of
that particular spot. Not only do we have the x and y axes on our Cartesian
grid—representing walkability and square footage, respectively—we also
have a third, the z axis, jutting out at an angle.



If we merely consider square footage and walkability, what stops us from
increasing those two variables to infinity to gain optimal happiness? Clearly
we need some kind of constraint, and we find it in the price. We do not have
an infinite amount of funds, so we need to build a third aspect into our
“happiness function”: cost. We can assume that cost depends directly on
size and walkability. One of the first steps prospective home buyers take is
determining their price range. Go beyond that price range, and our
happiness will start to decrease again, even though square footage and
walkability continue to increase. If we can’t afford it, we won’t be as happy.

We plot happiness as a function of our two variables (w,q) to get a nice
smooth curvy plane that goes up, peaks, and descends after the peak. Then
it is simply a matter of taking a derivative of each variable separately—this
is called partial differentiation, or taking a partial derivative—and finding
the value that sends both to zero. That will be the point(s) on our curve
where the slope of the tangent plane is zero (horizontal). Wherever the
tangent planes are flat is where we will find our optimal solution. That is
where we will find maximum happiness with our choice. We find we must
indeed make a trade-off between walkability and square footage. The price
per square foot is significantly higher in very walkable locations, so we
can’t afford as much square footage in prime areas and still stay near the
peak of our happiness curve. Similarly, beyond a certain point, too little
square footage will also decrease our happiness. Finding the “sweet spot”
on our multivariable curved surface enables us to narrow our options down
from infinity to three:



Option 1: This is a three-bedroom, three-bath “architectural” townhouse
featuring bamboo floors and cabinetry, and a wall of windows bathing the
main loft area in sunlight. There are ample closets and a private two-car
garage. The location isn’t as walkable as we would like, but the price per
square foot is below market rate, so we would get a lot of space for the
money.

Option 2: This is a three-bedroom, three-bath condominium. The interior
features dark woods, and Asian influences abound. It is slightly smaller, but
there are many closets, and there’s a large balcony off the dining room. The
drawbacks are the tandem parking spots in the communal garage (side by
side is preferable) and the location, which is not very walkable.

Option 3: This is a two-bedroom, two-bath unit with den in a prime
location with excellent walkability. The design features Mediterranean
influences, with a balcony, spacious living room and open kitchen, and
luxurious baths. The price per square foot is significantly higher, so we can
only afford one of the smaller units. There are fewer closets, and the
parking spaces in the shared garage are tandem.

All else being equal, how do we find the optimal choice among them?
Calculus is less helpful here. Ultimately, one’s choice of home is an
emotional, subjective decision. But we do engage in an approximation of an
optimization problem whenever we comparison shop; it’s one way to bring
some rationality to the process. Yet even then, our choice of how much to
weight a given variable is highly subjective. Dutch psychologist Ap
Dijksterhuis studies how house hunters are often subject to “weighting
mistakes.” Given the choice between a larger home in the suburbs with a
longer commute, and a smaller, more expensive home in a central location,
most home buyers opt for the larger home. They underestimate the negative
impact of a long commute on overall quality of life over time.

DOWN THE RABBIT HOLE

In the end, we choose Option 1. We trade our former prime downtown
location for extra space, a shorter commute for Sean, and a private garage.
Now the nail-biting anxiety sets in as we try to lock in our mortgage rate.



The rates change literally every day. Two days after our offer is accepted,
we get a nasty surprise: There is a new 1 percent hike in mortgage interest
rates for condominium units. So that 5.25 percent interest rate we used to
calculate our estimated monthly payments will be 6.25 percent instead.

The earliest recorded mortgages date back to 1190 in England, when
landowners would sell their land for a set fee, with no interest. Whatever
the land produced would enable the buyer to pay the seller. Mort comes
from the Latin word for “death,” while gage means a pledge to forfeit an
asset for nonpayment of a debt. The modern concept is not much different:
We want to buy a house, but we don’t have enough cash in hand to pay the
full price, so we put down the cash we have and borrow the rest, using the
house as collateral. There is a monthly payment, determined by the interest
rate (usually fixed) and the lifetime of the loan (typically thirty years). At
the end of that time, we will have paid off the principal loan plus the
accumulated interest.

It’s instructive to crunch the numbers and see firsthand why a mere 1
percent hike in the interest rate makes a significant difference on one’s
monthly payments. Let’s round down the respective rates to 5 percent and 6
percent to make our calculations easier. If we took out a modest $100,000
mortgage at 5 percent, our payment would be $536.82 per month, compared
to a $599.55 monthly payment at 6 percent interest. This assumes the
interest is charged yearly. According to Mark Chu-Carroll, a computer
scientist who blogs at Good Math, Bad Math, even this trivial difference
can result in a higher monthly payment. We would only pay $525 per month
at the 5 percent rate if the interest were calculated monthly. Just an extra
$62 per month over 30 years adds up to roughly $22,320 in additional
interest.

Fortunately, our story has a happy ending: We are able to negotiate our
original estimated interest rate with one lender. It helped that we had a
sufficient down payment. Early in the 1900s, aspiring homeowners in the
United States were required to have a 50 percent down payment on a five-
year mortgage. Because very few people could meet those conditions, fewer
than 40 percent of the population owned their own homes, compared to
nearly 70 percent today, when 20 percent down is more common for a
thirty-year mortgage. How long would it take to save 20 percent of a
$300,000 home? That is $60,000—not an easy sum to accrue on a standard



living wage. But it is a simple matter to figure out how much we’d need to
save each month to reach that goal within five years. We simply divide
$60,000 by five to get our answer: $12,000 a year, or $1,000 per month. No
calculus required.

However, that would only be the case if I took that money and stuffed it
under a mattress. Common sense would dictate I deposit the funds in an
interest-bearing account. Let’s be optimistic and assume that account yields
5 percent interest. How does that change the time needed to save a down
payment? I am depositing $1,000 per month, but the money that’s been in
the account for two years will have earned more money than the money I’ve
just deposited.33 So I have to add the $1,000 I deposit that first month and
calculate how much interest will accrue in five years, and then do the same
for the second monthly deposit, and the third, and the fourth, and so on.

Now it is a matter of adding together lots of smaller sums—or of taking
an integral. Even though I am making monthly deposits, from a calculus
standpoint, the funds are accumulating every instant. So for every interval
of Δt (for time), we have accumulated $12,000 × Δt dollars, which stays in
the bank for however much of that five-year period is left (5 years − t) and
earns 5 percent interest. At the end of that five-year period, I will have
saved $60,000 plus a bit extra in accrued interest—which I hope will be
sufficient to cover the potentially exorbitant closing costs.

What if you don’t have the required 20 percent deposit on a home—a
common problem for those living in areas with especially high housing
costs? Traditionally, you would be out of luck; no bank would approve your
mortgage. There is very good reason for this. That down payment gives you
equity in the house, the difference between your home’s assessed value and
the amount of money you still owe the bank. But then alternative types of
mortgage loans became increasingly available, some allowing borrowers to
take out a mortgage with as little as 5 percent down. The trade-off for the
lower down payment is usually higher interest rates and thus higher
monthly payments.

Then someone had the brilliant notion of offering adjustable rate
mortgages (ARMs), in which the interest rate fluctuates over time, resetting
to a new (higher) rate every few years. We have already seen that a small
increase in the interest rate on a mortgage can make a huge difference in the



monthly payment. The impact is even more dramatic with an ARM. Say
you took out a loan of $100,000 at an adjustable rate over thirty years. You
could easily afford the monthly payments at the introductory “teaser rate,”
which could be as low as 1.2 percent for the first two to five years: roughly
$331 per month. But then the interest rate would reset and jump to 7
percent, and suddenly you would be paying $617 a month. Unless you had a
corresponding increase in income, you would quickly fall behind in your
payments. Worse, some of those ARMs were interest-only loans, for which
people would pay just the interest and the principal never decreased.

Millions of people took on these risky loans; given the above, it’s fair to
ask, what the hell were they thinking? Chances are, they weren’t doing the
math. Or perhaps they believed that the value of their houses, and hence
their equity, would continue to skyrocket, and they could sell their homes at
a tidy profit before the interest rates reset.

But nothing can expand forever—except, perhaps, the universe—and
those homeowners were gambling that they could get out before the market
softened or collapsed outright. Several economists warned that the bubble
would burst, but their dire predictions did little to dampen the enthusiasm at
the height of the housing frenzy. All the classic bubble conditions were
present: high demand, limited supply, and an influx of ready cash as banks
relaxed their lending standards and made millions of subprime loans to
borrowers who—in retrospect—should never have received loan approval
because they couldn’t afford the payments once the interest rates reset.
When those buyers began to default en masse, the result was a record
number of foreclosures.

VIRTUAL WEALTH

The fallout from Holland’s tulip mania crash was limited to a few overly
enthusiastic traders and wealthy collectors. That’s because the Amsterdam
Stock Exchange back in 1630 had the good sense not to get involved with
the rampant speculation in tulip bulbs, marginalizing the economic impact
when the bubble burst. Most Dutch traders were able to negotiate
settlements for their debts, although the price of bulbs continued to fall for



decades after the crash. Financial ruin hit those who had invested elsewhere
while relying on the profit they expected to make on their tulip bulbs to pay
those debts—profit that never transpired.

That was the problem with the housing bubble: People speculated on the
market, tapping into the equity on their homes to finance other projects—a
new car, a lavish vacation, a kitchen remodel, an investment in a second
rental property, or a vacation home. When the market crashed and their
home values plummeted, those home owners found themselves owing more
to the banks than their homes were worth. They had negative equity.
Furthermore, investment banks had packaged those mortgages into
complicated financial instruments that were sold to investors around the
world, so when the waves of foreclosure hit, the massive losses incurred
over a short period of time brought the global economy to its knees.

Economists are going to be analyzing this housing market crash for
decades before they fully understand how and why it happened. But anyone
observing the virtual economy in the online game Second Life could glean
some valuable insights, according to Cornell University economist Robert
Bloomfield. He believes virtual economies like those in Second Life can
provide useful simulations of the patterns of free markets—and the
consequences of failing to self-regulate. In Second Life, players can buy
virtual currency with their real-world dollars—250 “Linden dollars”
roughly corresponds to one U.S. dollar. They buy and sell goods and
services and engage in online investment schemes without all the pesky
regulations hampering the free market in “meat space.”

And therein lay the problem. In 2007, an in-game virtual investment
bank, Ginko Financial, collapsed. The bank promised investors a whopping
40 percent return on their Linden money and made loans to other players at
equally exorbitant rates. When those players failed to repay their virtual
loans, investors panicked and made a run on Ginko to withdraw their funds,
quickly outstripping the bank’s reserves. Nor were the losses purely virtual,
since Linden dollars were purchased with real currency: Investors
collectively lost the equivalent of 750,000 U.S. real-world dollars.

Second Life creator Linden Lab responded by banning any virtual banks
promising interest rate returns on deposits to investors. One year later, in
the wake of the mortgage meltdown, revered financial titan Alan Greenspan
reluctantly came to a similar real-world conclusion: Lending institutions



cannot be trusted to regulate themselves—not because the free market
doesn’t work, but because certain unscrupulous people cheated and
“gamed” the system. It is human nature that is at fault, more than free-
market economics. It makes a strong case for factoring irrational human
behavior into any viable economic model. In fact, the burgeoning new field
of behavioral economics focuses on studying how and why human beings
don’t always act in their best self-interest.

The parallels to our real-world economy are admittedly imperfect, but the
economic lessons drawn from Second Life are compelling, because it is a
model built from actual human behavior—raw data—not a programmed
computer simulation. People do not always behave rationally (or nobly),
and many economic theories fail to take this into account. Jonah Lehrer,
author of How We Decide, asserts that the problem lies less with the actual
models and more with the human brain. “People love models, especially
when they’re big, complex, and quantitative. Models make us feel safe,” he
writes. “They take the uncertainty of the future and break it down into neat,
bite-sized equations. But we become so focused on the predictions of the
model that we stop questioning the basic assumptions of the model. Instead,
confirmation bias seeps in and we devote way too much mental energy to
proving the model true.”

Models can still yield intriguing insights. Reginald Smith, an analyst with
the Bouchet-Franklin Research Institute in Rochester, New York, decided to
map the spread of the collapse from its start in the housing markets of
California and Florida in 2007 through October 2008. He found that the
problems first emerged in housing stocks, then spread to finance stocks and
mainstream banks before hitting the broader stock market in general. While
his analysis didn’t shed much light on the why of the collapse, he noticed
that his data bore a strong resemblance to a different kind of model: that
used by scientists to chart the spread of forest fires, fashion trends, . . . and
disease. Mathematically speaking, the credit crisis looks like an epidemic,
wiping out wealth the way the Black Death decimated the population of
medieval Western Europe.
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A Pox upon It

Population, when unchecked, increases in a
geometrical ratio. Subsistence increases only in an
arithmetical ratio.

—THOMAS ROBERT MALTHUS

 
 
 
It is a truth universally acknowledged that a young man in possession of
good fortune must be in want of a well-stocked arsenal—at least if you’re
one of the eligible young men who populate the blood-soaked satire Pride
and Prejudice and Zombies . Author Seth Grahame-Smith invented an
alternate history for Jane Austen’s much-beloved novel, in which a
mysterious plague sweeps through the peaceful village of Meryton, turning
residents into the walking dead, famished for fresh brains upon which to
feast. Under those circumstances, any woman who can wield a weapon as
well as a witty bon mot is doubly attractive.

In bizarro Meryton, Elizabeth Bennett and her four sisters make up an
elite zombie-fighting unit, well versed in the usual feminine
accomplishments: music, needlepoint, watercolors, and of course, martial
arts and weapons training. Their mission: wiping out the undead menace
while finding suitable wealthy husbands. The very first ball at Netherfield is
overrun by “unmentionables” who feast with abandon on the hapless guests,
“sending a shower of dark blood spouting as high as the chandeliers.”
Female characters debate whether or not it is “unladylike” to carry a musket
(Elizabeth favors a katana, or samurai sword), and couriers routinely get
eaten by zombies while relaying messages between houses. The local



militia comes to town to exhume and destroy dead bodies, hoping to control
the outbreak. And Elizabeth must defeat Lady Catherine de Bourgh and her
merry band of ninjas to win the right to marry Darcy.

Grahame-Smith felt Austen’s original text was a natural fit for zombie
horror. “You have this fiercely independent heroine, you have this dashing
heroic gentleman, you have a militia camped out for seemingly no reason
whatsoever nearby, and people are always walking here and there and
taking carriage rides here and there,” he told the Daily Beast. “It was just
ripe for gore and senseless violence.” And ninjas—don’t forget the ninjas. It
makes even more sense when one considers that Regency England was no
stranger to deadly outbreaks of disease and that the modern zombie genre
pioneered by George Romero’s Night of the Living Dead routinely treats the
spread of rampant zombification as an epidemic. As such, zombies provide
an excellent case study in epidemiology.

Epidemiologists study the rate at which disease outbreaks spread and
how various intervention strategies—vaccination or quarantines, for
example—can help slow the transmission rate. They study this in the
context of general population dynamics: the number of infected individuals
and the rate at which a population grows or declines are connected. If
there’s a varying rate of change between two connected factors, there must
be a derivative to be taken somewhere. So calculus is very useful in
epidemiology and therefore in the analysis of zombie outbreaks. It just so
happens that nature has its own microcosmic version of a zombie epidemic,
which lends itself very nicely to illustrating a fundamental epidemiological
model.

A FUNGUS AMONG US

Deep in the forests of West Central Africa lurks a species of parasitic
fungus that targets a particular kind of ant. The fungus belongs to the
Cordyceps family, scattering spores into the air, which then attach to the
ant’s body to germinate. The spores work their way inside the poor insect’s
body, sprouting long tendrils called mycelia that eventually reach into the



ant’s brain and release chemicals that make the ant the fungus’s zombie
slave.

The chemicals change how the ant perceives critical pheromones,
altering its behavior. In this case, the ant feels less inclined to devour
delicious brains and is instead compelled to climb to the top of the nearest
plant and clamp its tiny jaws around a leafy stem. It is the fungus that plays
the role of zombie now, devouring what little remains of the insect’s brain,
then sprouting through the ant’s head as one final indignity. Those sprouts
burst and release even more spores into the air, which go forth to infect
even more unsuspecting ants. The entire horrific process can take four to
fourteen days. Fear the fungus, my friends.

There are over four hundred different species of Cordyceps fungi, each
targeting a particular species of insect, whether it be ants, dragonflies,
cockroaches, aphids, or beetles. Consider Cordyceps an example of
Nature’s own population control mechanism to ensure that ecobalance is
maintained. The fungus proliferates when there is a large supply of hosts—
that is, when the ant population flourishes and becomes so large that it
threatens to overwhelm the resources available to the colony. As more ants
fall victim to zombifying spores, their numbers dwindle until (a) there are
once again sufficient resources to support what remains of the colony, and
(b) there are far fewer ants available to serve as hosts, making it more
difficult for the fungi to reproduce, so their numbers dwindle as well. And
the whole population growth-and-decline cycle begins all over again. That
is the essence of population dynamics in a nutshell.

An English clergyman named Thomas Robert Malthus was one of the
earliest pioneers in modeling population dynamics. Malthus was born with
a harelip and cleft palate—defects that ran in the family—and was intensely
self-conscious about his appearance as a result. He had an unremarkable
childhood in the Surrey countryside, earning a mathematics degree from
Cambridge University before being ordained as an Anglican curate.

Malthus bemoaned the decline of living conditions in late eighteenth-
century England and observed that in nature, plants and animals were
capable of reproducing at far greater rates than the surrounding resources
could support. This led him to develop his classic theory on population: If
human population were allowed to grow unchecked, it would do so
exponentially, and we would all too quickly outstrip our limited resources



for subsistence. He believed this fundamental truth had been obscured by
catastrophic events like disease, famines, or wars, which serve periodically
to cull the herd, so to speak. “Epidemics, pestilence and plague advance in
terrific array, and sweep off their thousands and ten thousands,” he wrote
with considerable dramatic flourish. “Should success be still incomplete,
gigantic famine stalks in the rear, and with one mighty blow, levels the
population with the food of the world.”

In 1798, Malthus published The Principle of Population, in which he
outlined his model for population growth. It’s based on the notion that the
population for a given generation is dependent on the size of the previous
generation, and that this number will be a multiple. We can denote
population size (p) as a function of time (t), where t can represent any unit
of time we choose: days, months, years, and so forth. The key parameter is
known as the Malthusian factor (r), denoting the multiple that determines
the growth rate. We can plot different values for p when r = 1.19, 1.20, and
1.21 to see how a slight change in the value for r (denoted by the variable a
in the figure) results in significant differences in the overall population size.
The resulting graph produces three different exponential growth curves.
Even a difference as small as 0.02 causes population to double after 40 units
of time (whether it be 40 days or 40 years).

Maybe it had something to do with being one of eight children, but
Malthus’s proposed solution to overpopulation included restricting the
family size of the lower classes to ensure that parents did not produce more
children than they could support. It sounds more elitist than he perhaps
intended: Malthus thought having too many children doomed the lower
classes to poverty, making it impossible for them to rise above those
conditions and improve their lot in life. Then again, he also flirted with the
notion of eugenics—a term not coined until 1883—by pondering whether
the techniques of animal husbandry might be applied to breed out
undesirable qualities in people, although he didn’t feel this was a realistic
goal: “As the human race, however, could not be improved in this way
without condemning all the bad specimens to celibacy, it is not probable
that an attention to breed should ever become general.” (Yes, even in the
1800s, people realized that abstinence alone is not a viable solution for
family planning.)



This sort of pessimistic thinking did not win Malthus any popularity
contests at a time when fervent social reformers preached the gospel of
erasing all the ills of man if only one could implement the proper social
structures. The model is not without merit, but the Malthusian growth
equation is only applicable under specific conditions, such as scientists
growing bacteria in a lab in a perfectly controlled environment. Even then,
while growth occurs exponentially for a time, it does not continue forever.

It fell to his contemporary, the Brussels-born Pierre Verhulst, to improve
upon the basic idea by devising a more sophisticated model that more
accurately reflected real-world population dynamics. Verhulst said there are
forces at work to prevent exponential growth in the population, and these
forces increase in direct proportion to the ratio of the excess population to
the total population. In other words, population growth depends not just on
the size of the population, but also on how far that size is from its upper
limit.

The crux is something called carrying capacity (which we can denote by
K): the maximum population size that any given habitat can support. If the
population of ants starts to double every year—grows exponentially—there
will be two thousand ants the first year, and the next year there will twice as
many. But there is a limited supply of food and other resources, so if that
exponential growth rate continues unchecked, the population of ants will
rapidly consume all the available resources. Exponential growth simply
cannot be sustained indefinitely. Once the food runs out, the ants will begin



to die out too. Verhulst’s model34 shows that if the population is less than
the maximum, the population will increase rather steeply because people
have lots of food. But then when it gets closer to the maximum sustainable
population, the rate at which the population increases slows down.

Look closely and you will recognize the telltale sign of a derivative. In
the Verhulst model, the derivative of the population with respect to time—
that is, the rate of change in population ( p) or the number of additional
people over time—would be proportional to the number of people at time 0
(now) multiplied by the maximum sustainable population minus the current
population. If the population actually followed that equation, it would start
out low and show exponential growth at first. But then the rate of growth
would begin to slow as it approached the maximal population, eventually
leveling off to become stable as it reaches the carrying capacity for that
particular habitat. Plot this out on a graph and you end up with a smooth S-
shaped, or sigmoid, curve.

Say you’re part of a colony of a particular species of ant, going about
your business in the forest: gathering food, doing your little communication
dance, and of course, reproducing. We can use the derivative to analyze the
rate at which your little colony is adding to its population. We’ll keep things
simple by assuming an initial population of 100, which increases to 120
ants after one year. How long will it take your little ant colony to grow from
100 to the critical threshold, or carrying capacity (K ), of 300 ants? Just
plug in the relevant numbers to the Verhulst equation: 100 for the initial
population, and (in this case) a growth rate per year (r) of 1.2. The answer:
six years.



The Verhulst model is useful for limited applications, but the realities of
population dynamics are far more complex, with innumerable variables.
Even the carrying capacity (K) is not a constant (fixed over time); it
fluctuates depending on conditions. Furthermore, instead of being
continuous, as in the Verhulst model, population change often occurs in
discrete shifts. Instead of the population changing continuously in tiny
increments each day, there may be a major event that will cause the
population to either explode or rapidly decline. An earthquake that wipes
out an entire village would result in a sudden rapid decrease, while an
influx of immigrants or refugees would give rise to a sudden spike in
population. Then we are no longer dealing with a straightforward calculus
problem, but something akin to a chaotic system, like the stock market’s
wild fluctuations, making predictions extremely difficult.

When it comes to our zombifying fungi, the situation resembles a
predator-prey model: as the fungi (predators) proliferate, the ant population
(prey) diminishes; when the ant population flourishes, so does the predator
population, so you have equations for both populations. Nature always finds
a way to maintain balance. These fungi are so effective at controlling
certain pests that they have been used to control the numbers of wheat grain
beetles. In fact, researchers are investigating the use of one particular
species of fungus (Metarhizium anisopliae) against African mosquitoes to
control the spread of malaria, because the disease is often spread through
mosquito bites. That’s another useful application of calculus: assessing the
rate of the spread of a disease, and determining how effective various
intervention strategies might be.



MATH IN THE TIME OF CHOLERA

Cholera is a nasty way to die. It starts with horrible bouts of vomiting and
diarrhea and a slowed pulse, plus cramps. Those cramps become more
severe as the disease progresses, the victim’s entire body convulsing in
pain. Eventually the lips, face, hands, and feet turn blue, purple, or even
blackish in hue. The skin becomes cold and damp. Respiration slows, but
instead of a telltale death rattle in the throat, victims often die quietly, with
a whimper. At least the disease progression is rapid, so one’s misery is
short-lived. That’s about all that can be said for it.

In the nineteenth century, England’s physicians, scientists, and political
leaders watched with trepidation as cholera morbus moved from India
through Eastern Europe to Germany and the shores of England, officially
“arriving” in London in 1831. Cholera killed over 10,000 people in one
year alone. In 1854, London’s Soho District was hit by an especially
virulent outbreak of the disease, killing 127 people in the first three days.
By the time it was over, 616 people had died.

The means by which a disease spreads throughout a population is known
as a vector; the most common vector is person-to-person transmission, such
as with the flu or measles—or a zombie bite. With cholera in the nineteenth
century, the vector was less clear. Medical opinion was divided, because the
evidence was contradictory, sometimes indicating transmission through
contact, sometimes indicating transmission through squalid unsanitary
conditions. The streets of Soho in the 1850s were filled with animal
droppings, runoff from slaughterhouses, and primitive sewers. Had anyone
checked under the floor-boards of their cellars, they would have found fetid
cesspits.

The man who solved the mystery was Dr. John Snow, a pioneer of
modern epidemiology. He lived locally, on Fifth Street, and monitored the
epidemic’s progress on-site. He was convinced that cholera was spread by a
poison passed from victim to victim through tainted water; he’d already
traced an earlier outbreak of contaminated water supplied by the Vauxhall
Water Company. But authorities didn’t believe him, and the water company
refused to admit culpability. He figured this was his chance to prove his
theory was right.



Snow patrolled the district, interviewing the families of those who had
died, and found that nearly all the deaths had occurred near a water pump
on the corner of Broad Street and Cambridge Street—the epicenter of the
outbreak. Houses closer to an alternate pump had only experienced ten
deaths, and five of those were schoolchildren who occasionally drank from
the Broad Street pump. Ever the scientist, Snow took a sample of the
pump’s water, examined it under a microscope, and noted that it contained
“white flocculent particles,” which he deemed the cause of the infection.

The Board of Guardians in St. James Parish reluctantly followed his
advice and removed the pump handle as an experiment. The spread of the
disease stopped dramatically. There were still a few unexplained deaths
from cholera that appeared unrelated to the Broad Street pump. The most
damning was a widow who lived in Hampstead, and her niece, neither of
whom lived anywhere near Broad Street. Snow proved quite the detective:
He found that the widow had once lived in Broad Street and liked the taste
of that well water sufficiently that she had a servant bring her back a large
bottle from it every day. The last bottle had been fetched on the day the
Soho outbreak began.

Yet authorities were still doubtful of Snow’s findings. A local vicar,
Reverend Henry Whitehead, thought the outbreak was the result of divine
intervention—a very vicarlike approach to human calamity—and set about
“proving” his case. In the end, Whitehead actually helped confirm a single
probable cause of the outbreak: A young child living on Broad Street had
been ill with cholera symptoms, and the child’s soiled diapers had been
soaked in a tub of water that was then emptied into a cesspool three feet
from the Broad Street pump. Underground leakage did the rest.

