

MANAGING AND CONSUMING COMPLETENESS INFORMATION FOR
RDF DATA SOURCES

Studies on the Semantic Web

Semantic Web has grown into a mature field of research. Its methods find innovative applica-
tions on and off the World Wide Web. Its underlying technologies have significant impact on
adjacent fields of research and on industrial applications. This book series reports on the state
of the art in foundations, methods, and applications of Semantic Web and its underlying
technologies. It is a central forum for the communication of recent developments and com-
prises research monographs, textbooks and edited volumes on all topics related to the Se-
mantic Web.

Editor-in-Chief:
Prof. Dr. Pascal Hitzler

Department of Computer Science, Kansas State University, Manhattan, KS 66502, USA
Email: hitzler@k-state.edu

Editorial Board:

Diego Calvanese, Vinary Chaudhri, Fabio Ciravegna, Michel Dumontier, Dieter Fensel,
Fausto Giunchiglia, Carole Goble, Asunción Gómez Pérez, Frank van Harmelen,

Manfred Hauswirth, Ian Horrocks, Krzysztof Janowicz, Michael Kifer, Riichiro Mizoguchi,
Mark Musen, Daniel Schwabe, Barry Smith, Steffen Staab, Rudi Studer and Elena Simperl

Volume 042

Previously published in this series:

Vol. 041 Steffen Thoma, Multi-Modal Data Fusion Based on Embeddings
Vol. 040 Marilena Daquino, Mining Authoritativeness in Art Historical Photo Archives.

Semantic Web Applications for Connoisseurship
Vol. 039 Bo Yan, Geographic Knowledge Graph Summarization
Vol. 038 Petar Ristoski, Exploiting Semantic Web Knowledge Graphs in Data Mining
Vol. 037 Maribel Acosta Deibe, Query Processing over Graph-structured Data on the Web
Vol. 036 E. Demidova, A.J. Zaveri, E. Simperl (Eds.), Emerging Topics in Semantic Technologies
Vol. 035 Giuseppe Cota, Inference and Learning Systems for Uncertain Relational Data
Vol. 034 Ilaria Tiddi, Explaining Data Patterns using Knowledge from the Web of Data
Vol. 033 Anne E. Thessen, Application of Semantic Technology in Biodiversity Science
Vol. 032 Pascal Hitzler et al. (Eds.), Advances in Ontology Design and Patterns
Vol. 031 Michael Färber, Semantic Search for Novel Information
Vol. 030 Hassan Saif, Semantic Sentiment Analysis in Social Streams
Vol. 029 A. Ławrynowicz, Semantic Data Mining: An Ontology-Based Approach
Vol. 028 R. Zese, Probabilistic Semantic Web: Reasoning and Learning
Vol. 027 M. Kejriwal, Populating a Linked Data Entity Name System
Vol. 026 Muhammad Saleem, Efficient Source Selection and Benchmarking for SPARQL.

Endpoint Query Federation
Vol. 025 P. Hitzler et al. (Eds.), Ontology Engineering with Ontology Design Patterns.

Foundations and Applications
Vol. 024 Olaf Hartig, Querying a Web of Linked Data. Foundations and Query Execution
Vol. 023 Natalia A. Diaz Rodgriguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
Vol. 022 Juan F. Sequeda, Integrating Relational Databases with the Semantic Web
Vol. 021 Laurens Rietveld, Publishing and Consuming Linked Data

ISSN 1868-1158 (print)
ISSN 2215-0870 (online)

MANAGING AND CONSUMING

COMPLETENESS INFORMATION FOR

RDF DATA SOURCES

Fariz Darari
Faculty of Computer Science, Kampus UI Depok, West Java, Indonesia

© 2019 Akademische Verlagsgesellschaft AKA GmbH, Berlin

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, without prior written permission from the publisher.

ISBN 978-3-89838-748-4 (AKA, print)
ISBN 978-1-64368-034-7 (IOS Press, print)
ISBN 978-1-64368-035-4 (IOS Press, online)
doi: 10.3233/SSW42

Bibliographic information available from the Katalog der Deutschen Nationalbibliothek (German
National Library Catalogue) at https://www.dnb.de

Dissertation, approved by the Free University of Bozen-Bolzano, Italy and Technische Universität
Dresden, Germany
Date of the defense: 14 July 2017
Supervisors: Prof. Werner Nutt, Prof. Sebastian Rudolph
Exam Committee Members: Prof. Franz Baader, Prof. Carlo Combi, Prof. Markus Zanker

Publisher
Akademische Verlagsgesellschaft AKA GmbH, Berlin

Represented by Co-Publisher IOS Press
IOS Press BV
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0019
email: order@iospress.nl

LEGAL NOTICE
The publisher is not responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

Abstract

The ever increasing amount of Semantic Web data gives rise to the
question: How complete is the data? Though generally data on the
Semantic Web is incomplete, many parts of data are indeed complete,
such as the children of Barack Obama and the crew of Apollo 11.
This thesis aims to study how to manage and consume complete-
ness information about Semantic Web data. In particular, we �rst
discuss how completeness information can guarantee the complete-
ness of query answering. Next, we propose optimization techniques
of completeness reasoning and conduct experimental evaluations to
show the feasibility of our approaches. We also provide a technique to
check the soundness of queries with negation via reduction to query
completeness checking. We further enrich completeness information
with timestamps, enabling query answers to be checked up to when
they are complete. We then introduce two demonstrators, i.e., COR-
NER and COOL-WD, to show how our completeness framework can
be realized. Finally, we investigate an automated method to generate
completeness statements from text on the Web via relation cardinality
extraction.

v

blankleftintentionallypageThis

Contents

Chapter 1. Introduction 1

1.1 Data Completeness 2
1.2 Motivation 5
1.3 Contributions 13
1.4 Thesis Outline 13

Chapter 2. Formal Framework 15

2.1 RDF and SPARQL 15
2.2 Completeness Statements 16
2.3 Query Completeness 21
2.4 Data-agnostic Completeness Entailment 22

Chapter 3. Data-aware Completeness Reasoning 25

3.1 Motivating Scenario 26
3.2 Checking Data-aware Completeness Entailment 28
3.3 SP-statements 45
3.4 No-value Statements 51
3.5 Related Work 56
3.6 Summary 57

Chapter 4. Optimizing Completeness Reasoning 59

4.1 Optimizing Data-agnostic Reasoning 59
4.2 Optimizing Data-aware Reasoning 81
4.3 Summary 89

Chapter 5. Soundness Reasoning 91

5.1 SPARQL with Negation 91
5.2 Motivation and Formalization 92
5.3 Checking Answer Soundness 95
5.4 Checking Pattern Soundness 97
5.5 Experimental Evaluation 102

vii

viii CONTENTS

5.6 Related Work 110
5.7 Summary 112

Chapter 6. Time-aware Completeness Reasoning 113

6.1 Motivating Scenario 114
6.2 Time-extended Completeness Framework 115
6.3 Computing the Guaranteed Completeness Date 120
6.4 Related Work 123
6.5 Summary 124

Chapter 7. Completeness Management Demonstrators 125

7.1 CORNER 126
7.2 COOL-WD 132
7.3 Related Work 141
7.4 Summary 142

Chapter 8. Extracting Relation Cardinalities from Text143

8.1 Introduction 144
8.2 Relation Cardinalities 145
8.3 Relation Cardinality Extraction 146
8.4 Improving Relation Cardinality Extraction 148
8.5 Analysis 152
8.6 Large-scale Run of RCE 155
8.7 Related Work 156
8.8 Summary 157

Chapter 9. Discussion 159

9.1 Acquisition of Completeness Information 159
9.2 Compatibility with Advanced RDF Features 160

Chapter 10. Conclusions and Future Directions 163

10.1 Summary of the Results 163
10.2 Future Work 166

Bibliography 167

Chapter A. Pre�x Declarations 179

List of Figures

1.1 Wikidata is actually complete for all the Apollo 11
crew 6

1.2 A list template for complete information with times-
tamps on Wikipedia (a) and its usage to state the com-
pleteness of the list of the Twenty-�ve Year Award re-
cipients (b) 10

1.3 COOL-WD homepage 12
1.4 By knowing that the children count onWikidata's Trump

page matches the cardinality information fromWikipedia,
a completeness statement can be generated 12

3.1 Experiment Results of Completeness Entailment 50
3.2 No-value information on Wikidata 51

4.1 Increasing the number of completeness statements for
short (left) and long queries (right) 72

4.2 Increasing maximum length of completeness statements
for short (left) and long queries (right) 73

4.3 Increasing the query length 74
4.4 Comparison of query length to completeness reasoning

(CR) time and query evaluation (QE) time 78
4.5 Distribution of hashmap lookup time (H) and TC-application

time (TC) in completeness reasoning across di�erent
query length 79

4.6 Comparison of query length to number of constants
(upper) and number of relevant statements (lower) 80

5.1 Comparison between the number of query answers (|JQKG|),
query evaluation time (tQ), and answer soundness check-
ing time (tAS) for cases oneTP and oneTPoneTP 106

ix

x LIST OF FIGURES

5.2 Comparison between the number of query answers (|JQKG|),
query evaluation time (tQ), and answer soundness check-
ing time (tAS) for cases twoTPsTO and twoTPsSE 107

5.3 Comparison between the number of query answers (|JQKG|),
query evaluation time (tQ), and answer soundness check-
ing time (tAS) for case threeTPsTO 108

6.1 An incomplete data series about Tarantino and Chap-
lin movies 117

6.2 Algorithm for �nding the guaranteed completeness date 122

7.1 Completeness Life Cycle 126
7.2 CORNER Architecture 129
7.3 CORNER Homepage 131
7.4 Wikidata page of Switzerland 133
7.5 System architecture of COOL-WD 138
7.6 COOL-WD Gadget: The green box indicates com-

pleteness, while the yellow box indicates potential in-
completeness 138

7.7 Via COOL-WD, we know that Wikidata is complete
for 7 out of 35 known non-functional properties of Barack
Obama (http://cool-wd.inf.unibz.it/?p=Q76) 139

7.8 An overview of the completeness analytics feature. Click-
ing on the class name shows a more detailed analytics
of the class. 140

8.1 Precision results on some notable Wikidata relations,
along with their corresponding functionality degrees 156

List of Tables

3.1 Complexity table for the data-aware completeness en-
tailment problem with various input �xes (× denotes
`�xed') 45

4.1 Comparison of the runtime median for plain complete-
ness reasoning and constant-relevance based (optimized)
reasoning 75

4.2 Overview of the experiment results, where NQ is the
number of queries, NC is the number of completeness
statements, |Q| is the average query length (i.e., num-
ber of triple patterns), tCR is the average completeness
reasoning time, and tQE is the average query evaluation
time 77

4.3 Average runtime comparison of query evaluation and
completeness reasoning grouped by query length, where
|Q| is the query length, NQ is the number of queries,
tQ is the average of query evaluation time, and tC is
the average of completeness reasoning time 88

5.1 The number of statements |C|, and the median of query
length |Q|, of query answers |JQKG|, of query evalua-
tion time tQ, of answer soundness checking time tAS,
of answer soundness checking time per answer tAS/a,
and of pattern soundness checking time tPS for di�er-
ent cases. All times are in milliseconds. 105

8.1 Fraction of persons (n=200) whose Wikipedia articles
contain children cardinality information, children names,
or who have children on Wikidata, and number of chil-
dren per each method 146

xi

xii LIST OF TABLES

8.2 Number of Wikidata instances as subjects (#s) of each
predicate (p) in the training set 148

8.3 Evaluation results on the validation set 149
8.4 Evaluation results on the test set; RCE denotes Rela-

tion Cardinality Extraction. 154

Chapter 1

Introduction

The increasing amount of structured data made available on the Web
is laying the foundation of a global-scale knowledge base. Projects like
Linked Open Data (LOD) [50], by inheriting some basic design prin-
ciples of the Web (e.g, simplicity, decentralization), aim at making
huge volumes of data available via the Resource Description Frame-
work (RDF) standard data model [59]. RDF enables one to make
statements about resources in the form of triples, consisting of a sub-
ject, a predicate, and an object. The common path to access such a
huge amount of structured data is via SPARQL endpoints, namely,
network locations that can be queried using the SPARQL query lan-
guage [46].

With a large number of RDF data sources (i.e., 1139 data sources
in 2017 as recorded by the LOD Cloud1), covering possibly overlap-
ping knowledge domains, it is natural to observe a wide range of data
source quality. Indeed, depending on the topics and aspects consid-
ered, RDF data sources such as Wikidata [111], DBpedia [14], and
YAGO [53], may possess di�erent quality characteristics. In this set-
ting, the problem of providing high-level descriptions (in the form
of metadata) of their content becomes crucial. Such descriptions
will connect data publishers and consumers; publishers will advertise
�what� is there inside a data source so that specialized applications
can be created for data source discovering, cataloging, selection, an-
alytics, and so forth. Proposals like the VoID vocabulary [6] touch
this aspect. With VoID it is possible, among other things, to provide
information about the number of instances of a particular class, the

1http://lod-cloud.net/

1

2 CHAPTER 1. INTRODUCTION

SPARQL endpoint of a source, and links to other data sources. How-
ever, VoID focuses on providing quantitative information. We claim
that toward comprehensive descriptions of data sources, also qualita-
tive information is crucial; hence, the overall aim of this thesis is to
study a speci�c aspect of data quality for RDF data sources, that is,
completeness.

1.1. Data Completeness

Information about completeness is crucial for RDF data sources,
where each data source is generally considered incomplete due to
the open-world assumption (OWA) [49]. However, so far there is
no approach to characterizing data sources in terms of their com-
pleteness that is both conceptually well-founded and practically ap-
plicable. For instance, with the widely used metadata format VoID,
it is not possible to express that an RDF data source of the movie
website IMDb2 is complete for all movies directed by Tarantino. The
possibility to provide in a declarative and machine-readable way such
kind of completeness statements paves the way toward a new gener-
ation of services for consuming data. In this respect, the semantics
of completeness statements interpreted by a reasoning engine can, for
instance, guarantee the completeness of query answers.

Data completeness, as de�ned by Wang and Strong [112], is the
breadth, depth, and scope of information contained in the data. Batini
and Scannapieco [12] considered data completeness to be one of the
most signi�cant data quality dimensions. Like other quality dimen-
sions (e.g., accuracy, timeliness), the problem of data completeness
may occur in various application domains, such as biology, aviation,
and healthcare, as studied by Becker et al. [13].

Concerns about data (in-)completeness in the �eld of relational
databases, can be traced back to 1979 [22], where Codd proposed
a treatment of nulls based on three-valued logic. Motro [80] devel-
oped an integrity model for databases that considers completeness
(and validity). Levy [64] introduced local completeness statements,
by which one can assert the completeness of parts of a database rela-
tion, and studied their relationship to relational query completeness.
Razniewski and Nutt [96] reduced the problem of query completeness

2http://www.imdb.com/

1.1. DATA COMPLETENESS 3

to query containment, and used this reduction to study the complex-
ity of the completeness problem in the relational setting.

In the Semantic Web area, the problem of completeness is partic-
ularly challenging due to the OWA. Several researchers studied com-
pleteness in the broader context of data quality. Fürber and Hepp [38]
developed a generic vocabulary for data quality management in the
Semantic Web. Their vocabulary can facilitate the standardized for-
mulation of data quality rules, data quality problems, and data qual-
ity scores for RDF data sources. For example, one completeness-
related problem that can be described is `missing element': schema
elements, instances, or property values are missing, when required.
Mendes et al. [73] proposed Sieve, a framework for Linked Data qual-
ity assessment and fusion. Sieve enables users to de�ne quality scoring
functions, and perform con�ict-resolution tasks based on the quality
scores to combine RDF data from multiple sources. As an illustration,
users can de�ne a completeness scoring function based on the average
number of properties of instances in a data source. A recent initiative
to improve RDF data quality is underway by the W3C's RDF Data
Shapes group.3 The group is developing SHACL, a language for val-
idating RDF graphs against a set of conditions (called `shapes') [60].
In SHACL, one can formulate integrity constraints, e.g., by requiring
that every person has a gender. The lack of such required informa-
tion indicates incompleteness of data. By this approach, however, one
cannot detect whether optional information, like a spouse, is missing.

Zaveri et al. [114] surveyed techniques to measure the complete-
ness (among other data quality aspects) of RDF data sources. It
is common to these techniques that they measure completeness of a
data source as the fraction of real-world information present in an-
other data source that is chosen as the gold standard. The surveyed
techniques did not concern how to express that a source is of gold-
standard quality for some type of information. In [47], Harth and
Speiser discussed the problem of assessing the completeness of Linked
Data querying. They regarded the whole web as the most ideal gold
standard for evaluating queries. To be more realistic, they weak-
ened that to data that is reachable from authoritative data sources.
In their work, no assumption was made as to whether the whole
web really captures all information in the real world. Galárraga et
al. [41] stressed the need of complete information for rule mining

3https://www.w3.org/2014/data-shapes

4 CHAPTER 1. INTRODUCTION

over RDF KBs. Since completeness cannot be guaranteed, they in-
troduced a `partial completeness assumption' (PCA) as a substitute,
which states that: if the KB knows some r-attribute of x, then it
knows all r-attributes of x. Such an assumption is restricted in the
sense that completeness is de�ned at the level of atomic attributes.

In RDF, an existing way to state completeness is by using closed
lists (called `RDF collections') [71]. Such lists, however, introduce
a new structure, that is di�erent from the usual SPO-style of RDF
triples, hence hindering data access via querying. In description logics
(DLs), several proposals have been made for partial closed-world fea-
tures. OWL (i.e., the DL-based ontology language for the Semantic
Web) provides a functionality to describe a closed class by enumerat-
ing all of its instances [52]. Seylan et al. [105] introduced DBoxes
to capture DB-style relations for DL ontologies. They developed
procedures to translate implicitly de�ned queries over DBoxes into
explicitly de�ned ones. A similar approach was proposed by Lutz
et al. [67, 68] with their closed predicates that allow one to draw
more conclusions in DL reasoning. However, they showed that this
also leads to higher complexity of the reasoning. Ahmetaj et al. [5]
observed that a query over a DL ontology can have more certain an-
swers if some predicates are assumed to be closed. They showed how
to rewrite a simple kind of queries, so-called instance queries, that
ask for all instances of a class or a property into a datalog query,
so that the rewriting retrieves all the certain answers of the origi-
nal query. Ngo et al. [83] showed how closed predicates increase the
combined complexity even for simple queries in some well-studied DL
dialects. The problem of checking query completeness was not con-
sidered in the above work, as they were only interested in drawing
more conclusions of reasoning with closed predicates.

Among the �rst proposals for a declarative, machine-readable
speci�cation of Semantic Web data completeness was the work by
Darari et al. [27], which enables us to close some parts of RDF data,
and thus SPARQL queries can be answered completely whenever they
touch only the closed parts. The impact of completeness statements
on a variety of SPARQL fragments, including the RDFS entailment
regime and the federated scenario, was studied. The reasoning tech-
nique they developed is, however, agnostic of the content of RDF data
sources, that is, the query completeness checking considers only the
completeness statements, and the speci�cs of the graph to which the

1.2. MOTIVATION 5

statements are given do not play any role.

Research Hypotheses. As discussed above, previous approaches dealt
with limited settings of data completeness for RDF data sources.
This thesis aims to develop a comprehensive framework of managing
and consuming completeness information for RDF data sources. The
hypotheses of this thesis are as follows:

• Combining information about data completeness and the actual
data gives rise to a stronger and more �ne-grained assessment
of the completeness of query answers.
• By applying and adapting existing indexing techniques, query
completeness analysis can be performed in a time that is com-
parable to the execution time of a query.
• Completeness analysis can be leveraged to check whether an-
swers to queries with negation are sound.
• Completeness statements can be equipped with temporal infor-
mation in such a way that temporal completeness analysis can
be performed with little additional cost.
• Existing Semantic Web technologies can be used to develop
completeness management tools with little development over-
head.
• Natural language texts contain information about cardinalities
of sets in the real world that can be extracted automatically
and be used to assess the completeness of RDF data sources.

1.2. Motivation

We provide motivating scenarios covering a range of aspects of com-
pleteness for RDF data sources: data-aware completeness reasoning,
optimizations of completeness reasoning, ensuring query soundness
using completeness statements, time-aware completeness reasoning,
demonstrators of systems to create and consume completeness state-
ments, and extracting relation cardinalities from text as a way to
automatically generate completeness statements.

Data-aware Completeness Reasoning. Consider Wikidata, a crowd-
sourced KB with RDF support [111]. For data about the movie
Reservoir Dogs, Wikidata is incomplete, as it is missing the fact that

6 CHAPTER 1. INTRODUCTION

Michael Sottile was acting in the movie.4 On the other hand, for data
about Apollo 11, it is the case that Neil Armstrong, Buzz Aldrin, and
Michael Collins, recorded as crew members on Wikidata, are indeed
all the crew (see Figure 1.1).5 However, such completeness informa-
tion is not recorded and thus it is left to the reader to decide whether
some data on the Web is already complete.

Figure 1.1. Wikidata is actually complete for all the Apollo 11 crew

Nevertheless, the availability of explicit completeness information
can bene�t data access over RDF data sources, commonly done via
SPARQL queries. For example, suppose that in addition to the com-
plete data of the Apollo 11 crew, Wikidata is also complete for the
children of Neil Armstrong, Buzz Aldrin, and Michael Collins. Con-
sequently, a user asking the query �children of Apollo 11 crew� should
obtain not only query answers, but also the information that the query
can be answered completely. Observe that here data-speci�c reasoning
is employed: we �rst obtain who speci�cally are the complete crew
members of Apollo 11, and then for each of them, we check if we have
all the children.

Motivated by the above rationales, we argue that it is important to
describe the (partial) completeness of RDF data sources and provide
a technique to check query completeness based on RDF data sources
with completeness information. We call such a check completeness en-
tailment. In previous work, Darari et al. [27] proposed a framework to
provide completeness statements about RDF data sources and check
query completeness based on such statements. There is, however,

4By comparing the data at https://www.wikidata.org/wiki/Q72962 (as of
Sep 18, 2016) with the complete information at http://www.imdb.com/title/
tt0105236/fullcredits

5http://www.space.com/16758-apollo-11-first-moon-landing.html

1.2. MOTIVATION 7

one fundamental limitation of the work: the completeness check is
agnostic of the content of the RDF data sources to which complete-
ness statements are given, which results in weaker inferences. For in-
stance, given the completeness information and the query �children of
Apollo 11 crew� as in the Apollo 11 example above, the data-agnostic
approach fails to capture the query completeness. In Chapter 3, we
provide a formalization, and a sound and complete algorithm of data-
aware completeness checking. Moreover, we identify two fragments of
completeness statements: SP-statements, that are practically relevant
to entity-centric, crowdsourced RDF data sources like Wikidata, and
no-value statements, that are suited to capturing the non-existence
of information in RDF.

Optimization Techniques of Completeness Reasoning. Real-world RDF
data sources may contain a large amount of data. For example, from
the English Wikipedia, DBpedia extracted 580 million RDF triples.6

Obviously, neither is all information from those triples complete, nor
is its completeness interesting. If 20% of those triples were captured
by completeness statements, where each statement accounts for 100
triples, then there would be about 1 million statements in total needed
for DBpedia.

Now, the question is, how fast can we perform completeness rea-
soning with 1 million statements? Using a plain completeness rea-
soner that employs all the completeness statements, we observed that
reasoning time may take minutes. Obviously, this is not feasible as we
expect that in practice completeness reasoning would be performed
as often as query evaluation. Indeed, the reason why a plain reasoner
may take long is that it takes into account all the statements in the
reasoning. Yet, not all statements contribute to the entailment of
query completeness. For instance, the completeness statement �all
football players of Arsenal� does not contribute to the completeness
of the query �movies directed by Tarantino.�

In Chapter 4, we analyze the complexity of the completeness rea-
soning task in practical settings and propose a relevance principle,
which allows us to reduce the number of statements considered in the
reasoning. Based on the relevance principle, we then develop retrieval
techniques of relevant statements with various index structures, and

6http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.

html

8 CHAPTER 1. INTRODUCTION

conduct experimental evaluations to study the characteristics of those
index structures. Next, we experimentally evaluate completeness rea-
soning over a realistic setting based on SPARQL query logs of several
real-world RDF data sources, i.e., DBpedia, Semantic Web Dog Food
(SWDF), and LinkedGeoData (LGD).

Wrt. data-aware completeness reasoning, based on our observation
that natural-language completeness statements on the Web are gen-
erally about similar topics (e.g., completeness statements about cast
of movies on IMDb7 and about points of interest of cities on Open-
StreetMap8), we introduce completeness templates. Such templates
provide a compact representation of similar completeness statements,
enabling multiple completeness statements to be processed simulta-
neously in the reasoning. We then evaluate the performance of data-
aware completeness reasoning using completeness templates, over a
Wikidata-based experimental setup.

Ensuring Query Soundness Using Completeness Statements. The use
of negation in SPARQL has always been problematic. RDF generally
follows the open-world assumption (OWA): information recorded in
an RDF dataset can be incomplete, that is, it might not re�ect all
information valid in reality [49]. Consequently, SPARQL queries with
negation (which rely on the absence of some information) cannot be
guaranteed to deliver sound answers.

To illustrate this, consider asking for �countries that are not EU
founders� over the Wikidata SPARQL endpoint:9,10

SELECT * WHERE {

?c wdt:P31 wd:Q6256 . # ?c a (= instanceof) country

FILTER NOT EXISTS {wd:Q458 wdt:P112 ?c} # EU founder ?c

}

The answers include Spain (= wd:Q29).11 We might wonder if this
answer is sound, that is, if Spain is indeed a country that is not an
EU founder. Without any completeness information about Wikidata,

7For instance, on the Reservoir Dogs page at http://www.imdb.com/title/
tt0105236/fullcredits

8For instance, on the Abingdon page at http://wiki.openstreetmap.org/
wiki/Abingdon

9https://query.wikidata.org/
10Pre�x declarations are provided in Appendix A.
11Wikidata uses internal identi�ers for resources, as also shown in the SPARQL

query example.

1.2. MOTIVATION 9

we cannot be sure about this: assume Spain were indeed a founder of
the EU, but this information were missing from the data. Obviously,
in that case, Spain is not a correct answer to the above query. In
reality, the EU founders are exactly the countries Belgium, Germany,
France, Italy, Luxembourg, and the Netherlands.12 Knowing this
completeness information guarantees that Spain is a country that is
not an EU founder.

What we can observe here is that, without completeness infor-
mation, negation in SPARQL may lead to the problem of unsound
answers. This is due to the inherent non-monotonicity of answering
queries with negation: adding new information may invalidate an an-
swer.13 Having completeness information may then help ensure the
soundness of answers, that is, we can be sure that speci�c answers will
still be returned, even if the data is completed. Chapter 5 describes
our formalization of the problem of query soundness in the presence
of completeness statements. We distinguish between the soundness
of a speci�c answer of a graph pattern and the soundness of a graph
pattern as a whole. We further provide a characterization of the
problem via reduction to completeness checking. Finally, we perform
an experimental evaluation of soundness checking in a realistic setup
based on Wikidata.

Time-aware Completeness Reasoning. The notion of completeness
introduced in [27] is in a sense time-agnostic. It only allows one to
specify whether (a portion of) a data source is complete. However,
one may also be interested in having completeness guarantees up to
a certain time. To cope with this aspect we introduce timestamped
completeness statements. In de�ning such kind of statements, we were
inspired by Wikipedia which provides a template list for complete
information with timestamps, as shown in Figure 1.2.

Figure 1.2 shows a list template taken from Wikipedia. The tem-
plate allows one to specify that a list is �complete and up-to-date as of
{some speci�c date}� with this information being shown on each page
where the list template is used. Such a statement di�ers from the pre-
vious type of statement in so far as it speci�es up to what time the
completeness holds. Wikipedia pages containing timestamped com-
pleteness statements range from the page of buildings that have ever

12https://europa.eu/european-union/about-eu/history/
13Note that for the positive fragment of SPARQL, such a problem can never

occur, as the answers are always sound, thanks to monotonicity.

10 CHAPTER 1. INTRODUCTION

https://en.wikipedia.org/wiki/Template:Complete_list

https://en.wikipedia.org/wiki/Twenty-five_Year_Award

(a)
(b)

………………..

Figure 1.2. A list template for complete information with timestamps on

Wikipedia (a) and its usage to state the completeness of the list of the Twenty-�ve

Year Award recipients (b)

won the Twenty-�ve Year Award14 (as shown in Figure 1.2) to the
page of Italian DOP cheeses.15

In Chapter 6, we provide a formalization of time-aware complete-
ness reasoning. Completeness statements now feature timestamps.
Consequently, query completeness must be approached di�erently.
For this reason, we introduce the guaranteed completeness date of a
query, that is, the latest date for which complete query results are
guaranteed to be contained in the actual query results. We then
develop, given a set of timestamped completeness statements, an al-
gorithm to compute the guaranteed completeness date of a query,
which is optimal in the sense that each timestamped completeness
statement is considered at most once in the reasoning.

Completeness Management Demonstrators. The theoretical founda-
tions of completeness reasoning [27] so far have not reached practice.
Up to now, users can only write completeness information manually
in RDF, and would need to publish and link them on their own, in
order to make them available. Similarly, users interested in making
use of completeness statements have no central reference for retriev-
ing such information. We believe that the lack of systems supporting

14https://en.wikipedia.org/wiki/Twenty-five_Year_Award
15https://en.wikipedia.org/wiki/List_of_Italian_DOP_cheeses

1.2. MOTIVATION 11

both ends of the data pipeline, production and consumption, is a ma-
jor reason for the partial closed-world assumption (PCWA) not being
adapted on the Semantic Web so far.

In Chapter 7, we develop two demonstrators of systems to manage
and consume completeness information, each of which serves di�er-
ent purposes. The �rst one is CORNER. CORNER demonstrates
a completeness statement hub. With CORNER, users may provide
completeness statements over multiple RDF data sources and perform
data-agnostic completeness reasoning. CORNER supports SPARQL
Basic Graph Pattern (BGP) queries and can take RDFS ontologies
into account in its analysis. If a query can only be answered com-
pletely by a combination of sources, CORNER rewrites the original
query into one with SPARQL SERVICE calls, which assigns each query
part to a suitable source, and executes it over those sources. COR-
NER can be accessed at http://corner.inf.unibz.it/.

The second one is COOL-WD. In contrast to CORNER, COOL-
WD demonstrates how one can build a specialized completeness man-
agement system over a single KB, in our case, Wikidata. With
COOL-WD, end users are provided with web interfaces (available
both via the COOL-WD external system and the COOL-WD inte-
grated Wikidata gadget) to create and view completeness information
about Wikidata facts. To consume completeness information, COOL-
WD users may perform data completion tracking, completeness ana-
lytics, or data-aware query completeness assessment with diagnostics.
Figure 1.3 shows the homepage of COOL-WD, which can be accessed
at http://cool-wd.inf.unibz.it/.

Extracting Relation Cardinalities from Text. While CORNER and
COOL-WD provide a method to add completeness statements man-
ually, to improve the scalability, an automatic method of generating
completeness statements is thus crucial. Meanwhile, over the Web, a
wealth of information about relation cardinalities is provided, giving
hints on the complete count information of a relation. An example
is shown in Figure 1.4 on how cardinality information may produce
completeness statements. In this regard, in Chapter 8 we introduce
the novel problem of extracting cardinalities from text and analyze
speci�c challenges that set it apart from standard Information Extrac-
tion (IE). We present a distant supervision method using conditional
random �elds (CRF). Our evaluation results in precision between 38%
to 84% depending on the di�culty of relations.

12 CHAPTER 1. INTRODUCTION

Figure 1.3. COOL-WD homepage

Figure 1.4. By knowing that the children count on Wikidata's Trump page

matches the cardinality information from Wikipedia, a completeness statement

can be generated

1.3. CONTRIBUTIONS 13

1.3. Contributions

The contributions of this thesis are as follows:

1. we develop a formalization, and a sound and complete algo-
rithm for data-aware completeness reasoning, and explore var-
ious practical fragments of completeness statements;

2. we develop optimization techniques for both the data-agnostic
and data-aware completeness reasoning, and conduct experi-
mental evaluations based on realistic settings;

3. we formalize the problem of query soundness in the presence
of completeness statements, and provide a characterization of
the problem via reduction to completeness checking;

4. we introduce time to completeness reasoning;
5. we develop demonstration systems to manage and consume

completeness information, that is, CORNER (http://corner.
inf.unibz.it/) and COOL-WD (http://cool-wd.inf.unibz.
it/); and

6. we provide a method for extracting relation cardinalities from
text on the Web, which can be leveraged to generate complete-
ness statements.

1.4. Thesis Outline

The thesis is structured as follows: Chapter 2 provides some back-
ground about RDF and SPARQL, and data-agnostic completeness
reasoning for RDF data sources. Chapter 3 discusses data-aware com-
pleteness reasoning. In Chapter 4 we propose optimizations of com-
pleteness reasoning and report on experimental evaluations of the op-
timizations. In Chapter 5 we show how our completeness framework
can also be leveraged to deal with the problem of query soundness.
Chapter 6 extends completeness reasoning with the time informa-
tion, whereas Chapter 7 describes completeness management demon-
strators. Chapter 8 provides an automated approach for extracting
relation cardinalities from text on the Web, useful in generating com-
pleteness statements. In Chapter 9, we discuss related aspects to our
completeness framework. We conclude our work and sketch future
directions in Chapter 10.

blankleftintentionallypageThis

Chapter 2

Formal Framework

In this chapter, we discuss concepts that are essential for the subse-
quent content. We remind the reader of RDF and SPARQL in Sec-
tion 2.1. Section 2.2 formalizes completeness statements, metadata
to specify which parts of an RDF data source are complete. We next
introduce in Section 2.3 the notion of query completeness. Finally,
we de�ne and characterize the completeness entailment problem in
the data-agnostic setting in Section 2.4. The results presented in this
chapter have been published in [27].

2.1. RDF and SPARQL

We assume three pairwise disjoint in�nite sets I (IRIs), L (literals),
and V (variables). We collectively refer to IRIs and literals as RDF
terms or simply terms. A 3-tuple (s, p, o) ∈ I × I × (I ∪ L) is called
an RDF triple (or a triple), where s is the subject, p the predicate and
o the object of the triple.1 An RDF graph G consists of a �nite set
of triples [59]. For simplicity, we omit namespaces for the abstract
representation of RDF graphs.

The standard query language for RDF is SPARQL [46]. The basic
building blocks of a SPARQL query are triple patterns, which resem-
ble RDF triples, except that in each position also variables are al-
lowed. We focus on the conjunctive fragment of SPARQL, which uses

1We do not consider blank nodes in this thesis for the reasons as discussed
later in Section 9.2.

15

16 CHAPTER 2. FORMAL FRAMEWORK

sets of triple patterns, called basic graph patterns (BGPs).2 A map-
ping µ is a partial function µ : V → I ∪ L. Given a BGP P , µP
denotes the BGP obtained by replacing variables in P with terms
according to µ. The evaluation of a BGP P over an RDF graph G,
denoted as JP KG, results in a set of mappings such that for every
mapping µ ∈ JP KG, it holds µP ⊆ G. For a BGP P , we de�ne the
freeze mapping ĩd as mapping each variable ?v in P to a fresh IRI ṽ
(that is, ṽ is a frozen variable). From such a mapping, we construct
the prototypical graph P̃ := ĩd P to represent any possible graph that
can satisfy the BGP P . Moreover, we de�ne the mapping with empty
domain as the empty mapping µ∅.

SPARQL queries come as SELECT, ASK, or CONSTRUCT queries. The
abstract form of a SELECT query is (W,P), where P is a BGP and
W ⊆ var(P). A SELECT query Q = (W,P) is evaluated over a graph
G by projecting the mappings in JP KG to the variables in W , writ-
ten as JQKG = πW (JP KG). Syntactically, an ASK query is a special
case of a SELECT query where W is empty. A CONSTRUCT query has
the abstract form (P1, P2), where both P1 and P2 are BGPs, and
var(P1) ⊆ var(P2). Evaluating a CONSTRUCT query over G yields a
graph where P1 is instantiated with all the mappings in JP2KG. In
this thesis, the semantics considered in query evaluation is the bag
semantics, which is the default of SPARQL [46]. In bag semantics,
duplicates of query answers are kept.

2.2. Completeness Statements

Let us formalize completeness information. We �rst de�ne complete-
ness statements to capture which information is complete.

De�nition 2.1 (Completeness Statement). A completeness state-
ment C is de�ned as Compl(PC) where PC is a non-empty BGP.

We use BGPs in order to have a �exibility for representing com-
plex completeness information which requires more than one triple
pattern. For example, we express that a source is complete for all
pairs of triples that say �?m is a movie (= Mov) and ?m is directed

2SPARQL with negation will be introduced later in Chapter 5 about soundness
reasoning.

2.2. COMPLETENESS STATEMENTS 17

(= dir) by Tarantino� using the statement3

Cdir = Compl((?m, a,Mov), (?m, dir , tarantino)), (2.1)

whose BGP matches all such pairs. To express that a source is
complete for all triples about actors (= act) in movies directed by
Tarantino, we use

Cact = Compl((?m, act , ?a), (?m, a,Mov), (?m, dir , tarantino)). (2.2)

Now to model the OWA of RDF data sources, we de�ne an ex-
tension pair.

De�nition 2.2 (Extension Pair). We identify data sources with RDF
graphs. Then, adapting a notion introduced by Motro [80], we de�ne
an extension pair as a pair (G,G′) of two graphs, where G ⊆ G′. We
call G the available graph and G′ the ideal graph.

Here, an available graph is the graph that we currently store, while
an ideal graph is a possible extension over the available graph, repre-
senting a version of ideal, complete information. Note that by nature,
ideal graphs are hypothetical, i.e., data providers or consumers do not
need to explicitly deal with G′. In an extension pair, the requirement
that G is included in G′ formalizes the intuition that the available
graph contains no more information than the ideal one (i.e., we as-
sume that available graphs are correct).

Without completeness statements, any graph extending the avail-
able graph can be an ideal graph. Having completeness statements re-
stricts the possibilities of ideal graphs: for the parts captured by com-
pleteness statements, they must contain no more information than in
the available graph. Later on in Section 2.4, we will see that con-
clusions about query completeness are drawn from these restrictions
imposed over ideal graphs. To a statement C = Compl(PC), we
associate the CONSTRUCT query QC = (PC , PC). Note that, given a
graph G, the query QC returns a graph consisting of those instanti-
ations of the pattern PC present in G. For example, the query QCact

returns the cast of the Tarantino movies in a graph G. We now de�ne
the semantics of completeness statements.

3For the sake of readability, we slightly abuse the notation by removing the
set brackets of the BGPs of completeness statements.

18 CHAPTER 2. FORMAL FRAMEWORK

De�nition 2.3 (Satisfaction of Completeness Statements). An ex-
tension pair (G,G′) satis�es the statement C, written (G,G′) |= C,
if JQCKG′ ⊆ G.

Intuitively, an extension pair (G,G′) satis�es a completeness state-
ment C, if the subgraph of G′ captured by C is also present in G.
The above de�nition naturally extends to the satisfaction of a set C
of completeness statements, that is, (G,G′) |= C i� for all C ∈ C, it
is the case that JQCKG′ ⊆ G.

Example 2.4. Consider the DBpedia data source which contains
information about Tarantino-related movies:

Gdbp = {(reservoirDogs, dir , tarantino), (pulpFiction, dir , tarantino),

(killBill , dir , tarantino), (desperado, act , tarantino),

(pulpFiction, act , tarantino), (desperado, a,Mov),

(reservoirDogs, a,Mov), (pulpFiction, a,Mov), (killBill , a,Mov)}.

A possible extension (among others) of the above graph is the graph
G′dbp , which additionally contains the information that Tarantino
starred in Reservoir Dogs:4

G′dbp = Gdbp ∪ { (reservoirDogs, act , tarantino) }.

Putting the above two graphs together forms the extension pair
(Gdbp , G

′
dbp). In this case, the statement Cdir (Eq. 2.1) is satis�ed

by (Gdbp , G
′
dbp) since all triples from evaluating QCdir

over G′dbp are
included in Gdbp . In contrast, the statement Cact (Eq. 2.2) is not
satis�ed by (Gdbp , G

′
dbp) because evaluating QCact over G

′
dbp returns

the triple (reservoirDogs , act , tarantino) that is not in Gdbp .

An important tool for characterizing completeness entailment is
the transfer operator TC, which captures the complete parts of a graph
wrt. a set of completeness statements. Given a set C of completeness
statements and a graph G, the transfer operator is de�ned as

TC(G) =
⋃
C∈C

JQCKG. (2.3)

The transfer operator takes the union of evaluating over G all the
corresponding CONSTRUCT queries of the statements in C. In terms

4which is actually the case in the real world

2.2. COMPLETENESS STATEMENTS 19

of extension pairs, the transfer operator takes the parts of the ideal
graph that have to be present in the available graph. In a way, the
operator transfers complete information from the ideal graph to the
available graph. Crucial properties of the transfer operator are sum-
marized in the following proposition, which follows directly from the
construction of TC and the de�nition of the satisfaction of C.

Proposition 2.5 (Properties of TC). Let C be a set of completeness
statements. Then,

(1) For every extension pair (G,G′), (G,G′) |= C i�
TC(G′) ⊆ G.

