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Preface

This book is concerned primarily with the exact dynamical properties of
one-dimensional quantum systems. As a crucial property of exactly soluble
models, we assume that the interaction decays as the inverse square of the
distance. The family of these models is called the inverse-square interaction
(1/r2) models. In the one-dimensional continuum space, the model is often
referred to as the Calogero–Sutherland model. In the one-dimensional lat-
tice, on the other hand, the first 1/r2 models appeared as a spin model,
which is now called the Haldane–Shastry model. Soon after the discovery of
the Haldane–Shastry model, it was recognized that the imposition of super-
symmetry allows the model to acquire the charge degrees of freedom, while
keeping the exactly soluble nature. The resultant one-dimensional electron
model is called the supersymmetric t–J model. Various generalizations of
these models have been proposed.

Recent experimental progress in quasi-one-dimensional electron systems,
especially by neutron scattering and photoemission spectroscopy, has en-
hanced the theoretical motivation for exploring the dynamics over a wide
frequency and momentum range. The 1/r2 models are ideally suited to meet
this situation, since the model allows derivation of exact dynamical informa-
tion most easily and transparently. In spite of the special appearance of the
1/r2 models, the intuition thus obtained contributes greatly to understand-
ing low-dimensional physics in general. This kind of approach to dynamics
is complementary to another powerful approach using the bosonization and
conformal field theory. The latter is especially suitable to asymptotics of
correlation functions at long spatial and temporal distances.

The literature relevant to the 1/r2 models is vast and scattered. Moreover,
many papers include a difficult-looking mathematical set-up. This situation
may cause newcomers to see a barrier too high to jump over before enjoying
the rich and beautiful ingredients of the 1/r2 models. For several years, the
authors have realized the necessity of a comprehensive treatise. This book
is intended to be accessible to non-specialists who are interested in strongly
correlated quantum systems. It explains the wonderfully beautiful physics
and related mathematics in a self-contained manner, without assuming spe-
cial knowledge on theories in one dimension. In order to make a coherent
discussion, we have included many results that are newly derived for this
book, in addition to summarizing what has been reported in the literature.
We hope that this book is useful not only to experts already working in the
field, but also to graduate students and researchers trying to delve into the
fascinating physics in low dimensions.

xi
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Introduction

1.1 Motivation

Interactions in many-body systems bring about collective phenomena such as
superconductivity and magnetism. In many cases, simple mean-field theory
provides a basic understanding of these phenomena. In fermion systems
in one dimension, however, neither the mean-field theory nor perturbation
theory works if it starts from the non-interacting fermions. This is because
the interaction effects in one dimension are much stronger than those in
higher dimensions. Intuitively speaking, two particles cannot avoid collision
in a single-way track in contrast with two and three dimensions. Thus the
interaction effects appear in a drastic way in one dimension.

Another aspect in one dimension, which overcompensates the difficulty
of perturbation and mean-field theories, is that a complete account of
interaction effects is possible under certain conditions. The class of systems
satisfying such conditions is referred to as exactly solvable. Soon after the
establishment of quantum mechanics, Bethe solved exactly the Heisenberg
spin model in one dimension [28]. The basic idea of the solution is now
called the Bethe ansatz. Since then, theoretical physics in one dimension has
developed into a magnificent edifice, including sophisticated mathematical
techniques. In many cases, the eigenfunctions derived by the Bethe ansatz
consist of plane waves that are defined stepwise for each spatial configuration
of particles. Since the coefficients of plane waves depend on the configura-
tion, the property of the wave function cannot be made explicit without
detailed knowledge of these coefficients. We mention some of the recent
monographs on the Bethe ansatz and its extensions [54, 118, 179]. A com-
prehensive account on exactly solvable models has recently been given by
Sutherland [178].

1



2 Introduction

The models solved by the Bethe ansatz are characterized by short-range
interactions such as on-site repulsion or the next-nearest-neighbor exchange
interaction. On the other hand, it was found by Calogero that another class
of models also permits exact solution [34, 35]. The models have repulsive
interactions decaying as the inverse square of the interparticle distance r.
In order to prevent the blow-up of particles toward infinite distance, an
attractive harmonic potential can be added to the system. Alternatively,
one takes the periodic boundary condition with the system length L, and
employs superposition of the 1/r2 potential as

∞∑
n=−∞

1
(r + nL)2

=
(

π/L

sinπr/L

)2

. (1.1)

Then by construction the system does not blow up, while keeping the trans-
lational invariance. This model was proposed by Sutherland [172, 174], and
hence is called the Sutherland model. If one refers to both models simulta-
neously, it seems appropriate to call them the Calogero–Sutherland models.
Some years later, Moser analyzed the classic mechanical version of these
models mathematically [135], and his name is sometimes added in referring
to the models.

The 1/r2 models have much simpler mathematical (algebraic) structure,
compared to the conventional integrable models solved by the Bethe ansatz.
This simplicity enables us to derive explicitly the exact expressions of
dynamical correlation functions such as the Green function, the density–
density correlation function, and the spin–spin correlation function. The
resultant expressions are remarkably simple, but still keep nontrivial fea-
tures inherent to interacting particle systems. Further, the mathematical
tools used in the derivation are far from complicated. Thus, the 1/r2 models
provide comprehensible examples for studying dynamics of interacting
particles.

In contrast with the Fermi liquid in three dimensions, the one-dimensional
fermions behave as the Tomonaga–Luttinger liquid in the limit of long time
and long distance. Here the conformal field theory (CFT) describes nicely
the asymptotics of correlation functions. According to the CFT, characteri-
zation of the interaction parameters can be done through analysis of the
finite-size correction of the ground state energy. Since the 1/r2 models
allow for calculation of the finite-size correction much more easily than
the Bethe-solvable models, the 1/r2 models serve as an instructive exam-
ple to visualize how the CFT works in the Tomonaga–Luttinger liquid.
The importance of the 1/r2 models does not, however, lie only in the mathe-
matical structure. Through the study of the 1/r2 models, one can also learn
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about the dynamics of the correlated electrons in real systems. For example,
the neutron scattering intensity of S = 1/2 antiferromagnetic spin chain
reveals a similarity to the spectral function of the spin correlation function
of the 1/r2 exchange interaction model, which is called the Haldane–Shastry
model [77, 161]. A related model with charge degrees of freedom is still
exactly solvable provided a supersymmetry is imposed [119]. The spin–
charge separation of one-dimensional electrons can then be explicitly seen in
the spectral weight of the Green function of the supersymmetric t–J model.

1.2 One-dimensional interaction as a disguise

As we shall explain in detail, the wave function in the ground state of the
1/r2 models can be derived explicitly as the product of two-body wave func-
tions. This feature is quite in contrast with cases solved by the Bethe ansatz.
The special feature of the 1/r2 interaction already appears in most elemen-
tary quantum mechanics. Let us consider a free particle with mass m = 1/2
in the three-dimensional space. The Hamiltonian is given by

H = − ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
= − 1

r2

∂

∂r
r2 ∂

∂r
+

l2

r2
, (1.2)

where r2 = x2 + y2 + z2, and l is the angular momentum operator. We
take the units ~ = 1 throughout the book. In the polar coordinates, there
appears a fictitious potential leading to the centrifugal force. Namely, the
free motion in higher dimensions generates a fictitious potential if the radial
motion alone is extracted [146]. Conversely, the potential l(l + 1)/r2 in the
radial coordinate is a disguise of free motion in higher dimensions. The form
of the radial kinetic energy in (1.2) is interpreted as coming from the metric
of the one-dimensional space. Pursuing this idea in many-body systems,
one gains a perspective that interactions in exactly solvable models are a
disguise of some kind of free motion in another space [146]. Alternatively,
a matrix model has been constructed where the coordinates of N particles
are regarded as eigenvalues of an N ×N matrix. The transformation matrix
for diagonalization appears as the 1/r2 potential [151].

In the early stage of the Tomonaga–Luttinger theory, all low-energy ex-
citations are regarded as bosons. Actually, the statistics of excitations need
not be restricted to bosons. In some cases, the interaction among bosons
is absorbed into a new statistics describing exclusion of available one-body
states. This idea applies to many interacting systems approximately, and
to the 1/r2 models exactly. The exclusion includes fermions and bosons
as special cases. Generally, however, the statistics is fractional. In order to
account for the resultant quasi-particles obeying fractional exclusion



4 Introduction

statistics, concepts such as the Yangian symmetry and the supersymmetry
turn out to be useful. These new concepts make it much easier to understand
exact dynamics (and also thermodynamics) intuitively. Our key strategy in
this respect is to rely on the picture of quasi-particles obeying fractional
exclusion statistics. In terms of these exotic quasi-particles, the dynamics of
one-dimensional systems can be understood intuitively.

In the last decades, intensive study of the 1/r2 models has brought
about deep intuition into the structure of the excitation spectrum in
one-dimensional systems in general. The most remarkable observation is
that elementary excitations behave as free particles subject to certain sta-
tistical constraints. As a result, these particles obey the statistics of neither
fermions nor bosons. In other words, the exchange of two excitations leads
to a scattering phase shift which is independent of their momenta, but which
is neither π (antisymmetric) nor 0 (symmetric).

The situation may become clearer if we make an analogy to the Fermi
liquid theory. The excitations in the Bethe-soluble models have a phase
shift that does depend on their momenta. Therefore, certain parameters
are necessary to characterize the momentum dependence. These parame-
ters are analogous to Landau parameters that describe interactions between
the quasi-particles in the Fermi liquid. In this analogy, the excitations in
the 1/r2 models do not need the analogue of the Landau parameters, and
are comparable to free fermions except for the statistics. Just as the under-
standing of metals in general has been much facilitated by the free-electron
model, the dynamics in one dimension should be much better understood
by reference to “free” models, i.e., the 1/r2 models.

1.3 Two-body problem with 1/r2 interaction

We demonstrate the peculiar features of the 1/r2 model by taking the
simplest example. Let us consider the two-body problem with Hamiltonian

H2 = − ∂2

∂x2
1

− ∂2

∂x2
2

+ g

[
π/L

sinπ(x1 − x2)/L

]2

. (1.3)

For the moment we assume that the two particles are distinguishable, and do
not care about the symmetry of the wave function. If the distance |x1 − x2|
is much smaller than L, the interaction reduces to g/(x1 − x2)2. The center
of gravity X = (x1 + x2)/2 has free motion with wave number Q. In terms
of X and the relative coordinate x = x1−x2, the wave function is factorized
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into the form ψg(x1, x2) = φg(x) exp(iQX), where φg(x) is an eigenfunction
of a one-body Hamiltonian H1 given by

H1(x) = H2 −
1
2
Q2 = −2

∂2

∂x2
+ g

(
π/L

sinπx/L

)2

. (1.4)

Instead of solving (1.4) in the standard way, we discuss alternative ideas
which are useful in generalizing to the many-body problem. Let us first
examine the wave function φg(x) for |x| ¿ L where the potential in H1

tends to g/x2. Then H1(x) has the scaling property

H1(ax) = a−2H1(x).

An eigenfunction should also have the scaling property for x ∼ 0

φg(ax) = aλφg(x), (1.5)

with certain number λ. The only solution with property (1.5) is the
power-law function φg(x) = xλ. Upon differentiation twice, we obtain
λ(λ − 1)φg(x)/x2. By taking λ(λ − 1) = g/2, the kinetic term cancels the
potential term. Then φg(x) turns out to be the eigenfunction of H1. Since we
have λ = (1 ±

√
1 + 2g)/2, only the case of g ≥ −1/2 is meaningful. Other-

wise, the attractive potential causes the system to collapse as in the classical
system, and the ground state cannot be defined. This situation has already
been discussed by Landau and Lifshitz [122] and by Sutherland [172]. In the
following we only consider the case g > 0, and take the positive λ as the
relevant solution. We can extend the range of x so as to be consistent with
the periodic boundary condition, simply by replacing xα by | sinπx/L|α.

It is possible to derive all the eigenvalues and eigenfunctions by using
the factorization method [89], which has been refined under the name of
“supersymmetric quantum mechanics” [192]. We introduce a variable η ≡
πx/L and rewrite (1.4) as

H1 = 2
(

L

π

)2 [
p2

η + Wλ(η)2 + W ′
λ(η) + λ2

]
≡ 2

(
L

π

)2

Hλ, (1.6)

where pη = −i∂/∂η and Wλ(η) = λ cot η. Then Hλ takes a factorized form

Hλ = (pη − iWλ)(pη + iWλ) + λ2 ≡ A†
λAλ + λ2. (1.7)

An eigenfunction of Hλ is given by

φλ(η) = sinλ η = exp[Uλ(η)], (1.8)

where we have introduced Uλ(η) = λ ln sin η. This gives U ′
λ(η) = Wλ(η), and

it is evident that Aλφλ(η) = 0. Since A†
λAλ is a non-negative operator, there
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are no states with lower energy. Hence, φλ gives the ground state of Hλ with
energy λ2.

We note the property

AλA†
λ = p2

η + Wλ(η)2 − W ′
λ(η) = p2

η +
λ(λ + 1)
sin2 η

− λ2

= A†
λ+1Aλ+1 − λ2, (1.9)

which corresponds to the shift λ → λ + 1 in Hλ together with subtracting
the constant term λ2. Combination of (1.7) and (1.9) makes it possible to
derive all the excited states. Let us take the ground state φλ+1 of Hλ+1 with
the eigenvalue (λ + 1)2. Namely, we have

AλA†
λφλ+1 = [(λ + 1)2 − λ2]φλ+1. (1.10)

Applying A†
λ from the left, we obtain

A†
λAλA†

λφλ+1 = [(λ + 1)2 − λ2]A†
λφλ+1. (1.11)

Thus the state A†
λφλ+1 proves to be an excited state of A†

λAλ.
We now explain briefly the idea of the supersymmetric quantum mechan-

ics. We may treat the pair AλA†
λ and A†

λAλ as components of a 2×2 matrix:

Hpair =

(
A†

λAλ 0
0 AλA†

λ

)
= QQ† + Q†Q ≡ {Q,Q†}, (1.12)

where

Q =
(

0 0
Aλ 0

)
, Q† =

(
0 A†

λ

0 0

)
. (1.13)

The space of the 2 × 2 matrix can be regarded as a pseudo-spin spanned
by the Pauli matrices. Here Q and Q† have an analogy with spin-flips s± =
sx ± isy. Alternatively, we may include the pseudo-fermion operators f, f †

by the identification
1
2

(1 − σz) = f †f. (1.14)

Then the operators Q,Q† in (1.12) are written as

Q = f †Aλ, Q† = A†
λf. (1.15)

It is obvious that Q2 = (Q†)2 = 0 and

[Hpair, Q] = [Hpair, Q
†] = 0. (1.16)
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The last equality means that Hpair is invariant against the pseudo-spin
rotation, and the conserved quantity Q is called the supercharge. In this
framework, the degeneracy demonstrated by (1.11) is interpreted as a con-
sequence of the supersymmetry. The use of Q,Q† motivates us to refer to
the factorization method as “supersymmetric quantum mechanics”.

The operators Aλ and A†
λ have the commutation rule

[Aλ, A†
λ] = −2Wλ. (1.17)

In a special case of Wλ = −x/2, the commutation rule reduces to that
of bosonic creation and annihilation operators. Hence, Aλ and A†

λ can be
regarded as a generalization of bosonic operators.

Now we iterate the procedure of increasing λ by unity to obtain all excited
states. Let us use the fact A†

λAλ = Aλ−1A
†
λ−1 + (λ − 1)2 − λ2 as derived

from (1.9). After this substitution in (1.11), we multiply A†
λ−1 from the left

to obtain

A†
λ−1Aλ−1A

†
λ−1A

†
λφλ+1 = [(λ + 1)2 − (λ − 1)2]A†

λ−1A
†
λφλ+1, (1.18)

which shows that A†
λ−1A

†
λφλ+1 is an excited state of A†

λ−1Aλ−1. This process
can be iterated. The wave function φn+1;λ+1 ≡ A†

λ−n · · ·A
†
λ−1A

†
λφλ+1 with

n ≥ 0 satisfies the equation

A†
λ−nAλ−nφn+1;λ+1 = [(λ + 1)2 − (λ − n)2]φn+1;λ+1. (1.19)

Equivalently we obtain for m ≥ 1

Hλφm;λ = (λ + m)2φm;λ. (1.20)

We identify φ0;λ as φλ to include the case of m = 0 in the above. In this way
we can derive all the excited states of Hλ starting from the ground state
of Hλ′ with appropriate λ′ > λ. Figure 1.1 shows the situation where the
ordinate κ gives the energy as κ2.

Conversely, starting from a free state φm;0 = sinmη at λ = 0, we can con-
struct the eigenfunctions of Hλ as φm;λ = Aλ−1 · · ·A1A0φm+λ;0. Figure 1.1
also shows this inverse direction of construction. Note that the spectrum of
Hλ above the ground-state energy λ2 is the same as that of the free system.
To derive φn;λ+n explicitly, we use the relation A†

λ = exp(−Uλ)pη exp(Uλ)
and obtain

φn;λ+n = exp(−Uλ+1)pη exp(Uλ+1 − Uλ+2) · · · pη exp(Uλ+n)φλ+n

= exp(−Uλ)[exp(−U1)pη]n exp(Uλ+n)φλ+n

= φλ × (1 − y2)−λ

(
−i

d
dy

)n

(1 − y2)λ+n, (1.21)
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λ

κ

0 2 4 6

A†
4A†

2 A†
3

A0 A1

κ = λ

Fig. 1.1. The spectrum of the one-body Sutherland model Hλ. The creation oper-
ator A†

λ generates an excited state for Hλ−1 from an eigenstate of Hλ. These two
states are degenerate, and their energy is given by κ2. The annihilation operator
Aλ generates an eigenstate of Hλ+1 from that of Hλ.

.

where y = cos η. The last expression includes, apart from the normaliza-
tion factor, the Rodrigues formula for the nth-order Gegenbauer polynomial
C

λ+1/2
n (y). Namely, we obtain

φn;λ+n(η) = Cλ+1/2
n (cos η)φλ(η). (1.22)

The generating function of Gegenbauer polynomials is given by

(1 − 2yt + t2)−λ−1/2 =
∞∑

n=0

Cλ+1/2
n (y)tn. (1.23)

In the special case λ = 0, it is reduced to the Legendre polynomial C
1/2
n (y) =

Pn(y). Because of the similarity to the Legendre polynomial, C
λ+1/2
n (y) is

also called the ultraspherical polynomial.
Let us come back to the two-body system. For each particle j, we introduce

the complex coordinate zj = exp(2πixj/L) which specifies a point on the
unit circle. The wave function of two particles is written as

ψn;λ+n(z1, z2) = exp(iQX)φn;λ+n(η), (1.24)

where η = π(x1 − x2)/L. We assert that ψn;λ+n(z1, z2) is a homogeneous
polynomial of z1 and z2 times an integer (or half-integer) power of z1z2.
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The sum q of powers of z1 and z2 in ψn;λ+n(z1, z2) is related to the total
momentum Q as q = LQ/(2π). To prove the assertion, we note the relations

2 cos η = (z1/z2)1/2 + (z2/z1)1/2 = (z1z2)−1/2(z1 + z2), (1.25)

2i sin η = (z1/z2)1/2 − (z2/z1)1/2 = (z1z2)−1/2(z1 − z2), (1.26)

exp(iQX) = (z1z2)q/2. (1.27)

Since φn;λ+n(η) is a polynomial of cos η and sin η, it is a polynomial of z1

and z2, times an integer or half-integer power of z1z2. Thus the assertion is
proved. The homogeneous polynomial of z1 and z2, which originates from a
Gegenbauer polynomial of cos η, corresponds to a special case of the Jack
polynomial. The latter is defined for arbitrary number n of complex variables
z1, z2, . . . , zn, as will be discussed in detail later.

We now proceed to the case of two identical (indistinguishable) particles. If
the particles are bosons, we should take symmetric (even) wave functions. If
the particles are spinless fermions, on the other hand, we take antisymmetric
(odd) wave functions. For example,

φλ(x) = | sin η|λ−1 sin η (1.28)

describes the ground state of two fermions for H2. If fermions have spin 1/2,
the spatial part of the wave functions is either symmetric (spin singlet) or
antisymmetric (spin triplet). In the case of bosons, the even–odd property
becomes the opposite to that of fermions; exchange of spatial and spin
coordinates at the same time gives the same wave function as that before
the exchange. In order to discuss the case with internal degrees of freedom,
we consider a generalized model as given by

H2;K = − ∂2

∂x2
1

− ∂2

∂x2
2

+
(π

L

)2 2λ(λ − K12)
sin2 π(x1 − x2)/L

, (1.29)

where we have introduced the coordinate exchange operator K12. As a
complementary factor, we also introduce the spin permutation operator
P12 = 2S1 · S2 + 1/2. They act on a two-body wave function with spin
coordinates σ1, σ2 as

K12ψ(x1, x2;σ1, σ2) = ψ(x2, x1;σ1, σ2), (1.30)

P12ψ(x1, x2; σ1, σ2) = ψ(x1, x2; σ2, σ1), (1.31)

P12K12ψ(x1, x2;σ1, σ2) = ψ(x2, x1;σ2, σ1) = ±ψ(x1, x2; σ1, σ2). (1.32)

Namely, we have K12P12 =±1 depending on whether the particles are bosons
or fermions.
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For symmetric spatial wave functions with K12 = 1, we know from (1.4)
and (1.20) that the spectrum is given by

En =
1
2
Q2 + 2

(π

L

)2
(n + λ)2 = k2

+ + k2
−, (1.33)

where k± = [Q/2 ± π(n + λ)/L]2 with n ≥ 0. Note that En can be written
as if it consists of the kinetic energy of free particles with momenta k±.
The interaction effect appears only in the restriction k+ − k− ≥ 2πλ/L,
which becomes the same as the Pauli exclusion principle in the case of
λ = 1. For the antisymmetric (odd) wave function with K12 = −1, we
have λ(λ + 1) in (1.29), and accordingly replace λ → λ + 1 in (1.33).
This is alternatively interpreted as taking the excitation level n one step
higher. The odd-function ground state in particular is given by E1, where
n = 1 is the smallest degree of antisymmetric polynomials of z1 and z2

with zj = exp(2iπxj/L). If there are spin degrees of freedom for a pair of
fermions, the ground state energy becomes E0 for the spin singlet, and E1

for the triplet.
We have thus found that different symmetries of the wave functions appear

only as a shift of energy levels. In particular, the difference between the
singlet and triplet states in each ground state is given by

Eg(S = 1) − Eg(S = 0) = ± (2π/L)2 (λ + 1/2), (1.34)

where the plus sign is for fermions and the minus sign for bosons. The signs
mean the antiferromagnetic interaction for fermions and the ferromagnetic
interaction for bosons. With use of K12P12 = ±1 for identical particles, we
obtain the Hamiltonian equivalent to H2;K as

H2;P = − ∂2

∂x2
1

− ∂2

∂x2
2

+
(

L

π

)2 2λ(λ ± P12)
sin2 π(x1 − x2)/L

, (1.35)

where the plus sign is for fermions and the minus sign for bosons. By con-
struction, this model has both the charge and the spin degrees of freedom.
One can extract only the spin degrees of freedom by taking a limiting pro-
cedure as explained next.

1.4 Freezing spatial motion

Let us consider the limiting case λ À 1 in H2;K . Accordingly φλ(x) tends
to a delta function peaked at x = L/2. This limit for a large number of
particles is relevant to the spin chain and the supersymmetric (SUSY) t–J
model since the particles should crystallize to avoid the repulsion, leaving
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only the center of mass motion. The excitation spectrum of two bosons with
Q = 0 is given by

En − E0 = 2 (π/L)2 [(n + λ)2 − λ2] = (2π/L)2 (nλ + n2/2). (1.36)

Thus the relative motion in the leading order of λ is linear in n. In the spinless
case, this motion corresponds to a small vibration around the equilibrium
distance x = L/2, analogous to phonons in the many-body system. If one
removes this part, one is left with dynamics of internal degrees of freedom
only. For example, the spin exchange is described by

1
λ

H2;S =
(π

L

)2 2(P12 − 1)
sin2 π(x1 − x2)/L

=
(

2π

L

)2 (
S1 · S2 −

1
4

)
, (1.37)

where |x1 − x2| = L/2. This example shows that the spin chain with the
1/r2 exchange interaction is closely related to the continuum model with
SU(2) internal degrees of freedom.

In the case of many-body problem with N particles, it is easier to analyze
HN ;K than HN ;P since the energy spectrum can be derived by generalization
of the N = 2 case. For example, the grand partition function ZN ;K of HN ;K

can be derived for any internal symmetry. The grand partition function ZN

of the spinless case of HN ;K can also be derived easily. Then the grand parti-
tion function ZN ;S of the spin chain, or its generalizations, can be derived as
the limit ZN ;S = limλ→∞ ZN ;K/ZN . The degrees of freedom for the spatial
motion are projected out in this limiting procedure. We shall see later that
the spin chain has the Yangian symmetry related to traceless 2× 2 matrices
sl2, while general 2 × 2 matrices gl2 are relevant with the spatial motion.
The Yangian symmetry is explained in detail later in this book. If one fully
exploits the sl2 Yangian symmetry, there is an alternative way to derive all
the spectrum of the spin chain from knowledge of the highest-weight states
of the sl2 Yangian.

1.5 From spin permutation to graded permutation

The spin permutation operator is written as

Pij = 2Si · Sj +
1
2
ninj =

∑
σσ′

Xσσ′
i Xσ′σ

j , (1.38)

where ni is the electron number operator, which is always unity in spin
systems. We have introduced the X-operators defined by Xαβ = |α〉〈β|,
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which describe transition from one state β to another state α at a given
site. The spin-flip is described by

S−
i = X↓↑

i , S+
i = X↑↓

i . (1.39)

On the other hand, the hopping term is described by

PciσP = X0σ
i , Pc†iσP = Xσ0

i , (1.40)

with P being the projection operator excluding the doubly occupied site. We
can combine the spin permutation and the hopping into a single operator:

P̃ij = Pij − X00
i X00

j −
∑

σ

(Xσ0
i X0σ

j + X0σ
i X0σ

j )

=
∑
αβ

p(β)Xαβ
i Xβα

j , (1.41)

which is called the graded permutation operator because of the minus signs
involved. In the second line, we have introduced the sign factor p(β) = −1
for β = 0 and p(β) = 1 otherwise. Note that P̃ij includes X00

i representing
projection to the vacant state at site i.

In order to see the property of the graded permutation in the simplest
manner, let us consider a two-site system:

HSUSY = tP̃12. (1.42)

Figure 1.2 shows the energy levels of the two-site system with the number of
holes nh varying from 0 to 2. The singlet–triplet splitting is the same as the
bonding–antibonding splitting in this model. Moreover, the hole attraction
contained in (1.41) makes the two-hole state have the same energy as the
bonding state.

nh = 0 nh = 1 nh = 2

bonding

antibonding

singlet

triplet

attraction

t

−t

0

Fig. 1.2. Energy levels of the graded permutation operator for two sites. The
number of holes in the system is specified by nh.
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The degeneracy means that HSUSY is invariant not only under the global
SU(2) operation, but also under the global supersymmetry operation which
is generated by

Qσ = Xσ0
1 + Xσ0

2 (1.43)

and its Hermitian conjugate Q†
σ. These operators play a similar role as the

operators introduced by (1.15), and are properly called the supercharge. The
degeneracy in HSUSY originates from the commuting property

[P̃12, X
αβ
1 + Xαβ

2 ] = 0 (1.44)

for any combination of α, β =↑, ↓, 0. In Chapter 6 we discuss the supersym-
metric t–J model, which is the N -site version of (1.42).

1.6 Variants of 1/r2 systems

The original 1/r2 model proposed by Calogero [34,35] takes the form

HC = −
N∑

i=1

∂2

∂x2
i

+
∑
i>j

[
2(xi − xj)2 +

g

(xi − xj)2

]
, (1.45)

where the units of the spatial coordinate and the energy are taken so as to
adjust the strength for the harmonic potential. The wave function tends to
that of the Sutherland model as the distance xi − xj goes to zero. However,
the spectra of both models have an interesting difference as well as similarity.

Let us first consider the simplest case of N = 2. By introducing the relative
coordinate x = x1 − x2 and the center of gravity X = (x1 + x2)/2, one can
write the wave function in the product form ψg(x1, x2) = φg(x) exp(iQX) as
in the Sutherland model. The total momentum is given by Q. The relative
motion is described by

H1(x) = HC(N = 2) − 1
2
Q2 = −2

∂2

∂x2
+ 2x2 +

g

x2
, (1.46)

which is to be compared with (1.4). One can use the same factorization
technique to derive all energy levels and eigenfunctions. Namely, we put
g = 2λ(λ − 1) and write H1 ≡ 2Hλ as

Hλ = p2 + x2 +
λ(λ − 1)

x2
, (1.47)

with p = −i∂/∂x. In analogy with Section 1.3, we introduce the operator

Bλ = p − ix + i
λ

x
≡ p + iVλ(x) (1.48)
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and its Hermitian conjugate B†
λ = p − iVλ. Then Hλ can also be written as

Hλ = B†
λBλ + 2λ + 1. (1.49)

The ground state of Hλ is given by the (unnormalized) function

φλ(x) = |x|λ exp
(
−1

2
x2

)
≡ exp[Uλ(x)], (1.50)

where Uλ(x)′ = Vλ(x). Since we have Bλφλ = 0, the ground-state energy is
given by 2λ + 1. By using the property Hλ+1 = BλB†

λ + 2λ − 1 we obtain

BλB†
λφλ+1 = 4φλ+1. (1.51)

Application of B†
λ from the left on both sides of (1.51) shows that B†

λφλ+1

gives the first excited state of Hλ with eigenvalue 2λ + 5. In this way we
obtain the ladder of energy levels which looks like those in Fig. 1.1. Note
that in the Calogero model the ordinate is proportional to energy. The nth
excited state has the eigenvalue Eλ;n = 2λ + 1 + 4n, which increases by a
constant amount of four when n increases by one.

The explicit form of the wave function φλ;n(x) is given in terms of Uλ =
lnφλ by

φλ;n(x) = exp(−Uλ+1)p exp(Uλ+1 − Uλ+2) · · · p exp(Uλ+n)φλ+n

= exp(−Uλ)
(
−i
x

∂

∂x

)n

exp(Uλ+n)φλ+n

∝ φλ(x)L(λ)
n (x2), (1.52)

where we have used the Rodrigues formula for the associated Laguerre
polynomial

L(λ)
n (y) =

1
n!

y−λey dn

dyn
yn+λe−y. (1.53)

In the N -body case, the original Calogero model becomes awkward to
solve after separating the center of gravity. Although the harmonic poten-
tial can be rewritten in the same form in terms of the relative coordinates
known as the Jacobi coordinates [34], the 1/r2 repulsion has a complicated
dependence on relative coordinates. To circumvent the difficulty, Sutherland
modified the model as

HCS =
N∑

i=1

(
p2

i + x2
i

)
+

∑
i>j

λ(λ − 1)
(xi − xj)2

, (1.54)

where the mutual harmonic attraction is replaced by an external harmonic
potential. This model is called the Calogero–Sutherland model in the narrow
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sense. Note that the HCS in the one-body case N = 1 describes the relative
motion of HC with N = 2. The Calogero–Sutherland model has a simple
spectrum for any N , which derives from the one-body case, and also allows
the freezing limit as λ goes to infinity [58, 149]. The frozen positions of
particles are not equally distant, but correspond to zeros of the Nth-order
Hermite polynomial [150]. Because of these nice features, the model has
been actively investigated in the literature [88,95,190].

The most general expression of the 1/r2-type potential is given by

℘(x) =
1
x2

+
∑

m2+n2 6=0

[
1

(x − nL − iml)2
− 1

(nL + iml)2

]
, (1.55)

where n,m are integers. The function ℘(x) is called the Weierstrass elliptic
function. In the complex plane x → z, ℘(z) is doubly periodic with a period
L along the real axis, and another period l along the imaginary axis. The
potential has the limiting forms

℘(x) →


x−2 (L, l → ∞),(

L

π

)2

sin−2
(πx

L

)
(l → 0),(

l

π

)2

sinh−2
(πx

l

)
(L → 0).

(1.56)

The first and second limits have already been discussed above. The third
limit may be interpreted as analytic continuation x → ix in the second limit.
Let us consider the N -body system with spin 1/2:

HI =
N∑

i=1

p2
i +

∑
i>j

λ(λ − Pij)℘(xi − xj), (1.57)

where Pij is the spin exchange operator. This model is known to be inte-
grable [146,178], which means that one can identify conserved quantities up
to the total number of degrees of freedom. However, the wave functions are
very complicated in the general case of L and l. If one takes the limit λ → ∞,
the nth particle (n = 1, . . . , N) crystallizes at xn = nL/N as described in
Section 1.4. After taking the third limit in (1.56), one is still left with the
free parameter l. In the case of small enough l, the exchange interaction
remains significant only for nearest-neighbor sites. In the opposite limit of
large l, the exchange interaction decays as 1/x2. The latter limit describes
the Haldane–Shastry model. Thus the sinh-type interaction interpolates
the nearest-neighbor Heisenberg model and the 1/r2 exchange model. The
exact solution of the sinh-type spin model has been discussed by Inozemtsev
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[90,91]. Note that the model of (1.57) can be defined for any kind of internal
symmetries, including the SU(2, 1) supersymmetry.

Another direction of generalizing the Calogero–Sutherland model has been
proposed by Ruijsenaars and Schneider [152]. They constructed the relativis-
tic energy and momentum tensor by introducing an additional parameter
which plays a role of the light velocity. The relativistic version of the model
has a clean algebraic structure and can be solved exactly [153]. In the limit
of infinite light velocity, the Ruijsenaars–Schneider model is reduced to the
Sutherland model.

1.7 Contents of the book

As we have seen, there are a considerable variety of models even within the
1/r2 interaction family. In the rest of this book, we concentrate our atten-
tion on Sutherland models and their lattice cousins. They have translational
symmetry, and the wave functions are much simpler than the most general
periodic case with the potential ℘(x), or the relativistic generalization [152].
The results obtained for the periodic lattice models can be compared with
real one-dimensional systems most straightforwardly, even though the inter-
action is not exactly the same.

We adopt in this book an approach to handle many-body wave functions in
the coordinate representation. The merit of this first quantization approach
is that it is straightforward and valid for any size of system. The key de-
velopment in this approach owes substantially to mathematicians who have
found a number of useful properties of multi-variable orthogonal polynomi-
als in recent decades. This book, written by physicists, emphasizes intuitive
pictures as far as possible, instead of pursuing mathematical rigor.

We organize the contents of this book into two parts: in the first part,
we discuss physical features of 1/r2 models, relegating the mathematical
details to the second part. We proceed in the first part from the simplest
continuum model to more complicated cases. The most complicated, yet in-
teresting, system to understand is that of lattice electrons with both spin
and charge degrees of freedom. In order to follow the route culminating in
the dynamics of lattice electrons, one must have solutions for a continuum
model with arbitrary interaction strength, and with internal degrees of free-
dom. A great advantage of considering continuum models is that we can
apply powerful analytical techniques developed mainly by mathematicians.
One can appreciate the situation by considering the usefulness of differen-
tial equations as compared with difference equations, which are relevant to
lattice models by naive approaches. Some sections such as Section 2.8 with an
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asterisk (*) contain somewhat advanced technical aspects, and can be
omitted during a first reading.

Chapter 2 deals with the single-component Sutherland model. Beginning
from the derivation of eigenvalues and eigenfunctions, we proceed to thermo-
dynamics with the idea of fractional exclusion statistics. Then in terms of
Jack polynomials, which describe arbitrary excited states, we derive exact
dynamical correlation functions in a self-contained manner. We also discuss
the physical implication of the results in terms of quasi-particles. We demon-
strate how the CFT reproduces the asymptotic behavior of the dynamical
correlation functions of the Sutherland model. As prerequisites we give brief
accounts of the finite-size scaling theory of the CFT.

Chapter 3 introduces internal degrees of freedom in the Sutherland
model. The multi-component Sutherland model generalizes the discussion in
Chapter 2. We give a self-contained account of how to derive thermodynam-
ics and dynamics exactly. As a key mathematical technique, non-symmetric
Jack polynomials are introduced and used extensively.

In Chapter 4, we turn to the simplest lattice systems. Namely, we deal
with the 1/r2 Heisenberg model with spin 1/2 which is called the Haldane–
Shastry model. We first discuss the ground-state wave function, and the
resultant static spin correlation functions. Then we proceed to energy spec-
tra, elementary excitations called spinons, thermodynamics, and finally the
dynamical spin correlation functions. We show that the spinon picture gives
a complete interpretation of the thermodynamics and spin dynamics.

Chapter 5 generalizes the spin 1/2 Haldane–Shastry model to the SU(K)
chain with K species of internal degrees of freedom. The subtlety of statis-
tical parameters appears in the case of K ≥ 3, which is explained both for
thermodynamics and dynamics.

Chapter 6 discusses the 1/r2 t–J model, which includes the charge
degrees of freedom, in addition to spins. We begin with the ground-state
wave function and the static correlation functions of spin and charge. Then
we proceed to the spectra of elementary excitations: spinons, holons, and
their antiparticles, and discuss their statistics. On this basis, we derive
thermodynamics including the specific heat and the magnetic susceptibility.
Finally, we derive exact results on dynamical correlation functions and
interpret the results in terms of the quasi-particle picture.

In the second part beginning with Chapter 7, we give a self-contained
account of mathematics for 1/r2 systems. We begin with the Jack polynomial
and its various generalizations. We intend that the reader will be able to
understand the basic properties of various kinds of Jack polynomials without
recourse to other literature.
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Then Chapter 8 explains the Yangian symmetry restricted to the
simplest case of SU(2) internal symmetry. The fundamental relation, called
the Yang–Baxter relation, appears naturally as a result of the identity of
quantum particles, together with the spatial dependence of eigenfunctions in
the Sutherland model. Combining the charge degrees of freedom with SU(2)
spins, the Yangian is usually referred to as Y (gl2). We proceed in Chapter 9
to discuss the Yangians for the general case of an SU(K) spin chain, and
the supersymmetric t–J model. We provide an intuitive explanation of the
beautiful algebraic property from a physicist’s point of view.

Chapter 10 explains a generalization of the Jack polynomial proposed by
Uglov. The generalization utilizes a special case of parameters in related
polynomials called Macdonald symmetric polynomials. Uglov’s theory pro-
vides an elegant mathematical setting to derive the dynamics of the multi-
component Sutherland model. Finally, in the Afterword, we give a brief
outlook and mention remaining problems as well as alternative theoretical
approaches that are not covered in this book.

Since we use a sizable number of mathematical symbols, a list is provided
near the end of the book in (loose) lexicographic order. It turns out to be
difficult to avoid completely using the same notation for different meanings,
such as Pµ for a momentum in one case, and for a Macdonald symmetric
polynomial in another case. Since these cases never occur within a single
chapter, we hope that the reader will not be confused.
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Physical properties
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Single-component Sutherland model

In the present chapter, we discuss the Sutherland model for particles with-
out internal degrees of freedom such as spin. We call this model the single-
component Sutherland model. For two particles, the eigenenergies and eigen-
states of the Sutherland model (1.3) have been obtained explicitly in the
previous chapter. The most striking feature of the Sutherland model is that
one can derive not only the energy spectrum but also the dynamics for the
many-particle case with an exact account of interaction effects. Thus, the
Sutherland model provides an ideal framework to study a one-dimensional
quantum liquid in detail.

In Section 2.1, we derive the eigenenergies of eigenstates. In Section 2.2, we
present different but equivalent physical pictures for the energy spectrum.
Namely, the energy spectrum is naturally regarded as that of interacting
bosons or fermions. The same spectrum can also be interpreted as that of
free particles obeying nontrivial quantum statistics, i.e., free anyons in one
dimension. The exclusion statistics proposed by Haldane will be explained on
this occasion. Spectrum and statistics of elementary excitations are derived
in Section 2.3. In Section 2.4, we discuss thermodynamic properties, which
can be rewritten as those of free anyons. In Section 2.5, we identify the
eigenfunctions with Jack symmetric polynomials, and discuss their basic
properties. In Section 2.6, we consider dynamical correlation functions such
as Green’s functions and the density correlation function. These quantities
are derived with the use of Jack polynomials, and are naturally interpreted
in terms of elementary excitations with fractional charge.

The Sutherland model is the simplest model to realize the Tomonaga–
Luttinger liquid. In Section 2.8, long-distance and long-time asymptotic be-
haviors of dynamical correlation functions are reproduced by the theory of
the Tomonaga–Luttinger liquid.

21
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2.1 Preliminary approach

2.1.1 Jastrow-type wave functions

The Sutherland model for N particles is given by [172]

H = −
N∑

i=1

∂2

∂x2
i

+ 2
(π

L

)2 ∑
1≤i<j≤N

λ(λ − 1)
sin2 [π(xi − xj)/L]

. (2.1)

The variables x = (x1, x2, . . . , xN ) represent the spatial coordinates of par-
ticles moving along a circle of perimeter L. The coupling parameter λ is
taken to be in the range [1/2,∞) without loss of generality, according to
the argument in Section 1.3. We regard particles as bosons without internal
degrees of freedom. Wave functions are subject to the periodic boundary
condition

Ψ(x1, . . . , xi + L, . . . , xN ) = Ψ(x1, . . . , xi, . . . , xN ). (2.2)

Furthermore, the identity of particles requires the following condition:

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = Ψ(x1, . . . , xj , . . . , xi, . . . , xN ), (2.3)

which is called the Fock condition. When the coordinates of two particles
xi and xj are close, the problem essentially reduces to a two-body problem.
By the argument in Section 1.3, the wave function has the asymptotic form

|xi − xj | → 0, Ψ → |xi − xj |λ. (2.4)

We consider an N -particle wave function

ΨB
0 (x1, . . . , xN ) =

∏
1≤i<j≤N

| sin [π (xi − xj) /L] |λ, (2.5)

which satisfies both the property (2.4) and the periodic boundary condition
(2.2). We will show that (2.5) is an eigenfunction of the Hamiltonian (2.1),
which was originally found by Sutherland [173]. Such a wave function that
takes a product form of two-body factors is called a Jastrow-type wave
function in general.

First we note that the derivative of ΨB
0 with respect to xi is given by

∂

∂xi
ΨB

0 =
∑
j(6=i)

λπ

L
cot

π(xi − xj)
L

ΨB
0 . (2.6)



2.1 Preliminary approach 23

Further differentiation with respect to xi and summing over i gives

(
ΨB

0

)−1
N∑

i=1

∂2

∂x2
i

ΨB
0

=
N∑

i=1

 ∑
j(6=i)

λπ

L
cot

π(xi − xj)
L

2

−
∑
i 6=j

λ (π/L)2

sin2 [π (xi − xj) /L]
.

(2.7)

Apart from the multiplicative factor (λπ/L)2, the first term on the right-
hand side (RHS) in (2.7) is the sum of two-site terms∑

i6=j

cot2
π(xi − xj)

L
(2.8)

and three-site terms∑
i

∑
j(6=i)

∑
k(6=i,j)

cot [π (xi − xj) /L] cot [π (xi − xk) /L] . (2.9)

The two-site terms (2.8) are rewritten as

−N(N − 1) +
∑
i 6=j

sin−2 π(xi − xj)
L

. (2.10)

The three-site terms (2.9) can be shown to be a constant N(N −1)(N −2)/3
with use of the identity

cot(ij) cot(ik) + cot(ji) cot(jk) + cot(ki) cot(kj) = −1,

with cot(ij) = cot [π (xi − xj) /L]. Combining these results, the RHS of (2.7)
turns into

E0,N −
∑
i6=j

λ(λ − 1) (π/L)2

sin2 [π (xi − xj) /L]
, (2.11)

with a constant defined by

E0,N = (πλ/L)2 N(N2 − 1)/3. (2.12)

The second term on the RHS of (2.11) is the minus of the interaction term
in the Hamiltonian (2.1). As a result, we obtain

HΨB
0 = E0,NΨB

0 , (2.13)

which shows that the Jastrow wave function is the eigenfunction with the
eigenenergy E0,N .
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Let us remark on the statistics. When we take an antisymmetric wave
function

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = −Ψ(x1, . . . , xj , . . . , xi, . . . , xN ) (2.14)

instead of (2.3), we also obtain the eigenfunctions of the Jastrow form.
Namely, another Jastrow-type wave function

ΨF
0 = ΨB

0

∏
i<j

(sin [π(xi − xj)/L] /| sin [π(xi − xj)/L] |) (2.15)

which also satisfies

HΨF
0 = E0,NΨF

0 . (2.16)

The wave function (2.15) satisfies the periodic boundary condition (2.2) for
odd N , and the antiperiodic boundary condition

Ψ(x1, . . . , xi + L, . . . , xN ) = −Ψ(x1, . . . , xi, . . . , xN ) (2.17)

for even N . We further remark that the Jastrow wave functions ΨB
0 and ΨF

0

are not only an eigenstate but also the ground state, as will be shown at the
end of Section 2.1.2.

For later convenience, we introduce the complex coordinate zi = exp
(i2πxi/L). Then the following wave function:

Ψ0,N =
∏

1≤i<j≤N

(zi − zj)
λ

λ∏
i=1

z
−(N−1)λ/2
i (2.18)

reduces to

Ψ0,N =
{

(2i)N(N−1)λ/2ΨB
0 , for even integer λ,

(2i)N(N−1)λ/2ΨF
0 , for odd integer λ.

(2.19)

2.1.2 Triangular matrix for Hamiltonian

In Section 1.3, the wave functions of excited states for a two-particle sys-
tem have been given by the ground-state wave function multiplied by the
Gegenbauer polynomials. For an N -particle system, we seek eigenfunctions
in the form

Ψ = ΨB
0 Φ. (2.20)

Here Φ = Φ(x1, . . . , xN ) is symmetric with respect to the interchange
between xi and xj . First we consider the eigenvalue problem of Φ. Using
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(2.20), the left-hand side (LHS) of HΨ = EΨ becomes

HΨB
0 Φ = Φ HΨB

0︸ ︷︷ ︸
=E0,NΨB

0

−ΨB
0

N∑
i=1

∂2Φ
∂x2

i

− 2
∑

i

∂ΨB
0

∂xi︸ ︷︷ ︸
(2.6)

∂Φ
∂xi

. (2.21)

The eigenvalue problem for Φ is written as−
∑

i

∂2

∂x2
i

+
∑
i6=j

2πλ

L
cot

π(xi − xj)
L

∂

∂xi

Φ = (E − E0,N )Φ. (2.22)

Since Φ satisfies the periodic boundary condition

Φ(x1, . . . , xi + L, . . . , xN ) = Φ(x1, . . . , xi, . . . , xN ), (2.23)

it is convenient to regard Φ as a function of variables (z1, . . . , zN ), where
zi = exp [i2πxi/L]. Using

∂

∂xi
=

i2πzi

L

∂

∂zi
, cot

π(xi − xj)
L

= i
zi + zj

zi − zj
, (2.24)

(2.22) becomes

HΦ = (H(1) + λH(2))Φ = EΦ, (2.25)

with E = [L/(2π)]2 (E − E0,N ) and

H(1) =
∑

i

(
zi

∂

∂zi

)2

, H(2) =
∑
i<j

(
zi + zj

zi − zj

)(
zi

∂

∂zi
− zj

∂

∂zj

)
. (2.26)

In the following, we set a basis for Φ and calculate the matrix elements
of H. We define a bosonic wave function φB

η :

φB
η =

∑
p∈SN

zη1

p(1)z
η2

p(2) · · · z
ηN

p(N) (2.27)

with a set of integers η = (η1, . . . , ηN ). In (2.27), p = (p(1), . . . , p(N)) is an
element of the symmetric group SN of order N . The set of φB

κ forms a basis
for Φ, with κ = (κ1, . . . , κN ) satisfying

κ1 ≥ κ2 ≥ · · · ≥ κN . (2.28)

The action of H(1) on φB
κ gives (

∑
i κ

2
i )φ

B
κ . In order to consider the action

of H(2), we consider the two-particle case. When κ1 = κ2, the function φB
κ
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is an eigenfunction with eigenvalue zero. When κ1 > κ2, the action of H(2)

on ΦB
κ = zκ1

1 zκ2
2 + zκ2

1 zκ1
2 leads to(

z1 + z2

z1 − z2

) (
z1

∂

∂z1
− z2

∂

∂z2

)
(zκ1

1 zκ2
2 + zκ2

1 zκ1
2 )

= (κ1 − κ2)
(

z1 + z2

z1 − z2

)
(zκ1

1 zκ2
2 − zκ2

1 zκ1
2 )

= (κ1 − κ2) (z1 + z2)
(
zκ1−1
1 zκ2

2 + · · · + zκ2
1 zκ1−1

2

)
= (κ1 − κ2)

(
zκ1
1 zκ2

2 + 2zκ1−1
1 zκ2+1

2 + · · · + 2zκ2+1
1 zκ1−1

2 + zκ2
1 zκ1

2

)
.

(2.29)

These results are rearranged as

H(2)φB
κ = (κ1 − κ2)φB

κ + 2(κ1 − κ2)
(κ1−κ2−1)/2∑

l=1

φB
(κ1−l,κ2+l), (2.30)

when κ1 − κ2 is odd, or

H(2)φB
κ = (κ1 − κ2)φB

κ + 2(κ1 − κ2)
(κ1−κ2)/2−1∑

l=1

φB
(κ1−l,κ2+l)

+ (κ1 − κ2)φB
((κ1−κ2)/2,(κ1−κ2)/2), (2.31)

when κ1 − κ2 is even. For example, with κ = (4, 0), (3, 1), (2, 2), the relation
(2.31) becomes

H(2)φB
(4,0) = 4φB

(4,0) + 8φB
(3,1) + 4φB

(2,2),

H(2)φB
(3,1) = 2φB

(4,0) + 2φB
(2,2),

H(2)φB
(2,2) = 0.

From these results on the two-particle system, we notice the following prop-
erties. First, H(2)φB

κ is the sum of a finite number of φB
µ , where µ is a set of

two integers (µ1, µ2). At first glance, it seems that the action of H(2) on φB
κ

yields a pole at z1 − z2. However, the part (z1∂/∂z1 − z2∂/∂z2)φB
κ has the

factor (z1 − z2), which cancels the pole. As a result, H(2)φB
κ is spanned by a

finite number of basis functions. Second, H(2)φB
κ does not contain φB

µ when
H(2)φB

µ contains φB
κ . By using this property, we can define an ordering of

the basis function. These properties hold also in a general N -particle case.
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Now we turn to the N -particle system, and consider the action of H(2) on
φB

κ . First we note that the operator

H(2)
ij =

(
zi + zj

zi − zj

)(
zi

∂

∂zi
− zj

∂

∂zj

)

is symmetric with respect to the exchange zi ↔ zj and hence, the operator
H(2) =

∑
ij H

(2)
ij is rewritten as

H(2) =
∑
ij

H(2)
p(i)p(j) (2.32)

for any permutation p ∈ SN . Second we note that in the definition of φB
κ , the

summation of p runs over all elements of SN , and hence φB
κ is rewritten as

φB
κ =

∑
p∈SN

N∏
k=1

zκk

p(k) =
∑

p∈SN

N∏
k=1

zκk

p′(k) (2.33)

with a permutation p′ satisfying

(p′(1), . . . , p′(N)) = (p(1), . . . ,
i

p(j), . . . ,
j

p(i), . . . , p(N)). (2.34)

From (2.33), the function φB
κ is further rewritten as

φB
κ =

∑
p∈SN

1
2

(
N∏

k=1

zκk

p(k) +
N∏

k=1

zκk

p′(k)

)

=
1
2

∑
p∈SN

(
zκi

p(i)z
κj

p(j) + z
κj

p(i)z
κi

p(j)

)  ∏
k 6=(i,j)

zκk

p(k)

. (2.35)

With (2.32) and (2.35), we obtain

H(2)φB
κ =

1
2

∑
p∈SN

∑
i<j

 ∏
k 6=(i,j)

zκk

p(k)

H(2)
p(i)p(j)

(
zκi

p(i)z
κj

p(j) + z
κj

p(i)z
κi

p(j)

)
. (2.36)
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H̃(2)× ⇒ ++

Fig. 2.1. Graphical representation of (2.39). The action of H(2) on φB
κ generates

φB
µ only if µ is obtained by moving a square (squares) from a row j to another

row k. The dotted squares and shaded ones represent removed and added squares,
respectively.

The evaluation of H(2)
p(i)p(j)

(
zκi

p(i)z
κj

p(j) + z
κj

p(i)z
κi

p(j)

)
has been done in the two-

particle case. From (2.29) and (2.36), we obtain

H(2)φB
κ =

∑
i<j

|κi − κj |φB
κ +

∑
i<j

|κi − κj |
κi−κj−1∑

l=1

φB
(κ1,...,κi−l,...,κj+l,...,κN )

=
∑
i<j

|κi − κj |φB
κ +

∑
1≤i<j≤N

[(κi−κj)/2]∑
l=1

V (l, κi, κj)φB
κ1,...,κi−l,...,κj+l,...,κN

.

(2.37)

Here [·] denotes the Gauss’s symbol defined as

[x] = n, if n ≤ x < n + 1,

with an integer n. The function V (l, κj , κk) is given by

V (l, κj , κk) =
{

κj − κk, for l = (κj − κk)/2,

2(κj − κk), otherwise.
(2.38)

The rightmost part of (2.37) reduces to (2.30) or (2.31) when N = 2.
As an example, we consider the case where N = 4 and κ = (3, 2, 2, 0). We

then obtain

H(2)φB
3,2,2,0 = 11φB

3,2,2,0 + 2φB
3,2,1,1 + 3φB

2,2,2,1. (2.39)

Figure 2.1 illustrates (2.39). The action of H(2) on φB
κ generates φµ only if

µ is obtained from κ by replacement of a pair (κi, κj) → (κi − l, κj + l),
where κi > κj and l is an integer satisfying 1 ≤ l ≤ [(κi − κj)/2]. The
procedure to produce µ from κ is called “squeezing” in [172]; squeezing
(κi, κj) → (κi−l, κj+l) makes the width of the diagram of the pair narrower.
Figure 2.2 shows an example.

If µ is produced by squeezing κ, the converse is impossible; κ is not pro-
duced by squeezing µ. It follows that 〈κ|H(2)|µ〉 = 0 if 〈µ|H(2)|κ〉 6= 0.
Here |κ〉 denotes the state vector whose wave function is φB

κ . Thus we intro-
duce an ordering of the basis between κ and µ satisfying |κ| = |µ|, where
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Fig. 2.2. Squeezing a pair (κ1, κ2) = (7, 1) to (µ1, µ2) = (5, 3).

|κ| =
∑N

i=1 κi. We define the ordering κ > µ if |κ| = |µ| and the first non-
vanishing κi −µi is positive. For example, we have (3, 2, 2, 0) > (3, 2, 1, 1) >

(2, 2, 1, 1). We then find that 〈µ|H(2)|κ〉 is nonzero only if κ ≥ µ. The ma-
trices of H(2) and hence H in this ordered basis are triangular.

For example, with N = 4 and κ = (3, 2, 2, 0), (3, 2, 1, 1), (2, 2, 2, 1), the
matrix elements are given by

H

 φB
3,2,2,0

φB
3,2,1,1

φB
2,2,2,1

 =

 17 + 9λ 4λ 6λ

0 15 + 7λ 4λ

0 0 13 + 3λ

 φB
3,2,2,0

φB
3,2,1,1

φB
2,2,2,1

. (2.40)

In (2.40), the function φB
2,2,2,1 is obviously an eigenfunction with eigenenergy

13 + 3λ. The other eigenfunctions are given in the form of

ΦB
3,2,1,1 = φB

3,2,1,1 + cφB
2,2,2,1,

ΦB
3,2,2,0 = φB

3,2,2,0 + c′φB
3,2,1,1 + c′′φB

2,2,2,1.

The eigenenergies of ΦB
3,2,1,1 and ΦB

3,2,2,0 are, respectively, given by 17 + 9λ

and 15 + 7λ from the diagonal elements of the matrix in (2.40).
Generally, all the eigenfunctions of H can be written in the form

ΦB
κ = φB

κ +
∑

µ(<κ)

aµφB
µ . (2.41)

The eigenenergy E [κ] of ΦB
κ is given by the diagonal element of H in the

basis
{
φB

κ

}
as

E [κ] =
N∑

i=1

κ2
i + λ

∑
1≤i<j≤N

(κi − κj)

=
N∑

i=1

κ2
i +

λ

2

∑
i

∑
j

|κi − κj | . (2.42)
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With use of (2.25) and (2.42), the eigenenergy E[κ] for the original
Hamiltonian H is given by

E[κ] =
(

2π

L

)2
∑

i

κ2
i +

λ

2

∑
i

∑
j

|κi − κj |

 + E0,N . (2.43)

The wave functions (2.41) of eigenstates will again be discussed in
Section 2.5, where alternative descriptions of energy spectra and elemen-
tary excitations are given.

From (2.42), we immediately see that the Jastrow wave function ΨB
0 or

ΨF
0 is the wave function of the ground state. For an N -particle system,

κ = (0, . . . , 0) yields E[κ] = 0, which is the minimum of (2.42) for all the
states.

2.1.3 Ordering of basis functions

The explicit expression for the wave function of the eigenstate (2.41) is
obtained by diagonalization of a triangular matrix with finite dimension. The
linear space is spanned by φB

κ , and only those φB
µ with µ which are obtained

by multiple squeezing of κ. We then label each basis function by |j〉 with
j = 1, 2, . . . according to the ordering defined in the previous subsection.
When κ = (3, 2, 2, 0), we put

|1〉 = φB
3,2,2,0, |2〉 = φB

3,2,1,1, |3〉 = φB
2,2,2,1.

In this basis, the matrix elements of H are written

〈l|H|j〉 = εlδlj + Ilj , (2.44)

with

Ilj =
{

0, l ≤ j,

non-negative, otherwise.
(2.45)

When we write the eigenfunction ΦB
κ as

∑
j cj |j〉, the eigenvalue equation is

given by ∑
j

(δljεj + Ilj)cj = ε1cl. (2.46)

It follows that for l ≥ 2

cl =

∑
1≤j<l Iljcj

ε1 − εl
. (2.47)
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We will show that ε1−εl in the denominator is positive at the end of this sub-
section. With the use of (2.47), we can obtain cl recursively starting from c1.
We take c1 = 1 and define a matrix Mlj by

M11 = 1, Mlj =
Ilj

ε1 − εl
, for (jl) 6= (11). (2.48)

When κ = (3, 2, 2, 0), (2.47) becomes

c2 = M21, c3 = (M2)31, . . . , cl = (M l−1)l1, (2.49)

with

M =


1 0 0

2λ
1+λ 0 0

3λ
2+3λ

2λ
2+3λ 0

 (2.50)

and

M2 =


1 0 0

2λ
1+λ 0 0

λ(3+7λ)
(1+λ)(2+3λ) 0 0

. (2.51)

From these results, we obtain

ΦB
3,2,2,0 = φB

3,2,2,0 +
2λ

1 + λ
φB

3,2,1,1 +
λ(3 + 7λ)

(1 + λ)(2 + 3λ)
φB

2,2,2,1. (2.52)

In this way, eigenstates are obtained by calculation of the power of the
finite-dimensional triangular matrix defined in (2.48). In Section 2.5, the
properties of the resulting function ΦB

κ will be identified as a symmetric
Jack polynomial.

We now show that E[κ] > E[µ] if µ is obtained by a squeezing or multiple
squeezing of κ. It suffices to show that

E[κ] > E[µ] (2.53)

for

µi = κi − 1, µj = κj + 1 (2.54)

with a pair (i < j) and

µk = κk (2.55)
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for k 6= i, j. Any squeezing of κ can be generated by this elementary squeez-
ing (2.54). We can assume without loss of generality that µ is ordered non-
increasingly:

µi−1 ≥ µi ≥ µi+1 ≥ · · · ≥ µj−1 ≥ µj ≥ µj+1 ≥ · · · .

The contribution from the kinetic energy in (2.53) is given by∑
i

(κ2
i − µ2

i ) = κ2
i + κ2

j − [(κi − 1)2 + (κj + 1)2]

= 2(κi − κj − 1) ≥ 0. (2.56)

In the expression ∑
k<l

(|κk − κl| − |µk − µl|) (2.57)

from the interaction energy, the contribution with k ≤ i − 1 or l ≥ j + 1
vanishes. Thus (2.57) becomes

(κi − κj) − (µi − µj) +
j−1∑

k=i+1

[(κi − κk) + (κk − κj) − (µi − κk) − (κk − µj)]

= 2(j − i) > 0. (2.58)

The inequalities (2.56) and (2.58) prove (2.53).

2.2 Descriptions of energy spectrum

The expression (2.42) for the eigenvalue can be rewritten in different ways.
In this section we present three equivalent descriptions.

2.2.1 Interacting boson description

We introduce the momentum distribution function by

νB(κ) =
N∑

i=1

δκ,κi , (2.59)

which takes arbitrary non-negative integers. Then (2.42) becomes

E [κ] =
∞∑

κ=∞
κ2νB(κ) +

λ

2

∞∑
κ=−∞

∞∑
κ′=−∞

νB(κ)νB(κ′)|κ − κ′|. (2.60)

This form is useful to construct the partition function or thermodynamic
potential of the Sutherland model, as discussed in the following section.
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Another expression for (2.42) is available with use of the relation∑
i<j

(κi − κj) =
N∑

i=1

(N + 1 − 2i)κi. (2.61)

Namely we obtain

E [κ] =
N∑

i=1

[
κ2

i + λ(N + 1 − 2i)κi

]
(2.62)

=
N∑

i=1

κ̃2
i −

N∑
i=1

κ̃2
i,0 (2.63)

in the form of the energy difference of free particles. Here we have introduced
the rapidity

κ̃i = κi +
λ

2
(N + 1 − 2i) , κ̃i,0 =

λ

2
(N + 1 − 2i) , (2.64)

which is interpreted as a generalized momentum including the interaction
effect. The eigenenergy E[κ] (2.43) is written in a surprisingly simple form:

E[κ] =
N∑

i=1

(2πκ̃i/L)2 . (2.65)

The relation (2.64) between {κ̃i} and {κi} is rewritten as

κ̃i = κi +
λ

2

∑
j( 6=i)

sgn(κ̃i − κ̃j), (2.66)

using the relation∑
j( 6=i)

sgn(κ̃i − κ̃j) =
i−1∑
j=1

(−1) +
N∑

j=i+1

(+1) = N − 2i + 1. (2.67)

Then (2.66) is written alternatively as

κ̃i = κi +
1
2π

∑
j( 6=i)

θB(κ̃i − κ̃j), (2.68)

which is analogous to a Bethe ansatz equation. The scattering phase shift

θB(κ̃) = πλsgn(κ̃)

is relevant to the two-particle scattering problem with the interaction in
(2.1). Hence the dispersion relation of elementary excitations and the thermo-
dynamic potential of the Sutherland model can be calculated with use of the
method developed in the Bethe ansatz theory.
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2.2.2 Interacting fermion description

We can rewrite (2.68) as

κ̃i = Ii +
1
2π

∑
j(6=i)

θF(κ̃i − κ̃j) (2.69)

in terms of the scattering phase shift

θF(κ̃) = π(λ − 1)sgn(κ̃)

relevant to the two (spinless) fermions. A set {I1, I2 . . .} satisfying I1 > I2 · · ·
of fermionic quantum numbers is given by

Ii = κi +
1
2

(N + 1 − 2i) , (2.70)

which satisfies

Ii − Ii+1 = κi − κi+1 + 1 ≥ 1. (2.71)

By substituting (2.70) into (2.62), we can rewrite the energy as that of
interacting fermions:

E [κ] =
N∑

i=1

[
I2
i + (λ − 1)(N + 1 − 2i)Ii

]
=

N∑
i=1

I2
i +

λ − 1
2

∑
i

∑
j

|Ii − Ij |

=
∑

I

I2νF(I) +
λ − 1

2

∑
I

∑
I′

|I − I ′|νF(I)νF(I ′). (2.72)

In the last equality, we have introduced the fermionic momentum distribu-
tion function νF(I), which is either 0 or 1. Note that the parameter λ − 1
appears in (2.72), in contrast with λ in (2.60).

2.2.3 Exclusion statistics

We have seen that the energy spectrum can be described as that of interact-
ing bosons or fermions. Alternatively, the energy spectrum can be regarded
as that of free particles. The price for eliminating the interaction effect is paid
by the nontrivial exclusion rule for the rapidity {κ̃1, κ̃2, . . . , κ̃N}. Namely,
the restriction is given by

κ̃i − κ̃i+1 = κi − κi+1 + λ ≥ λ. (2.73)
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This exclusion rule (2.73) can be regarded as an example of exclusion
statistics [79], which we will explain now.

Consider a many-particle system where the dimension G of the one-
particle Hilbert space is proportional to the volume of the system. Models
defined on a lattice are examples of these systems. Another example is given
by a Landau level of two-dimensional electrons in a magnetic field; the de-
generacy of each Landau level is proportional to the area of the system. Here
the dimension G is meant to be the number of available one-particle states
in the absence of other particles under the fixed boundary condition. If a
particle occupies a one-particle state, the number of available one-particle
states D for another particle depends on the statistics. Namely, if particles
are fermions, the occupied state is not available owing to the Pauli exclusion,
and hence D = G − 1. If particles are bosons, on the other hand, the occu-
pied state can accommodate another particle, and hence D = G for bosons.
Thus when N − 1 particles are present, the number of available states for
the Nth particle is given by

D =
{

G, for bosons,
G − N + 1, for fermions.

(2.74)

Using D and N , the number of microscopic states for an N -particle system
is written as

W =
(D + N − 1)!
N ! (D − 1)!

, (2.75)

for both bosons and fermions. Then (2.75) can also be regarded as the def-
inition of D for N -particle systems. Through the N -dependence of D, the
statistical parameter g is defined by

∆D = −g∆N. (2.76)

In this definition, g = 0 for bosons and g = 1 for fermions.
Beyond the conventional (i.e., Bose or Fermi) statistics, we consider the

generalized statistics for any positive value of g. Correlated electron systems
provide examples of elementary excitations obeying such statistics; spinon
excitations in an antiferromagnetic spin chain obey the statistics g = 1/2,
which will be discussed in Chapter 4. Quasi-particles in the quantum Hall
effect is another example. The statistical parameter g describes the strength
of exclusion. Thus, these new statistics are termed exclusion statistics by
Haldane [79].

In the case where particles have internal degrees of freedom such as spin or
color, we can easily generalize the above framework. Let Nα be the number
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of particles with spin or color α, and Dα be the number of available one-
particle states for α species in the presence of Nβ particles with β(6= α), in
addition to Nα − 1 particles with α. The number of microscopic states with
Nα fixed for all α is given by

W =
∏
α

(Dα + Nα − 1)!
Nα! (Dα − 1)!

. (2.77)

The statistics is described by a matrix gαβ defined by

∆Dα = −
∑
β

gαβ∆Nβ . (2.78)

The exclusion statistics can be generalized to that in the continuum model,
such as free Bose gas, free Fermi gas, and the Sutherland model. Let us
consider a d-dimensional free Bose or Fermi gas in the system with volume
V with periodic boundary condition. Divide the k-space (momentum space)
into regions with finite volume. Each region is labeled by α and has the
volume Ṽα. In the k-space, there is a one-particle state per cell with vol-
ume (2π)d/V . Hence in each region α, the number of one-particle states
is V/Ṽα(2π)d, which is proportional to the volume of the system V . Thus,
the exclusion statistics can be defined in each region α. In the case of the
Sutherland model, the k-space is replaced by the rapidity space in the above
argument. We then find that the relation (2.73) is indeed an example of ex-
clusion statistics.

2.3 Elementary excitations

The low-energy excitation spectra in interacting systems can often be under-
stood in terms of a kind of nearly free particle even when the interaction ef-
fect is strong. These particles are called elementary excitations in condensed
matter physics. The Landau theory of Fermi liquids is the most successful
example. However, calculation of the spectra is sometimes out of reach in
the perturbation theory. Elementary excitations in the fractional quantum
Hall state are the best known example. Thus, exactly solvable models such
as the Sutherland model are very useful in understanding the concept of
elementary excitations.

The excitation energy ∆E[κ] and momentum Qκ of a state specified by κ

are given by

∆E =
(

2π

L

)2 N∑
i=1

[
κ2

i + λ(N + 1 − 2i)κi

]
(2.79)
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Fig. 2.3. Low-energy excitation spectrum of the Sutherland model with λ = 2 and
N = 7. The momentum and the energy are scaled by the density d = N/L and d2,
respectively.

and

Qκ =
(

2π

L

) N∑
i=1

κi, (2.80)

where (2.62) has been used. The density of the particles is given by d = N/L.
Figure 2.3 shows the energy spectrum in the case of λ = 2 and N = 7.
There is a similarity to the spectrum of free fermions in one dimension.
This observation suggests that the energy spectrum can be constructed from
particle-like and hole-like excitations, which we pursue in the present section.

2.3.1 Partitions

A combination of momenta κi specifying an eigenstate forms a set

L+
N = {κ|κ = (κ1, . . . , κN ) ∈ Z; κ1 ≥ · · · ≥ κN} , (2.81)

where Z is the set of integers. The subset Λ+
N ⊂ L+

N with non-negative
momentum is defined by

Λ+
N = {µ|µ = (µ1, . . . , µN ) ∈ Z≥0; µ1 ≥ · · · ≥ µN ≥ 0} , (2.82)

where Z≥0 is the set of non-negative integers. Any element in Λ+
N is called

a partition. The eigenstate specified by κ ∈ L+
N is related to a partition µ
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(a) (b)

Fig. 2.4. Diagram of (a) a partition µ = (5, 4, 3, 3, 2) and (b) that of the conjugate
partition µ′ = (5, 5, 4, 2, 1).

via Galilean transformation by

µ = (µ1, . . . , µN ) = (κ1 + n, . . . , κN + n) ∈ Λ+
N , n ∈ Z. (2.83)

The partition µ ∈ Λ+
N is easier to study than κ ∈ L+

N because partitions are
graphically described by Young diagrams.

Let us introduce some notation for partitions and related Young diagrams.
We call the nonzero µi the parts of the partition µ ∈ Λ+

N , and call the number
of parts length l(µ). We define the weight of µ as

|µ| =
N∑

i=1

µi.

The Young diagram of a partition µ consists of squares, the coordinates of
which are (i, j) with 1 ≤ i ≤ l(µ) and 1 ≤ j ≤ µi. The set of those (i, j) is
denoted by D(µ). In drawing diagrams, the first coordinate i (the row index)
increases as one goes downwards and the second coordinate j (the column
index) increases from left to right. In Fig. 2.4(a), we show the diagram of
the partition µ = (5, 4, 3, 3, 2), where 5(= µ1) squares are in the first row,
4(= µ2) squares are in the second row, and so on. The conjugate partition
of a partition µ is obtained by interchanging the rows and columns of the
diagram of µ. In Fig. 2.4(b), we show the diagram of the conjugate partition
µ′ = (5, 5, 4, 2, 1) of the partition µ = (5, 4, 3, 3, 2).

For square s specified by the coordinate (i, j), we define arm length a(s),
leg length l(s) , arm colength a′(s), and leg colength l′(s) by

a(s) = µi − j, a′(s) = j − 1, l(s) = µ′
j − i, l′(s) = i − 1, (2.84)

as shown in Fig. 2.5.
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a′(s) a(s)

l′(s)

l(s)

s

j

i

Fig. 2.5. An example is shown for the arm length a(s) = 3, leg length l(s) = 4, arm
colength a′(s) = 2, and leg colength l′(s) = 2 for the shaded square s = (3, 3).

Using the notation introduced above, we derive some formulae. Let us
start with the following relation:∑

s∈D(µ)

a′(s) =
∑

s∈D(µ′)

l′(s). (2.85)

This relation holds because the columns and rows are interchanged in D(µ)
and D(µ′). Both sides are written as

LHS =
l(µ)∑
i=1

µi∑
j=1

(j − 1) =
1
2

l(µ)∑
i=1

µi(µi − 1), (2.86)

RHS =
µ1∑

j=1

µ′
j∑

i=1

(j − 1) =
µ1∑

j=1

µ′
j(j − 1), (2.87)

respectively. Equating (2.86) and (2.87) and using an obvious relation,

l(µ)∑
i=1

µi =
µ1∑

j=1

µ′
j , (2.88)

we obtain
l(µ)∑
i=1

µ2
i =

µ1∑
j=1

(2j − 1)µ′
j . (2.89)

(2.88) and (2.89) are useful if the energy is to be written in terms of {µ′
j}.
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Namely for a partition µ = (µ1, . . . , µN ), (2.62) is written as

N∑
i=1

[
µ2

i + λ (N + 1 − 2i)µi

]
=

N∑
i=1

µ2
i − λ

N∑
i=1

(2i − 1)µi + λN

N∑
i=1

µi

=
µ1∑

j=1

(2j − 1)µ′
j − λ

µ1∑
j=1

µ′2
j + λN

µ1∑
j=1

µ′
j

=
µ1∑

j=1

µ′
j

(
−λµ′

j + λN + 2j − 1
)
. (2.90)

2.3.2 Quasi-particles

With the periodic boundary condition (2.2), we take N odd so that the
ground state is non-degenerate in both bosonic and fermionic systems. The
N -particle ground state is described by κi = 0 for all i. Then we have
the rapidities for the ground state:

κ̃i,0 = λ

(
N + 1

2
− i

)
. (2.91)

Namely, the rapidities are subject to the exclusion rule. Hence the distribu-
tion of κ̃i is expressed in a way analogous to fermionic quantum numbers.

Figure 2.6(a) shows the rapidity distribution in the ground state for λ = 2
and N = 7. The sequence element “1” stands for occupied rapidities, and “0”
for unoccupied. In the ground state (a), the rapidity distribution is given by
{6, 4, 2, 0,−2,−4,−6}. The dashed lines represent the pseudo-Fermi points,
which correspond to the Fermi surface in one dimension, of this pseudo-
Fermi sea. These representations are called “motif ” and frequently used in
the literature [73,78,125] relating to the Sutherland model. In the following,
we consider the one-particle addition spectrum for positive integer λ.

When the original particles are bosons and λ is an even integer, both {κi}
and {κ̃i} are integers. In this case, an (N + 1)-particle state is possible with

κ̃1 ≥ κ̃1,0 + λ, κ̃i+1 = κ̃i,0, i ∈ [1, N ], (2.92)

or equivalently,

κ1 ≥ κ2 = · · · = κN+1 = λ/2. (2.93)

Note that κi for i > 1 is shifted by λ/2 in order to make the rapidity {κ̃}
remain the same. An example of (2.92) is shown in Fig. 2.6(b). The state
(2.92) consists of the Fermi sea for an N -particle system and an additional
particle. We call this particle outside the Fermi sea a quasi-particle.
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· · · 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0· · ·

(c)

(b)

(a)

· · · 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0· · ·

· · · 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1· · ·

Fig. 2.6. Motif representation of eigenstates for λ = 2 and N = 7: (a) the ground
state; (b) a one-particle addition state; (c) a one-particle removal state. In the se-
quence, “1” and “0” represent, respectively, occupied and empty rapidities. The
dotted lines represent the pseudo-Fermi point. In (c), λ consecutive zeros corre-
spond to a quasi-hole with charge reduced to 1/λ compared to that of the original
particles.

The excitation energy ∆E and momentum Q of the state (2.92) are given
by

∆E =
(

2π

L

)2

κ̃2
1, Q =

(
2π

L

)
κ̃1, (2.94)

with κ̃1 ≥ λN/2. In addition to the dimensionless rapidity κ̃1, we introduce
another rapidity

p = 2πκ̃1/L, (2.95)

with the dimension of physical momentum. Taking the thermodynamic limit
N → ∞ with N/L = d fixed, we obtain

∆E = εp(p) + µ, Q = p, (2.96)

with p ≥ πλd, and

εp(p) = p2 − π2λ2d2. (2.97)

The chemical potential µ is given by

µ = lim
N→∞

∂E0,N

∂N
= π2λ2d2. (2.98)

The ground-state energy E0,N has been derived in (2.12). The quasi-particle
in this state is right-moving.

We consider another (N + 1)-particle state with the rapidities

κ̃N+1 ≤ κ̃N,0 − λ, κ̃i = κ̃i,0, i ∈ [1, N ]. (2.99)
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We have to shift κi by −λ/2 in order to satisfy (2.99). Namely, we have

κN+1 < κN = · · · = κ1 = −λ/2. (2.100)

In the thermodynamic limit, the energy spectrum of (2.99) tends to

∆E = εp(p) + µ, Q = p, p ≤ −πλd, (2.101)

which represents a left-moving quasi-particle.
Quasi-particles obey the generalized statistics with the exclusion parame-

ter λ. This can be understood by considering an (N + 2)-particle state with
rapidities

κ̃1 > κ̃2 > κ̃1,0 + λ, κ̃i = κ̃i−2,0, i ∈ [3, N + 2]. (2.102)

In this state, the rapidities κ̃1 and κ̃2 of quasi-particle states are subject to
the exclusion rule

κ̃1 ≥ κ̃2 + λ. (2.103)

Let us now consider the one-particle addition spectrum of bosons for odd
λ. Under the periodic boundary condition with N odd, κ̃i for (N + 1)-
particle states is a half odd integer but κ̃i,0 for the N -particle ground state
is an integer. As a result, the state given by (2.92) actually does not exist.
Alternatively, we consider a state with

κ̃1 ≥ κ̃1,0 + λ, κ̃i+1 = κ̃i,0 −
λ

2
, i ∈ [2, N ]. (2.104)

In the state (2.104), the rapidities in the condensate of the Fermi sea are
shifted, which is called the backflow effect. Correspondingly, the spectrum
of (2.104) in the thermodynamic limit is given by

∆E = εp(p) + µ, Q = p − πλd, p ≥ πλd.

We note that the momentum in this spectrum is shifted compared to (2.96).
Thus the one-particle addition spectrum of the bosonic system for odd λ is
more complicated than that for even λ. As shown in Section 2.6, an exact
solution of the Green function of the Sutherland model for bosons has been
obtained only when λ is even.

We next consider the case where the original particles are fermions; the
one-particle addition spectrum again depends on whether λ is even or odd.
The N -particle ground state is given by ΨF

0 , and the spectrum is given by
(2.91). When λ is odd, κi for (N + 1)-particle states is a half odd integer
in order that the total wave function Ψ satisfies the periodic boundary con-
dition. Rapidities κ̃i = κi + λ(N + 2 − 2i)/2 for (N + 1)-particle states are
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thus integers. By taking {κi} as

κ1 > κi =
λ

2
, i ∈ [2, N ], (2.105)

we obtain the state (2.92) with one quasi-particle and no backflow.
When the particles are fermions and λ is an even integer, ΨF

0 for (N +
1)-particle states satisfies the periodic boundary condition. Hence κi’s for
(N + 1)-particle states are integers and rapidities are half odd integers. In
this case, one quasi-particle cannot be created without the momentum shift
of the condensate in the Fermi sea. When particles are fermions, an exact
solution of the Green function is available only for an odd integer λ.

2.3.3 Quasi-holes

We calculate the spectrum of one-particle removal states from the N -particle
ground state. The particle number N is taken to be odd so that the ground
state is non-degenerate under the periodic boundary condition. We focus
on the model for bosons with even integer λ, or fermions with odd λ for
simplicity.

When particles are bosons and λ is even, both κi and κ̃i are integers in
(N − 1)-particle states. The (N − 1)-particle states with the pseudo-Fermi
points fixed have rapidity distribution satisfying the condition

κ̃1 = κ̃1,0 =
λ(N − 1)

2
, . . . , κ̃N−1 = κ̃N,0. (2.106)

An example of the state with (2.106) is given in Fig. 2.6(c) for λ = 2 and
N =7. When a particle is removed from the Fermi sea for λ =2, two “00” are
created. This means that the states satisfying (2.106) are a two-parameter
family parameterized by two quantum numbers.

For general even integer λ, the states satisfying (2.106) are a λ-parameter
family, as shown below. From (2.106), we obtain the largest (κ1) and the
smallest (κN−1) momenta as

κ1 = κ̃1−λ(N−3)/2 = λ/2, κN−1 = κ̃N−1−λ(1−N)/2 = −λ/2. (2.107)

The momentum distribution(
κ1 +

λ

2
, . . . , κN−1 +

λ

2

)
= (µ1, . . . , µN−1),

which is Galilean shifted by λ/2 from (2.107), is described by Young di-
agrams with λ columns. Each row has µi = κi + λ/2 squares. Obviously
such Young diagrams are equivalently parameterized by the set (µ′

1, . . . , µ
′
λ)
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Fig. 2.7. Young diagram of a one-particle removal state for bosons with λ = 4.

of lengths of each column. Figure 2.7 shows an example for λ = 4. The
excitation energy of the (N − 1)-particle state is given by

E =
N−1∑
i=1

[
κi +

λ(N − 2i)
2

]2

−
N∑

i=1

[
λ(N + 1 − 2i)

2

]2

=
N−1∑
i=1

[
µi +

λ(N − 1 − 2i)
2

]2

−
N∑

i=1

[
λ(N + 1 − 2i)

2

]2

=
N−1∑
i=1

[
µ2

i + λ(N − 1 − 2i)µi

]
−

(
λ(N − 1)

2

)2

. (2.108)

Using (2.90) in (2.108), we obtain

E +
1
4
λ2(N − 1)2 =

λ∑
j=1

µ′
j

[
−λµ′

j + λ(N − 2) + 2j − 1
]
. (2.109)

Let us introduce (dimensionless) rapidities by

µ̇j = µ′
j −

N − 1
2

+
λ + 1 − 2j

2λ
, µ̇j,0 =

λ + 1 − 2j

2λ
, (2.110)

and write (2.109) as

E +
1
4
λ2(N − 1)2 = −λ

λ∑
j=1

[
µ̇2

j − µ̇2
j,0

]
. (2.111)
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Using (2.110), the momentum of the quasi-hole state is expressed as

Q =
2π

L

N−1∑
i=1

κi =
2π

L

N−1∑
i=1

(
µi −

λ

2

)

=
2π

L

λ∑
j=1

µ′
j −

π

L
(N − 1)λ =

2π

L

λ∑
j=1

µ̇j . (2.112)

The spectrum in the thermodynamic limit is then given by

∆E + µ = λ

λ∑
j=1

[
π2d2 − p′2j

]
, Q =

λ∑
j=1

p′j , (2.113)

where we have introduced the quasi-hole rapidity p′j = (2π/L)µ̇j with
|p′j | ≤ πd.

We have thus found that a one-particle removal state is interpreted as
an excited state with the number λ of quasi-holes. The exclusion rule is
given by

µ̇j ≥ µ̇j+1 +
1
λ

. (2.114)

It is clear that these quasi-holes obey the generalized statistics with a
parameter 1/λ. Furthermore, (2.73) and (2.114) suggest that the Sutherland
model with a parameter λ is related to another with 1/λ via the particle–
hole transformation. This property is called duality. We note that in the
case of odd λ, (2.113) is valid as the removal spectrum for the system with
N fermions.

2.3.4 Neutral excitations

Now we consider the spectrum of excited states where the number N of
particles remains the same as that in the ground state. In this case, rapidi-
ties {κ̃i} of excited states are integers for both bosons and fermions with
integer λ. As a result, one quasi-particle can be excited, keeping the pseudo-
Fermi points fixed (i.e., without shift of the Fermi sea). The set of rapidities
in this type of excited state has the form

κ̃1 > κ̃2 + λ, κ̃2 ≤ κ̃1,0, κ̃N ≥ κ̃N,0, (2.115)

which is expressed in terms of momenta κi as

κ1 ≥ λ, κ2 ≤ λ, κN ≥ 0. (2.116)
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λ

κ1

Fig. 2.8. Young diagram of the states with a right-moving quasi-particle and
λ quasi-holes.

Figure 2.8 shows an example of a Young diagram for partition κ satisfy-
ing (2.116). This diagram consists of a quasi-particle, represented by shaded
squares, and quasi-holes, represented by unshaded squares. One quasi-particle
excitation accompanies λ quasi-hole excitations. This is interpreted as the
charge conservation

(number of quasi-particles) × ep︸︷︷︸
1

+(number of quasi-holes) × eh︸︷︷︸
−1/λ

= ∆N,

(2.117)
where ep and eh denote the charge of a quasi-particle and a quasi-hole,
respectively. ∆N(= 0 in the present case) is the difference of the particle
numbers between excited states and the ground state. Excitation of one
quasi-particle and λ quasi-holes is the minimum set of neutral excitation.

The excitation energy

∆E =
(

2π

L

)2 N∑
i=1

[
κ2

i + λ(N + 1 − 2i)κi

]
(2.118)

is decomposed into two parts. First, the component i = 1 is the energy of
the quasi-particle: (

2π

L

)2 [
κ2

1 + λ(N − 1)κ1

]
= p2

1 − p2
1,0, (2.119)

with

p1 =
2π

L

(
κ1 +

λ(N − 1)
2

)
, p1,0 =

2π

L
· λ(N − 1)

2
. (2.120)
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The other terms with i ∈ [2, N ] are rearranged as quasi-hole excitations:(
2π

L

)2 N∑
i=2

[
κ2

i + λ(N + 1 − 2i)κi

]
=

(
2π

L

) 2 N−1∑
i=1

[
µ2

i + λ(N − 1 − 2i)µi

]
= −λ

λ∑
j=1

[
p′

2
j − p′2j,0

]
, (2.121)

with µi = ki+1 for i ∈ [1, N − 1] and

p′j =
2π

L

(
µ′

j −
N − 1

2

)
+ p′j,0, p′j,0 =

π

L
· λ + 1 − 2j

λ
. (2.122)

Definition of µ′
j is shown in Fig. 2.7.

In summary, the excitation energy (2.118) is represented in terms of ele-
mentary excitations by

∆E = p2
1 − p2

1,0 − λ

λ∑
j=1

[
p′

2
j − p′2j,0

]
, (2.123)

p1 ≥ πλ(N + 1)
L

, |p′j | ≤
π

L

(
N − 1

λ

)
.

The corresponding momentum is given by

Q = p1 +
λ∑

j=1

p′j . (2.124)

The excitation spectrum with one left-moving quasi-particle and λ quasi-
holes can be obtained in a similar way.

Figure 2.9 shows an example with λ = 2 and N = 7. There is a similarity
to the particle–hole excitation spectrum of free electrons in one dimension.
In the present case, however, the lower threshold consists of two arcs, instead
of one for free electrons. We note that multiple excitations of quasi-particles
and λ times as many quasi-holes are necessary in order to reproduce the
spectrum in Fig. 2.3.

2.4 Thermodynamics

In Section 2.2, we have interpreted the energy spectrum of the Sutherland
model as either interacting bosons, interacting fermions, or free particles
obeying exclusion statistics. Correspondingly, the thermodynamic potential
can be derived in different ways. We shall give each description in this sec-
tion, together with another description in terms of elementary excitations.
Furthermore, thermodynamics of free anyons are discussed without taking
the Sutherland model.
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0

4p2d2

2pd 4pd

8p2d2

Q

∆E

Fig. 2.9. Excitation spectrum with one quasi-particle and λ(= 2) quasi-holes in the
case of N = 7 and the density n = N/L.

2.4.1 Interacting boson picture

For the Hamiltonian (2.1), the eigenenergy (2.43) is given relative to the
ground-state energy E0,N by

∆E[ν] =
(

2π

L

) 2
[∑

κ

κ2ν(κ) +
λ

2

∑
κ

∑
κ′

|κ − κ′|ν(κ)ν(κ′)

]
. (2.125)

We derive the thermodynamic potential

Ω = −T lnZ, Z = Tr e−β(E−µN), (2.126)

following the method of [177]. Here µ is the chemical potential and β = 1/T .
First we take {κi}N

i as an index of one-particle states. We divide the set of
one-particle states into many subsets which consist of a macroscopic number
of κi (see Fig. 2.10). We denote the subsets by α and a representative value
of one-particle state in α by κα. We take Gα as the number of κi in α so
that the condition

1 ¿ Gα ¿ N (2.127)

is satisfied. For a given eigenstate specified by {ν(κ)}∞κ=∞, we introduce the
average of the distribution function

ν̄α =
Nα

Gα
, Nα =

∑
κ∈α

ν(κ). (2.128)
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Gα

κα

Gα′

κα′

κ

Fig. 2.10. Division of a set of one-particle states into many subsets α, α′, . . . con-
sisting of a macroscopic number Gα, Gα′ , . . . of one-particle states.

In the thermodynamic limit, only the extensive part Ē (∝ L) is important in
(2.125). The energy Ē depends on {ν(κ)} only through Nα and is expressed
relative to E0,N as

∆Ē =
(

2π

L

)2
[∑

α

κ2
αNα +

λ

2

∑
α

∑
α′

|κα − κα′ |NαNα′

]
. (2.129)

The number of ways for Nα(= ν̄αGα) bosons to be distributed among Gα

one-particle states is given by

Wα =
(Gα + Nα − 1)!
(Gα − 1)!Nα!

. (2.130)

Using the Stirling formula, the extensive part S of the entropy is given by

S =
∑
α

[(ν̄α + 1) ln (ν̄α + 1) − ν̄α ln ν̄α] Gα. (2.131)

From (2.129) and (2.131), the thermodynamic potential Ω can be obtained.
In the thermodynamic limit, ν̄α can be regarded as a function of the

continuous variable 2πκα/L. When we rewrite 2πκα/L → k, 2πGα/L → dk,
and ν̄α → ν(k), the expression for Ω/L becomes

Ω[ν(k)]/L − π2λ2d3/3

=
1
2π

∫ ∞

−∞
dk(k2 − µ)ν(k) +

λ

4π

∫ ∞

−∞
dk

∫ ∞

−∞
dk′|k − k′|ν(k)ν(k′)

− T

2π

∫ ∞

−∞
dk [(ν(k) + 1) ln (ν(k) + 1) − ν(k) ln ν(k)] , (2.132)
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where the second term on the LHS is the contribution from the ground state
with

d =
∫

dk

2π
ν(k).

The thermal equilibrium distribution function ν(k) is given from the sta-
tionary condition for Ω:

δΩ[{ν(k)}]
δν(k)

= 0. (2.133)

The solution of (2.133) is given by

ν(k) = {exp [(ε̃(k) − µ) /T ] − 1}−1 , (2.134)

ε̃(k) = k2 + λ

∫ ∞

−∞
dk′|k − k′| ν(k′). (2.135)

With use of these two equations and (2.132), the thermodynamic potential
and other thermodynamic quantities are obtained. Although (2.134) is of
the same form as the free boson distribution function, ε̃(k) is obtained by
solving the self-consistent integral equation (2.135). Namely, ε̃(k) includes
interaction effects, and is analogous to the dressed energy or renormalized
energy in the thermodynamic Bethe ansatz theory [118].

Calculation of thermodynamic quantities is simplified with the use of
rapidity (2.66), as shown in the next subsection.

2.4.2 Free anyon picture

Multiplying (2.66) by 2π/L and setting pi = 2πκ̃i/L and ki = 2πκi/L, we
obtain

pi = ki +
πλ

L

∑
j(6=i)

sgn(pi − pj). (2.136)

Henceforth, we regard sgn(0) as 0. Introducing the rapidity distribution
function

ρ(p) =
2π

L

∑
i

δ(p − pi), (2.137)

we write (2.136) as

pi = ki +
λ

2

∫
dp′sgn(pi − p′)ρ(p′), (2.138)

which defines a continuous function p(k). Taking the derivative of both sides
of (2.138) with respect to p, we obtain

1 =
dk

dp
+ λρ(p) =

ρ(p)
ν(k)

+ λρ(p), (2.139)
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where we have used the property

2πdN/L = ρ(p)dp = ν(k)dk. (2.140)

Using (2.139), we obtain the relation between the distribution functions:

ν(k) =
ρ(p)

1 − λρ(p)
, ρ(p) =

ν(k)
1 + λν(k)

. (2.141)

The energy, including the ground-state contribution, is then written in a
compact form as

E =
∑

i

p2
i = L

∫
dp

2π
p2ρ(p). (2.142)

The entropy S given by (2.131) is rewritten as

S = L

∫ ∞

−∞

dp

2π
[(ρ + ρ∗) ln (ρ + ρ∗) − ρ ln ρ − ρ∗ ln ρ∗], (2.143)

where ρ∗ is the hole distribution given by

ρ∗(p) = 1 − λρ(p) =
1

1 + λν(k)
. (2.144)

The expression (2.143) is equivalent to lnW in (2.75) and (2.76) in the
thermodynamic limit with ρ∗ = D/G, ρ = N/G, and g = λ. Thus (2.142)
and (2.143) describe thermodynamic quantities of the Sutherland model in
terms of free anyons.

2.4.3 Exclusion statistics and duality

In this subsection, we discuss the thermodynamics of free particles obeying
exclusion statistics in general. The dispersion relation is given by ε(p) and
the statistical parameter g. The thermodynamic potential is given by

Ω/L = (E − TS − µN)/L

=
∫

dp

2π
(ε − µ)ρ − T

∫ ∞

−∞

dp

2π
[(ρ + ρ∗) ln (ρ + ρ∗) − ρ ln ρ − ρ∗ ln ρ∗],

(2.145)

with ρ∗ = 1 − gρ. We call p the rapidity also in the present case. In the
particular case of the Sutherland model, we have ε = p2 and g = λ. The
distribution function ρ(p) is obtained from the stationary condition

δΩ/δρ(p) = 0, (2.146)
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which gives

ln (1 + w) + g ln
(
1 + w−1

)
=

ε − µ

T
. (2.147)

In terms of the quantity

w = ρ∗/ρ, (2.148)

(2.147) is written alternatively as

exp [(ε − µ) /T ] = wg (1 + w)1−g. (2.149)

We further obtain

ρ = 1/(w + g), ρ∗ = w/(w + g). (2.150)

Then the thermodynamic potential takes a simple form:

Ω/L = −T

∫
dp

2π
ln

[
1 + w−1

]
. (2.151)

In the present case, (2.149) and (2.151) determine thermodynamic quanti-
ties. For some special values of g, we can explicitly obtain the analytic form
of distribution functions. Let us consider these cases in the following.

Free bosons:
When g = 0, the solution of (2.149) is given by

w = exp [(ε − µ) /T ] − 1, (2.152)

which gives

ρ =
1

exp [(ε − µ) /T ] − 1
, ρ∗ = 1 (2.153)

and

Ω = T

∫
dp

2π
ln [1 − exp[−(ε − µ)/T ]] . (2.154)

Thus the thermodynamics of free bosons is reproduced.

Free fermions:
When g = 1, the solution of (2.149) is given by

w = exp [(ε − µ) /T ] , (2.155)

ρ =
1

exp [(ε − µ) /T ] + 1
, ρ∗ =

1
exp [− (ε − µ) /T ] + 1

, (2.156)

and

Ω = −T

∫
dp

2π
ln [1 + exp[−(ε − µ)/T ]. (2.157)
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Thus the thermodynamics of free fermions is also reproduced.

Free semions and ultrafermions:
When g = 1/2, we obtain

w =
1
2

[
−1 +

√
1 + 4e2(ε−µ)/T

]
, (2.158)

ρ =
2√

1 + 4e2(ε−µ)/T
, ρ∗ = 1 − 1√

1 + 4e2(ε−µ)/T
. (2.159)

These particles are called semions. For g = 2, on the other hand, we obtain

w =
1
2

[
e(ε−µ)/T +

√
e2(ε−µ)/T + 4e(ε−µ)/T

]
, (2.160)

ρ =
1
2

(
1 − 1√

4e−(ε−µ)/T + 1

)
, ρ∗ =

1√
4e−(ε−µ)/T + 1

. (2.161)

Since the exclusion is stronger than free fermions, these particles may be
called ultrafermions. The exclusion statistics is often called the fractional
exclusion statistics for a case where g is a fractional number between
0 and 1.

Figure 2.11 shows the distribution functions ρ for g = 1/2 and g = 2 as
functions of one-particle energy ε at several temperatures. At zero temper-
ature, the solution of (2.149) is given by

w =
{

0, ε < µ,

∞, ε > µ,
(2.162)

which gives the particle distribution function

ρ =
{

1/g, ε < µ,

0, ε > µ.
(2.163)

We see from Fig. 2.11 that the profiles of ρ are similar to those of fermions.
This applies to arbitrary positive real g. Owing to this property, it is possible
to perform the Sommerfeld-type expansion at low temperatures [121]. Then
the specific heat tends to T in the low-temperature limit. Another example
will be given in Section 4.10.3.

The relation between (2.161) and (2.159) is an example of a duality
between ρ∗ for g, and ρ for 1/g. The duality relation is written in the form

ρ∗
(

ε − µ

T
; g

)
=

1
g
ρ

(
µ − ε

gT
;
1
g

)
, (2.164)

which can be derived from (2.148), (2.149), and (2.150).
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Fig. 2.11. Distribution function for g = 1/2 (upper panel) and g = 2 (lower panel)
as a function of energy for different temperatures from T = 0 to T/µ = 0.5 with
the interval ∆T/µ = 0.05.

2.4.4 Elementary excitation picture

Now let us return to the Sutherland model and rewrite the thermodynamics
in terms of elementary excitations. For this purpose, we first consider the
ground state. At T = 0, the distributions of particles and holes are given by{

ρ(p) = 1/λ, ρ∗(p) = 0, for |p| < pF ≡ µ1/2,

ρ(p) = 0, ρ∗(p) = 1, for |p| > pF.
(2.165)

From this result, we obtain µ = p2
F = (πdλ)2. The ground state is analogous

to the Fermi sea. There are two branches of excitations: quasi-particle for
|p| > pF and quasi-hole for |p| < pF.
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We introduce wp = w for |p| > pF and wh = w−1 for |p| < pF. In terms of
wp and wh, (2.147) is rewritten as

εp(p)/T ≡
(
p2 − µ

)
/T = log (1 + wp) − gp log

(
1 + w−1

p

)
, (2.166)

εh(p)/T ≡
(
µ − p2

)
/(λT ) = log (1 + wh) − gh log

(
1 + w−1

h

)
, (2.167)

with gp = λ and gh = 1/λ. Using (2.166) and (2.167), the thermodynamic
potential is rewritten as

Ω
L

= −T

∫
|p|>pF

dp

2π
ln

(
1 + w−1

p

)
− T

λ

∫
|p|<pF

dp

2π
ln

(
1 + w−1

h

)
. (2.168)

In the above equation, the first and second terms represent the contributions
of quasi-particles and quasi-holes, respectively.

The characters of elementary excitations are indexed by the charge, statis-
tics, and dispersion relation. The charge can be determined by the coefficient
of the chemical potential in the one-particle energy: εp and εh. The charge ep

of quasi-particles is unity since the coefficient of µ in εp is −1. Quasi-holes,
on the other hand, have the fractional charge eh = −1/λ since the coefficient
of µ in εh is 1/λ. If we set λ = 1, which is the free fermion case, all these
relations reduce to the trivial one. In Section 2.6, we shall discuss the propo-
sition that anyonic elementary excitations provide a natural interpretation
of dynamical correlation functions.

2.5 Introduction to Jack polynomials

In Section 2.1.3, we have seen that the eigenfunction Φκ specified by κ ∈ L+
N

is given by multiplication of a finite-dimensional matrix. In this subsection,
we discuss properties of eigenfunctions in more detail. In the following, we fo-
cus on eigenfunctions specified by κ ∈ Λ+

N . Otherwise, appropriate Galilean
boost realizes a partition µ with µ = (κ1 + n, . . . , κN + n).

In Section 2.1.3, we have used φB
κ defined by (2.27) as the basis function.

From now on, we use another basis mκ, called the monomial symmetric
functions. The functions mκ are the sum of all distinct permutations of
the monomial zκ1

1 zκ2
2 · · · . For example, m21 =

∑
i6=j z2

i zj . Let us assume a
partition κ which has part 1 with multiplicity l1, part 2 with multiplicity l2,
and so on. Then mκ is related to φB

κ by

mκ =
φB

κ

l1!l2! · · ·
. (2.169)
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Correspondingly, we consider the eigenfunction Jκ normalized so that

Jκ =
ΦB

κ

l1!l2! · · ·
, (2.170)

where ΦB
κ has been defined in (2.41).

Following the procedure in Section 2.1.3, some examples of Jκ in terms
of mκ are listed below:

J1···1 = m1···1,

J2 = m2 +
2λ

λ + 1
m11,

J3 = m3 +
3λ

λ + 2
m21 +

6λ2

(λ + 1) (λ + 2)
m111,

J21 = m21 +
6λ

2λ + 1
m111,

J4 = m4 +
4λ

λ + 3
m31 +

6λ(λ + 1)
(λ + 2)(λ + 3)

m22 +
12λ2

(λ + 2)(λ + 3)
m211

+
24λ3

(λ + 1)(λ + 2)(λ + 3)
m1111,

J31 = m31 +
2λ

λ + 1
m22 +

λ(5λ + 3)
(λ + 1)2

m211 +
12λ2

(λ + 1)2
m1111,

J22 = m22 +
2λ

λ + 1
m211 +

12λ2

(λ + 1)(2λ + 1)
m1111,

J211 = m211 +
12λ

3λ + 1
m1111. (2.171)

These polynomials are called Jack polynomials [126, 169], which in general
have the form

Jκ = mκ +
∑
µ<κ

vµ,κmµ. (2.172)

The Jack polynomials are related to other symmetric polynomials (called
also functions) at a specific value of λ. Obviously, Jκ reduces to mκ when
λ = 0. When λ → 1, we obtain from (2.171)

J2 → m2 + m11,

J3 → m3 + m21 + m111,

J21 → m21 + 2m111.
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When λ = 1, the Jack polynomials reduce to Schur functions [126], which
are defined by

sκ =
det(zκj+N−j

i )

det(zN−j
i )

=

∏
i<j

(zi − zj)

−1 ∑
P

(−1)P zκ1+N−1
p(1) zκ2+N−2

p(2) · · · zκN

p(N).

Here the summation with respect to P runs over the symmetric group SN

of order N .
When λ → ∞, Jκ reduces to elementary symmetric functions eκ′ , with

the conjugate partition κ′ of κ. Here eκ is defined by [126]

eκ = eκ1eκ2 · · · , with ek =
∑

1≤i1<i2<· · ·<ik≤N

zi1zi2 · · · zik . (2.173)

For example, in the limit λ → ∞, J2, J3 and J21 become

J3 → m3 + 3m21 + 6m111 = e111,

J21 → m21 + 3m111 = e21,

J111 = m111 = e3.

As a basis set we can use symmetric functions other than mκ. For example,
the power-sum symmetric functions

pκ = pκ1pκ2 · · · , with κ ∈ Λ+
N , pk =

N∑
i=1

zk
i (2.174)

are often used as a basis in the theory of symmetric polynomials; every
symmetric function can be written as a linear combination of the power-
sum symmetric functions. Furthermore, we can introduce a scalar product
on the set of symmetric functions. We seek the scalar product under which
both pκ and Jκ form orthogonal bases.

For a partition κ having part 1 with multiplicity l1, part 2 with multiplicity
l2 and so on, we define

ζκ = 1l1 l1!2l2 l2! · · · . (2.175)

Let us define a scalar product 〈·, ·〉c by

〈pκ, pµ〉c = δκ,µζκλ−l(κ), (2.176)

where the suffix c means ‘combinatorial’, as will be explained in more detail
in Section 7.3.6.
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The Jack symmetric functions with different partitions turn out to be
orthogonal with respect to 〈· , ·〉c. Therefore, the Jack polynomials can also
be defined uniquely by the following two conditions [126,169]:

Jκ = mκ +
∑
µ<κ

vµ,κmµ, (2.177)

〈Jκ, Jµ〉c = 0 if κ 6= µ. (2.178)

Actually, we can reproduce (2.171) for Jκ from the definitions (2.177) and
(2.178).

Let us give a simple example. For κ = 2, 0, 0, . . ., we set

J2 = m2 + vm11, (2.179)

where the coefficient v is to be determined from the orthogonality condition

〈J2, J11〉c = 〈J2,m11〉c = 0. (2.180)

We note that m2 = p2 and m11 = (p11 − p2)/2 and

〈p11, p11〉c = 122!λ−2, 〈p2, p2〉c = 211!λ−1, 〈p2, p11〉c = 0. (2.181)

With these relations and (2.180), the coefficient v in (2.179) is found to be

v =
2〈p2, p2〉c

〈p2, p2〉c + 〈p11, p11〉c
=

2λ

1 + λ
, (2.182)

which yields the expression for J2 in (2.171).
The norms of J11 and J2 with respect to (2.176) can be obtained as

〈J11, J11〉c =
1
4

(〈p11, p11〉c + 〈p2, p2〉c) =
(1 + λ)

2λ2
(2.183)

and

〈J2, J2〉c = 〈m2 +
2λ

1 + λ
m11,m2 +

2λ

1 + λ
m11〉c

= 〈p2 + λp11

1 + λ
,
p2 + λp11

1 + λ
〉c

=
〈p2, p2〉c + λ2〈p11, p11〉c

(1 + λ)2
=

2
λ(1 + λ)

.

(2.184)

Generally, the norm of the Jack polynomials with respect to the inner prod-
uct (2.176) is given by

〈Jκ, Jκ〉c =
∏

s∈D(κ)

h∗
κ(s)

hκ
∗(s)

, (2.185)
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a(s) = 0
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a(s) = 0

l(s) = 0
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l(s) = 0
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Fig. 2.12. Young diagrams (a) for κ = (1, 1), (b) for κ = (2, 0), where the arm
length a(s) and leg length l(s) are inscribed.

which will be derived in Section 7.3.6. Here the upper h∗
κ(s) and lower hκ

∗(s)
hook lengths are, respectively, defined as

h∗
κ(s) =

a(s) + 1
λ

+ l(s), hκ
∗(s) =

a(s)
λ

+ l(s) + 1 (2.186)

in terms of arm length a(s) and leg length l(s), which have been introduced
in Section 2.3.1. With the help of Fig. 2.12, we obtain∏

s∈D(κ=(1,1))

h∗
κ(s)

hκ
∗(s)

=
(1/λ + 1) (1/λ)

2 · 1
=

1 + λ

2λ2
,

∏
s∈D(κ=(2,0))

h∗
κ(s)

hκ
∗(s)

=
(2/λ) (1/λ)
(1/λ + 1) · 1

=
2

λ (1 + λ)
,

which agree with the earlier results (2.183) and (2.184).
The polynomials Jκ are also orthogonal to each other with respect to

another inner product. To define this, we quote the property∫ L

0
dx1 · · ·

∫ L

0
dxNJ∗

κ(z1, . . .)Jµ(z1, . . .)|Ψ0,N (x1, . . . , xN )|2

=
∫ L

0
dx1 · · ·

∫ L

0
dxNJ∗

κ(z1, . . .)Jµ(z1, . . .)|∆(z1, . . . , zN )|2λ ∝ δκ,µ (2.187)

with the Vandermonde determinant

∆(z) =
∏

1≤i<j≤N

(zi − zj). (2.188)
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a′(s) = 0

l′(s) = 0

a′(s) = 0

l′(s) = 1

a′(s) = 0 a′(s) = 1
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(b)(a)

l′(s) = 0

Fig. 2.13. Young diagrams (a) for κ = (1, 1), (b) for κ = (2, 0), where the arm
colength a′(s) and leg colength l′(s) are inscribed.

Then we define the inner product 〈f, g〉0 for functions f(z) and g(z) in
complex variables z = (z1, . . . , zN ) by

〈f, g〉0 =
N∏

i=1

∮
|zi|=1

dzi

2πizi
|∆(z)|2λf∗(z)g(z), (2.189)

where f∗(z) denotes the complex conjugation of f(z). The LHS of (2.187)
is then written as

LN 〈Jκ, Jµ〉0. (2.190)

The orthogonality in this inner product is described as

〈Jκ, Jµ〉0

= δκ,µcN (λ)
∏

s∈D(κ)

h∗
κ(s) (λN + a′(s) − λl′(s))

hκ
∗(s) (λN + a′(s) + 1 − λ(l′(s) + 1))

, (2.191)

with

cN (λ) =
Γ (Nλ + 1)

Γ (λ + 1)N
. (2.192)

The formula (2.191) will be proven in Section 7.3.5. Applying this formula
to κ = (1, 1) and κ = (2, 0), we obtain with the help of Fig. 2.13

〈J11, J11〉0 = cN (λ) · 1 + λ

2λ2
· N(N − 1)λ2

[(N − 1) λ + 1] [(N − 2)λ + 1]
, (2.193)

〈J2, J2〉0 = cN (λ) · 2
λ(1 + λ)

· Nλ ((N − 1)λ + 1))
[(N − 1)λ + 1] [(N − 1) λ + 2]

. (2.194)
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Owing to (2.191), the Jack symmetric polynomials can alternatively be
defined by the following two conditions:

Jκ = mκ +
∑
µ<κ

vµ,κmµ, (2.195)

〈Jκ, Jµ〉0 = 0 if κ 6= µ. (2.196)

We emphasize that Jκ’s form an orthogonal basis set with respect to two
different inner products simultaneously. This observation leads to the ana-
lytical expression of dynamical correlation functions, as discussed next.

2.6 Dynamics in thermodynamic limit

In Section 2.4, we have seen that thermodynamic quantities are described
in terms of elementary excitations such as quasi-particles and quasi-holes,
which obey the exclusion statistics. We will see in this section that those
anyonic elementary excitations also provide an intuitive interpretation of
dynamical properties at zero temperature.

Let us remark on some historical aspects of the dynamical theory. In 1993,
Simons et al. [164,167] found that the dynamical density–density correlation
functions 〈ρ̂(x, t)ρ̂(0, 0)〉 of the Sutherland model at couplings λ = 1/2 and
λ = 2 are identical to some parametric correlators in random systems. The
correlators can be obtained in terms of the so-called supermatrix method.
Using a similar method, Haldane and Zirnbauer calculated the hole propa-
gator 〈ψ̂†(x, t)ψ̂(0, 0)〉 at λ = 2 [81]. From these results together with knowl-
edge of the non-interacting case (λ = 1), Haldane conjectured the expression
of the dynamical correlation functions at arbitrary rational couplings [83].
His argument is based on consideration of the selection rule for the interme-
diate states. Subsequently, this conjecture was proved by using the theory of
symmetric Jack polynomials [61,62,72,125], where the hole propagator and
density correlation functions were obtained. By another approach, which
used two-dimensional Yang–Mills theory, the dynamical density correlation
functions for rational value of λ were also obtained in [133]. The particle
propagator 〈ψ̂(x, t)ψ̂†(0, 0)〉 at λ = 2 was calculated in [200] by the super-
matrix method. This result was extended to non-negative rational values of
λ [160] with the use of symmetric Jack polynomials. The dynamical current–
current correlation function was also calculated in [186].