How do we model an outbreak of a disease? Let’s assume that a nasty flu
virus strikes a university dormitory. The rate of infection will vary,
depending on the nature of the disease and how it is transmitted. The flu is
spread when an infected person, during the contagious period, coughs or
sneezes near another person or touches another person. We can chart how
the number of infected people (I ) changes over time (t)—in other words, I
is a function of t, and for our purposes t will be measured in days. For
epidemiology, there are two other parameters: how many people an infected
person can infect per day, or rate of infection (r), and the rate at which the



outbreak fizzles, as infected people recover—or die (a). So there will be a
single equation for I(t), in which r and a will appear as parameters.

The end result is almost always the same: As more people recover or
succumb and as precautionary measures kick in—quarantine, hand-
washing, or just removing the handle of the offending pump—there are
fewer new cases of infection. When r is less than 1, each infected person is,
on average, transmitting the virus to fewer than one other person. This will
not be sufficient to sustain the outbreak, and it will end. As for the flu, so
for cholera.

Fourteen years after Snow’s discovery, a cholera epidemic hit Buenos
Aires, Argentina. An account of the outbreak can be found in Charles
Darbyshire’s My Life in the Argentine Republic 1852-1894. He moved his
household to the countryside because he worried about the unsanitary
conditions of town life, having seen the impact of cholera in London before
he came to Argentina. He described the conditions in alarming detail:

I felt positive that sooner or later there must be an epidemic. There
was no drainage. The soil on which the houses were built was
becoming infected. The defecations, the waste water from kitchens,
etc. went into wells 30 feet deep in the back patios. When one of
these wells became full of filth and could hold no more, what was
called a sangria (a bleeding) was made. A well was sunk to the
same depth . . . and the sangria took place by pushing an iron bar
through the full well . . . as the old well began to drain into the new.
This went on for years, and some of the patios in the old houses
were honeycombed by wells.

Darbyshire’s fears proved well founded when an epidemic broke out in
the summer of 1868, brought about (he believed) by Brazilian ships tossing
the bodies of those who had died from cholera into the River Paraná,
contaminating the water supply. People fled to the countryside, bringing the
disease with them, and Darbyshire advised his neighbors not to drink the
water unless it was boiled, to bury all refuse, and to keep floors and patios
clean. His own household did not contract the disease, which lent credence
to his advice. Despite all the deaths, there was one positive outcome: The
Argentine government overhauled the city’s drainage system and installed a
proper water supply.



Darbyshire correctly identified a contaminated water source as the source
of the outbreak. Initially the disease spread at a very rapid rate, and people
panicked. With no quarantine in effect, those already infected brought the
contamination to the countryside. Had that first city been quarantined, the
outbreak would have been contained as the rate of removal (a) increased.
Just as with an economic market, at some point, a critical threshold is
reached, and the exponential growth rate of removal would level off as
fewer and fewer people remained to be infected. Darbyshire had the
foresight to put protective measures in place that limited the spread of
infection. That caused the rate of removal to increase even faster, and thus
the outbreak leveled off and died out much more quickly.

In the case of cholera, there was a single vector: the Broad Street pump,
or, more specifically, the white flocculent particles contained in the water
that came out of that pump. The disease spread to whomever drank from
that particular source. A disease like the Black Death is much more
complicated to model because there is more than one vector.

MASQUE OF THE BLACK DEATH

One week before Christmas in 1664, a comet streaked across the sky over
England. Astrologers claimed it was an omen of impending apocalypse.
One William Lilly predicted that this, combined with a lunar eclipse in
January 1665, would bring “the sword, famine, pestilence, and mortality or
plague.” Lilly was really hedging his bets—why not throw in a prediction
of a zombie invasion or an asteroid strike while he was at it?—but his dire
prediction came partially true. Pestilence was common in the rat-infested
urban centers of England, and this led to a deadly outbreak of bubonic
plague in London in the summer of 1665.

By October, one in ten Londoners had succumbed to the disease—over
sixty thousand people. The government banned public meetings, but the
epidemic spread to Cambridge, where the young Isaac Newton was in his
second year of studies. The university closed, and Newton was forced to
return to his country home in Grantham for over a year until the plague had
run its course and the university opened its doors again in April 1667. And



in that short time, he invented calculus, with no idea that it would one day
be applied to study the spread of disease.

This was not the plague’s first appearance. Back in the Middle Ages, the
plague decimated Western Europe, wiping out roughly one third of the
population, some 25 million people. It could sweep through a region and
wipe out entire villages in a matter of weeks. During the 1630s, various
outbreaks of plague killed half the populations of affected cities. Similar
numbers perished in an outbreak in Holland in the 1660s: A thousand
people were dying each week in Amsterdam at the height of the outbreak.
And the plague significantly culled the population of France during an
outbreak between 1647 and 1649.

The plague spread rapidly and was so virulently infectious that even
doctors feared treating victims. At the time, they believed the disease spread
via “bad air,” or miasmas. Those who did treat patients took what
precautions they could, donning large beaked hats made of bronze and
stuffing the “beak” with strong herbs and spices to purify the air the doctor
breathed. (As an added bonus, the aroma from the herbs helped mask the
stench of rot that invariably accompanied the plague.) Plague doctors
dressed in pants and a long gown and wore leather gloves, as well as crystal



eyepieces for added protection— anything to ward off contamination, even
though the source of the plague was not identified until the nineteenth
century. All clothing, even undergarments, were doused in camphor oil or
treated with wax to further seal the doctor from bad air.

These precautions might have been partially effective. We now know that
plague is caused by a bacillus called Yersinia pestis and is spread by rodents
and their fleas to humans.35 Protecting the eyes, nose, and mouth made it
harder for Y. pestis to get into the body via mucous membranes, and coating
one’s clothing with wax made it more difficult for fleas to penetrate to the
skin and transmit the disease with their bites. And the herbs stuffed into the
beak of the mask at least partially blocked breathing holes, so the doctor
would be less likely to inhale the bacillus. Their Achilles’ heel was actually
the ankles, which remained exposed and therefore vulnerable to flea bites.

The credit for this momentous discovery goes to a French scientist named
Alexandre Yersin, a former student of Louis Pasteur.36 Yersin went to
Hong Kong in 1894 to investigate an outbreak of the plague there. He
extracted some of the pus from a dead soldier’s bubo (swollen lymph node)
and injected it into guinea pigs; all the guinea pigs died. He examined the
pus from both the dead soldier and the doomed rodents and noticed both
samples contained the same type of bacteria. Yersin also noted the large
number of dead rats around the city, examined those bodies, and once again
observed the same bacteria. Conclusion: Y. pestis was the culprit for the
spread of plague.

Yersin did not determine the means of transmission, however. That honor
fell to his fellow scientist, Paul-Louis Simond, who experimented with
infected rats and fleas. He noticed that even if he placed an infected rat into
a jar with healthy rats, the healthy ones only became sick if fleas were
present. Just how virulent is this plague-causing Y. pestis? In lab
experiments, mice died after being infected with just 3 bacilli; your average
flea can transmit 24,000 in a single bite.

Plague has many different vectors: It can spread person to person or via
the rats and fleas; which type you get depends on how the bacillus invades
your body. The Black Death came in three forms: bubonic, pneumonic, and
septicemic. After the bite of an infected flea, the first site of infection is
generally the lymph nodes. In this form, bubonic plague, your lymph nodes



swell to form enormous buboes. Lancing the buboes releases oozing, foul-
smelling pus. The bubonic plague was the most common form, with a
mortality rate of 30 to 75 percent. In addition to enlarged and inflamed
lymph nodes around the armpits, neck, and groin, victims were subject to
headaches, nausea, aching joints, high fever, and vomiting, and symptoms
took from one to seven days to appear.

The pneumonic plague, infecting the lungs, is particularly virulent,
capable of killing an infected person within twenty-four hours. You would
catch this merely by breathing Y. pestis into your lungs. The mortality rate
for the pneumonic plague was 90 to 95 percent (if treated today, that would
be reduced to 5 to 10 percent). Symptoms included slimy sputum (a saliva-
and-mucus concoction) tinted with blood. As the disease progressed over
one to seven days, the sputum turned bright red.

If Y. pestis entered your bloodstream directly through the bite of a flea or
via a cut or sore in contact with diseased tissue, you would get septicemic
plague and would be almost certain to die. The septicemic plague was the
rarest form of all, but the mortality rate was close to 100 percent; even
today there is no treatment. Victims ran a high fever, and the skin turned
deep shades of purple, almost black, hence the name Black Death. Victims
usually died the same day symptoms appeared; in some cities, as many as
eight hundred people died every day.

Septicemic plague was rarer than the other two forms of plague because
people died so quickly that they had little opportunity to transmit the
disease to others. That’s why any good epidemiological model must take
into account the latency period between infection and death. Pneumonic
plague was easily transmitted from person to person, but death usually
occurred within a day or two, so it, too, did not propagate as rapidly.
Bubonic plague gets it just right, from the perspective of Y. pestis, whose
sole purpose is to infect as many hosts as possible. It is not as virulent as
pneumonic plague. Once infected, the victim could appear healthy for as
long as a week, merrily passing the disease on to others, and death occurred
much more slowly.

“Because of its infectious nature, the disease may be spread by
apparently healthy people who harbour the disease but have not yet
exhibited the symptoms,” Daniel Defoe wrote in A Journal of the Plague
Year, which appeared in 1722. “Such a person was in fact a poisoner, a



walking destroyer perhaps for a week or a fortnight before his death, who
might have ruined those that he would have hazarded his life to save.”
Defoe may have been writing about the real-life plague that decimated
London in the 1600s, but he could just as easily have been describing
Grahame-Smith’s alternate version of the village of Meryton, where
residents who were bitten would seem normal but were in fact gradually
turning into zombies.

ASSUME A SPHERICAL ZOMBIE

Pride and Prejudice and Zombies is rife with graphic battle scenes, as
Elizabeth Bennett travels the countryside with her aunt and uncle, leaving a
path of zombie casualties in her wake. She teams up with Darcy to defeat a
horde of zombies at his Pemberley estate, and after accepting his proposal
of marriage, the newly engaged couple dispatches one final group of
zombies to plight their troth. But is all this bloody violence toward zombies
really necessary? Can’t humans and zombies learn to get along and coexist
in harmony?

According to a 2009 paper by a group of Canadian epidemiologists: no
way, nohow. The lead researcher is Robert Smith?37 of the University of
Ottawa, who specializes in modeling the spread of infectious disease. He
and three students adapted their models to the spread of a fictitious zombie
infection, starting out with a simple model and gradually adding elements to
make it more complex.

“The key difference between the models presented here and other models
of infectious disease is that the dead can come back to life,” the authors
write, tongues firmly in cheeks. According to Smith? and his students,
people fall into three basic categories: susceptibles (S), those who are not
infected; zombies (Z); and removed (R), susceptibles who have died of
other causes. The key factor is not the actual numbers in each category, but
how those numbers change with time as new zombies are made and existing
zombies are killed. Anytime we have a rate of change, we have a derivative
situation on our hands. The rate of change in zombies is the net increase or
decrease in their numbers during a given period of time.



There are well-established rules governing the zombification process.38
Zombies can be killed by cutting off their heads and destroying their brains.
Susceptibles can become zombies if they are bitten by one, but zombies can
also be created by resurrecting the removed—those who are already dead. If
we have six humans turned into zombies every hour and four dead people
resurrected into zombies every hour, the result is ten new zombies every
hour. Now let’s say we manage to kill three zombies every hour. The net
result is an increase in the zombie population of seven zombies per hour.
And at that rate, there is no chance of maintaining what’s known as an
endemic state—one of peaceful coexistence, or at least a comfortable
equilibrium.

Smith?’s model doesn’t end there; that’s just the process for calculating
the rate of change in the zombie population. We also have to run equations
for how the number of dead and the number of uninfected humans change,
which means factoring in the birth and death rates of humans as well. This
is called a coupled system of ordinary differential equations, which is really
just a fancy way of saying that the system must be described by not one, but
three connected equations: one for how the number of humans changes, one
for how the number of zombies changes, and one for how the number of
dead changes. Furthermore, Elizabeth Bennett’s good friend Charlotte has
been bitten but is not yet a zombie, although doomed to become one in a
matter of weeks—as good an explanation as any for her marriage to the
odious Mr. Collins. Smith? and company call these people Latents, giving
us a total of four coupled equations. The coupling occurs because the same
variables appear in all four equations—or, practically speaking, because the
different populations interact with one another.



Assuming the zombie infection occurs quickly, the birth and death rates
of humans will be insignificant during the time over which the infection
occurs, so we still have the same scenario: Everyone will be turned into
zombies very quickly, at which point the population will become
unsustainable. In the worst-case scenario, Smith? estimates it would take a
mere four days to wipe out the humans. The outcome remains the same:
The zombies get us all in the end.

Quarantining the few healthy humans could help—the standard “hole up
in a basement somewhere and hope the zombie hordes don’t find you”
approach employed in classic zombie horror films. We’ve seen how
(in)effective that strategy can be onscreen, and Smith?’s numbers back up
those observations. However, another study by an Italian scientist named
Davide Cassi implies that hiding out at the mall (à la Dawn of the Dead)
could vastly improve one’s chances of survival. Cassi wasn’t analyzing
zombies specifically, but his version of a predator/prey model applies to any
kind of “predatory random walker”: organisms (like zombies!) that stumble
around without any obvious purpose or direction, destroying any human
that comes into their path. The larger and more complex the structure—such
as a large mall with many twists and turns—the lower the chances that the
predator will stumble upon the prey.

Alternatively, we can quarantine the zombies by herding them into some
sort of holding pen, but if we don’t isolate enough of them fast enough,
once again, the zombies will win. Both options are rather passive strategies,
and most likely will only postpone the inevitable annihilation of the human
race.



Smith? and his students suggest that our only hope is an “impulsive
eradication” scheme. A series of fierce, concentrated attacks could
sufficiently cull the number of zombies over time so that the outbreak
would finally die out. “The most effective way to contain the rise of the
undead is to hit hard and hit often,” the paper concludes. “As seen in the
movies, it is imperative that zombies are dealt with quickly, or else we are
all in a great deal of trouble.”39 Enter the Bennett sisters and respective
paramours, with their wild, weapon-wielding ways, to make quick work of
any rampaging zombie hordes.

Applying epidemiological modeling to a zombie invasion might seem
silly, but it is not very different from modeling the spread of swine flu or the
HIV virus. In November 2009, Smith? published another paper in the open-
access journal BMC Public Health, arguing against spending $60 million in
funding to combat the spread of HIV over fifteen to twenty years. Smith?
recommended a far more aggressive five-year program—a variation on his
“impulsive eradication” scheme for combating zombies—insisting that a
gradual approach is doomed to fail because HIV/AIDS spreads so rapidly
through travel and migration.

Smith?’s group also studies the kinds of slow-moving, chronic diseases in
less developed countries that tend to be neglected by newspapers and
funding agencies alike: things like leishmaniasis and dracunculiasis—both
parasitic diseases that give rise to festering skin sores, among other
symptoms—which can have long-term socioeconomic impacts on large
populations. Dracunculiasis, or guinea worm disease, is particularly nasty.
Drinking contaminated water will introduce the larva into your body, where
it will hatch and grow for about a year until it forms a blister on your skin,
which then ruptures so the worm’s wriggling form sticks out.40 With these
types of diseases, as with zombies, the infected don’t die: They live on, and
thus have far more opportunity to transmit the disease to others.

SIX DEGREES OF ZOMBIFICATION

Most epidemiological models follow the basic format of separating the host
population into those who are susceptible, infected, or immune to a



particular pathogen. The assumption is that the rate at which new infections
occur is proportional to the number of encounters between susceptible and
infected individuals. That reproductive ratio doesn’t merely depend on
latent and infectious periods, but also on how much contact there is between
those who are infected and those in the healthy-but-susceptible population.

This means that social networks play a big role in how quickly (or
slowly) an outbreak propagates. The good citizens of Meryton go to balls,
congregate in drawing rooms, and visit friends and relatives in other
townships for a fortnight or more, providing ample opportunity for zombie
infection to spread. So the more we know about the social networks
involved in an outbreak, the better we can refine our epidemiological
models.

Social networking is related to the small-world phenomenon, better
known to most of us as “six degrees of separation” and epitomized by the
popular game Six Degrees of Kevin Bacon, in which players try to make a
series of connections to the actor based on those who have been associated
in some way with his movies. In the original 1967 study by psychologist
Stanley Milgram, information packets were sent to randomly selected
people in Omaha, Nebraska, and Wichita, Kansas, containing a letter
describing the purpose of the experiment, providing basic information about
the target contact in Boston, Massachusetts, and asking them to forward an
enclosed letter. If the recipient knew the target, he or she would forward the
letter directly. If not, the recipient would forward it to a friend or relative
more likely to know the target. While the number of connections it took for
the letters to reach the target varied, the average was around 5.5—hence, six
degrees of separation.

Milgram’s study fell into some disrepute when it was revealed that his
famous experiment and conclusions were based on a minuscule data
sample. In one experiment, out of sixty letters, fifty people responded to his
challenge to forward the letter via their social networks, but only three
letters eventually reached their destination. A far greater number of people
didn’t bother to participate in the experiment at all. That said, the study
does offer intriguing evidence that smaller communities, such as those of
actors and mathematicians41 are densely connected by chains of personal
or professional associations.



How do we even begin to track those interconnected chains? Nathan
Eagle, an engineer at MIT’s justly renowned Media Lab, studies social
networking phenomena using an unusual approach for data collection: cell
phones. Mobile phones, with their GPS tracking components and call logs,
make fantastic behavioral “sensors,” providing a far more accurate record
than asking people to record their own behavior in a diary—the traditional
methodology for such studies. Self-reported data is notoriously error-prone,
in part because people have faulty memories—or are not being entirely
honest in their reportage.

In one study, Eagle and his colleagues provided cell phones to ninety-
four test subjects—all students or faculty at MIT—loaded with special
software that kept track of their location and logged all calls made and
received among those phones. As a control, the study also included self-
reportage, with subjects identifying which of the other subjects were
friends, acquaintances, or strangers. Based on the calling patterns, the
researchers were able to identify correctly whether two given subjects were
friends or strangers more than 95 percent of the time.

That is just one study. Based on three basic parameters—a user’s activity,
location, and proximity to other users—Eagle says it is possible to
accurately predict someone’s future behavior based on limited observation
of their current behavior. And because transmission of disease is strongly
correlated to social networks and proximity to others, his method is
extremely useful for epidemiological modeling.

According to Eagle, the typical epidemiological model rests on an
erroneous assumption: that the probability of infection is equal for all, that
is, the population is well mixed. But social networks are much more
complex than that; there is noticeable clustering of social contacts, and
people in those clusters would have a higher probability of becoming
infected. It makes a strong case for being a hermit. The Bennett family fears
social shunning when their younger daughter, Lydia, scandalously elopes
with Wickham; had this transpired, they could have taken comfort in the
fact that they would have been far less likely to be bitten by zombies than
their more socially active neighbors.

Eagle believes that the data captured by his cell-phone software
application gives a much more realistic picture of the dynamics of human



social networks,42 thereby arming epidemiologists with “more information
to make predictions about our vulnerability to the next SARS, as well as
greater insight into preventing future epidemics.” One can only wonder
what further insights might be gleaned if Eagle outfitted zombies with cell
phones.

How human beings react to these kinds of threats is another factor that
can be tough to calculate. That’s why other researchers are looking to online
virtual worlds for modeling the spread of infectious disease, much like the
collapse of a virtual bank in Second Life might shed light on economic
models. Most epidemiological models use mathematical rules to
approximate human behavior, but the modelers must make certain
assumptions about how humans are likely to behave— and those
assumptions can be inaccurate. Deliberately introducing a deadly pathogen
into a controlled population to study the outcome would be immoral, but
what if it were possible to design a “disease” specifically for a virtual online
community?

Game designers were a little ahead of the scientists on that front. Blizzard
Entertainment, the makers of World of Warcraft—a hugely popular
multiplayer game—deliberately introduced a zombie plague into the game
to promote World of Warcraft: Wrath of the Lich King. But a far more
interesting development was the virtual Corrupted Blood epidemic that
broke out in 2005. Blizzard added a new dungeon called Zul’Gurub,
controlled by an “end boss” named Hakkar. Only highly advanced players
could find Zul’Gurub, where the objective was to kill the end boss. Among
the creature’s weapons was a spell called Corrupted Blood, which inflicted
damage on infected players at regular, repeating intervals, slowly draining
away their vitality until their avatars “died.” Killing Hakkar was the only
cure.

The spell was designed to infect only nearby players, and to remain
confined to the Zul’Gurub game space. But things went horribly wrong.
Thanks to a glitch in the programming, the animal companions of players’
avatars—technically “nonplayable”—became infected, and even though
they showed no symptoms, they spread the disease to the lower levels of the
game. While advanced players could survive the infection, the Corrupted
Blood plague would kill a lower ranking player very quickly. Widespread



panic ensued wherever the plague struck, with game spaces becoming
littered with virtual corpses. At least three servers were affected, and
Blizzard had to reboot the entire game to fix the glitch.

A Rutgers University scientist named Nina Fefferman heard about the
Corrupted Blood incident and became fascinated by the in-game parallels to
real-world epidemics. Human behavior is not necessarily rational, or
courageous, and this became obvious in World of Warcraft. True, some
players tried to help with “healing spells,” but other players panicked and
fled to other game spaces, carrying the disease with them. A few malicious
players deliberately spread the disease—behavior that has also been
documented in real-world outbreaks—and one hardy soul decided his role
was to stand in the town square and narrate the carnage, a self-appointed
Doomsday Prophet. There were even thrill-seekers who ignored the
warnings and ventured to infected areas out of curiosity, thereby becoming
infected as well—similar, says Fefferman, to journalists who travel to war
zones and deliberately put themselves in harm’s way to get a story. She
went on to coauthor a paper with Eric Lofgren for Lancet Infectious
Diseases on the implications of the Corrupted Blood incident for refining
epidemiological models.

Fefferman’s work has its naysayers, who argue that the virtual death of
an avatar is not equivalent, in terms of risk, to physical death in the real
world. Fefferman counters that players become quite invested in their
characters and feel genuine emotional distress when those avatars are
injured or killed. “The players seemed to really feel they were at risk and
took the threat of infection seriously,” she told BBC News.

Blizzard, in turn, maintains that World of Warcraft is just a game and was
never intended to mirror reality. But the parallels to real-world outbreaks
are striking. An epidemiological model based on the Corrupted Blood
outbreak would draw on hard data showing how players actually responded
to the threat—not on abstract mathematical assumptions. And why not look
to video games for insights into the spread of diseases? We’ll need all the
help mathematics can give to ward off the coming zombie apocalypse. Just
ask the Bennett sisters.



7

Body Heat

Exercise ferments the humors, casts them into their
proper channels, throws off redundancies, and
helps nature in those secret distributions, without
which the body cannot subsist in its vigor, nor the
soul act with cheerfulness.

—JOSEPH ADDISON, Spectator, July 12, 1711

 
 
 
Comedian Margaret Cho once riffed on the concept of “Stairmaster time”—
namely, the fact that time passes much more slowly when one is on the
Stairmaster, mindlessly climbing stairs to nowhere. Any gym member can
relate: A mere fifteen minutes can feel like an hour if one lacks sufficient
distraction. I am just beginning to break a sweat on an elliptical machine
under the watchful eye of Adam Boesel, personal trainer and owner of the
Green Microgym in Portland, Oregon, but we are not watching the usual
graphic display showing pace, calories burned, or distance traveled. Instead,
I am laboring to keep a small 60-watt light bulb alight with my exertions,
mounted on the front of the machine, with just a single digital readout
tracking my output in wattage.

Open since 2008, the Green Microgym is located in the Alberta Arts
district of Portland, just fifteen minutes from the city airport. It’s a very
crunchy-granola type of place, where “sustainable” is practically a way of
life. The folksy main street boasts quirky little shops, art galleries, and
eateries—all owned and operated by local residents. There’s nary a
Starbucks in sight; instead, the local bohemians retreat to a funky little café



called the Fuel Stop for their caffeine fix after yoga class, where all the
drinks, salads, sandwiches, and sweets are made from scratch, and nobody
minds if you stay for a few hours to take advantage of the free wireless. The
hot brunch spot is the Tin Shack—a small building with aluminum siding
and adjacent courtyard for outdoor dining. At 10:30 A.M. on an overcast
Saturday, there is already a line of hungry locals snaking around the corner.

Boesel’s Green Microgym fits perfectly in this neighborhood: a modest,
two-story boxlike structure with bright red exterior and no-frills interior.
There are the usual ellipticals, stationary bikes, treadmills, and free weights,
but look closer and you’ll notice a twist on those fitness staples. Boesel has
retrofitted much of his exercise equipment so that gym members can
generate a small amount of usable energy during their workouts.

He is not the first to ponder the potential of human exertion for
generating energy. Inmates in nineteenth-century New York prisons were
forced to walk on treadmills as punishment, and that energy was used to
grind grain for the inmates’ daily bread. Today, a handful of fitness centers
around the world are seeking to exploit the same concept—on a purely
voluntary basis. California Fitness in Hong Kong has cardio machines to
produce energy for the gym’s lighting, while the Netherlands boasts the
Sustainable Dance Club in Rotterdam. The dance floor is made up of small
modules that move in response to the people dancing, and this movement is
converted into electricity that lights up the floor. A Boston gym has a
special stationary bike with a laptop built into the handlebars. The laptop
has no battery; it is powered entirely by the person pedaling, so someone
can get in a decent workout and still surf the Web or answer a few e-mails.
It is a multitasker’s delight.

Back in 1990, before being energy conscious was cool, actor and
environmentalist Ed Begley Jr. connected a bicycle to a 24-volt battery to
generate the energy needed for small kitchen appliances. He has been
known to make toast this way or to run a coffeemaker. However, Boesel and
others think there might be the potential for a commercial market as well.
Several companies have cropped up in recent years specializing in
retrofitted exercise equipment, such as ReRev.com in St. Petersburg,
Florida; Henry Works in El Paso, Texas; and entrepreneur Jim Whelan’s
Green Revolution. There is an entire academic research program devoted to

http://rerev.com/


human-powered energy at the Delft University of Technology in the
Netherlands.

It’s an ingenious idea. We spend hours each week running, cycling, or
climbing in place, like hamsters on one of those little wheels, with no other
goal than to burn off last night’s indulgence in a hot fudge sundae—all in
pursuit of the slim, athletic figure so prized by modern society. (Admit it:
For most people, the health benefits of doing so are largely secondary.) So
why not try to harness some of that energy otherwise going to waste and
turn gym rats into energy generators?43 The human body is essentially a
machine—specifically, a heat engine. Boesel’s Green Microgym is based on
solid thermodynamic principles, and this makes it an ideal learning
environment for exploring the calculus of energy as it relates to diet,
exercise, and the economic feasibility of harvesting energy from exercise
machines.