Consequently, for any graph G we have that

(2) the pair (TC(G), G) is an extension pair satisfying C, and
(3) TC(G) is the smallest graph for which this holds.

Note on completeness statements. In Darari et al. [27] completeness
statements are de�ned slightly di�erently. There completeness state-
ments may have conditions, which are more general than the uncon-
ditional ones. For conditional statements, the instantiations of the
conditions are not necessarily included in the graph G. For example,
the conditional completeness statement �Complete for all movies un-
der the condition that the movies were directed by Tarantino� di�ers
from the statement Cdir above since in the former the graph needs only
to contain all such movies (?m, a,Mov) but not the director informa-
tion wrt. Tarantino (?m, dir , tarantino). We found that this might
give some confusion when creating completeness statements. In this
thesis, completeness statements generally refer to the unconditional
ones (as in De�nition 2.1). Nevertheless, conditional completeness
statements are still used in Section 5.4 for characterizing a variant of
the query soundness problem, and in Section 7.1 about CORNER.

RDF Representation of Completeness Statements. Practically, com-
pleteness statements should be compliant with the existing ways of
giving metadata about data sources, for instance, by enriching cur-
rent proposals like VoID [6]. Hence, it becomes essential to be able to
express completeness statements in RDF. Suppose we want to express
that LinkedMDB,5 an RDF data source about movies, satis�es the

5http://www.linkedmdb.org/

20 CHAPTER 2. FORMAL FRAMEWORK

following completeness statement about all actors in movies directed
by Tarantino, as introduced in Eq. (2.2),

Cact = Compl((?m, act , ?a), (?m, a,Mov), (?m, dir , tarantino)).

To this end, we need: (i) a vocabulary to say that this is a com-
pleteness statement about LinkedMDB; (ii) a mechanism to state
which triple patterns make up the statement's BGP; (iii) a mecha-
nism to represent the constituents of the triple patterns, namely the
subject, predicate, and object of a triple pattern. We introduce the
following property names whose meaning is intuitive,

hasComplStmt, hasPattern, subject, predicate, object.

If a constituent of a triple pattern is a term (an IRI or a literal),
then it can be speci�ed directly in RDF; as this is not possible for
variables, we represent a variable by a resource that has a literal value
for the property varName. In the light of these considerations, we can
represent Cact in RDF as the following resource lv:st1, using Turtle
serialization [92].6

lv:lmdbdataset a void:Dataset ;

c:hasComplStmt lv:st1 .

lv:st1 a c:CompletenessStatement ;

c:hasPattern [c:subject [c:varName "m"] ;

c:predicate s:actor ;

c:object [c:varName "a"]] ;

c:hasPattern [c:subject [c:varName "m"] ;

c:predicate rdf:type ;

c:object s:Movie] ;

c:hasPattern [c:subject [c:varName "m"] ;

c:predicate s:director ;

c:object dbp:Quentin_Tarantino] .

Note that in the Turtle serialization we use unlabeled blank nodes
(i.e., anonymous resources), denoted by [...], for rei�cation pur-
poses [84] which do not relate to the semantics of completeness state-
ments.

6We provide the pre�x declarations in Appendix A.

2.3. QUERY COMPLETENESS 21

More generally, consider a statement Compl(t1, . . . , tn), where
each ti is a triple pattern. Then, we create a resource to repre-
sent the completeness statement, and a resource for each of the ti
that is linked to the statement-resource by the property hasPattern.
The constituents of each ti are linked to ti-resource in the same way
via subject, predicate, and object. Our vocabulary is available at
http://completeness.inf.unibz.it/ns.

2.3. Query Completeness

A usual way to access data is via queries. When querying a data
source, we want to know whether the data source provides su�cient
information to answer the query, that is, whether the query is com-
plete wrt. the real world. For instance, when querying DBpedia for
movies directed by Tarantino, it would be interesting to know whether
we really get all such movies. Intuitively, over an extension pair a
query is complete whenever all answers we retrieve over the ideal
state are also retrieved over the available state. We now de�ne query
completeness wrt. extension pairs.

De�nition 2.6 (Query Completeness). Let Q be a SELECT query. To
express that Q is complete, we write Compl(Q). An extension pair
(G,G′) satis�es Compl(Q), if the result of Q evaluated over G′ also
appears in Q over G, that is, JQKG′ ⊆ JQKG.7 In this case we write
(G,G′) |= Compl(Q).

The above de�nition can be naturally adapted for the complete-
ness of a BGP P , written Compl(P), that is used in later chap-
ters: An extension pair (G,G′) satis�es Compl(P), written (G,G′) |=
Compl(P), if JP KG′ ⊆ JP KG.

Example 2.7. Consider the extension pair (Gdbp , G
′
dbp) and the two

queries Qdir, asking for all movies directed by Tarantino, and Qdir+act,
asking for all movies both directed by and starring Tarantino,

Qdir = ({ ?m }, { (?m, a,Mov), (?m, dir , tarantino) }), and
Qdir+act = ({ ?m }, { (?m, a,Mov), (?m, dir , tarantino),

(?m, act , tarantino) }).
7For monotonic queries, the other direction, that is, JQKG′ ⊇ JQKG, comes for

free. Hence, we sometimes use the `=' condition when queries are monotonic.

22 CHAPTER 2. FORMAL FRAMEWORK

Then, it holds that Qdir is complete over (Gdbp , G
′
dbp) since it

is the case that JQdirKGdbp
= { { ?m 7→ reservoirDogs }, { ?m 7→

pulpFiction }, { ?m 7→ killBill } } = JQdirKG′dbp . On the other hand,
Qdir+act is not complete over (Gdbp , G

′
dbp) since JQdir+actKGdbp

does not
contain the result mapping { ?m 7→ reservoirDogs }, which occurs in
JQdir+actKG′dbp .

2.4. Data-agnostic Completeness Entailment

From the notions above, a question naturally arises as to when some
meta-information about data completeness can provide a guarantee
for query completeness. In other words, the available state contains
all data, as guaranteed by the completeness statements, that is re-
quired for computing the query answer, so one can trust the results
of the query. While previously we have looked at examples with
concrete extension pairs, in the following we formalize the complete-
ness entailment problem in the data-agnostic setting, that is, when
the available graph to which completeness statements are given is also
abstracted (recall that ideal graphs are always abstracted). This way,
we `quantify' over all extension pairs such that if an extension pair
satis�es the completeness statements, then it must also satisfy the
query completeness.

De�nition 2.8 (Data-agnostic Completeness Entailment). Let C be
a set of completeness statements and Q be a SELECT query. We say
that C entails the completeness of Q, written C |= Compl(Q), if any
extension pair satisfying C also satis�es Compl(Q).

Example 2.9. Consider Cdir from Eq. (2.1). Whenever an exten-
sion pair (G,G′) satis�es Cdir , then G contains all triples about
movies directed by Tarantino, which is exactly the information needed
to answer Qdir from Example 2.7. Thus, {Cdir } |= Compl(Qdir).
However, Cdir is not enough to completely answer Qdir+act , thus
{Cdir } 6|= Compl(Qdir+act).

We want to provide a characterization of the entailment. To check
whether the completeness of a query Q = (W,P) is entailed by a
set of completeness statements, we evaluate all the corresponding
CONSTRUCT queries of the statements over the prototypical graph P̃ and
check whether in the evaluation result, we have P̃ back. Intuitively,

2.4. DATA-AGNOSTIC COMPLETENESS ENTAILMENT 23

this means that over any possible graph instantiation for answering
the query, the completeness statements guarantee that we have back
the graph instantiation in our available data source. The following
theorem characterizes the completeness of SPARQL queries.

Theorem 2.10 (Completeness of SELECT Queries [27]). Let C be a
set of completeness statements and Q = (W,P) be a SELECT query.
Then,

C |= Compl(Q) i� P̃ = TC(P̃).

The following complexity result [27] follows as the completeness
check is basically evaluating a linear number of CONSTRUCT queries
over the (frozen) conjunctive body of the query.

Corollary 2.11. Deciding whether C |= Compl(Q), given a set C
of completeness statements and a SELECT query Q = (W,P), is NP-
complete.

The result shows that the complexity of completeness reasoning
is no higher than that of conjunctive query evaluation, which is also
NP-complete [19].

blankleftintentionallypageThis

Chapter 3

Data-aware Completeness Reasoning

In the previous chapter, we have formalized completeness informa-
tion, and characterized its use for checking query completeness in the
data-agnostic setting. Data-agnostic completeness checking takes a
set of completeness statements and a query as input parameters, and
says whether the query can be guaranteed to be complete. In such
checking, the available graph for which completeness statements are
applied is not taken into account. As a consequence, data-speci�c
inferences cannot be drawn. Yet, since completeness statements are
generally created within the context of an available graph, query com-
pleteness may also depend on the graph.

In this chapter, we tackle the problem of completeness checking in
the data-aware setting, that is, given a set of completeness statements,
a query, and an RDF graph, we check whether the completeness of
the query can be guaranteed. This chapter is divided into the follow-
ing sections. Section 3.1 gives a motivating scenario of data-aware
completeness reasoning. Section 3.2 formalizes the problem of data-
aware completeness entailment and provides a characterization of the
problem. Section 3.3 introduces SP-statements, a fragment of com-
pleteness statements that is suitable for entity-centric, crowdsourced
RDF data sources, while Section 3.4 introduces no-value statements, a
fragment of completeness statements that concerns the non-existence
of information in RDF. Related work is given in Section 3.5. We
summarize this chapter in Section 3.6.

The results of this chapter have been published in [33] for the parts
of data-aware completeness entailment as well as SP-statements, and
in [31] for no-value statements.

25

26 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

3.1. Motivating Scenario

Let us consider a motivating scenario for the main problem of this
chapter, that is, the checking of query completeness based on RDF
data with completeness information. Consider an RDF graph G
about the crew of Apollo 99 (or for short, A99), a �ctional space
mission, and the children of the crew, as displayed below.

Consider now the query Q0 asking for the crew of A99 and their
children:

Q0 = (W0, P0) = ({ ?crew , ?child }, { (a99 , crew , ?crew),
(?crew , child , ?child)}).

EvaluatingQ0 over the graph gives only one mapping result, where
the crew is mapped to Tony and the child is mapped to Toby. Up
until now, nothing can be said about the completeness of the query
since: (i) there can be another crew member of A99 with a child; (ii)
Tony may have another child; or (iii) Ted may have a child.

Let us consider the same graph as before, now enriched with com-
pleteness information, as shown below.

The above �gure illustrates three completeness statements:

• C1 = Compl((a99 , crew , ?c)), which states that the graph con-
tains all crew members of A99;

3.1. MOTIVATING SCENARIO 27

• C2 = Compl((tony , child , ?c)), which states the graph contains
all Tony's children; and
• C3 = Compl((ted , child , ?c)), which states the graph contains
all Ted's children (i.e., Ted has no children).

With the addition of this completeness information, let us see whether
we can answer our query completely.

First, from the completeness statement C1 about all A99 crew,
we can infer that the part (a99 , crew , ?crew) of Q0 is complete. By
evaluating that part over G, we know that all the A99 crew members
are Tony and Ted. In terms of extension pairs, that means that no
extension G′ ⊇ G satisfying C1 has other A99 crew members than
Tony and Ted. In summary, this allows us to instantiate the query
Q0 into the following two queries that are intuitively equivalent with
Q0 itself:

• Q1 = (W1, P1) = ({ ?child }, {(a99 , crew , tony),
(tony , child , ?child)})

• Q2 = (W2, P2) = ({ ?child }, {(a99 , crew , ted),
(ted , child , ?child)})

where we record that the variable ?crew has been assigned to Tony
and Ted, respectively.

Our task is now transformed to checking whether Q1 and Q2 can
be answered completely. As for Q2, we know that from the state-
ment C3, we are complete for the part (ted , child , ?child). This again
allows us to instantiate the query Q2 wrt. the graph G. However,
now we come to the situation where there is no applicable part in
G: instantiating the part (ted , child , ?child) gives nothing (i.e., Ted
has no children). In other words, for any possible extension G′ of
G, as guaranteed by C3, the extension G′ is also empty for the part
(ted , child , ?child). Thus, there is no way that Q2 will return an an-
swer, so Q2 can be safely removed. In a way, we can also see that we
are complete for Q2.

Now, only the query Q1 is left. Again, from the statement C2,
we know that we are complete for the part (tony , child , ?child) of Q1.
This allows us to instantiate the query Q1 into the query Q3 that is
intuitively equivalent with Q1 itself:

Q3 = (W3, P3) = ({ }, { (a99 , crew , tony), (tony , child , toby) }),

where we record that the variable ?crew has been assigned to Tony

28 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

and ?child to Toby. However, our graph is complete for Q3 as it con-
tains the whole ground body of Q3. In this case, no extension G′ of
G can contain more information about Q3. Now, tracing back our
reasoning steps, we know that our Q3 is in fact intuitively equivalent
to our original query Q0. Since we are complete for Q3, we are also
complete for Q0, wrt. our graph and completeness statements. In
other words, our statements and graph can guarantee the complete-
ness of the query Q0. Concretely, this means that Toby is the only
child of Tony, the only crew member of A99 with a child.

To generalize our example, we have reasoned about the complete-
ness of a query given a set of completeness statements and a graph.
The reasoning is basically done as follows: First we �nd parts of
the query that can be guaranteed to be complete by the complete-
ness statements. Then, we produce equivalent query instantiations
by evaluating those complete query parts over the graph and apply-
ing the obtained mappings to the query itself. Next, for all the query
instantiations, we repeat the above steps until no further complete
parts can be found. The original query is complete i� all the BGPs
of the generated queries are contained in the data graph.

Note that using the data-agnostic approach as in Section 2.4, it
is not possible to derive the same conclusion. Without looking at
the actual graph, we cannot conclude that Ted and Tony are all the
crew members of Apollo 99, that is, it can even be that all the crew
members are completely di�erent people like Bob, John, and Romeo.
Consequently, just having the children of Tony and Ted complete does
not help reason about Apollo 99.

In the next section, we discuss how the intuitive, data-speci�c
reasoning from above can be formalized.

3.2. Checking Data-aware Completeness Entailment

In contrast to data-agnostic completeness entailment, in data-aware
completeness entailment, the speci�cs of the graph matter, as formal-
ized below.

De�nition 3.1 (Data-aware Completeness Entailment). Given a set
C of completeness statements, a graph G, and a query Q, we de-
�ne that C and G entail the completeness of Q, written as C, G |=
Compl(Q), if for all extension pairs (G,G′) |= C, it is the case that
(G,G′) |= Compl(Q).

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 29

As we assume bag semantics for query evaluation, we can there-
fore focus on the BGPs used in the body of queries for completeness
entailment. The following proposition provides an initial character-
ization of completeness entailment as a reference on how to develop
formal notions and an algorithm for completeness checking. Basi-
cally, for a set of completeness statements, a graph, and a BGP, the
completeness entailment holds, i� extending the graph with a possi-
ble BGP instantiation (wrt. some mapping) such that the extension
satis�es the statements, will always result in the inclusion of the BGP
instantiation in the graph itself.

Proposition 3.2. Let C be a set of completeness statements, G be a
graph, and P be a BGP. Then, it holds that: C, G |= Compl(P) i� for
every mapping µ such that dom(µ) = var(P) and (G,G ∪ µP) |= C,
it is the case that µP ⊆ G.

Proof. (⇒) We prove by contrapositive. Suppose there is a mapping µ
where dom(µ) = var(P) and (G,G∪µP) |= C, but µP 6⊆ G. We want
to show C, G 6|= Compl(P). For this, we need a counterexample ex-
tension pair (G,G′) such that (G,G′) |= C but (G,G′) 6|= Compl(P).

Take the extension pair (G,G∪µP). By assumption, we have that
(G,G ∪ µP) |= C. Now let us see whether (G,G ∪ µP) |= Compl(P)
or not. Again, by assumption we have that µP 6⊆ G. This means that
µ 6∈ JP KG despite the obvious case that µ ∈ JP KG∪µP . This implies
that (G,G ∪ µP) 6|= Compl(P). Therefore, C, G 6|= Compl(P) as
witnessed by the counterexample extension pair (G,G ∪ µP).
(⇐) Assume that for all mappings µ such that dom(µ) = var(P)
and (G,G ∪ µP) |= C, it is the case µP ⊆ G. We want to show
that C, G |= Compl(P). Take an extension pair (G,G′) such that
(G,G′) |= C. We need to prove that (G,G′) |= Compl(P). In other
words, it has to be shown that JP KG′ ⊆ JP KG.

Now take a mapping µ ∈ JP KG′ . By the semantics of BGP eval-
uation, this implies µP ⊆ G′. We want to show µ ∈ JP KG. Again,
by the semantics of BGP evaluation it is su�cient to show µP ⊆ G.
By the assumption that (G,G′) |= C and the semantics of the TC
operator, we have that TC(G′) ⊆ G. From this and µP ⊆ G′

(and also G ⊆ G′ by the de�nition of an extension pair), it holds
that TC(G ∪ µP) ⊆ TC(G′) ⊆ G. Therefore, it is the case that
(G,G ∪ µP) |= C. By assumption, it is the case µP ⊆ G. Since µ
was arbitrary, we can therefore conclude that JP KG′ ⊆ JP KG.

30 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

In other words, the completeness entailment does not hold, i� we
can �nd a possible BGP instantiation (wrt. some mapping) such that
the extension satis�es the statements, but the BGP instantiation is
not contained in the graph. The idea here is that, as demonstrated in
our motivating example, by using completeness statements we always
try to �nd complete parts of the BGP and instantiate them over the
graph, until either all the instantiations are included in the graph (=
the success case), or there is one instantiation that is not included
there (= the failure case). In the following subsections, we provide
formal notions and an algorithm for checking data-aware complete-
ness entailment.

3.2.1. Formal Notions

We now introduce formal notions to be used later in our algorithm
for checking data-aware completeness entailment.

First, we need a notion for a BGP with a stored mapping from
variable instantiations. This allows us to represent BGP instantia-
tions wrt. our completeness entailment procedure. Let P be a BGP
and µ be a mapping such that dom(µ) ∩ var(P) = ∅. We de�ne
the pair (P, µ) as a partially mapped BGP, which is a BGP with a
stored mapping. Over a graph G, the evaluation of (P, µ) is de�ned
as J(P, µ)KG = {µ ∪ ν | ν ∈ JP KG }. It is easy to see that P ≡ (P, ∅).
Furthermore, we de�ne the evaluation of a set of partially mapped
BGPs over a graph G as the union of evaluating each of them over G.

Example 3.3. Consider our motivating scenario. Over the BGP P0

of the query Q0, instantiating the variable ?crew to tony results in the
BGP P1 of the query Q1. Pairing P1 with this instantiation gives the
partially mapped BGP (P1, { ?crew 7→ tony }). Moreover, it is the
case that J(P1, { ?crew 7→ tony })KG = { { ?crew 7→ tony, ?child 7→
toby } }.

Next, we want to formalize the equivalence between partially
mapped BGPs wrt. a set C of completeness statements and a graph
G. We need this notion to ensure the equivalence of the BGP instan-
tiations that resulted from the evaluation of complete BGP parts.

De�nition 3.4 (Equivalence under C and G). Let (P, µ) and (P ′, ν)
be partially mapped BGPs, C be a set of completeness statements,
and G be a graph. We de�ne that (P, µ) is equivalent to (P ′, ν) wrt.

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 31

C and G, written (P, µ) ≡C,G (P ′, ν), if for all (G,G′) |= C, it holds
that J(P, µ)KG′ = J(P ′, ν)KG′ .

The above de�nition naturally extends to sets of partially mapped
BGPs.

Example 3.5. Consider all the queries in our motivating scenario.
It is the case that:

{ (P0, ∅) } ≡C,G { (P1, { ?crew 7→ tony }), (P2, { ?crew 7→ ted }) } ≡C,G

{ (P3, { ?crew 7→ tony, ?child 7→ toby }) }.

Next, we would like to �gure out which parts of a BGP contain
variables that can be instantiated completely. The idea is that, we
`match' completeness statements to the BGP and the graph, and
return the matched parts of the BGP. Note that in the matching we
consider also the graph since it might be the case that for a single
completeness statement, some parts of it have to be matched to the
BGP, while the other parts to the graph. For this reason, we de�ne

crucC,G(P) = P ∩ ĩd
−1

(TC(P̃ ∪G)) (3.1)

as the crucial part of P wrt. C and G. It is the case that we are com-
plete for the crucial part, that is, C, G |= Compl(crucC,G(P)). Later
on, we will see that the crucial part is used to guide the instantiation
process during the completeness entailment check.

Example 3.6. Consider the query Q0 = (W0, P0) in our motivating
scenario. We have that

crucC,G(P0) = P0 ∩ ĩd
−1

(TC(P̃0 ∪G)) = { (a99 , crew , ?crew) }

with ĩd = { ?crew 7→ c̃rew , ?child 7→ c̃hild }. Consequently, we can
have a complete instantiation of the crew of A99.

The operator below implements the instantiations of a partially
mapped BGP wrt. its crucial part.

De�nition 3.7 (Equivalent Partial Grounding). Let C be a set of
completeness statements, G be a graph, and (P, ν) be a partially
mapped BGP. We de�ne the operator equivalent partial grounding:

epg((P, ν),C, G) = { (µP, ν ∪ µ) | µ ∈ JcrucC,G(P)KG }.

32 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

The following shows that such instantiations produce a set of par-
tially mapped BGPs equivalent to the original partially mapped BGP,
hence the name equivalent partial grounding. Basically, it holds since
the instantiation is done over the crucial part, which is complete wrt.
C and G.

Proposition 3.8 (Equivalent Partial Grounding). Let C be a set
of completeness statements, G be a graph, and (P, ν) be a partially
mapped BGP. Then,

{ (P, ν) } ≡C,G epg((P, ν),C, G).

Proof. Take any G′ such that (G,G′) |= C. We want to show that
J(P, ν)KG′ =

⋃
(µP,ν∪µ)∈epg((P,ν),C,G)J(µP, ν ∪ µ)KG′ . Since it is the case

dom(ν)∩var(P) = ∅ by the construction of a partially mapped BGP,
it is su�cient to show that J(P, ∅)KG′ =

⋃
(µP,µ)∈epg((P,∅),C,G)J(µP, µ)KG′ .

By the construction of the epg operator, it is enough to show that
J(P, ∅)KG′ =

⋃
µ∈JcrucC,G(P)KGJ(µP, µ)KG′ .

Recall that the crucial part of P is complete wrt. C and G, that
is, C, G |= Compl(crucC,G(P)). This implies that JcrucC,G(P)KG =
JcrucC,G(P)KG′ . Therefore, it is the case

⋃
µ∈JcrucC,G(P)KGJ(µP, µ)KG′ =⋃

µ∈JcrucC,G(P)KG′
J(µP, µ)KG′ . By construction, it is always the case

crucC,G(P) ⊆ P . Given this fact and the semantics of evaluating
a partially mapped BGP, it holds that

⋃
µ∈JcrucC,G(P)KG′

J(µP, µ)KG′ =

J(P, ∅)KG′ . Thus, we can conclude that
⋃
µ∈JcrucC,G(P)KGJ(µP, µ)KG′ =⋃

µ∈JcrucC,G(P)KG′
J(µP, µ)KG′ = J(P, ∅)KG′ .

Example 3.9. Consider our motivating scenario. We have that:

• epg((P2, { ?crew 7→ ted }),C, G) = ∅
• epg((P3, { ?crew 7→ tony, ?child 7→ toby }),C, G)

= {(P3, {?crew 7→ tony, ?child 7→ toby})}
• epg((P0, ∅),C, G) = { (P1, { ?crew 7→ tony }), (P2, { ?crew 7→
ted }) }

Generalizing from the example above, there are three cases of the
operator epg((P, ν),C, G):

• If JcrucC,G(P)KG = ∅, it returns the empty set.
• If JcrucC,G(P)KG = {µ∅ }, it returns {(P, ν)}.

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 33

• Otherwise, it returns a non-empty set of partially mapped BGPs
where some variables in P are instantiated.

From these three cases and the �nite number of triple patterns
with variables of a BGP, it holds that the repeated applications of
the epg operator, with the �rst and second cases above as the base
cases, are terminating. Note that the di�erence between these two
base cases is in the e�ect of their corresponding epg operations, as
illustrated in Example 3.9: for the �rst case, the epg operation returns
the empty set, whereas for the second case, it returns back the input
partially mapped BGP. Also, intuitively the �rst case corresponds to
the non-existence of the query answer in any possible extension of
the graph that satis�es the set of completeness statements (e.g., the
Ted's children case).

As for the second case, we need a di�erent treatment. We �rst
de�ne that a partially mapped BGP (P, ν) is saturated wrt. C and
G, if epg((P, ν),C, G) = { (P, ν) }, that is, if the second case above
applies. Note that the notion of saturation is independent from the
mapping in a partially mapped BGP: given a mapping ν, a partially
mapped BGP (P, ν) is saturated wrt. C and G i� (P, ν ′) is saturated
wrt. C and G for any mapping ν ′. Thus, wrt. C and G we say that
a BGP P is saturated if (P, ∅) is saturated.

Saturated BGPs hold the key as to whether our completeness
entailment succeeds or not: the completeness checking of saturated
BGPs is simply by checking whether they are contained in the graphG.

Lemma 3.10 (Completeness Entailment of Saturated BGPs). Let
P be a BGP, C be a set of completeness statements, and G be a
graph. Suppose P is saturated wrt. C and G. Then, it is the case
that: C, G |= Compl(P) i� P̃ ⊆ G.

Proof. (⇒) We prove by contrapositive. Suppose P̃ 6⊆ G. We want
to give a counterexample for C, G |= Compl(P). Let us take the
extension pair (G,G∪ P̃). Note that since P̃ 6⊆ G, it is the case that
JP KG∪P̃ 6⊆ JP KG, implying (G,G ∪ P̃) 6|= Compl(P).

It is left to show (G,G ∪ P̃) |= C. We would like to prove the
following: If P is saturated wrt. C and G, then (G,G ∪ P̃) |= C. By
de�nition, wrt. C and G a BGP P is saturated i� (P, ∅) is saturated.
From our assumption that P is saturated, we therefore know that
(P, ∅) is also saturated. By the de�nition of saturation, this means
that epg((P, ∅),C, G) = { (P, ∅) }. This implies that JcrucC,G(P)KG =

34 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

{µ∅ }. Consequently, µ∅(crucC,G(P)) = crucC,G(P) ⊆ G. Here we
know that crucC,G(P) is ground.

Now we want show that TC(P̃ ∪G) ⊆ G for the following reason:
by the de�nition of TC and the satisfaction of an extension pair wrt.
C, it is the case that TC(P̃ ∪G) ⊆ G implies (G, P̃ ∪G) |= C.

By construction, the TC operator always returns a subset of the
input. There are therefore two components of the results of TC(P̃∪G)
we have to check if they are included in G. The �rst is those included
in G, that is, G ∩ TC(P̃ ∪G). Clearly, G ∩ TC(P̃ ∪G) ⊆ G.

The second one is those included in P̃ , that is, P̃ ∩ TC(P̃ ∪
G). We want to show that P̃ ∩ TC(P̃ ∪ G) ⊆ G. Recall that
crucC,G(P) ⊆ G. By de�nition, crucC,G(P) = P ∩ ĩd

−1
(TC(P̃ ∪

G)). Since crucC,G(P) is ground, we have that crucC,G(P) = P̃ ∩
ĩd
−1

(TC(P̃ ∪ G)), and the melting operator ĩd
−1

does not have any
e�ect, that is, P̃ ∩ ĩd−1

(TC(P̃ ∪G)) = P̃ ∩(TC(P̃ ∪G)). Consequently,
we have crucC,G(P) = P̃ ∩ (TC(P̃ ∪G)) ⊆ G.

Since both components are in G, we have that TC(P̃ ∪ G) ⊆ G,
and therefore (G, P̃ ∪G) |= C.
(⇐) Assume P̃ ⊆ G. It is trivial to see that P is ground (i.e., has
no variables), and P ⊆ G. Therefore, it is the case that for all ex-
tension pairs (G,G′), the inclusion JP KG′ ⊆ JP KG holds, implying
(G,G′) |= Compl(P). By de�nition, C, G |= Compl(P) holds if for
all (G,G′) |= C, we have (G,G′) |= Compl(P). Hence, C, G |=
Compl(P) holds since (G,G′) |= Compl(P) even for all possible ex-
tension pairs (G,G′).

By consolidating all the above notions, we are ready to provide
an algorithm to check data-aware completeness entailment. The next
subsection presents the algorithm.

3.2.2. Algorithm

From the above notions, we have de�ned the cruc operator, useful
to �nd parts of a BGP that can be instantiated completely. The
instantiation process wrt. the crucial part is facilitated by the epg
operator. We have also learned that repeating the application of the
epg operator results in saturated BGPs for which we have to check
whether they are contained in the graph or not, in order to know
whether our original BGP is complete. Let us now introduce an

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 35

algorithm to compute, given a set of completeness statements C, a
graph G, and a BGP P , all mappings that have two properties: each
BGP instantiation of the mappings constitutes a saturated BGP wrt.
C and G; and the original BGP is equivalent wrt. C and G with the
BGP instantiations produced from all the resulting mappings of the
algorithm.

ALGORITHM 1: sat(Porig,C, G)

Input: A BGP Porig, a set C of completeness statements, a graph

G
Output: A set Ω of mappings

1 Pworking ← { (Porig, ∅) }
2 Ω← ∅
3 while Pworking 6= ∅ do
4 (P, ν)← takeOne(Pworking)

5 Pequiv ← epg((P, ν),C, G)
6 if Pequiv = { (P, ν) } then
7 Ω← Ω ∪ ν
8 else

9 Pworking ← Pworking ∪Pequiv

10 end

11 end

12 return Ω

Consider a BGP Porig, a set C of completeness statements, and
a graph G. The algorithm works as follows: First, we transform our
original BGP Porig into its equivalent partially mapped BGP (Porig, ∅)
and put it in Pworking. Then, in each iteration of the while loop,
we take and remove a partially mapped BGP (P, ν) from Pworking

via the method takeOne. Afterwards, we compute epg((P, ν),C, G).
As discussed above there might be three result cases here: (i) If
epg((P, ν),C, G) = ∅, then simply we remove (P, ν) and will not
consider it anymore in the later iteration; (ii) If epg((P, ν),C, G) =
{ (P, ν) }, that is, (P, ν) is saturated, then we collect the mapping
ν to the set Ω; and (iii) otherwise, we add to Pworking a set of par-
tially mapped BGPs instantiated from (P, ν). We keep iterating until
Pworking = ∅, and �nally return the set Ω.

The following proposition follows from the construction of the
above algorithm and Proposition 3.8.

Proposition 3.11. Given a BGP P , a set C of completeness state-

36 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

ments, and a graph G, the following properties hold:

• For all µ ∈ sat(P,C, G), it is the case that µP is saturated wrt.
C and G.

• It holds that {(P, ∅)} ≡C,G { (µP, µ) | µ ∈ sat(P,C, G) }.

From the above proposition, we can derive the following theo-
rem, which shows the soundness and completeness of the algorithm
to check completeness entailment.

Theorem 3.12 (Completeness Entailment Check). Let P be a BGP,
C be a set of completeness statements, and G be a graph. It holds
that

C, G |= Compl(P) i� for all µ ∈ sat(P,C, G) . µ̃P ⊆ G.

Proof. (⇒) We prove by contrapositive. Assume there exists a map-
ping µ ∈ sat(P,C, G) such that µ̃P 6⊆ G. From Proposition 3.11, we
have that µP is saturated wrt. C and G. From Lemma 3.10, it is the
case C, G 6|= Compl(µP).

From Proposition 3.11, we have that (P, ∅) ≡C,G { (νP, ν) | ν ∈
sat(P,C, G) }. By construction, each mapping in sat(P,C, G) is not
comparable to the others. Since C, G 6|= Compl(µP), we have the
extension pair (G,G∪µ̃P) as a counterexample forC, G |= Compl(P).
(⇐) By the �rst claim of Proposition 3.11, we have that µP is sat-
urated wrt. C and G for each µ ∈ sat(P,C, G). Thus, from the
right-hand side of Theorem 3.12 and Lemma 3.10, we have that
C, G |= Compl(µP) for each µ ∈ sat(P,C, G). Therefore, we have
that C, G |= Compl(P) by the second claim of Proposition 3.11.

Example 3.13. Consider our motivating scenario. It is the case that
sat(P0,C, G) = { { ?crew 7→ tony, ?child 7→ toby } }. For every map-
ping µ in sat(P0,C, G), it holds that µ̃P0 ⊆ G. Thus, by Theorem 3.12
the entailment C, G |= Compl(P0) holds.

From looking back at the characterization of completeness entail-
ment in Proposition 3.2, it actually does not give us a concrete way
to compute a set of mappings to be used in checking completeness
entailment. Now, by Theorem 3.12 it is su�cient for checking com-
pleteness entailment to consider only the mappings in sat(P,C, G)
for which we know how to compute.

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 37

Simple Practical Optimizations. In what follows we provide two sim-
ple optimization techniques of the algorithm: early failure detection
and completeness skip. More elaborate optimizations are given in
Chapter 4.

(i) Early failure detection. In our algorithm, the containment checks
for saturated BGPs are done at the end. Indeed, if there is a sin-
gle saturated BGP not contained in the graph, we cannot guarantee
query completeness (recall Theorem 3.12). Thus, instead of having
to collect all saturated BGPs and then check the containment later
on, we can improve the performance of the algorithm by performing
the containment check right after the saturation check (Line 6 of the
algorithm). So, as soon as there is a failure in the containment check,
we stop the loop and conclude that the completeness entailment does
not hold.

(ii) Completeness skip. Recall the de�nition of the operator

epg((P, ν),C, G) = { (µP, ν ∪ µ) | µ ∈ JcrucC,G(P)KG },

which relies on the cruc operator. Now, suppose that crucC,G(P) =
P , implying that we are complete for the whole part of the BGP P .
Thus, we actually do not have to instantiate P in the epg operator,
since we know that the instantiation results will be contained in G
anyway due to P's completeness wrt. C and G. In conclusion, when-
ever crucC,G(P) = P , we just remove (P, ν) from Pworking and thus
skip its instantiations.

3.2.3. Complexity

In this subsection, we analyze the complexity of the problem of data-
aware completeness entailment. Recall that the complexity of the
data-agnostic counterpart is NP-complete (as per Corollary 2.11).
The addition of the data graph to the entailment increases the com-
plexity, which is now ΠP

2 -complete. The hardness is by reduction from
the validity problem of a ∀∃3SAT formula.

Proposition 3.14. Deciding whether C, G |= Compl(P) holds, given
a set C of completeness statements, a graph G, and a BGP P , is ΠP

2 -
complete.

Proof. The membership proof is as follows. It is the case that C, G 6|=
Compl(P) i� there exists a graph G′ containing G where:

38 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

• (G,G′) |= C, and
• (G,G′) 6|= Compl(P).

We guess a mapping µ over P such that µP 6⊆ G, which implies that
(G,G ∪ µP) 6|= Compl(P). Then, we check in CoNP that (G,G ∪
µP) |= C. If it holds, then C, G 6|= Compl(P) by the counterexample
G′ = G ∪ µP .

Next, we prove the hardness by reduction from the validity of a
∀∃3SAT formula. The general shape of a formula is as follows:

ψ = ∀x1, . . . , xm∃y1, . . . , yn γ1 ∧ . . . ∧ γk,

where each γi is a disjunction of three literals over propositions from
vars∀ ∪ vars∃ where vars∀ = {x1, . . . , xm} and vars∃ = {y1, . . . , yn}.
We will construct a set C of completeness statements, a graph G, and
a BGP P such that the following claim holds:

C, G |= Compl(P) i� ψ is valid.

Our encoding is inspired by the following approach to check the
validity of ψ: Unfold the universally quanti�ed variables x1, . . . , xm
in ψ, and then check if for every formula in the set Ψunfold of the
unfolding results, there is an assignment from the existentially quan-
ti�ed variables y1, . . . , yn to make all the clauses evaluate to true.

(Encoding) First, we construct1

G = { (0 , varg , c), (1 , varg , c) }

and the completeness statement

C∀ = Compl({ (?x , varg , ?y) }),

to denote all the assignment possibilities (i.e., 0 and 1) for the uni-
versally quanti�ed variables.

Next, we de�ne

Pground = { (?xi , varg , ?cxi), (?xi , varc, cxi) | xi ∈ vars∀ }.

The idea is that Pground via C∀ and G will later be instantiated with
all possible assignments for the universally quanti�ed variables in ψ.

1Recall that we omit namespaces. With namespaces, for example, the `number'
0 in the encoding can be written as the IRI http://example.org/0.

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 39

Now, we de�ne

Pneg = { (0 , neg , 1), (1 , neg , 0) },

which says that 0 is the negation of 1, and vice versa. This BGP is
used later on to assign values for all the propositional variables and
their negations. Then, we de�ne

Ptrue = { (1 , 1 , 1), . . . , (0 , 0 , 1) },

to denote the seven possible valid values for a clause. Our BGP P we
want to check for completeness is therefore as follows:

P = Ptrue ∪ Pneg ∪ Pground .

Now, we want to encode the structure of the formula ψ. For
each propositional variable pi, we encode the positive literal pi as the
variable var(pi) = ?pi and the negative literal ¬pi as the variable
var(¬pi) = ?¬pi. Given a clause γi = li1∨ li2∨ li3, the operator tp(γi)
maps γi to a triple pattern (var(li1), var(li2), var(li3)). We then de�ne
the following BGP to encode the structure of ψ:

Pψ = { tp(γi) | γi occurring in ψ }.

To encode the inverse relationship between a positive literal and
a negative literal, we use the following:

Pposs = { (?pi , neg , ?¬pi), (?¬pi , neg , ?pi) | pi ∈ vars∀ ∪ vars∃}.

This pattern will later be instantiated accordingly wrt. Pneg . Now,
for capturing the assignments of the universally quanti�ed variables
in P , we use

P∀ = { (?xi , varc, cxi) | xi ∈ vars∀ }.

We are now ready to construct the following completeness state-
ment:

Cψ = Compl(Ptrue ∪ Pposs ∪ P∀ ∪ Pψ).

In summary, our encoding consists of the following ingredients:
the set C = {C∀, Cψ } of completeness statements, the graph G, and
the BGP P . Let us now prove the claim mentioned above.

40 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

(Proof for Encoding) Recall the approach we mentioned above to
check the validity of the formula ψ. To simulate the unfolding of
the universally quanti�ed variables, we rely on the equivalent par-
tial grounding operator epg((P, ∅),C, G) as in Algorithm 1 which in-
volves the cruc operator. Accordingly, crucC,G(P) = P∩ ĩd−1

(TC(P̃∪
G)) by de�nition. By construction, the statement C∀ captures the
(?xi , varg , ?cxi) part of the BGP P where xi ∈ vars∀. Thus, by the
construction of G, it is the case that epg((P, ∅),C, G) consists of 2m

partially mapped BGPs, where m is the number of the universally
quanti�ed variables in ψ. Each of the partially mapped BGPs cor-
responds to an assignment for the universally quanti�ed variables in
the set Ψunfold of the unfolding results of ψ.

Now, we prove the simulation of the next step, the existential
checking. For each partially mapped BGP (µP, µ) in the unfold-
ing results epg((P, ∅),C, G), it is either epg((µP, µ),C, G) = ∅ or
epg((µP, µ),C, G) = { (µP, µ) }. Let us see what this means.

By construction, the former case happens whenever TC(µ̃P∪G) =

µ̃P holds, from the fact that JµP KG = ∅. Furthermore, it is the
case that TC(µ̃P ∪ G) = µ̃P i� there is a mapping ν from the en-
coding ?yi of the existentially quanti�ed variables in Pψ such that
ν(µPψ) ⊆ Ptrue . Note that the mapping ν simulates a satisfying as-
signment for the corresponding existentially quanti�ed formula in the
set Ψunfold . Whenever this holds for all (µP, µ) ∈ epg((P, ∅),C, G),
from Proposition 3.8 we can conclude that (P, ∅) ≡C,G ∅, and there-
fore C, G |= Compl(P). Also, because we have the satisfying assign-
ments for all the corresponding existentially quanti�ed formulas in
the set Ψunfold , the formula ψ evaluates to true.

The latter case happens whenever TC(µ̃P ∪G) 6= µ̃P , since there
is no mapping ν from the encoding ?yi of the existentially quanti-
�ed variables in Pψ such that ν(µPψ) ⊆ Ptrue . This simulates the
failure in �nding a satisfying assignment for the corresponding ex-
istentially quanti�ed formula in the set Ψunfold . This implies that
ψ evaluates to false. However, whenever the latter case happens,
it means that (µP, µ) is saturated. By construction, it is the case
µ̃P 6⊆ G. From Lemma 3.10 and Proposition 3.8, we conclude that
C, G 6|= Compl(P).

One might wonder, if some parts of the inputs were �xed, what
would be the complexity of the entailment problem. We answer this

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 41

question in the following series of propositions.
First, let us �x the input graph G. This does not change the

complexity, that is, the problem is still ΠP
2 -complete. The reason is

that, the reduction from the validity problem of a ∀∃3SAT formula
can be done even with a �xed graph.

Proposition 3.15. Deciding whether C, G |= Compl(P) holds, given
a set C of completeness statements, a �xed graph G, and a BGP P ,
is ΠP

2 -complete.

Proof. The membership follows immediately from Proposition 3.14,
while the hardness follows from the reduction proof of that proposi-
tion, in which the graph is �xed.