In the present section, we provide exact expressions for propagators and
dynamical density correlation functions in the thermodynamic limit. We
interpret these results in terms of elementary excitations obeying the exclu-
sion statistics. The derivation makes full use of the theory of Jack polynomials,
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and is somewhat lengthy. Therefore we relegate the details of derivation to
Section 2.7.

2.6.1 Hole propagator 〈ψ̂†(x, t)ψ̂(0, 0)〉
In this subsection, we consider the hole propagator

G−(x, t) =
〈g, N |ψ̂†(x, t)ψ̂(0, 0)|g, N〉

〈g, N |g, N〉
, (2.197)

for an integer coupling λ. Here |g, N〉 represents the ground state for an N -
particle system, and ψ̂†(x, t) denotes the Heisenberg representation of the
field operator

ψ̂†(x, t) = ei(Ht−P̂ x)ψ̂†(0, 0)e−i(Ht−P̂ x). (2.198)

When the original particles are bosons (fermions), an explicit expression for
(2.197) is known for even (odd) integer λ. The expression in the thermo-
dynamic limit is given by [61,72,125]

G−(x, t) =
c(λ)d

2

λ∏
k=1

∫ 1

−1
dvkei(Qx−Et)

∏
i<j |vi − vj |2/λ∏λ

j=1 (1 − v2
j )1−1/λ

, (2.199)

which will be derived in the next section with use of symmetric Jack poly-
nomials. In (2.199), the constant c(λ) is given by

c(λ) =
λ∏

j=1

Γ(1 + 1/λ)
Γ(j/λ)2

. (2.200)

The excitation energy ω = E + µ and momentum are given by

ω = π2λd2
λ∑

j=1

(
1 − v2

j

)
, Q = πd

λ∑
j=1

vj . (2.201)

By Fourier transform, the spectral function A−(Q,ω) is defined as

G−(x, t) =
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dQ

2π
A−(Q,ω)eiQx−i(ω−µ)t. (2.202)

In the case of electron systems in solids, the spectral function can be mea-
sured experimentally as the intensity in angle-resolved photo-emission
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Fig. 2.14. Dispersion of a quasi-hole.

spectroscopy. We obtain from (2.199) the result

A−(Q,ω) = 2π2c(λ)d

(
λ∏

i=1

∫ 1

−1
dvi

) ∏
i<j |vi − vj |2/λ∏λ

j=1 (1 − v2
j )1−1/λ

× δ

Q − πd

λ∑
j=1

vj

 δ

ω − π2λd2
λ∑

j=1

(1 − v2
j )

. (2.203)

In the trivial case of λ = 1, the system reduces to that of free fermions and
the spectral function turns into

A−
λ=1(Q,ω) = 2πδ

(
ω − (π2d2 − Q2)/2

)
θ(πd − |Q|).

Here θ is the Heaviside step function:

θ(x) =
{

1, x ≥ 0,

0, x < 0.
(2.204)

The delta-function peak implies that one-particle removal leaves one hole be-
hind, which has an infinite lifetime. Figure 2.14 shows the dispersion relation
of the hole excitation, which in fact applies to a quasi-hole with arbitrary λ

according to (2.201).
In the simplest nontrivial case with λ = 2, the double integrals in (2.203)

are performed analytically. The spectral function A−
λ=2(Q,ω) is derived as

A−
λ=2(Q,ω) =

θ(ω − ωL(Q))θ(ωU(Q) − ω)
|ω + Q2 − 2πdQ|1/2|ω + Q2 + 2πdQ|1/2

, (2.205)
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Fig. 2.15. Compact support of the spectral function A−
λ (Q,ω) for λ = 2.

with ωU(Q) = 2π2d2 − Q2/2 and ωL = −Q2 + 2πd|Q|. We call such a
region “support” that has nonzero spectral function A−

λ (Q,ω). The support
of A−

λ=2(Q,ω) is shown in Fig. 2.15. From (2.205) and Fig. 2.15, we observe
that the spectral intensity has a continuum instead of the delta function.
This feature and (2.201) suggest that one hole breaks into two fractionalized
particles, which are nothing but quasi-holes as discussed in Section 2.3.3.

Now we discuss (2.203) for the general integer λ. One hole breaks into λ

quasi-holes. The repeated structure of the lower edge of the support can be
regarded as evidence for multiple excitations of quasi-holes, an example of
which is shown in Fig. 2.16 with λ = 5. Inspection of (2.205) shows that
A−

λ (Q, ω) diverges at the lower edge as

A−
λ (Q,ω) ∼

{
ω−λ+2/λ, for |Q|/(πd) = 1, 2, . . . , λ − 2,

(ω − ωL)λ+1/λ−3, otherwise,

and is discontinuous at the upper edge ωU(Q). The singularity of A−
λ (Q,ω)

comes either from the joint density of states of elementary excitations or
from the singularity of the integrand of (2.203). When the singularity of
spectral functions cannot be attributed to the joint density of states, this
singularity is evidence for statistical interaction between anyonic elementary
excitations.
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Fig. 2.16. Support of the spectral function A−
λ (Q,ω) for λ = 5.

2.6.2 Particle propagator 〈ψ̂(x, t)ψ̂†(0, 0)〉

We next consider the particle propagator

G+(x, t) =
〈g, N |ψ̂(x, t)ψ̂†(0, 0)|g, N〉

〈g, N |g, N〉
, (2.206)

which consists of two parts [160]

G+(x, t) = G+
1 (x, t) + G+

2 (x, t).

The first part is given by

G+
1 (x, t) = λd

∫ ∞

1
dw

(
w − 1
w + 1

)λ−1

cos(Qx)e−iEt, (2.207)

where

E = π2d2λ2w2, Q = πdλw. (2.208)

This part is interpreted as the propagation of a single particle over the Fermi
sea. For λ = 1, the result for the free fermions is recovered.

The second part G+
2 (x, t) represents the contribution from one quasi-

particle and the minimal number of neutral excitations (λ quasi-holes and
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a quasi-particle). It is given by

G+
2 (x, t) =

c(λ)d
2Γ(λ)2

∫ ∞

1
dw1

∫ −1

−∞
dw0

×
λ∏

i=1

∫ 1

−1
dviF (w1, w0; v1, . . . , vλ) exp[−i(ω + µ)t + iQx], (2.209)

where the constant c(λ) is given by (2.200). The excitation energy and mo-
mentum are given by

ω = π2d2λ

(
−

λ∑
i=1

v2
i + λ

1∑
i=0

w2
i

)
, Q = πd

(
λ∑

i=1

vi + λ
1∑

i=0

wi

)
. (2.210)

The form factor F (w1, w0; v1, . . . , vλ) is equal to

F (w1, w0; v1, . . . , vλ) =

∏
1≤i<j≤λ |vi − vj |2/λ|w1 − w0|2−2λ∏λ

i=1(1 − v2
i )1−1/λ

∏1
j=0(w

2
j − 1)1−λ

K2, (2.211)

where K is given by

K =
1∏

k=0

λ∏
l=1

(wk + vl)
λ−1

∏
l<k

(vl − vk)
−1

× ∂λ

∂v1 · · · ∂vλ

{∏
l<k

(vl − vk)
1∏

k=0

λ∏
l=1

(wk + vl)
1−λ

}
. (2.212)

In the case of electrons in solids, the corresponding spectral function
A+

λ (Q, ω) can be measured as the intensity of angle-resolved inverse photo-
emission spectroscopy. The part A+,1

λ (Q,ω) coming from G+
1 consists of a

delta function

A+,1
λ (Q,ω) = 2π2dλ

(
|Q| − πλd

|Q| + πλd

)λ−1

δ
(
ω − Q2/2

)
θ (|Q| − πd). (2.213)

Figure 2.17 shows by bold curves the location where A+,1
λ becomes nonzero.

With λ > 1, the intensity on those curves vanishes at the two pseudo-Fermi
points |Q| = πλd, as seen from (2.213). Figure 2.17 shows the support of
A+,2

λ (Q,ω), which derives from G+
2 , as the shaded region. Contrary to the

spectral function of the hole propagator, the support is not compact; the
region with nonzero intensity extends infinitely.
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Fig. 2.17. Support of G+ for λ = 2. Excitation content consists of four elementary
excitations: two quasi-holes and a right-moving quasi-particle and a left-moving
quasi-particle. The spectral function has the delta-function peak along the bold
curves.

2.6.3 Density correlation function

In the present subsection, we discuss the exact expression for the density
correlation function

Π(x, t) =
〈g, N |ρ̂(x, t)ρ̂(0, 0)|g, N〉

〈g, N |g, N〉
(2.214)

of the density fluctuation operator

ρ̂(x, 0) =
N∑

i=1

δ(x − xi) − d. (2.215)

In the thermodynamic limit, Π(x, t) is given by [72,125]

Π(x, t) =
c(λ)d2

2λ

∫ ∞

1
dw

∫ 1

−1
dv1 · · ·

∫ 1

−1
dvλ

(∑
i

vi + λw

)2

× (w2 − 1)λ−1
λ∏

i=1

(1 − v2
i )

−1+1/λ

(vi + w)2
∏
i<j

|vi − vj |2/λe−iωt cos(Qx), (2.216)

where the constant c(λ) is given by (2.200), and

ω = (πλdw)2 − λ
λ∑

j=1

(πdvj)2, Q = πλdw + πd
λ∑

j=1

vj . (2.217)
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We introduce the spectral function Sλ(Q,ω) by the Fourier transform

Π(x, t) =
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dQ

2π
Sλ(Q,ω)e−iωt cos(Qx). (2.218)

We then obtain

Sλ(Q,ω) =
(2π)2d2c(λ)

λ

∫ ∞

1
dw

∫ 1

−1
dv1 · · ·

∫ 1

−1
dvλ

×

(∑
i

vi + λw

)2

(w2 − 1)λ−1
λ∏

i=1

(1 − v2
i )

−1+1/λ

(vi + w)2

× δ

(
Q − πλdw + πd

λ∑
i=1

vi

)
δ

ω − (πλdw)2 − λ

λ∑
j=1

(πdvj)2

.

(2.219)

In the trivial case λ=1, the spectral function reduces to

Sλ=1(Q,ω)

= 2π2d2

∫ ∞

1
dw

∫ 1

−1
dv1δ(Q − πdw + πdv1)δ

ω − π2d2w2 + π2d2
λ∑

j=1

v2
j


=

2
|Q|

θ(ωU(Q) − ω)θ(ω − ωL(Q)), (2.220)

where the lower and upper edges are given by

ωL(Q) = |Q(2πd − Q)|/2, ωU(Q) = |Q(Q + 2πd)|/2.

Figure 2.18 shows the support for λ = 1, which reproduces the particle–hole
continuum of one-dimensional free fermions.

Now we consider the case for general positive integer λ. The excitation
content relevant to Sλ(Q,ω) consists of a quasi-particle plus λ quasi-holes.
Figure 2.19 shows the support for the case λ = 3. By comparing Figs 2.18
and 2.19, one can imagine how the support looks for general integer λ.

The upper edge

ω = ωU(Q) = Q(Q + 2πλd)/2

comes from excited states where λ quasi-holes are located at a pseudo-Fermi
point vi = 1, and the momentum w of a quasi-particle takes a value in [1,∞).
Hence ωU(Q) represents the momentum-shifted dispersion relation of quasi-
particle excitation. On the other hand, one of the lower edges ω = ωL(Q)
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Fig. 2.18. Support of the spectral function Sλ=1(Q,ω) of the density correlation
function for λ = 1, that for one-dimensional free fermions.
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Fig. 2.19. Support of the spectral function Sλ=3(Q,ω) of the density correlation
function for λ = 3. Relevant excited states are one quasi-particle/three quasi-hole
states.

for Q > 2πλd is given by

ω = ωL(Q) = Q(Q − 2πλd)/2.

This energy corresponds to excited states where λ quasi-holes are located at
a pseudo-Fermi point vi = −1 and the momentum of a quasi-particle takes
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a value in [1,∞). Hence ωL(Q) is another momentum-shifted dispersion
relation of quasi-particle excitation.

Other lower edges for 0 ≤ Q ≤ 2πλd are given by

ωL(Q) =
λ

2
(Q − 2π (λ − r) d) (2π (λ − r − 1) d − Q) , (2.221)

for

2π(λ − r − 1)d ≤ Q ≤ 2π(λ − r)d, r = 0, 1, . . . , λ − 1.

This part of the lower edges comes from those excited states where the quasi-
particle w = 1 is at the pseudo-Fermi point, and all but one quasi-hole are
located at either of the two Fermi points. The λ-fold repeated structure
with 0 ≤ r ≤ λ − 1 is formed by the dispersion relation of a quasi-hole.
The repeated structure along the lower edge is evidence for fractionalized
particles working as elementary excitations.

The spectral function can become singular at the upper and lower edges;
the singularity is determined either by the joint density of states or by the
matrix elements of the density operator between the state and an excited
state. Near the upper edge, Sλ(Q,ω) behaves as

Sλ(Q, ω) ∼ |ωU(Q) − ω|λ−1.

Near the lower edge Sλ(Q,ω) behaves as

Sλ(Q, ω) ∼{
|ω − ωL(Q)|λ−1, for Q > 2πλd,

|ω − ωL(Q)|2λ−4r−3+(2r2+2r+1)/λ, for 2π(λ − r − 1)d ≤ Q ≤ 2π(λ − r)d,

with r = 0, 1, . . . , λ − 1. Those singularities with fractional exponents can
also be regarded as evidence of statistical interaction between elementary
excitations.

2.7 Derivation of dynamics for finite-sized systems

Throughout this section we take the periodic boundary condition. For sim-
plicity, we focus on bosons with even integer λ as original particles in
the Hamiltonian. The final result is also applicable for fermions with odd
integer λ.
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2.7.1 Hole propagator

In the present subsection, we derive (2.199) in Section 2.7.1. The state
ψ̂(0, 0)|g, N〉 is written as∑

κ∈L+
N−1

|κ,N − 1〉〈κ,N − 1|ψ̂(0, 0)|g, N〉
〈κ,N − 1|κ,N − 1〉

, (2.222)

where the wave function of the state |κ,N − 1〉 is given by

Jκ(z1, . . . , zN−1)Ψ0,N−1(z1, . . . , zN−1).

Then (2.197) has the decomposition

G−(x, t) =∑
κ∈L+

N−1

|〈κ,N − 1|ψ̂(0, 0)|g, N〉|2

〈κ,N − 1|κ,N − 1〉〈g, N |g, N〉
e−i(E[κ]−E0,N)t+iQκx. (2.223)

Here the ground state energy E0,N for an N -particle system has been given
in (2.12), and

E[κ] =
(

2π

L

) 2 N−1∑
i=1

(
κi +

λ(N − 2i)
2

) 2

, Qκ =
2π

L

N−1∑
i=1

κi. (2.224)

The wave function of the state ψ̂(0, 0)|g, N〉 is then written as
√

NΨ0,N (0, x1, . . . , xN−1)

=
√

N

(
N−1∏
i=1

(zi − 1)λz
−λ/2
i

)
Ψ0,N−1(x1, . . . , xN−1). (2.225)

Here the factor
∏N−1

i=1 (zi − 1)λ is decomposed with Jκ as [94]

N−1∏
i=1

(zi − 1)λ =
∑

µ∈Λ+
N−1

(−1)λ(N−1)+|µ|bµJµ(z1, . . . , zN−1), (2.226)

where

bµ =
∏

s∈D(µ)

−a′(s)/λ + l′(s) + 1
(a(s) + 1)/λ + l(s)

. (2.227)

The relation (2.226) with (2.227) is called the binomial formula and will be
derived in Section 7.3.7.
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From (2.225) and (2.226), we obtain

ψ̂(0, 0)|g, N〉 =
√

N
∑

µ∈Λ+
N−1

(−1)λ(N−1)+|µ|bµ|µ − λ/2, N − 1〉, (2.228)

where the Galilean-shifted momentum is given by

µ − λ/2 = (µ1 − λ/2, . . . , µN−1 − λ/2) ∈ L+
N−1.

The Galilean shift is necessary since the physical momentum can become
negative, while µ is a partition with µN−1 ≥ 0. The propagator is given in
terms of bµ by

G−(x, t) = N
∑

µ∈Λ+
N−1

〈µ,N − 1|µ,N − 1〉
〈g, N |g, N〉

|bµ|2

×
∑

κ∈L+
N−1

δµ,κ+λ/2 exp [−i(Eκ − E0,N ) + iQκx] . (2.229)

Let us analyze the matrix elements bµ in detail. The numerator of (2.227)
is rewritten as∏

s∈D(µ)

(
−a′(s)

λ
+ l′(s) + 1

)
=

∏
(i,j)∈D(µ)

(
i +

1 − j

λ

)
, (2.230)

which is nonzero only if

µ1 ≤ λ. (2.231)

Therefore, only such excited states µ that satisfy (2.231) contribute to the
summation in (2.229). A typical diagram of µ is shown in Fig. 2.7. These
quasi-hole states are described in terms of rapidities µ̇1, . . . , µ̇λ defined by
(2.110). When we write (2.230) in terms of µ̇j , it is convenient to decompose
D(µ) into λ columns as shown in Fig. 2.20(b). The decomposition is in
general useful when we calculate the product of expressions such as∏

s∈D(µ)

(
αa′(s) + βl′(s) + γ

)
(2.232)

over D(µ) of the Young diagram of quasi-hole states.
We first calculate the relevant product within each column, and then take

the product of contributions from each column. Correspondingly, we rewrite
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(a) (b) (c)

Fig. 2.20. A quasi-hole state (a) is decomposed as (b) when a product containing
a′(s) and l′(s) is calculated, or as (c) when a product containing a(s) and l(s) is
calculated. Shaded squares represent Djk for (j, k) = (2, 3).

(2.230) as

∏
s∈D(µ)

(
−a′(s)

λ
+ l′(s) + 1

)
=

λ∏
j=1

µ′
j∏

i=1

(
−j − 1

λ
+ i

)

=
λ∏

j=1

Γ
(
µ′

j + 1 + (1 − j) /λ
)

Γ (j/λ)
. (2.233)

In the last equality, we have used the following relations:

n2∏
i=n1

(i + a) =
Γ(n2 + a + 1)

Γ(n1 + a)
, (2.234)

for n1 ≤ n2 ∈ Z, and

λ∏
j=1

Γ (1 + (1 − j) /λ) =
λ∏

j=1

Γ (j/λ) .

We introduce an auxiliary rapidity:

µ̇1+λ = µ′
1+λ︸ ︷︷ ︸
0

−N − 1
2

+
λ + 1 − 2j

2λ

∣∣∣
j=λ+1

= −N

2
− 1

2λ
, (2.235)
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which corresponds to the negative pseudo-Fermi point of quasi-holes. Then,
using (2.110), (2.233) is expressed equivalently as

∏
s∈D(µ)

(
−a′(s)

λ
+ l′(s) + 1

)
=

λ∏
j=1

Γ (µ̇j − µ̇1+λ)
Γ (j/λ)

. (2.236)

Next we represent the denominator of (2.227) in terms of µ̇i. When we
calculate the product ∏

s∈D(µ)

(αa(s) + βl(s) + γ), (2.237)

for a partition satisfying (2.231), it is convenient to decompose D(µ) as
shown in Fig. 2.20(c). Correspondingly, the product over s is rewritten as

∏
s∈D(µ)

(αa(s) + βl(s) + γ) =
λ∏

j=1

λ∏
k=j

∏
s∈Djk

(αa(s) + βl(s) + γ) (2.238)

with

Djk =
{
s = (i, j)|i ∈ [1 + µ′

k+1, µ
′
k]
}
. (2.239)

An example of Djk is shown in Fig. 2.20(c) by shaded squares. Since a(s) is
constant (= k − j) within Djk, it is possible to calculate the product with
respect to s ∈ Djk. When α = γ = 1/λ, β = 1, for example, we obtain

∏
s∈Djk

(
a(s) + 1

λ
+ l(s)

)
=

µ′
k∏

i=1+µ′
1+k

(
µi − j + 1

λ
+ µ′

j − i

)

=
Γ

(
(k − j + 1)/λ + µ′

j − µ′
k+1

)
Γ

(
(k − j + 1)/λ + µ′

j − µ′
k

)
=

Γ (µ̇j − µ̇k+1)
Γ (µ̇j − µ̇k + 1/λ)

. (2.240)

We have used (2.234) in the second equality, while we used (2.110) in
the last equality. From (2.238) and (2.240), the denominator of (2.227) is
expressed as

∏
s∈Djk

(
a(s) + 1

λ
+ l(s)

)
=

∏λ
j=1 Γ (µ̇j − µ̇1+λ)

Γ (1/λ)λ

λ∏
j<k

Γ (µ̇j − µ̇k)
Γ (µ̇j − µ̇k + 1/λ)

.

(2.241)
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Combining (2.236) and (2.241), we finally obtain

bµ =
Γ (1/λ)λ∏λ
j=1 Γ (j/λ)

∏
j<k

Γ (µ̇j − µ̇k + 1/λ)
Γ (µ̇j − µ̇k)

. (2.242)

We now consider the norm written as

〈µ,N − 1|µ,N − 1〉 = LN−1〈Jµ, Jµ〉0,N−1, (2.243)

where the inner product 〈· , ·〉0,N−1 has been defined in (2.189). Here we have
included the number N − 1 of particles explicitly. Similarly we obtain

〈g, N |g, N〉 = LN 〈1, 1〉0 = cN (λ) =
(

L

λ!

)N

Γ (Nλ + 1), (2.244)

where cN (λ) has been introduced by (2.192). Combining (2.243) and (2.244),
we obtain

〈µ,N − 1|µ,N − 1〉
〈g, N |g, N〉

=
cN−1(λ)
LcN (λ)

∏
s∈D(µ)

[(a(s) + 1) /λ + l(s)] [a′(s)/λ − l′(s) + N − 1]
[a(s)/λ + l(s) + 1] [(a′(s) + 1) /λ − l′(s) + N − 2]

,

(2.245)

where (2.191) has been used for norms of symmetric Jack polynomials.
By using the decompositions in Fig. 2.20(b) and (c), we further proceed

to express (2.245) in terms of the rapidity of quasi-holes as

〈µ,N − 1|µ,N − 1〉
〈g, N |g, N〉

=
Γ (1 + λ)

NLλλ (Γ (1/λ))λ

×
∏

1≤j<k≤λ

Γ (µ̇j − µ̇k) Γ (µ̇j − µ̇k + 1)
Γ (µ̇j − µ̇k + 1/λ) Γ (µ̇j − µ̇k + 1 − 1/λ)

×
λ∏

j=1

Γ (µ̇0 − µ̇j) Γ (µ̇j − µ̇1+λ)
Γ (µ̇0 − µ̇j + 1 − 1/λ) Γ (µ̇j − µ̇1+λ + 1 − 1/λ)

. (2.246)

Here we have introduced another auxiliary rapidity

µ̇0 =
N

2
+

1
2λ

, (2.247)
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which corresponds to a positive pseudo-Fermi point of quasi-holes. Combining
(2.242), (2.246), (2.109), and (2.112), we obtain

G−(x, t) =
λ!c(λ)

L

∑
0≤µ′

λ≤· · ·≤µ′
1≤N−1

exp[−i(Eκ − E0,N )t + iQκx]

× F0,λ(µ̇1, . . . , µ̇λ), (2.248)

where F0,λ(µ̇1, . . . , µ̇λ) is called the form factor, and is given by

F0,λ(µ̇1, . . . , µ̇λ) =
∏

1≤j<k≤λ

Γ (µ̇j − µ̇k + 1/λ) Γ (µ̇j − µ̇k + 1)
Γ (µ̇j − µ̇k) Γ (µ̇j − µ̇k + 1 − 1/λ)

×
λ∏

j=1

Γ (µ̇j − µ̇1+λ) Γ (µ̇0 − µ̇j)
Γ (µ̇j − µ̇1+λ + 1 − 1/λ) Γ (µ̇0 − µ̇j + 1 − 1/λ)

.

(2.249)

The constant c(λ) in (2.248) has been defined in (2.200).
We now consider the thermodynamic limit (t.d.l.) by taking

t.d.l.: N → ∞, L → ∞, N/L = d (fixed).

Let us introduce the normalized rapidity vj = 2µ̇j/N for quasi-holes j ∈
[1, λ]. Then the main contribution to the summation in (2.248) comes only
from configurations satisfying

vj − vj+1 = O(1), j ∈ [0, λ]. (2.250)

For such configurations, we obtain

lim
t.d.l.

(E[κ] − E0,N ) = −π2λd2
λ∑

j=1

v2
j , lim

t.d.l.
Qκ = πd

λ∑
j=1

vj (2.251)

and the form factor is drastically simplified as

lim
t.d.l.

(
N

2

)λ−1

F0,λ(µ̇1, . . . , . . . , µ̇λ) =
λ∏

i=1

(1 − v2
i )

−1+1/λ
∏
i<j

|vi − vj |2/λ.

(2.252)
The result (2.252) is derived with use of the property

Γ(n + a)
Γ(n + b)

∼ na−b, for n À 1, (2.253)

which follows from the Stirling formula

Γ(n + 1)|n→∞ '
√

2πnn+1/2 e−n. (2.254)
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In the thermodynamic limit, the summations over (µ′
1, . . . , µ

′
λ) in (2.248)

reduce to the following integrals:(
2
N

)λ N−1∑
µ′

1=0

µ′
1∑

µ′
2=0

· · ·
µ′

λ−1∑
µ′

λ=0

→
∫ 1

−1
dv1

∫ v1

−1
dv2 · · ·

∫ vλ−1

−1
dvλ. (2.255)

From (2.251), (2.252), and (2.255), we obtain

lim
t.d.l.

G−(x, t) =
c(λ)dλ!

2

∫ 1

−1
dv1

∫ v1

−1
dv2 · · ·

∫ vλ−1

−1
dvλ

× exp

i
∑

j

(πdvjx − π2λd2v2
j t)

 λ∏
i=1

(1 − v2
i )

−1+1/λ
∏
i<j

(vi − vj)2/λ.

(2.256)

We finally arrive at (2.199) by symmetrizing the integrand with respect to
vj , so that all integrals are to be performed for the range vj ∈ [−1, 1].

2.7.2 ∗Particle propagator

In the present subsection, we derive the particle propagator for finite-sized
systems. The action of the annihilation operator ψ̂(0, 0) on wave functions is
easier to handle than that of the creation operator ψ̂†(0, 0). Then in (2.206)
we deal with the matrix element

〈g, N |ψ̂(0, 0)|κ,N + 1〉, (2.257)

where |κ, N + 1〉 is the (N + 1)-particle state whose wave function is given
by JκΨ0,N+1. Hence we obtain the wave function for ψ̂(0, 0)|κ,N + 1〉:

√
N + 1Jκ(z1, . . . , zN , 1)Ψ0,N+1(1, z1, . . . , zN )

=
√

N + 1
N∏

i=1

(zi − 1)λ z
−λ/2
i Jκ(z1, . . . , zN , 1)Ψ0,N (z1, . . . , zN ). (2.258)

The polynomial Jκ(z1, . . . , zN , 1) is expanded with Jν(z1, . . . , zN ) as

Jκ(z1, . . . , zN , 1) =
∑

ν∈L+
N

fκ,νJν(z1, . . . , zN ), (2.259)

where the coefficient fκ,ν is given by

fκ,ν =
∏

s∈Cκ/ν\Rκ/ν

(
h∗

κ

hκ
∗

)(
hν
∗

h∗
ν

)
, (2.260)

when both κ and ν are partitions.
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∗

∗

Fig. 2.21. An example of µ = (3, 3, 3, 2, 0) contributing to the summation (2.259)
where κ = (4, 3, 3, 2, 1). Cκ/µ is {2} and Rκ/µ is {2, 3}. The squares belonging to
Cκ/µ \ Rκ/µ are marked by ∗.

Here upper and lower hook lengths are defined by (2.186), and the notation
A \ B means the complementary set which is sometimes written as A − B.
Namely, Cκ/ν denotes the columns {j} where κ′

j = ν ′
j and Rκ/ν denotes

the rows {i} where κi = νi. Actually fκ,ν is nonzero only when κ/ν is
a horizontal strip, where κ′

j − ν ′
j is 0 or 1 for each column of the Young

diagram. Figure 2.21 shows an example where κ/ν is a horizontal strip. We
shall derive (2.260) in Section 7.3.10.

When κN+1 < 0, we use the relation

fκ,ν = fκ+n,ν+n, (2.261)

where n is an integer larger than −κN+1 and

κ + n = (κ1 + n, . . . , κN+1 + n) ∈ Λ+
N+1,

ν + n = (ν1 + n, . . . , νN + n) ∈ Λ+
N .

The right-hand side of (2.261) is given by (2.260).
We rewrite the binomial expansion in (2.258) as

N∏
i=1

(zi − 1)λ z
−λ/2
i =

N∏
i=1

(
1 − z−1

i

)λ
zi

λ/2

=

(
N∏

i=1

zi
λ/2

) ∑
ν∈Λ+

N

(−1)|ν|bνJν(z−1
1 , . . . , z−1

N ), (2.262)

using (2.226). Combining (2.258), (2.260), and (2.262), we obtain

〈g, N |ψ(0, 0)|κ,N + 1〉 =
√

N + 1
∑

ν∈Λ+
N

〈Jν , Jν〉0(−1)|ν|bνfκ,ν−λ/2, (2.263)

where ν −λ/2 denotes (ν1 −λ/2, . . . , νN −λ/2) ∈ L+
N . Inserting (2.263) into

(2.257), we obtain the matrix element for G+(x, t) [160].
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As we have seen in Section 2.7.1, the factor bν is nonzero only if

λ ≥ ν2 ≥ · · · ≥ νN ≥ 0. (2.264)

There is no upper limit on the magnitude of ν1. Hence in the matrix element
in (2.257), the nonzero contribution comes only from κ ∈ L+

N+1 with

λ

2
≥ κ2 ≥ · · · ≥ κN ≥ −λ

2
, (2.265)

but without upper limit for κ1. From (2.264), we obtain the condition
κN+1 ≤ λ/2, but without lower limit.

For the case −λ/2 ≤ κN+1 ≤ λ/2, we consider the skew Young diagram
κ+/ν with κ+ = κ+λ/2. Here a skew Young diagram κ+/ν for two partitions
κ+ ⊃ ν consists of cells s ∈ κ+ but s /∈ ν. Figure 2.22 shows an example
for a case where κ+/ν is a horizontal strip which does not have a column of
κ+/ν with more than one square.

For another case κN+1 ≤ −λ/2, we perform a Galilean shift

κ++ = κ − κN+1, ν+ = ν − κN+1 − λ/2,

in order to make both κ++ and ν+ partitions. The coefficient

fκ,ν−λ/2 = fκ++,ν+ (2.266)

is zero unless ν+ is a partition, since κ++ is a partition.

λ

κN+1 + λ/2

N + 1

Fig. 2.22. Young diagram of κ+ for the case −λ/2 ≤ κN+1 ≤ λ/2. Unshaded
squares represent Young diagram of ν.



80 Single-component Sutherland model

λ

νN − κN+1 − λ/2

N

κ1 − κN+1

µ′
1 µ′

2

Fig. 2.23. The Young diagram of (κ − κN+1) when κN+1 < λ/2 is satisfied.
Unshaded squares represent the Young diagram of ν − κN+1 − λ/2.

In this case we consider the skew Young diagram where κ++/ν+ is the
horizontal strip. Figure 2.23 shows an example.

In this way the states κ with (2.265) are classified into:

(i) One right-moving quasi-particle state specified by κ with

κ1 > κ2 = · · · = κN+1 = λ/2, (2.267)

as discussed in Section 2.3.2.
(ii) One left-moving quasi-particle state specified by κ with

κ1 = · · · = κN = −λ/2 > κN+1. (2.268)

(iii) The states with one right-moving quasi-particle, one left-moving quasi-
particle, and λ quasi-holes with κ where

κ1 > λ/2 ≥ κ2 ≥ · · · ≥ κN ≥ −λ/2 > κN+1. (2.269)

(iv) Other states of κ with

κN+1 ∈
[
−λ

2
,
λ

2

)
, or κ1 ∈

(
−λ

2
,
λ

2

]
. (2.270)
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States (i) and (ii) yield G+
1 (x, t) and states (iii) give G+

2 (x, t), as we show
below. Other states (iv) do not contribute in the thermodynamic limit; the
contribution to G+(x, t) from the states with κ satisfying

κN+1 =
λ

2
− p, p = {1, 2, . . . , λ}

can be shown to be zero for λ = 1 or O(N−p2/λ) for λ 6= 1, in a way similar
to the derivation of G+

2 (x, t).
For one right-moving quasi-particle state (i), only ν = λN ≡ (λ, . . . , λ)

contributes to (2.263). Then both bν and fκ+λ/2,ν become unity. The exci-
tation spectrum has already been given in (2.94). The norm 〈Jκ, Jκ〉0 can
be derived from (2.191). The term on the RHS of (2.263) coming from the
one right-moving quasi-particle state is given by

G+
1R(x, t) =

1
L

∞∑
κ1>λ/2

Γ (κ̃1 − κ̃1,0) Γ (κ̃1 − κ̃N,0 + 1)
Γ (κ̃1 − κ̃1,0 + 1 − λ) Γ (κ̃1 − κ̃N,0 + λ)

× exp

[
−i

(
2πκ̃1

L

)2

t + i
(

2πκ̃1

L

)
x

]
, (2.271)

where

κ̃1 = κ1 + λN/2, κ̃1,0 = −κ̃N,0 = λ(N − 1)/2. (2.272)

Similarly, the contribution G+
1L(x, t) to (2.263) from one left-moving quasi-

particle state (ii) comes only from ν = 0N ≡ (0, . . . , 0), and we obtain

G+
1L(x, t) =

1
L

−λ/2∑
κN+1=−∞

Γ (κ̃N,0 − κ̃N+1) Γ (κ̃N,0 − κ̃N+1 + 1)
Γ (κ̃N,0 − κ̃N+1 + 1 − λ) Γ (κ̃N,0 − κ̃N+1 + λ)

× exp

[
−i

(
2πκ̃N+1

L

) 2

t + i
(

2πκ̃N+1

L

)
x

]
, (2.273)

with κ̃N+1 = κN+1 − λN/2.
In (2.271) and (2.273), we put

2κ̃1

λN
= −2κ̃N+1

λN
= w

and take the thermodynamic limit. We then obtain (2.207) for G+
1 (x, t) in

Section 2.6.2.
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For a state belonging to (iii), the energy E[κ] is given under the condition
(2.269) by

(
L

2π

) 2

E[κ] =
N+1∑
i=1

(
κi +

λ

2
(N + 2 − 2i)

)2

= κ̃2
1 + κ̃2

N+1 +
N∑

i=2

(
κi +

λ

2
(N + 2 − 2i)

) 2

. (2.274)

We introduce µ ∈ Λ+
N−1 as

µ = (κ2 + λ/2, . . . , κN + λ/2) (2.275)

and the quasi-hole rapidity as

µ̇j = µ′
j −

N − 1
2

+
λ + 1 − 2j

2λ
, (2.276)

for j ∈ [1, λ]. Then the excitation energy E is rewritten from (2.274) as

E = κ̃2
1 + κ̃2

N+1 − λ

λ∑
j=1

µ̇2
j +

λ

12
(λ2 − 1). (2.277)

Next we consider the matrix element. Let I be the subset of [1, 2, . . . , λ]
such that

ν ′
j =

{
µ′

j + 1, j ∈ I,

µ′
j , j ∈ J = [1, 2, . . . , λ] \ I,

(2.278)

where A \ B is the complementary set of B in A. For example, Fig. 2.23
shows the case where λ = 4 and I = {1, 3} (and hence J = {2, 4}). In the
expression ∑

ν∈Λ+
N

〈Jν , Jν〉0(−1)|ν|bνfκ+λ/2,ν , (2.279)

the summation over ν can be expressed as that over all subsets I of
[1, 2, . . . , λ]. The quantity fκ+λ/2,ν in (2.279) is obtained from (2.260). Namely,

we make the product of h∗
κ−κN+1

/h
κ−κN+1
∗ and h

ν−κN+1−λ/2
∗ /h∗

ν−κN+1−λ/2 on
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λ

νN − κN+1 − λ/2

N

κ1 − κN+1

µ′
1 µ′

2*

*********

********

********

Fig. 2.24. The same Young diagram as that shown in Fig. 2.23. The squares marked
by ∗ represent those squares that should be evaluated in the calculation of fκ+λ/2,ν .

the squares marked by * in Fig. 2.24. The result is given by

fκ+λ/2,ν

=
Γ(Nλ + 1)Γ(κ̃1 − κ̃N+1 + 1 − λ)Γ(κ̃1 − κ̃N,0 + λ)Γ(κ̃1,0 − κ̃N+1 + λ)

Γ((N + 1)λ)Γ(κ̃1 − κ̃N+1)Γ(κ̃1 − κ̃N,0 + 1)Γ(κ̃1,0 − κ̃N+1 + 1)

×
∏
l∈I

(κ̃1 + λµ̇l + (1 − λ)/2)(µ̇l − µ̇1+λ + 1 − 1/λ)
(κ̃1 + λµ̇l + (λ − 1)/2)(µ̇l − µ̇1+λ)

×
∏
l∈J

(κ̃N+1 + λµ̇l + (λ − 1)/2)(µ̇0 − µ̇l + 1 − 1/λ)
(κ̃N+1 + λµ̇l + (1 − λ)/2)(µ̇0 − µ̇l)

×
∏

l∈I,k∈J;
s.t.l<k

(µ̇l − µ̇k + 1/λ)(µ̇l − µ̇k + 1 − 1/λ)
(µ̇l − µ̇k)(µ̇l − µ̇k + 1)

. (2.280)

The binomial coefficient bν is given by

bν =
Γ (1/λ)λ∏λ
j=1 Γ (j/λ)

∏
l<k

Γ (ν̇l − ν̇k + 1/λ)
Γ (ν̇l − ν̇k)

, (2.281)

where ν̇k and ν̇l are obtained from the conjugate partition ν ′ by

ν̇j = ν ′
j −

N − 1
2

+
λ + 1 − 2j

2λ
, for j ∈ [1, λ]. (2.282)
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For practical calculation, we write (2.281) in terms of quasi-hole rapidities
µ̇j . It is convenient to divide the product in (2.281) into a combination of
blocks I, J according to whether µ̇l belongs to I or J . Namely, we have

bν =
Γ (1/λ)λ∏λ
j=1 Γ (j/λ)

∏
l,k∈Ior l,k∈J

l<k

Γ (µ̇l − µ̇k + 1/λ)
Γ (µ̇l − µ̇k)

×
∏

l∈I,k∈J
l<k

Γ (µ̇l − µ̇k + 1 + 1/λ)
Γ (µ̇l − µ̇k + 1)

∏
l∈J,k∈I

l<k

Γ (µ̇l − µ̇k − 1 + 1/λ)
Γ (µ̇l − µ̇k − 1)

. (2.283)

Expressing the norm 〈Jν , Jν〉0 in terms of µ̇l and combining the resultant
expression with (2.280) and (2.283), we write (2.279) as∑

ν

〈Jν , Jν〉0(−1)|ν|bνfκ+λ/2,ν = (−1)λ+|µ|LκMκ, (2.284)

with

Lκ =
cN (λ)

λλ−1
∏λ

j=1 Γ(j/λ)

Γ(κ̃1 − κ̃N,0 + λ)Γ(κ̃1,0 − κ̃N+1 + λ)
Γ(κ̃1 − κ̃N,0 + 1)Γ(κ̃1,0 − κ̃N+1 + 1)

×
λ∏

l=1

Γ(µ̇l − µ̇1+λ)Γ(µ̇0 − µ̇l)
Γ(µ̇l − µ̇1+λ + 1 − 1/λ)Γ(µ̇0 − µ̇l + 1 − 1/λ)

×
λ∏

l=1

(κ̃1 + λµ̇l)(κ̃N+1 + λµ̇l)
(κ̃N+1 + λµ̇l)(κ̃N+1 + λµ̇l + (1 − λ)/2)

∏
l<k

Γ(µ̇l − µ̇k + 1)
Γ(µ̇l − µ̇k + 1 − 1/λ)

(2.285)

and

Mκ =
∑

I⊂[1,2,...,λ]

(−1)λ−|I|
∏
l∈I

(
1 +

1 − λ

2(κ̃1 + λµ̇l)

)(
1 +

1 − λ

2(κ̃N+1 + λµ̇l)

)

×
∏
l∈J

(
1 +

λ − 1
2(κ̃1 + λµ̇l)

)(
1 +

λ − 1
2(κ̃N+1 + λµ̇l)

)
×

∏
l∈I,k∈J;
s.t.l<k

(
1 +

1
λ(µ̇l − µ̇k)

) ∏
l∈J,k∈I;
s.t.l<k

(
1 − 1

λ(µ̇l − µ̇k)

)
. (2.286)

Here |I| is the number of elements in I.
Let us introduce notations w1, w0, v1, . . ., vλ through the following

relations:

w1 =
2κ̃1

Nλ
, w0 =

2κ̃N+1

Nλ
, vl =

2µ̇l

N
, (2.287)
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for l = 1, . . . , λ, and consider the thermodynamic limit. The factor 〈Jκ, Jκ〉0
can be expressed in terms of κ̃1, κ̃N+1, and µ̇j in a way similar to Section
2.7.1. The expression

L2
κ

〈Jκ, Jκ〉0〈1, 1〉0
has the asymptotic behavior

λ2λc(λ)
(N + 1)Γ(λ + 1)

(
N

2

)λ−1 (
w2

1 − 1
)λ−1 (

w2
0 − 1

)λ−1 (w1 − w0)
2(1−λ)

×
λ∏

l=1

(
1 − v2

l

)1/λ−1 ∏
l<k

(vk − vl)
2/λ + O

(
1
N

)
, (2.288)

where the notation c(λ) has been given by (2.200). The asymptotic behavior
of Mκ is given by

Mκ →
(

2
Nλ

)λ Dλ

{∏
k<l (vl − vk)

∏1
k=0

∏λ
l=1 (wk + vl)

1−λ
}

{∏
k<l (vl − vk)

∏1
k=0

∏λ
l=1 (wk + vl)

1−λ
} , (2.289)

where Dλ ≡ ∂λ/∂v1 · · · ∂vλ. In the following, we derive (2.289).
The expression (2.286) for Mκ is rewritten as

Mκ =
∑

α1=1,−1

· · ·
∑

αλ=1,−1

(∏
l=1

αl

)
Mκ

(α1

2λ
, . . . ,

αλ

2λ

)
, (2.290)

with

Mκ(α1, . . . , αλ)

=
∏
l<k

(
1 +

αl − αk

(µ̇l − µ̇k)

) λ∏
l=1

(
1 +

(1 − λ)αl

(κ̃1/λ + µ̇l)

) (
1 +

(1 − λ)αl

(κ̃N+1/λ + µ̇l)

)
.

(2.291)

By setting α` = ±1 depending on l ∈ I or l ∈ J , we can confirm the
equivalence between (2.290) and (2.286). Mκ is a polynomial of (α1, . . . , αλ)
and hence it can be expanded as

Mκ(α1, . . . , αλ) =
∑

n

cn(κ̃1, κ̃N+1; µ̇1, . . . , µ̇λ)αn1
1 · · ·αnλ

λ , (2.292)

where n = (n1, . . . , nλ) is the set of integers. We then express Mκ as

Mκ = 2λ
∑

n1=1,3,...

· · ·
∑

nλ=1,3,...

(2λ)−|n|cn(κ̃1, κ̃N+1; µ̇1, . . . , µ̇λ), (2.293)

where nl are positive odd integers. The symbol |n| denotes
∑λ

l=1 nl.
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For the rapidities with

µ̇j − µ̇j+1 À 1, µ̇j + κ̃1/λ À 1, |µ̇j + κ̃N+1/λ| À 1, (2.294)

the leading contribution in (2.293) comes from the term with n = (1, . . . , 1):

Mκ ∼ λ−λc(1,...,1)(κ̃1, κ̃N+1; µ̇1, . . . , µ̇λ). (2.295)

In order to obtain c(1,...,1)(κ̃1, κ̃N+1; µ̇1, . . . , µ̇λ), we introduce

W (µ̇1, . . . , µ̇λ) =
∏
l<k

(µ̇l − µ̇k), (2.296)

W ′(κ̃1, κ̃N+1; µ̇1, . . . , µ̇λ) =
λ∏

l=1

(µ̇l + κ̃1/λ)1−λ(µ̇l + κ̃N+1/λ)1−λ. (2.297)

Then each factor in Mκ is written as∏
l<k

(
1 +

αl − αk

µ̇l − µ̇k

)
=

1
W

(
1 +

λ∑
l=1

αl
∂

∂µ̇l
+

∑
l<k

αlαk
∂2

∂µ̇l∂µ̇k
+ · · ·

)
W,

(2.298)
λ∏

l=1

(
1 +

(1 − λ)αl

(κ̃1/λ + µ̇l)

) (
1 +

(1 − λ)αl

(κ̃N+1/λ + µ̇l)

)

=
1

W ′

(
1 +

λ∑
l=1

αl
∂

∂µ̇l
+

∑
l<k

αlαk
∂2

∂µ̇l∂µ̇k
+ · · ·

)
W ′. (2.299)

From (2.298) and (2.299), it follows that

c(1,...,1)(κ̃1, κ̃N+1; µ̇1, . . . , µ̇λ) =
1

WW ′
∂λWW ′

∂µ̇1 · · · ∂µ̇λ
. (2.300)

Combining (2.295) and (2.300) and using the notations (2.287), we obtain
the relation (2.289).

In the thermodynamic limit, we use (2.288), (2.289), and

2
λN

∑
κ1

→
∫ ∞

1
dw1,

2
λN

∑
κN+1

→
∫ −1

−∞
dw0,

2
N

∑
µ′

l

→
∫ 1

−1
dvl, (2.301)

for l = 1, . . . , λ. Then we finally arrive at (2.209)–(2.212) for G+
2 (x, t)

2.7.3 Density correlation function

In this subsection, we derive the dynamical density correlation function for a
finite-size system; the resultant expression reduces to (2.216) in the thermo-
dynamic limit. In contrast with the propagator, the results for the density
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correlation function apply to both bosons and fermions with non-negative
integer λ.

The expression (2.214) is written as

Π(x, t) =
∑

κ∈L+
N

|〈κ,N |ρ̂(0, 0)|g, N〉|2

〈κ,N |κ,N〉〈g, N |g, N〉
e−i(E[κ]−E0,N)t+iQκx (2.302)

by inserting the complete set of N -particle states

1 =
∑

κ∈L+
N

|κ,N〉〈κ,N |
〈κ,N |κ,N〉

. (2.303)

Here |κ,N〉 represents the N -particle state whose wave function is given by

Jκ(z1, . . . , zN )Ψ0,N (z1, . . . , zN ).

Owing to the symmetry with respect to spatial inversion I, the energy,
momentum, and matrix element of the state |Iκ,N〉 with

Iκ = (−κN , . . . ,−κ1)

are given by

EIκ = E[κ], QIκ = −Qκ, 〈κ,N |ρ̂(0, 0)|g, N〉 = 〈Iκ,N |ρ̂(0, 0)|g, N〉.
(2.304)

Using (2.304), the density correlation function (2.302) is given only by the
non-negative momentum Qκ. Namely, writing such a summation as

∑′
κ, we

obtain

Π(x, t) = 2
′∑
κ

|〈κ,N |ρ̂(0, 0)|g, N〉|2

〈κ,N |κ,N〉〈g, N |g, N〉
e−i(E[κ]−E0,N)t cos Qκx. (2.305)

Under the periodic boundary condition, the density fluctuation operator
(2.215) is expanded in a Fourier series:

ρ̂(x, 0) =
1
L

∑
n6=0

e−2πinx/L
N∑

i=1

zn
i , (2.306)

with zi = exp(2πixi/L). Then we obtain

ρ̂(0, 0) =
1
L

∑
n>0

pn({zi}) + complex conjugate. (2.307)
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Here pn({zi}) is the power-sum symmetric function defined in Section 2.5.
The function pn({zi}) is expanded in terms of the symmetric Jack polyno-
mials as [84]

pn({zi}) =
n

λ

∑
κ∈Λ+

N
;

s.t.|κ|=n

ϑκ(Jκ({zi}), (2.308)

with

ϑκ =

∏
s∈D(κ)
( 6=(1,1))

(a′(s)/λ − l′(s))∏
s∈D(κ) h∗

κ(s)
. (2.309)

Here the upper hook length h∗
κ(s) has been defined in (2.186). The property

(2.308) will be derived in Section 7.3.8.
Owing to (2.307) and (2.308), only κ ∈ Λ+

N contributes to the summation
in (2.305) and hence (2.305) becomes

Π(x, t) =
2

λ2L2

∑
κ∈Λ+

N

〈κ,N |κ,N〉
〈g, N |g, N〉

|κ|2ϑ2
κe−i(E[κ]−E0,N)t cos Qκx, (2.310)

where the norm part is given by

〈κ,N |κ, N〉
〈g, N |g, N〉

=
∏

s∈D(κ)

h∗
κ(s) (a′(s)/λ − l′(s) + N)

hκ
∗(s) ((a′(s) + 1)/λ − l′(s) + N − 1)

(2.311)

from (2.191).
In (2.310), ϑκ vanishes if κ contains (i, j) = (2, λ+1), as seen from (2.309).

A typical diagram for partition κ contributing to the summation in (2.310)
is shown in Fig. 2.8. Other factors in (2.310) have the forms∏

s∈D(κ)

(
αa′(s) + βl′(s) + γ

)
, (2.312)

∏
s∈D(κ)

(αa(s) + βl(s) + γ), (2.313)

which are given in terms of rapidities (κ̃1, µ̇1, . . . , µ̇λ). They have been
defined in (2.64) and (2.110) as

κ̃1 = κ1 +
λ(N − 1)

2
, µ̇j = µ′

j −
N − 1

2
+

λ + 1 − 2j

2λ
. (2.314)
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λ

κ1

λ

κ1

(a) (b)

Fig. 2.25. Decomposition of Young diagram of partition contributing to the density
correlation function.

In evaluating (2.312), we decompose D(κ) into blocks as shown in Fig. 2.25(a)
and rewrite (2.312) as∏

s∈D(κ)

(
αa′(s) + βl′(s) + γ

)

=
κ1∏

j=1

(
αa′(1, j) + βl′(1, j) + γ

) λ∏
j=1

κ′
j∏

i=1

(
αa′(s) + βl′(s) + γ

)
.

In evaluating (2.313), on the other hand, we decompose D(κ) into blocks as
shown in Fig. 2.25(b) and rewrite (2.313) as∏

s∈D(κ)

(αa(s) + βl(s) + γ)

=
κ1∏

j=1

(αa(1, j) + βl(1, j) + γ)
∏

s∈D(µ)

(αa(s) + βl(s) + γ), (2.315)

with µ = (µ1 · · ·µN−1) = (κ2 · · ·κN ). Then the second product in (2.315) is
evaluated as in (2.238).
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Using these decompositions, (2.310) is rewritten as

Π(x, t) =
2λ!c(λ)

L2

∞∑
κ1=λ

∑
0≤µ′

λ≤· · ·≤µ′
1≤N−1

exp[−i(Eκ − E0,N )t + iQκx]F1,λ(κ̃1; µ̇1, . . . , µ̇λ), (2.316)

with c(λ) defined in (2.200). The form factor F1,λ(κ̃1; µ̇1, . . . , µ̇λ) is given by

F1,λ(κ̃1; µ̇1, . . . , µ̇λ) = F0,λ(µ̇1, . . . , µ̇λ)

×
λ∏

j=1

(κ̃1 + λµ̇j + (1 − λ)/2)−1 (κ̃1 + λµ̇j + (λ − 1)/2)−1

×
(κ̃1 +

∑λ
j=1 µ̇j)2Γ (κ̃1 − κ̃N,0 + λ) Γ (κ̃1 − κ̃1,0)

Γ (κ̃1 − κ̃N,0 + 1)Γ (κ̃1 − κ̃1,0 + 1 − λ)
, (2.317)

with F0,λ(µ̇1, . . . , µ̇λ) defined in (2.249). Here κ̃1,0 = −κ̃N,0 = λ(N − 1)/2
has been used.

We take the thermodynamic limit in a way similar to that used in Section
2.7.1 by setting

w =
2κ̃1

λN
, vj =

2µ̇j

N
, j = [1, λ]. (2.318)

Then we finally arrive at (2.216).

2.8 ∗Reduction to Tomonaga–Luttinger liquid

In this section, low-energy properties of the Sutherland model are described
as a Tomonaga–Luttinger liquid (TLL). The TLL is a typical one-dimensional
quantum system where the excitation spectrum is linear with respect to
momentum. Many systems of interacting bosons or fermions in one dimen-
sion have the excitation spectrum linear with respect to momentum at low
energy. The TLL is the effective theory of those various models at low
energy. The single-component Sutherland model is the simplest model of
the TLL in the sense that various physical quantities are derived explicitly.

In Section 2.8.1, we derive the long-distance or long-time asymptotic form
of dynamical correlation functions from the exact results in Section 2.6. In
Section 2.8.2, we consider the finite-size spectrum in the TLL and the Suther-
land model. It is shown that the parameters in the TLL are determined by
the asymptotic behavior derived in Section 2.8.1.
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2.8.1 Asymptotic behavior of correlation functions

We shall show that the long-distance and long-time asymptotics of the hole
propagator (2.199) are given by

G−(x, t) ∼ exp [−iπλdx + iµt]
λ∑

r=0

Ar exp [i2πdrx]

X
(λ−r)2/λ
R X

r2/λ
L

. (2.319)

Here Ar is a constant and µ = π2λ2d2 is the chemical potential, and we have
introduced

XL = x + 2πdλt, XR = x − 2πdλt.

The result (2.319) has a typical form of correlation functions in the TLL.
In the asymptotic behavior of correlation functions, the main contribu-

tions come from the low-energy excited states where all quasi-holes have the
rapidity vj ∼ ±1. For the hole propagator (2.199), low-energy states are
classified into λ + 1 sectors. Each sector is specified by an integer r ∈ [0, λ],
and the rapidities {vj} in the rth sector are distributed as

vj ∼
{

1, j ∈ [1, r],
−1, j ∈ [r + 1, λ].

(2.320)

Figure 2.26 illustrates the distribution. We calculate the contribution from
the rth sector (2.320) to the asymptotics (2.319). Introducing variables

δvj ∼
{

vj − 1, j ∈ [1, r]
vj + 1, j ∈ [r + 1, λ]

, (2.321)

v
λ − r { r {

ε = 1 − v2

Fig. 2.26. Graphical description of the distribution of the {vj} in rth sector of
low-energy states for λ = 5 and r = 2. Solid circles represent quasi-holes.
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we rewrite as follows:

Qx − Et =
λ∑

j=1

(πdvjx − π2λd2v2
j t)

= (2r − λ)πdx + µt + πXLd

r∑
j=1

δvj + πXRd

λ∑
j=r+1

δvj , (2.322)

with the correction of O((δvj)2). Other factors in (2.199) are replaced as∏
1≤i<j≤λ

|vi − vj |2/λ ∼
∏

1≤i<j≤r

|vi − vj |2/λ
∏

r+1≤i<j≤λ

|vi − vj |2/λ,

λ∏
j=1

(1 − v2
j )

−1+1/λ ∼
r∏

j=1

(−δvj)−1+1/λ
λ∏

j=r+1

(δvj)−1+1/λ,

∫ 1

−1
dv1 · · ·

∫ 1

−1
dvλ ∼

r∏
j=1

∫ 0

−∞
dδvj

λ∏
j=r+1

∫ ∞

0
dδvj . (2.323)

We change the variables as

δvj →
{

X−1
L δvj , j ∈ [1, r],

X−1
R δvj , j ∈ [r + 1, λ].

(2.324)

Then we obtain the contribution to (2.319) from the rth sector.
The asymptotic form

Π (x, t) = A

(
1

X2
L

+
1

X2
R

)
+

λ∑
r=1

Ar

(
1

XLXR

)r2/λ

cos [2πdrx] (2.325)

of the density correlation function is obtained in a similar way. Here A and
Ar are constants. The main contributions come from low-energy excited
states, which are classified into λ + 1 sectors. In the rth sector, the quasi-
particle has w ∼ 1, and the distribution of {vj} is given by (2.320). In terms
of δw = w − 1 and δvj in (2.321), we obtain

−ωt + Qx ∼ 2πdλx + πd

λXRδw + XL

r∑
j=1

δvj − XR

λ∑
j=r+1

δvj


ωt + Qx ∼ 2πdλx + πd

λXLδw + XR

r∑
j=1

δvj − XL

λ∑
j=r+1

δvj

. (2.326)
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In the r(6= 0)th sector, we rewrite each factor in (2.216) as∫ ∞

1
dw ∼

∫ ∞

0
dδw, (w2 − 1)λ−1 ∼ (δw)λ−1, (2.327)

λ∏
j=1

(vj + w)−2 ∼
λ∏

j=r+1

(δvj + δw)−2,

 λ∑
j=1

vj + λw

 ∼ 1. (2.328)

Other factors are rewritten as (2.323). We rewrite

exp(−iωt) cos(Qx) = [exp(−iωt + iQx) + exp(−iωt − iQx)] /2,

and change the variables δw → X−1
R δw as in (2.324). Then the contribution

from the part containing exp(−iωt + iQx) in the rth sector is given in the
form

constant × exp(i2πdλx)
(XRXL)r2/λ

. (2.329)

On the other hand, the contribution from the part containing exp(−iωt −
iQx) in the rth sector has the form

constant × exp(−i2πdλx)
(XRXL)r2/λ

. (2.330)

Here we have changed the variables as δw → X−1
L δw and

δvj →
{

X−1
R δvj , j ∈ [1, r],

X−1
L δvj , j ∈ [r + 1, λ].

(2.331)

The constant factors in (2.329) and (2.330) are common. Thus these two
terms give the summand for r 6= 0 in (2.325). The non-oscillating term on
the RHS of (2.325) can be obtained similarly. The only exception is that λ∑

j=1

vj + λw

2

∼

 λ∑
j=1

δvj + λδw

2

(2.332)

causes a singular contribution to either 1/X2
R or 1/X2

L. Hence we arrive at
(2.325).

2.8.2 Finite-size corrections

In the TLL, each eigenstate is specified by a set of quantum numbers
(∆N, ∆D,N+, N−). The ground state is specified by (0, 0, 0, 0). ∆N is the
difference in particle number between the ground state and excited states
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(a)

(b)

(c)

(d)

(e)

Fig. 2.27. Energy spectrum for fermions with N = 7. Dashed line and dotted lines
represent zero momentum and Fermi points, respectively. Solid circles represent
occupied one-particle states and open circles vacant one-particle states. (a) The
ground state (∆N = 0, ∆D = 0, N+ = 0, N− = 0), (b) a current excited state
(∆N = 0, ∆D = 1, N+ = 0, N− = 0), and (c) a charge excitation (∆N = 1, ∆D =
1/2, N+ = 0, N− = 0). These three are primary states. (d) (∆N = 0, ∆D = 0,
N+ = 1, N− = 0) and (e) (∆N = 0, ∆D = 0, N+ = 0, N− = 1) describe particle–
hole excitations or descendant states above the ground state.

and ∆D is the number of differences between right-moving particles and
left-moving particles For bosons, ∆D and ∆N satisfy

∆D = integer ∆N = integer, (2.333)

while for fermions, we obtain

∆D = ∆N/2 + integer. (2.334)

A non-negative integer N+ (N−) is the quantum number of right (left)-
moving particle–hole excitations which carry small energy and small
momentum. Some examples of excited states for fermions are given in Fig. 2.27.

The excitation energy and momentum of excited states are given by

∆E = µ∆N +
2πv

L

[
(∆N)2

4ξ2
c

+ ξ2
c (∆D)2 + N+ + N−

]
(2.335)

and

Q = 2πd∆D +
2π

L

(
∆N∆D + N+ − N−)

. (2.336)

Here d = N/L and the parameter ξc is called dressed charge, which de-
scribes interaction effects between original particles. The spectrum (2.335)
and (2.336) of the TLL is shown in Fig. 2.28.
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0

   0

2pvd

pvd

-6p vd -4p vd -2p vd 2p vd 4p vd 6p vd

Q

∆E

Fig. 2.28. Energy spectrum of Tomonaga–Luttinger liquid described by (2.336)
and (2.335) for ξc = 1/

√
2, N = 7, and ∆N = 0. The unit of the vertical scale

is 2πvN/L, and that of the horizontal scale is 2πN/L. Solid circles correspond to
primary states N+ = N− = 0 in conformal field theory. Dots represent descendant
states N+ 6= 0 or N− 6= 0.

Using an analogy to free fermions, the excitations with ∆D =1 have the
momentum 2πd = 2kF and describe the transition from left pseudo-Fermi
point to the other pseudo-Fermi point. The spectrum (2.335) and (2.336) is
expressed as

∆E =
2πv

L

(
∆+ + ∆−)

+ µ∆N, Q =
2π

L

(
∆+ − ∆−)

+ 2πd∆D (2.337)

in terms of

∆± = ∆±(∆N, ∆D,N+, N−) =
1
2

(
∆N

2ξc
± ξc∆D

)2

+ N±. (2.338)

The quantities (2.338) are called conformal weights of the compactified
Gaussian model in CFT. The state (∆N, ∆D, 0, 0) corresponds to the pri-
mary state and the states (∆N, ∆D,N+, N−) with N+ 6=0 or N− 6=0 cor-
respond to the descendant states. We see in Fig. 2.28 that excited states
with common values of ∆N, ∆D form a tower structure, which is called a
conformal tower in CFT.

The dynamical correlation function of a local operator Ô in the TLL is
expressed in the following form:

〈Ô(x, t)Ô(0, 0)〉 ∼
∑

∆N,∆D,N+,N−

A(∆N, ∆D, N+, N−) exp [−iµ∆Nt + i2πd∆Dx]

(x − vt)2∆
+

(x + vt)2∆
− .

(2.339)
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Note that the asymptotic forms of (2.325) and (2.319) have the form
of (2.339).

The spectrum shown in Fig. 2.3 of the Sutherland model is similar to that
in the TLL shown in Fig. 2.28. Indeed, the Sutherland model is equivalent
to the TLL with v = 2πdλ and ξc = 1/λ1/2, as seen from its finite-size
energy spectrum. We take, for example, a right-moving quasi-particle state
discussed in Section 2.3.2. The excitation spectrum (2.94) is expressed as

∆E =
(

2π

L

)2 (
κ1 +

λN

2

) 2

, (2.340)

Q =
2π

L

(
κ1 +

λN

2

)
= πλd +

2πκ1

L
(2.341)

in terms of an integer κ1(≥ λ/2). Comparing (2.341) with (2.337), we obtain

∆N = 1, ∆D =
λ

2
, κ1 =

λ

2
+ N+ − N−. (2.342)

The excitation energy (2.340) for κ1 = O(1) becomes

∆E = π2λ2d2 +
2πv

L

(
λ

2
+ N+ − N−

)
+ O(L−2), (2.343)

with v = 2πλd. In order for (2.343) to coincide with (2.337), we need ξc =
λ−1/2.

In the case where Ô(x, 0) = ρ̂(x, 0), excited states contribute to Π(x, t)
only if ∆N = 0. Then ∆D is an integer regardless of bosons or fermions from
the selection rules (2.333) and (2.334). Owing to the inversion symmetry
Π(x, t) = Π(−x, t), we have the relation

A(0, ∆D,N+, N−) = A(0,−∆D,N−, N+).

Thus we obtain [74]

Π(x, t) ∼
∑

∆D,N+,N−

A(0, ∆D,N+, N−) cos [2πd∆Dx]
(x − vt)(∆D)2/λ+2N+(x + vt)(∆D)2/λ+2N−

=
A(0, 0, 1, 0)
(x − vt)2

+
A(0, 0, 0, 1)
(x + vt)2

+
A(0, 1, 0, 0) cos [2πdx]
(x − vt)1/λ(x + vt)1/λ

· · · ,

(2.344)

where the sums are taken over integers. Comparing (2.325) with (2.344), we
see that ∆D corresponds to the number r of quasi-holes with rapidity vj close
to unity. Further we see that the oscillating terms in (2.325) come from the
primary states. The non-oscillating terms come from the descendant states
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whose primary state is the ground state. Although the TLL has an infinite
number of primary states, only the states with ∆D ∈ [0, λ] contribute to
(2.325). This selection rule is specific to the Sutherland model with integer λ.

Next we consider the asymptotic form of the hole propagator. The field
operator ψ̂(0, 0) annihilates a particle, and hence ∆N = −1 for states rele-
vant to the hole propagator. We obtain

G−(x, t) ∼
∑

∆D,N+,N−

A(−1, ∆D,N+, N−) exp [i2πd∆Dx]

(x − vt)λ( 1
2
−∆D/λ)2+2N+

(x + vt)λ( 1
2
+∆D/λ)2+2N− .

(2.345)
For bosons, ∆D is an integer from the selection rule (2.333). We then obtain

G−(x, t) = G−
B(x, t)

∼ A(−1, 0, 0, 0)

(x − vt)λ/4 (x + vt)λ/4
+

A(−1, 0, 1, 0)

(x − vt)λ/4+2 (x + vt)λ/4

+
A(−1, 0, 0, 1)

(x − vt)λ/4 (x + vt)λ/4+2
+

A(−1, 1, 0, 0) exp [i2πdx]

(x − vt)λ( 1
2
−1/λ)2 (x + vt)λ( 1

2
+1/λ)2

+
A(−1,−1, 0, 0) exp [−i2πdx]

(x − vt)λ( 1
2
+1/λ)2 (x + vt)λ( 1

2
−1/λ)2

+ · · · , (2.346)

which is consistent with (2.319) for even λ since ∆D = r−λ/2 is an integer.
When particles are fermions, the selection rule (2.334) requires that ∆D

is a half odd integer. The hole propagator G−(x, t) = G−
F (x, t) then has the

form

G−(x, t) =G−
F (x, t) ∼ A(−1, 1/2, 0, 0) exp [iπdx]

(x − vt)λ(1−1/λ)2/4 (x + vt)λ(1+1/λ)2/4

+
A(−1, 3/2, 0, 0) exp [i3πdx]

(x − vt)λ(1−3/λ)2/4 (x + vt)λ(1+3/λ)2/4
+ · · · . (2.347)

Note that there are no non-oscillating terms. This is consistent with (2.319)
for odd λ. In the fermion models, ∆D corresponds to r−λ/2 which is a half
odd integer. We thus confirm the consistency of the dynamical correlation
functions with the TLL.
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Multi-component Sutherland model

The Sutherland model has a number of variants. One of them is the U(K)
Sutherland model [71,85,86,132]. This model describes N particles moving
along a circle of perimeter L, and each particle possesses an internal degree
of freedom with K possible values. This corresponds to spin with K = 2,
and more generally a color. In the U(K) Sutherland model, all particles
obey common statistics: bosonic or fermionic. We can generalize the model
further. The U(KB,KF) Sutherland model [177] consists of bosons having
KB possible colors and fermions having KF colors.

The multi-component Sutherland model has a degeneracy in energy levels
which is described in terms of a Yangian. The Yangian is an algebra related
to quantum groups [43,44]. The Yangian is nicely realized by variants of Jack
polynomials which are modified so as to conform to the internal symmetry.
Elementary excitations in the multi-component Sutherland model are de-
scribed in a few alternative ways: interacting bosonic or fermionic particles,
or non-interacting particles obeying generalized exclusion statistics. Further-
more, the lattice models such as the Haldane–Shastry models [77, 161] and
1/r2 supersymmetric t–J model [119] are obtained in the strong coupling
limit of U(2) and U(2,1) Sutherland models, respectively. The Sutherland
models in the continuum space are much more tractable mathematically
than the corresponding lattice models. Hence, the mapping to lattice mod-
els turns out to be useful to derive the explicit results on thermodynamics
and dynamics in lattice models.

In the present chapter, we extend our treatment for the single-component
Sutherland model in order to include the internal degrees of freedom. We
shall discuss the energy spectrum, thermodynamics, and dynamical correla-
tion functions. In the course of the discussion, we introduce non-symmetric
Jack polynomials, which turn out to be the most fundamental quantity in
the family of Jack polynomials.

98
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3.1 Triangular form of Hamiltonian

We consider N quantum particles with internal degrees of freedom in the
continuum one-dimensional space. The particles can either be fermions or
bosons, or even their mixtures. The Fock condition for the wave function is
given by

Ψ(. . . , xi, σi, . . . , xj , σj , . . .)

=
{
−Ψ(. . . , xj , σj , . . . , xi, σi, . . .), (exchange of two fermions),
Ψ(. . . , xj , σj , . . . , xi, σi, . . .), (otherwise).

(3.1)

Here xi and σi are, respectively, spatial and spin coordinates of the ith
particle. When the ith particle has SU(K) internal degrees of freedom, σi

takes a value in [1,K]. If the ith particle is a fermion and the jth one is
a boson, the wave function is symmetric under their exchange according to
(3.1). Note that we can fix the mutual statistics between bosons and fermions
without loss of generality. In order to deal with the mixtures of fermions and
bosons, we use the graded permutation operator P̃ij . The grading means the
following:

P̃ij =
{
−Pij , (spin exchange of two fermions),
Pij , (otherwise),

(3.2)

where Pij is the spin exchange operator:

PijΨ(. . . , xi, σi, . . . , xj , σj , . . .) = Ψ(. . . , xi, σj , . . . , xj , σi, . . .).

We now introduce the coordinate exchange operator Kij :

KijΨ(. . . , xi, σi, . . . , xj , σj , . . .) = Ψ(. . . , xj , σi, . . . , xi, σj , . . .).

The Fock condition is then represented as

P̃ijKij = 1 (3.3)

for any combination of fermions and bosons. Throughout this chapter, we
take the periodic boundary condition

Ψ(. . . , xi + L, σi, . . .) = Ψ(. . . , xi, σi, . . .) (3.4)

regardless of ζ, λ, N , and the statistics of the original particles. The Suther-
land model for the multi-component system is written in two different but
equivalent forms in this Fock space. The first form is given by

HP = −
N∑

i=1

∂2

∂x2
i

+ 2
(π

L

)2 ∑
1≤i<j≤N

λ(λ − ζP̃ij)
sin2(π(xi − xj)/L)

, (3.5)
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where ζ = ±1 is chosen according to the statistics of the original particles.
Under condition (3.1), the Hamiltonian (3.5) is equivalent to

HK = −
N∑

i=1

∂2

∂x2
i

+ 2
(π

L

)2 ∑
1≤i<j≤N

λ(λ − ζKij)
sin2 [π(xi − xj)/L]

. (3.6)

With ζ = 1 in (3.6), the bosonic single-component model (2.1) is reproduced
since Kij = 1 in this case. With ζ = −1, on the other hand, the fermionic
single-component model (2.1) with the same parameter λ is reproduced.
Therefore, Jastrow-type wave functions ΨB

0 and ΨF
0 , which have been defined

by (2.5) and (2.15), respectively, are the eigenfunction of (3.6) with eigen-
value E0,N (2.12).

Following Chapter 2, we seek eigenfunctions of (3.6) of the form

Ψ({xi, σi}) =
{

Φ({xi, σi})ΨB
0 , (ζ = 1),

Φ({xi, σi})ΨF
0 , (ζ = −1).

(3.7)

We call ΨB
0 and ΨF

0 the absolute ground states, since they have the low-
est energy of (3.6) if no conditions are imposed for the symmetry of wave
functions and spins. The multiplying function Φ describes not only the
excitations in the system, but is necessary to fulfill the Fock condition (3.1).
In some cases, the periodic boundary condition also needs Φ. For example,
Φ in the U(K) fermionic Sutherland model should obey the conditions

Φ(. . . , xi, σi, . . . , xj , σj , . . .) = −ζΦ(. . . , xj , σj , . . . , xi, σi, . . .) (3.8)

and

Φ(. . . , xi + L, σi, . . .) = ζN−1Φ(. . . , xi, σi . . .) (3.9)

in order that Ψ satisfies the Fock condition (3.1) and the periodic boundary
condition (3.4). When we have ζ = −1 and N even, Φ should satisfy the
anti-periodic boundary condition since the absolute ground state ΨF

0 in this
case obeys the antiperiodic boundary condition.

Let us first assume ζ = 1. Following an argument similar to that in Section
2.1.1, the eigenvalue problem for Φ is derived. We note that the Hamiltonian
(3.6) is written as

HK = H + 2
(π

L

)2 ∑
1≤i<j≤N

λ(1 − Kij)
sin2(π(xi − xj)/L)

. (3.10)

The first term H on the RHS is the Hamiltonian for the single-component
model defined by (2.1). The second term on the RHS is rewritten as
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(2π/L)2λH(3) with

H(3) = −2
∑

1≤i<j≤N

zizj

(zi − zj)2
(1 − Kij), (3.11)

in terms of zi = exp(2πixi/L). Then we obtain

HKΦΨB
0 = HΦΨB

0 + (2π/L)2λΨB
0 H(3)Φ. (3.12)

The first term on the RHS has been written as

HΦΨB
0 = ΨB

0

[
E0,NΦ + (2π/L)2

(
H(1) + λH(2)

)
Φ

]
(3.13)

in (2.1). Here H(1) and H(2) have been defined in (2.26). From (3.12) and
(3.13), the eigenvalue problem for Φ is written as

HΦ ≡
[
H(1) + λ(H(2) + H(3))

]
Φ = EΦ, (3.14)

with

E = (L/(2π))2(E − E0,N ). (3.15)

For later convenience, we rewrite H as [22,99]

H =
∑

j

(
zj

∂

∂zj

)2

+ λ (N − 1)
∑

j

zj
∂

∂zj
+ 2λ

∑
j<k

H′
jk, (3.16)

with

H′
jk =

zjzk

zj − zk

[
∂

∂zj
− ∂

∂zk
− 1

zj − zk
(1 − Kjk)

]
. (3.17)

Here we have used the relation

H(2) = (N − 1)
N∑

i=1

zi
∂

∂zi
+ 2

∑
i<j

zizj

zi − zj

(
∂

∂zi
− ∂

∂zj

)
. (3.18)

Since the Hamiltonian (3.16) does not contain spin variables, we neglect the
Fock condition for the moment, and look for a wave function of the form

Φ({xi, σi}) = Φ({xi})ϕ({σi}). (3.19)

Eigenfunctions of (3.14) satisfying the Fock condition (3.1) can be recovered
by symmetrization or antisymmetrization of Φϕ in (3.19) with respect to
particle exchanges.

Since Φ obeys the periodic boundary condition, we take plane waves as a
basis,

φη = zη1
1 zη2

2 . . . zηN
N , (3.20)
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H′ ∼ + + + +

Fig. 3.1. Graphical representation of (3.23). The action of H′ on φη generates φη′

only if η′ is obtained by moving a square (squares) from a row j to another row k.
The dotted squares and shaded ones represent removed and added squares, respec-
tively.

where η = (η1, η2, . . . , ηN ) is a set of integers. Note that we are dealing with
non-symmetric functions. If every ηi is non-negative, the set η is called a
composition. A partition, which we have used extensively in Chapter 2, is a
special case of a composition with the condition η1 ≥ η2 ≥ · · · ≥ ηN .

The action of H on φη is given by

Hφη =
N∑

i=1

[
η2

i + λ(N − 1)ηi

]
φη + 2λ

∑
j<k

H′
jkφη. (3.21)

After some calculation, we obtain

H′
jkz

ηj

j zηk
k

=



−ηkz
ηj

j zηk
k +

ηj−ηk−1∑
l=1

(ηj − ηk − l) z
ηj−l
j zηk+l

k , ηk + 2 ≤ ηj ,

−ηjz
ηj

j zηk
k +

ηk−ηl−1∑
l=1

(ηk − ηl − l) z
ηj+l
j zηk−l

k , ηj + 2 ≤ ηk,

−ηkz
ηj

j zηk
k , ηj = ηk, ηk + 1,

−ηjz
ηj

j zηk
k , ηj = ηk − 1.

(3.22)

Let us consider the case with N = 4 and η = (3, 2, 2, 0), for example. Writing
H′ =

∑
j<k H′

jk, we obtain

H′φ3,2,2,0 = −6φ3,2,2,0 + 2φ2,2,2,1 + φ1,2,2,2 + φ3,1,2,1 + φ3,2,1,1, (3.23)

which is described graphically in Fig. 3.1.
The action of H′ on φη generates φη′ only if η′ is obtained from η by

squeezing, as in the case (2.39) with Kij = 1. Then the operation of H (3.16)
on the basis (3.20) can be arranged in the form of a triangular matrix, which
displays eigenvalues as its diagonal elements. An example of the action of H
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for the three-particle system is given by

H

 φ2,0,0

φ1,1,0

φ1,0,1

 =

 4 + 4λ 2λ 2λ

0 2 + 4λ 0
0 0 2 + 4λ

 φ2,0,0

φ1,1,0

φ1,0,1

 (3.24)

using (3.21) and (3.22). Following the method in Section 2.5, we obtain

Φ2,0,0 = φ2,0,0 + λ (φ1,1,0 + φ1,0,1) ,

Φ1,1,0 = φ1,1,0,

Φ1,0,1 = φ1,0,1

as eigenfunctions of H. The eigenvalues 4 + 4λ, 2 + 4λ, 2 + 4λ are obtained
from (3.24). Generally, we define Φη as the eigenfunction of H of the form

Φη = φη +
∑
η′

aη′φη′ , (3.25)

where the summation is taken over η′ generated by successive squeezing of η.
The function (3.25) yields an eigenfunction of (3.6) through (3.19).

In order to describe the diagonal elements of the action of H′
jk in (3.22),

we introduce the following notation:

k′
i = ]{j ∈ {1, . . . , i − 1}|ηj ≥ ηi}, k′′

i = ]{j ∈ {i + 1, . . . , N}|ηj > ηi},
(3.26)

where ]{·} represents a number of elements in the set {·}. For example, k′
i

and k′′
i are given by

(k′
1, k

′
2, k

′
3) = (0, 1, 2), (k′′

1 , k′′
2 , k′′

3) = (0, 0, 0), for η = (2, 1, 0)

and

(k′
1, k

′
2, k

′
3) = (0, 0, 2), (k′′

1 , k′′
2 , k′′

3) = (1, 0, 0), for η = (1, 2, 0).

The sum k′
i +k′′

i represents the ranking of ηi when counted from the longest
row.

Let us now express the eigenvalue of (3.14) as

E =
N∑

i=1

η2
i + λ

N∑
i=1

(
N − 1 − 2k′

i − 2k′′
i

)
ηi. (3.27)

The energy (3.27) for another composition η̃ is the same as that for η,
provided η̃ can be obtained by sorting η. For example, we can easily confirm
that the sum

3∑
i=1

(k′
i + k′′

i )ηi
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takes the same value (= 1) for both η = (2, 1, 0) and (1, 2, 0). Let

η+ = (η+
1 , η+

2 , . . . , η+
N ) ∈ L+

N

be a Galilean-shifted partition η+
1 ≥ η+

2 ≥ · · · ≥ η+
N , which is the rearrange-

ment of η. Then we obtain

E =
N∑

i=1

(
η+

i

)2 + λ
N∑

i=1

(N + 1 − 2i) η+
i . (3.28)

This expression is the same as that for the single-component Sutherland
model (2.62). The argument from (3.16) to (3.28) is applicable when ζ = 1.
When ζ = −1, the argument is still applicable with the following modifica-
tions:

• We replace the absolute ground state ΨB
0 by ΨF

0 in (3.16). Then we obtain
the same H given by (3.16).

• When N is even, ηi should be taken to be a half odd integer.

From the result in the present subsection, we observe the following:

(i) There is a one-to-one correspondence between Φη and φη.
(ii) Both Φη and φη are invariant under the action of Ki,i+1 when ηi =

ηi+1.

Owing to these properties, we can construct the eigenstates of the multi-
component Sutherland model from Φη in a way similar to the construction
of eigenstates of multi-component free particles from φη. The procedure will
be shown in the next section.

3.2 Energy spectrum of multi-component fermionic model

3.2.1 Eigenstates of identical particles

Now we consider the solution of (3.14) satisfying the Fock condition (3.1).
First we consider the case ζ = 1, where Φ satisfies the fermionic Fock con-
dition. We introduce a basis of the one-particle spin wave function

vα(σ) = δασ, α ∈ [1,K]. (3.29)

A basis of the N -particle spin wave function is introduced as

vα({σi}) = vα(σ1, . . . , σN )

= vα1(σ1)vα2(σ2) · · · vαN (σN ), (3.30)

with α ∈ [1,K]N .
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Let us start from the case with λ = 0, i.e., U(K) free fermions. The energy
eigenfunction is given by

Asym φκvα, (3.31)

where “Asym” represents the antisymmetrization with respect to particle
exchange. Namely, we define

Asym Ψ(z1, σ1, . . . , zN , σN )

=
∑

p∈SN

sgn(p)Ψ(zp(1), σp(1), . . . , zp(N), σp(N)), (3.32)

where sgn(p) denotes the sign of the permutation P in the symmetry group
SN . In the U(K) free fermions, a momentum state accommodates at most
K particles. Hence κ in (3.31) is restricted to the elements of L+

N,K , which
is defined as

L+
N,K =

{
κ = (κ1, κ2, . . . , κN ) ∈ L+

N |]{κi | κi = ∀s} ≤ K
}

. (3.33)

In L+
N,K , at most K elements can take a common value. For a given set of

momentum κ ∈ L+
N,K , each spin configuration is specified by the element of

Wκ defined as

Wκ =
{
α = (α1, . . . , αN ) ∈ [1,K]N |αi < αi+1 if κi = κi+1

}
. (3.34)

For N = 3 and κ = (κ1, κ2, κ3) satisfying κ1 = κ2 > κ3, Wκ is given by

(1, 2, 1), (1, 2, 2) (3.35)

for K = 2 and
(1, 2, 1), (1, 2, 2), (1, 2, 3),
(1, 3, 1), (1, 3, 2), (1, 3, 3),
(2, 3, 1), (2, 3, 2), (2, 3, 3)

(3.36)

for K = 3, respectively.
For non-negative λ (and ζ = 1), the eigenfunction Φ of (3.14) satisfying

(3.8) is then given by

Asym Φκvα, κ ∈ L+
N,K and α ∈ Wκ. (3.37)

The corresponding eigenvalue E is given by

E =
N∑

i=1

(κi)
2 + λ

N∑
i=1

(N + 1 − 2i)κi, (3.38)
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with use of (3.28). Note that (3.38) has the same form as (2.63) for the
single-component model, and is rewritten as

E =
N∑

i=1

(κi)
2 +

λ

2

N∑
i=1

N∑
j=1

|κi − κj |, (3.39)

using (2.61). The energy spectrum of the U(K) model is, however, different
from that of the single-component model in the following sense. First, the set
of momenta κ = (κ1, κ2, . . . , κN ) in (3.38) and (3.39) is restricted to L+

N,K

while each eigenstate of the single-component model is specified uniquely
by κ in L+

N . Second, for a given κ ∈ L+
N,K , various spin configurations are

allowed. The corresponding degeneracy is given by ]Wκ.
Each state specified by (κ, α) ∈ (L+

N,K ,Wκ) is uniquely specified also by
the momentum distribution function of particles with spin σ(= 1, . . . ,K):

νσ(κ) =
N∑

i=1

δ(σ, σi)δ(κ, ηi), (3.40)

which is either 1 or 0. We can rewrite (3.28) as

E =
∞∑

κ=−∞
κ2ν(κ) +

λ

2

∞∑
κ=−∞

∞∑
κ′=−∞

|κ − κ′|ν(κ)ν(κ′), (3.41)

in terms of the component sum

ν(κ) =
K∑

σ=1

νσ(κ). (3.42)

Namely, the eigenenergy depends on νσ(κ) only through ν(κ). Thus the
eigenenergy (3.41) of the U(K) fermionic Sutherland model has the same
form as (2.125) for the single-component bosonic Sutherland model. In
the present fermionic model, however, ν(κ) takes an integer value among
0, 1, 2, . . . ,K, while in the single-component bosonic Sutherland model, ν(κ)
takes arbitrary non-negative integer values.

It is often useful to specify each eigenfunction of the U(K) fermionic
Sutherland model with the number Nσ of particles with spin σ fixed. We
define a subset L+>

N of L+
N as

L+>
N ≡ {κ = (κ1, . . . , κN ) ∈ L+

N |κ1 > κ2 > · · · > κN}. (3.43)

Each eigenfunction of the U(K) fermionic Sutherland model is specified by
the set of momenta of particles with spin (color) σ

κ(σ) = (κ(σ)
1 , . . . , κ

(σ)
Nσ

) ∈ L+>
Nσ

. (3.44)
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The wave function of the state is given by

Asym Φκvα, (3.45)

with

κ = (κ(1), . . . , κ(K))

= (κ(1)
1 , . . . , κ

(1)
N1

, κ
(2)
1 , . . . , κ

(2)
N2

, . . . , κ
(K)
1 , . . . , κ

(K)
NK

)

∈ L+>
N1

⊗ · · · ⊗ L+>
NK

, (3.46)

α = (

N1︷ ︸︸ ︷
1, . . . , 1,

N2︷ ︸︸ ︷
2, . . . , 2, . . . ,

NK︷ ︸︸ ︷
K, . . . ,K). (3.47)

In summary, the eigenstates of the U(K) fermionic Sutherland model with
ζ = 1 are specified in the following three equivalent ways:

(i) (κ, α) , κ ∈ L+
N,K , α ∈ Wκ;

(ii) {νσ(κ)} , κ ∈ Z, σ ∈ [1,K], νσ(κ) = 0, 1;
(iii) (N1, N2, . . . , NK , κ), κ ∈ L+>

N1
⊗ · · · ⊗ L+>

NK
.

Each description of an eigenstate has advantages: (i) it is useful for calcu-
lation of eigenenergy, and hence for discussion of the spectrum of elemen-
tary excitations in Section 3.4. We use (i) to construct an orthogonal set of
eigenstates (Yangian Gelfand–Zetlin basis) in Chapter 8. On the other hand,
(ii) it is useful to discuss thermodynamic properties at finite temperatures
as shown in Section 3.5. Finally, (iii) it is useful to derive the wave function
of the ground state, and is related to the U(2) Jack polynomial, which will
appear in Section 3.6.2. We use (iii) to calculate the dynamical correlation
functions presented in Section 3.7.

3.2.2 Wave function of ground state

Let us construct the wave function of the ground state. Under the condition∑
κ

νσ(κ) = Nσ (3.48)

with odd integers Nσ, we take the eigenstate corresponding to

νσ(κ) = θ(Nσ/2 − |κ|), (3.49)

where θ(κ) is the step function

θ(κ) =
{

1, κ ≥ 0,

0, κ < 0.
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It is obvious that (3.49) yields the minimum for both the first and second
terms in (3.41). Thus, (3.49) describes the ground state of the U(K) Suther-
land model as well as the U(K) free fermion under a given set of {Nσ}. The
wave function of the state (3.49) is given by (3.45), with

κ(σ) =
(

Nσ − 1
2

,
Nσ − 3

2
, · · · ,

−Nσ + 3
2

,
−Nσ + 1

2

)
∈ L+>

Nσ
(3.50)

and α given by (3.47). We consider the wave function of the ground state.
As an example, we take a simple case K = 2, N = 6, N1 = N2 = 3. By
squeezing κ = (κ(1), κ(2)) = (1, 0,−1, 1, 0,−1), the following are generated:

η′ = (0, 0, 0, 1, 0,−1), (1, 0, 0, 0, 0,−1),

(0, 0,−1, 1, 0, 0), (1, 0,−1, 0, 0, 0).

The second squeezing generates η′′ = (0, 0, 0, 0, 0). Therefore, the function
Φκ is in the form

Φκ = φκ +

∑
η′

aη′φη′

 + aη′′φη′′ . (3.51)

We then multiply Φκ by the spin function

vα(σ1, σ2, σ3, σ4, σ5, σ6), α = (1, 1, 1, 2, 2, 2)

and antisymmetrize the resultant wave function. We then see

Asym φη′vα = 0, Asym φη′′vα = 0, (3.52)

because η′ and η′′ involve the same momentum in the same spin. Hence we
obtain

Asym Φκvα = Asym φκvα. (3.53)

Namely, in the antisymmetrization of Φκvα, all terms but φκ vanish.
The property illustrated above holds for a general case of Nσ ≡ N(σ). We

define the sets

I1 = [1, 2, . . . , N(σ1)],

I2 = [N(σ1) + 1, N(σ1) + 2, . . . , N(σ1) + N(σ2)], . . . ,

IK =

[
K−1∑

i

N(σi) + 1, . . . , N

]
. (3.54)

We write Φκ as the sum of the φκ and the squeezed terms φη′ . The latter al-

ways contains a factor z
η′

i
i z

η′
j

j with η′i = η′j for i, j ∈ Iσ. Then all φη′ vanish by
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antisymmetrization of spatial coordinates within each spin species σ. After
antisymmetrization within each species, the wave function φκvα becomes

K∏
σ=1

∏
i∈Iσ

z
−(Nσ−1)/2
i

∏
(i<j)∈Iσ

(zi − zj) , (3.55)

which is equivalently written as

Φ0,F =
∏

1≤i≤N

z
−[N(σi)−1]/2
i

∏
1≤i<j≤N

(zi − zj)
δ(σi,σj) . (3.56)

This wave function is antisymmetric against particle exchange with the same
spin, and symmetric against exchange with different spins. Thus, we multiply
(3.56) by a spin function

χ0 = P ({Nσ} , {σi})
∏

1≤i≤N

exp
[
iπ
2

sgn(σi − σj)
]

, (3.57)

where the first factor is the projection to a given spin polarization Nσ

given by

P ({Nσ} , {σi}) =
K∏

σ=1

δ

(
Nσ,

N∑
i=1

δ(σ, σi)

)
. (3.58)

Note that χ0 is antisymmetric for σi 6= σj , and symmetric for σi = σj . As a
result, we obtain the fermionic ground state [71,99]

Ψg,F = ΨB
0 Φ0,Fχ0. (3.59)

3.2.3 Eigenstates with bosonic Fock condition

When ζ = −1, the Fock condition (3.8) for Φ is bosonic. In the present
case, the eigenstates are specified in a way similar to those of the U(K) free
bosons. Then Φ obeys the periodic (antiperiodic) boundary condition when
N is odd (even).

When N is odd, each eigenstate of the U(K) fermionic Sutherland model
with ζ = −1 can be specified by (κ, α) with κ ∈ L+

N and α ∈ WB
κ , where

WB
κ =

{
α = (α1, . . . , αN ) ∈ [1,K]N |αi ≤ αi+1 if κi = κi+1

}
. (3.60)

For N = 3 and κ = (κ1, κ2, κ3) with κ1 = κ2 > κ3, WB
κ is given by

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 2, 1), (2, 2, 2) (3.61)
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for K = 2 and
(1, 1, 1), (1, 1, 2), (1, 1, 3),
(1, 2, 1), (1, 2, 2), (1, 2, 3),
(1, 3, 1), (1, 3, 2), (1, 3, 3),
(2, 2, 1), (2, 2, 2), (2, 2, 3),
(2, 3, 1), (2, 3, 2), (2, 3, 3),
(3, 3, 1), (3, 3, 2), (3, 3, 3)

(3.62)

for K = 3, respectively.
The wave function of a state specified by (κ, α) ∈ L+

N ⊗ WB
κ is given by

Φ = Sym (Φκ({zi})vα({σi})), (3.63)

where “Sym” is the symmetrization operator defined by

Sym Φ(z1, σ1, . . . , zN , σN ) =
∑

P∈SN

Φ(zp(1), σp(1), . . . , zp(N), σp(N)). (3.64)

The eigenenergy is given by (3.38) or (3.39). The degeneracy for a given κ

is the number of elements in WB
κ .

The eigenstates of the U(K) fermionic model with ζ = −1 are specified in
another way. There is a one-to-one correspondence between (κ, α) ∈ L+

N ⊗
WB

κ and the momentum distribution {νσ(κ)} for κ ∈ Z, σ ∈ [1,K], and
νσ(κ) = 0, 1, 2 . . . In terms of {νσ(κ)}, the eigenenergy of (3.63) for (3.6)
is given by the same expression as (3.41), but the momentum distribution
function νσ(κ) with species σ can take arbitrary integer values.

With the number of particles Nσ fixed for σ ∈ [1, K], the eigenstates are
uniquely specified by

κ = (κ(1), . . . , κ(K)), κ(σ) ∈ L+
Nσ

. (3.65)

The wave function of the eigenstate is given by

Φ = Sym (Φκ({zi})vα({σi})), (3.66)

with α = (

N1︷ ︸︸ ︷
1, . . . , 1,

N2︷ ︸︸ ︷
2, . . . , 2, . . . ,

NK︷ ︸︸ ︷
K, . . . ,K). The ground state is specified by

κ = (0, . . . , 0) ∈ ZN or

νσ(κ) = Nσδ(κ, 0), σ ∈ [1,K]. (3.67)

So far we have considered the case with N being odd. As a result of
the antiperiodic boundary condition on Φ, the eigenstates for even N are
described in the following three ways:
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(i) The wave function is given by (3.63) and the eigenvalue E for (3.6) is
given by (3.38). Here κ + 1/2 = (κ1 + 1/2, . . . , κN + 1/2) belongs to
L+

N and α ∈ Wκ.

(ii) Each eigenstate is specified by {νσ(κ)} with κ ∈ 1/2 + Z, σ ∈ [1,K]
and νσ(κ) = 0, 1, 2, . . . The eigenenergy for H (3.6) is given by

E =
∞∑

κ=−∞
κ2ν(κ) +

λ

2

∞∑
κ=−∞

∞∑
κ′=−∞

|κ − κ′|ν(κ)ν(κ′).

Here κ is a half-odd integer.
(iii) The wave function is given by (3.66) with κ+1/2 ∈ L+

N1
⊗· · ·⊗L+

NK
.

In the ground state, all particles have momentum either 1/2 or −1/2.

3.3 Energy spectrum with most general internal symmetry

In the case where particles are U(K) bosonic models, the eigenstates can
be discussed in a way similar to that in Section 3.2. In the present section,
therefore, we consider the most general U(KB,KF) model.

First we consider the model with ζ = 1, where the absolute ground state
is ΨB

0 and Φ obeys the Fock condition

Φ(. . . , xi, σi, . . . , xj , σj , . . .)

=
{
−Φ(. . . , xj , σj , . . . , xi, σi, . . .), (exchange of two fermions),
Φ(. . . , xj , σj , . . . , xi, σi, . . .), (otherwise)

(3.68)

and the periodic boundary condition. The energy eigenstate of U(KB,KF)
is specified uniquely by

{νB
σ (κ)}, for κ ∈ Z, σ ∈ [1,KB], νB

σ (κ) = 0, 1, 2, . . . (3.69)

and

{νF
σ (κ)}, for κ ∈ Z, σ ∈ [1,KF], νF

σ (κ) = 0, 1. (3.70)

The eigenvalue for (3.6) is given by (3.41) but ν(κ) should read

ν(κ) =
KB∑
σ=1

νB
σ (κ) +

KF∑
σ=1

νF
σ (κ). (3.71)

Alternatively, we can specify the energy eigenstate of the U(KB,KF) model
by the set of momenta for each species

κ = (κ(B,1), . . . , κ(B,KB), κ(F,1), . . . , κ(F,KF))
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with

κ(B,σ) ∈ L+
N(B,σ), κ(F,σ) ∈ L+>

N(F,σ). (3.72)

Here N(X,σ) = NX
σ for X = B, F.

In order to construct the wave function that is symmetric with respect
to exchange between bosons and fermions, we introduce a one-particle wave
function for an internal symmetry as

wB(τ) =
{

1, (τ = 0),
0, (τ = 1),

wF(τ) =
{

0, (τ = 0),
1, (τ = 1),

(3.73)

where τ = 0 corresponds to a boson and τ = 1 to a fermion. A basis of
N -particle wave functions with internal symmetry is introduced as

wβ({τi}) = wβ(τ1, . . . , τN )

= wβ1(τ1)wβ2(τ2) · · ·wβN
(τN ) (3.74)

with β ∈ {B,F}⊗N .
The wave function satisfying the condition (3.68) is derived in two steps.

First we construct the wave function Φ̃ symmetric with respect to the ex-
change of two bosons and antisymmetric with respect to two fermions:

Φ̃({γi}) = SymBAsymF Φκ({zi})vα({σi}) (3.75)

with

α = (1N(B,1), 2N(B,2), . . . ,K
N(B,KB)
B , 1N(F,1), . . . ,K

N(F,KF)
F ). (3.76)

Here we have used the notation γi = (zi, σi), and 1N(B,1) stands for

N(B,1)︷ ︸︸ ︷
1, . . . , 1,

for example. In (3.75), SymB denotes the symmetrization operator with
respect to the variables γi for i ∈ [1, NB], and AsymF donotes the antisym-
metrization operator with respect to the variables γi for i ∈ [NB + 1, N ].

Let I be the subset of [1, N ] defined as

I = {(i(1), i(2), . . . , i(NB)) ∈ ZNB |1 ≤ i(1) < i(2) · · · < i(NB) ≤ N} (3.77)

and J be the complementary set of I in [1, N ] (i.e., J = [1, N ] \ I):

J = {(j(1), j(2), . . . , j(NF)) ∈ ZNF |1 ≤ j(1) < j(2) · · · < j(NF) ≤ N}. (3.78)

We define the wave function Φ({γi, τi}) as

Φ({γi, τi}) =
∑

I

Φ̃
(
γi(1), . . . , γi(NB), γj(1), . . . , γj(NF)

)
× wβ

(
τi(1), . . . , τi(NB), τj(1), . . . , τi(NF)

)
(3.79)
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with

β = (

NB︷ ︸︸ ︷
B · · ·B,

NF︷ ︸︸ ︷
F · · ·F). (3.80)

This function has the required property

Φ(. . . , γi, 0, . . . , γj , 1, . . .) = Φ(. . . , γj , 1, . . . , γi, 0, . . .) (3.81)

with respect to exchange (γi, τi = 0) ↔ (γj , τj = 1). When NF
σ is odd for

σ ∈ [1,KF], the ground state under a given set of ({NB
σ }, {NF

σ }) is non-
degenerate, and is given by

νB
σ (κ) = NB

σ δ(κ, 0), νF
σ (κ) = θ(NF

σ /2 − |κ|). (3.82)

The ground state is also specified by

κ(B,σ) = (

N(B,σ)︷ ︸︸ ︷
0, . . . , 0), for σ ∈ [1,KB] (3.83)

and

κ(F,σ) =
(

NF
σ − 1
2

,
NF

σ − 3
2

, · · · ,
−NF

σ + 3
2

,
−NF

σ + 1
2

)
(3.84)

for σ ∈ [1,KF]. It is convenient to use Φ̃ given by (3.75) instead of (3.79)
to express the wave function of the ground state. We change the complex
spatial coordinates as

ξi = zi, i ∈ [1, NB], ωi = zi+NB
, i ∈ [1, NF], (3.85)

and write the absolute ground state as

ΨB
0 =

∏
1≤j<k≤NB

|ξj − ξk|λ
∏

1≤j<k≤NF

|ωj − ωk|λ
NB∏
j=1

NF∏
k=1

|ξj − ωk|λ . (3.86)

The corresponding ground state is obtained as

Ψg,B+F = ΨB
0 Φ̃ = ΨB

0 (ξ, ω)Φ0,F(ω)χ0(σF)P (
{
NB

σ

}
,
{
σB

i

}
). (3.87)

The eigenstate and eigenenergy of the U(KB, KF) Sutherland model with
ζ = −1 can be derived similarly. In the model with ζ = −1, the absolute
ground state is antisymmetric with respect to particle exchange and, as a
result, the spectrum of the U(KB, KF) model with ζ = −1 is similar to that
of the U(KF, KB) model with ζ = 1.
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3.4 Elementary excitations

3.4.1 Quasi-particles

We consider the U(2) Sutherland model with fermions for even λ and ζ = 1,
or bosons for odd λ and ζ = −1. The boundary condition on Ψ is taken to
be periodic. We take N/2 = M to be odd (even) for even (odd) λ, so that
the ground state is non-degenerate. The set of momenta in the N -particle
ground state is described by

κ2i−1,0 = κ2i,0 =
M + 1

2
− i, i ∈ [1,M ]. (3.88)

The distribution of κi is the same as that in the ground state of the free
fermions with spin 1/2.

A quasi-particle state is constructed by adding a particle outside the Fermi
sea with the Fermi momenta fixed. The right-moving quasi-particle state has
rapidities (κ̃1, . . . , κ̃N+1) satisfying

κ̃i+1 = κ̃0,i, i ∈ [1, N ], (3.89)

where the rapidities are related to momenta through

κ̃i,0 = κi,0 +
λ

2
(N + 1 − 2i), i ∈ [1, N ], (3.90)

κ̃i = κi +
λ

2
(N + 2 − 2i), i ∈ [1, N + 1]. (3.91)

The excitation energy ∆E = E[κ] − Eg,N ≡ (L/2π)2E and the momentum
Q ≡ (L/2π)Q of the quasi-particle state are given by

E =
N+1∑
i=1

κ̃2
i −

N∑
i=1

(κ̃i,0)2 = κ̃2
1, Q = κ̃1 (3.92)

with

κ̃1 ≥ 1
2
(M − 1 + λ) +

λ

2
N.

We demonstrate that the statistical interaction between quasi-particles
depends on spin. Let us consider (N + 2)-particle states with momenta sat-
isfying

κ̃i+2 = κ̃0,i, i ∈ [1, N ],

which are identified with two (right-moving) quasi-particle states. When the
particle with κi (i = 1 or 2) has the spin σi, we obtain

κ1 ≥ κ2 + δ(σ1, σ2).
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From this inequality, the relation

κ̃1 ≥ κ̃2 + λ + δ(σ1, σ2) (3.93)

follows. The statistical interaction gp
σ1,σ2 between quasi-particles is then

given by

gp
σ1,σ2

= λ + δ(σ1, σ2). (3.94)

We interpret the second term as the extra exclusion originating from the
fermionic Pauli principle.

3.4.2 Quasi-holes

A quasi-hole state is obtained by removing one particle while keeping the
Fermi surface fixed. We shall show in this subsection that the statistical
interaction between quasi-holes is given by

gh
σ,σ′ = δ(σ, σ′) − λ

1 + 2λ
. (3.95)

The result can be written in the matrix form

gh ≡

(
g↑↑h g↑↓h

g↓↑h g↓↓h

)
=

1
2λ + 1

(
λ + 1 −λ

−λ λ + 1

)
= g−1

p , (3.96)

where gp is the matrix form of (3.94). Hence, the duality relation gh = g−1
p is

naturally generalized to the U(2) case. Note that the single-component case
has been discussed in Section 2.4.3. In the following we shall derive (3.95).

Let us consider redistribution of rapidities after the removal of a particle
at κ̃0,i with i ∼ O(N/2) from the N -particle ground state. The rapidity κ̃j

for j ∼ 1 or j ∼ O(N) has the following asymptotics:

κ̃1 = κ̃1,0, κ̃2 = κ̃2,0, . . . , κ̃N−2 = κ̃N−1,0, κ̃N−1 = κ̃N,0. (3.97)

Using the relation κ̃i = κi + λ(N/2 − i) and (3.88), we rewrite (3.97) as

κ1 = κ1,0 +
λ

2
, κ2 = κ2,0 +

λ

2
, . . . ,

κN−2 = κN−1,0 −
λ

2
, κN−1 = κN,0 −

λ

2
. (3.98)

Namely, the momentum κi is shifted by λ/2 if κi is much larger than the
removed momentum, while it is shifted by −λ/2 if much smaller.
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M + λ

Fig. 3.2. An example of the set of momenta satisfying (3.98) for M = N/2 = 6,
λ = 1, and ζ = −1 under the periodic boundary condition. The number of vacancies
is 2λ + 1(=3 in the present example).

We shall show that (N − 1)-particle states satisfying (3.98) are character-
ized by 2λ+1 quasi-holes. An example of the states (3.98) for N = 12, λ = 1,
and ζ = −1 is shown in Fig. 3.2. The solid circles in the upper (lower) row
represent the momenta occupied by particles with spin up (down). The open
circles represent unoccupied momenta. The state given by (3.98) is obtained
by making 2λ+1 vacancies in the one-particle states with momentum in the
range [−(M − 1 + λ)/2, (M − 1 + λ)/2] with M = N/2.

It is convenient to study the quasi-hole states in terms of Young diagrams.
Let us introduce the partition µ ∈ Λ+

N−1 defined by the Galilean shift

µi = κi +
1
2
(M + λ + 1). (3.99)

Then the Young diagram D(µ) for µ, which is related to (3.98) through
(3.99), is constructed in the following way.

(i) Prepare a Young diagram D(γ) of γ ∈ Λ+
2(M+λ) that corresponds to

the singlet ground state of N + 2λ fermions. Namely, we have here

γ2i−1 = γ2i = M + λ + 1 − i, i ∈ [1,M + λ]. (3.100)

(ii) Select a set of rows r(1), r(2), . . . , r(2λ + 1) such that

1 ≤ r(1) < r(2) < · · · < r(2λ + 1) ≤ 2(M + λ). (3.101)

(iii) Assign the momentum ζj and spin σj to the jth quasi-hole so that

ζj = γr(j) for j ∈ [1, 1 + 2λ], σj =↓ (↑)

when r(j) is odd (even).
(iv) Remove the 2λ + 1 rows corresponding to ζj from D(γ).
(v) Push the remaining rows upward so that all vacant rows are elimi-

nated except for the lowest one. As a result, a new Young diagram
D(µ) with N − 1 rows appears.
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1

1

1

1

1

2

2

2

2
3

(a) (b)

Fig. 3.3. Illustration of how to construct the Young diagram D(µ) of shifted
momenta µ from D(γ) for M = 6 and λ = 1. (a) Young diagram D(γ) for γ
in (3.100). Unshaded squares represent the rows to be removed. Here (ζ1, ζ2, ζ3) =
(6, 4, 1) and (σ1, σ2, σ3) = (↓, ↑, ↓). (b) Young diagram D(µ) as shown by shaded
squares. Inscribed squares belonging to D(γ) \ D(µ) are also shown.

Figure 3.3 shows an example of D(µ) and D(γ). Then the quasi-hole state,
or equivalently µ, is parameterized by

(ζ1, ζ2, . . . , ζ2λ+1) ∈ Z2λ+1
>0 , (σ1, σ2, . . . , σ2λ+1),

where Z>0 is the set of positive integers. The relation

ζj ≥ ζj+1 + δ(σj , σj+1) (3.102)

is related to the exclusion between quasi-holes, as shown below.
The energy E[κ] = (2π/L)2E [κ] of the (N − 1)-particle state is

given by

E [κ] =
N−1∑
i=1

[
κ2

i + λ (N − 2i)κi

]
+ E0,N−1, (3.103)

where E0,N−1 = λ2N(N − 1)(N − 2)/12 is given from E0,N ≡ (L/(2π))2E0,N

defined by (2.12) with replacement of N by N − 1. We want to rewrite E [κ]
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in terms of quasi-holes. For this purpose, we first represent the energy in
terms of arm and leg colengths of D(µ). Namely, we use the relation

2
∑

s∈D(µ)

a′(s) =
N−1∑
i=1

(µ2
i − µi),

∑
s∈D(µ)

l′(s) =
N−1∑
i=1

(i − 1)µi. (3.104)

Then (3.103) is rewritten as

E = 2
∑

s∈D(µ)

[
a′(s) − λl′(s)

]
+ [(N − 3)λ − M ] |µ| (3.105)

+
1
4
(M + λ + 1)2(N − 1) + E0,N−1. (3.106)

In order to keep track of the quasi-hole momenta ζr with r ∈ [1, 2λ+1], we
inscribe r in such squares s that they fulfill the condition s = (γ′

j − r + 1, j)
for j ∈ [1, ζr], as shown in Fig. 3.3. We denote by I(r) the set of squares
inscribed by r. The first term on the RHS of (3.105) is then rewritten as

∑
s∈D(µ)

[
a′(s) − λl′(s)

]
=

∑
s∈D(γ)

[
a′(s) − λl′(s)

]
−

2λ+1∑
r=1

∑
s∈I(r)

[
a′(s) − λl′(s)

]
.

(3.107)
The first term on the RHS is calculated as∑

s∈D(γ)

[
a′(s) − λl′(s)

]
=

M+λ∑
j=1

(j − 1)γ′
j − λ

2M+2λ∑
i=1

(i − 1)γi

=
M+λ∑
j=1

(j − 1)γ′
j − λ

[
M+λ∑
i=1

(2i − 1)γ2i +
M+λ∑
i=1

(2i − 2)γ2i−1

]

=
M+λ∑
j=1

(2j − 2 − 4λj + 3λ)(M + λ + 1 − j)

= −1
6
(M + λ)(M + λ + 1)(2 − 3λ + 4λ2 − 2M + 4Mλ), (3.108)

where

γ′
j = 2(M + λ + 1 − j) (3.109)

denotes the length of the jth column in D(γ) with j ∈ [1,M + λ]. Each
summand with respect to r in the second term on the RHS of (3.107) is
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rewritten as
ζr∑

j=1

[
a′(s) − λl′(s)

] ∣∣∣
s=(γ′

j−r+1,j)
=

ζr∑
j=1

[
(j − 1) − λ(γ′

j − r)
]
. (3.110)

Substituting (3.109) into (3.110), it follows that

2
∑

s∈I(r)

[
a′(s) − λl′(s)

]
=

ζr∑
j=1

[(1 + 2λ)j + λ(r − 2M − 2λ − 2) − 1]

=(1 + 2λ)ζ2
r − [1 + 2λ(2M + 2λ + 1 − r)] ζr. (3.111)

The term ((N − 3)λ − M)|µ| in (3.105) is also written as the sum of ζr-
dependent terms and a constant:

[(N − 3)λ − M ] |µ| = ((N − 3)λ − M)

(
|γ| −

2λ+1∑
r=1

ζr

)

= [(N − 3)λ − M ]

[
(M + λ)(M + λ + 1) −

2λ+1∑
r=1

ζr

]
.