BLOWING OFF STEAM

Every March in Los Angeles’ funky Echo Park neighborhood, the Los
Angeles Wheelmen—a local bicycling club—gather at the foot of Fargo
Street for their annual Fargo Street Hill Climb. Members compete to see
who can make it up the road’s steep grade between Allesandro and
Alvarado Streets the most times in a single day. It’s a daunting challenge:
That one-block stretch of Fargo Street boasts a vertigo-inducing 32 percent
grade, tying with nearby Baxter Street for the second-steepest grade in the
city. (Eldred Street in the Highland Park neighborhood takes top honors
with a 33 percent grade.) The current record, set in 2008, is 101 ascents,
which took the stalwart cyclist, Steve Gilmore, nine hours to complete. That
was an atypical year: Even the toughest Wheelmen (and -women) usually
manage only between twelve and thirty climbs.

The Los Angeles Wheelmen might expend a great deal of energy biking
up Fargo Street and back down again, and feel as though they’ve definitely
gotten a good workout. But from a physicist’s perspective, nothing has been
done. Energy is useless unless it can be harnessed to perform some task. For
example, the battery packs in the Green Microgym must be connected to



some kind of load before the energy they produce can be useful—say, to
operate the fans or the stereo system. Energy, when harnessed, produces
work, which has a very specific meaning in physics, namely, a force applied
over a given distance (W = fd ). How much work a moving object is
capable of performing is precisely equal to its kinetic energy.

There are many different kinds of energy that can change into each other.
For example, you could also get work by burning fuel. Burning coal in
power plants produces electricity by converting thermal energy (heat) into
mechanical energy in a turbine. Electrical energy can change into
mechanical energy. A battery relies upon a series of chemical reactions to
produce an electrical current; once all the chemicals have been used up and
converted into energy, the battery goes dead. And an electrical generator
converts mechanical energy into electrical energy, which can then be used
to power most of modern technology. All these conversions are examples of
turning stored potential energy into kinetic energy.

Heat is wasted energy, for the most part, and it’s the reason no machine,
no matter how well designed, can ever attain 100 percent efficiency. We
know this because of the work of Sadi Carnot. Born in 1796, Carnot was
the son of a French aristocrat named Lazare Carnot, who was one of the
most powerful men in France prior to Napoléon’s ignominious defeat; the
family fortunes rose and fell dramatically throughout young Sadi’s life in
conjunction with that of the monarchy. Named for the Persian poet Sadi of
Shiraz, Carnot learned mathematics, science, language, and music under his
father’s strict tutelage. At sixteen, he entered the École Polytechnique,
studying under the likes of Claude-Louis Navier, Siméon Denis Poisson,
and André-Marie Ampère.

It was not a peaceful period in France’s history. Always opposed to the
monarchy, Carnot joined in the fighting when Napoléon briefly returned
from exile in 1815. When Napoléon was defeated in October of that year,
Carnot’s father was exiled to Germany. He never returned to France. Carnot
the younger, dissatisfied with the poor prospects offered by his military
career, eventually joined the General Staff Corps in Paris and pursued his
academic interests on the side.

In 1821, he visited his exiled father and brother in Germany. Apparently
there was very little to do in exile, so the men took to debating the pros and
cons of steam engines. Steam power was already used for draining mines,



forging iron, grinding grain, and weaving cloth, but the French-designed
engines were not as efficient as those designed by the British. (The
efficiency of those early French engines was as low as 3 percent.)
Convinced that England’s superior technology in this area had contributed
to Napoléon’s downfall and the loss of his family’s prestige and fortune,
Carnot threw himself into developing a robust theory for steam engines.

Carnot’s father died in 1823. That same year, Carnot wrote a paper
attempting to find a mathematical expression for the work produced by one
kilogram of steam; it was never published. In fact, the manuscript was not
discovered until 1966. In 1824, he published Reflections on the Motive
Power of Fire, which described a theoretical “heat engine” that produced
the maximum amount of work for a given amount of heat energy put into
the system. The so-called Carnot cycle draws energy from temperature
differences between a hot reservoir and a cold reservoir (and became the
basis for modern-day refrigerators).

Carnot knew from endless experimentation that in practice, his design
would always lose a small amount of energy to friction, noise, and
vibration, among other factors. He knew that in order to approach the
maximum efficiency in a heat engine, it would be necessary to minimize the
accompanying heat losses that occurred from the conduction of heat
between bodies of different temperatures. He also knew no real-world
engine could achieve perfect efficiency. These considerations brought him
tantalizingly close to discovering the second law of thermodynamics.

Reflections on the Motive Power of Fire did not attract much attention
when it first appeared. The principle of energy conservation was fairly new
and quite controversial among scientists at the time. The work began to gain
notice a few years after Carnot’s untimely death from cholera at the age of
thirty-six, just one among the myriad casualties of the epidemic that swept
through Paris in 1832. Most of his belongings and writings were buried
with him, as a precautionary measure to prevent the further spread of the
disease. Carnot was twenty years ahead of his time. His work did not
immediately lead to more efficient steam engines, but he did set out the
physical boundaries so precisely that Rudolf Clausius and William
Thomson, Lord Kelvin, would draw on his work to build the foundations of
modern thermodynamics in the 1840s and 1850s.



In the latter half of the nineteenth century, a British scientist named
James Prescott Joule toyed with various energy sources to see which ones
were most efficient. The choice of fuel can be critical, for different fuels
have different conversion rates and produce different amounts of usable
energy—and once again, where there is a rate of change, we’re bound to
find a derivative. Joule came from a long line of brewers, so chemistry was
in his blood, as was scientific experimentation. He and his brother
experimented with electricity by giving each other electric shocks, as well
as experimenting on the servants.

Fascinated by the emerging field of thermodynamics, Joule jerry-rigged
his own equipment at home (using salvaged materials) to conduct scientific
experiments—specifically to test the feasibility of replacing the brewery’s
steam engines with the new-fangled electric motor that had just been
invented by measuring their conversion rates and how much useful energy
they produced. It was his very own simple optimization problem.

He found that burning a pound of coal in a steam engine produced five
times as much work (then known as duty) as a pound of zinc consumed in
an early electric battery. His brewery was better off with the steam engines.



Food is another energy-dense substance, typically measured in calories.
A calorie is the amount of heat energy produced when food is burned to
ashes under carefully controlled laboratory conditions. It is not something
that is “in” food per se. Another way to define a calorie is the amount of
energy (heat) required to raise the temperature of one gram of water 1
degree Celsius (1.8 degrees Fahrenheit). The exact amount of energy
required to do so is 4.18 joules. Unlike nutritionists, physicists almost never
refer to energy in terms of calories. They prefer joules or watts—the
derivative of joules, since watts measure the rate of energy (watts=joules
per second). The “calories” in food are actually kilocalories: 1,000 calories
equal 1 kilocalorie. So if I run four miles, I might burn 400 food calories
(kilocalories); it sounds much more impressive when transposed into
400,000 regular calories. And that Power Bar I consume post-workout
contains 270 food calories, or 27,000 regular calories—over one million
joules, the unit of energy named after James Joule.

Let’s see how this all applies to our intrepid Wheelman, Steve Gilmore.
His body is burning food (and stored fat, assuming he has any left) for
energy. But all that energy is not being harnessed for any useful purpose,
other than keeping him slim and incredibly fit. He also loses a fair amount
of energy as heat, radiating away a good 100 watts (8.5 million joules)
every day when he’s not riding up and down Fargo Street, and far more than
that on a strenuous bike ride. His system is increasing in entropy as he is
burning fuel (his breakfast). Entropy is a way to determine how much
energy can be harnessed to produce useful “work.” The lower the entropy,
the more orderly things are, and the more useful work can be harvested as
entropy increases over time. (It is a hard-and-fast law of thermodynamics
that entropy always increases in a closed system.)

How much work can we get out of the system by letting entropy
increase? We can determine this by taking an integral of temperature as the
entropy increases over time. Gilmore’s body gains potential energy as he
chugs up the hill because he increases his distance from the earth’s center of
gravity, but he loses potential energy as he descends, while his kinetic
energy increases. (Entropy also increases as he radiates away more heat
with his exertions.) The two cancel each other out, and the amount of work
produced is zero—unless the Wheelmen could find some way to harness the
kinetic energy. For instance, Gilmore could carry a small package to the top



of the hill and then work would have been done: The package has more
energy as a result of his exertions. It has gained potential energy with the
increase in altitude, which can be converted into kinetic energy should
Gilmore then decide to toss it down the hill.

SPIN CYCLE

In the late 1980s, Henry Works founder Mike Taggett built his first
retrofitted exercise bike with a car generator. He described it as a
“Gilligan’s Island human-powered blender” and used it to mix margaritas
without an electrical outlet. Twenty years later, the same concept underlies
his new retrofitted machine that makes use of both the arms and legs to
maximize calories burned and watts created. It looks like your typical
stationary bike, except there is a hand crank in place of the handlebars that
one can spin while pedaling. All that effort turns the eighteen-inch
flywheel, which in turn is connected to a generator.

Boesel started with three of Taggett’s retrofitted spin bikes for his Green
Microgym, and then collaborated with Henry Works to build a system of
four linked Team Dynamo stationary bikes outfitted with a small motor
connected to a bank of batteries. As users pedal, the motor charges the
batteries, which then power the TV and stereo system. A single exerciser
might only generate 50 to 100 watts of electricity—100 watts would power
a small TV—but all four bikes working together can generate about four
times that much, depending on how hard each person is working.

But are Green Microgyms practical? Just how much energy do all those
überfit exercisers produce? Certainly Boesel’s gym members are expending
a great deal of effort during their workouts, but when it comes to harnessing
that effort for a practical purpose, we must contend with the grim realities
of thermodynamics. Boesel found that, as energy passes through the battery,
some gets lost in the conversion process (entropy). So in practice, the
battery pack option was less efficient in generating useful energy than a
machine retrofitted with a grid-tie inverter, which sends the generated
energy directly back into the power grid.



Taggett’s company obliged with its FireWheel InterGrid (FIG) system.
Boesel plugs the machine into a wall socket as if it were a common
household appliance. The inverter is a clever device commonly used in
conjunction with solar panels, enabling those who install the panels to
literally spin the meter backward and sell extra power back to their local
power company. In this case, the system harvests some of the ambient heat
normally emitted by exercise machines (due to friction) while in operation.
The battery-based Human Dynamo system uses less than 50 percent of the
current coming out of the machine, while the new updated version delivers
back to the grid about 70 percent of the total watts produced.

Boesel is a personal trainer by profession, and his outlook is distinctly
scientific. He admits he was overly optimistic at first about how efficient
his gym would be, figuring he could go off the grid completely and generate
100 percent of his energy needs. But after doing the actual experiment for
nearly a year, the data told him differently, so like any good scientist, he
revised his hypothesis and is seeking to refine it further. The sticking point
lies in the inevitable losses that occur whenever energy changes from one
form to another. Stupid entropy ruins everything.

Take a standard rowing machine. If I row furiously for ten minutes, I
would burn about 100 calories. This is sufficient to run a 100-watt bulb for
one hour—at least on paper. Remember that some energy is always lost in
the conversion; in the case of gym rats, we lose energy by sweating off
excess body heat, not to mention the enormous amount of energy required
for basic bodily functions. We breathe more heavily when we exercise, and
our blood circulates at a higher rate, on top of the energy required just to
keep our muscles moving. So not all of the energy we generate is converted
directly into useful mechanical movement. In reality, we would be fortunate
to harness 50 percent of that estimated output.

The upshot is that one person on one machine simply won’t make much
of a difference. Taggett estimates that one person produces about a penny’s
worth of electricity in an hour. But if a gym has forty retrofitted machines,
all in use during the two-hour evening peak period, those exercisers would
generate approximately 25 kilowatt hours of electrical energy during those
two hours—equivalent to running several households for a day. This is
another optimistic assessment, assuming all the exercisers are actually
exerting themselves, rather than strolling on the treadmill in designer gym



togs, chatting on their cell phones and not breaking a sweat. Those people
bring down the overall energy output.

To maximize his savings, Boesel has combined his retrofitted machines
with other energy-saving strategies. The gym has SportsArt EcoPower
treadmills that run on one third less energy than traditional motors, and
when machines are not in use, Boesel switches them off. The average
treadmill takes between 1,500 and 2,000 watts to operate, the equivalent of
nine Lance Armstrongs chugging at full power. Boesel also added solar
panels to the building’s exterior, and is careful not to run the A/C
continuously. He has managed to keep his electricity costs to a bare
minimum—about 9 kilowatt hours per month—and believes that in time, he
can break even on those costs, generating 100 percent of the gym’s
electricity needs. At present, he figures he saves between $75 and $150 per
month in electricity costs.

While Boesel estimates he can produce 75 to 80 watts consistently during
his usual hour-long cardio workout, I have significantly less mass, and
therefore my output is closer to 45 to 50 watts (produced continuously
during the same time period), although I am not consistent: sometimes the
gauge dips into the 30-watt range when I slack off the pace a bit. Seeing just
how little usable energy I produce on Boesel’s retrofitted elliptical is a
sobering eye-opener.

Math and calculus also play a significant role in maintaining a healthy
weight. The combination of how much food we eat and how much we
exercise largely determines our weight, and in times of plenty, it is all too
easy to consume more food than we need. Not surprisingly, human beings
throughout history have devised all manner of bizarre strategies for
combating their expanding girths.

BATTLE OF THE BULGE

It might be said that William the Conqueror had an overdeveloped sense of
entitlement. He was the only son of Robert, Duke of Normandy, but his
parents never married. His illegitimacy didn’t keep him from inheriting the
duchy of Normandy when his father died in 1035, on the way back from the



Crusades. But he aspired to be king of England as well, having been
promised the throne by King Edward the Confessor, who had no direct
heirs. On his deathbed, however, Edward had a change of heart: He named
Harold, son of the Duke of Essex, as his successor. Incensed, William
invaded England in September 1066 and defeated the newly crowned King
Harold at the Battle of Hastings. William became king of England.

William may have conquered England, but he lost the battle of the bulge.
In fact, he became so fat in the years after his victory at the Battle of
Hastings that King Philip of France (no doubt disgustingly svelte) cruelly
described him as “looking pregnant.” William was purportedly hurt, but
there was truth to the statement: By that time, he could barely stay on his
trusty steed. He took to staying in his rooms, subsisting on nothing but
alcohol for days at a time,44 but his self-designed weight loss technique
failed him in the end. When William died of abdominal injuries in 1087,
after falling off his horse at the Siege of Mantes, he was so fat that he barely
fit into his fancy stone sarcophagus. In fact, all the pushing and shoving to
get the warrior’s body—horribly bloated from the heat of the day—into the
coffin caused it to burst, filling the church with the stench of decay.

William the Conqueror is in good company. Excess flab (not to mention
bloating) is hardly a new problem for the human race. Some modern
archaeologists believe the ancient Egyptian queen Hatshepsut was quite
heavy and may have been diabetic. Baseball legend Babe Ruth was
notorious for his twelve-hot-dog lunches and missed much of the 1925
baseball season with what sportswriters dubbed “the bellyache heard round
the world.”45 And U.S. President William Howard Taft infamously gained
so much weight while in office that he got stuck in the White House
bathtub.

In the latter days of the Roman Empire, people attending sumptuous
feasts would gorge themselves on delicacies, and then repair to the
vomitorium to purge their bodies of all that excessive indulgence—back
when bulimia was cool. Bingeing and purging lost its cachet as the
centuries passed, and people turned to complicated fad diets to control their
girth. The English Romantic poet Lord Byron struggled mightily with his
weight, despite his reputation as a ladies’ man (clubfoot and all). He



routinely went on extreme “slimming” regimens like vinegar diets to keep
his weight under control.

Around the same time, a Presbyterian minister named Sylvester Graham
—one of America’s earliest vegetarians—introduced the “cracker” diet,
eschewing meat, rich spices, coffee, tea, tobacco, and alcohol in favor of
whole-grain breads and crackers. In the early twentieth century, a San
Francisco art dealer named Horace Fletcher—“the chew-chew man” or “the
great masticator”—advocated controlling food consumption by chewing
one’s food at least thirty-two times (once for each tooth) until it was liquid,
then spitting out any nonliquid residue. He lost over fifty pounds with this
method, and felt one could absorb the nutrients without consuming all the
calories from food.

Fad diets inevitably spawned a plethora of bestselling diet books. As
early as 1727, a man named Thomas Short published The Causes and
Effects of Corpulence, in which he advised the obese to move to arid
climates, having observed (somewhat unscientifically) that heavier people
tended to live near swamps. In 1864, a portly English casket maker named
William Banting published his Letter on Corpulence, detailing how he lost
fifty pounds by subsisting on lean meats, dry toast, fruit, and vegetables. It
sold 58,000 copies, and the practice of dieting was known as banting for
decades afterward. In 1919, Dr. Lulu Hunt Peters published another
bestselling diet book, Diet and Health, which introduced mass audiences to
the concept of counting calories to control weight. The book sold more than
2 million copies, advocating a strict 1,200-calorie regimen.

Do you think the Aktins and South Beach diets were innovative? Think
again. Back in the 1920s, William H. Hay, for example, believed proteins,
starches, and fruits should be eaten separately to avoid “acidosis,” claiming
it “drained vitality and led to fat.” He also recommended a daily enema to
“flush out the poisons”—an approach that can still be seen today in the
practice of colonics. Vilhjalmur Stefansson’s The Fat of the Land praised
the traditional Inuit diet of caribou, raw fish, and whale blubber, with
almost no fruit, vegetables, or carbohydrates. In Look Younger, Live Longer,
Gayelord Hauser drew the admiration of Hollywood actresses Greta Garbo
and Paulette Goddard with his emphasis on vitamin B-rich foods like
brewer’s yeast, yogurt, wheat germ, and blackstrap molasses. He was also
one of the first to develop his own line of special foods and supplements in



accordance with that diet plan. Then there was the “magic pairs” diet,
extolling the supposedly increased fat-burning properties of certain food
combinations—lamb chops and pineapple, for example.

The twentieth century also brought the advent of diet pills and all manner
of strange gadgets that were claimed to help dieters melt off the poundage
while still eating whatever they liked. It all started when workers at a
munitions factory in World War I inexplicably lost weight, and doctors
concluded that a chemical known as dinitrophenol—used in the making of
dyes, pesticides, insecticides, and explosives—was responsible for raising
their metabolisms, so they burned more calories. By 1935, over a hundred
thousand Americans had used diet pills made with dinitrophenol.
Unfortunately, the side effects were nasty: There were several cases of
blindness and a handful of deaths, and dinitrophenol was taken off the
market.

My personal favorite weight-loss mechanical device is the belt-driven fat
massager that wrapped around one’s torso and supposedly helped jiggle fat
away. It was one of many Nautilus-like machines introduced beginning in
1857 by a Swedish physician named Gustav Zander. Zander Rooms were
all the rage at elite spas in the second half of the nineteenth century. Today
there are Vision-Dieter Glasses, designed to make food look less appealing,
and Mini-Forks to encourage diners to take smaller bites, not to mention the
Diet Dam—basically a muzzle to discourage you (and those around you)
from eating by making you look like Hannibal Lecter. The invention of
liposuction offered a shortcut to trimming unwanted stores of fat from hips,
stomach, and thighs, and in the 1950s, rumors abounded that wealthy
dieters were ingesting pills containing tapeworms to help them lose weight.
After dropping sixty-five pounds, opera singer Maria Callas was among
those rumored to have tried the tapeworm diet, perhaps because she had a
known fondness for raw steak and raw liver.

The latest technology offering new hope for expanding waistlines and
flabby thighs is the free-electron laser (FEL) at Thomas Jefferson National
Accelerator Facility in Virginia, affectionately known as J-Lab. FELs are
useful for any number of practical applications, but back in 2006, a team of
J-Lab scientists demonstrated that the laser could burn away fat in the body
without scorching the top layer of protective skin. This is a very exciting
development, possibly leading to revolutionary new laser therapies to treat



such chronic bugbears as severe acne, artery plaque, and of course, cellulite.
It offers the tantalizing possibility of a whole new way to get thinner thighs
in thirty days, with no need for even a lick of exercise.

The researchers tested the concept first on actual human fat (obtained
from “surgically discarded normal tissue”) and then on skin-and-fat tissue
samples taken from a pig. Just where did they get the pig fat for the
experiment? I’m so glad you asked. Ordinarily, laboratories order their
supplies from specialty outlets that cater to the tightly controlled
specifications of the lab in question. In this case, for some reason, the
shipping company refused to transport the pig fat the J-Lab scientists had
originally ordered.

Nobody wanted to cancel the experiment, so they paid a visit to a local
pig farmer. They purchased a single pig, and asked the farmer not to wash it
down with vinegar—the usual custom—because vinegar would react badly
with the laser. The farmer shrugged, did as he was told, and the pig met its
fate. The scientists picked out a few prime pieces of pig fat and gave the
rest of the pig back to the farmer. Not only did the farmer get a lot of free
pork that day, he no doubt still regales his friends with the tale of those
crazy scientists who paid full pig price for a few pieces of lard.

That pig died so that we might one day zap away our deposits of
unsightly cellulite. But before you throw caution to the winds and order a
second helping of panang curry, or an extra-large blueberry muffin with that
grande mochaccino, let me emphasize that the J-Lab experiment was
merely proof of concept. We are nowhere near the point where we can
indulge our food cravings and burn the resulting fat away whenever we like.
Operating an FEL is expensive, as is the capital expenditure required to
build one. Nor is scheduling beam time at the facility as easy as scheduling
an appointment with your local liposuctionist. Commercial development of
any new technology takes a great deal of time and money before it can be
successfully brought to market.

We are still looking for that magic bullet for effortless weight loss. It
would be wonderful to lose weight with no muss or fuss; no need to
obsessively write down in a food diary the caloric content of every morsel
of food that passes one’s lips; no need for specially prepared meals or
supplements, elaborately orchestrated food combinations, or those telltale
minute surgical scars from conventional liposuction. But there is simply no



substitute for the old-fashioned method of combining a sensible diet with
regular exercise to burn more calories than you consume. I guess you could
call this the Thermodynamics Diet, and it has a distinct advantage over
competing fad diets: It has withstood the test of time.

BURN, BABY, BURN

Lulu Hunt Peters at least had a sound scientific basis for her weight-loss
approach. At the time she wrote her bestselling diet book, it had been only
twenty years since chemists Wilbur Atwater and Russell Chittenden came
up with the notion of measuring food as units of heat that could be
produced by burning it: calories. For instance, the calories contained in five
pounds of spaghetti would yield enough energy to brew a pot of coffee,
while those in a single slice of cherry cheesecake would operate a light bulb
for an hour and a half. If one wished to drive eighty-eight miles to visit
friends or family, one would need to burn the calories contained in 217 Big
Macs. (Think about that when you’re planning your next road trip, and take
a moment to appreciate the energy efficiency of burning fossil fuels.) If
someone consumes 2,000 calories a day, that will yield just enough energy
to power a 100-watt bulb for twenty-two hours—assuming 100 percent
efficient conversion, which simply isn’t possible, as Carnot discovered back
in the nineteenth century.

Our bodies evolved into incredibly efficient heat engines, optimized for
survival, and we require far fewer calories to function than we realize. The
standard method for determining how many calories we need to consume
each day is called the Harris-Benedict equation, first developed in 1919. It
relies on estimating a person’s basal metabolic rate, taking into account age,
gender, height, and weight, and the resulting number is then multiplied by
another number designating that person’s level of activity. This would range
from 1.2 for those who never exercise, to 1.9 for, say, professional athletes
who exercise strenuously as much as twice a day. A 120-pound woman
should consume 1,300 to 1,800 calories a day, depending on age, height,
and how active she is. The average 170-pound man should consume
between 1,870 and 2,550 calories a day, with the same caveats.



The Harris-Benedict equation is not a perfect method, failing to account
for the fact that those with excess muscle mass will burn slightly more
calories than the equation suggests, while the opposite would be true for
those with excess body fat. Still, the Harris-Benedict equation can be a
useful tool for weight loss. All you need to do is reduce your daily caloric
intake to a number below what the equation calls for—overestimating if
you are muscular and underestimating if you have excess flab. Just
remember that as you lose weight, you will need fewer calories to sustain
your body at that lower weight (assuming all the other factors in the Harris-
Benedict equation remain the same).

Even the most chronic yo-yo dieter can recite the mantra. If you don’t
take in sufficient calories to give your body the energy it needs, it will begin
converting fat cells into fuel—and you will lose weight. The converse is
also true: If you consume more calories than your body needs, it will store
that excess energy as fat. Stored fat is another fuel source for the body,46
just like the food you consume. There are 3,500 calories in a pound of body
fat, so it is possible to reduce one’s daily caloric intake by 250 calories,
burn off an extra 250 calories with daily exercise, and thus lose a pound per
week.

So why is obesity so prevalent in our society? There are myriad
rationales being bandied about, but from a thermodynamics standpoint, it is
very simple: We are heavier than people in many other societies because we
routinely consume more calories than we need for our bodies to function.
This is difficult for many people to accept; they will claim they really don’t
eat all that much and insist they must have a slow metabolism. Individual
metabolic rates do indeed vary widely—and the Harris-Benedict equation
takes this variation into account—as do body types, and no doubt genetics
plays a role as well in determining one’s natural, healthy weight.

Those arguments don’t change the fundamental principle: People with
lower metabolic rates need fewer calories. When they consume more
calories than their bodies require—even if they eat less than “naturally”
slim colleagues—they gain weight. It hardly seems fair. But who said
physics was fair? Frankly, in times of famine, a low metabolism confers a
distinct evolutionary advantage because it can do more with a small amount



of fuel. It’s when food is plentiful that this superefficiency becomes a
disadvantage.47

Psychologically, we easily can trick ourselves into thinking we eat less
than we really do. Studies have shown that the vast majority of us routinely
underestimate how many calories we consume. (It doesn’t take much to hit
2,000 calories, particularly if one is partial to fast food.) Brian Wansink is a
professor at Cornell University who specializes in the study of consumer
behavior and nutritional science, specifically how our environment
influences our eating habits. In 2007, he and his colleague, Pierre Chandon,
published the results of a study in the Journal of Consumer Research,
demonstrating that people have become so conditioned to think that the
Subway franchise’s food is healthier than McDonald’s that they
underestimate how many calories they consume in a typical meal by as
much as 21 percent. Famed Subway spokesman Jared may have lost a ton
of weight by eating the chain’s sandwiches, but he chose the healthier
options. A Subway twelve-inch Italian BMT sandwich has one third more
calories than a McDonald’s Big Mac. Wansink and Chandon also found that
people tended to choose high-calorie side orders with their Subway
sandwiches.