Now, we want to see the complexity when the BGP P is �xed.
Recall that in the algorithm, P dominates the complexity of the in-
stantiation process in the epg operator. When it is �xed, the size of
the instantiations is bounded polynomially, reducing the complexity
of the entailment problem to NP-complete. Note it is still NP-hard
even when the input graph G is �xed.

Proposition 3.16. Deciding whether C, G |= Compl(P) holds, given
a set C of completeness statements, a graph G, and a �xed BGP P ,
is NP-complete.

Proof. The membership relies on Algorithm 1 and Theorem 3.12. Re-
call that the algorithm contains the epg operator, which performs
grounding based on the crucial part over the graph G. However, now
since the BGP is �xed, the size of the grounding results is therefore
bounded polynomially. Consequently, the only source of complexity
is from the �nding of the crucial part of BGPs, which can be done in
NP (note that here the completeness statements are not �xed).

The hardness follows immediately from Proposition 3.17.

Proposition 3.17. Deciding whether C, G |= Compl(P) holds, given
a set C of completeness statements, a �xed graph G, and a �xed BGP
P , is NP-complete.

Proof. The membership follows immediately from Proposition 3.16.
The proof for NP-hardness is by means of reduction from the

3-colorability problem of directed graphs, which is known to be NP-
hard [42]. We encode the problem graph Gp = (V,E), i.e., the di-
rected graph we want to check whether it is 3-colorable, as a set

42 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

triples(Gp) of triple patterns. We associate to each vertex v ∈ V , a
new variable ?v. Then, we de�ne triples(Gp) as the union of all triple
patterns (?s , edge, ?o) created from each pair (s, o) ∈ E where ?s is
the associated variable of s, edge is an IRI and ?o is the associated
variable of o. Let the BGP Pcol be:

{(r , edge, g), (r , edge, b), (g , edge, r), (g , edge, b),
(b, edge, r), (b, edge, g)}

Next, we create the following completeness statement Cp:

Compl(triples(Gp) ∪ Pcol)

Let G be the empty set. Thus, the following claim holds:

The problem graph Gp is 3-colorable if and only if
{Cp }, G |= Compl(Pcol)

Proof of the claim: �⇒� Assume Gp is 3-colorable. Thus, there must
be a mapping µ from all the vertices in Gp to an element from the
set { r, g, b } such that no adjacent nodes have the same color. This
mapping can then be reused for mapping the CONSTRUCT query of
the statement Cp to the frozen version of the BGP Pcol, which then
ensures the completeness of Pcol.

�⇐� We will prove by contrapositive. Assume that Gp is not 3-
colorable. Thus, there is no mapping from the vertices in Gp to an
element from the set { r, g, b } such that any adjacent node has a di�er-
ent color. Suppose that there is an extension pair (G,G′) such that G′

is the color graph { (r , edge, g), . . . , (b, edge, g) }. From the construc-
tion of Cp, it is the case that (G,G′) |= {Cp } but JPcolKG 6= JPcolKG′ .
Thus, {Cp }, G 6|= Compl(Pcol).

Let us now see the complexity when the set of statements C is
�xed. In the algorithm, C dominates the complexity of the TC op-
erator used in computing the crucial part. When it is �xed, the TC
operator can be done in PTIME, reducing the complexity of the en-
tailment problem to CoNP-complete. Again, �xing also the graph
does not change the complexity.

Proposition 3.18. Deciding whether C, G |= Compl(P) holds, given
a �xed set C of completeness statements, a graph G, and a BGP P ,
is CoNP-complete.

3.2. CHECKING DATA-AWARE COMPLETENESS ENTAILMENT 43

Proof. The membership proof is as follows. It is the case that C, G 6|=
Compl(P) i� there exists a graph G′ containing G where:

• (G,G′) |= C, and
• (G,G′) 6|= Compl(P).

We guess a mapping µ over P such that µP 6⊆ G, which implies
that (G,G ∪ µP) 6|= Compl(P). Then, we check in PTIME (since
C is now �xed) the entailment (G,G ∪ µP) |= C. If it holds, then
C, G 6|= Compl(P) by the counterexample G′ = G ∪ µP .

The hardness follows immediately from Proposition 3.19.

Proposition 3.19. Deciding whether C, G |= Compl(P) holds, given
a �xed set C of completeness statements, a �xed graph G, and a BGP
P , is CoNP-complete.

Proof. The membership follows immediately from Proposition 3.18.
The proof for CoNP-hardness is by means of reduction from the

3-incolorability problem of directed graphs. We encode the problem
graph Gp = (V,E), i.e., the directed graph we want to check whether
it is 3-incolorable, as a set triples(Gp) of triple patterns. We associate
to each vertex v ∈ V , a new variable ?v. Then, we de�ne triples(Gp)
as the union of all triple patterns (?s , edge, ?o) created from each pair
(s, o) ∈ E where ?s is the associated variable of s, edge is an IRI and
?o is the associated variable of o. Let the BGP P be:

triples(Gp) ∪ { (a, b, c) }

Let the graph G be the color graph:

{(r , edge, g), (r , edge, b), (g , edge, r), (g , edge, b),
(b, edge, r), (b, edge, g)}

Next, we create the following completeness statement C:

Compl((?x , edge, ?y))

Thus, the following claim holds:

The problem graph Gp is 3-incolorable if and only if
{C }, G |= Compl(P).

Proof of the claim: �⇒� The proof relies on Algorithm 1 and The-
orem 3.12. Assume Gp is 3-incolorable. By construction, the part
triples(Gp) of the BGP P can be grounded completely due to the
statement C, that is, the crucial part operator cruc returns exactly

44 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

that part. However, as Gp is 3-incolorable, there is no mapping µ
from all the vertices in Gp to an element from the set { r, g, b } such
that no adjacent nodes have the same color. Thus, the epg opera-
tor returns the empty set as evaluating triples(Gp) over G yields the
empty answer. This means that the grounding does not output any
BGP that needs to be checked anymore for its completeness. Hence,
it is the case that {C }, G |= Compl(P).

�⇐� We will prove by contrapositive. Assume that Gp is 3-colorable.
Thus, there must be a mapping µ from all the vertices in Gp to an
element from the set { r, g, b } such that no adjacent nodes have the
same color. Take such a mapping µ arbitrarily. By construction,
the part triples(Gp) of the BGP P can be grounded completely due
to the statement C, that is, the crucial part operator cruc returns
exactly that part. Since the graph Gp is 3-colorable, we can then
reuse the mapping µ for mapping triples(Gp) to G. The epg operator
results therefore include that mapping, which is then applied to the
remaining part of P , that is, the triple pattern (a, b, c). Note that the
triple pattern consists of only constants, so the mapping application
has no e�ect. Now we have to check the completeness of (a, b, c).
As no completeness statements can be evaluated over that remaining
part, it is then the case that we are already saturated for (a, b, c). By
Theorem 3.12, the BGP P can be guaranteed to be complete i� all
saturated instantiations wrt. {C } are in G. However, clearly (a, b, c)
is not in G. Thus, we have that {C }, G 6|= Compl(P).

Finally, the following proposition tells us that �xing both the set
of statements C and the BGP P reduces the complexity to PTIME.

Proposition 3.20. Deciding whether C, G |= Compl(P) holds, given
a �xed set C of completeness statements, a graph G, and a �xed BGP
P , is in PTIME.

Proof. The proof relies on Algorithm 1 and Theorem 3.12. Recall that
the algorithm contains the epg operator, which performs grounding
based on the crucial part over the graph G. However, now since the
BGP is �xed, the size of the grounding results is therefore bounded
polynomially. Moreover, now that the completeness statements are
�xed, the �nding of the crucial part can then be done in PTIME.
Hence, the overall procedure can be done in PTIME.

3.3. SP-STATEMENTS 45

This result corresponds to some practical cases when queries are as-
sumed to be of limited length2 and hence, so are completeness state-
ments (which are essentially also queries).

input complexity

C G P

X X X ΠP
2 -complete

X × X ΠP
2 -complete

X X × NP-complete

X × × NP-complete

× X X CoNP-complete

× × X CoNP-complete

× X × in PTIME

Table 3.1. Complexity table for the data-aware completeness entailment prob-

lem with various input �xes (× denotes `�xed')

Our complexity results with various input �xes can be summarized
in Table 3.1. From this complexity study, it is therefore of our interest
to study how well the problem of completeness entailment for both
the data-agnostic and data-aware cases may behave in practice. We
will later provide optimization techniques, as well as experimental
evaluations of the problem in Chapter 4.

3.3. SP-statements

In the previous section, we have provided completeness characteri-
zations for queries by using generic completeness statements. Yet,
in some practical cases a simpler fragment of completeness state-
ments might be su�cient for the task at hand. This section iden-
ti�es SP-statements, a fragment of completeness statements having
several properties that are suitable for RDF data sources with the
entity-centric, crowdsourced basis.

3.3.1. Motivation

An SP-statement Compl((s, p, ?v)) is a completeness statement with
only one triple pattern in the statement's BGP, where the subject and

2as also customary in the database theory when analyzing the data complexity
of query evaluation

46 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

the predicate are IRIs, and the object is a variable. In our motivat-
ing scenario (see Section 3.1), all the completeness statements are in
fact SP-statements. The statements possess the following properties,
which make them suitable for practical use:

• Having a simple structure, completeness statements within this
fragment are easy to create and to be read. Thus, they are
suitable for crowdsourced KBs, where humans are involved.
• An SP-statement denotes the completeness of all the property
values of the entity which is the subject of the statement. This
�ts entity-centric KBs like Wikidata, where data is organized
according to entities (i.e., each entity has its own data page).
• Despite their simplicity, SP-statements can be used to guaran-
tee the completeness of more complex queries such as queries
whose length is greater than one (as illustrated by our motivat-
ing scenario).

3.3.2. SP-Indexing

We describe here how to optimize data-aware completeness entail-
ment check with SP-statements. Recall our generic algorithm to check
completeness entailment:
In the cruc operator within the epg operator (Line 5 of Algorithm 1),
we have to compute TC(P̃ ∪G), that is, evaluate all CONSTRUCT queries
of the completeness statements in C over the graph P̃ ∪G. This may
be problematic if there are a large number of completeness statements
in C. Thus, we want to avoid such costly TC applications. Given that
completeness statements are SP-statements, we may instead look for
the statements having the same subject and predicate of the triple
patterns in the BGP. The crucial part of the BGP P wrt. C and
G are the triple patterns for which there is an SP-statement with a
matching subject and predicate.

Proposition 3.21. Given a BGP P , a graph G, and a set C of SP-
statements, it is the case that crucC,G(P) = { (s, p, o) ∈ P |
there exists a statement Compl({ (s, p, ?v) }) ∈ C }.

From the above proposition, to get the crucial part, we only have
to �nd an SP-statement with the same subject and predicate for each
triple pattern of the BGP, and thus, the graph G does not play any
role. In practice, we can facilitate this search via a standard hashmap,

3.3. SP-STATEMENTS 47

providing constant-time performance, also for other basic operations
such as add and delete. The hashmap provides a mapping from
the concatenation of the subject and the predicate of a statement to
the statement itself. To illustrate, the hashmap of the completeness
statements in our motivating scenario is as follows: { a99-crew 7→
C1, tony-child 7→ C2, ted-child 7→ C3 }.

Complexity-wise, it is the case that when completeness state-
ments are only of 1 triple pattern (i.e., a close generalization of SP-
statements), the problem of data-aware completeness entailment is
CoNP-complete. This is in contrast to the complexity for general
cases, which is ΠP

2 -complete (as in Proposition 3.14).

Proposition 3.22. Deciding whether C, G |= Compl(P) holds, given
a set C of completeness statements of length 1, a graph G, and a BGP
P , is CoNP-complete.

Proof. The Co-NP membership proof is as follows. It is the case that
C, G 6|= Compl(P) i� there exists a graph G′ containing G where:

• (G,G′) |= C, and
• (G,G′) 6|= Compl(P).

We guess a mapping µ over P such that µP 6⊆ G, implying that
(G,G ∪ µP) 6|= Compl(P). Then, we check (G,G ∪ µP) |= C, which
can now be done in PTIME since completeness statements are of
length 1. If it holds, then C, G 6|= Compl(P) by the counterexample
G′ = G ∪ µP .

The hardness proof is by reduction from the problem of graph
3-incolorability. We refer to the CoNP hardness proof of Proposi-
tion 3.19, in which the only completeness statement used is also of
length 1.

3.3.3. Experimental Evaluation

Now that we have an indexing technique for SP-statements, we want
to investigate the performance of completeness checking using such
statements. To do so, we perform an experimental evaluation with
a realistic scenario, where we compare the runtime of completeness
entailment when query completeness can be guaranteed (i.e., the suc-
cess case), completeness entailment when query completeness cannot
be guaranteed (i.e., the failure case), and query evaluation.

48 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

Experimental Setup. Our reasoning algorithm and indexing modules
were implemented in Java using the Apache Jena library.3 We used
Jena-TDB as the triple store of our experiment. The SP-indexing
was implemented using the standard Java hashmap, where the keys
are strings constructed from the concatenation of the subject and
predicate of completeness statements, and the values are Java objects
representing completeness statements. All experiments were done on
a standard laptop with a 2.4 GHz Intel Core i5 and 8 GB of memory.

There were three ingredients for the experiment: a graph, com-
pleteness statements, and queries. For the graph, we used the direct-
statement fragment of the Wikidata graph, which does not include
quali�ers nor references (that is, only property-value pairs of entities)
and consists of 100 mio triples.4 For the queries and completeness
statements, we want to have a variety in the selectivity. Therefore,
we chose the following query templates (or pattern queries) over Wiki-
data, which later will be used to generate the queries and statements:

1. Give all mothers (= P25) of mothers of mothers.
P1 = { (?v ,P25 , ?w), (?w ,P25 , ?x), (?x ,P25 , ?y) }

2. Give the crew (= P1029) of a thing, the astronaut missions
(= P450) of each such crew, and the operator (= P137) of the
missions.

P2 = { (?v ,P1029 , ?w), (?w ,P450 , ?x), (?x ,P137 , ?y) }
3. Give the administrative divisions (= P150) of a thing, the

administrative divisions of those divisions, and their area (=
P2046).

P3 = { (?v ,P150 , ?w), (?w ,P150 , ?x), (?x ,P2046 , ?y) }

Let us describe how we generate the queries and completeness
statements. To generate queries, we simply evaluated each pattern
query over the graph, and instantiated the variable ?v of each pattern
query with the corresponding mappings from the evaluation. We
recorded 5,200 queries instantiated from P1, 57 queries from P2, and
475 queries from P3. Each pattern query had a di�erent average
number of query results: the instantiations of P1 gave 1 result, those
of P2 gave 4 results, and those of P3 gave 108 results on average. So,
we had a variety of query selectivity.

3https://jena.apache.org/
4https://tools.wmflabs.org/wikidata-exports/rdf/exports/

20151130/

3.3. SP-STATEMENTS 49

To generate completeness statements, from each generated query,
we iteratively evaluated each triple pattern from left to right, and con-
structed SP-statements from the instantiated subject and the pred-
icate of the triple patterns. This way, we guaranteed that all the
queries can be answered completely. We generated in total around
1.7 mio statements, with 30,072 statements for P1, 484 statements
for P2, and 1,682,263 statements for P3. Such a large number of com-
pleteness statements would make completeness checks without index-
ing very slow: Performing just a single application of the TC operator
with all these statements, which occurs inside the cruc operator of
the algorithm took around 20 minutes without SP-indexing. Note
that in a completeness check, there might be many TC applications.

Now we describe how to observe the behavior when queries cannot
be guaranteed to be complete, that is, the failure case. In this case,
we dropped randomly 20% of the completeness statements for each
pattern query. To make up the statements we dropped, we added
dummy statements with the number equal to the number of dropped
statements. This way, we ensured the same number of completeness
statements for both the success and failure case.

For each query pattern, we measured the runtime of completeness
checking for both the success case and the failure case, and then query
evaluation for the success case.5 We took 40 sample queries for each
pattern query, repeated each run 10 times, and reported the median
of these runs.

Experimental Results. The experimental results are shown in Fig-
ure 3.1. Note that the runtime is in log scale. We can see that in
all cases, the runtime increases with the �rst pattern query having
the lowest runtime, and the third pattern query having the highest
runtime. This is likely due to the increased number of query results.
We observe that in all pattern queries, the completeness check when
queries are guaranteed to be complete is slower than when complete-
ness cannot be guaranteed. We suspect that this is because in the
former case, variable instantiations have to be performed much more
often than in the latter case (that is, it has to generate all possible
instantiations). In the latter case, as soon as we �nd a saturated
BGP not contained in the graph, we stop the loop in the algorithm

5We did not measure query evaluation time for failure case since query evalu-
ation is independent of the completeness of the query.

50 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

1 2 3

102

103

104

Pattern Query

R
u
n
ti
m
e
in
µ
s

Success Case Failure Case Query Evaluation

Figure 3.1. Experiment Results of Completeness Entailment

and return false, meaning that the query completeness cannot be
guaranteed. For queries with large results, such a termination might
be done much earlier than when the queries are complete. This possi-
bly explains the increasing runtime gap between the success case and
failure case in the �gure.

In absolute scale, the completeness check runs relatively fast, with
796 µs for P1, 5,264 µs for P2, and 35,130 µs for P3 in success case; and
485 µs for P1, 903 µs for P2, and 1,209 µs for P3 in failure case. Note
that as mentioned before, completeness checking without indexing is
not feasible at all here, as there are a large number of completeness
statements, making the TC application very slow (i.e., 20 minutes for
a single application). For all pattern queries, however, query evalu-
ation runs faster than completeness checking. This is because com-
pleteness checking may involve several query evaluations during the
instantiation process with the epg operator.

To conclude, we have observed that completeness checking with
a large number of SP-statements can be done reasonably fast, even
for large datasets, by employing indexing. Also, we observe a clear
positive correlation between the number of query results and the run-
time of completeness checking. Last, performing a completeness check
when a query is complete is slower than that when a query cannot be
guaranteed to be complete.

3.4. NO-VALUE STATEMENTS 51

3.4. No-value Statements

In this section, we focus on the problem of non-existent information:
stating that some parts of data do not exist in the real world. Non-
existent information is related to data completeness in the following
way: if we know that some parts of data do not exist, then any data
source is trivially complete for those parts. We introduce no-value
statements, a fragment of completeness statements that is suited to
expressing the non-existence of information in RDF. With no-value
statements, the problem of checking query completeness (i.e., query
answers are complete?) is now shifted to the problem of checking
query emptiness (i.e., query answer is truly empty?). We �rst moti-
vate no-value statements, then provide a formal characterization of
query emptiness entailment with no-value statements, and describe
how one can concretely represent no-value statements in RDF.

3.4.1. Motivation

RDF is mainly used to express positive information. However, rep-
resenting negative information is often of interest in practice. For
instance, Wikidata [111] has the following information about Eliza-
beth I not having any children.6

Figure 3.2. No-value information on Wikidata

In the above �gure, Wikidata explicitly states that Elizabeth I
had no children since the property child has �no value�.7 This is
di�erent than not recording anything at all which would imply possi-
bly incomplete information for the children of Elizabeth I. To express

6https://www.wikidata.org/wiki/Q7207
7For further information about no values on Wikidata, refer to https://www.

wikidata.org/wiki/Wikidata:Glossary.

52 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

this in RDF, one may be tempted to assign a special datatype con-
stant noValue to represent the no-value information of the children
of Elizabeth I, creating the triple (elizabethI , child , noValue). How-
ever, this creates a problem since executing the SPARQL ASK query
Q = ({ }, {(elizabethI , child , ?y)}) asking if Elizabeth I has a child,
would give the answer `yes'. Indeed, due to no formal de�nition, it is
not clear how to properly use noValue.

The notion of no-value information was �rst introduced in rela-
tional databases [3]. There, the term `null value' was used, which may
have di�erent meanings: there exists no value (i.e., non-existence);
there exists a value but it is unknown; or it is unknown whether a
value exists. For the second case, we can leverage RDF blank nodes,
whereas for the third case, the open-world assumption (OWA) of RDF
simply permits it. However, RDF cannot represent the �rst case,
which is the one of no-value nulls, while in fact this no-value infor-
mation is useful to distinguish this case from incomplete information.
Furthermore, by having no-value information, an empty query an-
swer can have two di�erent meanings: it may be empty because of
possibly incomplete information, or it may be truly empty because
such information does not exist in the real world. From the practical
side, Wikidata itself contains in total about 19,000 pieces of no-value
information over 269 properties.8 Given such amount, it is therefore
potentially bene�cial (e.g., for checking SPARQL query emptiness) if
no-value information can be formalized and represented in RDF in a
standardized way.

3.4.2. Formalization

Let us formalize no-value information. We �rst de�ne no-value state-
ments to capture which information is non-existent. Such statements
denote that a particular concept cannot exist wrt. the real world.

De�nition 3.23 (No-Value Statement). A no-value statement N is
de�ned as No(P) where P is a BGP. To N , we associate the CONSTRUCT
query QN = (P, P).

We use BGPs to have a �exibility to represent complex no-values
which need more than one triple pattern. For example, one can state

8as per Feb 18, 2017

3.4. NO-VALUE STATEMENTS 53

that �Elizabeth I has no child� with Nel = No((elizabethI , child , ?c)),
whereas �Obama has no son� with

Nob = No((obama, child , ?c), (?c, gender ,male)).

Now, we want to give the semantics of no-value statements. As be-
fore, we use an extension pair to model the OWA of RDF graphs. Hav-
ing no-value statements restricts the possibilities of extension pairs
since they must not contain any instantiation of the information de-
noted by the statements. Over a graph G, we de�ne the transfer
operator TN (G) =

⋃
N∈N JQNKG. We de�ne the semantics of no-value

statements as follows.

De�nition 3.24 (Satisfaction of No-Value Statements). An exten-
sion pair (G,G′) satis�es a set N of no-value statements, written as
(G,G′) |= N , if and only if TN (G′) = ∅.

Note that since G ⊆ G′ holds by the de�nition of an extension pair,
TN (G′) = ∅ implies TN (G) = ∅. Next, we de�ne the emptiness of a
query over an extension pair.

De�nition 3.25 (Query Emptiness). Let (G,G′) be an extension
pair and Q a query. To express that Q is empty, we write Empty(Q).
It is the case that (G,G′) |= Empty(Q) if and only if JQKG′ = ∅.

Query emptiness over one extension pair does not mean that it al-
ways holds also over other extension pairs. For this reason, we de�ne
the query emptiness entailment: that N |= Empty(Q) holds, if for
any extension pair (G,G′) |= N , we have that (G,G′) |= Empty(Q).
If the entailment holds, we can guarantee that the query will always
return an empty answer no matter which possible extensions of a
graph are considered. The next theorem characterizes query empti-
ness entailment: whenever there is some part of the query that can-
not return any answer due to no-value information, then the whole
query does not return any answer. Via this theorem, we are able to
distinguish between empty query answers from possibly incomplete
information, and empty query answers from non-existent information.

Theorem 3.26 (Query Emptiness Entailment). Let N be a set of
no-value statements, Q be a query, and P̃ be the prototypical graph
of Q. It is the case that N |= Empty(Q) if and only if TN (P̃) 6= ∅.

54 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

Proof. (⇒) We will prove by contrapositive. Assume TN (P̃) = ∅. We
will show that N 6|= Empty(Q). Take the extension pair (∅, P̃). By
the assumption, it is the case that (∅, P̃) |= N . However, we have
that (∅, P̃) 6|= Empty(Q) since JQKP̃ is not empty by the de�nition of
the prototypical graph P̃ .
(⇐) Assume TN (P̃) 6= ∅. Take any extension pair (G,G′) such that
(G,G′) |= N . We will show that (G,G′) |= Empty(Q). It is su�cient
to show that JQKG′ = ∅. There must be a no-value statement N ∈ N
for a witness of our assumption that TN (P̃) 6= ∅. Thus, we have that
∅ 6= JQNKP̃ ⊆ P̃ .

As (G,G′) |= N , it must be the case that JQNKG′ = ∅. Assume
that JQKG′ 6= ∅. Thus, there must be a mapping µ ∈ JP KG′ . This
implies that µ(P) ⊆ G′. Thus, it is the case that ∅ 6= JQNK

µĩd
−1
P̃
⊆

µĩd
−1
P̃ . Since µĩd

−1
P̃ = µP ⊆ G′, we have that ∅ 6= JQNKG′ , which

contradicts our assumption that (G,G′) |= N . Thus, JQKG′ = ∅
holds.

The complexity of the problem of query emptiness entailment is
NP-complete, in contrast to the complexity for general cases of data-
aware completeness entailment, which is ΠP

2 -complete (as in Propo-
sition 3.14).

Proposition 3.27. Deciding whether the entailment N |= Empty(Q)
holds, given a set N of no-value statements and a query Q, is NP-
complete.

Proof. The NP membership is by means of Theorem 3.26. As stated
there, it is the case that N |= Empty(Q) i� TN (P̃) 6= ∅ where P̃ is
the prototypical graph of Q. By de�nition, TN (P̃) 6= ∅ i� there is a
no-value statement N = No(PN) in N such that JQNKP̃ is not empty,
that is, JQNKP̃ contains a mapping over var(PN), say, µ, such that
µPN ⊆ P̃ . The NP entailment check can thus be done as follows: We
guess such a no-value statement N and a mapping µ, and then verify
in PTIME that µPN ⊆ P̃ .

The NP hardness is by reduction from graph 3-colorability prob-
lem, known to be NP-hard [42]. We encode the problem graph
Gp = (V,E), i.e., the directed graph we want to check whether it
is 3-colorable, as the set triples(Gp) of triple patterns. We associate
to each vertex v ∈ V , a new variable ?v. Then, we de�ne triples(Gp)
as the union of all triple patterns (?s , edge, ?o) created from each pair

3.4. NO-VALUE STATEMENTS 55

(s, o) ∈ E where ?s is the associated variable of s, edge is an IRI and
?o is the associated variable of o. Let the BGP Pcol be:

{(r , edge, g), (r , edge, b), (g , edge, r), (g , edge, b),
(b, edge, r), (b, edge, g)}

Next, we create the following no-value statement Np:

No(triples(Gp) ∪ Pcol)

The following claim holds:

The problem graph Gp is 3-colorable if and only if
{Np } |= Empty(({}, Pcol)).

Proof of the claim: �⇒� When the problem graph Gp is 3-colorable,
we can therefore reuse the color mapping from Gp to the 3 colors,
in the mapping from the CONSTRUCT query of NP to P̃col, which is a
witness of T{Np }(P̃col) 6= ∅ (recall Theorem 3.26).
�⇐� When the problem graph Gp is 3-incolorable, there is no color
mapping from Gp to the 3 colors. By construction of Np, it is the
case that T{Np }(P̃col) = ∅, implying {Np } 6|= Empty(({}, Pcol)).

Example 3.28. Consider the no-value statement

Nob = No((obama, child , ?c), (?c, gender ,male))

as above and the query Qsch below,

({?c, ?s}, { (obama, child , ?c), (?c, gender ,male), (?c, school , ?s) }),

asking for the schools of Obama's sons. We have that T{Nob}(P̃sch) 6=
∅. Thus, from Theorem 3.26, it holds that {Nob} |= Empty(Qsch).
This means that Qsch returns the empty answer because of the non-
existence of the asked information, not by the incompleteness of the
data source. In contrast, suppose the constant male in the query Qsch

were the variable ?g. If Qsch returns the empty answer over the data
source, that may be due to the incompleteness of the data source.

RDF Representation of No-value Statements. To increase the poten-
tial practical bene�ts of our no-value formalization, no-value state-
ments should be able to be represented in RDF. Such a representation
provides a structured and standardized way of processing no-value

56 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

statements. The representation of no-value statements follows a sim-
ilar fashion as completeness statements (see Section 2.2). Given a
no-value statement

No((s1, p1, o1), . . . , (sn, pn, on)),

we represent the statement as a resource of the class NoValStatement,
while we represent each triple pattern in the similar way as triple pat-
terns in completeness statements. The no-value vocabulary is avail-
able at http://completeness.inf.unibz.it/no-value. For instance,
we represent the no-value statement �Obama has no sons� as follows:9

ex:sonsOfObama a no:NoValStatement ;

rdfs:comment "A no-value statement of Obama having no sons."@en ;

no:hasPattern [no:subject dbp:Barack_Obama ;

no:predicate dbo:child ;

no:object [no:varName "c"]] ;

no:hasPattern [no:subject [no:varName "c"] ;

no:predicate dbo:gender ;

no:object dbp:Male] .

3.5. Related Work

Data completeness concerns the breadth, depth, and scope of infor-
mation [112]. In the area of relational databases, Motro [80] and
Levy [64] were among the �rst to investigate data completeness.
Motro developed a sound technique to check query completeness based
on database views, while Levy introduced the notion of local com-
pleteness statements to denote which parts of a database are com-
plete. Razniewski and Nutt [96] further extended their results by
reducing completeness reasoning to containment checking, for which
many algorithms are known, and characterizing the complexity of rea-
soning for di�erent classes of queries. In terms of their terminology,
our completeness entailment problem is one of QC-QC entailment
under bag semantics, for which so far it was only known that it is in
ΠP

3 [97]. In [95], Razniewski et al. proposed completeness patterns
and de�ned a pattern algebra to check the completeness of queries.
The work incorporated database instances, yet provided only a sound
algorithm for completeness check.

9Pre�x declarations are provided in Appendix A.

3.6. SUMMARY 57

We now move on to the Semantic Web. Fürber and Hepp [38] dis-
tinguished three types of completeness: ontology completeness, con-
cerning which ontology classes and properties are represented; popu-
lation completeness, referring to whether all objects of the real-world
are represented; and property completeness, measuring the missing
values of a speci�c property. Those three types of completeness to-
gether with the interlinking completeness, i.e., the degree to which
instances in the dataset are interlinked, are considered to be the bases
of the completeness dimension for RDF data sources [114]. Our work
considers completeness statements which are built upon BGPs, and
hence have more �exibility in expressing completeness (e.g., �com-
plete for all children of the US presidents who were born in Hawaii�).
Mendes et al. [73] proposed Sieve, a framework for expressing quality
assessment and fusion methods, where completeness is also consid-
ered. With Sieve, users can specify how to compute quality scores
and express a quality preference specifying which characteristics of
data indicate higher quality. Ermilov et al. [36] presented LODStats,
a statistics aggregation of RDF datasets published over various data
portals such as data.gov, publicdata.eu, and datahub.io. They dis-
cussed several use cases that could be facilitated from such an ag-
gregation, including coverage analysis (e.g., most frequent properties
and most frequent namespaces of a dataset). As opposed to Sieve
and LODStats, our work puts more focus on describing complete-
ness of data sources, and leveraging such completeness descriptions
for checking query completeness (and soundness). Galárraga et al.
[41] proposed a rule mining system that is able to operate under the
Open-World Assumption (OWA) by simulating negative examples us-
ing the Partial Completeness Assumption (PCA). The PCA assumes
that if the dataset knows some r-attribute of x, then it knows all r-
attributes of x. This heuristic was also employed by Dong et al. [35]
(called Local Closed-World Assumption in their paper) to develop
Knowledge Vault, a Web-scale system for probabilistic knowledge fu-
sion. Our completeness statements, which are based on BGPs, are in
fact a generalization of the assumption used in the above work.

3.6. Summary

The availability of an enormous amount of RDF data on the Web
calls for better data quality management. Completeness is a crucial

58 CHAPTER 3. DATA-AWARE COMPLETENESS REASONING

quality aspect for RDF data, particularly due to RDF's incomplete
nature. In this chapter, we have extended completeness reasoning to
be aware with the content of RDF data sources to which completeness
statements are given. We have formalized the problem of data-aware
completeness entailment and developed a sound and complete algo-
rithm to check the entailment. To increase the practical bene�ts
of our framework, we have identi�ed two fragments of completeness
statements: SP-statements, suitable for entity-centric, crowdsourced
RDF data sources, and no-value statements, suitable for expressing
the non-existence of information in RDF.

In the next chapter, we show how we develop an e�cient imple-
mentation of completeness reasoning, both in the data-agnostic and
data-aware settings.

Chapter 4

Optimizing Completeness Reasoning

Real-world RDF data sources may contain a large amount of data,
which is then likely to correspond to a large number of statements
needed to describe the completeness of those data sources. Up to this
point, we have seen how completeness entailment is formalized and
characterized in the data-agnostic setting (see Chapter 2) and data-
aware setting (see Chapter 3). Now, the question is how in practice
we may perform completeness reasoning, in particular when there
are large sets of completeness statements. In this chapter, we de-
velop optimization techniques for the data-agnostic and data-aware
completeness reasoning. We also conduct experimental evaluations
to show the feasibility of completeness reasoning using our optimiza-
tions. The results of data-agnostic reasoning optimizations have been
published in [28], whereas those of data-aware reasoning optimiza-
tions have been published in [29].

4.1. Optimizing Data-agnostic Reasoning

Here we show how we develop our optimization techniques for data-
agnostic completeness reasoning. We �rst propose the notion of rele-
vant completeness statements wrt. a query, which is potentially use-
ful to reduce the number of completeness statements employed in
the reasoning. Then, we describe and evaluate several indexing tech-
niques for the retrieval of relevant completeness statements. Finally,
we show, via an experimental evaluation with real query logs from
DBpedia, LinkedGeoData, and Semantic Web Dog Food, how the

59

60 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

feasibility of data-agnostic completeness reasoning can be improved
using the relevance principle.

4.1.1. Relevant Completeness Statements

Before formulating a principle to optimize data-agnostic completeness
reasoning, let us �rst estimate the complexity of the reasoning task.
LetQ = (W,P) be a query andC be a set of completeness statements.
According to Theorem 2.10, the task of completeness reasoning is
to check whether TC(P̃) = P̃ , where TC is the transfer operator
wrt. C, and P̃ is the prototypical graph of Q. While it is immediate
to check the `⊆' direction of the equality, the interesting part is the
`⊇' direction. This corresponds to �nding, for each triple (s, p, o) ∈ P̃ ,
a completeness statement C ∈ C such that (s, p, o) ∈ JQCKP̃ (recall
that TC(P̃) =

⋃
C∈CJQCKP̃). Hence, we only �nd statements that

potentially match such a triple (s, p, o).
Let Q = (W,P) be a query, C be a set of completeness statements,

and maxLn(C) be the maximum length (i.e., the maximum number
of triple patterns) of statements in C. Take any C ∈ C; to evaluate
the query QC over P̃ , it is necessary to (consistently) map the triple
patterns of QC to triples in P̃ . Note that there are at most |P̃ ||QC |
possible ways to map triple patterns to triples, where |QC | and |P̃ |
stand for the number of triple patterns and triples in QC and P̃ ,
respectively. Therefore, applying this reasoning to each statement in
C, leads to the following overall runtime:

O(|C||P̃ |maxLn(C)) (4.1)

As customary in the database theory when analyzing the data
complexity of query evaluation, we are assuming Q is given while
the set of completeness statements varies. Moreover, since complete-
ness statements are basically also queries, we assume the maximum
length of completeness statements to be bounded by a constant. Un-
der these assumptions, the complexity of reasoning is a function of
the size of the set of completeness statements. Using a plain com-
pleteness reasoner, which evaluates the CONSTRUCT queries of all com-
pleteness statements, can potentially lead to slow performance. Thus,
we need to �nd an approach to reduce the number of completeness
statements involved in completeness reasoning. According to The-
orem 2.10, which characterizes the data-agnostic completeness en-
tailment, for a complete query with n triple patterns, there is a set

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 61

of no more that n completeness statements that already entails the
completeness of that query. Nevertheless, there is no obvious way to
identify a priori such a set. Despite this, in the following we establish
a principle that allows us to rule out a signi�cant number of irrelevant
statements.

Constant-Relevance Principle. Let us now introduce a relevance prin-
ciple for completeness statements. Consider the query asking for
�Movies directed by Tarantino� and the statement �All cantons of
Switzerland.� Intuitively, one can see that the statement does not
contribute to the completeness of the query; in other words, the state-
ment is irrelevant to the query.

We shall now introduce the constant-relevance principle as a way
to distinguish between irrelevant and relevant completeness state-
ments. The principle states that a completeness statement C can
contribute to entailing query completeness only if all constants (or
terms, which consist of IRIs and literals) of the completeness state-
ment occur also in the query Q, that is, const(C) ⊆ const(Q). We say
that a statement satisfying this principle is constant-relevant. The fol-
lowing proposition shows that if a statement is not constant-relevant,
then it does not contribute to completeness reasoning.

Proposition 4.1. Let C be a completeness statement and Q = (W,P)
be a query. If C is not constant-relevant wrt. Q, then JQCKP̃ = ∅.

Proposition 4.1 opens up the problem of how to (e�ciently) re-
trieve constant-relevant statements. In the next subsection, we pro-
vide a report of our investigation on retrieval techniques for constant-
relevant completeness statements.

4.1.2. Retrieval Techniques for Constant-Relevant

Statements

For a set C of completeness statements, we want to know how to
retrieve as e�ciently as possible those statements that are constant-
relevant wrt. a given query Q. Here, we give an overview of techniques
to retrieve such statements.

The statements in C that are constant-relevant to Q are those all
of whose constants appear in Q. We denote this set as CQ, that is,

CQ = {C ∈ C | const(C) ⊆ const(Q) }.

62 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

To compute CQ from C and Q, is an instance of the well-established
subset querying problem, which has been investigated by the database
and AI communities [51, 54, 102].

The subset querying problem itself is de�ned as follows: Given a
set S of sets, and a query set Sq, retrieve all sets in S that are contained
in Sq. In our setting, S consists of the constant sets const(C) of the
completeness statements C, while the query set Sq consists of the
constants in Q, that is, Sq = const(Q).

We study two retrieval techniques based on specialized index struc-
tures for subset querying, namely, inverted indexes and tries. The for-
mer is inspired by the approach from the database communities [51],
while the latter is from the AI communities [54, 102]. Those ap-
proaches were empirically shown to be e�cient for their respective
subset-querying-based problems. Additionally, we develop a baseline
technique using standard hashing. In Subsection 4.1.3, we present
experimental evaluations comparing the retrieval time and scalability
of the three techniques.

Running Example. Throughout the description below, we will provide
examples referring to a set C = {C1, C2, C3, C4 } of completeness
statements with

• const(C1) = { a, b },
• const(C2) = { a, b, c },
• const(C3) = { a, b, c },
• const(C4) = { d },

and a query Q with const(Q) = { a, b }. It is the case that CQ =
{C1 }, as C1 is the only statement in C all of whose constants are
contained in const(Q).

We now describe how these retrieval techniques work and how
we implemented them for our experiments. The implementation lan-
guage was Java. We represent completeness statements using a class
CompletenessStatement, while constants are simply represented by
standard Java strings.

4.1.2.1. Standard Hashing-based Retrieval

In this baseline approach, we translate the problem of subset query-
ing into one of evaluating exponentially many set equality queries.
Hashing supports equality queries by performing retrieval of objects

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 63

based on keys. We store completeness statements according to their
constant sets using a hash map. For each of the 2|const(Q)| − 1 non-
empty subsets of const(Q), we generate a set equality query using the
hash map to retrieve the statements with exactly those constants. In
our example, the non-empty subsets of const(Q) are {a}, {b}, and
{a, b}. Querying for both {a} and {b} returns the empty set, while
querying for {a, b} returns the set {C1}. Taking the union of these
three results gives us {C1} as the �nal result.

Implementation. To index the statements, we use a standard Java
HashMap. To each statement, we associate a key that uniquely repre-
sents the set of its constants. We do that by creating a lexicograph-
ically ordered sequence of the constants in the statement. We use
the standard Java List to represent sequences and the sort method
of the Java Collections class for sorting. Then, for such a key, the
value in the hash map is the set of all statements having exactly the
constants mentioned in the key. To compute CQ, we generate all se-
quences corresponding to the nonempty subsets of const(Q), retrieve
the values to which they are mapped using the get method of the
HashMap, and take the union of the values.

4.1.2.2. Inverted Indexing-based Retrieval

Inverted indexes have been originally developed by the information
retrieval community for search engine applications [116]. In the in-
formation retrieval domain, an inverted index is a data structure that
maps a word to the set of documents containing that word. Inverted
indexes are typically used for �nding documents containing all words
in a search query, that is, for superset querying.

In database applications, inverted indexes are also used for subset
querying. In object-oriented databases, objects may have set-valued
attributes. Given an attribute and a query set, one may want to �nd
all the objects whose set of attribute values is contained in the query
set. Helmer and Moerkotte [51] compared indexing techniques for
an e�cient evaluation of set operation queries (i.e., subset, superset
and set equality) involving low-cardinality set-valued attributes. The
indexing techniques they considered were inverted indexes and three
other techniques that are signature-based (i.e., sequential signature
�les, signature trees, and extendible signature hashing). There, an
inverted index maps each value to the objects whose set-valued at-

64 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

tribute contains that value. Their experimental evaluations showed
that in terms of retrieval costs, inverted indexes overall performed
best.

Formalization. Now we show how we develop our retrieval tech-
nique based on inverted indexes, adapted from [51]. For a set C
of completeness statements, we let P =

⋃
C∈C const(C) be the set

of all constants in C. We de�ne the map M : P → 2C such that
M(p) = {C ∈ C | p ∈ const(C) } for every constant p ∈ P. In other
words, M maps each constant occurring in C to the set of complete-
ness statements in C containing that constant. We call such a map
an inverted index. The inverted index M of our example is shown
below.