(3.112)

We then obtain E [κ] in the form

E [κ] = −(1 + 2λ)
2λ+1∑
r=1

[
ζ2
r −

(
(M + λ + 1) +

2λ(λ + 1 − r)
1 + 2λ

)
ζr

]
+ Econst.

(3.113)

The constant term on the RHS is the sum of constants obtained so far, which
is given by

Econst = 2
∑

s∈D(γ)

[
a′(s) − λl′(s)

]
+ E0,N−1 + (M + λ + 1)2(N − 1)/4

+ [(N − 3)λ − M ] (M + λ)(M + λ + 1). (3.114)

The excitation energy ∆E is the difference between E [κ] and the ground-
state energy Eg,N ≡ (L/(2π))2Eg,N . The latter in the U(2) system is given
by

Eg,N =
N∑

i=1

(
κi,0 +

λ(N + 1 − 2i)
2

)2

=
1
6
(1 + 2λ)2(M2 − 1)M +

1
2
λ2M, (3.115)
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which can be obtained from (3.88). By a straightforward calculation, the
excitation energy of the quasi-hole state is calculated as

∆E = −(1 + 2λ)
2λ+1∑
r=1

ζ̃2
r +

1
3
λ(λ + 1), (3.116)

where we have introduced the notation

ζ̃r = ζr −
1
2
(M + λ + 1) − λ

1 + 2λ
(λ + 1 − r). (3.117)

From this expression, we interpret ζ̃r as the rapidity of a quasi-hole. The
negative curvature of the spectrum in (3.116) is a hallmark of hole-like exci-
tations. By comparing with (2.90), the prefactor −(1+2λ) in (3.116) shows
that a quasi-hole has the charge −1/(1+2λ) compared with the unit charge
of the original particles. From (3.102) and (3.117), the inequality

ζ̃r ≥ ζ̃r+1 + δ(σr, σr+1) −
λ

1 + 2λ
(3.118)

follows. Hence we obtain (3.95).

3.5 Thermodynamics

The thermodynamics of multi-component Sutherland models can be for-
mulated in a way parallel to that of the single-component model. The
multi-component Sutherland model describes free particles obeying multi-
component exclusion statistics. In this section we assume ζ = 1, but the
model with ζ = −1 can be discussed in a similar way.

3.5.1 Multi-component bosons and fermions

Here we derive thermodynamics for the most general case: the U(KB,KF)
model [163]. First we start with the energy functional (3.41). For the U(KB,

KF) model, the distribution function should read

ν(κ) =
KB∑
σ=1

νB
σ (κ) +

KF∑
σ=1

νF
σ (κ),

where νB
σ (κ) = 0, 1, 2, . . . and νF

σ (κ) = 0, 1. Then the thermodynamic
potential is given by

Ω = E − TS − L

KB∑
σ=1

µB
σ νB

σ (κ) − L

KF∑
σ=1

µF
σνF

σ (κ). (3.119)
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Here µB
σ and µF

σ are chemical potentials of bosons or fermions with species σ.
In the thermodynamic limit, it is convenient to use the momentum
k = 2πκ/L and then we write ν

B(F)
σ (κ) → ν

B(F)
σ (k). We obtain from (3.119)

the following:

Ω[ν(k)]/L

=
1
2π

∫ ∞

−∞
dkk2ν(k) − 1

2π

∫ ∞

−∞
dk

(
KB∑
σ=1

µB
σ νB

σ (k) +
KF∑
σ=1

µF
σνF

σ (k)

)

+
λ

4π

∫ ∞

−∞
dk

∫ ∞

−∞
dk′|k − k′|ν(k)ν(k′) +

π2λ2d3

3

− T

2π

KB∑
σ=1

∫ ∞

−∞
dk

[(
νB

σ (k) + 1
)
ln

(
νB

σ (k) + 1
)
− νB

σ (k) ln νB
σ (k)

]
+

T

2π

KF∑
σ=1

∫ ∞

−∞
dk

[(
1 − νF

σ (k)
)
ln

(
1 − νF

σ (k)
)

+ νF
σ (k) ln νF

σ (k)
]
, (3.120)

which should be minimized with respect to variations of νB
σ (k) and νF

σ (k).
The solution of the stationary conditions

δΩ
δνB

σ (k)
= 0,

δΩ
δνF

σ (k)
= 0

is given by

νB
σ (k) =

{
exp

[(
ε(k) − µB

σ

)
/T

]
− 1

}−1
, (3.121)

νF
σ (k) =

{
exp

[(
ε(k) − µF

σ

)
/T

]
+ 1

}−1
, (3.122)

where ε(k) is self-consistently determined by

ε(k) = k2 + λ

∫ ∞

−∞
dk′|k − k′|ν(k′) + π2λ2d2. (3.123)

For a given set of k, T,
{
µB

σ

}
,
{
µF

σ

}
, we determine νF

σ (k) and νB
σ (k) by insert-

ing ε(k) into (3.121) and (3.122). In Chapter 2, we have already discussed
ε(k) in (2.135).

Let us introduce the rapidity

p =
1
2

∂ε(k)
∂k

= k +
λ

2

∫ ∞

−∞
dk′sgn

(
k − k′) ν(k′). (3.124)

Further differentiation of (3.124) with k gives

∂p(k)
∂k

= 1 + λν(k). (3.125)
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By multiplying both sides of (3.125) by v(k) and integrating them over k,
we obtain

p2 = ε − Tλ ln
KB∑
σ=1

(
1 + νB

σ

)
+ Tλ

KF∑
σ=1

ln
(
1 − νF

σ

)
+ c0, (3.126)

where c0 is a constant which should be determined.
In order to determine c0, we consider the limit k → ∞ of (3.123) and

(3.126). Using the fact that ν(k) is an even function of k, we rewrite (3.123)
for k > 0 as

ε(k) = k2 + λk

∫ k

−k
dk′ν(k′) + 2λ

∫ ∞

k
dk′k′ν(k′) + π2λ2d2. (3.127)

In the limit k → ∞, the third term on the RHS of (3.127) vanishes and we
obtain the asymptotic form

ε(k) ∼ k2 + λk

∫ ∞

−∞
dkν(k)︸ ︷︷ ︸
2πd

+π2λ2d2 = (k + πλd)2. (3.128)

In the limit k → ∞, (3.126) becomes

p = k +
λ

2

∫ k

−∞
dk′ν(k′)︸ ︷︷ ︸
→2πd

−λ

2

∫ ∞

k
dk′ν(k′)︸ ︷︷ ︸
→0

∼ k + πλd. (3.129)

From these results and ν(∞) = 0, we obtain c0 = 0.
We introduce the distribution function ρB

σ (p), ρF
σ(p) as

ρB
σ (p) =

νB
σ (k)

1 + λν(k)
, ρF

σ(p) =
νF

σ (k)
1 + λν(k)

, (3.130)

so that the density of each species X = B,F is given by

dX
σ =

∫ ∞

−∞

dk

2π
νX

σ (k) =
∫ ∞

−∞

dp

2π
ρX

σ (p), νX
σ (k) =

∫ ∞

−∞

dp

2π
ρX

σ (p). (3.131)

The internal energy is rewritten in terms of p as

E/L =
∫ ∞

−∞

dp

2π
p2

(
KB∑
σ=1

ρB
σ (p) +

KF∑
σ=1

ρF
σ(p)

)
, (3.132)

as a generalization of the single-component result given by (2.142).
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Each contribution to the entropy is given by

SB =
∫ ∞

−∞

dk

2π

[(
1 + νB

σ

)
ln

(
1 + νB

σ

)
− νB

σ ln νB
σ

]
(3.133)

=
∫ ∞

−∞

dp

2π
ρB

σ

[(
1 + wB

σ

)
ln

(
1 + wB

σ

)
− wB

σ lnwB
σ

]
(3.134)

for bosons, and

SF = −
∫ ∞

−∞

dk

2π

[(
1 − νF

σ

)
ln

(
1 − νF

σ

)
+ νF

σ ln νF
σ

]
(3.135)

=
∫ ∞

−∞

dp

2π
ρF

σ

[(
1 + wF

σ

)
ln

(
1 + wF

σ

)
− wB

σ lnwF
σ

]
(3.136)

for fermions. Here we have defined

wB
σ (p) = 1/νB

σ (k), wF
σ (p) = 1/νF

σ (k) − 1. (3.137)

If we set KB = 1 and KF = 0, the above results reduce to the thermodynam-
ics of free particles with statistical parameter g = λ. If we set KB = 0 and
KF = 1, the above results reduce to the thermodynamics of free particles
with statistical parameter g = λ + 1.

3.5.2 Explicit results for U(2) anyons

So far we have regarded the system as multi-component interacting bosons
and fermions. Instead, we can formulate the thermodynamics of those sys-
tems in terms of multi-component free particles obeying exclusion statis-
tics. We use the notation α as the index of species (B, σ) or (F, σ). From
(3.126) and (3.137), wα is given as the positive real solution of the following
equation:

exp
[(

p2 − µα

)
/T

]
= (1 + wα)

∏
α′

(
wα′

wα′ + 1

)gα′α

, (3.138)

where the statistical parameter gα′α is given by

gα′α =
{

δαα′ + λ, for α or α′ ∈ F,
λ, otherwise.

(3.139)

The thermodynamic potential is expressed as

Ω/L = − T

2π

∫ ∞

−∞
dp

∑
α

ln
(
1 + w−1

α

)
. (3.140)

Thus the thermodynamics of the multi-component Sutherland model are
equivalent to those of free particles with the statistical parameter gαα′ . From
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(3.138), (3.139), and (3.140), we can calculate all the thermodynamic quan-
tities such as heat capacity and particle density for each species as the
derivatives of the thermodynamic potential.

We now consider the system of particles with SU(2) spin. The U(KF = 2)
model with coupling parameter λ, and the U(KB = 2) model with λ + 1 are
equivalent in thermodynamics. We can therefore take the original particles
as fermions without loss of generality. The chemical potential for particles
with spin σ = ±1 is rewritten as

µ↑ = µ − h, µ↓ = µ + h

in terms of magnetic field h and chemical potential µ. The thermodynamic
potential is given by

Ω = −T

∫ ∞

−∞

dp

2π

∑
σ=↑,↓

ln
(
1 + w−1

σ

)
, (3.141)

where wσ is the real solution of the following equations:

εpσ(p)/T ≡
(
p2 − µ − σh

)
/T

= ln (1 + wσ) −
∑
σ′

gσ,σ′
p ln

(
1 + w−1

σ′
)
, (3.142)

where gσ,σ′
p is the statistical interaction given by (3.94). Let us see the effect

of internal symmetry on thermodynamics. When h = 0, (3.142) reduces to
a single equation

p2 − µ

λT
=

1 + 2λ

λ
ln (1 + w) − 1 + λ

λ
ln

(
1 + w−1

)
, (3.143)

for w = w↑ = w↓. This equation describes free particles with statistical
parameter 2 + 1/λ and energy (p2 − µ)/λ. Thus, provided that the mag-
netic field is much weaker than the temperature T , the thermodynamic
properties are described in terms of an approximate single-component pic-
ture. Figure 3.4 shows the rapidity distribution of ρ↑(p) = ρ↓(p) of the U(2)
fermionic model with λ = 1 without a magnetic field (h = 0) for various T .
We see that ρ↑, ρ↓ are bounded by 1/(1 + 2λ) = 1/3.

Next we consider the case h À T . For that case, Fig. 3.5 shows the
profile of ρ↑(p) and ρ↓(p). We see that there are two pseudo-Fermi momenta
p↑ = √

µ↑ and p↓ = √
µ↓. The presence of one component renormalizes

the statistics of the other component of particles. The distribution function
ρ↓(p) for the minor component looks similar to Fig. 3.4. This means that
the distribution can be approximated by a single-component particle obeying
exclusion statistics. The distribution ρ↑(p) of the major component behaves
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Fig. 3.4. The distribution function ρ↑(p) = ρ↓(p) for the U(2) fermionic Sutherland
model with λ = 1 in the absence of magnetic field. Each curve corresponds to
temperatures T/µ = 0.01, 0.02, . . . , 0.1.

in an intriguing way. For energy lower than the chemical potential for the
minor component, ρ↑(p) ∼ 1/(1 + 2λ) for sufficiently low temperatures. For
energy µ↓ ¿ ε ¿ µ↑, ρ↑(p) ∼ 1/(1+λ), the exclusion effect on ρ↑ in an energy
region becomes weak when the particles of the minor component are absent
in that energy region. For sufficiently low temperatures, the distributions
near µ↑ and µ↓ do not affect each other. For those temperature regions, a
single-component free-particle description, which is different from (3.143),
gives a good approximation of the thermodynamics of the U(2) Sutherland
model [100].

In Section 2.4, we have seen that there is a duality between the particles
and the holes in the single-component anyons. In order to see the duality
in thermodynamics explicitly, we write (3.142) in the two-component vector
form and multiply

gh ≡

(
g↑↑h g↑↓h

g↓↑h g↓↓h

)
= g−1

p =
1

2λ + 1

(
λ + 1 −λ

−λ λ + 1

)
. (3.144)

Then we obtain

εhσ(p)/T = ln (1 + whσ) −
∑

σ′=↑,↓
gσσ′
h ln

(
1 + w−1

hσ′
)
, (3.145)
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Fig. 3.5. The distribution functions ρ↑(p) (upper panel) and ρ↓(p) (lower panel) for
the U(2) fermionic Sutherland model with λ = 1 in the presence of a magnetic field
h/µ = 0.2. The horizontal axis is ε/µ − 1. Each curve corresponds to temperature
T/µ = 0.01, 0.02, . . . , 0.1.

with

εhσ(p) =
µ − p2

2λ + 1
+ σh, whσ = w−1

σ . (3.146)

The above relation shows that the duality relation of exclusion statistics
leads to the duality of thermodynamics of the U(2) Sutherland model with
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Table 3.1. Elementary excitations of the U(2) Sutherland model with
σ = ±1. The quasi-particle is written as qp, and the quasi-hole as qh.

Species Charge Spin Energy Momentum Statistics

qp 1 σ p2 − µ − σh p gp

qh −1/(2λ + 1) σ (µ − p2)/(2λ + 1) + σh −p/(2λ + 1) gh

coupling parameter λ and −λ/(1+2λ). Similar duality is available to multi-
component Sutherland models in general.

Now we consider excitations from the ground state in the unpolarized case
(h = 0). At T = 0, the distributions of particles and holes are given by

ρσ(p) = 1/(2λ + 1), ρ∗σ(p) = 0, for |p| < pF ≡ µ1/2,

ρσ(p) = 0, ρ∗σ(p) = 1, for |p| > pF.
(3.147)

The pseudo-Fermi momentum pF is given as

pF = πd (2λ + 1) /2,

by the condition ∫ ∞

−∞

dp

2π

∑
σ=↑,↓

ρσ (p) =
N

L
≡ d. (3.148)

For |p| > pF, excitations are particle-like; quasi-particles with energy εpσ,
charge ep = +1, spin σp = σ, and statistics gp. For |p| < pF, on the other
hand, excitations are hole-like; quasi-holes with energy εhσ, charge eh =
−1/(2λ + 1), spin σh = σ, and statistics gh. The charge of quasi-holes is
renormalized to be fractional, while spin remains the same as that of quasi-
particles. Table 3.1 summarizes these results on the elementary excitations.

3.5.3 Generalization to U(K) symmetry

We can straightforwardly generalize the results to the U(K) Sutherland
model. The thermodynamic potential of the U(K) model is given by

Ω = −T

∫ ∞

−∞

dp

2π

K∑
σ=1

ln
(
1 + w−1

σ

)
, (3.149)
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where wσ is the real solution of the following equations:

εpσ/T ≡
(
p2 − µσ

)
/T = ln (1 + wσ) −

K∑
σ′=1

gσ,σ′
p ln

(
1 + w−1

σ′
)
, (3.150)

for σ = 1, 2, . . . ,K. Here µσ represents the chemical potential of each species.
The statistical interaction is given by

gσσ′
p = δσ,σ′ + λ, (3.151)

which can be summarized by a K × K matrix: gp = (gσσ′
p ).

The quasi-hole spectrum is described as

εhσ ≡ − p2

2(Kλ + 1)
− µhσ

= T ln
(
1 + w−1

σ

)
− T

K∑
σ′=1

gσ,σ′

h ln (1 + wσ′) , (3.152)

µhσ = −µσ +
λ

Kλ + 1

K∑
σ′=1

µσ′ , (3.153)

gσσ′
h = δσ,σ′ − λ/(Kλ + 1), (3.154)

where the statistical interaction for holes gσσ′
h makes the K × K matrix

gh = g−1
p . If each species takes the same chemical potential µσ = µ, the

rapidity distribution functions at T = 0 are given by

ρσ(p) = 1/(Kλ + 1), ρ∗σ(p) = 0, for |p| < pF ≡ (2µ)1/2 ,

ρσ(p) = 0, ρ∗σ(p) = 1, for |p| > pF,
(3.155)

where the pseudo-Fermi momentum is given by

pF = πd (Kλ + 1) /K.

For |p| > pF, excitations are particle-like; quasi-particles with energy εpσ,
charge +1, spin (color) σ, and statistics gp. For |p| < pF, on the other hand,
excitations are quasi-holes with energy εhσ, charge −1/(Kλ + 1), color σ,
and statistics gh. Table 3.2 summarizes these elementary excitations.

Table 3.2. Elementary excitations of the U(K) Sutherland model.

Species Charge Energy Statistics

qp 1 p2 − µσ gp

qh −1/(Kλ + 1) p2/(Kλ + 1) − µhσ gh
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3.6 Eigenfunctions

3.6.1 Non-symmetric Jack polynomials

The non-symmetric eigenfunction Φ (3.25) of H (3.14) is useful to derive the
ground-state wave function of the multi-component Sutherland model. The
wave functions Φη and Φη′ are orthogonal with respect to the integral norm
〈·, ·〉0, which has been defined in (2.189) for η+ 6= (η′)+. These two wave
functions are, however, not necessarily orthogonal when η is a rearrangement
of η′. For example, we consider a composition

ηi1 = (0 · · · 0︸ ︷︷ ︸
i−1

, 1, 0 · · · 0︸ ︷︷ ︸
N−i

) (3.156)

for i ∈ [1, N ]. Then Φηi1 = zi is obviously an eigenfunction of (3.16) because
there are no ways to squeeze η. However, these functions are not orthogonal:

〈zi, zj〉0 6= 0.

Non-orthogonality of Φη is due to the degeneracy of eigenvalues; the eigen-
value of Φη for (3.16) is the same as that of Φη′ when η′ is a rearrangement
of η. For derivation of dynamical correlation functions, orthogonality of the
basis is desirable. In the following, we discuss an orthogonal basis of non-
symmetric eigenfunctions of (3.16).

First we introduce an ordering of η, η′ ∈ ZN satisfying η+ = (η′)+ ∈ L+
N

as η′ ≺ η when
∑k

i=1 η′i ≤
∑k

i=1 ηi for all k = 1, . . . , N . An example is given
as

(0, 1, 2) ≺ (0, 2, 1) ≺ (1, 0, 2) ≺ (1, 2, 0) ≺ (2, 0, 1) ≺ (2, 1, 0) (3.157)

for N = 3. We then consider the eigenfunction of (3.16) satisfying

Eη = Φη +
∑

η′(≺η),(η′)+=η+

cη′Φη′ (3.158)

〈Eη, Eη′〉0 = 0 when η 6= η′. (3.159)

These two conditions uniquely determine the orthogonal set {Eη} resulting
from {Φη}. We generalize the definition of the ordering ≺ as ν ≺ η if ν+ < η+

or if ν+ = η+ and
∑k

i=1 νi ≤
∑k

i=1 ηi for all k = 1, . . . , N . An example is
given as

(1, 1, 1) ≺ (0, 2, 1) ≺ (1, 2, 0) ≺ (0, 3, 0) (3.160)

for N = 3.
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From the property (3.25) of Φ and (3.158), the wave function Eη can be
defined alternatively as the function satisfying

Eη = φη +
∑

η′(≺η)

c′η′φη′ (3.161)

〈Eη, Eη′〉0 = 0 when η 6= η′.

Note that the summation in (3.161) is not restricted to η′ satisfying
(η′)+ = η+. When η is a composition, i.e., ηi ≥ 0 for i ∈ [1, N ], the wave
function Eη coincides with the so-called non-symmetric Jack polynomial
[127, 147]. Even when η is not a composition, the wave function Eη is writ-
ten as (z1 · · · zN )JEη′ with an integer J and a composition η′. We can thus
concentrate on Eη with composition η without loss of generality.

To define the non-symmetric Jack polynomials, we introduce a set of
operators {d̂1, . . . , d̂N} satisfying

(i) mutual commutativity [d̂i, d̂j ] = 0;
(ii) non-degeneracy of the set of the spectrum of {d̂1, . . . , d̂N};
(iii) self-adjointness with respect to 〈·, ·〉0;
(iv) commutativity [d̂i,H] = 0 with Hamiltonian (3.16);
(v) triangularity d̂iφη = η̄iφη +

∑
η′≺η cη′φη′ with η̄i defined below.

The following set of operators satisfies the above conditions:

d̂i =
zi

λ

∂

∂zi
+

i−1∑
j=1

zi

zi − zj
(1 − Kij)

+
N∑

j=i+1

zj

zi − zj
(1 − Kij) − i + 1, (3.162)

for 1 ≤ i ≤ N . The action of d̂i on the constant gives −i + 1, which ranges
from 0 to −N + 1. These operators are called Cherednik–Dunkl operators
[38,45], and their properties will be discussed at length in Chapter 7. A more
compact expression is obtained in terms of the step function θ(i − j) =
[1 + sgn(i − j)]/2, together with a similarity transformation generated by
O =

∏
i<j |zi − zj |λ. Namely, we obtain

Od̂iO−1 =
zi

λ

∂

∂zi
+

∑
j (6=i)

[θ(j − i) − θij ] Kij + N − 1, (3.163)

where θij = zi/(zi − zj). The latter form will be used in Chapter 9.
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The property (i) guarantees the existence of simultaneous eigenfunctions
of {d̂1, . . . , d̂N} and those eigenfunctions are uniquely determined owing
to (ii). Those eigenfunctions being polynomials are called non-symmetric
Jack polynomials. It follows from (iii) that non-symmetric Jack polynomials
are mutually orthogonal with respect to 〈·, ·〉0. From (iv), non-symmetric
Jack polynomials are eigenfunctions of the Hamiltonian (3.16). From (v),
the non-symmetric Jack polynomials have the form of (3.161) up to overall
factor. Thus we can identify Eη as non-symmetric Jack polynomials. The
property (iv) comes from the relation

H = λ2
N∑

i=1

[(
d̂i +

N − 1
2

)2

− (N − 2i + 1)2

4

]
. (3.164)

The division of summation in (3.162) leads to the triangularity (v) of the
matrix representation of d̂i. We have already encountered such triangularity
for the three-particle Hamiltonian in (3.23). The eigenvalue of d̂i is given by

η̄i ≡
ηi

λ
−

(
k′

i + k′′
i

)
, (3.165)

where k′
i and k′′

i have been defined in (3.26). From (3.164) and (3.165), we
can confirm that the eigenvalue E [η] of Eη for H coincides with (3.27).

The non-symmetric Jack polynomials Eη(z1, . . . , zN ), can be generated
successively from the initial condition

E0···0 = 1.

We introduce the following generating operators [114]:

(i) The operator Θ is defined for any polynomial f(z1, . . . , zN ) and any
composition η by

Θf(z1, . . . , zN ) ≡ zNf(zN , z1, . . . , zN−1), (3.166)

Θη = (η2, . . . , ηN , η1 + 1) . (3.167)

Then we obtain

EΘη = ΘEη. (3.168)

(ii) Another generating operator is the coordinate exchange operator
Ki ≡ Ki,i+1. This operator acts on Eη as

KiEη =


ξiEη +

(
1 − ξ2

i

)
EKiη, ηi > ηi+1,

Eη, ηi = ηi+1,

ξiEη + EKiη, ηi < ηi+1,

(3.169)
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where

ξi = 1/ (η̄i − η̄i+1) . (3.170)

The details on generators will be given in Section 7.1.5. Let us derive some
simplest cases of Eη explicitly in the following.

Examples:

(i) Using (3.168) for η = 0 · · · 0, we obtain

E0···01 = zN . (3.171)

(ii) Using (3.171) and (3.169) for η = 0 · · · 01, we obtain

E0···010 = zN−1 +
λ

1 + (N − 1)λ
zN . (3.172)

(iii) Using (3.171) and successive use of (3.169), we obtain

Eηi1 = zi +
λ

1 + λi
(zi+1 + · · · + zN ) , (3.173)

where ηi1 has been defined in (3.156).
(iv) With use of (3.173) for i = 1, i.e., η = (10 · · · 0), and (3.168), we

obtain

E0···02 = z2
N +

λ

λ + 1
zN

N−1∑
i=1

zi.

The non-symmetric Jack polynomials Eη have non-negative integers for all
ηi [127,147]. The symmetric Jack polynomials Jκ are obtained from Eη with
η+ = κ by symmetrization. For example, we can easily confirm that

Sym E0···02 = m2 +
2λ

1 + λ
m11 = J2.

Further, the mathematical formulae given below can be derived with use
of the theory of non-symmetric Jack polynomials, as discussed fully in
Chapter 7. From the above examples, we see that Eη contains the mono-
mial φη with a coefficient of unity. This property of the polynomial is called
“monic”. Further, the eigenvalue of Eη for (3.16) is the same as that of Φη.
These two facts will be used to construct an orthogonal basis of eigenfunc-
tions of the multi-component Sutherland model.
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N↑

N↓

Fig. 3.6. The diagram of (κ↑, κ↓) = (5, 4, 2, 1, 6, 3, 2) for N = 7, N↑ = 4,
N↓ = 3.

3.6.2 Jack polynomials with U(2) symmetry

Using Eη, we reconstruct eigenfunctions of (3.16) related to the U(2) fermionic
Sutherland model with ζ = 1 and the U(2) bosonic Sutherland model with
ζ = −1. Let Nσ be the number of particles having spin σ(=↑, ↓). As we have
seen in Section 3.2.1, each eigenfunction of the U(2) fermionic Sutherland
model is specified by (N↑, N↓, κ) with κ = (κ↑, κ↓) ∈ L+>

N↑
⊗ L+>

N↓
. As the

wave function of the state κ = (κ↑, κ↓), we take

Φ = Asym Eκvα, α = (

N↑︷ ︸︸ ︷
1, . . . , 1,

N↓︷ ︸︸ ︷
2, . . . , 2) (3.174)

instead of (3.45). It is often useful to have the wave function with spin
configuration fixed. Let σ0 be the spin configuration (1N↑ , 2N↓). The wave
function (3.174) reduces to

Φ({zi}, {σi} = σ0) = Asym↑Asym↓ Eκ, (3.175)

where we introduce Asym↑ as the antisymmetrization operator with respect
to the variables zi in [1, N↑], and Asym↓ to the variables zi in [N↑ + 1, N ].

Now we define Λ+>
N as

Λ+>
N = {κ|κ = (κ1, . . . , κN ) ∈ Z≥0; κ1 > · · · > κN > 0} , (3.176)

where Z≥0 is the set of non-negative integers. Figure 3.6 shows a typical
example of a composition (κ↑, κ↓) ∈ (Λ+>

N↑
, Λ+>

N↓
). When κ ∈ Λ+>

N↑
⊗ Λ+>

N↓
,

the RHS of (3.175) is proportional to the U(2) Jack polynomial J
(−−)
κ defined

by the following two conditions [18,46,105]:

(i) The polynomial J
(−−)
κ for κ = (κ↑, κ↓) ∈ (Λ+>

N↑
,Λ+>

N↓
) has the form

J (−−)
κ (z) =

∏
σ=↑,↓

∑
(ησ)+=κσ

a
(−−)

η↑,η↓Eη↑,η↓(z), (3.177)
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with the normalization

aκ = 1.

(ii) Under the action of the transposition Ki, the polynomial J
(−−)
κ (z)

for κ = (κ↑, κ↓) ∈ (Λ+>
N↑

, Λ+>
N↓

) is transformed as

KiJ
(−−)
κ (z) = −J (−−)

κ (z), (3.178)

for i ∈ [1, N↑ − 1] or i ∈ [N↑ + 1, N − 1].

Every term on the RHS of (3.178) is an eigenfunction of (3.16) with common
eigenenergy. Hence the function J

(−−)
κ is also an eigenfunction of (3.16).

Owing to the partial antisymmetric property (ii), the function J
(−−)
κ is

related to an eigenfunction of the U(2) fermionic Sutherland model. Thus
we call it the U(2) Jack polynomial. We use J

(−−)
κ to derive the exact

expression for the hole propagator of the U(2) Sutherland model [102,105].

Let us consider two simple cases: First, when κ↑ = δ(N↑) ≡
(N↑ − 1, N↑ − 2, . . . , 1, 0) and κ↓ = δ(N↓) ≡ (N↓ − 1, N↓ − 2, . . . , 1, 0), the
function J

(−−)
δ(N↑),δ(N↓) becomes the product of the Vandermonde determinants

(2.188)

J
(−−)
δ(N↑),δ(N↓) = ∆(z1, . . . , zN↑)∆(zN↑+1, . . . , zN ). (3.179)

Second, we consider the case λ = 0 where the function Eη reduces to the
monomial φη. Then J

(−−)

κ↑,κ↓ becomes a product of the free fermion functions

sκ̃↑(z1, . . . , zN↑)sκ̃↑(zN↑+1, . . . , zN )∆(z1, . . . , zN↑)∆(zN↑+1, . . . , zN ),

where sκ̃σ is the Schur function. The latter has been defined in (2.173) for
a partition

κ̃σ ≡ κσ − δ(Nσ).

For two general compositions (κ↑, κ↓), (µ↑, µ↓) ∈ (Λ+>
N↑

, Λ+>
N↓

), the orthog-
onality

〈J (−−)

κ↑,κ↓ , J
(−−)

µ↑,µ↓〉0 ∝ δ(κ↑,κ↓),(µ↑,µ↓) (3.180)

holds owing to the orthogonality of Eη. The norm of the U(2) Jack polyno-
mial is given in (7.356) as a product of combinatorial quantities. Further-
more, the expansion formula (called the binomial formula) corresponding to
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(2.226) is given as

N↑∏
i=1

(1 − zi)
r−N↑

N∏
i=N↑+1

(1 − zi)
r−N↓ ∆(z1, . . . , zN↑)∆(zN↑+1, . . . , zN )

=
∑

κ↑∈Λ+>
N↑

∑
κ↓∈Λ+>

N↓

b
(−−)

κ↑,κ↓(r)J
(−−)

κ↑,κ↓ , (3.181)

which will be derived in Section 7.4.6. The formula for the expansion co-
efficient b

(−−)

κ↑,κ↓ also has a product-type expression. The LHS of (3.181) ap-
pears as a result of annihilating a particle in the ground state of the U(2)
Sutherland model. Therefore, the function J

(−−)

κ↑,κ↓ plays a central role in the
U(2) Sutherland model, as do the symmetric Jack polynomials in the single-
component model.

3.7 Dynamics of U(2) Sutherland model

The results on the thermodynamics suggest anyonic elementary excitations
in the multi-component Sutherland model. It is interesting to see how any-
onic elementary excitations obeying exclusion statistics are reflected in the
dynamics in the multi-component model. Exact results on the dynamics of
the multi-component Sutherland model are important also in the sense that
some of these results can be converted to dynamical correlation functions
of the SU(K) Haldane–Shastry model and the supersymmetric t–J model
with long-range interactions.

For the U(2) Sutherland model, the expression for the hole propagator was
conjectured in [102] relying on finite-size calculations. Uglov derived the ex-
act expression for dynamical density and spin density correlation functions
by developing a novel isomorphism between the Yangian Gelfand–Zetlin ba-
sis and a degenerate limit of Macdonald symmetric polynomials [189]. The
resultant expressions in the thermodynamic limit were naturally interpreted
in terms of anyonic elementary excitations [103]. The conjecture in [102] for
the hole propagator was proved to be exact in [105]. In [198,199], dynamical
density and color correlation functions of the Sutherland model with SU(K)
internal symmetry were derived exactly on the basis of the theory of [189].
Dynamical density correlation functions for the U(1,1) Sutherland model
[7,8,10,11] were obtained in the course of calculation of dynamical correla-
tion functions of the supersymmetric t–J model with long-range interactions.
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q-h ↑

q-h ↑

q-h ↓

q-p ↑

Fig. 3.7. Schematic description of minimum bubble for the U(2) Sutherland model
with λ = 1.

3.7.1 Hole propagator 〈ψ̂†
↓(x, t)ψ̂↓(0, 0)〉

For simplicity, we consider the fermionic U(2) model for ζ = 1 and even λ,
and the bosonic U(2) model for ζ = −1 and odd λ. The boundary condition
is taken to be periodic. We take N to be even, and assume N/2 = M to
be odd (even) for odd (even) λ, so that the N -particle ground state is non-
degenerate. The hole propagator for the singlet ground state in the U(2)
Sutherland model is independent of the spin species, and is given by

G−(x, t) =
〈g, N |ψ̂†

↓(x, t)ψ̂↓(0, 0)|g, N〉
〈g, N |g, N〉

=
∑

µ

|〈µ,N − 1|ψ̂↓(0, 0)|g, N〉|2

〈µ, N − 1|κ,N − 1〉〈g, N |g, N〉
e−i(E[µ]−E0)t+i(Pµ−P0)x.

(3.182)

Here |µ, N − 1〉 denotes the excited state specified by µ ∈ (L+>
N/2,L

+>
N/2−1).

E[µ] and Pµ denote the energy and momentum, respectively, associated with
the state µ, while E0 and P0 denote those in the ground state.

First we discuss the excitation contents of excited states µ. Only those
excited states with N − 1 particles and Sz = 1 are relevant to (3.182). From
results on thermodynamics, we expect that each excited state is described as
multiple excitations of quasi-holes and quasi-particles. The charge of quasi-
holes is −1/(2λ+1) of that for original particles, while the spin of a quasi-hole
is the same as that of an original particle. Namely, the following excitation:

one quasi-particle with σp = σ,

λ + 1 quasi-holes with σh = −σ,

λ quasi-holes with σh = σ

(3.183)

is the minimum excitation with zero-charge and zero-spin. This set of exci-
tations is called the minimum bubble, as illustrated in Fig. 3.7.
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hole ↑

quasi-hole ↑

quasi-hole ↑

quasi-hole ↓
Fig. 3.8. Schematic description of the process of one hole → three quasi-holes in
the U(2) Sutherland model with λ = 1.

The charge and spin neutralities are verified by

ep + (λ + 1) eh + λeh = 0 (3.184)

and

σ + (λ + 1) (−σ) + λσ = 0, (3.185)

respectively. The relevant excited states should therefore be in the form of

(2λ + 1) quasi-holes + multiple excitation of minimum bubbles.

An explicit exact calculation, however, reveals that only 2λ + 1 quasi-holes
without additional bubbles are relevant to the hole propagator. This fact
suggests an underlying strong selection rule. Figure 3.8 illustrates the situ-
ation.

The explicit expression for the hole propagator in the thermodynamic
limit is given by [102,103,105]

G−(x, t) = c(λ)
λ∏

k=1

∫ 1

−1
duk

λ+1∏
l=1

∫ 1

−1
dvl

× |F (u, v)|2 exp [−i (E(u, v)t − Q(u, v)x)] . (3.186)

Here u = (u1, . . . , uλ), v = (v1, . . . , vλ+1) represent normalized velocities of
quasi-holes with up and down spins, respectively. In (3.186), the form factor
F is given, as will be derived in the next section, by

F (u, v) =∏
1≤k<l≤λ (uk − ul)

gd
∏

1≤k<l≤λ+1 (vk − vl)
gd

∏λ
k=1

∏λ+1
l=1 (uk − vl)

gf∏λ
k=1

(
1 − u2

k

)(1−gd)/2 ∏λ+1
l=1

(
1 − v2

l

)(1−gd)/2
,

(3.187)

where gd = (λ + 1) /(2λ + 1) and gf = −λ/(2λ + 1). The momentum Q and
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energy E in (3.186) are respectively given by

Q(u, v) =
πd

2

(
λ∑

k=1

uk +
λ+1∑
l=1

vl

)
, (3.188)

E(u, v) = − (2λ + 1)
(

πd

2

)2
(

λ∑
k=1

u2
k +

λ+1∑
l=1

v2
l

)
, (3.189)

where d = N/L is the density of particles. Finally, the constant c(λ) in
(3.186) is given by

c(λ) =
d

4 (2λ + 1)λ Γ (λ + 2)

2λ+1∏
k=1

Γ ((λ + 1) /(2λ + 1))
Γ (k/(2λ + 1))2

. (3.190)

The support of the spectral function, which has been defined by (2.202), is
similar to that of the single-component Sutherland model with replacement
of the coupling constant λ → 1 + 2λ. For example, the support for the U(2)
model with λ = 0 has the same form as that shown in Fig. 2.14. The support
for the U(2) model with λ = 2 has the same form as that shown in Fig. 2.16.
From the shape of the support, we easily see that only 2λ + 1 quasi-hole
states contribute to the hole propagator for the U(2) model.

We should, however, note that there is no correspondence between the
weights of the two spectral functions A2,λ(ω, P ) for the U(2) model and
A1+2λ(ω, P ) for the single-component model. The singularity of the spec-
tral function is determined by the joint density of states and the singularity
of the form factor F (u, v). The latter is determined by the exponents gd

and gf . These two exponents have already appeared in thermodynamics as
describing statistical interactions between quasi-holes with the same spins
and opposite spins, respectively. Quasi-holes with exclusion statistics behave
as free particles in the dynamics and thermodynamics. However, the statisti-
cal interaction between them yields the nontrivial singularity of the spectral
function, and nontrivial entropy in thermodynamics. In this way, anyonic
elementary excitations yield a natural interpretation of physical properties
of the U(2) Sutherland model.

3.7.2 Unified description of correlation functions

In addition to the hole propagator, we shall now present and interpret the
exact expression for the density ρ̂(x, t) and the spin density Ŝz(x, t) correl-
ation functions

〈ρ̂(x, t)ρ̂(0, 0)〉, 〈Ŝz(x, t)Ŝz(0, 0)〉 (3.191)
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for the U(2) model. The outline of derivation of 〈ρ̂(x, t)ρ̂(0, 0)〉 is given in
the next section. The derivation of 〈ρ̂(x, t)ρ̂(0, 0)〉 and 〈Ŝz(x, t)Ŝz(0, 0)〉 will
be given via Uglov’s method in Chapter 10. We shall first see that in these
correlation functions, only the minimal bubble contributes. Second, the form
factors are similar in these correlation functions, and also in the hole prop-
agator. Third, the singularity of the form factor is determined by the statis-
tical interactions between elementary excitations.

Scaling the pseudo-Fermi momenta to unity, the spectra of a quasi-particle
and a quasi-hole are given by

εp(y) = (2λ + 1)2
(

πd

2

)2

(y2 − 1), (3.192)

εh(y) = (2λ + 1)
(

πd

2

)2

(1 − y2). (3.193)

For a compact description of the dynamics, we introduce the following no-
tation [197] with non-negative integers a, b and c:

E(u, v, w; a, b, c) =
a∑

i=1

εp(ui) +
b∑

j=1

εh(vj) +
c∑

k=1

εh(wk), (3.194)

P(u, v, w; a, b, c) =
πd

2

[
− (2λ + 1)

a∑
i=1

ui +
b∑

j=1

vj +
c∑

k=1

wk

]
, (3.195)

I(a, b, c)[∗] =
a∏

i=1

∫ ∞

1
dui

b∏
j=1

∫ 1

−1
dvj

c∏
k=1

∫ 1

−1
dwk(∗)|Fλ(u, v, w; a, b, c)|2,

(3.196)

where d is the density of particles, and [∗] is a certain function. The vari-
ables u = (u1, . . . , ua), v = (v1, . . . , vb), and w = (w1, . . . , wc) represent the
normalized momenta of a quasi-particle with spin σ, and quasi-holes with
spin −σ and σ, respectively (σ = ±1). The hole propagator in the previous
subsection, for example, corresponds to the case I(0, λ+1, λ) in (3.196). The
most important quantity for correlation functions is the form factor, which
has the following general form:

Fλ(u, v, w; a, b, c) =

∏
1≤i<j≤b(vi − vj)gd∏a

i=1

∏b
j=1(ui − vj)

∏a
i=1(u

2
i − 1)(1−gp

d)/2

×
∏

1≤i<j≤c(wi − wj)gd
∏b

i=1

∏c
j=1(vi − wj)gf∏b

j=1(1 − v2
j )(1−gd)/2

∏c
k=1(1 − w2

k)
(1−gd)/2

, (3.197)
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Table 3.3. Exponents for combinations of rapidities in the form factor.

Quasi-hole −σ Quasi-hole σ Pseudo-Fermi points

Quasi-particle σ −1 ∗ (gp
d − 1)/2

Quasi-hole −σ gd gf (gd − 1)/2
Quasi-hole σ gf gd (gd − 1)/2

where we use the convention
∏0

i=1(∗)=1 for any quantity (∗), and

gd = (λ + 1)/(2λ + 1), gf = −λ/(2λ + 1), gp
d = λ + 1. (3.198)

These exponents are precisely the same as the statistical interaction param-
eters in thermodynamics. In fact, comparison with (3.94) and (3.95) shows
that

• gd: quasi-hole interaction with the same spin,
• gf : quasi-hole interaction with different spins,
• gp

d: quasi-particle interaction with the same spin.

With this identification, the exponents in Fλ can also be interpreted
intuitively. Namely, two quasi-hole factors with the same spin have gd as
in (vi − vj)gd , while those with different spins have gf as in (vi − wj)gf .
Furthermore, quasi-hole and quasi-particle factors with different spins have
−1 as in (ui − vj)−1, while those with the same spin do not appear. We
proceed to interpret the factor v2

i − 1 = (vi − 1)(vi + 1) as the interaction
of the rapidity of a quasi-particle and pseudo-Fermi momenta ±1. Then
the exponent (gd − 1)/2 follows because the particle at the pseudo-Fermi
momentum is the average of a quasi-particle and a quasi-hole. Similarly, the
factor u2

i − 1 = (ui − 1)(ui + 1), involving the quasi-particle rapidity ui,
has the exponent (gp

d −1)/2 by interaction with the pseudo-Fermi momenta.
Table 3.3 summarizes the exponents of these factors.

Using the notation (3.196) introduced above, the hole propagator as well
as the density and spin–density correlation functions can be described in a
unified manner [197]. First, the hole propagator, given by (3.187), is rewrit-
ten as

〈ψ†
σ(x, t)ψσ(0, 0)〉

=A(λ)I(0, λ + 1, λ)[(πd/2)ei(P(0,λ+1,λ)x−(E(0,λ+1,λ)−µ)t)], (3.199)

where µ = ((2λ + 1)πd)2 is the chemical potential. The proportionality
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constant is written as

A(λ) =
1

π(2λ + 1)λ
D(λ), (3.200)

D(λ) =
1

Γ (λ + 2)

2λ+1∏
j=1

Γ
(
(λ + 1)/(2λ + 1)

)
Γ

(
j/(2λ + 1)

)2 . (3.201)

We now quote the results for the density correlation function:

〈ρ̂(x, t)ρ̂(0, 0)〉

=B(λ)I(1, λ + 1, λ)[P(1, λ + 1, λ)2 cos(P(1, λ + 1, λ)x)e−iE(1,λ+1,λ)t],
(3.202)

B(λ) =
1

π2(2λ + 1)λ+1
D(λ). (3.203)

The intensity factor I(1, λ+1, λ) in (3.202) shows that relevant excited states
correspond to the minimal bubble in (3.183).

Finally we quote the exact result for the spin–density correlation function.
The z-component of the spin density operator Ŝz(x) is given by

Ŝz(x) =
1
2

 N↑∑
i=1

δ(x − xi) −
N∑

i=N↑+1

δ(x − xi)

. (3.204)

Since we are dealing with the singlet ground state of the U(2) Sutherland
model, the correlation function is independent of the spin component. The
spin correlation function is given by [197]

〈Ŝz(x, t)Ŝz(0, 0)〉

= CI(λ)I(1, λ, λ + 1)[(πd/2)2 cos(P(1, λ, λ + 1)x)e−iE(1,λ,λ+1)t]

+ CII(λ)I(1, λ + 2, λ − 1)[(πd/2)2 cos(P(1, λ + 2, λ − 1)x)e−iE(1,λ+2,λ−1)t],
(3.205)

where

CI(λ) =
1

4π2(2λ + 1)λ−1
D(λ), (3.206)

CII(λ) =
1

4π2(2λ + 1)λ−1

λ

λ + 2
D(λ). (3.207)

We shall discuss the derivation of 〈Ŝz(x, t)Ŝz(0, 0)〉 in Section 10.5. Note
that in (3.205), I(1, λ, λ + 1) corresponds to the minimal bubble, while
I(1, λ + 2, λ − 1) contains a spin flip in the quasi-particle and quasi-holes.
Then we have Sz = 0 also in excited states.
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3.8 Derivation of dynamics for finite-sized systems

3.8.1 Hole propagator

In deriving the hole propagator, we first consider the fermion systems and
take ζ = 1 in (3.6). We take the periodic boundary condition with N even
and N/2 odd, so that the ground state is non-degenerate. Then we obtain
Ψg,F in (3.59) as the ground state. If λ is even, the absolute ground state ΨB

0

involved becomes the same as Ψ0,N given by (2.18). Then we seek a general
eigenfunction Ψ in the form of

Ψ(x1, σ1, . . . , xN , σN ) = Φ(x1, σ1, . . . , xN , σN )Ψ0,N (3.208)

where Φ satisfies the fermionic Fock condition

Ki,jΦ = −Pi,jΦ. (3.209)

We do not consider the case of odd λ in the fermion case, where the absolute
ground state is not a Galilean-shifted polynomial. As a result, the exact
result for the hole propagator has not yet been derived.

In the case of bosons as original particles, we take odd λ with ζ = −1 for
an N -particle system with N being twice an even integer. Then the abso-
lute ground state again becomes Ψ0,N given by (2.18). Here Φ is chosen to
obey the antiperiodic boundary condition so that Ψ(x1, σ1, . . . , xN , σN ) sat-
isfies the periodic boundary condition. Except for this change of the bound-
ary condition, we have the same conditions (3.208) and (3.209) for general
eigenfunctions.

Let us begin with the norm 〈g, N |g, N〉 in (3.182), which is expressed as

〈g, N |g, N〉 =
∑

σ1=±1

· · ·
∑

σN=±1

∫ L

0
dx1 · · ·

∫ L

0
dxN |Ψg({xi} , {σi})|2.

(3.210)
The number of spin configurations that contribute to the summation is
N !/((N/2)!)2. Since the contribution from each spin configuration is the
same, we can fix on any spin configuration and multiply the summand by
N !/((N/2)!)2. If we fix the spin variables as

{σ0} ≡ (σ1 = · · · = σN/2 = 1, σN/2+1 = · · · = σN = −1), (3.211)

we obtain

Φg,F({xi} , {σ0}) =
∏

1≤i<j≤N/2

(zi − zj)
∏

N/2+1≤l<m≤N

(zl − zm) , (3.212)
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apart from a phase factor. As mentioned in (3.179) and fully discussed in
Section 3.6.2, this function corresponds to a U(2) Jack polynomial J

(−−)
µ

with the particular case of µ = µ0 with

µ0 = (δ(N/2), δ(N/2))

= (N/2 − 1, N/2 − 2, . . . , 0, N/2 − 1, N/2 − 2, . . . , 0).

Consequently, the norm of the ground-state wave function is given by

〈g, N |g, N〉 =
N !LN

[(N/2)!]2
〈J (−−)

µ0
, J (−−)

µ0
〉0. (3.213)

Next we consider the matrix element in (3.182). When the annihilation
operator ψ̂↓(0, 0) acts on the wave function Ψ({xi} , {σi}) of an N -particle
state |Ψ〉, the result is given by

〈{xi} , {σi} |ψ̂↓(0, 0)|g, N〉 = (−1)N−1
√

NΨ({xi} , {σi})|xN=0,σN=−1.

(3.214)
Namely, the annihilation fixes the spatial and spin coordinates of the Nth
particle. Then we obtain

〈g, N |ψ̂†
↓(x, t)ψ̂↓(0, 0)|g, N〉 = N

∑
σ1=±1

· · ·
∑

σN−1=±1

∫ L

0
dx1 · · ·

∫ L

0
dxN−1

× Ψ∗
g,N ({xi} , {σi})|xN=0,σN=−1 exp [−i (HK − Eg,N ) t + iPx]

× Ψg,N ({xi} , {σi})|xN=0,σN=−1, (3.215)

where we have replaced HP in (3.5) by HK since we can then fix the spin
variables to a configuration and multiply (N −1)!/[(N/2)!(N/2−1)!]. When
the spin variables are fixed as σ0 given by (3.211), we obtain

Ψg,N ({xi} , {σi})|xN=0,σN=−1 = eiαΦ̃(z1, . . . , zN−1)Ψ0,N−1 (3.216)

with a phase factor eiα. Here the function Φ̃ is defined by

Φ̃ =
N−1∏
i=1

zJ
i

N/2∏
i=1

(zi − 1)λ+1
N−1∏

i=N/2+1

(zi − 1)λ

×
∏

1≤i<j≤N/2

(zi − zj)
∏

N/2+1≤i<j≤N−1

(zi − zj), (3.217)

with J = −λ/2 − (N/2 − 1)/2 and the function Ψ0,N−1 in (3.216) obtained
from (2.19) by replacement N → N − 1. We can expand Φ̃ as a linear
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combination of the eigenfunctions of HK (3.6). Using the binomial formula
(3.181) for U(2) Jack polynomials, we obtain

Φ̃ =

(
N−1∏
i=1

zJ
i

) ∑
µ∈(Λ+>

N/2
,Λ+>

N/2−1
)

b(−−)
µ

(
λ +

N

2

)
J (−−)

µ . (3.218)

Substituting (3.218) into (3.215), we obtain

〈g, N |ψ̂†
↓(x, t)ψ̂↓(0, 0)|g, N〉 =

N !LN−1

(N/2)!(N/2 − 1)!

×
∑

µ∈(Λ+>
N/2

,Λ+>
N/2−1

)

〈J (−−)
µ , J (−−)

µ 〉0,N−1|b(−−)
µ (λ + N/2)|2 exp (−iωµt + iPµx) ,

(3.219)

where the excitation energy and momentum are given by

ωµ = E[µ + J ] − Eg,N

=
(

2π

L

)2 N−1∑
i=1

(
(µ+)i +

λ

2
(N − 2i) + J

)2

− Eg,N , (3.220)

Pµ =
2π

L
(|µ| + (N − 1)J) . (3.221)

From (3.219) and (3.213), we obtain the hole propagator in a finite size:

G−(x, t) =
d

2

∑
µ∈(Λ+>

N/2
,Λ+>

N/2−1
)

〈J (−−)
µ , J

(−−)
µ 〉0,N−1

〈Jµ0 , Jµ0〉0
|b(−−)

µ

(
λ +

N

2

)
|2

× exp (−iωµt + iPµx) . (3.222)

All factors on the RHS are available in Chapter 7; the norm of the U(2)
Jack polynomial is given in (7.356) and the coefficients b

(−−)
µ (λ + N/2) of

the binomial formula are given in (7.384).
We can derive (3.186) from (3.222) in the same way as in Section 2.7.1.

First we find the condition that an excited state µ has non-vanishing con-
tribution (3.222). According to (7.384), the matrix element b

(−−)
µ (λ + N/2)

contains the factor (λ + N/2 − (µ+)1). Therefore the Young diagram of
µ+ containing the cell (i, j) = (1, λ + N/2) does not contribute to the
sum in (3.222). Figure 3.9 shows for λ = 1 a typical Young diagram of
µ ∈ (Λ+>

N/2, Λ
+>
N/2−1) which contributes to the sum in (3.222). With λ = 1,

the compositions µ relevant to (3.222) can be parameterized by (p1, q1, q2).
These three numbers are (dimensionless) momenta of quasi-holes.
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N↑

N↓

p1

q2q1

Fig. 3.9. A typical Young diagram of µ ∈ (Λ+>
N/2, Λ

+>
N/2−1), which contributes to

the sum in (3.222). Here we take λ = 1 and N = 12. Unshaded squares represent
the diagram of (δ(N/2), δ(N/2 − 1)) corresponding to the ground state. Shaded
squares are parameterized by three non-negative integers p1, q1, and q2, which are
proportional to the momenta of quasi-holes.

For a general non-negative integer λ, the compositions µ relevant to
(3.222) can be parameterized by

(p1, . . . , pλ, q1, . . . , qλ+1). (3.223)

Here p1, . . . , pλ are momenta of quasi-holes with spin ↓ and q1, . . . , qλ+1

with spin ↑. This interpretation is consistent with the selection rule in
Section 3.7.1. The set of parameters (3.223) corresponds to (κ′

1, . . . , κ
′
λ) in

Section 2.6.1. The RHS can be expressed in terms of (3.223) and N,L, λ.
Now we consider the thermodynamic limit with d = N/L fixed. In this

limit, it turns out that only the configurations with pk, ql, |pk − pl|, |qk − ql|
and |pk − ql| ∼ O(N) give finite contributions to the hole propagator. Intro-
ducing the velocities of quasi-holes

uk = lim
N→∞

1 − 4pk

N
, for k = 1, . . . , λ, (3.224)

vl = lim
N→∞

1 − 4ql

N
, for l = 1, . . . , λ + 1 (3.225)

and using the Stirling formula, for |z| → ∞, we arrive at the final expression
(3.186) for the hole propagator in the thermodynamic limit.
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3.8.2 Density correlation function

We derive the expression for the dynamical density correlation function

〈g, N |ρ̂(x, t)ρ̂(0, 0)|g, N〉
〈g, N |g, N〉

(3.226)

for finite-sized systems. The theory by Uglov [189, 197] requires knowledge
of the Yangian Gelfand–Zetlin basis and the Macdonald symmetric polyno-
mials. Hence, Uglov’s theory will be discussed in Chapter 10 after a math-
ematical introduction to the Yangian Gelfand–Zetlin basis in Chapter 8. In
this subsection, we present another derivation for the dynamical density cor-
relation function using the U(2) Jack polynomials. Here we make use of the
power-sum decomposition formula for the U(2) Jack polynomials [12].

We set λ to be a non-negative integer. The original particles are taken to
be fermions when ζ = 1. In this case, the absolute ground state is symmetric
with respect to particle exchange and obeys the periodic boundary condition.
Hence Φ is antisymmetric and obeys the periodic boundary condition. The
particle number N is taken to be twice an odd integer so that the ground
state has no degeneracy.

We remark that the following derivation is essentially applicable to the
case where the original particles are taken as bosons when λ is an integer,
ζ = −1 and N is twice an even integer.

Since ρ̂(0, 0) does not act on the spin variables, we can fix the spin variables
to {σ0} given by (3.211). We first rewrite Ψg,N as

iN
2/4

N∏
i=1

zJ ′
i

∏
1≤i<j≤N/2

(zi − zj)
∏

N/2+1≤i<j≤N

(zi − zj)Ψ0,N , (3.227)

with J ′ = −(N/2 − 1)/2. According to (2.307), the action of the density
operator ρ̂(0, 0) on the wave function is equivalent to multiplying the sum
of the power-sum symmetric functions pn(z1, . . . , zN ).

Further, using (7.404), we can decompose the power-sum symmetric poly-
nomials into the linear combination of J̃ (−−)(z1, . . . , zN ). Combining (3.227),
(2.307), and (7.404), we obtain

ρ̂(0, 0)Ψg,N ({xi}, {σi})
∣∣∣
σ1= · · ·=σN/2=1, σN/2+1= · · ·=σN=−1

= iN
2/4Ψ0,N

∑
µ∈(Λ+>

N/2
,Λ+>

N/2
)

|µ|cµ

λL

{
J

(−−)
µ+J ′ (z1, . . . , zN ) + c.c.

}
, (3.228)
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where we denote, by µ + J ′,

µ + J ′ = (µ1 + J ′, . . . , µN + J ′). (3.229)

When P acts on (3.228), the two terms

J
(−−)
µ+J ′ (z1, . . . , zN )Ψ̃0,N , J

(−−)
µ+J ′ (z̄1, . . . , z̄N )Ψ̃0,N (3.230)

in (3.228) yield the opposite eigenvalues

2π(|µ| + NJ ′)/L, −2π(|µ| + NJ ′)/L

for P . The two terms (3.230) in (3.228), on the other hand, are eigenfunc-
tions H ′ with a common eigenenergy; the expression for eigenenergy is given
below. Using the similarity transformation (3.16), we can rewrite (3.228) as

〈g, N |ρ̂(x, t)ρ̂(0, 0)|g, N〉 (3.231)

=
N !LN

((N/2)!)2
∑

µ∈(Λ+>
N/2

,Λ+>
N/2

)

2
(
|µ|cµ

λL

)2

〈J (−−)
µ+J ′ , J

(−−)
µ+J ′ 〉0

× cos
(
2π(|µ| + NJ ′)x/L

)
exp (−iωµt) .

(3.232)

Here ωµ is given by

ωµ = E[µ + J ′] − Eg,N , (3.233)

with

E[µ + J ′] =
(

2π

L

)2 N∑
i=1

((
µ+

)
i
+ J ′ +

λ

2
(N + 1 − 2i)

)2

(3.234)

and the ground-state energy Eg,N given in (3.115). With this result and
(3.213), we obtain the expression for the dynamical density correlation func-
tion in finite-sized systems:

〈g, N |ρ̂(x, t)ρ̂(0, 0)|g, N〉
〈g, N |g, N〉

=
∑

µ∈(Λ+>
N/2

,Λ+>
N/2

)

2
(
|µ|cµ

λL

)2 〈J (−−)
µ , J

(−−)
µ 〉0

〈J (−−)
µ0 , J

(−−)
µ0 〉0

× exp (−iωµt) cos
(
2π(|µ| + NJ ′)x/L

)
. (3.235)

The norms of the Jack polynomials appearing in (3.235) are available in
Section 7.4.2. The matrix element cµ can be given by (7.405). With this
knowledge, we can obtain the expression (3.202) for the thermodynamic
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limit. The procedure is the same as that used in Section 2.6 for the single-
component model and the hole propagator in Section 3.8.1. The summation
with respect to µ in (3.235) can be simplified; the number of parameters
is that of the excited quasi-particles and quasi-holes as shown below. The
expression for the matrix element cµ contains the factor

b(−−)
µ =

∏
s′(6=(1,N/2))∈D(µ+)\D(µ+

0 )

{
a′(s) + 1 − N/2

λ
− l′(s)

}
,

which is derived in Section 7.4.7. The expression in {·} becomes zero when
s = (2, λ + N/2) and nonzero otherwise. The condition for µ to contribute
to the sum in (3.235) is thus s = (2, λ+N/2) /∈ D(µ+), which is followed by

(µ+)2 ≤ λ + N/2 (3.236)

N↓

N↑

q1

p2p1

ν

Fig. 3.10. A typical Young diagram of µ ∈ (Λ+>
N/2, Λ

+>
N/2) contributes to the sum in

(3.235). Here we take λ = 1 and N = 14. Unshaded squares represent the diagram
of µ0 corresponding to the ground state. Shaded squares are parameterized by four
non-negative integers ν, p1, p2, and q1. These are, respectively, proportional to the
momentum of a quasi-particle or a quasi-hole.
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while (µ+)1 is unbounded. (µ+)1 comes from either µ↑
1 or µ↓

1 in

µ = (µ↑, µ↓), µσ ∈ Λ+>
N/2, σ =↑, ↓ .

We consider the case (µ+)1 = µ↑
1; the other case can be considered in the

same way. (µ+)2 comes from either µ↑
2 or µ↓

1. The condition (3.236) then
becomes

max(µ↑
2, µ

↓
1) ≤ λ + N/2. (3.237)

A typical diagram of µ+ for µ ∈ (Λ+>
N/2, Λ

+>
N/2) for N = 14 and λ = 1 is

shown in Fig. 3.10. We see that when a quasi-particle with spin ↑ is excited,
two quasi-holes with spin ↓ and a quasi-hole with spin ↑ are accompanied.
In this figure, µ, p1, p2, q1 are, respectively, integers proportional to the
momenta of quasi-particle or quasi-holes. For general non-negative integers
λ, µ in (3.235) can be parameterized by

(µ, p1, . . . , pλ+1, q1, . . . , qλ). (3.238)

This result describes the selection rule in the density correlation function
for the U(2) model. By the action of ρ̂ on the singlet ground state, a quasi-
particle with spin σ, λ + 1 quasi-holes with spin −σ, and λ + 1 quasi-holes
with spin σ are excited. In terms of (3.238), the expression (3.235) can be
rewritten. With use of the parameterization (3.225) and

ν

(2λ + 1)N
=

w − 1
4

, (3.239)

and the Stirling formula, we arrive at the expression (3.202) for the dynam-
ical density correlation in the thermodynamic limit.
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Spin chain with 1/r2 interactions

In this chapter, we discuss the static and dynamic properties of the spin
chain which is often referred to as the Haldane–Shastry model [77, 161]. In
contrast with more familiar spin chains with the nearest-neighbor exchange
interaction, the Haldane–Shastry model has a particular form of the long-
range exchange interaction. In spite of its peculiar shape, it has turned out
that the Haldane–Shastry model is the most fundamental one-dimensional
spin system. We shall start with a discussion of how the model is solved
for the ground state in Sections 4.1 to 4.3, and proceed to static correlation
functions in Sections 4.4 and 4.5. The excitation spectrum is interpreted by
magnons in Section 4.6, and by spinons in Section 4.7. The spinon picture
gives the correct degeneracy of the energy levels in Section 4.8, and leads to
the derivation of thermodynamics in Section 2.4, and the dynamical correla-
tion function in Section 4.11. Most results have been obtained in an analytic
form without any approximation.

There is a close connection between the spectrum of the spin chain and
that of the Sutherland model. The most remarkable fact is that the spin
chain has a correspondence with two different values of the coupling para-
meter λ in the Sutherland model. Namely, the spectrum is mapped to the
case with either λ = 2 or λ = ∞. In the latter case, particles crystallize
with equal spacing, and a small oscillation from the equilibrium, as well as
exchange interactions, make up the spectrum. In both cases of λ, however,
the degeneracy of each level in the spin chain is not reproduced. Hence,
the mapping as it stands cannot be used for thermodynamics. We discuss
how the degeneracy is related to the basic symmetry in the model, which
is identified with the Yangian as in the multi-component Sutherland model.
In the present case, however, the relevant Yangian is not Y (gl2), but Y (sl2)
without the U(1) degrees of freedom.

150
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4.1 Mapping to hard-core bosons

Let us consider a spin chain

HHS =
∑
i<j

JijSi · Sj , (4.1)

where Si denotes the spin operator with S = 1/2 at site i, and the exchange
interaction Jij decays as the inverse square of the distance. We consider
the N -site system with unit lattice spacing. With the periodic boundary
condition, the distance is replaced by the cord distance |D(i− j)| of a ring,
where

D(i − j) =
N

π
sin

[ π

N
(i − j)

]
.

Namely, Jij is given by

Jij = JD(i − j)−2.

The Hamiltonian HHS is often called the Haldane–Shastry model [77,161].
Unless otherwise stated, we consider the case of even number N for the
lattice site.

Let us take the hard-core boson representation, which is generally valid for
spin chains, and is especially suitable to derive eigenstates of the Haldane–
Shastry model. We introduce a creation operator of a hard-core boson:

b†i = c†i↓ci↑ = S−
i .

It is evident from the properties of spin operators that

b†ibi + bib
†
i = 1.

Namely, the hard-core boson obeys the fermion commutation rule for the
same site, and the boson commutation rule for different sites. The hard-core
boson may be called a magnon since it describes a spin flip from the fully
polarized reference state. The z-component of the spin operator is given by

Sz
i =

1
2
− ni,

where ni = b†ibi is the number operator of the boson at site i. In terms of
hard-core boson (or magnon) operators, HHS is written as

HHS =
1
2

∑
i 6=j

Jij(b
†
ibj + ninj) +

J(0)
2

N∑
i=1

(
1
4
− ni

)
, (4.2)

with J(0) being the q = 0 component of the Fourier transform J(q) of Jij .
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In order to make explicit calculations using the specific property of the
model, it is most convenient to take the complex coordinate representation.
We introduce zj = exp(2πixj/N) with xj ∈ [1, N ], and Zj = exp(2πij/N).
Note that we distinguish between Zj and zj . The exchange interaction is
then represented as

Jij = J

(
2π

N

)2 1
|Zi − Zj |2

= J

(
2π

N

)2 −ZiZj

(Zi − Zj)2
, (4.3)

where the Fourier transform is given by [176]

J(q) =
N∑

j=2

J1j exp[iq(j − 1)] =
J

2
(q − π)2 − π2J

6

(
1 +

2
N2

)
, (4.4)

where 0 ≤ q < 2π with the spacing of the adjacent q being 2π/N . The
constant term makes the sum of J(q) vanish, which is related to the absence
of the diagonal term Jii. For reference purposes, we quote the case q = 0:

J(0) =
∑

j

Jij(1 − δij) =
π2J

3

(
1 − 1

N2

)
. (4.5)

We represent the wave function Ψ({x}) of the system, taking the fully
up-polarized state as the reference. Let us first consider the one-body wave
function. Since zn

i with n = 0, 1, . . . , N−1 spans a complete set for one-body
states, one may restrict the degree of the polynomial to less than N for each
zi. For the case of Ψ(x) = zn, the boson-transfer term acts as

〈x|
∑
i6=j

Jijb
†
ibj |Ψ〉 =

∑
j 6=x

JxjZ
n
j

= Ψ(x)
∑
j 6=x

Jxj exp[2πin(j − x)/N ] = J

(
−i

∂

∂x

)
Ψ(x).

Here we have replaced q = 2πn/N in J(q) by −i∂/∂x when acting on zn.
A remarkable feature, as apparent in (4.4), is that J(q) is a quadratic func-
tion of q [176]. In other words, the spectrum of the magnon has a strong
resemblance to that of free particles in continuum space. The difference ap-
pears first as the presence of the cut-off in the momentum, and second as
the shift π of the origin of q.

4.2 Gutzwiller–Jastrow wave function

4.2.1 Hole representation of lattice fermions

We shall discuss the coordinate representation of lattice particles in more
detail. As the simplest example, we first take the case of non-interacting
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spinless fermions. Let M be the number of fermions, and N the total number
of lattice sites. With lattice constant unity, N also represents the length
of the system. We take N to be even and impose the periodic boundary
condition.

Let us first consider the wave function of the ground state:

|0〉 =
∑
{x}

Ψ0(x1, . . . , xM )c†(x1)c†(x2) · · · c†(xM )|vacuum〉, (4.6)

where c†(xi) creates an electron at position xi. We assume that the spectrum
εk is a monotonically increasing function of |k| ≤ π. Then the electrons
occupy the states with consecutive momentum ki with i = 1, . . . ,M given
by

ki = −kF + 2(i − 1)π/N.

We take M odd, and obtain the minimum k1 = −kF and the maximum

kM = kF = 2πNF/N

of momenta where kF is the Fermi momentum with M = 2NF +1. The wave
function corresponding to the Slater determinant is given by

Ψ0(x1, . . . , xM ) = det{exp(ikixj)} =
M∏
i=1

z−NF
i

∏
i<j

(zi − zj), (4.7)

where we have introduced the notation zj = exp(2πixj/N), and used the
property of the Vandermonde determinant. Note that zN

i = 1 for any integer
xi. By using the relation

zi − zj = exp
[

i
2
(θi + θj)

]
2i sin

[
1
2
(θi − θj)

]
with θi = 2πxi/N , the wave function is also written as

Ψ0(x1, . . . , xM ) = (2i)M(M−1)/2
∏
i<j

sin
[
1
2
(θi − θj)

]
. (4.8)

The wave function carries no current or momentum, since it is essentially
real except for the constant factor.

In later discussions it is necessary to work with an alternative represen-
tation which starts from the fully occupied state:

|F〉 = c†1c
†
2 · · · c

†
N |vacuum〉,
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where c†1 is the same as c†(x1 = 1). In the momentum representation, |F〉
has all momentum in the Brillouin zone filled. The consecutive momenta kj

of holes in the ground state are given as follows:

kj = kF + 2πj/N,

where j = 1, 2, . . . , Q with Q = N −M . The crystal momentum k is equiva-
lent to k−2π. Hence, if kj is larger than the right boundary of the Brillouin
zone π, such kj is considered to belong to the negative side (−π, 0] of the
first Brillouin zone. Then the ground state can also be written, apart from
a normalization factor, as

|0〉 =
∑
{y}

Φ0(y1, . . . , yQ)c(yQ)c(yQ−1) · · · c(y1)|F〉. (4.9)

We refer to the wave function Φ0(y1, . . . , yQ) as the hole representation. In
accordance with the anticommuting property of fermion operators c(yi), the
wave function Φ0(y1, . . . , yQ) should be antisymmetric against exchange of
two coordinates. By the same procedure as that for Ψ0({x}) one obtains

Φ0(y1, . . . , yQ) = det{exp(iklym)} =
∏

i

z
(NF+1)
i

∏
i<j

(zi − zj), (4.10)

where zj = exp(2πiyj/N). Alternatively, it is also written as

det{exp(iklym)} =
∏

i

z
N/2
i

∏
i<j

2i sin
[
1
2
(φi − φj)

]
(4.11)

with φi = 2πyi/N .
With N/2 being odd, the state (4.11) may appear to have a finite momen-

tum because of the complex part z
N/2
i . In other words, the total momentum

associated with Φ0({y}) may appear to be π. However, the total crystal
momentum of the state should vanish, to be consistent with (4.8). The mo-
mentum π associated with Φ0({y}) is actually relative to the reference state
|F〉, which also has the momentum π. Hence there is no contradiction. It is
useful to remember that the center of momentum distribution of holes is at
the edge of the Brillouin zone.

If the electron number M is even, the ground state of the Fermi gas is
two-fold degenerate, and the maximum of the occupied momentum kF =
2πNF/N is characterized by

NF = (M − 1)/2 ± 1/2.

The ground state has a finite momentum in this case.
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4.2.2 Gutzwiller wave function in Jastrow form

Now we include spin of electrons. Let us consider the situation where the
hard-core repulsion between the electrons prohibits the occupancy of any
site by two electrons, but otherwise the wave function is the same as for
free electrons. This wave function is represented by a limiting case of the
Gutzwiller wave function, which in general allows for finite double occupa-
tion. In the particle representation, the limiting case is represented by

|ΨG〉 =
∑
{x↑}

′∑
{x↓}

Ψ0(x1↑, . . . , xN↑)Ψ0(x1↓, . . . , xN↓)

×
∏

i∈{x↑}

c†i↑

∏
j∈{x↓}

c†j↓|vacuum〉, (4.12)

where the prime (′) in the summation over {x ↓} means that none of the
coordinates in {x ↑} and {x ↓} should coincide. It is understood that the
creation operators are ordered so that i and j increase from the left.

By using the hole representation, one can neatly avoid the hard-core re-
striction on the site summation [4]. Namely, one starts from the fully up-
polarized state |F ↑〉 and uses the hole representation for up spins. The
hard-core constraint is satisfied automatically provided one creates down-
spin electrons only among the hole sites. In the case of spin chain, the number
of electrons N = N↑ +N↓ is the same as the number L of lattice sites. Then
the hole sites {y} for the up spin and the electron sites {x ↓} for the down
spin are identical to each other. Thus we represent both sites by {x} and
obtain

|ΨG〉 =
∑
{x}

Ψ0({x})Φ0({x})
∏

i∈{x}

c†i↓ci↑|F ↑〉.

Here {x} denotes the set of coordinates for M = N↓ down-spin electrons.
Let us first take the singlet case M = N/2. The wave function ΨG({x}) =
Ψ0({x})Φ0({x}) is given by

ΨG({x}) =
∏

i

z
N/2
i

∏
i<j

(−4) sin2

[
1
2
(θi − θj)

]
=

N/2∏
i=1

zi

∏
i<j

(zi − zj)2. (4.13)

It appears that ΨG({x}) has a momentum π with N/2 odd because of the
factor z

N/2
i in (4.13). As discussed in (4.11), it cancels with the momentum

of the reference state, and |ΨG〉 itself carries no momentum. For reference
we also quote the Gutzwiller wave function for general M ≤ N/2 including
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the case of finite magnetization:

ΨG({x};M) =
M∏
i=1

z
N/2−M+1
i

∏
i<j

(zi − zj)2. (4.14)

One may ask whether it is possible to represent the Gutzwiller wave func-
tion without using the hole representation. The exclusion of double occupa-
tion can be dealt with by a limiting procedure [71], which we now explain.
We take a fermionic wave function, which has been discussed in Section
3.2.2, as follows:

Ψ0({z↑, z↓};λ) =
∏
iσ

z
−(Nσ−1)/2
i

∏
ij

|zi − zj |λ(zi − zj)δ(σi,σj), (4.15)

where the parameter λ corresponds to the coupling constant in the two-
component Sutherland model. With λ = 0, the wave function gives the
ground state of free fermions. On the other hand, double occupation is pro-
hibited with any finite λ. The Gutzwiller projection can then be imposed
by considering the limit λ → 0, provided the calculation can be done for
arbitrary λ.

4.3 Projection to the Sutherland model

Utilizing the quadratic dispersion, we can conveniently work with the first-
quantized representation. Within the many-body Hilbert space spanned by
polynomials of zi, we may replace q in (4.4) by −i∂/∂xi. The two-body
term Jijninj is easily represented by the first-quantized Hamiltonian H1st.
For simplicity, the unit of energy is chosen as J = 2. Then H1st is given by

H1st =
1
2

M∑
i=1

(
−i

∂

∂xi
− π

)2

+ 2
∑
i<j

D(xi − xj)−2 + Ec, (4.16)

where

Ec =
J(π)

2
M +

J(0)
2

(
N

4
− M

)
=

π2N

12

(
1 − 6M

N
− 1

N2

)
.

We find that H1st takes the same form as the Sutherland model with the
repulsion parameter λ = 2. Since the Gutzwiller wave function ΨG({x}) is
a polynomial of zi, one can use H1st to act on ΨG({x}) as the spin-chain
Hamiltonian. Then the factor zi for i ∈ [1,M ] in (4.13) absorbs the shift of
the momentum in H1st. The remaining part

∏
i<j sin2[(θi−θj)/2] in ΨG({x})

is known to be the ground-state wave function of the Sutherland model.
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Hence, |ΨG〉 proves to be an eigenfunction of HHS. The corresponding energy
E0(M) is given by

E0(M) = Ec +
1
6

(
2π

N

)2

M(M2 − 1), (4.17)

where the second term gives the ground-state energy of the Sutherland model
with M particles. The minimum of E0(M) occurs at M = N/2, which
corresponds to Sz = 0. We shall prove in Section 4.8.1 that ΨG({x}) indeed
gives the ground state of HHS. The ground-state energy is given by

E0

(
N

2

)
= −π2

12

(
N +

5
N

)
. (4.18)

We notice here that the polynomial wave function does not span the
complete set of the many-boson states. For example, consider the case of
N = 4,M = 2, and S = 2. Such a state |Ψ2,0〉 can be constructed from
|F ↑〉, apart from normalization, by

|Ψ2,0〉 =

(
4∑

i=1

S−
i

)2

|F ↑〉 =
∑
i6=j

b†ib
†
j |F ↑〉. (4.19)

The amplitude 〈x1, x2|Ψ2,0〉 = Ψ2,0(x1, x2) becomes constant for x1 6= x2,
but vanishes for x1 = x2. Such behavior of the amplitude cannot be described
by polynomials of z1 and z2. Thus the first-quantized Hamiltonian H1st can
act only on a subset of the whole spin states. This subset coincides with the
Yangian highest-weight states, as will be discussed in Section 4.8.1.

4.4 Static structure factors

The wave function of the ground state determines the equal-time correlation
function C(x) in the real space, or the static structure factor S(q) in the
momentum space. If we allow for finite magnetization m = 1 − 2M/N > 0
in the presence of a magnetic field, the rapidity ki of magnons is occupied
for |k| < π(1 − m) ≡ km and is empty near the edge. Here we have defined
the critical momentum km which plays the role of the Fermi momentum
of magnons. Figure 4.3 in Section 4.7.3 illustrates the spectrum, as will be
explained together with spinons. Since there is no longer SU(2) symmetry in
the magnetic field, we have two independent components for the correlation
function, as defined by

Czz(i − j) = 〈Sz
i Sz

j 〉 − 〈Sz
i 〉〈Sz

j 〉 = 〈b†ibib
†
jbj〉 − 〈b†ibi〉〈b†jbj〉, (4.20)

C⊥(i − j) = 〈Sx
i Sx

j 〉 = 〈Sy
i Sy

j 〉 =
1
2

(
〈b†ibj〉 + 〈bib

†
j〉

)
. (4.21)
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Although the coordinates i, j are integers, we can use the results for the
Sutherland model in the continuum space. In other words, when taking the
average over ΨG({x}), we may replace the summation over lattice sites by
integration over the continuum space:∑

{x}

f({x})|ΨG({x})|2 =
∫ N

0
dx1 . . .

∫ N

0
dxMf({x})|ΨG({x})|2. (4.22)

To check the validity of the above, let us consider the expansion of the
summand in terms of z1 = exp(2πix1/L). Then among terms of the form
zn
1 , only n = 0 survives summation over x1, and the summation gives N

for this term. The same happens in the integration over x1 on the RHS.
Therefore, the replacement by an integral is exact for these polynomials.

Haldane noticed [77] that Czz(i− j) and C⊥(i− j) in the thermodynamic
limit are related to the correlation function and the density matrix respec-
tively in the Sutherland model with the repulsion parameter λ = 2, which
have been derived by Sutherland [173]. In a different context, results for
Czz(i − j) have been derived by Mehta and Mehta [129] for an arbitrary
size of lattice system. These results rely on sophisticated techniques of the
random matrix theory [48, 49, 130], and are not easy to access. Therefore
we first present the results of correlation functions, deferring the details of
derivation to a later part of the section and to Section 4.5.

In the real space the results are given with km/π = 2M/N = 1 − m by

Czz(x) = −
(

sin kmx

2πx

)2

+
[
km cos kmx

4π2x
− sin kmx

(2πx)2

]
Si(kmx), (4.23)

C⊥(x) =
1
2
mδx,0 +

(−1)x

4πx
Si(kmx), (4.24)

where Si(y) is the sine integral defined by

Si(y) =
∫ y

0
dt

sin t

t
. (4.25)

Note that C⊥(x) has an oscillating factor (−1)x which comes from the shift
π of the momentum in mapping to the Sutherland model. Hence this factor
is absent in the density matrix in the Sutherland model. Without magne-
tization, we obtain km = π and sinπx = 0. Then the correlation function
becomes

C⊥(x) = Czz(x) =
1

4πx
Si(πx) cos πx → (−1)x

8|x|
, (|x| À 1), (4.26)

which is isotropic, thus recovering the SU(2) symmetry.
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S(q)

1/4

0
q/π

11 − mm 2m

m = 0

Szz(q)

S−+(q)

m = 0.4

Fig. 4.1. Static structure factors Szz(q) and S−+(q) of the Haldane–Shastry spin
chain with and without magnetization m.

The structure factors in the momentum space are given for 0 < q < π by

S⊥(q) =
m

2
− 1

4
θ(q − πm) ln

1 − q/π

1 − m
, (4.27)

for the transverse component. The longitudinal one Szz(q) for m < 2/3 is
given by

Szz(q) = θ(2πm − q)
q

4π

(
1 − 1

2
ln

∣∣∣∣1 − q

km

∣∣∣∣)
+ θ(q − 2πm)

(
m

2
− 1

4
ln

∣∣∣∣1 − 2π − q

km

∣∣∣∣ +
q

8π
ln

∣∣∣∣2π − km − q

km − q

∣∣∣∣).

(4.28)

For 2/3 < m < 1, it is given by

Szz(q) = θ(2km − q)
q

4π

(
1 − 1

2
ln

∣∣∣∣1 − q

km

∣∣∣∣)
+ θ(q − 2km)θ(πm − q)

1
2
(1 − m)

+ θ(q − πm)
(

m

2
− 1

4
ln

∣∣∣∣1 − 2π − q

km

∣∣∣∣ +
q

8π
ln

∣∣∣∣2π − km − q

km − q

∣∣∣∣).

(4.29)

Figure 4.1 illustrates the structure factors including the case of m 6= 0. The
transverse structure factor S⊥(q) is divergent logarithmically at q = π. The
singularity corresponds to a tendency to the Néel order. There is a threshold
q/π = m below which S−+(q) = 0. This indicates the presence of an energy
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gap for spin-flip (down to up) excitations below this threshold. Note that the
spin flip from up to down does not have an energy gap and, according to the
relation S+−(q) = S−+(q)+m to be explained soon, we obtain S+−(q) = m

below the threshold.
On the other hand, Szz(q) is logarithmically divergent at q = π(1−m) =

km, showing the tendency toward an incommensurate magnetic order. Hence
the system has tendencies toward both Néel and incommensurate orders.
There is a slight cusp at q/π = 2m in Szz for m < 1/2, and at q/π = 1
for 1/2 < m < 2/3. The overall behavior Szz for m > 2/3 is similar
to that shown in Fig. 4.1, except that the connection at q/π = 2m is
replaced by the constant part for 2(1 − m) < q/π < m. We note that
the result for m = 0 has originally been obtained in [66]. It appears that
Szz(q) and S⊥(q) in the general case m 6= 0 have not been reported in the
literature.

Now we proceed to the derivation of these results. We begin with the
transversal correlation function which can be derived in an elementary man-
ner. The density matrix of the M -magnon system is given by

〈b†l bm〉 =
1

CMN

∫ N

0

dx1

N
. . .

∫ N

0

dxM−1

N
ΨG(l, {x}−1)ΨG(m, {x}−1), (4.30)

where {x}−1 denotes the set x1, . . . , xM−1, and CM = (2M)!/2M is the norm
of the wave function with M magnons. The norm is derived in Section 4.5 in
an elementary fashion. The general method for calculation will be presented
in Section 7.2.2. In (4.30) we have emphasized that the wave functions are
real. By using the complex coordinates for the real wave functions, we can
write the integrand as a determinant [60]:

ΨG(z, . . .)ΨG(ζ, . . .)

=
eiα

z − ζ
det



1 z z2 · · · z2M−1

1 ζ ζ2 · · · ζ2M−1

1 z1 z2
1 · · · z2M−1

1

0 1 2z1 · · · (2M − 1)z2M−2
1

1 z2 z2
2 · · · z2M−1

2

0 1 2z2 · · · (2M − 1)z2M−2
2

...
...

...
. . .

...
1 zM−1 z2

M−1 · · · z2M−1
M−1

0 1 2zM−1 · · · (2M − 1)z2M−2
M−1


, (4.31)

where z = exp(2πil/L) and ζ = exp(2πim/L). The phase factor eiα is fixed
so that the RHS is real. The determinant on the RHS is a generalization



4.4 Static structure factors 161

of the Vandermonde determinant, and is called the confluent alternant. The
simplest example of this type of determinant is given by

(z1 − z2)4 = det


1 z1 z2

1 z3
1

0 1 2z1 3z2
1

1 z2 z2
2 z3

2

0 1 2z2 3z2
2

. (4.32)

The general case is explained in Section 4.5.
Without loss of generality, we consider the case l = −m, which makes

it easy to deal with the phase factor. Namely, with ζ = z∗, (4.31) may be
rewritten as

ΨG(z, . . .)ΨG(z∗, . . .) = (z − z∗)−1

× det2M

(
zp, z−p, zp

1 , pzp
1 , . . . , z

p
M−1, pzp

M−1

)
p=−M+1/2,...,M−1/2

, (4.33)

where we have manipulated the determinant as explained in Section 4.5. In
expansion of the determinant, the only terms that survive summation or in-
tegration over xi are those that include the product za

i × bzb
i with a+ b = 0.

This type of term also appears in the calculation of the norm. After integra-
tion over x1, . . . , xM−1, we are left with terms zpz−q with p + q = 0. Then
we obtain

1
N

∫ N

0

dx1

N
. . .

∫ N

0

dxM−1

N
ΨG(z, . . .)ΨG(z∗, . . .)

=
CM

N

M−1/2∑
p=1/2

z2p − z−2p

2p(z − z∗)
, (4.34)

where 2p in the denominator comes from correction for the missing factor in
producing the norm CM . In the thermodynamic limit, the summation over
p is replaced by the integral for 0 < p < M . We then obtain the density
matrix C−+(x) = 〈b†xb0〉 for integer x as

C−+(x)(−1)x =
1
N

∫ M

0
dp

sin 2πpx/N

2p sin πx/N
→ 1

4πx
Si(kmx). (4.35)

The last expression in (4.35) is valid in the limit |x|/N ¿ 1. The correlation
function is given by C(x)⊥ = [C(x)+−+C(x)−+]/2, where C+−(x) = 〈bxb†0〉
can be obtained from the commutation rule

bib
†
j = (1 − δij)b

†
jbi + δij(1 − b†jbi) (4.36)

of spin operators. Namely, we obtain

C+−(x) = C−+(−x) + mδx,0, (4.37)
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where m = 1 − 2M/N and C−+(−x) is in fact an even function of x. In
order to obtain the Fourier transform S−+(q), we use the form

NC−+(x)(−1)x = <
M−1/2∑
p=1/2

z2p − 1
2p(z − 1)

=
M−1/2∑
p=1/2

1
2p

<
2p−1∑
m=0

zm, (4.38)

where < represents the real part. Rearranging the series in ascending powers
of z, we identify the coefficient of z2p−1 as the sum

∑
q>p 1/(2q). Namely,

we obtain

NC−+(x)(−1)x =
M−1/2∑
p=1/2

1
2p

+ <
M−1∑
l=1

(z2l−1 + z2l)
M−1∑
j=l

1
2j + 1

. (4.39)

The Fourier component S⊥(k − π) with k = 4πl/N > 0 can easily be read
off from the coefficient of z2l−1 or z2l in (4.39). Here the momentum shift π

comes from the factor (−1)x. In the thermodynamic limit we obtain, with
2M/N = 1 − m,

S−+(k − π) =
∫ M

l
dj

1
4j

=
1
4

ln
M

l
=

1
4

ln
km

k
, (4.40)

for 0 < k < km ≡ π(1 − m). The Fourier component is 0 for larger k. We
put q = π − k > 0 to obtain

S⊥(q) =
1
2
[S−+(q) + S+−(q)] =

m

2
− 1

4
θ(q − πm) ln

1 − q/π

1 − m
. (4.41)

Calculation of Czz(x) can be done in a similar manner by fixing two co-
ordinates in ΨG({z}) and integrating over other coordinates. Alternatively,
one can derive Czz(x) using a more systematic approach developed in the
random matrix theory. A self-contained account is given in Section 4.5. In
order to derive Szz(q), we use the formula

Szz(q) = ρ
∑

x

[g(x) − ρ ] exp(−iqx) = Cq − C0, (4.42)

where g(x) is the two-body distribution function defined by (4.64) in Sec-
tion 4.5, and Cq is the Fourier transform of Czz(x). The momentum q is
restricted to the Brillouin zone |q| < π. Because of the restriction, Szz(q)
shows a behavior rather different from the structure factor in the corre-
sponding Sutherland model, although Czz(x) is precisely the same in both
models. It is convenient to use the form

Czz(x) = −1
4

[
s(x)2 + Ds(x)Is(−x)

]
, (4.43)
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where the functions on the RHS are defined in (4.84). The Fourier transforms
of constituents without the assumption of |x| ¿ N are given from (4.79) by

sk = θ(km − |k|), Dsk = iksk, Isk = (ik)−1sk. (4.44)

In contrast with the continuum space, the Fourier components q−2nπ with
integer n play the same role as q. In the case of 0 < q < π, there can also
be a nonzero contribution for q− 2π ≡ q−. Then we have to consider both q

and q− in Szz(q). Namely, we obtain the form Szz(q) = I(q) + I(q−), where

I(q) =
1

2N

∑
k

[sk(sq+k − sk) + Isk(Dsq+k − Dsk)] . (4.45)

Contribution to the summation over k comes from the region with sk+q = 0
and sk = 1. For small enough q, the integral region is from k = km − q to
km. In this region we have I(q−) = 0, and obtain

Szz(q) =
q

4π

(
1 − 1

2
ln

∣∣∣∣1 − q

km

∣∣∣∣) . (4.46)

The upper limit of q for (4.46) is given by qc = min{2πm, 2km}. Namely,
we have qc = 2πm for m < 2/3, and qc = 2km for m > 2/3. In the latter
case, we obtain for 2km < q < π − km:

Szz(q) =
1
2
(1 − m), (4.47)

which does not depend on q. On the other hand, the contribution I(q−) also
becomes effective for π − km < q < π. For this range of q, addition of I(q)
and I(q−) gives

Szz(q) =
m

2
− 1

4
ln

∣∣∣∣1 − 2π − q

km

∣∣∣∣ +
q

8π
ln

∣∣∣∣2π − km − q

km − q

∣∣∣∣ . (4.48)

In the case of no magnetization with km = π, Szz(q) is given by (4.48) for
all positive q, and is reduced to

Szz(q) = −1
4

ln
∣∣∣1 − q

π

∣∣∣ . (4.49)

In this way, we obtain the results shown in Fig. 4.1.

4.5 *Derivation of static correlation functions

In this section, we shall provide a self-contained account of the derivation
of the correlation function Czz(x), which gives Szz(q) by Fourier transform.
For this purpose we first summarize some convenient formulae originally
developed in the random matrix theory. We begin with non-interacting
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fermions for which correlation functions can be obtained in terms of Slater
determinants. Although the second quantization formalism is best suited for
this purpose, we use the first quantization in order to prepare for the case
of the spin chain.

The wave function ΨF(x1, . . . , xM ) of M non-interacting fermions can be
written in the form of the Slater determinant with orthonormalized function
φj(x) with j = 1, 2, . . . ,M . Namely, we have

ΨF(x1, . . . , xM ) =
∑
P

sgn(p)φP1(x1) · · ·φPM (xM ). (4.50)

To obtain the norm we write the square as

|ΨF(x1, . . . , xM )|2 =
∑
P

∑
Q

sgn(PQ)φP1(x1)∗φQ1(x1) · · ·φPM (xM )∗

φQM (xM )

= M !
∑
P

sgn(p)φ1(x1)∗φP1(x1) · · ·φM (xM )∗φPM (xM )

= M ! det (φi(xi)∗φj(xi))i,j=1,...,M , (4.51)

where we have used the convention of representing the row i and column j

of the matrix by subscripts. Because of the orthonormality∫
dxφi(x)∗φj(x) = δij , (4.52)

the norm for ΨF(x1, . . . , xM ) becomes M !. It is possible to write the square
as another determinant

|ΨF(x1, . . . , xM )|2 = det

(∑
i

φi(xα)φi(xβ)∗
)

α,β=1,...,M

. (4.53)

By introducing the function

K(x, y) =
∑

j

φj(x)φj(y)∗ =
∑

j

〈x|φj〉〈φj |y〉, (4.54)

we can write the norm in the form∫
dx1 · · ·

∫
dxM det (K(xα, xβ))α,β=1,...,M = M !, (4.55)

which gives a less trivial result for the integral on the LHS. (4.54) shows
that K(x, y) plays the role of the particle propagator from y to x. Because
of the orthonormality, the propagator has the property∑

y

K(x, y)K(y, z) = K(x, z). (4.56)
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In order to derive the correlation function, we attach an auxiliary function
1 + f(xi) to each coordinate xα. Namely, we consider

det
(∫

φ∗
j (x) φk(x) (1 + f(x)) dx

)
j,k=1,...,M

= det
(

δj,k +
∫

φ∗
j (x) φk(x) f(x) dx

)
j,k=1,...,M

. (4.57)

Obviously we recover the norm by setting f(x) = 0. The coordinate x can
be regarded as discrete to represent the lattice system with N sites. The
polynomial wave functions defined in this chapter give the same results either
by integration over 0 < x < N or summation over x = 1, 2, . . . , N . We
prefer the lattice summation scheme since the discreteness makes it easier to
understand the matrix structure. Namely, the matrix inside the determinant
of (4.57) is of the form 1 + AB, where A is an M × N matrix and B is an
N × M one. The structure is clearly seen in the form

〈φj |AB|φk〉 =
∑

x

〈φj |x〉f(x)〈x|φk〉, (4.58)

where the summation is over the discrete lattice coordinates x. Now we use
the relation detM (I +AB) = detN (I +BA) to work with the N ×N matrix
BA. Namely, we obtain

〈x|BA|y〉 =
∑

j

〈x|φj〉〈φj |y〉f(y) = K(x, y)f(y), (4.59)

where the propagator K(x, y) has been defined by (4.54). Therefore the
determinant given by (4.57) is equal to det(I + K f) ≡ exp(L), where we
introduce the quantity L. Here, in analogy to classical statistical mechanics,
we relate the norm of the wave function to the partition function, and its
logarithm L to the free energy. Then f(x) is a site-dependent external field.
As in the free energy, variation of external fields gives the response func-
tion. We recall that the response function is proportional to the irreducible
correlation function, or cumulants, in classical theory.

We make the following expansion:

L = TrN ln(1 + Kf) =
∑

x

K(x, x)f(x)

− 1
2

∑
x,y

K(x, y)f(y)K(y, x)f(x) + · · · , (4.60)

which immediately gives the correlation functions. Namely, we take the vari-
ational derivative of L with respect to infinitesimal f(x). This amounts to
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fixing one of the particle coordinates to x in (4.55), and gives the density
〈ρ(x)〉. Namely, we have

K(x, x) = 〈ρ(x)〉. (4.61)

From now on we always consider the system with translational invariance.
Then density is independent of x, and is written as ρ = M/N . A convenient
feature of this formulation for correlation functions is that the norm of the
wave function with f(x) = 0 need not be considered explicitly, since the
norm is just a constant factor for the partition function. Similarly, the second
derivative gives

δ2L
δf(x)δf(y)

= −K(x, y)K(y, x) = 〈ρ(x)ρ(y)〉 − ρ2. (4.62)

In a similar manner, the n-point correlation functions can be obtained as
K(x1, x2)K(x2, x3) · · ·K(xn, x1). These n-point functions constitute
irreducible or cumulant pieces. The (reducible) correlation functions, which
include the lower-order irreducible functions, are constructed from cumu-
lants. For example, we obtain by writing K(x1, x2) = K12,

〈ρ(x1)ρ(x2)〉 = K12K21 + K11K22,

〈ρ(x1)ρ(x2)ρ(x3)〉 = K12K23K31 + K12K21K33 + · · · . (4.63)

The two-point correlation function C(x − y) = 〈ρ(x)ρ(y)〉 − ρ2 depends
only on the difference of coordinates, and can be written as

C(x) =
1
N

∑
y

[〈ρ(x + y)ρ(y)〉 − ρ2] =
1
N

∑
ij

〈δ(x − xi + xj)〉 − ρ2

= ρδ(x) +
1
N

∑
i6=j

〈δ(x − xi + xj)〉 − ρ2

≡ ρδ(x) + ρ[g(x) − ρ ], (4.64)

where the two-body distribution function g(x) has been introduced. Here
the delta function should be interpreted as the Kronecker delta symbol for
integer variables. The quantity g(x) measures the distribution of particles
under the condition that a particle is present at the origin. The sum rules
for correlation functions can be obtained from (4.56) and (4.64) as∑

x

C(x) = ρ,
∑

x

[g(x) − ρ] = 0. (4.65)

It follows from the above that g(x) → ρ as |x| À 1, which means complete
screening. On the other hand, by definition in (4.64) we have g(0) = 0.
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In the case of a circular system of our interest, we take

φl(θ) =
1√
2π

exp(iplθ) =
1√
2π

exp(iklx) (4.66)

where we have introduced the coordinate θ in the range of |θ| < π. We
take the antiperiodic boundary condition with N even. Then the pl are half-
integers given by pl = l−N/2− 1/2, and the distribution of pl is symmetric
about 0. The relation to integer lattice coordinates x and the wave number
kl is given by

x = Nθ/(2π), kl = 2πpl/N.

The normalization factor in (4.66) is relevant to integration over θ, but
should be replaced by 1/

√
N for summation over x. Then we obtain explicitly

the propagator

K(θ, 0) =
1
2π

N∑
l=1

exp
[
i
(

l − N + 1
2

)
θ

]
=

1
2π

sinNθ/2
sin θ/2

. (4.67)

Thus the two-body correlation function of free fermions is given with proper
rescaling by

ρg(x) = −
(

sinNθ/2
N sin θ/2

)2

∼ −
(

sin πx

πx

)2

, (4.68)

where the last expression is valid in the limit of |x| ¿ N .
Now we consider a general wave function where PN (x1, . . . , xM ) is its

absolute square. We seek a K(x, y) that satisfies

ln

{∑
xi

PN (x1, . . . , xM )
∏

l

[1 + f(xl)]

}
∝ ln det (I + K f), (4.69)

for the general function f . As before, K denotes the operator that has N2

matrix elements K(x, y). Our problem now is to find K for the case of the
Gutzwiller–Jastrow function for the spin chain. The integral is of the form∫ π

−π

dθ1

2π
· · ·

∫ π

−π

dθM

2π

∏
l<k

|eiθl − eiθk |4
∏

l

(1 + f(θl)). (4.70)

This form describes the symplectic circular ensemble in the random matrix
theory where an elegant formulation using quaternions is available [48,130].
Here we take an alternative approach following the line explained in [187].
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Let us first derive the norm with f(θl) = 0 in (4.70). The integrand can
be represented in the form of a determinant called the confluent alternant:∏

l<k

(zl − zk)4 = det
(
zl
k, lzl−1

k

)
l=0,...,2M−1; k=1,...,M

. (4.71)

This is seen by writing the product representation of the Vandermonde de-
terminant

det
(
zl
k, ζ l

k

)
l=0,...,2M−1; k=1,...,M

, (4.72)

then differentiating with respect to each ζk and setting ζk = zk.
If we replace each zk by eiθk and use the relation

|eiθl − eiθk |4 = exp [−2i(θl + θk)] (eiθl − eiθk)4, (4.73)

we see that ∏
l<k

|eiθl − eiθk |4 = e−2i(M−1)
∑

θl
∏
l<k

(eiθl − eiθk)4.

By using (4.71) this is transformed into

e−2i(M−1)
∑

θl det
(
eilθk , lei(l−1)θk

)
l=0,...,2M−1; k=1,...,M

= det
(
ei(l−M+ 1

2
)θk , lei(l−M+ 1

2
)θk

)
= det

(
ei(l−M+ 1

2
)θk , (l − M + 1

2
)ei(l−M+ 1

2
)θk

)
= det

(
eiplθk , pleiplθk

)
. (4.74)

In the last determinant we have k = 1, . . . ,M , and pl runs through the half
integers −M + 1

2 , −M + 3
2 , . . . , M − 1

2 . We now expand the determinant as∏
i<j

|zi − zj |4 =
∑
P

εP (P2 − P1)ei(P1+P2)θ1 . . .

× (P (2M) − P (2M − 1))ei(P (2M−1)+P (2M))θM . (4.75)

Upon integration over θ1, only such terms that satisfy P1+P2 = 0 survive.
The same restriction holds for each θi. Thus |P (2i)−P (2i− 1)| ranges over
1, 3, . . . , 2M − 1, and we obtain∫ π

−π

dθ1

2π
· · ·

∫ π

−π

dθM

2π

∏
i<j

|zi − zj |4

= M !(2M − 1)(2M − 2) · · · 2 = 2−M (2M)!. (4.76)
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which was conjectured by Dyson [48]. This result gives the norm of the
Gutzwiller–Jastrow wave function. As we shall see in (7.163) of Chapter 7,
there are other (more sophisticated) ways to derive the norm.

Now we use the formula for Pfaffians:∫
· · ·

∫
det(φj(xk) ψj(xk))j=1,...,2M ; k=1,...,M dx1 · · · dxM

= M ! Pf
(∫

(φj(x)ψk(x) − φk(x) ψj(x)) dx

)
j,k=1,...,2M

, (4.77)

where the Pfaffian “Pf” is the square root of the determinant of the antisym-
metric matrix. Then the square of (4.70) is given in terms of the following
2M × 2M determinant:

det
(∫

dθ

2π
(q − p) ei(p+q)θ (1 + f(θ))

)
,

where both indices p and q run over the half-integers −M + 1
2 , . . . ,M − 1

2 .
If we reverse the order of the rows and divide each column by its index q,
we see that this determinant is proportional to another determinant

det
(∫

dθ

4π

(
1 +

p

q

)
ei(−p+q)θ (1 + f(θ)) dθ

)
= det

(
δp,q +

∫
dθ

4π

(
1 +

p

q

)
ei(−p+q)θ f(θ)

)
. (4.78)

We rewrite the factor of f(θ) as a matrix product

e−ipθ eiqθ +
p

q
e−ipθ eiqθ =

(
e−ipθ, ipe−ipθ

) (
eiqθ

(iq)−1 eiqθ

)
.

By identifying the matrix structure as

〈p|A|θ〉 =
1
4π

f(θ)
(

e−ipθ, ip e−ipθ
)
, 〈θ|B|q〉 =

(
eiqθ

(iq)−1 eiqθ

)
,

then the above matrix is of the form I + AB. If we identify the integral∫
dθ/(2π) as equivalent to the lattice summation N−1

∑
x with θ = 2πx/N ,

BA is regarded as the 2N×2N matrix with the propagator K(θ, θ′) given by

K(θ, θ′) =
1
4π

∑
p

 eip(θ−θ′), ip eip(θ−θ′)

(ip)−1 eip(θ−θ′), eip(θ−θ′)

 . (4.79)



170 Spin chain with 1/r2 interactions

If we write

SM (θ) =
1
2π

∑
p

eipθ =
1
2π

sin 1
2Mθ

sin 1
2θ

,

DSM (θ) =
d
dθ

SM (θ), ISM (θ) =
∫ θ

0
SM (θ′)dθ′, (4.80)

then we can represent the propagator as

K(θ, θ′) =
1
2

 SM (θ − θ′), DSM (θ − θ′)

ISM (θ − θ′), SM (θ − θ′)

 . (4.81)

The remarkable property of this matrix propagator K is that (4.56) is sat-
isfied as the 2× 2 matrix equation. Evidently the transpose of K also serves
as the propagator.

Recall that the determinant we are working with now is not the norm
of the many-body wave function, but is proportional to its square. Taking
the square root amounts to multiplying by a factor 1/2 in the exponenti-
ated quantity L. Namely, the correlation function can be read off from the
expansion

L = ln [det(1 + Kf)]1/2 =
1
2

∫
dθf(θ) TrK(θ, θ)

− 1
4

∫
dθf(θ)

∫
dθ′f(θ′)Tr K(θ, θ′)K(θ′, θ) + · · · . (4.82)

By noting 2πx = Nθ, we obtain the correlation function C(x) as

C(x) = −1
2

(
N

2π

)2

TrK(θ, 0)K(0, θ)

= −1
4

(
N

2π

)2 [
SM (θ)2 − ISM (θ)DSM (θ)

]
, (4.83)

where we have used the fact that SM (θ) is an even function, and DSM (θ),
ISM (θ) are odd. In the thermodynamic limit with |x| ¿ N , we define the
following functions from (4.80) by setting γ = 2M/N :

s(x) =
sin kmx

πx
, Is(x) =

1
π

Si(kmx),

Ds(x) =
γ cos πx

x
− sin kmx

πx2
. (4.84)
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Then the correlation function is obtained explicitly as

Czz(x) = −
(

sin kmx

2πx

)2

+
[
γ cos kmx

4πx
− sin kmx

(2πx)2

]
Si(kmx). (4.85)

In the case of no magnetization with γ = 1, a drastic simplification emerges.
Because of the integer lattice coordinate x, we actually have sinπx = 0 and
cos πx = (−1)x. Then we obtain the form

Czz(x) =
cos πx

4πx
Si(πx), (4.86)

which gives Czz(x) = C⊥(x) in (4.21), reflecting the SU(2) symmetry.

4.6 Spectrum of magnons

The spectrum of HHS, or equivalently H1st, is most easily described by the
set of momenta of down spins. These particles can be regarded as magnons
created from the fully polarized reference state. Since the reference state is
not the ground state, the magnons can take negative energy. By using the
mapping to the Sutherland model as given by (4.16), we can represent the
energy in terms of the rapidity (or renormalized momentum) pi as discussed
in Chapter 2. Then we obtain the energy in terms of the rapidity

E =
1
2

M∑
i=1

pi(pi − 2π) +
N

8
J(0), (4.87)

where pi is arranged in the descending order p1 > p2 > · · · > pM .
As the fermionic description (Section 2.2.2) in the Sutherland model with

λ = 2, the rapidity pi is determined by

N

2π
pi = Ii +

1
2

∑
j

sgn(pi − pj) = Ii +
1
2
(M + 1 − 2i) ≡ κi, (4.88)

where {Ii} are distinct integers with I1 > I2 > · · · > IM . In the ground
state, we have Ii = Ii0 = (N + M + 1)/2 − i. Hence the corresponding
rapidity pi0 is given by

pi0 − π =
2π

N
(M + 1 − 2i) . (4.89)

The total crystal momentum P of the M -magnon state is given by

P = −π +
∑

i

pi, (4.90)

where −π comes from the reference state |F〉.
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The form of (4.88) is reminiscent of the Bethe ansatz theory with a con-
stant phase shift. The phase shift in the present case is 2π, which means
that the minimum separation of occupied momenta is 4π/N . Since the 1/r2

interaction eventually decays at long distance, (4.88) is sometimes called
the asymptotic Bethe ansatz [107, 177]. An important difference from the
Sutherland model is that pi is restricted to inside the Brillouin zone, where
all magnons have negative energies. Since the magnons repel each other in
the momentum space, the number of states for magnons cannot exceed N/2.
All these states are occupied in the ground state.

The distribution of the rapidities {pi} is specified by occupation or vacancy
for all momentum states in the Brillouin zone. We associate 1 for an occupied
state, and 0 for the vacant state. Then the N -sequence of 0 and 1 determines
the energy. Such a sequence of binary digits is called the motif [78], which has
already appeared in Section 2.3.2. We deal with polynomial wave functions
without the constant term. Hence, the first digit in the motif is always
0. It is customary to add an extra 0 at the end, and make the sequence
N + 1 digits. Then the beginning and the end become equivalent, which
corresponds to both boundaries of the Brillouin zone. In the case of a singlet
ground state, the motif is given by 0101 . . . 010 with M 1’s. Let us represent
the κth element (κ = 0, 1, . . . , N) of the motif by dκ. Then dκ = 1 means
the occupation of the momentum state. The total crystal momentum P and
the energy E are given by

P =
2π

N

N∑
κ=0

κdκ − π,

E =
2π

N

N∑
κ=0

κ(N − κ)dκ +
N

8
J(0), (4.91)

in accordance with (4.90) and (4.87).
It is also possible to describe magnons as interacting bosons. The bosonic

particles are characterized by a set of integers Ĩi, defined by

Ĩi = Ii − Ii0.

Namely, Ĩi gives the deviation from the ground-state quantum numbers Ii0.
We have the relation Ĩ1 ≥ Ĩ2 ≥ · · · ≥ ĨM . In analogy with (4.88), we obtain

N

2π
pi = Ĩi +

∑
j

sgn(pi − pj) = Ĩi + (M + 1 − 2i). (4.92)
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The factor 1 in front of the summation over j is to be compared with another
factor 1/2 in (4.88). Then the energy of the system is written as(

N

2π

)2

[E − E0(M)] =
1
2

M∑
i=1

Ĩ2
i +

∑
i<j

|Ĩi − Ĩj |, (4.93)

where E0(M) is given by (4.17). By comparing (4.87) and (4.93), we under-
stand that the free-particle description with renormalized momentum, i.e.,
rapidity p, is equivalent to the bosonic description with repulsive interac-
tion |pi − pj | in the momentum space. We shall use (4.93) in discussing the
spinon excitations later. For completeness, we now remark on the case of
N being odd. The allowed crystal momentum is given by pj = 2πj/N with
j = 1, 2, . . . , N . The set of momenta does not include π with N odd. In
the mapped Sutherland model, the allowed set of momenta does not include
zero, hence the set of momenta corresponds to those under the antiperiodic
boundary condition. The lattice wave function itself satisfies the periodic
boundary condition because of the half-integer power N/2 in zi for magnons.
Then the ground state is non-degenerate for M even and doubly degenerate
for M odd. The energy of the system is given by (4.87) also with N odd. In
the non-degenerate ground state with M even, we obtain the same expres-
sion for pi0 as (4.89). The corresponding κi and Ii0 are now half integers.
The quantum numbers Ĩi describing bosonic excitations remain integers.

4.7 Spinons

4.7.1 Localized spinons

Elementary excitations from the singlet spin liquid differ from those from
magnetically ordered states. The former excitations are called spinons, in
contrast with magnons in the latter, and can be viewed as a kind of moving
domain wall. Although crude, the real-space picture is the most useful to
get an image of spinons. Consider a Néel state with a periodic boundary
condition. If the number N of the lattice site is odd with Sz = 1/2, the up
and down sequence of spins must have a part where two up spins are next
to each other. This domain wall is the localized representation of a spinon.
For N even with Sz = 0, on the other hand, the domain wall excitation
must occur in pairs. A localized magnon, which is a flip of a spin resulting
in Sz = 1, has three neighboring up spins. This state is considered as two
spinons at closest distance.