For one of his earliest research studies, Wansink focused on automatic
eating patterns. People would come to the lab and eat a meal while being
videotaped, then answer questions about what and how much they ate. He
found that people were often unaware of second or even third helpings they
consumed and denied doing so—until they were shown the videotape.
Other interesting findings: People will eat 16 to 23 percent more total
calories if a product is stamped with a LOW-FAT label, and switching from
a twelve-inch to a ten-inch dinner plate will cause people to eat 22 percent
less. All this inspired Wansink to develop his own dietary secret: “The best
diet is the one you don’t know you’re on.” In other words, small changes to
the home environment and unconscious patterns can lead to big changes in
your waistline.

The calories we consume are only part of the equation. At the same time,
we routinely overestimate how many calories we burn when we exercise.
The caloric numbers reported by the displays on exercise equipment feed
into this misconception, because they are not always accurate, partly



because they are often incorrectly calibrated and partly because when it
comes to human metabolism, one size does not fit all. New York Times
reporter Gina Kolata, author of Rethinking Thin, reported that while a given
activity might burn an average of 100 calories per hour, for example, the
range for different people could be as low as 70 or as high as 130.

Bad habits can also affect the total of calories burned. Are you one of
those people who hang on to the bars while on the treadmill? You burn 40
to 50 percent fewer calories for that same activity. Do you do the same
exercise routine for months at a time? As your body grows accustomed to
that effort, it will need fewer calories to perform that routine. And most of
the calculations used to determine the number of calories burned for various
activities fail to subtract the number of calories the exerciser would be
using even if they were simply sitting at home reading or watching TV.

“For moderate exercise, the type most people do, subtracting the resting
metabolic rate can eliminate as much as 30 percent of the calories you think
you used,” Kolata writes. Even those supposedly adept at math can fall
victim to self-delusion in this area. Kolata tells the story of meeting a
mathematician at a conference who figured he could indulge in a slice of
pie because he’d just run a quarter of a mile. “At 100 calories a mile, he
might have burned 25 calories. . . . A piece of pie could easily contain 400
calories.”

Personally, I adhere to the Thermodynamics Diet. The primary objective
is to optimize two variables, diet and exercise, to ensure either that your
weight remains constant (for maintenance) or that you steadily burn more
calories than you consume so as to lose weight gradually. You don’t need
calculus for that, just basic arithmetic. But if it really were that simple,
everyone would be slim.

First, there are economic factors at play with regard to diet: The harsh
reality is that healthier foods actually cost more than junk food, so not
everyone can afford a quality, well-balanced diet. Besides, some people
really like pizza or French fries or a hot fudge sundae for dessert and would
feel seriously deprived on a diet of lean protein, organic leafy greens, and
whole grains. Surely quality of life must be factored into the equation as
well. How do we find a balance?

Now calculus can be of service. In this case, we wish to maximize our
“tastiness”: the pleasure we derive from our food intake, given a fixed



number of calories we can consume per day and a fixed amount of money
we can spend on groceries. To solve the conundrum, we can plot tastiness
(designated by the variable y for “yummy”) as a function of diet, designated
by f, for all the various foods we love that, taken together, comprise our
diet. Given a diet restricted to 2,000 calories a day and a food budget of $40
per day, what small changes can we make among our current food items to
maximize tastiness ( y) while staying within the boundaries imposed by
those two constants?

For instance, we might love Snickers bars more than brown rice and
carrot sticks, but if all we ate were Snickers bars, we would quickly exceed
our caloric limit, and probably develop a vitamin deficiency in the bargain.
Similarly, we might love the fresh organic mixed-greens salad with free-
range chicken and a light vinaigrette available at our local health-food joint,
but if that were all we ate, we would quickly exceed our food budget. So if
we know what we’re eating each day now, what small change can we make
in our diet to optimize how much we enjoy mealtimes?

This is a job for the derivative, with a twist. It is similar to the
multivariable optimization problem we employed while house hunting,
except in that case we had two variables constrained by cost; here our
variables are constrained by cost and total number of calories. This makes it
difficult to plot on a traditional Cartesian grid; there are simply too many
dimensions to easily visualize. But we can think of it in terms of vectors, or
directions of motion. There are any number of ways we can change what
we eat, but some changes are not allowed because they exceed the stated
limits to calories or cost; in other words, that particular vector is invalid.
Other changes are allowed because they keep those two values fixed.

Normally we would take a derivative with respect to all possible values
of f, but in this case we would take the derivative only with respect to those
values for f that are allowed—namely, those that can be changed without
exceeding our boundary conditions of total calories and cost.

What about the integral? It plays a role in the Thermodynamics Diet too,
specifically with regard to how many calories we burn. It all comes down to
the burn rate. We can take an integral of our rate of burning calories with
respect to time and get the total number of calories burned—the calorie
meter on an exercise machine at the gym is secretly doing this calculation.
But as we’ve seen, that burn rate is affected by numerous variables:



metabolism, level of exertion, muscle mass, and so forth, all of which
complicate the equation. So most machines are incorrectly calibrated. The
best those machines can manage is a ballpark figure.

THIS MORTAL CURVE

Not only is it possible to use math and calculus to optimize our diet and
exercise regimen and maintain a healthy weight; we can also use it to
determine the probability that we will die in any given year, thanks to the
work of an obscure British actuary named Benjamin Gompertz. Gompertz
hailed from a family of wealthy merchants who emigrated to England from
Holland. Because he was Jewish, he was denied admission to university and
thus was largely self-educated. He acquired his mathematical knowledge by
reading Newton’s works, among others, thereby becoming proficient at
calculus.

One day, when he was just eighteen, Gompertz stopped in at a
secondhand bookstore, and struck up a friendship with the bookseller, John
Griffiths, who was a mathematician. Initially Gompertz wished to be
tutored, but Griffiths quickly realized the young man’s knowledge already
outstripped his own. Instead, he introduced him to the Spitalfields
Mathematical Society (later to become the London Mathematical Society),
of which he was then president. Gompertz joined the Society, despite the
fact that the minimum age was technically twenty-one, and found himself
with more than enough math tutors at his disposal, enabling him to advance
rapidly in his knowledge. (The society had a rule whereby, if a member
asked another for help or information, the second member was required to
provide that assistance or else be fined a penny.)

He married the daughter of another wealthy Jewish family with strong
ties to the stock exchange, and that connection enabled him to join the
exchange himself. He eventually became an actuary and head clerk for his
brother-in-law’s nascent insurance company, where his mathematical skills
proved very useful. Apparently he had a great capacity for “sustained
complex computation” in compiling detailed actuarial tables. In particular,
Gompertz found he could apply the principles of calculus to human



mortality to determine the cost of life insurance. “It is possible that death
may be the consequence of two generally co-existing causes,” he wrote
around 1825. “The one, chance, without previous disposition to death or
deterioration; the other, a deterioration, or an increased inability to
withstand destruction.”

In other words, assuming one doesn’t meet with a fatal accident, such as
being hit by a bus, it is possible to use calculus to model the probability of
the likelihood that one would die in any given year—a probability that
increases with age. Gompertz tested his hypothesis by comparing the
proportion of people in different age groups in four cities in England and
found that mortality increases exponentially as we age. Thus was born the
Gompertz law of human mortality, which holds that whatever the odds that
you will die in the next year—1 in 1,000, or 1 in 10,000—those odds will
be twice as large eight years from now. In other words, the probability of
dying increases exponentially with time.

The Gompertz mortality curve is another sigmoid function, wherein
growth is slowest at the beginning and end of a given time period, much
like epidemiological models; in fact, Gompertz based his model on the
demographic model of Malthus. The slope of the tangent line at any given
point (age) along that curve gives us the rate of actuarial aging in the form
of a derivative. To get the probability of living to a certain age, all we have



to do is integrate the mortality rate over time. The result is that sigmoid
curve: the “Gompertz function.”

That’s right: The body has a built-in expiration date. For example, a
twenty-seven-year-old American has a 1 in 3,000 probability of dying
during the next year, but by the time the person is 35 that probability has
increased to 1 in 1,500; by age 43, it has narrowed to about 1 in 750, and so
on, so that, if one reaches 100, there is only a 50 percent chance one will
live to see 101. The probability that you will die during any given year
doubles every eight years. It still holds true today, despite all the advances
in nutrition, medicine, and quality of life, and it holds across countries,
centuries, even across species, once the different rates of aging are factored
into the equation. Scientists don’t understand why this should be true, but it
is—for the most part. There are certain age-independent factors at work as
well, but in a low-mortality country, like Japan or the United States, this
component is usually negligible. Gompertz himself died at the ripe old age
of 86. He was working on a paper for publication in the journal of the
newly formed London Mathematical Society when he suffered a paralytic
seizure.

Working out and eating right to ensure better health is a noble endeavor,
but sooner or later the Gompertz law of mortality kicks in. We’re all going
to die one day. So it is quality of life that counts, and our overall degree of
happiness; being healthy increases our quality of life. Perhaps that is the
real benefit of the Green Microgym concept: It might not save the planet,
one workout session at a time, but it saves the gym a bit of cash and makes
people feel good about their efforts, in addition to keeping them fit.
“There’s a certain satisfaction when you work out and feel like you’ve
actually accomplished something, instead of just spinning your wheels,”
Taggett has said.

Just in case good vibes aren’t enough, Boesel offers gym members
special bonus points: For every hour of electricity a member produces, she
or he will earn coupon points redeemable at local businesses. Most
important, as I found during my own brief session on Boesel’s retrofitted
machine, the Green Microgym raises awareness of just how much energy
we consume without thinking—and what it costs to generate that energy in
the first place.
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The Catenary Tales

As hangs the flexible chain, so but inverted stands
the rigid arch.

—ROBERT HOOKE

 
 
 
It is a bitterly cold February afternoon in St. Louis, the kind of day that
finds most people opting to curl up by a roaring fire with a good book and a
nice cup of tea. But I am only in town for a few short days while attending a
conference and thus join a handful of other hardy souls visiting the famed
Gateway Arch. It is a landmark structure that opened in October 1965 to
commemorate Thomas Jefferson’s Louisiana Purchase and now dominates
the St. Louis skyline. Five of us cram into the little egg-shaped tram and
ride to the peak of the arch, where we can gaze out over the frozen expanse
of this Gateway to the West, named in honor of the early pioneers who
migrated west through St. Louis on the first leg of the Oregon Trail.

The spectacular view is marred somewhat by our cramped conditions—
the tram is a bit like a five-person ovoid coffin—and the disconcerting
sensation of swaying whenever the wind picks up. The arch is designed to
sway up to eighteen inches in the wind; it is closed to the public when the
winds are particularly strong. For those unfamiliar with the principles of
structural engineering, it may seem as if the arch were about to collapse.
One woman in particular seems convinced of her imminent demise: Eyes
shut tight, arms hugged tightly to her chest, she refuses her companion’s
entreaty to take just one look before the tram returns to the ground. A bead
of sweat is visible on her upper lip as yet another gust of wind hits the arch.



The poor woman need not have worried. Appearances can be deceiving.
A well-constructed arch is actually quite stable. Leonardo da Vinci once
observed, “An arch consists of two weaknesses which, leaning one against
the other, make a strength.” The secret of how the arch stays up lies in its
shape. There is a very specific geometric term for it: It’s essentially an
inverted model of a flexible chain or rope suspended from two points. The
noninverted curving shape is known as a catenary, derived from catena, the
Latin word for “chain.” Leonardo’s codependent “leaning weaknesses”
describe a delicate balance of opposing forces that gives rise to a surprising
degree of structural stability.

Nature has its preferred shapes. Any chain suspended between two points
will come to rest in a state of pure tension, much as surface tension causes a
bubble to form a sphere. In a chain, tension is the only force between
consecutive links, and that force inevitably acts parallel to the chain at
every point along the curve—never at right angles to it (otherwise the chain
would move). Inverting the catenary into an arch reverses it into a shape of
pure compression. Masonry and concrete— standard building materials—
break relatively easily under tension, but can withstand huge compressive
forces. So the inverted catenary shape can be used to form structures like
domes or arches that span a considerable horizontal distance.

Finnish architect Eero Saarinen didn’t copy the classic inverted catenary
shape perfectly when he designed this St. Louis landmark; he elongated it,
thinning it out a bit toward the top to produce what one encyclopedia entry
describes as “a subtle soaring effect.48 But Saarinen’s catenary variation is
more than an aesthetic choice. He designed it in consultation with an
architectural engineer named Hannskarl Bandel, who knew that the slight
elongation would transfer more of the structure’s weight downward, rather
than outward at the base, giving the arch extra stability. He had good reason
for doing so. An inverted catenary shape is extremely stable horizontally,
but it is less so in the vertical direction—and the Gateway Arch rises a good
630 feet above its 630-foot base. A plaque near the site proudly declares
that the Gateway Arch’s distinctive shape is described by this mathematical
equation: y = 693.8597 - 68.72 cosh(0.010033x).

Any engineer can tell you that math is critical to building structures with
the right size, shape, and balance of forces, and that geometry plays an



important role in architecture. Yet equations for geometric figures weren’t
even available until Fermat and Descartes devised analytic geometry in the
seventeenth century, ensuring that millions of high school students would
be required to take up compass and straightedge and learn about interior
and exterior angle sum conjectures, along with the properties of trapezoids.
Today it is a relatively simple matter to calculate the volume of the famous
pyramid-shaped Luxor Hotel in Las Vegas, given the precise dimensions.
Wikipedia tells me that the base of the pyramid is a 556-foot square and that
the structure’s height is 350 feet. First we determine the area of the base by
multiplying the width (556 feet) by the length (556 feet). Then we multiply
that area by the height and divide that answer by 3 to get the total volume.
No calculus required.

But how does one select the best possible design—one intended to
optimize a particular feature, such as the optimal dimensions for a pyramid
one could build given a certain amount of material, or the strongest possible
shape for an arch—from a wide range of options? The tedious approach
would be to painstakingly calculate each and every possible option, which
would be incredibly time-consuming. With calculus, it’s possible to focus
not on the absolute quantities one is interested in, but to look instead at how
certain features are changing relative to each other—that is, to approach the



problem dynamically. We can do this by determining the maximum and
minimum values for the feature of interest to narrow the focus; the answer
will lie somewhere in between.

ARCH RIVALS

Today we build almost exclusively with steel and reinforced concrete, and
the design process is heavily reliant on mathematical modeling and
engineering principles. In ancient times, arch builders employed a method
of trial and error. Small stone arches were typically built around a curved
wooden form. The builder would then lay stones or bricks around that
wooden form, tracing the shape with pegs and string. Legend has it that
whenever an arch was constructed in ancient Rome, the architect who
designed it was forced to stand underneath as the wooden supports were
removed, as a means of quality control. It was a terrific motivational tool:
Design it right the first time, or the arch will fall and crush you. Builders of
Gothic cathedrals had to figure out how to turn stones into stable structures
held together only by the forces of compression, like a stack of children’s
building blocks, and they did it without the benefit of analytical geometry
or calculus. The oldest cathedrals have stood for a thousand years, so
medieval masons clearly knew a thing or two about arch stability.

One assumes this practical knowledge was passed down through
generations of builders. Yet the secret of the inverted catenary remained a
mathematical mystery until the seventeenth-century English scientist Robert
Hooke stumbled upon this solution to the question of an optimal shape for a
stable arch. Hooke is best known for his skill at building microscopes and
using them to examine the tiniest details of everyday objects, such as fleas.
His exquisite drawings of what he saw through his microscopes appeared in
his masterpiece, Micrographia. He also invented a reflecting telescope, the
sextant, the wind gauge, and the wheel barometer, and he had a lifelong
fascination with timepieces.

Despite these accomplishments, Hooke’s stature as a scientist was largely
overshadowed by that of his contemporary rival, Isaac Newton. Their
professional debates over the nature of light often became intensely



personal: Hooke may even have tried to block Newton’s election to the
Royal Society. Perhaps Hooke had cause to feel threatened: His more
practical contributions to science were overlooked in favor of Newton’s
mathematically oriented theories. Personal vanity may also have played a
role: Newton cut a distinguished, imposing figure, while Hooke was small
and hunched; even his friends described him in less than flattering terms.

Hooke’s pique at the lack of recognition by his peers might have been
partially justified. In 2006, the long-lost handwritten minutes from meetings
of the Royal Society between 1661 and 1682 were discovered wedged into
a dusty nook in an old house in Hampshire, England. The manuscript laid to
rest a long-standing controversy over whether Hooke or Christian Huygens
had first designed a highly accurate watch with tiny spring mechanisms that
eventually led to the first measurement of longitude. Hooke understood a
great deal about the physics of springs, having devised the eponymous
Hooke’s law:

Extension is proportional to force. So when Huygens claimed to have
invented a spring watch in 1675, Hooke flew into a rage, claiming someone
had leaked his earlier design to the Dutch scientist. The unearthed minutes
include pages from a meeting on June 23, 1670, with a description of
Hooke’s design for a spring watch—five years before Huygens’s
announcement—vindicating the homely scientist.

Interest in Hooke’s contributions to science has revived in recent years,
and these include a footnote in the history of calculus—specifically, the
catenary and its importance to architectural arches. Thanks to his early
apprenticeship to an artist, Hooke was a gifted draftsman, and his
architectural bent proved useful when the Great Fire of London destroyed
much of the city. It was in the process of rebuilding St. Paul’s Cathedral in
1671 that Hooke “rediscovered” the secret of the catenary.

Alas, Hooke was a bit too clever for his own good. He announced his
solution to the problem of the optimal shape of an arch to the Royal Society,
but he never published it. Instead, four years later, he published an
encrypted solution in the form of a Latin anagram in the appendix to his
treatise, Description of Helioscopes. It did not attract much notice. Finally,
in 1705, the executor of his estate published the anagram’s solution: “As
hangs the flexible chain, so inverted stands the rigid arch”—or, if you want



to be all Latinate about it: Ut pendet continuum flexile, sic stabit contiguum
rigidum inversum.

Had Hooke been less secretive about his discovery, he might have
received credit sooner for his solution to the problem of the catenary.
Instead, a German mathematician named Johann Bernoulli found the
solution independently and announced it in 1691. Johann was one of eight
gifted mathematicians and physicists in the legendary Bernoulli family.
They were a virtual dynasty during this period. The Calvinist family
originally hailed from Belgium but fled to Switzerland to escape Catholic
persecution. There the family patriarch, Nicolaus, made his fortune as a
spice merchant.

Nicolaus had intended that his son Johann take over the family business.
Alas, Johann failed miserably as an apprentice in training and opted to
study medicine at Basel University instead. In between his studies, he and
his older brother, Jakob, began collaborating on the study of this shiny new
mathematical tool called calculus and were among the first to apply it to
various problems. Eventually, Johann switched from medicine to math, and
thus began a series of nasty sibling rivalries that rippled through the
Bernoulli family tree for decades.

The brothers Bernoulli were highly competitive, fought constantly—their
letters to each other are filled with heated insults and strong language—and
always sought to outdo each other when it came to posing mathematical
challenges. (This practice of issuing challenges was all the rage back then
among mathematically minded sorts.) The fact that Jakob had trained his
younger brother made it difficult for him to accept Johann as an equal.
Johann, in turn, hated to be outdone; he was even jealous of his own son
Daniel, banning his offspring from the house when Daniel won a math
contest at the University of Paris that Johann had also entered. Nor was he
averse to a spot of plagiarism: He once stole one of Daniel’s papers,
changed the name and date, and claimed it was his own work.

That constant bickering might have been ruinous to harmonious familial
relations, but it seemed to fuel the Bernoulli brothers’ mathematical
creativity. It was Jakob who set forth the problem of the catenary:
determining the precise mathematical shape formed by a hanging chain.
Nearly fifty years before, Galileo theorized that it formed a parabola, but



this was disproved in 1669, leaving the matter open to debate.49 Johann
Bernoulli, Leibniz, and Huygens all responded with their solutions within
months, beating poor Hooke to publication. In modern calculus, it is
possible to find the solution of the optimal shape for a hanging chain via a
minimization problem, because the goal is to minimize tension. In contrast,
finding the strongest shape for an arch is a maximization problem, because
we wish to find the shape with the most compression forces.

There is yet another quirky feature of the catenary: It is related both to
exponential growth curves and to exponential decay curves, according to
Paul Calter, a retired math professor from Vermont and author of Squaring
the Circle: Geometry in Art and Architecture. We’ve already seen how both
curves apply to computing compound interest, for example, or to population
dynamics; the only difference is a minus sign in the relevant equation for
exponential decay. Calter points out that if you fit the two curves together,
you get a catenary. So in the classic catenary shape, the descending portion
of the curve behaves like exponential decay, while the rising portion of the
curve exhibits the characteristics of exponential growth. And this shape,
when inverted, forms a stable arch.

In 1696, Johann countered with a challenge to solve a particularly knotty
conundrum: the problem of the brachistochrone. The word derives from the
Greek words brachistos (“shortest”) and chronos (“time”). Johann cheated a
little, having already solved the problem himself, but the challenge was
deceptively simple on the surface. Assuming two fixed points, one higher
than the other, what shape would a curved path between those points have
to be for a rolling ball to reach the lower point the fastest? (In fine physics
tradition, this problem assumes constant gravity and ignores friction.)

You might be tempted to dredge up a bit of long-forgotten knowledge
from your high school geometry class and suggest that the shortest distance
between two points is a straight line—ergo, a straight line is the fastest
possible path. Resist that temptation. We are dealing with a curve in this
instance. Galileo proposed in 1638 that the curve would be the arc of a
circle; he, too, was mistaken. If we actually performed the experiment, it
would quickly become clear that the steeper the curve between the two
points, the faster the ball will gain speed.



Technically, this is a minimization problem: We are attempting to find the
least possible amount of time it takes for the ball to descend. Yet because
there is more than one quantity that is varying, the solution involves
considering each and every possible path between the two points—truly a
job for calculus. The solution is a cycloid, which is the curve created by a
point on the rim of a wheel along a straight line.

Turn that path upside down—as with the inverted catenary curve that
gives one the optimal shape for a stable arch—and you will get the path of
fastest descent. You can test this result by building two tracks: one shaped
like a cycloid, the other shaped like the arc of a circle, for comparison. Now
roll two balls down each track simultaneously. The one on the cycloid path
will reach the bottom first. Nor does it matter where one starts the ball
along this curved path; it will still arrive at the bottom in precisely the same
amount of time.

Five individuals solved the brachistochrone problem posed by Johann
Bernoulli correctly: Johann himself; his brother Jakob; Guillaume François
Antoine, Marquis de l’Hôpital; and the two founders of calculus, Leibniz
and Newton. Newton was working as Master of the Mint at the time and
received the challenge after a long day’s work. In general, Newton was
loath “to be dunned [pestered] and teased by foreigners about mathematical
things.” But the story goes that he was sufficiently intrigued by the problem
that he stayed up until four A.M. until he solved it. All in all, it took him



twelve hours. He submitted his solution anonymously to the Royal Society,
but Johann was not fooled, claiming, “I recognize the lion by his print.”

In the process of uncovering the solution to this puzzle, the calculus of
variations was born; Johann’s student, Leonhard Euler, refined his mentor’s
techniques in 1766 and coined the term. This is calculus with an infinite
number of variables. One would normally try to find the optimum value for
a single variable (x), but in the case of the brachistochrone problem, it is
necessary to integrate over all possible curves to find the optimal solution—
selecting one curve from an infinite number of possibilities.

BARCELONA’S BIZARCHITECT

Visitors to Barcelona invariably become enchanted with the city’s unique
architecture. In particular, one can see myriad catenary shapes in buildings
designed by the great Catalan architect Antoni Gaudi y Cornet. There has
never been an architect quite like Gaudi, who relied less on traditional
geometric shapes and more on complicated hyperboloids and paraboloids—
and of course, on the catenary. His designs also incorporate brightly colored
mosaic tiles and whimsical ornamental touches like the multicolored mosaic
dragon fountain at the main entrance of Parque Güell.50 At least one writer
has described the flamboyant Gaudi style as Gothic Psychedelia, or
bizarchitecture.

Descended from a family of coppersmiths, Gaudi enrolled at the Escola
Tecnica Superior d’Arquitectura in Barcelona after a two-year stint in the
military. His father sold the family property to pay for his son’s education,
and Gaudi further earned his keep by working for Barcelona builders.
Gaudi was not the most stellar student; he was too quirkily eccentric for
that. One project involved the design of an entry gate to a cemetery. Gaudi
embellished the basic blueprint by drawing a hearse and a smattering of
mourners to set the mood, but forgot to draw the actual gate he’d been
assigned to design. He received a failing grade. But two of his subsequent
drawings received the highest marks, and eventually he earned the official
title of architect. “Who knows if we have given this diploma to a nut or a



genius? Time will tell,” sighed Elies Rogent when he signed Gaudi’s
diploma in 1878.

Even today, Gaudi’s work is not universally admired, and in his early
career, his designs were so bizarrely original that more often than not, he
was ridiculed rather than praised. (George Orwell purportedly loathed
Gaudi’s style when he lived in Barcelona during the Spanish Civil War.) A
select few recognized the signs of genius. He soon found a patron in
wealthy industrialist Eusebi Güell and began building his reputation as a
rising young architect. The Gaudi of this period cut a striking figure, with
his blond hair, blue eyes, and ruddy complexion—unusual for someone of
Mediterranean descent. He augmented this with the most fashionable of
clothes and a carefully groomed beard. In short, he was a bit of a dandy,
although later in life he renounced such frivolities.

Gaudi also had a nasty temper and could be incredibly stubborn when it
came to his craft. Take his design for Casa Batlló, which included every last
detail, right down to the furniture. It was a truly innovative renovation,
showcasing the architect’s signature style, with balconies that appear to
move and a large cross crowning an “undulating roof.” Unfortunately, the
owner of the house (Josep Batlló) had this silly notion that his furniture and
aesthetic tastes should be taken into consideration, as he would be the actual
occupant.

Their epic battle inspired a local poet and wag named Josep Carner to
compose a rhyme describing a fictional “Mrs. Comes,” who has been given
a grand piano for her newly decorated home. Not only is its sheer size
problematic, it has “no style” and disrupts the harmony of the space. Mrs.
Comes asks the great Gaudi for a solution. He advises her to play the violin.
Satire it may be, but the tall tale captures the essence of Gaudi: He expected
others to adapt to his artistic vision, not the other way around.

It was while designing the Church of Colonia Güell on the outskirts of
Barcelona that Gaudi developed his unique method for determining the best
curvature for his many arches and ribs in the church’s crypt, taking his
inspiration from gravity. He devised a “hanging model” approach to
calculate the loads on the arches. It was an elaborate system of
interconnected threads, representing the columns, arches, walls, and vaults
of any given design, from which he suspended sachets filled with lead shot
to mimic the weight of various building components. Not surprisingly, the



end result was often a catenary. Catenary shells are still used in structural
engineering today.