Constants Completeness Statements

a C1, C2, C3

b C1, C2, C3

c C2, C3

d C4

We now want to retrieve constant-relevant statements using in-
verted indexes. As a �rst attempt, for a query Q and the inverted
index M of a set C of completeness statements, we consider the set
union

⋃
p∈const(Q) M(p) of the mappings of the constants occurring in

the query. In our example, this is the set {C1, C2, C3 }. However,
though the resulting set is smaller than the original set C, it is still
bigger than Cq, since it contains statements that are not constant-
relevant (i.e., C2 and C3).

Now, instead of the set union, let us consider bag union. For a
start, assume that M(p) is now a bag that contains as many copies
of a statement C as there are occurrences of the constant p in C. In
our running example, each M(p) still contains at most one copy of a
statement. Next, we take

BQ =
⊎

p∈const(Q)

M(p),

which is the bag of all statements that have at least one constant
in Q, and where a statement occurs as many times as it has occur-
rences of constants appearing in the query Q. With respect to our

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 65

example, BQ = M(a)] M(b) = {|C1, C1, C2, C2, C3, C3 |}. Let us
analyze which statements are constant-relevant. The statement C1

occurs twice in BQ and has length 2, hence, all its constants appear
in the query Q. However, the statements C2 and C3 both have length
3, but occur only twice in BQ. This means that they have other
constants that do not appear in the query Q and thus, they are not
constant-relevant. Therefore, we conclude that CQ = {C1 }.

We can generalize our example to arrive at a characterization of
the set CQ. The example shows that we need to count the occur-
rences of completeness statements in BQ. We denote the count of a
statement C in BQ by #C(BQ). As seen from the example, those
statements whose number of occurrences is the same as the number
of constants are the constant-relevant ones. In this case, for a state-
ment C, we take the bag version of const(C). Then, CQ satis�es the
equation

CQ = {C ∈ BQ | #C(BQ) = |const(C)| }.

Implementation. We observe from the formalization that the cru-
cial operations for the retrieval technique using inverted indexes are
bag union and count. We chose the Google Guava library1 as it
provides a bag implementation in Java with the class HashMultiset,
which includes as methods the bag union and count. To implement
the inverted index, we use the Java HashMap. The index maps each
constant p to the HashMultiset representing the bag of completeness
statements containing that constant (i.e., M(p)). As shown in the
formalization above, to retrieve BQ, we perform a bag union, using
the addAll method of the HashMultiset, of the map values of the
constants in Q. Then, to retrieve the set CQ of constant-relevant
statements, we count the number of occurrences of the statements
in BQ using the count method of the HashMultiset and check if the
count is the same as the size of the statement.

4.1.2.3. Trie-based Retrieval

A trie, or a pre�x tree, is an ordered tree for storing sequences, whose
nodes are shared between sequences with common pre�xes. Tries
have been adopted for set-containment queries in the AI community
by Ho�mann and Koehler [54] and Savnik [102]. Both studies showed

1https://github.com/google/guava

66 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

by means of empirical evaluations that tries can be used to e�ciently
index sets, and perform subset and superset queries upon those sets.
Set operations are essential in AI applications, including the match-
ing of a large number of production rules and the identi�cation of
inconsistent subgoals during planning.

Formalization. We show how to adapt tries as in [54, 102] to our
setting. The sequences we consider are sequences of constants that
are ordered lexicographically. For a set C of statements, we de�ne
SC as the set containing for each statement in C the corresponding
sequence of constants. The trie TC over the set SC of sequences is the
tree whose nodes are the pre�xes of SC, denoted as Pref (SC), where
each node s̄ ∈ Pref (SC) has a child s̄ · p i� s̄ · p ∈ Pref (SC), where
p is a constant. On top of this trie, we de�ne M : Pref (SC) → 2C

as the mapping that maps each pre�x to the set of statements whose
constants are exactly those in the pre�x.

In our example, we have that SC = { (a, b), (a, b, c), (d) } and
M = { (a, b) 7→ {C1 }, (a, b, c) 7→ {C2, C3 }, (d) 7→ {C4 } }. For sim-
plicity, we left out mappings with the empty value in M . A graphical
representation of the trie TC is shown below, which also shows the
map value of each node wrt. M .

()

(d) : {C4 }(a)

(a, b) : {C1 }

(a, b, c) : {C2, C3 }

Having built a trie from completeness statements, we now want
to retrieve the constant-relevant statements wrt. a query. Let us do
that for our example. Consider the trie TC as above. As const(Q) =
{ a, b }, the sequence of const(Q) is therefore s̄Q = (a, b). The key
idea behind our retrieval is that we visit nodes that are subsequences
of the query sequence and collect the map values of the visited nodes
wrt. M . We start at the root of TC with the query sequence (a, b)
and an empty set of constant-relevant statements. The root node is
trivially a subsequence of s̄Q and the mapping of the root obviously

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 67

returns the empty set. Thus, our set of constant-relevant statements
is still empty.

At this position, we have two options. The �rst is to retrieve from
TC all the subsequences containing the head of the current query
sequence, that is, the constant a. By the trie structure, all such
subsequences reside in the subtree of TC rooted at the concatenation
of the root of the current trie and the head of the current query
sequence. We then proceed down that subtree. To proceed down, the
head of the query sequence has to be removed. Therefore, our current
query sequence is now (b). As the map value of the root (a) of the
current trie is empty, we still have an empty set of constant-relevant
statements. From this position, we try to visit the subsequences in
TC that not only contain a, but also one additional constant from
the current query sequence. Therefore, we continue proceeding down
the subtree rooted at (a, b), which is the concatenation of the root of
the current trie and the head of the current query sequence. From
the mapping result of the root (a, b), the set of constant-relevant
statements is now {C1 }. Since our current query sequence is now
the empty sequence, we do not proceed further.

Now, let us pursue the second option. We stay at the position
at the root of TC, while simplifying s̄Q by removing the head of the
query sequence, making it now (b). In this case, we want to visit
all the subsequences in the trie TC that do not contain the constant
a, if they exist. Now, we try to proceed down the subtree rooted
at the concatenation of the root of the current trie and the head of
the current query sequence. This means we have to proceed down
the subtree rooted at (b). Since it does not exist, we stay with the
current trie and remove again the head of the query sequence. As the
query sequence is now the empty sequence, we do not go further and
�nish our whole tree traversal. As a �nal result, we have our set of
constant-relevant statements which contains only C1.

From our example, we now formalize the retrieval of constant-
relevant statements using tries. We can decompose a non-empty se-
quence s̄ = (p1, . . . , pn) into the head p1 and the tail (p2, . . . , pn). For
a sequence s̄ and a trie T, we de�ne T/s̄ as the subtree in T rooted
at the node s̄. Note that T/s̄ is the empty tree ⊥ if such a sub-
tree does not exist. We de�ne cov(s̄Q,TC) as the set of completeness
statements in C whose sequences of their constants are subsequences
of s̄Q, which are not necessarily contiguous. It follows from this def-

68 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

inition that cov(s̄Q,TC) = CQ. Given a subsequence s̄ = p · s̄′ of s̄Q
and a subtree T of TC, we observe that the function cov satis�es the
following recurrence property:

cov(s̄,T) =

∅ if T = ⊥

M(root(T)) if s̄ = ()

M(root(T)) ∪ cov(s̄′,T/(root(T) · p)) ∪
cov(s̄′,T)

otherwise.

The recurrence property has two base cases: when the trie is
empty, then simply the empty set is returned; and when there is no
element left in the sequence s̄ (i.e., the trie traversal stops), the cov
function returns the set of completeness statements associated with
the sequence root(T). Now for the recursive case, there are three
components involved. The �rst one is simply returning the set of
completeness statements associated with root(T). The second and
third ones correspond to how the trie is traversed: both make the cov
calls with the tail s̄′ of s̄ as the call's sequence, but the second case is
over the subtree T/(root(T) · p) while the third one is over the same
trie T.

Note that in the above property, as also observed in [54], the
function cov performs pruning: when a subtree in cov(s̄,T/(root(T) ·
p)) does not exist, we cut out all the recursion call possibilities if the
subtree existed. Let us give an illustration. For a query sequence s̄Q =
(p1, . . . , pn) of length n, there are at most 2n possible subsequences.
However, half of them (those containing p1) lie in the tree rooted at
the node (p1). If there is no node (p1), the size of the search space is
immediately reduced to 2n−1.

Implementation. We represent sequences of constants in Pref (SC)
using the Java List<String> class. For implementing the trie TC, we
create a class Trie. For the trie nodes, we create TrieNode objects
labeled with sequences of constants. A TrieNode has a hash map
that maps the sequences of constants of the TrieNode's children to
the corresponding TrieNode objects. Initially, a Trie has a TrieNode

object as its root with an empty sequence as the label. For every
insertion of a sequence of the constants of a completeness statement,
we recursively generate children of TrieNode objects starting from the
root to the leaf node with that sequence as the label. This generates

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 69

a path of TrieNode objects labeled with the pre�xes of that sequence.
TrieNode objects are shared between sequences with the same pre�xes.
To implement the map M for the trie, a Java HashMap similar to
the one in the implementation of the standard hashing technique is
created.

For the retrieval, we implemented a recursive method based on
the recurrence property of the cov function. In the method, for each
visited node, we use the HashMap of M to map the label of the node
to its corresponding set of completeness statements. All the mapping
results are collected in a standard Java set which at the end of the
method call will be our set CQ of constant-relevant statements.

4.1.3. Experimental Evaluation of the Retrieval Techniques

We have discussed the constant-relevance principle as a means to
prune the set of completeness statements. We have also introduced
three retrieval techniques of constant-relevant statements, based on
standard hashmaps, inverted indexes, and tries as the underlying in-
dex structures. We now report on experiments that comparatively
evaluated those three techniques. More speci�cally, the experiments
aim to analyze: the runtime and scalability of the retrieval techniques
according to various parameters that contribute to the overall run-
time of completeness reasoning, as analyzed in Eq. (4.1) (i.e., number
of completeness statements, length of completeness statements, and
length of queries); and the cost of completeness reasoning without vs.
with the optimization technique.

4.1.3.1. Experimental Setup

We created a framework for the experiments consisting of two com-
ponents: a completeness reasoner and a generator of statements and
queries. We implemented the framework in Java using the Jena li-
brary.2

The completeness reasoner includes implementations of the three
retrieval techniques as described before and supports reasoning opti-
mizations based on the constant-relevance (that is, instead of consid-
ering all statements in C, the optimized technique considers only the
statements in CQ).

2http://jena.apache.org/

70 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

To gain �exibility in setting the experiment parameters, we ran-
domly generate queries and sets of completeness statements. In our
experiment, we would expect that the bigger a data source, the more
completeness statements are declared over that source. We want to
consider also the sensitivity of each retrieval technique to the length
of the completeness statements and the query. Thus, we choose the
following experiment parameters:

• number of completeness statements (Nc),
• maximum length of completeness statements (Lc), and
• length of queries (Lq).

To evaluate the retrieval techniques, we want to observe the in�u-
ence of each parameter on the retrieval time. Thus, we set up three
scenarios, where in each we keep two of the parameters �xed and vary
the remaining one. As our reference for setting the default values for
the parameters, we take DBpedia [10], one of the most popular and
largest RDF data sources, as an approximation of the realistic pa-
rameter values. From English Wikipedia, DBpedia extracted around
580 million RDF triples.3 If we assume that 1

5
of the triples are cap-

tured by completeness statements, and that each statement covers
100 triples, then DBpedia would have 1,160,000 completeness state-
ments. Therefore, we set the default value Nc = 1,000,000. The
length of queries is chosen based on the statistics of SPARQL queries
over DBpedia. Arias et al. [8] found that 97% of DBpedia queries
are of length less than or equal to 3. Therefore, we choose 3 as the
default length for short queries. On the other hand, 99.9% of queries
over DBpedia had length less than or equal to 6, so a length of 6
stands for relatively long queries. So, there are two default values for
query length: Lq = 3 for the short ones, and Lq = 6 for the long ones.
As for the default value of Lc, we set it to 6, to have a variation of
completeness statement length from 1 to 6, which covers the query
length.

The experiments were run on a standard laptop under Windows 8
with Intel Core i5 2.5 GHz processor and 8 GB RAM. For each combi-
nation of parameter values, we ran the experiment 20 times to obtain
reliable results (i.e., low variance if we performed the experiments
again), and took the median of the runtimes.

3http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.

html

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 71

Random Generation of Statements and Queries. The statements and
queries for the experiments have been generated randomly with a
uniform distribution of the IRIs for constants. Again, we take DB-
pedia as our reference. DBpedia has about 2,700 properties and 4.5
million entities, We approximate the number of constant IRIs in the
predicate position from the number of properties of DBpedia, that
is, 2,500, and the number of constant IRIs in the subject or object
position from about 1

5
of the number of DBpedia entities, that is,

1,000,000. The generated statements were of the form Compl(P),
while the generated queries were of the form (var(P), P), that is, all
variables in the body were distinguished. Generating the statements
and queries is essentially generating triple patterns, which serve as
their building blocks.

The triple patterns of a statement are generated as follows. First,
we pick a random length between 1 and Lc. Then we randomly choose
the predicates of the triple patterns, where repetitions are allowed.
Next, for this collection of predicates, we generate fully-formed triple
patterns. To do that, we instantiate the subjects and objects of triple
patterns, by constants or variables. For the instantiation by con-
stants, we randomly take IRIs, and the constants can be reused across
triple patterns. We do not limit the possibility to introduce new vari-
ables, but again variables can be reused among triple patterns. We
generate variables in such a way that there is no cross-product join
between triple patterns of the statement, that is, the triple patterns
with variables form one connected component. Together, the gen-
erated triple patterns become the pattern P for that statement. We
repeat this process until there are Nc randomly generated statements.
We generate triple patterns for the query of length Lq in the similar
way.

4.1.3.2. Results and Discussion

We now show the experimental results comparing the retrieval time
of the three techniques. In each scenario, we vary one of these param-
eters: number of statements, maximum length of completeness state-
ments, and query length. Moreover, we also compare the runtime of
completeness reasoning with vs. without the constant-relevance prin-
ciple.

In�uence of the Number of Completeness Statements. In this scenario,

72 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

we vary the parameter Nc within the range of 100,000 � 1,000,000.
Figure 4.1 shows the resulting retrieval times. The left �gure is for
short queries and the right �gure for long ones. The y-axis is in log-
scale. As can be clearly seen, inverted indexing is generally slower and
less scalable than the other techniques. It is on average 53× slower
than tries for short queries and 3× slower than standard hashing
for long queries. The performance comparison of standard hashing
and tries, however, depends on the length of the queries. For short
queries, standard hashing is slightly faster. For long queries, the tries
technique is faster.

One possible reason why inverted indexing is slow is that at an
intermediate step it has to process all statements whose constants
overlap with the constants of the query. Hence, with inverted index-
ing the probability for a completeness statement to be processed in
the retrieval is much larger than for other retrieval techniques. The
other techniques only process statements whose constants are clearly
contained in the query constants. For long queries, the tries perform
better than the standard hashing. This is likely due to the subse-
quence pruning of tries as described in Subsection 4.1.2.

100 250 400 550 700 850 1,000

102

103

Number of CS's in Thousands

R
et
ri
ev
a
l
T
im

e
in
µ
s

100 250 400 550 700 850 1,000

102

103

104

Number of CS's in Thousands

R
et
ri
ev
a
l
T
im

e
in
µ
s

Standard Hashing Inverted Trie

Figure 4.1. Increasing the number of completeness statements for short (left)

and long queries (right)

In�uence of the Length of Completeness Statements. In this scenario,
we vary the maximum length Lc of completeness statements from 1
to 6. Figure 4.2 shows the resulting retrieval times. Interestingly, the
retrieval time for inverted indexing increases, while the time for tries
even decreases. Basically, the retrieval time for standard hashing

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 73

remains constant, though showing a little oscillation with no clear
pattern. We notice that for short queries, standard hashing performs
best, whereas for long queries, tries perform best. Again, inverted
indexing performs the worst among all the retrieval techniques.

These graphs demonstrate the fundamental di�erence between the
inverted indexes and the tries. In the inverted indexes, a complete-
ness statement with just a single constant overlapping with the query
is included in the bag union, to be checked if the statement's occur-
rences in the union are the same as its length. Thus, the longer the
completeness statement, the more probable it is for the statement to
be included in the bag union. This does not happen with the trie-
based technique as it only processes statements all of whose constants
are contained in the query. When a statement becomes longer, the
probability of the statement to be processed by the tries technique
decreases. That the growth is nearly constant for standard hashing,
is likely due to evaluating always the same set equality queries.

1 2 3 4 5 6

102

103

Max Length of CSs

R
et
ri
ev
a
l
T
im

e
in
µ
s

1 2 3 4 5 6

102

103

104

Max Length of CSs

R
et
ri
ev
a
l
T
im

e
in
µ
s

Standard Hashing Inverted Trie

Figure 4.2. Increasing maximum length of completeness statements for short

(left) and long queries (right)

In�uence of the Query Length. In this scenario, we vary the query
length Lq from 1 to 6. Figure 4.3 shows the results of this experi-
ment. From the graph, we can see that for all techniques, the retrieval
time increases with the query length, though at di�erent rates. For
standard hashing, it grows exponentially, whereas for the other tech-
niques, it only grows linearly.4 In the beginning, the standard hashing

4Note that the graph is displayed in log-scale on y-axis.

74 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

technique performs better than the tries one. However, from Lq = 4
the standard hashing technique starts to perform worse. At Lq = 6,
standard hashing is about 14× slower than tries. We observe a simi-
larity between the asymptotic growth of inverted indexing and tries,
though on an absolute scale the tries technique clearly performs bet-
ter.

As expected, standard hashing does not perform well for long
queries due to its exponentially many set equality queries. The tries
technique, though potentially having exponential growth in the worst
case, performs better than standard hashing. This is most likely due
to its pruning ability over subsequences of query constants.

1 2 3 4 5 6

101

102

103

104

Query Length

R
et
ri
ev
a
l
T
im

e
in
µ
s

Standard Hashing Inverted Trie

Figure 4.3. Increasing the query length

Reasoning with the Constant-Relevant Filtering. This scenario di�ers
from the above in that now we compare the cost of completeness
reasoning without and with the optimization technique. We show that
applying the constant-relevance principle can considerably reduce the
overhead incurred by completeness reasoning.

To measure this overhead, we perform experiments that compare
the runtimes of plain completeness reasoning and of reasoning based
on constant-relevance. For the reasoning based on constant-relevance,
we use the standard hashing retrieval technique as it shows relatively
good performance in our previous experiments. All the parameter val-
ues are the default ones: Nc = 1,000,000, and Lc = 6, while we still
distinguish between short queries (Lq = 3) and long queries (Lq = 6).
In the experiments we measure the reasoning time for plain com-

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 75

pleteness reasoning and the reasoning plus the retrieval time for the
completeness reasoning based on constant-relevance.

Table 4.1. Comparison of the runtime median for plain completeness reasoning

and constant-relevance based (optimized) reasoning

Query Types Plain Reasoning Optimized Reasoning

Short 145,773 ms 1.3 ms
Long 146,095 ms 4.1 ms

Now we discuss the experimental results. Table 4.1 lists the
median of runtimes of plain completeness reasoning and constant-
relevance based completeness reasoning. We note that completeness
reasoning based on constant-relevance is considerably faster than the
plain one (i.e., milliseconds vs. minutes, respectively).

Completeness reasoning with the constant-relevance principle is
fast, with runtimes between 110,000 times (for short queries) and
35,000 times (for long queries) faster than that without constant-
relevance. This is due to the fact that much fewer completeness state-
ments are considered for the reasoning using the constant-relevance
principle. For short queries, there are on average about 49 constant-
relevant completeness statements, whereas for long queries, there are
on average about 105 constant-relevant statements. On the other
hand, the original set contains 1 million completeness statements.

Conclusions of the Experiments. From the experiments we conclude
that for short queries, our baseline approach, the standard hashing,
shows the best performance despite its simplicity. However, for long
queries, the tries technique performs better. The baseline approach
su�ers from its exponential blow up for long queries. The inverted
indexes are not suitable for the retrieval task for both short and long
queries. Moreover, on an absolute scale, the retrieval time of the
retrieval techniques only takes up to about a few milliseconds. This
shows that the retrieval process does not add a signi�cant overhead to
completeness reasoning. Also, we have seen that using the constant-
relevance principle can considerably speed up completeness reasoning,
as demonstrated in Table 4.1.

76 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

4.1.4. Experimental Evaluation of Data-agnostic Reasoning

In this subsection, we aim to investigate the performance of com-
pleteness reasoning for realistic cases based on several RDF data
sources: DBpedia (DBP), Semantic Web Dog Food (SWDF), and
Linked Geo Data (LGD). Our investigation in �nding a retrieval tech-
nique for constant-relevant completeness statements showed that de-
spite its simplicity, standard hashing can outperform the inverted
indexing [51] and the tries [54, 102] technique for queries with the
length of up to 3, accounting for 97% of real-world queries on DBpe-
dia [8], with the worst case of retrieval time of only 2 ms. Thus, we
concentrate our analysis on standard hashing. We can break down
the process of completeness reasoning into two main components: (i)
the hashmap lookup to retrieve constant-relevant statements; and
(ii) the TC-application of all constant-relevant statements over the
prototypical graph P̃ as per Theorem 2.10. Our experimental evalu-
ation was conducted with the aim to answer the following questions:
(i) What is the overhead of completeness reasoning over querying?
(ii) How do the two main components, the hashmap lookup and the
TC-application, in�uence the overall completeness reasoning time?

Experimental Setup. We created a framework for the experiments in
Java using the Apache Jena library, an open source Semantic Web
library.5 To implement completeness reasoning, we particularly re-
lied on the ARQ module of Jena, which provides functionalities for
SPARQL query processing. The retrieval of constant-relevant state-
ments was implemented using a standard Java HashMap. The two
ingredients that characterize our setting were queries and complete-
ness statements.

As for the queries, we used openly available real query logs of
RDF data sources across various domains, i.e., DBpedia, Semantic
Web Dog Food, and LinkedGeoData, provided in the Linked SPARQL
Queries (LSQ) dataset [100]. We extracted SELECT queries in the con-
junctive fragment, which account for about 40% of the total number
of SELECT queries, giving us around 465,000 queries in total.6

As for the completeness statements, for each query we took its full
BGP P and constructed a completeness statement Compl(P). Via

5http://jena.apache.org/
6As of May 22, 2016

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 77

query homomorphism techniques [19], we removed redundant com-
pleteness statements, i.e., completeness statements whose CONSTRUCT

query representations are equivalent. In total, there were about
400,000 completeness statements generated. Observe that by con-
struction, all queries are guaranteed to be complete. The experi-
ment framework (incl. the source code) is available online at http:

//completeness.inf.unibz.it/completeness-experiment/.
We distinguished between three cases of the experiments, depend-

ing on the endpoint of the queries: DBP, SWDF, or LGD. We mea-
sured completeness reasoning time of the queries of each case. The
experiments were run on a standard laptop under Windows 8.1 with
Intel Core i5-2435M 2.4 GHz processor and 8 GB RAM. Further-
more, for each query we also took the query evaluation time, which
is already provided by the LSQ dataset. The experiment machine for
query evaluation was with 16 GB RAM and a 6-Core i7 3.40 GHz
CPU running Ubuntu 14.04.2 using Virtuoso 7.1 [100]. Note that the
machine for query evaluation was relatively better than our machine
for completeness reasoning.

Results and Discussion. Table 4.2 summarizes the results of the ex-
periments. The number of queries varies greatly with SWDF having
the lowest and DBP having the highest. For the completeness state-
ments, there are not many redundancies for DBP and SWDF, as
opposed to LGD. What is interesting is that most queries are short,
close to 1 triple pattern, with a slight exception of LGD queries whose
average length is in the middle between 1 and 2 triple patterns. The
average of completeness reasoning time for all cases is always be-
low 0.2 ms.

Table 4.2. Overview of the experiment results, where NQ is the number of

queries, NC is the number of completeness statements, |Q| is the average query
length (i.e., number of triple patterns), tCR is the average completeness reasoning

time, and tQE is the average query evaluation time

Endpoint NQ NC |Q| tCR tQE

DBP 334,304 331,294 1.13 0.086 ms 18.8 ms
LGD 108,611 44,505 1.54 0.127 ms 36.2 ms
SWDF 22,590 21,616 1.22 0.056 ms 8.3 ms

78 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

0 2 4 6 8 10 12 14

102

103

104

105

106

107

Query length

R
u
n
ti
m
e
(i
n
µ
s)

DBP-CR
LGD-CR
SWDF-CR
DBP-QE
LGD-QE
SWDF-QE

Figure 4.4. Comparison of query length to completeness reasoning (CR) time

and query evaluation (QE) time

To get an idea on the performance comparison with plain com-
pleteness reasoning (where all completeness statements are consid-
ered in reasoning), we took the �rst query for each case and performed
completeness reasoning, measuring 4,600 ms, 700 ms, and 600 ms for
DBP, LGD, and SWDF, respectively.7 Thus, we have a considerable
speed-up by using the constant-relevance principle, up to 50,000 times
faster. While for the plain reasoning, the number of all completeness
statements positively correlates with reasoning time, for the reasoning
with the constant-relevance principle, this is not the case, as observed
from the average reasoning time between DBP and LGD. With re-
spect to query evaluation, completeness reasoning overall only adds
a little overhead to query evaluation time, that is, 0.5% on average.

Figure 4.4 shows how the overhead varies depending on query
length. Note that the y-axis is in log scale. We can see that the data
for query evaluation time shows no clear trend, whereas completeness
reasoning time positively correlates with query length. Yet, in all
cases, clearly query evaluation takes much longer than completeness
reasoning by several orders of magnitude. Note that in all three query
logs we used, most queries have short length, for instance, there are
only fewer than 10 queries for each group of DBpedia queries with
length greater than 6. Also, the worst case of completeness reasoning

7Note that for the other queries, all statements also have to be considered,
hence reasoning time would not be much di�erent.

4.1. OPTIMIZING DATA-AGNOSTIC REASONING 79

0 2 4 6 8 10 12 14
100

101

102

103

104

Query length

R
u
n
ti
m
e
(i
n
µ
s)

DBP-H
LGD-H
SWDF-H
DBP-TC
LGD-TC
SWDF-TC

Figure 4.5. Distribution of hashmap lookup time (H) and TC-application time

(TC) in completeness reasoning across di�erent query length

time in the �gure is only 5.6 ms (where the query length equals 13),
which we consider very reasonable.

Regarding the runtime for completeness reasoning with the constant-
relevance principle, we can break this up into the time needed for the
hashmap lookup for constant-relevant statements, and the time for
the TC-application of those constant-relevant statements. Figure 4.5
shows how they distribute. As seen from the �gure, the growth of
the hashmap lookup time is exponential in the query length, whereas
the growth of the TC-application time appears to be roughly linear.
We also observe that while initially TC-application takes longer, when
queries become longer, the hashmap lookup time starts to dominate
the completeness reasoning time, that is, starting from queries of
length 11 for the DBpedia case (but such queries are a few). This
means that from short- to medium-length queries, the fact that the
time for the lookup is exponential is of little importance.

Finally, Figure 4.6 (with linear scale on y-axis) provides an idea on
how query length relates with the number of constants in queries and
the number of constant-relevant statements, respectively. In the up-
per �gure, it can be seen that the number of constants grows linearly
with respect to query length with a few exceptions. This is likely to
be the reason for the exponential growth of hashmap lookup time in
Figure 4.5, since the hashmap lookup depends exponentially on the
number of constants. From the lower �gure, we can infer that the
query logs contain relatively many similar (sub)-queries since there

80 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

0 2 4 6 8 10 12 14
0

5

10

15

Query length

N
u
m
b
er

o
f
co
n
st
a
n
ts

0 2 4 6 8 10 12 14

0

10

20

30

40

Query length

N
u
m
b
er

o
f
re
le
va
n
t
st
a
te
m
en
ts

DBP LGD SWDF

Figure 4.6. Comparison of query length to number of constants (upper) and

number of relevant statements (lower)

4.2. OPTIMIZING DATA-AWARE REASONING 81

are quite a number of relevant completeness statements. Still, the
number of relevant statements drops drastically from the number of
all completeness statements, thanks to the constant-relevance princi-
ple. For queries up to length 6, there are at most 25 relevant state-
ments, and this number does not grow much, as the maximum number
is 45. There is a weak positive correlation between the query length
and the number of relevant statements. By and large, the trend of this
�gure matches the trend of the TC-application time in Figure 4.5, due
to the linear relationship between the number of relevant statements
and the TC-application time.

Conclusions of the experiments. We have evaluated completeness rea-
soning in practical settings based on real query logs from DBpedia,
SWDF, and Linked Geo Data SPARQL endpoints. We observed that
completeness reasoning with the constant-relevance principle can be
done quickly, with the worst case of 5.6 ms. Compared with query
evaluation time, completeness reasoning only adds a little overhead,
just about 0.5% on average. Also, the performance of completeness
reasoning tends to be positively correlated with query length. Fur-
thermore, for short- to medium-length queries, the TC-application
time, which grows linearly, dominates the completeness reasoning
time, whereas for long queries, the hashmap lookup time, which grows
exponentially, dominates the reasoning time. Hypothetically, a pos-
sible weakness of this constant-relevance approach might occur when
there are a large number of constants in a query (e.g., 32 constants)
due to the exponential blowup of the set-equality queries generated.
From the query logs, however, long queries are rare and also, queries
have at most 14 constants, which are still manageable.

4.2. Optimizing Data-aware Reasoning

For the data-aware setting, reasoning needs access to the data graph.
The previous approach to optimization of data-agnostic reasoning,
which leaves out statements whose terms are not among the terms of
the query, is no more applicable, since parts of the statements can now
be mapped to the data graph. We present a new algorithm, which
improves upon an earlier one for completeness checking in Chapter 3.

82 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

4.2.1. Completeness Templates and Partial Matching

In this subsection, we introduce completeness templates, template-
based transfer operator, and partial matching as techniques to op-
timize data-aware completeness reasoning. Completeness templates
are inspired by natural language completeness statements available
on the Web, which are usually about similar topics. Then, by ex-
ploiting that a template represents many statements, we can leverage
query evaluation for simultaneous processing of statements. Finally,
partial matching is crucial for �ltering out irrelevant templates wrt.
the query we want to check for completeness.

Completeness Templates. We represent similar completeness sta-
tements by so-called completeness templates. Such templates support
users in creating completeness statements of similar topics, as they
occur for instance in IMDb, which reports completeness for movie
cast and crew8 or in OpenStreetMap, which uses a wiki to record the
completeness of objects in di�erent areas.9 A completeness template
is a 3-tuple τ = (C, Vτ ,Ω), where C is a completeness statement,
Vτ ⊆ var(C) is a set of variables, called meta-variables, and Ω is a set
of mappings from Vτ to terms (i.e., IRIs or literals). We also refer to
the BGP of the completeness statement C of the template τ as Pτ . As
an example of a completeness template, we generalize the statement
set

{Compl((ger , lang , ?l)), . . . ,Compl((spa, lang , ?l)) },

to the template (Compl((?c, lang , ?l)), {?c},Ω), where Ω = { { ?c 7→
ger }, . . . , { ?c 7→ spa } }. A template τ = (C, Vτ ,Ω) represents the
statement set Cτ = {Compl(µPC) | µ ∈ Ω }, obtained by instantiat-
ing C with the mappings in Ω. This de�nition naturally extends to
sets of completeness templates. Note that a completeness statement
C can be expressed as the completeness template (C, ∅, {µ∅}) where
µ∅ is the mapping with the empty domain.

Template-based Transfer Operator. A key part of the algorithm for
checking completeness, given a statement set C and a data graph G,
is to identify the crucial part P0 of P , that is, the maximal subset
P0 ⊆ P such that P̃0 ⊆ TC(P̃ ∪ G). Given a set T of completeness

8See e.g., http://www.imdb.com/title/tt0105236/fullcredits
9See e.g., http://wiki.openstreetmap.org/wiki/Abingdon

4.2. OPTIMIZING DATA-AWARE REASONING 83

templates, analogously to Eq. (3.1), such a part satis�es the equation

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G)). (4.2)

A baseline approach to compute P0 in Eq. (4.2) is to instantiate
templates to yield completeness statements, and then apply the TC-
operator wrt. the statements. This may be costly if there are many
instances of those templates. Now, templates allow us to leverage
query evaluation for data-aware completeness reasoning by exploit-
ing that a template represents many statements. Essentially, to check
whether the TC-operator maps a triple in P̃ by an instantiation of a
template τ , we �rst evaluate Pτ (by treating the meta-variables like
variables) over the union graph P̃ ∪G, with the condition that at least
one triple pattern in Pτ is mapped to a triple in P̃ (since otherwise
the mapping does not contribute to P0), and verify in a second step
which of the resulting mappings are compatible with the instantia-
tions of the template τ . In this way, all instances of τ can be processed
simultaneously.

To formalize the above idea, we �rst de�ne prioritized evaluation
of a BGP over a pair of graphs (G1, G2). In such an evaluation,
we consider the �rst graph G1 as the mandatory and the second as
the optional graph, which means that at least one triple pattern of
the BGP is mapped to a triple of G1, while there is no need to map
any triple pattern to G2. Formally, prioritized evaluation of a BGP P
over (G1, G2) is de�ned as JP K(G1,G2) = {µ | µ ∈ JP KG1∪G2 and µP

′ ⊆
G1 for some P ′ ⊆ P, P ′ 6= ∅ }. So, in our case of completeness check-
ing, the mandatory graph will be the frozen BGP P̃ and the optional
graph will be the data graph G.

Example 4.2. Consider the BGP Pusa = {(usa, lang , ?l)}, the graph

Gorg = {(org1 , founder , ger), (ger , lang , de),
(org2 , founder , usa), (org2 , founder , ger)},

and the completeness template τorg = (C, {?org},Ω), where

C = Compl((?c, lang , ?lang), (?org , founder , ?c))

and Ω = {{?org 7→ org1}, {?org 7→ org2}, {?org 7→ org3}}. It is the
case that JPτorgK(P̃usa,Gorg) = {{ ?c 7→ usa, ?lang 7→ l̃, ?org 7→ org2 }},
where Pτorg is the BGP of the statement C of the template τorg.

84 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

Next, in the prioritized evaluation of a BGP Pτ over (P̃ , G), we
apply a pruning technique based on the following observation. Each
answer mapping µ ∈ JPτK(P̃ ,G) determines a nonempty subset P ′τ ⊆ Pτ

such that µP ′τ ⊆ P̃ and µP ′′τ ⊆ G for its complement P ′′τ := Pτ \ P ′τ .
Since frozen variables only occur in P̃ and not in G, we conclude that
for every variable ?v that occurs both in P ′τ and P ′′τ it must be the
case that µ(?v) is not a frozen variable.

The algorithm with pruning proceeds as follows. For each non-
empty subset P ′τ ⊆ Pτ , we �rst evaluate P ′τ over P̃ , which yields
partial answers ν. We try to complete each such partial answer ν by
evaluating the instantiated complement ν(P ′′τ) over G and joining the
answers resulting from this with ν itself. We prune the answers ν of
the �rst evaluation step by keeping only those mappings for which no
term ν(?v), ?v ∈ var(P ′′τ), is a frozen variable. We call such a ν pure.
Clearly, for non-pure mappings the subsequent evaluation over G can
only result in the empty set. Formally, we compute the union⋃

P ′τ ⊆ Pτ
P ′τ 6= ∅

⋃
ν ∈ JP ′τ KP̃
ν is pure

{ ν } on Jν(Pτ \ P ′τ)KG,

which equals JPτK(P̃ ,G) as just explained.
We denote the projection of a mapping µ wrt. a setW of variables

as πW (µ). Given a set T of completeness templates, a frozen BGP
P̃ , and a graph G, we now de�ne the template-based transfer operator
TT as follows:

TT (P̃ , G) =
⋃
τ ∈ T

τ = (C, Vτ ,Ω)

{µPτ | µ ∈ JPτK(P̃ ,G) and πVτ (µ) ∈ Ω}.

The above operator computes for each template τ the prioritized eval-
uation of the BGP Pτ over (P̃ , G), keeps only those mappings com-
patible with Ω, and then takes the union. The crucial point here is
that we �rst evaluate the BGP of the template, and only after that
we check which answers correspond to instantiations by Ω. By the
de�nition of completeness templates and the prioritized evaluation
of BGPs, it is the case that P0 as in Eq. (4.2) can alternatively be
computed using TT , as stated in Proposition 4.3.

4.2. OPTIMIZING DATA-AWARE REASONING 85

Proposition 4.3. Given a BGP P , a graph G, and a set T of com-
pleteness templates, it is the case that

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G)) = P ∩ ĩd
−1

(TT (P̃ , G)).

Partial Matching. As there can be many completeness templates, we
want to rule out the irrelevant ones, that is, those templates that do
not contribute to query completeness. Basically, they are the tem-
plates with no overlapping triple patterns (modulo variable general-
ization) over the query.

Let us �rst sketch the idea of partial matching. Here, we rely on
hashmaps. We use each triple pattern of a template as a hashkey,
by which the template can be retrieved. Thus, a template with three
triple patterns, for example, can be retrieved in three di�erent ways.
To �nd templates that are potentially applicable to a frozen BGP P̃ ,
we perform a hashmap lookup for each triple pattern of P and for
all possible generalizations of that triple pattern where non-predicate
terms are replaced by a variable.

Let us formalize the above idea. Our main goal here is partial
matching: retrieving only completeness templates having a triple pat-
tern that can potentially be mapped to a triple in a frozen BGP P̃ .
To this end, we �rst introduce a signature operator that abstracts
away concrete variables by replacing every occurrence of a variable
with the reserved IRI _var. The signature of an element t ∈ I∪L∪V
is de�ned as

σ(t) =

{
t, if t ∈ I ∪ L
_var, if t ∈ V.

The signature of a triple pattern (s, p, o) is de�ned as σ((s, p, o)) =
(σ(s), σ(p), σ(o)). Furthermore, the signature of a BGP P is de�ned
as σ(P) = { σ((s, p, o)) | (s, p, o) ∈ P }. As an illustration, the sig-
nature of the BGP Pusa = {(usa, lang , ?l)} is as follows: σ(Pusa) =
{ (usa, lang , _var) }.

Next, we index completeness templates according to (the signa-
tures of) their triple patterns. For this purpose, we de�ne a mapping
M from signature triples to sets of completeness templates such that
the signature triple is in the signature of the template's BGP:

M((s, p, o)) = { τ ∈ T | (s, p, o) ∈ σ(Pτ) }.

86 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

In practice, such a mapping can be realized by standard hashmaps,
providing fast retrieval operations. Given a signature triple (s, p, o),
the generalization operator gen((s, p, o)) computes the set of all gen-
eralizations where non-predicate terms can become variables. As an
illustration, the generalization of the signature triple (usa, lang , _var)
is the set {(usa, lang , _var), (_var, lang , _var)}.

Now, we are ready to de�ne an operator to get completeness tem-
plates that can potentially `transfer' at least one triple in the frozen
BGP P̃ . The operator pmatch(P, T) computes the set of partially
matched completeness templates wrt. P and T , and is de�ned as⋃

(s,p,o)∈σ(P)

{M((s′, p′, o′)) | (s′, p′, o′) ∈ gen((s, p, o))}.

The operator computes the union of the mapping results over sig-
nature generalization of all triple patterns in the BGP P . By the
construction of the mapping M and the generalization operator, it
is the case that pmatch(P, T) preserves P0 in Eq. (4.2), as stated in
Proposition 4.4.

Proposition 4.4. Given a BGP P , a graph G, and a set T of com-
pleteness templates, it is the case that

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G)) = P ∩ ĩd
−1

(TCpmatch(P,T)
(P̃ ∪G)).

This means that instead of taking all the templates in T , it is
enough to consider only the subset pmatch(P, T), which is potentially
much smaller than T .

4.2.2. Experimental Evaluation of Data-aware

Completeness Reasoning

Having described our optimization techniques for data-aware com-
pleteness reasoning, we now would like to analyze how well the tech-
niques can provide speed-up, in particular wrt. a realistic scenario,
and how feasible it is to perform data-aware completeness reasoning
at all. This subsection reports on our evaluation of Wikidata-based
completeness reasoning experiments. First, we describe our experi-
mental setup, and then discuss the results of the experiments.

4.2. OPTIMIZING DATA-AWARE REASONING 87

Experimental Setup. The reasoning program and experiment fra-
mework were implemented in Java using the Apache Jena library.10

We used the direct-statement fragment (i.e., the fragment with no
quali�ers nor references) of Wikidata as our data graph, consisting
of around 110 mio triples.11 We chose Wikidata mainly due to its
relatively large size, recent popularity, and good quality, making it
suitable for our data-aware experiment. The graph was loaded into a
Jena TDB triple store.

Our queries were generated based on human-made, openly avail-
able queries on the Wikidata query page.12 We extracted the BGPs
of the queries and transformed the vocabulary of the queries to the
direct statements vocabulary. These BGPs acted as a `base' for gen-
erating our experiment queries: (i) for each base, we evaluated it
over the Wikidata graph; (ii) we took randomly 20 of the result
mappings of the base, projected on the �rst variable of the base;13

and (iii) we generated queries by instantiating the query bases with
these projected mappings. The completeness statements are gener-
ated in a similar way: (i) for each base, we evaluated it over the
Wikidata graph; (ii) from the answer mappings, we took randomly
50% of them, projected to the �rst variable of the base; and (iii)
we generated completeness statements by instantiating the base with
the respective mappings as the statements' BGPs. In this setting,
we also naturally represent completeness statements by completeness
templates as follows: we took the base BGP as the template's BGP,
and the projected mappings as the template's mappings.