For a more detailed inspection including identification of the quantum
number of a spinon, we consider the quantum liquid of spins since the Néel
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state does not have a definite quantum number for the total spin. Let us
consider, as in the Néel state, the odd number N of the lattice site. Then the
ground state has the minimum total spin S = 1/2. In the case of the 1/r2

exchange model, the wave function is explicitly given by the Gutzwiller-type
one as in (4.14). The coordinate index i representing a down spin runs from
1 to M = (N −1)/2. Then there is a surplus of Sz = 1/2. We now introduce
an extra coordinate z0 = exp(2πix0) = 1, which corresponds to lattice site
x0 = 0, and consider a wave function

Ψ1s({z}; z0) =
M∏
i=1

(zi − z0)ΨG({x}) =
M∏
i=1

zi(zi − z0)
∏
i<j

(zi − zj)2. (4.94)

The amplitude becomes zero if any of the down-spin particles comes to
z0, and tends to that of the singlet liquid as zi goes away from z0. Hence
Ψs({z}; z0) represents a defect of down spins. Since all sites are occupied
by either up or down spins, the site z0 is occupied by an up spin. We in-
terpret this defect as a localized spinon with spin up [79]. The state given
by Ψ1s({z}; z0) has S = Sz = 1/2. This highest-weight property of SU(2)
applies generally for polynomial wave functions without the constant term,
and will be explained in Section 4.8.1. Note that the maximum power of zi

is 2M(=N − 1) in (4.94), and the minimum power is one. Namely, the wave
function does not contain the constant term.

Let us now consider the case where the total number of lattice sites N is
even. Then the ground state is a spin singlet, which will be proven formally
in Section 4.8.1. It is not possible to have a single spinon as an excited state,
since S = 1/2 is not allowed for N even. On the other hand, the state with
two spinons localized at z0 and at another arbitrary site z′0 is possible. The
corresponding wave function is given by

Ψ2s({z}; z0, z
′
0) =

M∏
i=1

zi(zi − z0)(zi − z′0)
∏
i<j

(zi − zj)2. (4.95)

This wave function corresponds to a state with N/2 + 1 up spins and
M = N/2 − 1 down spins. It is obvious that for any nonzero separation,
coordinates z0 and z′0 are both occupied by up spins, and the total spin of
Ψ2s({z}; z0, z

′
0) is unity. We interpret this state as a triplet of two spinons.

The state Ψ2s has the SU(2) highest weight S = Sz = 1. The highest power
of zi in (4.95) is N − 1, which is again the maximum allowed within the
first Brillouin zone. The case z0 = z′0 represents a localized magnon as
shown above. Thus we obtain the appealing interpretation that a magnon
is nothing but two spinons sitting on the same site.
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4.7.2 Spectrum of spinons

These localized spinons, however, cannot be eigenstates of the Haldane–
Shastry model or, in general, of a spin liquid. One has to go to the momentum
space representation of spinons for constructing eigenstates of the transla-
tionally invariant system. We consider first the case of N and M = (N−1)/2
both being odd. The polynomial ground state is doubly degenerate, as
given by

Ψ(±)
G ({z}) =

M∏
i=1

z
3/2±1/2
i

∏
i<j

(zi − zj)2. (4.96)

We take Ψ(−)
G ({x}) and consider an excited state as follows. By expanding

the first factor (4.94) in terms of zi, we find terms such as

zM−j
0 z1z2 · · · zj

M∏
i=1

zi

which range from zM
0

∏M
i=1 zi to

∏M
i=1 z2

i . Each additional power of zi rep-
resents the momentum of a spinon. Then the first contribution is propor-
tional to Ψ(−)

G ({z}) and may be regarded as a spinon excitation with zero
momentum. The case

∏
i z

2
i with maximum power is represented, in terms

of the Young diagram, by M squares arranged vertically. The polynomial
still keeps the maximum power of each zi less than N . Namely, the resul-
tant wave function is within the first Brillouin zone without the constant
term.

For a general momentum, a spinon excitation is described by the elemen-
tary symmetric polynomial

eζ =
∑

i1<···<iζ

zi1 · · · ziζ ,

which corresponds to the number ζ of vertically arranged squares. The
case with ζ = M corresponds to the Galilean boost by unit momentum,
and gives the other degenerate ground states. We interpret the case of
ζ = 0 as containing a spinon of zero momentum, and the case with ζ =
M of the maximum momentum. Let us, for example, consider a case of
M = 4 as shown by Fig. 4.2. As has been shown in (4.87), a state with ζ



176 Spin chain with 1/r2 interactions

(a) (b) (c)

Fig. 4.2. Young diagrams for spin excitations in the hard-core boson representation
of magnons with M = 4. The ground state does not have any square since it is
taken as the reference. (a) One spinon with ζ = 4 as momentum in units of 2π/N ,
(b) two spinons with ζ1 = 4 and ζ2 = 2, and (c) three spinons with momenta
ζ1 = ζ2 = ζ3 = 1, or equivalently, one antispinon with particle momentum κ = 3.
The number N (À 1) of the lattice sites is odd for (a) and (c), and even for (b).

has the energy

εs =
1
2

(
2π

N

)2 ζ∑
i=1

[
(κi + 1)2 − κ2

i

]
=

(
2π

N

)2

ζ(M − ζ), (4.97)

where we have used κi = M + 1/2 − 2i for the ground state. Note that the
unit of energy is taken as J/2. As expected, we obtain εs = 0 for both ζ = 0
and ζ = M .

In the case of N odd and M even, the polynomial ground state is non-
degenerate with κi = M + 1− 2i. The ground state has number N − 2M of
spinons whose spectrum is given by

εs =
(

2π

N

)2

ζ(M − ζ + 1/2). (4.98)

In the thermodynamic limit, the energy of a spinon is written in terms of
k = 2πζ/N for both even and odd M as

εs(k) = k(vm − k), (4.99)

where vm = 2πM/N and k ≥ 0. We obtain vm = π(1 − m) with m the
magnetization per site as defined by mN = N − 2M . The spinon velocity
vm determines the maximum of k as k ≤ vm. The independent number of
one spinon state is obtained as M + 1 including the ground state. Namely,
the allowed range of k is half the original Brillouin zone with m = 0, and
becomes smaller as magnetization m increases. The quantity k has the mean-
ing of crystal momentum with m = 0. However, in the case of m 6= 0,
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physical momentum q has to be shifted from k by πm/2, as will be shown
later in Fig. 4.3.

We consider how the spin-flip can be interpreted in terms of propagating
spinons. This serves also to determine the spinon Brillouin zone. We assume
the ground state with N to be even and M = N/2 to be odd, and obtain
the two-spinon state localized at z′0 = z0 from (4.95):

〈{z}|(Sx
0 + iSy

0 )ΨG〉 = Ψ2s({z}; z0, z0) = z0

M−1∏
i=1

(zi − z0)2ΨG−, (4.100)

where ΨG− is the Gutzwiller wave function with M − 1 down spins. The
spin-flip described by Sx

0 + iSy
0 changes the meaning of z0 from a coordinate

of a magnon to a constant. The momentum associated with ΨG− is ±π, since
M−1 is even. The extra momentum associated with the spin-flip ranges from
0 to 2π(1− 2/N), as can be seen by expansion of

∏M−1
i=1 (zi − z0)2. Then the

total crystal momentum of the spin-flip is in the range [−π, π), as it should
be. Since a spin-flip (creating a localized magnon) can be regarded as two
spinons sitting on the same site, each spinon should carry a momentum
either in the range [−π/2, π/2) or [0, π). The latter range agrees with that
obtained above for the spectrum of a single spinon. Since the spinons are
created only in pairs with N even, the physical momentum of a spinon has
a periodicity π, instead of 2π. Namely, the right half of the spinon branch
with π < q < 2π can be shifted to the negative side of q.

In the hard-core boson representation, a spinon corresponds to a hole in
the Sutherland model with the repulsion parameter λ = 2. Then it follows
that spinons with the same spin have the exclusion statistics with 1/λ = 1/2.
Moreover, the spinons with opposite spins also have the statistical parameter
1/2, as will be shown shortly. The particles with 1/2 statistics are often refer-
red to as semions. We use the terminology “fractional” exclusion statistics
for the case where the statistical parameter is between 0 and 1, as in the
case of semions. The part of the eigenstates having two spinons is repre-
sented by Jack polynomials, by analogy with the Sutherland model. For
example, the Young diagram of two spinons with ζ = 2, 4 is shown in Fig.
4.2(b). Note, however, that the two spinons with S = 1 but Sz 6= 1 cannot
be represented by a symmetric function of {zi}. In general, only the SU(2)
highest-weight states with S = Sz of 2S spinons are represented by Jack
polynomials. These states are called the fully polarized spin gas (FPSG) by
Haldane [78]. As we shall explain later, the FPSG turns out to be the SU(2)
Yangian highest-weight states (YHWS). We shall also see later that for cal-
culation of the dynamical correlation function without a magnetic field, only
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these YHWS are relevant. The excited state shown by Fig. 4.2(c) can
either be interpreted as three spinons with the same momentum, or an
antispinon. This ambiguity is specific to the SU(2) symmetry where the
conjugate representation 2̄ is isomorphic with the fundamental representa-
tion 2. In the SU(K) spin chain, a spinon transforms as K̄, as discussed in
Chapter 5.

4.7.3 Polarized ground state

In the case of M < N/2, we obtain Sz > 0 in the corresponding ground
state, which is stabilized in the presence of magnetic field h > 0. The magnon
spectrum is given by

εm(q) =
1
2
q(q − 2π) + 2h, (4.101)

where q is the crystal momentum in the Brillouin zone [0, 2π]. The spectrum
for −2π < q < 0 is given by replacing q in (4.101) by |q|. Figure 4.3(a) shows
the spectrum for q < 0. As we have identified Ψ2s({z}; z0, z0) as a two-spinon
wave function in the real space, we may construct spinon wave functions in

0−π−2π

0

0 π/2 π

0

q

q

εm(q)

εs(q)

εas(q)

(a)

(b)

RL

Fig. 4.3. (a) Spectrum of a magnon in a magnetic field. The regions −πm < q < 0
and −2π < q < −(2 − m)π with positive energy give the spectrum εas(q) of an
antispinon with right (R) and left (L) branches. (b) Spectrum of a spinon in a
magnetic field. The allowed range of momentum q is given by mπ/2 < q < π−mπ/2.
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the momentum space. Then a hole of magnons with negative momentum
is interpreted as two spinons with positive momentum. In the ground state
with h > 0, magnon states are occupied for such q as

qm ≡ πm < q < 2π − qm. (4.102)

Here m = 1 − 2M/N is the magnetization per site, and is related to h by
εm(πm) = 0. The positive part of εm(q), which is unoccupied by magnons,
is identified as the spectrum of antispinons, i.e., εas(q) = εm(q). Thus anti-
spinons can also be viewed as excited magnons from the polarized ground
state. The allowed range of momentum shrinks as m becomes small, and
disappears in the singlet state. By restriction of M < N/2, antispinons can
have only down spin. This means physically the spin-flip excitations from
the condensate of up spins.

An antispinon is represented by a row with length κa in the Young dia-
gram. Figure 4.2(c) shows an example with κa = 3. The maximum of κa is
given by κa = N/2−M − 2. The energy εas of an antispinon is also derived
from (4.93) by setting Ĩ1 > 0, and Ĩj = 0 with 2 ≤ j ≤ M . Here Ĩ1 cannot
exceed N/2 − M = Nm/2. We obtain

εas =
(

2π

N

)2 [
1
2
Ĩ2
1 + (M − 1)Ĩ1

]
=

1
2
k2 + vmk, (4.103)

with k = 2πĨ1/N and vm = 2π(M − 1)/N . With the condition q = k + πm,
the spectra given by (4.101) and (4.103) for k > 0 become identical. The
difference between k and q is that k is measured from the lowest-energy
antispinon state, which already has the finite momentum πm.

In terms of the motif introduced in Section 4.6, a spinon corresponds
to an extra 0 in the sequence such as . . . 01010010101 . . . The location of
00 determines the momentum of the spinon. An antispinon with rapidity
k = 2πζ/N corresponds to the motif where the rightmost 1 has the number
ζ+1 of 0’s to the left. The successive 0’s in the interior of the motif represent
multiple spinons with the same momentum. Two spinons are created by
annihilating a magnon represented by 1 in the motif of the ground state.
The annihilation results in 000 in the motif, which represents two spinons.
In the thermodynamic limit, the spectrum of up spinons εs(q) is derived
most easily from the filled part of the magnons by the particle–hole relation
−εm(−2q) = 2εs(q) (> 0). Namely, we obtain

εs(q) = q(π − q) − h, (4.104)

where the crystal momentum q has meaning for m/2 < q/π < 1−m/2 with
εs(q) > 0. Figure 4.3(b) shows the spectrum of up spinons. Comparison
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with (4.99) shows that the crystal momentum q is related to k as

q =

{
k + πm/2, (k > 0),

k + π(1 − m/2), (k < 0).

Note that the origin of k has been taken to be the spinon states with the
lowest energy with momentum q = ±πm/2.

4.8 Energy levels and their degeneracy

4.8.1 Degeneracy beyond SU(2) symmetry

By mapping to the Sutherland model, we have found that some eigenfunc-
tions Ψκ({x}) of HHS can be written in the form

Ψκ({x}) =
M∏
i=1

z
N/2−M+1
i

∏
i<j

(zi − zj)2Jκ({z}), (4.105)

where N is even and Jκ({z}) is a symmetric Jack polynomial. As long as
the degree of Jκ({z}) for each zi is less than N/2 − M + 1, the polynomial
Ψκ({x}) is within the Brillouin zone, and describes a spin state in HHS.
Moreover, there is no constant term in (4.105).

The wave function Ψκ({x}) belongs to the highest-weight states of the
SU(2) symmetry, namely S = Sz = N − 2M . To show this we operate
S+ =

∑N
j=1 S+

j to Ψκ({x}). The spin-flip operator S+
j gives a null result if

the site j is not occupied by a down spin. If the site is occupied, the spin is
reversed. In the first quantization, the spin reversal means that one of the
coordinates disappears from Ψκ({x}). Namely, one has

〈x2, . . . , xM |S+Ψκ〉 =
∑

x

Ψκ(x, x2, . . . , xM ), (4.106)

where x runs from 1 to N . In the case of the polynomial wave function as
described by (4.105), one has the expansion with z = exp(2πxi/N)

Ψκ(x, x2, . . . , xM ) =
N−1∑
p=1

zpψp(x2, . . . , xM ). (4.107)

Because of the oscillatory property of zp, the summation over x gives S+|Ψκ〉
= 0. Thus it is confirmed that the Sutherland-type wave function Ψκ({x})
belongs to the highest-weight states of the SU(2). In the special case of
M = N/2, we obtain Sz = 0, and hence S = 0. Thus the Gutzwiller wave
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Fig. 4.4. Low-lying levels of the Haldane–Shastry model with sizes N = 11
and N = 12. Each filled circle indicates a state with a pseudo-momentum in
units of 2π/N . Numbers attached to levels show the degenerate structure: “231”
means (S = 1/2)2 ⊗ (S = 3/2)3 ⊗ (S = 5/2)1 for N = 11 (odd), and (S =
0)2 ⊗ (S = 1)3 ⊗ (S = 2)1 for N = 12 (even). Broken and solid lines are a vi-
sual guide showing the bottom of the excitation continuum in the thermodynamic
limit [77]. Copyright (1988) by the American Physical Society. Reproduced with
permission.

function ΨG({x}) with M = N/2 is an SU(2) singlet. It is crucial here
that the constant term with p = 0 is absent in (4.107). In other words, a
polynomial wave function with the constant term does not belong to the
SU(2) highest-weight states, and will be excluded in the following analysis.

It was found by Haldane by numerical calculation [77] that the spectrum
of the Haldane–Shastry model has an enormous degeneracy. Figure 4.4 shows
the results. This degeneracy with different values of the total spin shows the
presence of a higher symmetry in the model. By the global SU(2) symme-
try, the total spin operator S =

∑
i Si conserves. Hence the set of states

(S−)p|Ψκ〉 with Sz = S − p has the same energy as that of |Ψκ〉, as long as
p ≤ 2S. Hence most of the eigenfunctions of HHS have a form that cannot
be written as a polynomial like (4.105).

The degeneracy among different values of the total spin is called the
supermultiplet, and comes from a symmetry called the Yangian. We now
construct heuristically some generators called the “level one” [80] of the
Yangian algebra. Let us introduce an operator Λz which acts on polynomial
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wave functions Ψκ({x}) as defined by

〈x1, . . . , xM |ΛzΨκ〉 =
∑

i

N

2π

(
−i

∂

∂xi
− π

)
Ψκ({x}). (4.108)

This shows that Λz is the total momentum of hard-core bosons. Since the
total momentum should conserve, we obtain [Λz, HHS] = 0. We rely on the
following identity with m 6= 0:

1
2

∑
j

′Zi + Zj

Zi − Zj
Zm

j =
(

m − N

2

)
Zm

i , (4.109)

where complex coordinates have been used in (4.3), and the prime in sum-
mation avoids j = i. Thus, in the second quantization for hard-core bosons,
Λz can be alternatively written as

Λz =
1
2

∑
i6=j

wijb
†
ibj =

i
2

∑
i6=j

wij(Sx
i Sy

j − Sy
i Sx

j ), (4.110)

where we have introduced the notation

wij =
Zi + Zj

Zi − Zj
= −i cot

1
2
(θi − θj). (4.111)

Note that the total momentum operator given by (4.110) is not restricted
to the subspace spanned by polynomial wave functions.

From Λz, we obtain a general component α (= x, y, z) in the following
fashion [80,162]:

Λα =
i
2

∑
i6=j

wij

∑
βγ

εαβγSβ
i Sγ

j =
i
2

∑
i6=j

wij (Si × Sj)α , (4.112)

where εαβγ is the completely antisymmetric unit tensor. Since the Haldane–
Shastry model has the global SU(2) symmetry, the conservation law for Λz

means

[Λα,HHS] = 0 (4.113)

for α = x, y, z. Physically this can be interpreted as conservation of the spin
current Λ [25,123]. On the other hand, straightforward algebra using (4.112)
gives [∑

i

Sα
i , Λβ

]
= i

∑
γ

εαβγΛγ . (4.114)

Thus Λ does not commute with the total spin. This means that if |Ψ〉 is
an eigenstate of HHS, Λα|Ψ〉 is another eigenstate with different total spin,
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and they are degenerate. Therefore the degeneracy extends out of the global
SU(2) symmetry.

In order to understand the nature of the degeneracy, we make the following
linear combination:

Λx + iΛy = −
∑
i6=j

wijS
z
i S+

j . (4.115)

By using the up-spin reference state, we put Sz
j = 1/2 − δj∈{x} where the

Kronecker delta becomes unity if Zj belongs to the set of magnon coordi-
nates. We show now that Λx + iΛy annihilates the FPSG state where the
corresponding Ψκ({x}) is a symmetric function of magnon coordinates. By
applying (4.115) to Ψκ({x}) with M magnons, we obtain

〈x1, . . . , xM−1|Λx + iΛy|Ψκ〉 = −
N∑

x=1

M−1∑
j=1

wxjΨ(x, x1, . . . , xM−1) = 0,

(4.116)
where the summation index j means that of xj , and we have used the rela-
tion Sz

j = −nj + 1/2. The summand in (4.116) is antisymmetric against
interchange of x and xj . Moreover, wxj has the translational invariance
(x, j) → (x− n, j − n). Thus choosing n = j, we obtain the last equality by
summation over x. On the other hand, successive application of Λx − iΛy on
|Ψκ〉 generates different states with the same energy. The generation stops
for certain n where we have (Λx− iΛy)n|Ψκ〉 = 0. Some simple examples will
be discussed later, as illustrated in Fig. 4.7.

This sequence of generation is analogous to the application of raising and
lowering operators of angular momentum to an SU(2) highest-weight state.
Hence we call such a state that satisfies (4.116) a Yangian highest-weight
state (YHWS). All the polynomial eigenstates, i.e., the FPSG states, in the
Haldane–Shastry model thus belong not only to the SU(2) highest-weight
states but to the YHWS. We shall provide a more formal discussion of
Yangian symmetry in Part II.

4.8.2 Local current operators

In addition to the conserving current Λ derived above, the Haldane–Shastry
model has a set of local operators which annihilate the ground state [162].
We first observe the identity for each variable θi = 2πxi/N :−i

∂

∂θi
− N

2
−

∑
j

′wij

ΨG({x}) = 0, (4.117)
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which is analogous to (2.6) in the Sutherland model, and follows from the
explicit product form of ΨG({x}) given by (4.13). In the magnon and spin
representations the identity is rewritten as

1
2

∑
j

′wij(b
†
ibj − 2ninj)ΨG

=
1
2

∑
j

′wij

[
S−

i S+
i − 2

(
Sz

i − 1
2

)(
Sz

j − 1
2

)]
ΨG = 0, (4.118)

where ni = b†ibi = Sz
i − 1/2. Since the singlet ΨG remains the same if one

reverses the direction of all spins, we also obtain

1
2

∑
j

′wij

[
S+

i S−
i − 2

(
Sz

i +
1
2

)(
Sz

j +
1
2

)]
ΨG = 0. (4.119)

By subtracting (4.119) from (4.118), we see that the following operator:

Λz
i =

1
2

∑
j

′wij [i (Si × Sj) + Sj ]
z, (4.120)

annihilates ΨG. In addition to the z-component Λz
i , the vanishing property

also holds for the other components Λx
i and Λy

i because of the singlet nature
of ΨG. Namely, a vector operator Λi defined by

Λi =
1
2

∑
j

′wij [i (Si × Sj) + Sj ] (4.121)

annihilates ΨG [162]. On the other hand, the spin current Λ is given by

Λ =
∑

i

Λi, (4.122)

which justifies the name of the local current operator for Λi. Note that Λ is
Hermitian, while Λi is not. It has been shown by straightforward calculation
[25,162] that

HHS = J

(
2π

N

)2
[

2
9

∑
i

Λ†
i · Λi +

N + 1
12

S2 − N(N2 + 5)
48

]
, (4.123)

where S is the total spin of the system. This form confirms that ΨG indeed
gives the ground state, since Λ†

i · Λi and S2 are non-negative operators.
In fact there are five more local operators which annihilate the ground

state [162]. To derive these, we now add (4.119) to (4.118), and find that
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the operator

Qzz
i =

1
2

∑
j

′wij

(
Sx

i Sx
j + Sy

i Sy
j − 2Sz

i Sz
j

)
(4.124)

annihilates ΨG. It is evident that Qzz
i takes the form of a second-rank tensor,

or a quadrupole formed by two spins. By the invariance of ΨG against SU(2)
rotation, we then find that any component

Qαβ
i = −1

2

∑
j

′wij

[
3
2

(
Sα

i Sβ
j + Sβ

i Sα
j

)
− δαβSi · Sj

]
(4.125)

of the tensor also annihilates ΨG. There are five independent components of
Qαβ

i since they are symmetric and traceless.
It still remains to clarify what kind of physical roles these local opera-

tors play, in addition to annihilating the ground state. In this connection
we note that the local currents do not commute with HHS, nor with each
other. In order to construct a commuting set of local current operators,
a limiting procedure from the Sutherland model is available [183]. In the
latter model, Cherednik–Dunkl operators constitute the commuting set, as
explained in Section 3.6. The lattice version of Cherednik–Dunkl operators
will be discussed in Chapter 9.

4.8.3 Freezing trick

As we have seen in previous sections, the mapping of certain sets of states
(YHWS) of the Haldane–Shastry model to eigenstates of the Sutherland
model is very powerful in deriving the spectrum of the model. The main
advantage is that one can then use the highly developed mathematical tech-
nique for orthogonal polynomials in the continuum space. On the other hand,
most states in the lattice model cannot be described by orthogonal polyno-
mials. These states do not have the Yangian highest weight, and are degen-
erate with polynomial wave functions. In order to derive thermodynamics,
we have to know not only the energy levels but also their degeneracies.

A nice way to derive all states in a lattice model is to regard the lattice
model as the limiting case of the Sutherland model in the continuum space
[149, 177]. Namely, we start from the U(2) Sutherland model, and take the
limit of λ → ∞. Then each particle tries to avoid the others as much as
possible, and crystallizes with equal distance 2π/N . The resultant dynamics
is the combination of uniform translation, lattice vibration, and exchange of
SU(2) components. The last is nothing but the spin degrees of freedom in the
Haldane–Shastry spin chain. Provided one can separate unwanted excited
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states associated with lattice vibrations, one recovers all the excitations in
the spin chain.

We start from the U(2) Sutherland model for N -particle systems:

Hλ = −
N∑

i=1

∂2

∂x2
i

+
2π2

L2

∑
i<j

λ(λ − Pij)
sin2[π (xi − xj) /L]

. (4.126)

The spin permutation operator Pij is in fact an SU(2) specialization of the
SU(K) internal symmetry. We have seen in Chapter 3 that the energy spec-
trum Eλ of (4.126) has been obtained [22,99,177] as follows:(

N

2π

)2

(Eλ − E0,N ) =
∞∑

κ=−∞
κ2ν(κ) +

λ

2

∞∑
κ=∞

∞∑
κ′=−∞

∣∣κ − κ′∣∣ ν(κ)ν(κ′),

(4.127)
where E0,N = (πλ/L)2 N(N2 − 1)/3 is the energy of the absolute ground
state given by (2.12), and κ runs over integers describing momentum k by
the relation k = 2πκ/L. The distribution function consists of

ν(κ) = ν↑(κ) + ν↓(κ),

where νσ(κ) is the momentum distribution function of fermions with spin σ.
Let us consider the strong coupling limit λ → ∞. In this limit, parti-

cles localize with a lattice spacing L/N , which is taken to be unity. Up to
O(λ), there are two kinds of degrees of freedom: one is the vibration around
the lattice points and the other is the exchange of particle species between
the two lattice points. The former corresponds to phonons, while the latter
describes the spin exchange. We obtain as the Hamiltonian [101,149,177]

Htot ≡ lim
λ→∞

1
λ

(Hλ − E0) = Hph + 2H ′
HS, (4.128)

where Hph corresponds to the limiting form of (4.126) with Pij = 1, and
describes phonons. On the other hand, H ′

HS describes the spin dynamics
and takes the form

H ′
HS =

∑
i<j

D−2
ij [Pij − ninj ], (4.129)

where Dij ≡ (N/π) sin[π(i − j)/N ]. The original particles in the Sutherland
model can be taken as fermions. In the large λ limit, each site is singly
occupied by a fermion with either up or down spin. Thus the system is
equivalent to a set of interacting quantum spins. By using the identity

Pij = 2Si · Sj + ninj/2, (4.130)
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for hard-core fermions with the occupation number ni = 1, we recover from
HHS the Haldane–Shastry model with J = 2 minus the constant term NJ(0).
By construction the eigenvalue of the fully polarized state is zero in H ′

HS,
since we have Pij = ninj = 1 for this state. The same result follows if we
start from bosons in the Sutherland model.

Let us consider a route to construct thermodynamics for H ′
HS: first we

consider thermodynamics for Htot and subsequently subtract the phonon
contribution. Using (4.127) and the relation (4.128), we obtain the expression
for the energy spectrum of Htot [101,177]

Etot =
π2

N2

∞∑
κ=∞

∞∑
κ′=−∞

∣∣κ − κ′∣∣ ν(κ)ν(κ′). (4.131)

The phonon contribution can be derived by regarding ν(κ) as a single com-
ponent. The ground state corresponds to κ

(0)
i = N−i with i = 1, 2, . . . , N , or

equivalent ones with a uniform shift. The Young diagram for the difference
∆κi = κi − κ

(0)
i takes the form for bosons. The uniform increment of ∆κi

describes the Galilean boost of the whole particles, and does not affect Etot

in (4.131). On the other hand, an excitation with ∆κi = 1 for 1 ≤ i ≤ m and
∆κi = 0 for m > i corresponds to a phonon with momentum q = 2πm/N .
The excitation energy is derived from (4.131) as

ωq =
2π2

N2

m∑
i=1

N∑
j=m+1

(∆κi − ∆κj) =
2π2

N2
m(N − m) =

1
2
q(2π − q). (4.132)

If we take ∆κi = n for 1 ≤ i ≤ m and ∆κi = 0 for m > i, the energy
is given by nωq. By definition the excitation given by (4.132) obeys the
boson statistics and should properly be called a phonon. It is seen from
the above derivation that the phonon in the present system is harmonic for
any magnitude of the displacement. Namely, a larger displacement simply
increases the number of harmonic phonons.

We now turn to the two-component case of (4.131) with N even and
M = N/2 odd. In the ground state, we obtain for each component κ

(0)
iσ =

(M + 1)/2 − i for 1 ≤ i ≤ M . Since we have derived all the eigenvalues
of the model given by (4.128), and all eigenvalues of the phonon part, we
can easily check that the Gutzwiller state gives the lowest eigenvalue for the
spin part, and there is no degeneracy with N↑ = N↓ = N/2 odd. Therefore,
we have obtained another proof, in addition to (4.123), that the Gutzwiller
wave function (4.13) indeed gives the ground state.
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4.9 From Young diagrams to ribbons

4.9.1 Removal of phonons

To make physical excitations in the spin chain explicit in the freezing trick,
one has to remove the U(1) component, i.e., the phonons, and retain only the
SU(2) components in counting the available states. We now discuss explicitly
such a procedure in which the correspondence between a Young diagram and
another diagram called a ribbon diagram, or simply a ribbon, is relevant.
Figure 4.5 shows partitions of two-component particles giving the ground
state and two kinds of excited states in (4.131) with N = 6. Unlike ordinary
Young diagrams, each row in a partition diagram has a spin index, and
is tentatively called U(2) partitions here. Although antisymmetrization of
different rows has not been performed, we keep only such diagrams that
survive the antisymmetrization. Hence at most two rows have the same
length.

In state (b), the spin indices x and y can either be up or down, leading to
four possible combinations of x and y. The four different spin states can be
reorganized into one singlet and one triplet. On the other hand, the state
(c) is an SU(2) singlet where both up and down spins have the same set of
momenta. The state (c) represents a phonon excitation. In general, a totally
white column (without any shaded square) represents a phonon excitation.

Let us proceed to systematic classification of U(1) and SU(2) excita-
tions. It is clear that the location of the rightmost squares in each row,
which are shaded in Fig. 4.5, carries all the information on the states. Then
we rearrange the diagram, keeping only the shaded squares. Namely, some
shaded squares are shifted vertically so that the adjacent shaded squares
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(a) (c)(b)
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1

2

1

2

1

2

1

2

1

2
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2

Fig. 4.5. U(2) partitions for (a) the ground state, (b) an excited state with two
spinons, and (c) an excited state with a phonon. The index 1 represents the up
spin, and 2 the down spin. Shaded squares show the momentum of each row.
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Fig. 4.6. Skew Young diagrams for (a) the ground state and (b) an excited state
with two spinons. Both (a) and (b) are called ribbon diagrams. A disconnected
skew Young diagram like (c) represents an excited state with a phonon, and does
not belong to ribbon diagrams.

share a common side if possible. Figure 4.6 shows the arrangement of six
squares keeping the horizontal position. The spin state is inscribed as a
number 1 or 2 in each square.

Since the shaded squares are separated in Fig. 4.5(c), the rearrangement
leads to disconnected pieces as shown in Fig. 4.6(c). Then by keeping only
the connected diagrams after vertical shifts, one can exclude phonon or U(1)
excitations. These connected diagrams are called ribbon diagrams [111], or
simply ribbons.

We note that ribbon diagrams are a particular subclass of skew Young
diagrams, which are constructed from a partition λ and its subset µ to
represent λ/µ. Namely, ribbon diagrams do not have 2 × 2 or larger blocks
of connected squares for λ/µ.

A phonon-free excited state in the freezing limit of the Sutherland model
has one-to-one correspondence to a ribbon diagram with inscription. It is
understood in the ribbon diagram that a symmetrization of spin states has
been made for each row. In order to avoid overcounting, we require y ≤ x in
Fig. 4.6(b). Thus, of four states in Fig. 4.5(b), only the triplet states survive
the symmetrization. The triplet excitation is interpreted as two spinons.
Note that two spinons can also form a singlet provided they are separated
by one or more vertical pairs in a ribbon diagram.

The energy of each state can easily be read off by returning to the corre-
sponding partition diagram, since we have never made a horizontal move of
the square. Then the energy remains the same as given by (4.131), provided
each square in the ribbon diagram represents a single-particle state. The en-
ergy of the whole state depends solely on the momentum distribution ν(κ),
and is independent of spin structures in ν(κ). Moreover, the energy does not
depend on the total momentum, or the Galilean boost. Hence, it is clear by
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construction that states with a common shape of the ribbon diagram are
degenerate. This applies even if the total spins of the relevant states are not
the same. Hence the set of states is called a supermultiplet.

In more mathematical language, the connected ribbon diagrams describe
all states in the SU(2) part of the U(2) = SU(2)⊗U(1) symmetry for the
system Htot. The U(1) part describes the phonon or charge dynamics. Each
ribbon diagram without an inscription corresponds to a multiplet of a larger
symmetry group [188], which is called the Yangian Y (sl2).

4.9.2 Completeness of spinon basis

The spinons span the complete basis of the Hilbert space of N spins [78].
Before proving the completeness, we illustrate the simplest case of N = 2
where the four states are classified into one singlet and one triplet. The latter
is interpreted as two spinon states with Sz = ±1, 0. Hence the states with
zero and two spinons indeed span the complete set. In the next simplest case
of N = 3, the 23 = 8 states are classified into two doublets and one quartet
with S = 3/2.

To visualize the classification in the general case we use ribbon diagrams.
We arrange the squares, each of which has an inscription of either 1 (spin
up) or 2 (spin down), as shown in Fig. 4.7. The sequence of inscribed num-
bers is called a semistandard tableau. Although squares can represent any
basis set, it is most convenient to take the momentum basis so that the
momentum increases by 2π/N by going one square to the right. A horizon-
tal array implies symmetrization and a vertical array antisymmetrization,
as in the standard Young diagrams. To avoid overcounting we require that
the numbers inscribed should increase on going down the array, and should

(a)(a)

1 1 1 1 1 2 1 2 2 2 2 2

1

2

1

(b)

1

2

2

1 2

1

2 2

1

(c) (d)

(e) (f) (g) (h)

Fig. 4.7. Skew Young diagrams, or ribbons, for N = 3. The dotted lines in (a)
illustrate the path leading to the motif 0100 as explained in the text. The Yangian
lowering operator Λx − iΛy of (4.133) changes (a) to (b), and (c) to (d). Successive
application of Λx − iΛy changes (e) to (h) through (f) and (g).
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not decrease on going right. A vertical pair of squares represents the sin-
glet state of two spins. In the general case, we need a limiting procedure to
obtain the wave function as explained in Section 4.8.3. This is in contrast
with the FPSG case, where the actual form of the wave functions is given
by Jack polynomials. A ribbon diagram without inscribed numbers repre-
sents a supermultiplet which contains degenerate states with different spin
configurations.

It is possible to identify spinons in any ribbon diagram from its shape.
Namely, a spinon is represented by a square which is not connected to
a vertical neighbor. Equivalently, one can associate with any ribbon dia-
gram a sequence of 0 and 1, which is called the motif. We have already
introduced the motif in Section 4.6 in an apparently different way. In the
present case, the motif is constructed by tracing the N squares from the left
bottom to the right top. If one crosses an edge of squares by a horizontal
move, one associates the crossing with the digit 0. On the other hand, a
crossing of an edge by a vertical move is recorded by the digit 1. The first
and last crossings of an edge are always done horizontally. For example, the
motif of (a) and (b) in Fig. 4.7 is given by 0100, while (c) and (d) by 0010.
Now a spinon is identified as a successive pair of 0’s in the motif. The states
shown as (a)–(d) in Fig. 4.7 contain a spinon. The momentum of a spinon
differs between the multiplet containing (a), (b) and the other containing
(c), (d). Similarly the multiplet containing (e)–(h) is characterized by the
motif 0000 with three spinons. Thus we see that a motif is in one-to-one cor-
respondence with a ribbon diagram, and hence specifies a supermultiplet.

We now show that the present definition of the motif is equivalent to that
determined by the occupation pattern of rapidities, as introduced in Section
4.6. We regard the sequence of N squares from left bottom as all momentum
states in the Brillouin zone. Let us restrict ourselves to the YHWS in the
ribbon diagram. Then the horizontal crossing of an edge is always from a
square of spin up, since the down spin can only appear at the right end of
each row. Thus we make a correspondence from the digit 0 to the spin up. In
the polynomial wave function, the spin up is not counted as a particle. Hence
the rapidity at this position is vacant. On the other hand, a vertical move is
always from a down spin by the ordering convention of spins. Thus the digit
1 for the move is in correspondence with the occupation of this momentum
state by a down spin. In this way, we see the equivalence between the shape
of a ribbon diagram and the occupation pattern of rapidities in the YHWS.
Both definitions give the same results for the motif. The energy associated
with the motif is given either by (4.87) or by (4.131). It is remarkable that
such different expressions give equivalent results.
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2

1

y

x

Fig. 4.8. An example of a supermultiplet straddling S = 0 and S = 1 with N = 4.
The values of x and y can be either 1 or 2.

For the simple cases as shown in Fig. 4.7, each multiplet is characterized
by the total spin of the system. A new situation arises for larger N, as shown
in Fig. 4.8 with N = 4. The state with both x and y being 1 has S = 1 and
Sz = 1, while that with x = y = 2 has S = 1 and Sz = −1. In the case of
x = 1 and y = 2, the resultant state has Sz = 0, but may contain both S = 0
and 1 components. Namely it is not an eigenstate of S. The same applies
to the case where x = 2 and y = 1. Thus different values of the total spin
have the same Young diagram and the same energy as the Haldane–Shastry
model. Hence one uses the name of the supermultiplet. This degeneracy,
larger than that from the SU(2) symmetry, is due to the Yangian symmetry.
We have shown in Section 4.8.1 that the Yangian lowering operator

Λx − iΛy = −
∑
i6=j

wijS
z
i S−

j (4.133)

commutes with HHS but not with the total spin. In terms of ribbon dia-
grams, the action of Λx − iΛy leaves the shape of the diagram intact but
changes one of the inscriptions from 1 to 2 because of S−

j . It is possible to
choose the convention such that the change applies to the rightmost 1 in
each row, provided the resultant state is not null. Thus all members of the
supermultiplet are generated by successive application of Λx − iΛy starting
from the YHWS. Some examples are illustrated in Fig. 4.7.

We now show that the spinon basis spans the complete set of 2N spin
states. There are a few alternative methods for the proof. In Section 6.5.2,
we shall give a general proof which is applicable to any internal symme-
try. Here we use the most direct counting of states. Let Npair denote the
number of vertical (singlet) pairs. Then the number Nsp of spinons with
arbitrary composition of up and down spins is given by Nsp = N − 2Npair.
The spinons correspond to squares between the pairs and outside the first
and last pairs. In the case of FPSG [78], we have Npair = M . Obviously
the number of possible positions (y-coordinates) along the vertical direc-
tion is Npair + 1. We identify each y-coordinate as an orbital of spinons, in
direct analogy to the momentum of a hole in the Young diagram for the
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Sutherland model. Each orbital can accommodate any number of spinons
with any spin direction. If there are no singlet pairs as in Fig. 4.7(e)–(h),
all spinons occupy the same orbital. This corresponds to the bosonic char-
acter of spinons in the space of orbitals, but the statistics of spinons in the
physical Hilbert space is not bosonic, as shown later.

Let Nsp = N↑ + N↓ be the total number of up and down spinons. The
total number Dsp = D↑ + D↓ of available single-spinon states is given by
2(Npair + 1), where the factor 2 accounts for the spin factor and (Npair + 1)
the orbital factor. Since the Nsp spinons can choose any of these states, the
total number W (N,Nsp) of Nsp spinon states is given by [79]

W (N,Nsp) = DspHNsp =
(

(N − Nsp) + 2 + Nsp − 1
Nsp

)
=

(N + 1)!
Nsp!(N + 1 − Nsp)!

= N+1CNsp , (4.134)

where

nHm = n+m−1Cm (4.135)

denotes the number of ways of choosing m elements out of n objects with
allowance of duplication. For example, we obtain W (3, 3) = 2H3 = 4, and
all states are contained in the motif 0000 shown by (e)–(h) in Fig. 4.7. In
general there are plural ribbon diagrams for given Nsp and N . For example,
Fig. 4.7(b) and (c) both have N = 3 and Nsp = 1. The total number of
spinon states for an N -site system is then given by

N∑
Nsp=0

1
2

[
1 + (−1)N−Nsp

]
W (N,Nsp), (4.136)

where the factor in front of W (N,Nsp) picks up only even integers for N −
Nsp, and the summation over Nsp without this restriction corresponds to a
binomial expansion of (1 ± 1)N+1. Thus the total number of states in the
spinon basis exhausts all the states in the N -site spin chain. In other words,
the spinons form the complete set.

4.9.3 Semionic statistics of spinons

We proceed to the derivation of the statistical parameters of spinons. We
first show g↑↑ = 1/2 by considering the YHWS states. Then we argue on
symmetry grounds that gσσ′ = g↑↑ for arbitrary components σ and σ′ of
spins. Let us consider the number W (M) of magnon states for given numbers
of N and M . This W (M) is equivalent to the number of supermultiplets,
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which in turn is equal to the number of ribbon diagrams, or the number of
motifs with N↑ = N − 2M of up spinons. Since a ribbon diagram with N

squares consists of singlet pairs and spinons, a supermultiplet is specified by
the location of singlets.

A convenient way of counting the supermultiplets is to first set aside M

squares, and construct ribbon diagrams. A magnon appears as a square
forming a corner, which specifies the location of magnon momenta among
the N −M squares. In terms of a motif, the location of 1’s in the sequence of
N−M digits is to be specified first. The number of 0’s is given by N−2M+1,
one of which is placed to the leftmost. To recover the supermultiplet in the
motif, we put a 0 (zero) to the right of each 1 representing a momentum
of a magnon. In terms of the ribbon diagram, putting a 0 is equivalent to
placing a square on top of each square for magnons, which recovers the N

squares representing a supermultiplet. The number of ways of choosing M

1’s is given by

W (M) =
(N − M)!

M !(N − 2M)!
. (4.137)

We rewrite W (M) using the relation M = (N − N↑)/2 as

W (M) =(N+N↑)/2 CN↑ =D↑ HN↑ . (4.138)

Here D↑ = 1 + (N − N↑)/2 gives the number of available orbitals for up
spinons. We then obtain the relation ∆D↑ = −∆N↑/2, which means g↑↑ =
1/2. As we have seen, the reduction of available states depends only on the
total number of spinons. Hence we obtain

∆Dσ/∆Nσ′ = −1/2. (4.139)

In this way, we have derived the statistical parameter gσσ′ = 1/2, which is
independent of spin species.

The statistical parameter can be generalized for elementary excitations
with the SU(K) with K > 2, as we shall discuss in Chapter 5. The concept of
spinons can naturally be extended for general K. Surprisingly, however, the
statistical parameters for SU(K 6= 2) spinons are now negative; gαβ = −1/K

for any SU(K) indices α and β. These statistical parameters also show up
in dynamical correlation functions.

4.9.4 Variants of Young diagrams

The case of x = y = 1 in Fig. 4.6(b) is an example of the FPSG explained
in Section 4.9.2. In this case a ribbon diagram can be reduced to a Young
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Fig. 4.9. Reduction from ribbon diagrams shown in Fig. 4.6 to Young diagrams
in the magnon representation: (a) the ground state; (b) an excited state with two
spinons.

diagram of hard-core bosons, or magnons. We keep only the component
2 (=↓) and erase the squares of the other component 1 (=↑). The latter is not
regarded as a particle but contributes to the fully polarized reference state.
The Young diagrams for magnons represent a part of the wave functions
multiplied by the ground state. Examples of reduction are shown in Fig.
4.9 with (a) M = 3 and (b) M = 2. For the number M of magnons, in
general, the reduction proceeds first as leftward shifts of each square by i

(=1, . . . ,M + 1) in the (M + 2− i)th row. Those squares to the right of the
bottom square represent excitations, and the corresponding Young diagram
is constructed by making each row up to these squares. The ground state for
any M corresponds to a null Young diagram. It is also possible to construct
a ribbon diagram from a given magnon diagram.

Let us summarize the three kinds of Young diagrams, and clarify the
relationship between them as follows:

(i) U(2) partition diagrams such as Fig. 4.5 for N particles have N rows
with either up or down spin, and the length of each row corresponds
to the momentum of the particle. The wave function is antisymmetric
against interchange of any two particles.

(ii) Ribbon diagrams such as Fig. 4.6 filter out phonons present in U(2)
Young diagrams, and give all states in the SU(2) spin chain. There
are N squares in a ribbon diagram.

(iii) A Young diagram in the magnon representation such as Fig. 4.2 is
obtained from the corresponding ribbon diagram if and only if the
state belongs to the FPSG.
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4.10 Thermodynamics

4.10.1 Energy functional of spinons

We now proceed to describe the entire excitation spectrum in terms of
spinons. First we present the result to be derived. Let dkσ denote the distri-
bution function of spinons. With a macroscopic number M of singlet pairs,
the energy is given as a functional of {dkσ} by

∆E(M) = E(M) − E0(M) − π2

2
M

(
1 − 4M2

N2

)
=

∑
kσ

(
k2

0 − k2
)
dkσ +

π

2N

∑
kσ

∑
k′σ′

(
k0 − |k − k′|

)
dkσdk′σ′ , (4.140)

with E0(M) given by (4.17). The sum over k runs from −k0 to k0 = πM/N ≤
π/2. In the case of M = N/2, namely Sz = 0, the range of k is half the
Brillouin zone. The finite magnetization at the ground state corresponds to
Bose condensation of spinons at k = ±k0. The momentum dependence of
the energy functional is very similar to that in the U(2) Sutherland model
as given by (4.127), except for the reversal of signs. This duality reflects
the Yangian symmetry encompassing both Sutherland and Haldane–Shastry
models.

We rely on two important observations to derive (4.140):

(i) The spectrum of the FPSG is parameterized by a set κ of dimension-
less momentum.

(ii) With a given set of κi, the energy of the system does not depend on
the spin configuration within κ.

A Young diagram for the FPSG completely specifies the energy of the corre-
sponding state. We make a Galilean transformation to obtain the partition
µ by

µi = κi − κM , (4.141)

which leads to µM = 0. We will derive the spinon description of excited states
for arbitrary shape of Young diagrams. The key concept is the particle–
hole duality explained in Chapter 2. Following the method developed in
Chapter 2, we convert the representation in terms of particles (magnons or
antispinons) to that of holes (spinons). The quantity E proportional to the
energy is converted from magnon to spinon representation by adopting the
hole momentum ζ instead of the particle momentum µ by setting ζi = µ′

i in
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the conjugate diagram. Then we obtain, using (2.90)

E ≡
∑

i

µ2
i + λ

∑
i<j

(µi − µj)

=
µ1∑

j=1

[
−λζ2

j + (λM + 2j − 1)ζj

]
=λ

∑
j

ζj(M − ζj) −
∑
i<j

(ζi − ζj) + µ1

∑
j

ζj , (4.142)

where we need the specific case λ = 2 in the following.
Since any Young diagram represents only non-negative values of ζi, we

have to make another Galilean transformation to obtain the physical
momentum of spinons. Let us derive the excitation energy for Nsp spinons.
With µM = 0, we have Nsp = µ1 by construction. Then we determine the
proper Galilean shift by requiring the same energy and the same absolute
value of the momentum for the following states:

(a) µi = 0 for i ≥ 2, and
(b) µi = Nsp for i 6= M .

The physical momentum of (b) should have the opposite sign to that of (a).
Defining the physical momentum by µi −Nsp/2, we obtain the same kinetic
energies of (a) and (b), as can be checked easily.

For a general distribution of µi, we obtain the physical kinetic energy by
using the same Galilean shift as

Ekin ≡
∑

i

(
µi −

1
2
Nsp

)2

=
∑

i

µ2
i − NspΠ +

1
4
MN2

sp, (4.143)

where Π =
∑

i µi =
∑

j ζj . We take the difference Ekin−
∑

i µ
2
i also in (4.142)

to obtain the physical energy in the spinon representation. The result is given
by

Ephys ≡ E − NspΠ +
1
4
MN2

sp

= λ
∑

j

ζj(M − ζj) −
∑
i<j

(ζi − ζj) +
1
4
MN2

sp. (4.144)

Note that the last term in (4.142) is cancelled by the Galilean term −NspΠ.
With N and Nsp = N − 2M being fixed, the last term in (4.144) does not
depend on the distribution of spinons.

The forms given by (4.142) and (4.144) conform to the particle–hole
duality in the Sutherland model discussed in Section 2.3.3. Namely, if
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particles have the repulsion λ, holes have the repulsion 1/λ. One needs to
multiply the unit of energy by λ to see the repulsion 1/λ explicitly. The
following remarks are in order concerning (4.144):

(i) The kinetic energy is parabolic, but the coefficient is negative.
(ii) The sign of the interaction is negative.
(iii) By the features (i) and (ii), the statistical interaction between spinons

becomes repulsive, i.e., 1/λ = 1/2.

To understand the last remark, we note that −Ephys/λ takes the same form
as the energy of the Sutherland model, and that the sign reversal of energy
does not change the allowed distribution of momenta. If we had a positive
sign for the parabolic spectrum, the negative interaction of course would
give attractive statistical interaction. In (4.144), we shift the origin of ζj to
M/2 and absorb the last term in the interaction term as follows:

Ephys = λ
∑

j

(
1
4
M2 − ζ2

j

)
+

1
2

∑
i,j

[
1
2
M − (ζi − ζj)

]
. (4.145)

So far we have dealt with FPSG states. By the Yangian symmetry, we
know that replacement of an up spinon with a down spinon with the same
momentum does not change the energy without magnetic field. Hence we
obtain the energy E of the system with arbitrary distribution dkσ of bosonic
spinons with spin σ. Then we obtain (4.140).

By exploiting the Yangian symmetry, we have thus been able to derive
the energy as a functional of up and down spinon distributions. The result of
(4.140) was first obtained by Haldane [78] by analysis of numerical results. In
the two-spinon case, the energy was derived by straightforward calculation
in [25]. Since there is no restriction to the distribution of dkσ, we may regard
the spinon as obeying bosonic statistics with repulsive interaction. In strong
contrast to ordinary interaction, the interaction between bosonic spinons
merely serves to modify the occupation pattern of the rapidity from that of
bosons to semions, and constitutes the statistical interaction.

We shall now make the free-semion nature more explicit. For this purpose
we return to the YHWS and introduce the rapidity pi of a spinon by the
relation

pi = ki +
π

2N

∑
j

sgn(pi − pj) = ki +
π

2N
(Nsp + 1 − 2i), (4.146)

where ki = 2πζi/N is the bosonic momentum. For any magnetization N −
2M > 0 in the thermodynamic limit, the maximum of pi is given by π/2,
which corresponds to i = 1 and ζ1 = M/2. Likewise, the minimum of pi
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is given by −π/2 with i = Nsp and ζN−2M = −M/2. The spinon becomes
gapless at these extremal rapidities pi = ±π/2. Then we obtain from (4.145)
and (4.140)

E(M) = E2(M) +
∑

i

[(π

2

)2
− p2

i

]
, (4.147)

where E2(M) is an M -dependent reference energy. It is then clear that
the spinons with rapidity pi behave as free particles. They obey fractional
exclusion statistics with the repulsion parameter 1/2, as seen from (4.146).

In analogy with the bosonic spinons, we now derive the energy with inclu-
sion of non-YHWS. It is convenient to introduce the distribution function
ρσ(p) of spinons with spin σ by requiring dkσdk = ρσ(p)dp in the thermo-
dynamic limit. By including down spinons for determining the rapidity in
(4.146), we obtain the relationship

dp − dk =
1
2
dkdk =

1
2
ρ(p)dp, (4.148)

where dk = dk↑ + dk↓ and ρ(p) = ρ↑(p) + ρ↓(p). Then the bosonic and
semionic distributions are related as

ρσ(p) = dkσ

(
1 +

1
2
dk

)−1

=
[
1 − 1

2
ρ(p)

]
dkσ. (4.149)

In the ground state with no magnetization, we have ρσ(p) = 0. In this case
the energy is reduced to E0(N/2), defined by (4.18). We can represent the
energy for arbitrary states in terms of ρσ(p). In the language of semionic
spinons, the positive magnetization appears as ρ↑(p) > ρ↓(p) for a finite
range of p. The energy with inclusion of the Zeeman term is represented by

U(h) = E−h(N↑−N↓) = E0

(
N

2

)
+

∑
pσ

[(π

2

)2
− p2 − σh

]
ρσ(p), (4.150)

which applies to any value of magnetization. From this energy functional,
we can derive the thermodynamics of the system. Note that the origin of the
spinon momentum is shifted by π in (4.150). Such a shift does not influence
the thermodynamics, but should be restored properly in considering the
dynamical response, as will be discussed later. Before going on to the case
of finite temperature T , we derive the magnetization at T = 0 as a function
of h > 0. Let us denote by ±ps the critical rapidities where the up spinon
takes zero energy. The condition is given by

ε↑(ps) = (π/2)2 − p2
s − h = 0. (4.151)
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Fig. 4.10. The magnetization of the Haldane–Shastry model at T = 0.
.

The negative energy states are occupied at T = 0 with the semionic dis-
tribution ρ↑(p) = 2. The volume of regions of ε↑(p) < 0 determines the
magnetization mN ≡ N↑ − N↓. We obtain

m = 1 − 2
π

ps = 1 −

√
1 −

(
2
π

)2

h (4.152)

for 0 < h < hc = (π/2)2, and m = 1 for h > hc. Figure 4.10 shows the
magnetization curve. From (4.152) we obtain the relation

2ps = π(1 − m) = vm. (4.153)

The zero-field susceptibility is given by

χm = lim
h→0

∂m/∂h = 2/π2 = 2/(πvm), (4.154)

where the spinon velocity vm is reduced to π at m = 0. If one uses vm = π(1−
m) for finite magnetization, the differential susceptibility is given by (4.154)
for arbitrary magnetization. We note that the differential susceptibility at
h = hc is divergent.

4.10.2 Thermodynamic potential of spinons

For derivation of the thermodynamics of the spin chain, the spinon picture
with semionic statistics provides the most economical framework. Once we
know the statistical parameters, we can construct the thermodynamics ac-
cording to the general scheme of the fractional exclusion statistics. We start
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with the entropy obtained in the bosonic picture as

S =
∑
kσ

[(dkσ + 1) ln(dkσ + 1) − dkσ ln dkσ]. (4.155)

It is possible to rewrite (4.155) as the entropy of semionic spinons. For this
purpose we use the distribution function ρσ(p) that describes the semionic
spinons. Complementary to ρσ(p), we introduce a function ρ∗σ(p) which gives
the distribution of dual particles of spinons, namely antispinons or magnons.
In the case of finite magnetization, ρ∗↑(p) describes excitation from the con-
densate of spinons. By definition of the available orbitals in the narrow range
∆p or ∆k we obtain

∆Dσ

∆Nσ
=

ρ∗σ(p)∆p

ρσ(p)∆p
=

∆k

dkσ∆k
, (4.156)

where the last equality follows from the fact that the available states of
bosons remain constant independent of the particle occupation. Then we
obtain another form of the entropy

S =
∑
pσ

[(ρσ + ρ∗σ) ln (ρσ + ρ∗σ) − ρσ ln ρσ − ρ∗σ ln ρ∗σ] , (4.157)

where we have used dkσdk = ρσ(p)dp. On the other hand, using (4.149) and
(4.156) we obtain

ρ∗σ(p) = 1 − 1
2

∑
α

ρα(p), (4.158)

which corresponds to the semionic exclusion statistics with the exclusion
parameter gσα = 1/2 for all combinations σ, α of spins. This is consistent
with the state counting in terms of spinons that leads to (4.139). While the
state counting was performed for all the states with various momenta, the
same exclusion parameter follows for a range of states with given momentum
in the thermodynamic limit. The form of (4.157) confirms the interpreta-
tion that the entropy is given by particles obeying the fractional exclusion
statistics.

We write the spectrum of a spinon in a magnetic field as

εσ(p) = (π/2)2 − p2 − σh = ε0(p) − σh, (4.159)

where it is understood that σ =↑, ↓ for the suffix, and σ = ±1 on the RHS.
Without a magnetic field, ε0(p) describes the spinon spectrum. While p runs
from −π/2 to π/2 without a magnetic field, only the part with ε↑(p) > 0
is meaningful with h > 0. Therefore, the spinons can exist only for |p| <

psn = π(1 − m)/2, where m is the magnetization given by (4.152). On the
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other hand, the spectrum ε↓(p) has a gap 2h at p = ps. Note that the down
spinons have the same restriction for the momentum range because of the
Yangian symmetry. The up–down symmetry in the spinon energy is most
clearly seen in (4.131).

According to the free-particle picture with semionic statistics, the energy
of the system with inclusion of the Zeeman term is given by

U(h) =
∑

p

[ε↑(p)ρ↑(p) + ε↓(p)ρ↓(p)] . (4.160)

Then the thermodynamic potential is given by Ω(T, h) = U(h)−TS. The dis-
tribution function is determined by the variational condition δΩ/δρσ(p) = 0.
As a result, we obtain for each p the relation

βεσ = ln (1 + wσ) − 1
2

∑
ν

ln
(
1 + w−1

ν

)
(4.161)

with β = 1/T and wσ ≡ ρ∗σ/ρσ.
Then the thermodynamic potential takes the simple form

Ω = −T
∑
pσ

ln
[
1 + wσ(p)−1

]
. (4.162)

Without a magnetic field, we obviously have ρ↑(p) = ρ↓(p). Then (4.158) is
reduced to

ρ∗σ(p) = 1 − ρσ(p), (4.163)

which gives nothing but the Fermi statistics. Thus we obtain wσ(p) =
exp[ε0(p)/T ] for h = 0, and the free-fermion form for Ω from (4.162). The
reason why the free fermions appear without h is that a pair of semions
decreases the available number of states by just one, and hence they act
as fermions. It is instructive to compare the situation with the XY chain
where the thermodynamics is also described by free fermions with the spec-
trum εk = J cos k. The energy εk takes both positive and negative values,
while ε0(p) can only be positive. The positiveness means that the number of
fermions goes to zero as the temperature approaches absolute zero. Hence
there is no Fermi sea in the Haldane–Shastry spin chain.

At h = 0 the entropy is written in the form

S = 2
∑

p

[ln (2 cosh xp) − xp tanhxp], (4.164)

where xp = βJε0(p)/4 with J = 2. Note that the entropy is an even function
of xp, which is a general property of ideal fermions. In our case, this means
an unexpected symmetry that the ferromagnetic Haldane–Shastry model
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has the same entropy as that of the antiferromagnetic case. With J < 0
in the Haldane–Shastry model, the ground state is completely polarized. In
counting the entropy, however, we should consider all possible polarizations
in the ground state as well as excited states. Then we have zero polarization
on average, even in the ferromagnetic system at T 6= 0. Magnons can then
be described as antispinon excitations out of the condensate of up and down
spinons with equal numbers. Because of (4.163), the magnons also obey the
fermionic exclusion statistics as dual particles of spinons. In fact, the spec-
trum of ferromagnetic magnons in the p-space is the same as that of spinons
in the antiferromagnetic system. We emphasize again that the symmetry
between ferro- and antiferromagnetic systems applies only with h = 0.

4.10.3 Susceptibility and specific heat

We now derive the susceptibility and specific heat at low temperatures. By
inserting an explicit expression for εσ in (4.161), we obtain

wσ(p) = e−β[ε0(p)+σh]
[√

γ(p)2 + 1 + σγ(p)
]
, (4.165)

where γ(p) = exp[−βε0(p)] sinh βh. Then we can derive ρσ(p) by using
(4.149). The magnetization m = n↑ − n↓ per site is given by

m =
∫ π/2

−π/2

dp

2π
[ρ↑(p) − ρ↓(p)] . (4.166)

For small h > 0, ε↑(p) becomes negative near p = ±π/2. This implies con-
densation of up spinons, and leads to finite magnetization. With h > 0, a gap
develops for creating a down spinon, and an excitation from the condensate
constitutes an antiparticle. In Section 4.7.2, we have called this antiparticle
an antispinon [121].

Let us derive the magnetization at low temperature T . We can safely set
ρ↓(p) = 0 for all p. The other component ρ↑(p) is derived using
(4.149) as

ρ↑(p) =
2√

4 exp[2βε↑(p)] + 1
, (4.167)

which tends to 2 for ε↑ < 0 and 0 otherwise. By comparing this with
(2.159) in Chapter 2, we see that the distribution corresponds to the single-
component fractional exclusion statistics with the statistical parameter 1/2.
The differential susceptibility is derived by expanding ρ↑ near the zero



204 Spin chain with 1/r2 interactions

energy. For this purpose we introduce the Sommerfeld-type expansion with
coefficients

In ≡
∫ ∞

−∞
dε

(
−

∂ρ↑
∂ε

)
εn. (4.168)

These are calculated to be

I0 = 1, I1 = 0, I2 = 2π2T 2/3, I3 = 12ζ(3)T 3,

with ζ(x) being the zeta function. We make an expansion near ε↑(ps) = 0 as

p(ε) ' ps + ε/ps − ε2/(2p3
s ) + ε3/(2p5

s ). (4.169)

Then we obtain

∂m

∂h
≡ χm(m) =

2
π2(1 − m)

[
1 +

2T 2

3π2(1 − m)4

]
+ O(T 3). (4.170)

If we take the limit of zero magnetic field first, i.e., h/T ¿ 1, we obtain

ρ↑(p) − ρ↓(p) = 4βh exp [−βε0(p)] , (4.171)

from (4.165) and (4.149). Alternatively, we start from the bosonic distribu-
tion dkσ, and take the limit h → 0 to obtain

χm =
1
N

∑
kσ

σ
∂

∂h
dkσ = 4β

∫ π/2

−π/2

dp

2π

ρσ(p)
1 − ρσ(p)

, (4.172)

where we have used ∂dkσ/∂h = βσdkσ(1 + dkσ), and (4.149). Since ρσ(p)
at h = 0 obeys the fermionic distribution, we obtain ρσ(p)/[1 − ρσ(p)] =
exp [−βε0(p)] in consistency with (4.171). The susceptibility is derived as

χm =
2
π2

(
1 +

2
π2

T

)
+ O(T 2), (4.173)

which has the leading correction of O(T ) in contrast to (4.170). The differ-
ence comes from the p-linear spinon spectrum near p = ±π/2. The suscep-
tibility in the limit T → 0 is consistent with (4.154).

The entropy or specific heat at low temperature can be derived for arbi-
trary magnetization. We start with the entropy given by (4.157), and ob-
serve that ρ↑ is given by (4.167) and ρ↓ = 0. Then changing the integration
variable to ε↑, we obtain the low-temperature expansion by the Sommerfeld-
type formula. The leading contribution is given by S/N ' πT/(6ps), with
ps = π(1 − m)/2 as given by (4.152). We can rewrite the result as

S

N
' T

3(1 − m)
=

π2

6
Tχm ≡ γT, (4.174)
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which is consistent with the specific heat of a Tomonaga–Luttinger liquid.
In the opposite limit of high T , we may neglect the p-dependence of ρα(p).
Then for fixed nσ we recover the result corresponding to local moments,

S = −N
∑

σ

nσ lnnσ.

The numerical results on specific heat and susceptibility for a general tem-
perature will be presented in Chapter 6, together with the case of a finite
number of holes.

The thermodynamic quantities thus derived are functions of temperature
without logarithmic singularity. This feature is in contrast to those in the
Heisenberg model with the nearest-neighbor interaction. It is known that
the susceptibility increases in a singular manner as the temperature becomes
nonzero [54,179]. The simpler behavior of the 1/r2 exchange model reflects
the fact that the model represents the fixed point of the Tomonaga–Luttinger
liquid.

In Section 4.10.4, we discuss an alternative method to derive the thermo-
dynamics by using the freezing trick.

4.10.4 *Thermodynamics by freezing trick

It is instructive to derive the thermodynamics by an alternative picture us-
ing the freezing trick. We work with Htot in (4.128). In order to extract
the physical results, we have to remove the phonon contribution. We in-
troduce a variable k = 2πκ/N that corresponds to a wave number. In the
thermodynamic limit N → ∞, the energy is rewritten as

1
N

Etot =
1
8π

∫ ∞

−∞
dk

∫ ∞

−∞
dk′ ∣∣k − k′∣∣ ν[k]ν[k′], (4.175)

with ν[k] = ν(κ). Since each microscopic eigenstate is uniquely characterized
by the momentum distribution functions {νσ(κ)}, the entropy stot per site
has the same form as that of the U(2) free fermion system:

stot = − 1
2π

∫ ∞

−∞
dk

∑
σ

[(1 − νσ) ln (1 − νσ) + νσ ln νσ] .

The density of each spin component is given by

nσ =
1
2π

∫ ∞

−∞
dkνσ[k]. (4.176)
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From (4.175), (4.176), and (4.176), we obtain the thermodynamic potential

Ωtot({ν}) = Etot ({ν}) − NTstot ({ν}) − N
∑

σ

µσnσ ({ν}) . (4.177)

The equilibrium conditions δΩtot/δνσ = 0 yield the equilibrium momentum
distribution functions

νσ[k] =
1

exp [(ε(k) − µσ) /T ] + 1
, (4.178)

where we have introduced the one-particle energy ε(k) defined by

ε(k) =
2π

N

δEtot({νκ})
δν(κ)

=
1
2

∫ ∞

−∞
dk′ ∣∣k − k′∣∣ ν[k′]. (4.179)

(4.179) with (4.178) gives a functional equation for ε(k). Substituting the
resultant expression for ε(k) into (4.175)–(4.177), we can obtain thermody-
namic quantities for Htot.

In order to derive the thermodynamics of the spin chain described by HHS,
we have to subtract the phonon contribution. For this purpose we introduce
a new variable p(k) defined as

p(k) ≡ ∂ε(k)
∂k

=
1
2

∫ ∞

−∞
dk′sgn

(
k − k′) ν[k′], (4.180)

which corresponds to rapidity of holes. The boundary condition is given by

p(k = ±∞) = ±π, (4.181)

which is obtained from (4.180) by noting that∫ ∞

−∞
dk ν[k] = 2π. (4.182)

The range of p being [−π, π] shows its character as the crystal momentum.
It could be taken as [0, 2π] if one adopted an alternative boundary condition:
p(k = −∞) = 0. Thus the origin of p can be shifted freely for convenience,
while the range 2π is fixed.

We shall now rewrite the thermodynamic quantities in terms of p. First
we shall obtain ε(k) as a function of p, namely ε(k(p)) = εp. Differentiation
of (4.180) with respect to k gives

∂p(k)
∂k

= ν[k] = νp, (4.183)

where we have introduced the notation νp to emphasize the dependence on p.
Hence we can use the relation dk = dp/νp to change the integration variable
from k to p.
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By multiplying both sides of (4.183) by p(k) and integrating from k to ∞,
we obtain the following relation:

(π2 − p2)/2 ≡ ω0(p) = −T
∑

σ

ln(1 − νpσ), (4.184)

where νpσ is equal to the Fermi function given by (4.178), and we have used
the property pdk = dε(k). We can obtain νpσ as a function of p by using
(4.184). Let us first study the simplest case µ↑ = µ↓, i.e., without a magnetic
field. We obtain from (4.184)

νpσ = νp/2 = 1 − exp[−βω0(p)/2]. (4.185)

The phonon part of the distribution function is obtained by regarding νp

as a single component. We obtain νp = 1 − exp(−βω0(p)) from (4.184) by
omitting the σ summation. The corresponding entropy is given by

Sph = N

∫ π

−π

dp

2π

[
βω0(p)

exp(βω0(p)) − 1
− ln(1 − e−βω0(p))

]
, (4.186)

where we have used (4.183) to change the integral variable from k to p in the
spinless version of (4.176). By using the variable p we deal with excitations
described by ω0(p), instead of dealing with N particles. Namely, we deal
with hole excitations with the range of momentum limited by the size of
the system. This entropy takes the form of a difference between the internal
energy and the thermodynamic potential of free bosons with energy ω0(p)
and chemical potential zero. By shifting the origin of p by π in ω0(p), we
interpret Sph as the entropy of phonons. More explicitly, we obtain

Ωph(T ) = −N

∫ T

0
dT ′ Sph(T ′) = NT

∫ π

−π

dp

2π
ln[1−exp(−βω0(p))], (4.187)

which corresponds to the thermodynamic potential of free bosons with the
spectrum ω0(p). The thermodynamic potential Ωtot can be derived in a
similar manner. Without a magnetic field, µ↑ = µ↓, the only difference from
the phonon case is that ω0(p) is replaced by ω0(p)/2 as a result of spin
summation in (4.184). The result is given by

Ωtot(T ) = NT

∫ π

−π

dp

2π
ln[1 − exp(−βω0(p)/2)]. (4.188)

Hence we obtain the desired quantity ΩS of the spin chain:

ΩS(T ) = Ωtot(T )−Ωph(T ) = −NT

∫ π

−π

dp

2π
ln[1+exp(−βω0(p)/2)]. (4.189)
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It can easily be seen that the result of ΩS(T ) is equivalent to (4.162) with
h = 0 by the change p → p/2 of the momentum scale.

With a finite magnetic field, the distribution function becomes more com-
plicated. Using the relation

ν−1
p↑ − 1 = exp(−2βh)[ν−1

p↓ − 1] (4.190)

for the Fermi function, we can eliminate νp↑ in (4.184) to obtain the equation
for νp↓. The resultant quadratic equation is solved to give

νpσ = 1 − e−β(ω0(p)/2+σh)
(√

γ2 + 1 + σγ
)

, (4.191)

where γ = exp[−βω0(p)/2] sinhβh. Given the explicit form of the distribu-
tion function, we can obtain thermodynamic quantities. For example, mag-
netization is derived by the formula

m =
1
N

∑
k

(ν↑[k] − ν↓[k]) =
1
N

∑
p

νp↑ − νp↓
νp↑ + νp↓

, (4.192)

which leads to the same result as that using the semionic statistics. In the
present treatment, νpσ describes hole excitations with U(2) symmetry.

4.11 Dynamical structure factor

4.11.1 Brief survey on dynamical theory

The dynamics of spin chains has been studied for a long time, and much
attention has been paid to the antiferromagnetic Heisenberg model, or its
variants. The quantity of central importance is the dynamical structure fac-
tor. At zero temperature it is defined with the spin component α, β = x, y, z

by

Sαβ(q, ω) =
∑

ν

〈0|Sα
q |ν〉〈ν|S

β
−q|0〉δ(ω − Eν + E0), (4.193)

where |ν〉 denotes an eigenstate of the Hamiltonian with energy Eν (E0

being the ground energy). The Fourier transform Sα
q is given by

Sα
q =

1√
N

∑
l

Sα
l e−iql, (4.194)

in terms of the spin at site l.
An important contribution was made by des Cloizeaux and Pearson [42],

who derived the lowest branch of the spin 1 excitation from the singlet
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ground state. The dispersion relation is derived as

ωq =
π

2
J sin q, (4.195)

where J is the nearest-neighbor exchange, and the lattice constant is taken
to be unity. They used the Bethe ansatz theory to derive the results. At
that time the difference from the spin-wave spectrum [3], which arises from
the Néel ordered state, was emphasized. However, the continuum nature of
excitations was not noticed.

It was then recognized [196] that the des Cloizeaux–Pearson mode is the
lower bound of the continuum spin excitations. This feature is shared with
the spectrum of the XY chain, which permits an exact solution to be ob-
tained easily by the Jordan–Wigner transformation. Let us briefly review
the solution. We introduce fermion creation and annihilation operators ψ†

i

and ψi at each site i as

Sz
i = ψ†

i ψi − 1/2 = ni − 1/2, (4.196)

S−
i = Sx

i − iSy
i = ψi exp

iπ
i−1∑
j=1

nj

 , (4.197)

where the site index begins at i = 1 on the leftmost side of the system, and
ends at i = N on the rightmost. Let us consider the Hamiltonian called the
XXZ model

H = J
∑

i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + ∆Sz

i Sz
i+1

)
, (4.198)

with the anisotropy parameter ∆. The limit ∆ = 0 is called the one-
dimensional XX model or, less precisely, the XY chain. The Heisenberg
model corresponds to ∆ = 1, and the Ising model to ∆ = ∞. In terms of
the Jordan–Wigner fermions, (4.198) is written as

H =
J

2

∑
i

[
ψ†

i ψi+1 + ψ†
i+1ψi + 2∆

(
ni −

1
2

)(
ni+1 −

1
2

)]
. (4.199)

The XY chain with ∆ = 0 is thus equivalent to spinless free fermions
with the spectrum εk = J cos k for −π < k ≤ π. The ground state has N/2
fermions with the Fermi wave number kF = π/2. The z-component of the
dynamical spin structure factor of the XY chain is obtained as the charge
structure factor of the Jordan–Wigner fermions [106,145]. The result is given
by

Szz(q, ω) =
∑

k

[f(εk) − f(εk+q)]δ(ω + εk − εk+q), (4.200)
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Szz(q, ω)q 0

ω

Fig. 4.11. The finite spectral region (support) of Szz(q, ω) in the XY chain, and a
schematic view of the spectral intensity at q = π/2.

.

where f(εk) is the Fermi function. This result is actually exact even at finite
temperatures. (4.200) shows that the spin excitation spectrum involves two
elementary excitations. This is in strong contrast to the Néel state, which
involves only a single mode in the spin wave theory. We obtain from (4.200)
at zero temperature

Szz(q, ω) =
θ(ω − ωL(q))θ(ωU(q) − ω)

2π
√

ωU(q)2 − ω2
, (4.201)

where θ(x) is the step function. The lower bound ωL(q) and the upper bound
ωU(q) are given by

ωL(q) = J | sin q|, ωU(q) = 2J sin(q/2), (4.202)

for 0 ≤ q ≤ 2π.
The lower bound ωL(q) happens to be the same as the spin-wave result

for the Heisenberg chain [3]. Figure 4.11 illustrates the spectrum. With fixed
q, the spectral intensity Szz(q, ω) as a function of ω rises stepwise from the
lower bound, and diverges with the exponent 1/2 in the upper bound. This
feature differs very much from the isotropic Heisenberg chain.

For ∆ 6= 0, it is difficult to derive the dynamics of the XXZ chain.
Theoretical development up to 1981 was summarized by Müller et al. [136].
Performing numerical diagonalization of the Heisenberg chain (∆ = 1) for
a finite size, and using the Bethe ansatz results, Müller et al. proposed an
approximate formula [136]

S(q, ω) =
Aθ(ω − ωL(q))θ(ωU(q) − ω)√

ω2 − ωL(q)2
, (4.203)
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where A is a constant and the component index has been removed since
S(q, ω) is a scalar. According to exact information on S(q, ω) available now,
the intensity vanishes continuously at the upper threshold with the expo-
nent 1/2 [30]. We shall show later that the above formula, though approx-
imate for the Heisenberg chain, is in fact exact for the Haldane–Shastry
model provided one uses modified functions for the thresholds ωL(q) and
ωU(q).

The nature of the elementary excitations in the Heisenberg chain was
studied by Faddeev and Takhtajan [55], who showed that the spin 1/2 exci-
tation, which is now called the spinon, plays a fundamental role in dynamics.
The exact derivation of the dynamical structure factor for the Heisenberg
model is a difficult task, partly because the two-spinon contribution does not
exhaust the whole intensity. The two-spinon part was derived in [30], and
more recently in [96,112] in a magnetic field. In the Haldane–Shastry model,
on the other hand, the spectrum is exhausted by the two-spinon contri-
bution. Haldane and Zirnbauer [81, 200] derived the first exact dynamical
results for lattice spin systems by using a sophisticated method. We shall
derive the dynamics of the spin chain in an elementary fashion, as presented
below.

4.11.2 Exact analytic results

Because of the rotational invariance, Sαβ(q, ω) is diagonal in the component
indices α, β and does not depend on them. Then it is most convenient to
work with the spin-flip component generated by

S+
q =

1√
N

N∑
l=1

exp(−iql)(Sx
l + iSy

l ) (4.204)

and its conjugate. The flip of a down spin corresponds to annihilation of a
hard-core boson, as seen in (4.106). In other words, the action of Sx

l +iSy
l on

the ground state ΨG, given by (4.13), is conveniently represented in terms of
another ground-state wave function ΨG− with N/2− 1 down-spin electrons
as seen from (4.100). Namely, the spin-flip creates two spinons at the same
site z0:

(Sx
0 + iSy

0 )ΨG = Ψ2s({z}; z0, z0) = z0

N/2−1∏
i=1

(zi − z0)2ΨG−. (4.205)

We have thus obtained the explicit form of the wave function of the final
state after the spin-flip. The form of the final state shows clearly that the
two-spinon contribution exhausts the dynamical structure factor.
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The final state is a superposition of eigenfunctions of (4.16). Namely, we
can represent Ψ2s({z}; z0, z0) in terms of the Jack polynomial, which forms
the complete eigenbasis for the Sutherland model. Taking z0 = 1 without
loss of generality, we perform the following expansion:

N/2−1∏
i=1

(zi − 1)2ΨG− =
∑

µ

bµΨµ, (4.206)

where Ψµ is an eigenfunction given by

Ψµ(z) = Jµ(z)ΨG−(z) exp [iθµ(z)] , (4.207)

in terms of the Jack polynomial Jµ(z), and a phase factor to account for
the Galilean shift of the total momentum. The coefficient bµ is called the
binomial expansion coefficient, and is given by

bµ =
∏

s∈D(µ)

−a′(s)/λ + l′(s) + 1
(a(s) + 1)/λ + l(s)

, (4.208)

which is the same as (2.227) with λ = 2.
We then obtain

S−+(q, ω) =
1
2
N

′∑
µ

δ(ω − ωµ)|bµ|2
〈Ψµ,Ψµ〉0
〈ΨG,ΨG〉0

, (4.209)

where the prime means restriction of the summation over µ so as to satisfy
the momentum conservation. Namely, the state µ has the excitation energy
ων as given by ωµ = Eµ−E0, and the momentum q. As discussed in Chapter
2, the inner product 〈f, g〉0 is defined as the constant term in the Laurent
expansion of f(z)∗g(z).

The above expansion is the same as the one that we found for the hole
propagator in the Sutherland model. Therefore we can immediately utilize
the mathematical results obtained there. It is important, however, to rec-
ognize that the maximum power of zi should be less than the size N of the
lattice system. This is automatically satisfied in the present case since the
spin-flip does not increase the power of each zi. Equivalently, the excited
states created by the spin-flip belong to the YHWS with S = Sz = 1.

For a finite size of the system, bν has a complicated and unappealing form.
In the thermodynamic limit, however, the result simplifies dramatically. Fol-
lowing the same procedure as discussed in detail in Section 2.7.1, we obtain
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the dynamical structure factor S(q, ω) = S−+(q, ω)/2 as follows:

S(q, ω) =
∫ π

0
dq1

∫ π

0
dq2 F2s(q1, q2)δ(q − q1 − q2)δ(ω − εs(q1) − εs(q2)),

(4.210)
where F2s(q1, q2) is the square of the form factor given by

F2s(q1, q2) =
1
4
|q1 − q2|2gs

2∏
i=1

εs(qi)gs−1, (4.211)

with gs = 1/2. This gs corresponds to the semionic statistical parameter
of spinons. By proper shift of the momentum, the form factor agrees with
the form (2.203) obtained for the hole propagator in the Sutherland model,
which gives rise to ideal particles with fractional exclusion statistics.

(4.210) involves two spinons, instead of two Jordan–Wigner fermions in
the XY chain, each of which has the spectrum

εs(q) =
1
2
Jq(π − q) (4.212)

with 0 ≤ q ≤ π. We have taken J = 2 in the previous discussion. Note that
spinons have the momentum span π which is half the size of the Brillouin
zone. For the momentum q outside this range, εs(q) is defined by requiring
the periodicity of π. Due care must be taken as to the origin of the momen-
tum. In mapping to the Sutherland model, we have shifted the origin by π

which gives the bottom of the parabolic spectrum. Creation of a magnon
at the bottom corresponds to the creation of two spinons, each of which
has the momentum q = π/2, being consistent with (4.212). On the other
hand, the origin of momentum is not important in thermodynamics, and
the alternative spectrum ε0(p) = (π/2)2 − p2 proves to be more convenient
for spinons. Both forms are simply related by the shift in the momentum
p = q − π/2.

The integral in (4.210) can be performed analytically. As a result we obtain
for 0 ≤ q ≤ π

S(q, ω) =
θ(ω − εs(q))θ(2εs(q/2) − ω)
4
√

ω − εs(q)
√

ω − ε+(q)
, (4.213)

where we have introduced the notation ε+(q) = (2π − q)(q − π). For π <

q < 2π, we have the relation S(q, ω) = S(2π − q, ω). It is seen that (4.213)
is rather similar to (4.203). The boundaries of the spectrum are obtained by
replacement of the dispersion ωL(q) by εs(q) for 0 ≤ q ≤ π, and ωU(q) by
2εs(q/2). The lower threshold comes from two-spinon excitations in which
one spinon has momentum q and the other has zero or π. In the upper
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Fig. 4.12. The finite spectral region (support) of S(q, ω) in the Haldane–Shastry
chain, and a schematic view of the spectral intensity at q = π/2.

.

threshold, two spinons move with the same momentum q/2. For each mo-
mentum q, in general two spinons have energies between these two extremes,
and constitute the continuum. Figure 4.12 illustrates the feature schemat-
ically. The intensity S(q, ω) given by (4.213) has a stepwise singularity
at the upper threshold, and diverges at the lower threshold with the ex-
ponent 1/2.

Let us examine how the divergence of S(q, ω) in the lower threshold in
the Haldane–Shastry model comes about. It is instructive to compare it with
Szz(q, ω) in the XY chain given by (4.201). In the latter case, the divergence
is at the upper threshold, and comes from the cosine band spectrum of the
Jordan–Wigner fermions. Suppose one introduces the z-component J∆ of
the exchange interaction, and increases ∆ from zero in the XY limit to
one in the Heisenberg limit. In terms of the Jordan–Wigner fermions, J∆
describes the repulsive interaction between fermions because of the corre-
spondence 2Sz

i = 1 − 2ni, where ni is the fermion number operator at site
i. The repulsive interaction works as an effective attractive interaction for
the particle–hole excitation, just like excitons in semiconductors. Hence the
large weight near the lower threshold is interpreted as a kind of exciton-like
resonance. One can also make an analogy with the X-ray threshold singu-
larity where divergent intensity appears in the presence of the electron–hole
attraction [128].

With small enough ∆, one may expect a divergent spectrum at both the
upper and lower thresholds: the former comes from the cosine-band spec-
trum, and the latter from the particle–hole attraction. This feature has in-
deed been derived [157] using the Bethe ansatz and the so-called determinant
representation [112]. In the isotropic limit ∆ = 1, the divergence in the upper
edge is completely suppressed [98]. In the particle–hole excitation picture for
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the Jordan–Wigner fermions, the suppression of the singularity is interpreted
as a result of effective repulsive interactions. Although the particle–hole in-
teraction always has a negative sign, the effective interaction near the upper
end of the spectrum becomes repulsive because of the negative effective
masses of Jordan–Wigner fermions in the relevant momentum range.

Now we take the spinon picture to interpret the behavior of S(q, ω) of
the Haldane–Shastry model. In thermodynamics the spinons are regarded
as non-interacting particles obeying semionic statistics. However, spinons
have a repulsive statistical interaction according to the definition of the
statistical interaction where free bosons are taken as the reference. This
statistical interaction may be distinguished from the ordinary interaction,
which in general leads to a momentum dependence in the phase shift for the
two-particle scattering matrix [53].

In dynamics, on the other hand, statistical interaction and the ordinary
interaction both cause deviation of the form factor from unity. The semionic
repulsion gs = 1/2 between the spinons appears explicitly as the factor
|q1 − q2|2gs in (4.211), which suppresses the divergent intensity in the upper
threshold of S(q, ω). On the other hand, the divergence of S(q, ω) in the
lower threshold comes from the factor εs(qi)gs−1 in (4.211). Namely, the
semionic statistics gs = 1/2 together with the gapless spectrum of spinons is
responsible for the divergence. Some conflicting viewpoints in the literature
[25, 70] about the effective interaction between spinons seem to be resolved
by the interpretation described above.

4.11.3 Dynamics in magnetic field

In the presence of a magnetic field, the system loses the SU(2) symmetry.
Consequently, dynamical structure factors Sαβ(q, ω) as defined by (4.193)
depend on the components α, β. Among these components, we can derive
S−+(q, ω) analytically since all relevant excited states |ν〉 contributing to
〈ν|Sβ

−q|0〉 belong to the YHWS. Other components S+−(q, ω) and Szz(q, ω)
contain excited states out of the YHWS, and it is difficult to obtain these
components analytically, and only numerical results are available [156,181].
However, the mapping to the Sutherland model gives a part of the intensity
coming from the YHWS. The excitation contents involved in the YHWS
part helps us to understand the numerical results.

We shall now present the available analytic and numerical results for
a finite-sized system. In the numerical study [181] it is argued that the
maximum number of quasi-particles is at most four: two spinons and two
antispinons.
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Two-spinon creation in S−+(q, ω)

Let us begin with the simplest case of S−+(q, ω). In the presence of M(<
N/2) magnons in the ground state, the spin-flip S+

i annihilates a magnon
with spin down. Equivalently, the spin-flip creates two spinons with spin up.
The final state can be represented in the same way as in (4.206), with N/2
replaced by M . The result for S−+(q, ω) in the thermodynamic limit is given
for 0 < q < 2π and ω > 0 by

S−+(q, ω) =
Θ (εU(p) − ω)Θ (ω − εL−(p)) Θ (ω − εL+(p))

2
√

(ω − εL−(p)) (ω − εL+(p))
, (4.214)

where Θ(ω) is the step function to give the bounds of the support. We have
used the variable p = q − π to make explicit the reflection symmetry about
q = π. The upper bound is given by

εU(p) = 2p2
s − p2/2 = 2ε↑(p/2), (4.215)

where the up-spinon energy has appeared. The lower bounds are given by

εL±(p) = −p(p ∓ qm), (4.216)

which is just the spectrum of an up spinon with the momentum shifted by
∓qm/2 = ∓πm/2. The shift is due to another spinon with zero energy. In the
zero-polarization limit (m = 0), S−+(q, ω) given by (4.214) indeed reduces
to 2S(q, ω) given by (4.213). Note that both the upper and lower thresholds
are determined by the spectrum of up spinons. Figure 4.13(a) shows the
results for a finite-sized system with N = 16 and m = 0.25. The threshold
momentum q = qm ≡ mπ corresponds to twice the minimum momentum of
up spinons.

Density response of magnons in Szz(q, ω)

The component Szz(q, ω) gives the dynamical structure factor of magnons.
A part of the spectrum can be obtained by mapping to the Sutherland model
together with the freezing trick [7]. However, there are no analytical results
available for the whole spectrum. Figure 4.13(b) shows numerical results for
N = 16 and m = 0.25 [156]. The upper and lower thresholds of the spectrum
are easily identified. Namely, the upper threshold labeled A near q = 0 is
given by the antispinon s̄R with the boundary q(q + vm), where two spinons
with zero energy provide the momentum shift 2π − πm, which gives the
zero energy of s̄R. On the other hand, the lower threshold labeled B is given
by the up spinon where the momentum shift πm is compensated by the
zero-energy antispinon. The difference from the Sutherland model appears
to be due to the periodicity 2π in the antispinon spectrum. Namely, at the
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Fig. 4.13. Numerical results of dynamical structure factor (a) S−+(q, ω), (b)
Szz(q, ω), and (c) S+−(q, ω) with N = 16 and m = 0.25 [156]. The intensity is
proportional to the area of each circle. The solid lines are determined by dispersion
relations of the elementary excitations in the thermodynamic limit.

momentum 0 or 2π of the antispinon as shown in Fig. 4.3, a cusp appears in
the spectrum. Correspondingly, new threshold singularities arise in Sαβ(q, ω)
that are absent in the Sutherland model. An example is seen at the meeting
point of the curves A and D, where the antispinon s̄R reaches q = 2π. Other
dispersion curves like C and D in Fig. 4.13(b) are determined by proper
combination of up spinons and an antispinon. It is found by numerical work
that at most one antispinon and two spinons are involved in the spectrum
[181]. This restriction of the excitation contents agrees with the density
spectrum of the Sutherland model with the coupling parameter λ = 2, where
an antispinon corresponds to a particle and a spinon to a hole.

Antispinon creation in S+−(q, ω)

The action S−
i on the ground state corresponds to the creation of a down-

spin magnon, i.e., an antispinon. Equivalently, S−
i annihilates two spinons

with spin up in the condensate. The analytic expression of S+−(q, ω) has
not yet been derived. Figure 4.13(c) shows numerical results of S+−(q, ω) for
N = 16 and m = 0.25 [156]. An analytical solution is possible for such part of
the final states as belongs to the YHWS by mapping to the Sutherland model
with the coupling parameter λ = 2. Within the YHWS, the right (s̄R) or left
(s̄L) antispinon with the spin component Sz = −1 corresponds to a particle,
and the up spinon to a hole as illustrated in Fig. 4.3. Then the addition of
s̄L,R can accompany the excitations of s̄R,L + 2s in the YHWS [160]. The
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situation corresponds to the particle propagator in the Sutherland model
discussed in Section 2.6.2.

The antispinon takes zero energy at q = qm = πm for s̄L and q = 2π−qm =
π + 2ps for s̄R. Hence the support for S+−(q, ω) begins from zero energy at
q = ±qm. To the right of q = qm the singularities of the spectrum consist
of dispersion curves of s̄R + 2s. To the left of q = qm the lower threshold
follows the dispersion of s̄L down to q = 0, where the excitation energy 2h

is required. Here the difference from the Sutherland model appears because
of the periodicity 2π of the antispinon spectrum. As a result, above ω = 2h

near q = 0, the singularities of the spectrum again consist of dispersion
curves of s̄R + 2s.
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Fig. 4.14. Neutron scattering intensity from CuCl2·2N(C5D5) for two values of
reduced wave number q∗ = q/(2π) at various temperatures [52]. Copyright (1974)
by the American Physical Society. Reproduced with permission. The exchange J is
estimated to be 6.7K.
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Table 4.1. Maximum contents of quasi-particles for Sαβ(q, ω).
The subscripts R and L indicate the branches of antispinons.

S−+(q, ω) 2s
S+−(q, ω) 2s + s̄R + s̄L

Szz(q, ω) 2s + s̄R, 2s + s̄L

Table 4.1 summarizes the excitation contents relevant to the dynamical
structure factor in a magnetic field.

4.11.4 Comments on experimental results

The first neutron scattering experiment to probe the dynamics of quasi-
one-dimensional spin systems was carried out for CuCl2·2N(C5D5) [52]. The
spectral function for each q has asymmetric shape, as shown in Fig. 4.14.

The peak corresponds to the lower threshold, the des Cloizeaux–Pearson
mode, and the asymmetry reflects the continuum above the threshold.

More recently, a detailed excitation spectrum of quasi-one-dimensional
spin systems has been measured by many groups. Among others, we mention
the result for KCuF3 [185], CuGeO3 [5], Yb4As3 [116], and copper pyrazine
dinitrate (CuPzN) [170]. For CuPzN, good agreement is found with the two-
spinon contribution derived theoretically for the nearest-neighbor Heisen-
berg chain [30]. The spectrum in a magnetic field has also been measured
for CuPzN [170], and compared with numerical results for the Heisenberg
chain.
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SU(K) spin chain

As an extension of the Haldane–Shastry spin chain, this chapter discusses
the SU(K) spin chain where K denotes the number of internal degrees of
freedom, referred to as color. The coordinate representation is also possible
in this case, provided we choose the reference state to be fully polarized to
one of the components. In Section 5.1 we derive the ground state by mapping
to the U(K−1) Sutherland model. Then the spectrum is discussed by use of
the ribbon diagram and the motif, both of which respect the SU(K) Yangian
symmetry.

The elementary excitations in the system have a rather subtle feature:
they have different statistical parameters in thermodynamics gαβ and dy-
namics g̃αβ , where α and β denote color components. In Section 5.3, we
discuss thermodynamics by using the freezing trick, and derive the statis-
tical parameters. It turns out for K = 2 that the off-diagonal component
acquires extra repulsion when starting from the U(2) Sutherland model with
infinite repulsion. As a result we have gαβ = 1 − 1/K = 1/2, which is inde-
pendent of spin indices, consistent with the argument in Section 4.9.3. In the
unpolarized case, the resultant thermodynamic potential can be interpreted
as those of parafermions.

In Section 5.4, we present the analytic result for the dynamical structure
factor, which includes the SU(K) spinons. They transform as the conjugate
representation K̄, with the statistical parameter g̃αβ = δαβ − 1/K. Note
that the case K = 2 does not reproduce the thermodynamic statistical
parameters gαβ = 1 − 1/K = 1/2 for all spin combinations. In the SU(2)
dynamics, however, the dynamical structure factor does not involve g↑↓.
Hence the difference between g̃αβ and gαβ does not show up in the case
of K = 2.

220
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5.1 Coordinate representation of ground state

Let us consider an SU(K) chain with the number K of internal degrees
of freedom. In order to distinguish this from the SU(2) case, we call each
component “color”, in analogy with the SU(3) color in the quark theory.
The exchange of colors is described by the permutation operator Pij given
by

Pij =
∑
αβ

Xαβ
i Xβα

j , (5.1)

where the X-operators are defined as Xαβ
i = |α〉〈β| for each site i. The

Hamiltonian is given by

HSU(K) =
1
2

∑
ı<j

Jij(Pij + 1), (5.2)

where Jij = J/D(xi − xj)2 with D(x) = (N/π) sin(πx/N). We have added
unity in Pij + 1 for later convenience in mapping to the Sutherland model.

Starting with the fully polarized reference state |F 〉 in which all sites are
occupied by the Kth color component, we can represent any state |Ψ〉 in
terms of the occupied set of coordinates {xα}, which specifies the positions
of Mα particles with color species α = 1, . . . , (K−1). The number MK of the
Kth color sites is then given by MK = N −

∑K−1
α=1 Mα. As a generalization

from the SU(2) case, we introduce for each site i the creation operator
b†iα = |α〉〈K| of an αth magnon. The many-magnon state is described by
the wave function Ψ({xα}) as

|Ψ〉 =
∑
{xα}

Ψ({xα})
K−1∏
α=1

∏
i∈{xα}

b†iα|F 〉, (5.3)

where Ψ({xα}) is symmetric against interchange of equal-color coordinates.
We separate Pij into two parts:

Pij =
K−1∑
α=1

(
b†iαbjα + b†jαbiα

)
+ P

(K−1)
ij , (5.4)

where P
(K−1)
ij exchanges the (K − 1)-color degrees of freedom other than

α = K. Although Ψ({xα}) does not have a particular parity against inter-
change of coordinates of different components, Ψ({xα}) is invariant against
simultaneous interchange of color and spatial coordinates of any pair.
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Provided P
(K−1)
ij acts on this wave function, we may replace it by the

operator Kij which exchanges the spatial coordinates in Ψ({xα}). Namely,
we have

P
(K−1)
ij |Ψ〉 =

∑
{xα}

KijΨ({xα})
K−1∏
α=1

∏
i∈{xα}

b†iα|F 〉. (5.5)

In analogy with cases of the SU(2) chain, we can work with the first-
quantized form of the Hamiltonian for a subset of states which is given by
a polynomial of zi = exp(2πixi/N) with degrees ranging from 1 to N − 1
for each color α = 1, . . . , (K − 1). For such polynomials we obtain the first-
quantized Hamiltonian as in the previous cases:

H =
1
2

N−MK∑
i=1

(
−i

∂

∂xi
− π

)2

+
1
2

∑
i6=j

1 + Kij

D(xi − xj)2
+

1
2
J(π)(N −MK), (5.6)

where we have put J = 2, and the Fourier component J(q = π) has been
obtained as J(π) = −(π2/3)(1 + 2/N2) in (4.4). The first term results from
the permutation involving the Kth species, and −∂/∂xi is the momentum
of a magnon of any species α 6= K.

The polynomial eigenfunctions are obtained most conveniently by
regarding all magnons as distinguishable particles in the first step, and then
imposing the proper symmetry. This is precisely the method we discussed in
Chapter 3. In the case of all Mα (α = 1, . . . ,K) odd, and N being divisible
by K, the ground state is non-degenerate. We confine ourselves to this sim-
plest case in the following, since the thermodynamic limit does not depend
on these specific properties for N and Mα.

With the hard-core constraint, the absolute ground state, which does not
have any constraint on the symmetry of the wave function, is given by a
Slater determinant

Ψh({z}) =
N−MK∏

i=1

z
N/2−(N−MK−1)/2
i

∏
i<j

(zi − zj), (5.7)

where the factor z
N/2
i comes from the momentum shift to the edge π of

the Brillouin zone, and another factor z
−(N−MK−1)/2
i makes the zero total

momentum from the shifted origin. For the antisymmetric wave function,
we obtain Kij = −1 for the exchange operator. Then the interaction term
in (5.6) vanishes, and the free-fermion wave function Ψh({z}) proves to be
an eigenstate.
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We now impose proper symmetry for the wave function for the mixture
of magnons. We multiply Ψh({z}) by a polynomial which is antisymmetric
against interchange of magnon coordinates with the same color. The lowest-
order antisymmetric polynomial together with the proper momentum shift
is given by the Slater determinant with Mα coordinates:

Ψα({z}) =
Mα∏
i=1

z
−(Mα−1)/2
i

∏
i<j≤Mα

(zi − zj), (5.8)

where we have assigned the index i = 1, . . . ,Mα to magnons with color α.
Then, following the same argument as in Section 3.2.2, the polynomial wave
function

ΨG({z}) = Ψh({z})
K−1∏
α=1

Ψα({zα}) (5.9)

proves to be an eigenfunction of (5.6). It is easily seen that all other polyno-
mial eigenfunctions, which are obtained from (5.9) by multiplying symmetric
polynomials of magnons, have higher energies. Hence, (5.9) is the ground-
state wave function within the polynomial family. This wave function cor-
responds to the Gutzwiller wave function, which can also be obtained by
imposing the hard-core condition on the product of Slater determinants of
each color α = 1, . . . ,K, as discussed in Section 3.2.2.

By using the freezing trick, for example, it can be proved that (5.9) in
fact describes the ground state without restriction to the polynomial family.
In the non-degenerate ground state, the wave function can be written in
the explicitly real form. Namely, in terms of the chord distance D(x), the
eigenfunction of (5.9) is represented with a real factor C by

ΨG({z}) = C
∏
i>j

D(xi − xj)
K−1∏
α=1

∏
l>m

D(xlα − xmα), (5.10)

where xi (i = 1, . . . , N −MK) denotes all magnon coordinates, and xlα (l =
1, . . . ,Mα) denotes those of α-magnons.

5.2 Spectrum and motif

By using the Yangian symmetry, we can enumerate all states including
non-polynomial wave functions, whose energies are degenerate with those
of polynomial wave functions. A Yangian generator is defined by analogy
with (4.110) as

ΛK =
1
2

∑
i6=j

wij

K−1∑
α=1

b†iαbjα =
1
2

∑
i6=j

wij

K−1∑
α=1

XαK
i XKα

j . (5.11)
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This operator corresponds to the total momentum of magnons, and as such
commutes with the Hamiltonian HSU(K). Then by the global SU(K) symme-
try, we may define a set of K2 − 1 Yangian generators starting from ΛK . In
terms of SU(K) generators Jα with α = 1, 2, . . . ,K2 − 1, the set of Yangian
generators is given by

Λα =
1
2

∑
i6=j

wij

∑
β,γ

fαβγJβ
i Jγ

j , (5.12)

where fαβγ is the structure constant of the SU(K) algebra. Each operator
Λα commutes with HSU(K) but not with

∑
i J

β
i , which corresponds to the

β-component of the total spin. Hence, application of Λα to the YHWS gener-
ates a supermultiplet which may have different total spins but has the same
energy. Each supermultiplet is pictorially represented by a skew Young dia-
gram, or more concisely by a motif as explained below. In the case of K = 2,
fαβγ is reduced to the completely antisymmetric tensor εαβγ , and Jα

i to the
spin operator as given by (4.112).

Following the previous cases of the spin chain, we introduce the rapidity kj

which plays a role of the renormalized (and shifted) momentum of magnons
spanning the whole Brillouin zone [−π, π). Following the same logic as in
the Sutherland model, we obtain the energy characterized by the rapidities
as follows:

E =
1
2

N−MK∑
j=1

(k2
j − π2) + J(0)(N − MK), (5.13)

where the Fourier component J(q = 0) has been obtained in (4.5) as J(0) =
(π2/3)(1 − 1/N2).

The energy looks like that of free particles with the parabolic spectrum.
The total crystal momentum P of the system is given by

P =
N−MK∑

j=1

(kj ± π) ∓ π =
N−MK∑

j=1

kj ± (N − MK − 1)π, (5.14)

where the upper sign corresponds to the Brillouin zone [0, 2π] and the lower
sign to [−2π, 0]. This is a generalization of (4.90) in Chapter 4.

The distribution of the rapidity is most conveniently represented by the
motif as in the previous cases. Namely, we put 0 if a one-body state in
the Brillouin zone [−π, π) is empty, and put 1 if it is filled by a magnon.
It is customary to put an extra 0 in the rightmost position. This position
corresponds to π in the Brillouin zone, which is equivalent to −π. This
restriction of putting two zeros, one at each end, actually gives the N degrees
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of freedom for the occupation pattern. A sequence of N +1 digits d0d1 . . . dN

with dκ = 0 or 1 completely characterizes the distribution of the rapidity,
and hence the momentum. This definition of the motif as an occupation
pattern of rapidities has been used in the SU(2) spin chain. We obtain

P =
2π

N

N∑
κ=0

κdκ + π,

E =
2π

N

N∑
κ=0

κ(N − κ)dκ +
N

8
J(0). (5.15)

Let us consider the case of SU(3). The ground state with N = 9, for
example, is represented by

0110110110. (5.16)

Let’s choose the color B (blue) for α = 3 as the reference state. Then the
occupation of momentum is either by R (red) for α = 1 or G (green) for
α = 2 particles. The momentum distribution in the ground state is un-
derstood from the wave function given by the product of Ψh and Ψα with
α = 1, 2. The part coming from Ψh requires unit separation between neigh-
boring momenta, and the part from Ψα requires additional unit separation
between the neighboring momenta for the same color α. Thus the distribu-
tion unit 011 follows, where 11 should be shared by the colors R and G. In
the corresponding ribbon diagram, we choose R for the upmost square as a
convention when drawing an inscribed Young diagram.

The singlet motif given by (5.16) is equivalent to the ribbon diagram in
Fig. 5.1(a). In order to describe excited states, it is convenient to modify
the motif as follows [80]:

(i) Replace “0” surrounding a single 1 or successive 1’s by “)(”.
(ii) Replace the first “0” by “(” and the last “0” by “)”.

For example, the motif 01101011 is written as

(11)(1)(11), (5.17)

which shows the presence of a spinon by “(1)” in the central part. The
corresponding ribbon diagram is given in Fig. 5.1(b). On the other hand, a
Yangian multiplet shown in Fig. 5.1(c) is described by

(11)()(11), (5.18)

where the unit “()” is interpreted as a multiplet in which two spinons have
the same momentum. In the SU(3) case, any motif consists of a sequence
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Fig. 5.1. Ribbon diagrams for (a) the singlet ground state of the SU(3) chain with
N = 9, (b) a one-spinon state characterized by the conjugate representation 3̄,
and (c) a state with the fundamental representation 3, which is interpreted as a
two-spinon state with the same momentum.

of elementary motifs (), (1), and (11), where the last one describes the
SU(3) singlet.

In the ribbon diagram of Fig. 5.1(c), the color x corresponding to “()” in
the motif can be either of R, G, or B. In the case of R or G, we assign a
particle in a polynomial wave function. Hence in the SU(3) chain, and more
generally in SU(K) chains with K ≥ 3, a polynomial wave function does not
necessarily belong to the YHWS, which is uniquely given for each ribbon
diagram. This is in contrast to the Haldane–Shastry model and the SUSY
t–J model, which will be discussed in Chapter 6, where all polynomial wave
functions belong to the YHWS.

In the general SU(K) case, we have K elementary motifs since the number
of 1’s inside the brackets ranges from 0 to K−1. The elementary motif with
r 1’s corresponds to the fundamental representation Λr of SU(K). Alterna-
tively, the motif may be interpreted as a state where K − r−1 spinons have
the same momentum. In order to avoid double-counting of spinon states, the
one-to-one correspondence should be made between a state in the fundamen-
tal representation Λr and one of the K − r − 1 spinon state. This can be
accomplished by antisymmetrization of spinon states with different compo-
nents. As a result, spinons with the same momentum obey the parafermion
statistics of order K [68, 69], which allows up to K − 1 spinons in the same
orbital. This situation generalizes the K = 2 case, where symmetric ex-
citation of up and down spinons leads to a fermionic description of ther-
modynamics. Further study, however, is necessary to clarify this situation
completely.
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The parafermion description of SU(K) spinons was first obtained by ap-
plication of the freezing trick [101, 121, 150]. The same results have been
obtained by a recurrence relation using the Yangian symmetry [158]. On the
other hand, straightforward application of the fractional exclusion statistics
does not work for K ≥ 3, since thermodynamics needs proper subtraction
to remove overcounting.

If the spectrum of spinons is replaced by a linear one, which is relevant in
the low-energy limit, simplification occurs for the thermodynamics in that
the partition function can be obtained in terms of certain polynomials. These
polynomials are a multi-variable version of the q-deformed Hermite polyno-
mials, which are called the Rogers–Szegö polynomials [87, 150]. We refer
readers for a detailed discussion of the q-deformation to the general theory
of the quantum group [43, 44], but explain an example called Macdonald
polynomials in Chapter 10. If one neglects the q-deformation, the partition
function is reduced to its high-temperature limit KN . Detailed analysis has
been performed in relation to the conformal field theory [32,33], including a
supersymmetric generalization [88]. Ordinary fractional exclusion statistics
is applicable if none of the spinons share the same momentum. This situ-
ation is relevant to the dynamical response of the systems with any K as
described below.

The dispersion relations of elementary excitations can be derived from
those of magnons by proper reinterpretation. In order to describe the single
spinon state for finite size, it is most convenient to take M odd and N =
3M−1 as in Fig. 5.1(b). Here the ground state has a deficit of color α, which
is neither x nor y. In the case of x = 1, y = 2, for example, the spinon
component is written as 3̄, which means a deficit of 3. The set {1̄, 2̄, 3̄}
constitutes the conjugate representation of SU(3), which is written as 3̄.
For general K, the spinons form the conjugate representation K̄. On the
other hand, a state shown in Fig. 5.1(c) can have either x = 1, 2, or 3. The
set {1, 2, 3} constitutes the fundamental representation of SU(3), which is
written as 3.

Let us take the SU(3) case, and start from a state in which a spinon is at
the rightmost end of the Brillouin zone. In terms of the modified motif, the
state is described by (11) . . . (11)(1). Now we consider the change of energy
as the elementary motif “(1)” shifts to the left as in (11) . . . (11)(1)(11). The
change of momentum when “(1)” reaches the leftmost position is 2π/3 in
the case of N À 1. This result is understood when one compares the motifs

011011011 . . . 011010

010110111 . . . 110110,
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where every third momentum in the motif has been shifted to the right in
the lower motif. Namely, the Brillouin zone of a spinon in the SU(3) chain is
one-third of the original one. For general K, the size is shrunk to 2π/K. Now
we derive the energy of a spinon with rapidity 2πζ/N , which is characterized
by the shift κj → κj +1 for j = 1, . . . , ζ ≤ M in the momentum distribution
of the ground state. Here the maximum of j is M = N/K in the case of
an SU(K) chain, as shown below. The spectrum of a spinon for finite size
can be derived by calculating the increment of energy associated with the
momentum shift. For 0 < ζ ≤ M we obtain [70]

εs =
1
2

(
2π

N

)2 ζ∑
i=1

[
(κi + 1)2 − κ2

i

]
=

3
2
q

(
2π

3
− q

)
, (5.19)

where κi = N/2 + 1 − 3i, and we have introduced q = 2πζ/N .
In the thermodynamic limit, the spinon spectrum can be derived very

simply. Let us consider a spin-flip which corresponds to annihilation of a
magnon. In terms of a motif for the SU(3) chain, we consider a change

. . . (11)(11)(11) . . . ⇒ . . . (11)(1)()(11) . . . , or

. . . (11)()(1)(11) . . . , (5.20)

either of which describes the creation of three spinons with neighboring
momenta. In the thermodynamic limit, the difference between these
momenta is negligible. Thus we realize, for general K, that the magnon
annihilation with momentum −Kq = kj − π corresponds to the creation
of K spinons with the same momentum q, i.e., εm(−Kq) = −Kεs(q). We
immediately obtain the spectrum by taking 0 < q < 2π/K as

εs(q) =
1
2
Kq

(
2π

K
− q

)
, (5.21)

(a) (b)

0−π−2π q 0 π/3 2π/3q
0

0

Fig. 5.2. Comparison of (a) the magnon spectrum and (b) the spinon spectrum in
the SU(3) case.
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which is consistent with (5.19) with K = 3. Figure 5.2 shows the relation
between the spectra of magnons and spinons.

5.3 Statistical parameters via freezing trick

In terms of the distribution function ν(κ), which is the sum of K compo-
nents, we obtain the energy

Etot =
π2

N2

∞∑
κ=∞

∞∑
κ′=−∞

∣∣κ − κ′∣∣ ν(κ)ν(κ′). (5.22)

Note that Etot is independent of spin components making up ν(κ). The
independence reflects the U(K) Yangian symmetry, which includes the charge
degrees of freedom. In order to apply to the SU(K) chain, we have to remove
the phonon contribution from ν(κ), which can be accomplished by restric-
tion to the ribbon diagrams for the momentum distribution. Each ribbon
diagram represents a supermultiplet, which constitutes an irreducible rep-
resentation of the SU(K) Yangian, which is written as Y (slK). A ribbon
diagram with allowed inscription of integers 1, . . . ,K is called a semistan-
dard tableau (SST).

The statistical interaction among spinons can be obtained by the following
consideration. Let us return to the K-component Sutherland model with the
repulsion parameter λ. The exclusion statistics of particles is described by
(2.78) with the parameters

Gαβ = δαβ + λ, (5.23)

with α, β = 1, . . . ,K. Note that we have changed the notation to a capital
letter. The set of statistical parameters is regarded as a K × K matrix G.
In addition to particle excitations, there arise hole excitations from the
many-particle ground state. The statistical parameters for the hole
excitations are given by the inverse matrix g−1 ≡ G. We obtain

gαβ = δαβ − λ

1 + λK
, (5.24)

which can be verified by direct calculation.
The energy spectrum of the SU(K) chain is most easily obtained by the

freezing trick, as discussed in Section 4.8.3. In the limit of λ → ∞, we obtain
from (5.24)

gαβ = δαβ − 1/K. (5.25)
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This result is relevant to hole excitations in the U(K) chain, which includes
phonons as the U(1) component. For description of the SU(K) chain in
terms of the exclusion statistics, we have to remove the U(1) component
from (5.25). This removal is achieved graphically by restricting to the ribbon
diagrams for relevant SU(K) states. As we shall discuss later in Section 5.4,
the dynamical structure factor does not involve the U(1) component as final
states. Hence the statistical parameters for the U(K) system remain the
same in the SU(K) chain. This statement applies to all values of K.