Gaudi’s method wasn’t sufficient to help him design the more complex,
double-curvature vaults used in the nave of his unfinished masterpiece, La
Sagrada Familia, a massive cathedral still under construction 125 years
later. (In fairness, 180 years passed before the famed Notre Dame cathedral
in Paris was completed.) It took Gaudi 10 years to complete his design,
reworking his blueprints over and over until he was satisfied with the result.
His plans called for eighteen towers (twelve for the apostles, four for the
evangelists, one for Mary, and one for Jesus.) Each tower features intricate
geometric designs and small ornamental sculptures, and the buttresses
inside the nave look for all the world like tree trunks.

All told, Gaudi worked on the cathedral for forty-three years, twelve of
them devoted exclusively to the project. For the last years of his life, he
actually lived in the structure’s crypt. Poor Gaudi met with an ignominious
end: He was run over by a tram on June 7, 1926, while walking to the
construction site, and he was so raggedly dressed that nobody recognized
the famous architect. (Several taxi drivers refused to drive such a vagabond
to the hospital, and were later fined by municipal police for their refusal to
assist the injured man.) He wound up at a pauper’s hospital, and although
his friends tracked him down a day later and tried to move him to a better
facility, Gaudi refused, declaring, “I belong here among the poor.” He died
three days later and was buried within the Sagrada Familia.

No doubt Gaudi would be gratified to learn that his masterpiece is
nearing completion. Jordi Bonet, director of La Sagrada Familia since 1985,
has said the interior will be completed in 2010, with plans to mark the
occasion with the celebration of Mass in the main nave. After that, only one
last tower must be built: the 550-foot-tall Tower of Jesus, slated for
completion in 2026.51 At least part of the delay was due to the fact that
contractors initially couldn’t figure out how to physically build some of the
bizarre structures Gaudi designed on paper. And not only did Gaudi invent
his own system for calculating his catenary shapes, he did those
calculations without the benefit of modern computers.



WALKING ON EGGSHELLS

John Ochsendorf remembers the first time he stood on top of the domed
vault of the chapel at King’s College, Cambridge. “You’re standing eighty
feet off the ground on a thin piece of stone,” he recalls. “You can even feel
small vibrations. And you can’t help thinking, ‘The nerve of these people!’
”

Ochsendorf is a structural engineer at the Massachusetts Institute of
Technology and a historian of architecture and construction. “These people”
are the long-dead members of England’s masonry guild who built the
chapel roof around 1510. It’s not difficult to see why he is so impressed
with their engineering skills: The chapel’s roof spans nearly 15 meters, yet
it is only 10 centimeters thick—similar to an eggshell in terms of its radius
to thickness ratio. “These [early arch builders] developed a very real
science of construction to attain a high degree of stability,” says
Ochsendorf. “I’m simply in awe of the fact that we haven’t surpassed it
yet.”

Modern architects have devised their own tricks of the trade. Like Gaudi
before him, contemporary Swiss architect Heinz Isler creates what he calls
reversed “hanging membranes” to design the delicate, thin-shelled dome
structures for which he is justly famous. After pouring liquid plastic onto a
cloth resting on a flat, solid surface, he lowers the surface, leaving the
plastic-covered cloth to hang in pure tension, suspended from its corners.
The plastic hardens, freezing that position. Once it has dried, Isler turns the
solid shell model upside down, and that form becomes the basis for his
design—a form of experimental calculus.

Ochsendorf’ s work is aimed at adapting a popular computer graphics
tool to help unlock the elusive secrets behind the arches and domes of
Gothic cathedrals. Along with his then-graduate student, Axel Kilian,
Ochsendorf adapted a technique called particle-spring modeling, in which
virtual “masses” at the various “nodes” of a design are connected by virtual
“springs.” These bounce around until they find equilibrium and are able to
support the requisite loads, just like Gaudi’s hanging chain. CGI animation
already uses such particle-spring models to re-create the movement of
fabrics and hair, because animators need to map out how forces flow in



different directions in real-time 3D, and in an interactive format. Remember
the scene in Star Wars: Episode III—Revenge of the Sith where Yoda fights
an adversary while wrapped in a cloak? The movement of Yoda’s cloak was
designed using a particle-spring model.

Ochsendorf and Kilian realized there were parallels between the fabrics
that CGI animators model and Isler’s hanging membranes. A length of cloth
is strong under tension, but if you push on it (compression), it simply
crumples. What Ochsendorf needed was something with precisely opposite
properties, so he worked out a way to turn the fabric model around. This
allowed him to model architectural structures, specifically Gothic
cathedrals.

He’s already scored some successes with his prototype program.
Ochsendorf used it to demonstrate that the domes of the Pines Calyx
conference center near Dover, England, would stay in compression under
all possible loadings, thereby satisfying stringent safety regulations. Open
for business since 2008, the center is topped by domes made from clay tiles
glued together edge to edge. Those domes span 15 meters, yet the tiles are
only 15 centimeters thick and required no supporting framework during
construction. “Without Ochsendorf’ s program these remarkable thin-
shelled shallow domes would not have been allowed to be built,” Alistair
Gould told me. Gould is a member of Helionix Designs, a firm based in
Kent that designed the building.

Eventually Ochsendorf hopes to provide designers with a technique that
could lead to revolutionary architectural designs and more environmentally
friendly buildings. Many modern buildings have a severe impact on the
environment. Steel corrodes with time, and the manufacture of concrete
produces quantities of greenhouse gases. Ochsendorf ’s software program
has already demonstrated that certain buildings could have been built with
much less material. In essence, the program finds the solution to an
optimization problem for the materials.

Take MIT’s Kresge Auditorium, designed by Saarinen in 1955. It has a
domed roof made of concrete 15 centimeters thick. After analyzing the
geometry of the dome and feeding the measurements into his hanging-chain
model, Ochsendorf reckoned that it could have been built with half the
thickness of concrete, resulting in significant savings in building costs and
reduced environmental impact—without sacrificing the artistry. He made



similar findings about MIT’s new computer science building, designed by
Frank Gehry. The building features columns leaning in every direction, and
the structure used roughly 30 percent more material than would have been
needed if his program had been used to find where the lines of force
naturally fall, Ochsendorf insists.

THE QUEEN’S GAMBIT

One of the most famous optimization problems can be found in Virgil’s
Aeneid. A Phoenician woman named Dido was forced to flee her homeland
after a tyrannical brother murdered her rich husband and tried to seize her
wealth. Dido didn’t exactly travel light: She “fled” via several boats filled
with her belongings (including her late husband’s stash of gold) and
numerous attendants, eventually landing on the coast of Africa, where she
hoped to start a new life. Her reception by the natives was frosty at first—
perhaps they’d encountered would-be colonists before—but she struck a
shrewd bargain with their king, offering a substantial sum of money in
return for as much land as she could mark out with the hide of an ox upon
which to build her own city.

It may be that the king bought into the stereotype that women aren’t
inherently good at math; figuring he was getting the best of the deal, he
agreed. Dido promptly took her oxhide and cut it into thin strips, which she
joined together into one long strip. Using the seashore as one edge for her
promised tract of land, she then laid the skin into a semicircle, thereby
ensuring that said tract was significantly larger than the African king had
thought possible. And on that site she founded the great city of Carthage
(near modern-day Tunis), reigning as its queen. In mathematics, this is
known as the isoperimetric problem: How does one enclose the maximum
area within a fixed boundary?

Ah, but just how do we know that Dido’s semicircle did indeed enclose
the largest area given the length of that long thin strip? Calculus, of course
—specifically, we must solve a maximization problem using the calculus of
variations. Let’s start with a simpler idealization to demonstrate the basic
method. We’ll assume that Dido’s strip of oxhide is 600 feet long, and she



wants to enclose the largest possible rectangular area in which the seashore
provides a boundary along one side. Even in this simplified version, there
are many different possible permutations she could make with that 600 feet
of oxhide: long and narrow, tall and thin, and everything in between. What
shape is the likely candidate for giving her the optimal square footage?

We have to start somewhere, so let’s take the shape of a square as a point
of reference. By definition, this means that Dido would need 200 feet of
oxhide for each of the three sides, with the shoreline of the Mediterranean
Sea serving as the fourth side. That gives us an area of 40,000 square feet,
as area depends on length and width. However, we have no way of knowing
(yet) whether this is indeed the optimal shape. So we begin varying the
shape ever so slightly in different directions. For instance, if Dido arranges
her oxhide to measure 201 feet down the width of two opposite sides and
198 feet across the length, she would have an area of 39,798 square feet—
slightly less than a perfect square. Dido decides to test this further, and
adjusts her dimensions in a different way. This time, the two opposite sides
measure 199 feet in width, and the third side measures 202 feet across. The
answer: 40,198 square feet. Clearly the square will not give her the most
possible area.

The crucial point is that the question posed has to do with change in area,
not simply the static values of the area—that way lies madness, for we
would be randomly computing areas for different configurations in hopes of
stumbling on exactly the right one. It is far more useful to consider all
possible areas created by all possible configurations (i.e., an infinite
number). We have now seen countless times how the derivative applies to
any case where a change in one quantity produces a corresponding change
in another quantity; the derivative measures that rate of change.

Dido can reduce the problem to a simple function: Knowing she has 600
feet of oxhide, once she chooses a width for her enclosure (w), the
remaining oxhide will be evenly divided to make up the length of the plot
of land. How do we translate this into an equation? We know that area
equals width multiplied by length. So given the variables for width (w) and
length (L) of the configuration, as well as the total amount of oxhide (600),
we come up with the function 600w − 2w 2. This is the function she would
use to determine what the area would be for any given configuration she



chose. Graph that function by plugging in various values for w—ranging
from a width of 0, to a width of 300—and you get a pretty curve (the “face”
of Dido’s function). This greatly narrows the possible solutions.

Now all we need to do is find a spot along that graph where the rate of
change is 0. Recall that the slope of the tangent line along a curve is
equivalent to the derivative. The place where the derivative is 0 will
therefore be at the very top of the curve, where the tangent line is a
horizontal line and hence has no slope. And that point occurs where w =
150 feet. Ergo, Dido’s plot of land should be 150 feet wide to get the
maximum possible rectangular area (45,000 square feet) on which to build
the city of Carthage.

This saves Dido the trouble of having to calculate the areas of all possible
rectangular shapes. She simply graphs the function and then looks to see
which values give a slope (derivative) of 0. Even if there are four such
spots, instead of one in this particular case, that narrows the possibilities
considerably. She can certainly calculate the areas of four possible shapes to
determine the best possible width for her planned city.

But remember that the optimal shape is not a rectangle, but a semicircle.
To find the true optimal shape, Dido must use the calculus of variations.
Just as with the brachistochrone problem, it is necessary to integrate over all
possible curves—not just rectangles—to pluck the correct answer from
among the infinite hordes. A semicircle with a length of 600 feet has a
radius (distance from the circle’s center to its arc) of 191 feet. Since we
know a full circle with this radius would have an area determined by πr2, a
semicircle has an area determined by ½ πr2. So a semicircle yields an area
of 57,296 square feet.

Fans of Virgil know that things did not end well for Dido, queen of
Carthage. She rejected the African king’s offer of marriage, only to
foolishly fall in love with the wily Aeneas, who wound up in Carthage with
his fellow surviving Trojans after the fall of Troy. But Aeneas abandons her
to fulfill his manifest destiny of founding the Roman Empire. A
heartbroken Dido builds a funeral pyre, curses Aeneas, and falls on a sword
given to her by her fickle lover. Aeneas and his men watch the glow of her
burning pyre from their departing ship, unaware of Dido’s suicide.



Later in Virgil’s magnum opus, Aeneas travels to the underworld and
runs into his former lover’s shade, but she refuses to acknowledge him, still
bitter at his abandonment. The poet T. S. Eliot once called this “the most
telling snub” in Western literature. I think it shows most clearly that hell
literally hath no fury like a woman scorned—particularly a formidable
woman like Dido, capable of outwitting an African king with an early
conceptual harbinger of calculus, centuries before Newton and Leibniz
invented it.
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Surfin’ Safari

I tried surf-bathing once, but made a failure of it. I
got the board placed right, and at the right
moment, too; but missed the connection myself.
The board struck the shore in three-quarters of a
second, without any cargo, and I struck the bottom
about the same time, with a couple of barrels of
water in me. None but natives ever master the art
of surf-bathing thoroughly.

—MARK TWAIN,
Roughing It

 
 
 
Few people are aware that novelist Samuel Clemens—better known by his
nom de plume, Mark Twain—was a great admirer of the sport of surfing, or,
as he called it in his travelogue Roughing It, surf-bathing. He even tried his
own hand at surfing, with predictably dire results: He wiped out and
swallowed a hefty helping of salt water for his trouble. I can empathize, as I
come up sputtering from a spill for the umpteenth time during my own
maiden stab at surfing in Kona, Hawaii. As I scramble back onto my
beginners longboard, my self-appointed “surfing coach,” Milton Garces,
casually rides a swell over and calls out a snippet of helpful advice: “You
might want to move back a bit on your board; you were too far forward that
time to ride out the wave!”

He should know; waves of all kinds are his stock in trade, particularly
sound waves and water waves. Garces is an acoustic oceanographer at the
University of Hawaii-Manoa, specializing in the study of infrasound, aural



signals at frequencies that lie below the range of human hearing (20 Hz to
22 kHz). Nature has an entire palette of sounds that play constantly just
beyond our ken. Human hearing is rather limited in range, but sound waves
exist far beyond it. We can’t hear the ultrasonic shrieks of bats or the ultra-
low-frequency waves of acoustic energy (infrasound) employed by
elephants or tigers. Wind, water, earthquakes, avalanches, tornadoes, and
hurricanes all produce infrasound, as well as audible sounds. To an
acoustician, there’s no such thing as perfect silence.

Most acousticians have a touch of the daredevil in them, almost by
necessity: If you’re trying to study the propagation of sound waves, you’ve
got to go where the waves are happening, even if that leads you to remote
Mayan ruins or the foot of an active volcano. Garces is no exception. When
he’s not exploding missiles at the White Sands Missile Range in New
Mexico to better study the infrasonic waves that result from the explosion,
he’s setting up infrasound sensor arrays around volcanoes in Ecuador, or on
Japan’s Kyushu Island. Once he was caught napping in a Toyota Corolla in
the vicinity of a volcanic eruption, resulting in some harrowing, ash-choked
moments before he was able to drive to safety.

So it’s not surprising that Garces is an avid surfer, along with just about
everyone else in his Infrasound Laboratory (ISLA) on Hawaii’s Big Island.
I have flown out to Kona to learn more about his lab, which is located right
on the water’s edge, the better to collect data on incoming waves. While
Maui is famous for its miles of sandy white beach, Kona’s shores are strewn
with black lava rocks. The entire Big Island is the remnant of volcanic
eruptions spanning thousands of years and is still home to active volcanoes.
Locals like to place white shells against the black rocks to form pictures or
spell out messages—Kona’s version of graffiti.

The lab is also near at least one prime local surfing haunt; lunchtime surf
outings are a common occurrence. So it seems perfectly natural when
Garces insists that if I really want to understand waveforms and wave
dynamics, I should experience the phenomenon firsthand by hopping on a
surfboard and hitting the warm Hawaiian water. I’m a strong swimmer, and
I’ve always wanted to try surfing, so I jump at the chance. Everyone piles
into various four-wheel-drive vehicles, and we trundle our way over
unpaved rocky terrain to surfing paradise.



That’s how my pasty-white, city-dwelling self ends up on a borrowed
surfboard in the bright sunshine, gamely paddling out to meet the incoming
waves with the rest of Garces’ acoustical crew, along with his wife (a
scientist in her own right) and young daughter. I do not, alas, remain pasty-
white. By the end of the afternoon, my entire back is bright red, even the
soles of my feet. I look like a haddock that has only been seared on one
side.

Sunburn aside, there is a great deal of fundamental physics involved in
the sport of surfing—potential and kinetic energy, surface tension, friction,
buoyancy, hydrodynamics—and in the study of waves themselves. Waves
are fundamental to nearly every field of physics, from water, sound, and
light, to the wave nature of elementary particles and gravitational ripples in
the fabric of space-time. Not to harsh anyone’s mellow or anything, but
once again, wherever there is physics, there is also calculus.

BALANCING ACT

In 1778, Captain James Cook stopped off at Waimea Harbor on Kauai, en
route from Tahiti to the northwest coast of North America in search of a
fabled passage through that continent connecting the Pacific and Atlantic
oceans. They were the first Europeans on record to visit the Polynesian
chain, and their reception was warm and inviting, as they arrived smack in
the middle of the season of worship for Lono, Polynesian god of peace.
Islanders paddled out to where the HMS Discovery and Resolution were
anchored to trade wares, so the ships could restock provisions. Cook
returned after a year’s fruitless searching for the Northwest Passage to
restock and make repairs to his ships. But this time, he ran afoul of the
natives when he stopped at the Big Island—possibly because his second
landing overlapped with their season of worship for Ku, Polynesian god of
war.

Historical accounts differ about the details, but it seems the conflict arose
when some of the natives began pilfering items from the ships. First there
was a dispute concerning a stolen pair of tongs, and then one over a stolen
boat. Cook’s men attempted to take a chief hostage for the return of the boat



—a common leveraging practice in negotiations by British mariners—but
were rebuffed. Tensions mounted, the British opened fire, and a chief
named Kalimu was killed. The enraged Hawaiians attacked in revenge, and
when the British stopped firing to reload their muskets, they were driven to
the water’s edge at Kealakekua Bay. Cook was stabbed repeatedly with an
iron dagger his crew had traded to the natives, and his body was dragged off
and disemboweled, the flesh stripped from the bones. As barbaric as it
sounds, it was meant as a great honor. Such were the funerary rites for the
remains of a deceased high priest.

Despite the hostilities, when Lieutenant James King finally recorded the
details of that ill-fated voyage in the late Captain Cook’s journals, he
included not just an account of the fighting, but also of the more joyous
aspects of Hawaiian culture—notably surfing, “a diversion that is common
upon the water, where there is a very great sea, and surf breaking on the
shore. . . . They seem to feel a great pleasure in the motion which this
exercise gives.”

There is very little record of how surfing came to the Hawaiian islands,
but by the time of Cook’s visit, surfing was deeply embedded into the
culture, with myths and legends about surfing heroes (and heroines) and an
annual celebration called Makahiki in which surfing played a central role in
honoring Lono. There were even separate reefs and beaches for royalty and
commoners, a stratification that still exists in some form today: There are
surf sites that cater to tourists and more-hidden local spots favored by
residents.

King couldn’t help admiring the skill of those eighteenth-century
Hawaiians as they rode the waves, and for good reason. La famille Garces
makes it look easy, but surfing is one of those activities that is quite
straightforward in concept yet difficult to master—as Twain found out over
a century ago. Following Garces’ instructions, paddle a decent way out
from shore, turn the board around, and wait for a promising wave. At this
point, the primary physical mechanisms at work are gravity and buoyancy.
(Think Archimedes and his eureka moment.) There is no acceleration and
thus no net force. There is just me, on my surfboard, bobbing gently in the
ocean, waiting for the perfect wave.

Whenever he spots a promising wave, Garces calls out and urges me to
paddle furiously toward the shore. The trick is to accelerate to match the



speed of an incoming wave just as it arrives at my position in order to
“catch” it; otherwise it just shoots right past, leaving me bobbing forlornly
behind on my surfboard, watching everyone else have all the fun. This
happens far more often than I care to admit, due in part to my lack of upper
body strength. But every now and then, I succeed and feel that telltale tug
as the wave pulls me with it. At least that’s what it feels like; from a physics
standpoint, the moving wave pushes my surfboard forward, accelerating me
to match its speed. At that point, I must paddle with wild abandon to ensure
I end up “riding” the wave.

The first time this happens, I am so exhilarated that I throw myself off
balance and promptly take a nosedive into the salty surf—a common
occurrence for first-time surfers. A moving wave is literally a slippery
slope, with constantly shifting forces acting on the surfboard—not just
gravity and buoyancy at this point, but also hydrodynamic forces (the force
exerted by a moving fluid) that push the board forward, along with a certain
amount of friction or drag along the bottom of the board. You’ve got to
keep shifting your weight back and forth to stay near the board’s center of
mass as you ride the wave to keep the proper balance of forces: between the
downward force of gravity and the upward buoyant force. When these
forces are out of balance, the board torques, or twists. If the nose is too low,
you pitch forward; if you shift too far back and the nose is too high, you
lose your momentum, the board stops, and you pitch into the water. In this
case, the nose dipped too low, just for a second, but that was all it took: I
pitched myself forward into the ocean.

It is easier to maintain that critical balance on a shorter board; the
tradeoff is that it’s harder to catch the initial waves. So for a beginner, like
me, a longboard is best, and that is what I am using. Garces assures me the
board will “catch anything” (or it would, with a better surfer wielding it);
but it means it gets a bit trickier when I try to stand up once I’ve caught a
wave. Like Twain a century before me, I wipe out on a regular basis and
never quite get into a full stand; the best I can manage is a low crouch.

Hawaiian legend tells of Mamala the Surf-Rider, an Oahu chieftess who
skillfully rode the biggest and roughest of waves, far from shore. I am no
Mamala. Still, twice I manage to maintain my balance sufficiently to ride a
baby wave all the way to the shore, with no fancy turns, but no spills, either.
I’m relying on hydrodynamic forces to work their magic as water moves up



the front of a wave, collides with my surfboard, and is deflected around it.
If I were moving faster, there would have been a telltale spray in my wake.
A good surfer—defined as “not me”—is skilled enough to keep just ahead
of the break, turning up and down the face of the wave all the way into
shore.

Ultimately, surfers are dancing with the waves, exploiting the same basic
principles as roller coasters. They gain kinetic energy by dropping down the
face of the wave and exploiting gravity, although they trade off potential
energy as they lose altitude. But then they use that accumulated kinetic
energy to ride back up the face of the wave to the crest, and the whole
process begins all over again. Ideally, at the end of the ride, a good surfer
will shift his or her weight to the back of the board, causing it to drop and
the nose to rise, effectively applying “brakes.” The wave rolls past, and the
surfer is ready to drop back down onto the board and paddle out to catch
another wave. Alternatively, you can try my cunning strategy of wiping out
before I reach the shore.

That is the basic physics of surfing; where is the calculus? One simple
example can be found in the knotty problem of catching that initial wave: so
simple in concept, so tricky to execute. Recall that I need to reach a specific
velocity—the same velocity as the traveling wave—at a specific time and
place: the point at which the incoming wave reaches me bobbing in the
water on my borrowed surfboard. A baseball outfielder merely has to be in
the right place (position) at the right time; a surfer must match velocity as
well. From a calculus standpoint, it’s a matter of integrating acceleration
over time in order to hit the matching velocity at precisely the moment the
wave reaches me. Technically, we have to take two separate integrals—one
to determine velocity by integrating over acceleration, and another to
determine position by integrating over velocity—to ensure I catch that
incoming wave.

“Really, it’s amazing that anyone can possibly surf at all,” Sean observes
as he ponders the mathematical realities of the sport. And yet excellent
surfers abound, every last one of them a master at making that intricate
calculation within seconds, many without consciously realizing they are
doing so. The human brain is capable of performing amazing feats of
calculation, although this is as much a learned as an innate ability. When it



comes to sports and motor skills—and calculus, for that matter—practice
makes perfect.

WHAT’S YOUR SINE?

Surfing entered the international mainstream in 1959 when the film Gidget
hit the silver screen, coining the term “the Big Kahuna” to describe the best
surfer on the beach. Traditionally, a kahuna was a local priest or magician
who would intone special chants to christen new surfboards and bring
promising surf conditions. In reality, the size and shape of ocean waves
depends not on mystic chants, but on three variables: wind speed, the
“fetch” (the distance of open water the wind has been blowing over to form
the waves), and how long the wind has been blowing over a given area. The
best waves, according to experienced surfers, are those produced by intense
distant storms that generate heavy winds. Those winds blow continuously
for several days, creating lots of waves that slam into each other repeatedly
to create a “chop.” Gradually, all the little waves accumulate into a larger
swell. By the time they reach the shores of Hawaii, they’ve become a series
of powerful, large swells.

It is not a big-wave day when I have my outing—good news for me, as a
beginner, because the waves are smaller and the waters less crowded with
hard-core surfers. One of the keys to surfing is choosing the right incoming
wave. This is not an easy call to make; ocean wave dynamics are pretty
complex. That’s why surf forecasters rely on real-time meteorological data
from satellites to locate the biggest waves. Avid surfers get pretty adept at
eyeballing the incoming waves to identify the most promising (by size, by
when they’re likely to break, and so forth) and also at estimating how fast
those waves will be traveling by the time they reach the surfer. But to a
novice like me, they all look the same, and it’s tough to predict when they’ll
crest and break.

Calculus comes into play when analyzing the waves themselves. All
types of waves have three basic properties: wavelength, frequency, and
amplitude. In the case of sound waves, the distance between compressions
determines the wavelength. Objects that vibrate very quickly create short



wavelengths because there is very little space between the compressions,
creating a high-pitched sound. Objects that vibrate very slowly create long
wavelengths because the compressions are spaced further apart. Frequency
measures how many crests, or compressions, occur within one second; the
measurement of this speed of vibration is called a Hertz (Hz), and 1 Hz is
equivalent to 1 vibration per second. A sound wave’s amplitude, or range of
movement, determines the volume (loudness) of the sound.

Ocean waves have these properties, too. Generally, waves are measured
according to height (measured from trough to crest), wavelength (measured
from crest to crest), and period (the interval between the arrival of
consecutive crests at a fixed point), corresponding in turn to amplitude,
wavelength, and frequency. Mathematically, waves are described as
periodic functions: They repeat over regular intervals, forming a series of
crests and troughs over time. Graph a periodic function on a Cartesian grid,
and you get the signature ideal sine wave, the “face” of a periodic function:

The above sine wave represents the function sin(x), the mathematical
idealization of a wave. The cosine, or cos(x), is the complement of the sine.
It looks very much the same, except everything is shifted slightly to the left
along the x axis, such that the cosine wave appears to start at its maximum
while the sine wave starts at zero on the graph.



Any wave can be thought of as a sine or cosine, merely shifted by
different amounts. Mathematicians simply call such waves sinusoids. We
can glean quite a bit of information about a waveform from its “face.” The
number of crests and troughs we can count in a given period of time, such
as one second, gives us the frequency of the sinusoid. A large number of
crests and troughs means it is a high-frequency wave; a low number of
crests and troughs means it is a low-frequency wave. If we multiply x by a
number, like 2, we increase the frequency of the wave (above), described by
the function sin(2x). This means that the periods between crests and troughs
will be shorter, giving us a wave with a higher frequency.

We can also adjust the amplitude—how strong/loud the wave is—by
multiplying the function by another number, such as 2, giving us the
function 2sin(2x). The resulting graph on page 236 shows a sine wave with
higher crests.