We measured the runtime of completeness reasoning with opti-
mizations and query evaluation. Each measurement was repeated 10
times and we took the median. The experiments were done on a
laptop with Intel Core i5 2.50 GHz-processor and 8 GB memory.

Results and Discussion. In the experiments, we observed the query
evaluation time and completeness reasoning time from 1,160 queries,
with the average query length of 2.58. There were 445,628 complete-
ness statements generated, with the average completeness statement

10http://jena.apache.org/
11https://tools.wmflabs.org/wikidata-exports/rdf/exports/

20160201/
12https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/

SPARQL_Query_Examples&oldid=2099085
13We imposed some ordering over the triple patterns in the BGPs.

88 CHAPTER 4. OPTIMIZING COMPLETENESS REASONING

Table 4.3. Average runtime comparison of query evaluation and completeness

reasoning grouped by query length, where |Q| is the query length, NQ is the

number of queries, tQ is the average of query evaluation time, and tC is the

average of completeness reasoning time

|Q| NQ tQ tC

1 228 2.82 ms 5.43 ms

2 355 1.86 ms 131.51 ms

3 387 2.53 ms 138.22 ms

4 125 1.63 ms 326.45 ms

5 42 1.36 ms 155.45 ms

6 3 2.41 ms 114.26 ms

8 20 1.93 ms 670.66 ms

length (i.e., the number of triple patterns in the BGP of completeness
statements) of 2.43. Furthermore, those statements were represented
by 66 completeness templates, corresponding to the number of base
BGPs to generate the queries. On average, query evaluation took
2.23 ms, whereas completeness reasoning took 140.09 ms, which was
still relatively fast.

To get more detailed observations, we broke down the experiment
results by query length (as shown in Table 4.3). There is no clear
pattern for both query evaluation and completeness reasoning as it is
not always the case that the longer the query gets, the longer the run-
time becomes. Interestingly though, the completeness reasoning time
for queries of length 1 is much faster than the others. This is likely
due to smaller partial matches with templates and easier prioritized
evaluation in the reasoning, in the sense that processing such queries
does not even need to see the data graph whenever the correspond-
ing templates' BGPs are also of length 1 (recall Subsection 4.2.1).
Overall, though completeness reasoning is slower than query evalua-
tion, it is still relatively fast in absolute scale (i.e., always below 700
ms). To get an idea of how long plain completeness reasoning is (i.e.,
without optimizations), we took randomly 10 queries for each query
length group and measured the reasoning time. We then computed
the average reasoning time with a weighting scheme that respects the
query distribution as in Table 4.3. The average reasoning time was
15 s, which is relatively slow. A possible explanation is that for plain

4.3. SUMMARY 89

completeness reasoning, all the statements were applied repeatedly
over the union of the frozen BGP P̃ and the data graph G. We then
measured the reasoning time for those queries using only the par-
tial matching technique, where we constructed a single completeness
template for every completeness statement. In this case, the aver-
age reasoning time was 401.8 ms, as opposed to 140.09 ms, where
completeness templates to represent multiple statements were addi-
tionally used. Without using templates, partial matching might still
get many completeness statements that have to be individually evalu-
ated over P̃∪G, as opposed to the template's simultaneous processing.
This shows that both optimization techniques, that is, completeness
templates and partial matching, may help speed up the reasoning.

4.3. Summary

In this chapter, we have provided optimization techniques for the
problem of completeness entailment both in the data-agnostic and
data-aware settings.

For the data-agnostic setting, we proposed the constant-relevance
principle, to reduce the number of completeness statements employed
in the reasoning about query completeness. Then, we developed tech-
niques for the retrieval of constant-relevant statements, based on sev-
eral index structures: standard hashing, inverted indexes, and tries,
and performed a comparative performance evaluation over those in-
dexes. Finally, we have experimentally shown that our proposed tech-
niques can improve the feasibility of data-agnostic reasoning.

For the data-aware case, we have developed optimization tech-
niques based on completeness templates and partial matching. Our
Wikidata-based experimental evaluation has shown that completeness
reasoning with the optimized techniques can be performed relatively
fast, taking on average 140.09 ms, much faster than plain complete-
ness reasoning which took around 15 s.

blankleftintentionallypageThis

Chapter 5

Soundness Reasoning

As RDF generally follows the open-world assumption, the use of nega-
tion in SPARQL queries can lead to unsound answers (as exempli�ed
in Section 1.2). We have proposed completeness statements as meta-
data specifying that certain kinds of information are entirely recorded
in an RDF dataset. In this chapter, we leverage completeness state-
ments to check whether we can guarantee the soundness of SPARQL
query answers when negation is used. We distinguish between the
soundness of a speci�c answer of a graph pattern and the sound-
ness of a graph pattern as a whole. We provide a formalization and
characterize the problem of soundness checking via reduction to com-
pleteness checking. We further conduct an experimental evaluation
based on Wikidata, to demonstrate the feasibility of our framework.
Partial, preliminary results of this chapter have been published in [32],
while the full results have been published in [29].

5.1. SPARQL with Negation

Here, we de�ne SPARQL queries with negation, by extending our
de�nition of the positive fragment of SPARQL as in Section 2.1. We
introduce notations that are concise and more convenient for our pur-
poses than the original syntax [46]. Recall that a basic graph pattern
(BGP) is a set of triple patterns. A NOT-EXISTS pattern is constructed
by negating a BGP via `¬∃'. A graph pattern P , as used through-
out this chapter, is de�ned as a set of triple patterns and NOT-EXISTS

patterns. The positive part of P , denoted P+, consists of all triple
patterns in P , and the negative part of P , denoted P−, consists of

91

92 CHAPTER 5. SOUNDNESS REASONING

the BGPs of all NOT-EXISTS patterns in P . A mapping µ is a partial
function µ : V → I ∪ L. The evaluation JP KG of a graph pattern P
over a graph G produces a set of mappings and is de�ned in [46] as:

{µ ∈ JP+KG | ∀Pi ∈ P− . Jµ(Pi)KG = ∅ }.

We assume that graph patterns are consistent, i.e., JP KG 6= ∅ for some
graph G.

5.2. Motivation and Formalization

We next introduce our two core problems, answer soundness and pat-
tern soundness.

5.2.1. Answer Soundness

Consider the following graph pattern, asking for countries where en

is no o�cial language and whose o�cial languages (if any) do not
include an o�cial language of an EU founder:

Pl = {(?c, a, country),¬∃{ (?c, lang , en) },
¬∃{ (?c, lang , ?l), (?f , lang , ?l), (EU , founder , ?f) }}.

For the sake of example, consider the following graph about countries:

Gl = {(ger, a, country), (usa, a, country), (sgp, a, country),
(spa, a, country), (ger, lang , de), (spa, lang , es),
(EU , founder , ger)}.

For this graph, consider also the set Cl of the following four com-
pleteness statements:

• Cger = Compl((ger , lang , ?l)), for all o�cial languages of Ger-
many;
• Cusa = Compl((usa, lang , ?l)), for all o�cial languages of the
USA (i.e., the USA has no o�cial language1);
• Cspa = Compl((spa, lang , ?l)), for all o�cial languages of Spain;
and
• Ceu = Compl((EU , founder , ?f)), for all EU founders.

1As it is the case in reality, see also: https://www.cia.gov/library/

publications/the-world-factbook/geos/us.html

5.2. MOTIVATION AND FORMALIZATION 93

Note that we do not claim anything about the completeness of the
o�cial languages of Singapore.

Evaluating the graph pattern over the graph in the standard way
gives

JPlKGl = {{?c 7→ usa}, {?c 7→ sgp}, {?c 7→ spa}}.

We want to verify whether these answers are sound, that is, whether
they cannot have been returned due to possibly incomplete infor-
mation. This amounts to checking that there is no valid extension
of Gl wrt. Cl over which the answers are not returned. Let us an-
alyze {?c 7→ usa}. First, we check if (usa, lang , en) is certainly not
true. Indeed, since we know by the graph and the statement Cusa that
the USA has no o�cial language, the (usa, lang , en) must not be true.
Second, we check if {(usa, lang , ?l), (?f , lang , ?l), (EU , founder , ?f)}
surely fails. This is clearly the case for the same reason as before,
namely that there is no o�cial language of the USA. From this rea-
soning, we conclude that the answer {?c 7→ usa} is sound.

Next, let us analyze {?c 7→ sgp}. We check if (sgp, lang , en) is in-
deed not true, that is, if there is no valid extension where (sgp, lang , en)
is true. Now we have a problem: due to the lack of completeness in-
formation, it might be that in reality, en is an o�cial language of
Singapore, but the fact is missing in our data. Thus, we cannot guar-
antee the soundness of the answer {?c 7→ sgp}.

Last, let us analyze {?c 7→ spa}. First, we check if (spa, lang , en)
is not true. Since we know by the statement Cspa and the graph that
Spain's o�cial language is only es, then (spa, lang , en) must not be
true. Second, we check if the following BGP,

{(spa, lang , ?l), (?f , lang , ?l), (EU , founder , ?f)},

evaluates to false. From the graph and the statements Cger and Ceu,
we know that de is the only o�cial language of Germany as the
only EU founder, which is di�erent from es. Thus, the pattern must
evaluate to false. We conclude that the answer {?c 7→ spa} is sound.

In summary, given answers of a graph pattern over a graph with
completeness statements, we have reasoned by case analysis whether
each answer is sound.

94 CHAPTER 5. SOUNDNESS REASONING

5.2.2. Pattern Soundness

Consider now the following graph pattern asking for countries where
en is no o�cial language and that are not EU founders:

Pf = {(?c, a, country),¬∃{ (?c, lang , en) },
¬∃{ (EU , founder , ?c) }}.

Consider also the set Cf of two completeness statements:

• Clang = Compl((?c, a, country), (?c, lang , ?l)), for all languages
of countries and
• Ceu = Compl((EU , founder , ?f)), for all EU founders.

It is actually the case that the statements guarantee the soundness
of the graph pattern Pf alone, i.e., all answers returned by Pf are
sound, independently of the queried graph. In other words, given Pf
and Cf , the soundness of all answers is guaranteed for any possible
graph, even with totally di�erent languages and EU founders. Let
us see why. Consider an arbitrary graph G and suppose the pattern
evaluation over G returns an answer {?c 7→ c̃} for an IRI c̃. To be
sure that {?c 7→ c̃} is sound, we must make sure that c̃ does not have
en as an o�cial language and is not an EU founder. By the statement
Clang, it is the case that G is complete for all languages of countries.
Therefore, G is also complete for all languages of c̃. The fact that c̃ is
returned means that en is not among its o�cial languages. Now, due
to Ceu, it is the case thatG is complete for all EU founders. Again, the
fact that c̃ is returned means that c̃ is not an EU founders. Thus we
can be sure that the answer {?c 7→ c̃} is sound. Since the answer and
the graph were arbitrary, we conclude that the set Cf of completeness
statements entails the soundness of Pf .

In this scenario, as opposed to answer soundness, we have reasoned
whether the soundness of an arbitrary answer of a graph pattern
over an arbitrary graph can be guaranteed by a set of completeness
statements.

5.2.3. Formalization

Let us �rst formally de�ne what soundness of an answer means.
Consider a graph pattern P , a mapping µ, and an extension pair
(G,G′). We say that (G,G′) entails the soundness of µ for P , written

5.3. CHECKING ANSWER SOUNDNESS 95

Sound(µ, P) if, whenever µ ∈ JP KG, then it is the case that µ ∈ JP KG′ .
Note that for µ 6∈ JP KG, it is trivial that (G,G′) |= Sound(µ, P).
Therefore, we are only interested in the soundness of answers occur-
ring in JP KG. Given a set C of completeness statements, a graph G,
a graph pattern P , and a mapping µ ∈ JP KG, we say that C and
G entail the soundness of the mapping µ of P , written as C, G |=
Sound(µ, P), if for all extension pairs (G,G′) |= C it holds that
(G,G′) |= Sound(µ, P). In our motivating scenario we saw that usa is
a sound answer while sgp is not, thusCl, Gl |= Sound({?c 7→ usa}, Pl),
while Cl, Gl 6|= Sound({?c 7→ sgp}, Pl).

Now let us de�ne the soundness of a graph pattern as a whole,
called pattern soundness. As opposed to answer soundness, here we
abstract over all possible answers of a graph pattern. For a graph
pattern P , the soundness of P is expressed as Sound(P). Given an
extension pair (G,G′), we de�ne that (G,G′) satis�es the soundness
of P , written (G,G′) |= Sound(P), if JP KG ⊆ JP KG′ . Given a set
C of completeness statements and a graph pattern P , we say that
C entails the soundness of P , written as C |= Sound(P), if for all
extension pairs (G,G′) |= C, it holds that (G,G′) |= Sound(P). In
our motivating scenario, it is the case that Cf |= Sound(Pf).

It follows immediately from the de�nitions that all answers to a
sound pattern are sound.

Proposition 5.1. Let C be a set of completeness statements and P
be a graph pattern. Then, C |= Sound(P) i� C, G |= Sound(µ, P) for
every graph G and mapping µ.

5.3. Checking Answer Soundness

In this section, we show how completeness statements over a graph
can be used to judge whether an answer obtained by evaluating a
graph pattern over the graph is sound. The idea is to reduce the
problem of soundness checking to that of completeness checking. Let
us �rst recall the de�nition of completeness entailment. Given a set C
of completeness statements, a graph G, and a BGP P , the data-aware
completeness entailment C, G |= Compl(P) is de�ned as follows: for
all extension pairs (G,G′) |= C, it holds that (G,G′) |= Compl(P).

Now, the main theorem of this section intuitively states the fol-
lowing: the soundness of some answer-mapping of a graph pattern

96 CHAPTER 5. SOUNDNESS REASONING

over a graph is achieved exactly if all the graph pattern's NOT-EXISTS-
BGPs, after applying the answer-mapping to them, are complete for
the graph.

Theorem 5.2. (Answer Soundness Characterization) Let G
be a graph, C be a set of completeness statements, P be a graph
pattern, and µ ∈ JP KG be a mapping. Then, it is the case that

C, G |= Sound(µ, P) i� for all Pi ∈ P−. C, G |= Compl(µPi).

Proof. (⇐) Let µ ∈ JP KG be a mapping. Suppose that for all Pi ∈
P−, we have C, G |= Compl(µPi). Take an extension pair (G,G′)
satisfying C. We will show that µ ∈ JP KG′ . Since µ ∈ JP KG and
G ⊆ G′, it holds that µ ∈ JP+KG′ . It is left to show that for all Pi ∈
P−, we have JµPiKG′ = ∅. Take an arbitrary Pi ∈ P−. The inclusion
JµPiKG′ ⊆ JµPiKG holds because C, G |= Compl(µPi). Moreover, the
equality JµPiKG = ∅ holds because µ ∈ JP KG. Hence, it is the case
that JµPiKG′ = ∅.
(⇒) We give a proof by contrapositive. Suppose there is a BGP
Pw ∈ P− (`w' for witness) such that C, G 6|= Compl(µPw). We will
show that C, G 6|= Sound(µ, P). Since it is the case that C, G 6|=
Compl(µPw), there must be a mapping ν such that: (i) dom(ν) =
var(µPw); (ii) (G,G∪νµPw) |= C; and (iii) νµPw 6⊆ G. This implies
that ν 6∈ JµPwKG and ν ∈ JµPwKG∪νµPw . Now, we will show that
(G,G ∪ νµPw) 6|= Sound(µ, P). Since ν ∈ JµPwKG∪νµPw , it holds that
µ 6∈ JP KG∪νµPw . On the other hand, it is the case that µ ∈ JP KG from
our assumption. Thus, (G,G ∪ νµPw) 6|= Sound(µ, P).

Example 5.3. Consider the motivating scenario of answer soundness.
Take the mapping {?c 7→ usa} ∈ JPlKGl

. Both the entailmentCl, Gl |=
Compl((usa, lang , en)) and the entailment

Cl, Gl |= Compl((usa, lang , ?l), (?f , lang , ?l), (EU , founder , ?f))

hold. By Theorem 5.2, it is the case that Cl, Gl |= Sound({?c 7→
usa}, Pl).

In contrast, take the mapping {?c 7→ sgp} ∈ JPlKGl
. It is the

case that Cl, Gl 6|= Compl((sgp, lang , en)) with the extension pair
(Gl, Gl ∪ {(sgp, lang , en)}) as a counterexample. Thus, it holds that
Cl, Gl 6|= Sound({?c 7→ sgp}, Pl).

5.4. CHECKING PATTERN SOUNDNESS 97

In fact, Theorem 5.2 holds for a wider class of graph patterns than
de�ned in this chapter. We only need that the positive part of the
pattern be monotonic, that is, a mapping remains a solution over all
extensions of the graph G. We do not make this formal to keep the
exposition simple.

Complexity. From Theorem 5.2, the check whether an answer is sound
wrt. a set of completeness statements and a graph can be reduced to
a linear number of data-aware completeness checks (as discussed in
Chapter 3). From this, it follows that the complexity of the answer
soundness entailment problem is in ΠP

2 . Moreover, the answer sound-
ness problem is also ΠP

2 -hard as the completeness problem can be
reduced to it by using Theorem 5.2. Nevertheless, from a practical
perspective, one may expect graph patterns (including BGPs used
to construct completeness statements) to be short, giving us a po-
tentially manageable answer soundness check. Section 5.5 reports an
experimental study of answer soundness checking in practical settings.

5.4. Checking Pattern Soundness

As demonstrated in our motivating scenario, it might be the case that
completeness statements guarantee the soundness of a graph pattern
as such, that is, all answers returned by the graph pattern are known
to be sound, no matter the speci�cs of the graph. To characterize
pattern soundness, we follow the same strategy as before: we reduce
the problem of soundness checking to completeness checking.

First, we generalize completeness statements to conditional com-
pleteness statements, which express the completeness of a BGP un-
der the condition of another BGP. Given two BGPs P and P ′, the
completeness of P wrt. P ′ is denoted as Compl(P | P ′). Given an
extension pair (G,G′), we de�ne that (G,G′) |= Compl(P | P ′) if
J(var(P), P ∪ P ′)KG′ ⊆s JP KG.2 This means that the conditional
completeness statement is satis�ed by the extension pair, whenever
the evaluation of the BGP P over the graph G contains the eval-
uation of P under the condition of P ′ over the graph G′. For ex-
ample, the conditional completeness statement Compl((?c, lang , en) |
(?c, a, country)) denotes the completeness of all things having English
as their language, provided that the things are of type country. Note

2We use `⊆s' for set inclusion.

98 CHAPTER 5. SOUNDNESS REASONING

that conditional completeness statements are more general than com-
pleteness statements as introduced in Section 2.2, since a complete-
ness statement Compl(P) can be expressed as a conditional complete-
ness statement with the empty condition Compl(P | ∅). We de�ne
that the entailment C |= Compl(P | P ′) holds if for all extension pairs
(G,G′) satisfying C, it is the case that (G,G′) |= Compl(P | P ′). The
following proposition states that such entailment holds i� the TC ap-
plication over the prototypical graph P̃ ∪ P̃ ′ includes P̃ . Recall that
the prototypical graph represents any possible graph that satis�es a
BGP.

Proposition 5.4. For a set C of completeness statements and BGPs
P and P ′, it is the case that

C |= Compl(P | P ′) i� P̃ ⊆ TC(P̃ ∪ P̃ ′).

Proof. (⇒) Suppose that C |= Compl(P | P ′). By de�nition of the
entailment, for all (G,G′) |= C, the inclusion J(var(P), P ∪P ′)KG′ ⊆s
JP KG holds. Consider the extension pair (G,G′) where G = TC(P̃ ∪
P̃ ′) and G′ = P̃ ∪ P̃ ′. By construction, (G,G′) |= C holds. From
our assumption, it follows that J(var(P), P ∪ P ′)KG′ ⊆s JP KG. By
construction, we have that πvar(P)(ĩd) ∈ J(var(P), P ∪ P ′)KG′ where
ĩd is the freeze mapping of the BGP P ∪P ′ (as de�ned in Section 2.1).
From the set inclusion, it follows that πvar(P)(ĩd) ∈ JP KG. This implies
that πvar(P)(ĩd)P = P̃ ⊆ G = TC(P̃ ∪ P̃ ′).
(⇐) Assume P̃ ⊆ TC(P̃ ∪ P̃ ′). By this assumption and the proto-
typicality of P̃ ∪ P̃ ′, which represents any possible graph satisfying
P ∪ P ′, it is the case that C |= Compl(P | P ′).

In the motivating scenario of pattern soundness, it holds that
Cf |= Compl((?c, lang , en) | (?c, a, country)) due to the following
inclusions:

• {(c̃, lang , en)} ⊆ {(c̃, lang , en), (c̃, a, country)}, and
• {(c̃, lang , en), (c̃, a, country)} ⊆ TCf ({(c̃, lang , en), (c̃, a, country)})}.

This means that the set Cf of statements guarantees the com-
pleteness of all things whose o�cial language is English, under the
condition that those things are of type country.

The following lemma states that the soundness of a graph pattern
can be guaranteed if each BGP of the NOT-EXISTS patterns is complete
under the condition of the positive part of the graph pattern.

5.4. CHECKING PATTERN SOUNDNESS 99

Lemma 5.5. Given a set C of completeness statements and a graph
pattern P , it is the case that

C |= Sound(P) if for all Pi ∈ P− . C |= Compl(Pi | P+).

Proof. Assume that for all Pi ∈ P−, it is the case thatC |= Compl(Pi |
P+). Take any extension pair (G,G′) |= C and suppose there is a
mapping µ ∈ JP KG. We want to show that µ ∈ JP KG′ . By G ⊆ G′, it
holds that µ ∈ JP+KG′ . Thus, it is left to show that for all Pi ∈ P−,
it is the case that JµPiKG′ = ∅.

Take any negation part Pi. ByC |= Compl(Pi | P+) and (G,G′) |=
C, it is the case that (G,G′) |= Compl(Pi | P+). Consequently, by
J(var(Pi), Pi ∪ P+)KG′ ⊆s JPiKG and JµPiKG = ∅, it must be the
case that JµPiKG′ = ∅. As Pi was arbitrary, it is the case that
µ ∈ JP KG′ .

One might wonder whether the converse of the above lemma also
holds. However, the following counterexample shows that it does not.

Example 5.6. Consider the following graph patterns:

• P1 = {(?c, a, country),¬∃{(?c, lang , en)},
¬∃{(?c, lang , en), (?c, lang , fr)}}

• P2 = {(?c, a, country),¬∃{(?c, lang , en), (?c, lang , ?l)}}

Consider also the singleton set C = {Compl((?c, lang , en))}. It is the
case that C |= Sound(P1) and C |= Sound(P2) despite the violation
of the right-hand side of Lemma 5.5.

Taking a closer look, one notices that both graph patterns in fact
contain redundancies, which can be checked via query containment
under set semantics (written vs). For P1, the second NOT-EXISTS pat-
tern is super�uous due to the �rst one being more general; whereas
for P2, the triple pattern (?c, lang , ?l) is super�uous since the empti-
ness of the BGP of the NOT-EXISTS pattern only depends on the triple
pattern (?c, lang , en). Consequently, for both cases having only the
statement Compl((?c, lang , en)) is su�cient to guarantee their sound-
ness.

To avoid such redundancies, we propose a normal form for graph
patterns, called Non-Redundant Form (NRF). A graph pattern P is in
NRF if it satis�es that: there is no containment between any distinct
BGPs of the negative parts; and every single BGP of the negative
parts is minimal. This can be formalized as follows:

100 CHAPTER 5. SOUNDNESS REASONING

• No redundant negations: for any distinct BGPs Pi, Pj ∈ P−, it
is the case that:

(var(P+), P+ ∪ Pi) 6vs (var(P+), P+ ∪ Pj).

• No redundant parts in a negation: for every Pi ∈ P−, there is
no non-empty P ′i ⊂ Pi such that:

(var(P+), P+ ∪ P ′i) vs (var(P+), P+ ∪ Pi).

A non-NRF graph pattern can be transformed into an equiva-
lent NRF graph pattern with a polynomial number of NP-checks, by
repeating the containment check and redundant part removal until
the two conditions above are satis�ed. As graph patterns tend to be
relatively small in practice, we expect that such a transformation is
feasible.

With this notion in place, we can obtain the main theorem of this
section. The theorem states that given an NRF graph pattern, the
check whether it is sound can be reduced to the check whether each
BGP of the NOT-EXISTS patterns is complete under the condition of
the positive part. Thus, the theorem ensures that the converse of
Lemma 5.5 holds for NRF graph patterns.

Theorem 5.7.(Pattern Soundness Characterization) Given
a set C of completeness statements and a graph pattern P in Non-
Redundant Form (NRF), it is the case that

C |= Sound(P) i� for all Pi ∈ P− . C |= Compl(Pi | P+).

Proof. (⇐) This is a direct consequence of Lemma 5.5.
(⇒) We give a proof by contrapositive. Suppose there is a BGP
Pw ∈ P− (`w' for witness) such that C 6|= Compl(Pw | P+). By
Proposition 5.4, it is the case that P̃w 6⊆ TC(P̃w ∪ P̃+). Let us prove
that for the extension pair (G,G′) = (P̃+ ∪ TC(P̃w ∪ P̃+), P̃w ∪ P̃+),
it is the case that (G,G′) |= C, but (G,G′) 6|= Sound(P).

By the de�nition of TC, it holds that (G,G′) |= C. We now have to
show that (G,G′) 6|= Sound(P). By construction, ĩd 6∈ JP KP̃w∪P̃+ =

JP KG′ where ĩd is the freeze mapping wrt. P+. We will show that
ĩd ∈ JP KP̃+∪TC(P̃w∪P̃+) = JP KG.

By construction, ĩd ∈ JP+KP̃+∪TC(P̃w∪P̃+). Thus, it is left to show

that for every BGP Pi ∈ P−, it is the case JĩdPiKP̃+∪TC(P̃w∪P̃+) =

5.4. CHECKING PATTERN SOUNDNESS 101

∅. Due to the consistency of P and the non-containment property
between di�erent negation parts from the `no redundant negations'
condition of an NRF graph pattern, there is no negation part Pj 6= Pw

such that:
JĩdPjKP̃+∪TC(P̃w∪P̃+) 6= ∅.

Now, it is left to show that for the BGP Pw, it also holds

JĩdPwKP̃+∪TC(P̃w∪P̃+) = ∅.

However, this holds from the consistency of P and the minimality
property from the `no redundant parts in a negation' condition of
an NRF graph pattern. Thus, we have shown that ĩd 6∈ JP KG′ but
ĩd ∈ JP KG, serving as a counterexample for (G,G′) |= Sound(P).

Example 5.8. In the motivating scenario of pattern soundness, it
holds that Cf |= Compl((?c, lang, en) | (?c, a, country)) and also

Cf |= Compl((EU , founder, ?c) | (?c, a, country)).

By Theorem 5.7, it is the case Cf |= Sound(Pf).

Complexity. From Theorem 5.7 and Proposition 5.4, it follows that
the check whether a graph pattern is sound can be reduced to a
linear number of TC applications, which are basically evaluations of
conjunctive CONSTRUCT queries. Hence, deciding whether a graph pat-
tern is sound wrt. a set of completeness statements is in NP (and also
NP-hard, as checking completeness can also be reduced to checking
soundness). From a practical viewpoint, one may expect graph pat-
terns of queries and BGPs of completeness statements to be short, po-
tentially allowing for a feasible soundness check. As in our optimiza-
tion of data-agnostic completeness checking that uses the constant-
relevance principle, our TC applications here for conditional complete-
ness statements can immediately adopt the principle by indexing all
constants appearing in the whole body of the conditional statements.
Section 5.5 reports an experimental investigation of pattern sound-
ness checking in practical cases.

Soundness of Queries with Projections. One may wonder whether
our characterization here can also be used for queries with negation
that involve projections. The next example shows that in general, the
condition from Theorem 5.7 is not a necessary condition for pattern
soundness entailment of queries with projection.

102 CHAPTER 5. SOUNDNESS REASONING

Example 5.9. Consider the following boolean query, which asks
whether it is impossible to right-shift any triple:

Q = ({}, {(?x , ?y , ?z),¬∃{ (?z , ?x , ?y) }}).

Consider also the singleton set of a completeness statement of three
possible shifts of triples:

C = {Compl((?x , ?y , ?z), (?z , ?x , ?y), (?y , ?z , ?x))}.

By case analysis over the availability of triple shifts, one can show that
whenever (G,G′) |= C, it holds that all answers of Q over G are con-
tained in those over G′, and thus, C entails the pattern completeness
of Q, even though C does not entail Compl((?z, ?x, ?y) | (?x, ?y, ?z)).

We do not know a characterization of pattern soundness for queries
involving projections. Nevertheless, Theorem 5.7 still gives a su�-
cient condition for soundness of this case.

Combining Soundness and Completeness Reasoning. A graph pat-
tern with negation can be both sound and complete. Theorem 5.7
characterizes when a graph pattern P in NNF is sound wrt. a set C
of completeness statements. One can show that P is complete if and
only if the positive part P+ is complete. Via both characterizations,
we can then check whether a graph pattern is sound and/or complete.

5.5. Experimental Evaluation

From the above characterizations, we are now able to check query
soundness by reducing it to query completeness checks. For this
reason, we can therefore reuse the optimization techniques of com-
pleteness reasoning as described in Chapter 4. More speci�cally, we
reuse the constant-relevance technique for optimizing pattern sound-
ness checking, and the completeness templates and partial matching
techniques for optimizing answer soundness checking. In this section,
we analyze how soundness reasoning behaves in a realistic scenario,
in particular: how feasible it is to perform soundness reasoning, how
much speed-up can be gained with the optimization techniques, and
how does pattern soundness checking compare to answer soundness
checking. This section reports on our experimental evaluation based
on Wikidata. First, we describe our experimental setup, and then
discuss the results of the experiments.

5.5. EXPERIMENTAL EVALUATION 103

5.5.1. Experimental Setup

The reasoning program and experiment framework were implemented
in Java using the Apache Jena library3 and are available online.4 As it
was the case for the data-aware completeness reasoning experiment in
Subsection 4.2.2, we used the direct statements fragment of Wikidata
as our data graph, consisting of around 110 mio triples.5 The graph
was loaded into a Jena TDB triple store.

Queries. Wikidata has openly available, human-created queries which
are available online.6 We took these queries as templates to gener-
ate queries with negation. We extracted the BGPs of the queries and
transformed the vocabulary of the queries to the direct statements vo-
cabulary. We wanted to have queries with negation of various shapes.
For this reason, from the BGPs of the queries we generated di�erent
sets of queries with negation, di�ering in the triple patterns that are
negated:

• QoneTP, the last triple pattern is negated;
• QoneTPoneTP, the last two triple patterns are independently negated,
forming two NOT-EXISTS patterns;
• QtwoTPs, the last two triple patterns are negated together, form-
ing one NOT-EXISTS pattern; and
• QthreeTPs, the last three triple patterns are negated together,
forming one NOT-EXISTS pattern.

The number of triple patterns negated was set to at most three,
which was reasonable, since most real-world queries are of length up
to three [8]. We projected out all variables in the positive part to
correspond to graph pattern evaluation.

Completeness Statements. We used two di�erent methods of gener-
ating completeness statements depending on whether we wanted to
perform either answer soundness or pattern soundness checking.

As for the generation of statements for answer soundness, we
wanted to perform it in such a way that there will be a variety of sound

3http://jena.apache.org/
4http://completeness.inf.unibz.it/soundness-experiment/
5https://tools.wmflabs.org/wikidata-exports/rdf/exports/

20160201/
6https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/

SPARQL_Query_Examples&oldid=2099085

104 CHAPTER 5. SOUNDNESS REASONING

and possibly unsound answers. So, we generated the statements as
follows: (i) given a query, we evaluated the query and obtained all
the answer-mappings; (ii) for 25% of these answer-mappings, we ap-
plied them to the BGP of each NOT-EXISTS pattern of the query and
constructed completeness statements out of these instantiated BGPs.
This way, we can guarantee that these 25% answer-mappings are
sound, while the remainder mappings are possibly unsound.

In this setting, we can naturally represent completeness state-
ments by completeness templates (see Subsection 4.2.1). We took
the BGP of the NOT-EXISTS patterns as the templates' BGP and the
sound answer mappings as the templates' mappings.

In the particular case of QtwoTPs, however, we also performed an
additional way of generating completeness statements, which di�ers
on how we get BGPs for completeness statements: instead of taking
the whole instantiated BGP of the NOT-EXISTS pattern, we also gen-
erated completeness statements separately per triple pattern in the
instantiated BGP. The �rst triple pattern7 in the instantiated BGP
was taken as is, and the second was (again) instantiated with the
answer-mappings from the evaluation of the �rst triple pattern over
the graph.

For the generation of statements for checking pattern soundness,
we simply transformed the union of the positive part and each BGP
of the NOT-EXISTS patterns to a completeness statement.

We had �ve di�erent cases for our experimental evaluation by
combining di�erent query sets and completeness statements:

• oneTP is where the last triple pattern is negated;
• oneTPoneTP is where the last two triple patterns are indepen-
dently negated;
• twoTPsTO (`TO' for together) is where the last two triple pat-
terns are negated together and the statements are for the whole
BGP;
• twoTPsSE (`SE' for separate) is where the last two triple pat-
terns are negated together, but the statements are obtained
separately per triple pattern; and
• threeTPsTO (`TO' for together) is where the last three triple
patterns are negated together and the statements are for the
whole BGP.

7We �xed an ordering.

5.5. EXPERIMENTAL EVALUATION 105

Table 5.1. The number of statements |C|, and the median of query length |Q|, of
query answers |JQKG|, of query evaluation time tQ, of answer soundness checking

time tAS, of answer soundness checking time per answer tAS/a, and of pattern

soundness checking time tPS for di�erent cases. All times are in milliseconds.

Case |C| |Q| |JQKG| tQ tAS tAS/a tPS

oneTP 37,769 3 24 14 1.57 0.069 0.19

oneTPoneTP 119,462 3 82 47 5.8 0.073 0.37

twoTPsTO 126,320 3 180 12.7 43.3 0.27 0.21

twoTPsSE 138,705 3 180 12.7 17.3 0.1 0.21

threeTPsTO 93,080 4 12,099 114 3,873 0.68 0.23

In each case, to perform answer soundness checking, we did not
use the statements generated based on pattern soundness since that
would have made all the answers sound. On the other hand, to per-
form pattern soundness checking, we also used all the statements
generated based on answer soundness, as otherwise there would have
been too few statements (= the number of queries per case). We
measured the runtime of soundness reasoning for both pattern and
answer, and also that of query evaluation. For each case, we removed
the measurements where the query evaluation returned 0 answers, as
answer soundness checking would have become trivial. Each mea-
surement was repeated 10 times and we took the median. Moreover,
to get the result summary of each experiment case, we also took the
median over the case's results. We used median to avoid the e�ect
of extreme values (that is, some queries returned a large number of
results, up to about 120,000 results). The experiments were done on
a laptop with Intel Core i7 2.50 GHz-processor and 16 GB memory.

5.5.2. Experimental Results and Discussion

To get an idea of how soundness checking performs without our opti-
mization techniques, we ran preliminary experiments to measure the
runtime of pattern soundness and answer soundness checking with no
optimization of the twoTPsTO and threeTPsTO cases. Here, we set the
timeout to 5 minutes. For pattern soundness checking, the median
runtime for the twoTPsTO case was about 1.5 s and for the threeTPsTO
case about 1.2 s. For answer soundness checking, however, we experi-

106 CHAPTER 5. SOUNDNESS REASONING

0 10 20 30 40 50 60

100

102

104

106

108

1010

oneTP: Query rank (from the lowest
to the highest of number of query answers)

N
u
m
b
er

o
f
a
n
sw
er
s
o
r
ru
n
ti
m
e
in

n
s

0 5 10 15 20 25

100

102

104

106

108

1010

oneTPoneTP: Query rank (from the lowest
to the highest of number of query answers)

N
u
m
b
er

o
f
a
n
sw
er
s
o
r
ru
n
ti
m
e
in

n
s

|JQKG| tQ tAS

Figure 5.1. Comparison between the number of query answers (|JQKG|), query
evaluation time (tQ), and answer soundness checking time (tAS) for cases oneTP

and oneTPoneTP

5.5. EXPERIMENTAL EVALUATION 107

0 10 20 30 40
10−1

102

105

108

1011

twoTPsTO: Query rank (from the lowest
to the highest of number of query answers)

N
u
m
b
er

o
f
a
n
sw
er
s
o
r
ru
n
ti
m
e
in

n
s

0 10 20 30 40
10−1

102

105

108

1011

twoTPsSE: Query rank (from the lowest
to the highest of number of query answers)

N
u
m
b
er

o
f
a
n
sw
er
s
o
r
ru
n
ti
m
e
in

n
s

|JQKG| tQ tAS

Figure 5.2. Comparison between the number of query answers (|JQKG|), query
evaluation time (tQ), and answer soundness checking time (tAS) for cases

twoTPsTO and twoTPsSE

108 CHAPTER 5. SOUNDNESS REASONING

0 2 4 6 8 10 12 14
10−1

102

105

108

1011

threeTPsTO: Query rank (from the lowest
to the highest of number of query answers)

N
u
m
b
er

o
f
a
n
sw
er
s
o
r
ru
n
ti
m
e
in

n
s

|JQKG| tQ tAS

Figure 5.3. Comparison between the number of query answers (|JQKG|), query
evaluation time (tQ), and answer soundness checking time (tAS) for case

threeTPsTO

5.5. EXPERIMENTAL EVALUATION 109

enced many timeouts, 22 timeouts out of 39 queries for the twoTPsTO
case and 11 timeouts out of 13 queries for the threeTPsTO case.
Timeouts still occurred even when we performed answer soundness
checking with partial matching as the only optimization, where we
translated each completeness statement trivially into an individual
template, without generalization. We experienced 6 timeouts out of
39 queries for the twoTPsTO case and 6 timeouts out of 13 queries
for the threeTPsTO case. This indicates that without the usage of
templates, checking answer soundness is hardly feasible.

Now let us see the performance of soundness checking with all our
optimizations. Table 5.1 summarizes the results of the experiments
for all the �ve cases. Among those cases, the number of statements
generated varies, with around 37,000 for Case oneTP, and over 93,000
for the others. The median length of queries is either 3 or 4, and the
median size of query results varies from around 24 to 12,099. Median
query evaluation time ranges from 12 ms to 114 ms.

Median pattern soundness checking always takes less than a mil-
lisecond, which is more than 1000× faster than the check without
optimization. This is likely due to the fact that pattern soundness
checking need not see the data graph, and depends solely on the query
and completeness statements. Also, the constant-relevance principle
probably helps rule out irrelevant statements before performing the
actual check.

As for answer soundness checking, we experienced no timeouts,
and the runtime is quite comparable with query evaluation time, ex-
cept for Case threeTPsTO. This is possibly due to the large number of
answers returned, all of which have to be checked for soundness. This
suggests that with templates and partial matching, answer soundness
checking can be done relatively quickly, especially when there are low-
to-medium number of query answers. When we break down the time
per answer, the computation is less than a millisecond, with the worst
case of 0.68 ms for the threeTPsTO case. It is likely that the more
the triple patterns are in the negation part, the longer the soundness
checking per answer is.

Let us look more closely at answer soundness checking. Fig-
ures 5.1, 5.2, and 5.3 show the comparison between the number of
query answers, query evaluation time, and answer soundness check-
ing time for all the cases. The x-axis is the query order based on
the number of query answers in an ascending manner. The y-axis

110 CHAPTER 5. SOUNDNESS REASONING

is in log-scale and shows the respective unit (number for the query
answers, and ns for the runtime). There is strong evidence of a posi-
tive correlation between the number of query answers and the answer
soundness checking time. Moreover, we also see the following trend
for the �rst two cases (that is, Figure 5.1): At �rst, when query an-
swers are not many, query evaluation tends to be slower than answer
soundness checking. When the number of query answers increases,
the answer soundness checking time outgrows the query evaluation
time, for instance, as witnessed by the queries from rank 20 onwards
for the case oneTPoneTP. For the last three cases, the cross-over point
happens earlier than that in the �rst two cases. This probably has to
do with the increasing soundness checking time per answer whenever
the number of negated triple patterns increases, as discussed above.

To summarize, we have performed an experiment over a realistic
setting based on Wikidata. We have optimized reasoning by repre-
senting sets of completeness statements using templates and by using
hashmaps to apply only potentially useful statements and templates.
As a result, pattern soundness checking can be done quickly, whereas
answer soundness checking, though slower than pattern soundness
checking, can still be done relatively fast. Moreover, the performance
of answer soundness checking positively correlates with the number
of query answers. Our optimization techniques have been shown to
give a signi�cant speed-up over both reasoning problems. We would
also recommend that in practice, before applying answer soundness
checking, pattern soundness checking should be done �rst since it
takes less time, and by Proposition 5.1, if pattern soundness holds,
then all answers are sound.