In the case of K = 2, on the other hand, two holes with up and down
spins can make a singlet. This singlet should be excluded in the SU(2) spinon
picture, where the neighboring spinons always make a triplet. For thermo-
dynamics, the singlet state with the same momentum of two particles is
excluded by adding unity in gσσ′ with σ 6= σ′ in (5.25). Namely, we move
from U(2) thermodynamics to SU(2) thermodynamics by the replacement(

g↑↑ g↑↓
g↓↑ g↓↓

)
=

(
1/2 −1/2

−1/2 1/2

)
⇒

(
1/2 1/2
1/2 1/2

)
. (5.26)

Hence we obtain the statistical parameter gσσ′ = 1/2 for the thermodyna-
mics of spinons, as obtained for the Haldane–Shastry chain. Note that the
off-diagonal element gσσ′ with σ 6= σ′ does not appear as a dynamical struc-
ture factor in the SU(2) case. It should be emphasized that the statistics of
spinons is rather different in the case of K = 2 and K > 2.

A merit of the description based on the freezing trick appears in thermo-
dynamics. We consider the case without a magnetic field and proceed just
as in the SU(2) case discussed in Chapter 4. As a result, the distribution
function is obtained as

να(p) = 1 − exp[−βω0(p)/K]

for α = 1, . . . ,K, which generalizes (4.185). Then the thermodynamic
potential Ωtot takes the same form as the phonon part Ωph, except for the
replacement ω0 → ω0/K in the former. By subtracting the phonon part, the
thermodynamic potential ΩSU(K) = Ωtot − Ωph is written as

ΩSU(K) = −T

∫ π

−π

dp

2π
ln[1+e−βω0/K+e−2βω0/K+· · ·+e−(K−1)βω0/K ], (5.27)

for any temperature T . It is natural to interpret ΩSU(K) as that of ideal
parafermions of order K [68, 69], for which up to K − 1 particles can take
the same quantum number p. The parafermion is reduced to the fermion
with K = 2.
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5.4 Dynamical structure factor

Let us define the following operator in the momentum space by

Xαβ(q) =
1√
N

∑
j

Xαβ
j exp(−iqxj), (5.28)

which describes a color flip for α 6= β, or color projection for α = β. Then
we consider the dynamical structure factor defined by

S(αβ)(q, ω) =
∑

ν

|〈ν|Xβα(−q)|0〉|2δ(ω − Eν + E0), (5.29)

where |ν〉 denotes an eigenstate of the Hamiltonian with energy Eν , and E0

is the ground-state energy. Because of the SU(K) symmetry, the dynamical
structure factor does not depend on the color components α, β as long as they
are different from each other. Then we may regard S(αβ)(q, ω) → S(q, ω) as
a scalar, and choose β = K together with the coordinate representation of
wave functions. Since the operator XKα is equal to the magnon annihila-
tion operator bα, the dynamical susceptibility is equivalent to the magnon
propagator in this representation.

The excited state after the magnon annihilation is written in polynomial
form. In order to simplify the notation, we work with the SU(3) symmetry
(K = 3) in the following. The coordinates z1, . . . , zM denote magnons with
color α = 1, and ζ1, . . . , ζM denote magnons with α = 2, where N = 3M with
the singlet ground state. The excited state after annihilating the magnon
with α = 1 at z = 1 (or x = 0) is given by

〈z1, . . . , zM−1; ζ1, . . . , ζM |X31
0 ΨG〉 = ΨG(1, z1, . . . , zM−1; ζ1, . . . , ζM ).

(5.30)
Namely, the final states are represented by the Gutzwiller wave function
where one of the complex coordinates is fixed. Because of its polynomial
form, the final state can also be mapped to a wave function in the Suther-
land model with the repulsion parameter λ = 1. In the case of K = 3,
the relevant internal symmetry is SU(2) in the Sutherland model [13]. The
magnon propagator in the SU(3) chain is given by the hole propagator in the
SU(2) chain in the mapped Sutherland model, for which the exact results
are obtained in Section 3.7.1. The excited states consist of three spinons,
two of which have the component 1̄ and the other 2̄.

For a general value of K, we can obtain S(q, ω) in the singlet ground state
from the hole propagator in the U(K − 1) Sutherland model. Alternatively,
the freezing trick discussed in Section 4.8.3 can be utilized together with
Uglov polynomials explained in Chapter 10. Very detailed calculation along
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the latter route has been performed by Yamamoto et al. [199]. The result is
given by

S(q, ω) = AK

∑
1≤a<b≤K

K∏
i=1

∫ 1

−1
dki|F (K)

ab (k)|2δ(q − π − p(k))δ(ω − ε(k)),

(5.31)
where

ε(k) =
πvs

2K

K∑
i=1

(1 − k2
i ), p(k) =

π

K

K∑
i=1

ki, (5.32)

with vs = π/2. Here we have taken the unit J = 2, and AK is a normalization
constant given by

AK =
π

K3(K − 1)

K∏
j=1

Γ((K − 1)/K)
Γ(j/K)2

, (5.33)

which has been corrected by Arikawa [13] so as to remove an erroneous
numerical factor 2K for AK in the original result [198,199]. The form factor
is given by [199]

F
(K)
ab (k) =

|ka − kb|gK
∏

1≤i<j≤K,(i,j) 6=(a,b) |ki − kj |g
′
K∏K

i=1(1 − k2
i )(1−gK)/2

, (5.34)

with gK = (K − 1)/K and g′K = −1/K. For K = 2, the formula reproduces
the result explained in Chapter 4. Notice that the second product in the
numerator of (5.34) is absent in the SU(2) case.
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Supersymmetric t–J model with 1/r2 interaction

A one-dimensional electron has both spin and charge degrees of freedom.
In the limit of strong on-site repulsion, double occupation of a site can be
neglected since it has a large energy cost. If the number Ne of electrons is
less than the number N of lattice sites, vacant sites appear and the sys-
tem acquires both spin and charge degrees of freedom. The simplest model
to incorporate these degrees of freedom is called the t–J model, which is
discussed in this chapter.

We begin by reviewing the SU(2,1) supersymmetry (SUSY) as an exten-
sion of the SU(2) symmetry in the spin chain. With the supersymmetry, the
hopping and exchange in the t–J model can be treated in a unified way as
the graded permutation. Then the ground state of the SUSY t–J model is
derived in Section 6.2 by the coordinate representation of wave functions
by using the fully polarized state as the reference. The static structure fac-
tor at zero temperature is completely determined by the wave function at
the ground state. The spin and charge components are derived using the
determinant and its generalizations in Section 6.3.

In Section 6.4, we proceed to derive the spectrum of the SUSY t–J model.
The elementary excitations consist of spinons, holons, and their antiparti-
cles. It is proved in Section 6.5 that these excitations span the complete
set. The argument relies on a generalization of Young diagrams, which are
called ribbon diagrams. At the same time, the degeneracy of energy levels
beyond the global SU(2) symmetry is ascribed to the presence of a Yangian
supersymmetry Y (sl2|1).

With the knowledge of energy levels and their degeneracies thus acquired,
we derive the thermodynamics of the SUSY t–J model in Section 6.6. Physi-
cal quantities such as magnetic susceptibility, charge susceptibility, entropy,
and specific heat are derived explicitly. The results are interpreted naturally
in terms of elementary excitations obeying fractional exclusion statistics.

233
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Finally, as the most advanced result of the one-dimensional electron
theory, we present exact dynamical correlation functions and the single-
particle spectral functions in Section 6.7.

6.1 Global supersymmetry in t−J model

The t–J model is given by

HtJ = P
∑
i<j

−tij
∑

σ=↑,↓

(
c†iσcjσ + h.c.

)
+ Jij

(
Si · Sj −

1
4
ninj

)P, (6.1)

where ciσ is the annihilation operator of an electron with spin σ at site
i, ni is the number operator, and P is the projection operator to exclude
double occupation at a given site. We have introduced in Section 1.5 the
X-operators Xαβ = |α〉〈β|, which describe transition from one state β to
another state α at each site. If the transfer energy tij and exchange energy
Jij satisfy the relation tij = Jij/2, we can combine the spin permutation
and the hopping using the graded permutation operator given by (1.41).
The X-operators can also be represented by a fictitious boson annihilation
operator Biσ and a fermion creation operator F †

i as

X0σ
i = F †

i Biσ, X↓↑
i = B†

i↓Bi↑, X00
i = F †

i Fi. (6.2)

Because of the constraint, F †
i Fi +

∑
σ B†

iσBiσ = 1, these fermions and
bosons do not obey the standard commutation rule. The graded permutation
operator introduced by (1.41) is then written as

P̃ij =
∑
αβ

p(β)A†
iαAiβA†

jβAjα =
∑
αβ

A†
iαA†

jβAiβAjα, (6.3)

where Aiα denotes either Biσ or Fi. Since the vacant and singly occupied
states appear to be on an equal footing, the model possesses a corresponding
symmetry. This symmetry is called the supersymmetry, which in its most
general sense connects fermionic and bosonic degrees of freedom.

In terms of the graded permutation operator P̃ij , the supersymmetric
(SUSY) t–J model is written concisely as

HtJ =
∑
i<j

tij(P̃ij − 1 + X00
i + X00

j ). (6.4)

The term X00
i + X00

j serves to associate the zero energy with the vacant
state Ne = 0, and plays the role of the chemical potential. This term breaks
the supersymmetry by distinguishing states with different Ne. We note that
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the energy is also zero in the completely polarized case with Ne = N . We
obtain P̃ij − 1 = 0 = X00

i for this case.
Removing the chemical potential and constant terms, let us consider a

system

HSUSY =
∑
i<j

tijP̃ij , (6.5)

which is invariant under the global supersymmetry operation. Namely, we
obtain by direct calculation the N -site version of (1.44):[

P̃ij ,
∑

i

Xαβ
i

]
= 0, (6.6)

for any combination of α, β. This means that the eigenvalues of HSUSY are
degenerate not only for such states as have the same total spin, but also
for certain states with different number of holes. The latter set of states are
generated by application of

∑
i X

0σ
i and

∑
i X

σ0
i , as is evident from (1.44).

Note that the global supersymmetry demonstrated above does not depend
on the form of tij . It has been shown [175] for tij = Jij/2 = tδi,j±1 that the
model can be solved exactly by the Bethe ansatz. Another solvable case is
given by the inverse-square interaction [119]

tij = Jij/2 = tD−2
ij , (6.7)

where Dij = (N/π) sin [π (i − j) /N ]. Henceforth we take t as the unit of
energy, and concentrate on the case specified by (6.7).

6.2 Mapping to U(1,1) Sutherland model

As in the case of the spin chain, it is useful to start with the fully
up-polarized state as the reference. We introduce for each site the hole cre-
ation operator h†

i = F †
i Bi↑. In addition, we identify S−

i as the creation
operator b†i of the hard-core boson as in the case of the Haldane–Shastry
spin chain. Hereafter we regard b†i as the creation operator of a magnon.
The kinetic energy term of up-spin electrons is regarded as hole hopping:

−tijc
†
i↑cj↑ = tijh

†
jhi, (6.8)

where the anticommuting property of the hole operators is used. On the
other hand, annihilation of a down-spin electron at each site can be repre-
sented by ci↓ = F †

i Bi↓ = h†
ibi. Hence the kinetic energy term of down-spin

electrons takes the form of a graded permutation:

−tijc
†
i↓cj↓ = −tijb

†
jhjh

†
ibi = tijb

†
jh

†
ihjbi. (6.9)



236 Supersymmetric t–J model with 1/r2 interaction

Instead of the U(2, 1) supersymmetry with spin degrees of freedom for
bosons, the new particles created by h†

i (holes) and b†i (magnons) have the
U(1,1) supersymmetry with no spin degrees of freedom. Now each site is not
necessarily filled by the new particles. Hence the system gets the U(1) charge
degrees of freedom in addition to the SU(1,1) internal symmetry. Thus the
total number of states can remain 3N in the new representation.

In this way we take the up-spin site as a vacuum, and obtain the U(1, 1)
representation of the model as

HtJ =
∑
i<j

tij

[
b†ibj + h†

ihj +
1
2
(P̃ij + ñiñj)

]
− Mt(0), (6.10)

where M is the number of down spins (magnons), ñi = b†ibi + h†
ihi, and

t(0) =
∑

j tij = π2(1 − N−2)/3. Here the Fourier transform t(q) of tij is
given in analogy with (4.4) by

t(q) =
N∑

j=2

t1j exp[iq(j − 1)] =
t

2
(q − π)2 − π2t

6

(
1 +

2
N2

)
, (6.11)

where t = 1 in our unit. The graded permutation operator P̃ij acts now in
the space of magnons and holes. The chemical potential term for magnons
breaks the U(1,1) supersymmetry, and gives rise to the last term in (6.10).

We can represent any state in terms of the wave function Ψ({xh}, {xs})
as [4]

|Ψ〉 =
∑

{xh},{xs}

Ψ({xh}, {xs})
∏

i∈{xs}

S−
i

∏
j∈{xh}

h†
j |F 〉, (6.12)

where the set of coordinates {xs} specifies the positions of M magnons, and
{xh} specifies those of Q holes. By definition Ψ({xh}, {xs}) is symmetric
against interchange of down-spin coordinates, and antisymmetric against
hole coordinates. This is related to the commutation rule S−

i S−
j = S−

j S−
i

and the anticommutation rule h†
ih

†
j = −h†

jh
†
i . These relations allow us to

replace the operator P̃ij , which permutes the internal degrees of freedom, by
the operator Kij , which exchanges the spatial coordinates in Ψ({xh}, {xs}).
Namely, we have

P̃ij |Ψ〉 =
∑

{xh},{xs}

KijΨ({xh}, {xs})
∏

i∈{xs}

S−
i

∏
j∈{xh}

h†
j |F 〉. (6.13)

Note that the only constraint in using Kij is that we have KijP̃ij = 1 against
interchange of a pair of particles. We do not impose any commutation rule
between F and B operators in (6.2). Then Ψ({xh}, {xs}) do not in general
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have a definite parity against interchange of hole and magnon coordinates.
Hence we regard a hole and a magnon as distinguishable.

In analogy with the case of the Haldane–Shastry spin chain, we can work
with the first-quantized form of the Hamiltonian for a subset of states which
is given by a polynomial of zi = exp(2πixi/N) with degrees ranging from
1 to N − 1 for each variable. For such polynomials we proceed as in the spin
chain to obtain

H
(poly)
t−J =

1
2

M+Q∑
i=1

(
−i

∂

∂xi
− π

)2

+
1
2

∑
i 6=j

1 + Kij

D(xi − xj)2
+ EM , (6.14)

where −∂/∂xi is the momentum of a hole or a down-spin boson, and D(x) =
(N/π) sin(πx/N). The constant term EMQ is given by

EMQ = (M + Q)t(π) − Mt(0). (6.15)

The polynomial eigenfunctions are obtained most conveniently by first
regarding holes and magnons as distinguishable particles, and then imposing
the proper symmetry. This is precisely the method we discussed in Chapter 3.
With the hard-core constraint, the absolute ground state is given by the
Slater determinant. In the case of N even and Q + M odd, the absolute
ground state is non-degenerate and is given by

Ψh({z}) =
Q+M∏
i=1

z
N/2−(Q+M−1)/2
i

∏
i<j

(zi − zj), (6.16)

which has the proper antisymmetry if there are no magnons, i.e., M = 0. The
factor z

N/2
i comes from the momentum shift to the edge π of the Brillouin

zone, and another factor z
−(Q+M−1)/2
i makes the total momentum zero from

the shifted origin. With N odd, the mapped Sutherland model should be
solved with the antiperiodic boundary condition, as discussed in Chapter 4.
Then the absolute ground state is degenerate with Q + M odd. One should
make the replacement of exponent

(Q + M − 1)/2 → (Q + M − 1 ± 1)/2 (6.17)

for the degenerate ground states. Note that Ψh({z}) remains a polynomial
with integer powers even in the case of N odd. For Q+M even and N odd,
(6.16) describes the non-degenerate absolute ground state.

For the antisymmetric wave function, we obtain Kij = −1 for the co-
ordinate exchange operator. Then the interaction term in (6.14) vanishes,
and the free-fermion wave function Ψh({z}) proves to be an eigenstate. In
the opposite case of Q = 0, all particles are magnons and we should have the
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symmetric wave function. The lowest-order polynomial is obtained by
taking the square of Ψh({z}) except for the factor z

N/2
i . The result is nothing

but the eigenfunction of the Haldane–Shastry model. The interaction term
becomes the same as the single-component Sutherland model with λ = 2,
since we obtain Kij = 1 in this case.

For the mixture of Q holes and M magnons, we obtain the proper sym-
metry by multiplying Ψh({z}) by an antisymmetric polynomial containing
only magnon variables. The lowest-order antisymmetric polynomial together
with the proper momentum shift is given by the Slater determinant. With
M odd, we obtain

Ψm({z}) =
M∏
i=1

z
−(M−1)/2
i

∏
i<j≤M

(zi − zj), (6.18)

where we have assigned the index i = 1, . . . ,M to magnons. In the case of
M even, we should make the replacement

z
−(M−1)/2
i → z

−(M−1∓1)/2
i (6.19)

in (6.18). In either case, we obtain Ψm({z}) with an integer exponent for
magnon variables. It is convenient to regard Ψm({z}) as including the hole
variables, but independent of them. In Section 2.1.2 we showed that the
Sutherland model after similarity transformation is given by a triangular
matrix. Then the polynomial wave function

ΨG({z}) = Ψh({z})Ψm({z}) (6.20)

proves to be an eigenfunction of (6.14) for all cases of even and odd numbers
of M,Q, and N . It is easily seen that all other polynomial eigenfunctions,
which are obtained from (6.20) by multiplying symmetric polynomials of
hole or magnon, have higher energies. Hence, (6.20) is the ground-state wave
function within the polynomial family. This wave function corresponds to the
Gutzwiller wave function with a finite number of holes. It will be proved in
Section 6.5.3 that (6.20) in fact describes the ground state without restriction
to the polynomial family. The degeneracy of the ground state is at most two.

In the non-degenerate case with N,Q even and M odd, the wave func-
tion can be written in the explicitly real form, provided the momentum is
measured from the boundary π of the Brillouin zone. Namely, in terms of
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the chord distance D(x), the eigenfunction of (6.20) is represented with a
numerical factor C by

ΨG({x}, {y}) = C

Q+M∏
j=1

z
N/2
j

∏
i>j

D(xi − xj)2
∏
l>m

D(yl − ym)
∏
i,l

D(xi − yl),

(6.21)
where xi (i = 1, . . . ,M) denotes the magnon coordinates, and yl (l =
1, . . . , Q) denotes those of holes.

6.3 Static structure factors

The static correlation functions of the t–J model are completely determined
by the ground-state wave function. In Section 4.4, we have already presented
the results of correlation functions for the spin chain, and described the
method of calculation. Here we describe the static correlation functions in
the presence of holes. It is instructive to compare these with the spin chain,
and identify the effect of holes. Let us first present the results in the real
space, and then explain the derivation. We modify the form first derived
in [60] so as to make explicit the relations to magnon and hole distribution
functions. The magnon–magnon correlation function is written as Cbb(x),
the hole–hole one as Chh(x), and the magnon–hole correlation function as
Cbh(x).

Then the results are given for arbitrary density n and magnetization m

in the form

Cbb(x) = −1
4
[s−(x)2 − Ds−(x)Is−(x)], (6.22)

Chh(x) = −sh(x)2 − Dsh(x)Ish(x), (6.23)

Cbh(x) =
1
2
[sh(x)s−(x) + Dsh(x)Is−(x)], (6.24)

where the basic constituents are defined by

s−(x) = sb(x) − sh(x), sb(x) =
sin kmx

πx
,

sh(x) =
sin kcx

πx
=

sinπnx

πx
, (6.25)

with km = π(1−m) and kc = π(1−n) ≤ km. As in the spin chain discussed
in Section 4.4, Dsα(x) and Isα(x) are the derivative and integral of the
constituent function sα(x) with α = −, h, or b. For example we obtain

Is−(x) =
1
π

[Si(kmx) − Si(kcx)] , (6.26)
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with Si(x) being the sine integral. The function s−(x) constitutes a part of
the 2 × 2 matrix propagator of magnons, while sh(x) is the propagator of
holes. Because of exclusion of momentum due to holes, the magnon propa-
gator cannot involve the low-momentum component.

The transverse correlation function is given by

C⊥(x) =
1
2

[
C+−(x) + C−+(x)

]
, (6.27)

where C−+(x) = 〈b†xb0〉 is the density matrix of magnons. It is given by

C−+(x) =
(−1)x

x
Is−(x) =

(−1)x

πx
[Si(kmx) − Si(kcx)], (6.28)

as will be shown soon. We then obtain C⊥(x) = C−+(x)+ 1
2(1−n+m)δx,0.

To obtain the longitudinal spin correlation function Czz(x), we use the
following relation at each site:

Sz =
(

1
2
− b†b

)
(1 − h†h) =

1
2
− b†b − 1

2
h†h, (6.29)

where we have used the hard-core property of magnons and holes. Then we
obtain

Czz(x) = Cbb(x) +
1
4
Chh(x) + Cbh(x). (6.30)

In the singlet case with km = π, we should obtain Czz(x) = C⊥(x) because
of the rotational symmetry. This can be checked by first noting the following
cancellation among terms contributing to (6.30):

−1
4
s−(x)2 − 1

4
sh(x)2 − 1

2
sh(x)s−(x) = −1

4
sb(x)2 = 0, (6.31)

because of sin πx = 0 for integer x. Therefore with m = 0, the first terms of
Cαβ(x) in (6.22) to (6.24) combine to zero for Czz(x). On the other hand,
the second terms in (6.22) to (6.24) combine to give[

1
4
Ds−(x) − 1

4
Dsh(x) +

1
2
Dsh(x)

]
Is−(x) (6.32)

=
1
4
Dsb(x)Is−(x) → (−1)x

4x
Is−(x), (6.33)

again because of sin πx = 0. Hence we indeed recover Czz(x) = C⊥(x) for
the case of m = 0.

Now we describe the derivation, taking C⊥(x) as an example. We consider
the system with M magnons and Q holes, and generalize the derivation of
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the correlation function for the spin chain. We need the norm of ΨG which
is most conveniently obtained from the expression

|ΨG({x, y})|2 = (−1)R
∑
P

εP z
−(Q−1)/2
P1 z

−(Q−3)/2
P2 · · · z(Q−1)/2

PQ

× det2M+Q

(
zp
1 , . . . , zp

Q, ξp
1 , pξp

1 , . . . , ξp
M , pξp

M

)
|p|≤M+(Q−1)/2

, (6.34)

where the sign factor (−1)R is derived below as R = MQ+Q(Q−1)/2. The
RHS of (6.34) is a symmetric function of both magnon (ξi) and hole (zj)
coordinates. This form can be obtained by manipulation of the determinant
as in the case of the spin chain. Among terms appearing by expansion of
the determinant, we first integrate over the real hole coordinates y1, . . . , yQ

in zj = exp(2πiyj/N). The only term that survives integration over yi is the
product zp

i zPi
i with p + Pi = 0. Then we obtain the factor Q! coming from

the number of permutations. After integration over the hole coordinates, we
are left with magnon terms like (p−q)ζpζ−q with p+q = 0, and p > (Q−1)/2.
The exclusion of the small value of p is due to the presence of holes. Since
p−q = 2p ranges from Q+1 to 2M +Q−1 in two steps, integration over the
magnon coordinates gives the factor M !(2M + Q − 1) · · · (Q + 1) where M !
comes from the number of permutations for magnon coordinates. Combining
these factors, we obtain the norm as [59]

CM,Q = Q!M !(2M + Q − 1)(2M + Q − 3) · · · (Q + 1)

=


(2M + Q)!M !(Q/2)!

2M (M + Q/2)!
, (Q : even),

M !Q!2M [M + (Q − 1)/2]!
[(Q − 1)/2]!

, (Q : odd).

(6.35)

The sign factor (−1)R is obtained by inspecting the sign of a permutation
which gives a positive integral. For example, a permutation

(P1, P2, . . . , PQ) = (Q,Q − 1, . . . , 2, 1)

in (6.34) gives εP = (−1)Q(Q−1)/2. Then the positive integral results by a
permutation of 2M + Q numbers such that (1, 2, . . . , Q) for hole coordi-
nates are inserted between (Q + 1, Q + 2, . . . , Q + M) and (Q + M + 1, Q +
M +2, . . . , Q+2M). This permutation gives a sign factor (−1)MQ. Another
derivation using sophisticated combinatorics is given in Section 7.5.6.

Let us evaluate the density matrix from the product of Ψ∗
GΨG with com-

plex coordinates. We first fix a complex magnon coordinate η in Ψ∗
G, and

another coordinate ζ in ΨG. Then the rest of the magnon coordinates
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ξj = exp(2πij/N) and the hole coordinates zl = exp(2πil/N) are to be in-
tegrated out. Generalizing the procedure used for the spin chain, we start
from the following representation with the confluent alternant:

ΨG(η, . . .)∗ΨG(ζ, . . .) =
eiα

η − ζ

× det
(

ηj , ζj , zj
1, . . . , z

j
Q, ξj

1, jξ
j−1
1 , . . . , ξj

M−1, jξ
j−1
M−1

)
j=0,1,...,2M+Q−1

×
∏
j<k

(zj − zk), (6.36)

where η=exp(2πil/N) and ζ =exp(2πin/N) are specified in terms of integer
coordinates l and n. The phase factor exp(iα) is fixed so that the RHS is
real. Without loss of generality, we consider the case l = −n, which means
ζ = η∗ in (6.36). Then we manipulate the determinant as in the case of the
norm for the spin chain. We obtain

ΨG(η, . . .)∗ΨG(η∗, . . .) = exp(iα′)(η − η∗)−1

× det2M+Q

(
ηp, η−p, zp

1 , . . . , z
p
Q, ξp

1 , pξp
1 , . . . , ξp

M−1, pξp
M−1

)
|p|≤M+(Q−1)/2

× detQ

(
zp
1 , . . . , z

p
Q

)
|p|≤(Q−1)/2

, (6.37)

where exp(iα′) is a phase factor. With the result for the norm, we can now
derive the density matrix of magnons in the form

1
N

∫ N

0

dx1

N
. . .

∫ N

0

dxM−1

N

∫ N

0

dy1

N
. . .

∫ N

0

dyQ

N
Ψ(z, . . .)∗Ψ(z∗, . . .)

=
CM,Q

N

M+(Q−1)/2∑
p=(Q+1)/2

z2p − z−2p

2p(z − z∗)
, (6.38)

where 2p in the denominator comes from correction for the missing factor in
producing the norm CM,Q. In the thermodynamic limit, the summation over
p is replaced by the integral for Q/2<p<M . We then obtain for integer x,

C−+(x)(−1)x =
1

2N

∫ M+Q/2

Q/2
dp

sin 2πpx/N

2p sinπx/N
→ 1

4πx
[Si(kmx) − Si(kcx)],

(6.39)
where km/π = M/N and kc/π = Q/N . As in the spin-chain case given by
(4.24), the oscillating factor (−1)x comes from the shift π of the momentum
in mapping to the Sutherland model. The last expression in (6.39) is valid
in the limit |x|/N ¿ 1. The other correlation functions can be obtained
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1/4

0

q/π

1m n

m = 0

S−+(q)

m = 0.4

n = 0.8

Fig. 6.1. The spin-flip structure factor S−+(q) of the SUSY t–J model with and
without magnetization m. The transverse component S⊥(q) = Sxx(q) = Syy(q) is
given by S⊥(q) = S−+(q) + (1 − n + m)/2.

in a similar manner by fixing two coordinates in the wave function and
integrating over the others. The results for Chh(x) are written explicitly as

Chh(x) = −
(

sinπnx

πx

)2

+
(

kc cos πnx

πx
+

sin πnx

(πx)2

)
[Si(kmx) − Si(kcx)].

(6.40)

We now derive structure factors by Fourier transforming the correlation
functions. The simplest is S−+(q) that can be obtained by combination of
terms derived already for the spin chain. Namely, we obtain

S−+(q) =
1
4
θ(q − πm)

[
θ(q − πn) ln

1 − m

1 − n
− θ(πn − q) ln

1 − q/π

1 − m

]
,

(6.41)

with 0 < q < π. The result with m = 0 has been obtained in [66]. Figure 6.1
illustrates the momentum dependence of S−+(q) with and without magneti-
zation. It is remarkable that the only dependence on n is through the cut-off
momentum q = πn = 2kF for arbitrary m. Thus the charge and spin
degrees of freedom behave rather independently in the SUSY t–J model. This
mutual independence also appears in thermodynamics and dynamics, as we
shall see later. Evidently the tendency to magnetic ordering is suppressed
as the hole concentration increases. The longitudinal component Szz(q) in
the presence of holes and with nonzero magnetization can be obtained by
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Fourier transforming each of Cαβ(x) appearing in (6.30). The expression
is cumbersome, and not illuminating. Hence we just make a qualitative
remark: the divergence at q = km = π(1 − m) of Szz(q) is removed by
holes if n + m < 1, because the cut-off momentum q = 2kF becomes smaller
than km in this case. This is analogous to the effect of holes on S−+(q),
where the divergence at q = π is removed.

We next discuss the charge structure factor N(q), restricting ourselves to
the case of m = 0. The results for m 6= 0 are given in [12]. We observe
that the Fourier transform of a product is the convolution of each Fourier
component. If we work in the continuum model, the charge structure factor
is obtained as

Ic(q) = − 1
N

∑
k

[
sh
k(s

h
k+q − sh

k) + Dsh
k(Is−k+q − Is−k )

]
. (6.42)

The calculation of k-summation is analogous to the case of a spin chain,
where we have described calculation of Szz(q). In the lattice system, the
charge structure factor N(q) becomes a periodic function of q with the
Brillouin zone −π < q < π as the basic period. Because of the inversion
symmetry, we may assume 0 < q < π without loss of generality. In this case
we obtain N(q) = Ic(q)+Ic(q−2π), where the second term is specific to the
lattice system. This term becomes nonzero only for q beyond a threshold
depending on n. The summation range over k is classified according to the
value of q. As a result, there appear three regions I, II, III in the momentum
space. The momentum at each boundary of neighboring regions is written
as qI−II or qII−III. For example, we obtain N(q) for n < 1/2 as

N(q) = NI(q/π)θI(q) + NIIa(q/π)θII(q) + NIIIa(q/π)θIII(q), (6.43)

where θII(q) = θ(q− qI−II)θ(qII−III − q) is the step function which is nonzero
only for the region II. Other step functions are defined in a similar manner.
The constituent functions NIIa(q/π), etc. depend on the density n. Namely,
we define the following functions:

NI(x) = x − x

2
ln

1 − n + x

1 − n
, (6.44)

NIIa(x) = x − x

2
ln

1 + n − x

1 − n
+ ln(1 + n − x), (6.45)

NIIb(x) = 2 − 2n +
x

2
ln

n − 1 + x

1 − n + x
, (6.46)

NIIIa = 2n + ln(1 − n), (6.47)

NIIIb(x) = 2 − 2n +
x

2
ln

n − 1 + x

1 + n − x
+ ln(1 + n − x). (6.48)
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Table 6.1. List of functions relevant to the charge structure factor N(q) for
each q range I, II or III and for a given density n.

Density I qI−II/π II qII−III/π III

n < 1/2 N1 n NIIa 2n NIIIa

1/2 < n < 2/3 N1 n NIIa 2 − 2n NIIIb

n > 2/3 N1 2 − 2n NIIb n NIIIb

Table 6.1 summarizes the proper components, and the boundary momentum
between different ranges of q. They become degenerate, i.e., qI−II = qII−III

at n = 1/2 and n = 2/3. At these special values, the region II shrinks to
zero. Figure 6.2 shows N(q) for three cases of n. For small n, the behavior
is similar to that in free fermions:

N0(q) = θ(nπ − q)q/π + θ(q − nπ)n, (6.49)

which can be seen in the case of n = 0.3. On the other hand, N(q) hardly
depends on q for n ∼ 1 and becomes small because the strong repulsion leads
to almost local character of electrons. The case n = 0.9 strongly reflects this
behavior. In the limit of n = 1, we obviously have N(q) = 0 for all q. The
initial slope 1/π at q = 0 is independent of n, and is the same as that for
free fermions. Note that the cusp at q = πn = 2kF is much less significant
compared with the divergence in Szz(q) at q = (1−m)π, and that in S−+(q)
at q = π. This shows that the SUSY t–J model does not have a tendency
toward the charge density wave.

6.4 Spectrum of elementary excitations

6.4.1 Energy of polynomial wave functions

We take the non-degenerate ground state with M odd and N,Q even,
and analyze the structure of polynomial wave functions. In Ψm({z}), expo-
nents I

(m)
i of a magnon coordinate are given in descending order by I

(m)
i =

(M +1)/2− i, with i = 1, . . . ,M . The distribution is symmetric about zero.
The exponents I

(h)
l of hole coordinates are zero for all l = 1, . . . , Q. We ar-

range these M + Q exponents in descending order and relabel them by the
common index j = 1, 2, . . . ,M + Q. Namely, we introduce Ij by

Ij =


I

(m)
j , (j = 1, 2, . . . , (M + 1)/2),

I
(h)
j−(M+1)/2, (j − (M + 1)/2 = 1, 2, . . . , Q),

I
(m)
j−Q, (j − (M + 1)/2 − Q = 1, 2, . . . , (M − 1)/2).

(6.50)
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Fig. 6.2. The charge structure factor N(q) for three cases of n. The cusp at q/π = n
is visible for each n, but becomes faint for n = 0.9.

h
h

Fig. 6.3. Momentum distributions of magnons (M = 5) and holes (Q = 2) shown
by h. Of the M + Q = 7 rows, the lowest one does not have a square.

The corresponding Young diagram can be written in terms of non-negative
integers by adding a constant, e.g., Ij + (M − 1)/2. We loosely call this set
of integers the momentum distribution, although the factor 2π/N should
be attached to the physical momentum. Figure 6.3 shows the momentum
distribution in the case of M = 5 and Q = 2. The ground state is a sin-
glet with N = 2M + Q = 12, and has a finite magnetization N − 12 for
larger N .

Now we take excited states of the system into consideration. Let us rewrite
Ij derived above as Ij0 restricted to the ground state. As in the spin chain,
there are three alternative but equivalent ways to describe excited states.
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In the first we introduce a set of non-increasing integers Ĩ1 ≥ Ĩ2 ≥ ĨM+Q,
and describe the excitations as bosonic. Namely, an excited state is
specified by

Ij = Ij0 + Ĩj . (6.51)

In the second, we deal with Ij as it stands in (6.51). In contrast with the
spin chain, hole momenta I

(h)
j can take the same value. Hence in the second

description, magnon excitations appear as fermions and hole excitations as
bosons. For unique indexing of j in the set {Ij}, we set the convention that
a magnon index is smaller than a hole index if they have the same value of
Ij . The energy E associated with Ij ’s is given by

(
N

2π

)2

(E − Ec) =
1
2

M+Q∑
i=1

I2
i +

1
2

∑
i<j

|Ii − Ij |, (6.52)

where Ec corresponds to the energy of the absolute ground state given by
(6.16). In the third description, the distribution of the rapidity is repre-
sented by the motif in the following way. We put 0 if a one-body state in
the Brillouin zone is empty, and 1 if it is filled either by a magnon or a
hole. This definition of the motif as an occupation pattern of rapidities is a
straightforward generalization of that discussed in Section 4.6 for the spin
chain. We deal with integers κj with j = 1, . . . ,M + Q defined by

κj = Ij + (M + Q + 1)/2 − j. (6.53)

The distribution of κj in the ground state is symmetric about zero, with
maximum κ1 = (2M + Q)/2 − 1 and minimum κQ+M = (2M + Q)/2 − N .
Therefore in the singlet state with N = 2M + Q, κj ranges from −N/2
to N/2 − 1. In terms of the rapidity kj = 2πκj/N , which plays a role
of the renormalized momentum, the set spans the whole Brillouin zone
[−π, π). In order to emphasize the equivalence between kj = ±π, it is cus-
tomary to put an extra 0 in the rightmost position. Then the sequence of
N + 1 digits completely characterizes the distribution of the rapidity, and
hence the momentum. For example, the ground state shown in Fig. 6.3 is
represented by

0101011101010.

More generally, in the non-degenerate ground state with finite magnetiza-
tion 2M < N , we have Q successive 1’s in the center which are sandwiched
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by (M − 1)/2 number of 10’s both from left and right. In the rest of the
N +1 positions we have N/2−M +1 number of 0’s on the left, and N/2−M

number of 0’s on the right. It will be shown later that this definition of the
motif is equivalent to the one introduced in Chapter 4. A pair kj and kj+1

with the minimum separation 2π/N corresponds to either a pair of holes or
a hole–magnon pair. According to the construction above, the smaller one,
kj+1, is associated with a hole. Following the same logic as in the Sutherland
model, we obtain the energy characterized by the rapidities as follows:

E =
1
2

M+Q∑
j=1

(k2
j − π2) +

π2

3
Q

(
1 − 1

N2

)
, (6.54)

for both ground and excited states. The energy looks like that of free particles
with the parabolic spectrum. The total crystal momentum P of the system
is given by

P =
M+Q∑
j=1

(kj + π) − π = (M + Q − 1)π +
M+Q∑
j=1

kj , (6.55)

which is a generalization of (4.90) in Chapter 4. This method of description
in terms of free magnons and holes is the most convenient to use to derive the
spectrum of elementary excitations in the thermodynamic limit, as discussed
in Section 6.4.2.

In any of three methods of description, the energy depends only on the
distribution of momenta, but not on the particle species, i.e., magnon or hole
for each momentum. This is a consequence of the U(1,1) supersymmetry in
the mapped Hamiltonian given by (6.14). In order to classify spin and charge
excitations, it is necessary to specify either magnon or hole for each occupied
momentum. As an alternative to I

(m)
i and I

(h)
l given earlier for such a spec-

ification, we now introduce an auxiliary set qi (i = 1, . . . , Q) of descending
half-integers as follows. If a κj with certain j is the lth momentum of holes
we set

ql = κj + 1/2. (6.56)

Thus the largest hole momentum is given by q1−1/2, and the smallest one by
qQ−1/2. Since the number qi merely specifies the location of a hole, they have
some arbitrariness. Namely, instead of 1/2 in (6.56), any number between 0
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2 2 22h h2

Fig. 6.4. Momentum distributions in the ground state with M = 5, Q = 2, and
N = 12, i.e., the same state as shown by Fig. 6.3. The dots indicate occupied
momenta which increase from left to right in the line. The circles indicate locations
of qi. With dots and circles given, locations of magnons (down spins) and holes are
specified as indicated by 2 and h, respectively.

and 1 can be used for specification. The distribution of κj with information
on particle species is described by the following equations [107,193]:

κi = I
(m+h)
i +

1
2

M+Q∑
j=1

sgn(κi − κj) −
1
2

Q∑
l=1

sgn(κj − ql), (6.57)

I
(c)
l =

1
2

M+Q∑
j=1

sgn(ql − κj), (6.58)

where I
(m+h)
j and I

(c)
l are distinct quantum numbers in descending order.

In the non-degenerate ground state, they are given by

I
(m+h)
j = (M + Q + 1)/2 − j, (j = 1, 2, . . . ,M + Q), (6.59)

I
(c)
l = (Q + 1)/2 − l, (l = 1, 2, . . . , Q), (6.60)

with I
(m+h)
j integers and I

(c)
l half-integers, both of which are distributed

symmetrically about zero. (6.57) and (6.58) are analogous to those for
rapidities in the Bethe ansatz theory. The simplifying feature here is that
the phase shifts for two-particle scatterings are independent of momenta.
The distribution of κj , or equivalently kj , in the ground state is shown in
Fig. 6.4. We comment on combinations other than N even and M odd:
(i) the case with both N and M even, and (ii) the case of N odd. In both
cases, the energy is still given by (6.54). In case (i), the quantum numbers
Ij , Ĩj , κj remain integers, but their distributions are modified in accordance
with the degenerate ground state. In case (ii), the mapped Sutherland model
is effectively imposed on the antiperiodic boundary condition. We then have
to consider κj and Ij as half-integers, as discussed in the Haldane–Shastry
model. The quantum numbers Ĩj for bosonic excitations are still integers.

In the thermodynamic limit, we need not care about degeneracies of the
ground state and the situation simplifies. Namely, the holes occupy the ra-
pidities |k| < π(1 − n) with n = 1 − Q/N being the electron number per
site. The magnons then occupy the outer region π(1 − n) < |k| < 2πM/N .
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0 π 2π

0

q

εm(q)

εas(q)

µh

Fig. 6.5. The spectrum of magnons, antispinons, and holes in a magnetic field. The
bottom region nπ < q < (2 − n)π is occupied by holes whose chemical potential is
written as µh. The regions mπ < q < nπ and (2−n)π < q < (2−m)π with dashed
spectrum are occupied by magnons. The positive energy regions are unoccupied,
and correspond to the spectrum of antispinons.

Figure 6.5 illustrates the spectra of holes and magnons as a function of the
crystal momentum q = k + π.

6.4.2 Spinons and antispinons

The dispersion relations of elementary excitations can be derived from those
of magnons and holes by proper reinterpretation. Let us begin with spinons
following the argument of Section 4.7.3 in Chapter 4. In the thermody-
namic limit, annihilation of a down-spin magnon with momentum −2q cor-
responds to the creation of two spin-up spinons with adjacent momenta, i.e.,
εm(−2q) = −2εs(q), which gives the same change of the total momentum of
the system. Then we obtain, by taking 0 < q < π

εs(q) = q(π − q) − h, (6.61)

where h = (π/2)2m(2 − m) is the magnetic field. Figure 6.6(c) shows the
spectrum of spinons. In the presence of holes, spinons can be defined only in
the momentum ranges πm/2 < q < πn/2 and π(1−n/2) < q < π(1−m/2).
The latter range is also represented as πm/2 < |q| < πn/2 by extending
(6.61) to negative q by the replacement q → |q|. The part with positive group
velocity is called the right (R) branch, while the one with negative
group velocity is called the left (L) branch, as indicated in Fig. 6.6.
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Fig. 6.6. Dispersion relation of (a) antispinon, (b) antiholon, (c) spinon, and (d)
holon. The panel (a), which is the same as Fig. 6.5 except for the shift −2π in q,
illustrates the regions in the momentum space for the U(1,1) Sutherland model.
The spinon and holon are both defined in the momentum regions: πm/2 < |q| <
πn/2 = kF and π(1 − n/2) < |q| < π(1 − m/2), but with different signs for q. The
right-going (R) and left-going (L) branches are indicated in each case.

On the other hand, the region with εm(q) > 0 defines the spectrum of
antispinons just as in the case of the spin chain. The spectrum of antispinons
is given for 0 < q < πm and (2 − m)π < q < 2π by

εas(q) =
1
2
q(q − 2π) + 2h, (6.62)

where h = (π/2)2m(2 − m). The presence of holes does not affect the anti-
spinon. By replacing q by |q| in (6.62), we rewrite the allowed momentum
range simply as |q| < πm. We can define the right (R) and left (L) branches
according to the sign of the group velocity.

Now we turn to the case of finite size. It is most convenient to take Q even,
M odd, and N = 2M + Q + 1. The ground state has spin S = Sz = 1/2,
and is doubly degenerate with total momentum ±π(M + Q)/N . In Fig.
6.4, for example, the ground state with odd N = 13 corresponds to κ4 =
±1/2. Here we regard all occupied κj as half-integers. Let us take one of the
ground states with total momentum −π(M + Q)/N . As in the spin chain,
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a spinon with rapidity 2πζ/N is characterized by the shift κj → κj + 1 for
j = 1, . . . , ζ ≤ (M + 1)/2. The shift keeps the polynomial form of the wave
function. The hole momentum remains the same as in the ground state. It is
not possible to increase further the number of magnons without disturbing
the hole distribution. On the other hand, if we start with the other ground
state with total momentum π(M + Q)/N , we can create a spinon with
negative momentum. Namely, by shifting from κM+Q to κM+Q+1−ζ by −1,
we can create a spinon with momentum −2πζ/N .

The spectrum of a spinon for finite size can be derived by calculating
the increment of energy associated with the momentum shift. For 0 < ζ ≤
(M + 1)/2, we obtain

εs =
1
2

(
2π

N

)2 ζ∑
i=1

[
(κi + 1)2 − κ2

i

]
= q

[
π

(
1 − 1

N

)
− q

]
, (6.63)

where we have introduced q = 2πζ/N . We have used κi = M +Q/2+1/2−2i

for i ≤ (M + 1)/2 in the ground state. Since the group velocity of a spinon
for this momentum range is positive, this branch is referred to as the right-
going (R) spinon. The spectrum with negative momentum q = −2πζ/N is
obtained from the ground state with total momentum π(M + Q)/N . By
counting the increment of energy associated with the negative shift by ζ ≤
(M − 1)/2, we obtain

εs =
1
2

(
2π

N

)2 ζ∑
i=1

[
(κM+Q+1−i − 1)2 − κ2

M+Q+1−i

]
= −q

[
π

(
1 − 1

N

)
+ q

]
,

(6.64)
where we have used κM+Q+1−i = −(M + Q/2 + 1/2) + 2i for i ≤ ζ in this
ground state. Since the group velocity of a spinon for this momentum range is
negative, we refer to this branch as the left-going (L) spinon. Combining the
R and L branches of the spectrum, we obtain the spinon dispersion relation
from the singlet ground state. In the thermodynamic limit we obtain

εs(q) = |q|(π − |q|), (6.65)

which agrees with (6.61) for h = 0. Here the Brillouin zone should be defined
as [−π/2,−π/2] rather than [0, π] in (6.61). The maximum of the energy
takes place at |q| = kF = πn/2, as shown in Fig. 6.6(c). Spinons are forbidden
for |q| > kF. Except for this restriction of the momentum range, the spinon
spectrum does not depend on the number of holes.

In one dimension, the velocities of spin and charge excitations are in gen-
eral different. This difference is often referred to as the spin–charge sepa-
ration. The spin–charge separation is in marked contrast to a free-electron
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system or a Fermi liquid, where excitation of an electron accompanies both
spin and charge excitations with the same Fermi velocity. However, in the
Hubbard model [57] or the nearest-neighbor t–J model [19], the spin
velocity still depends on the electron density. Since the spin velocity in the
supersymmetric t–J model does not depend on the electron density, the
independence of spin and charge in the supersymmetric t–J model is more
complete than in other integrable models. Hence the supersymmetric t–J
model is characterized by the strong spin–charge separation [121].

The spectrum of spinons in the presence of finite magnetization can be
obtained similarly. Spinons with spin down do not belong to the FPSG
states, and cannot be represented by polynomial wave functions. As has
been discussed in the Haldane–Shastry model, a down spinon has an energy
gap 2h originating from the Zeeman splitting. The momentum dependence
is the same as that of the up spinon due to the Yangian symmetry.

6.4.3 Holons and antiholons

The elementary excitation of charge is called a holon. The holon spectrum
is most easily obtained in the thermodynamic limit. Two holons can be cre-
ated by annihilating a spin singlet pair in the ground state. This event
accompanies a magnon annihilation in a polynomial wave function. However,
there is no change in the total spin, in contrast with a spin-flip in the spinon
pair creation. In the momentum space, an event of magnon annihilation
creates two holons with adjacent momenta. Thus the momentum range of
magnons is mapped to that of holons, as seen from Fig. 6.5. It is convenient
to introduce the quantity pc by

pc = π(1 − n)/2 = π/2 − kF, (6.66)

in analogy with ps = π(1 − m)/2 defined by (4.152). We obtain the holon
spectrum εh(q) by adjusting the origin of energy as follows:

2[εh(q) − εh(πn/2)] = εm(2q) − εm(πn). (6.67)

We then obtain

εh(q) = q(q − π) + (π/2)2n(2 − n), (6.68)

where q is allowed in the range with εh(q) > 0; πm/2 < q < πn/2 = kF and
π(1−n/2) = π/2+pc < q < π(1−m/2) = π/2+ps. There are right (R) and
left (L) branches in the holon spectrum according to the sign of the group
velocity. It is trivial to obtain the spectrum for q < 0 by replacing q by |q|
in (6.68). The spectrum for negative q is shown in Fig. 6.6(d).
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The ground state with occupation of consecutive momenta by holes can be
regarded as a condensate of holons. A defect in this consecutive distribution
is regarded as a hole in the holon condensate, i.e., an antiholon. Thus, an
antiholon emerges by removing a hole in the ground state. The spectrum of
the antiholon is just the minus of the hole relative to µh. Then the antiholon
spectrum is given in the thermodynamic limit by

εah(q) = q(2π − q)/2 − π2n(2 − n)/2 = 2p2
c − (q − π)2/2. (6.69)

The spectrum is illustrated in Fig. 6.6(b). In contrast to other excitations,
antiholons do not have right and left branches.

We now derive the holon spectrum for a finite-sized system. It is conve-
nient to take the spin singlet case N = 2M + Q with M odd. The ground
state with N odd is non-degenerate, as shown in Fig. 6.7(a). Consider an
excitation where the rightmost hole, which corresponds to κ5 = 3/2 in Fig.
6.7(a), moves to the right by a certain step, and correspondingly the magnons
in between move to the left by the unit step. The magnons to the right of
the moved hole remain the same. Figure 6.7(b) shows the case where two
magnons moved to the left. This is referred to as the right-going holon ex-
citation. It is easy to derive the energy εh and the rapidity k > 0 associated
with the excitation. We obtain

εh =
1
2

(
2π

N

)2 ζ∑
i=1

[
(κ(M+3)/2−i + 1)2 − κ(M+3)/2−i

2
]

= k(vc + k), (6.70)

with vc = π(1 − n) and k = 2πζ/N < πn/2. The spectrum is the same as
that given by (6.68), with identification k = q − π(1 − n/2). Note that the
origin of k is the holon state with minimum energy.

On the other hand, the left-going holon is identified as the excitation
where the leftmost hole in the ground state moves to the left by a certain
step, and the magnons in between move to the right by the unit step. The
corresponding spectrum is obtained as

εh = vc|k| + k2. (6.71)

The spectrum is the same as given by (6.68), with identification k = q − kF

with 0 < q < kF.
It is not possible to choose, by any combination of N,M , and Q, a ground

state where an antiholon is present. This is in contrast with other elementary
excitations. Therefore, as the reference we take a state where the rightmost
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Fig. 6.7. Examples of momentum distributions of holes shown by h, and down
spins (magnons) shown by 2: (a) the ground state with N = 19, Q = 5, and M = 7;
(b) holon excitation with ζ = 2; (c) reference state for antiholon excitation with
ζ = 0; (d) antiholon excitation with ζ = 2.

hole is removed from the ground state. Figure 6.7(c) illustrates the situation
for N = 19,M = 7, and Q = 4. Note that this state has Sz = 1/2, since
a hole is replaced by an electron with spin up. If ζ holes shift to the right,
the momentum of the antiholon increases by k = 2πζ/N . The increase εah
of antiholon energy is given by

εah =
1
2

(
2π

N

)2 ζ∑
i=1

[
(κ(M+1)/2+i + 1)2 − κ(M+1)/2+i

2
]

=
1
2
k(2vc − k),

(6.72)

where we have used κ(M+1)/2+i = (Q−1)/2−i. The rapidity k of an antiholon
is related to the crystal momentum q by k = q − πn, and runs from 0 to
2vc. Its spectrum is independent of magnetization. In the limit n → 0, the
antiholon is reduced to an electron with spin up. This direction of the spin
is of course due to the definition of polynomial wave functions.

When a multiple number of elementary excitations is present, there arise
statistical interactions which we have already encountered in the spin chain
and in the Sutherland model with internal degrees of freedom. We discuss
this problem in Section 6.6.1.
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6.5 Yangian supersymmetry

6.5.1 Yangian generators

We shall describe the algebraic structure of HSUSY given by (6.5) in more
detail. We follow a less systematic, but more heuristic approach to construct
the generators of the algebra. A more sophisticated approach, generalizing
the transfer matrix and the Yang–Baxter relation [22,80,82,182] to super-
symmetry, will be sketched in Chapter 9. As in the case of the spin chain,
we introduce a set of current operators which commutes with HSUSY, but
does not commute with total spin, nor even with the total number of holes.
They are given by

Λαβ =
1
2

∑
ij

∑
γ

wijA
†
iαA†

jγAiγAjβ, (6.73)

where the superscript ranges over up, down, and hole states. Alternatively,
(6.73) is represented as

Λαβ =
1
2

∑
ij

wijX
αβ
j P̃ij =

1
2

∑
ij

wijP̃ijX
αβ
j . (6.74)

We now show that Λαβ commutes with HSUSY. If the superscript does not
involve the hole state, Λαβ commutes with HtJ given by (6.1) as well.

The proof can be done most intuitively by appealing to the momentum
conservation. The momentum of a hole is given in the coordinate and second-
quantized representations by

−i
∂

∂xi
− N

2
⇒ 1

2

∑
j

wijh
†
ihj , (6.75)

which is analogous to the magnon momentum discussed in Chapter 4. Thus
the following operator:

Λt =
1
2

∑
i6=j

wij(h
†
ihj + b†ibj) (6.76)

gives the total momentum of U(1,1) particles, and therefore commutes with
the Hamiltonian. In the representation of (6.2), on the other hand, the trans-
fer terms are rewritten in the exchange form:

h†
ihj = F †

i Bi↑B
†
j↑Fj , b†ibj = B†

i↓Bi↑B
†
j↑Bj↓. (6.77)

Then we identify Λt = Λ↑↑, namely

Λt =
1
2

∑
i6=j

∑
α

wijA
†
i↑A

†
jαAiαAj↑ =

1
2

∑
i6=j

wijX
↑↑
i P̃ij , (6.78)
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where α runs over three internal degrees of freedom. In going from (6.75) to
(6.78), we have used the odd property wij = −wji to include the canceling
contribution α =↑. Since the total momentum is conserved with any number
of holes, we obtain

[Λ↑↑,Ht−J ] = 0. (6.79)

We now prove that another component Λ↑↓ also commutes with Ht−J

without a magnetic field. For this purpose we introduce the notation Xαβ =∑
i X

αβ
i and write Λ↑↓ in the form

Λ↑↓ = [Λ↑↑, X↑↓] = lim
δ→0

δ−1
[
exp(−δX↑↓)Λ↑↑ exp(δX↑↓) − Λ↑↑

]
, (6.80)

where exp(δX↑↓) describes a global SU(2) rotation. Since X↑↓, and hence
U(δ) ≡ exp(δX↑↓), commute with Ht−J without a magnetic field, we can
show

[Λ↑↓,Ht−J ] = U(−δ)[Λ↑↑,Ht−J ]U(δ) = 0. (6.81)

Alternatively, one may directly derive (6.81) by combining [Λ↑↑,Ht−J ] = 0
and [X↑↓,Ht−J ] = 0.

In a manner similar to (6.80), we can write all components Λαβ of the
current operator as a commutator of a conserving quantity. Thus we have
proved

[Λαβ ,HSUSY] = 0, (6.82)

for all combinations of three internal quantum numbers α, β.
These current operators, however, do not commute with the total spin, nor

with each other. They constitute the supersymmetric Yangian generators.
We now show that polynomial wave functions Ψ({xh}, {xs}) are annihilated
by Λ↑↓. In order to understand their action, we represent Λ↑↓ as

Λ↑↓ =
∑
i6=j

wij

(
Sz

i S+
j − 1

2
X↑0

i X0↓
j

)
. (6.83)

In the high-density limit, the fermion transfer term vanishes, and we recover
the corresponding result for the spin chain as given by (4.115). For general
filling of a site, Λ↑↓ becomes a conserving quantity only by including the
fermion transfer term. We rewrite Λ↑↓ as

Λ↑↓ =
∑
i6=j

wij

(
−2b†ibibj − h†

ihibj + h†
jhibj

)
, (6.84)

using the U(1,1) representation. The part coming from the first term in
parentheses annihilates Ψ({xh}, {xs}), as in the case of the spin chain. To see
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the effect of second and third terms, we consider the simplest case Ψ(xh, xs)
with only one hole and one magnon. After annihilating the magnon by Λ↑↓,
we end up with a single hole state and obtain

〈xh|
∑
i6=j

wij

(
h†

i − h†
j

)
hibj |Ψ〉 =

N∑
x=1

whx [Ψ(xh, x) + Ψ(x, xh)] , (6.85)

where we have used wxh = −whx. The summand is antisymmetric against
interchange of x and xh and, furthermore, wxh is translationally invariant.
Thus by the same reason as in (4.116), (6.85) vanishes by summation over x.
It is easy to see that the annihilation by Λ↑↓ holds true for a general case of
Ψ({xh}, {xs}) with any numbers of holes and magnons.

We have thus shown that Ψ({xh}, {xs}) belongs to the YHWS, and that
Λ↑↓ is a Yangian raising operator. By successive application of the low-
ering operator Λ↓↑ to Ψ({xh}, {xs}), we can construct a set of degener-
ate states. This set is called a Yangian supermultiplet as in the Haldane–
Shastry spin chain. At certain power of n, the series should terminate, i.e.,
(Λ↓↑)nΨ({xh}, {xs}) = 0.

The supersymmetric Yangian contains those generators that change the
number of holes. Let us consider, for example, Λ↑0. With a little algebra we
obtain

Λ↑0 =
∑
i6=j

wijX
↑0
i P̃ij =

∑
i 6=j

wij(b
†
j − b†i )bihj . (6.86)

In the same way as before, we can prove that Λ↑0 annihilates the polynomial
wave function Ψ({xh}, {xs}). Thus Ψ({xh}, {xs}) belongs to the supersym-
metric YHWS. The lowering operator Λ0↑, and also Λ0↓ and Λ↓0, generate
a Yangian supermultiplet with a different number of holes. The energy of
these states is degenerate for the Hamiltonian HSUSY, but not for Ht–J . The
difference is caused by the chemical potential term in (6.4). Hence we find
it convenient to use the terminology of YHWS also in the restricted space
with a fixed number of holes.

One may now naturally ask if there are YHWS that do not take a polyno-
mial form. The answer is no: all YHWS are exhausted by polynomial wave
functions. We can show that any of the 3N states allowed in the t–J model
is in a supermultiplet to which one of the polynomial wave functions be-
longs. In other words, any state can be generated by successive operation of
Yangian lowering operators starting from one of the polynomial states. The
structure of supermultiplets can be made transparent in terms of ribbon
diagrams, to be explained below.
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Fig. 6.8. Young diagrams (a), (c) and the corresponding ribbon diagrams (b), (d).
Each shaded square represents the momentum of a particle, and only such squares
are kept for ribbon diagrams. The ground state with two holes and four electrons
is represented by (a) and (b), while an excited state with increased momentum is
shown in (c) and (d).

6.5.2 Ribbon diagrams and supermultiplets

We now consider all states in the system without restricting ourselves to
the family of polynomial wave functions which is equivalent to the YHWS.
We start from the following result for the energy of the U(2, 1) Sutherland
model in the strong-coupling limit:

Etot =
π2

N2

∞∑
κ=∞

∞∑
κ′=−∞

∣∣κ − κ′∣∣ ν(κ)ν(κ′). (6.87)

Here the distribution function ν(κ) has three components, given by

ν(κ) = ν↑(κ) + ν↓(κ) + νh(κ).

The hole occupation number νh(κ) can take any non-negative integer
because of its bosonic nature. For example, in the ground state with N = 6,
Q = 2, two holes have κ = 2, and up and down electrons have κ = 1, 2, 3
for both spins. The distribution of κ is best seen by the Young diagrams in
Fig. 6.8. It is evident from (6.87) that the energy does not depend on the
total momentum. In other words, there is a large degeneracy related to a
Galilean boost.

In Young diagrams, different spin components are always symmetrized in a
row, and antisymmetrized in a column. On the other hand, holes in a column
are symmetrized. Horizontal antisymmetrization prohibits more than one
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hole to enter a row. As in the spin-only case, we can construct a ribbon
diagram from a given Young diagram by vertical movement of squares
[88,155]. Figure 6.8(b) and (d) shows examples. If a Young diagram breaks
up into separate parts through the reduction, these diagrams involve phonon
states. We postulate the ordering 1 < 2 < h in the ribbon diagrams to avoid
any double counting. Note that this ordering is different from that in [155].
Namely, we introduce the following rules of inscription, including holes:

(i) If either a or b is not h, we have a < b for b being lower-adjacent
to a. Hence, the numbers 1 and 2 can appear at most once in a
column. However, consecutive h’s are allowed in a column.

(ii) If either a or b is not h, we have b ≤ a for b being left-adjacent to a;
however, consecutive h’s are forbidden in a row.

For example, the ground state has three singlet pairs of electrons and can be
represented in an appealing manner in Fig. 6.8(b). The inscription is unique
according to rules (i) and (ii).

Now we consider an excited state where an electron and a hole increase
the momentum by one unit, as shown in Fig. 6.8(c). Each row is regarded as
an orbital for spinons as in the SU(2) case, while each column is regarded as
an orbital of a holon. We use the term holon when we emphasize its nature as
elementary excitations. Thus we identify two spinons in Fig. 6.8(d), and the
spinons occupy the same orbital. A connected ribbon diagram has filtered
out the phonon excitation. Hence from each ribbon diagram, the distribution
ν(κ) of the supersymmetric t–J model is recovered, which gives the energy
of the system according to (6.87). By definition the energy associated with
a ribbon diagram does not depend on the inscription. Hence each ribbon
diagram represents a supermultiplet of the supersymmetric Yangian Y (sl2,1).

We show now that the supersymmetric Yangian multiplets form the com-
plete set in the Hilbert space for the t–J model. In order to prove this, we
establish a one-to-one correspondence between any of 3N states to a Yangian
state. We start from a diagram with two boxes arranged as sharing a corner.
See Fig. 6.9. There are 32 = 9 possibilities to inscribe either 1, 2, or h in
the box. Then we require the ordering 1 < 2 < h, and move the lower box
either up or to the right. Namely, if the lower box is larger according to the
ordering, it moves right as shown in (a) and (c). In the opposite case, it
moves up as shown in (b) and (d). If they both have h, the lower box moves
right as shown in (e). If the two boxes have the same number, either 1 or 2,
the lower box moves up as shown in (f). This rule is applicable to a corner-
sharing diagram of any size. Namely, we start from the bottom and move
the last box either up or right according to the ordering of the last and the
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(a)
1

2

1

2
(b)

2

1
1 2

(c)
2

h

2

h
(d)

h

2
2 h

(e)
h

h

h

h
(f)

2

2
2 2

Fig. 6.9. Examples of reduction from a diagonal corner-sharing diagram to a ribbon
diagram.

next last inscriptions. Then we compare the inscriptions of the second last
and the third last boxes. By following the same rule of ordering, we move
two boxes which are arranged either horizontally or vertically. The process
continues until we move the N − 1 boxes by comparing the first and second
inscriptions.

It is then obvious that any inscription of the corner-sharing diagram with
N boxes leads uniquely to a corresponding ribbon Young diagram. Con-
versely, starting from any inscribed ribbon diagram, we can move back the
boxes to a corner-sharing diagram uniquely. Thus it is proved that the cor-
respondence between an inscribed corner-sharing diagram and an inscribed
ribbon diagram is one-to-one. Namely, we obtain the complete set of 3N

states for the t–J model. Since the energy of a state is determined only by
the shape of a ribbon diagram without inscription, each shape defines a
supermultiplet.

6.5.3 Motif as representation of supermultiplets

The shape of a ribbon diagram is determined completely by the motif as
in the case of the spin chain. Namely, the digit 0 represents horizontally
adjacent squares, and the digit 1 represents vertically adjacent squares. Since
an arbitrary number of holes can be arranged vertically, it is allowed now
to have the sequence · · · 1111 · · · . Except for the 0’s at each end of the
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motif, any sequence of 0 and 1 is allowed in the t–J model. Since the motif
determines the ribbon diagram, its energy is given according to (6.87). On
the other hand, the motif in polynomial wave functions is introduced as
an occupation pattern of rapidities in Section 6.4.1. Namely, the digit 1
represents occupation of a momentum state in the Brillouin zone, and the
digit 0 represents the vacancy of the momentum state. By generalizing the
discussion in the spin chain, we can now prove the equivalence of both ways
of constructing the motif.

Let us consider a YHWS for a ribbon diagram. Then the rightmost square
in each row cannot be occupied by a spin up by the ordering rule 1 < 2 < h.
Hence the rightmost square represents occupation of a particle, either hole or
magnon, in the polynomial wave function. On the other hand, any square to
the left of the rightmost one must be inscribed by 1 (up spin) in the YHWS.
Since the corresponding rapidities are not occupied by particles (magnons or
holes) in the polynomial wave function, the digit 0 in the motif is associated
with these squares. Thus we have established the equivalence of both defi-
nitions of the motif; one from the shape of a ribbon diagram, and the other
from the occupation pattern of rapidities. The energy of a supermultiplet
is completely determined by the motif, or by the ribbon diagram. With a
given motif, the occupation pattern of magnons and holes gives the energy
by (6.54). On the other hand, a ribbon diagram uniquely gives an ordinary
Young diagram by vertical movement of squares, as shown in Fig. 6.8. The
resultant distribution ν(κ) gives the energy by (6.87). It is amazing that two
apparently different expressions give identical results with a proper shift of
the origin.

It is now trivial to prove that the wave function ΨG({z}) of (6.20) gives
the true ground state of the supersymmetric t–J model. We have shown that
the energy of each supermultiplet is given in terms of the YHWS, which can
be represented by a polynomial wave function. Among these, ΨG({z}) gives
the lowest energy. Hence the ground state is given by ΨG({z}) with the
motif 0101 . . . 111101 . . . 01.

6.6 Thermodynamics

6.6.1 Parameters for exclusion statistics

In the Haldane–Shastry spin chain, we have derived thermodynamics by the
free-semion picture of spinons. One may naturally ask if the fractional parti-
cle picture can be applied in the presence of holes. The answer is affirmative,
as we now discuss in detail. In order to derive the fractional exclusion statis-
tics in the SUSY t–J model, we first count the available number W (M,Q) of
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states for the case where M magnons and Q holes are present. This number
is the same as the number of YHWS for a given number N↑ = N −Q− 2M

of up spinons, and Q holons. The number W (M,Q) is also equal to the
number of motifs, or the number of ribbon diagrams without inscription.

Of the N squares for the lattice sites, we set aside M squares which will
come back when recovering the part of a ribbon diagram for singlet pairs.
Equivalently, in terms of a motif, we first consider a sequence of N − M

digits of either 0 or 1. The digit 1 represents either a magnon or a hole.
Then the number of magnon plus hole states is given by

W (M,Q) =
(N − M)!

(M + Q)!(N − 2M − Q)!
· (M + Q)!

Q!M !
, (6.88)

where the first combinatorial factor gives the possible ways of placing M +Q

1’s among N − M digits. This number in fact gives the number of singlet
states. The second combinatorial factor gives the number of hole states for
given location of 1’s. To recover N + 1 digits representing a supermultiplet,
a 0 (zero) is inserted to the right of each 1, provided this 1 represents a
magnon. In terms of a ribbon diagram, a square out of M reserved ones is
placed on top of each magnon square.

In order to obtain the statistical parameter, we rewrite W (M,Q) in terms
of number N↑ of up spinons, and Q of holons. Namely (6.88) is written as

W (M,Q) = D↑HN↑ × Dh
HQ, (6.89)

where the notation nHm has been defined by (4.135), and

D↑ =
1
2
(N + Q − N↑) + 1, Dh =

1
2
(N − Q − N↑) + 1. (6.90)

Here D↑ gives the number of available orbitals for up spinons, and Dh for
holons. We then obtain the relation

∆D↑ = −g↑↑∆N↑ − g↑h∆Q, (6.91)

∆Dh = −gh↑∆N↑ − ghh∆Q, (6.92)

with (
g↑↑ g↑h
gh↑ ghh

)
=

(
1/2 −1/2
1/2 1/2

)
. (6.93)

It is remarkable that the matrix is antisymmetric. Namely, spinons have
more states in the presence of holons, while holons have less states in the
presence of spinons. Another remarkable feature is that holons acquire the
statistical parameter 1/2, which is different from that of holes. The semionic
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holon statistics appears explicitly in the absence of spinons. On the other
hand, the fermionic statistics of holes appears explicitly in the absence of the
singlet pairs. The latter follows straightforwardly from (6.88) with M = 0.
Thus we conclude the following: the statistical parameter depends on the
reference state in the t–J model.

According to the general framework of exclusion statistics, the statistical
matrix {gαβ} gives sufficient information for constructing the thermodyna-
mics of spinons and holons. In order to apply the framework to the t–J
model, we have to extend the above results to be applicable to

(i) all states including the non-YHWS, and
(ii) a macroscopic number of states within the narrow momentum range.

We note that the magnon–hole picture applies only to the YHWS state,
and cannot meet the requirement (i). On the other hand, the spinon–holon
picture can be extended to meet (i), as has been demonstrated in the spin
chain. The spinons in the YHWS all have spin up by definition. As in the
spin chain, the statistical parameters are independent of the spin direction
of spinons and are commonly given by 1/2. Hence we obtain the result
including down spinons as follows:

{gαβ} =

 1/2 1/2 −1/2
1/2 1/2 −1/2
1/2 1/2 1/2

, (6.94)

where the first and second components are for up and down spinons and the
third one for holons. We note that the total number 3N of states is recovered
by construction of ribbon diagrams, as explained in Section 6.5.2. Alterna-
tively, the number 3N comes out if one sums up the number of combinations

W (N↑, N↓, Q) =Dh
HQ × DspHN↑ × DspHN↓ (6.95)

over all possible combinations of up and down spinon numbers N↑, N↓, and
the holon number Q [101]. Here Dh and Dsp are given by (6.90) with the
replacement N↑ → Nsp = N↑ + N↓.

The other necessary extension (ii) can be achieved by the standard tech-
nique established by Yang and Yang [195]. Namely, as we have considered
in Section 4.10, we take a region with small width ∆p ¿ 2π in the Brillouin
zone. Under the condition N∆p À 2π, the small region has a macroscopic
number of states for magnons and holes. We can apply almost the same
argument of counting the available states as that used for taking the whole
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energy range. Since the exhaustion of available states applies to this narrow
region as well, we also obtain (6.94) for the range around p, provided the
momentum p is common to both spinons and holons. We shall next provide
such a description.

6.6.2 Energy and thermodynamic potential

Let us return to the YHWS described by polynomial wave functions. By
regarding spinons as antiparticles of magnons, we can easily derive a part of
the excitation spectrum of the system by using (6.54). Although the present
derivation assumes a pair creation with the same momentum, the restriction
has no effect in the thermodynamic limit. Instead of changing the momenta
of many magnons as described by (6.64), we create two spinons by moving
a magnon with rapidity k to π. Here we assume M = N/2, i.e., no spin
polarization. The energy change associated with the move is given by

∆E = −1
2
(k2 − π2) = 2

[(π

2

)2
− p2

]
= 2ε0(p), (6.96)

where p = −k/2. Namely, the change in energy and rapidity k is shared
by two spinons. The sign of the momentum is reversed because the spinons
are holes of magnons. For the fractional exclusion statistics to be described
soon, it is convenient to regard p as the rapidity of a spinon. It is related to
physical momentum q by the relation p = q−π/2, as in the case of the spin
chain. Then we have εs(q) = ε0(p), and the range of p is [−π/2, π/2].

In order to describe mutual exclusion of spinons and holons, we should use
the common rapidity p for a holon excitation as well. The simplest derivation
of the holon spectrum as a function of p is to use (6.54), and consider the
creation of a spinon–holon pair. Namely, we choose the rapidity kj of a
magnon, and reinterpret this as the rapidity of a hole with M → M − 1
and Q → Q + 1. This is equivalent to creating a spinon–holon pair with
the same rapidity. Owing to the supersymmetry with M + Q kept constant,
the change of total energy comes only from the last term in (6.54), which
sets the chemical potential to the center of the non-interacting energy band
described by t(k). Hence, apart from this chemical potential term π2/3, the
holon energy should compensate the spinon energy. From this consideration
we obtain the holon spectrum as π2/3− ε0(p). The physical momentum q is
related to p by p = q − π/2 with vanishing hole concentration.

It is clear in the present derivation that the total energy of the system
is given by the sum of elementary excitation energies, and there is no
interaction term in the p-space. Although the spectrum derived above is
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for the YHWS, the result can be generalized to all excited states other than
polynomial wave functions because of the Yangian symmetry. Taking the
reference energy as the ground-state energy of the Haldane–Shastry model,
we obtain the internal energy U(h) with inclusion of the Zeeman term as

U(h) =
π2

3
Q +

∑
p

[ε↑(p)ρ↑(p) + ε↓(p)ρ↓(p) − ε0(p)ρh(p)], (6.97)

where εσ(p) = ε0(p) − σh and ρα(p) is the distribution function for the
component α =↑, ↓, and h. We define the density of available orbitals for
each species α by ρ∗α(p) by the relation

ρ∗α(p)∆p = ∆Dα, ρα(p)∆p = ∆Nα, (6.98)

where Nα denotes the number of particles with species α, i.e., up and down
spinons and holons. Then we obtain the entropy

S =
∑
pα

[(ρα + ρ∗α) ln (ρα + ρ∗α) − ρα ln ρα − ρ∗α ln ρ∗α]. (6.99)

The particle and hole distribution functions are related by the statistical
matrix gαβ as

ρ∗α(p) = 1 −
∑
β

gαβ ρβ(p), (6.100)

where the indices α, β specify either spin up, down, or holon.
In terms of these distribution functions the thermodynamic potential

Ω = U(h)−TS+(µ−π2/3)Q is obtained. The distribution functions are de-
termined by the stationary condition δΩ/δρα(p) = 0. As a result, we obtain
for each p

βεα = ln (1 + wα) −
∑

γ

gγα ln
(
1 + w−1

γ

)
, (6.101)

with β = 1/T and wα ≡ ρ∗α/ρα. The quasi-particle energy εα includes the
Zeeman term for spinons, and the chemical potential term for holons. Ex-
plicitly they are written as

ε↑(p) = p2
s − p2, ε↓(p) = p2

s − p2 + 2h, εh(p) = p2 − p2
c , (6.102)

p2
s = (π/2)2 − h = (π/2)2(1 − m)2, (6.103)

p2
c = (π/2)2 − µ = (π/2)2(1 − n)2. (6.104)
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Note that ps has already been used in Chapter 4. Provided the stationary
condition is satisfied, we obtain the simple form for Ω as

Ω = −T
∑
pα

ln
(
1 + w−1

α

)
. (6.105)

The spectrum of spinons and holons can be defined only for rapidities out of
the condensate regions pc < |p| < ps. On the other hand, antiparticles arise
as elementary excitations in the condensate regions. Namely, antispinons
can be defined for ps < |p| < π/2, and antiholons for |p| < pc.

6.6.3 Fully polarized limit

It is instructive to see the situation in the fully polarized case m = n,
or ρ↓(p) = 0. In this limit, double occupation of a site is prohibited by
the exclusion principle. Hence the hard-core repulsion between electrons
becomes irrelevant, and the system behaves as free fermions. Note that this
limiting situation applies to any form of the t–J model, and has nothing to
do with the supersymmetry. We shall now discuss how the description in
terms of semionic spinons and holons with supersymmetry reduces to that
of free fermions. Let us put w−1

↓ = 0 in accordance with ρ↓(p) = 0. This
corresponds to h → ∞. On the LHS of (6.101), we consider cases α =↑ and h.
Adding both sides in these cases we obtain

(µ − h)β = ln
[

1
ρ↑ρh

(
1 − ρ2

4

)]
, (6.106)

where ρ = ρ↑ + ρh with omission of argument p. We obtain the solution
ρ(p) = 2, which gives −∞ on both sides. We now subtract the case α =↑ in
(6.101) from the case α = h to obtain

[2ε0(p) − h − µ]β = ln
[(

1 − 1
4
ρ̃2

)
/(ρ↑ρh)

]
= ln[f(p)−1 − 1], (6.107)

where ρ̃ = ρ↑ − ρh and f(p) = ρ↑(p)/2 = 1− ρh(p)/2. To make a connection
with free electrons we interpret ζ = µ + h as the chemical potential, and
k = 2p as the physical momentum of the electron. Then we obtain from
(6.107)

f(p) = [exp β(εk − ζ) + 1]−1 , (6.108)

where εk = (π2−k2)/2. The function f(p) is precisely the Fermi distribution
with the band energy εk. The internal energy of (6.97) is reduced to

U(h) = U0(h) +
∑

k

(εk − ζ)f(k/2), (6.109)
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ρα

ρ↑ ρh

π/2−π/2

ρ↑2

pc ps−ps −pc 0

Fig. 6.10. Distribution functions of holons ρh(p) and up spinons ρ↑(p) at zero
temperature.

where U0(h) is a constant.
The entropy of the system is written as

S =
∑

p

ρα[wα ln(1 + w−1
α ) + ln(1 + wα)]. (6.110)

In the fully polarized limit, the finite contribution comes only from α =↑
since wh = (1 − ρ/2)/ρh = 0 and ρ↓ = 0. By putting w↑ = f−1 − 1 and
ρ↑ = 2f , we obtain

S = −2
∑

p

[f ln f + (1 − f) ln(1 − f)], (6.111)

which gives the entropy of free fermions. Note that the factor 2 is absorbed by
changing the summation variable to k. Thus we see that all thermodynamic
quantities derived from Ω = U − TS give the free-fermion behavior.

6.6.4 Distribution functions at low temperature

We consider the zero-temperature limit where ρα(p) reduces to step func-
tions. For example, we have ρh = 2 and ρσ(p) = 0 for |p| < pc, where
εh(p) < 0. Figure 6.10 illustrates the distribution functions at zero temper-
ature. We obtain the relation at T = 0,∫ π/2

−π/2

dp

2π
ρh(p) =

2pc

π
= 1 − n. (6.112)
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Note that the halving of the Brillouin zone for holons is compensated by
ρh = 2 in the semionic statistics in giving the hole density. With use of
(6.104) we obtain the relation at T = 0

n = 1 −

√
1 −

(
2
π

)2

µ, (6.113)

with µ = (π/2)2 − p2
c . This is analogous to (4.152) or (6.103) for magne-

tization. At finite but low temperature T , (6.101) with α = h gives the
distribution function

ρh(p) =
2√

4 exp[2βεh(p)] + 1
, (6.114)

which corresponds to a single-component system with the statistical
parameter 1/2 as discussed in Section 2.4.3. Thus holons at low temper-
ature behave as single-component semions. Because of the relation n ≥ m,
we have pc < ps.

With finite magnetization, we obtain ε↑(p) < 0 for ps < |p| < π/2. In this
momentum range we have ρh = ρ↓ = 0 at T = 0. Then we obtain∫ π/2

−π/2

dp

2π
ρ↑(p) = 1 − 2ps

π
= m. (6.115)

Using (4.152) we obtain the magnetization at T = 0

m = 1 −

√
1 −

(
2
π

)2

h, (6.116)

for h < (πn/2)2. For larger h, we have m = n. Remarkably, the magneti-
zation increases in exactly the same way for any hole concentration. The
concentration n appears only in the value of saturation. This property is an
example of the strong spin–charge separation, as will be discussed in more
detail later.

With |p| much beyond pc, we may keep only ρ↑ at low temperatures, and
neglect ρh and ρ↓ which remain exponentially small. For |p| much smaller
than ps, on the other hand, we have to keep only ρh and neglect ρσ. Namely,
the overlap of distribution functions of spinons and holons has an exponen-
tially small factor exp(−Tmix/T ). Here the characteristic temperature Tmix

is given by

Tmix = 2(p2
s − p2

c) =
1
2
π2(2 − n − m)(n − m). (6.117)
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We have seen that holons and spinons at low temperature are separated in
the rapidity space, and behave as independent particles. (6.101) gives

ρ↑(p) =
2√

4 exp[2βε↑(p)] + 1
, (6.118)

which describes thermally excited spinons with |p| > ps, and the condensate
of up spinons with |p| < ps. As in the case of holons, up spinons behave as
single-component semions at low temperature.

6.6.5 Magnetic susceptibility

Given the thermodynamic potential one can derive the susceptibilities and
the specific heat by appropriate thermodynamic derivatives. We shall first
derive the magnetic susceptibility at low temperature. In deriving ρ↑(p) near
p = ps, we can set ρh(p) = ρ↓(p) = 0. The magnetization m is given by
integration of ρ↑(p) and the differential susceptibility is derived as

∂m

∂h
≡ χm(m) =

2
π2(1 − m)

[
1 +

2T 2

3π2(1 − m)4

]
+ O(T 3), (6.119)

which agrees exactly with (4.170) in Chapter 4 up to O(T 2). Accordingly,
there is no logarithmic singularity in the temperature dependence for any
charge density n. The independence of n is an example of the strong spin–
charge separation [101,121] at low T . If we take the limit of zero magnetic
field first, i.e., h/T ¿ 1, we have

χm =
2
π2

(
1 +

2
π2

T

)
+ O(T 2), (6.120)

which is again the same as that for the spin chain. The spin susceptibility
χs is related to the magnetic susceptibility χm by χm = 4χs. For general
temperature, it is necessary to include the mixing between spin and charge
degrees of freedom. By using explicit values of gαβ given by (6.94) for frac-
tional exclusion statistics, we obtain

wσ =
1
ρσ

[
1 − 1

2
(ρ↑ + ρ↓ − ρh)

]
≡ 1

ρσ

[
1 − 1

2
ρ̃

]
, (6.121)

wh =
1
ρh

[
1 − 1

2
(ρ↑ + ρ↓ + ρh)

]
=

1
ρh

[
1 − ρh +

1
2
ρ̃

]
, (6.122)

omitting the obvious argument p. Complementary to ρα(p), we now
introduce distribution functions dh(k) of fermionic holons and dσ(k) of
bosonic spinons with a variable k by requiring wσ(p) = 1/dσ(k) and
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wh(p) = [1 − dh(k)]/dh(k). The variable k is specified by the relation dα(k)
dk = ρα(p)dp. Then differentials dp and dk satisfy

dp − dk =
1
2
ρ̃(p)dk = −1

2
d̃(k)dp. (6.123)

In accordance with fermionic and bosonic distribution functions, we
rewrite (6.101) as

εσ(p) = T ln[1 + wσ(p)] +
1
2
Ωp, (6.124)

εh(p) = T lnwh(p) − 1
2
Ωp, (6.125)

where

Ωp = −T
∑
α

ln[1 + wα(p)−1]. (6.126)

Summation over p of Ωp gives the thermodynamic potential Ω as shown by
(6.105). The fermionic nature of holons and the bosonic nature of spinons
in dα become explicit in the form

dh(k) =
[
exp β

(
εh +

1
2
Ωp

)
+ 1

]−1

, (6.127)

dσ(k) =
[
exp β

(
εσ − 1

2
Ωp

)
− 1

]−1

, (6.128)

which can be obtained from (6.124) and (6.125). It is obviously possible to
regard dα also as a function of p. We can actually solve for either dα or ρα

as follows:

dσ = ρσ

(
1 − 1

2
ρ̃

)−1

, dh = ρh

(
1 − 1

2
ρ̃

)−1

, (6.129)

ρσ = dσ

(
1 +

1
2
d̃

)−1

, ρh = dh

(
1 +

1
2
d̃

)−1

, (6.130)

with d̃ = d↑ + d↓ − dh.
It is now straightforward to derive the magnetic susceptibility for an ar-

bitrary temperature. We obtain in the limit of h → 0

χm =
∂

∂h

∑
pσ

σρσ = 2β
∑

p

dσ(1 + dσ)
1 + dσ − dh/2

= 2β
∑

p

ρσ(1 + ρh/2)
1 − ρ̃/2

, (6.131)

where dσ actually does not depend on σ, and we have used (6.129). In the
case of dh = 0, (6.131) reduces to (4.172) in Chapter 4. Figure 6.11 shows
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Fig. 6.11. Temperature dependence of the spin susceptibility for various electron
concentrations n = ne [101]. The crosses represent the crossover temperature TX

above which the strong spin–charge separation breaks down. See (6.132) for the
definition of TX.

the numerical results for the spin susceptibility χs = χm/4 [101]. Here we
have introduced a crossover temperature TX such that

ρh(ps) = 0.01, (6.132)

where the number 0.01 was just chosen as a typical magnitude to character-
ize the deviation from complete spin–charge separation. The temperatures
TX and Tmix defined by (6.117) are related by a numerical factor. At tem-
peratures above TX the charge degrees of freedom influence the magnetic
susceptibility by more than an order of 1%. It is clear that χs is indepen-
dent of n = ne at low temperature, consistent with (6.120).

6.6.6 Charge susceptibility

Now we turn to the charge susceptibility. The density n at low enough T is
given by

1 − n =
∫ π/2

0

dp

π
ρh(p) ' 1

π

∫ ∞

−∞
dεcp(εc)

(
−∂ρh

∂εc

)
, (6.133)
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with εc = 2εh(p). Here we have used the delta-function-like character
of −∂ρh/∂εc in extending the range of integration. We make the expansion

p(εc) ' pc + εc/pc − ε2c/(2p3
c) + ε3c/(2p5

c). (6.134)

Then in terms of quantities

In ≡
∫ ∞

−∞
dεc

(
−∂ρh

∂εc

)
εn
c , (6.135)

which is actually the same as appeared in (4.168) of Chapter 4; one can
perform a low-T expansion of n. The charge susceptibility χc(n) is then
given by

∂n

∂µ
≡ χc(n) =

2
π2(1 − n)

[
1 +

2T 2

3π2(1 − n)4

]
+ O(T 3), (6.136)

which is independent of m. The presence of the O(T 3) term in (6.136) results
in a difference from the standard Sommerfeld expansion. It should be em-
phasized that χc(n) has precisely the same functional form as χm(m). That
χc(n) is independent of m is another indication of the strong spin–charge
separation.

At general temperature, we use bosonic and fermionic distribution func-
tions dα to derive the convenient formula for χc. We observe

∂Ωp

∂µ
=

(
1 +

1
2

∂Ωp

∂µ

)
dh − 1

2
∂Ωp

∂µ

∑
σ

dσ =
dh

1 + d̃/2
= ρh. (6.137)

Then we obtain the derivatives

∂dh

∂µ
= −βdh(1 − dh)

(
1 − 1

2
ρh

)
, (6.138)

∂dσ

∂µ
= −β

2
dσ(1 + dσ)ρh. (6.139)

These results are substituted for derivatives appearing in

χc =
∂

∂µ

∑
p

ρh(p) =
∂

∂µ

∑
p

dh

1 + d̃/2
. (6.140)

Then we obtain the formula for the charge susceptibility

χc = β
∑

p

ρh

{
(1 − dh) +

1
4
ρh

[∑
σ

ρσ(1 + dσ) − ρh(1 − dh)

]}
. (6.141)

We obtain ρα and dα as functions of p by solving (6.101). Hence we can
evaluate χc by integration over p. Figure 6.12 shows the charge susceptibility
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Fig. 6.12. Temperature dependence of the charge susceptibility for various electron
concentrations n = de [101].

obtained numerically [101]. Consistent with (6.136), χc tends to diverge in
the high-density limit at T = 0.

6.6.7 Entropy and specific heat

At low temperatures, thermodynamics is determined only by the distribution
functions near pc and ps. Hence they play the role of “Fermi momenta”. The
mutual statistical parameter is not important as long as pc 6= ps, which is the
basis of the independent semion picture. Let us now consider the entropy StJ

per site of the t–J model which consists of the charge part Sc, and the spin
part Sσ for each spin. As in the case of a spin chain, we use the Sommerfeld-
type expansion including the semionic distribution function. Then Sσ is not
affected by the presence of holes in the low-temperature limit. We obtain
Sσ ' πT/(6ps), as given in Chapter 4. The charge part Sc is given at low
temperature by

Sc =
β

2π

∫ ∞

−∞
dεp(ε)ε

(
−∂ρh

∂ε

)
' πT

6pc
. (6.142)
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The total entropy per site is given by

StJ ' T

3

(
1

1 − n
+

1
1 − m

)
=

π2

6
T (χc + χm), (6.143)

which also corresponds to the specific heat γT . The result describes a two-
component (spin and charge) Tomonaga–Luttinger liquid.

As the temperature T of the system increases above the characteristic tem-
perature Tmix or TX, spin and charge contributions are no longer decoupled.
The entropy can be derived from (6.99) with the solution of wα from (6.101).
To derive the specific heat CN of the N -site system, one can use either the
relation CN = T∂S/∂T )n or more conveniently the following formula:

CN =
∂U

∂T

)
n

=
∂U

∂T

)
µ

+
∂U

∂µ

)
T

∂µ

∂T

)
n

. (6.144)

The first term on the RHS is given by

∂U

∂T

)
µ

=
∑
α

εα
∂ρα

∂T

)
µ

. (6.145)

As in the case of susceptibility, it is convenient to use the distribution func-
tions dα in calculating the derivative. We obtain

1
ρα

∂ρα

∂T

)
µ

=
1
dα

∂dα

∂T

)
µ

− 1
2 + d̃

∂d̃

∂T

)
µ

. (6.146)

The derivatives of fermionic and bosonic distributions are given by

∂dh

∂T

)
µ

= βdh(1 − dh)
[
β(εh + µ) − 1

2
Sp

]
, (6.147)

∂dσ

∂T

)
µ

= βdσ(1 + dσ)
[
βεσ +

1
2
Sp

]
, (6.148)

where Sp = −∂Ωp/∂T is the contribution to entropy from p. On the other
hand, to obtain the second term of (6.144) we observe

∂U

∂µ

)
T

= −Nn, (6.149)

∂µ

∂T

)
n

= −
∑

p

∂ρh

∂T

)
µ

/∑
p

∂ρh

∂µ

)
T

=
1

χcN

∑
p

∂ρh

∂T

)
µ

. (6.150)

In this way, it is possible to derive the specific heat once we have the dis-
tribution functions. Figure 6.13 shows the numerical results for the specific
heat C = CN/N per site [101]. At low temperature, C becomes linear in T ,
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Fig. 6.13. Temperature dependence of the specific heat per site for various electron
concentrations n = ne [101]: (a) overall behavior and (b) low-temperature behavior.

consistent with (6.99). The charge contribution has a larger slope as n comes
closer to unity because of the factor (1−n)−1. Figure 6.14 shows the decom-
position of C into spin and charge contributions. It is remarkable that even
at T larger than the hopping t = 1, the approximate picture of independent
spinons and holons reproduces the exact results fairly well.
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Fig. 6.14. Decomposition of the specific heat Ct−J into spin and charge contri-
butions [101]. CH−S: specific heat of the spin chain, Cholon: contribution of holons
regarded as single-component semions. The cross denotes the crossover temperature
TX defined by (6.132).

In the limit of high T , we may neglect the p-dependence of ρα(p). Then
for fixed density nσ of each spin we recover the obvious result

StJ = −
∑

σ

nσ lnnσ − (1 − n) ln(1 − n). (6.151)

We have shown that the thermodynamics of the supersymmetric t–J model
is described exactly in terms of free particles obeying the fractional exclu-
sion statistics. At low T , the effects of mutual exclusion statistics become
negligible, and the strong spin–charge separation emerges. At higher T , the
multi-component character of fractional exclusion statistics appears explic-
itly, and the spin–charge separation breaks down. Thermodynamics for the
nearest-neighbor SUSY t–J model has been derived by the transfer matrix
technique [168]. The temperature dependence derived is similar to the case
of the 1/r2 model. However, the strong spin–charge separation as seen in
the magnetic susceptibility is absent in the nearest-neighbor model.
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6.7 Dynamics of supersymmetric t−J model

6.7.1 Coupling of external fields to quasi-particles

In interacting electron systems, it is in general hard to derive exact dynami-
cal properties. Even in the case where thermodynamics can be derived
exactly, the dynamics may not permit an exact solution. The super-
symmetric t–J model provides us with a rare opportunity that a substan-
tial part of the dynamical correlation functions can be derived exactly. The
most remarkable outcome of the exact solution is that the dynamical result
can be interpreted in terms of free quasi-particles with fractional exclusion
statistics. However, there still remain dynamical quantities which have been
derived only numerically. In this section, we describe the present status of
theoretical research on the dynamical correlation function in a self-contained
manner. Unfortunately, experimental work to compare directly with the the-
oretical results is very limited. This is firstly because the doping of mobile
carriers to the one-dimensional chain is difficult, and secondly because the
charge velocity is much larger than the spin velocity in real materials such
as TTF-TCNQ [41] where the supersymmetry is strongly broken.

The quasi-particles are characterized by their intrinsic quantum numbers.
Table 6.2 summarizes the spin and charge of each quasi-particle including
non-interacting electrons and holes. Let us consider the coupling of external
fields to quasi-particle excitations. We have already seen in Section 4.11.2
that the magnetic excitation spectrum in the spin chain is exhausted by two
spinons. The two spinons provide the minimal coupling to external mag-
netic fields with integer angular momentum. In the presence of holes, the
charge excitation may in principle be coupled. In reality, as long as the wave
number does not exceed the Fermi wave number kF, holons and antiholons
are not excited by external magnetic fields, as shown in this chapter. This
is another indication of the strong spin–charge separation, which has al-
ready been discussed in thermodynamics. Similarly, the minimal coupling of

Table 6.2. Spin and charge of quasi-particles and their antiparticles.

Quasi-particle species Charge Spin

electron −1 1/2
hole 1 1/2
spinon 0 1/2
antispinon 0 1
holon 1 0
antiholon −2 0
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external charge is the two holons plus one antiholon. This combination gives
the neutral total charge and zero spin. In addition to these excitations,
spinons can in principle participate provided their total spin is zero. Actu-
ally the strong spin–charge separation holds again for small wave numbers
q < kF where no spinons are excited by external fields.

The relevant variable for photoemission is the removal of an electron. The
minimal coupling in this case is the one spinon plus one holon excitation
which gives the right quantum numbers of spin and charge for an electron.
In this case, however, there appear two spinon excitations accompanying the
electron removal for any momentum. Because of this complexity, derivation
of the electron removal spectrum still has to rely on numerical work, although
the spinon–holon part has been derived analytically.

On the other hand, addition of an electron to the system is relevant
to Bremsstrahlung spectroscopy. The process corresponds to the inverse of
photoemission. In the electron addition spectrum, the minimal coupling is
provided by the creation of an antiholon, a holon, and a spinon. This cou-
pling in fact exhausts the whole spectrum. In deriving the response function,
we have to use the physical momentum q for each quasi-particle. The spec-
trum of quasi-particles has been illustrated in Fig. 6.6. The easiest way to
derive the spectrum is to use the YHWS state which can be mapped to
eigenstates in the U(1,1) Sutherland model. Let us first consider the case
without magnetic field for simplicity.

In the mapping to the U(1,1) Sutherland model, we now take [−2π, 0]
as the Brillouin zone as shown in Fig. 6.6(a). This choice gives positive
momentum for spinons and antiholons, but negative momentum for holons.
The size for the Brillouin zone is 2π for antiholons, but π for spinons and
holons. In dynamics, however, one cannot freely shift the momentum of
spinons and holons by π. Namely, the conservation of physical momentum
requires that the shift π should be done simultaneously for a pair of semions.
Thus holes occupy the lowest part with 2kF < −q < 2π−2kF, and magnons
occupy the rest of the Brillouin zone. A hole-like excitation from the ground-
state distribution of holes is the antiholon. The spinons are regarded as
holes of magnons, and can be defined in the following momentum range:
0 < q < kF which is called the right (R) side, and π − kF < q < π which
is called the left (L) side. Note that R and L spinons keep each sign of the
group velocity after the particle–hole reinterpretation:

−εm(−2q) = 2εs(q), (6.152)

which has already been used in Section 6.4. The positive momentum of
spinons has a corresponding negative momentum of magnons in the range
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[−2π, 0], as shown in Fig. 6.6. On the other hand, holons are regarded as
particle excitations from the holon condensate and take negative values
of q. The allowed momentum range of holons is given by sign reversal of
that of spinons.

For convenience of reference, we summarize the spectra in terms of phys-
ical momentum q.

spinon: εs(q) = q(π − q), (0 < q < π),
holon: εh(q) = (q + π/2)2 − p2

c , (−π < q < −π(1 + n/2)
and − π(1 − n/2) < q < 0),

antiholon: εah(q) = −(q − π)2/2 + 2p2
c , (πn < q < π(2 − n)),

where pc = π(1 − n)/2, and we have taken t = 1 for the transfer energy.
The spin velocity is given by vs = π without magnetization, and the charge
velocity is given by vc = π(1 − n).

We now consider the case with finite magnetization m (0 < m ≤ n) per
site. Then antispinons arise as antiparticles from the spinon condensate. We
have obtained the spectrum in Section 6.4 as

antispinon: εas(q) = 1
2(q + π)2 − 2p2

s, (−2π < q < 0), (6.153)

where ps = π(1 − m)/2, and the allowed range is (R) 0 < −q < πm, and
(L) π(2 − m) < −q < 2π. The momentum range of spinons is accordingly
reduced: (R) πm/2 < q < kF, and (L) π − kF < q < π − πm/2, to avoid the
antispinon region. In this case, down spinons have the energy gap

2h = (π2/2)m(2 − m), (6.154)

and the spin velocity is reduced to vm = π(1 − m). The holon spectrum is
not affected by finite magnetization.

6.7.2 Dynamical spin structure factor

We begin with the magnetic response from the singlet ground state |0〉.
We define the Fourier transform S+

q of the spin operator S+
l = Sx

l + iSy
l

at site l as

S+
q =

1√
N

∑
l

S+
l exp(−iql). (6.155)

The dynamical structure factor is given by

S(q, ω) =
1
2

∑
ν

|〈ν|S+
−q|0〉|2δ(ω − Eν + E0), (6.156)
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where |ν〉 denotes an eigenstate of the Hamiltonian (6.1) with energy Eν . As
in the case of a spin chain, which is recovered in the limit of high electron
density, S(q, ω) is equivalently obtained if we use

√
2Sz

l instead of S+
l in the

singlet ground state. In the polarized case, however, the transverse response
with S+

l is different from the longitudinal one with
√

2Sz
l . In the limit of low

electron density, the response should reduce to that of free electrons since
the many-body effect does not operate in this limit.

In the hard-core boson representation with the completely up-polarized
reference state, S+

l annihilates a magnon at site l. Given S+
l with l = 0

acting on the ground state ΨG with M magnons and Q holes, we obtain

〈x1, . . . , xM−1; y1, . . . , yQ|S+
0 ΨG〉

=ΨG(x1, . . . , xM−1, xM = 0; y1, . . . , yQ). (6.157)

Namely, the final states are represented by polynomials of M − 1 complex
magnon coordinates zl = exp(2πixl/N) with l = 1, . . . ,M − 1, and Q hole
coordinates. Because of its polynomial form, the final state belongs to the
YHWS.

It is instructive, and useful for later purposes, to provide an alternative
proof of being the YHWS in terms of the Yangian generator introduced in
Section 6.5.1. By definition a raising operator Λ↑↓ of the Yangian, which has
been defined by (6.84), annihilates the YHWS. Therefore, S+

i ΨG belongs to
YHWS provided the following holds:

Λ↑↓S+
i ΨG = [Λ↑↓, S+

i ]ΨG + S+
i Λ↑↓ΨG = 0. (6.158)

Here we already know that Λ↑↓ΨG = 0. Furthermore, in the magnon–hole
representation, we put S+

i = bi and derive the commutator as

[Λ↑↓, bi] = 2
∑
j(6=i)

wijbibj , (6.159)

where the summand is antisymmetric against interchange of i and j. Then
by using the same reasoning as discussed below (4.116) in Chapter 4, we
obtain [Λ↑↓, bi]ΨG = 0. Hence, (6.158) indeed holds.

We derive the matrix element cν = 〈ν|S+
q |0〉 explicitly by using the

coordinate representation. Let us represent the set of complex magnon co-
ordinates by zs, and the set for holes by zh. Note that any state vector |Ψ〉
in the t–J model can be expressed in terms of the wave function Ψ(zs, zh) as

|Ψ〉 =
∑
zs,zh

Ψ(zs, zh)
∏
i∈zh

b†i
∏
j∈zs

h†
j |F 〉, (6.160)
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where |F 〉 is the fully up-polarized state. Let zs
− represent the complex

coordinates of M −1 down-spin electrons after the spin-flip at z0 = 1 in |Ψ〉.
We can represent the resultant wave function Ψflip(zs

−, zh) = 〈zs
−, zh|S+

j |0〉
with xj = 0 by

Ψflip = z0

Q∏
i=1

(zh
i − z0)

M−1∏
i=1

(zs
i − z0)2ΨGs− =

∑
µ

bµΨµ, (6.161)

where ΨGs− is the ground state, and Ψµ is a general eigenfunction for the
system with Q holes and M − 1 magnons. Note that the state after the
spin-flip is given explicitly as the polynomial factors multiplying ΨGs−.
The factor

∏
(zs

i − z0)2 represents two spinons both localized at z0, and
another factor

∏
(zh

i − z0) represents a deficit of holes around z0. In the mo-
mentum space, these factors represent elementary excitations. The actual
excitation contents were first identified by a numerical study [72] of a system
with a small size. The excitations are composed at most of two spinons, two
holons, and an antiholon. Their spin and charge are summarized in Table 6.2.

It is evident from (6.161) that relevant eigenstates contributing to bµ

are given in terms of polynomials of zi. These states belong to the Yangian
highest-weight states (YHWS) related to the U(1,1) supersymmetry, and can
be given in terms of U(1,1) Jack polynomials [11] written as J

(+−)
κ (z). These

polynomials are also eigenfunctions of the U(1,1) Sutherland model [99,193],
and their basic mathematical properties are summarized in Section 7.5.

From the knowledge of J
(+−)
κ (z), we can calculate most of bµ exactly. Fol-

lowing the same procedure as that in the spinless Sutherland model [74,125],
we obtain the analytic expressions of S(q, ω) in the thermodynamic limit.
The formula for S(q, ω) depends on dispersion relations: εs(q) of spinons,
εh(q) of holons, and εa(q) of antiholons. Since the necessary mathematics is
fairly complicated, we present in this section the results, and discuss their
physical implications. The details of derivation are given in Section 6.8.2.

In terms of quasi-particles, S(q, ω) has three types of excitation contents:
(i) two spinons; (ii) two spinons, two holons, and one antiholon; (iii) one
spinon, one holon, and one electron. In type (iii), we obtain the spectrum
as if an electron is contributing without spin–charge separation. We shall
come back to this point later in discussing the electron addition spectrum.
According to types from (i) to (iii), we divide S(q, ω) into three components:

S(q, ω) = S2s(q, ω) + S2s2hh̄(q, ω) + Sshe(q, ω). (6.162)

Each term on the RHS of (6.162) is further divided into subcomponents
SX(q, ω), where X specifies the excitation content of quasi-particles. For
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each X, an integral region, or the support, DX = DX({qi}) is defined in
terms of the set {qi}i∈X of momenta. We obtain

SX(q, ω) =
∫

DX

∏
i∈X

dqiFX({qi})δ

(
q + 2nπ −

∑
i∈X

qi

)
δ

(
ω −

∑
i∈X

εi(qi)

)
,

(6.163)
where n is an integer to bring q inside the Brillouin zone, and FX({qi}) gives
the intensity, and is given in terms of the square of the matrix element called
the form factor.

Contribution from 2sR or 2sL

For the two-spinon contribution of (6.162), the set X consists of 2sR or 2sL,
i.e., S2s(q, ω) = S2sR(q, ω) + S2sL(q, ω).

The supports D2sR and D2sL are shown in Fig. 6.15. Due to the relation
S2sL(q, ω) = S2sR(2π−q, ω), we need only derive the formulae for S2sR(q, ω).
The integral region is defined by D2sR(qs1, qs2) = {0 ≤ qs1, qs2 ≤ kF}. The
corresponding squared form factor F2s(qs1, qs2) is given by

F2s(q1, q2) =
1
4
|q1 − q2|2gs

2∏
i=1

εs(qi)gs−1, (6.164)

where gs = 1/2 is the semionic statistical parameter of spinons. The form
factor for the region L is the same as that given by (6.164) except for the
allowed range which is now given by D2sL(qs1, qs2) = {π−kF ≤ qs1, qs2 ≤ π}.

It is remarkable that the two-spinon contribution (6.164) is the same
as that for the Haldane–Shastry model [81, 198, 199]. Namely, the spectral
weight in these integral regions does not depend on the electron density,
provided the external momentum is less than the Fermi momentum. The

2sR
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1

2

3

4

5

p 2p-2kF2kF

2p  - kF

kF 2p0

w /t

q

Fig. 6.15. The supports (shaded regions) for S2sR(q, ω) and S2sL(q, ω) for n = 0.5.
Note that t is taken as 1 in the text.
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only effect of holes is to reduce the integral regions D2sR,L . These phenom-
ena of mutual independence of spin and charge dynamics have been referred
to as the strong spin–charge separation [101, 121]. We shall show later that
the dynamical charge structure factor has the corresponding spin–charge
separation in that the intensity does not depend on magnetization.

Contribution from 2sR2hRh̄, 2sL2hLh̄, or sRsLhRhLh̄

As the external momentum increases beyond the threshold q = kF, charge
excitations also enter the spectrum. The contribution from two spinons, two
holons, and one antiholon is given by either X = 2sR2hRh̄, 2sL2hLh̄, or
sRsLhRhLh̄. It is found that in all cases the squared form factor factorizes
into the spin part F2s and the charge part F2hh̄. For example, F2sR2hRh̄ is
given by

F2sR2hRh̄(qs1, qs2; qh1, qh2; qa) = F2s(qs1, qs2)F2hh̄(qh1, qh2; qa), (6.165)

where each momentum of spinons or holons runs inside the region R for each
particle. Namely, D2sR2hRh̄ is given by

{0 < qs1 < qs2 < kF, −kF < qh1 < qh2 < 0, qs2 + qh2 > 0}. (6.166)

The momentum of the antiholon runs over the full range 2kF < qa < 2π −
2kF, or equivalently |qa−π| < 2pc. The full range for the antiholon is always
the case for any support DX , and its specification may be omitted.

In the product F2sF2hh̄, the analytic expression for the spin part F2s is
given by (6.164), and the charge part is given by

F2hh̄(q1, q2; qa) =
1

2π2
|q1 − q2|2ghεa(qa)ga−1

2∏
i=1

εh(qi)gh−1
(
qi +

qa

2

)−2
,

(6.167)
with statistical parameters gh = 1/2 and ga = 2. Remarkably the function
F2hh̄ is the same as that for the charge dynamics in the spinless Sutherland
model with the coupling parameter λ = 1/2. As shown later, F2hh̄ also
appears in the dynamical charge structure factor in the t–J model [6]. The
support D2sR2hRh̄ is shown in the left part of Fig. 6.16.

The contribution from X = 2sL2hLh̄ comes from left-going spinons and
holons. Actually the result can be obtained by the relation S2sL2hLh̄(q, ω) =
S2sR2hRh̄(2π − q, ω). The support of S2sL2hLh̄(q, ω) can also be obtained by
making the replacement q → 2π − q.

The other contribution SsRsLhRhLh̄(q, ω) has the zero energy threshold at
q = 2kF and 2π − 2kF. The corresponding momentum of each quasi-particle
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Fig. 6.16. (Left): The support of S2sR2hRh̄(q, ω) and SsRhRe(q, ω). (Right): The
support of SsRsLhRhLh̄(q, ω) for n = 0.5.

is given with 2pc = π − 2kF by

qs1 = 0, qs2 = π, qh1 = −π + kF, qh2 = −kF, qa = π ± 2pc, (6.168)

all of which have zero excitation energy. The momentum range for sRsLhRhLh̄

can be obtained from the case 2sR2hRh̄ by replacing one of the right spinons
and one of the right holons in S2sR2hRh̄(q, ω) with left ones, i.e.,

qsL = π − qs1, qhL
= −π − qh2.

Then we can use the same form of F2sF2hh̄ as that for the region R, except
for the integral region. The relevant region DsRsLhRhLh̄ is shown in the right
part of Fig. 6.16.

Contribution from sRhRe or sLhLe

We proceed to discuss the remaining contribution Sshe(q, ω), which consists
of R and L components as

Sshe(q, ω) = SsRhRe(q, ω) + SsLhLe(q, ω)

with SsLhLe(q, ω) = SsRhRe(2π − q, ω). It is therefore sufficient to derive the
R component using the R branch of spinons and holons. The integral region
for the R branch is defined by

DsRhRe(qs; qh; qa) = {−kF ≤ qh ≤ 0, 0 ≤ qs ≤ π − qh}, (6.169)

with the full range |qa−π| < 2pc for antiholons as in other cases. The squared
form factor Fshe(qs; qh; qa) has been derived in the following form [10]:

Fshe(qs; qh; qa) =
1
2π

qa/2 − qs

qh + qa/2
εs(qs)gs−1εh(qh)gh−1

√
εa(qa)
ε0(qa)

, (6.170)
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where ε0(q) = q(2π−q)/2 gives the free-electron spectrum in the low-density
limit. The support of SsRhRe(q, ω) is the same as that of S2sR2hRh̄(q, ω),
as shown in the left part of Fig. 6.16. The square-root factor in (6.170) is
interpreted as a renormalization factor of the electron. As discussed in detail
later, the same factor appears as the coefficient of the delta function in the
electron addition spectral function on the upper edge of the support [8,11].