The sine and cosine are the simplest waveforms, equivalent to pure
musical notes, or a light wave of a single color. Different kinds of waves
can interfere with each other, mixing together to form more complex
waveforms. Sines and cosines can be treated just like any other function in
calculus; only the notation is different. We can still take derivatives and
integrals, and those values correspond, respectively, to the slope of the
tangent line and the area under the curve. There are some interesting
connections between sines and cosines that provide shortcuts when taking
derivatives and integrals. For instance, note that the sine wave starts at 0 on
the graph, rises, and flattens out at the peak; conversely, the slope of the
tangent line of our sine wave starts at 1 and goes to 0. This is exactly how
the cosine wave behaves, and we can deduce from this that the derivative of
the sine is the cosine.52

Similarly, the cosine wave starts at 1 and goes to 0, while its slope starts
at 0 and goes to minus 1 on the graph. So, the derivative of the cosine is
minus the sine. Working our way full circle, we see that the same holds true
when we’re talking about finding the derivatives of minus the sine and
minus the cosine: the derivative of minus the sine is minus the cosine, while
the derivative of minus the cosine brings us right back to where we started:
the sine.

The integral follows the same circular pattern in reverse, as it undoes the
work of the derivative. The integral of the sine is minus the cosine; the



integral of minus the cosine is minus the sine; the integral of minus the sine
is the cosine; and the integral of the cosine is the sine. The above holds true
whether we are talking about sound waves, light waves, gravitational
waves, or ocean waves. So we can use calculus to analyze any kind of
change and motion in wave phenomena.

BREAKING THE WAVES

Most ocean waves eventually “break” as they move into shallower water,
which is what happens when the wave base can no longer support its top,
causing it to collapse. On this Kona beach, the waves don’t break all at
once, but peel to the right or left when they break. We have the pleasant
spilling or rolling version of breaking waves. The plunging variety can
break too suddenly, dumping surfers and pushing them to the bottom with a
lot more force than one might think. There’s a lot of energy in those ocean
waves: Depending on the size, it can be as much as five to ten tons per
square yard. Surging waves might not even break, but their powerful
undertows can drag unwary swimmers and surfers into deeper, more
dangerous waters.

Breaking waves produce infrasonic signals as well as audible sounds, and
Garces’ work exploits this feature to develop a technique he calls real-time
surf infrasonic monitoring, or, as he describes it, “the deep sound of one
wave plunging.” Garces is specifically studying breaking waves along
Oahu’s North Shore, widely deemed to be a surfer’s Mecca.

There are three types of wave breaks that produce infrasound: plunging
breaks, cliff breaks, and reef breaks. Garces’ research focuses on the latter.
He is attempting to isolate the sound of a single wave in the process of
breaking. Essentially, he’s tracking moving wavefronts with sound sensitive
pressure sensors strewn along the ocean floor, enhanced with conventional
seismography. The idea is to use the collected raw data to determine wave
height and other properties, for example, to better identify potential hazards
to surfers. It’s trickier than it seems: Such predictions currently rely on the
observations of surfers themselves to determine wave heights. True, there



are sensor-equipped buoys in the cove designed to collect that information,
but the data are insufficient to make accurate predictions.

This might seem surprising, since a similar buoy system works quite well
along the coastline of San Diego, where the Scripps Institute deploys a set
of buoys and crunches the raw data using clever algorithms to separate the
meaningful signals from background noise. This enables them to plot the
direction, speed, and curvature of incoming waves to determine the location
of the sound source and to make more accurate predictions.

So why wouldn’t it work on Oahu? I asked Geoffrey Edelmann, an
acoustician at the Naval Research Laboratory, who explained that it’s easier
to establish directionality along San Diego’s far more sheltered coastline
than it is in Hawaii, where wave directionality isn’t clear at all—the waves
are literally coming in from all directions at once. So the San Diego
algorithms don’t apply; scientists can’t make the same set of underlying
assumptions. But if Garces’ hunch turns out to be right, infrasound could
end up being a very useful tool for oceanographic monitoring in that region.

The raw infrasound data Garces collects requires a great deal of signal
processing and analysis before real-time surf infrasonic monitoring can
yield useful insights into ocean wavefronts. Because the waves that
eventually hit the shores of Kona are an accumulation of many different
waves of varying frequency, part of that processing involves breaking down
complex waveforms into the individual component waves. This can be done
thanks to a method devised by eighteenth-century French mathematician
Jean-Baptiste-Joseph Fourier, a procedure known as a Fourier transform. I
wasn’t able to find any historical evidence that Fourier, like Twain, ever
tried his hand at surfing. But I’m sure Fourier would have made an
excellent surfer—at least in theory. This was a man well versed in periodic
functions.

Fourier had a gift for making waves. Born in 1768, he was the son of a
very fertile tailor in the village of Auxerre; Fourier had eleven siblings, as
well as three half-siblings from his father’s first marriage. Orphaned by age
ten, the young Jean-Baptiste received an early rudimentary education at a
local convent, thanks to a recommendation by the Bishop of Auxerre, and
he proved such an apt pupil that he went on to study at the École Royale
Militaire of Auxerre. There he fell in love with mathematics, although he



initially planned to enter the priesthood. Math won out in the end; by 1790
Fourier was teaching at his alma mater in Auxerre.

Perhaps his desire to focus on mathematical research—and his inability
to accomplish much of significance in his earliest years—was influenced by
the tumultuous times in which he lived. Revolution was brewing in France.
Fourier was sympathetic at first to the revolutionary cause, drawn by “the
natural ideas of equality,” and a hope “of establishing among us a free
government exempt from kings and priests.” He joined his local
Revolutionary Committee but soon regretted it, as the ultraviolent Reign of
Terror gripped France and thousands of nobles and intellectuals fell victim
to the guillotine. The streets of Paris literally ran with blood.

It was frighteningly easy to run afoul of the murderous mob mentality
that prevailed during the Terror; the movement soon splintered into
squabbling factions, despite sharing similar goals, and rampant hysteria
spread throughout France. Wise men kept their heads down and tried not to
attract attention, as almost anyone could be accused of treason for the
slightest perceived infraction against the new republic in that volatile
environment. Fourier made the mistake of defending the stance of his own
Auxerre faction before a rival sect while on a trip to Orléans. In July 1794,
he was arrested and imprisoned for the views he’d expressed on that trip,
and found himself facing the guillotine.

He was fortunate that his imprisonment occurred just before Maximilien
Robespierre—mastermind of the Reign of Terror—ran afoul of his own
revolution and lost his head to the angry mob he helped incite. With the
death of Robespierre, the Revolution lost steam, and Fourier and his fellow
prisoners were freed. Fourier had the good fortune to be selected for a new
teacher-training school to help rebuild France, where he studied under three
of the most prominent French mathematicians: Lagrange, Laplace (who
wisely fled Paris during the Terror), and Gaspard Monge. By September
1795, Fourier was teaching at the prestigious École Polytechnique.

All this occurred before Fourier turned thirty. But the quiet life of
contemplation still eluded him. A few years after his academic
appointment, he joined Napoléon’s army as a scientific advisor when
Napoléon invaded Egypt. Mostly he engaged in archaeological expeditions
and helped found the educational Cairo Institute, as Napoléon’s military
fortunes in Egypt waxed and waned. By 1801, Fourier was back in France,



teaching, until Napoléon whimsically appointed him prefect in Grenoble. At
long last, Fourier was in a stable, peaceful environment where he could
focus on mathematics—and he promptly stirred up a mathematical
controversy.

MIXING AND MATCHING

The culprit was a single equation describing how heat traveled through
certain materials as a wave. Fourier concluded that every wavelike “signal,”
no matter how complex, could be rebuilt from scratch by adding together
many different waves mixed together according to a specific “recipe.” In
other words, complicated periodic functions can be written as the sum of
simple waves mathematically represented by sines and cosines (now known
as the Fourier series). We can figure out which waves are present in a
complex signal by taking an integral over all possible waves. That is the
Fourier transform.

Fourier transforms are difficult for a beginning calculus student to grasp,
and more complex signals require powerful computers to crunch the
numbers, but the overall concept is straightforward enough. You just take
apart the original signal to determine the “ingredients,” and then figure out
how to rebuild that signal with a mixture of the same component sinusoid
waves.

It’s a bit like trying to re-create at home your favorite restaurant’s
spécialité de la maison, except you have to guess at the ingredients. The
more sinusoids we use, the more accurately the resulting reconstructed
waveform resembles the original—much as estimating the area underneath
a curve gives a more accurate result if you use more and more rectangles in
the method of exhaustion. Anytime we are adding together many different
smaller pieces that add up over time, we are taking an integral.

There is a neat trick to determining whether a given waveform is an
ingredient in our original signal. Earlier we saw two simple sine
waveforms, representing the functions sin(x) and sin(2x). If we multiply
sin(x) by itself, we get a wave that looks like this:



Note that it oscillates entirely above the x axis, unlike the original sine
wave, which oscillated equally above and below the x axis. If we integrated
it, the total area would gradually accumulate; it would just go up and up,
with no subtractions. This is how we know that sin(x) is a component of our
original signal—indeed, it is the only component wave of our original
signal. In contrast, if we multiply sin(x) by sin(2x), we get a resulting wave
that looks like the graph at the top of page 244.

This time, it oscillates fairly equally above and below the x axis. If we
integrated it, the total area would oscillate around 0, because sometimes the
area adds to the total, and sometimes it subtracts. This tells us that sin(2x) is
not a component of our original signal. We would get a similar result if we
multiplied sin(x) by sin(1.1x), sin(3x), or any other wave, because our
original signal was not a complex waveform, but consisted of one simple
wave as the sole ingredient.



Let’s see what happens when we have a signal that adds two waves
together: the function sin(x) + sin(2x), which looks like this:

Now we perform the exact same process for each possible sine wave that
could be a component. For instance, multiply the above wave by sin(x), and
we get this:

Since most of the oscillation occurs above the x axis, we know that if we
integrated it, the total area would accumulate, indicating that sin(x) is one of
the components of our original signal. But if we multiply our original signal
by sin(3x), we get something that looks like the illustration on the
illustration below.



This tells us that sin(3x) is not a component of our original signal,
because it oscillates equally above and below the x axis. We would get a
similar result for every other possible wave we tried—a variable that is
commonly designated in an equation by the Greek letter omega (ω)—that
was not either sin(x) or sin(2x), because those are the only two ingredients
of our original waveform. Ultimately, what the Fourier transform does is
turn our original function of x into a function of ω. The integral is what
makes that transformation complete.

Digital signal processing (DSP) would not be possible without Fourier
analysis. DSPs are microelectronic devices that determine which sound
wave is required to cancel noise. A DSP contains a resonator that vibrates
in response to specific incoming frequencies. It then re-creates that sound
wave—minus the frequency it is trying to cancel—and amplifies it through
speakers or headphones. The end result is near silence. Most cell phones,
CD players, and hearing aids now contain one or more DSP devices. The
Fourier transform is a mathematical resonator, an efficient tool to filter
signals.

A DSP first selects a sampling of a given signal measured at regular
intervals. Let’s say we have 1,000 such samples of that signal, perhaps the
infrasonic murmurings of a breaking ocean wave. We don’t know exactly
how many “partial” sine waves make up that complex waveform, but the
number of samples gives us an upper limit and a lower limit. Once we have
that range of values, we can determine how many sine waves would fit
between those two limits. In most cases, we will need as many sine waves
as we have samples (i.e., 1,000) to perfectly reconstruct a given signal.

So now we know the frequency of our component sine waves. We also
need to know their amplitude, that is, how much of each partial sine wave



to mix in as we rebuild our original signal. If a given signal is heavy on the
bass, there are more low-frequency sine waves mixed in than high-
frequency ones, and vice versa if the signal is shrill with more treble in the
mix. How can we figure that out? Why, by taking an integral, of course. We
multiply that sine wave with signal samples and add the results together to
get the amplitude of the partial sine wave at the frequency of interest. We
do this for every possible frequency of sine wave, weed out those that we
identify as ingredients, and voilà! We end up with the recipe for rebuilding
that signal.

That evening finds me unwinding from the day’s exertions over a
refreshing tropical cocktail in the hotel’s outdoor bar. The sun is setting,
casting a pinkish orange glow over the water as hotel staff readies for the
night’s luau performance. I find myself listening to the rhythmic cycle of
waves crashing on the shore and reflecting on the fact that I can hear those
waves because my brain is performing Fourier transforms constantly. It’s an
essential part of how we hear.

The brain senses the incoming pressure wave and performs a Fourier
transform on that signal to identify the frequency and amplitude of the
“sound.” The ear measures change in pressure as a function of time.
Sometimes it is a single note; sometimes it is several notes together, as in a
musical chord; in each case, the brain uses the Fourier transform to
determine which components make up the total sound wave. Similarly,
every time we gaze at a sunset and identify specific hues—a spectacular
orange-red, or a more subtle pinkish glow—our brain has taken a Fourier
transform to isolate specific frequencies of light. And when a surfer
eyeballs incoming ocean waves, his or her brain is making similar
calculations.

The Fourier transform has a personal significance as well. Shortly after
becoming engaged, Sean and I drove from a conference in San Francisco to
our new home in Los Angeles via the scenic route along the Pacific Coast
Highway. At sunset, we stopped briefly to refuel just north of Malibu and
found ourselves admiring the brilliant orange, red, and purple hues
stretching across the darkening horizon, savoring the peaceful sound of
waves lapping against the shore. It was the perfect romantic setting to cap
off a long day’s drive. Sean is nothing if not romantic. He is also the



quintessential physicist. So he put his arms around me and whispered,
“Wouldn’t it be fascinating to take a Fourier transform of those waves?”

I will never listen to ocean waves or view a beautiful sunset in quite the
same way again. That is perhaps the greatest gift one can gain by delving
into calculus: It is a whole new way of looking at the world, accessible only
through the realm of mathematics. I looked out over the ocean that evening
and saw a picture-perfect ocean sunset, but there was so much more that I
missed. Sean looked out onto the same scene and saw the rich complexity
of nature expressed in mathematical symbols, the fundamental abstract
order lying just beneath the surface.



EPILOGUE

The Mimetics of Math

I’m very good at integral and differential calculus,
I know the scientific names of beings animalculous;
In short, in matters vegetable, animal, and mineral,
I am the very model of the modern Major General.

—GILBERT AND SULLIVAN,
The Pirates of Penzance

 
 
 
A pretty peach-hued building with an octagonal turret facing the Pacific
Ocean is nestled on the edge of the University of California campus in
Santa Barbara. This is the Kavli Institute of Theoretical Physics, where the
world’s best physicists gather to exchange ideas that will usher in the
revolutionary breakthroughs of tomorrow. The setting is idyllic, right next
to the beach, so the siren song of sun and surf inevitably vies for my
attention. On this particular day, the science is winning. There is a
“blackboard lunch talk” by Joe Burns, a friendly and engaging
astrophysicist from Cornell University. He is among the many scientists
involved with analyzing data collected by NASA’s Cassini spacecraft
orbiting Saturn to learn more about this distant planet—especially its
mysterious rings.

It has been my custom during technical talks at KITP to focus on the
concepts and let my eyes glaze over whenever an equation appears; much
of the math is far too advanced for a fledgling calculus student to follow
anyway. At first, Burns’s talk—while less technical than some of the brain-
melting lectures I’ve attended—looks to be no exception. Inevitably, Burns
turns to the blackboard and starts scratching out equations. But this time, I
recognize the notation. Burns is taking a derivative. In a flash, I realize this



means he is calculating a varying rate of change: the minute changes in
velocity of the millions of icy particles (ranging from the size of seashells to
surfboards) that orbit Saturn and make up its rings.

That lecture was a “mimetic moment” for me—the point where the
abstract symbols in my calculus books finally began to make some sense,
because I could connect them with something recognizable in the real
world. In ancient Greece, mimesis referred to the artistic representation of
nature, although two philosophers differed dramatically in their
interpretations of the term. In one corner, I give you Plato, of cave-allegory
fame, who believed in a divine realm of Ideal Forms. All creation, including
Nature, was imitation in his eyes, and artistic imitation was by definition
twice-removed from the Ideal. Ergo, all art (created fictions) is inferior to
the “real” world, which is in turn inferior to the realm of Ideal Forms.

In the other corner, we have Aristotle, who took some time off from
speculating that we see by shooting rays of light out of our eyes that reflect
off nearby objects, to write his famed treatise Poetics. Aristotle was more
forgiving of mimetic make-believe, for he thought that human beings have
an inherent need to create artistic fictions as a form of catharsis, although he
valued tragedy over comedy, via a rather convoluted process of reasoning.
(He was wrong about how human vision works, too.) Our modern aesthetic
still owes something to Plato and Aristotle, both of whom distinguished
between diegesis, the act of telling, such as indirect narration of action or
lecturing to students about calculus, and mimesis, the act of showing a
character’s internal thoughts and emotions via external actions. It’s a dictum
of modern entertainment: Show, don’t tell.

Anyone who’s taken Philosophy 101 could tell you that much. But in
1946, a literary scholar named Erich Auerbach adapted the concept of
mimesis in what his biography at Lerhaus. org claims is “one of the most
ambitious works of literary theory ever undertaken.” Mimesis: The
Representation of Reality in Western Literature is pretty much required
reading for serious students of literature; it had a profound effect on my
undergraduate self, and a copy still graces my bookshelves. Auerbach
analyzes literary conventions throughout the history of Western Europe and
how they create “a lifelike illusion of some ‘real’ world outside the text.”
My college English professor described the mimetic moment as the point at
which one makes the critical connection between one’s own experiences



and the artistic work and realizes, “Aha! This is that!” This kind of
emotional and intellectual resonance on the part of the audience is what
makes the creative arts so powerful.

I’ve spoken to many a scientist who was inclined to agree with Plato in
devaluing fiction, which is a shame, because I would argue that created
fictions present a uniquely effective teaching tool, a way to supplement
rather dry college lectures (diegesis) with a dose of creativity (mimesis) to
spark students’ excitement and interest.53 Show; don’t just tell. The
mimetic moment is a critical component of acquiring true knowledge—
actual learning, as opposed to memorizing facts by rote. Learning science,
math, or any other subject is all about making that critical connection.

While I was at KITP, I got to know mathematician Bisi Agboola, who
teaches at UCSB. Bisi was educated in the United Kingdom and failed most
of his math classes through their equivalent of high school: “I found it dull,
confusing, and difficult.” As a child, he was determined to find a career in
which he wouldn’t need any math, finally announcing to his skeptical
parents that he would be a woodcutter. He was crushed when they pointed
out that he would need to measure the wood.

But one summer he encountered a Time-Life book—simply titled
Mathematics, by David Bergamini—on the history of mathematics, from
the Babylonians up until the 1960s. “It captured my imagination and made
the subject come alive to me for the very first time,” he said, and it changed
his mind about this seemingly dry subject. He realized there was beauty in
it, and he wound up teaching himself calculus. Today he is a mathematician
specializing in number theory and exotic multidimensional topologies. But
he still doesn’t much like basic arithmetic: “I find it boring.”

Different people learn in different ways. Some students respond well to
how calculus is traditionally taught, while others, like Bisi (and me), don’t;
but that doesn’t mean we lack the aptitude to learn. That was the viewpoint
of an eighteenth-century educational pioneer named Johann Pestalozzi,
whose ideas laid the groundwork for modern elementary education. Born in
Zurich, Switzerland, Pestalozzi was the son of a physician who died when
Johann was quite young. He was raised by his mother and grandfather in a
rural village, and that experience gave him a lifelong empathy for the plight
of the Swiss peasantry. While at university, he embraced the “natural”



philosophy of Jean-Jacques Rousseau, even naming his son in the great
thinker’s honor, and went on to become a schoolteacher.

Many of his ideas were quite radical. Pestalozzi rejected the “tyranny of
method and correctness” that pervaded Swiss schools of that era, declaring
that he wished “to wrest education from the outworn order of doddering old
teaching hacks as well as from the new-fangled order of cheap artificial
teaching tricks, and entrust it to the eternal powers of nature herself.”54 He
became the first applied educational psychologist, insisting that children
begin with the concrete object before moving on to the underlying abstract
concepts.

Pestalozzi emphasized the individual, encouraging spontaneity and self-
activity. His students were not given preset problems with ready-made



answers but were encouraged to pursue their own curiosity. He also
believed in creating a nurturing environment for students, abolishing in his
school the then-common practice of flogging. And he worked hard to
remove the “verbosity of meaningless words” from his system, preferring to
emphasize concrete observation—a doctrine he called Anschauung (loosely
translated as “sense perception” or “object lessons”). Yet the Anschauung
must be bolstered with concrete action, Pestalozzi cautioned: “Life shapes
us and the life that shapes us is not a matter of words but action.” The best
way to achieve that action, he believed, was through repetition—not rote
memorization, but mastering the action through practice within the context
of the concrete object.

I inadvertently adopted several elements of Pestalozzi’s method in my
own adventures with calculus. For one thing, there was no flogging. For
another, I avoided sources that relied too heavily on technical jargon—the
“verbosity of meaningless words”—because I spent far too much time
translating the terminology and not enough grappling with the essential
concepts.

But the real key lay in the connections I was able to draw between the
abstract equations and real-world examples. Don’t get me wrong: Mastering
the abstraction is absolutely critical to fully grasping calculus; it’s just
easier to see how the principles are applied if they are presented in many
different familiar contexts. It’s the connection between the abstract and
concrete that eludes most students. Until I had that mimetic moment—a
realization that this abstract equation is connected to that real-world
example—my understanding remained incomplete, even if I managed to
crank out the “correct” answer to a textbook problem.

How did I make that critical connection? By observing the world around
me and then by reinforcing that observation through practice (action). I
abandoned the assigned problems in standard calculus textbooks and
followed my curiosity. Wherever I happened to be—a Vegas casino,
Disneyland, surfing in Hawaii, or sweating on the elliptical in Boesel’s
Green Microgym—I asked myself, “Where is the calculus in this
experience?”

The process of devising my own problems, rather than relying on
existing ones, gave me insights into the discipline I would not have gained
otherwise. It’s akin to taking apart a mechanical toy and figuring out how to



put it back together again: That process teaches you more about how that
toy works than simply reading a description about its operation. I still had
to do the repetitive work to hone those nascent skills and make the lesson
“stick,” but the repetitive process made more sense to me because it had a
recognizable context.

It also helped me to see the hidden connections between seemingly
unrelated phenomena. For instance, I never realized that an exponential
decay curve can describe the rate at which a cup of coffee cools, and the
rate at which wet clothing dries, as well as certain processes in astronomy,
economics, and population dynamics. Those very different things
nonetheless are related mathematically; they are described by the same
kinds of equations. If you don’t “speak math,” it is much more difficult to
see those connections.

Two years after beginning my journey, I can’t honestly say I love
calculus, certainly not the way I love physics. It’s more of a grudging
appreciation for the role calculus plays in describing our world. I am far
from mathematically fluent: As with any foreign language, that fluency
comes with years of practice and regular immersion in this brave new
world. I only went from the equivalent of baby talk to sounding out “See
Jane run.” But I have learned the history, the concepts, and the basic
terminology and processes of calculus, which in turn have greatly enhanced
my grasp of certain conceptual nuances in physics. More important, I am no
longer reluctant to confront a simple equation, because I know it will yield
a useful insight. The knee-jerk negative reaction and crippling fear are
gone. And who knows? Learning is a lifelong process, so it’s possible that
as I continue to dabble over time, mathematics will nudge its way further
into my heart.

How did I become convinced that calculus was beyond my ken? No
doubt part of it stems from gender bias. There is a well-documented
prejudice against women in math and science dating back thousands of
years, although history gives us the rare exception, such as the plucky
Sophie Germain. Such women often have been dismissed as mere statistical
anomalies, but evidence is mounting that there is no innate difference in the
mathematical ability of girls and boys. Any gap in performance is due
primarily to sociological factors. This is a controversial statement. We
would prefer to believe that the overt sexism in math and science is a thing



of the past, but the reality is that these attitudes persist, even in this
enlightened age.

A geometry teacher tells the entire class that the girls will probably do
worse in his course because they lack spatial reasoning ability. A guidance
counselor shunts female students into “practical math” classes where they
learn how many ham slices each guest would need at a wedding. A physics
professor insists on checking his female students’ work before they can
leave the lab, yet doesn’t feel the need to check the work of his male
students. A computer science professor dismisses any questions from
female students as “lazy little-girl whining.” And a calculus teacher thinks
it’s perfectly appropriate to measure his female students’ bodies and use
those measurements as part of his volume calculations in class. One woman
told of her high school math teacher who made the three female students sit
in the front row, “because girls have a harder time with math than boys do.”
It was really a flimsy excuse to ogle their cleavage and brush his crotch up
against them suggestively during exams. “Guess which three people in that
class were not about to be stuck in a basement computer lab with that
dude?” she asked (rhetorically).

I never experienced anything so horrific; my math teachers were kind
and, if not openly encouraging, they certainly were not discouraging or
hostile, nor was I ever sexually harassed. My parents were supportive of my
intellectual pursuits, if a bit bemused by my headier inclinations. Nobody
ever told me explicitly that girls weren’t as good as boys at math, yet
somehow I absorbed that message anyway. Carol Tavris, a cognitive
psychologist and author of several popular books (The Mismeasure of
Woman should be mandatory reading for young women), explained to me
that there are subtle, situational social cues that seep into our consciousness
as if by osmosis, even if we never encounter overt negative messaging
about gender.

The phenomenon is known in psychological circles as stereotype threat,
and it has been confirmed in more than a hundred scientific articles. For
example, a 2007 study in Psychological Science found that female math
majors who viewed a video of a conference with more men than women
reported feeling less desire to participate in the conference and less of a
sense of belonging than female math majors who viewed a gender-balanced



version of the video. The male math majors were immune to those subtle
situational cues. That’s stereotype threat in a nutshell.

These pressures are very real. Yet I can’t blame my ambivalence entirely
on gender. After all, plenty of boys struggle with math, too. How we self-
identify in our mathematical ability sets in at an early age and colors our
perception from then on. “If ever I had an Achilles heel, mathematics would
surely be it,” says Brian, who is studying to be an evolutionary biologist.
Yet he keeps running afoul of the dreaded math classes and worries that his
failures therein will dash his hopes of a career in science. “Nothing makes
my blood run cold like an indecipherable word problem, and the very term
‘calculus’ is enough to give me nightmares,” he confesses, sounding just
like many of the female students I encountered.