5.6. Related Work

The use of negation in querying can be traced back to Codd's re-
lational calculus [23], where a tuple is included in the complement
of a relation if not explicitly given in the relation. Reiter [99] and
Clark [21] generalized this notion to rule-based systems. They as-
sumed that the failure to �nd a proof of a fact implies that the
negation is true, and called this the closed-world assumption (CWA).
SPARQL, the standard query language for RDF, supports negation
by such a non-existence check [93, 46]. However, since the seman-
tics of RDF imposes the open-world assumption (OWA) [49], there

5.6. RELATED WORK 111

remains a conceptual mismatch when SPARQL negation is evaluated
in a closed-world style. In other words, there is a gap between the
normative semantics of negation in SPARQL, and the classical nega-
tion (`the negated fact truly holds') [43] due to RDF's openness. The
fact that RDF is a positive language, means that one viable way of
having negated facts in RDF is by imposing some (partial) complete-
ness assumption over RDF data: whenever P is complete, then all
facts not in P are false.

In the Semantic Web, Polleres et al. [88] �rst observed this mis-
match. They proposed to restrict the scope of negation to particu-
lar data sources, thus limiting the search for negative information.
In their work, no assumption was made as to whether the knowl-
edge in these data sources is complete. Analyti et al. [7] proposed
ERDF, an extended RDF that supports negation, as well as deriva-
tion rules. ERDF allows one to have local closed-world information
via default closure rules for properties and classes. As opposed to
their work which considered only a simple partial CWA over atomic
classes and properties (e.g., all cars, all child relationships, . . .), our
work supports more expressive completeness information, thanks to
the �exibility of BGPs. From the practical side, negation is fea-
tured in test queries of many popular SPARQL benchmarks such as
SP2Bench [104], Berlin SPARQL Benchmark (BSBM) [15], and Fed-
Bench [103], in which the CWA is employed. As for our work, not only
does it provide formalizations, but also optimization techniques for
checking the soundness of queries with negation, for which we have
shown to improve the feasibility of the checking in Wikidata-based
experiment settings.

More recently, Gutierrez et al. [44] proposed an alternative se-
mantics for SPARQL based on certain answers. They argued that
the proposed semantics is more suitable to capture RDF peculiarities,
such as OWA, unique name assumption (UNA), and blank nodes. For
queries with negation, they showed that the queries do not have cer-
tain answers, since more facts can be arbitrarily added to falsify the
query answers. In our work, we combine between open- and closed-
information in RDF, enabling SPARQL queries with negation to have
answers that are guaranteed to remain. That is, when queries are
guaranteed to be sound by completeness statements, new data that
might be added to the graph is restricted by the statements, hence
the answers will not be falsi�ed.

112 CHAPTER 5. SOUNDNESS REASONING

5.7. Summary

This chapter introduced the problems of pattern soundness and an-
swer soundness for SPARQL queries involving negation. We have
shown how to decide both problems in the presence of completeness
information, and provided experimental evidence that our techniques
are feasible in realistic settings, where queries and completeness state-
ments are of limited length. While in the presentation we have fo-
cused on negation via NOT EXISTS, our results apply also to queries
with the MINUS negation as long as there is a shared variable between
the positive part and each of the negative parts.

Our work leaves several issues open. Full characterizations of
soundness checking for richer queries that involve selection, union,
or arithmetic �lter operators are of our interest. In this regard, the
current results, which concern the fragment of BGPs with several NOT
EXISTS patterns, provide a reasonable basis for future investigation.
That is, this work already gives su�cient characterizations for richer
queries, e.g., queries with selection are sound if the selection-free ver-
sion of the queries are sound. We also plan to investigate soundness
reasoning in the presence of explicit negative information in RDF
(e.g., as proposed in [26]). On the practical side, the availability of
structured completeness information remains a core issue. We hope
that our work provides a further incentive for standardization and
data publication e�orts in this area, since now not only can com-
pleteness statements guarantee query completeness, but also query
soundness.

Chapter 6

Time-aware Completeness Reasoning

When creating completeness statements about a data source, one
might make the assumption that the data source, regardless of time,
is always complete for the parts of data captured by the statements.
Indeed, this is true under the following circumstances: the data by na-
ture will not change anymore (e.g., all movies starring Charlie Chaplin
and all actors of Reservoir Dogs) or, if the data may still change, the
data source has a synchronization mechanism to immediately capture
new facts in the real world. However, there might be situations in
which such a synchronization is unlikely, like when the data provider
is not an authority, or the data originates from crowdsourcing. Con-
sequently, completeness statements can be out-of-date, i.e., the data
in the source captured by the statements does not re�ect the com-
plete facts in the real world that include new facts. Inspired by nat-
ural language completeness statements on Wikipedia, completeness
statements can be extended by timestamps. Wikipedia provides a
template allowing one to specify that a list is �complete and up-to-
date as of {some speci�c date}�, as exempli�ed by the complete list
of Twenty-�ve Year Award winners and Italian DOP cheeses (as pre-
viously mentioned in Chapter 1). In this chapter, we discuss how to
extend completeness statements to cope with data dynamicity over
time, and reason about query completeness given such time-extended
statements. The results in this chapter have been published in [28].

113

114 CHAPTER 6. TIME-AWARE COMPLETENESS REASONING

6.1. Motivating Scenario

To deal with data dynamicity, a time extension to completeness state-
ments is a necessity. Here, by dynamicity we refer to any addition
of data, that is, new information is added without invalidating old
information. Many domains of information typically follow this char-
acteristic, for instance publications of a researcher, movies of an
actor, and children of a person. Consider the statement �Crew of
Tarantino movies are complete� over a data source. Given the fact
that Tarantino is currently an active director, the data captured by
the statement is likely to grow. However, suppose that the data source
fails to capture an update of the data. What then happens is that
the completeness statement over the source provides a false claim. On
the other hand, consider the statement �Crew of Tarantino movies up
to 2012 are complete,� which is the statement as before, now with
a date. The date represents the temporal scope of the statement,
giving a boundary up to when it is complete, i.e., up to 2012. Thus,
the statement is still correct, even if there are new Tarantino movies
released after 2012 whose crew are not captured by the data source.
We call such a statement a bounded completeness statement.

Now, consider the statement �Movies starring Chaplin are com-
plete and there will not be any updates.� This statement is plausible
since Chaplin passed away in 1977. A data source with the statement
is therefore always complete for movies starring Chaplin regardless of
time, since the data cannot grow anymore. We call such a statement
an unbounded completeness statement.

Indeed, reasoning about query completeness based on statements
with a time extension must be approached di�erently. For this reason,
we introduce the notion of the guaranteed completeness date of a
query, that is the latest date on which complete query results are
guaranteed to be contained in the actual query results.

Consider again the statement �Crew of Tarantino movies up to
2012 are complete.� Suppose we also have another statement �Cast
of Tarantino movies up to 2016 are complete.� If we query for people
who are both cast and crew of Tarantino movies, we can be certain
that the query answers will be complete up to 2012, since the crew
of Tarantino movies are complete up to that time and even further
for the cast. However, from 2013 onwards, the query completeness
cannot be guaranteed as we might be missing some crew of Tarantino

6.2. TIME-EXTENDED COMPLETENESS FRAMEWORK 115

movies released after 2012. We therefore call 2012 the guaranteed
completeness date of the query.

In contrast, let us consider again the statement �Movies starring
Chaplin are complete and there will not be any updates.� If we are
now querying for movies starring Chaplin, the results of this query
will be complete and will be so, for query results at any time in the
future. Therefore, the guaranteed completeness date of the query is
the in�nity.

Not all queries have a guaranteed completeness date, depending
on the statements we have. Consider again the statement �Cast of
Tarantino movies up to 2016 are complete� and consider the query
asking for all spouses of the cast of Tarantino movies. Since we do not
have any completeness assertion about the spouses, the completeness
of that query cannot be guaranteed wrt. any date, and thus, there is
no guaranteed completeness date for the query.

6.2. Time-extended Completeness Framework

We now formalize the extended completeness framework and its se-
mantics. We de�ne a date as an element d ∈ N ∪ {∞}.1 We use
natural numbers as we can reduce dates of various granularities (e.g.,
years, seconds, and calendar dates) to them. We assume a �xed con-
stant now ∈ N.

Timestamped Completeness Statements. The �rst step is to incorpo-
rate timestamps in completeness statements.

De�nition 6.1 (Timestamped Completeness Statement). A times-
tamped completeness statement is of the form

Ĉ = Compl(PĈ , d),

where Compl(PĈ) is a completeness statement as seen before, now
extended with a date date(Ĉ) = d, such that either date(Ĉ) ≤ now or
date(Ĉ) =∞ where date returns the date of a timestamped complete-
ness statement. In the �rst case, we say that Ĉ is bounded, whereas
in the second case, Ĉ is unbounded.

1W.l.o.g. our framework also supports continuous domains (e.g., R), given that
the discretization of all known timestamps gives again a discrete space.

116 CHAPTER 6. TIME-AWARE COMPLETENESS REASONING

Example 6.2. Consider the statements �Crew of Tarantino movies
up to 2012 are complete,� �Cast of Tarantino movies up to 2016 are
complete� and �Movies starring Chaplin are complete and there will
not be any updates� as above. They can be represented formally as:

Ĉcrew = Compl({ (?m, crew , ?c), (?m, a,TarantinoMov) }, 2012)

Ĉcast = Compl({ (?m, cast , ?c), (?m, a,TarantinoMov) }, 2016)

Ĉchap = Compl({ (?m, a,ChaplinMov) },∞)

To select timestamped completeness statements based on their
dates, we de�ne the selection Ĉ≥d as

Ĉ≥d = { Ĉ ∈ Ĉ | date(Ĉ) ≥ d }.

The selection Ĉ=d is de�ned analogously. As before, we associate to
a statement Ĉ, the CONSTRUCT query QĈ = (PĈ , PĈ). Over a graph G,
the transfer operator TĈ(G) is de�ned similarly to that in Eq. (2.3)
in Section 2.2 where we take the union of the results of the evaluation
JQĈKG of all Ĉ ∈ Ĉ.

RDF Representation. To represent timestamped completeness sta-
tements in RDF, we propose to use the datatype representation from
the XML Schema De�nition (XSD) namespace to represent non-
in�nity dates, which can also be of various granularities such as
years and calendar dates.2 To represent the in�nity, we introduce
in our vocabulary3 the term infinity. We also create the property
hasTimestamp that links between completeness statements and their
timestamps.

Incomplete Data Series. The models of timestamped completeness
statements are incomplete data series. An incomplete data series (or
for short, a series) S is a pair of a graph and a sequence of graphs, of
the form

S = (Gnow, (G
′
1, G

′
2, . . . , G

′
now, . . .)),

such that (Gnow, G
′
now) is an extension pair and it holds that G′d ⊆

G′d+1 for all pairs G′d, G
′
d+1 in S. We have one base graph only (i.e.,

Gnow) to re�ect the state of the available graph we have now. On
the other hand, we have a sequence of extensions to represent data
dynamicity over time wrt. the real world.

2http://www.w3.org/2001/XMLSchema
3http://completeness.inf.unibz.it/ns

6.2. TIME-EXTENDED COMPLETENESS FRAMEWORK 117

Example 6.3 (Incomplete Data Series). Let now = 2016 and

Smov = (Gnow, (G
′
1, . . . , G

′
2012, . . . , G

′
now, . . .))

be a series about Tarantino and Chaplin movies which can be graph-
ically represented as in Figure 6.1.4 Note that in this example the set
of movies starring Chaplin will not grow anymore (i.e., The Kid) and
any other extension G′k not shown in the �gure is de�ned accordingly.

Figure 6.1. An incomplete data series about Tarantino and Chaplin movies

We now formalize when a series satis�es a timestamped complete-
ness statement. A series S satis�es a bounded timestamped complete-
ness statement Ĉ = Compl(P, d), written as S |= Ĉ, if all the triples
constructed by evaluating QĈ over the extension at date d are in the
actual graph, formalized as JQĈKG′d ⊆ Gnow. Note that this implies
JQĈKG′

d′
⊆ Gnow for all d′ ≤ d by the de�nition of a series. If the state-

ment is unbounded, then the comparison for completeness is made
over all extensions: for all d ∈ N, it must hold that S |= Compl(P, d).
Given a set Ĉ of timestamped completeness statements and a series
S, we de�ne that S |= Ĉ, if for all Ĉ ∈ Ĉ, it holds that S |= Ĉ.

Example 6.4. Consider the series Smov in Figure 6.1 and the state-
ments Ĉcrew, Ĉcast, and Ĉchap in Example 6.2. Then, it holds that

4For the sake of example, we only use toy data.

118 CHAPTER 6. TIME-AWARE COMPLETENESS REASONING

Smov |= Ĉcrew because it is the case that the result of the evaluation
JQĈcrew

KG′2012 , which is the graph,

{ (killBill, crew, john), (killBill, a,TarantinoMov) },

is contained in Gnow. For a similar reason, Smov |= Ĉcast also holds.
Moreover, it is the case that Smov |= Ĉchap since for G′2012, G

′
2016,

and any other ideal graph G′k in Smov, the result (i.e., the graph
{ (theKid, a,ChaplinMov) }) of the query QĈchap

evaluated over them
is contained in Gnow.

Query Completeness at a Date. To describe query completeness at
date d, we use Compl(Q, d). A series S satis�es Compl(Q, d) with
d ∈ N, written as S |= Compl(Q, d), if evaluating Q over the exten-
sion at d gives results that are all contained in the results of evaluating
Q over the actual graph, formalized as JQKG′d ⊆ JQKGnow

. Further-
more, a series S satis�es the unbounded version of query complete-
ness, written as S |= Compl(Q,∞), if for all d ∈ N, it holds that
S |= Compl(Q, d).

Example 6.5. To say that the query asking for all people who were
simultaneously cast and crew of Tarantino movies up to 2012 is com-
plete, we can use Compl(Qcc, 2012) where

Qcc = ({ ?m, ?c }, { (?m, cast , ?c), (?m, crew , ?c),
(?m, a,TarantinoMov) }).

As we can see, JQccKG′2012 returns (?m 7→ killBill , ?c 7→ john) and is
contained in JQccKGnow

, therefore Smov |= Compl(Qcc, 2012). On the
contrary, JQccKG′2016 returns additionally (?m 7→ sinCity , ?c 7→ tom),
which is not in JQccKGnow

, therefore Smov 6|= Compl(Qcc, 2016).

Having de�ned timestamped completeness statements and query
completeness at a date, the question arises as how to actually check
the entailment between them. Given a set Ĉ of timestamped com-
pleteness statements, a query Q, and a date d, we say that Ĉ entails
query completeness at d, written as Ĉ |= Compl(Q, d), if for all S |=
Ĉ, it is the case that S |= Compl(Q, d). The following lemma gives us
a syntactic characterization to decide whether Ĉ |= Compl(Q, d). It
says that the query completeness at d is entailed by Ĉ i� the proto-
typical graph P̃ of Q is contained in the result of the transfer operator
applied to P̃ , using only the statements Ĉ ∈ Ĉ such that date(Ĉ) ≥ d.

6.2. TIME-EXTENDED COMPLETENESS FRAMEWORK 119

Lemma 6.6 (Entailment of Query Completeness at a Date). Let Ĉ
be a set of timestamped completeness statements, Q = (W,P) be a
query, and d be a date. Then,

Ĉ |= Compl(Q, d) i� P̃ ⊆ TĈ≥d
(P̃).

Proof. (⇒) We prove by contrapositive. We �rst consider the case
where d ∈ N. Assume that P̃ 6⊆ TĈ≥d(P̃). We show that Ĉ 6|=
Compl(Q, d) by giving a counterexample series S such that S |= Ĉ
but S 6|= Compl(Q, d), which can be constructed as follows:

S = (Gnow, (∅, . . . , ∅, G′d, G′d+1, . . .)),

where now is any date such that now ≥ max(date(Ĉ)\{∞}), Gnow =
TĈ≥d(P̃), and G′d = G′d+1 = . . . = P̃ . By construction, we have

that S |= Ĉ. However, by the assumption that P̃ 6⊆ TĈ≥d(P̃), it
is the case that JQKG′d = JQKP̃ 6⊆ JQKTĈ≥d (P̃) = JQKGnow

, because

the freeze mapping ĩd in JP KP̃ is missing in JP KTĈ≥d (P̃). Therefore,

S 6|= Compl(Q, d).
The proof for the case where d =∞ can be done analogously. In

this case, we take a date now > max(date(Ĉ) \ {∞}) to show that
Ĉ 6|= Compl(Q, d).

(⇐) We �rst prove the case where d ∈ N. Assume P̃ ⊆ TĈ≥d(P̃). We

will show that Ĉ |= Compl(Q, d).
Take a series S |= Ĉ. We have to show that S |= Compl(Q, d),

that is, JQKG′d ⊆ JQKGnow
. Suppose there is a mapping µ ∈ JQKG′d .

Thus, there must be a mapping µext ⊇ µ, where µext ∈ JP KG′d .
We will prove that µext ∈ JP KGnow

. By the assumption that P̃ ⊆
TĈ≥d(P̃) and the prototypicality of P̃ , it holds that µextĩd

−1
(P̃) ⊆

TĈ≥d(µextĩd
−1

(P̃)). The inclusion can be further extended to:

µextĩd
−1

(P̃) ⊆ TĈ≥d(µextĩd
−1

(P̃)) ⊆ TĈ≥d(G
′
d),

where the last subsumption holds due to µext ∈ JP KG′d . By S |= Ĉ,

it must be the case that TĈ≥d(G
′
d) ⊆ Gnow. Therefore, µextĩd

−1
(P̃) ⊆

Gnow, which implies that µext ∈ JP KGnow
.

120 CHAPTER 6. TIME-AWARE COMPLETENESS REASONING

The proof for the case where d = ∞ can be done analogously.
In this case, the assumption P̃ ⊆ TĈ≥∞(P̃) is used to show that

Ĉ |= Compl(Q, d) for any date d ∈ N.

Guaranteed Completeness Date. We now formalize the notion of guar-
anteed completeness date, introduced in the preceding examples. The
guaranteed completeness date of a query Q wrt. a set Ĉ of times-
tamped completeness statements is the latest date d such that the
entailment Ĉ |= Compl(Q, d) holds, formally:

gcd(Q, Ĉ) = max{ d ∈ N ∪ {∞} | Ĉ |= Compl(Q, d) }.
We de�ne max{} = −∞, and note that cases where gcd(Q, Ĉ) =

−∞ correspond to the query Q not having any completeness date.

Example 6.7. Consider the set Ĉ = { Ĉcrew, Ĉcast, Ĉchap } of com-
pleteness statements and the query Qcc as above. It is the case that
gcd(Qcc, Ĉ) = 2012 for the following reasons. While the statement
Ĉchap obviously does not contribute at all to the guaranteed complete-
ness date of the query, the statements Ĉcrew and Ĉcast do contribute.
If we execute the query, we can be complete up to 2012, since the crew
of Tarantino movies are complete up to that time, as guaranteed by
Ĉcrew, and even further for the cast, as guaranteed by Ĉcast. From
2013 onwards, however, the query completeness cannot be guaran-
teed as some crew of Tarantino movies might be missing. Therefore,
2012 is the guaranteed completeness date.

6.3. Computing the Guaranteed Completeness Date

We now analyze how the guaranteed completeness date of a query
can be computed. By Lemma 6.6, we can replace the entailment
Ĉ |= Compl(Q, d) in the de�nition of the guaranteed completeness
date by its syntactic characterization P̃ ⊆ TĈ≥d(P̃). In this way, we

compute the maximum date from all the dates d in Ĉ such that query
completeness can be guaranteed by using only the statements having
a date d′ ≥ d, as shown in the following theorem.

Theorem 6.8 (Computing the Guaranteed Completeness Date). Let
Q = (W,P) be a query and Ĉ be a set of timestamped completeness
statements. Then,

gcd(Q, Ĉ) = max{ d ∈ date(Ĉ) | P̃ ⊆ TĈ≥d(P̃) }.

6.3. COMPUTING THE GUARANTEED COMPLETENESS DATE 121

In the following example, we apply the above theorem to compute
the guaranteed completeness date of our running example.

Example 6.9. Consider the statements Ĉ = { Ĉcrew, Ĉcast, Ĉchap }
and the query Qcc = (Wcc, Pcc) as above. The set of the dates is
date(Ĉ) = { 2012, 2014,∞}. Then, we have that:

• P̃cc ⊆ { (m̃, cast , c̃), (m̃, crew , c̃), (m̃, a,TarantinoMov) }
= TĈ≥2012

(P̃cc)

• P̃cc 6⊆ { (m̃, cast , c̃), (m̃, a,TarantinoMov) } = TĈ≥2014
(P̃cc)

Thus, we can conclude that gcd(Qcc, Ĉ) = 2012.

From the theorem above, we observe the following complexity
of the decision version of computing the guaranteed completeness
date. It shows that adding a time extension does not increase the
complexity of data-agnostic completeness reasoning as it is still NP-
complete.

Corollary 6.10 (Complexity of Deciding the Guaranteed Complete-
ness Date). Deciding whether gcd(Q, Ĉ) ≥ d, given a query Q, a
set Ĉ of timestamped completeness statements, and a date d, is NP-
complete.

Proof. From Theorem 6.8, there exists an NP procedure to check
if gcd(Q, Ĉ) ≥ d: we guess a date d′ ≥ d, and guess the times-
tamped statements and the mappings over the BGPs of the state-
ments such that P̃ ⊆ TĈ≥d′ (P̃). It is NP-hard by reduction from the
NP-hard problem of data-agnostic completeness entailment (as per
Theorem 2.10).

Algorithm for Finding the Guaranteed Completeness Date. Based on
Theorem 6.8, a naive way to compute the guaranteed completeness
date is, for every d ∈ date(Ĉ), to repeatedly compute TĈ≥d(P̃), and

then take the maximum of the dates d such that P̃ ⊆ TĈ≥d(P̃). This
has a drawback since we may be reevaluating the CONSTRUCT query of a
statement over P̃ several times, though the result is always the same.
We could improve the computation by using binary search as date(Ĉ)
has a natural order and TĈ≥d(P̃) is monotonic in d. As a consequence,

the checking P̃ ⊆ TĈ≥d(P̃) would be done only log(|date(Ĉ)|) times

instead of |date(Ĉ)| times.

122 CHAPTER 6. TIME-AWARE COMPLETENESS REASONING

Now, we observe the following. For a date d, the result of TĈ≥d(P̃)

is in fact the union of all TĈ=d′
(P̃) where d ≤ d′ ≤ max(date(Ĉ)).

Consequently, we can compute TĈ≥d(P̃) in an incremental way from
the latest d′. Thus, we can develop an algorithm to �nd the guar-
anteed completeness date where we incrementally compute the union
from the latest date in date(Ĉ) to the earliest date in date(Ĉ), while
on the way checking if P̃ is already included. If that is the case, we
can just stop and return the current date in the iteration as the guar-
anteed completeness date. In this way, each corresponding CONSTRUCT

query of a timestamped completeness statement only needs to be ex-
ecuted at most once over P̃ . This means that completeness checking
with time is no more complex than completeness checking without
time. We formalize this as the algorithm findGCD in Figure 6.2.

ALGORITHM 2: FindGCD

Input: The prototypical graph P̃ of a query, a set of timestamped

completeness statements Ĉ
Output: The guaranteed completeness date d

1 P ′ ← ∅
2 D ← date(Ĉ) ∪ {−∞}
3 while P̃ 6⊆ P ′ and D 6= ∅ do
4 d← extractMax(D)

5 P ′ ← P ′ ∪ TĈ=d
(P̃)

6 end

7 return d

Figure 6.2. Algorithm for �nding the guaranteed completeness date

The algorithm takes as input the prototypical graph P̃ of Q and
a set of timestamped completeness statements Ĉ. At �rst, we assign
the empty set to P ′, which will store the application results of the
transfer operator TĈ=d

(P̃), and assign all the dates in Ĉ and −∞ to
D. We then perform a while loop with the conditions �P̃ 6⊆ P ′� to
check that P̃ has not been included in the accumulation, and �D 6= ∅�
to ensure that we still have some dates in D. For every loop, we
execute extractMax(D) to return the latest date d in D and remove
it from D. Next, we add to P ′ the result of TĈ=d

(P̃). At the end of

6.4. RELATED WORK 123

the algorithm, we will return d, which is the guaranteed completeness
date of Q wrt. Ĉ. Note that when d = −∞, the transfer operator
TĈ=−∞

(P̃) would return the empty set, since Ĉ=−∞ = ∅ by de�nition.
For the algorithm, the following proposition holds, which says that

the algorithm is correct, and the CONSTRUCT query of a timestamped
completeness statement is evaluated at most once in �nding the guar-
anteed completeness date, therefore it is as costly as the standard
check of query completeness.

Proposition 6.11. Let Ĉ be a set of timestamped completeness state-
ments and Q = (W,P) be a query. Then,

• FindGCD(P̃ , Ĉ) = gcd(Q, Ĉ), and
• FindGCD(P̃ , Ĉ) computes JQĈKP̃ at most once for every Ĉ ∈

Ĉ.

6.4. Related Work

Several papers dealt with the incorporation of time into RDF data.
Gutierrez et al. [45] was among the �rst to introduce time annotations
over RDF data. They formalized the semantics of temporal RDF
graphs, and sketched a temporal query language for RDF. In [66],
Lopes et al. developed AnQL, a query language for RDF with an-
notations, which considers also temporality. Indexing methods for
temporal querying were investigated by Pugliese et al. [94], and Tap-
polet and Bernstein [110]. In our work, RDF graphs are not anno-
tated with timestamps, that is, only completeness statements can be
time-aware. As such, a limitation of our work is that it applies only
to invariable facts, i.e., facts that hold eternally. The time incor-
poration into RDF graphs can potentially lift the limitation of our
approach. As an illustration, suppose that facts about people being a
student are timestamped. Then, we can say that we are complete for
all UniBZ students until 2016, in the sense that we have a complete
record of people who were UniBZ students from the time until 2016.
This would make little sense for triples without timestamps, since say
after graduation, people are no longer a student.

Recently, there have been initiatives to combine Linked Data
and stream processing. In stream processing, data is produced and
queried continuously over time, as opposed to only static data process-
ing. As one of the �rst RDF stream processors, C-SPARQL [11] used

124 CHAPTER 6. TIME-AWARE COMPLETENESS REASONING

a simple, modular architecture that combines between a SPARQL
engine, for dealing with the static part of queries, and a stream pro-
cessor, for the streaming part of queries. SPARQLStream [17] focused
on ontology-based querying over heterogeneous stream data sources.
CQELS [87] concentrated on developing a Linked Data streaming en-
gine from scratch in order to enable low-level optimizations. In the
position paper of Keskisärkkä and Blomqvist [58], the authors pre-
sented the issue of dynamic boundaries over streams. If events have
predictable, uniform boundaries, one can simply set a �xed-size win-
dow for every stream query evaluation. However, in some cases, the
event boundaries might be unpredictable, e.g., the event might take
minutes or hours. Thus, a `dynamic window' is needed, which is like
a window but with adaptable size, in order for query evaluation to
have a complete view of the event. Timestamped completeness state-
ments can be potentially leveraged to address this problem: whenever
an event is over, a completeness statement can be sent to notify the
query processor that data about that event is already streamed com-
pletely.

6.5. Summary

In this chapter, we have motivated, formalized, and developed a tech-
nique for completeness reasoning with time in the data-agnostic set-
ting. We have introduced timestamped completeness statements, and
the guaranteed completeness date, to say that a query is guaranteed
to be complete up to a certain point of time. Despite the time ad-
dition, time-aware completeness reasoning is no more complex than
that without time, in the sense that each timestamped completeness
statement is considered at most once in the reasoning. For future
work, we plan to develop a technique for time-aware completeness
reasoning in the data-aware setting, and also for time-aware sound-
ness reasoning (e.g., the answer `Arsenal' to the query �Which football
club has never won the Champions League?� can be guaranteed to
be sound only up to 2017).

Chapter 7

Completeness Management Demon-

strators

In previous chapters we have formalized metadata about the partial
completeness of RDF data sources. We have also characterized query
completeness entailment and developed optimization techniques for
checking the entailment. Nevertheless, it is still unclear how systems
for managing completeness of RDF data sources can be built. In this
chapter, we explore what are the requirements and functionalities of
such systems, and demonstrate how such systems can be realized.

In practice, when talking about completeness statements of RDF
data sources, we conceive that the statements go through a life cycle.
First, completeness statements about RDF data sources are created.
Next, the created statements are available for viewing, so that one can
see the completeness state of RDF data sources. Then, completeness
statements are updated (i.e, edited and deleted), for instance, if they
are no longer valid. Finally, completeness statements are used for
various consumption tasks such as checking query completeness and
performing completeness analytics. This completeness life cycle can
be illustrated as in Figure 7.1.

The completeness life cycle serves as a basis for developing com-
pleteness management systems, which we imagine can be of various
types. One possible type is a completeness statement hub. Such a
hub stores completeness information across multiple data sources, and
supports the check of query completeness based on that completeness
information. When query completeness can be guaranteed, the hub
can provide a federated rewriting of the query such that parts of the
query are evaluated over the data sources that can guarantee their

125

126 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

Figure 7.1. Completeness Life Cycle

completeness. Another possibility is a specialized completeness man-
agement system for a single knowledge base (KB). For such a system,
a tighter connection between completeness statements and the parts
of data for which the statements are intended is crucial. Hence, one
should be able to directly view which parts of data are annotated with
completeness statements. Moreover, data-aware query completeness
checking would be more suitable here. Section 7.1 reports CORNER,
a demonstrator of a completeness hub, whereas Section 7.2 reports
COOL-WD, a demonstrator of a specialized completeness manage-
ment system for a single KB. For both demonstrators, we focus on
practical requirements and functionalities, but not e�ciency, which
has been investigated in Chapter 4 about optimizations of complete-
ness reasoning. Moreover, both demonstrators support the BGP frag-
ment of SPARQL queries for completeness checking. The description
of CORNER has been published in [30] and that of COOL-WD in [90].

7.1. CORNER: A Completeness Reasoner for RDF Data

Sources

In this section, we introduce CORNER, a demonstrator of a complete-
ness management hub for RDF data sources. We analyze the practical
requirements and describe the architecture of CORNER. Finally, we
elaborate the functionalities of CORNER from its user interface (UI).
Our system is accessible at http://corner.inf.unibz.it.

7.1. CORNER 127

7.1.1. Motivating Example

In this subsection, we give a motivating example for CORNER. This
motivating example is about how a user has a query he wants to
answer completely. He therefore has to consult a system with com-
pleteness information over multiple data sources. Since multiple data
sources are involved, mappings between classes and properties need
to be supported by the system. Then, when he asks his query, the
system should be able to check the query completeness, and also to
suggest a query rewriting where parts of the query are distributed
over the complete sources. This motivating example is set up on
CORNER so that one can try it out live.

Marty, a moviegoer, is interested in �nding all movies starring
Quentin Tarantino. This information need can be expressed by the
SPARQL BGP query:1

SELECT * WHERE { ?m actor Tarantino }

CORNER has meta-information about parts of LinkedMDB, an RDF
data source about movies, and DBpedia, a general purpose RDF data
source, that for the sake of example, are supposed to be complete.
Completeness statements can be represented in two ways: a human-
readable abstract syntax, or an RDF syntax, which implements the
abstract syntax. Both syntaxes are accepted by CORNER. Abstract
completeness statements have the form Compl(P1|P2), consisting of
two parts: the pattern P1 and the condition P2. Here we use a gen-
eral version of completeness statements that may have conditions (as
de�ned in Section 5.4). The completeness statement speci�es that
the source contains all data with the pattern shape, provided that
in addition they satisfy the condition. We argue that completeness
statements with conditions are suitable for the multiple data sources
scenario since it can be the case that a source is complete under some
condition, where the condition is satis�ed by some other sources. To
express that a source is complete for �all movies starring Tarantino�,
we write in the abstract syntax

Compl(?m actor Tarantino | true).

We attach this statement to LinkedMDB but not to DBpedia, since
some information that Tarantino was starred in some movies is ac-
tually missing in DBpedia. CORNER then analyzes the query and

1For simplicity, we omit namespaces.

128 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

the statement, and concludes that the query over LinkedMDB can
be answered completely, while it cannot give such a guarantee for
DBpedia.

Suppose now Marty would also like to see the budget and box-
o�ce gross of the movies. This is expressed by the SPARQL BGP
query:

SELECT *

WHERE { ?m actor Tarantino . ?m budget ?b .

?m gross ?g }

Suppose we also have a statement asserting that DBpedia is complete
for �the budget and gross of movies starring Tarantino�, or in the
abstract syntax:

Compl(?m budget ?b . ?m gross ?g | ?m actor Tarantino)

Note that by the condition, we can express that DBpedia has complete
data about budget and box-o�ce gross of movies starring Tarantino,
even if in DBpedia Tarantino may not be listed as actor of all such
movies. Now, none of the two sources alone is su�cient to answer
this new query completely. Suppose as well that we have mappings
using the RDFS predicates subclass and subproperty that associate
terms in DBpedia to their LinkedMDB counterparts, if they exist, and
vice versa. In this situation, CORNER can rewrite the original query
in such a way, using SPARQL SERVICE calls [91], that each source
contributes parts of a query for which they are complete. In our
example, CORNER sends the subquery asking for movies starring
Tarantino to LinkedMDB and the subquery asking for the budget
and box-o�ce gross to DBpedia:

SELECT *

WHERE {

SERVICE <http://linkedmdb.org/sparql>

{ ?m actor Tarantino }

SERVICE <http://dbpedia.org/sparql>

{ ?m budget ?b . ?m gross ?g } }

Practical requirements. In the beginning of this chapter, we intro-
duced the completeness life cycle (as in Figure 7.1). We have also
seen how CORNER could be used in the motivating scenario above.
We now translate the above considerations into the following require-
ments, that CORNER should be able to:

7.1. CORNER 129

1. Create and view completeness statements, as well as import
and export completeness statements in RDF;

2. Set RDFS ontologies that may contain mappings between classes
and properties of multiple data sources;

3. Check query completeness, and support federated rewriting
where query parts are sent to the sources that can give com-
plete results; and

4. Additionally as a demonstrator, switch on and o� the com-
pleteness statements and RDFS mappings for giving ideas how
completeness reasoning works.

7.1.2. System Architecture

Here we show how CORNER is built to satisfy the requirements
above. As shown in Figure 7.2, CORNER consists of two main com-
ponents, and is connected to the Linked Data layer (for query evalu-
ation).

Figure 7.2. CORNER Architecture

The �rst component is the user interface (UI), which is developed
using the Google Web Toolkit (GWT).2 The UI provides users with
the possibility to create and view completeness statements over data
sources, as well as RDFS ontologies and queries. With the UI, it is
also possible to switch on and o� those elements, for instance, which
completeness statements a user wants to consider in query complete-
ness checking.

The second component is the reasoner, the backend of CORNER.
The reasoner is implemented using Apache Jena.3 The backend sup-
ports importing and exporting statements in RDF, and performs

2http://www.gwtproject.org/
3http://jena.apache.org/

130 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

data-agnostic completeness reasoning based on the inputs. The RDFS
reasoner is needed since CORNER takes into account RDFS ontolo-
gies. If a query can be ensured to be complete, CORNER rewrites the
query into a complete federated version and executes it over Linked
Data. For this, the SPARQL engine is necessary. The query results
along with the completeness information are given back to the users
via the UI. The processes inside the backend are controlled by the
CORNER business logic, which implements the data-agnostic com-
pleteness reasoning technique (as in Section 2.4), extended with the
RDFS and federated features [27]. To take into account RDFS infer-
ences, one needs to apply the RDFS closure computation [81] before
and after the TC operation, and check if the prototypical graph P̃
is included in the RDFS-enriched TC application results. For the
federated extension, basically the TC operation needs to be modi�ed
such that it gives data source annotations to parts of the prototypical
graph captured by the data source's statements. Then, those parts
can be evaluated over the respective data sources according to the
annotations using the SERVICE operator.

Reasoner implementation using Jena. We describe how Java with the
Apache Jena library4 can be used to develop the CORNER reasoner.
As described in Section 2.4, the core of the data-agnostic complete-
ness reasoning is the containment checking P̃ = TC(P̃) where P̃ is the
prototypical graph of a query Q = (W,P) and C is a set of complete-
ness statements. For completeness statements, we create the class
CompletenessStatement with the �eld pattern and condition. Each
completeness statement has an associated CONSTRUCT query, which can
be realized in Java using the Jena class Query. The input query to
be checked for completeness is also an instance of the class Query.
Now for the reasoning, we create the method freeze to get the pro-
totypical graph of the query, where we use the Jena class Model to
realize the graph. From the resulting prototypical graph, we build
the method tcOperator that evaluates all CONSTRUCT queries of the
statements over the graph. Then, we decide query completeness by
checking if the original prototypical graph is contained in the evalu-
ation results. For the RDFS extension, we rely on Jena's Reasoner

class which supports RDFS inferences, whereas the SERVICE operator
is supported by the Jena class QueryExecution. Note that though our

4http://jena.apache.org/

7.1. CORNER 131

implementation uses Apache Jena, any other o�-the-shelf Semantic
Web library like RDF4J (http://rdf4j.org/) can also be utilized.

7.1.3. UI Description

From the CORNER Web UI, to support the practical requirements,
users may add RDFS ontologies, data sources, completeness state-
ments of a speci�c data source, and queries, in addition to those
already there. There is a panel in CORNER for each type of infor-
mation. There are also the options to upload and download COR-
NER completeness statements in RDF in order to embed them into
some existing metadata descriptions of data sources like VoID. When
adding a new completeness statement, users see a pop-up window
where they can specify patterns, conditions, the data source where
the statement holds, the author and a description of the complete-
ness statement. When checking the completeness of a query, COR-
NER displays a pop-up window comprising completeness information
about the query, the query results, the debugging information, the
ontologies used in the reasoning, a federated rewriting of the query,
and the author information for each completeness statement.

Figure 7.3. CORNER Homepage

132 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

Figure 7.3 shows the example of the query about budget and box-
o�ce gross of movies starring Quentin Tarantino, mentioned above.
We �rst specify the SPARQL query in the query panel of the Web
UI. Then, in the ontology panel, we specify which ontologies we want
to use. In this case, we need to use the mapping ontology for Linked-
MDB and DBpedia. After that, in the completeness statements panel,
we select the statements about data sources to be used for query com-
pleteness checking. The �gure shows the two completeness statements
we mentioned above.

To start completeness reasoning, the user has to click the exe-
cution button at the bottom of the UI. Now, CORNER returns to
the user the query results and information stating that the complete-
ness of the query can be guaranteed. CORNER also provides debug-
ging information about the completeness reasoning and the federated
rewriting of the query that was executed over the data sources.

7.2. COOL-WD: A Completeness Demonstrator for

Wikidata

In the previous section, we have seen how CORNER demonstrates a
completeness hub to manage and consume completeness statements
across multiple data sources. Now we explore how to build a sys-
tem to support the management and consumption of completeness
statements over a single data source. We chose Wikidata, which is
entity-centric and crowdsourced, as a case study for our demonstra-
tion system, due to its recent popularity and relatively good quality.
We �rst provide a motivating scenario and analyze practical require-
ments to build such a system. Then, we describe how SP-statements
can be a suitable fragment of completeness statements for Wikidata.
Next, we explore various sources of completeness statements that can
be imported into our system. We provide a description of our sys-
tem architecture, and then of how our system supports the consump-
tion of completeness statements. Our demonstration system, called
COOL-WD, is accessible at http://cool-wd.inf.unibz.it/ and cur-
rently stores over 10,000 SP-statements.

7.2.1. Motivating Scenario

As a motivating scenario, let us consider the data about Switzer-
land (https://www.wikidata.org/wiki/Q39) on Wikidata as shown in

7.2. COOL-WD 133

Figure 7.4. The page mentions the two properties �contains adminis-
trative territorial entity� and �public holiday�.

Figure 7.4. Wikidata page of Switzerland

At the moment of the writing, Wikidata contains 26 cantons of
Switzerland from Appenzell Ausserrhoden to Canton of Zürich. Ac-
cording to the o�cial page of the Swiss government,5 there are exactly
these 26 Swiss cantons and they are all stored in Wikidata. There-
fore, as opposed to the public holidays, which are not complete,6 the
data about Swiss cantons in Wikidata is actually complete. However,
Wikidata currently lacks support for expressing completeness infor-
mation,. thus limiting the potential consumption of its data (e.g.,
assessing query completeness or performing completeness analytics).
In general, not only Wikidata, but also other entity-centric KBs (e.g.,
DBpedia, YAGO) have such a limitation. We identify the following
requirements of a completeness management system for Wikidata,
which are in line with the completeness life cycle as in Figure 7.1.
The system should be able to:

1. Create and update completeness statements, where the state-
ments �t with the entity-centric, crowdsourced nature of Wiki-
data;

2. Make available the completeness statements in a machine-readable
format;

3. View completeness statements together with the respective parts
of data stated to be complete; and

4. Consume completeness statements such as by checking query
completeness or performing completeness analytics.

5https://www.admin.ch/opc/de/classified-compilation/13.html
6There are at least 10 public holidays in Switzerland according to https:

//www.zuerich.com/en/visit/public-holidays.