As we have described, the part S2s2hh̄(q, ω) factorizes into spin and charge
parts, and can be interpreted in terms of the fractional exclusion statis-
tics [79]. This part of the form factor and S2s(q, ω) in the SUSY t–J

model look very similar to those in the related continuum systems [103].
On the other hand, the part Sshe(q, ω) does not factorize into the spin and
charge parts, and cannot be interpreted by fractional exclusion statistics
straightforwardly. Thus we prefer an alternative interpretation in terms of
unfractionalized electrons. Namely, one spinon with spin (S) and charge (C),
(S,C) = (1/2, 0), one holon with (0, +e), and one antiholon with (0,−2e)
combine to give one electron (1/2,−e). However, this “electron” should not
be regarded as an ordinary bound state since there is no binding energy, and
the momenta of the holon and the spinon are fixed, i.e., (qsR, qhR) = (0, 0)
or (qsL, qhL) = (π, π). This spinon–holon pair does not give the momentum
shift but increases the energy by εs(kF) in the spectrum.

By rewriting a part of the form factor as

qa/2 − qs

qh + qa/2
=

(qa/2 − qs)2gs(qh + qa/2)2gh

(qh + qa/2)2
, (6.171)

with gh = gs = 1/2, we can interpret that a fractionalized spinon (qs) or a
holon (−qh) interact with each unfractionalized counterpart (qa/2) making
up the electron. In the electron addition spectrum as described later, the
unfractionalized electron appears more explicitly as a delta-function peak.

We can obtain analytic results even for a finite size, although the compli-
cated analytic expressions, to be given by (6.220) and (6.221), do not allow
any intuition. Figure 6.17 shows the results of S(q, ω) for a large but finite-
size system (N = 60), which is due to Arikawa (unpublished), together with
the lines that give thresholds of the spectrum.

From these analytic results, we can derive the behavior of the S(q, ω)
near boundaries of the supports. There are divergent singularities at lower
boundaries ω = εs(q) and ω = εs(2π − q) (0 ≤ q ≤ kF). At these boundaries
S(q, ω) diverges by the power law with exponent −1/2. At other boundaries,
S(q, ω) has threshold singularities but no divergence. Along the “electron”
dispersion which appears in the lower edge of the spectrum in the left part
of Fig. 6.16, the threshold singularity is large, as seen in the central region
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Fig. 6.17. The dynamical spin structure factor S(q, ω) for N = 60, Q = 30, and
M = 15 with Fermi momentum kF = π/4 (n = 0.5), calculated by Arikawa (unpub-
lished). The intensity, which is derived analytically, is proportional to the area of
each oval. The solid lines are determined by dispersion relations of the elementary
excitations in the thermodynamic limit.

of S(q, ω) in Fig. 6.17. This feature clearly distinguishes the dynamics in the
presence of holes from that in the spin chain.

6.7.3 Dynamical structure factor in magnetic fields

To understand the effects of magnetic field in the SUSY t–J model, it is
instructive to compare it with the dynamics for the spin chain which we
have discussed in Chapter 4. As in the spin chain, we can derive S−+(q, ω)
analytically since all relevant excited states |ν〉 contributing to 〈ν|S+

−q|0〉
belong to the YHWS. Other components S+−(q, ω) and Szz(q, ω) contain
excited states out of the YHWS. Hence we can derive only a part belonging
to the YHWS analytically. Derivation of the whole intensity needs numerical
calculation.

In order to simplify the notation of the limiting values of the momentum
for each quasi-particle, we use here the variable p = q − π/2 for spinons
and holons, and p = q − π for antiholons and antispinons. By this shift
all spectra of quasi-particles become symmetric about p = 0. The variable
p has already been used in discussing thermodynamics. In the presence of
holes and magnetic field, the spinons can exist only for pc < |p| < ps, where
pc = π(1 − n)/2 and ps = π(1 − m)/2 with m being the magnetization per
site. As in the spin chain, up and down spinons have the same restriction
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for the momentum range because of the Yangian symmetry. Thus the only
difference from the spin chain is that the range of |p| is bounded from below
by pc. As a result, a clear distinction emerges between the right and left
branches of the spinons. In the spin chain, on the other hand, the right and
left branches are connected continuously. We note that the antispinons are
not affected by the presence of holes.

Let us begin with the simplest case of S−+(q, ω) for which the YHWS
exhausts the spectrum. The form factor is rather similar to the spin chain
except for the smaller range of momentum for spinons. The spin-flip operator
S+
−q on the ground state creates two spinons with spin up. There is no effect

of holes as long as q runs within the momentum range [πm, π(n + m)/2] for
the left spinons, and [2π − π(n + m)/2, 2π − πm] for the right ones. The
range is equivalently written as pc + ps < |q − π| < vm = π(1 − m). The
result of S−+(q, ω) for this range is given by

S−+(q, ω) =
Θ (εU(p) − ω)Θ (ω − εL−(p))Θ (ω − εL+(p))

2
√

(ω − εL−(p)) (ω − εL+(p))
, (6.172)

where Θ(ω) is the step function, p = q − π, and

εL±(p) = −p(p ∓ qm) = ε↑(p ∓ ps), (6.173)

εU(p) = 2p2
s − p2/2 = 2ε↑(p/2). (6.174)

In the high-density limit (n = 1), this expression reduces to (4.214) for the
spin chain. The upper and lower thresholds are determined by the spectrum
of up spinons. Figure 6.18(a) shows the numerical results with N = 16 and
m = 0.25 [156]. In addition to the two-spinon contribution derived above,
there appear contributions 2hh̄ beyond the threshold q = π(n + m)/2. The
difference from the zero-field case is the finite threshold q = πm of the
momentum below which there is no intensity.

We proceed to discuss the component Szz(q, ω). Analytic results relying
on the YHWS are exact only for small enough q that does not create charge
excitations. In this range Szz(q, ω) can be interpreted as the density response
of magnons as in the spin chain. Then the spectrum agrees with the spinless
Sutherland model with the coupling parameter λ = 2. The excitation con-
tents in the range 0 < q < π(n−m)/2 are simply given by 2sRs̄R. Beyond the
threshold momentum, charge excitations with the excitation contents 2hRh̄

or 2hLh̄ also enter the spectrum. As a result, the support of Szz(q, ω) be-
comes rather complicated. Figure 6.18(b) shows numerical results for N = 16
and m = 0.25 [156]. The upper and lower thresholds of the spectrum are eas-
ily identified. The upper threshold near q = 0 is determined by the spectrum
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Fig. 6.18. Numerical results of dynamical structure factor: (a) S−+(q, ω), (b)
Szz(q, ω), and (c) S+−(q, ω) with N = 16, Q = 2, and m = 0.25 [156]. The in-
tensity is proportional to the area of each circle. The solid lines are determined by
the dispersion relations of the elementary excitations in the thermodynamic limit.

of the antispinon s̄R. The difference qm = πm of the threshold momentum
from 2π is compensated by the two spinons with zero energy. On the other
hand, the lower threshold near q = 0 is determined by the up spinon, whose
finite momentum for the threshold is compensated by the zero-energy an-
tispinon. As in the spin chain, the periodicity of the antispinon spectrum
makes the difference from the dynamics of the Sutherland model.

Finally we discuss the component S+−(q, ω). The action S−
−q on the ground

state corresponds to the creation of a down-spin magnon, i.e., an antispinon.
Equivalently, S−

−q annihilates two spinons with spin up in the condensate.
The analytic expression of S+−(q, ω) within the YHWS is analogous to the
particle addition spectrum in the U(1,1) Sutherland model with the cou-
pling parameter λ = 1. Namely, the maximum excitation contents are given
by 2ss̄Rs̄L2hh̄, which has been found numerically [155]. Although the an-
alytic expression for the whole spectrum is not available now, upper and
lower thresholds for the support can be derived from the excitation con-
tents. Figure 6.18(c) shows the numerical results of S+−(q, ω) for N = 16
and m = 0.25 [156]. The upper and lower thresholds can be interpreted
in terms of quasi-particles as in the spin chain. For example, the anti-
spinon s̄L takes zero energy at q = qm = πm, and s̄R takes zero energy
at q = 2π− qm = π +2ps. Hence the support for S+−(q, ω) begins from zero
energy at q = ±qm. To the right of q = qm the singularities of the spectrum
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Table 6.3. Maximum contents of quasi-particles for Sαβ(q, ω) in magnetic
field. The subscripts R and L indicate the branches of antispinons.

S−+(q, ω) 2s + 2h + h̄
S+−(q, ω) 2s + s̄R + s̄L + 2h + h̄
Szz(q, ω) 2s + s̄R + 2h + h̄, 2s + s̄L + 2h + h̄

consist of the dispersion curves of 2ss̄R. To the left of q = qm the lower
threshold follows the dispersion of s̄L down to q = 0, where the excitation
energy 2h is required. The support for larger q is very complicated since the
charge excitations with the contents 2h + h̄ enter the spectrum.

Table 6.3 summarizes the excitation contents relevant to the dynamical
structure factor of the SUSY t–J model in a magnetic field. The effect of
charge degrees of freedom can be seen by comparing it with the correspond-
ing Table 4.1 in Chapter 4. The spinons and holons can take various combi-
nations of R and L. Numerical results show that the number of spinons plus
holons for each branch R and L should be even. For example, combinations
such as sRsL2hLh̄ are not allowed for S−+(q, ω).

6.7.4 Dynamical charge structure factor

The charge correlation function is relevant to dielectric and elastic responses
of real systems which have quasi-one-dimensional electrons as their active
constituent. The density operator is defined by

nq = N−1/2
∑

σ

N∑
l=1

Xσσ
l exp(−iql), (6.175)

where the X-operators have been defined in (1.39). Because of the constraint
of completeness, we can alternatively use

nq = −N−1/2
N∑

l=1

h†
l hl exp(−iql), (6.176)

as long as q 6= 0. The dynamical charge structure factor is defined by

N (q, ω) =
∑

ν

|〈ν|n−q|0〉|2δ (ω − Eν + E0) , (6.177)

where |ν〉 denotes a normalized eigenstate of the Hamiltonian (6.1) with
energy Eν .
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Analytic derivation of N(q, ω) is more difficult than the spin structure
factor S(q, ω). The reason is that the state nq|0〉 has a part outside the
YHWS, and the polynomial wave functions are not sufficient. To see this,
let us look at the commutator with the Yangian generator

[h†
ihi, Λ↑↓] =

∑
j(6=i)

wij(h
†
ihj − h†

jhi)bj , (6.178)

where the summand is no longer antisymmetric against an interchange of
i and j because of the presence of bj . Thus h†

ihiΨG does not belong to
the YHWS. However, if the external momentum q is sufficiently small, only
charge excitations enter in the dynamical charge response. In this region the
final state belongs to the YHWS and we can obtain the analytic solution. The
first analytic solution for N(q, ω) with small q was obtained using the freez-
ing trick [6]. In the following, however, we shall use mapping to the U(1,1)
Sutherland model in line with the derivation of other dynamical quantities.

The form factor with excitations 2h + h̄ is precisely the same as the
dynamical correlation function of the single-component Sutherland model
with the repulsion parameter gh = 1/2, which properly describes the semionic
statistics of holons. One may wonder how the fermionic hole with λ = 1
acquires the semionic repulsion parameter without spin excitations. By tak-
ing the allowed states in the lattice, we have discussed in detail the origin
of the semionic exclusion statistics in Section 6.6.1. Similar evolution of
fractional exclusion statistics in the multi-component Sutherland model has
been discussed [15, 197]. Namely, even though the magnons are not excited
in the mapped U(1,1) Sutherland model, their presence in the ground state
leads to a renormalization of the coupling parameter for hole excitations as
λ → λ/(λ + 1). In the case of λ = 1, we obtain gh = λ/(λ + 1) = 1/2 as the
statistical parameter for holons. The mathematical structure leading to this
situation will be explained later in Section 7.5.3.

The threshold momentum for spinon excitation is given by qth = π(n −
m)/2, which corresponds to the Fermi momentum of minority-spin electrons.
Below the threshold, N(q, ω) is independent of the magnetization m. This
independence corresponds to the strong spin–charge separation. We thus
obtain for q < qth:

N(q, ω) =
q2

π

∫ π+2pc

π−2pc

dq′
∫ −πm/2

−πn/2
dq1

∫ −πm/2

−πn/2
dq2 δ

(
q − q′ −

2∑
i=1

qi

)

× δ

(
ω − εa(q′) −

2∑
i=1

εh(qi)

)
F2hh̄(q1, q2; q′), (6.179)
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Fig. 6.19. Numerical results of dynamical charge structure factor N(q, ω) with N =
16 and (a) Q = 2, (b) Q = 8 [155]. The intensity is proportional to the area of each
circle. The solid lines are determined by the dispersion relations of the elementary
excitations in the thermodynamic limit.

with q > 0 and m being the magnetization. The squared form factor F2hh̄ is
the same as the one given by (6.167).

It should be emphasized that (6.179) is valid only for such momentum
q that is too small to excite spinons. In this range, it can be shown that
N(q, ω) diverges as [εh(q − πn/2) − ω]−1/2 as the frequency approaches the
upper edge determined by the holon dispersion [6]. This behavior has been
found in the corresponding quantity in the Sutherland model [138], which
has been discussed in Section 2.6.3.

For q > qth, we have to rely on numerical calculation. Figure 6.19 shows
numerical results for the dynamical charge structure factor [156]. In addition
to two holons and an antiholon, spinons enter in the excitation spectrum for
q > kF in the following way:

2sR + 2hR + h̄, 2sL + 2hL + h̄, (sR + hR) + (sL + hL) + h̄, (6.180)

where the spinons make the singlet and participate in the charge excitation.
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6.7.5 Electron addition spectrum

The electron addition spectral function with the ground state |0〉 is de-
fined by

A+ (k, ω) =
∑

ν

|〈ν; Ne + 1|c†kσ|0; Ne〉|2δ (ω − Eν + E0 + µ) , (6.181)

where Ne is the total electron number and µ the chemical potential, c†kσ is
the electron creation operator with momentum k and spin σ, and |ν〉 denotes
an eigenstate of the Hamiltonian with energy Eν . We choose σ =↑ and work
with the representation c†i↑ = hi. The excited states are exhausted by the
YHWS since the wave function of the final state is given by a polynomial.
Alternatively, the supersymmetric Yangian generator Λ↑0 as given by (6.86)
has the anticommutation property

{hi, Λ↑0} = 0, (6.182)

which leads to Λ↑0hi|0〉 = 0, since Λ↑0|0〉 = 0. Thus we confirm that hi|0〉
belongs to the YHWS.

Let us consider annihilation of a hole from the ground-state wave func-
tion ΨGh+ with Q + 1 holes and M magnons, the explicit form of which is
given by (6.18) to (6.20). After the annihilation, the resultant wave function
Ψf (zs, zh) = 〈zs, zh|hj |ΨGh+〉 with Q holes and M magnons is written as

Ψf (zs, zh) =
Q∏

i=1

(z0 − zh
i )

M∏
i=1

(z0 − zs
i )ΨG(zs, zh), (6.183)

where z0 is the complex coordinate of the annihilated hole, and ΨG(zs, zh)
is the wave function of the ground state for the system with Q holes and M

magnons. Note that if Q + M is odd with even N , the wave function ΨGh+

describes one of the doubly degenerate ground states. We have taken the one
with total momentum π. Analogously, a proper choice can also be made in
the case of Q+M and N even. The excited state after the hole annihilation
is given explicitly as the polynomial factors multiplying ΨG. Assuming the
hole removed at the origin, z0 = 1, we expand the polynomial factor as

M+Q∏
i=1

(1 − zi) =
M+Q∑
m=0

(−1)mem(z), (6.184)
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where zi refers to either hole or magnon coordinate, and em(z) is the ele-
mentary symmetric function of order m. It is defined by

em(z) =
∑

i1<i2<· · ·<im∈I

zi1 · · · zim ,

with the interval I = [1,M + Q]. Now the problem is reduced to rewrit-
ing em(z)ΨG in terms of the U(1,1) Jack polynomials J

(+−)
κ (z). As in the

case of the dynamical structure factor, we present here the results in the
thermodynamic limit, and relegate the mathematical details to Section 6.8.

The final results for A+(k, ω) with 0 ≤ k < 2π consist of the following
components:

A+(k, ω) = AR(k, ω) + AL(k, ω) + AU(k, ω), (6.185)

where AR(k, ω) involves spinons and holons in the R branch, and AL(k, ω)
involves them in the L branch. The third component AU(k, ω) includes an
unfractionalized electron, as explained below. The contribution to AR(k, ω)
can be understood in the following way. The added electron, or a removed
hole, decomposes to a spinon and a holon, leaving an antiholon. According
to the illustration in Fig. 6.6, the threshold momentum qth is determined by
an antiholon with momentum π − 2pc = πn, a right holon with momentum
−π/2+pc = −πn/2, and a right spinon with momentum 0, all of which have
zero energy. Then we obtain

qth = π/2 − pc = πn/2 = kF, (6.186)

which agrees with the threshold in the non-interacting Fermi gas.
The spectrum in the region R is given by

AR(k, ω) =
∫

DR

dqsdqhdqaFR(qs, qh, qa)δ

(
k −

∑
i∈R

qi

)
δ

(
ω −

∑
i∈R

εi(qi)

)
,

(6.187)
where DR is the integral region defined by

DR = {0 < qs < kF, −kF < qh < 0, |qa − π| < 2pc}. (6.188)

It is not allowed to shift qh by π to bring it to the positive momentum
region, although the periodicity of εh(q) is π. This is because a spinon mo-
mentum and a holon one should be shifted together in this case. Note that
the semionic particles appear only in pairs in physical excitations. In (6.187),
the squared form factor FR(qs, qh, qa) is given by

FR(qs, qh, qa) =
εs(qs)gs−1εh(qh)gh−1εa(qa)ga−1

(qh + qa/2)2
, (6.189)



6.7 Dynamics of supersymmetric t−J model 295

where gs = 1/2, gh = 1/2, and ga = 2 correspond to statistical parameters
of spinons, holons, and antiholons, respectively [72, 101]. Thus the matrix
element in (6.187) can be interpreted in terms of the fractional exclusion
statistics as in the case of correlation functions in related continuum systems
[103]. The left-branch contribution is simply given by the relation AL(k, ω) =
AR(2π − k, ω) from (6.187).

The third component is given by

AU(k, ω) =

√
εa(k)
ε0(k)

δ(ω − ωaU(k)), (6.190)

which contributes only in the region 2kF ≤ k ≤ 2π − 2kF. Here ε0(k) ≡
k(π−k/2) describes the spectrum of non-interacting electrons, and ωaU(k) ≡
εs(kF) + εa(k). The contribution AU(k, ω) comes from antiholons with fixed
energies of spinons and holons. Such an entity may be regarded as an
unfractionalized electron. A similar contribution with the delta-function
peak also appears in the particle addition spectrum in the Sutherland model,
as discussed in Section 2.6.2. The difference here is that AU(k, ω) has the
finite threshold for energy. This threshold is naturally understood by as-
suming that a spinon and a holon with fixed momenta (qsR, qhR) = (0, 0)
or (qsL, qhL) = (π, π) are attached to the antiholon to make up an elec-
tron. In either case, the energy εs(kF) is added in the spectrum of an anti-
holon, while no momentum is added. We note that the characteristic energy
εs(kF) = (π/2)2n(2−n) corresponds to the m = 0 case of Tmix/2 defined by
(6.117), which controls the spin–charge separation in thermodynamics.

In the dilute limit with kF → 0, both ωaU(k) and εa(k) tend to ε0(k). Hence
the coefficient in (6.190) becomes unity, and AU(k, ω) tends to the spectral
intensity of non-interacting electrons. The other contributions AR,L(k, ω)
can be neglected in this limit.

Figure 6.20 shows the results of analytic calculation for N = 60, Q = 29,
and M = 15 [8]. The spectral edges are shown by solid lines, and the spectral
intensities for a finite system are shown by the area of ovals. The threshold
behavior in AR(k, ω) is summarized in Table 6.4.

6.7.6 Electron removal spectrum

The electron removal spectral function is defined by

A− (k, ω) =
∑

ν

|〈ν; Ne − 1|ckσ|0;Ne〉|2δ (ω + Eν − E0 + µ), (6.191)
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Fig. 6.20. The electron addition spectrum A+(k, ω) in the case of N = 60, Q = 29,
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Table 6.4. Threshold behaviors in A+(k, ω) for 0 < k < π. The results for
π < k < 2π can be obtained by the reflection symmetry

A(k, ω) = A(2π − k, ω). Power-law behavior near the upper threshold is
indicated by (−∆ω)α, while that near the lower threshold by ∆ωα. The step

function is represented by the exponent α = 0.

Range of k Threshold energy Singularity

[kF, 2kF] ωs = εs(k + kF) (−∆ω)−1/2

[2kF, π] ωaU(k) (−∆ω)0
[kF, π] ωaL = εa(k + kF) ∆ω0

[2kF, 3kF] ωh = εh(k − 2kF) ∆ω3/2

where the notation is the same as in the previous subsection. It is finite for
negative ω. In the free electron gas, A− (k, ω) is reduced to δ(ω− ε0(k)+µ),
which probes the one-particle states below the Fermi level. In the presence of
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interactions, A− (k, ω) is in general finite over a certain range of ω for each k.
Experimentally the photoemission is the best way to measure A− (k, ω).

By choosing σ =↓, we make the replacement ci↓ → h†
ibi. The electron

removal spectrum is the most difficult quantity to derive analytically. The
reason is that the final states do not belong to YHWS. This is seen by the
commutator

[Λ↑↓, h†
ibi] =

∑
j(6=0)

wij(h
†
i + h†

j)bjbi, (6.192)

which does not vanish, nor annihilates ΨG. Moreover, in contrast with the
case of A+(k, ω), there is no region in the momentum space where the
YHWS exhausts the spectrum. As a result, analytic study is limited to
the YHWS contribution which constitutes a part of the spectrum.

6.7.6.1 Electron removal from spin chain

Let us first consider the spectrum from the high-density limit. It is easy to
conclude that the YHWS is exhausted by one-spinon plus one-holon (1s1h)
states; the charge neutrality excludes two or more holons in the absence of
antiholons, and the full polarization in the YHWS constrains to a single
spinon. Within this 1s1h sector, analytic solution has been obtained. The
idea of derivation is as follows [104]. With the ground state ΨG with M =
N/2 magnons and no holes, one can explicitly obtain the wave function

〈zs
−|b0ΨG〉 = z0

M−1∏
i=1

(zi − z0)2ΨGs−(zs
−), (6.193)

where ΨGs− is the ground state with M − 1 magnons. The magnon annihi-
lated by b0 is located at z = z0. The set zs

− describes the M − 1 magnon
coordinates. Similarly, if an eigenfunction Ψ1h is known for the mapped
U(1,1) Sutherland model with M −1 magnons and one hole, one can obtain
the wave function 〈zs

−|h0Ψ1h〉 explicitly. Combining these known wave func-
tions, one can derive

〈Ψ1h|c0↓|ΨG〉 =
∑
zs

〈Ψ1h|h†
0|z

s
−〉〈zs

−|b0|ΨG〉, (6.194)

by summation over zs
−. The complete set of eigenfunctions Ψ1h in the mapped

Sutherland model is given in terms of Jack polynomials. We can then derive

〈zs
−|h0|Ψ1h〉 = Ψ1h(zh = 1, zs

−), (6.195)
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in (6.194), and the RHS can be computed for an arbitrary size of system
[25,104]. The result in the thermodynamic limit is given by

A−
1s1h (k, ω) =

2
π

∫ π

0
dqs

∫ −qs

−π
dqh

√
π − qs

qs

× [δ(k − qs − qh) + δ(k − 2π − qs − qh)]

× δ(ω + εs(qs) + εh(qh)), (6.196)

where εs(q) = q(π − q) for q > 0 and εh(q) = (q + π/2)2 for q < 0. The
integration can be carried out to give [104]

A−
1s1h (k, ω) =

Θ (−ω − εh(k − π))Θ
(
εs(k) + π2/4 + ω

)
πk

√
εh(k) + ω

−ω − εh(k − π)
,

(6.197)
for 0 < k < π. The result for π < k < 2π can be obtained by the reflection
symmetry A− (k, ω) = A− (2π − k, ω) .

In addition to the contribution from the YHWS derived above, excitation
contents involve three-spinon plus one-holon (3s1h) states [72]. Figure 6.21
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Fig. 6.21. Numerical results for the electron removal spectrum A−(k, ω) from the
high-density limit with N = 16 [155]. (a) One spinon plus one holon contribution,
(b) three spinons plus one holon contribution. The intensity is proportional to the
area of each circle. The solid lines are determined by dispersion relations of the
elementary excitations in the thermodynamic limit.
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shows the numerical result of A−(k, ω) for 16 sites [155]. The chemical po-
tential is given by µ− = E0(Ne)−E0(Ne − 1) for the finite-size system. The
region with finite intensity, i.e., support, is determined by the spectrum of
spinons and holons as indicated in the thermodynamic limit.

For each momentum, the pole positions of 3s1h states with dominant
intensity are indicated by the black circles in Fig. 6.21(b). Remarkably, the
reversed energy −ω finds good correspondence with the two-spinon excita-
tions in the Haldane–Shastry spin chain. Namely, the values of −ω− εs(kF),
where −εs(kF) gives the position of the single pole at k = 0, agree with the
pole positions of S(q, ω) for the spin chain. These facts lead to the follow-
ing interpretation: The 3s1h state with dominant intensity consists of two
moving spinons together with another spinon with zero energy and a holon
with maximal energy εs(kF) = εh(0). The 3s1h intensity is suppressed com-
pared with the two-spinon intensity S(q, ω) in the spin chain, since addition
of a further spinon and a holon reduces the matrix element. By combining
the previous remark on the 1s1h contribution, we find that the dominant
weight in A−(k, ω) involves either two spinons with fixed momenta (0, π),
or a spinon–holon pair with fixed momenta (0, π).

Electron removal with holes

In the presence of holes, A−(k, ω) has a contribution from charge excita-
tions. It is found by numerical study that the maximum excitation content
is given by (sL, hL) + h̄+2(sR, hR), plus the mirror states where R and L are
interchanged [72]. However, no analytic results are available. We show nu-
merical results for N = 16 sites with electron numbers Ne = 14 and Ne = 6
in Fig. 6.22(a) and (b), respectively [155]. The electron addition spectrum
obtained in Section 6.7.5 is also shown in the positive energy region. The re-
moval and addition spectra together give the spectral intensity of the single-
particle Green function. The chemical potential for the finite-sized system
is defined as µ− = E0(Ne) − E0(Ne − 1) for the electron removal, and as
µ+ = E0(Ne + 1)−E0(Ne) for the electron addition. In the thermodynamic
limit, µ− and µ+ should merge to µ, which is given by

µ = − 1
12

π2(3n2 − 6n + 4). (6.198)

This is obtained by differentiating the ground-state energy E0 with respect
to Ne. The broken line of Fig. 6.22 indicates the value given by (6.198). The
support, which was first given in [72], is shown by the solid lines.

As the hole density becomes larger, the main intensity accumulates along
the upper boundary of the compact support. This boundary corresponds
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Fig. 6.22. Numerical results [155] for A−(k, ω) for ω < µ and A+(k, ω) for ω > µ
with N = 16 and (a) Q = 2 (n = 7/8) or (b) Q = 10 (n = 3/8). The dashed line
denotes the chemical potential µ, and the intensity is proportional to the area of
each circle. The solid lines are determined by dispersion relations of the elementary
excitations in the thermodynamic limit.

approximately to the energy band in the low-density limit n → 0. The
intensity of A+(k, ω) increases with increasing ω at each k. On the other
hand, the ω-dependence of A−(k, ω) is more intricate because of the large
number of elementary excitations involved.

6.7.7 Momentum distribution

By integrating the electron addition spectrum, we can derive the momentum
distribution function nσ(k) of electrons with spin σ. Let us define the density
matrix of electrons with spin σ, and that of holes in terms of X-operators by

ρσ(i − j) = 〈Xσ0
i X0σ

j 〉, ρh(i − j) = 〈h†
ihj〉, (6.199)

with hi = X↑0
i . Then nσ(k) is given by the Fourier transform of ρσ(i − j).

The holes behave as hard-core fermions with the anticommutation rule:
{h†

i , hj} = δij

(
X00

i + X↑↑
i

)
. We thus obtain

ρ↑(i − j) + ρh(i − j) = δij

(
1 − 〈X↓↓

i 〉
)

. (6.200)
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In the singlet state we have 〈X↓↓
i 〉 = n/2, and write n(k) = n↑(k). Then we

obtain

n(k) = 1 − n/2 − A+(k), (6.201)

where the Fourier transformed density matrix A+(k) of holes is given by
integration of the electron addition spectral function. Namely, we have

A+(k) =
∫ ∞

0
dωA+(k, ω)

= n1(k) + n1(2π − k) + n2(k), (6.202)

where the component n1(k) originates from AR(k, ω), and is given by

n1(k) =
∫

DR

dqsdqhdqaFR(qs, qh, qa)δ

(
k −

∑
i∈R

qi

)
, (6.203)

where the integration range DR has been defined in (6.188). In accordance
with the support of AR(k, ω), n1(k) is nonzero for kF < k < 2π − 2kF.
The term n1(2π − k) in (6.201) originates from AL(k, ω), and n2(k) from
AU(k, ω). We obtain from (6.190)

n2(k) =

√
εa(k)
ε0(k)

θ(k − 2kF). (6.204)

Since n1(k) = 0 for k < kF, n(k) is a constant 1 − n/2 below the Fermi
wave number kF. Obviously the distribution tends to that of non-interacting
fermions as n → 0. The distribution n(k) is also given by the frequency
integral of the electron removal spectrum A−(k, ω). Hence (6.201) is regarded
as the following sum rule [155]:∫ ∞

−∞
dω

[
A+(k, ω) + A−(k, ω)

]
= 1 − 1

2
n, (6.205)

which is independent of k.
Another form of the exact expression of n(k) for ΨG was first derived by a

diagrammatic perturbation theory [131]. The results presented above should
correspond to the integral representation of the same results. Unfortunately,
no direct proof is available that the perturbative result in terms of infinite se-
ries is equivalent to the integral representation presented above. Figure 6.23
shows the numerical results of momentum distributions [11]. The solid lines
represent results obtained from the infinite series [131] by truncation, and
the dots are obtained from A+(k) for a system with N = 100. The agreement
of both results is excellent. This gives strong support for the equivalence of
the integral representation presented above and the infinite series.
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Fig. 6.23. The momentum distributions for electron densities n = 0.1, 0.5 and n =
0.9 [11]. The solid lines represent the results of perturbative theory [115,131] and the
dotted ones those obtained from the integral representation. The actual numerics
was performed for a finite system with N = 100.

The presence of a discontinuity
√

1 − n at k = kF reflects the fact that the
SUSY t–J model has exponent Kρ = 1 in terms of the Tomonaga–Luttinger
theory [119]. In other words, unlike most one-dimensional fermion systems,
the ground state of the SUSY t–J model can be adiabatically connected with
the free-fermion ground state. However, in contrast with the Fermi liquid,
the coefficient of the δ-function peak of AU(k, ω) cannot be expressed simply
in terms of the discontinuity in n(k).

With a completely different method, which directly manipulates the wave
function ΨG, a closed-form solution has been obtained in the real space
[140, 141]. Although the derivation does not use any information on the
excited states, the result is interpreted naturally in terms of elementary
excitations.

6.8 ∗Derivation of dynamics for finite-sized t–J model

In this section we outline how to derive exact dynamics for the t–J model.
Fortunately, the relevant states for dynamical response are mostly confined
to a family called “separated states”, which is specified in detail in Section
7.5.3. In this case, calculations of matrix elements and the norm of the wave
function are factorized into the product of hole and spin parts. Each part
can be evaluated on the basis of corresponding results for symmetric Jack
polynomials. In the following, we outline the procedure to derive the electron
addition spectrum and the dynamical structure factor by using the U(1,1)
Jack polynomials.
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6.8.1 Electron addition spectrum

In order to calculate A+(k, ω) of (6.181) for a finite-sized (N) system, we
take the singlet initial state with M magnons and Q holes, satisfying the
condition N = 2M+Q. We consider the state (6.183) after hole annihilation.
We use the binomial formula of J

(+−)
κ (z) given in Section 7.5.3 for the case

(p, q) = (1, 1) with the expansion coefficient b
(+−)
κ (1, 1). Since the relevant

excited states belong to a special class of spin and charge excitations, called
separated states [11], the binomial formula is factorized into the spin part
and the charge part. Taking z0 = 1, the wave function is expanded as

M+Q−1∏
i=1

(1 − zi)ΨG =
∑

κ

b(+−)
κ (1, 1)J (+−)

κ (z)Ψh(z), (6.206)

where zi represents both hole and magnon coordinates, and

Ψh(z) =
∏
i<j

(zi − zj)
∏

i

z
−(2M+Q−1)/2
i (6.207)

gives the ground state for M +Q−1 holes. The function Ψh(z) also generates
the similarity transformation for the U(1, 1) Sutherland model. Namely, we
take O(z) = |Ψh(z)| in (3.163) with λ = 1.

In the expansion (6.206), each composition κ describes the momentum
distributions of magnons and holes, which are subject to the Galilean shift.
Namely, the ground state of M magnons and Q−1 holes corresponds to the
composition

κi =

{
(M − 1)/2, (i = 1, 2, . . . , Q − 1),

M + Q − 1 − i, (i = Q, Q + 1, . . . ,M + Q − 1),
(6.208)

which is referred to as κGS. As seen from (6.208), the amount of the Galilean
shift is (M − 1)/2 per particle. The total momentum associated with a
general excited state κ is given by |κ| = |κGS| + m with |κ| =

∑
j κj . The

difference from the case in Section 7.5.3 is the nonzero value of κi for the
bosonic momentum. The result b

(+−)
κ (1, 1), however, remains the same as

that in Section 7.5.3 for separated states. Note that the binomial coefficient
for symmetric Jack polynomials does not depend on the Galilean shift.

The momentum k in the electron addition spectrum A+(k, ω) is given by

k = 2π [m + (M + 1)/2] /N,
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where the integer m describes the deviation from the Fermi momentum. The
electron addition spectrum A+(k, ω) is then expressed as

A+(k, ω) = Q
∑

κ

′
δ(ω−Eκ +E0−κ)|b(+−)

κ |2 〈J
(+−)
κ Ψh, J

(+−)
κ Ψh〉0

〈ΨG, ΨG〉0
, (6.209)

where the prime indicates restriction of the summation over κ by the momen-
tum conservation. The norm 〈ΨG, ΨG〉0 in the denominator can be obtained
by a procedure described in Section 7.5.6.

In the spin part of b
(+−)
κ , relevant excited states are limited to those that

are represented by

κs
ex = κs

GS + (1κs , 0M−κs). (6.210)

Here 1κs means the sequence 1, . . . , 1 with the number of 1’s being κs.
Namely, the spin part can be parameterized by the single variable κs. In
this case, the momenta of magnons and holes are not mixed in the expan-
sion coefficient, hence the name of “separated states” [11]. Then b

(+−)
κ is

determined only by hole excitations.
The hole excitations are specified by

κh = κs
GS + ν = (1κa−1, 0Q−κa). (6.211)

Correspondingly we obtain [11]

b(+−)
κ (1, 1) =

∏
s∈D(ν)

−a′(s) + 1 + λ′[l′(s) − 1]
a(s) + 1 + λ′l(s)

, (6.212)

where λ′ = λ/(λ + 1) = 1/2 and a(s), a′(s), l(s), l′(s) are the combinatorial
quantities introduced in Section 7.1.6. The renormalization λ → λ′ is due to
the spin degrees of freedom in the background, which is discussed fully in
Section 7.5.3.

The result (6.212) should be compared with (2.227) derived for the hole
propagator in the Sutherland model. Namely, b

(+−)
κ (1, 1) takes the same

form as the coefficient of binomial expansion in terms of symmetric Jack
polynomials. Although b

(+−)
κ (1, 1) is independent of κs, spin excitations enter

A+(k, ω) through the norm 〈J (+−)
κ Ψh, J

(+−)
κ Ψh〉0 of U(1,1) Jack polynomials

in (6.209). Consequently, A+(k, ω) is determined by the three parameters
κs, κh, and κa, which are related directly to the momenta of elementary
excitations of spinons, holons, and antiholons, respectively.

In this way we obtain the finite-size version of (6.187):

AR(k, ω) =
∑

κ

′
IR(κ)δ(ω − ∆Eκ) (6.213)
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and similar results with the suffix R replaced by L and U. In (6.213) we have

IR(κ) =
1

2 (Γ(1/2))2
Γ(κh − 1/2)Γ(κh + Q/2)
Γ(κh)Γ(κh + (Q + 1)/2)

× κa(Q − κa + 1)
(2κh + κa − 1)(2κh + κa − 2)

× Γ(κs + 1/2)
Γ(κs + 1)

Γ(N/2 − κs)
Γ((N + 1)/2 − κs)

, (6.214)

with Nk/(2π) = κh + κa + κs + (M − 1)/2. The Gamma functions appear
in analogy with (2.233). The excitation energy is given by

∆Eκ =
2π2

N2

[
κs(N − 1 − 2κs)

+κh(2κh + Q − 2) + (κa − 1)(Q − κa)
]
. (6.215)

The maximum increase of the momentum is m ≤ M+Q by the elementary
symmetric function em(z), which appears in (6.184). In this increase, the
sum of spinon and holon momenta in the positive direction is limited by
κs + κh ≤ (M − 1)/2. The parameter κa varies from zero to Q. For the case
where κs > (M − 1)/2, we use the reflection symmetry about k = π. We
then obtain IL(κ) = IR(κ−), where the components in κ− = (κ−

s , κ−
h , κ−

a )
are given by κ−

s = M − κs, and by the relation

κh + (0Q−κ−
a , 1κ−

a −1, κ−
h ) = κh

GS + (1Q).

We obtain the allowed range 0 ≤ κ−
s + κ−

h ≤ (M + 1)/2.
The special case where κs = (M − 1)/2 should be considered separately.

In this case, there are no states with the same momentum that mix with κs
ex

given by (6.210). This comes from the ordering and squeezing of the basis
set as discussed in Section 2.1.3, and may be called the triangular structure.
Hence b

(+−)
κ should be unity, and κh = κh

GS + (1κa , 0Q−κa) with 1 ≤ κa ≤ Q.
We then obtain for this special case

IU(κ) =
Γ[(κa + 2)/2]Γ[(Q − κa + 2)/2]
Γ[(κa + 1)/2]Γ[(Q − κa + 1)/2]

× Γ[(M + κa)/2]Γ[(M + Q − κa + 2)/2]
Γ[(M + κa + 1)/2]Γ[(M + Q − κa + 2)/2]

, (6.216)

where Nk/(2π) = κa + M . The excitation energy ∆Eκ is given by (6.215)
in the case

(κs, κh, κa) = ((M − 1)/2, 1, κa).
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This means that the part of the addition spectrum is determined completely
by an antiholon; the other constituents, spinon and holon, take a fixed mo-
mentum for each. As a result, (6.216) tends to the delta function in the
thermodynamic limit.

In terms of IR, IL, and IU, we obtain the finite-size version of A+(k, ω).
For IR(κ) and IL(κ), the thermodynamic limit is taken by essentially the
same procedure as that in the Sutherland model. Details for the latter have
been discussed in Section 2.7.1. Then we obtain the results described in
Section 6.7.5.

6.8.2 Dynamical spin structure factor

In order to derive S(q, ω) = S−+(q, ω)/2 for a finite size with M = (N −
Q)/2 in the singlet ground state, we expand (6.161) in terms of U(1,1) Jack
polynomials as

Ψflip =
∑

κ

b(+−)
κ (1, 2)J (+−)

κ (z)Ψh(z), (6.217)

where

Ψh(z) =
∏
i<j

(zi − zj)
∏

i

z
−(2M+Q−2)/2
i (6.218)

gives the ground state for M + Q − 1 holes, but with the total momentum
different from (6.207). Since Ψflip contains M − 1 magnons and Q holes, the
corresponding ground state is written as ΨGS−. The expansion coefficient
b
(+−)
κ (1, 2) can be derived from the binomial formula in Section 7.5.3 for the

case (p, q) = (1, 2).
We then obtain

2S(q, ω) = M
∑

κ

′
δ(ω − ωκ)|b(+−)

κ (1, 2)|2 〈J
(+−)
κ Ψh, J

(+−)
κ Ψh〉0

〈ΨGS−, ΨGS−〉0
, (6.219)

where ωκ = Eκ − E0 is the excitation energy. The expansion coefficient
b
(+−)
κ (1, 2) can be derived easily if the momentum shift |κ − κGS| is smaller

than NkF/(2π). Namely, b
(+−)
κ factorizes into the hole part b

(+−)
κh and the

magnon part b
(+−)
κs as b

(+−)
κ = b

(+−)
κs b

(+−)
κh . Hence we specify the excitation

in terms of quantities νh and νs defined by κ = κGS + (νh, νs), and obtain
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the form analogous to (2.227) as

b
(+−)
κh (1, 2) =

∏
s∈νh

1 − a′h(s) + λ′(l′h(s) − 2)
ah(s) + 1 + λ′lh(s)

, (6.220)

b(+−)
κs (1, 2) =

∏
s∈νs

2 − a′s(s) + λ+l′s(s)
as(s) + 1 + λ+ls(s)

. (6.221)

Details of the derivation are given in Section 7.5.6.
If νh contains s = (1, 1), the coefficient b

(+−)
κh vanishes because we have

λ′ = λ/(λ + 1) = 1/2, a′s(s) = l′s(s) = 0.

Namely, the charge excitation does not enter the dynamical spin response
in the small momentum region. On the other hand, if νs contains s = (3, 1),
the coefficient b

(+−)
κs vanishes because a′s(s) = 2 and l′s(s) = 0. Therefore

only such states contribute to S(q, ω) as are characterized by

νh = 0, νs = (2κs2 , 1κs1−κs2 , 0M−κs1−1).

The parameters κs1 and κs2 (κs1 ≥ κs2) are related to the momenta of
spinons. By using these parameters we can derive the expansion coefficient
b
(+−)
κ and norm explicitly. The analytic expression of S(q, ω) from this con-

tribution is written in the form

S2sR(q, ω) =
∑

κ

I2sR(κ)δ(ω − ωκ), (6.222)

where

I2sR(κ) =
1
4

(
κs1 − κs2 +

1
2

)
× Γ(κs1 + 1)

Γ(κs1 + 3/2)
Γ(N/2 − κs1 − 1/2)

Γ(N/2 − κs1)
Γ(κs2 + 1/2)
Γ(κs2 + 1)

Γ(N/2 − κs2)
Γ(N/2 − κs2 + 1/2)

,

(6.223)

ωκ = 2
( π

N

)2 [
N − 1 + (N − 3)κs1 − 2κ2

s1 + (N − 1)κs2 − 2κ2
s2

]
. (6.224)

The momentum q is given by

q =
2π

N
(κs1 + κs2 + 1). (6.225)
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The analytic result obtained above is actually almost the same as that for
S(q, ω) in the Haldane–Shastry spin chain. The only difference lies in the
allowed range of momentum parameters: (M − 3)/2 ≥ κs1 ≥ κs2 ≥ 0 in-
stead of N/2 − 1 ≥ κs1 ≥ κs2 ≥ 0 in the spin chain. The difference comes
from the smaller kF in the presence of holes. In the thermodynamic limit,
this contribution gives S2sR(q, ω). Contributions from other regions of κ are
more complicated, but can be derived analytically in the thermodynamic
limit [10].



Part II

Mathematics related to 1/r2 systems
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Jack polynomials

In this chapter, we discuss the mathematical properties of Jack polynomials.
Since the content is a little intricate, we first explain the scope of the chapter,
and the relationship between different kinds of Jack polynomials.

In deriving dynamics of the single-component Sutherland model, the sym-
metric Jack polynomial Jκ(z) plays a fundamental role since each eigenfunc-
tion is a product of a Jack polynomial and a power of the Vandermonde
determinant. Here z = (z1, . . . , zN ) represent complex coordinates, and κ

is a partition specifying a set of momenta for particles. The product of a
Vandermonde determinant ∆(z) and a Jack polynomial is an antisymmetric
polynomial, which is called an antisymmetric Jack polynomial J

(−)
κ (z). Thus

the fermionic eigenfunctions of the Sutherland model are constructed as the
product of an antisymmetric Jack polynomial and an even power of the
Vandermonde determinant. The Yangian highest-weight states (YHWS) of
the Haldane–Shastry spin chain are also expressed in terms of the symmetric
Jack polynomials with the particular value λ = 2 of the repulsion parameter.

In the multi-component Sutherland model, on the other hand, proper
eigenfunctions must be symmetric or antisymmetric against exchange of co-
ordinates with the same internal quantum number. Such eigenfunctions can
be constructed from non-symmetric Jack polynomials Eη(z), which do not
have any symmetry against exchange of coordinates, but which are eigen-
functions of the Hamiltonian. Here η is a composition specifying a set of
momenta for particles without ordering of magnitudes. For example, with
the YHWS in the supersymmetric t–J model, eigenfunctions are constructed
from Jack polynomials which are odd against exchange of hole coordinates,
and even against exchange of magnon coordinates. These Jack polynomials
are called U(1,1) Jack polynomials J

(+−)
µ (z), where U(1,1) refers to the su-

persymmetry between holes and magnons. It should be noted that the t–J

311
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model itself has the SU(2,1) supersymmetry. The reduction to U(1,1) is anal-
ogous to the reduction from SU(2) to U(1) in the spin chain for describing
the YHWS.

From a mathematical point of view, the non-symmetric Jack polynomial
Eη(z) is the most fundamental among a family of Jack polynomials, in the
sense that every type of Jack polynomial can be constructed from Eη(z)
by antisymmetrization with respect to complex coordinates. Hence we or-
ganize the chapter beginning from the non-symmetric Jack polynomials. As
a set-up, we define the composition and the Cherednik–Dunkl operators.
Two kinds of inner-product, integral and combinatorial, between polynomi-
als are introduced, and it is shown that the non-symmetric Jack polynomials
form an orthogonal set of polynomials for both norms. We evaluate Eη(z)
for a special value z = (1, . . . , 1), which is useful in deriving matrix ele-
ments in dynamics. Then we introduce J

(−)
κ (z) as an auxiliary object for

deriving the norms of Eη(z), and derive the norms explicitly. Following this
analysis of non-symmetric Jack polynomials, we proceed to various sym-
metrized versions of Jack polynomials in succeeding sections. The chapter
is self-contained, and is intended to be understandable without recourse to
other references.

7.1 Non-symmetric Jack polynomials

7.1.1 Composition

A composition is any sequence

η = (η1, η2, . . . , ηN ) (7.1)

of non-negative integers ηi for i = 1, 2, . . . , N . The length l(η) of a compo-
sition η is the maximum number i for nonzero ηi. The weight |η| of a com-
position η is defined by |η| =

∑N
i=1 ηi. Let ΛN = {η = (η1, η2, . . . , ηN ) | ηi ∈

Z≥0, 1 ≤ i ≤ N} denote the set of all compositions with l(η) ≤ N . A
partition

κ = (κ, κ2, . . . , κN ) (7.2)

is a composition satisfying

κ1 ≥ κ2 ≥ · · · ≥ κN . (7.3)

For example, (2, 1, 0, 3) is a composition with length 3 but it is not a par-
tition. (3, 3, 2, 1, 1, 1, 0, 0, 0) is a partition (and hence a composition) with
length 6. The set of all partitions with l(κ) ≤ N is written as

Λ+
N = {κ = (κ1, κ2, . . . , κN ) ∈ ΛN |κ1 ≥ κ2 ≥ · · · ≥ κN ≥ 0}.
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(a) (b)

Fig. 7.1. Diagrams of (a) η = (4, 3, 5, 3, 2) and (b) partition κ = (5, 4, 3, 3, 2).

For a composition η ∈ ΛN , we denote by η+ the (unique) partition which
is a rearrangement of the composition η. For example, for the composition
η = (2, 1, 0, 3), we obtain η+ = (3, 2, 1, 0).

It is convenient to define a diagram D(η) of composition η, which is simi-
lar to a Young diagram. The diagram of a composition η consists of squares,
the coordinates of which are (i, j), 1 ≤ i ≤ l(η) and 1 ≤ j ≤ ηi. In draw-
ing diagrams, the first coordinate i (the row index) increases as one goes
downwards and the second coordinate j (the column index) increases from
left to right. Figure 7.1(a) is an example of a composition derived from the
partition shown in (b).

We define an order of partition and composition. The dominance order
(≤) on partitions is defined as follows: for κ, µ ∈ Λ+

N satisfying |κ| = |µ|,
κ ≤ µ if |κ| = |µ| and

∑k
i=1 κi ≤

∑k
i=1 µi for all k = 1, . . . , N . κ < µ means

that κ ≤ µ and κ 6= µ. For example, we obtain

(3, 0, 0) > (2, 1, 0) > (1, 1, 1).

The dominance order is a partial order; the order cannot necessarily be
defined for any pair of partitions. For example, the dominance order between
(3,1,1,1) and (2,2,2) cannot be defined.

We define a partial order ≺ on compositions as follows: for ν, η ∈ ΛN ,
ν ≺ η if ν+ < η+ with dominance ordering on partitions, or if ν+ = η+ and∑k

i=1 νi ≤
∑k

i=1 ηi for all k = 1, . . . , N . For example, we obtain

(1, 1, 1) ≺ (0, 2, 1) ≺ (1, 2, 0) ≺ (0, 3, 0). (7.4)
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7.1.2 Cherednik–Dunkl operators

We introduce the Cherednik–Dunkl operators [39,45]

d̂i =
zi

λ

∂

∂zi
+

i−1∑
j=1

zi

zi − zj
(1 − Kij) +

N∑
j=i+1

zj

zi − zj
(1 − Kij) − i + 1

=
zi

λ

∂

∂zi
+

N∑
j=1

[θij − θ(j − i)] (1 − Kij) − i + 1, (7.5)

for 1 ≤ i ≤ N , where θij = zi/(zi − zj) has been used in (3.163). The
operator Kij = (i, j) interchanges coordinates zi and zj , and is called the
coordinate exchange operator [148]. The operator d̂i is generally a mapping
within homogeneous polynomials of z = (z1, . . . , zN ). As shown below, all
the operators {d̂i} commute with each other, and hence can be diagonal-
ized simultaneously. In terms of the Cherednik–Dunkl operators (7.5), the
Hamiltonian H (3.16) can be written as

H = λ2
N∑

i=1

(
d̂i +

N − 1
2

)2

− E0,N (7.6)

with

E0,N = λ2
N∑

i=1

(
N + 1 − 2i

2

)2

=
λ2N(N2 − 1)

12
. (7.7)

From this expression, we can see that joint eigenfunctions of d̂i are eigen-
functions of the Hamiltonian. This is the reason why we introduce d̂i. The
Cherednik–Dunkl operators take a slightly more compact form through a
similarity transformation as given by (9.1) in Chapter 9.

Let us take monomials zη = zη1
1 · · · zηN

N as a basis of polynomials. For
η ∈ ΛN , the action of d̂i on zη is given by

d̂i(zη) = η̄iz
η +

∑
ν∈ΛN ,ν≺η

vηνz
ν . (7.8)

Here the vην ’s are constants, dependent on λ, and the diagonal elements η̄i

are given by

η̄i =
ηi

λ
−

(
k′

i + k′′
i

)
≡ ηi

λ
− ri. (7.9)

Here k′
i and k′′

i are numbers of ηl specified by

k′
i = ]{l ∈ {1, . . . , i − 1}|ηl ≥ ηi}, (7.10)

k′′
i = ]{l ∈ {i + 1, . . . , N}|ηl > ηi}, (7.11)
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where ] denotes the number of members in the set. The sum ri = k′
i +

k′′
i indicates the ranking of the row in the partial order (≺). Intuitively,

λη̄i describes the rapidity which has the minimum separation of λ from
neighboring ones. We call the property (7.8) triangularity because all matrix
elements of d̂i below (or above) the diagonal are zero in the ordered basis
defined in the previous subsection.

Examples.
For i = 1, N = 3, direct calculations show that

d̂1(z3
2) = −z3

2 − z1z
2
2 − z2

2z3,

d̂1(z1z
2
2) =

(
1
λ
− 1

)
z1z

2
2 + z2

2z3,

d̂1(z2
2z3) = −2z2

2z3 − z1z2z3,

d̂1(z1z2z3) =
z1z2z3

λ
.

These results are written out in the following matrix form with ordered basis
(7.4):

d̂1


z3
2

z1z
2
2

z2
2z3

z1z2z3

 =


−1 −1 −1 0
0 1

λ − 1 1 0
0 0 −2 −1
0 0 0 1

λ




z3
2

z1z
2
2

z2
2z3

z1z2z3

 .

Proof of (7.8).
We introduce an operator

N̂ij =
1

zi − zj
(1 − Kij) (7.12)

for i 6= j. In terms of N̂ij , the operator d̂i is rewritten as

d̂i =
zi

λ

∂

∂zi
+

i−1∑
j=1

N̂ijzj +
N∑

j=i+1

zjN̂ij . (7.13)
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For positive integers (a, b), the actions of N̂ijzj and zjN̂ij on za
i zb

j are given,
respectively, by

N̂ijzj

(
za
i zb

j

)
=


∑a−b−1

l=1 za−l
i zb+l

j , for a > b + 1,

0, for a = b + 1,

−za
i za

j , for a = b,

−za
i zb

j −
∑b−a

l=1 za+l
i zb−l

j , for a < b

(7.14)

and

zjN̂ij

(
za
i zb

j

)
=


∑a−b

l=1 za−l
i zb+l

j , for a > b,

0, for a = b,

−za
i za+1

j , for a = b − 1,

−za
i zb

j −
∑b−a−1

l=1 za+l
i zb−l

j , for a < b − 1.

(7.15)

First we consider the diagonal part of
i−1∑
j=1

N̂ijzj(zη), which is given, from

(7.14), by

(−1) × ]{l ∈ {1, . . . , i − 1}|ηl ≥ ηi} (7.16)

and that of
N∑

j=i+1
zjN̂ij(zη), which is given, from (7.15), by

(−1) × ]{l ∈ {i + 1, . . . , N}|ηl > ηi}. (7.17)

These results, combined with zi∂zη/∂zi = ηiz
η, yield (7.9) for η̄i.

Next we consider the off-diagonal part of
∑i−1

j=1 N̂ijzj . For composition η

satisfying ηi > ηj + 1 (j ∈ {1, i − 1}), we obtain

N̂ijzj (zη) =
ηi−ηj−1∑

l=1

(
· · · zηj+l

j · · · zηi−l
i · · ·

)
. (7.18)

Here the triangularity η = (· · · ηj · · · ηi · · · ) > (· · · ηj + l · · · ηi − l · · · ) is
obvious. Similarly, for η satisfying ηi < ηj (j ∈ {1, i − 1}), we see that

N̂ijzj (zη) = −
ηi−ηj−1∑

l=0

(
· · · zηj−l

j · · · zηi+l
i · · ·

)
(7.19)

and η = (· · · ηj · · · ηi · · · ) > (· · · ηj − l · · · ηi + l · · · ) are satisfied for 1 ≤ l ≤
ηi−ηj −1. The triangularity of

∑N
j=i+1 zjN̂ij can be shown in a similar way.

From these results, we see that the action of d̂i on zη has triangularity.
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Now we discuss the mutual commutativity of the Cherednik–Dunkl
operators. Prior to Cherednik [38], Dunkl originally introduced the following
operators [45]:

T̂i =
1
λ

∂

∂zi
+

∑
j( 6=i)

N̂ij , i = 1, . . . , N. (7.20)

By a similarity transformation generated by O =
∏

i<j |zi − zj |λ, the Dunkl
operator acquires another form:

OT̂iO−1 =
1
λ

∂

∂zi
−

∑
j( 6=i)

1
zi − zj

Kij ≡ πi. (7.21)

A Hermitian operator similar to (7.21) has been utilized by Polychronakos
[148], who derived the conserved quantities of the Calogero and Sutherland
models with internal symmetry.

In order to prove the commutativity [d̂i, d̂j ] = 0 of the Cherednik–Dunkl
operators, we first prove that the Dunkl operators commute:[

T̂i, T̂j

]
= 0 = [πi, πj ] . (7.22)

To show this, we begin with the fundamental commutation property

∆ij ≡
∑
l(6=i)

∑
m(6=j)

[
1

zi − zl
Kil,

1
zj − zm

Kjm

]
= 0, (7.23)

which can be proved by straightforward calculation. Namely, with i 6= j,
nonzero contributions in the summation of (7.23) come only from cases: (i)
l = m, (ii) l = j, and (iii) m = i. In the case (i), we obtain by using the
notation qij = (zi − zj)−1,

[qilKil, qjlKjl] = qilqjiKilKjl − qjlqijKjlKil. (7.24)

Similarly we obtain for (ii) and (iii) the following results:

[qijKij , qjlKjl] = qijqilKijKjl − qjlqilKjlKij , (7.25)

[qilKil, qjiKji] = qilqjlKilKji − qjiqjlKjiKil, (7.26)

where l denotes the remaining summation index which differs from i and j.
Furthermore the product of Kij has the following property:

KijKjl = KjlKil ≡ Kijl = Kjli = Klij , (7.27)

which means that only two kinds of Kabc appear in ∆ij of (7.23). Using these
results, we obtain

∆ij =
∑

l

(qijqil + qjiqjl + qliqlj)(Kijl − Kjil), (7.28)

which indeed vanishes because qijqil + qjiqjl + qliqlj = 0 for i 6= j 6= l 6= i.
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It is now easy to prove the commutativity of Dunkl operators. By intro-
ducing the notation Qi =

∑
j (6=i) qijKij , we obtain

λ [πi, πj ] =
[

∂

∂zi
, Qj

]
+

[
Qi,

∂

∂zj

]
(7.29)

=
[

∂

∂zi
+

∂

∂zj
, qjiKji

]
= 0, (7.30)

where we have used [Qi, Qj ] = 0 and qijKij = −qjiKji. Obviously ∂/∂zi +
∂/∂zj commutes with Kji, and hence it also commutes with qjiKji. As a
result, we obtain (7.22).

In terms of (7.20), the Cherednik–Dunkl operators are expressed as

d̂i = ziT̂i +
N∑

j=i+1

Kij + 1 − N.

Algebraic properties of constituent operators are summarized as follows:

KijT̂j = T̂iKij , KijT̂k = T̂kKij , for k 6= {i, j} , (7.31)

[
T̂i, zj

]
= δij

 1
λ

+
∑
l(6=i)

Kil

 − (1 − δij)Kij . (7.32)

From these relations, it is easy to derive the following relation:[
ziT̂i, zj T̂j

]
= −(ziT̂i − zj T̂j)Kij . (7.33)

The commutator of d̂i’s is then given by

[
d̂i, d̂j

]
=

[
ziT̂i, zjT̂j

]
+

ziT̂i,
N∑

k=j+1

Kjk

 −

[
ziT̂i,

N∑
l=i+1

Kil

]
. (7.34)

We assume i < j without loss of generality. The second term on the RHS
then vanishes, and only l = j in the third term on the RHS survives. Con-
sequently, (7.34) becomes[

d̂i, d̂j

]
=

[
ziT̂i, zjT̂j

]
−

[
ziT̂i,Kij

]
= 0. (7.35)

The last equality is due to (7.33).
Further, using (7.31) and (7.32), we obtain the commutation relation be-

tween Ki(≡ Kii+1) and d̂j . The algebraic relations between Ki and d̂j are
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given by

d̂jKi − Kid̂j = 0, for j 6= i, i + 1,

d̂iKi − Kid̂i+1 = 1,

d̂i+1Ki − Kid̂i = −1.

(7.36)

The set of commutation relations (7.35) and (7.36) is called a degenerate
affine Hecke algebra [38]. Alternatively, one may proceed in the opposite
direction of logic; if one starts from the defining relations (7.36) for the
degenerate affine Hecke algebra, a representation of the element d̂j is ex-
plicitly constructed as the Cherednik–Dunkl operator defined by (7.5). One
may then naturally ask about the explicit basis set composed of simultane-
ous eigenfunctions of d̂j with 1 ≤ j ≤ N . The basis set can be constructed
in terms of non-symmetric Jack polynomials, as discussed in the following.

7.1.3 Definition of non-symmetric Jack polynomials

Now we define the non-symmetric Jack polynomial Eη(z) as the homoge-
neous polynomial satisfying the following two conditions [127, 147]:

(i) Eη(z) is a simultaneous eigenfunction of d̂i for 1 ≤ i ≤ N .
(ii) The polynomial Eη(z) has the form

Eη(z) = zη +
∑

ν∈ΛN
ν≺η

cηνz
ν , (7.37)

which is consistent with (7.8). The property (ii) fixes the normalization of
non-symmetric Jack polynomials.

From this definition and (7.8), we can immediately see that

d̂iEη = η̄iEη (7.38)

for i ∈ [1, N ].

7.1.4 Orthogonality

In this subsection, we discuss the orthogonality of non-symmetric Jack poly-
nomials with respect to two kinds of inner product.

Integral norm

For functions f(z) and g(z) in complex variables z = (z1, . . . , zN ), we define
the inner product 〈·, ·〉0 by the following formula:

〈f, g〉0 =
∫
Dzf(z)g(z). (7.39)



320 Jack polynomials

Here
∫
Dz denotes

N∏
i=1

∮
|zi|=1

dzi

2πizi
|∆(z)|2λ, (7.40)

where ∆(z) =
∏

i<j(zi − zj) is the Vandermonde determinant, and f(z)
denotes the complex conjugation of f(z), i.e., f(z) = f(z)∗. The RHS of
(7.39) is rewritten as

C.T.

f(z−1)g(z)
∏
i6=j

(
1 − zi

zj

)λ
 , (7.41)

where the symbol C.T. denotes the constant term, and z−1 represents
(z−1

1 , . . . , z−1
N ). The non-symmetric Jack polynomials are orthogonal with

respect to the inner product 〈·, ·〉0 [16]. Namely, we have

〈Eη, Eν〉0 = δην〈Eη, Eη〉0. (7.42)

Combinatorial inner product

Define the polynomials {qη(z)}η∈ΛN
by

Ω(z|y) =
N∏

j=1

(1 − zjyj)−1
N∏

i,j=1

(1 − ziyj)−λ =
∑

η∈ΛN

qη(z)yη. (7.43)

The combinatorial inner product 〈·, ·〉c for non-symmetric polynomials is
defined by [47,154]

〈qν , z
η〉c = δνη. (7.44)

Note that this inner product is different from the symmetric case written as
〈·, ·〉c in (2.176). Then we can show

〈Eη, Eν〉c ∝ δην . (7.45)

Namely, the non-symmetric Jack polynomials are orthogonal with respect to
the combinatorial inner product 〈·, ·〉c [38]. The proof of this orthogonality
is a goal of the subsection. We also show that (7.44) is the non-symmetric
generalization of the combinatorial norm for symmetric functions defined by
(2.176).

The values for the norms 〈Eη, Eη〉c and 〈Eη, Eη〉0 will be derived, respec-
tively, in Sections 7.2.4 and 7.2.2. The combinatorial norm is related to the
matrix element of correlation functions, while the integral norm is related
to the norm 〈Ψ|Ψ〉 of the state vector. In the following we show the ortho-
gonality of Eη using the properties of Cherednik–Dunkl operators in the
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combinatorial and integral norms. We prove the orthogonality with respect
to the combinatorial norm following a few steps [154].

For z = (z1, . . . , zN ) and y = (y1, . . . , yN ), Ω(z|y) in (7.43) has the follow-
ing property:

d̂z
i Ω(z|y) = d̂y

i Ω(z|y), (7.46)

for i = 1, . . . , N .

Proof of (7.46).
It suffices to show that d̂z

i Ω(z|y) is symmetric against an interchange of zj

and yj for all j. Let P be such an exchange operator, giving P[f(z|y)] =
f(y|z) for a general function f(z|y). In the present case we have P[d̂z

i Ω(z|y)] =
d̂y

i Ω(z|y). For the constituents of d̂z
i , we obtain

zi∂iΩ
λΩ

= +
ziyi

λ(1 − ziyi)
+

∑
j

ziyj

1 − ziyj
=

ziyi

λ(1 − ziyi)
− N +

∑
j

1
1 − ziyj

,

(7.47)
NijΩ

Ω
=

1
zi − zj

[
1 − (1 − ziyi)(1 − zjyj)

(1 − ziyj)(1 − zjyi)

]
=

yi − yj

(1 − ziyj)(1 − zjyi)
, (7.48)

where Nij has been defined in (7.12). We call the function f(z|y) P-invariant
if it satisfies f(z|y) = f(y|z). Writing f ≡ g to denote equivalence modulo
P-invariant terms, we combine (7.47) and (7.48) to obtain

d̂z
i Ω
Ω

≡
∑

j

[
1 − δij

1 − ziyj
+

θ(i − j)zi(yi − yj)
(1 − ziyj)(1 − zjyi)

+
θ(j − i)zj(yi − yj)
(1 − ziyj)(1 − zjyi)

]
(7.49)

≡
∑

j

[
1 − δij

1 − ziyj
+

θ(i − j)
1 − zjyi

− θ(j − i)
1 − ziyj

]
(7.50)

≡
∑

j

θ(i − j)
(

1
1 − ziyj

+
1

1 − zjyi

)
. (7.51)

In going from (7.49) to (7.50), we have replaced the numerator using

zi(yi − yj) → −ziyj + 1 − 1 → −ziyj + 1 (7.52)

because the terms ziyi and −1 can be removed by the P-invariance. The
third term in (7.50) is obtained in a similar manner. The final form (7.51)
is obviously P-invariant. Hence d̂z

i Ω(z|y) is proven to be P-invariant, and is
equal to d̂y

i Ω(z|y).
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As a result of (7.46), we can write Ω(z|y) as

Ω(z|y) =
∑

η∈ΛN

Eη(z)Eη(y)/gη. (7.53)

The result (7.53) is equivalent to gη being the combinatorial norm, defined by

〈Eη, Eν〉c = δηνgη. (7.54)

We note that (7.53) is an example of the Cauchy product expansion formula.

Derivation of (7.53) from (7.46).
From the form (7.37), there is a one-to-one correspondence between mono-
mials zη and Eη. The non-symmetric Jack polynomials Eη therefore form a
basis of polynomials of z. When we regard Ω(z|y) as a polynomial of z, it
can be expanded with respect to Eη(z):

Ω(z|y) =
∑

η∈ΛN

Cη(y)Eη(z), (7.55)

where “coefficients” Cη(y) are polynomials of y. From (7.46) and (7.55) we
obtain∑

η∈ΛN

d̂y
jCη(y)Eη(z) =

∑
η∈ΛN

Cη(y)d̂z
jEη(z) =

∑
η∈ΛN

η̄jCη(y)Eη(z). (7.56)

From this result, we see that Cη(y) ∝ Eη(y). By setting Cη(y) = g−1
η Eη(y),

we arrive at (7.53).

Proof of equivalence between (7.53) and (7.54).
Since both zη and qη(z) form a basis of polynomials of z, we expand Cη(z)
and Eη(z) using these basis functions as

Cη(z) =
∑

µ∈ΛN

aηµzµ, (7.57)

Eη(z) =
∑

γ∈ΛN

bηγqγ(z). (7.58)

From (7.44), we obtain

〈Cη, Eν〉c =
∑

γ∈ΛN

aηγbνγ . (7.59)

Then the relation 〈Cη, Eν〉c = δην means∑
γ∈ΛN

aηγbνγ = δην . (7.60)
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Now the equivalence between (7.53) and (7.54) is translated into the equiv-
alence between (7.60) and (7.55), which we shall show in two directions.

(i) (7.60) → (7.55)
Let us introduce the (infinite-dimensional) matrices A = {aµν} and B =
{bµν}. Then (7.59) means ABT = 1, or the transpose of B is the inverse
matrix of A. Hence we obtain BTA = 1, which gives the relation∑

γ∈ΛN

bγνaγη = δην . (7.61)

With use of (7.61), we obtain∑
η∈ΛN

Cη(y)Eη(z) =
∑

η,µ,γ∈ΛN

aηµbηγqγ(z)yµ =
∑

γ∈ΛN

qγ(z)yγ = Ω(z|y).

(7.62)

(ii) (7.55) → (7.60)
If (7.55) holds, we take the combinatorial inner product of zµ and both sides
of ∑

η∈ΛN

Cη(y)Eη(z) =
∑

γ∈ΛN

qγ(z)yγ . (7.63)

Then the orthogonality 〈qγ(z), zµ〉c = δγµ leads to the relation∑
η∈ΛN

〈Eη(z), zµ〉c Cη(y) = yµ, (7.64)

which gives the inverse expansion of the first equality in (7.57). Hence the
coefficient should satisfy

〈Eη(z), zµ〉c = (A−1)µη. (7.65)

On the other hand, expansion (7.58) in terms of qµ(z) leads to

〈Eη(z), zµ〉c = bηµ = (BT)µη. (7.66)

Since we have (BT)µη = (A−1)µη for all matrix elements, (7.60) follows.

Let us turn to the integral norm. First we show that the Cherednik–Dunkl
operators are self-adjoint with respect to the integral norm

〈f, d̂jg〉0 = 〈d̂jf, g〉0. (7.67)
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Straightforward calculations show that〈
f, zi

∂g

∂zi

〉
0

=
〈
zi

∂f

∂zi
, g

〉
0
− λ

∑
j(6=i)

〈
f,

zi + zj

zi − zj
g
〉

0
(7.68)

and

〈f, ziN̂ijg〉0 = 〈ziN̂ijf, g〉0 +
〈
f,

zi + zj

zi − zj
g
〉

0
. (7.69)

In the second terms on the RHS in (7.68) and (7.69), (zi+zj)g/(zi−zj) is not
necessarily a polynomial. However, these two unwanted terms cancel with
each other when we consider the action of the Cherednik–Dunkl operators
on g. Using (7.68) and (7.69), we can readily show (7.67). The eigenfunctions
of a self-adjoint operator with different eigenvalues are mutually orthogonal.
Therefore, the non-symmetric Jack polynomials form an orthogonal basis
with respect to the inner product given by (7.39).

7.1.5 Generating operators

To deduce mathematical properties of the non-symmetric Jack polynomials,
we introduce operators that generate one non-symmetric Jack polynomial
from another [114]. As a prerequisite, we introduce cyclic permutation τ̂ on
the homogeneous polynomials of z = (z1, . . . , zN ):

τ̂ = KN−1 · · ·K2K1,

with Ki = Ki,i+1. The operator τ̂ has the following properties:

ziτ̂ = τ̂ zi+1, for i = 1, 2, . . . , N − 1, (7.70)

zN τ̂= τ̂ z1, (7.71)

∂iτ̂ = τ̂∂i+1, for i = 1, 2, . . . , N − 1, (7.72)

∂N τ̂= τ̂∂1. (7.73)

Using τ̂ , we introduce an operator Θ

Θ = zN τ̂ . (7.74)

Namely, the action of Θ on an N -variable function f(z1, . . . , zN ) is given by

(Θf) (z1, . . . , zN ) = zNf(zN , z1, . . . , zN−1).

The operator Θ satisfies the following properties:

d̂iΘ = Θd̂i+1, for i = 1, 2, . . . , N − 1, (7.75)

d̂NΘ= Θ
(
d̂1 + 1

)
. (7.76)
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These properties are proved as follows. First, from (7.73), it follows that

zi∂iΘ = Θzi+1∂i+1, for i = 1, 2, . . . , N − 1, (7.77)

zN∂NΘ= Θ(z1∂1 + 1) . (7.78)

We further obtain for 1 ≤ i 6= j < N ,

N̂i,jzjΘ = ΘN̂i+1,j+1zj+1,

zjN̂i,jΘ = Θzj+1N̂i+1,j+1,
(7.79)

while for i = 1, 2, . . . , N − 1, we have

zN N̂i,NΘ = ΘN̂i+1,1z1, (7.80)

N̂N,iziΘ = Θzi+1N̂1,i+1.

These results yield the algebraic relations (7.76) between d̂i and Θ; the
operator d̂i consists of zi∂/∂zi, ziN̂i,j , and N̂i,jzi.

The operator Θ will turn out to be a generating operator of non-symmetric
Jack polynomials, as shown later in this subsection. Further, we will show
that the transposition Ki,

Kif(z1, . . . , zi, zi+1, . . . , zN ) = f(z1, . . . , zi+1, zi, . . . , zN ), (7.81)

is another generating operator of non-symmetric Jack polynomials. The al-
gebraic relations between Ki and d̂j have been given by (7.36).

So far we have defined Θ and Ki as operators on the N -variable function
of z1, . . . , zN . For convenience, we further define the actions on compositions
η ∈ ΛN as

Kiη = (η1, . . . , ηi+1, ηi, . . . , ηN ), (7.82)

Θη = (η2, . . . , ηN , η1 + 1). (7.83)

In the following, Θ and Ki are regarded as operators acting on both func-
tions and compositions. An example of correspondence between η and Θη

is illustrated in Fig. 7.2.
Remarkably, the same form of relation holds among the eigenvalues η̄i

defined in (7.9) of Cherednik–Dunkl operators d̂i:

(Θη)i = η̄i+1, (7.84)

(Θη)N = η̄1 + 1, (7.85)

for i = 1, . . . , N − 1.

Proof of (7.84) and (7.85).
First we show (7.84) by counting the numbers k′

i and k′′
i in (7.9). The reader

is advised to consider an example shown in Fig. 7.2. Let ]A denote the
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η1

η2

η3

η4

η5

(a) (b) (Θη)1

(Θη)2

(Θη)3

(Θη)4

(Θη)5

♥ ♠ ♦ ♣

♥ ♠ ♦ ♣

] [ \

] [ \

Fig. 7.2. Diagrams of (a) η = (4, 3, 5, 3, 2) and (b) Θη. The cells marked by the same
symbols such as ♥, . . ., ], . . . in (b), respectively, illustrate the mapping (7.120) and
(7.121), to be presented later. The shaded cell in (b) represents the cell s′.

number of elements in a set A. For i = 1, . . . , N − 1, we obtain

]{j ∈ {1, . . . , i − 1}| (Θη)j ≥ (Θη)i} = ]{j ∈ {2, . . . , i}|ηj ≥ ηi+1}, (7.86)

from the definition of Θη. Furthermore, we have

]{j ∈ {i + 1, . . . , N}| (Θη)j > (Θη)i}
= ]{j ∈ {i + 1, . . . , N − 1}| (Θη)j > (Θη)i} + ]{j = N | (Θη)N > (Θη)i}

= ]{j ∈ {i + 2, . . . , N}|ηj > ηi+1} +

{
1, (for η1 + 1 > ηi+1),

0, (otherwise).
(7.87)

From (7.86) and (7.87), the relation (7.84) follows. Next we consider (7.85),
which follows from the definition (7.83) and

]{j ∈ {1, . . . , N − 1}| (Θη)j ≥ (Θη)N}
= ]{j ∈ {1, . . . , N − 1}|ηj+1 ≥ η1 + 1}
= ]{j ∈ {2, . . . , N}|ηj > η1}. (7.88)

We now show that Θ generates one non-symmetric Jack polynomial from
another. Namely, the action of Θ on Eη is given by

ΘEη = EΘη. (7.89)

Proof of (7.89).
From (7.76), it follows that

d̂i (ΘEη) = Θd̂i+1Eη = η̄i+1ΘEη
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for i = 1, . . . , N − 1 and

d̂N (ΘEη) = Θ
(
d̂1 + 1

)
Eη = (η̄1 + 1)ΘEη.

These results show that ΘEη is a simultaneous eigenfunction of d̂i for
i = 1, . . . , N , i.e., ΘEη ∝ Eν , where ν is the composition satisfying

ν̄i = η̄i+1 for i = 1, . . . , N − 1 and ν̄N = η̄1 + 1. (7.90)

Comparing (7.90) with (7.84) and (7.85), we see that ν = Θη. Next we write
the action of Θ on Eη in the following form:

ΘEη(z) = Θ

zη +
∑

ν∈ΛN
ν≺η

cηνz
ν

 = zΘη +
∑

ν∈ΛN
ν≺η

cηνz
Θν .

The action of Θ on a monomial zη is given by Θ(zη) = zΘη, and obviously
zΘν 6= zΘη if ν 6= η. Thus the coefficient of zΘη in ΘEη is unity. We therefore
obtain (7.89).

Now we turn to the other generating operator Ki. The action of the trans-
position Ki ≡ Kii+1 = (i, i + 1) on Eη is given by [114,154]

KiEη =


ξiEη +

(
1 − ξ2

i

)
EKiη, ηi > ηi+1,

Eη, ηi = ηi+1,

ξiEη + EKiη, ηi < ηi+1,

(7.91)

where

ξi = 1/ (η̄i − η̄i+1) . (7.92)

Proof of (7.91).
(A) The case of ηi = ηi+1.
Here we set Ẽ = KiEη −Eη. From the algebraic relation (7.36) between Ki

and d̂j , we obtain

d̂jẼ = η̄jẼ, for j 6= i, i + 1,

d̂iẼ = η̄i+1Ẽ

d̂i+1Ẽ = η̄iẼ.

(7.93)
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From (7.93), it may seem that Ẽ is a joint eigenfunction of d̂j for j =
1, . . . , N . However, there is no composition ν satisfying

ν̄i = η̄i+1, ν̄i+1 = η̄i, ν̄j = η̄j , for j 6= i, i + 1. (7.94)

From this fact, we see that Ẽ = 0, i.e., KiEη = Eη.

(B) The case of ηi 6= ηi+1.
In order to prove (7.91) for the case of ηi 6= ηi+1, we set

E′ = (Ki + ξi) EKiη. (7.95)

The function E′ satisfies the following relation:

d̂jE
′ = η̄jE

′ (7.96)

for j = 1, . . . , N . We show (7.96) for (i) j 6= i, i + 1, (ii) j = i, and (iii)
j = i + 1, separately.

(i) For j 6= i, i + 1, we obtain from (7.36)

d̂jE
′ = d̂j (Ki + ξi) EKiη = (Ki + ξi) d̂jEKiη

= (Kiη)jE
′ = ηjE

′. (7.97)

(ii) For j = i, we obtain

d̂iE
′ = d̂i (Ki + ξi) EKiη

=
(
Kid̂i+1 + ξid̂i + 1

)
EKiη

= (Kiη)i+1KiEKiη +
(
ξi(Kiη)i + 1

)
EKiη

= ηiKiEKiη +
(
ξiηi+1 + 1

)
EKiη

= η̄iE
′, (7.98)

where the last equality follows from the relation
(
ξiηi+1 + 1

)
= ηiξi.
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(iii) Similarly, we obtain for j = i + 1,

d̂i+1E
′ = d̂i+1 (Ki + ξi) EKiη

=
(
Kid̂i + ξid̂i+1 − 1

)
EKiη

= (Kiη)iKiEKiη +
(
ξi(Kiη)i+1 − 1

)
EKiη

= ηi+1KiEKiη + (ξiηi − 1)EKiη

= η̄i+1E
′. (7.99)

From (7.96), we see that E′ ∝ Eη. Now we are ready to prove (7.91) for η

with ηi 6= ηi+1, following the same classification as above.

(i) If ηi > ηi+1 is satisfied, then Kiη < η and hence EKiη does not con-
tain zη. The monomial zη in KiEKiη comes only from the top term zKiη in
EKiη. From these facts, the coefficient of zη in E′ is unity, i.e.,

(Ki + ξi) EKiη = Eη, (7.100)

with ηi > ηi+1. Further, we apply (Ki − ξi) on both sides of (7.100). After
rearrangement, we can arrive at (7.91) for ηi > ηi+1.

(ii) For η satisfying ηi < ηi+1, we use (7.100) by noting (Kiη)i > (Kiη)i+1,
and obtain (

Ki + ξ̃i

)
Eη = EKiη, (7.101)

where ξ̃i = 1
/(

(Kiη)i − (Kiη)i+1

)
. When ηi 6= ηi+1, the relation η̄i =

(Kiη)i+1 holds. We hence obtain the relation ξ̃i = −ξi and

(Ki − ξi) Eη = EKiη, (7.102)

which is nothing but (7.91) for η satisfying ηi < ηi+1.

7.1.6 Arms and legs of compositions

In this subsection, we introduce additional notation to describe properties
for non-symmetric Jack polynomials.

For a given composition η = (η1, η2, . . . , ηN ) ∈ ΛN and pairs of integers
s = (i, j) satisfying 1 ≤ i ≤ l(η) and 1 ≤ j ≤ ηi, we define the following
quantities:
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a(s) = ηi − j, (7.103)

a′(s) = j − 1, (7.104)

l(s) = ul(s) + ll(s), (7.105)

l′(s) = ul′(s) + ll′(s), (7.106)

where we have defined the numbers (]) in a set associated with s as follows:

ul(s) = ]{k ∈ {1, . . . , i − 1}|j − 1 ≤ ηk < ηi}, (7.107)

ll(s) = ]{k ∈ {i + 1, . . . , N}|j ≤ ηk ≤ ηi}, (7.108)

ul′(s) = ]{k ∈ {1, . . . , i − 1}|ηk ≥ ηi}, (7.109)

ll′(s) = ]{k ∈ {i + 1, . . . , N}|ηk > ηi}, (7.110)

where j − 1 in (7.107) is not a misprint.
In the above expressions, a(s), a′(s), l(s), and l′(s) are called arm length,

arm colength, leg length, and leg colength, respectively and they reduce to
(2.84) when η is a partition. In terms of these quantities for each s, we
construct the following quantities for a composition η:

dη =
∏
s∈η

d(s), d(s) = (a(s) + 1)/λ + l(s) + 1, (7.111)

d′η =
∏
s∈η

d′(s), d′(s) = d(s) − 1 = (a(s) + 1)/λ + l(s), (7.112)

eη =
∏
s∈η

e(s), e(s) = (a′(s) + 1)/λ + N − l′(s), (7.113)

e′η =
∏
s∈η

e′(s), e′(s) = (a′(s) + 1)/λ + N − l′(s) − 1. (7.114)

The quantities dη(s) and d′η(s) may be called generalized hook lengths
since d′(s) reduces to the upper hook length h∗

κ(s) defined by (2.186) if
η corresponds to a partition κ, and eη and e′η may be called generalized
shifted factorials by the relations (7.174) and (7.180) to be discussed later.

As we shall prove, they satisfy the following recursion relations [154]:

dΘη

dη
= η̄1 +

1
λ

+ N,
d′Θη

d′η
= η̄1 +

1
λ

+ N − 1, (7.115)

eΘη

eη
= η̄1 +

1
λ

+ N,
e′Θη

e′η
= η̄1 +

1
λ

+ N − 1, (7.116)

eKiη = eη, e′Kiη = e′η, (7.117)
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for all η. In particular, the invariance (7.117) against permutations follows
from the fact that a′(s) and a′(s) are completely determined by the corre-
sponding partition η+.

On the other hand, we have for ηi > ηi+1

dKiη

dη
= 1 + ξi,

d′Kiη

d′η
=

1
1 − ξi

, (7.118)

and for ηi < ηi+1

dKiη

dη
=

1
1 − ξi

,
d′Kiη

d′η
= 1 + ξi. (7.119)

These formulae will give a concise description of several quantities derived
in the following subsections.

Proof of (7.115).
The diagram of Θη is generated from that of η by (1) removing the top row,
(2) moving all the other rows one unit up, (3) appending the removed row to
the bottom of the diagram, and (4) adding a cell to the bottom row. From
these procedures, a mapping from a square in a diagram of η to a square in
a diagram of Θη

(i, j) in η → (i − 1, j) in Θη (7.120)

for i = 2, . . . , l(η) and j = 1, . . . , ηi and

(1, j) in η → (N, j + 1) in Θη (7.121)

for j = 1, . . . , η1 naturally follows. The implication of (7.120) and (7.121)
can be understood from Fig. 7.2. It can easily be checked that the above
mapping leaves the arm a(s), l(s) and hence d(s) of a square s = (i, j)
unchanged. From this, we immediately see that

dΘη/dη = d(s′), (7.122)

where s′ is the “surplus” cell (N, 1) in the diagram of Θη and it is shown by
the shaded square in Fig. 7.2. An inspection shows that a(s′) = η1 and

l(s′) = ]{j > 1|ηj ≤ η1} = N − 1 − ]{1 < j ≤ N |ηj > η1}.

These results lead to d(s′) = η̄1 + 1/λ + N . The quantity d′Θη/d′η can be
evaluated in a similar way.
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η1

η2

η3

η4

η5

(a) (b) Θη1

Θη2

Θη3

Θη4

Θη5

♥ ♠ ♦ ♣

♥ ♠ ♦ ♣

] [ \

] [ \

Fig. 7.3. Diagrams of (a) η = (4, 3, 5, 3, 2) and (b) Θη. The cells marked by the same
symbols such as ♥, . . ., ], . . . in (b), respectively, illustrate the mapping (7.123) and
(7.124). The shaded cell in (b) represents the cell s′′.

Proof of (7.116).
Now we consider another mapping from a square in D(η) to a square in
D(Θη)

(i, j) in D(η) → (i − 1, j) in D(Θη) (7.123)

for i = 2, . . . , l(η) and j = 1, . . . , ηi and

(1, j) in D(η) → (N, j) in D(Θη) (7.124)

for j = 1, . . . , η1.
This mapping is described in Fig. 7.3. This mapping does not change the

arm colength a′(s) and leg colength l′(s) and hence e(s). Consequently, we
obtain

eΘη

eη
= e(s′′),

where s′′ is the cell (N, η1) in the diagram of Θη, shown by the shaded
square in Fig. 7.3. We can see that e(s′′) = η̄1 + 1N + N from the facts that
a′(s′′) = η1 and l′(s′′) = ]{j > 1|ηj > η1}. We thus arrive at the first equa-
tion of (7.116). The second equation of (7.116) can be shown in a similar
way.

Proof of (7.118).
Now we consider a mapping from a square in D(η) to a square in D(Kiη)(

i′, j
)

in D(η) → (i′, j) in D(Kiη) (7.125)

for i′ 6= i, i + 1 and

(i, j) in D(η) → (i + 1, j) in D(Kiη), (7.126)

(i + 1, j) in D(η) → (i, j) in D(Kiη). (7.127)



7.1 Non-symmetric Jack polynomials 333

s′

s′′

(a) (b)

ηi

ηi+1

ηi+1

ηi

Fig. 7.4. Two rows in the diagram of (a) η and (b) Kiη. The shaded squares in (a)
and (b) represent, respectively, s′ and s′′.

This mapping does not change the arm a(s) and leg l(s) except for s′ =
(i, 1 + ηi+1) in η. We thus obtain

dKiη

dη
=

d(s′′)
d(s′)

,

where s′′ = (i + 1, 1 + ηi+1) is the image of s′ in the above mapping. The
squares s′ and s′′ are shown in Fig. 7.4.

Straightforward calculations show that

a(s′) = ηi − ηi+1 − 1, l(s′) = −
(
k′

i + k′′
i

)
+

(
k′

i+1 + k′′
i+1

)
− 1, (7.128)

and

d(s′) = η̄i − η̄i+1.

Further we obtain

d(s′′) = 1 + η̄i − η̄i+1

in a similar way. From these two results, the assertion on dη in (7.118)
follows. The expression d′Kiη

/d′η can be evaluated in a similar way.

7.1.7 Evaluation formula

Here we prove the following [154]:

Eη(1, . . . , 1) = eη/dη, (7.129)

which is called the evaluation formula.

Proof of (7.129).
We first quote the (almost trivial) relations

Θf(z1, . . . , zN )|z1=···=zN=1 = f(1, . . . , 1),

Kif(z1, . . . , zN )|z1=···=zN=1 = f(1, . . . , 1), (7.130)
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which hold for any function f . Then the recursion relations

EKiη(1, . . . , 1)
Eη(1, . . . , 1)

=

{
(1 + ξi)−1, for ηi > ηi+1,

1 − ξi, for ηi < ηi+1,
(7.131)

EΘη(1, . . . , 1)
Eη(1, . . . , 1)

= 1 (7.132)

can be derived from (7.89), (7.91), and (7.130). By the relations from (7.115)
to (7.119), we see that (7.131) and (7.132) have the same form as the recur-
sion relations of eη/dη. Further, Eη(1, . . . , 1) and eη/dη have the same value
(=1) for η = (0, . . . , 0). Thus we arrive at the expression (7.129) for any η

by repeated application of Θ and Ki.

7.2 Antisymmetrization of Jack polynomials

7.2.1 Antisymmetric Jack polynomials

We now proceed to derive the integral and combinatorial norms of non-
symmetric Jack polynomials. It turns out that the antisymmetric Jack poly-
nomials J

(−)
κ (z) are helpful for this purpose where a partition κ consists of

distinct entities: κ1 > κ2 > · · · > κN . The set of those κ is denoted by Λ+>
N .

Then J
(−)
κ (z) is defined by the following two conditions:

(i) The polynomial J
(−)
κ has the form

J (−)
κ (z) =

∑
η

a(−)
η Eη(z) (7.133)

with the normalization a
(−)
κ = 1. Here the sum with respect to η is

taken over such composition as satisfies η+ = κ.
(ii) Under the action of the transposition Ki, we obtain

KiJ
(−)
κ (z) = −J (−)

κ (z), (7.134)

for i ∈ 1, . . . , N −1. Namely, J
(−)
κ (z) is odd against the transposition.

We first derive the following recursion relation for the coefficient aη:

a
(−)
Kiη

a
(−)
η

=
{

−1 − ξi, for ηi > ηi+1,

1/(ξi − 1), for ηi < ηi+1,
(7.135)

where i = 1, . . . , N − 1. Note that the RHS is the same as −dKiη/dη.
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Proof of (7.135).
Let us introduce the notation

Ai,η = ξi + 1, Bi,η =
{

1 − ξ2
i , for ηi > ηi+1,

1, for ηi < ηi+1.
(7.136)

Using (7.91), we then obtain

(Ki + 1) J (−)
κ =

∑
η

a(−)
η (Ki + 1)Eη

=
∑

η

a(−)
η (Ai,ηEη + Bi,ηEKiη)

=
∑

η

(
a(−)

η Ai,η + a
(−)
Kiη

Bi,Kiη

)
Eη = 0. (7.137)

Thus we obtain a
(−)
Kiη

/a
(−)
η = −Ai,η/Bi,Kiη, and the recursion relation (7.135)

follows.

Let sign(η) be the sign of the permutation σ̂ which gives σ̂η = η+ where
η+ is the corresponding partition. Then a

(−)
η is expressed by

a(−)
η = sign(η)dη/dη+ . (7.138)

We can express a
(−)
η in another way as

a(−)
η = sign(η)

∏
i<j; s.t. ηi<ηj

(
1 +

1
ηj − ηi

)
, (7.139)

where the notation with s.t. means that the product is taken over j and
i (< j) such that ηi < ηj . We call (i, j) a “reversed pair” if 1 ≤ i < j ≤ N

and ηi < ηj . The product in (7.139) is then taken over the reversed pair.

Proof of (7.138).
Both sides of (7.138) obey the same recursion relations (7.118), (7.119), and
(7.135) and satisfy the same initial condition (=1) for η = η+. From this
fact, the relation (7.138) follows.

Proof of (7.139).
Both sides of

dη

dη+

=
∏

i<j; s.t.ηi<ηj

(
1 +

1
ηj − ηi

)
(7.140)

obey the same recursion relations (7.118) and (7.119), and satisfy the same
initial condition (= 1) for η = η+. From this fact, (7.139) follows.
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Example 7.1.
Recalling the relation K1κ = (κ2, κ1, κ3, . . .), we obtain

a
(−)
K1κ = −1 − 1

κ̄1 − κ̄2
. (7.141)

Example 7.2.
By repeated application of transpositions, we obtain

a
(−)
K2K1κ/a

(−)
K1κ = −1 − 1

(K1κ)2 − (K1κ)3
= −1 − 1

κ1 − κ3
, (7.142)

from which

a
(−)
K2K1κ =

(
−1 − 1

κ1 − κ2

)(
−1 − 1

κ1 − κ3

)
(7.143)

immediately follows.

Example 7.3.
Let κR be the composition given by

κR = (κN , . . . , κ2, κ1). (7.144)

We then obtain

a
(−)

κR =
∏
i<j

(
−1 − 1

κi − κj

)
. (7.145)

This expression can be obtained immediately from (7.139).

Now we define the operator σ̂ ∈ SN on a function f as

σ̂f(z1, . . . , zN ) = f(zσ(1), . . . , zσ(N)). (7.146)

Then the antisymmetrization operator on a function f is defined as

Asym f(z) =
∑

σ̂∈SN

sign(σ̂)σ̂f(z). (7.147)

We can then write J
(−)
κ as

ρ(−)
η J (−)

κ (z) = Asym Eη(z), (7.148)

where η is a composition such that η+ = κ, and ρ
(−)
η is given by

ρ(−)
η = sign(η)d′η/d′κR . (7.149)
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Proof of (7.149).
Applying Ki with i ∈ [1, N − 1] on both sides of (7.148) for η such that
ηi > ηi+1, we obtain

ρ(−)
η KiJ

(−)
κ (z) = −ρ(−)

η J (−)
κ (z) (7.150)

on the LHS and

KiAsym Eη = Asym KiEη

= Asym
(
ξiEη +

(
1 − ξ2

i

)
EKiη

)
=

(
ξiρ

(−)
η +

(
1 − ξ2

i

)
ρ
(−)
Kiη

)
J (−)

κ (7.151)

on the RHS. From (7.150) and (7.151), the recursion relation

ρ
(−)
Kiη

ρ
(−)
η

=
1

ξi − 1
, for ηi > ηi+1, (7.152)

follows. Performing a similar calculation for ηi < ηi+1, and comparing both
results with (7.118) and (7.119), we find that

ρ(−)
η ∝ sign(η)d′η. (7.153)

The coefficient of proportionality in (7.153) can be obtained by considering
ρ
(−)

κR . On the RHS of (7.148) for η = κR, Eκ comes only from the term

sign
(
σ̂R

)
σ̂REκR , (7.154)

where

σ̂R = (N,N − 1, . . . , 2, 1) .

With successive use of (7.91) for ηi < ηi+1, the coefficient of Eκ in (7.154)
is derived as (−1)N(N−1)/2. The coefficient of Eκ on the LHS of (7.148) for
η = κR is given by ρ

(−)

κR . Thus we obtain

ρ
(−)

κR = (−1)N(N−1)/2 . (7.155)

From (7.153), (7.155), and using sign(κR) = (−1)N(N−1)/2, we obtain (7.149).
Alternatively, ρ

(−)
κ can be expressed as

ρ(−)
κ =

∏
i<j

(
κ̄i − κ̄j − 1

κ̄i − κ̄j

)
, (7.156)

Using (7.152) and (7.155).
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7.2.2 Integral norm

Now we are ready to calculate the integral norm 〈Eη, Eη〉0. First we note
that Θ introduced in (7.74) and Ki (≡ Ki,i+1) are isometric:

〈Θf,Θg〉0 = 〈f, g〉0, 〈Kif,Kig〉0 = 〈f, g〉0, (7.157)

i.e., Θ and Ki preserve the inner product with respect to 〈·, ·〉0. Using this
property and (7.89), we obtain

〈EΘη, EΘη〉0 = 〈Eη, Eη〉0. (7.158)

Using (7.91), we have for η satisfying ηi > ηi+1,

〈EKiη, EKiη〉0 =
(
1 − ξ2

i

)−2 〈KiEη − ξiEη,KiEη − ξiEη〉0

=

(
1 + ξ2

i

)
〈Eη, Eη〉0

(1 − ξ2
i )2

− 2ξi〈Eη,KiEη〉0
(1 − ξ2

i )2

=
〈Eη, Eη〉0
(1 − ξ2

i )
. (7.159)

On the other hand, for η satisfying ηi < ηi+1, we have

〈EKiη, EKiη〉0 = 〈KiEη − ξiEη,KiEη − ξiEη〉0
=

(
1 + ξ2

i

)
〈Eη, Eη〉0 − 2ξi〈Eη,KiEη〉0

=
(
1 − ξ2

i

)
〈Eη, Eη〉0. (7.160)

Recall that Θ and Ki are sufficient to generate the arbitrary composition η

from the trivial composition (0, . . . , 0). Using these recursion relations, we
obtain

〈Eη, Eη〉0
〈1, 1〉0

=
d′ηeη

dηe′η
(7.161)

for arbitrary η. Here the denominator 〈1, 1〉0 denotes the norm of the zeroth-
order non-symmetric Jack polynomial for the composition (0, . . . , 0).

Proof of (7.161).
Here we set the RHS of (7.161) to be Aη. The recursion formula for Aη,

AΘη

Aη
= 1,

AKiη

Aη
=


1/

(
1 − ξ2

i

)
, for ηi > ηi+1,

1, for ηi = ηi+1,

1 − ξ2
i , for ηi < ηi+1,

(7.162)

follows from (7.118) and (7.119). Both sides of (7.161) are equal because
these two satisfy the same recursion formula and have the same value (=1)
at the trivial composition (0, . . . , 0).
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In the following, the denominator of the LHS of (7.161) is shown to be

〈1, 1〉0 =
Γ (Nλ + 1)

[Γ (1 + λ)]N
(7.163)

for positive integer λ. This relation generalizes Dyson’s conjecture given by
(4.76) for the particular case of λ = 2.

Before going into details of the proof, we explain the outline. First we
show that

J
(−)
δ (z) =

∏
1≤i<j≤N

(zi − zj) ≡ ∆(z), (7.164)

where δ = (N − 1, N − 2, . . . , 1, 0). From this fact, the relation

〈J (−)
δ , J

(−)
δ 〉0

〈1, 1〉0
=

I(λ + 1, N)
I(λ,N)

(7.165)

follows. Here we have introduced the notation

I(λ,N) ≡ 〈1, 1〉0

to make explicit the λ-dependence of 〈1, 1〉0. Next we evaluate the LHS of
(7.165) and obtain

〈J (−)
δ , J

(−)
δ 〉0

〈1, 1〉0
=

Γ [N(λ + 1) + 1]

Γ [Nλ + 1] (λ + 1)N
, (7.166)

as shown below. Using (7.165), (7.166), and the result I(λ = 1, N) = N ! for
free fermions, we can prove (7.163) by mathematical induction.

Proof of (7.164).
Any antisymmetric homogeneous polynomial of z can be written as a prod-
uct of the difference-product ∆(z) and a symmetric homogeneous polyno-
mial. Both J

(−)
δ (z) and ∆(z) have the same degree (= N(N − 1)/2)) and

hence we can put J
(−)
δ (z) = c∆(z) with a constant to be determined. We ex-

pand this expression with respect to monomials and consider the coefficient
zδ of both sides. On the RHS, obviously the coefficient of zδ in ∆(z) is unity.
When we expand J

(−)
δ (z) in terms of non-symmetric Jack polynomials, only

Eδ contains the monomial zδ and the coefficient of Eδ in J
(−)
δ (z) is unity.

Thus the coefficient of zδ in J
(−)
δ (z) is also unity. From these facts, we obtain

c = 1.
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Proof of (7.166).
We note the following relation:

〈J (−)
κ , J

(−)
κ 〉0

〈Eκ, Eκ〉0
=

N !

ρ
(−)
κ

, (7.167)

which results from

(ρ(−)
κ )2〈J (−)

κ , J (−)
κ 〉0 = 〈Asym Eκ, Asym Eκ〉0 = 〈Eκ, Asym(Asym Eκ)〉0

= N !〈Eκ, (Asym Eκ)〉0 = N !ρ(−)
κ 〈Eκ, J (−)

κ 〉0
= N !ρ(−)

κ 〈Eκ, Eκ〉0. (7.168)

Using (7.161) and (7.167), we rewrite the LHS of (7.166) as follows:

〈J (−)
δ , J

(−)
δ 〉0

〈1, 1〉0
=

〈J (−)
δ , J

(−)
δ 〉0

〈Eδ, Eδ〉0
〈Eδ, Eδ〉0
〈1, 1〉0

=
N !

ρ
(−)
δ

d′δeδ

dδe
′
δ

= N !
d′

δReδ

dδe
′
δ

. (7.169)

Figure 7.5 shows (a) the diagram D(δ) of the partition δ = (N−1, . . . , 0) and
(b) the diagram D(δR) of δR for N = 5. In the one-to-one correspondence
between s′ = (i, j) in D(δ) and s′′ = (N + i + 1, j) in D(δR), we find that
a(s′) = a(s′′) and l(s′) + 1 = l(s′′). We then obtain d(s′) = d′(s′′) and hence
dδ = d′

δR . For the RHS of (7.169), we next derive

eδ

e′δ
=

Γ [N(λ + 1) + 1]

N !Γ (Nλ + 1) (λ + 1)N
. (7.170)

Then (7.166) follows.

Proof of (7.170).
For the partition δ, arm colength and leg colength are respectively given by

a′(s) = j − 1, l′(s) = i − 1. (7.171)

From (7.171), we obtain

eδ

e′δ
=

N−1∏
i=1

N−i∏
j=1

(N − i + 1)λ + j

(N − i)λ + j

=
N−1∏
i=1

Γ [λ (N − i) + 1] Γ [(1 + λ) (N − i + 1)]
Γ [λ (N − i + 1) + 1] Γ [(1 + λ) (N − i) + 1]

. (7.172)

In the second equality, we have taken the product over j. We can confirm
that the expression on the rightmost is equal to that of (7.170) by noting
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(a) (b)

s′

s′′

Fig. 7.5. (a) Diagram of the partition δ = (N,N − 1, . . . , 0) and (b) diagram of δR

for N = 5. For the two shaded squares, the relation d(s′) = d′(s′′) holds.

the following relations:

N−1∏
i=1

Γ [λ (N − i) + 1]
Γ [λ (N − i + 1) + 1]

=
Γ[λ + 1]

Γ[Nλ + 1]
,

N−1∏
i=1

Γ [(1 + λ) (N − i + 1)]
Γ [(1 + λ) (N − i) + 1]

=
Γ[(1 + λ) N + 1]

N ! (1 + λ)N Γ[λ + 1]
. (7.173)

7.2.3 Binomial formula

To describe the binomial formula, we first introduce the generalized shifted
factorial (r)κ for an indeterminate r and a partition κ = η+ as

(r)κ =
∏

s∈D(κ)

[
r + a′(s) − λl′(s)

]
. (7.174)

In the special case of a single row with κ1 = k, we have l′(s) = 0 and obtain

(r)k = r(r + 1) · · · (r + k − 1) = Γ(r + k)/Γ(r), (7.175)

which justifies its name. In the general case, (7.174) can be written as

(r)κ =
N∏

i=1

Γ[r − λ(i − 1) + κi]
Γ[r − λ(i − 1)]

= (−1)|κ|
N∏

i=1

Γ[−r + λ(i − 1) + 1]
Γ[−r + λ(i − 1) + 1 − κi]

.

(7.176)



342 Jack polynomials

For later use, we derive (r)κ in the limit of large r. We obtain from (7.176)

(r)κ → (r)κ1(r)κ2 · · · (r)κN = r|κ|, (7.177)

which is again a generalization of the limiting behavior of the shifted facto-
rial: (r)k = Γ(r + k)/Γ(r) → rk. With this notation, the binomial formula is
given by

N∏
i=1

(1 − zi)
−r =

∑
η∈ΛN

λ−|η| (r)η+ Eη(z)
dηgη

. (7.178)

Proof of (7.178).
We start with the formula (7.53) for z = (z1, . . . , zM ) and y = (y1, . . . , yM ),
where M is an integer larger than N . Setting y1 = · · · = yM = 1 and
zN+1 = · · · = zM = 0, the expression (7.53) reduces to

N∏
i=1

(1 − zi)
−Mλ−1 =

∑
η

g−1
η Eη(

M︷ ︸︸ ︷
1, . . . , 1)Eη(z1, . . . , zN ). (7.179)

On the RHS, we have the evaluation formula Eη(1M ) = eη/dη with reference
to (7.129). By comparing (7.113) and (7.174), we obtain

eη = (Mλ + 1)η+ λ−|η|. (7.180)

From this expression, we see that the RHS of (7.179) depends on Mλ + 1
only through (Mλ + 1)η+ , and hence it is a polynomial of Mλ + 1. Since
the LHS is an analytic function of Mλ + 1, the relation (7.179) holds for
arbitrary complex values of Mλ + 1. Replacing Mλ + 1 by r, we obtain
(7.178).

7.2.4 Combinatorial norm

We are in a position to derive explicitly the combinatorial norm gη of non-
symmetric Jack polynomials. We want to show [16] that

〈Eη, Eη〉c = gη = d′η/dη. (7.181)

The key quantity for the derivation is the expression∫
Dz

∏N
i=1 (1 − zi)

a (
1 − z−1

i

)a
Eη(z)∫

Dz
∏N

i=1 (1 − zi)
a (

1 − z−1
i

)a , (7.182)

where the weighted integral defined by (7.40) has been used. In the limit
a → ∞, the integrand in the numerator is dominated by the contribution
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around the neighborhood of z1 = z2 = · · · = zN = −1. Namely, (7.182)
reduces to

Eη(−1,−1, . . . ,−1) = (−1)|η|eη/dη, (7.183)

where we have used (7.129). Furthermore, (7.182) can be expressed in terms
of the integral norm 〈Eη, Eη〉0, which is known, and the combinatorial norm
gη. Therefore, by comparing this with (7.183), we can extract gη as shown
below.

To represent the integrals in (7.182) concisely, we introduce the notation

F (a, b, η) = C.T.

[
N∏

i=1

(1 − zi)
a (

1 − z−1
i

)b
Eη(z)w(z)

]
, (7.184)

where w(z) ≡
∏

i6=j(1−zi/zj)λ is the weight function and C.T. [X(z)] means
the constant term in the Laurent expansion of X(z). We further introduce
the notation

ηR = (ηN , ηN−1, . . . , η1), zR = (zN , zN−1, . . . , z1). (7.185)

Then the relation

F (a, b, η) = F (b, a,−ηR) (7.186)

can be derived using

C.T. [f(z)Eη(z)w(z)] = C.T.
[
f(z)Eη(zR)w(z)

]
, (7.187)

C.T.
[
f(z)g(z−1)w(z)

]
= C.T.

[
f(z−1)g(z)w(z)

]
, (7.188)

Eη(z−1) = E−ηR(zR), (7.189)

where f(z) and g(z) are symmetric functions. The relations (7.187) and
(7.188) are easy to prove. The relation (7.189) is derived below.

Proof of (7.189).
Let y ≡ 1/z = (1/z1, . . . , 1/zN ). Direct calculation shows that

d̂zR

i = −d̂y
N+1−i + 1 − N. (7.190)

Using this relation, we obtain

d̂zR

i Eη(y) =
{
−ηN+1−i + 1 − N

}
Eη(y) = (−ηR)iEη(y), (7.191)

which means that Eη(y) is proportional to E−ηR(zR). The coefficients of
yη = (zR)−ηR

in Eη(y) and E−ηR(zR) are both unity. Hence we obtain
(7.189).
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From the binomial formula (7.178), we obtain

N∏
i=1

(
1 − z−1

i

)a =
∑

η∈ΛN

λ−|η| (−a)η+ Eη(z−1)/(dηgη), (7.192)

where we have set r = −a and replaced z by z−1. Multiplying this expression
by Eη(z)w(z), and extracting the constant term, we obtain

F (0, a, η) = λ−|η| (−a)κ

dηgη
〈Eη, Eη〉0, (7.193)

where κ = η+. According to (7.186), the same quantity can also be expressed
in terms of ηR. We use the following relation corresponding to the Galilean
boost:

zaEη(z) = Eη+a(z), (7.194)

where η + a represents (η1 + a, . . . , ηN + a). In order to prove (7.194),
we first note that zaEη is the eigenfunction of d̂i with eigenvalue ηi + aλ.
Furthermore, the coefficient of zη+a in zaEη(z) is unity. Then (7.194) follows.
Furthermore, from (7.189), we have

〈Eη, Eη〉0 = 〈E−ηR+a, E−ηR+a〉0. (7.195)

Using the relation

N∏
i=1

(
1 − z−1

i

)a =
N∏

i=1

(−zi)
−a

N∏
i=1

(1 − zi)
a , (7.196)

we obtain

F (a, 0,−ηR) = C.T.

[
N∏

i=1

(1 − zi)
a E−ηR(x)w(z)

]

= (−1)NaC.T.

[
N∏

i=1

(
1 − z−1

i

)a
E−ηR+a(z)w(z)

]

= (−1)Naλ|η|−Na (−a)−κR+a〈Eη, Eη〉0
d−ηR+ag−ηR+a

, (7.197)

where we have used (7.195) in the last step. Since F (a, 0,−ηR) = F (0, a, η)
from (7.186), we now have the following identity for any composition and
number a:

(−1)Na λ|η|−Na (−a)−κR+a

d−ηR+ag−ηR+a

= λ−|η| (−a)κ

dηgη
. (7.198)
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In (7.184), on the other hand, the factor (1 − zi)
2a emerges inside C.T.[· · · ],

by setting a = b and using (7.196). Namely, we obtain

F (a, a, η) = (−1)Na λ|η|−Na (−2a)−κR+a

d−ηR+ag−ηR+a

〈Eη, Eη〉0

= λ−|η| (−a)κ (−2a)−κR+a

(−a)−κR+a dηgη
〈Eη, Eη〉0, (7.199)

where (7.198) has been used in the second equality. In the special case of
η = (0, . . . , 0), (7.199) reduces to

F (a, a, 0) =
(−2a)a+ 〈1, 1〉0

(−a)a+

, (7.200)

using dη = gη = 1 for η = (0, . . . , 0). Here we have written a+ = (a, a, . . . , a)
to avoid confusion between the partition and the number. In the explicit
expression using (7.176):

(−a)−κR+a = (−1)|κ|
N∏

i=1

Γ[a + λ(i − 1) + 1]
Γ[a + λ(i − 1) + 1 − a + κR

i ]
, (7.201)

we observe that the a’s in the denominator cancel each other. Using (7.201),
we divide (7.199) by (7.200), and find a ratio

(−a)a+

(−a)−κR+a

= (−1)|κ|
N∏

i=1

Γ[λ(i − 1) + 1 + κR
i ]

Γ[λ(i − 1) + 1]

= (−λ)|κ|
N∏

j=1

Γ[N − j + (1 + κj)/λ]
Γ[N − j + 1/λ]

= (−λ)|κ|e′κ = (−λ)|η|e′η, (7.202)

where we have put i = N − j + 1 in the second equality, and used the
invariance property (7.117). Using (7.176), we obtain in the limit of a → ∞,

(−2a)−κR+a

(−2a)a+

→ (−a)−|κ|, (7.203)

which cancels (−a)κ → (−a)|κ| in F (a, a, η). Then we find the limiting value

lim
a→∞

F (a, a, η)
F (a, a, 0)

= (−1)|η|
e′η

dηgη

〈Eη, Eη〉0
〈1, 1〉0

= (−1)|η|
d′ηeη

d2
ηgη

. (7.204)

Since the LHS of (7.204) is given by (7.183), we finally obtain the combina-
torial norm

gη = d′η/dη. (7.205)
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7.3 Symmetric Jack polynomials

7.3.1 Relation to non-symmetric Jack polynomials

We discuss symmetric Jack polynomials Jκ(z) for a partition κ, which has
been defined in Section 2.5 as the unique eigenfunctions of (3.16), or equiv-
alently of the similarity-transformed Hamiltonian

H = λ2
N∑

i=1

(
d̂i +

N − 1
2

)2

− E0,N (7.206)

satisfying the triangularity condition (2.172). Alternatively, on the basis of
non-symmetric Jack polynomials, the symmetric Jack polynomials can be
defined as the homogeneous symmetric polynomials satisfying the following
two conditions:

(i) The polynomial Jκ has the form

Jκ(z) =
∑

η

a(+)
η Eη(z) (7.207)

with the normalization a
(+)
κ = 1. Here the sum with respect to η is

taken over compositions such that η+ = κ.
(ii) Under the action of the transposition Ki, the polynomial Jκ(z) is

invariant: KiJκ(z) = Jκ(z) for i ∈ 1, . . . , N − 1.