Tavris bemoans our fascination in the United States with the notion of
innate ability as the source of this kind of negative self-identification. We
are born with certain built-in talents, this reasoning goes; you either have a
gift for math or you don’t, and no amount of hard work can make up for
that lack of innate ability. I certainly bought into this notion, assuming that
because it didn’t come as easily to me as verbal skills, I lacked the “gift” of
manipulating numbers. Yet it merely required a bit more effort on my part
to learn the foreign language of mathematical symbols (vocabulary) and
processes (the rules of grammar) until I became sufficiently conversant to
solve basic problems. At heart, it is a foreign-language problem: Many
students also struggle to learn French or German or Egyptian hieroglyphics.

Consider Deborah, whose fourth-grade teacher held multiplication table
competitions in class. Deborah was highly competitive, so she worked very
hard on memorizing her multiplication tables and practicing at home. As a
result, she excelled in these competitions and became known as being
“good at math.” This had a significant impact on her later on: Whenever she
struggled with an especially tough problem, she pushed through, thinking,
“I should be able to do this because I’m good at math.” Yet her belief in her
innate ability, and her success at math, were actually the product of a lot of
hard work and repeated positive reinforcement in the classroom.

Tavris also believes that American culture has an unhealthy attitude
toward failure. It is considered a shameful thing rather than a natural stage
of the learning process. Calla initially failed high school algebra. It
shattered her confidence and instilled the telltale dislike of math that such



failure so often brings. “I hated math for making me feel stupid, and
because there was nothing enjoyable about it,” Calla said. “It was just there,
like a big black wall I would run into every once in a while, not letting me
know why it was there or why I should I care.” In reality, failure is how we
learn. Take away the freedom to fail, and it is no wonder our students aren’t
learning. Science, too, relies on failed experiments and null results just as
much as its justly touted successes in order to advance human knowledge.

The good news is that, regardless of the combination of factors that
conspire to discourage any given individual from pursuing math and
science, one good teacher can make up for all of it. I had Alan and Sean.
Calla had a dedicated high school math teacher who literally changed her
life. Everything changed when she took a class taught by a young woman
who emphasized hands-on demonstration and applications for the math. It
took some time for Calla to work through her mental blocks, but that
teacher patiently guided her every step of the way with all kinds of creative
approaches. They hammered away at the big black wall together until Calla
finally broke through and realized she was “good” at math. She went on to
major in physics in college.

There are many excellent high school math teachers, laboring in the
trenches for very little pay and even less appreciation. But they are fighting
an uphill battle. The way calculus is so often taught is clearly not reaching a
substantial fraction of students; more often than not, like my high school
self, they end up solving problems by rote, with little comprehension of
why they must perform these tasks—or get so frustrated at their inability to
solve problems that they reject mathematics for the rest of their lives.

Every teacher I know is heartened whenever they see that light bulb of
genuine comprehension turn on in a student’s brain: “Oh! This is that!” In
the same way that our favorite works of art, literature, music, or theater tend
to be those with elements we recognize and can respond to emotionally, we
tend to respond more to books, lectures, or classroom curricula that enable
us to make similar connections between the abstract concepts of math and
physics and our real-world experiences. If our emotions are engaged, even
better: That excitement and enthusiasm serve to fuel students’ desire to
persevere past the inevitable frustrating roadblocks in the quest for
knowledge.



Actor David Krumholtz plays a brilliant young mathematician on the hit
TV series Numb3rs, and he bravely participated in a panel discussion at the
2006 meeting of the American Association for the Advancement of Science
on the challenge of changing negative public perceptions of math and
science. With disarming frankness, he readily admitted—before a roomful
of scientists—that he had flunked algebra twice in high school.

Numb3rs demonstrates the relevance of mathematics better than any
pedagogical method I’ve yet encountered. Week after week, Charlie Epps
(Krumholtz) helps his FBI agent brother crack a federal case using the tools
of his trade. Math is a tough sell; couching it within the familiar crime-
solving framework renders its abstract concepts not only palatable to
nonscientists, but downright appealing. The show’s tagline sums it up
perfectly: “We all use math every day.” Even Krumholtz confessed to
developing a fascination for Pythagoras and the Fibonacci sequence
because of their prevalence in nature and art—and were it not for his role as
Charlie Epps, he might never have encountered those concepts outside of
the classroom. This suggests that his struggles with math weren’t due to a
lack of aptitude, but to how the subject matter was presented. Like many of
us, he never understood why math was important or how it could possibly
be of any use in our daily lives.

There is much weeping and gnashing of teeth in academic circles about
the sorry state of U.S. math-and-science education.

I don’t pretend to have an easy answer to a sweeping, complex problem
that confounds our best educational experts. Learning is profoundly
individual, and what resonates with one student might not resonate with
another. How can you systematize all those individual styles? But the power
of mimesis to inspire young minds should not be ignored.

Surely it is no accident that a similar interpretation of mimesis can be
applied to key breakthroughs in physics: It’s that same creative impulse,
finding inspiration in surprising connections. Albert Einstein credited his
development of the theory of special relativity to a critical insight gleaned
years before, as he sat on a train moving away from the station platform—
namely that he would measure time differently from within the moving
train than would someone standing on the platform (“this is that”).

Watching an apple fall from a tree gave Isaac Newton his critical insight
into gravity and his laws of motion: He realized the apple’s position, when



plotted as a function of time, formed a parabolic curve, and connected
motion with geometry and algebra (“this is that”). Archimedes found the
solution to the problem of Hiero’s golden crown while soaking in the
bathtub. My own modest breakthrough came on that fateful day in Santa
Barbara, when I saw the connection between an abstract calculus equation
and the motion of Saturn’s rings, and realized, à la Archimedes, “Eureka!
This is that !”



APPENDIX 1

Doing the Math

The only way to learn mathematics is to do
mathematics.

—PAUL HALMOS

 
Tell me and I’ll forget. Show me and I may not
remember. Involve me, and I’ll understand.

—NATIVE AMERICAN PROVERB

 
 
 
So, you’ve made it through The Calculus Diaries and feel as though you’re
starting to get a handle on this whole calculus thing. Maybe you’re even
toying with the idea of delving a bit further into the topic. This appendix is
here to help you take that next step. I deliberately avoided scary equations
in the main text, but sooner or later one must bite the bullet and face the
actual math head-on. Nothing here is intended to “teach” calculus—this is
not a substitute for the experience of an actual class, textbook, and/or a
private tutor—but it will give you a taste of how the concepts discussed in
the text translate into the language of math. For those who really get bitten
by the calculus bug and desire even more details, I recommend The
Complete Idiot’s Guide to Calculus by W. Michael Kelley.

Here are the most common terms and symbols you’ll encounter; this will
help you “read” basic calculus equations:
 



Function. The notation for a function is f(x). Whenever you see this at the
start of an equation, you know you’re dealing with a function of some kind:
For example, f(x) = x 2 tells you that x 2 is a function. However, just as it’s
possible to convey the same meaning using different words, there can be
more than one way to write an equation for a function. The function above
can be written more generally as f(x) = ax 2, with a denoting “some
constant.” It is also common to write f(x) simply as y. In that notation, x is
the “independent variable” (it can be anything) and y is the “dependent
variable” (it depends on x). This is important to remember when plotting
points on a Cartesian grid (see page 268).

The above function describes a parabola. The most general notation is
f(x) = ax 2 + bx + c, where x is the independent variable, y is the dependent
variable, and a, b, and c are constants. There is also the so-called vertex
form: f(x) = a(x − h)2 + k. The vertex of the parabola is the point where it
turns, and in this format, (h, k) delineates that point.

Even though these functions seem at first glance to be different from one
another, they actually all describe the same thing: a parabola. This variation
can be confusing for the beginning calculus student. I found it helpful to
view the different formulations for a function as synonyms: different words
that describe the same thing. The shifts in the structure are akin to shifting
around clauses, subjects, and predicates of sentences in grammar—there are
specific rules that kick in whenever you “reword” an equation, just as there
are rules of grammar for reworking the structure of a sentence. The overall
meaning conveyed remains the same. The true test of mathematical fluency
is the ability to see past the symbolic clutter and find the essence of a given
equation. That’s why simply memorizing formulas won’t suffice; you have
to know what they mean.
 
Limit. We discussed the concept of the limit in chapter 1. Per Kelley (aka
Idiot Guide Extraordinaire), “A limit is the height a function intends to
reach [on a graph] at a given x value, whether or not it actually reaches it.”
For instance, the limit of f(x) = 2x + 5 as x approaches 3 is 11. In math-ese,
that sentence would be rendered thus:  . The 3 is the value of x that
we are approaching, f(x) represents the function of interest, and 11 is the



limit. In this case, the limit is simply the value of the function, but other
cases are more subtle.

Sometimes the limit does not exist, most notably when a function at a
given value for x does not approach a fixed number, but instead increases or
decreases infinitely. The textbook example of this is the function f(x) = sin 

 when x = 0. No general limit exists in that case because the function
wriggles back and forth on the graph (see page 266) and never settles on a
definite numeric value. Then we can just say that the limit as x approaches 0
does not exist.
 
Derivative. The common notation for a derivative is . Derivatives arise
from ratios, or the difference between two dx points. The top value is the
change in position, say, at two different times, while the bottom value is the
difference in the time. If you want to take the derivative of f(x) = ax 2, you
would write it out like this: .

Integral. The integral is represented by a long S-shaped figure: ∫ .
A handy mnemonic device is to remember that integration is a process of

summing (S), hence the elongated S shape is its symbol. Often, when taking
an actual integral, there will be numerical values at the top and bottom of

the symbol indicating the range over which one is integrating: .



This is known as a definite integral; if there is no specified range, that is
called an indefinite integral. If you wanted to undo the work of the
derivative on f(x) = ax 2, you would take an integral and write it like this:
∫ax2 dx = .
 
Exponentials and Logarithms. It’s worth including a short note about
exponentials and logarithms, which play an important role in calculus. Like
the derivative and the integral, exponentials and logarithms are flip sides of
the same coin: Each undoes the work of the other. Start with a number, take
its exponential, and then take the logarithm of the result, and you will end
up with your original number.

That original number is the base; to take an exponential, you multiply the
base by itself x number of times. The number of times you multiply it by
itself is the power, represented in superscript: for example, 10 multiplied by
itself 5 times would be written as 105. When the base is 10, you can also
think of the power as denoting the number of zeros to the right of the initial
1. So an exponential function would be something like 2x, or 5x, where the
exponent is the variable. A power would be something like x 2, x 5, or x 3,
where the base is the variable. It’s an important distinction.

Since taking a logarithm undoes the work of the exponential, in general,
the logarithm is just the number of digits in that number. Just as with
exponentials, if we’re dealing with a perfect power of 10, for example, the
logarithm is the number of zeros to the right of the initial 1: log(10) = 1,
log(100) = 2, log(1,000) = 3, and so on. Or, to put it as generally as
possible, log(10x) = x. The only catch is that you can’t take the logarithm of
a negative number: no such animal exists. The logarithm inverts the
exponential, but you can’t get a negative number with exponentials.

THE PLOT THICKENS

Back at the start of my foray into calculus, my physicist spouse, Sean,
would leave simple problems on our home whiteboard for me to solve, like
little mathy love notes. (Yes, we have a whiteboard at home. Doesn’t



everyone?) The first set of problems focused on learning how to plot the
points generated by specific functions onto a Cartesian grid, then
connecting the dots to see the shape of the resulting curve (or “face” of the
function). I quickly figured out this was much easier to do in a handy
program called Grapher: You just plug in different values for the variable(s)
in a given function, hit Return, and the correct curve miraculously appears.
(You can do the same thing in Excel.)

It’s fun to play with Grapher, but frankly, I found it just as instructive to
slowly plot out a few functions by hand. Many of us have difficulty
grasping the notion of just what a function is: The textbook definitions,
while technically correct, usually convey little actual meaning to nonmathy
sorts like me. Literally taking a given function apart, point by point, and
slowly rebuilding it again can help bridge that gap in communication.

Let’s plot the function f(x) = ax2 onto a Cartesian grid with the familiar x
and y axes. Remember that f(x) is just another way of writing y for calculus
purposes; so we’re working with y = ax2. The process is simple, if tedious.
Assuming that a = 1, all we are doing is plugging in different values for x to
get the corresponding value for y and plotting the point where they intersect
onto the grid. I found it helpful to write down those initial values into
columns first.



We already know this will be a parabola. I chose whole numbers, both
positive and negative, for simplicity’s sake, but you can plug in any value
for x along the real number line: positive, negative, fractions, and so on. (If
you don’t include negative values, you only get half the parabolic curve.)
Remember that the function technically comprises all possible values for x
in that equation taken together—i.e., an infinite number of values. That
would be tedious to plot indeed. But you can plug in enough values along
the number line, plot out the corresponding points on the grid, and at some
point you accumulate enough points that a definite curvy pattern emerges
when you connect the dots.

I’ve described curves as representing the “faces” of functions, but those
faces can have multiple expressions. Someone who is happy, sad, or angry
will have the same basic features, but their faces can look quite different
depending on the emotions they are experiencing. The same is true of
functions. For instance, the constant a in our equation determines the size
and direction of the parabola. The larger the value of a, the steeper, or
thinner, the resulting parabola will be. Also, if a is positive, the parabola
opens upward; if a is negative, it opens downward. Where a = 2, we get a
parabola that looks like the one on page 270.

Where a = −2, we get the exact same parabolic curve, only inverted
(falling below the x axis) because the sign is now negative:



Finally, we can add additional variables: f(x) = ax2 + bx + c, also known
as y = x2 + bx + c. It’s fun to play with the basic equation and see firsthand
how changing each value for the different variables is reflected in the shape
of the resulting curve. For instance, this is what you get when you plug in
the values a = 3, b = 8, and c = 10:

It’s still the same basic function; the fundamental nature of its “face”
hasn’t changed, it’s just expressing different “emotions.”

TOP TEN FUNCTIONS



While it’s useful to practice graphing a few functions by hand, certain
functions crop up so frequently that it’s worth committing their “faces”
(curves) to memory. The top ten most common functions are listed below.
They should already be somewhat familiar, since you’ve encountered all but
one (the logarithm) in the text.

For good measure, I’m also including their derivatives and integrals,
because it’s important information for any beginning calculus student, and
why do the work of crunching those numbers all over again when past
generations of mathematicians have done it for you? It will also help you to
see the connection between the two in practice, namely, how the derivative
undoes the work of the integral, and vice versa.

1. A Constant: f (x) = c

This is the function you’d use for the velocity of a car moving at a
constant speed down a straight road, for example, as discussed in chapter 2.

Derivative:



The notation to the left of the equal sign tells us we are taking a
derivative of the constant c. The answer is 0 because the derivative
measures a rate of change. A constant, by definition, does not change, so
the rate (and hence the derivative) is 0. Integral:

∫ cdx = cx

Here, the notation to the left of the equal sign tells us we are taking an
integral. Remember that the integral is the flip side of the derivative. If we
take a derivative of the velocity to determine the acceleration of a car
moving at a constant rate, then we take an integral of the velocity to
determine how far we traveled between our starting point (a) and ending
point (b). The c tells us that we are dealing with a constant, and the dx tells
us we are taking an integral of the derivative of that constant.

If we were taking a definite integral, we would write this differently: 
= (b - a) c.The a and b variables at the top and bottom of the integral sign
simply define the range over which we are taking the integral. On the right
side of the equal sign, the notation simply tells us that we are subtracting
our starting position (a) from our ending position (b) and multiplying by the
constant c to determine how far we traveled.

2. A Straight Line: f (x) = ax + b

This is the function you’d use for the velocity of a car accelerating at a
constant rate, for example, also discussed in chapter 2.



Derivative:

Integral:

3. A Parabola: f(x) = ax2

This function pops up all over the place in physics, whether we’re
dealing with the trajectory of a cannonball, the acceleration of a falling
apple, or our motion (changing position with respect to time) on the Tower
of Terror free-fall ride in chapter 4.



Derivative:

Integral:

4. Exponential Growth Curve: f(x) = 10ax

We covered the basics of exponentials earlier. For an exponential
function, we fix the base number and let the power to which it is raised be
the variable: In this case, the base is 10 and the power is ax. This is the
function we would use to describe the almost certain annihilation of the
human race by voracious zombies in chapter 6 or the rapid growth rate of
the Dutch tulip trade in chapter 5.



Derivative:

Integral:

You’ll notice that there is some new notation here: log e. This means the
logarithm of Euler’s constant (e). I didn’t discuss Euler’s constant
specifically in the text, despite its importance, because, frankly, it muddies
the waters of comprehension for those dipping a toe into calculus for the
first time. It is an irrational number, like π, which means it goes on forever
when written out in explicit form: e = 2.71828 . . . That’s why it is usually
just left as e in an equation. The logarithm of e, in case you’re wondering, is
0.43429 . . .

5. Exponential Decay Curve: f(x) = 10−ax



This is another function that pops up frequently in physics, describing the
rate at which a cup of coffee cools, for example, or the rate at which our
sodden clothes dry out after being drenched on Splash Mountain in chapter
4. It’s exactly the same as the exponential growth curve, but the power to
which the base is raised is negative.

Derivative:

Integral:

Note that the derivative and integral of the exponential decay curve also
are virtually identical to that of the exponential growth curve, except for the
minus sign in the power.



6. Logarithm: f(x) = log(ax)

We didn’t discuss the logarithmic function specifically in the main text,
but this is what physicists often use to determine the entropy (disorder) of a
physical system, such as a box filled with gas, a black hole, or Carnot’s heat
engine in chapter 7. Note that because there is no such thing as a logarithm
for a negative number, the curve is not defined for negative values of x.
Instead, as x approaches 0 moving from the right, the logarithm goes to
minus infinity.

Derivative:

Integral:
∫ log ax dx = x log( ax ) − x + c

7. Sine: f(x) = sin(ax)

This is an example of a periodic function: one whose values repeat over
and over, at the same rate and at the same intervals in time. That interval is



called the period. We encountered sine waves, or sinusoid curves, in chapter
9 while talking about ocean waves, but the concept can apply to any
wavelike phenomenon (light waves, sound waves, gravitational waves) or
any process that repeats itself after a fixed period of time (the ticking of a
clock, a human heartbeat, the rising of the sun every twenty-four hours).

Derivative:

Integral:

8. Cosine: f(x) = cos(ax)

The cosine is the complement to the sine function, and is also an example
of a sinusoid curve, applying to wavelike behavior.



Derivative:

Integral:

9. Catenary (or Hyperbolic Cosine):

This is the curve we discussed in chapter 8 that when inverted describes
the strongest possible shape for an arch. Here we encounter Euler’s constant
again, this time as the function ex. Like other irrational numbers, e has
some unusual properties. For instance, the function e x is the only function



—other than f(x) = 0—that is equal both to its own derivative and to its own
integral. You can see this clearly in the notation below.

Derivative:

Integral:

10. Bell Curve (Gaussian Distribution): f(x) = ae− x2 .

This is perhaps the function best known to the general populace, albeit
one that is often misunderstood. We encountered it in chapter 3 when
discussing the probabilities of craps, but it is applicable to almost any
situation involving a large number of random variables, such as the Black-
Scholes model used in economics for options pricing, among other



applications. It is also useful for calculating the probability of a given
characteristic in a large population and for determining SAT scores or
academic grades (known as “grading on a curve”).

Derivative:

Integral: There is no known integral for the Bell curve. It can be calculated
on a computer but not written in an explicit form.

WORKING IT OUT

Now it’s time to put all the pieces together and see how calculus really
works. These are simple examples that can be done with pencil and paper,
but it’s worth investing in a scientific calculator if you’re planning to delve
deeper into calculus. Let the machines do the tedious task of number
crunching; real math is all about solving problems creatively, not rote
mechanics.
 



Finding the Limit. We’ll start with some handy tricks for finding the limit
of a given function (assuming the limit exists; sometimes there is no limit).
Trust me, this will come in handy when we get to derivatives. Earlier we
looked at the function f(x) = 2x + 5, representing a straight line with a slope
of 2 and a y-intercept of 5. The limit of f(x) as x approaches 3 equals 11.
This just means that as we plug in values for x that are closer and closer to
3, the height of the graphed function gets closer and closer to y = 11 (aka
the limit).

How do we know this? Well, it becomes fairly obvious if you plug in a
series of values that get closer and closer to 3. For example, x = 2.9 gives a
limit of 10.8, while x = 2.95 gives a limit of 10.9, and x = 2.99999 gives a
limit of 10.99998. The closer the value of x is to 3, the closer the answer is
to 11. Ergo, 11 is the limit of this particular function when x = 3.

But this is a tedious and time-consuming process that merely
approximates the limit; we’d prefer to determine the limit precisely. The
simplest strategy is called the substitution method: You just plug in the
value of whatever number is specified under the “lim” notation. For
example, let’s find the limit of a parabolic function, f(x) = x2, as x

approaches  Plug 2 into the equation, and we get 4. So 
Similarly, to find the answer to , make x = 4, so that 42 − 4 + 2

= 14. So 
You can verify this by using the graph of the function f(x) = (x2 − x + 2):

another parabola. Simply plug in a few values both above and below 4, and
you should see the results come closer and closer to 4 as those values trend
closer and closer to 4.

Alas, it is not always that simple. Sometimes when you substitute the
number specified under the “lim” notation, you get a nonsensical result,
such as a 0 in the denominator, which is a mathematical taboo. In that case,
you could use the factoring method to simplify things a little. Let’s say we
want the answer to . If we try to plug the value −3 into the equation,
we end up with This is not helpful.

So we switch tactics and factor the numerator; x2 and 9 both happen to
be perfect squares. (There’s a reason I chose this particular example.) The



result is 
Aha! We learned in high school algebra that if you have the same

expression in the numerator and denominator, they cancel each other out: In
this case, we have (x + 3) in both the numerator and denominator. Cross
them out, and that gives us a far simpler problem: 

Now we can revert back to the substitution method and plug in 3. This
time we get: −3 − 3 = −6. So  As Sean explains, “The limit of
the function is well defined at x = −3, even though the function itself is
not.”
 
Finding the Slope of a Straight Line. In chapter 2 we went on a road trip
from Los Angeles to Las Vegas, using highly idealized parameters to
illustrate the fundamental concepts of what is essentially precalculus. For
illustrative purposes, we’ll use another idealization here: that of a car
accelerating to the speed limit, then traveling for a while at a constant
speed, before braking suddenly to avoid an obstacle in the road. If we
graphed our changing velocity as a function of time, the resulting curve
would look like this:

Yes, this shape technically is still a “curve,” despite its straight edges.
Because we are dealing with straight lines, it is pretty easy to determine the
slopes of S1, S2, and S3. We simply pick any two points at random on the
line of interest, (a,b) and (c,d ), and plug those values into this handy



formula:  let’s pick the beginning and ending points (0,0) and
(3,5). Plug those values into our formula and we get . It’s simple
arithmetic to determine that S1 = 1. We can follow the same process for S3,

using points (6,5) and (9,0). We get The fact that the slope is
negative means we were slowing down.

The slope of S2 is 0 because it is perfectly horizontal, or flat. Because we
are traveling at a constant speed, there will be no difference between the
values of those two points. (Perfectly vertical lines have no slope at all, and
thus the slope is said to be “undefined.”)

Recall that the steepness of the slope tells us the rate at which those
values are changing (the derivative); the steeper the slope, whether trending
upward or downward, the faster its value is changing. You can also see this
trend in the above formula. If the numerator (top) is larger than the
denominator (bottom), then the y’s are changing faster and therefore the line
is getting steeper. If the denominator is larger, that means the x’s are
changing faster and the line forms a shallow incline, because it is moving
more quickly to left or right than it is moving up and down. So it should be
clear that the above curve describes a car accelerating, then cruising at a
constant speed before decelerating.
 
Finding the Area. It is an equally simple matter to find the area under this
particular curve by breaking it into common geometric shapes: a rectangle
bounded by two triangles.

We can find the area of the two triangles by halving the base and
multiplying that number by the height, written algebraically as A = ½ bh. (A
stands for area in this context, b stands for base, and h stands for height.)
We find the area of the rectangle by multiplying the width times the height,
written algebraically as A = wh, where w stands for width. Then it’s just a
matter of adding those three areas together to find the total area under our
simple curve.

For both triangles, h = 5 and b = 3. So we can multiply 2.5 by 3 to get an
area of 7.5 for each. The same goes for the rectangle in the center; we
multiply 3 by 5 to get 15. Then we add it all together (15 + 7.5 + 7.5) and
we end up with a total area of 30. Simple, right?



THINGS GET MESSY

Alas, the real world rarely fits neatly into these sorts of idealized models. In
reality, for the above example, our speed and direction would be varying
constantly, and we would not be dealing with simple straight lines, but with
curves. This is the true value of calculus: It helps us solve more difficult
problems dealing with change and motion using known derivatives and
integrals for given functions. Once again, the derivative describes rates of
change and corresponds to the slope of the tangent line to a particular point
on the curve, while the integral corresponds to the area under a curve. It’s
just a little trickier to find those values when dealing with irregular
geometric shapes.

In chapter 4, we experienced free fall while riding the Tower of Terror
and learned that plotting our motion (change in position) as a function of
time onto a graph produced a parabolic curve. This parabolic curve
represents our position function (height, h, as a function of time, t): 

 Let’s say we want to figure out our instantaneous velocity at a
specific point. We need to find the slope of the tangent line for that point,
which is equivalent to the derivative of our position function.

So we know our position function, and we also know the value of the
constant b, namely our starting height. The Tower of Terror is 199 feet high;
we can round up to an even 200 feet to make our calculations easier. So b =
200. Finally, we know the value of a, since falling objects travel at −32 feet
per second per second; half of that is −16. (The sign is negative because our
height decreases as we fall.) Plug those values into our starting function and
we get h(t) = -16t2 + 200. Now we’re ready to start differentiating.
 
Derivatives: The Hard Way. I won’t lie to you: Things are about to get
ugly. But it’s instructive to walk through every painful step just so we can
fully appreciate how useful calculus can be when we see the simplified
process in the next section. We begin by picking our point (h1,t1). We draw
a straight line tangent to that point, and now we want to find the slope,
which in turn will give us our instantaneous velocity. The problem is that
our chosen tangent line only hits the curve on a single point. We can still



pick another nearby point (h2,t2) and use our nifty formula above to
calculate the difference between them, but this time it won’t be the exact
slope, merely an approximation. The closer the two points are to each other,
the better the approximation we will get. (Note that when both points
(h1,t1) and (h2,t2) are the same, we end up with Having 0 as your
denominator is taboo in math.)

But we want to find the exact value for the slope of the tangent line. The
good news is that we have another nifty for mula for just this sort of
problem:  where Δ stands for a tiny increment. The bad news is that
we have no idea what the values are for h2, h1, or Δh.