134 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

7.2.2. SP-statements for Wikidata

Wikidata provides its information in an entity-centric way, that is,
information is grouped into entities such that each entity has its own
(data) page, showing the entity's property-value pairs. Furthermore,
the data in Wikidata is curated by Wikidata users. In Section 3.3, we
introduced SP-statements, that is, statements about the completeness
of the set of values of a property of an entity. SP-statements are
suitable for Wikidata due to its similarity wrt. the SPO-structure of
Wikidata, and its simplicity. Having SP-statements over Wikidata
provides structured, explicit information about the completeness of
Wikidata.

SP-statements in RDF. To make SP-statements machine-readable, we
want to make them available in practice by following the Linked Data
principles:7 SP-statements should be identi�able by URIs and accessi-
ble in RDF. To improve usability, URIs for SP-statements should indi-
cate which entity is complete for what property. As an illustration, for
our system we identify the SP-statement (Switzerland, canton)8 with
the URI http://cool-wd.inf.unibz.it/resource/statement-Q39-P150,
indicating the entity Switzerland (Wikidata ID: Q39) and the prop-
erty �contains administrative territorial entities� (Wikidata ID: P150).

Next, looking up an SP-statement's URI must give a description
of the statement. Thus, we provide RDF modeling of SP-statements.
We divide the modeling into two aspects: core and provenance. The
core aspect concerns the intrinsic aspect of the statement, whereas
the provenance aspect deals with the extrinsic aspect of the state-
ment, providing information about the generation of the statement.
The provenance aspect of SP-statements can also serve as a basis
for trust determination over query completeness checking (e.g., �this
query is complete based on the completeness assertions X, Y and Z,
given by A and B on date D, with references to R and S�). The core
aspect consists of the type of the resource, the subject and predicate
of the SP-statement, and the dataset to which the statement is given
(in the scope of this work, the dataset is Wikidata). This dataset
information is particularly useful in, e.g., metadata integration. The
provenance aspect consists of the author of the statement, the times-

7https://www.w3.org/DesignIssues/LinkedData.html
8For readability purposes, we represent SP-statements as pairs (S, P) instead

of the full representation Compl((S ,P , ?v)).

7.2. COOL-WD 135

tamp when the statement is generated, and the primary reference of
the statement. For the core aspect, we developed our own vocabu-
lary, available at http://completeness.inf.unibz.it/sp-vocab. For
the provenance aspect, to maximize interoperability we reused the
W3C PROV ontology.9 The following is RDF modeling of the SP-
statement �Complete for all cantons in Switzerland� for Wikidata.10

wd:Q2013 spv:hasSPStatement coolwd:statement-Q39-P150 . # Q2013 = Wikidata

coolwd:statement-Q39-P150 a spv:SPStatement ;

spv:subject wd:Q39 ; # Q39 = Switzerland

spv:predicate wdt:P150 ; # P150 = canton

prov:wasAttributedTo [foaf:name "Fariz Darari" ;

foaf:mbox <mailto:fariz.darari@stud-inf.unibz.it>] ;

prov:generatedAtTime "2016-05-19T10:45:52"^^xsd:dateTime ;

prov:hadPrimarySource

<https://www.admin.ch/opc/en/classified-compilation/19995395/index.html#a1>.

In the RDF snippet above, we see all the core and provenance
aspects of the SP-statement for Wikidata of all cantons in Switzer-
land. The data source Wikidata is identi�ed by wd:Q2013, having the
SP-statement about the completeness of the cantons of Switzerland.
The statement is of type spv:SPStatement, and has the spv:subject

of Switzerland, and the spv:predicate of canton (or �contains ad-
ministrative territorial entity�). The author attribution, timestamp,
and reference use prov:wasAttributedTo, prov:generatedAtTime, and
prov:hadPrimarySource, respectively.

Having such snippets would also provide the possibility to export
SP-statements about a dataset into an RDF dump, which may then
be useful for data quality auditing or completeness analytics purposes.

7.2.3. Creating Completeness Information

In general, one can imagine that SP-statements could either originate
from (i) KB contributors, (ii) paid crowd workers, or (iii) web extrac-
tion. While our focus with COOL-WD is to provide a system for the
�rst purpose, we used also other methods to pre-populate COOL-WD
with completeness information.

KB Contributors. Wikidata already provides a limited form of com-
pleteness statements: no-value statements, as described in Section 3.4.
SP-statements can be used to capture no-value statements, with the

9http://www.w3.org/ns/prov
10As always, the pre�x declarations are provided in Appendix A.

136 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

condition that the respective data stated in SP-statements is empty
in the data graph. We imported about 7600 no-value statements from
Wikidata.11 The top-three properties used in no-value statements are
�member of political party� (12%), �taxon rank� (11%), and �follows�
(11%). The properties �spouse�, �country of citizenship�, and �child�
are among the top-15.

Paid Crowd Workers. Given the simplicity of SP-statements, it is nat-
ural to think of crowdsourcing as a way to generate SP-statements.
We imported around 900 SP-statements from the crowdsourced state-
ments in the work of Galárraga et al. [39], originally used for com-
pleteness rule mining. Regarding the crowdsourcing done in that
work, it is noteworthy that it comes with issues. The �rst is the
price, about 10 cents per statement. The other is, that crowd work-
ers did not truly provide completeness assertions, instead, they were
asked, whether they could �nd additional facts on a limited set of
webpages. Truly asking crowd workers for checking for evidence for
completeness was deemed too di�cult in that work.

Web Extraction. From Mirza et al. [78], we imported about 2200
completeness assertions for the child relation, that were created via
web extraction. These statements are all about the �child� property
in Wikidata, and were generated as follows: 30 regular expressions
were manually created and were used to extract information about
the number of children from biographical articles in Wikipedia. For
instance, the pattern �X has Y children� would match the phrase
�Obama has two children and lives in Washington�, and can thus
be used to construct the assertion that Obama should have exactly
two children. In total, they found about 124,000 matching phrases,
of which, after �ltering some low-quality information, about 84,000
phrases that had a precision of 94% were retained. For each of these
84,000 assertions, it was then checked whether the asserted cardinality
matched the one found in Wikidata. If that is the case, it was then
concluded that Wikidata is complete wrt. the children of the person.
For instance, for Obama one truly �nds two children in Wikidata,
and thus, assuming the correctness of the phrase in Wikipedia, can
conclude that Wikidata is complete. Later in Chapter 8, we provide
a generalization over this work, by providing an automated method

11https://www.wikidata.org/wiki/Help:Statements#Unknown_or_no_

values

7.2. COOL-WD 137

of relation cardinality extraction from text.

7.2.4. COOL-WD Architecture

COOL-WD is a web-based completeness demonstrator for Wikidata,
that provides a way to annotate complete parts of Wikidata in the
form of SP-statements. COOL-WD focuses on the direct-statement
fragment of Wikidata, in which neither references nor quali�ers are
being used. A COOL-WD user is able to view data of Wikidata
entities that has been annotated with SP-statements. A complete
property of an entity is denoted by a green checkmark, while a pos-
sibly incomplete one is denoted by a gray question mark. A user can
add a new SP-statement for a property of an entity by clicking on the
gray question mark. In Subsection 7.2.5, we discuss several ways to
consume completeness statements in COOL-WD.

In providing its features, COOL-WD maintains real time commu-
nication with Wikidata. On the client side, user action like entity
search is serviced by MediaWiki API12 calls towards Wikidata, while
on the server side the COOL-WD engine retrieves entity and property
information via SPARQL queries over the live Wikidata SPARQL
endpoint.13 User-provided SP-statements are stored in a special-
ized database. The engine retrieves SP-statements from the database
to annotate the entities and properties obtained from the Wikidata
SPARQL endpoint with completeness information, and then sends
them to the user via a HTTP connection. The engine also manipu-
lates the DB whenever a user adds a new SP-statement, and supports
the data-aware completeness reasoning algorithm as described in Sec-
tion 3.2.

Hardware and system speci�cation. Our web server and database
server run on separate machines. The web server is loaded with 16GB
of virtual memory and 1 vCPU of 2.67GHz Intel Xeon X5650. It
runs on Ubuntu 14 and uses Tomcat 7 and Java 7 for the web ser-
vices. The database server has 8GB of virtual memory and 1 vCPU
of 2.67GHz Intel Xeon CPU X5650, running on Ubuntu 12 and using
PostgreSQL 9.1.

COOL-WD Gadget. Our external system of COOL-WD provides the

12https://www.wikidata.org/w/api.php
13https://query.wikidata.org/bigdata/namespace/wdq/sparql

138 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

SPARQL	Endpoint MediaWiki API

COOL-WD	
Engine

COOL-WD	
User	Interface

HTTP RequestData access Web browsing

SPARQL Queries API Calls

SP-Statements DB

Figure 7.5. System architecture of COOL-WD

Figure 7.6. COOL-WD Gadget: The green box indicates completeness, while

the yellow box indicates potential incompleteness

full functionality of managing and consuming completeness informa-
tion over Wikidata. Nevertheless, a Wikidata user might prefer to
view and add completeness statements directly inside Wikidata. Here
we present a Wikidata user script that enables such a functionality.14

To activate the script, a user needs a Wikimedia account. Then, she
has to import it to her common.js page at https://www.wikidata.

org/wiki/User:[wikidata_username]/common.js. Basically, the script
makes API requests to our own completeness server that provides a
storage service for completeness statements.

Figure 7.6 shows that the property box of �contains administrative
territorial entity� for Switzerland is colored green, which indicates
completeness. The information icon �(i)�, when clicked, provides the
reference URL, the Wikidata username, and the timestamp of the

14https://www.wikidata.org/wiki/User:Fadirra/coolwd.js

7.2. COOL-WD 139

completeness statement. Note that for properties not yet known to
be complete, they will be colored yellow. To add a completeness
statement one simply clicks the yellow property box. By clicking the
information icon, one can add the reference URL of the statement in
the provided pop-up form.

7.2.5. Consuming SP-Statements

The availability of completeness information in the form of SP-state-
ments opens up novel ways to consume data on Wikidata, realized in
COOL-WD.

Data Completion Tracking. The most straightforward impact of com-
pleteness statements is that creators and consumers of data become
aware of its completeness. Thus, creators know where to focus their
e�orts, while consumers become aware of whether consumed data is
complete, or whether they should take into account that data may
be missing, and possibly should do their own veri�cation, or con-
tact other sources. Figure 7.7 illustrates the progress in completing
information about Barack Obama in Wikidata via COOL-WD.

Figure 7.7. Via COOL-WD, we know that Wikidata is complete

for 7 out of 35 known non-functional properties of Barack Obama

(http://cool-wd.inf.unibz.it/?p=Q76)

Completeness Analytics. Having completeness statements allows us to
analyze how complete an entity is compared to other similar entities.
For example, Wikidata might have complete information about the
o�cial languages of some cantons of Switzerland, but not all. A
Wikidata contributor could exploit this kind of information to spot
some entities that are less complete than other similar ones, then
focus their e�ort on completing them.

Here we give a possible use case of completeness analyics. In
COOL-WD, a class of similar entities is identi�ed by a SPARQL
query. For example, the class of all cantons of Switzerland consists
of the entities returned by the query

140 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

SELECT * WHERE { wd:Q39 wdt:P150 ?c }

where Q39 is the Wikidata entity of Switzerland and P150 is the
Wikidata property �contains administrative territorial entity.� A user
may add a new class by specifying a valid SPARQL query for the class.
Then, COOL-WD would list all possible properties of the class by
taking the union of the properties of each entity of the class. The user
would then be asked to pick some properties that they feel important
for the class.

Now, suppose we pick �o�cial language� and �head of govern-
ment� as important properties for the cantons of Switzerland, and
suppose that we have only the following SP-statements: (Bern, lang),
(Geneva, lang), (Ticino, lang), (Zurich, lang), (Bern, headOfGov).
Figure 7.8 shows how COOL-WD displays such analytics informa-
tion. A user then can see that Wikidata is veri�ed to have complete
information about o�cial languages only for 4 out of 26 cantons of
Switzerland (15.38 %), which means that the remaining 22 cantons
are possibly less complete than the four. Wikidata has also complete
information for the head of government of Canton of Bern, only one
out of the 26 cantons. Using this information, a contributor is able
to focus on checking and completing the languages of the remaining
22 cantons and the head of government of the other 25 cantons.
7/16/2016 COOL-WD

http://cool-wd.inf.unibz.it/?p=aggregation 1/1

Class name #Objects Property Completeness
percentage Complete entities

Cantons of
Switzerland

26 official language 15.38% Canton of Geneva

 Canton of Bern Ticino

 Canton of Zürich Show less

Cantons of
Switzerland

26 head of
government

3.85% Canton of Bern

Figure 7.8. An overview of the completeness analytics feature. Clicking on the

class name shows a more detailed analytics of the class.

Query Completeness Assessment. With explicit completeness infor-
mation over data comes the possibility to assess query complete-
ness. In COOL-WD, it is possible to perform data-aware complete-
ness checking, as discussed in Chapter 3. Here obviously the data
graph is Wikidata. We further extend the query checking feature

7.3. RELATED WORK 141

with a diagnostics feature: depending on whether a query can be
guaranteed to be complete or not, users may also see either all SP-
statements, including their provenance (i.e., author, timestamp, and
reference URL), contributing to the query completeness, or a miss-
ing SP-statement as a cause of no completeness-guarantee. Wrt. our
data-aware reasoning algorithm as in Section 3.2, the �nding of such
a cause is by taking a saturated part that is not contained in the data
graph.

Let us give an illustration on how query completeness diagnos-
tics works. Consider the query �give all languages of all cantons in
Switzerland.� Suppose we have the following SP-statements:

(Switzerland, canton), (Aargau, lang), . . . , (Zurich, lang).

The statements ensure the completeness of all cantons in Switzer-
land, and for each canton of Switzerland from Aargau to Zurich, the
completeness of all languages. The diagnostics feature enables that:
in addition to the information that the query is complete, users see
all those SP-statements (and their provenance) that contribute to
the query completeness. In contrast, suppose that we do not have
the SP-statement (Zurich, lang). In this case, the query cannot be
guaranteed to be complete, and the diagnostics feature reports that
(Zurich, lang) is missing.

7.3. Related Work

One of the systems related to our work is MAGIK [101], which allows
one to collect completeness information about relational databases,
and to use it in query answering. The system was based on the
work in [96] about completeness reasoning over relational databases.
MAGIK implemented the reasoning by translating completeness rea-
soning tasks into logic programs, which are evaluated using an answer
set engine. Our work focuses more on Semantic Web data and queries,
as opposed to MAGIK. Chu et al. [20] developed KATARA, a hybrid
data cleaning system, which not only cleans data, but may also add
new facts to increase the completeness of the KB. KATARA per-
formed data cleaning by establishing some correspondence between
the possible dirty database with the available knowledge bases (KBs),
and leveraging human involvement for data veri�cation when the KBs
lack coverage. Acosta et al. [4] developed HARE, a hybrid SPARQL

142 CHAPTER 7. COMPLETENESS MANAGEMENT DEMONSTRATORS

engine to enhance answer completeness. HARE implemented query
execution techniques that can identify portions of queries that yield
missing values. Then, in order to resolve missing values, HARE per-
formed microtask crowdsourcing. As opposed to our work, KATARA
and HARE cannot be used to check whether queries are complete
in the sense that all answers are returned, as they focus more on
increasing the degree of KB and query completeness.

7.4. Summary

In this chapter, we have identi�ed practical requirements and demon-
strated how systems to support the completeness life cycle of RDF
data sources can be built. The �rst demonstration system is COR-
NER. CORNER serves as a hub of completeness statements over mul-
tiple data sources. CORNER supports data-agnostic completeness
reasoning, with the RDFS inference and federated rewriting features.
The second demonstrator is COOL-WD. COOL-WD showcases a
completeness management functionality over Wikidata. With COOL-
WD, users can add and view SP-statements of Wikidata entities.
SP-statements in COOL-WD are available also via a Linked Data
API. Moreover, the COOL-WD consumption functionalities consist
of data completion tracking, completeness analytics, and data-aware
query completeness assessment. For �exibility, COOL-WD comes in
two variants: as an external system, or as a gadget where edits of
completeness statements can be performed directly over Wikidata.

An open, practical issue is the semantics of completeness for less
well-de�ned predicates such as �medical condition� or �educated at,�
as detailed in [98]. When it is unclear what counts as a fact for a
predicate, it is also not obvious how to assert completeness. A pos-
sible solution is to devise a consensus or guidelines on what it means
by a (complete) property, for instance: IMDb guidelines on com-
plete cast or crew at https://contribute.imdb.com/updates/guide/

complete. Further, the subjectivity of completeness along with po-
tential impacts of COOL-WD has been discussed with the Wikidata
community.15,16

15https://lists.wikimedia.org/pipermail/wikidata/2016-March/

008319.html
16https://lists.wikimedia.org/pipermail/wikidata/2016-August/

009388.html

Chapter 8

Extracting Relation Cardinalities from

Text

In the previous chapter, we have demonstrated how completeness
statements can be created manually. To improve the scalability, an
automated method of generating completeness statements is thus im-
portant. Meanwhile, the Web contains a wealth of information about
relation cardinalities, as exempli�ed by the sentence �Trump has �ve
children� on Trump's Wikipedia page.1 Intuitively, such information
gives a hint on the complete count of the respective relation, which
can be leveraged to assess the completeness of a knowledge base (KB)
in the following way: Whenever the cardinality information matches
the number of relation values of the entity in the KB, then this indi-
cates that the KB is complete for that relation of the entity. Hence,
a completeness statement can be generated.

Motivated by this rationale, in this chapter we introduce the novel
problem of extracting cardinalities from text on the Web, and develop
a CRF-based method for the problem. We employ distant supervi-
sion using fact counts in the KB as training data, encountering in-
completeness as a new challenge wrt. classical fact extraction. We
analyze linguistic particularities of cardinality information, and show
that our method can achieve between 38% and 84% of precision on
four human-evaluated relations. We also analyze the presence of car-
dinality information for more than 200 relations in Wikidata.

Preliminary results of this chapter have been published in [76],
while the full results have been published in [77].

1https://en.wikipedia.org/wiki/Donald_Trump (as of May 29, 2017)

143

144 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

8.1. Introduction

General-purpose RDF knowledge bases such as Wikidata [111], DB-
pedia [10], or YAGO [108] �nd increasing use in applications such as
question answering, structured search, or document enrichment, and
their automated construction from text has received considerable at-
tention. So far, construction techniques are focused on the extraction
of fully quali�ed facts, but more often than not texts only contain re-
lation cardinality information, i.e., the number of objects that stand
in a relation with a certain subject, such as �John has two children"
or �Mary wrote 5 books", without mentioning the actual objects.

Extracting such relation cardinality information can hugely ex-
tend the scope of knowledge bases, thus allowing more accurate an-
swers for queries that involve counts or existential quanti�cation. For
the child relation, for instance, simple manual patterns could reveal
the existence of 178% more children from Wikipedia, than are cur-
rently contained in Wikidata [78].

Another important use of relation cardinalities is KB curation [86,
115]. KBs are notoriously incomplete, contain erroneous triples, and
are limited in keeping up with the pace of real-world changes. For
instance, even for a person of importance like U.S. president James
A. Gar�eld, while the Wikipedia text mentions 7 children, Wikidata
contains only 4. Similarly, DBpedia contains an erroneous child of
Judy Moran called �Moran_family�, leading to a total children count
of 3, while all other sources speak only of 2 children. Extracting the
cardinalities of relations could help addressing both issues.

Extracting relation cardinalities is more di�cult than classical
fact extraction for several reasons. For instance, one can observe
that cardinality information can be compositional, as in the following
sentences:

�Trump has three children with Ivana, a daughter with Marla, and a

10-year-old son with his current wife, Melania.�

Here, the total children count of 5, is split across three di�erent pred-
icates: children, daughter, and son.

Another challenge lies in the training data. Relation extraction
usually relies on distant supervision, i.e., uses facts already contained
in a KB as positive examples for identifying further patterns. In the
case of relation cardinalities, however, knowledge bases frequently
contain counts that are lower than what is correct.

8.2. RELATION CARDINALITIES 145

Relation cardinalities are not extracted by state-of-the-art infor-
mation extraction systems. ClausIE [34], for example extracts from
the sentence �Donald Trump has �ve children� the triple 〈DonaldTrump,
has, �veChildren〉, i.e., it fails to recognize that `�ve' should be
treated as parameter, not as part of the predicate. While IE methods
that hinge on pre-speci�ed relations for KB population (e.g., NELL
[79]) can already capture numeric values for a few attributes such
as 〈Berlin2016attack, hasNumOfVictims, 32〉, they are currently not
able to learn them.

8.2. Relation Cardinalities

We de�ne a mention of relation cardinality as follows:

�A cardinal number or a number-related term that characterizes the

cardinality of a set of objects that stand in a speci�c relation with a

certain subject.�

For example, in �Mary has one son and identical twin daughters,�
`one' and `twin' are the expressions we try to identify to determine
the hasChild cardinality for Mary, which is 3.

Our analysis on random numbers from Wikipedia articles revealed
that around 19% numbers express relation cardinalities, most fre-
quently for topics such as sport (e.g., matches played, goals scored),
creative work (e.g., books written, seasons in an episode), organiza-
tion (e.g., number of members) and family relations. At present, tools
such as the Stanford Named Entity (NE) tagger [70] only label such
numbers unspeci�cally as number. Identifying which relations these
expressions quantify would give them semantics.

Given the substantial occurrences of relation cardinalities, one
may also wonder whether cardinality extraction can improve the ex-
istential coverage of KBs, i.e., the number of facts known to exist.
To answer this question, we analyzed Wikipedia articles of 200 ran-
dom persons, comparing the amount of existential information for the
hasChild relation that can be retrieved by the following three meth-
ods: (i) cardinality extraction, where we focus on the relation car-
dinalities in the article; (ii) counting names, where we focus on the
names of the children in the article; (iii) and Wikidata triples, where
we count the children facts from the respective Wikidata pages. Note
that the second method above corresponds to what standard relation
extraction aims to achieve.

146 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

Source subjects objects

Wikipedia articles
cardinality information .120 .350
names .070 .175

Wikidata triples .025 .030

Table 8.1. Fraction of persons (n=200) whose Wikipedia articles contain chil-

dren cardinality information, children names, or who have children on Wikidata,

and number of children per each method

As shown in Table 8.1, cardinality information allows to �nd chil-
dren counts for 12% of all people, while names are only mentioned
for 7%, and Wikidata contains children for only 2.5%. Similarly, with
respect to the number of children in total, cardinality information al-
lows learning of the existence of twice as many children as information
extraction, and eleven times as many children as Wikidata knows of.

We conjecture that cardinality information can bene�t both stan-
dard relation extraction, i.e., reducing false positives by extracting
facts with high con�dence only until a certain number of facts is
reached, and question answering, as many questions such as �Which
US presidents were married thrice?� only require knowledge of counts.

8.3. Relation Cardinality Extraction

Problem Statement. Given a relation/predicate p, a subject s and a
corresponding text about s, we aim to extract the relation cardinality,
i.e., the count of 〈s, p, ∗〉 triples, from relation cardinality mentions
in the text.

Methodology. We approach the problem via sequence labeling, i.e.,
given a sentence containing at least one number, we employ a classi�er
to determine for each number in the sentence whether it is a mention
of the cardinality of the relation of interest. We use CRF++ [62] to
build a Conditional Random Field (CRF) based classi�cation model
for each relation, taking as features the context lemmas (window size
of 5) around the observed token t, along with bigrams and trigrams
containing t. Note that we use _num_ as the lemma of each cardinal
number found in the text, and multi-word numbers such as `twenty
one' are collapsed into single tokens.

8.3. RELATION CARDINALITY EXTRACTION 147

The relation cardinality of a given 〈s, p〉 pair is predicted by select-
ing the number in the text positively annotated by the classi�er, which
has marginal probability�resulting from forward-backward inference�
higher than 0.1. If there are several such numbers in the text, the
one having the highest probability is chosen.

Distant Supervision. We rely on distant supervision to generate train-
ing data. Given a knowledge base predicate p, for each entity s that
appears as subject of p, we retrieve the triple count 〈s, p, ∗〉 from the
knowledge base and a text about s. In particular, we use Wikidata as
knowledge base and the Wikipedia page of each entity as text source,
both in their version as of March 20, 2017.

We generate training data by annotating candidate numbers2 in
the text as correct cardinalities whenever (i) they correspond to the
exact triple count and (ii) if they modify a noun,3 i.e., there is an
incoming dependency relation of label nummod according to the Stan-
ford Dependency Parser [70]. Otherwise, they are labelled as O (for
Others), like the rest of non-number tokens.

Dataset. We chose four Wikidata predicates that span various do-
mains: child (P40), spouse (P26), has part (P527) and contains
administrative territorial entity (P150)�or simply, contains admin.
While the subjects of contains admin, child and spouse relations are
of fairly uniform type (mostly administrative territorial entity and hu-
man), the has part relation is used in highly diverse domains, ranging
from chemical substances and groups of buildings to organizations.
We focused on two classes of subjects for has part : series of creative
works (e.g., �lm series, novel) and musical ensemble (e.g., band).

Considering only subjects of the abovementioned predicates that
have links to English Wikipedia pages, we set aside 200 random sub-
jects for each predicate as test set ; 100 instances of each class for has
part relation. The remaining subjects that have at least one 〈s, p, ∗〉
triple are used as training set. Furthermore, we set aside 200 ran-
dom subjects per predicate from the training set as validation set.
Table 8.2 reports the number of subjects (#s) for each considered
predicate (p) in the training set.

2Numbers that are not labelled as date, time, duration, set, money and
percent by the Stanford NE-tagger.

3This is to exclude numbers as in �one of the reasons...� from positive training
examples.

148 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

p #s

has part
- series of creative works 614
- musical ensemble 8,750

contains admin 6,118
child 38,496
spouse 43,668

Table 8.2. Number of Wikidata instances as subjects (#s) of each predicate (p)

in the training set

Evaluation. We report in the �rst rows of Table 8.3, the performance
of our CRF-based method (vanilla) in predicting relation cardinali-
ties, evaluated on the validation set. While we initially wanted to use
knowledge base counts for the evaluation, it turned out that these
were too often too low, thus we manually annotated the validation
set with the true relation counts. Moreover, whenever the predicted
number and the relation count matches, we manually check whether
the textual evidence, i.e., sentence containing the predicted number,
truly expresses the relation of interest.

We initially built one classi�er for each predicate. However, we
noticed that if we use distinct classi�ers for each class in has part, i.e.
one for creative works and another for musical ensemble, the perfor-
mance improved considerably, particularly for creative works (.222 vs
.372 F1-score). The method works reasonably well for creative works
and contains admin, with .372 and .325 F1-scores, respectively. For
musical ensemble and spouse, on the other hand, both precision and
recall su�er, resulting in an overall performance of only around 2%
F1-score.

We next discuss major limitations of the vanilla approach as re-
vealed by the qualitative evaluation, and how to tackle them.

8.4. Improving Relation Cardinality Extraction

8.4.1. Training Data Quality

Unlike training data for normal fact extraction, which is generally
highly correct (e.g., YAGO claims 95% precision [108]), taking triple
counts found in knowledge bases as ground truth generally gives
wrong results. For example, our manual annotation of the validation

8.4. IMPROVING RELATION CARDINALITY EXTRACTION 149

has part
contains admin child spouse

creative works musical ensemble

P R F1 P R F1 P R F1 P R F1 P R F1

combined .238 .208 .222 .030 .023 .026

vanilla .421 .333 .372 .016 .011 .013 .660 .216 .325 .200 .159 .177 .028 .017 .021

Training Data Quality

ignore n > c -.04 0 -.02 +.02 +.02 +.02 -.09 +.01 -.01 +.01 +.03 +.02 -.00 +.01 +.00
c < n ≤ c+ 1 -.01 0 -.00 -.00 0 0 0 0 0 +.01 +.01 +.01 -.01 -.01 -.01
c < n ≤ c+ 2 +.00 +.01 +.01 +.01 +.01 +.01 0 0 0 +.02 +.02 +.02 +.00 +.01 +.01

c < n ≤ c+ 3 -.00 +.01 +.01 +.01 +.01 +.01 0 0 0 +.03 +.03 +.03 -.01 0 -.00

exclude freq. n +.07 -.02 +.01 +.03 +.01 +.02 +.04 -.01 -.00 +.10 +.06 +.08 -.03 -.02 -.02
n ≤ 1 +.01 +.01 +.01 +.44 +.05 +.09 +.03 0 +.00 +.07 +.04 +.05 +.03 -.01 -.00
n ≤ 2 +.06 +.02 +.04 +.70 +.05 +.09 +.14 -.01 +.01 +.16 -.07 -.03 +.97 0 +.01

n ≤ 3 +.02 -.09 -.06 +.58 +.02 +.05 +.16 -.01 +.01 +.60 -.14 -.13 -.03 -.02 -.02

top 25% 0 0 0 0 0 0 0 0 0 -.01 -.01 -.01 -.00 0 -.00
50% +.01 0 +.00 -.00 0 -.00 0 0 0 -.01 -.01 -.01 -.01 -.01 -.01
75% 0 0 0 -.00 0 -.00 0 0 0 -.00 -.01 -.01 -.00 0 -.00

best train .525 .323 .400 .714 .056 .104 .800 .209 .332 .377 .278 .320 1.00 .046 .087

Compositionality

comp -.06 +.01 -.01 0 0 0 +.06 +.18 +.20 +.01 +.01 +.01 -.33 0 -.00

Linguistic Variance

transform +.06 +.13 +.11 +.09 +.03 +.05 0 0 0 -.01 -.01 -.01 -.15 +.02 +.03

transform `a' -.12 -.02 -.06 -.26 -.01 -.01 -.11 -.04 -.06 -.12 -.06 -.08 -.67 -.01 -.02

best �nal .587 .449 .509 .800 .087 .157 .855 .386 .532 .384 .290 .330 .846 .063 .116

Table 8.3. Evaluation results on the validation set

set for child shows that about 50% of the KB counts are incorrect
wrt. the knowledge one can derive from Wikipedia texts.

In [76], we showed that manually generated training data can
hugely boost performance, however, obtaining su�cient quantities of
manually annotated data is generally costly. We see several avenues
to tackle the training data quality issue.

Incompleteness-resilient Distant Supervision. Triple counts in the
knowledge base are often lower than what is correct, but rarely too
high. During the training data generation, these incorrect counts will
generate spurious negative examples. For example, recalling Presi-
dent Gar�eld, for whom Wikidata knows only 4 out of his 7 children,
the number �seven� in the sentence �In 1858, he married Lucretia;
they would have seven children...� on his Wikipedia page4 would
be labelled as negative example, leading to a lower probability for
numbers appearing in similar contexts to be labelled as correct car-
dinalities.

Since there is no way to know whether higher numbers in the text
are actually positive examples, one possible approach is to treat them

4https://en.wikipedia.org/wiki/James_A._Garfield

150 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

as neither positive nor negative examples, but simply remove them
from the training set. We test two variations of this approach:

• Ignore n > c, i.e., we remove sentences that only contain num-
bers (n) that are higher than the triple count (c).
• Ignore c < n ≤ c+d, i.e., we remove sentences that only contain
numbers slightly higher than the triple count, for values of d
between 1 and 3.

Excluding Uninformative Numbers. The more frequent a certain num-
ber occurs in a text, the more probable it is to occur in various con-
texts. As a way to give the classi�er less noisy training examples, one
might wish to �lter out frequently occurring numbers irrespective of
whether they match the triple count or not. Speci�cally, we experi-
ment with labeling numbers that occur more than 5 times in a text
as negative examples.

By Benford's law, lower numbers are more frequent than higher
numbers. As a very simple heuristic, we thus also experiment with
excluding all n, 1 ≤ n ≤ 3 from the training examples.

Filtering Ground Truth. Instead of taking the triple counts for all sub-
jects of a predicate as ground truth, one might trade size for quality.
We rank the subjects according to their popularity, i.e., the number
of triples/facts about them stored in the knowledge graph. We then
experiment with using only the 25%, 50% and 75% most popular
subjects as training data.

8.4.2. Compositionality

We observed that cardinalities for contains admin were often men-
tioned as a composition of several numbers, e.g., �The Qidong county
has 4 subdistricts, 17 towns and 3 townships under its juridiction.�
This phenomenon is also observed for child, as exempli�ed at the
beginning of Section 8.2.

In this work, we focus on number compositionality when a se-
quence of numbers occurs in the same sentence. In training data gen-
eration, if the sum of such a number sequence is equal to the triple
count, we label all numbers in the sequence as positive examples.

In the prediction step, we predict the relation cardinality by sum-
ming up consecutive numbers labeled as positive with su�cient prob-
abilities by the classi�er. To avoid predicting the wrong cardinality

8.4. IMPROVING RELATION CARDINALITY EXTRACTION 151

in �He had four children: two sons and two daughters� we check
the number sequence as follows: for a predicted number p labeled as
positive, if the sum of the following numbers, that are also labeled
as positives, is equal to p, we simply choose p as the correct relation
cardinality. In the previous example, our method will predict four as
the children count instead of eight.

8.4.3. Linguistic Variance

Our initial motivation was to make sense of the so far ignored large
fraction of numbers that express relation cardinalities. However,
we noticed quickly that relation cardinalities are frequently also ex-
pressed with other concepts related to numbers such as trilogy or
duo.

We used the relatedTo relation in ConceptNet [106] for collecting
terms related to numbers. We split the terms into two groups, those
having Latin/Greek pre�xes5 and those not having them. For the �rst
group, we generated a list of Latin/Greek pre�xes, e.g., tri-, quart-,
and a list of possible su�xes, e.g., -logy, -et. We manually checked
the latter group to select only terms that were strongly associated
with cardinalities, e.g., twin, thrice and dozen.

In a pre-processing step, a Latin/Greek number found in the text
is represented with only its su�x as the lemma, and labelled as a
positive example if its pre�x corresponds to the relation count. For
example, when we found `triplet' in the text, its lemma will be con-
verted to _plet_ and it will be labelled as a positive example if the
relation count is equal to 3. For other terms, we simply replace them
with the correct terms containing cardinal numbers, e.g., twin → two
children, thrice → three times and dozen → twelve.

We also observed that the relation cardinality of one is frequently
represented with inde�nite articles, for instance, �They had a son to-
gether� or �It has a residential community and 7 villages under its
adminstration.� Therefore, we also experiment with converting in-
de�nite articles a and an in the test/validation set into one.

5http://phrontistery.info/numbers.html

152 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

8.5. Analysis

8.5.1. Evaluation on the Validation Set

We performed an ablation study to identify the impact of each idea
from above wrt. the vanilla approach. The results are reported in
Table 8.3, based on the same evaluation methodology used in Sec-
tion 8.3.

Training Data Quality. Ignoring numbers larger than KB counts was
found to slightly improve the performance, except for contains ad-
min. We presume the reason for this is that Wikidata is already
highly complete for this relation. For other relations, the varying de-
gree of deviation d that improves the performances hints at how many
〈s, p, ∗〉 triples per subject s are usually missing from the knowledge
graph, i.e., d = 3 for child, and d = 2 for creative works and spouse.
For musical ensemble, ignoring all higher numbers is the best ap-
proach, which suggests that Wikidata is remarkably incomplete for
that relation.

Excluding numbers frequently occurring in the text turns out to
considerably improve precision (except for spouse), for instance by
10% for child. Excluding low numbers has a similar e�ect, although
the e�ect appears very much dependent on the nature of the predi-
cates, i.e., the average number of 〈s, p, ∗〉 triples that are often men-
tioned as cardinality assertions for the observed predicate p in the text
about s. For instance, when excluding n ≤ 1 is the best setting for
child, then that means that two children are frequently mentioned in
texts, hence, excluding n ≤ 2 would �lter more positive than negative
examples.

Somewhat surprisingly, taking smaller but more complete subsets
for training did not have any e�ect on performance. We conjecture
that for these instances, a more complete knowledge base is o�set by
longer and thus more noisy articles.

In Table 8.3, we report the extraction performance after our at-
tempts to improve the training data quality (best train) by using the
corresponding best setting (shown in bold) for each predicate. The
best train scores are then used to further show the impact of tackling
compositionality and linguistic variance discussed below.

8.5. ANALYSIS 153

Compositionality and Linguistic Variance. The results on tackling
the compositionality and linguistic variance issues shed further light
on the nature of each relation. Cardinality assertions for contains
admin are very often compositional, as shown by the improvement of
20% in F1-score, seldom for child with 1% F1-score increase, and not
at all for the others.

Instead, the other relations bene�ted from considering concepts
related to numbers as candidates for relation cardinality. We observe
signi�cant improvements of both precision and recall for has part,
and of recall for spouse. This approach allows the extraction method
to infer the relation count from terms such as `pentalogy', `duo' and
`(married) twice'.

Transforming all inde�nite articles `a' and `an' into `one' in the
test data, in turn, results in a great increase of false positives, and
reduces precision considerably.

The �nal performance of our extraction method for each relation
on the validation set is shown in the last row (best �nal) of Table 8.3.
The method works quite well for contains admin, spouse and musical
ensemble with 85.5%, 84.6% and 80% precision scores respectively.
The low recall for musical ensemble and spouse re�ects the rarity of
cardinality assertions containing cardinal numbers (or number-related
terms) for those relations. Average performance with 50.9% F1-score
on has part for creative works might be due to the comparably small
training data set. Meanwhile, we attribute an observed lower preci-
sion on child to three factors:

1. The classi�er often confuses the number of children with, for in-
stance, number of siblings, spouses, or (political) terms served.

2. The number-of-children assertions found in the text (about a
person) are actually about someone else, e.g., his/her parent
or sibling.

3. The total number of children can be inferred from numbers
mentioned in several sentences, as in �John married Jane in
1983. They have two children together. After their divorce in
1995, he married Jamie, with whom he has two sons and one

daughter.�

154 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

p
RCE %subject existential knowledge increase

P R F1 RCE Wikidata Wikipedia (Wikidata+RCE) / Wikidata

has part
- creative works .545 .279 .369 .120 .020 .550 17.3
- musical ensemble .400 .026 .049 .020 .280 .770 1.1

contains admin .571 .308 .400 .020 .060 .065 1.8
child .625 .750 .682 .070 .020 .095 7.6
spouse .500 .026 .050 .005 .020 .019 1.8

Table 8.4. Evaluation results on the test set; RCE denotes Relation Cardinality

Extraction.

8.5.2. Evaluation on the Test Set

We also evaluated the performance of our method on the test data,
which contains crowd-annotated 200 random entities per relation. We
used the CrowdFlower6 platform for annotating (i) whether the num-
ber of objects could be inferred from the Wikipedia page of a certain
subject, and (ii) what that number was, taking in each case the ma-
jority vote among three crowdworkers. Quality was ensured via un-
ambiguous test questions. It turns out that the task was not trivial,
as on the random entities, annotators voted unanimously in only 83%
of cases. Frequent reasons for disagreement were for instance for has
part, when di�erent granularities like �3 seasons and 12 episodes� were
mentioned, or when for a band, a vocalist, two guitarists and a drum-
mer were mentioned, but it was left unclear whether these were all
members.

In Table 8.4, we report the performance of our method on the
crowd-annotated dataset. The recall (RCE, R) was computed by
using the total number of subjects of which the crowd could infer
their object cardinality from Wikipedia articles. Our method could
extract cardinality information with precision (RCE, P) ranging from
40% to 62.5%.

We also report in the next columns the percentage of subjects
(%subject) for which (i) our method could extract the relation counts
correctly (RCE), (ii) Wikidata contains at least one fact in the re-
spective relation, and (iii) the crowd workers said one could infer the
relation count by any means from the Wikipedia article. As one can
see, for contains admin and child the percentage of subjects of which
our method succeed in extracting the cardinalities is reasonably close
to the ones of Wikipedia. For creative works, musical ensemble and

6https://www.crowdflower.com/

8.6. LARGE-SCALE RUN OF RCE 155

spouse, the large gap stems from the facts that Wikipedia articles
more often mention the individual objects, which allows crowd work-
ers to infer the cardinality by counting, a technique that is currently
not accessible by our method.

In the existential knowledge increase column we report the im-
pact of relation cardinality extraction towards enlarging the existen-
tial knowledge of KBs, in this case Wikidata. For creative works and
child, the number of facts known to exist increased signi�cantly, by
17.3 and 7.6 times respectively. Meanwhile, for musical ensemble,
Wikidata usually already contains the ensemble member names, so
extracting cardinality information does not help much.

8.6. Large-scale Run of Relation Cardinality Extraction

We collected all Wikidata properties that were not asserted to be
single-value7, had a functionality degree (#subjects/#triples) of less
than 0.98 [40], and were used by at least 500 subjects, obtaining 267
properties in total.

For each property/relation, we set aside the 200 of the 400 most
popular entities as test set, while using the rest (limited to 10k most
popular entities) as training data. Note that we only considered en-
tities of the most frequent type for each class, e.g., human for sibling,
to ensure domain homogeneity. We then ran our Relation Cardi-
nality Extraction (RCE) system for each property, using the setting
we assume to generally work well for all relations (vanilla + ignore
c < n ≤ c + 2 + exclude freq. n + exclude n ≤ 1). We evalu-
ated the precision wrt. the triple counts for the entities in the test
set, assuming that for the most popular entities, these are usually
correct.

There were a total of 147 for which RCE could identify relation
cardinalities with more than 5% precision. While some are spurious
results due to low variance, in Figure 8.1 we show some properties
where the results were manually found to be not mere coincidences.
These properties are used, for instance, for humans (e.g., sibling,
award received), games/software (e.g., designed by, software version),
companies (e.g., founded by, subsidiary) and transportation-related

7Properties having the property constraint type
https://www.wikidata.org/wiki/Q19474404

156 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

Figure 8.1. Precision results on some notable Wikidata relations, along with

their corresponding functionality degrees

buildings (e.g., platform, runway). Our method also achieves an im-
pressively high precision of 97.8% on contains settlement, which is a
relation similar to contains admin.