Every Eη in (7.207) is an eigenfunction of (7.206) which has the common
eigenvalue

λ2
N∑

i=1

(
κ̄i +

N − 1
2

)2

− E0,N ,

and hence Jκ in (7.207) is the symmetric eigenfunction of (7.206). Further,
from the normalization and triangularity of non-symmetric Jack polyno-
mials, Jκ in (7.207) satisfies the normalization and triangularity (2.172).
Thus the definition of Jκ in the present subsection is equivalent to that in
Section 2.5.

The relation between Eη and Jκ is useful to derive the mathematical
formulae for Jκ in the following subsections. Further, the symmetric Jack
polynomials can be related to the antisymmetric Jack polynomials as

J (−)
κ (z;λ) = ∆(z)Jµ(z; λ + 1), (7.208)

where κ = µ+ δ and δ = (N −1, N −2, . . . , 0) ∈ Λ+
N . We have made explicit

here the λ-dependence of J
(−)
κ and Jµ.
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Now we derive the recursion relation for the coefficient a
(+)
η :

a
(+)
Kiη

a
(+)
η

=
d′η

d′Kiη

=
{

1 − ξi, for ηi > ηi+1,

1/(1 + ξi), for ηi < ηi+1,
(7.209)

with i = 1, . . . , N − 1.

Proof of (7.209).
From the symmetric property of Jκ(z) and (7.91), we obtain

(Ki − 1) Jκ =
∑

η

a(+)
η (Ki − 1)Eη

=
∑

η

a(+)
η (Ai,ηEη + Bi,ηEKiη)

=
∑

η

(
a(+)

η Ai,η + a
(+)
Kiη

Bi,(Kiη)

)
Eη = 0, (7.210)

where

Ai,η =
{

ξi − 1, for ηi 6= ηi+1,

0, for ηi = ηi+1
and Bi,(Kiη) =


1 − ξ2

i , for ηi < ηi+1,

0, for ηi = ηi+1,

1, for ηi > ηi+1.
(7.211)

The only difference between Bi,η and Bi,(Kiη) is the interchange of the cases
ηi < ηi+1 and ηi > ηi+1. From this, and using (7.118) and (7.119), the
recursion relation (7.209) follows.

It is instructive to compare (7.209) with (7.135) for antisymmetric Jack
polynomials. The relation (7.209) suffices to generate aη for every η satisfying
η+ = κ for a partition κ. We obtain from (7.118) and (7.119) [154]

a(+)
η =

d′η+

d′η
=

∏
i<j; s.t.ηi<ηj

(
1 − 1

η̄j − η̄i

)
(7.212)

for η satisfying η+ = κ. The product in (7.212) is taken over the reversed
pairs as in (7.139).

For later convenience, we give an example of a
(+)
η . For a partition κ ∈ Λ+

N ,
let κR be the composition given by

κR = (κN , κN−1, . . . , κ1) . (7.213)

We then obtain

a
(+)

κR =
∏

i<j; s.t.κi>κj

(
1 − 1

κi − κj

)
, (7.214)
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which excludes the pairs with κi = κj , and can be obtained immediately
from (7.212).

We introduce the symmetrization operator on a function f(z1, . . . , zN ) as

Sym f(z) =
∑

σ̂∈SN

σ̂f(z), (7.215)

where σ̂f has been defined in (7.146). We can then write Jκ(z) in terms of
Eη(z) with κ = η+ as

ρ(+)
η Jκ(z) = Sym Eη(z), (7.216)

with a constant ρ
(+)
η . Putting κ = η+, we shall derive

ρ(+)
κ =

∏
1≤i<j≤N

κ̄i − κ̄j + 1
κ̄i − κ̄j

=

(∏
r

pr!

) ∏
1≤i<j≤N ;
s.t.κi>κj

κ̄i − κ̄j + 1
κ̄i − κ̄j

. (7.217)

Here the second expression excludes the pairs with κi = κj , and pr is the
number of r in κ; the factor (

∏
r pr!) is the number of elements in SN which

leave κ invariant. We can express ρ
(+)
κ in another way as

ρ(+)
κ =

(∏
r

pr!

)
dκR

dκ
= N !

d′′κeκ

dκe′′κ
. (7.218)

Proof of (7.217).
We compare the coefficient of EκR on both sides of (7.216). On the RHS,
EκR comes only from ∑

σ̂;s.t. σ̂κ=κR

σ̂Eκ. (7.219)

We set σ̂R as

σ̂R =

. . . ,

p3︷ ︸︸ ︷
1 + p1 + p2, . . . , p1 + p2 + p3,

p2︷ ︸︸ ︷
1 + p1, . . . , p1 + p2,

p1︷ ︸︸ ︷
1, . . . , p1

,

(7.220)
for a given partition κ. The expression (7.219) then turns into(∏

r

pr!

)
σ̂REκ. (7.221)
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With successive use of (7.91) for ηi > ηi+1, the coefficient of EκR in σ̂REκ

is derived as ∏
i<j; s.t.κi>κj

{
1 − 1

(κi − κj)
2

}
, (7.222)

which is to be compared with (7.214). The coefficient of EκR on the LHS
of (7.216) is given by ρ

(+)
κ a

(+)

κR . From these results and (7.222), we obtain
(7.217).

Proof of (7.218).
For composition η, we have the relation

dη

dη+

=
∏

i<j; s.t.ηi<ηj

(
1 +

1
ηj − ηi

)
. (7.223)

This is proved by observing that both sides obey the same recursion relation
and satisfy the same initial condition (= 1) for η = η+. Setting η = κR, we
obtain the first equality of (7.218). Next we show the following equality:(∏

r

pr!

)
dκR

d′′κ
= N !

eκ

e′′κ
, (7.224)

where we have introduced

d′′η =
∏

s∈D(η)

d′′(s), d′′(s) =
(

a(s)
λ

+ l(s) + 1
)

, (7.225)

e′′η = e′′κ =
∏

s∈D(κ)

e′′(s), e′′(s) =
a′(s)

λ
+ N − l′(s). (7.226)

Note that d′′(s) reduces to the lower hook length hκ
∗(s) in the case of η being

a partition κ.
Figure 7.6 shows diagrams of partitions κ (a) and κR (b). For the two

squares s′ and s′′ in the two diagrams, the relations a(s′) = a(s′′) + 1 and
l(s′) = l(s′′) are satisfied, from which d′′(s′) = d(s′′) follows and further∏

s: white squares in D(κR)

d(s)
/ ∏

s: white squares in D(κ)

d′′(s) = 1 (7.227)

follows. We thus obtain

dκR

d′′κ
=

∏
s: shaded squares in D(κR)

d(s)
/ ∏

s: shaded squares in D(κ)

d′′(s). (7.228)
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s′ s′′

(a) (b)

Fig. 7.6. (a) Diagram of a partition κ and (b) that of κR. In the two squares s′ in
D(κ) and s′′ in D(κR), we note that a(s′) = a(s′′) + 1 and l(s′) = l(s′′) and hence
d′′(s′) = d(s′′).

For the shaded squares in D(κ), i.e., the rightmost squares in each row, the
arm a(s) is zero and l(s) measures the number of squares located below s.
The denominator (7.228) hence becomes∏

s: shaded squares in D(κ)

d′′(s) =
∏

s: shaded squares in D(κ)

(l(s) + 1) =
∏
r

pr!.

(7.229)
For the shaded squares in D(κR), i.e., the leftmost squares in each row, we
have a(s) = κR

i − 1 and l(s) = i − 1 as determined by the ranking ri. The
numerator (7.228) then becomes

∏
s: shaded squares in D(κR)

d(s) =
N∏

i=1

(κi

λ
+ N − i + 1

)
, (7.230)

to which the LHS of (7.224) reduces. By a similar argument, on the RHS of
(7.224) we obtain

eκ

e′′κ
=

∏
s: lightly shaded squares in D(κ)

e(s)
/ ∏

s: heavily shaded squares in D(κ)

e′′(s),

(7.231)
where lightly and heavily shaded squares are shown in Fig. 7.7. In the nu-
merator of (7.231), a′(s) = κi − 1 and l′(s) = i − 1 from which

∏
s: lightly shaded squares in D(κ)

e(s) =
κ′
1∏

i=1

(κi

λ
+ N − i + 1

)
(7.232)
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(a)

Fig. 7.7. Diagram of a partition κ. The leftmost squares in each row are heavily
shaded and the rightmost squares in each row are lightly shaded. These are used in
(7.231).

follows. In the denominator of (7.231), a′(s) = 0 and l′(s) = i − 1 lead to

∏
s: heavily shaded squares in D(κ)

e(s) =
κ′
1∏

i=1

(N − i + 1) . (7.233)

Using (7.232) and (7.233), the RHS of (7.224) is given by

N !
∏κ′

1
i=1 (κi/λ + N − i + 1)∏κ′

1
i=1 (N − i + 1)

=
N∏

i=1

(κi

λ
+ N − i + 1

)
. (7.234)

From (7.230) and (7.234), we obtain (7.224). Multiplying both sides of
(7.224) by d′′κ/dκ, we arrive at(∏

r

pr!

)
dκR/dκ = N !d′′κeκ/(dκe′′κ), (7.235)

which is nothing but the second equality of (7.218).

7.3.2 Evaluation formula

The evaluation formula for symmetric Jack polynomials is given by

Jκ(1, . . . , 1) =
N !eκ

ρ
(+)
κ dκ

=
e′′κ
d′′κ

, (7.236)

with κ ∈ Λ+
N .
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Proof of (7.236).
From (7.215) and (7.216), the LHS of (7.236) is written as

Jκ(1, . . . , 1) =
1

ρ
(+)
κ

∑
σ∈SN

Eκ(zσ(1), . . . , zσ(N))
∣∣∣
z→1N

. (7.237)

Each summand on the RHS takes a common value eκ/dκ owing to (7.129).
Thus we obtain the first equality in (7.236). The second equality follows by
(7.218).

7.3.3 Symmetry-changing operator

We introduce an operator Ô(−) which transforms J
(−)
κ into Jκ, namely from

the fermionic function to a bosonic one. An analogous operator for the U(2)
Jack polynomials will be used in order to derive the evaluation formula, as
explained later. Since the nature of the symmetry change becomes clearest in
the single-component case, we discuss here its simplest version. The operator
Ô(−) is defined by [63]

Ô(−) =
∏
i<j

(
d̂i − d̂j + 1

)
(7.238)

in terms of the Cherednik–Dunkl operators. We shall prove the following
relation:

Ô(−)J (−)
κ (z) = πκJκ(z), (7.239)

with

πκ =
∏
i<j

(κ̄i − κ̄j + 1) . (7.240)

Proof of (7.239).
A non-symmetric Jack polynomial Eη is an eigenfunction of Ô(−) with the
eigenvalue ∏

i<j

(η̄i − η̄j + 1) . (7.241)

In the case of η+ = κ, this eigenvalue is rewritten as

πκ

∏
i<j; s.t. ηi<ηj

(η̄i − η̄j + 1)
(η̄j − η̄i + 1)

= πκ
a

(+)
η

a
(−)
η

, (7.242)
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in terms of (7.139), (7.212), and (7.240). With use of this, we obtain

Ô(−)J (−)
κ =

∑
η

a(−)
η Ô(−)Eη

= πκ

∑
η

a(+)
η Eη = πκJκ. (7.243)

Let us introduce a symmetric polynomial J̃
(−)
κ (z) by

J (−)
κ (z) = J̃ (−)

κ (z)∆(z), (7.244)

where ∆(z) =
∏

i<j (zi − zj) . Consideration of the integral norm and trian-

gularity shows that J̃
(−)
κ (z) is actually equal to the symmetric Jack polyno-

mial with shifted λ and κ:

J̃ (−)
κ (z; λ) = Jκ−δ(z; λ + 1), (7.245)

where δ = (N−1, N−2, . . . , 1, 0), and we have made explicit the dependence
on the repulsion parameter λ.

In the particular case of κ = δ, we obtain J̃
(−)
δ (z) = 1 from (7.245)

and J
(−)
δ (z) = ∆(z) from (7.164). We shall prove the following evaluation

formula for J̃
(−)
κ (z, λ) with κ ∈ Λ+>

N :

J̃ (−)
κ (1N ) =

π̃κeκ

dκeδ
, (7.246)

where

π̃κ =
∏
i<j

(κ̄i − κ̄j) . (7.247)

Since J̃
(−)
δ (1N ) = 1, (7.246) requires the relation

π̃δ = dδ, (7.248)

which can easily be checked. Namely, by putting explicit values for κ̄i =
(N − i)/λ− (i−1) for the case of κ = δ, we obtain κ̄i − κ̄j = (1+1/λ)(j− i)
and

π̃δ =
(

λ + 1
λ

)N(N−1)/2

(N − 1)!(N − 2)! · · · 2!. (7.249)

On the other hand, we have a(s) = l(s) for κ = δ, and the product of
d(s) = [a(s) + 1]/λ + l(s) + 1 over s leads to the same expression as (7.249).
Hence we obtain (7.248).
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In order to prove (7.246), we begin with the evaluation

ρ(−)
κ d̂iJ

(−)
κ (z) = d̂i

∑
σ∈SN

sgn(σ)Eκ(zσ(1) . . . zσ(N))

=
∑

σ∈SN

sgn(σ)κ̄σ−1(i)Eκ(zσ(1) . . . zσ(N))

→
z=1N

eκ

dκ

∑
σ∈SN

sgn(σ)κ̄σ(i) = 0, (7.250)

where we have used the relation sgn(σ) = sgn(σ−1). The RHS vanishes for
N > 2 after summation over permutation. More generally, for any set of
non-negative exponents n(i), we obtain

ρ(−)
κ d̂

n(1)
1 d̂

n(2)
2 · · · d̂n(N)

N J (−)
κ (z) →

z=1N

eκ

dκ

∑
σ∈SN

sgn(σ)κ̄n(1)
σ(1) · · · κ̄

n(N)
σ(N). (7.251)

Note that the RHS vanishes unless the n(i) are distinct from each other.
The set with the minimum sum of exponents is given by n(i) = N − i and
its permutations. In this case we obtain∑

σ∈SN

sgn(σ)κ̄N−1
σ(1) κ̄N−2

σ(2) · · · κ̄0
σ(N) =

∏
i<j

(κ̄i − κ̄j) = π̃κ. (7.252)

In the next stage, we shall show

Ô(−)f(z)∆(z) →
z=1N

f(1N )Ô(−)∆(z)
∣∣∣
z→1N

. (7.253)

The derivation uses the identity

(Kij − 1) [∆(z)f(z)] = f(z)(Kij − 1)∆(z) + [Kij∆(z)](Kij − 1)f(z),
(7.254)

which is analogous to the chain rule in differential calculus. Because of the
odd property Kij∆ = −∆, the RHS can also be written as −∆(Kij + 1)f .
Using (7.254), we obtain for any polynomial f(z)

d̂i [f(z)∆(z)] = f(z)d̂i∆(z) + g(z)∆(z), (7.255)

where

g(z) =
[
2zi

λ

∂

∂zi
− d̂i

]
f(z) (7.256)

is also a polynomial of z. We can show that the second term in the RHS
of (7.255) can be neglected in the limit of zn → 1 after operation of Ô(−).
Namely, in the expansion of Ô(−) in terms of d̂i, any product d̂

n(1)
1 d̂

n(2)
2 . . .

d̂
n(i)−1
i · · · d̂n(N)

N operating on g(z)∆(z) has a sum of exponents less than
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N(N − 1)/2. Then the resultant terms vanish in the limit z = 1N , owing to
the antisymmetric property of ∆(z) = J

(−)
δ (z). The only surviving term con-

tains all operators d̂i acting on ∆(z). Namely, any term containing d̂i acting
on f(z) need not be kept in the evaluation z = 1N . This leads to (7.253).

In the final stage, we put f(z) = J̃
(−)
κ (z) and obtain

Ô(−)J (−)
κ (z) →

z=1N
J̃ (−)

κ (1N )Ô(−)∆(z)
∣∣∣
z→1N

. (7.257)

On the other hand, using (7.239) gives another evaluation:

Ô(−)J (−)
κ (z) →

z=1N

N !πκeκ

ρ
(+)
κ dκ

=
N !π̃κeκ

dκ
, (7.258)

where we have used ρ
(+)
κ = πκ/π̃κ. In particular, the case κ = δ gives

Ô(−)J
(−)
δ (z) →

z=1N
Ô(−)∆(z)

∣∣∣
z→1N

=
N !π̃δeδ

dδ
= N !eδ. (7.259)

Comparison between (7.257), (7.258), and (7.259) finally leads to the eval-
uation formula (7.246).

7.3.4 Bosonic description of partitions

The evaluation formula of (7.246) is rewritten as

J̃κ(1N ) =
(
e′′µ/d′′µ

) ∣∣∣
λ→λ+1

(7.260)

in terms of the quantities defined on the Young diagram for the partition
µ = κ− δ. Here e′′µ and d′′µ have been defined in (7.226) and (7.225), respec-
tively. The expressions (7.260) and (7.245) reproduce the evaluation formula
(7.236) for symmetric Jack polynomials. More generally, we obtain

dκ/π̃κ =
(

λ + 1
λ

)|µ|
d′′µ

∣∣∣
λ→λ+1

(7.261)

and

eκ/eδ =
(

λ + 1
λ

)|µ|
e′′µ

∣∣∣
λ→λ+1

. (7.262)

The relations (7.261) and (7.262) involve the transition from a fermionic
partition κ ∈ Λ+>

N to a subpartition µ ∈ Λ+
N [17]. This procedure amounts to

concentrating only on the excitations from the ground state, and is analogous
to bosonization in field theory. The increase λ → λ + 1 of the coupling
constant follows the transition.

We shall first derive the relation between π̃κ and dκ. In the special case
of κ = δ, we have already shown their equality in (7.248). Let us take a
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1
λ + 1

2
λ + 2

3
λ + 3

2
λ + 1

3
λ + 2

4
λ + 3

M + 2

M + 1

M

♠

♠

♠

♠

Fig. 7.8. Part of a fermionic partition κ ∈ Λ+> with indication of d(s) for two
columns flanking the column (♠) representing an excitation. The row index is writ-
ten as M , etc.

fermionic partition κ ∈ Λ+>
N which has a part as shown in Fig. 7.8, and

consider a cell s = (M,κM ) in the figure. Then we obtain

d(s) =
a(s) + 1

λ
+ l(s) + 1 =

1
λ

+ 1. (7.263)

Figure 7.8 shows the value of d(s) for each cell with column j = κM =
κM+1 + 1. Let us factorize π̃κ as π̃κ =

∏N−1
M=1 PM , with

PM =
M∏
i=1

(κ̄i − κ̄M+1) . (7.264)

Then we obtain for the case in Fig. 7.8,

PM =
(

1
λ

+ 1
)(

2
λ

+ 2
)
· · ·

(
M

λ
+ M

)
. (7.265)

The result is precisely the same as the product of d(s) taken over the column
with j = κM+1 + 1.

Figure 7.8 also shows some values of d(s) for another column with j =
κM+2 + 1. The d(s)-product taken over the column agrees now with

PM+1 =
M+1∏

i

(κ̄i − κ̄M+2) =
(

2
λ

+ 1
)(

3
λ

+ 2
)
· · ·

(
M + 2

λ
+ M + 1

)
.

(7.266)

As indicated by ♠ in Fig. 7.8, dκ can have a remaining column that does
not correspond to any of the Pi.
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(a) (b)

♥ ♥

♦ ♦

Fig. 7.9. Diagrams of (a) a partition κ = (7, 5, 3, 2, 0) and (b) the partition µ =
(3, 2, 1, 1) corresponding to W (κ), with the relation κ = µ+δ. In (a), white squares
form the set W , while shaded squares form the set S.

Generalizing this result for 1 ≤ i < j ≤ N , we find the relation

d(s = (i, κj + 1)) =
κi − κj

λ
− j + i = κ̄i − κ̄j . (7.267)

For κ ∈ Λ+>
N , we define a subset S(κ) of D(κ) as

S(κ) = {s = (i, κj + 1)|1 ≤ i < j ≤ N} (7.268)

and W (κ) as the complementary set of S(κ) in D(κ). Figure 7.9(a) shows
an example for a partition κ = (7, 5, 3, 2, 0), where shaded squares belong to
S(κ) and unshaded squares W (κ). From (7.267), we obtain π̃κ =

∏
s∈S(κ)

d(s) and
dκ

π̃κ
=

∏
s∈W (κ)

d(s). (7.269)

By comparing Fig. 7.9(a) and (b), we see that there is a one-to-one corre-
spondence between s′′ ∈ W (κ) and s ∈ D(µ). Namely, we obtain Fig. 7.9(b)
by removing shaded columns in Fig. 7.9(a), and putting the remaining ones
together by a horizontal shift. We parameterize s′′ ∈ W (κ) as

s′′ = (i,N − l(s) − i + j) ∈ W (κ), where s = (i, j) ∈ D(µ), (7.270)

as illustrated in Fig. 7.9(a) and (b). The squares marked by ♥ in the two
diagrams represent s and s′′ related by (7.270). The same applies to squares
marked by ♦. This parameterization does not change the leg lengths, but
does change the arm lengths by the number of shaded columns to the right
of the square s′′ in D(κ). We thus obtain

a(s′′)|D(κR) = (a(s) + l(s)) |D(µ), l(s′′)|D(κR) = l(s)|D(µ).
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We obtain, using the notation λ′ ≡ λ/(1 + λ) and λ+ ≡ 1 + λ,∏
s′′∈W (κ)

d(s′′) =
∏

s′′∈W (κ)

(
a(s′′) + 1

λ
+ l(s′′) + 1

)

= (λ′)−|µ|
∏

s′′∈W (κ)

(
a(s′′) − l(s′′)

λ+
+ l(s′′) + 1

)

= (λ′)−|µ|
∏

s∈D(µ)

(
a(s)
λ+

+ l(s) + 1
)

= (λ′)−|µ|d′′µ

∣∣∣
λ→λ+

. (7.271)

A similar bosonic description is applicable to eκ/eδ. The LHS of (7.262)
is written as

eκ

eδ
=

∏
s∈D(κ)\D(δ)

(
a′(s) + 1

λ
+ N − l′(s)

)
. (7.272)

We consider the one-to-one correspondence between squares in D(κ) \D(δ)
and D(µ) as

s = (i, j + N − i) in D(κ) \ D(δ) ↔ s′ = (i, j) in D(µ) (7.273)

so that the relations

a′(s)
∣∣∣
D(κ)\D(δ)

= (a′(s′) + N − l′(s′) − 1)
∣∣∣
D(µ)

,

l′(s)
∣∣∣
D(κ)\D(δ)

= l′(s′)
∣∣∣
D(µ)

(7.274)

follow. From (7.274), we obtain

eκ

eδ
=

∏
s′∈D(µ)

(
a′(s′) + N − l′(s′) − 1 + 1

λ
+ N − l′(s′)

)

= (λ′)−|µ|
∏

s′∈D(µ)

(
a′(s′)
λ+

+ N − l′(s′)
)

= (λ′)−|µ|e′′µ

∣∣∣
λ→λ+

= (λ′)−|µ|ėµ(λ+; λ+N), (7.275)

where we have introduced the notation

ėµ(λ; λM) ≡
∏

s∈D(µ)

(
a′(s)/λ + M − l′s)

)
. (7.276)

Note the relation

λ|µ|ėµ(λ;λM) = (λM)µ, (7.277)

where the generalized factorial on the RHS has been introduced by (7.174).
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For later use in (7.306) and (7.5.4) we shall also derive the relation

d′κ/πF
κ =

∏
s∈W (κ)

d′(s) = (λ′)−|µ|
∏

s′∈W (µ)

(
a(s′) + 1

λ+
+ l(s′)

)
, (7.278)

where

πF
κ =

∏
i<j

(κ̄i − κ̄j − 1) . (7.279)

As a special case, we obtain d′δ/πF
δ = 1. To derive (7.278), we carry out the

factorization πF
κ =

∏N−1
M=1 QM such that

QM =
M∏
i=1

(κ̄i − κ̄M+1 − 1) , (7.280)

and make a correspondence with d′κ. For example, we obtain for κ in Fig. 7.8

QM =
1
λ

(
2
λ

+ 1
)
· · ·

(
M

λ
+ M − 1

)
, (7.281)

which agrees precisely with the product of

d′(s) =
a(s) + 1

λ
+ l(s), (7.282)

taken over the column with j = κM+1 + 1. The product of d′(s) taken over
another column with j = κM+2 + 1 agrees with

QM+1 =
2
λ

(
3
λ

+ 1
)
· · ·

(
M + 2

λ
+ M

)
. (7.283)

Then, following the same argument as that for dκ/π̃, we obtain the first
equality in (7.278).

The second equality can be shown by following the same step as in (7.271).

7.3.5 Integral norm

In this subsection, we discuss the integral norm of Jκ, which satisfies

〈Jκ, Jκ〉0
〈Eκ, Eκ〉0

=
N !

ρ
(+)
κ

. (7.284)

In the derivation of (7.284), the following two relations are used:

Sym (Sym f) = N !Sym f, (7.285)

〈f,Sym g〉0 = 〈Sym f, g〉0. (7.286)



360 Jack polynomials

The relation (7.285) is obvious, and (7.286) is derived as follows. Replacing
f, g by Kif and Kig in the second equation of (7.157), we obtain

〈f,Kig〉0 = 〈Kif, g〉0, (7.287)

since K2
i = 1. A permutation σ̂ in SN can be expressed in the form of a

product of {Ki}, and hence

〈f, σ̂g〉0 = 〈σ̂−1f, g〉0 (7.288)

follows from the above relation. Summing both sides of (7.288) with respect
to σ ∈ SN , we obtain〈

f,
∑

σ∈SN

σ̂g

〉
=

〈 ∑
σ∈SN

σ̂−1f, g

〉
, (7.289)

from which (7.286) follows. The definitions (7.215) and (7.288) lead to
(7.286). Using (7.216), (7.285), and (7.286), we obtain(

ρ(+)
κ

)2
〈Jκ, Jκ〉0 = 〈SymEκ, Sym Eκ〉0 = 〈Eκ,Sym (Sym Eκ)〉0

= N !〈Eκ, (SymEκ)〉0 = N !ρ(+)
κ 〈Eκ, Jκ〉0

= N !ρ(+)
κ 〈Eκ, Eκ〉0, (7.290)

where the last equality follows from the monic property (7.207). Then we
obtain (7.284). Since we know 〈Eκ, Eκ〉0 by (7.161) and (7.163), and ρ

(+)
κ

by (7.218), the integral norm (2.191) of symmetric Jack polynomials is
derived as

〈Jκ, Jκ〉0 =
Γ (Nλ + 1)

Γ (λ + 1)N
· d′κe′′κ
d′′κe′κ

. (7.291)

7.3.6 Combinatorial norm

We shall prove (2.185) written as

jκ ≡ 〈Jκ, Jκ〉c =
∏

s∈D(κ)

a(s) + λl(s) + 1
a(s) + λl(s) + λ

=
∏

s∈D(κ)

h∗
κ(s)

hκ
∗(s)

(7.292)

for κ ∈ Λ+
N . We first show that the combinatorial inner product for symmet-

ric Jack polynomials can be formulated in a manner analogous to the non-
symmetric version given by (7.44). For two bases of symmetric polynomials
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{uκ(z)} and {vκ(z)} indexed by partitions κ, the following relations can be
shown to be equivalent:

〈uκ, vµ〉c = δκ,µ; for all κ, µ ∈ Λ+
N

⇐⇒
∑

κ∈Λ+
N

uκ(z)vκ(y) =
N∏

i=1

N∏
j=1

(1 − ziyj)
−λ , (7.293)

where the combinatorial inner product is defined by (2.176). We set uκ = Jκ,

vκ = (hκ
∗/h∗

κ) Jκ where the upper and lower hook lengths, h∗
κ and hκ

∗ , are
given by (2.186). Then we shall show

∑
κ

(
hκ
∗

h∗
κ

)
Jκ(z)Jκ(y) =

N∏
i=1

N∏
j=1

(1 − ziyj)
−λ , (7.294)

which amounts to proving (7.292).

Proof of (7.293).
We extend the number of variables to infinity by setting zj = yj = 0 for
j > N in the end. Such a device is necessary in dealing with power-sum sym-
metric polynomials. The RHS of the second relation in (7.293) is rewritten as

∞∏
i=1

∞∏
j=1

(1 − ziyj)
−λ = exp

−λ
∞∑

i,j=1

ln(1 − ziyj)


=exp

λ
∞∑

n=1

∞∑
i=1

∞∑
j=1

zn
i yn

j

n

 = exp

(
λ

∑
n=1

pn(z)pn(y)
n

)

=

 ∞∑
l1=0

λl1

1l1 l1!
p1(z)l1p1(y)l1

 ∞∑
l2=0

λl2

2l2 l2!
p2(z)l2p2(y)l2

 · · ·

=
∑

κ∈Λ+
∞

λl(κ)

ζκ
pκ(z)pκ(y), (7.295)

where Λ+
∞ is the N → ∞ version of Λ+

N , and ζκ in the last equality is defined
in (2.175). The second equation in (7.293) is then equivalent to∑

κ∈Λ+
∞

uκ(z)vκ(y) =
∑

κ∈Λ+
∞

λl(κ)

ζκ
pκ(z)pκ(y). (7.296)

The power-sum polynomials {pκ} form a basis of symmetric polynomials.
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Hence we can expand uκ(z), vκ(y) as

uκ(z) =
∑

µ∈Λ+
∞

aκµpµ(z), vκ(y) =
∑

µ∈Λ+
∞

λl(κ)

ζκ
bκµpµ(z). (7.297)

Using (7.297) and (2.176), the first equation of (7.293) can be rewritten as

∑
κ∈Λ+

∞

aκµbκν = δµν . (7.298)

The equivalence between (7.298) and the second relation of (7.293) is now
obvious by imposing zj = yj = 0 for j > N .

Proof of (7.294).
We need a few steps for the proof and begin with the relation

N∏
j=1

N∏
k=1

(1 − zjyk) Asym(z)

N∏
i=1

(1 − ziyi)
−1

=
N∏

j,k=1

(zjyk − 1) Asym(z)

N∏
i=1

(ziyj − 1)−1 = ∆(z)∆(y), (7.299)

where Asym(z) is the antisymmetrization operator of the variables {zi}. The
relation (7.299) is a variant of Cauchy’s double alternant formula, where the
alternant refers to the Vandermonde determinant on the RHS. To confirm
(7.299), we note that the LHS is an antisymmetric polynomial of {zj}, and
also of {yj}. Hence the LHS is divisible by ∆(z)∆(y), and the quotient must
be a symmetric polynomial of {zj} and {yj}. Since the maximum power of
zj is N − 1 on both sides, the symmetric polynomial is actually of zeroth
order, namely a constant. The constant is found to be unity by inspecting
the coefficient of zN−1

1 yN−1
1 , which is unity on both sides.

Secondly we quote the result

N∏
i=1

(1 − ziyi)−1
N∏

i,j=1

(1 − ziyj)−λ =
∑

η

dη

d′η
Eη(z)Eη(y), (7.300)
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which follows from (7.43), (7.53), and (7.181). By antisymmetrization of
(7.300) with respect to z and using (7.299), we obtain

∆(z)∆(y)
N∏

j=1

N∏
k=1

(1 − zjyk)
−1−λ =

∑
η∈ΛN

dη

d′η
[Asym Eη(z)]Eη(y)

=
∑

κ∈Λ>
N

J (−)
κ (z)

∑
η; s.t.η+=κ

ρ
(−)
η dη

d′η
Eη(y). (7.301)

The leftmost side of (7.301) is antisymmetric with respect to y. Hence the
expression ∑

η; s.t.η+=κ

ρ
(−)
η dη

d′η
Eη(y) (7.302)

in the rightmost side of (7.301) is also antisymmetric, and is proportional
to J

(−)
κ (y). Recalling a

(−)
κ = 1 in (7.133), (7.302) is rewritten as

∑
η; s.t.η+=κ

ρ
(−)
η dη

d′η
Eη(y) =

ρ
(−)
κ dκ

d′κ
J (−)

κ (y). (7.303)

Substituting (7.303) into (7.301), we obtain

∆(z)∆(y)
N∏

j=1

N∏
k=1

(1 − zjyk)
−1−λ =

∑
κ∈Λ+>

N

ρ(−)dκ

d′κ
J (−)

κ (z; λ)J (−)
κ (y;λ).

(7.304)

Using the relation (7.208) to factor out ∆(z)∆(y) in (7.304), and putting
λ → λ − 1, we obtain

N∏
j=1

N∏
k=1

(1 − zjyk)
−λ =

∑
µ∈Λ+

N

ρ(−)dκ

d′κ

∣∣∣
λ→λ−1

Jµ(z; λ)Jµ(y; λ), (7.305)

where µ = κ − δ. Here we have again made the λ-dependence of Jκ(z)
explicit. Referring to (7.293), we have here proven that the symmetric Jack
polynomials are orthogonal with respect to the combinatorial inner product
defined by (2.176).

We now obtain

ρ
(−)
κ dκ

d′κ

∣∣∣
λ→λ−1

=
πF

κ

d′κ

dκ

π̃κ

∣∣∣
λ→λ−1

=
d′′µ
d′µ

, (7.306)
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where (7.156) has been used with πF
κ defined by (7.278). The last equality

is derived by use of the bosonic interpretation in Section 7.3.4:

dκ

π̃κ

∣∣∣
λ→λ−1

=
(

1 − 1
λ

)−|µ|
d′′µ,

d′κ
πF

κ

∣∣∣
λ→λ−1

=
(

1 − 1
λ

)−|µ|
d′µ, (7.307)

with µ = κ − δ. By using the relation d′′µ = hµ
∗ and d′µ = h∗

µ for a case of µ

being a partition, we arrive at (7.294).

7.3.7 Binomial formula

Proof of the binomial formula (2.227).
We can now prove the binomial formula by using the corresponding results
for non-symmetric Jack polynomials. From (7.181) and (7.178), we obtain
the relation [154]

N∏
i=1

(1 − zi)
r =

∑
η∈ΛN

λ−|η| (−r)η+ Eη(z)
d′η

=
∑

κ∈Λ+
N

λ−|κ| (−r)κ

d′κ

∑
η∈Λ+

N ; s.t. η+=κ

d′η+

d′η
Eη(z)

=
∑

κ∈Λ+
N

(−1)|κ|bκ(r)Jκ(z), (7.308)

with

bκ(r) =
1
d′κ

∏
s∈D(κ)

(
r − a′(s)

λ
+ l′(s)

)
. (7.309)

The relation (7.308) reduces to (2.227) when r = λ.

7.3.8 Power-sum decomposition

We shall derive the power-sum decomposition given by

pm(z) =
m

λ

∑
κ∈Λ+

∞; s.t.|κ|=m

ϑκJκ(z), (7.310)

where

ϑκ =
1
d′κ

∏
s′( 6=(1,1))∈D(κ)

(
a′(s′)

λ
− l′(s′)

)
. (7.311)

Note that d′κ for a partition κ is the same as the product of the upper hook
length h∗

κ(s) over s ∈ D(κ). This formula has appeared in (2.308)
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Proof of (7.310) [12, 65].
The power-sum decomposition used in Chapter 2 can be derived from the
preceding binomial formula. We start with (7.308). By extending the number
of variables to infinity, we rewrite the LHS of (7.308) as

∞∏
i=1

(1 − zi)
r = exp

(
−r

∞∑
i=1

ln(1 − zi)

)
= exp

(
−r

∞∑
m=1

pm(z)
m

)
(7.312)

in terms of the power-sum symmetric functions pm(z). Then we find the
following relation:

∂

∂r
exp

(
−r

∞∑
m=1

pm(z)
m

)∣∣∣∣∣
r=0

= −
∞∑

m=1

pm(z)
m

. (7.313)

From (7.308) and (7.313), we obtain

pm(z) = m
∑

κ∈λ+
∞; s.t.|κ|=m

(−1)|κ|+1 ∂bκ(r)
∂r

∣∣∣
r=0

Jκ(z). (7.314)

It remains to find the expression of ∂bκ(r)/∂r|r=0. Noting that d′κ is inde-
pendent of r, we get

(−1)|κ|+1 ∂bκ(r)
∂r

∣∣∣
r=0

=
1

λd′κ

∑
s∈D(κ)

∏
s′(6=s)∈D(κ)

(
a′(s′)

λ
− l′(s′)

)
. (7.315)

The factor 1/λ on the RHS of (7.315) comes from the derivative of [a′(s)−r]/
λ − l′(s) with respect to r. Because a′(s′) = l′(s′) = 0 for s′ = (1, 1), all the
terms but s = (1, 1) vanish in the summation with respect to s. Thus (7.315)
becomes

1
λd′κ

∏
s( 6=(1,1))∈D(κ)

[
a′(s)

λ
− l′(s)

]
≡ ϑκ

λ
. (7.316)

From (7.314), (7.315), and (7.316), we obtain (7.310).

7.3.9 Duality

In the particle–hole excitations in the Sutherland model, the particles have
exclusion statistics characterized by λ. On the other hand, the statistical
parameter for hole excitations is 1/λ, and the holes are represented by con-
jugate partitions. Thus we have encountered the correspondence

particles: (λ, κ) ⇐⇒ holes:
(

1
λ

, κ′
)

,
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where κ′ is the conjugate partition of κ. In this subsection, we describe
the above correspondence at the level of wave functions. As in the previous
subsection, the variables z may include the infinite sequence. Hence we pre-
fer the name of Jack functions rather than polynomials. By restricting the
number of variables to a finite value, we recover the Jack polynomials.

Writing the λ-dependence explicitly, we define the duality transformation
in the following manner:

ωλJκ(z; λ) = jκ(λ)Jκ′(z; 1/λ), (7.317)

where jκ is the combinatorial norm given by

jκ(λ) =
d′κ(λ)
d′′κ(λ)

=
∏

s∈D(κ)

a(s) + λl(s) + 1
a(s) + λl(s) + λ

=
∏

s∈D(κ)

h∗
κ(s;λ)

hκ
∗(s;λ)

. (7.318)

Noting that the arm and leg lengths are interchanged in D(κ′), we obtain

jκ′

(
1
λ

)
=

∏
s∈D(κ′)

h∗
κ′(s; 1/λ)

hκ′
∗ (s; 1/λ)

=
∏

s∈D(κ)

a(s) + λl(s) + λ

a(s) + λl(s) + 1
=

1
jκ(λ)

. (7.319)

Namely, we have

jκ(λ)jκ′(1/λ) = 1, (7.320)

which guarantees the property ωλω1/λ = 1, or

ω−1
λ = ω1/λ. (7.321)

In the special case of λ = 1, the property is referred to as involution, where
the inverse of the duality transformation ω1 is itself. The Schur function
sκ(z) is relevant to the case, and satisfies the duality: ω1sκ(z) = sκ′(z).

This duality transformation has the remarkable property

ωλpκ(z) = (−λ)−l(κ)(−1)|κ|pκ(z), (7.322)

which means that the power-sum symmetric functions are eigenfunctions of
the duality operator ωλ. In order to prove (7.322), we operate ωλ on both
sides of (7.310). Then we obtain

ωλpm(z) =
m

λ

∑
κ∈Λ+

∞; s.t.|κ|=m

1
d′κ(λ)

· d′κ(λ)
d′′κ(λ)

Jκ′

(
z;

1
λ

)

×
∏

s(6=(1,1))∈D(κ)

[
a′(s)

λ
− l′(s)

]
=(−1)−m+1λ−1pm(z). (7.323)
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Note that the arm and leg colengths are interchanged in the conjugate par-
tition, and

d′′κ(λ) = d′κ′(λ) = λ−|κ|d′κ′(1/λ). (7.324)

Then the second equality in (7.323) follows by summing over κ′. For a par-
tition κ = (κ1, κ2, . . .) with length l(κ), we obtain pκ as the product of pm

with m = κi 6= 0. Then we apply ωλ on the product to obtain (7.322).
We next show

ωλ(z)
∏
ij

(1 − ziyj)−λ = ωλ(y)
∏
ij

(1 − ziyj)−λ =
∏
ij

(1 + ziyj), (7.325)

where ωλ(z) means the duality operation on functions of z. It can be con-
firmed by the expansion

∏
ij

(1 + ziyj) = exp

∑
i,j

ln(1 + ziyj)

 = exp

−
∞∑

n=1

∑
i,j

(−ziyj)
n

n


= exp

(∑
n

(−1)n+1 pn(z)pn(y)

n

)

=

 ∞∑
l1=0

(−1)(1+1)l1

1l1 l1!
p1(z)l1p1(y)l1

  ∞∑
l2=0

(−1)(2+1)l2

2l2 l2!
p2(z)l2p2(y)l2

 · · ·

=
∑

κ∈Λ+
∞

(−1)|κ|+l(k)

ζκ
pκ(z)pκ(y). (7.326)

The final form is precisely the result we obtain by the duality transforma-
tion (7.322) for each term on the rightmost side of (7.295). Conversely, we
obtain

ω1/λ(z)
∏
ij

(1 + ziyj) =
∏
ij

(1 − ziyj)−λ. (7.327)

If we use the Jack polynomials instead of power-sum polynomials for the
expansion, we obtain the relation∑

κ

Jκ(y; λ)Jκ′(z; 1/λ) =
∏
i,j

(1 + yjzk) , (7.328)

where the RHS does not depend on λ.
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7.3.10 Skew Jack functions and Pieri formula

For partitions µ ⊆ κ, we define the skew Jack function by the following
combinatorial inner product:

〈Jκ/µ, Jν〉c ≡ 〈Jκ, JµJν〉c ≡ gκ
µν , (7.329)

which also defines the quantity gκ
µν . Equivalent relations can be written in

terms of the combinatorial norm jκ = 〈Jκ, Jκ〉c as

Jκ/µ(z) =
∑

ν

gκ
µνJν(z)/jν , (7.330)

Jµ(z)Jν(z) =
∑

κ

gκ
µνJκ(z)/jκ, (7.331)

where z is the infinite sequence of variables. We have suppressed the repul-
sion parameter λ in the Jack functions Jκ(z) for notational simplicity. We
shall first derive the relation [169]

Jκ(x, y) =
∑

µ

Jκ/µ(x)Jµ(y)j−1
µ . (7.332)

Proof of (7.332).
By a variant of the Cauchy product expansion formula (7.305) for variables
x = (x1, . . . , xN ), y = (y1, . . . , yM ), and z = (z1, . . . , zN+M ), we obtain∑

µ

Jµ(x)Jµ(z)j−1
µ

∑
ν

Jν(y)Jν(z)j−1
ν

=
N∏

j=1

N+M∏
k=1

(1 − xjzk)
−λ

M∏
l=1

N+M∏
m=1

(1 − ylzm)−λ

=
∑

κ

Jκ(x, y)Jκ(z)j−1
κ , (7.333)

where Jκ(x, y) has a combined set (x, y) of variables. Note that the Cauchy
product expansion formula for Jack polynomials is valid even though the
number of variables in x and z is different. This can be verified from (7.295)
for power-sum symmetric functions by linear transformation to Jack poly-
nomials.

For fixed µ, we have the relation∑
κ

Jκ/µ(x)Jκ(z)j−1
κ =

∑
ν

Jµ(z)Jν(x)Jν(z)j−1
ν , (7.334)

which can be confirmed by taking the combinatorial inner product of both
sides with Jν(x)Jκ(z). Here, for two sets of variables, we define the inner
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product as

〈Jκ(x)Jµ(z), Jσ(x)Jτ (z)〉c = 〈Jκ(x), Jσ(x)〉c〈Jµ(z), Jτ (z)〉c. (7.335)

Let us multiply both sides of (7.334) by Jµ(y)/jµ, and sum over µ. The RHS
then becomes equal to the first side of (7.333). Comparing the coefficients of
Jκ(z) in the final side of (7.333) and the LHS of (7.334) after multiplication
by Jµ(y)/jµ, we obtain (7.332).

By taking x = 1 in (7.332), we obtain

Jκ(1, y) =
∑

µ

fκµJµ(y), (7.336)

where the coefficient is given in (2.260) by [169]

fκµ = gκ
µnj−1

n j−1
µ =

∏
s∈Cκ/µ\Rκ/µ

(
h∗

κ

hκ
∗

)(
hµ
∗

h∗
µ

)
, (7.337)

with n = |κ| − |µ|. The first equality uses (7.330) and Jn(1) = 1, and the
second equality is derived below.

Proof of (7.337).
In order to derive gκ

µn, we consider a partition µ with length l(µ) = N . Then
we may restrict x to N variables: x1, x2, . . . , xN . In the special case where ν

in (7.331) consists of a single row with length n, we expand the product as

Jµ(x)Jn(x) =
∑

κ

gκ
µnJκ(x)j−1

κ . (7.338)

The result is a generalization of the corresponding result

sµ(x)sn(x) =
∑

κ

sκ(x) (7.339)

for Schur functions sκ introduced in (2.5). The nonzero contribution κ on
the RHS of (7.338) or (7.339) comes only from such κ as has at most one
more cell for each column of µ, and |κ| = |µ|+n. The latter restriction can be
interpreted as the momentum conservation, while the first one is due to the
single row of n. The Young diagram κ/µ in this case is called the horizontal
n-strip. A similar simplification occurs if ν consists of a single column. In
this case, the nonzero contribution of κ in κ/µ comes only from a vertical
m-strip where m is the length of the single column ν. The results (7.338),
(7.339), and their vertical strip versions are called the Pieri formula.
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We derive gκ
µn by induction, noting that the only relevant cases are

(a) l(κ) = l(µ) = N , (b) l(κ) = l(µ) + 1 = N + 1.

Let us first consider case (a). By a Galilean boost, we obtain the relation

Jµ(z) = z1z2 · · · zNJµ−I(z) = eN (z)Jµ−I(z), (7.340)

with the notation I = 1N . By performing the same boost on the RHS of
(7.331) with ν = n, we can factor out eN (z) and obtain

Jµ−I(z)Jn(z) =
∑

κ

gκ
µnJκ−I(z)/jκ =

∑
κ

gκ−I
µ−I,nJκ−I(z)/jκ−I , (7.341)

where the last equality results from (7.338) by replacing µ by µ − I. Com-
paring the coefficients of Jκ−I(z, y), we obtain

gκ
µn/jκ = gκ−I

µ−I,n/jκ−I . (7.342)

Since we know the combinatorial norm jκ for any partition, we can iterate
to partitions of shorter rows.

Let us now assume another case with l(κ) = N + m > N . We apply the
duality operator ωλ on both sides of (7.338). Writing the Jack functions with
the repulsion parameter 1/λ as J̄µ′ for notational simplicity, we obtain

J̄µ′(z)J̄1n(z) =
∑

κ

gκ
µn

jµjn
J̄κ′(z), (7.343)

where we have used (7.317). The maximum power of z1 on the LHS is N +1,
where N now corresponds to the length µ′

1 of the first row. Then such κ′ as
have κ′

1 > N + 1 do not enter the summation on the RHS. This confirms
that we need to consider only the case with l(κ) = N + 1.

The Jack polynomials have the property

Jκ(z1, z2, . . .) = zκ1
1 Jκ−(z2, . . .) + · · · , (7.344)

where κ− = (κ2, κ3, . . .) and the omitted terms do not have the factor zκ1
1 .

Then by comparing the terms with the factor zN+1
1 on both sides of (7.343),

we obtain

J̄µ′
−
(z)J̄1n−1(z) =

∑
κ

gκ
µn

jµjn
J̄κ′

−
(z), (7.345)
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where we have relabeled the variables z to begin at z1. Now we apply the
duality operator ω1/λ on both sides of (7.345). We obtain

Jµ−I(z)Jn−1(z) =
∑

κ

gκ
µnjµ−Ijn−1

jµjnjκ−I
Jκ−I(z) =

∑
κ

gκ−I
µ−I,n−1

jκ−I
Jκ−I(z),

(7.346)
where we interpret I = 1N+1 if I appears together with κ. Then we have

gκ
µn =

jµjn

jµ−Ijn−1
gκ−I
µ−I,n−1. (7.347)

Using either (7.342) or (7.347), we can continue the iteration until gγ
αβ is

reduced to zero or unity with α = 0 or β = 0. The product of factors jn/jn−1,
which goes like (jn/jn−1)(jn−1/jn−2) . . ., becomes equal to jn because of the
successive cancellation. Then the resultant jn cancels with j−1

n in (7.337).
Furthermore, the factor jµ/jµ−I cancels with the contribution from j−1

µ for
such a column as corresponds to κ/µ. Then we finally obtain the second
equality in (7.337).

7.4 U(2) Jack polynomials

7.4.1 Relation to non-symmetric Jack polynomials

The coefficient a
(−−)
η appearing in (3.177) can be obtained in a way similar

to the case of antisymmetric and symmetric Jack polynomials. From the def-
inition (3.177), (3.178), and the recursion relation (7.91) of non-symmetric
Jack polynomials, we derive the recursion relation for the coefficient a

(−−)
η

in (3.177) as [15]

a
(−−)
Kiη

= −(1 + ξi)a(−−)
η , η ∈ (Λ>

N↑
, Λ>

N↓
), (7.348)

for i ∈ [1, N↑ − 1]U [N↑ + 1, N − 1] and ηi > ηi+1. An analogous calculation
can be performed for the case of ηi < ηi+1. From (7.348) and the initial
condition a

(−−)

κ↑,κ↓ = 1, we obtain for η = (η↑, η↓) ∈ (ΛN↑ , ΛN↓)

a(−−)
η = sgn(η↑)sgn(η↓)

dη

dκ

= sgn(η↑)sgn(η↓)
∏

σ=↑,↓

∏
(i<j)∈Iσ; s.t.ηi<ηj

(
1 +

1
ηj − ηi

)

=
∏

σ=↑,↓

∏
(i<j)∈Iσ ; s.t.ηi<ηj

(
ηj − ηi + 1

ηi − ηj

)
, (7.349)

where κ = ((η↑)+, (η↓)+) ∈ (Λ+>
N↑

, Λ+>
N↓

)I↑ = [1, N↑] and I↓ = [N↑ + 1, N ].
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The alternating property (3.178) of J
(−−)
κ leads to the relation

ρ(−−)
η J (−−)

κ (z) =
∑

σ̂∈SN↑×SN↓

sgn(σ̂)σ̂Eη(z), (7.350)

where we have introduced κ = (κ↑, κ↓) ∈ (Λ+>
N↑

, Λ+>
N↓

) and η = (η↑, η↓) ∈
(ΛN↑ , ΛN↓) such that (ησ)+ = κσ for σ =↑, ↓. The recursion relation for

ρ
(−−)
η is given by

ρ
(−−)
Kiη

/ρ(−−)
η

{
1

−1+ξi
for ηi > ηi+1

1 + ξi for ηi < ηi+1
(7.351)

Furthermore, we have

ρ
(−−)

(κ↑R,κ↓R)
= (−1)N↑(N↑−1)/2(−1)N↓(N↓−1)/2. (7.352)

We now follow a route similar to that which led to (7.138) for antisymmetric
Jack polynomials. Then we obtain

ρ(−−)
η = sign(η↑)sign(η↓)

d′η
d′

(κ↑R,κ↓R)

, (7.353)

where

κ↑R = (κ↑
N↑

, . . . , κ↑
1), κ↓R = (κ↓

N↓
, . . . , κ↓

1).

Particularly, for a partition κ ∈
(
Λ+>

N↑
, Λ+>

N↓

)
, we obtain

ρ(−−)
κ =

∏
s=↑,↓

∏
i<j∈Is

(
κ̄i − κ̄j − 1

κ̄i − κ̄j

)
. (7.354)

Note that J
(−−)
κ reduces to the antisymmetric Jack polynomials when N↑ =

0 or N↓ = 0.

7.4.2 Integral norm

The polynomials are orthogonal to each other with respect to the integral
norm. For κ ∈ (Λ+>

N↑ , Λ+>
N↓ ), the relation

〈J (−−)
κ , J (−−)

κ 〉0/〈Eκ, Eκ〉0 =
N↑!N↓!

ρ
(−−)
κ

(7.355)
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can be derived in the same way as the derivation of (7.167). Using (7.161),
(7.163), (7.353), and (7.355), we obtain for κ ∈ (Λ+>

N↑
,Λ+>

N↓
)

〈J (−−)
κ , J (−−)

κ 〉0 = N↑!N↓!
Γ(Nλ + 1)
Γ(λ + 1)N

eκd′κ

ρ
(−−)
κ e′κdκ

= N↑!N↓!
Γ(Nλ + 1)
Γ(λ + 1)N

eκd′
(κ↑R,κ↓R)

e′κdκ
. (7.356)

7.4.3 Cauchy product expansion formula

For the coordinate z = (z1, . . . , zN ) and a fixed integer N↑ ∈ I = [1, N ],
we define z↑ = (z1, . . . , zN↑) and z↓ = (zN↑+1, . . . , zN ). The Cauchy product
expansion formula for U(2) Jack polynomials is given by [15]∏

s=↑,↓

∏
i,j∈Is

(1 − ziyj)−1
∏
i,j∈I

(1 − ziyj)−λ

=
∑

µ∈(Λ+>
N↑

,Λ+>
N↓

)

ρ
(−−)
µ dµ

d′µ
J̃ (−−)

µ (z)J̃ (−−)
µ (y), (7.357)

where

J̃ (−−)
µ (z) ≡ J (−−)

µ (z)/[∆(z↑)∆(z↓)] (7.358)

with

∆(zσ) =
∏

i,j∈Iσ
i<j

(zj − zj). (7.359)

The proof of the Cauchy product expansion formula (7.357) is based on the
corresponding formula [154] for the non-symmetric polynomials

Ω(z|y) =
∑

η∈ΛN

dη

d′η
Eη(z)Eη(y)

and Cauchy’s double alternant formula. The proof also requires the transfor-
mation properties (7.91) and (7.209), together with those for dη and d′η [154].

7.4.4 UB(2) Jack polynomials

In order to derive the evaluation formula (7.369) to follow, we make a detour
and introduce auxiliary polynomials J

(++)
κ (z), which may be termed the

UB(2) Jack polynomials, since it constitutes the eigenfunctions of the U(2)
bosonic Sutherland model. Namely, J

(++)
κ (z1, . . . , zN ) for κ = (κ↑, κ↓) ∈
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(Λ+
N↑

, Λ+
N↓

) constitute the eigenfunctions of the U(2) bosonic Sutherland
model, and satisfy the following conditions [15]:

(i) The polynomial J
(++)
κ has the form

J (++)
κ (z) =

∏
σ=↑,↓

∑
(ησ)+=κσ

a
(++)

η↑,η↓Eη↑,η↓(z) (7.360)

with the normalization

a(++)
κ = 1.

(ii) Under the action of the transposition Ki, the polynomial J
(++)
κ (z)

for κ = (κ↑, κ↓) ∈ (Λ+
N↑

, Λ+
N↓

) is transformed as

KiJ
(++)
κ (z) = J (++)

κ (z) (7.361)

for i ∈ [1, N↑ − 1] or i ∈ [N↑ + 1, N − 1].

The coefficient in (7.360) is obtained for η ∈ (ΛN↑ , ΛN↓) as

a(++)
η =

∏
σ=↑,↓

∏
(i<j)∈Iσ ;s.t.ηi<ηj

(
1 − 1

η̄j − η̄i

)
, (7.362)

by following a route similar to that used in Section 7.3.7 to derive (7.212).
From the symmetric property (7.361) of J

(++)
κ , we can also write

ρ(++)
η J (++)

κ (z) =
∑

σ∈SN↑×SN↓

σ̂Eη(z) (7.363)

for κ = (κ↑, κ↓) ∈ (Λ+
N↑

, Λ+
N↓

) with

ρ(++)
κ =

∏
σ=↑↓

∏
(i<j)∈Iσ

(
κ̄i − κ̄j + 1

κ̄i − κ̄j

)
. (7.364)

The expression for ρ
(++)
κ can be derived in a way similar to the derivation

of (7.217) for symmetric Jack polynomials. The evaluation formula

J (++)
κ (1, . . . , 1) =

N↑!N↓!

ρ
(++)
κ

Eκ(1, . . . , 1) =
N↑!N↓!eκ

ρ
(++)
κ dκ

(7.365)

can also be derived in analogy with (7.236).
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7.4.5 Evaluation formula

As a generalization of Ô(−) in (7.238), we introduce a symmetry-changing
operator Ô(−−), which acts on J

(−−)
κ and gives J

(++)
κ . The operator Ô(−−)

is a useful device to derive the evaluation formula for J̃
(−−)
κ (1, . . . , 1), as

explained in the next subsection. The operator Ô(−−) is defined by [63]

Ô(−−) =
∏

σ=↑,↓

∏
(i<j)∈Iσ

(
d̂i − d̂j + 1

)
(7.366)

in terms of the Cherednik–Dunkl operators. In analogy with (7.239), the
following relation can be derived:

Ô(−−)J (−−)
κ = π(−−)

κ J (++)
κ , (7.367)

with

π(−−)
κ =

∏
σ=↑,↓

∏
(i<j)∈Iσ

(κ̄i − κ̄j + 1) . (7.368)

The evaluation formula for U(2) Jack polynomials is given, apart from the
Vandermonde part, by

J̃ (−−)
κ (1, . . . , 1︸ ︷︷ ︸

N

) =
π̃

(−−)
κ eκ

dκeδ↑↓

, (7.369)

where the symbol δ↑↓ is an abbreviation for (δ(N↑), δ(N↓)) and

π̃(−−)
κ =

∏
σ=↑,↓

∏
i,j∈Iσ

i<j

(κ̄i − κ̄j) (7.370)

for κ ∈ (Λ+>
N↑

, Λ+>
N↓

).
The original derivation by Dunkl [46] utilized the evaluation formula [154]

for the non-symmetric Jack polynomials and a certain skew symmetric oper-
ator [46]. We derive (7.369) in another way by modifying the method given
in [63]. The argument is a slight generalization of that in Section 7.3.3.
Namely, the following relation is derived:

Ô(−−)J (−−)
κ (z1, . . . , zN )

∣∣∣
z1,...,zN→1N

= J̃ (−−)
κ (1, . . . , 1)Ô(−−)∆(z↑)∆(z↓)

∣∣∣
z1,...,zN→1N

.

(7.371)
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Combining (7.367) and (7.371) and using the evaluation formula (7.365) for
J

(++)
κ (1, . . . , 1), we obtain

J̃ (−−)
κ (1, . . . , 1)Ô(−−)∆(z↑)∆(z↓)

∣∣∣
z1,...,zN→1N

= π(−−)
κ J (++)

κ (1, . . . , 1) =
N↑!N↓!π̃

(−−)
κ eκ

dκ
. (7.372)

On the other hand, J̃
(−−)
δ↑↓

reduces to unity, and thus (7.372) for κ = δ↑↓
becomes

Ô(−−)∆(z↑)∆(z↓)
∣∣∣
z1,...,zN→1N

=
N↑!N↓!π̃

(−−)
δ↑↓

eδ↑↓

dδ↑↓

. (7.373)

Provided we have

dδ↑↓/π̃
(−−)
δ↑↓

= 1, (7.374)

we arrive at the evaluation formula (7.369) by dividing (7.372) by (7.373).
To derive (7.374), let us first decompose π̃

(−−)
δ↑↓

= π̃δ↑π̃δ↓ assuming κσ = δσ

for both spins. For an up-spin cell s = (M,κM ), we obtain

κ̄M − κ̄M+1 =
1
λ
− (rM − rM+1) =

1
λ

+ 2, (7.375)

since the presence of the down-spin part gives rM+1−rM = 2 for the ranking
of the rows defined by (7.9). In general, rM+1 − ri becomes twice the single-
component value. By evaluating κ̄i − κ̄M+1, we obtain

PM↑ =
(

1
λ

+ 2
)(

2
λ

+ 4
)
· · ·

(
M

λ
+ 2M

)
. (7.376)

On the other hand, d(s) contains the leg length l(s) = ul(s) + ll(s) defined
by (7.105), where the upper leg length is zero: ul(i, κM ) = 0. We obtain
easily the lower leg lengths ll(M,κM ) = 1 and ll(1, κM ) = 2M − 1. For a
general row i, we obtain

l(i, κM ) + 1 = ll(i, κM ) + 1 = rM+1 − ri. (7.377)

Since the arm length is given by a(i, κM ) = κi − κM , we find that PM↑
is the same as the product of d(s) taken over the up-spin column with
j = κM . A similar argument is applicable to π̃δ↓. In this case the up-spin
part contributes to the upper leg length of a down-spin cell s = (i, κM ).
Namely, we obtain

ul(i, κM ) = −k′
i + k′

M+1, ll(i, κM ) + 1 = −k′′
i + k′′

M+1. (7.378)

Hence π̃
(−−)
δ↓ is the same as the product of d(s) taken over the down-spin

column with j = κM , and we obtain (7.374).
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To derive the ratio dκ/π̃
(−−)
κ for general κ = (κ↑, κ↓) ∈ (Λ+>

N↑
, Λ+>

N↓
), we

define a subset S(κ) of D(κ) as

S(κ) = {s = (i, κj + 1)|1 ≤ i < j ≤ N↑}
∪ {s = (i, κj + 1)|N↑ + 1 ≤ i < j ≤ N} . (7.379)

As in Section 7.3.4, we also define W (κ) as the complementary set W (κ) =
D(κ) \ S(κ). Then we have the relation

dκ/π̃(−−)
κ =

∏
s∈W (κ)

d(s). (7.380)

Proof of (7.380).
Let us consider an up-spin cell s = (i, κM+1 +1) that belongs to S(κ). From
the foregoing argument, it is easy to see the following relation:

l(i, κM+1 + 1) + 1 = rM+1 − ri. (7.381)

The LHS contributes to d(s), while the RHS contributes to κ̄i− κ̄M+1. Since
the arm length is given by a(i, κM ) = κi − κM+1 − 1, we find

d(i, κM ) = κ̄i − κ̄M+1 (7.382)

and the product of d(s) taken over the up-spin column with j = κM+1 + 1
gives the same value as

∏M
i=1 (κ̄i − κ̄M+1). Similarly, for a down-spin cell

s = (i, κM+1 + 1) that belongs to S(κ), we obtain the result corresponding
to (7.378), provided s = (i, κM ) is replaced by a more general expression
(i, κM+1 +1) in the presence of W (κ). Hence the product of d(s) taken over
the down-spin column with j = κM+1 +1 agrees with

∏M
i=N↑+1 (κ̄i − κ̄M+1).

By combining the up- and down-spin contributions, we find that π̃
(−−)
κ can-

cels the product d(s) taken over the set S(κ), while the product over those
d(s) that belong to W (κ) remains.

7.4.6 Binomial formula

The binomial formula is derived using the Cauchy product expansion
formula (7.357) and evaluation formula (7.369). For r ∈ C, the binomial
formula for U(2) Jack polynomials is given by [105]∏

σ=↑,↓

∏
i∈Iσ

(1 − zi)r−Nσ =
∑

κ∈(Λ+>
N↑

,Λ+>
N↓

)

b(−−)
κ (r)J̃ (−−)

κ (z), (7.383)
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where

b(−−)
κ (r) = λ|δ|−|κ| (1 − r)κ+

(1 − r)δ+

πF
κ

d′κ
. (7.384)

Here π
F(−−)
κ is defined by π

F (−−)
κ =

∏
σ=↑↓

∏
(i<j)∈Iσ

(κ̄i − κ̄j − 1) and the
generalized shifted factorial (t)κ defined in (7.174) is used. We note that
the bosonic description of (7.384) does not lead to simple renormalization of
the coupling constant, in contrast with the single-component case described
in Section 7.3.4. The difference comes from the entanglement of up- and
down-spin components in leg lengths.

In order to derive (7.384), let N ′ be N ′
↑ + N ′

↓(≥ N) for that pair (N ′
↑,

N ′
↓) of positive integers N ′

↑ and N ′
↓ which satisfies N ′

↑ − N ′
↓ = N↑ − N↓. We

consider the Cauchy product expansion formula∏
s=↑,↓

∏
i,j∈I′s

(1 − ziyj)−1
∏

i,j∈I′

(1 − ziyj)−λ

=
∑

ν∈(Λ+>

N′
↑

,Λ+>

N′
↓

)

dνρ
(−−)
ν

d′ν
J̃ (−−)

ν (z)J̃ (−−)
ν (y)

=
∑

ν∈(Λ+>

N′
↑

,Λ+>

N′
↓

)

dνπ
F(−−)

ν

d′ν π̃
(−−)
ν

J̃ (−−)
ν (z)J̃ (−−)

ν (y) (7.385)

in N ′ variables. Here I ′↑ = [1, N ′
↑], I ′↓ = [N ′

↑ +1, N ′], and I ′ = [1, N ′]. On the
LHS of (7.385), we set zN↑+1 = · · · = zN ′

↑
= 0, zN ′

↑+N↓+1 = · · · = zN ′
↑+N ′

↓
= 0,

and y1 = · · · = yN ′
↑+N ′

↓
= 1. In the second equality of (7.385), we have used

ρ
(−−)
ν = π

F(−−)
κ /π̃

(−−)
ν .

Further, we replace (zN ′
↑+1, . . . , zN ′

↑+N↓) by (zN↑+1, . . . , zN↑+N↓). The LHS
of (7.385) then turns into∏

i∈I↑=[1,N↑]

(1 − zi)
−N ′λ−N ′

↑
∏

j∈I↓=[N↑+1,N ]

(1 − zj)
−N ′λ−N ′

↑+N↑−N↓ . (7.386)

On the RHS of (7.385), we set yj = 1 for 1 ≤ i ≤ N ′. With use of the
evaluation formula (7.369), we immediately see that the RHS of the Cauchy
product expansion formula becomes∑

ν

eνπ
F(−−)

ν

eδ′d′ν
J̃ (−−)

ν (z). (7.387)

Here the sum is taken over ν ∈ (Λ+>
N ′

↑
, Λ+>

N ′
↓
). The symbol δ′ = (δ′↑, δ′↓) de-

notes the composition δ(N ′
↑, N

′
↓) ∈ (Λ+>

N ′
↑
, Λ+>

N ′
↓
). Now we set zN↑+1
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= · · · = zN ′
↑

= 0 and zN ′
↑+N↓+1 = · · · = zN ′

↑+N ′
↓

= 0 in (7.387). Non-vanishing
contributions in the sum (7.387) then come only from the compositions
ν = (ν↑, ν↓) ∈ (Λ+>

N ′
↑
,Λ+>

N ′
↓
) satisfying l(ν↑ − δ′↑) ≤ N↑ and l(ν↓ − δ′↓) ≤ N↓,

where

νs − δ′s = (νs
1 − δ′s1 , . . . , νs

N ′
s
− δ′sN ′

s
) ∈ Λ+

N ′
s

with s = (↑, ↓). The reason is as follows: If either l(ν↑ − δ′↑) > N↑ or
l(ν↓ − δ′↓) > N↓ holds for the composition ν = (ν↑, ν↓) ∈ (Λ+>

N ′
↑
, Λ+>

N ′
↓
), then,

in each monomial of the polynomials J̃ν , the minimum power of zN↑+1 is 1
or that of zN ′

↑+N↓+1 is 1. Therefore, those ν do not contribute to the sum in
(7.387) when both zN↑+1 and zN ′

↑+N↓+1 are set to zero. For a composition ν =

(ν↑, ν↓) ∈ (Λ+>
N ′

↑
, Λ+>

N ′
↓
) satisfying l(ν↑ − δ′↑) ≤ N↑ and l(ν↓ − δ′↓) ≤ N↓, the

composition κ = (κ↑, κ↓) ∈ (Λ+>
N↑

,Λ+>
N↓

) can be defined as the composition
satisfying the relation

κ↑ − δ↑ = ν↑ − δ′↑, (7.388)

κ↓ − δ↓ = ν↓ − δ′↓. (7.389)

When the relations (7.388) and (7.389) hold for compositions κ ∈ (Λ+>
N↑

, Λ+>
N↓

)
and ν ∈ (Λ+>

N ′
↑
, Λ+>

N ′
↓
), we can then find the following consequences. First, the

two polynomials

J̃ (−−)
ν (z1, . . . , zN↑ , 0, . . . , 0︸ ︷︷ ︸

N ′
↑−N↑

, zN ′
↑+1, . . . , zN ′

↑+N↓ , 0, . . . , 0︸ ︷︷ ︸
N ′

↓−N↓

) (7.390)

and

J̃ (−−)
κ (z1, . . . , zN↑ , zN ′

↑+1, . . . , zN ′
↑+N↓) (7.391)

are equal. From now on, we replace zN ′
↑+1, . . . , zN ′

↑+N↓ by zN↑+1, . . . , zN .
Second, the relation

d′ν/πF(−−)
ν = d′κ/πF(−−)

κ (7.392)

holds. The LHS of (7.392) is written as∏
s∈W (ν)

d′(s). (7.393)

There is a one-to-one correspondence between squares in s′ ∈ W (ν) and
s ∈ W (κ):

s′ = (i, N ′
↑ − N↑ + j) ∈ W (κ), where s = (i, j) ∈ D(µ) (7.394)
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for i ∈ [1, N↑] and

s′ = (i + N ′
↑ −N↑, N

′
↑ −N↑ + j) ∈ W (κ), where s = (i, j) ∈ D(κ) (7.395)

for i ∈ [N↑ + 1, N ]. In this parameterization, the arm length and leg lengths
do not change and hence d′(s′) in W (ν) and d′(s) in W (κ) are the same. As
a result, we obtain ∏

s∈W (ν)

d′(s) =
∏

s∈W (κ)

d′(s), (7.396)

from which (7.392) follows.
Third, the expression eν/eδ′ can be rewritten as∏

s∈D(ν)((a
′(s) + 1)/λ + N ′ − l′(s))∏

s∈D(δ′)((a′(s) + 1)/λ + N ′ − l′(s))

=

∏
s∈D(κ)((a

′(s) + N ′
↑ − N↑ + 1)/λ + N ′ − l′(s))∏

s∈D(δ)((a′(s) + N ′
↑ − N↑ + 1)/λ + N ′ − l′(s))

= λ|δ|−|κ| (1 + N ′λ + N ′
↑ − N↑)κ+

(1 + N ′λ + N ′
↑ − N↑)δ+

. (7.397)

Notice the relation using the generalized shifted factorial defined in (7.174):

∏
s∈D(η)

[(a′(s) + k)/λ + k′ − l′(s)] = λ−|η|(k′λ + k)η+

for η ∈ Λ+
N and integers k, k′. As a result of these relations, the expression

(7.387) can be rewritten as∑
κ

λ|δ|−|κ| (1 + N ′λ + N ′
↑ − N↑)κ+

(1 + N ′λ + N ′
↑ − N↑)δ+

πF(−−)

κ

d′κ
J̃ (−−)

κ (z), (7.398)

where the sum is taken over κ ∈ (Λ+>
N↑

, Λ+>
N↓

). Now we obtain the relation∏
i∈I↑

(1 − zj)
−N ′λ−N ′

↑
∏
j∈I↓

(1 − zj)
−N ′λ−N ′

↑+N↑−N↓

=
∑

κ

λ|δ|−|κ| (1 + N ′λ + N ′
↑ − N↑)κ+

(1 + N ′λ + N ′
↑ − N↑)δ+

πF(−−)

κ

d′κ
J̃ (−−)

κ (z), (7.399)

from the expressions (7.386) and (7.398). We notice that the RHS of (7.399)
is a polynomial of N ′λ + N ′

↑ and hence the relation (7.399) also holds for
arbitrary complex values of N ′λ + N ′

↑. We replace −N ′λ − N ′
↑ + N↑ by a

complex variable r. Consequently, we obtain the binomial formula (7.383).
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7.4.7 Power-sum decomposition

The power-sum symmetric polynomials can be decomposed into a linear
combination of J̃

(−−)
κ . The power-sum decomposition formula is used in the

calculation of the dynamical density correlation function of the Sutherland
model with SU(2) internal symmetry.

The derivation is similar to that in Section 7.3.8. Our starting point is
the binomial formula (7.384). Setting N↑ = N↓ = N/2 and r → N/2 + r in
(7.383) and (7.384), we obtain

N∏
i=1

(1 − zi)
r =

∑
κ∈

(
Λ+>

N/2
,Λ+>

N/2

) b(−−)
κ

(
r +

N

2

)
J̃ (−−)

κ (z1, . . . , zN ), (7.400)

with

b(−−)
κ

(
r +

N

2

)
= λ|δ|−|κ|π

F(−−)
k

d′κ

(1 − N/2 − r)κ+

(1 − N/2 − r)δ+

=
πF(−−)

d′κ

∏
s∈D(κ+)∩D(δ+)

(
a′(s) + 1 − r − N/2

λ
− l′(s)

)
, (7.401)

where δ denotes (δ(N/2), δ(N/2)). We have used the property of the gener-
alized shifted factorial defined in (7.174) for the second equality of (7.401).

Following the same argument as that in Section 7.3.8, we obtain

pm(z) = −m
′∑
κ

∂b
(−−)
κ (r + N/2)

∂r

∣∣∣
r=0

J̃ (−−)
κ (z) for m > 0, (7.402)

where the summation runs over κ ∈
(
Λ+>

N/2, Λ
+>
N/2

)
satisfying |κ| − |δ| = m.

Since πF
κ and d′κ do not contain r, we obtain

∂

∂r
b(−−)
κ (r + N/2)

∣∣∣
r=0

= − 1
λ

π
F(−−)
κ

d′κ

∑
s∈D(κ+)∩D(δ+)

∏
s′( 6=s)∈D(κ+)∩D(δ+)

{
a′(s) + 1 − N/2

λ
− l′(s)

}
.

(7.403)

A typical Young diagram of κ+ with κ ∈ (Λ+>
N/2, Λ

+>
N/2) is shown in Fig. 7.10.

The shaded square is s = (i, j) = (1, N/2). D(κ+) for κ relevant to (7.402)
contains the cell s = (1, N/2). Since

a′(s) + 1 − N/2
λ

− l′(s) = 0
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Fig. 7.10. Diagram of a partition κ+ with κ ∈
(
Λ+>

N/2, Λ
+>
N/2

)
for N/2 = 5.

The boundary of D(δ+) with δ = (δ(N/2), δ(N/2)) is drawn with a bold line.
The shaded square is (i, j) = (1, N/2).

for s = (1, N/2), all terms but s = (1, N/2) in the summation with respect
to s in (7.403) vanish. As a result, we obtain

pm(z) =
m

λ

′∑
κ

cκJ̃ (−−)
κ (z) for m > 0, (7.404)

with cκ = πF(−−)

κ c′κ/d′κ and

c′κ =
∏

s( 6=(1,N/2))∈D(κ+)∩D(δ+)

{
a′(s) + 1 − N/2

λ
− l′(s)

}
. (7.405)

7.5 U(1,1) Jack polynomials

The U(1,1) Jack polynomials are relevant to the U(1,1) Sutherland model
in Chapter 3, and the dynamics of the supersymmetric t–J model in Chap-
ter 6. This section summarizes the fundamental properties of the U(1,1)
Jack polynomials [15].

7.5.1 Relation to non-symmetric Jack polynomials

For non-negative integers NB and NF, we define IB = [1, NB] and IF = [NB+
1, N ], where N = NB + NF is the total number of particles. Let SNB

× SNF

be a subgroup of the symmetric group SN that does not mix IB and IF.
For κ = (κB, κF) ∈ (Λ+

NB
, Λ+>

NF
), we define the U(1,1) Jack polynomials

J
(+−)
κ (z1, . . . , zN ) by the following two conditions:
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(i) The polynomial J
(+−)
κ for κ = (κB, κF) ∈ (Λ+

NB
, Λ+>

NF
) has the form

J (+−)
κ (z) =

∑
η

a(+−)
η Eη(z), (7.406)

where summation is over such η that satisfies (ηB)+ = κB together
with (ηF)+ = κF, and we set the normalization

a(+−)
κ = 1.

(ii) Under the action of the transposition Ki, the polynomial J
(+−)
κ (z)

for κ = (κB, κF) ∈ (Λ+
NB

, Λ+>
NF

) transforms as

KiJ
(+−)
κ (z) = J

(+−)
κ (z), for i ∈ [1, NB − 1],

KiJ
(+−)
κ (z) = −J

(+−)
κ (z), for i ∈ [NB + 1, N − 1].

(7.407)

The U(1,1) Jack polynomials are eigenfunctions of (3.16) and constitute
eigenfunctions of the U(1,1) Sutherland model. If NB = 0, the U(1,1) Jack
polynomials reduce to the antisymmetric Jack polynomials J

(−)
κ discussed

in Section 7.2. If, on the other hand, NF = 0, the U(1,1) Jack polynomials
reduce to the symmetric Jack polynomials Jκ in Section 7.3.

We define SymB as the symmetrization operator with respect to the vari-
ables zi for i ∈ IB and AsymF as the antisymmetrization operator with
respect to the variables zi for i ∈ IF. Owing to the property (7.407), the
U(1,1) Jack polynomials can be written in the form

ρ(+−)
κ J (+−)

κ (z1, . . . , zN ) = SymBAsymFEκ(z1, . . . , zN ), (7.408)

for κ ∈ (Λ+
NB

,Λ+>
NF

) with the factorized coefficient ρ
(+−)
κ = ρB

κ ρF
κ as

ρB
κ =

∏
(i<j)∈IB

κ̄i − κ̄j + 1
κ̄i − κ̄j

, ρF
κ =

∏
(i<j)∈IF

κ̄i − κ̄j − 1
κ̄i − κ̄j

. (7.409)

The expression (7.409) can be derived in a way similar to that used in the
case of antisymmetric and symmetric Jack polynomials. It is convenient to
express (7.409) as

ρB
κ =

(∏
r

pr!

)
d(κB)R,κF

dκB,κF

, ρF
κ =

d′
(κB)R,κF

d′
(κB)R,(κF)R

, (7.410)

which are generalizations of (7.149) and (7.218). The U(1,1) Jack polyno-
mials are given in the form

J (+−)
κ = ∆(zF)J̃ (+−)

κ , (7.411)
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where zF = (zNB+1, . . . , zN ), ∆(zF) =
∏

(i<j)∈IF
(zi − zj), and J̃

(+−)
κ is a

polynomial satisfying

KiJ̃
(+−)
κ (z) = J̃ (+−)

κ (z), (7.412)

for i 6= NB, N .

7.5.2 Evaluation formula

We derive the evaluation formulae

J̃ (+−)
κ (1, . . . , 1) =

NB!π(+−)
κ eκ

ρ
(++)
κ dκeκ(0)

, (7.413)

π(+−)
κ =

∏
(i<j)∈IF

(κ̄i − κ̄j + 1) , (7.414)

κ(0) = (0NB , δ(NF)), (7.415)

where κ(0) is the composition corresponding to the ground state of the
U(1,1) Sutherland model. Precisely speaking, a Galilean boost has been
made in κ(0) only to the fermionic component to make κi nonzero.

The formula (7.413) can be derived in a way similar to the corresponding
formula (7.369). In terms of the symmetry-changing operator

Ô(+−) =
∏

(i<j)∈IF

(
d̂i − d̂j + 1

)
(7.416)

for the fermion part, the relation

Ô(+−)J (+−)
κ = π(+−)

κ J (++)
κ (7.417)

follows. Further, the relation

Ô(+−)J (+−)
κ

∣∣∣
(z1,...,zN )→1N

= J̃ (+−)
κ (1, . . . , 1)Ô(+−)∆(zF)

∣∣∣
zF→1NF

(7.418)

holds. On the other hand, we obtain from (7.417) and (7.418)

π(+−)
κ J (++)

κ (1, . . . , 1) = J̃ (+−)
κ (1, . . . , 1)Ô(+−)∆(zF)

∣∣∣
zF→1NF

. (7.419)

In the case of κ = κ(0), J̃ (+−) reduces to unity, and (7.419) becomes

π
(+−)
κ(0) J

(++)
κ(0) (1, . . . , 1) = Ô(+−)∆(zF)

∣∣∣
zF→1NF

. (7.420)
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From (7.419) and (7.420), we obtain

J̃ (+−)
κ (1, . . . , 1) =

π
(+−)
κ J

(++)
κ (1, . . . , 1)

π
(+−)
κ(0) J

(++)
κ(0) (1, . . . , 1)

. (7.421)

On the RHS of (7.421), J
(++)
κ (1, . . . , 1) and J

(++)
κ(0) (1, . . . , 1) can be evaluated

from (7.365).
We note the relation

ρ(++)
κ = ρB

κ π(+−)
κ /π̃(+−)

κ , (7.422)

where

π̃(+−)
κ ≡

∏
(i<j)∈IF

(κ̄i − κ̄j). (7.423)

In the case of κ = κ(0), we obtain ρB
κ(0) = NB! and

π̃
(+−)
κ(0) = dκ(0), (7.424)

in analogy with the single-component case (7.248). Then we obtain the re-
lation

ρ
(++)
κ(0) dκ(0)/π

(+−)
κ(0) = NB!, (7.425)

and finally arrive at the evaluation formula (7.413).

7.5.3 Bosonization for separated states

We consider the following expansion:∏
i∈IB

(1 − zi)p
∏
j∈IF

(1 − zj)q =
∑

κ∈(Λ+
NB

,Λ+>
NF

)

(−1)|k|−|k(0)|b(+−)
κ (p, q)J̃ (+−)

κ (z),

(7.426)

where p, q are numbers. The coefficient b
(+−)
κ in the general case has not yet

been derived. However, provided κ belongs to separated states, which will be
specified below, we can obtain explicit results. The final result for b

(+−)
κ (p, q)

for separated states is given by (7.448).
We characterize the composition κ for the maximum length N = NB+NF

by using the excitations (µB, µF) as

κ = κ(0) + (µB, µF) ∈ (Λ+
NB

, Λ+>
NF

), (7.427)

where κ(0) has been defined in (7.415).
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We call the composition κ = (κB, κF) a “separated state” if it satisfies the
following condition:

0 ≤ ](nonzero columns in µB) + ](nonzero rows in µF) < NF

⇔ 0 ≤ l((µB)′) + l(µF) ≤ NF − 1, (7.428)

where (µB)′ means the conjugate partition. The condition prevents mixing
of fermionic and bosonic excitation momenta in the expansion (7.426). The
condition (7.428) is visualized in the Young diagram. Namely, the bosonic
excitations from the ground state κ(0) = (0NB , δ(NF)) begin from the left,
and the fermionic excitations from the right. In the low-energy excitations,
there is enough room in the central region of the diagram where neither
bosonic nor fermionic excitations are present.

7.5.4 Factorization for separated states

In the composition κ defined by (7.427), we define the subset WB as such
part of the Young diagram D(κ) that corresponds to µB, and another subset
WF as such part that corresponds to µF. Namely, we have D(k) = D(k0) +
WB + WF . Let us first consider s ∈ WB in the presence of the fermionic
component. The leg length l also counts the contribution from Λ+>

NF
, while

the arm length a is not affected by Λ+>
NF

. Namely, when we consider a and l

within the partition µB, we have the correspondence

aκ(s) = aµB(s′), lκ(s) = lµB(s′) + aµB(s′) + 1, (7.429)

where s′ denotes the cell index in the composition µB + µF. Then we obtain

dκ(λ, s) =
1
λ

(
aµB + 1

)
+ lµB + aµB + 2

=
λ + 1

λ

(
aµB + 1

)
+ lµB + 1 = dµB(λ′, s′), (7.430)

d′κ(λ, s) =
1
λ

(
aµB + 1

)
+ lµB + aµB + 1

=
λ + 1

λ

(
aµB + 1

)
+ lµB + 1 = d′µB(λ′, s′). (7.431)

We emphasize that the generalized hook lengths experience only the change
λ → λ′ ≡ λ/(1 + λ) through the transition from κ to µ. For the fermionic
cell s, s ∈ Λ+>

NF
, dκ(λ, s) and d′κ(λ, s) are not affected by µB for separated

states.
On the other hand, the quantity eκ also has an interesting renormaliza-

tion effect for fermions. Since eκ is invariant against any change of rows, as
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noted in (7.117), we consider a partition κ+ which is obtained from κ by
appropriate exchange of rows. Accordingly, we define the subset TB in κ+

which originates from cells in WB, and another subset TF which originates
from cells in WF. The relevant cells s ∈ TB + TF are at the right end of the
Young diagram of κ+. Let us first consider the case s ∈ TB. We have

a′κ(s) = a′µB(s′), l′κ(s) = l′µB(s′) + NF − a′µB(s′) − 1. (7.432)

Then we obtain

eκ(λ, s) =
1
λ

(
a′κ + 1

)
+ N − l′κ =

1
λ

(
a′µB + 1

)
+ N −

(
l′µB + NF − a′µB − 1

)
=

1
λ′

(
a′µB + 1

)
+ NB − l′µB = eµB(λ′, s′). (7.433)

In the case s ∈ TF, we have

a′κ(s) = a′µF(s′) + NF − l′µF(s′) − 1, l′κ(s) = l′µF(s′). (7.434)

Then we obtain

eκ(λ, s) =
1
λ

(
a′µF + NF − lµF

)
+ N − l′µF

=
λ + 1

λ

(
a′

µF

λ + 1
+ NF + λ′NB − l′µF

)
(7.435)

which includes not only the change λ → λ+ ≡ λ + 1 as in the single compo-
nent system, but also NF → NF + λ′NB.

Synthesizing these steps for separated states, we obtain the following
results:

d′κ(λ)/πF
κ (λ) =

∏
s∈SB(κ)

d′κ(λ, s)
∏

s∈SF(κ)

d′κ(λ, s)

= (λ′)−|µF|d′µB(λ′)d′µF(λ+), (7.436)

eκ(λ)/eκ(0)(λ) =
∏

s∈TB(κ+)

eκ+(λ, s)
∏

s∈TF(κ+)

eκ+(λ, s)

= (λ′)−|µF|ėµB(λ′; 1 + λ′NB)ėµF(λ+; λ+NF + λNB), (7.437)

where ėµ has been defined by (7.276), and is related to bκ(r) defined in
(7.309) by

ėµ(λ; λM) = (−1)|µ|bµ(−λM)d′µ. (7.438)

These results are useful for the binomial formula to be presented below.
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7.5.5 Binomial formula for separated states

To derive the binomial formula, we follow the same strategy as that for
J̃

(−−)
κ (z). We introduce positive integers N ′

B, N ′
F, and N ′ such that N ′ =

N ′
B + N ′

F, N ′
B > NB, and N ′

F > NF. Then we define I ′, I ′B, and I ′F by

I ′ = [1, N ′], I ′B = [1, N ′
B], I ′F = [N ′

B + 1, N ′
B + N ′

F].

Applying both SymB and AsymF to (7.300), we obtain the Cauchy product
expansion formula for U(1,1) Jack polynomials:∑

σ∈SN′
B

∏
i∈I′B

1
1 − zσ(i)yi

∏
i,j∈I′F

1
1 − ziyj

∏
i,j∈I′

1
(1 − ziyj)λ

=
∑

ν∈Λ+

N′
B
×Λ+>

N′
F

dν

d′ν
ρ(+−)

ν J̃ (+−)
ν (z)J̃ (+−)

ν (y), (7.439)

where J̃
(+−)
ν (z) = J

(+−)
ν (z)/∆(zF). We use the relation

ρ(++)
ν /π̃(+−)

ν = ρ(+−)
ν /π

(+−)

νF , (7.440)

with πF(+−)

ν =
∏

(i<j)∈I′F
(ν̄i − ν̄j − 1). Then the evaluation formula (7.413)

of the U(1,1) Jack polynomials is rewritten as

J̃ (+−)
ν (1N ′

) =
N ′

B!πF(+−)

ν eν

ρ
(+−)
ν dνeν(0)

. (7.441)

Substituting y = (1N ′
) in (7.439), we obtain∏

i∈I′B

(1 − zi)−1−λN ′ ∏
j∈I′F

(1 − zj)−λN ′−N ′
F =

∑
ν∈Λ+

N′
B

+Λ+>

N′
F

πF
ν eν

d′νeν(0)
J̃ (+−)

ν (z).

(7.442)
If one could represent the RHS of (7.442) as an analytic function of N ′

B and
N ′

F, one would establish the binomial formula. This task, however, has not
yet been achieved to its full generality.

The composition ν ∈ Λ+
N ′

B
+ Λ+>

N ′
F

is characterized by the excitations

(µB, µF) as

ν = (0N ′
B , δ(N ′

F)) + (µB, 0N ′
B−NB , µF, 0N ′

F−NF). (7.443)
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We have the following relation:

J̃ (+−)
µ (zB

1 , . . . , zB
NB

, 0, . . . , 0︸ ︷︷ ︸
N ′

B−NB

, zF
1 , . . . , zF

NF
, 0, . . . , 0︸ ︷︷ ︸

N ′
F−NF

)

= J̃ (+−)
κ (zB

1 , . . . , zB
NB

, zF
1 , . . . , zF

NF
). (7.444)

For a separated state κ ∈ Λ+
NB

+ Λ+>
NF

, the expansion coefficient for the
composition ν ∈ Λ+

N ′
B

+ Λ+>
N ′

F
can be reduced to

πF
ν (λ)eν

d′ν(λ)eν(0)
=

ėµB(λ′; 1 + λ′N ′
B)

d′
µB(λ′)

ėµF(λ+; λN ′
B + λ+N ′

F)
d′

µF(λ+)
, (7.445)

by reference to (7.436) and (7.437). We note that the RHS of (7.445) is an
analytic (polynomial) function of N ′

B and N ′
F. Then we identify

−p = 1 + λ(N ′
B + N ′

F), (7.446)

−q = λN ′ + N ′
F = λN ′

B + λ+N ′
F. (7.447)

In this way we finally obtain the binomial expansion coefficient in (7.426)
for separated states:

b(+−)
κ (p, q) = (−1)|µ

B|+|µF| ėµB(λ′;−p + λ′q)
d′

µB(λ′)
ėµF(λ+;−q)

d′
µF(λ+)

, (7.448)

which takes a form factorized into bosonic and fermionic contributions.
According to (7.438), both contributions reduce to the binomial coefficient
(7.308) for the symmetric Jack polynomials.

7.5.6 Integral norm

The U(1,1) Jack polynomials are orthogonal with each other with respect
to the integral norm. For κ ∈ (Λ+

NB
, Λ+>

NF
), we have the relation

〈J (+−)
κ , J (+−)

κ 〉0/〈Eκ, Eκ〉0 =
NB!NF!

ρ
(+−)
κ

, (7.449)

which can be derived in the same way as (7.167). By using explicit results
for 〈Eκ, Eκ〉0, as presented in Section 7.2.2, we obtain

〈J (+−)
κ , J (+−)

κ 〉0 = NB!NF!
Γ(Nλ + 1)
Γ(λ + 1)N

d′κeκ

ρ
(+−)
κ dκe′κ

. (7.450)

It is instructive to compare the result with the norm

〈Jκ, Jκ〉0 =
Γ (Nλ + 1)

Γ (λ + 1)N
· d′κe′′κ
d′′κe′κ

(7.451)

for the symmetric Jack polynomial.
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In the special case of κ = κ(0), we can derive the following result:

〈J (+−)
κ(0) ), J (+−)

κ(0) 〉0 =
NF!

(λ+)NF−1
· Γ(Nλ + NF)Γ(1 + λ′NB)

Γ(λ+)NΓ(NF + λ′NB)
, (7.452)

which has been obtained in [10]. Note that the norm reproduces (7.451)
with NF = 0 and κ(0) = 0NB . It also reproduces (7.166) with NB = 0 and
κ(0) = δ. To derive (7.452), we first note

ρ
(+−)
κ(0) = NB!d′κ(0)/dκ(0), (7.453)

which is obtained from (7.408) and (7.409). Then we only need to evaluate
eκ(0)/e′κ(0). This ratio can be obtained by following a procedure similar to
that used in deriving (7.169).

The integral norm for a separated state can be written in a form that is
convenient for taking the thermodynamic limit. Using (7.445) and putting
the relations of combinatorial factors discussed in Section 7.1.6, we obtain
the ratio of norms as

〈J (+−)
κ , J

(+−)
κ 〉0

〈J (+−)
κ(0) , J

(+−)
κ(0) 〉0

= NBNF, (7.454)

which takes a factorized form of bosonic and fermionic parts. The bosonic
part is given by

NB =
d′

µB(λ′)ėµB(λ′; 1 + λ′NB)

d′′
µB(λ′)ėµB(λ′; 1 + λ′(NB − 1))

. (7.455)

Here we note the relation

ėµ(λ; λN) = e′′µ(N), ėµ(λ; λN + 1) = e′µ(N + 1), (7.456)

which results from the definition (7.276). Then (7.455) corresponds to the
ratio of norms for symmetric Jack polynomials given by (7.451), provided
the coupling constant is taken as λ′.

The fermionic part is given by

NF =
d′

µF(λ+)ėµF(λ+; λ+(NF + λ′NB))

d′′
µF(λ+)ėµF(λ+; 1 + λ+(NF + λ′NB − 1))

, (7.457)

which again takes the form (7.451), provided we take not only

(i) the renormalized coupling λ+, but also
(ii) the effective number of particles as NF + λ′NB.
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Yang–Baxter relations and orthogonal eigenbasis

The spectrum of the Sutherland model for fermions with spin has a
degeneracy. The orthogonal set of the basis of the Fock space of degen-
erate states is usually related to a Lie algebra such as su2 and su3. In our
case, however, the degeneracy extends to states with different values of to-
tal spin, and the ordinary Lie algebra is insufficient. The relevant algebra is
called Yangian [43,44], and is the algebra controlling those operators satisfy-
ing the Yang–Baxter relation [118,178]. In this chapter we describe how the
Yangian naturally emerges in the many-particle states described by Jack
polynomials, and constructs an orthogonal basis of degenerate states. We
concentrate here on the simplest case of the gl2 Yangian, corresponding to
spin 1/2 particles. More general cases will be discussed in Chapter 9.

We introduce a variant of the R-matrix in Section 8.1, and its standard
form in Section 8.2. We then introduce a monodromy matrix and discuss its
algebraic properties, such as the Yang–Baxter relation and the intertwining
property. In Section 8.4, we consider the action of the monodromy matrix on
the set of states constituting the degenerate eigenstates. We will see that an
element of the monodromy matrix plays the role of a creation or annihilation
operator of orthogonal eigenfunctions. This means that all eigenfunctions
can be generated algebraically from the highest-weight state, for example,
by successive action of an element of the monodromy matrix. Thus, the
degeneracy beyond the Lie algebra is accounted for by the symmetry of the
monodromy matrix, which is nothing but the Yangian.

A demonstration of this construction will be given in Section 8.5 for
the two-particle and three-particle systems. The general expression for the
orthogonal set of eigenfunctions is also given, which corresponds to the
so-called Yangian Gelfand–Zetlin basis. In Section 8.6, we give the formula
for the norm of the Yangian Gelfand–Zetlin basis. The contents of this chap-
ter relies heavily on the paper by Takemura and Uglov [180].

391
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8.1 Fock condition and R-matrix

In the present section, we will see that an R-matrix appears naturally as
a consequence of the Fock condition imposed on the wave function whose
spatial part consists of non-symmetric Jack polynomials. This R-matrix is
an operator acting on the spin space of two particles, and obeys the Yang–
Baxter relation. This finding gives us a hint on the procedure of construction
of the orthogonal set of eigenfunctions of the U(2) fermionic Sutherland
model. The resultant eigenfunctions are called the Yangian Gelfand–Zetlin
basis [143,144], as will be explained later.

We use the notation z = (z1, . . . , zN ) and σ = (σ1, . . . , σN ) for the set of
complex spatial and spin coordinates. The real coordinate xi is related to zi

through zi = exp(2πixi/L). The eigenfunctions of (3.5) for the U(2) fermion
model are written in the form

Ψ (z, σ) = Φ (z, σ)ΨB
0 (z), (8.1)

Φ (z, σ) =
∑

η; s.t.η+=κ

Eη(z)ϕη(σ), (8.2)

where ΨB
0 (z) is the symmetric function defined by (2.5). Let FN,κ be the set

of (8.2) satisfying the fermionic Fock condition

K̂ijΦ = −P̂ijΦ. (8.3)

For a given partition κ ∈ Λ+
N , the energy level in general has a degeneracy.

We define FN,κ to specify the degenerate wave functions with the same κ.
Let Ψ̃ ∈ FN,κ be a wave function of the form

Ψ̃ (z, σ) = Φ̃ (z, σ)ΨB
0 (z), (8.4)

Φ̃ (z, σ) =
∑

η; s.t.η+=κ

Eη(z)ϕ̃η(σ), (8.5)

where the spin part is specified by ϕ̃η(σ). The inner product 〈Ψ̃,Ψ〉 is
given by

〈Ψ̃,Ψ〉 =
∑

σ1=1,2

· · ·
∑

σN=1,2

∫ L

0
dx1 · · ·

∫ L

0
dxN Ψ̃∗(z, σ)Ψ(z, σ)

= LN
∑

η; s.t.η+=κ

〈Eη, Eη〉0 (ϕ̃η, ϕη), (8.6)

where the spin part is given by

(ϕ̃, ϕ) ≡
2∑

σ1=1

· · ·
2∑

σN=1

ϕ̃(σ)ϕ(σ). (8.7)
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For later convenience, we introduce the following notation:

〈Φ̃, Φ〉′ =
∑

η; s.t.η+=κ

〈Eη, Eη〉0 (ϕ̃η, ϕη), (8.8)

for Φ (8.2) and Φ̃ (8.5). We shall find an orthogonal basis of eigenfunctions
in FN,κ. In the present subsection, we first derive a non-orthogonal basis of
eigenfunctions in FN,κ. By imposing the Fock condition (8.3), we can derive
the relation between ϕη in (8.2) and ϕκ with κ = η+. Let us begin with
some examples.

Example 8.1. N = 2, κ = (κ1, κ2) with κ1 = κ2.
(8.2) in this case reduces to

Eκ1κ1(z1, z2)ϕκ1κ1(σ1, σ2), (8.9)

where the spatial part is a symmetric function of z1 and z2. Therefore the
Fock condition (8.3) requires

P̂12ϕκ1κ1 = −ϕκ1κ1 , (8.10)

which means the singlet spin pair.

Example 8.2. N = 2, κ = (κ1, κ2) with κ1 > κ2.
The role of the recursion relation (3.169) of non-symmetric Jack polynomials
becomes clear in this case. Namely, the action of K̂12 on the LHS of the Fock
condition (8.3) yields

K̂12 (Eκ1κ2ϕκ1κ2 + Eκ2κ1ϕκ2κ1)

=Eκ1κ2

(
ϕκ1κ2

κ1 − κ2
+ ϕκ2κ1

)
+ Eκ2κ1

[(
1 − 1

(κ1 − κ2)
2

)
ϕκ1κ2 +

ϕκ2κ1

κ2 − κ1

]
.

The result should be equal to

−P̂12Φ = −
(
Eκ1κ2P̂12ϕκ1κ2 + Eκ2κ1P̂12ϕκ2κ1

)
. (8.11)

Since Eκ1κ2 and Eκ2κ1 are linearly independent, we obtain

Ř12(κ1 − κ2)ϕκ1κ2 = −ϕκ2κ1 (8.12)

Ř12(κ2 − κ1)ϕκ2κ1 = −
[
1 − (κ1 − κ2)

−2
]
ϕκ1κ2 , (8.13)

where we have introduced an operator

Řii+1(u) =
1
u

+ P̂ii+1. (8.14)
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Because of the relation

Ř12(κ2 − κ1)Ř12(κ1 − κ2) = 1 − (κ1 − κ2)
−2 , (8.15)

(8.12) and (8.13) are compatible. Consequently, we obtain

Φ =
(
Eκ1κ2 − Eκ2κ1Ř12(κ1 − κ2)

)
ϕκ1κ2 . (8.16)

Example 8.3. N = 3, κ = (κ1, κ2, κ3) with κ1 > κ2 > κ3.
The Fock condition (8.3) takes the same form as (8.12) from the recursion
relation (3.169) of non-symmetric Jack polynomials, as long as the spectral
parameter involved in Řij is positive. Hence we obtain

ϕκ2κ1κ3 = −Ř12 (κ1 − κ2) ϕκ1κ2κ3 ,

ϕκ3κ2κ1 = −Ř12 (κ2 − κ3) ϕκ2κ3κ1 ,

ϕκ3κ1κ2 = −Ř12 (κ1 − κ3) ϕκ1κ3κ2 ,

and analogous relations with Ř12 replaced by Ř23 or Ř13. By combining
these relations, all ϕη for η+ = κ are generated from ϕκ. We take ϕκ3κ2κ1 as
an example. There are two routes from (κ1κ2κ3) to (κ3κ2κ1), such as

route 1: (κ1κ2κ3) → (κ1κ3κ2) → (κ3κ1κ2) → (κ3κ2κ1) ,

route 2: (κ1κ2κ3) → (κ2κ1κ3) → (κ3κ1κ2) → (κ3κ2κ1) .

Namely we obtain

ϕκ3κ2κ1 = −Ř23 (κ1 − κ2) Ř12 (κ1 − κ3) Ř23 (κ2 − κ3) ϕκ1κ2κ3 (8.17)

via route 1 and

ϕκ3κ2κ1 = −Ř12 (κ2 − κ3) Ř23 (κ1 − κ3) Ř12 (κ1 − κ2) ϕκ1κ2κ3 (8.18)

via route 2. The compatibility of (8.17) and (8.18) is guaranteed by the
relation

Ř23 (u1 − u2) Ř12 (u1 − u3) Ř23 (u2 − u3)

= Ř12 (u2 − u3) Ř23 (u1 − u3) Ř12 (u1 − u2). (8.19)

This relation (8.19) is a variant of the Yang–Baxter relation [118], as dis-
cussed in detail in Section 8.2.

Now we introduce a related operator R
(λ)
η by the recursive relations [180]

R(λ)
κ = 1, (8.20)

R
(λ)
Kii+1η = −Řii+1(ηi − ηi+1)R

(λ)
η for ηi > ηi+1. (8.21)
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We further introduce an operator U(κ;λ) which creates Φ with spatial
dependence from a spin-only wave function. The operator U(κ;λ) is defined
in terms of R

(λ)
η by the relation [180]

Φ = U(κ;λ)ϕκ ≡
∑

η; s.t. η+=κ

EηR
(λ)
η ϕκ, (8.22)

where the sum is taken over all distinct rearrangements of κ ∈ Λ+
N .

Example 8.4. N = 3, κ = (κ1, κ2, κ3) with κ1 > κ2 = κ3.
In the present case, (8.2) becomes

Φ =
∑

η=(κ1κ2κ2),(κ2κ1κ2),(κ2κ2κ1)

EηR
(λ)
η ϕκ1κ2κ2 , (8.23)

where ϕκ1κ2κ2 satisfies

P̂23ϕκ1κ2κ2 = −ϕκ1κ2κ2 . (8.24)

Example 8.5. N = 3, κ = (κ1, κ2, κ3) with κ1 = κ2 = κ3.
In the present case, (8.2) becomes

Eκ1κ1κ1ϕκ1κ1κ1 . (8.25)

From the Fock condition, the ϕκ1κ1κ1 have to satisfy

P̂12ϕκ1κ1κ1 = −ϕκ1κ1κ1 P̂23ϕκ1κ1κ1 = −ϕκ1κ1κ1 , (8.26)

which requires ϕκ1κ1κ1 = 0. Namely, in the present case, non-vanishing eigen-
functions do not exist.

We can generalize the above results as follows. The set of one-particle
spin wave functions is given by C2, where a basis {v1(σ), v2(σ)} satisfies the
orthonormal condition

(vα, vβ) =
2∑

σ=1

v∗α(σ)vβ(σ) = δαβ for α, β ∈ [1, 2]. (8.27)

v1(σ) and v2(σ) can be regarded as spin wave functions corresponding to | ↑〉
and | ↓〉. The set of N -particle spin wave functions is given by the tensor
product of C2:

N︷ ︸︸ ︷
C2 ⊗ · · · ⊗ C2 = ⊗NC2.



396 Yang–Baxter relations and orthogonal eigenbasis

We introduce a subset Vκ in ⊗NC2 such that two spins with the same
momentum form a singlet. In other words, we define

Vκ =
{

ϕ ⊂ ⊗NC2|∀i satisfying κi = κi+1 → P̂i,i+1ϕ = −ϕ
}

. (8.28)

For example, in the case of N = 3 and κ1 > κ2 = κ3, Vκ1κ2κ2 consists of two
functions

v1 ⊗ (v1 ⊗ v2 − v2 ⊗ v1) , v2 ⊗ (v1 ⊗ v2 − v2 ⊗ v1) . (8.29)

Let us further introduce the set Λ+
N,2 ⊂ Λ+

N as those partitions where at
most two κi can take the same value. Namely, we define

Λ+
N,2 =

{
κ = (κ1, κ2, . . . , κN ) ∈ Λ+

N |]{κi | κi = ∀s ∈ Z} ≤ 2
}

. (8.30)

For κ ∈ Λ+
N,2, the set of states

Φ = U(κ;λ)ϕ ∈ FN,κ, ϕ ∈ Vκ (8.31)

satisfies the Fock condition (8.3). The operator U(κ; λ) makes the wave
function antisymmetric with respect to particle exchange.

We can obtain all the eigenfunctions of the form (8.2) by taking ϕ to be
a basis of Vκ. For N = 2 and κ1 > κ2, for example, the basis of spin space
Vκ is given by

vαβ ≡ vα ⊗ vβ , α, β = 1, 2 (8.32)

and the wave functions

φκ,αβ ≡ U(κ;λ)vα ⊗ vβ , α, β = 1, 2 (8.33)

are eigenfunctions of the Hamiltonian (3.16).
For N = 3 and κ1 > κ2 = κ3, two wave functions

U(κ; λ)vα ⊗ (v12 − v21) , α = 1, 2 (8.34)

give eigenfunctions of the Hamiltonian (3.16).
Owing to the orthogonality of Eη, the functions Φ ∈ FN,κ and Φ′ ∈ FN,κ′

are orthogonal when κ 6= κ′. Within FN,κ, however, different basis functions
are not necessarily orthogonal. Indeed, the two eigenfunctions (8.34) are
mutually orthogonal but the four functions (8.33) are not. We shall show
that the orthogonalization is naturally provided by the Yangian algebra in
the following.
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=
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Fig. 8.1. Yang–Baxter relation for the R-matrix.

8.2 R-matrix and monodromy matrix

In order to obtain an orthogonal basis, we look for a set of self-adjoint
operators Â1, Â2, . . . satisfying the following conditions:

• For κ ∈ Λ+
N,2, Φ ∈ FN,κ, ÂiΦ ∈ FN,κ.

•
[
Âi, Âj

]
= 0.

• The set of eigenvalues of Â1, Â2, . . . specifies uniquely each eigenstate; the
joint spectrum of those operators is non-degenerate.

Those operators are given by the monodromy matrix, which will be intro-
duced in the next section. As a set up, we now define the R-matrix and the
monodromy matrix relevant to the Sutherland model.

Let us start with (8.19). By multiplying both sides of (8.19) by P̂12 from
the left and by P̂23P̂13 from the right and setting u = u1−u3 and v = u2−u3,
we obtain

R13(u − v)R23(u)R12(v) = R12(v)R23(u)R13(u − v), (8.35)

where

Rij(u) = 1 +
P̂ij

u
(8.36)

is called the R-matrix. The relation (8.35) is called the Yang–Baxter relation
for the R-matrix, and is described graphically in Fig. 8.1.

The relation (8.35) is the functional relation of the operators acting on
⊗3C2. Now we rename each factor of ⊗3C2: we call the first factor 0′, the
second 0, and the third 1. The first two are regarded as auxiliary spaces
and the third factor as a physical (spin) space. We introduce the operators
L01(u) and L0′1(u) by

L01(u) = 1 + P̂01/u, L0′1(u) = 1 + P̂0′1/u. (8.37)
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We then rewrite (8.35) as

R00′(u − v)L01(u)L0′1(v) = L0′1(v)L01(u)R00′(u − v). (8.38)

In the case of many particles, we consider an extended space ⊗NC2:

C2

0

⊗ C2

0′

⊗

N︷ ︸︸ ︷
C2

1

⊗ C2

2

⊗ · · ·

· · ·

⊗ C2

N − 1

⊗ C2

N.

(8.39)

As an operator acting on the space (8.39), we introduce the monodromy
operator

T0(u; f) ≡ L01(u + f1)L02(u + f2) · · ·L0N (u + fN ), (8.40)

where f = (f1, f2, . . . , fN ) are called the spectral parameters and

L0i(u) = 1 +
P̂0i

u
, for i = 1, . . . , N. (8.41)

We shall derive the Yang–Baxter relation for the monodromy operators

R00′(u − v)T0(u; f)T0′(v; f) = T0′(v; f)T0(u; f)R00′(u − v). (8.42)

This relation follows from repeated use of (8.38) with replacement of L01, L0′1

by L0i, L0′i. When N = 1, (8.42) reduces to (8.38). When N = 2, we see
that

R00′(u − v)T0(u; f)T0′(v; f)

= R00′(u − v)L01(u + f1) L02(u + f2)L0′1(v + f1)︸ ︷︷ ︸
commute

L0′2(v + f2)

= R00′(u − v)L01(u + f1)L0′1(v + f1)︸ ︷︷ ︸
L0′1(v+f1)L01(u+f1)R00′ (u−v)

L02(u + f2)L0′2(v + f2)

= L0′1(v + f1)L01(u + f1) R00′(u − v)L02(u + f2)L0′2(v + f2)︸ ︷︷ ︸
L0′2(v+f2)L02(u+f2)R00′ (u−v)

= L0′1(v + f1) L01(u + f1)L0′2(v + f2)︸ ︷︷ ︸
commute

L02(u + f2)R00′(u − v)

= T0′(v; f)T0(u; f)R00′(u − v).