First things first: We need to find the value of h2. We can find h2 by

plugging t2 into our starting function, like this: h(t2) = −16t22 + 200.
We know that t2 = t1 + Δt, so we can substitute that expression for t2,

like this: h(t2 ) = −16(t1 + Δt)2 + 200.
We want to break this down as much as possible. Think of it as

deconstructing our equation, i.e., reducing it to its individual components,
the better to manipulate the pieces. For instance, we can rewrite the
equation above as

h(t2) = −16(t1 + Δt ) (t1 + Δt ) + 200.
I’ll skip over the next few steps, which just involve further

deconstruction according to the “grammatical rules” of math; suffice it to
say, we end up with this:

h(t2)= −16(t12+2t1Δt +(Δt)2)+200.
Things are starting to get very confusing, and we’re not done yet. Next

we need to find the value of h1. Happily, this is just our starting function:

h1 = −16t12 +200.
Now we can subtract h1 from h2 to get Δh:

Δh= −16t12−32t1Δt−16(Δt)2+200−(−16t12+200)
Once we’re done deconstructing that equation and canceling out all the

extraneous stuff, we end up with a far more malleable version: Δh



=−32t1Δt−16(Δt)2.

Finally, we divide the whole mess by 
This can be simplified even further to give us 
Now our old friend the limit comes into play. We take the limit by setting

Δt to .
We’ve already solved for above, so we can plug that value in and

rewrite this as (-32t1 - 16∆t) = -32t.
When all is said and done, we end up with v(t) = −32t. Physics fans will

recognize this as the stock formula for determining velocity: Velocity is
equivalent to acceleration multiplied by time, written generically as v = at.
 
Derivatives: The Easy Way. I hope you feel a few twinges of compassion
for the poor souls who went through the above process over and over again
to find the derivatives of all the major functions, then compiled them into a
master list for subsequent generations. It’s so much easier these days,
because we know the derivative of t2 is 2t, for example, and even if we
don’t, we can look it up.

Let’s revisit our problem again using this simpler process. We know we
have a starting function of h(t)=−16t2+200. We want to know our
instantaneous velocity when t = 1 second. So we take a derivative to find
the relevant velocity function: .

Because we know the value of h, we can use substitution to rephrase the
question as 

Next we break up those parenthetical expressions to get



Now we move the −16 from the parentheses to get Where did
that 0 come from? We took the derivative of 200, which is a constant, and
one of the hard-and-fast rules in calculus is that the derivative of any
constant is 0, because the derivative describes the rate of change and a
constant doesn’t change.

All we have left to do is find the derivative of t2. This is where we can
skip all those in-between steps, because we know that the derivative of t2 is
2t. That means we can plug 2t into The equation, so we end up with = -
16(2t).

We know that  is equivalent to v(t). Multiply it out, and you end up
with the same answer we got via our earlier belabored process: v(t) = −32t.
Translated back into plain English: Our instantaneous velocity at our chosen
point on the curve is −32 feet per second and because the velocity is
equivalent to the slope of our tangent line, that slope is also −32t. (Our
velocity is changing over time, so t must be included.)
Taking an Integral. The integral is the reverse of the derivative, so now we
will reverse the question. This time we know our velocity as a function of
time: v = at. We want to determine our position at a given point in time,
denoted as h(t). The integral corresponds to the area under a curve, which is
fairly easy to calculate in this case, because our velocity function translates
graphically into a straight line. So we just need to find the area under that
line by dividing the base by 2 and multiplying that number by the triangle’s
height .

But let’s say our starting function gives us a bona fide curve with no
straight lines or triangles to assist us; now things become complicated.
We’ve already seen a method for approximating the area under a curve in
chapter 1: the aptly named method of exhaustion pioneered by Eudoxus,
whereby we fill in the curve with a series of rectangles for which it is a
simple matter to determine the area. We calculate those individual areas,
then add them all together to get an approximation of the area under the
curve. The smaller the rectangles we use, the more of them it takes to fill
the area under the curve, and the closer the approximation. We literally
could do this forever, using infinitesimally small rectangles.



Luckily for us, there is another way: taking an integral. It’s a bit harder
than finding the area of a triangle, but it simplifies matters greatly when
trying to determine the area under a curve, so it’s worth walking through the
process for v = at. (I will spare you the full derivation. You’re welcome.)

We can write out our question mathematically like this: h(t)=∫v(t)dt. This
just says that we are integrating velocity (v) over time (t), adding all those
instantaneous velocities together to determine our position (h).

Thanks to our handy velocity function, we know that v=at, so we can
replace v(t) with at to get h(t ) = ∫at dt .

Another handy rule of calculus is that whenever you integrate a constant
multiplied by a function, like at, you can bring that constant outside the
integral symbol, like this:

h(t)=a∫tdt.

Now we can get rid of both our integral symbol and the dt by looking up
the integral for t, which turns out to be  We’ve picked up a constant
because of another hard-and-fast rule of calculus: Whenever you take an
indefinite integral—i.e., when no beginning and ending point is specified—
your answer is going to have a constant (hence the waggish habit of
physicists to jokingly add “plus a constant” to random observations). It
makes sense if you think about it for a moment: The integral corresponds to
the area under a curve, which by definition describes a given range. Even if
we don’t know what that range is, we still need a placeholder in our
equation: c represents that constant of unknown value.

We plug all of that into our equation to get this:

Look familiar? It’s our best buddy, the parabola! So now we know that if
our velocity increases like a straight line (v=at), our position increases like a

parabola (also written as  And we can prove it mathematically.
 



Fun with Functions. But the point is, we’ve found our position function in
just a few easy steps:  Now we can determine our position (h) for
any value of t.

Remember that in our free-fall scenario, b = 200 and a = −32. For
instance, what is our position (h) when t = 1? It’s 184 feet. When t = 2, h =
136 feet, when t=3,h = 56 feet, and so on. In fact, we can devise an
algebraic equation from our position function to determine when h will
equal 0 and we will hit the ground if we fell from atop the Tower of Terror.

Since we’re solving for t, it looks like this: 

Plug those numbers into our formula like this: . The minus signs
cancel out and we get 

Now it’s just a matter of factoring down until we get . Our handy
calculator tells us the square root of 2, we divide 5 by that, and the answer
is t = 3.5. So we will hit the ground and go splat 3.5 seconds after we start
falling.



APPENDIX 2

Calculus of the Living Dead

Time to nut up or shut up.
—TALLAHASSEE, Zombieland

 
 
 
A particularly virulent form of human-adapted mad cow disease sweeps
across the United States in the 2009 hit film, Zombieland, transforming
most of the nation’s populace into ravenous zombies. The film follows a
ragtag group of unlikely survivors on a road trip in hopes of finding
someplace yet untouched by the disease, ending with a pitched battle
against zombie hordes in an abandoned amusement park. Zombieland beat
out the Dawn of the Dead remake as the top-grossing zombie film to date.
You just know there’s going to be a sequel.

Let’s say that in this much-anticipated sequel, Columbus, Wichita, Little
Rock, and the Twinkie-craving Tallahassee manage to find an uninfected
haven and enjoy a brief respite from battling the Undead. Then the first
zombies appear, and the refugees know their days of peace are numbered. If
they knew the rate of infection—that is, how quickly the zombie population
is growing—they could predict when those numbers would become
overwhelming and could plan to evacuate before the situation grew dire.
With luck, they could just keep moving, always staying one step ahead of
the zombie plague. All they need is a bit of calculus.

To solve this problem, we must delve into the murky realm of differential
equations, which sound scary but are really just equations that contain a
derivative. This is a bit more convoluted than the problems in appendix 1,
but as I discovered in my own odyssey, at some point you’ve got to nut up



or shut up and face the monsters head on if you’re serious about learning
calculus. You never know when this sort of thing might help you survive a
zombie apocalypse.

Why do we need a differential equation? Remember that exponential
growth (or decay) in populations—how fast something grows (or declines)
—depends on the size of the population itself. (A perfect exponential model
would require infinite resources, a condition that rarely exists, but for
illustrative purposes, it will suffice.) Solving the differential equation will
give us the key to determining how many zombies there will be at any time.

We’ll use a textbook sample problem, cribbed from Kelley: = ky.



In the above equation, y represents the population of zombies, x
represents the time that has passed, and the derivative is the rate of change
in the number of zombies. The constant (k) describes how quickly the
zombies multiply.

The first step toward solving a differential equation usually involves
shifting different variables to opposite sides of the equation—we’re
essentially rephrasing the question. In this case, we want to isolate y on the

left side of the equation. A mathematician will tell you that isn’t “really”
a fraction, but standard rules of algebra still apply. To move y from left to
right, we must divide both sides of the equation by y: do this and you get 

 = k.
We want y all by itself, so now we have to move dx to the right side of

the equation. This is easily accomplished by multiplying both sides of the

equation by dx to get = kdx.
Since we want to add up the number of zombies over time, we now

integrate both sides of the equation to find the integral. We would write this

mathematically as  Fortunately, k is a constant, and we learned a
neat trick for determining the integral of a constant in chapter 2. Just as the
integral of 5 is 5x, the integral of k is kx. Meanwhile, on the left-hand side,
we have the integral of  with respect to y, which just happens to be the
natural logarithm function ln(y). We would end up with ln(y)=kx+c.

Because we used an indefinite integral, we’ve picked up a constant (c), as
well as that pesky natural log function (ln). Fortunately, we can cancel out
the natural log function by using the natural exponential function, ex,
described in appendix 1. This is the inverse function to a natural log, which
means it undoes what the log has done. (Inverse functions are tools to
eliminate something you don’t want in an equation—in this case, the natural
log function.) We can rewrite our equation like this: eln(y) = ekx+ c. All
we’ve done is change each side of the prior equation so that it’s expressed
as a power of e. Because ex and ln x cancel each other out, we end up with
y=ekx+c.



This is a solution of sorts, but we can simplify it even further. First,
there’s a basic rule when dealing with exponentials that when we have
xa+b, we can rewrite it as xa⋅ xb. So we can rephrase the equation yet again
as y= ekx⋅ec.

Finally, we can rewrite eC as simply C since both are constants; that lets
us combine them into one big constant. After all is said and done, we end
up with the function y = Cekx. Whew! This is the equation that encodes the
answer to the question we’ve posed.

If you’re anything like me, by now your head hurts, and you just want to
be done with it. But remember the zombies! We need to figure out how fast
the zombie infection is spreading, because our very lives may depend on it.
As we learned in chapter 2, the solutions to differential equations aren’t
specific numbers; they are new equations. And this particular equation
holds the key to determining the growth rate of the zombie population.

What does our new equation tell us? Well, C stands for the initial
population of zombies (a constant number that doesn’t change), while y
now stands for the total zombie population after a certain amount of time
(denoted by x) has passed. We’ve got Euler’s constant (e) lurking around as
well, but we need not worry about it just yet. That leaves k, which will tell
us the rate of zombie infection.

We need to figure out the value of k. We start with the initial zombie
population: Let’s say on day 1 there were 19 people who ate contaminated
hamburger and turned into zombies ravenous for tasty brains. Ten days
later, we count again and discover their ranks have swelled to 193 zombies.
That’s all the data we need to solve for k, using our handy little formula: y =
193 (new number of zombies), C = 19 (beginning number of zombies), and
x = 10 (days that have passed): 193 = 19e10k.

Next we take a series of steps to simplify and solve this equation. Since k
is the value we want to find, we must isolate k on the right side of the
equation. First we divide by 19 on both sides of the equation:  .

Now we need to get rid of that annoying exponential function, which we
do by reintroducing the natural logarithm: .

Next we divide both sides of the equation by 10 to isolate .



Finally, we get our answer: k = 0.2318. Aren’t you glad you invested in
that calculator? Brace yourself, because we’re not quite done yet.

Now we can plug the values for C and for k into our handy little
equation: y = 9e 0.2318x. With this information, we can determine the
number of zombies there will be any number of days in the future, just by
varying the x factor. Voila! We have a truly predictive model; that is the
beauty of the mathematical function.

For instance, how many zombies will there be after thirty days? Make x =
30, and we get 19,914 zombies. Hmmm. That’s some serious exponential
growth. I’m sure our merry band of zombie killers would agree: We will be
outnumbered very quickly. Evacuation is definitely in order.
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1
This account is given by Valerius Maximus, in Memorable Doings and
Sayings. Historians differ as to how the soldier slew Archimedes, but a
medieval woodcut depicts his head being cleft in two. Several accounts
report that Marcellus was much distressed by the mathematician’s death,
since he had great respect for the man’s ingenuity—even though that
ingenuity had delayed his conquering of Syracuse.

2
Sophie Germain is best known for inventing the “Germain primes.” If you
double a Germain prime number and add 1, you get another prime number.
For example, double the prime number 2 is 4, plus 1 is 5—which is also a
prime number.

3
To give you an idea of the depth of my ignorance at the outset, The
Complete Idiot’s Guide to Calculus proved to be a bit over my head.
Perhaps it should be retitled The Half-Wit’s Guide to Calculus.

4
Spinach turned out to be the key to unlocking the mystery. Uwe Bergmann,
a Stanford physicist at the Synchrotron Radiation Laboratory, heard about
the Archimedes palimpsest at a conference in Germany and realized his
method for studying photosynthesis in spinach could also be applied to the
parchment, without damaging the manuscript. Spinach contains iron; and
the ink used on the palimpsest also contained iron, so the same technique
could be used.

5
Abraham Lincoln kept a copy of Euclid in his saddlebag, and studied it late
at night by lamplight. “You never can make a lawyer if you do not
understand what demonstrate means; and I left my situation in Springfield,
went home to my father’s house, and stayed there till I could give any
proposition in the six books of Euclid at sight,” he later wrote.

6
From an account by John Zonaras, who wrote in the twelfth century A.D.:
“At last in an incredible manner he burned up the whole Roman fleet. For
by tilting a kind of mirror toward the sun he concentrated the sun’s beam
upon it; and owing to the thickness and smoothness of the mirror he ignited
the air from this beam and kindled a great flame, the whole of which he



directed upon the ships that lay at anchor in the path of the fire, until he
consumed them all.”

7
A Welsh mathematician named Robert Recorde is credited with inventing
the equal sign. He used it first in his 1557 treatise The Whetstone of Witte,
which introduced algebra to England.

8
The acceleration is constant once the apple starts falling.

9
Another of Zeno’s paradoxes involved Achilles in a footrace with a tortoise.
Since Achilles is so much faster, the tortoise gets a head start. Each time
Achilles closes the distance by half, the tortoise also moves a bit more
ahead. The distance between them gets smaller and smaller, but Achilles
can never catch up, since the progression goes on forever. Except in real
life, it doesn’t, and he can pass the tortoise quite easily.

10
My former college English professor, Janet, says that her epiphany on the
limit came during a lecture on Zeno’s paradox of Achilles and the tortoise,
using the number .111 . . .—which is equivalent to 1/9, the point where
Achilles catches up with the tortoise (i.e., the limit). Janet didn’t take the
matter on faith. The woman is a rigorous scholar, so she did all those
painstaking calculations herself, adding everything up to find that this
endless series of repeating decimal places really did converge to 1/9.

11
According to the many billboards dotted along I-15 advertising the Mad
Greek Cafe.

12
Othello, act III, scene 3, line 365.

13
You will find a mathematical breakdown of this process in appendix 1.

14
Physicists are probably freaking out reading this, since they habitually use p
to denote momentum, having already assigned m to denote mass in their
equations. But it’s the context that gives the variable meaning, so for now,
I’m sticking with p.

15



The eighteenth-century mathematician Johann Bernoulli, whom we will
meet in chapter 8, also appreciated the difficulty. “But just as much as it is
easy to find the differential (derivative) of a given quantity, so it is difficult
to find the integral of a given differential,” he once wrote. “Moreover,
sometimes we cannot say with certainty whether the integral of a given
quantity can be found or not.” † The derivative of ax N is anxN-1 (a times n
times x times xN-1) for any constants a and n. Likewise the integral of ax N

is equal to  . Now aren’t you sorry you asked?
16

Yes, a Prius can get up to those speeds, as we learned in 2007 when former
vice president Al Gore’s son was pulled over for going 110 mph in his
hybrid. And the car’s sleek aerodynamic shape means it has a lower drag
coefficient than, say, the boxy Scion xB.

17
It may very well be safer to drive more slowly, according to a 2008 study
by scientists at the University of Adelaide in Australia. They found that the
risk of serious injury or death from a car crash doubles for every 5 km/h
above 60 km/h. So if you’re traveling at 65 km/h, you are twice as likely to
be involved in a serious or fatal crash; at 70 km/h, that risk is four times as
high. This is because drivers need at least 1.5 seconds to respond to a
perceived danger, and the faster one travels, the less time there is to react.

18
“Einstein is gambling as if there were no tomorrow,” an eminent physicist is
said to have remarked. His companion replied, “What troubles me is that he
may know something!”

19
According to Dominic, the origin of the term eighty-sixed dates back to the
days when the Mafia ran Vegas casinos. Whenever cheaters were caught,
the pit boss would instruct his henchmen to “eighty-six that guy”—code for
taking the victim eight miles out of town and burying him six feet under.

20
Crapaud is French for “toad,” you see, and the French are oh-so-fond of
eating plump, juicy frog legs sautéed in butter and lots of garlic. An
alternative theory is that the name is a corruption of a losing throw in



hazard, called crabs, but that explanation lacks the jaunty panache of the
crapaud theory.

21
In May 2009, a middle-aged woman from New Jersey named Patricia
Demauro set a new record for the longest craps roll in recorded history: four
hours and eighteen minutes. It was only her second time playing craps. She
finally lost after 154 rolls of the dice.

22
Legend has it that the American Physical Society once held its annual
meeting in Las Vegas. The assembled physicists shunned all the usual
decadent delights: show-girls, hookers, blackjack, roulette, craps, and
copious amounts of alcohol, plus they were lousy tippers. There wasn’t a
single barroom brawl. The city made so little money, the APS was asked
never to come back to Vegas. Now the society holds its major meetings in
more sober, straitlaced places like Cincinnati, Indianapolis, and Denver.

23
Apparently Disney was forced to choose between working water fountains
or running toilets, and he wisely chose the latter. That didn’t stop the
ungrateful crowds from accusing him of deliberately sabotaging the water
fountains to sell more soda (Pepsi had sponsored the park opening).

24
A group of British adrenalin junkies formed the Oxford University
Dangerous Sports Club and leaped from Bristol’s 250-foot Clifton
Suspension Bridge in 1979. They were promptly arrested, but undeterred:
They went on to jump from the Golden Gate Bridge, mobile cranes, and
hot-air balloons.

25
Check out appendix 1 for the mathematical solution to this problem.

26
I was relieved to learn her father married three times, since the thought of
one woman enduring that many pregnancies boggles the mind.

27
Scott Carpenter, Gordon Cooper, John Glenn, Wally Schirra, Alan Shepard,
and Deke Slayton. Alas, Gus Grissom was one of three astronauts killed ten
years earlier in a tragic launch-pad fire.

28



Which is not to say there isn’t considerable art involved in designing a good
roller coaster. “This isn’t rocket science; it may be more complicated than
that,” Space Mountain’s ride track engineer Bill Watkins recalled. “Once a
rocket leaves the Earth’s atmosphere, there is little drag to contend with . . .
[and] they don’t have to worry about getting a Mickey Mouse hat caught in
their wheels.”

29
Many of the animatronic animals are recycled from an older, less popular
attraction called “America Sings,” which closed in April 1988, because
construction of Splash Mountain was already far over its $75 million
budget. Sadly, the animals still sing.

30
Eureka (Greek heurēka) means “I’ve found (it),” and ever since, surprising
scientific insights have been known as eureka moments. Ironically,
Archimedes most likely never said that, certainly not while running naked
through the streets. Blame the Roman architect Vitruvius, who first
recorded the anecdote two hundred years after Archimedes’ death.

31
There is still considerable debate as to whether tulip mania constituted a
true bubble market in modern economic terms. A bubble forms when
investors place so much demand on a product that the price soars far
beyond what that product could possibly be worth. Wikipedia offers a
corollary to that definition: “For tulip mania to have qualified as an
economic bubble, the price of tulip bulbs would need to have become
unhinged from the intrinsic value of the bulbs.” Did this happen or not?
Discuss.

32
I am cheating a little by assuming a constant rate of change.

33
This works in reverse on mortgage interest. Not all of your monthly
payment goes toward paying off your principal. Most of it goes toward
interest in the early years, because interest is always paid on the outstanding
balance of the loan, which decreases over time as you pay down the
principal.

34



See appendix 2, “Calculus of the Living Dead,” for a detailed breakdown of
this type of calculus problem.

35
An alternate theory proposes that while Y. pestis is responsible for modern
outbreaks of plague—and yes, there are still outbreaks around the world,
mostly concentrated in Africa—the Black Death that ravaged Western
Europe in the fourteenth century was caused by something like anthrax or
an Ebola-like virus. The evidence is sketchy, however. An analysis of the
remains of early plague victims in France showed DNA from Y. pestis and
none from anthrax, for example.

36
It was discovered simultaneously by a Japanese scientist named
Shibasaburo Kitasato, but the microbe is named after Yersin.

37
Yes, there really is a question mark at the end of his name. He changed it to
distinguish himself from the zillions of other Robert Smiths in the world,
including the lead singer of the Cure: “It’s been twenty years now and sadly
his career shows no sign of drying up,” the epidemiologist laments.

38
The researchers’ model is based on the zombies as featured in Night of the
Living Dead, as opposed to the modern take depicted in, say, 28 Days Later,
wherein the zombies were smarter and moved faster than the lurching,
drooling classic monsters whose sole purpose is to devour delicious brains.

39
The blog Southern Fried Science adapted Smith?’s models to a new
scenario: pitting zombies versus vampires to determine which species
would be most likely to survive. They concluded that zombies would
eventually rule the earth in that scenario, unless the vampires and humans
joined forces against the zombies.

40
Think you can ease that painful burning sensation by soaking it in water?
Bad idea. That just makes the adult female worm release hundreds of
thousands of her larval spawn, further contaminating the water supply. The
only way to get the worm out of your body is to wait until it pokes its head
through the blistering skin, then wrap it around a stick and gradually pull it
out. That process takes at least a month - a long, very uncomfortable month.



41
“What’s your Erdős number?” in honor of mathematician Paul Erdős,
replaces “What’s your sign?” as the pickup line of choice in math and
science departments. Erdős is the Kevin Bacon of mathematics.

42
Ironically, the same cell phones Eagle is using to track social networks
could be helping to spread one of the most virulent strains of
Staphylococcus aureus, known as MRSA—a serious issue facing hospitals
today because it is highly resistant to antibiotics. Turkish researchers tested
the cell phones of many doctors and nurses in hospital operating rooms and
intensive care units in Turkey. Almost 95 percent of those devices showed
bacterial contamination, and only 10 percent of the staff regularly cleaned
their cell phones.

43
The Swedish town of Halmstad has taken the concept of human-powered
energy one step further: Residents may soon draw on excess heat from the
local crematorium to stay warm in winter. Director Lennart Andersson
came up with the idea after learning his facility was belching too much hot
smoke into the atmosphere. “We realized that instead of all that heat just
going up into the air, we could make use of it somehow,” he told the
London Daily Telegraph in 2008.

44
William was way ahead of his time. Nine centuries later, Robert Cameron
introduced the Drinking Man’s Diet in 1964. It was actually a treatise on
controlling carbohydrates but emphasized that gin and vodka are low-carb
libations and should be liberally enjoyed. It gave rise to the far sillier
Martinis and Whipped Cream Diet.

45
According to my extremely thorough copyeditor, the legend that Ruth’s
collapse and surgery for an abdominal abscess was directly caused by
gorging on hot dogs apparently was invented by W. O. McGeehan. Others
equally dubiously implicated a venereal disease. In retrospect, intestinal
injury from bootleg Prohibition booze seems a more likely culprit. See
Babe: The Legend Comes to Life, by Robert W. Creamer, pp. 289ff, plus the
Wikipedia discussion and other sources.

46



Beverly Hills doctor Craig Alan Bittner took the “fat as fuel” concept
literally. He converted discarded fat from his liposuction patients into
biodiesel for his SUV. Fat fuel yields the same mileage as regular diesel,
according to the National Biodiesel Board; some start-up biofuel companies
mix beef tallow and pig lard with soybean oil and other vegetable sources
for their biofuels. Bittner claimed his patients volunteered their discarded
fat for fuel, but several former patients filed lawsuits charging that he
removed too much fat, leaving them disfigured. (That SUV is a gas
guzzler.) He also allegedly let his girlfriend perform surgeries without a
medical license. Bittner left the country in 2008 for South America.

47
This is also why it’s a bad idea to cut calories too drastically or to exercise
excessively. The body will think there is a famine and will further slow its
metabolism to conserve fuel, packing on as much extra poundage as it can.
In general, losing more than two pounds per week will trigger the body’s
super-saver mode.

48
Maybe not subtle enough. In 1980, a man named Kenneth Swyers took that
whole “soaring effect” a bit too literally. He tried to parachute onto the
arch’s span and died in the attempt, garnering a posthumous Darwin Award
for his effort.

49
In Galileo’s defense, the two curves are very similar. In fact, the chains or
cables on a suspension bridge initially sag in a catenary shape and then
settle into a parabolic curve as additional cables are added for extra
stability.

50
A highlight of the park’s main terrace is a long bench shaped like a sea
serpent. Legend has it that Gaudi used the shape of buttocks left by a naked
workman sitting in wet clay to design the unusual curvature of the bench’s
surface. Why the workman was sitting naked in wet clay to begin with
remains shrouded in mystery.

51
Completion may be threatened by plans to build a tunnel for a high-speed
rail under that portion of the city, which could cause structural damage to
the cathedral, as well as two other Gaudi landmarks, Casa Batlló and Casa



Milà. Such fears are not unwarranted: In 2005, a metro tunnel collapsed and
wiped out an entire city block in Barcelona.

52
Technically, this is true only if we are measuring all angles (x) in radians, as
opposed to degrees. One radian is equal to 180/π degrees.

53
It’s been said by more than one educator that physicists use fictions all the
time in the classroom, since standard introductory textbooks ignore
complicating factors such as friction.

54
England had its own tyrant of method and correctness: a seventeenth-
century math teacher named Edward Cocker, author of a 1667 textbook
called Cocker’s Arithmetick: Being a Plain and Familiar Method Suitable
to the Meanest Capacity for the Full Understanding of That Incomparable
Art, as It Is Now Taught by the Ablest Schoolmasters in City and Country.
This book became the standard for British grammar schools for generations.
These days we have the far more succinct Math for Dummies.


	Praise
	Title Page
	Copyright Page
	Dedication
	Acknowledgements
	1 - To Infinity and Beyond
	2 - Drive Me Crazy
	3 - Casino Royale
	4 - The Devil’s Playground
	5 - Show Me the Money
	6 - A Pox upon It
	7 - Body Heat
	8 - The Catenary Tales
	9 - Surfin’ Safari
	EPILOGUE
	APPENDIX 1 - Doing the Math
	APPENDIX 2 - Calculus of the Living Dead
	BIBLIOGRAPHY
	INDEX