8.7. Related Work

Advances on the automated construction of large-scale KBs have been
largely in�uenced by prevalent relation extraction works, focusing
either on structured data [108, 10] or on unstructured contents over
the web. For the latter, directions include extracting arbitrary facts
without prede�ned schema, called Open IE [72, 34, 79], and extracting
triples based on well-de�ned knowledge base relations [109, 61, 85], in
which the distant supervision approach is widely used [24, 75]. There
has also been work on reducing noise in distantly-supervised training
data via learning only from positive examples [74] or by expanding
the knowledge base with information retrieval techniques [113].

Most relation extraction works have focused on non-numeric in-
formation. [69] explored relation extraction where one of the argu-
ments is a number or a quantity (e.g., 〈Aluminium, atomicNumber,
13〉). In general, most works on making sense of numbers in texts
or semi-structured data (e.g., web tables) have been largely focused

8.8. SUMMARY 157

on temporal information [65, 107] and physical quantities or mea-
sures [18, 57, 82].

In contrast, numbers that express relation cardinalities have re-
ceived little attention so far. State-of-the-art Open-IE systems either
hardly extract cardinality information or fail to extract cardinalities
at all. While NELL, for instance, knows 13 relations about the num-
ber of casualties and injuries in disasters, they all contain only seed
facts and no learned facts. The only prior work we are aware of is by
[78], who use manually created patterns to mine children cardinalities
fromWikipedia. They showed that with 30 manually crafted patterns
and simple �lters it is possible to extract 86,227 children-cardinality-
assertions with a precision of 94.3%. Our work generalizes upon this,
developing an automated technique for extracting relation cardinali-
ties.

8.8. Summary

In Chapter 7, we have discussed how completeness statements can be
created manually via CORNER and COOL-WD. To improve the scal-
ability, one may rely on an automated method of extracting relation
cardinalities from text, which can then be matched with the num-
ber of relation values in a KB to generate completeness statements.
In this chapter, we have introduced the problem of extracting rela-
tion cardinalities from text, discussed the challenges that set it apart
from standard information extraction, and developed a CRF-based
distantly-supervised technique for the extraction. There are several
avenues to extend this work. On the technical side, the present work
does not consider instances with no facts in training (due to their
overwhelming proportion), and is thus not suited to predict zero car-
dinality (like Angela Merkel having no children).

Furthermore, compositionality is only explored within sentences,
while in reality it appears also spread over multiple sentences. Taking
this even further, one might even look at multiple sources, which may
have di�erent timestamps, and use techniques from truth discovery
and data fusion to retrieve most likely values in the case of con�icts.

A third direction is to go towards constraints and statistical rea-
soning. Ordinal number like in �His second wife� are ignored by our
method, but are valuable clues as they set lower bounds on relation
cardinalities. Similarly, the number of brothers and sisters should add

158 CHAPTER 8. EXTRACTING RELATION CARDINALITIES

up to the number of siblings, having 80 band members is uncommon,
or sports teams normally have fewer coaches than players. Learn-
ing such constraints, or exploiting them in the consolidation part of
relation cardinality extraction, could be fruitful to further improve
precision and recall of the present method.

Chapter 9

Discussion

Here we discuss issues related to our completeness management frame-
work: acquisition of completeness information and compatibility with
advanced RDF features.

9.1. Acquisition of Completeness Information

Sources of Completeness Information. Our framework relies on the
availability of machine-readable completeness information. We found
a widespread interest in collecting completeness information in var-
ious forms. For instance, Wikipedia provides a template for adding
completeness statements1 and contains over 14,000 pages with the
keywords `complete list of' and `list is complete;' IMDb has at least
24,000 veri�ed statements about the completeness of cast and crew;2

and OpenStreetMap has around 2,200 pages featuring completeness
status.3 The techniques we develop may serve as an incentive to stan-
dardize such information and to make it available in RDF, since then
not only is such information useful for managing data quality, but also
for assessing query quality in terms of completeness and soundness.

Ideas for approaches to automating the generation of complete-
ness information are collected in [98], in addition to our idea that
is based on relation cardinality extraction as in Chapter 8. Our
COOL-WD demonstrator (see Chapter 7) for managing and consum-
ing standardized completeness information of Wikidata is available

1https://en.wikipedia.org/wiki/Template:Complete_list
2http://www.imdb.com/interfaces
3For instance, see http://wiki.openstreetmap.org/wiki/Abingdon

159

160 CHAPTER 9. DISCUSSION

at http://cool-wd.inf.unibz.it, which currently stores over 10,000
real completeness statements.

Correctness of Completeness Statements. Any inference is only as
correct as the used antecedents. If owners of data sources can add
completeness annotations by themselves, incorrect completeness an-
notations can occur, which in turn, may lead to incorrect conclusions.
This issue cannot be avoided, but can be made more transparent, by
annotating conclusions with information about the antecedents used
(e.g., �conclusion based on the completeness assertions X, Y and Z
over the data source W , given by agents A and B on date D�). Such
provenance information can then serve as a basis for trust determi-
nation over conclusions. We refer, e.g., to [9, 48, 63] for work about
trust and provenance.

Another view on correctness is that analogously to completeness
statements, one can also formulate correctness statements, and use
them for annotating query answers with correctness information. This
was already observed by Motro [80]. While both completeness and
correctness are important issues on the Semantic Web, we focus here
on completeness. We believe that people in general publish data
that they think is correct, while they are aware that not all data is
complete.

9.2. Compatibility with Advanced RDF Features

Blank Nodes. The use of blank nodes in RDF has been a contro-
versial topic in the Semantic Web community [2, 1]. In Linked Data
applications, blank nodes add complexity to data processing and data
interlinking due to the local scope of their labels [50, 37]. With respect
to SPARQL, there are semantic mismatches with the RDF semantics
of blank nodes, e.g., when COUNT and NOT-EXISTS features are
employed [56]. Nevertheless, blank nodes are used in practice to some
degree: (i) for modeling unknown nulls [56, 31], and (ii) for modeling
n-ary relations as auxiliary instances in rei�cation [84].

For the former usage, it will be a contradiction if something is
complete but unknown, as we argue that completeness statements
should capture only �known and complete� information. Say, one may
state that a graph is complete for triples of the form (john, child , ?y),
while the graph contains the triple (john, child , _:b), indicating that

9.2. COMPATIBILITY WITH ADVANCED RDF FEATURES 161

John is complete for his unknown child, which does not really make
sense. Nevertheless, a graph with completeness statements may still
have blank nodes as long as they are not captured by the statements.

For the latter case, skolemization as a way to systematically re-
place blank nodes with fresh, skolem IRIs may be leveraged with
almost interchangeable behavior [25, 49, 55], except that skolem IRIs
have a global scope instead of a local scope. This way, complete-
ness statements can capture n-ary relation information encoded orig-
inally with blank nodes, and completeness reasoning (which involves
SPARQL queries) behaves well (i.e., no semantic mismatches [56]).
Nevertheless, in practice Semantic Web developers tend to directly
use IRIs instead of blank nodes for representing auxiliary resources,
as demonstrated by Wikidata [37].4

RDFS Extension. RDFS [16] adds light-weight semantics to de-
scribe the structure and interlinking of data, usually su�cient for
Linked Data publishers [50]. Main RDFS inference capabilities con-
sist of class and property hierarchies, as well as property domains
and ranges [50, 81], which are widely used in practice [89]. Darari et
al. [27] formalized the incorporation of RDFS in data-agnostic com-
pleteness reasoning. Moreover, our CORNER system (see Section 7.1)
demonstrates such RDFS incorporation in the data-agnostic settings.

Using a similar technique as in [27], it is also relatively easy to
extend our data-aware completeness reasoning framework with the
RDFS semantics. The idea is that we strengthen our syntactic char-
acterization of computing the epg operator (see Subsection 3.2.1) via
the closure operation wrt. RDFS ontologies [81]. More precisely, in
the crucial part, the closure has to be computed before and after the
TC operation over P̃ ∪ G. Also, the evaluation of the crucial part
needs to be done over the materialized graph G wrt. the RDFS ontol-
ogy. As for query soundness checking, a similar procedure based on
RDFS closure needs to be employed as well. For pattern soundness
reasoning, we include the closure computation in the query set con-
tainment checking for Non-Redundant Form (NRF), and in the query
completeness checking (as in Proposition 5.4). For answer soundness
checking, we can simply rely on the data-aware completeness checking
with RDFS incorporation we just sketched. In summary, the addi-

4For instance, the resource IRI of Wikidata for the marriage between Don-
ald Trump and Ivana Trump is http://www.wikidata.org/entity/statement/
q22686-f813c208-48b2-9a72-3c53-cdaed80518d2.

162 CHAPTER 9. DISCUSSION

tion of the closure computation ensures that the semantics of RDFS
is incorporated in the reasoning, while not increasing the complexity
as the RDFS closure computation can be done in PTIME [81].

Chapter 10

Conclusions and Future Directions

The objective of this thesis is to study the problem of completeness for
RDF data sources. We conclude by summing up the results, relating
them with the research hypotheses (as given in Section 1.1), and
discussing future work.

10.1. Summary of the Results

Our study was motivated by the question: How complete is Semantic
Web data? In Chapter 2, we formalized the notion of completeness
over parts of RDF data, and introduced completeness statements as
a means to capture partial completeness. Having completeness state-
ments opens up the possibility of checking query completeness. We
distinguished between two problems of query completeness entail-
ment, depending on whether the data graph is taken into account:
data-agnostic completeness entailment and data-aware completeness
entailment.

In Chapter 3, we motivated and formalized data-aware complete-
ness entailment. Furthermore, we devised a technique to check if
such entailment holds and studied the complexity of the entailment
problem. We identi�ed two di�erent fragments of completeness state-
ments: SP-statements and no-value statements. While SP-statements
are more suited to capturing completeness for entity-centric, crowd-
sourced RDF data sources, no-value statements can be leveraged to
tackle the problem of non-existent information and query emptiness.
With data-aware reasoning, we have shown that previously incom-
plete queries by data-agnostic reasoning can become complete. We

163

164 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

veri�ed our research hypothesis that the incorporation of available
graphs gives a stronger, �ne-grained query completeness assessment.

In Chapter 4, we developed optimization techniques for complete-
ness reasoning and conducted experimental evaluations to show its
feasibility. As for data-agnostic completeness reasoning, we identi�ed
the constant-relevance principle to reduce the number of completeness
statements in the reasoning, and investigated various index structures
for the retrieval of constant-relevant statements. As for data-aware
completeness reasoning, we relied on completeness templates to or-
ganize completeness statements, enabling simultaneous processing of
the statements, and partial matching that is used to rule out irrele-
vant completeness templates. Our experimental evaluations over both
reasoning problems showed that our optimizations provided a speed-
up over unoptimized ones, where the average runtime was below a
millisecond for data-agnostic reasoning, and 140 ms for data-aware
reasoning in realistic cases. Wrt. the research hypothesis, not only
is query completeness checking time comparable to query evaluation
time, but it is even faster for data-agnostic settings, thanks to our
optimizations. For data-aware settings, however, the completeness
checking was slower than query evaluation, though in absolute scale
still relatively fast.

In Chapter 5, we studied the problem of soundness for SPARQL
queries with negation. We distinguished between two variants of the
problem, that is, pattern soundness and answer soundness. We ap-
proached the problem via reduction to completeness entailment, and
thus con�rmed our research hypothesis. We also provided experimen-
tal evidence of the feasibility of our soundness reasoning.

In Chapter 6, we extended completeness statements with time.
More speci�cally, we formalized the notion of completeness of parts
of data up to some point of time, and query completeness with time.
We introduced the guaranteed completeness date (GCD): the latest
date on which complete query results are ensured to be included in
the actual query results. We developed an algorithm to �nd such
GCD, which is optimal in the sense that timestamped completeness
statements are considered at most once. In this regard, temporal
completeness analysis can be performed with just little additional
cost (in comparison to non-temporal completeness analysis), which
con�rmed our hypothesis.

To show how our theoretical completeness framework can be used

10.1. SUMMARY OF THE RESULTS 165

in practice, in Chapter 7 we developed two demonstration systems:
CORNER and COOL-WD. They showcased how the completeness life
cycle, consisting of the creation, view, update, and consumption of
completeness statements, can be facilitated. CORNER demonstrated
a completeness statement hub over multiple RDF data sources, that
supports data-agnostic query completeness checking with RDFS on-
tologies and federated rewriting. COOL-WD demonstrated function-
alities for managing and consuming completeness information over
Wikidata. With COOL-WD one can create SP-statements about
Wikidata entities. On the consumption side, COOL-WD provided
features such as data completion tracking, completeness analytics,
and query completeness assessment with diagnostics. As also dis-
cussed in the chapter, the development of the above systems made
use of existing Semantic Web libraries (e.g., Apache Jena). Hence,
there was only little development overhead, and our research hypoth-
esis was veri�ed.

As an alternative to collecting completeness statements, we inves-
tigated an automated method for relation cardinality extraction in
Chapter 8. Such cardinality information can be leveraged to generate
completeness statements in the following way: when the value count
of an entity's relation in a KB matches the cardinality information
of the entity's relation found in text, then a completeness statement
of the entity's relation for that KB can be generated. We focused
on extracting relation cardinalities on Wikipedia, and developed an
extraction method based on conditional random �elds (CRF) with
distant-supervision. We analyzed three aspects that make relation
cardinality extraction challenging: quality of training data, compo-
sitionality, and linguistic variance, and showed that our method can
achieve precision scores of up to 84%. Given this e�ectiveness, our
research hypothesis was largely con�rmed: cardinality information
in natural language texts can be extracted to provide hints about
completeness information for RDF data sources.

In Chapter 9 we discussed two crucial aspects of our completeness
management framework. For the aspect of acquisition of completeness
information, we outlined possible sources of completeness statements
and raised the issue of correctness of completeness statements. For
the aspect of compatibility with advanced RDF features, we discussed
how our completeness framework deals with blank nodes and RDFS.

166 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

10.2. Future Work

The results of this thesis can be extended in several ways. First, it is
of interest to see how our completeness management framework can
be extended with OWL [52]. OWL provides inferences that go beyond
RDFS such as class disjointness, existential and universal quanti�ca-
tion of property restrictions, and property chains. Furthermore, there
is also the enumeration of individuals which is similar to completeness
statements. We are interested to know to which extent OWL features
can enrich our completeness framework, and also, which OWL pro-
�les (i.e., OWL 2 EL, OWL 2 QL, OWL 2 RL) are the most suitable
to extend our work.

Next, while we have addressed the BGP fragment of SPARQL for
the completeness problem and the BGP fragment with several NOT
EXISTS negations for the soundness problem, we are curious about
enriching our query fragments with more constructors. The OPTIONAL

constructor, for instance, allows parts of graph patterns to be op-
tionally matched to graphs. For data-agnostic completeness reason-
ing, Darari et al. [27] have investigated the inclusion of the OPTIONAL

constructor. Nevertheless, it is still open how the OPTIONAL construc-
tor may behave in data-aware completeness reasoning and soundness
reasoning. Also, while the current completeness statements are con-
structed using BGPs, one might wonder what happens if richer con-
structors are added, to enable statements like �Complete for all UniBZ
students who were born after 1991 and who do not speak German.�

From the practical side, one future direction is to study how
(Semantic) Web data publishers and users perceive the problem of
completeness, and how they want to bene�t from data completeness.
Extensive case studies may be conducted in various application do-
mains like healthcare, economics, or education. The purpose is to
analyze whether our completeness framework is su�cient or not for
their requirements, and if not, on which side it can be improved. In re-
gard to completeness statement availability, usability evaluations over
our completeness demonstration systems can be conducted, with the
aim to increase potential user engagement. Moreover, our automated
technique for relation cardinality extraction may be reinforced to han-
dle more relations with a better precision, by considering, for instance,
named entity recognition, coreference resolution, and knowledge base
integration.

Bibliography

[1] Richard Cyganiak: Blank nodes considered harm-
ful. http://richard.cyganiak.de/blog/2011/03/

blank-nodes-considered-harmful/. Accessed: 2017-01-
15.

[2] semantic-web@w3.org Mail Archives: a blank node issue.
https://lists.w3.org/Archives/Public/semantic-web/

2011Mar/0017.html. Accessed: 2017-01-15.
[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations

of Databases. Addison-Wesley, 1995.
[4] Maribel Acosta, Elena Simperl, Fabian Flöck, and Maria-Esther

Vidal. HARE: A hybrid SPARQL engine to enhance query
answers via crowdsourcing. In K-CAP, 2015.

[5] Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus.
Polynomial datalog rewritings for ontology mediated queries
with closed predicates. In Proceedings of the 10th Alberto
Mendelzon International Workshop on Foundations of Data
Management, Panama City, Panama, May 8-10, 2016, 2016.

[6] Keith Alexander, Richard Cyganiak, Michael Hausenblas,
and Jun Zhao. Describing Linked Datasets with the VoID
Vocabulary. W3C Interest Group Note, 3 March 2011.
Retrieved Feb 1, 2015 from http://www.w3.org/TR/2011/

NOTE-void-20110303/.
[7] Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damásio,

and Gerd Wagner. Extended RDF as a semantic foundation of
rule markup languages. J. Artif. Intell. Res. (JAIR), 32:37�94,
2008.

[8] Mario Arias, Javier D. Fernández, Miguel A. Martínez-Prieto,
and Pablo de la Fuente. An Empirical Study of Real-World
SPARQL Queries. In Proceedings of the 1st International Work-

167

168 BIBLIOGRAPHY

shop on Usage Analysis and the Web of Data (USEWOD'11),
2011.

[9] Donovan Artz and Yolanda Gil. A survey of trust in computer
science and the Semantic Web. J. Web Sem., 5(2):58�71, 2007.

[10] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. DBpedia: A nucleus for
a web of open data. Springer, 2007.

[11] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri,
Emanuele Della Valle, and Michael Grossniklaus. Querying
RDF streams with C-SPARQL. SIGMOD Record, 39(1):20�26,
2010.

[12] Carlo Batini and Monica Scannapieco. Data and Information
Quality - Dimensions, Principles and Techniques. Data-Centric
Systems and Applications. Springer, 2016.

[13] David Becker, Trish Dunn King, and Bill McMullen. Big data,
big data quality problem. In 2015 IEEE International Con-
ference on Big Data, Big Data 2015, Santa Clara, CA, USA,
October 29 - November 1, 2015, pages 2644�2653, 2015.

[14] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer,
Christian Becker, Richard Cyganiak, and Sebastian Hellmann.
DBpedia �A Crystallization Point for the Web of Data. Journal
of Web Semantics, 7(3), 2009.

[15] Christian Bizer and Andreas Schultz. The Berlin SPARQL
Benchmark. Int. J. Semantic Web Inf. Syst., 5(2):1�24, 2009.

[16] Dan Brickley and R. V. Guha. RDF Schema 1.1. W3C Rec-
ommendation, 25 February 2014. Retrieved Jan 10, 2017 from
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[17] Jean-Paul Calbimonte, Óscar Corcho, and Alasdair J. G. Gray.
Enabling ontology-based access to streaming data sources. In
International Semantic Web Conference, pages 96�111, 2010.

[18] Arun Chaganty and Percy Liang. How Much is 131 Million
Dollars? Putting Numbers in Perspective with Compositional
Descriptions. In ACL, pages 578�587, August 2016.

[19] Ashok K. Chandra and Philip M. Merlin. Optimal Implemen-
tation of Conjunctive Queries in Relational Data Bases. In Pro-
ceedings of the 9th ACM Symposium on Theory of Computing
(STOC'77), 1977.

[20] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo
Papotti, Nan Tang, and Yin Ye. KATARA: A data cleaning sys-

BIBLIOGRAPHY 169

tem powered by knowledge bases and crowdsourcing. In ACM
SIGMOD, 2015.

[21] Keith L. Clark. Negation as Failure. In Logic and Data Bases,
pages 113�141, 1978.

[22] E. F. Codd. Extending the database relational model to capture
more meaning. ACM Trans. Database Syst., 4(4):397�434, 1979.

[23] Edgar F. Codd. Relational completeness of data base sublan-
guages. In: R. Rustin (ed.): Database Systems: 65-98, Prentice
Hall and IBM Research Report RJ 987, San Jose, California,
1972.

[24] Mark Craven and Johan Kumlien. Constructing biological
knowledge bases by extracting information from text sources.
In Proceedings of the Seventh International Conference on In-
telligent Systems for Molecular Biology, pages 77�86, 1999.

[25] Richard Cyganiak, David Wood, and Markus Lanthaler, edi-
tors. RDF 1.1 Concepts and Abstract Syntax. W3C Recommen-
dation, 25 February 2014. Retrieved Jan 15, 2017 from https:

//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.
[26] Fariz Darari. Representing and querying negative knowledge in

RDF. In The Semantic Web: ESWC 2013 Satellite Events -
ESWC 2013 Satellite Events, Montpellier, France, May 26-30,
2013, Revised Selected Papers, pages 275�276, 2013.

[27] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon
Razniewski. Completeness statements about RDF data sources
and their use for query answering. In ISWC, 2013.

[28] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon
Razniewski. Completeness management for RDF data sources.
TWEB, 12(3):18:1�18:53, 2018.

[29] Fariz Darari, Werner Nutt, Simon Razniewski, and Sebastian
Rudolph. Completeness and soundness guarantees for conjunc-
tive SPARQL queries over RDF data sources with completeness
statements. Semantic Web, Pre-press(Pre-press):1�42, 2019.

[30] Fariz Darari, Radityo Eko Prasojo, and Werner Nutt. COR-
NER: A completeness reasoner for SPARQL queries over RDF
data sources. In ESWC Demos, 2014.

[31] Fariz Darari, Radityo Eko Prasojo, and Werner Nutt. Express-
ing no-value information in RDF. In Proceedings of the ISWC
2015 Posters & Demonstrations Track co-located with the 14th
International Semantic Web Conference (ISWC-2015), Bethle-

170 BIBLIOGRAPHY

hem, PA, USA, October 11, 2015., 2015.
[32] Fariz Darari, Simon Razniewski, and Werner Nutt. Bridging

the semantic gap between RDF and SPARQL using complete-
ness statements. In Proceedings of the ISWC 2014 Posters &
Demonstrations Track a track within the 13th International Se-
mantic Web Conference, ISWC 2014, Riva del Garda, Italy,
October 21, 2014., pages 269�272, 2014.

[33] Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, and
Werner Nutt. Enabling �ne-grained RDF data completeness
assessment. In ICWE, 2016.

[34] Luciano Del Corro and Rainer Gemulla. ClausIE: clause-based
open information extraction. In WWW, pages 355�366. ACM,
2013.

[35] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, and
Wei Zhang. Knowledge vault: a web-scale approach to proba-
bilistic knowledge fusion. In ACM SIGKDD 2014, pages 601�
610, 2014.

[36] Ivan Ermilov, Jens Lehmann, Michael Martin, and Sören Auer.
LODStats: The Data Web Census Dataset. In The Semantic
Web - ISWC 2016 - 15th International Semantic Web Confer-
ence, Kobe, Japan, October 17-21, 2016, Proceedings, Part II,
pages 38�46, 2016.

[37] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian
Mendez, and Denny Vrandecic. Introducing Wikidata to the
Linked Data Web. In The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, Riva del Garda, Italy,
October 19-23, 2014. Proceedings, Part I, pages 50�65, 2014.

[38] Christian Fürber and Martin Hepp. Towards a vocabulary for
data quality management in semantic web architectures. In
Proceedings of the 2011 EDBT/ICDT Workshop on Linked Web
Data Management, Uppsala, Sweden, March 25, 2011, pages 1�
8, 2011.

[39] Luis Galárraga, Simon Razniewski, Antoine Amarilli, and
Fabian M. Suchanek. Predicting completeness in knowledge
bases. In Conference on Web Search and Data Mining (WSDM),
2017.

[40] Luis Galárraga, Christina Te�ioudi, Katja Hose, and Fabian M
Suchanek. Fast rule mining in ontological knowledge bases with

BIBLIOGRAPHY 171

AMIE+. VLDB Journal, 24(6):707�730, 2015.
[41] Luis Antonio Galárraga, Christina Te�ioudi, Katja Hose, and

Fabian M. Suchanek. AMIE: Association Rule Mining under In-
complete Evidence in Ontological Knowledge Bases. In WWW
2013, pages 413�422, 2013.

[42] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman & Co., New York, USA, 1990.

[43] Michael Gelfond and Vladimir Lifschitz. Classical negation
in logic programs and disjunctive databases. New Generation
Comput., 9(3/4):365�386, 1991.

[44] Claudio Gutierrez, Daniel Hernández, Aidan Hogan, and Axel
Polleres. Certain Answers for SPARQL? In Proceedings of
the 10th Alberto Mendelzon International Workshop on Founda-
tions of Data Management, Panama City, Panama, May 8-10,
2016, 2016.

[45] Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A. Vais-
man. Temporal RDF. In The Semantic Web: Research and Ap-
plications, Second European Semantic Web Conference, ESWC
2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Pro-
ceedings, pages 93�107, 2005.

[46] Steve Harris and Andy Seaborne, editors. SPARQL 1.1
Query Language. W3C Recommendation, 21 March 2013.
Retrieved Feb 1, 2015 from http://www.w3.org/TR/2013/

REC-sparql11-query-20130321/.
[47] Andreas Harth and Sebastian Speiser. On Completeness Classes

for Query Evaluation on Linked Data. In Proceedings of the 26th

AAAI Conference on Arti�cial Intelligence (AAAI'12), 2012.
[48] Olaf Hartig. Provenance information in the web of data. In

Proceedings of the WWW2009 Workshop on Linked Data on
the Web, LDOW 2009, Madrid, Spain, April 20, 2009., 2009.

[49] Patrick J. Hayes and Peter F. Patel-Schneider, editors. RDF
1.1 Semantics. W3C Recommendation, 25 February 2014.
Retrieved Jan 15, 2017 from https://www.w3.org/TR/2014/

REC-rdf11-mt-20140225/.
[50] Tom Heath and Christian Bizer. Linked Data: Evolving the Web

into a Global Data Space. Synthesis Lectures on the Semantic
Web: Theory and Technology. Morgan & Claypool, 2011.

[51] Sven Helmer and Guido Moerkotte. A Performance Study of

172 BIBLIOGRAPHY

Four Index Structures for Set-Valued Attributes of Low Cardi-
nality. VLDB Journal, 12(3), 2003.

[52] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph, editors. OWL 2 Web On-
tology Language Primer (Second Edition). W3C Recommenda-
tion, 11 December 2012. Retrieved Jan 1, 2017 from https:

//www.w3.org/TR/owl2-primer/.
[53] Johannes Ho�art, Fabian M. Suchanek, Klaus Berberich, Ed-

win Lewis-Kelham, Gerard de Melo, and Gerhard Weikum.
YAGO2: Exploring and Querying World Knowledge in Time,
Space, Context, and Many Languages. In Proceedings of the
20th International Conference on World Wide Web (WWW'11),
2011.

[54] Jörg Ho�mann and Jana Koehler. A New Method to Index
and Query Sets. In Proceedings of the 16th International Joint
Conference on Arti�cial Intelligence (IJCAI'99), 1999.

[55] Aidan Hogan. Skolemising blank nodes while preserving iso-
morphism. In Proceedings of the 24th International Conference
on World Wide Web, WWW 2015, Florence, Italy, May 18-22,
2015, pages 430�440, 2015.

[56] Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel
Polleres. Everything you always wanted to know about blank
nodes. J. Web Sem., 27:42�69, 2014.

[57] Yusra Ibrahim, Mirek Riedewald, and Gerhard Weikum. Mak-
ing sense of entities and quantities in web tables. In CIKM,
pages 1703�1712, 2016.

[58] Robin Keskisärkkä and Eva Blomqvist. Event object bound-
aries in RDF streams. In Proceedings of the 2nd Interna-
tional Workshop on Ordering and Reasoning, OrdRing 2013,
Co-located with the 12th International Semantic Web Confer-
ence (ISWC 2013), Sydney, Australia, October 22nd, 2013,
pages 37�42, 2013.

[59] Graham Klyne and Jeremy J. Carroll, editors. Resource
Description Framework (RDF): Concepts and Abstract Syn-
tax. W3C Recommendation, 10 February 2004. Re-
trieved Feb 1, 2015 from http://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/.
[60] Holger Knublauch and Dimitris Kontokostas, editors. Shapes

Constraint Language (SHACL). W3C Candidate Recom-

BIBLIOGRAPHY 173

mendation, 11 April 2017. Retrieved May 20, 2017 from
https://www.w3.org/TR/2017/CR-shacl-20170411/.

[61] Mitchell Koch, John Gilmer, Stephen Soderland, and Daniel S.
Weld. Type-aware distantly supervised relation extraction with
linked arguments. In EMNLP, pages 1891�1901, 2014.

[62] Taku Kudo. CRF++: Yet another CRF toolkit. Software avail-
able at http://crfpp. sourceforge.net, 2005.

[63] Timothy Lebo, Satya Sahoo, and Deborah McGuinness, edi-
tors. PROV-O: The PROV Ontology. W3C Candidate Recom-
mendation, 11 December 2012. Retrieved May 27, 2016 from
https://www.w3.org/TR/2012/CR-prov-o-20121211/.

[64] Alon Y. Levy. Obtaining complete answers from incomplete
databases. In VLDB, 1996.

[65] Xiao Ling and Daniel S Weld. Temporal information extraction.
In AAAI, volume 10, pages 1385�1390, 2010.

[66] Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine
Zimmermann. AnQL: SPARQLing Up Annotated RDFS. In
The Semantic Web - ISWC 2010 - 9th International Semantic
Web Conference, ISWC 2010, Shanghai, China, November 7-
11, 2010, Revised Selected Papers, Part I, pages 518�533, 2010.

[67] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-based
data access with closed predicates is inherently intractable
(sometimes). In IJCAI, 2013.

[68] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-
mediated queries with closed predicates. In Proceedings of the
Twenty-Fourth International Joint Conference on Arti�cial In-
telligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 3120�3126, 2015.

[69] Aman Madaan, Ashish Mittal, G Ramakrishnan Mausam,
Ganesh Ramakrishnan, and Sunita Sarawagi. Numerical re-
lation extraction with minimal supervision. In AAAI, pages
2764�2771, 2016.

[70] Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David McClosky. The
Stanford CoreNLP natural language processing toolkit. ACL
(System Demonstrations), pages 55�60, 2014.

[71] Frank Manola and Eric Miller, editors. RDF Primer. W3C Rec-
ommendation, 10 February 2004. Retrieved Jul 31, 2016 from
https://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

174 BIBLIOGRAPHY

[72] Mausam, Michael Schmitz, Stephen Soderland, Robert Bart,
and Oren Etzioni. Open language learning for information ex-
traction. In EMNLP, pages 523�534, 2012.

[73] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer.
Sieve: Linked Data quality assessment and fusion. In Joint
EDBT/ICDT Workshops, 2012.

[74] Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David
Gondek. Distant supervision for relation extraction with an
incomplete knowledge base. In NAACL, pages 777�782, June
2013.

[75] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Dis-
tant supervision for relation extraction without labeled data. In
ACL, pages 1003�1011, 2009.

[76] Paramita Mirza, Simon Razniewski, Fariz Darari, and Gerhard
Weikum. Cardinal virtues: Extracting relation cardinalities
from text. In ACL (Short Papers), 2017.

[77] Paramita Mirza, Simon Razniewski, Fariz Darari, and Gerhard
Weikum. Enriching knowledge bases with counting quanti�ers.
In The Semantic Web - ISWC 2018 - 17th International Seman-
tic Web Conference, Monterey, CA, USA, October 8-12, 2018,
Proceedings, Part I, pages 179�197, 2018.

[78] Paramita Mirza, Simon Razniewski, and Werner Nutt. Expand-
ing Wikidataâ��s parenthood information by 178%, or how to
mine relation cardinalities. ISWC Posters & Demos, 2016.

[79] Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka
Jr., Partha Pratim Talukdar, Justin Betteridge, Andrew Carl-
son, Bhavana Dalvi Mishra, Matthew Gardner, Bryan Kisiel,
Jayant Krishnamurthy, Ni Lao, Kathryn Mazaitis, Thahir Mo-
hamed, Ndapandula Nakashole, Emmanouil Antonios Platan-
ios, Alan Ritter, Mehdi Samadi, Burr Settles, Richard C. Wang,
Derry Tanti Wijaya, Abhinav Gupta, Xinlei Chen, Abulhair
Saparov, Malcolm Greaves, and Joel Welling. Never-ending
learning. In AAAI, pages 2302�2310, 2015.

[80] Amihai Motro. Integrity = Validity + Completeness. ACM
Trans. Database Syst., 14(4), 1989.

[81] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Simple and
e�cient minimal RDFS. J. Web Sem., 7(3):220�234, 2009.

[82] Sebastian Neumaier, Jürgen Umbrich, Josiane Xavier Parreira,
and Axel Polleres. Multi-level semantic labelling of numerical

BIBLIOGRAPHY 175

values. In ISWC, pages 428�445, 2016.
[83] Nhung Ngo, Magdalena Ortiz, and Mantas Simkus. Closed

predicates in description logics: Results on combined complex-
ity. In Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fifteenth International Conference, KR
2016, Cape Town, South Africa, April 25-29, 2016., pages 237�
246, 2016.

[84] Natasha Noy and Alan Rector, editors. De�ning N-ary Re-
lations on the Semantic Web. W3C Working Group Note, 12
April 2006. Retrieved Jan 10, 2017 from https://www.w3.org/

TR/2006/NOTE-swbp-n-aryRelations-20060412/.
[85] Thomas Palomares, Youssef Ahres, Juhana Kangaspunta, and

Christopher Ré. Wikipedia knowledge graph with DeepDive.
In ICWSM, pages 65�71, 2016.

[86] Heiko Paulheim. Identifying wrong links between datasets by
multi-dimensional outlier detection. InWoDOOM, pages 27�38,
2014.

[87] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and
Manfred Hauswirth. A Native and Adaptive Approach for Uni-
�ed Processing of Linked Streams and Linked Data. In Inter-
national Semantic Web Conference, pages 370�388, 2011.

[88] Axel Polleres, Cristina Feier, and Andreas Harth. Rules with
contextually scoped negation. In ESWC, 2006.

[89] Axel Polleres, Aidan Hogan, Renaud Delbru, and Jürgen Um-
brich. RDFS and OWL reasoning for linked data. In Reasoning
Web. Semantic Technologies for Intelligent Data Access - 9th
International Summer School 2013, Mannheim, Germany, July
30 - August 2, 2013. Proceedings, pages 91�149, 2013.

[90] Radityo Eko Prasojo, Fariz Darari, Simon Razniewski, and
Werner Nutt. Managing and Consuming Completeness In-
formation for Wikidata Using COOL-WD. In Proceedings of
the 7th International Workshop on Consuming Linked Data
co-located with 15th International Semantic Web Conference,
COLD@ISWC 2015, Kobe, Japan, October 18, 2016., 2016.

[91] Eric Prud'hommeaux and Carlos Buil-Aranda, editors.
SPARQL 1.1 Federated Query. W3C Recommendation, 21
March 2013. Retrieved Jan 10, 2017 from https://www.w3.

org/TR/sparql11-federated-query/.
[92] Eric Prudhommeaux and Gavin Carothers, editors. RDF 1.1

176 BIBLIOGRAPHY

Turtle. W3C Recommendation, 25 February 2014. Retrieved
Jan 1, 2017 from https://www.w3.org/TR/turtle/.

[93] Eric Prud'hommeaux and Andy Seaborne, editors. SPARQL
Query Language for RDF. W3C Recommendation, 15 January
2008.

[94] Andrea Pugliese, Octavian Udrea, and V. S. Subrahmanian.
Scaling RDF with time. In Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China,
April 21-25, 2008, pages 605�614, 2008.

[95] Simon Razniewski, Flip Korn, Werner Nutt, and Divesh Srivas-
tava. Identifying the extent of completeness of query answers
over partially complete databases. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 561�576, 2015.

[96] Simon Razniewski and Werner Nutt. Completeness of queries
over incomplete databases. PVLDB, 4(11):749�760, 2011.

[97] Simon Razniewski and Werner Nutt. Assessing Query
Completeness over Incomplete Databases. In Unpublished
manuscript, 2015.

[98] Simon Razniewski, Fabian M. Suchanek, and Werner Nutt. But
what do we actually know? In AKBC Workshop at NAACL,
2016.

[99] Raymond Reiter. On closed world data bases. In Hervé Gallaire
and Jack Minker, editors, Logic and Data Bases, pages 55�76.
Springer US, Boston, MA, 1978.

[100] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan,
Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. LSQ: The
Linked SPARQL Queries Dataset. In ISWC, 2015.

[101] Ognjen Savkovic, Paramita Mirza, Sergey Paramonov, and
Werner Nutt. MAGIK: managing completeness of data. In
CIKM Demos, 2012.

[102] Iztok Savnik. Index Data Structure for Fast Subset and Su-
perset Queries. In International Cross Domain Conference and
Workshop (CD-ARES'13), 2013.

[103] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig,
Andreas Schwarte, and Thanh Tran. FedBench: A Benchmark
Suite for Federated Semantic Data Query Processing. In ISWC,
2011.

BIBLIOGRAPHY 177

[104] Michael Schmidt, Thomas Hornung, Michael Meier, Christoph
Pinkel, and Georg Lausen. SP2Bench: A SPARQL Performance
Benchmark. In Semantic Web Information Management - A
Model-Based Perspective, 2009.

[105] Inanç Seylan, Enrico Franconi, and Jos de Bruijn. E�ective
Query Rewriting with Ontologies over DBoxes. In IJCAI 2009,
Proceedings of the 21st International Joint Conference on Ar-
ti�cial Intelligence, Pasadena, California, USA, July 11-17,
2009, pages 923�925, 2009.

[106] Robert Speer and Catherine Havasi. Representing General Re-
lational Knowledge in ConceptNet 5. In LREC, 2012.

[107] Jannik Strötgen and Michael Gertz. Heideltime: High qual-
ity rule-based extraction and normalization of temporal expres-
sions. In SemEval Workshop, pages 321�324, 2010.

[108] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum.
YAGO: a core of semantic knowledge. WWW, pages 697�706,
2007.

[109] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and
Christopher D. Manning. Multi-instance multi-label learning
for relation extraction. In ACL, pages 455�465, 2012.

[110] Jonas Tappolet and Abraham Bernstein. Applied temporal
RDF: e�cient temporal querying of RDF data with SPARQL.
In The Semantic Web: Research and Applications, 6th Euro-
pean Semantic Web Conference, ESWC 2009, Heraklion, Crete,
Greece, May 31-June 4, 2009, Proceedings, pages 308�322, 2009.

[111] Denny Vrande£i¢ and Markus Krötzsch. Wikidata: a free
collaborative knowledgebase. Communications of the ACM,
57(10):78�85, 2014.

[112] Richard Y. Wang and Diane M. Strong. Beyond accuracy:
What data quality means to data consumers. J. of Manage-
ment Information Systems, 12(4):5�33, 1996.

[113] Wei Xu, Raphael Ho�mann, Le Zhao, and Ralph Grishman.
Filling knowledge base gaps for distant supervision of relation
extraction. In ACL (short paper), pages 665�670, August 2013.

[114] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo
Pietrobon, Jens Lehmann, and Sören Auer. Quality assessment
for Linked Data: A Survey. Semantic Web, 7(1):63�93, 2016.

[115] Jiawei Zhang, Jianhui Chen, Junxing Zhu, Yi Chang, and
Philip S Yu. Link prediction with cardinality constraint. In

178 BIBLIOGRAPHY

WSDM, 2017.
[116] Justin Zobel, Alistair Mo�at, and Ron Sacks-Davis. An E�-

cient Indexing Technique for Full-Text Databases. In Proceed-
ings of the 18th International Conference on Very Large Data
Bases (VLDB'92), 1992.

Appendix A

Pre�x Declarations

Here we provide in Turtle syntax [92] the pre�x declarations of the
RDF snippets in this thesis. The pre�xes can be adapted accordingly
for the SPARQL snippets in this thesis.

@prefix c: <http://completeness.inf.unibz.it/ns#> .

@prefix coolwd: <http://cool-wd.inf.unibz.it/resource/> .

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbp: <http://dbpedia.org/resource/> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix ex: <http://example.org/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix lv: <http://linkedmdb.org/void/> .

@prefix no: <http://completeness.inf.unibz.it/no-value#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix s: <http://schema.org/> .

@prefix sp: <http://spinrdf.org/sp#> .

@prefix spv: <http://completeness.inf.unibz.it/sp-vocab#> .

@prefix void: <http://rdfs.org/ns/void#> .

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

179

Compl((farizPhDThesis , hasPage, ?page)).

	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Formal Framework
	Chapter 3 Data-aware Completeness Reasoning
	Chapter 4 Optimizing Completeness Reasoning
	Chapter 5 Soundness Reasoning
	Chapter 6 Time-aware Completeness Reasoning
	Chapter 7 Completeness Management Demon-strators
	Chapter 8 Extracting Relation Cardinalities from Text
	Chapter 9 Discussion
	Chapter 10 Conclusions and Future Directions
	Bibliography
	Appendix A