The relation (8.42) for a general value of N can be proved similarly. Figure 8.2
shows a graphical description of (8.42).

Now we define the monodromy matrix that has operators as its elements.
The monodromy operator (8.40) acts in an auxiliary space 0′ as the identity
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0′

0

0′

1 2 3 N

1 2 3 N

=

· · ·

· · ·

0

Fig. 8.2. Yang–Baxter relation RTT = TTR (8.42) for the monodromy operators.

operator and hence it is natural to treat T0(u; f) as the operator on the
tensor product of an auxiliary space 0 and the physical space:

C2

0

⊗
(
⊗NC2

)
1 ∼ N.

(8.43)

Regarding operators Tαβ(u; f) as matrix elements, the monodromy matrix
is defined by

T0(u; f) =
∑

α,β=1,2

Xαβ ⊗ Tαβ(u; f), (8.44)

where Xαβ is an operator acting on spin states in the auxiliary space 0:

Xαβvγ = δβγvα, α, β, γ = 1, 2. (8.45)

In terms of spin operators, the X-operators are expressed as

X11 =
(

1
2

+ Ŝz

)
, X22 =

(
1
2
− Ŝz

)
, X12 = Ŝ+, X21 = Ŝ−. (8.46)
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Let us find the explicit form of Tαβ(u; f) for N = 1, 2. When N = 1, we
have T0(u; f) = L01(u + f1) given by

T0(u; f) = 1 +
P̂01

u + f1
= 1 ⊗ 1 +

∑
α,β=1,2 Xαβ ⊗ Xβα

u + f1

=
∑

α,β=1,2

Xαβ ⊗
(

δαβ +
Xβα

u + f1

)
,

which means

Tαβ(u; f1) = δαβ +
Xβα

u + f1
. (8.47)

Note the sequence of suffices in Tαβ , and that in Xβα. This is because α

should behave as a bra vector on both sides.
When N = 2, the monodromy operator is written as

T0(u; f1, f2) =

(
1 +

P̂01

u + f1

)(
1 +

P̂02

u + f2

)

= 1 +
P̂01

u + f1
+

P̂02

u + f2
+

P̂01P̂02

(u + f1)(u + f2)
. (8.48)

We use the relations

P̂01 =
∑

α,β=1,2

Xαβ ⊗ Xβα ⊗ 1, P̂02 =
∑

α,β=1,2

Xαβ ⊗ 1 ⊗ Xβα, (8.49)

P̂01P̂02 =
∑

α,β=1,2

Xαβ ⊗
∑

α′=1,2

Xα′α ⊗ Xβα′
. (8.50)

Then we rewrite (8.48) as

T0(u; f1, f2) =
∑

α,β=1,2

Xαβ ⊗
∑

α′=1,2

(
δαα′ +

Xα′α

u + f1

)
⊗

(
δα′β +

Xβα′

u + f2

)
,

(8.51)
from which we find

Tαβ(u; f1, f2) =
∑

α′=1,2

(
δαα′ +

Xα′α

u + f1

)
⊗

(
δα′β +

Xβα′

u + f2

)
. (8.52)

Note again the sequence of α and β on both sides of (8.52).
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For a general integer N , the monodromy matrix is given by [22]

Tαβ(u; f1, f2, . . . , fN )

=
∑

α1,α2,··· ,αN−1

(
δαα1 +

Xα1α

u + f1

)
⊗

(
δα1α2 +

Xα2α1

u + f2

)
⊗

· · · ⊗
(

δαN−1β +
XβαN−1

u + fN

)
, (8.53)

which can be proved by mathematical induction. The procedure (8.53) to
construct Tαβ(u) acting on V ⊗ · · · ⊗ V from that acting on V is called
co-product.

8.3 Yangian gl2

We will examine detailed algebraic properties of the monodromy matrix.
When the monodromy matrix acts on V (= ⊗NC2), the R-matrix is
rewritten as

R00′(u − v) = 1 +
∑
γ,δ

Xγδ ⊗ Xδγ ⊗ 1
u − v

. (8.54)

Using this and (8.44), the LHS of (8.42) is written as

R00′(u − v)T0(u; f)T0′(v; f)

=
∑
αβ

∑
γδ

Xαβ ⊗ Xγδ ⊗
(

Tαβ(u; f)Tγδ(v; f) +
Tγβ(u; f)Tαδ(v; f)

u − v

)
.

(8.55)

Similarly, the RHS of (8.42) is written as

T0′(v; f)T0(u; f)R00′(u − v)

=
∑
αβ

∑
γδ

Xαβ ⊗ Xγδ ⊗
(

Tγδ(u; f)Tαβ(v; f) +
Tγβ(v; f)Tαδ(u; f)

u − v

)
.

(8.56)

Since (8.55) and (8.56) are equal, we obtain for α, β, γ, δ = 1, 2

(u − v) [Tαβ(u), Tγδ(v)] = Tγβ(v)Tαδ(u) − Tγβ(u)Tαδ(v), (8.57)

which is equivalent to

(u − v) [Tγδ(u), Tαβ(v)] = Tγβ(u)Tαδ(v) − Tγβ(v)Tαδ(u). (8.58)
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The algebra for operator-valued matrices satisfying (8.58) is called the
Yangian gl2, and written Y (gl2). The form given by (8.53) constitutes a
solution of the functional equation (8.58). The quantum determinant is
defined by

qdet{Tij(u)} ≡ T11(u)T22(u − 1) − T12(u)T21(u − 1), (8.59)

which commutes with all elements of Tij(u). We shall generalize the quantum
determinant beyond gl2 in Chapter 9.

The elements of the monodromy matrix are defined by

T11(u) ≡ A1(u), T12(u) ≡ B(u), T21(u) ≡ C(u), T22(u) ≡ D(u). (8.60)

Then (8.58) is rewritten in terms of components. For example, we obtain

(u − v) [A1(u), B(v)] = B(u)A1(v) − B(v)A1(u), (8.61)

(u − v) [C(u), B(v)] = D(u)A1(v) − D(v)A1(u), (8.62)

where (8.61) corresponds to the case (α, β, γ, δ) = (1, 2, 1, 1) in (8.58), and
(8.62) to the case (1, 2, 2, 1). It is convenient to draw an analogy with the an-
gular momentum to understand the properties of the Yangian. The algebra
for angular momentum is characterized by the following:

(i) L̂
2

= L̂2
x + L̂2

y + L̂2
z commutes with all elements Lx, Ly, and Lz.

(ii) Simultaneous eigenstates can be constructed for L̂
2

and L̂z as an
orthogonal basis.

(iii) As shown by the property[
L̂±, L̂

2
]

= 0,
[
L̂±, L̂z

]
= ∓L±, (8.63)

the eigenvalue of L̂z is raised by L̂+, and lowered by L̂−.

The properties of the Yangian gl2 are summarized in an analogous way:

(i) The quantum determinant, qdet{Tij(u)} ≡ A2(u), commutes with all
elements A1(u), B(u), C(u), and D(u).

(ii) Simultaneous eigenfunctions can be constructed for A2(u) and A1(u).
(iii) Let |χ〉 be an eigenstate of A1(u) with eigenvalue ω(u). By choosing

v so that ω(v) = 0, we obtain from (8.61):

(u − v) [A1(u), B(v)] |χ〉 = −ω(u)B(v)|χ〉. (8.64)

By comparing (8.64) and (8.63), we see that B(v) for a particular
value of v acts as a raising or lowering operator of the eigenvalue of
A1(u). A similar statement applies to C(v) as a raising or lowering
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operator of the eigenvalue of A1(u). It should be remembered that
B(v) decreases the spin Sz of the system by one, while C(v) increases
Sz by one.

The correspondence between the angular momentum and Y (gl2) is summa-
rized as follows:

A2(u)
A1(u)
B(u)
C(u)

⇐⇒

L̂
2

L̂z

L̂−

L̂+

(8.65)

for a particular value of u.

8.4 Relation to U(2) Sutherland model

The monodromy matrix has a set of parameters f1, . . . , fN called the spectral
parameters. The U(2) Sutherland model fits nicely in the Yangian symmetry
by identifying the spectral parameters as the rapidities of particles. The close
relation between the Yangian and the Sutherland model is also anticipated
from our construction of the Yang–Baxter relation using the non-symmetric
Jack polynomials.

Let us begin with the proof of the following statement [180]:

Tαβ(u; f1, . . . ,
i

fi+1,
i+1
fi , . . . , fN )Řii+1(fi − fi+1)

= Řii+1(fi − fi+1)Tαβ(u; f1, . . . ,
i
fi,

i+1
fi+1, . . . , fN ), (8.66)

which will turn out to be useful in the next section. It shows that Řii+1(fi−
fi+1) intertwines the parameters fi, fi+1 of the monodromy matrix.

Proof of (8.66).
First we regard Řii+1(fi − fi+1) as an operator acting on ⊗NC2 and con-
struct 1⊗Řii+1(fi−fi+1) acting on the tensor product of the auxiliary space
0 and ⊗NC2. The relation

L0,i(u + fi+1)L0,i+1(u + fi)
(
1 ⊗ Řii+1(fi − fi+1)

)
=

(
1 ⊗ Řii+1(fi − fi+1)

)
L0,i(u + fi)L0,i+1(u + fi+1) (8.67)

is nothing but (8.38) in a slightly different form. The relation

T0(u; f1, . . . ,
i

fi+1,
i+1
fi , . . . , fN )

(
1 ⊗ Řii+1(fi − fi+1)

)
=

(
1 ⊗ Řii+1(fi − fi+1)

)
T0(u; f1, . . . ,

i
fi,

i+1
fi+1, . . . , fN ) (8.68)
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follows from (8.67). Further, we rewrite both sides of (8.68) in terms of
Tαβ(u; f1, . . .):

T0(u; f1, . . . , fi+1, fi, . . . , fN )
[
1 ⊗ Řii+1(fi − fi+1)

]
=

∑
α,β

Xαβ ⊗ Tαβ(u; f1, . . . , fi+1, fi, . . . , fN )
[
1 ⊗ Řii+1(fi − fi+1)

]
=

∑
α,β

Xαβ ⊗ Tαβ(u; f1, . . . , fi+1, fi, . . . , fN )Řii+1(fi − fi+1) (8.69)

and

[
1 ⊗ Řii+1(fi − fi+1)

]
T0(u; f) =

∑
α,β

Xαβ ⊗ Řii+1(fi − fi+1)Tαβ(u; f).

(8.70)
The relation (8.66) follows from (8.69) and (8.70).

We want to find a commuting set of self-adjoint operators acting on FN,κ.
As a trial, let us see the action of the monodromy matrix Tαβ(u; d̂1, . . . , d̂N )
on FN,κ. Note that the spectral parameters f1, . . . , fN are replaced by the
Cherednik–Dunkl operators d̂1, . . . , d̂N . This is a crucial trick in the follow-
ing argument. Recalling that non-symmetric Jack polynomials are eigen-
functions of d̂i, we easily see that

Tαβ(u; d̂1, . . . , d̂N )Φ ∈ FN,κ, (8.71)

provided that κ ∈ Λ+
N,2 and Φ ∈ FN,κ. Further, we find the conjugate

property [180]

T †
αβ(u; d̂1, . . . , d̂N ) = Tβα(u; d̂1, . . . , d̂N ), (8.72)

with respect to the inner product (2.189). This property is derived by
recalling that Tαβ(u; d̂1, . . . , d̂N ) consists of Xαβ , and that d̂1, . . . , d̂N are
self-adjoint.

From (8.71) and (8.72), we construct a commuting set of operators in
FN,κ from Tαβ(u; d̂1, . . . , d̂N ). The action of Tαβ(u; d̂1, . . . , d̂N ) on Φ ∈ FN,κ

is processed as
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Tαβ(u; d̂1, . . . , d̂N )U(κ; λ)ϕ

=
∑

η; s.t. η+=κ

Tαβ(u; d̂1, . . . , d̂N )EηR
(λ)
η ϕ

=
∑

η; s.t. η+=κ

EηTαβ(u; η1, . . . , ηN )R(λ)
η ϕ (8.73)

=
∑

η; s.t. η+=κ

EηR
(λ)
η Tαβ(u;κ1, . . . , κN )ϕ (8.74)

= U(κ; λ)Tαβ(u; κ1, . . . , κN )ϕ. (8.75)

Equality of (8.73) and (8.74) can be understood by examining the following
example. For a composition η given by

η = Kii+1κ = (κ1, . . . , κj−1, κj+1, κj , . . . , κN ),

R
(λ)
η reduces to Rii+1(κi−κi+1). When we set (κ1, κ2, . . .) = (f1, f2, . . .), the

LHS and RHS of (8.66) turn into (8.73) and (8.74), respectively.
Let us take another example. For N = 3, η = (κ3, κ2, κ1) satisfying κ1 >

κ2 > κ3, we obtain

(8.73) = −Tαβ(u;κ3, κ2, κ1)Ř23(κ1 − κ2)Ř12(κ1 − κ3)Ř23(κ2 − κ3)

= −Ř23(κ1 − κ2)Tαβ(u; κ3, κ1, κ2)Ř12(κ1 − κ3)Ř23(κ2 − κ3)

= −Ř23(κ1 − κ2)Ř12(κ1 − κ3)Tαβ(u; κ1, κ3, κ2)Ř23(κ2 − κ3)

= −Ř23(κ1 − κ2)Ř12(κ1 − κ3)Ř23(κ2 − κ3)Tαβ(u;κ1, κ2, κ3)

= (8.74)

with repeated use of the intertwining property (8.66) of Řii+1(u).
From (8.75), we can act Tαβ(u;κ1, . . . , κN ) on ϕ ∈ Vκ, instead of acting

Tαβ(u; d̂1, . . . , d̂N ) on Φ ∈ FN,κ. If the eigenvalues of T11(u; κ1, . . . , κN ) are
non-degenerate for certain χ ∈ Vκ, then those {χ} constitute an orthogonal
set of basis in Vκ.

Now we show the following theorem [180]:

Theorem 8.6.
If the spin function ϕ belongs to Vκ, then the action of Tαβ is stable:
Tαβ(u; κ1, κ2, . . .)ϕ ∈ Vκ.

Proof.
When fi = fi+1 − 1 in (8.14), Řii+1(fi − fi+1) becomes −1 + P̂ii+1, which
antisymmetrizes the state vector. Then for ϕ ∈ ⊗NC2, the intertwining
relation (8.66) becomes
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Tαβ(u; f1, . . . ,
i

fi + 1,
i+1
fi , . . . , fN )(1 − P̂ii+1)ϕ

= 2Tαβ(u; f1, . . . ,
i

fi + 1,
i+1
fi , . . . , fN )ϕ

= (1 − P̂ii+1)Tαβ(u; f1, . . . ,
i
fi,

i+1
fi + 1, . . . , fN )ϕ. (8.76)

From this relation, we see that

P̂ii+1ϕ = −ϕ → P̂ii+1ϕ
′ = −ϕ′

with

ϕ′ ≡ Tαβ(u; f1, . . . , fi + 1, fi, . . . , fN )ϕ.

Any vectors ϕ ∈ Vκ satisfy P̂ii+1ϕ = −ϕ for i such that κi = κi+1 +1, which
is equivalent to κi = κi+1. Thus

ϕ′ = Tαβ(u; κ1, . . . , κN )ϕ (8.77)

satisfies P̂ii+1ϕ
′ = −ϕ′ for such i as has κi = κi+1. Therefore, (8.77) belongs

to Vκ.

8.5 Construction of orthogonal set of eigenbasis

8.5.1 Examples for small systems

First we consider some examples for small systems (N = 1, 2, 3), and later
generalize the results. From now on, we use the following notation:

ρ1(u) =
N∏

i=1

(u + κi), ρ2(u) =
N∏

i=1

(u + κi)(u − 1 + κi), (8.78)

a1(u) = ρ1(u)T11(u), b(u) = ρ1(u)T12(u),

c(u) = ρ1(u)T21(u), d(u) = ρ1(u)T22(u). (8.79)

Furthermore we define

a2(u) = ρ2(u) [T11(u)T22(u − 1) − T12(u)T21(u − 1)]

= a1(u)d(u − 1) − b(u)c(u − 1), (8.80)

which is proportional to the quantum determinant introduced in (8.59), but
without singularity because of the factor ρ2(u). Hence, a2(u) is referred to
as the “regular” quantum determinant in this book. Other quantities are
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also related to A1, B,C, and D by the factor ρ1(u). We denote a basis of
⊗NC2 by

vα1α2···αN ≡ vα1 ⊗ vα2 ⊗ · · · ⊗ vαN . (8.81)

In the rest of this subsection, we give Examples 8.7 to 8.10.

Example 8.7. N = 1.
From (8.47), we obtain

a1(u; κ1) = u + κ1 + X11, b(u;κ1) = X21,

c(u;κ1) = X12, d(u; κ1) = u + κ1 + X22. (8.82)

From these expressions, we obtain

a2(u; κ1) = ρ2(u)
(

1 +
X11 + X22

u + κ1

)
= (u + κ1)

2 − 1, (8.83)

which is a c-number and commutes with a1(u), b(u), c(u), d(u). For N = 1,
Vκ reduces to C2 where v1 and v2 form a basis. Obviously, both v1 and v2

are eigenvectors of a1(u):

a1(u;κ1)v1 = (u + 1 + κ1) v1, a1(u; κ1)v2 = (u + κ1) v2. (8.84)

The highest-weight state v1 is annihilated by c1(u); c1(u)v1 = 0. The other
state v2 is generated by action of b(u) on v1.

Example 8.8. N = 2.
This is the simplest nontrivial case. We obtain

a1(u;κ1, κ2) = ρ1(u) (T11(u) ⊗ T11(u) + T12(u) ⊗ T21(u))

=
(
u + κ1 + X11

)
⊗

(
u + κ2 + X11

)
+ X21 ⊗ X12, (8.85)

b(u; κ1, κ2) =
(
u + κ1 + X11

)
⊗ X21 + X21 ⊗

(
u + κ2 + X22

)
, (8.86)

c(u; κ1, κ2) = X12 ⊗
(
u + κ2 + X11

)
+

(
u + κ1 + X22

)
⊗ X12, (8.87)

d(u;κ1, κ2) = X12 ⊗ X21 +
(
u + κ1 + X22

)
⊗

(
u + κ2 + X22

)
. (8.88)

The regular quantum determinant in the present case is obtained as a scalar

a2(u;κ1, κ2) =
2∏

i=1

(
(u + κi)

2 − 1
)
. (8.89)

For N = 2, κ1 > κ2, Vκ is C2 ⊗ C2, where the basis is given by

vαβ ≡ vα ⊗ vβ , α, β = 1, 2. (8.90)
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The action of a1(u; κ1, κ2) is, for the basis (8.90), given by

a1(u; κ1, κ2)v11 = (u + 1 + κ1)(u + 1 + κ2)v11, (8.91)

a1(u; κ1, κ2)v22 = (u + κ1)(u + κ2)v22, (8.92)

a1(u; κ1, κ2)
(

v12

v21

)
(8.93)

=
(

(u + 1 + κ1)(u + κ2) 1
0 (u + κ1)(u + 1 + κ2)

) (
v12

v21

)
.

(8.94)

Since the matrix is triangular, the eigenvectors χαβ are easily obtained as

χ11 = v11, χ12 = v12 −
v21

κ1 − κ2
, χ21 = v21, χ22 = v22. (8.95)

The basis formed by (8.95) is an example of a Yangian Gelfand–Zetlin basis
[143,144], and these are not classified by the total spin of two particles. The
eigenvalue of each eigenstate is obtained from the diagonal element of the
matrix in (8.94). Owing to

κ1 − κ2 = (κ1 − κ2)/λ + 1 > 1,

all the eigenvalues are distinct.
The four wave functions

Φκ;αβ ≡ U(κ;λ)χαβ , α, β = 1, 2 (8.96)

with κ = (κ1, κ2) are eigenfunctions of the self-adjoint operator T11(u; d̂1, d̂2)
and the eigenvalues are non-degenerate. Thus the wave functions (8.96) con-
stitute an orthogonal basis of eigenfunctions in FN,κ.

Now we rederive the eigenbasis (8.95) algebraically starting from the
highest-weight state χ11 = v11 [143, 144]. The Yangian relation (8.61) is
rewritten as

(u − v) [a1(u), b(v)] = b(u)a1(v) − b(v)a1(u). (8.97)

Applying both sides of (8.97) to χ11, we obtain

(u − v) [a1(u), b(v)]χ11 = $hws(v)b(u)χ11 − $hws(u)b(v)χ11, (8.98)

where we have introduced the notation

$hws(u) = (u + κ̄1 + 1) (u + κ̄2 + 1) .
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In (8.98), we take v = −1 − κ̄i so that $hws(v) = 0 for i = 1, 2. Then we
obtain

(u + 1 + κ̄i) [a1(u), b(−1 − κ̄i)] χ11 = −$hws(u)b(−1 − κ̄i)χ11, (8.99)

which is rewritten as

a1(u)b(−1 − κ̄i)χ11 =
(u + κ̄i)$hws(u)

(u + 1 + κ̄i)
b(−1 − κ̄i)χ11. (8.100)

Thus b(−1−κ̄i)χ11 turns out to be an eigenfunction of a1(u). The eigenvalue
is given by

(u + κ̄i)$hws(u)
(u + 1 + κ̄i)

=
{

(u + κ̄1)(u + 1 + κ̄2), (i = 1),
(u + 1 + κ̄1)(u + κ̄2), (i = 2).

(8.101)

We introduce χ̃ij and, using (8.86), confirm the following relations:

χ̃21 ≡ b(−1 − κ1)χ11 = −(κ1 − κ2 + 1)χ21, (8.102)

χ̃12 ≡ b(−1 − κ2)χ11 = (κ1 − κ2)χ12. (8.103)

The basis function χ22 can be generated similarly. Namely, we apply both
sides of (8.97) to χ̃21, setting v = −1 − κ̄2. Then we obtain

(u + 1 + κ̄2) [a1(u), b(−1 − κ̄2)] χ̃21

= − (u + κ̄1)(u + 1 + κ̄2)b(−1 − κ̄2)χ̃21, (8.104)

which is rewritten as

a1(u)b(−1 − κ̄2)χ̃21 = (u + κ̄1)(u + κ̄2)b(−1 − κ̄2)χ̃21. (8.105)

Thus we identify the lowest-weight eigenfunction as

χ̃22 ≡ b(−1 − κ̄2)χ̃21 ∝ χ22. (8.106)

The basis function χ̃22 can be rewritten in another way. Namely, by setting
(α, β, γ, δ) = (1, 2, 1, 2) in (8.58), we find the commuting property

[b(u), b(v)] = 0, for |u − v| 6= 1. (8.107)

We then obtain

χ̃22 = b(−1 − κ2)χ̃21

= b(−1 − κ2)b(−1 − κ1)χ11

= b(−1 − κ1)b(−1 − κ2)χ11

= b(−1 − κ1)χ̃12. (8.108)

Hence the basis function χ̃22 can be generated from χ̃12 as well as from χ̃21.
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We can confirm (8.105) and (8.108) directly using (8.86). Namely, we
derive

b(−1 − κ2)b(−1 − κ1)v11 = b(−1 − κ1)b(−1 − κ2)v11

=
(
1 − (κ1 − κ2)

2
)

χ22. (8.109)

Thus the eigenbasis (8.95) is equivalent to

χ11, b(−1−κ1)χ11, b(−1−κ2)χ11, b(−1−κ1)b(−1−κ2)χ11, (8.110)

up to a constant factor. By starting with the highest-weight state χ11 = v11,
all the eigenstates χ̃αβ have been generated algebraically by the lowering
operators. Further lowering gives b(u)χ22 = b(u)v22 = 0.

We note that χ12 and χ21 are also annihilated as

b(−κ2)χ12 = 0, b(−κ1)χ21 = 0. (8.111)

To derive (8.111), we apply both sides of (8.97) to χ̃21. Setting v = −κ̄1, we
obtain

[a1(u), b(−κ̄1)] χ̃21 = −(u + 1 + κ̄2)b(−κ̄1)χ̃21, (8.112)

from which

a1(u)b(−κ̄1)χ̃21 = (u + κ̄1 − 1)(u + κ̄2 + 1)b(−κ̄1)χ̃21 (8.113)

follows. However, the eigenvalues of a1(u) are exhausted by

(u + κ̄1 + 1)(u + κ̄2 + 1), (u + κ̄1 + 1)(u + κ̄2),

(u + κ̄1)(u + κ̄2 + 1), (u + κ̄1)(u + κ̄2).

Thus, (8.113) requires b(−κ̄1)χ̃21 = 0. The first equality of (8.111) can be
derived similarly.

Figure 8.3 illustrates the relations (8.103), (8.109), and (8.111). As we
shall derive, the following actions:

c(−κ1)χ̃22 =
[
(κ1 − κ2)

2 − 1
]
χ̃12, (8.114)

c(−κ2)χ̃22 =
[
(κ1 − κ2)

2 − 1
]
χ̃21, (8.115)

c(−κ1)χ̃21 =
[
(κ1 − κ2)

2 − 1
]
χ11, (8.116)

c(−κ2)χ̃12 =
[
(κ1 − κ2)

2 − 1
]
χ11. (8.117)

are also included in the figure. Of these relations, (8.114) can be derived in
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χ11

χ12 χ21

χ22

b(−1 − κ2) b(−1 − κ1)

b(−1 − κ1)

c(−1 − κ2)

b(−κ2)

0

0

c(−1 − κ1)

c(−κ1)

b(−1 − κ2)

c(−κ2) b(−κ1)

0

0

c(−κ1)c(−κ2)

Fig. 8.3. Algebraic structure of Yangian Gelfand–Zetlin basis for N=2 and κ1>κ2.

the following way. Setting (α, β, γ, δ) = (2, 2, 1, 1), and v = u − 1 in (8.58),
we obtain

a1(u)d(u − 1) − b(u)c(u − 1) = d(u − 1)a1(u) − b(u − 1)c(u). (8.118)

Setting v = u − 1 in (8.62), we obtain

c(u)b(u − 1) − b(u)c(u − 1) = d(u)a1(u − 1) − d(u − 1)a1(u).

From this, (8.62) and (8.80), we obtain

c(u)b(u − 1) = d(u)a1(u − 1) − a2(u). (8.119)

Using (8.108) and (8.119), the LHS of (8.114) becomes

c(−κ̄1)b(−1 − κ̄1)χ̃12

= d(−κ̄1) a1(−1 − κ̄1)χ̃12︸ ︷︷ ︸
=0

− a2(−κ̄1)︸ ︷︷ ︸
1−(κ1−κ2)2

χ̃12

= RHS of (8.114). (8.120)

Other relations in (8.114)–(8.117) can be derived similarly.
Besides the trivial relation c(u)χ11 = 0, the operators c(−1 − κi) for

i = 1, 2 annihilate χ12 and χ21:

c(−1 − κ1)χ12 = 0, c(−1 − κ2)χ21 = 0. (8.121)

The first relation of (8.121) can be obtained in the following way. We apply

(u − v) [c(u), b(v)] = d(u)a1(v) − d(v)a1(u), (8.122)



412 Yang–Baxter relations and orthogonal eigenbasis

which comes from (8.62), to χ11 taking u = −1 − κ̄1 and v = −1 − κ̄2. The
result is given by

(κ̄2 − κ̄1)

c(−1 − κ̄1)

χ̃12︷ ︸︸ ︷
b(−1 − κ̄2)χ11 −b(−1 − κ̄2)

0︷ ︸︸ ︷
c(−1 − κ̄1)χ11


= d(−1 − κ̄1) a1(−1 − κ̄2)χ11︸ ︷︷ ︸

0

−d(−1 − κ̄2) a1(−1 − κ̄1)χ11︸ ︷︷ ︸
0

, (8.123)

from which the first relation of (8.121) follows. Figure 8.3 also shows (8.121).
In summary, using b(−1−κi), the orthogonal bases (8.96) of eigenfunctions

are given by

Uκv11, Uκb(−1 − κ1)v11,

Uκb(−1 − κ2)v11, Uκb(−1 − κ1)b(−1 − κ2)v11. (8.124)

Example 8.9. N = 3, κ1 > κ2 > κ3.
In the present case, the functions

vαβγ = vα ⊗ vβ ⊗ vγ , α, β, γ = 1, 2 (8.125)

constitute a basis of Vκ = ⊗3C2. Explicit expressions for monodromy
matrices are given by the co-product as

a1(u; κ1, κ2, κ3) =
(
u + κ1 + X11

)
⊗

(
u + κ2 + X11

)
⊗

(
u + κ3 + X11

)
+

(
u + κ1 + X11

)
⊗ X21 ⊗ X12 + X21 ⊗ X12 ⊗

(
u + κ3 + X11

)
+ X21 ⊗

(
u + κ2 + X22

)
⊗ X12,

b(u; κ1, κ2, κ3) =
(
u + κ1 + X11

)
⊗

(
u + κ2 + X11

)
⊗ X21

+
(
u + κ1 + X11

)
⊗ X21 ⊗

(
u + κ3 + X22

)
+ X21 ⊗ X12 ⊗ X21

+ X21 ⊗
(
u + κ2 + X22

)
⊗

(
u + κ3 + X22

)
,

c(u; κ1, κ2, κ3) = X12 ⊗
(
u + κ2 + X11

)
⊗

(
u + κ3 + X11

)
+ X12 ⊗ X21 ⊗ X12 +

(
u + κ1 + X22

)
⊗ X12 ⊗

(
u + κ3 + X11

)
+

(
u + κ1 + X22

)
⊗

(
u + κ2 + X22

)
⊗ X12.

The regular quantum determinant a2(u; κ1, κ2, κ3) is given by the tensor
product of the quantum determinant for N = 1. The action of a1(u) on the
basis is block diagonal:

a1(u)v111 = (u + 1 + κ1)(u + 1 + κ2)(u + 1 + κ3)v111, (8.126)

a1(u)v222 = (u + κ1)(u + κ2)(u + κ3)v222. (8.127)
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For a more complicated block with the basis vector v, we obtain

a1(u)v = ρ1(u)Uv, (8.128)

where U is a matrix. In the case of v = v1 ≡ (v112, v121, v211)T, we obtain
U = U1 in (8.128) with

U1 =



(u+1+κ1)(u+1+κ2)
(u+κ1)(u+κ2)

(u+1+κ1)
(u+κ1)(u+κ2)(u+κ3)

1
(u+κ1)(u+κ3)

0 (u+1+κ1)(u+1+κ3)
(u+κ1)(u+κ3)

(u+1+κ3)
(u+κ1)(u+κ2)(u+κ3)

0 0 (u+1+κ2)(u+1+κ3)
(u+κ2)(u+κ3)

.

(8.129)

For another case of v2 ≡ (v122, v212, v221)T, we obtain U = U2 in (8.128)
with

U2 =



(u+1+κ1)
(u+κ1)

1
(u+κ1)(u+κ2)

(u+1+κ2)
(u+κ1)(u+κ2)(u+κ3)

0 (u+1+κ2)
(u+κ2)

1
(u+κ2)(u+κ3)

0 0 (u+1+κ3)
(u+κ3)

. (8.130)

Both matrices U1 and U2 are triangular, and hence they can be diagonalized.
The eigenvectors are given by

χ112 = v112 −
v121

κ2 − κ3
− (κ2 − κ3 − 1) v211

(κ2 − κ3)(κ1 − κ3)
, (8.131)

χ121 = v121 −
v211

κ1 − κ2
, (8.132)

χ211 = v211, (8.133)

χ122 = v122 −
v212

κ1 − κ2
− (κ1 − κ2 − 1) v221

(κ1 − κ3) (κ1 − κ2)
, (8.134)

χ212 = v212 −
v221

κ2 − κ3
, (8.135)

χ221 = v221. (8.136)

Each eigenvalue is obtained from the diagonal element of the matrix in
(8.129) or (8.130). Owing to the conditions κ1 > κ2 + 1 and κ2 > κ3 + 1,
all eigenvalues are distinct. All eigenvectors are generated by the successive
action of lowering operators b(−1 − κi) (i = 1, 2, 3) on the highest-weight
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state χ111 = v111. Namely, we obtain

b(−1 − κ1)v111 = (−1 − κ1 + κ2) (−1 − κ1 + κ3) χ211, (8.137)

b(−1 − κ2)v111 = (κ1 − κ2) (−1 − κ2 + κ3) χ121, (8.138)

b(−1 − κ3)v111 = (κ1 − κ3) (κ2 − κ3) χ112. (8.139)

Then the double action of b(−1 − κi) gives

b(−1 − κ1)b(−1 − κ2)v111

=
(
1 − (κ1 − κ2)

2
)

(−1 − κ1 + κ3) (−1 − κ2 + κ3) χ221, (8.140)

b(−1 − κ1)b(−1 − κ3)v111

= (−1 − κ1 + κ2)
(
1 − (κ1 − κ3)

2
)

(κ2 − κ3) χ212, (8.141)

b(−1 − κ2)b(−1 − κ3)v111

= (κ1 − κ2) (κ1 − κ3)
(
1 − (κ2 − κ3)

2
)

χ122. (8.142)

Further application of b(−1 − κi) gives

b(−κ1 − 1)b(−κ2 − 1)b(−κ3 − 1)v111 =
∏

1≤i<j≤3

(
1 − (κi − κj)

2
)

χ222.

(8.143)

Conversely, all eigenvectors are generated by the successive action of
c(−κi) (i = 1, 2, 3) on the lowest-weight state χ222 = v222. Namely, we
obtain

c(−κ1)v222 = (−κ1 + κ2)(−κ1 + κ3)χ122, (8.144)

c(−κ2)v222 = (κ1 − κ2 + 1)(−κ2 + κ3)χ212, (8.145)

c(−κ3)v222 = (κ1 − κ3 + 1)(κ2 − κ3 + 1)χ221. (8.146)

Then the double action of c(−κi) gives

c(−κ1)c(−κ2)v222, (8.147)

=
(
1 − (κi − κj)

2
)

(−κ1 + κ3) (−κ2 + κ3) χ112, (8.148)

c(−κ1)c(−κ3)v222, (8.149)

= (−κ1 + κ2)
(
1 − (κ1 − κ3)

2
)

(−κ2 + κ3 + 1)χ121,

c(−κ2)c(−κ3)v222, (8.150)

= (κ1 − κ2 + 1) (κ1 − κ3 + 1)
(
1 − (κ2 − κ3)

2
)

χ211.
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Fig. 8.4. Algebraic structure of Yangian Gelfand–Zetlin basis for N = 3 and κ1 >
κ2 > κ3. The symbols bi and ci stand for the lowering operator b(−1− κi) and the
raising one c(−κi), respectively. The symbols b′i and c′i stand for the annihilation
operators b(−κi) and c(−1 − κi), respectively.

Further application of c(−κi) gives

c(−κ1)c(−κ2)c(−κ3)v222 =
∏

1≤i<j≤3

(
1 − (κi − κj)

2
)

χ111. (8.151)

In addition to the raising and lowering operators described above, the
operators b(−κi) annihilate eigenstates whose ith subscript is 2. Namely we
obtain

b(−κ1)χ2αβ = 0, b(−κ2)χα2β = 0, b(−κ3)χαβ2 = 0, (8.152)

for α, β = 1, 2. On the other hand, the c(−1 − κi) annihilate eigenstates
whose ith subscript is 1:

c(−1− κ1)χ1αβ = 0, c(−1− κ2)χα1β = 0, c(−1− κ3)χαβ1 = 0. (8.153)

Figure 8.4 summarizes the algebraic structure.
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Example 8.10. N = 3, κ1 > κ2 = κ3.
In the present case, we obtain

κ1 > κ2 + 1, κ2 = κ3 + 1. (8.154)

A basis of Vκ is given by

ϕ112 ≡ v112 − v121, ϕ212 ≡ v212 − v221. (8.155)

Considering (8.154), (8.129), and (8.130), we see that (8.155) themselves are
eigenfunctions:

a1(u;κ1, κ2, κ3)ϕ112 = (u + 1 + κ1) (u + 1 + κ2) (u + κ3) ϕ112,

a1(u;κ1, κ2, κ3)ϕ212 = (u + κ1) (u + 1 + κ2) (u + κ3) ϕ212.

The operators b(−1−κ1) and c(−κ1) are the lowering and raising operators
of eigenstates:

b(−1 − κ1)ϕ112 =
(
(κ1 − κ2)

2 − 1
)

ϕ212, (8.156)

c(−κ1)ϕ212 =
(
(κ1 − κ2)

2 − 1
)

ϕ112. (8.157)

The orthogonal basis in F3,κ is given by

{Uκϕ112, Uκϕ212}, (8.158)

or equivalently by

{Uκϕ112, Uκb(−1 − κ1)ϕ112}. (8.159)

8.5.2 Orthogonal eigenbasis for N-particle systems

We are now ready to construct an orthogonal set of eigenbasis of FN,κ with
arbitrary N . For κ ∈ Λ+

N,2, we consider a subset Iκ of I = {1, 2, . . . , N} by
removing all adjacent pairs {i, i + 1} with κi = κi+1. Namely, Iκ is a subset
that picks up unpaired spins from I. On the other hand, let Iκ ⊂ [1, . . . , N ]
be the set of i such that [i, i + 1] forms a singlet. For example, with N = 3
and κ1 > κ2 > κ3, we have Iκ = {1, 2, 3}. For N = 3 and κ1 > κ2 = κ3, we
have Iκ = {1} and Iκ = {2}.

More generally, for a given Iκ = (i(1), i(2), . . .), a basis function ϕα of Vκ

is defined as

ϕα ≡ (v12 − v21) ⊗ · · · ⊗ (v12 − v21)⊗
i(1)

vαi(1)
⊗

(v12 − v21) ⊗ · · · ⊗ (v12 − v21)⊗
i(2)

vαi(2)
⊗ · · · . (8.160)
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These functions are uniquely specified by the index α ∈ Wκ, where

Wκ ≡
{

α = (α1, . . . , αN ) ∈ [1, 2]N
∣∣∣(αi, αi+1) = (1, 2) if κi = κi+1

}
.

(8.161)
For example, we put α1 = 1, α2 = 2 if κ1 = κ2. The corresponding state ϕα

with N = 2 is the spin singlet.
The order of α, α̃ ∈ Wκ with

∑
i αi =

∑
i α̃i is defined as

α̃ < α, if the first non-vanishing α̃i − αi is positive. (8.162)

For N = 3 and κ1 > κ2 > κ3, the order of α ∈ Wκ with
∑

i αi = 4 is given by

112 > 121 > 211.

The action of a1(u) on this basis is given in a triangular form:

a1(u)ϕα = $α(u)ϕα +
∑
α̃<α

cαα̃ϕα̃, (8.163)

because a1(u) is the sum of the terms

(u + κ̄1 + X11) ⊗ · · · ⊗ (u + κ̄i−1 + X11) ⊗ X21 ⊗ · · · . (8.164)

The diagonal element $α(u) can be obtained by comparing the coefficient
of ϕα on both sides of (8.163). On the LHS, the coefficient of ϕα comes from

(u + κ̄1 + X11) ⊗ · · · ⊗ (u + κ̄N + X11)ϕα. (8.165)

Then the diagonal element $α(u) is given by

$α(u) = $α(u; κ1, . . . , κN ) =
∏

i∈Iκ∪(Iκ/J(α))

(u+κi+1)
∏

i∈J(α)

(u+κi), (8.166)

where a subset J(α) of Iκ is occupied by down spins. Namely, it is defined as

J(α) ≡ {i ∈ Iκ|αi = 2} . (8.167)

The eigenstates of a1(u) are written in the form

χα = ϕα +
∑
α̃<α

c̃αα̃ϕα̃ (8.168)

with coefficient c̃αα̃. The eigenvalue of a1(u) in (8.168) is $α(u). In terms
of (8.168), we construct a set of orthogonal bases of FN,κ as

Φκ,α = Uκχα, (α ∈ Wκ). (8.169)
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The eigenbases can be derived in another way. The highest-weight state ϕhws

in Vκ with the maximum eigenvalue of Sz
tot is described as

ϕhws = (v12 − v21) ⊗ · · · ⊗ (v12 − v21)⊗
i(1)
v1 ⊗

(v12 − v21) ⊗ · · · ⊗ (v12 − v21)⊗
i(2)
v1 ⊗ · · · . (8.170)

For ϕhws, all the coefficients cαα̃ in (8.163) are zero because there are no
states with the same Sz

tot for a given κ. Hence we obtain

a1(u)ϕhws = $α(u)ϕhws, (8.171)

with $α(u) given by (8.166). Then the state

χ̃α =
∏

i∈J(α)

b(−1 − κ̄i)ϕhws (8.172)

is also an eigenfunction of a1(u) which satisfies [143,144]

a1(u)χ̃α = $α(u)χ̃α, (8.173)

as will be proved below. The orthogonal basis in FN,κ for κ ∈ Λ+
N,2 is given

by the set [180]

Φ̃κ,α ≡ Uκχ̃α, (α ∈ Wκ). (8.174)

The basis functions (8.169) and (8.174) are equivalent up to a constant fac-
tor: Φκ,α ∝ Φ̃κ,α.

Proof of (8.173).
We shall use mathematical induction for the proof. The statement is true for
the highest-weight state ϕhws as given by (8.171). Suppose that the above
statement holds for a function χ̃α if the number ]J(α) of elements in the set
J(α) is less than or equal to an integer r ∈ [0, ]Iκ − 1]. Any function χ̃α′ for
α′ satisfying ]J(α′) = r + 1 is written as

χ̃α′ = b(−1 − κj)χ̃α, (8.175)

with α such that J(α′) = J(α) ⊕ {j}. Let us apply (8.97) to both sides of
(8.175). Setting v = −1 − κj , we obtain

(u + 1 + κj) [a1(u)χ̃α′ − $α(u)χ̃α′ ] = −$α(u)χ̃α′ . (8.176)

Here we have used the relation

a1(−1 − κ̄i)χ̃α = 0 for i ∈ Iκ/J(α) ⊕ Iκ.
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From (8.176), we obtain

a1(u)χ̃α′ = $α(u)
(u + κj)

(u + κj + 1)
χ̃α′ = $α′(u)χ̃α′ , (8.177)

which shows that χ̃α′ is also an eigenfunction. By induction, (8.173) is hence
proved.

We note that the eigenvalues $α(u) for α ∈ Wκ are non-degenerate.
From (8.173), it follows that χ̃α is the eigenfunction of a1(u) with an eigen-
value distinct from the others. Recalling the results in Section 8.4, we see
that (8.174), which belongs to FN,κ, is an eigenfunction of the self-adjoint
operator a1(u, d̂1, . . . , d̂N ) with a distinct eigenvalue. This means that (8.174)
forms an orthogonal set of eigenbases in FN,κ. Let FN be the collection of
FN,κ:

FN ≡ ⊕κ∈L+
N,2

FN,κ. (8.178)

The orthogonal basis of FN is then given by [180]{
Φκ,α|κ ∈ L+

N,2, α ∈ Wκ

}
. (8.179)

8.6 Norm of Yangian Gelfand–Zetlin basis

The norm of the set of orthogonal bases of FN,κ can be obtained algebraically
[180] starting from the simpler case of the highest-weight state. In the case
of α ∈ Wκ, i ∈ Iκ, and αi = 1, Φκ,α has a descendant state

b(−1 − d̂i)Φκ,α. (8.180)

Suppose we know the norm of the highest-weight state Ûκϕhws in FN,κ. We
then obtain the norm

‖Φκ,β‖2 ≡ 〈Φκ,β , Φκ,β〉′ (8.181)

for any basis function in FN,κ from the recursion formula [180]∥∥∥b(−1 − d̂i)Φκ,α

∥∥∥2
/ ‖Φκ,α‖2 =

$̃(−κ̄i)
$α(−κ̄i)

lim
k→κ̄i

$α(−1 − k)
k − κ̄i

, (8.182)

which will be verified below. Here $̃(−κ̄i) represents the eigenvalue of a2(u)
for the eigenstate χα:

a2(u)χα = $̃(u)χα, (8.183)
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where $̃(u) actually does not depend on α since a2(u) is a scalar, namely the
regular quantum determinant. As an example of formula (8.182), the case
of two particles with κ = (κ1, κ2) satisfying κ1 > κ2 is explicitly written as

‖Φκ1κ2,12‖2 / ‖Φκ1κ2,11‖2 =
κ̄1 − κ̄2 − 1
κ̄1 − κ̄2 − 1

, (8.184)

‖Φκ1κ2,21‖2 / ‖Φκ1κ2,11‖2 =
κ̄1 − κ̄2

κ1 − κ2 + 1
, (8.185)

‖Φκ1κ2,22‖2 / ‖Φκ1κ2,11‖2 = 1. (8.186)

In the derivation of (8.184) and (8.185), we have used (8.102) and (8.103).

Proof of (8.182).
Let us introduce an inner product 〈〈ϕ, ϕ̃〉〉 for ϕ, ϕ̃ ∈ Vκ, via the inner
product 〈·, ·〉′ in FN,κ. Namely, we define

〈〈ϕ, ϕ̃〉〉 ≡ 〈Ûκϕ, Ûκϕ̃〉. (8.187)

It then follows that

〈〈χα, χβ〉〉 = 〈Φκ,α, Φκ,β〉′, (8.188)

for α, β ∈ Wκ. The adjoint property

b†(u; κ̄1, . . . , κ̄N ) = c(u; κ̄1, . . . , κ̄N ) (8.189)

holds with respect to 〈〈·, ·〉〉. This can be confirmed as follows:

〈〈ϕ, b(u; κ̄1, . . . , κ̄N )ϕ̃〉〉 = 〈Ûκϕ, b(u; d̂1, . . . , d̂N )Ûκϕ̃〉′

= 〈c(u; d̂1, . . . , d̂N )Ûκϕ, Ûκϕ̃〉′

= 〈Ûκc(u; κ̄1, . . . , κ̄N )ϕ, Ûκϕ̃〉′

= 〈〈c(u; κ̄1, . . . , κ̄N )ϕ, ϕ̃〉〉, (8.190)

where we have used (8.72) in the second equality. We then use the relation

〈〈b(−1 − κ̄i)χα, b(−1 − κ̄i)χα〉〉 = 〈〈χα, c(−1 − κ̄i)b(−1 − κ̄i)χα〉〉, (8.191)

for the LHS of (8.182). Calculation of the RHS requires some steps. First,
(8.62) is transformed as

c(u)b(v) = b(v)c(u) + (u − v)−1 [d(u)a1(v) − d(v)a1(u)] , (8.192)

and set u = −1 − κ̄i and v = −1 − k. Secondly, provided αi = 1 in α ∈ Wκ,
we have the relations

a1(−1 − κi)χα = $α(−1 − κi)χα = 0, (8.193)

c(−1 − κi)χα = 0. (8.194)
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Taking the limit k → κ̄i with αi = 1, we obtain from (8.191), (8.192), (8.193)
and (8.194),

〈〈χα, c(−1 − κ̄i)b(−1 − κ̄i)χα〉〉
〈〈χα, d(−1 − κ̄i)χα〉〉

= lim
k→κ̄i

$α(−1 − k)
k − κ̄i

. (8.195)

The denominator on the LHS of (8.195) can be evaluated with use of (8.80)
and (8.183). Namely, we take the expectation value of (8.80) with respect
to χα with u = −κ̄i. The result is given by

$̃(−κ̄i)〈〈χα, χα〉〉 = $α(−κ̄i)〈〈χα, d(−1 − κ̄i)χα〉〉, (8.196)

with use of (8.194). From (8.195) and (8.196), we finally obtain

〈〈χα, c(−1 − κ̄i)b(−1 − κ̄i)χα〉〉
〈〈χα, χα〉〉

=
$̃(−κ̄i)
$α(−κ̄i)

limi
k→κ̄i

$α(−1 − k)
k − κ̄i

, (8.197)

which proves (8.182).
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SU(K) and supersymmetric Yangians

We now describe the properties of the SU(K) chain in more algebraic terms.
The relevant symmetry is the SU(K) Yangian, which is usually referred to as
Y (slK). On the other hand, the Yangian symmetry of the Sutherland model
with spin 1/2 is given by Y (gl2). The difference between Y (slK) and Y (glK)
is that the charge degrees of freedom U(1) is absent in Y (slK), while the
spin degrees of freedom is included in both Y (slK) and Y (glK). In Section
4.8.3, we have removed the U(1) component by means of the freezing trick,
i.e., by taking the infinitely large repulsion parameter λ. In this chapter we
take a more algebraic approach to study Y (slK), which makes the relation
between Y (glK) and Y (slK) clearer.

In Section 9.1, we begin with the construction of the SU(K) monodromy
matrix as the product form. The commuting property of the Cherednik–
Dunkl operators plays a crucial role here. The monodromy matrix is the
basic building block of the Yangian algbebra, as discussed in Section 8.2.
Because the Hamiltonian of the SU(K) spin chain and the monodromy
matrix commute, each eigenstate of the spin chain constitutes a basis for
representations of the SU(K) Yangian.

In Section 9.2 and 9.3, we discuss the quantum determinant by com-
paring it with the ordinary determinant. It is demonstrated in Section 9.4
that the quantum determinant has a scalar nature that leads to a simple
evaluation. Because of the scalar nature, however, the quantum determi-
nant cannot distinguish different SU(K) Yangian states. We need to come
back to the monodromy matrix which gives different eigenvalues for such
states within the irreducible representation. For explicit representation of
the SU(K) monodromy matrix, we introduce the Lax pair method in Sec-
tion 9.5. It is demonstrated that the Lax method reproduces the same mon-
odromy matrix as that given in the product form, and that all conserved
quantities are constructed as the power of the Lax operator.

422
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A ribbon diagram without inscription is in one-to-one correspondence
with a motif, and both specify an SU(K) representation. In Section 9.6, we
provide another way of representing the Yangian supermultiplet in terms of
the Drinfeld polynomial. Finally, in Section 9.7, we sketch an idea to extend
the Yangian to arbitrary supersymmetry, including the SUSY t–J model.

9.1 Construction of monodromy matrix

We start with the following form of the Cherednik–Dunkl operators:

di =
zi

λ

∂

∂zi
+

∑
j

′ [θ(j − i) − θij ] Kij , (9.1)

where θij = zi/(zi − zj) and θ(i − j) is the step function. The prime in the
summation means exclusion of j = i. The second term can also be written as∑

j

′ [θ(j − i) − θij ] Kij = −1
2

∑
j

′ [sgn(i − j) + wij ] Kij , (9.2)

with wij = (zi + zj)/(zi − zj). The operator di is related to d̂i used in Chap-
ters 3 and 7 by the similarity transformation, which has been displayed in
(3.163). Namely, we obtain with O =

∏
i<j |zi − zj |λ,

di = Od̂iO−1 + N − 1. (9.3)

The form d̂i is useful for discussion of non-symmetric Jack polynomials. How-
ever, we prefer here the simpler form di which enables us to derive the explicit
form of the Yangian generators as given by (9.15). To study the SU(K) sys-
tem without the spatial motion of particles, we introduce an operator D̂i by

D̂i = di −
zi

λ

∂

∂zi
=

∑
j

′ [θ(j − i) − θij ] Kij . (9.4)

The commuting property [D̂i, D̂j ] = 0 also holds without the differential
operators, as can be deduced in analogy with the fundamental commutation
property (7.23).

We can then construct the monodromy matrix as

T̂0(u) =
(

1 +
P01

u − D̂1

)
· · ·

(
1 +

P0M

u − D̂N

)
=

∑
ab

Xab
0 T̂ab(u), (9.5)

T̂ab(u) =
∑
c···e

(
1 +

Xbc
1

u − D̂1

)
· · ·

(
1 +

Xea
M

u − D̂M

)
, (9.6)
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where the order of indices in Xab
0 T̂ab(u) comes from the ket property of a in

Xab
0 = |a〉〈b|, and the bra property of a in T̂ab(u) = 〈a|T̂ (u)|b〉. Since the D̂i’s

commute among themselves and with P0j , they can be treated as if they are
c-numbers. By following the same logic as that for the Sutherland model, we
can confirm that T̂0(u) satisfies the Yang–Baxter relation, and is qualified
as the monodromy matrix. In fact, the Yang–Baxter relation holds for any
values of the set {zi}. However, an interesting conservation law appears only
if the {zi} form the regular lattice with the same spacing on the ring. Since
all coordinates are fixed, we no longer have the U(1) degrees of freedom, i.e.,
the phonons, and the relevant Yangian becomes Y (slK) instead of Y (glK).

The Hamiltonian of the SU(K) chain is obtained from the Sutherland
model written in the form

HS = λ2
N∑

i=1

(
di −

N − 1
2

)2

− λ2

12
N(N2 − 1), (9.7)

where we have taken the length L = 2π.
Let us analyze the λ-dependence [183] of the commuting property:

[di, λ
−2HS] = 0, (9.8)

which holds for all i. The LHS has terms of orders ranging from O(λ0) to
O(λ−3), whose coefficients should all vanish. The coefficient of the O(1/λ)
terms in (9.8) is given by

zi
∂

∂zi

∑
j 6=l

hjl + [H̃SU(K), D̂i] = 0, (9.9)

where hij = −zizj/(zi − zj)2 = θijθji and

H̃SU(K) =
∑
i6=j

hijKij (9.10)

appears as the O(λ) term in HS. Since the first term of (9.9) is zero for the
periodic lattice, the second term should also be zero. Namely, D̂i commutes
with H̃SU(K), which is written in terms of Kij . Of course the same result
follows by computing [H̃SU(K), D̂i] directly.

In the bosonic Fock space with KijPijΨB = ΨB, H̃SU(K) is equivalent to
HSU(K) =

∑
i6=j hijPij . In the fermionic Fock space with KijPijΨF = −ΨF,

on the other hand, the relevant form must be −
∑

i 6=j hijKij to have the same
Hamiltonian HSU(K) =

∑
i6=j hijPij . The fermionic form can be obtained

when we replace λ → −λ in (9.7). In this section, we choose the bosonic
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Fock space. We discuss the case of a combination of fermions and bosons in
Section 9.7.

Since H̃SU(K) does not involve the spin operators, it commutes with P0i

for any i. Hence we obtain the important property

[H̃SU(K), T̂0(u)] = 0 = [H̃SU(K), T̂ab(u)], (9.11)

for any combination of a and b. Furthermore, since T̂0(u) keeps the bosonic
symmetry of the wave function, HSU(K) with Pij instead of Kij also com-
mutes with the monodromy matrix. Namely, we obtain

[HSU(K), T̂ab(u)] = 0. (9.12)

The monodromy matrix is expanded in terms of 1/u as

T̂ab(u) = δab +
1
u

T̂
(1)
ab +

1
u2

T̂
(2)
ab + · · · + 1

un
T̂

(n)
ab + · · · , (9.13)

where any term T̂
(n)
ab commutes with the Hamiltonian. The first two terms

are given by

T̂
(1)
ab =

∑
i

Xba
i ≡ Jba, (9.14)

T̂
(2)
ab =

∑
i6=j

∑
c

θijX
bc
i Xca

j = Λba +
1
2

∑
c

(JbcJca − Jba), (9.15)

where Λba is given by

Λba =
1
2

∑
i6=j

∑
c

wijX
bc
i Xca

j =
∑

c

fbacΛc, (9.16)

using θij = (wij + 1)/2. Here Λc is the Yangian generator in a form defined
by (5.12). Equation (9.15) can most easily be derived by taking N = 2. Then
we obtain

T̂
(2)
ab =

∑
c

(
Xbc

1 Xca
2 + D̂1X

ba
1 + D̂2X

ba
2

)
, (9.17)

D̂1X
ba
1 = (1 − θ12)K12X

ba
1 = θ21

∑
c

Xbc
2 Xca

1 , (9.18)

D̂2X
ba
2 = −θ21K21X

ba
2 = −θ21

∑
c

Xbc
1 Xca

2 , (9.19)

where we have used the property K12 = P12 when acting on bosonic states.
The RHS of (9.17) indeed gives (9.15). It is clear that the same results follow
for arbitrary N .
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The set Λab with K2 components minus the U(1) component
∑

a Λaa is
equivalent to the set Λα with K2−1 components, as given by (5.12). They are
manifestly related by the structure constant fabc of the Lie algebra SU(K).
Explicit representation of T̂

(n)
ab of higher order will be given in Section 9.5

using the Lax pair formalism.

9.2 Quantum determinant vs. ordinary determinant

We proceed to an algebraic characterization of the supermultiplet, which has
already been discussed in terms of ribbon diagrams and motifs in Section
4.9.2 of Chapter 4. The key quantity for the characterization is called the
Drinfeld polynomial [43, 44]. Namely, the set of Drinfeld polynomials gives
equivalent information to the motif or the ribbon diagram. The quantum
determinant, which has been discussed in Chapter 8 for SU(2), becomes
indispensable in the course of the discussion. Since the quantum determi-
nant is a fundamental quantity in the Yangian theory, we explain the basic
property generalizing to the Y (slK) and Y (glK) cases.

We begin with an interpretation of the ordinary determinant as an anti-
symmetrizer. Consider a set of unit vectors ei with 1 ≤ i ≤ K. Any vector
in the K-dimensional space can be formed by a linear combination of ei as

Aj =
∑

i

aijei. (9.20)

Then we can represent the determinant in terms of the antisymmetrizer as

Asym A1 ⊗ A2 ⊗ · · · ⊗ AK = det{aij}Asym e1 ⊗ e2 ⊗ · · · ⊗ eK . (9.21)

The determinant is regarded as a projection from a matrix {aij} to a
c-number. The antisymmetrized vectors on the RHS represent the SU(K)
singlet. In the simplest case of K = 2, for example, we obtain

Asym e1 ⊗ e2 = e1 ⊗ e2 − e2 ⊗ e1 = | ↑↓〉 − | ↓↑〉, (9.22)

with e1 identified as spin up. We now consider a situation where a set aij(u)
with a spectral parameter u consists of operators that do not commute with
each other, but satisfy the Yangian commutation relation

(u − v) [aij(u), akl(v)] = akj(v)ail(u) − akj(u)ail(v). (9.23)

This commutation relation has appeared in (8.57) and (8.58). The elements
aij(u) are now written as Tij(u), implying that they are qualified as elements
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of the monodromy matrix. Then we generalize the ordinary determinant to
the quantum determinant by the relation

Asym T 1(u) ⊗ T 2(u − 1) ⊗ · · · ⊗ T K(u − K + 1)

= qdet {Tij(u)}Asym e1 ⊗ e2 ⊗ · · · ⊗ eK , (9.24)

where T j(v) =
∑

i Tij(v)ei and

qdet {Tij(u)} =
∑
P

sgn(P )TP (1)1(u)TP (2)2(u − 1) · · ·TP (K)K(u − K + 1).

(9.25)
Note that the antisymmetrization acts only on vectors ei and keeps the se-
quence of non-commuting operators. Unlike the classical determinant, the
quantum determinant is still an operator in the KN -dimensional vector
space, where N is the number of sites in the system. An alternative ex-
pression is obtained as

qdet {Tij(u)} =
∑
P

sgn(P )T1P (1)(u−K +1)T2P (2)(u−K +2) · · ·TKP (K)(u),

(9.26)
which is equivalent to (9.25) as shown below. The spectral parameters u −
K + j in the quantum determinant are sequential. The reason for this choice
comes from the Yangian commutation relation of (9.23), which simplifies
with u − v = ±1.

9.3 Capelli determinant

In order to understand the nature of quantum determinants, we take the
simplest version where only a single site is involved. This version is called
the Capelli determinant in the mathematical literature [67]. Let us consider
a K × K operator-valued matrix whose elements Cji(u) are given by

Cji(u) = δij + X ij/u, (9.27)

where the operator Xij acts on the basis |k〉 with k = 1, . . . ,K as X ij |k〉 =
δjk|i〉. This quantity has appeared as the basic element in the monodromy
matrix, as explained in Section 8.2. Note that the order ij of indices is
different between Cji and Xij . With this definition, the i’s in Cji and X ij

both represent an index of a ket vector |i〉, while j in both Cji and X ij

represent a bra vector 〈j|.
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In the case of K = 2, the quantum (Capelli) determinant is derived
according to (9.25) and (9.26) as

qdet {Cij(u)} =
(

1 +
X11

u

)(
1 +

X22

u − 1

)
− X21X12

u(u − 1)
(9.28)

=
(

1 +
X11

u − 1

)(
1 +

X22

u

)
− X12X21

(u − 1)u
= 1 +

1
u

, (9.29)

where we have used the completeness relation X11 + X22 = 1.
In the next simplest case of K = 3, the Capelli determinant is given by

qdet {Cij(u)} =
(

1 +
X11

u

)(
1 +

X22

u − 1

)(
1 +

X33

u − 2

)
+

X31

u

X12

(u − 1)
X23

(u − 2)
+ · · · = 1 +

1
u

, (9.30)

using the completeness relation X11 + X22 + X33 = 1. Thus the Capelli
determinant is a c-number 1 + 1/u which is independent of K. Note that
an operator-valued determinant can in general be an operator acting on
K-dimensional vectors.

The mysterious scalar property of the Capelli determinant can be under-
stood naturally in terms of the Yangian algebra. We introduce an auxiliary
space, which consists of K copies of K-dimensional vectors, and interpret
Xij as the product Xij ⊗ 1 · · · ⊗ 1 which acts as a scalar in the auxiliary
space. On the other hand, the antisymmetrizer acts on the auxiliary space,
and does not touch the physical space, as is apparent in (9.25). In the sim-
plest case of K = 2, the Yang–Baxter equation can be written in the form

Asym2 C1(u − 1) ⊗ C2(u) = C2(u) ⊗ C1(u − 1)Asym2, (9.31)

where Cj = C1je1 + C2je2 as in (9.20). Note that Asym2 = 1 − P12 is
the special case v − u = −1 of the R-matrix R12(v − u). We recognize
that Asym2 works as the antisymmetrizer for two vectors in the auxiliary
space. The antisymmetrizer extracts the singlet when acting on a state in
the auxiliary space. This means that C2(u− 1)⊗C1(u) does not produce a
triplet if acting on the singlet. The diagonal element is given by (9.29).

For general K, we obtain the antisymmetrizer AsymK as follows [134]:

AsymK = RK−1,K(RK−2,KRK−2,K−1) · · · (R2K · · ·R23)(R1K · · ·R12),
(9.32)

where Rij = Rij(ui−uj) with ui−uj = −1 acts on the ith and jth vectors in
the auxiliary space. Namely, action of AsymK on the ordered set of vectors
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Asym3

C1

C2

C3

C3

C2

C1

=

Asym3

Fig. 9.1. Graphical representation of (9.35) with K =3. The quantum number along
the vertical line is represented by X-operators.

ei (1 ≤ i ≤ K) leads to the SU(K) singlet |0K〉:

AsymK(e1 ⊗ e2 · · · ⊗ eK) =
∑
P

sgn(P )eP (1) ⊗ eP (2) · · · ⊗ eP (K) = |0K〉,

(9.33)
which can be verified by mathematical induction, starting with K = 2. Note
that AsymK does not preserve the norm of a state; double action of AsymK

gives

AsymK
2 = K! AsymK . (9.34)

We can interpret AsymK as an explicit realization of Asym used in (9.21).
The crucial point is that AsymK is a product of R-matrices. Hence, re-

peated use of the Yang–Baxter equation reverses the order of Ci, and finally
leads to

AsymKC1(u − K + 1) ⊗ · · ·CK(u)

=CK(u) ⊗ · · ·C1(u − K + 1)AsymK , (9.35)

which is illustrated in Fig. 9.1 for the case of K = 3.
Equation (9.35) shows that action of CK(u) ⊗ · · ·C1(u − K + 1) on the

SU(K) singlet again gives the singlet, as assured by the LHS. Both sides of
(9.35) define the Capelli determinant qdetC(u). Namely, we obtain

qdet {Cij(u)}AsymK = CK(u) ⊗ · · ·C1(u − K + 1)AsymK (9.36)

= AsymKC1(u − K + 1) ⊗ · · ·CK(u). (9.37)

By applying (9.36) to e1 ⊗e2 · · ·⊗eK , we obtain (9.25). By using (9.37), on
the other hand, we obtain (9.26). Hence, both definitions given by (9.25) and
(9.26) are equivalent for the Capelli determinant. The equivalence applies
to quantum determinants in general.

Since the singlet remains by this action, the Yang–Baxter equation requires
that the quantum number in the physical space after successive application
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of X-operators also remains the same. This is because the Yang–Baxter
equation has SU(K) invariance in the combined space of auxiliary and phys-
ical states. Furthermore, the SU(K) symmetry requires that the product is
independent of the quantum number in the physical space. This means that
the Capelli determinant is a scalar. Let us then take the first spin state |1〉
for acting on the Capelli determinant:

qdet {Cij(u)}|1〉 =
(

1 +
X11

u

)
· · ·

(
1 +

XKK

u − K + 1

)
|1〉 + · · · . (9.38)

As can be understood from the structure of (9.38), the only term that re-
mains nonzero is the product of the diagonal term with X ii → 1 for i = 1
and X ii → 0 otherwise. Hence, the Capelli determinant is 1 + 1/u for all
values of K. The antisymmetrizer construction has thus clarified the origin
of the common value 1 + 1/u.

9.4 Quantum determinant of SU(K) Yangian

We now derive the quantum determinant of T̂0 in (9.5) explicitly. Because
site-dependent factors in (9.6) commute with each other, the quantum deter-
minant of the product is equal to the product of each quantum determinant.
The latter has been calculated as the Capelli determinant:

qdet

(
1 +

X̂i

u − D̂i

)
= 1 +

1
u − D̂i

=
u + 1 − D̂i

u − D̂i

, (9.39)

where X̂i is the operator-valued matrix whose elements are Xab
i with 1 ≤

a, b ≤ K. Then we obtain

qdet T̂0(u) =
∆̂N (u + 1)

∆̂N (u)
, (9.40)

where ∆̂N (u) =
∏

i(u − D̂i). Since the quantum determinant is a scalar in
Y (slK), the result of its action is independent of the physical state chosen.
Hence we take the fully polarized state where Kij = 1 for any i and j. Then
we obtain

D̂i → −1
2

∑
j

′(wij + 1) + N − i. (9.41)

Thus qdet T̂0(u) is determined once the configuration of the coordinates is
fixed. For a periodic lattice, great simplification occurs since summation over
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j gives a zero result for wij . Then the eigenvalues are given by

D̂i →
1
2

(N + 1) − i, (9.42)

which ranges from (N − 1)/2 for i = 1 to −(N − 1)/2 for i = N . Hence we
obtain

∆̂N (u) =
N∏

i=1

(
u − 1

2
(N − 1) + i − 1

)
, (9.43)

qdet T̂0(u) =
[
u +

1
2
(N + 1)

]/ [
u − 1

2
(N − 1)

]
. (9.44)

For both periodic and non-periodic lattices, the quantum determinant of
Y (slK) does not depend on a many-spin state. This is in contrast to that of
Y (glK), where the quantum determinant does depend on a supermultiplet.
We remark additionally that the Yangian commutation relation (9.23) leads
to the relation for any element of the monodromy matrix:[

qdet T̂0(u), T̂ ab
0 (v)

]
= 0, (9.45)

for any values of the spectral parameters.

9.5 Alternative construction of monodromy matrix

We now discuss another way of deriving conserved quantities and the mon-
odromy matrix using the Lax pair [22,163]. A merit of the Lax pair formal-
ism is that the explicit form of T̂

(n)
ab for general n can be derived easily. The

monodromy matrix we now derive is written as T0(u). Later we show the
equivalence of T0(u) to T̂0(u) given by (9.6). We introduce the Lax operator
L by

Lij = (1 − δij)θijPij , (9.46)

where θij = zi/(zi − zj) is related to wij = (zi + zj)/(zi − zj) as

wij = θij − θji = 2θij − 1. (9.47)

The generating function of operators T
(n)
ab is given by

T0(u) = Xab
0 Tab(u) = 1 +

∑
ij

P0i

(
1

u − L

)
ij

, (9.48)

Tab(u) = δab +
∑
ij

Xba
i

(
1

u − L

)
ij

=
∞∑

n=0

1
un

T
(n)
ab , (9.49)
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where Xba
0 changes state a to b at an auxiliary site 0, and T ab

n=0 = δab. Let
us write down lower-order terms of T

(n)
ab . Expansion of (9.49) gives

T
(1)
ab =

∑
i

Xba
i = Jba. (9.50)

Here we have introduced the notation Jba for a component of the generalized
total angular momentum, which is conserved. In the next order we obtain

T
(2)
ba =

∑
i6=j

θij

∑
c

Xac
i Xcb

j . (9.51)

Thus both T̂ ba
1 and T̂ ba

2 are the same as those given by (9.14) and (9.15).
Let us now prove that the monodromy matrix defined by (9.49) indeed sat-

isfies the Yang–Baxter relation. We follow the method of Bernard et al. [22]
and work with the coordinate exchange operator Kij with each coordinate
zi being not necessarily on a periodic lattice. For a bosonic wave function
ΨB, the symmetry results in KijPijΨB = ΨB. However, the wave function
becomes no longer symmetric after applying Kij alone. This means that
the action of Kij brings the wave function out of the bosonic Fock space.
Examples of useful identities within the bosonic Fock space are

PjlPij = KijKjl = KilKij = KljKil, (9.52)

where the first equality can be verified by considering a three-particle system.
Let us introduce an operator Di by

Di =
∑

j

′θijKij . (9.53)

The commutation rule is given by

[Di, Dj ] = (Di − Dj)Kij , (9.54)

which can be derived by direct calculation. Alternatively, it follows from the
relation

Di = − lim
λ→∞

ziπi, (9.55)

where πi has been defined by (7.21), and satisfies [πi, πj ] = 0. We work with
the bosonic wave function from now on. Then we obtain the equivalence

Dn
i =

∑
j

(Ln)ij , (9.56)
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which can be verified by direct calculation. We demonstrate the case of n = 2
as follows:

θijKijθilKil = θijθjlKijKil = θijθjlKjlKij = θijPijθjlPjl, (9.57)

where the first and last expressions correspond to D2
i and (L2)ij , respectively,

after summation over indices j(6= i) and l( 6= j). Then the monodromy matrix
is recast into the form

T0(u) = 1 +
∑

i

P0i(u − Di)−1. (9.58)

In the Yang–Baxter equation, we encounter the product of permutations,
which are transformed as

P00′P0iP0′j = KijP0iP0′j , P0′jP0iP00′ = P0′jP0iKij . (9.59)

Then the Yang–Baxter relation is reduced to the form

(u−v+Kij)(u−Di)−1(v−Dj)−1 = (v−Dj)−1(u−Di)−1(u−v+Kij). (9.60)

By taking the inverse of both sides, and multiplying by u−v +Kij from the
left and from the right, we obtain

(u − v + Kij)(v − Dj)(u − Di) = (u − Di)(v − Dj)(u − v + Kij). (9.61)

The equality can also be verified by using the commutation rule (9.54).
Hence it has been proven that the monodromy matrix in the form of (9.49)
indeed satisfies the Yang–Baxter equation in the bosonic Fock space.

We have seen that the generators Jab and Λab are equivalently given from
a 1/u expansion of either T̂0(u) or T0(u). It is shown now that higher-level
generators are also equivalent in T̂0(u) and T0(u) by using Yangian algebra.
Namely, the commutation rule between T

(n)
ab is given with n ≤ m by

[
T

(n)
ab , T

(m)
cd

]
=

n∑
k=0

(
T

(k+m)
cb T

(n−k−1)
ad − T

(n−k−1)
cb T

(k+m)
ad

)
, (9.62)

which is obtained by expansion of Tab(u) in powers of 1/u in the Yang–
Baxter relation. Putting n = 1 and b = c, we obtain for m ≥ 2

T
(m+1)
ad =

∑
b

[
T

(1)
ab , T

(m)
bd

]
+ T

(m)
ad , (9.63)
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where we have used T
(0)
ab = δab. Therefore, any higher-level generator T

(n)
ab

can be recursively derived from Jab and Λab by (9.63). Since the two
lowest-order terms are the same for T̂0(u) and T0(u), the whole
series must also be the same.

Let us turn to the quantum determinant for a non-regular lattice. Since
qdetT0(u) is independent of the spin state, we take the fully polarized state
where all sites have spin state 1. The monodromy matrix can be made lower
triangular because the fully polarized state is a YHWS. The diagonal ele-
ments except for T11(u) are all unity. Then we obtain

T11(u) = qdet T0(u) = 1 +
N∑

i,j=1

( 1
u − Θ

)
ij

=
∆N (u + 1)

∆N (u)
. (9.64)

Here Θ is the N×N matrix with matrix elements θij , and ∆N (u) is its char-
acteristic polynomial as given by ∆N (u) = det(u − Θ). We emphasize that
the discussion so far does not assume a regular periodic lattice. Therefore,
det(u − Θ) depends on the configuration of the coordinates. The nature of
Y (slK) appears in the point that det(u − Θ) is common to all states, given
the coordinate configuration. Provided zi forms a regular lattice on the ring,
the matrix Θ can be diagonalized in terms of momentum eigenstates. Then
we obtain

∆N (u) =
N∏

i=1

(
u − 1

2
(N − 1) + i − 1

)
= ∆̂N (u), (9.65)

where the last quantity has appeared in (9.43). In the regular lattice, the
commutation relation with the Hamiltonian is given by

[HSU(K), Lij ] =
∑

l

(MilLlj − LilMlj), (9.66)

with

Mij = 2(1 − δij)hijPij − 2δij

∑
k

hikPik. (9.67)

The pair of operators Lij and Mij is called the Lax pair.
Because of the property

∑
i Mij =

∑
j Mij = 0, we obtain

[HSU(K),
∑
ij

Lij ] = 0. (9.68)

Namely,
∑

ij Lij is conserved. In a similar fashion, it can be shown that

[HSU(K),
∑
ij

(Ln)ij ] = 0, (9.69)
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for any power n. Furthermore, observing that

[HSU(K), X
ab
i ] =

∑
j

Xab
j Mji, (9.70)

we find that the quantity

T
(n)
ab =

∑
ij

Xba
i (Ln)ij (9.71)

is also conserved. In this way we have derived the explicit form of higher
conserved quantities

∑
ij(L

n)ij and T
(n)
ab .

9.6 Drinfeld polynomials

The eigenstates of the SU(K) spin chain give representations of the Yangian.
Each eigenstate constitutes a supermultiplet, which is characterized by either
a ribbon diagram or a motif. We now introduce another equivalent descrip-
tion in terms of a set of polynomials Pi(u), where i runs from 1 to K − 1.
These are called Drinfeld polynomials, and provide information equivalent
to that given by motifs or ribbon diagrams [43,44]. The description in terms
of Drinfeld polynomials is algebraically the most systematic, but least picto-
rial. We provide an intuitive, although less rigorous, route toward Drinfeld
polynomials in the following.

All the information about Yangian properties is contained in the mon-
odromy matrix, which can be made lower triangular in the space of YHWS.
If one takes an m × m submatrix from the top left and neglects the rest,
the eigenfunctions consist of states belonging to the SU(m) Yangian Y (slm)
with m ≤ K. In this way we can classify the YHWS states according to the
chain

Y (sl2) ⊂ Y (sl3) ⊂ · · · ⊂ Y (slK). (9.72)

The basis set which is consistent with this chain is called the Gelfand–Zetlin
basis. The monodromy matrix acting on a YHWS |w〉 is of the form

T̂0(u)|w〉 =


T̂11(u) 0 0 · · · 0

∗ T̂22(u) 0 · · · 0
...

...
... · · ·

...
∗ ∗ ∗ · · · T̂KK(u)

 |w〉. (9.73)

The quantum determinant in this representation is simply given by

qdet T̂0(u) = T̂11(u)T̂22(u − 1) · · · T̂KK(u − K + 1), (9.74)
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Q2(u)Q2(u − 1)

P1(u)

∆̂N (u)
u = −4 −2 0 2 4

Fig. 9.2. Distribution of zeros shown by circles for the Drinfeld polynomial P1(u)
and Q2(u)Q2(u−1). A pair of successive zeros in Q2(u)Q2(u−1) represents an SU(2)
singlet in the many-spin states, while zeros of P1(u) specify the set of momenta of
spinons.

which takes the value given by (9.44). Although the quantum determi-
nant does not have information on |w〉, the ratio T̂m+1,m+1(u)/T̂mm(u) does
depend on each YHWS.

In the simplest case of K = 2, for example, we write

T̂0(u)|w〉 =
Q2(u + 1)

Q2(u)

(
P1(u + 1)/P1(u) 0

∗ 1

)
|w〉, (9.75)

with P1(u) and Q2(u) being polynomials of u. Without loss of generality we
can choose the coefficient unity for their highest power, which is referred to
as monic. Comparing this with the result of the quantum determinant, we
obtain

∆̂N (u + 1)
∆̂N (u)

=
P1(u + 1)Q2(u + 1)Q2(u)

P1(u)Q2(u)Q2(u − 1)
, (9.76)

which leads to ∆̂N (u) = P1(u)Q2(u)Q2(u − 1). This relation restricts zeros
of Q2(u) so that they should not be adjacent. A pair of zeros in the product
Q2(u)Q2(u−1) represents a singlet included in the N -body spin state. Figure
9.2 illustrates the situation. The poles of T̂22(u) describe momenta of down
spins, of which those in Q2(u) are part of an SU(2) singlet. On the other
hand, the poles of T̂11(u) describe momenta of up spins. Of these poles, those
in Q2(u) are part of an SU(2) singlet, while those in P1(u) correspond to
spinons. The polynomial P1(u) is an example of a Drinfeld polynomial.

The structure of roots in the monodromy matrix will become more trans-
parent when we proceed to the case of SU(3). We bring the monodromy
matrix into the lower triangular form, and represent T̂ii(u) in terms of monic
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polynomials P1(u), P2(u), and Q3(u) in the following way:

T̂11(u)/T̂22(u) = P1(u + 1)/P1(u), (9.77)

T̂22(u)/T̂33(u) = P2(u + 1)/P2(u), (9.78)

T̂33(u) = Q3(u + 1)/Q3(u), (9.79)

which is a generalization of (9.75). Then the quantum determinant is
given by

∆̂N (u + 1)
∆̂N (u)

=
P1(u + 1)P2(u + 1)P2(u)Q3(u + 1)Q3(u)Q3(u − 1)

P1(u)P2(u)P2(u − 1)Q3(u)Q3(u − 1)Q3(u − 2)
, (9.80)

which shows that ∆̂N (u) is given by the denominator on the RHS.
Now it is easy to generalize to arbitrary K. We define Drinfeld polynomials

Pm(u), with 1 ≤ m ≤ K−1, and QK(u), which describes the SU(K) singlet,
by

T̂mm(u)/T̂m+1,m+1(u) = Pm(u + 1)/Pm(u), (9.81)

T̂KK(u) = QK(u + 1)/QK(u). (9.82)

The quantity ∆̂N (u) appearing in the quantum determinant of T̂0(u) is given
by

∆̂N (u) = P1(u)P2(u)P2(u − 1)P3(u)P3(u − 1)P3(u − 2) . . .

× PK−1(u)PK−1(u − 1) . . . PK−1(u − K + 2)

× QK(u)QK(u − 1) . . . QK(u − K + 1). (9.83)

The N successive zeros from −(N − 1)/2 to (N − 1)/2 in ∆̂N (u) are dis-
tributed to those of Pm(u − l) and QK(u − l) on the RHS of (9.83). Hence,
zeros in Pm(u) should be separated by m at least, and those in QK(u)
by K at least. The product QK(u) . . . QK(u − K + 1) specifies the loca-
tion of the SU(K) singlet in the momentum space. Similarly, the prod-
uct Pm(u) . . . Pm(u − m + 1) specifies the location of generalized spinons.
Figure 9.3 illustrates the distribution of zeros in the SU(3) case with N = 9.
The relevant Drinfeld polynomials are given by

P1(u) = (u + 2)(u − 4), P2(u) = (u + 4)(u − 2), Q3(u) = u + 1. (9.84)

The same supermultiplets are represented in terms of the motif by (1)()(11)
(1)(), and in terms of the ribbon diagram of Fig. 9.4.
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Q3(u)

P2(u)

P1(u)

∆̂9(u)
u = −4 −2 0 2 4

Fig. 9.3. Illustration of roots distribution in SU(3) Drinfeld polynomials with
N = 9.

Fig. 9.4. Ribbon diagram corresponding to the set of Drinfeld polynomials of (9.84).

9.7 Extension to supersymmetry

Let us generalize the SUSY t–J model so that the number of bosonic species
is KB, and the number of fermionic species is KF. Our primary purpose
is to show that HtJ commutes with the supersymmetric monodromy ma-
trix, and the conserved quantities are obtained by expansion of the mon-
odromy matrix. For this purpose we work with the following form of the
Hamiltonian:

H̃tJ =
∑
i 6=j

hijKij , (9.85)

where Kij is the coordinate exchange operator of any kind of particle. In
the original Hamiltonian HtJ , we have the graded permutation operator P̃ij

instead of Kij . We simulate the vacant state by a fermion according to (6.2)
in Chapter 6. It is also possible to take the alternative picture where the
spin chain corresponds to the high density limit of electrons, i.e., fermions.
In the latter case we should replace Kij by −Kij in (9.85) and simulate
the vacant state by a boson. The same physical quantities result from either
picture. Namely, Y (slKB|KF

) and Y (slKF|KB
) supersymmetries give the same

physics.
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The operator P̃ij is chosen so that the combined action on ΨBF, which is a
mixture of fermions and bosons, leads to P̃ijKijΨBF = ΨBF. In accordance
with the commutation rule between fermions, we modify the permutation
operator to the graded one as follows:

P̃ij =
∑
αβ

p(β)Xαβ
i Xβα

j , (9.86)

where p(β) = 1 if β belongs to the bosonic species, and p(β) = −1 for
fermionic species.

As in the SU(K) chain, we introduce the lattice version of the Cherednik–
Dunkl operators by

D̂i =
∑

j

′ [θ(j − i) − θij ] Kij , (9.87)

which commutes with H̃tJ . Next, we modify the monodromy matrix as

T̃0(u) =

(
1 +

P̃01

u − D̂1

)
· · ·

(
1 +

P̃0M

u − D̂N

)
=

∑
ab

p(b)Xab
0 T̃ab(u), (9.88)

T̃ab(u) =
∑
c···e

(
1 +

Xbc
1

u − D̂1

)
· · ·

(
1 +

Xea
M

u − D̂M

)
. (9.89)

Correspondingly, the R-matrix is modified as

R̃ij(u) = 1 + P̃ij/u. (9.90)

This modified form also satisfies the Yang–Baxter relation [2]:

R̃00′(u − v)T̃0(u)T̃0′(v) = T̃0′(v)T̃0(u)R̃00′(u − v). (9.91)

From the form of (9.88), the commuting property follows:

[H̃tJ , T̃0(u)] = 0, (9.92)

as in the case of (9.11). Hence, expansion of T̃ab(u) in powers of 1/u gives
the set of conserved quantities. The first two are given by

T̃
(1)
ab =

∑
i

Xba
i , (9.93)

T̃
(2)
ab =

∑
i6=j

∑
c

p(c)θijX
bc
i Xca

j =
∑
i6=j

∑
c

θijX
ba
i P̃ij . (9.94)
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By using the relation wij = 2θij − 1, we obtain from (9.94) the conserved
quantity

Λab =
∑
i6=j

∑
c

p(c)wijX
bc
i Xca

j , (9.95)

which serves as the supersymmetric Yangian generators. Some examples
have been given in Section 6.5.1 for the special case of SU(2,1) or Y (sl2|1).
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Uglov’s theory

In this chapter, we give an example of how the Yangian theory works in
practice in the calculation of physical quantities. Using the Yangian rep-
resentation theory, calculation of the dynamical correlation function of the
Sutherland model with glK symmetry can be performed in the same way
as (a modified version of) the single-component Sutherland model [189].
Namely, Uglov [189] showed that the spin and the spatial momentum can
be unified as a fictitious momentum. This spin–momentum unification is par-
ticularly powerful for exact derivation of spin correlation functions [189,197].
Further development for the SU(K) chain has also been achieved [198,199].
Uglov’s theory is outlined in this chapter.

In Section 10.1 we introduce as a prelude the symmetric Macdonald
polynomials, which include the symmetric Jack polynomials as a special
case. Then in Section 10.2, Uglov symmetric polynomials are introduced as
another limit of symmetric Macdonald polynomials. We explain in Section
10.3 an isomorphism between the Fock space of the Sutherland model with
SU(2) internal symmetry and the space of Laurent symmetric polynomi-
als. The isomorphism by which the Yangian Gelfand–Zetlin basis is mapped
onto the Uglov polynomials preserves the inner product. By this isomor-
phism, density and spin-density operators in the U(2) model find their cor-
respondence in the single-component model. In this way, the calculations of
dynamical density and spin-density correlation functions in the U(2) Suther-
land model reduce to those of a modified version of the single-component
Sutherland model.

10.1 Macdonald symmetric polynomials

We have seen in Section 2.5 that the Jack symmetric polynomials can be
defined as the homogeneous symmetric polynomials of z = (z1, . . . , zN )

441
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satisfying conditions of triangularity (2.177) and orthogonality (2.196). Mac-
donald symmetric polynomials Pµ are defined in a similar way, with the
following weight function w(z; q, t) for the norm:

w(z; q, t) =
∏
i 6=j

(
ziz

−1
j ; q

)
∞(

tziz
−1
j ; q

)
∞

, (10.1)

where we have introduced the notation

(z; q)∞ =
∞∏

r=0

(1 − zqr). (10.2)

We observe the behavior

(z; q)∞
(qλz; q)∞

=
∏∞

r=0(1 − zqr)∏∞
r=0(1 − zqr+λ)

=
λ−1∏
r=0

(1 − zqr) →
q→1

(1 − z)λ. (10.3)

Then in the limit of q → 1 with t = qλ, the weight function tends to

w(z; q, t) =
∏
i6=j

(
ziz

−1
j ; q

)
∞(

tziz
−1
j ; q

)
∞

→
∏
i6=j

(1 − ziz
−1
j )λ. (10.4)

With this preparation we define the inner product for two symmetric
functions f(z1, . . . , zN ) and g(z1, . . . , zN ) as

〈f, g〉0N,q,t =
N∏

i=1

∮
|zi|=1

dzi

2πizi
w(z; q, t)f∗(z)g(z). (10.5)

The Macdonald symmetric polynomial Pµ(z1, . . . , zN ; q, t) specified by a
partition µ ∈ Λ+

N is defined as the homogeneous symmetric polynomial that
is orthogonal with respect to the inner product (10.5):

〈Pµ, Pν〉0N,q,t ∝ δµν . (10.6)

Furthermore, it satisfies the triangularity

Pµ(z1, . . . , zN ; q, t) = mµ +
∑

ν∈Λ+
N ,s.t.ν<µ

vµν(q, t)mν , (10.7)

where mµ is a monomial symmetric polynomial, and the ordering “<” has
been defined in Section 2.1.2. The triangularity (10.7) can be rewritten in
another way in terms of the Schur functions sµ defined by (2.173). Namely,
sµ is given by the limit λ → 1 of symmetric Jack polynomials Jµ which
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have triangularity property (2.177). Hence, Schur functions also have the
triangularity property:

sµ = mµ +
∑

ν(<µ)

vµνmν , (10.8)

from which the triangularity of mµ

mµ = sµ +
∑

ν(<µ)

ṽµνsν (10.9)

follows. Owing to (10.9), the triangularity (10.7) is equivalent to

Pµ(z1, . . . , zN ; q, t) = sµ +
∑

ν(<µ)

ṽµν(q, t)sν , (10.10)

with the coefficients ṽµµ(q, t) depending on q and t. The Jack polynomials
Jµ are obtained as a degenerate limit of Pµ:

lim
q→1

Pµ(z1, . . . , zN ; q, t = qλ) = Jµ(z1, . . . , zN ). (10.11)

Let us quote some basic properties of Pµ without proof. According to [126],
the integral norm is given by

〈Pµ, Pµ〉0N,q,t = cN (q, t)
∏

s∈D(µ)

1 − qa′(s)tN−l′(s)

1 − qa′(s)+1tN−l′(s)−1

1 − qa(s)+1tl(s)

1 − qa(s)tl(s)+1
, (10.12)

with

cN (q, t) = 〈1, 1〉0N,q,t = N !
∏

1≤i<j≤N

(
tj−i; q

)
∞

(
qtj−i; q

)
∞

(tj−i+1; q)∞ (qtj−i−1; q)∞
. (10.13)

The power-sum decomposition formula is given by [117]

pn =
N∑

i=1

zn
i = (1 − qn)

∑
µ,s.t.|µ|=n

∏
s∈D(µ)\(1,1) tl

′(s) − qa′(s)∏
s∈D(µ) 1 − tl(s)qa(s)+1

Pµ, (10.14)

for non-negative integers m. We can confirm that the formulae (10.12) and
(10.14), respectively, reduce to (2.191) and (7.310) in the limit t = qλ, q → 1.

The dynamical density correlation function of the single-component
Sutherland model can be derived using the formula of the integral norm
(2.191) and the power-sum decomposition formula (7.310) of the symmetric
Jack polynomials. Uglov has revealed the remarkable fact that eigenfunc-
tions of the U(K) Sutherland model can be mapped onto the Macdonald
polynomials with a particular choice of (q, t). Namely, wave functions with
both space and spin degrees of freedom are mapped onto functions with only
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spatial degrees of freedom. Then exact results on the dynamics of the U(K)
Sutherland model can be obtained in a way similar to that used in Section 2.7.
We note in passing that the Ruijsenaars–Schneider model [152, 153] men-
tioned in the Introduction has the symmetric Macdonald polynomials as
eigenfunctions. Correspondingly, the dynamical density correlation function
of the Ruijsenaars–Schneider model has been derived [117] using (10.12) and
(10.14).

In the next section, we introduce Uglov polynomials as symmetric poly-
nomials which correspond to the Yangian Gelfand–Zetlin basis of the U(2)
Sutherland model.

10.2 Uglov polynomials

Uglov introduced [188] a new kind of symmetric polynomial under the
name “glN Jack polynomials”, which can be obtained as a special case of
Macdonald polynomials. Here we call these polynomials “Uglov polynomi-
als” in order to distinguish them from the U(K) Jack polynomials. Let γ be
a positive real number and consider the limit

q = −p, t = −pγ , p → 1 (10.15)

in (10.5) and (10.7). In this limit, the symmetric Macdonald polynomial
reduces to the Uglov polynomial P (γ). We set γ = 1 + 2λ in the following.
Then the weight function (10.1) tends to

w(z;−p,−p2λ+1) →
∏
i6=j

(1 − z2
i /z2

j )λ. (10.16)

The integral norm for polynomial functions f, g reduces in the Uglov limit
to

〈f, g〉0N,q,t → {f, g}N,λ. (10.17)

Here the inner product on the RHS is given by

{f, g}N,λ = C.T.
[
∆̃f∗(z)g(z)

]
=

N∏
i=1

∮
|zi|=1

dzi

2πizi
∆̃f∗(z)g(z), (10.18)

where the symbol C.T. denotes the constant term, and

∆̃(z1, . . . , zN ) =
(
∆(z2

1 , . . . , z
2
N )

)λ ∆(z1, . . . , zN )

=
∏

1≤i6=j≤N

(
1 − z2

i /z2
j

)λ (1 − zi/zj) . (10.19)
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The U(K) generalization of the Uglov limit is given by [188]

q = ωKp, t = ωKpKλ+1, p → 1, (10.20)

where ω = exp(2πi/K) is the Kth root of unity. The weight function in this
case tends to

w(z; q, t) →
∏
i6=j

(1 − zK
i /zK

j )λ. (10.21)

For describing the integral norm of the Uglov polynomials with respect to
the inner product (10.18), we introduce the following quantities:

c(s) = a′(s) − l′(s), h(s) = a(s) + l(s) + 1, (10.22)

which are called the content and the hook length, respectively. Using these,
the integral norm of the Uglov polynomial is given by{

P (γ)
µ , P (γ)

µ

}
N,λ

= c
(γ)
N

∏
s∈D(µ),s.t.c(s)=Nmod2

a′(s) + γ(N − l′(s))
a′(s) + 1 + γ(N − l′(s) − 1)

×
∏

s∈D(µ),s.t.h(s):even

a(s) + γl(s) + 1
a(s) + γl(s) + γ

, (10.23)

where

c
(γ)
N = {1, 1}N,λ = N !

∏
1≤i<j≤N

c(γ)(j − i) (10.24)

and

c(γ)(k) =


Γ (γ(k − 1)/2 + 1) Γ (γ(k + 1)/2)

Γ2 ((γk + 1)/2)
, (k : odd),

Γ (γ(k − 1)/2 + 1/2) Γ (γ(k + 1)/2 + 1/2)
Γ (γk/2 + 1) Γ (γk/2)

, (k : even).

(10.25)

We refer to the original literature [126,188] for the proof of the basic prop-
erties of the Macdonald and Uglov polynomials.

10.3 Reduction to single-component bosons

The nice original idea of Uglov is to make a one-to-one-correspondence
between one-particle states of particles with spin and those of spinless par-
ticles. In the case of SU(2), this mapping is realized by doubling the spatial
momentum and adding a fictitious momentum α = 1 (for ↑) or 2 (for ↓) to
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distinguish the spin. In this way the odd momentum is assigned exclusively
for spin-up particles, and even one for spin-down particles. The one-particle
basis for the resultant spinless particles is specified by a momentum µ(∈ Z).
The relation

µi = 2κi − αi + 2 (10.26)

gives a one-to-one correspondence between the indices of the two bases (κ, α)
and µ. Although Uglov chose the combination µ → −2κ + α in the original
treatment, we follow the choice (10.26) that keeps the sign of momentum.

Figure 10.1 illustrates for N = 2 the one-to-one correspondence described
in (10.26). In the left column, the states of fermions with spin one-half are
shown. The corresponding states of spinless fermions are shown in the middle
column. In the right column, the corresponding states in terms of spinless
bosons are shown, as will be explained soon. Between the states of spinless
fermions and spinless bosons, there is a one-to-one correspondence via the
relation

µi = νi + N − i, (10.27)

where νi satisfying ν1 ≥ · · · ≥ νN is the index of N -particle states of spinless
bosons. Then ν is related to κ via

νi = 2κi − αi + 2 − N + i, (10.28)

which results from (10.26) and (10.27). The right column of Fig. 10.1 shows
the diagrams describing the bosonic states.

When we take zκvα(σ) as the one-particle basis of fermions with spin
one-half, we obtain the N -particle basis

uκ,α({Zi}, {σi}) = Asym
[
zκ1
1 · · · zκN

N vα1(σ1) · · · vαN (σN )
]

=
∑

p∈SN

sgn(p)zκ1

p(1) · · · z
κN

p(N)vα1(σp(1)) · · · vαN (σp(N)),

(10.29)

with α = (α1, . . . , αN ) ∈ [1, 2]N . On the other hand, we can take the Schur
functions sν(z1, . . . , zN ) as the basis of N -particle symmetric polynomials.
The latter basis consists of the set SN of symmetric functions and corre-
sponds to the bosonic picture of the particles. Now we introduce an iso-
morphism Ω : FN,κ → SN corresponding to the spin–momentum unification
together with bosonization by

Ω(uκ,α) = sν , (10.30)
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↑

↑

↑

↓

↓

↑

↓

( κ2) (¹1, ¹2) (º1, º2)

↓

κ1,

Fig. 10.1. Correspondence between the original momentum of each spin (left) and
that in the effective single-component systems (center and right). The middle col-
umn is for effective fermions, and the right column for effective bosons with the
checkerboard pattern to be discussed in Section 10.5. Note that the number of un-
shaded squares is three for all four cases in the right column. The number (= 3)
gives the momentum of the two-particle system.

where (κ, α) and ν are related via (10.26) and (10.27). An important prop-
erty of this isomorphism Ω is conservation of the inner product:

Φ, Φ̃ ∈ FN,κ → 〈Φ, Φ̃〉 =
{

Ω(Φ), Ω(Φ̃)
}

N,λ
, (10.31)

which is called isometry.
The isometry (10.31) can be proved by using the case of λ = 0 as reference.

First we note that Schur functions sν can be written as aµ/aδ(N), where

µ = ν + δ(N) = (ν1 + N − 1, ν2 + N − 2, . . . , νN−1 + 1, νN ) (10.32)

and aµ is the Slater determinant,

aµ = Asymzµ1
1 · · · zµN

N =
∑

p∈SN

sgn(p)zµ1

p(1) · · · z
µN

p(N). (10.33)

It then follows that

{sν̃ , sν}N,0 =
N∏

i=1

∮
|zi|=1

dzi

2πizi
a∗ν̃+δ(N)aν+δ(N) = N !δν̃,ν .
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Similarly, we obtain 〈uκ̃,α̃, uκ,α〉λ=0 = N !δκ̃,κδα̃,α, where the suffix λ = 0
indicates the inner product (8.6) with λ = 0. The relation

〈uκ̃,α̃, uκ,α〉λ=0 = {sν̃ , sν}N,0 (10.34)

leads to

〈Φ̃, Φ〉λ=0 =
{

Ω(Φ̃), Ω(Φ)
}

N,0
. (10.35)

Next we show that

Ω
(
∆λ(z1, . . . , zN )Φ

)
= ∆λ(z2

1 , . . . , z
2
N )Ω (Φ) . (10.36)

The function ∆λ(z1, . . . , zN ) is generated by the power-sum symmetric poly-
nomials pr and (z1 · · · zN )−1. Hence we can prove (10.36) by showing

Ω (pr(z1, . . . , zN )Φ) = pr(z2
1 , . . . , z

2
N )Ω (Φ) (10.37)

and

Ω
(
(z1 · · · zN )−1Φ

)
= (z1 · · · zN )−2Ω(Φ) . (10.38)

The relations (10.37) and (10.38) are derived as

Ω (pr(z1, . . . , zN )uκ,α) =Ω

(
N∑

i=1

uκ1,...,κi+r,...,κN ,α

)
=

N∑
i=1

sν1,...,νi+2r,...,νN

= pr

(
z2
1 , . . . , z

2
N

)
sν (10.39)

and

Ω
(
(z1 · · · zN )−1uκ,α

)
=Ω(uκ1−1,...,κN−1,α) = sν1−2,...,νN−2

=(z1 · · · zN )−2 sν , (10.40)

respectively.
Now we are ready to prove (10.31). We note that

〈Φ̃,Φ〉 = 〈Φ̃, ∆λ(z1, . . . , zN )Φ〉λ=0

=
{

Ω
(
Φ̃

)
, Ω

(
∆λ(z1, . . . , zN )Φ

)}
N,0

. (10.41)

With use of (10.36), the rightmost side of (10.41) is calculated as{
Ω

(
Φ̃

)
, ∆λ(z2

1 , . . . , z
2
N )Ω (Φ)

}
N,0

=
{

Ω
(
Φ̃

)
, Ω(Φ)

}
N,λ

. (10.42)

Thus we arrive at (10.31).
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10.4 From Yangian Gelfand–Zetlin basis to Uglov polynomials

The results in the previous section show that an orthogonal basis of FN is
mapped onto another orthogonal basis of SN via Ω. In Chapter 8, we have
found that an orthogonal set of FN is given by the Yangian Gelfand–Zetlin
basis Φκ,α. Hence, {Ω(Φκ,α)} should yield an orthogonal basis of SN . In the
following, we will show the property

Ω(Φκ,α) = P (2λ+1)
ν , or equivalently Ω−1(P (2λ+1)

ν ) = Φκ,α. (10.43)

Let us first show the second equality. From (10.10) and (10.30), it follows
that

Ω−1(P (2λ+1)
ν ) = uκ,α +

∑
ν̃<ν

vνν̃uκ̃,α̃. (10.44)

The inequality ν̃ < ν means either κ̃ = κ together with α̃ < α, or κ̃ < κ.
Here the order of α, α̃ ∈ Wκ satisfying

∑
i αi =

∑
i α̃i has been defined in

(8.162).
The orthogonal set of FN having the form of the RHS of (10.44) is unique.

In the expression

Φκ,α = U(κ, λ)χα =
∑

η, s.t. η+=κ

EηRηχα, (10.45)

the monomials zκ̃ contained in the summand on the RHS satisfy κ̃ < κ or
κ̃ = κ owing to the triangularity of non-symmetric Jack polynomials. The
monomial zκ comes only from Eκ. From R

(λ)
κ = 1 and the triangularity

χα = ϕα +
∑
α̃<α

cαα̃ϕα̃, (10.46)

we see that (10.45) has the form of the RHS of (10.44). The triangularity
(10.46) of χα has already been illustrated in (8.95) for two-particle and in
(8.131)–(8.134) for three-particle systems. Thus we arrive at (10.43).

As an example, we compare the norm of the Yangian Gelfand–Zetlin basis
and Uglov polynomials for two-particle cases. We introduce the notation

R2(α, β) ≡

{
P

(2λ+1)
α,β P

(2λ+1)
α,β

}
N=2,λ{

P
(2λ+1)
2κ1−2κ2−1,0, P

(2λ+1)
2κ1−2κ2−1,0

}
N=2,λ

, (10.47)
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as the two-particle norm relative to the highest-weight state. With use of
(10.23), (10.31), and (10.43), we obtain the following results:

R2(2κ1 − 2κ2, 0) =
κ1 − κ2

κ1 − κ2 + λ
, (10.48)

R2(2κ1 − 2κ2 − 1, 1) =
κ1 − κ2 + λ

κ1 − κ2 + 2λ
, (10.49)

R2(2κ1 − 2κ2, 1) = 1, (10.50)

which agree with (8.184)–(8.186) derived by a different method. Thus the
correspondence between the Yangian Gelfand–Zetlin basis and the Uglov
polynomials is demonstrated via the isometric isomorphim Ω.

10.5 Dynamical correlation functions

The dynamical density–density correlation function and spin–density corre-
lation function are calculated using Uglov polynomials. We assume that N

is even and N/2 is odd so that the ground state is a non-degenerate singlet
state. The wave function Φg of the ground state has corresponding bosonic
(ν) and fermionic (µ) partitions:

ν = (0, 0, . . . , 0), (10.51)

µ = ν + α = (N − 1, N − 2, . . . , 1, 0). (10.52)

Then we have κ, which is related to the spatial momentum as

κ =
1
2
(µ + α − 2) =

(
N

2
− 1,

N

2
− 1,

N

2
− 2,

N

2
− 2, . . . , 0, 0

)
, (10.53)

with α = (1, 2, 1, 2, . . . , 1, 2). We make a Galilean shift for κ to define

ki ≡ κi − N/4 + 1/2, (10.54)

which has a symmetric distribution ranging from k1 = N/4 − 1/2 to kN =
−N/4 + 1/2.

The dynamical density correlation function is written as

〈g, N |ρ̂(x, t)ρ̂(0, 0)|g, N〉
〈g, N |g, N〉

=
∑
(κ,α)

|〈Φκ,α, ρ̂(0, 0)Φg〉|2

〈Φg, Φg〉〈Φκ,α, Φκ,α〉
e−iωκt+Pκx. (10.55)

Here the norm 〈·, ·〉 has been introduced into (8.8). The eigenstates Φκ,α

have been defined in (8.169) with (8.168). The energy ωκ is given by

ωκ =
(

2π

L

)2 N∑
i=1

[
ki +

(
N + 1

2
− i

)
λ

]2

− Eg,N , (10.56)

where ki was defined by (10.54).
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Using (2.307), we obtain the density operator

ρ̂(0, 0) =
1
L

∑
n>0

[pn(z1, . . . , zN ) + p−n(z1, . . . , zN )] , (10.57)

and (10.55) is rewritten as

2
L2

∑
(κ,α)

∑
n>0

|〈Φκ,α, p−n(z1, . . . , zN )Φg〉|2

〈Φg,Φg〉〈Φκ,α,Φκ,α〉
e−iωκt cos (2πnx/L) . (10.58)

Using the isometry (10.31) of the mapping Ω we obtain

〈Φg, Φg〉 = {Ω(Φg) , Ω(Φg)}N,λ = {1, 1}N,λ , (10.59)

where the last equality follows from

Ω (Φg) = P
(2λ+1)

0N = 1,

with the suffix 0N being the partition (0, 0, . . . , 0). Similarly, the numerator
on the RHS of (10.58) is expressed as

〈Φκ,α, pn(z1, . . . , zN )Φg〉 = {Ω(Φκ,α) , Ω(pnΦg)}N,λ

=
{

P (2λ+1)
ν , p2n

}
N,λ

, (10.60)

where (10.37) has been used in the second equality.
The power-sum symmetric polynomials are decomposed into a linear com-

bination of Uglov polynomials as

pn =
∑

ν

cn,νP
(2λ+1)
ν , (10.61)

where the expansion coefficients cn,ν can be obtained by taking the limit
(10.15) of the power-sum decomposition formula (10.14) of the symmetric
Macdonald polynomials. Consequently, we obtain

〈g, N |ρ̂(x, t)ρ̂(0, 0)|g, N〉
〈g, N |g, N〉

≡ 〈ρ̂(x, t)ρ̂(0, 0)〉

=
2
L2

∑
n>0

∑
|ν|=2n

c2
2n,ν

{
P

(2λ+1)
ν , P

(2λ+1)
ν

}
N,λ

{1, 1}N,λ

e−iωκt cos (2πnx/L) . (10.62)

In (10.62), the factors coming from the norm on the RHS are available from
(10.23). The energy ωκ is given by (10.56), which is determined by ν in terms
of (10.28).
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Now we turn to the dynamical spin–density correlation function given by

〈g, N |Ŝz(x, t)Ŝz(0, 0)|g, N〉
〈g, N |g, N〉

≡ 〈Ŝz(x, t)Ŝz(0, 0)〉. (10.63)

Since the system has the global SU(2) symmetry, and the ground state is
spin-singlet, x and y components of the correlation functions are the same
as (10.63). Hence by using Ŝ− = Ŝx − iŜy, we obtain

〈Ŝz(x, t)Ŝz(0, 0)〉 =
1
2

∑
(κ,α)

∣∣∣〈Φκ,α, Ŝ−(0, 0)Φg〉
∣∣∣2

〈Φg,Φg〉〈Φκ,α,Φκ,α〉
exp(−iωκt + iPκx),

(10.64)

where Φκ,α has the total spin

Stot
z = −1. (10.65)

For practical calculation, it is convenient to rewrite all quantities and the
condition (10.65) in terms of Young diagrams D(ν) for ν. For this purpose,
we paint each cell in D(ν) black if the content c(s) = a′(s) − l′(s) of the
cell s is odd. Otherwise we paint the cell white. Then Bν and Wν denote
the subset of D(ν) consisting of black and white cells, respectively. Figure
10.1 shows some examples. In terms of Bν and Wν , the momentum Pκ and
the excitation energy ωκ associated with Φκ,α are written with γ = 1 + 2λ

as [188,197]

Pκ =2π|Wν |/L, (10.66)

ωκ =
(

2π

L

)2 {
nw(ν ′) − γnw(ν) +

|Wν |
2

[(N − 1)γ + 1]
}

, (10.67)

where | · · · | is the number of cells belonging to each subset, and we have
used the notation

nw(ν) =
∑

s∈Wν

l′(s), nw(ν′) =
∑

s∈Wν

a′(s). (10.68)

The condition (10.65) is rewritten as

|Wν | − |Bν | = 1. (10.69)

Since all factors in the matrix element and norm are expressed in terms of
the arm, leg lengths and colengths, the thermodynamic limit can be taken
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in a way similar to that used in Sections 3.8.2 and 2.7.3. The resultant
expression obtained from (10.62) is given by (3.202) [197].

We make the Fourier decomposition

Ŝ±(0, 0) =
∑
s∈Z

Ĵ±
s , Ĵ±

s =
N∑

i=1

zs
i Ŝ

±
i , (10.70)

with Z being integers. The matrix element in (10.64) is then given by

〈Φκ,α, Ŝ−(0, 0)Φg〉 =
∑
s∈Z

〈Φκ,α, ĴsΦg〉, (10.71)

with Ĵs = Ĵ+
s + Ĵ−

s . The action of Ĵ−
s on uκ,α is given by

Ĵ−
s uκ,α =

N∑
i=1

δ1,αiu[κ1, . . . , κi + s, . . . , κN , α1, . . . , αi + 1, . . . , αN ], (10.72)

where we have used the notation u[κ, α] ≡ uκ,α on the RHS to magnify the
set [κ, α]. Using (10.72) and the corresponding one with Ĵ+

s , we obtain

Ω
(
Ĵ+

s uκ,α

)
=

N∑
i=1

s[ν1, . . . , νi+2s−1, . . . , νN ] = p2s−1sν , (10.73)

with the notation s[ν] ≡ sν for Schur functions. Thus, (10.71) becomes{
P (2λ+1)

ν ,
∑

s

p2s−1

}′

N,λ

=
∑

s

c2s−1,ν

{
P (2λ+1)

ν , P (2λ+1)
ν

}′

N,λ
, (10.74)

provided the condition (10.65) holds. We obtain

〈Ŝz(x, t)Ŝz(0, 0)〉

=
2
L2

∑
n>0

′∑
ν

c2
2n−1,ν

{
P

(2λ+1)
ν , P

(2λ+1)
ν

}
N,λ

{1, 1}N,λ

e−iωκt cos (Pκx) , (10.75)

where
∑′

ν means the restriction to states with (10.65).
In (10.75), ωκ and Pκ are determined by ν since (κ, α) and ν are related to

each other through (10.28). The black-and-white painted diagram represents
these relations in the form (10.66) and (10.67). The spin–density correlation
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function is finally obtained in terms of the partition ν as

〈Ŝz(x, t)Ŝz(0, 0)〉

=
2
L2

∑
n>0

′∑
ν

c2
2n−1,ν

{
P

(2λ+1)
ν , P

(2λ+1)
ν

}
N,λ

{1, 1}N,λ

e−iωνt cos (2π|Wν |x/L) , (10.76)

where
∑′

ν is restricted to states with (10.69). The thermodynamic limit of
(10.76) was given by (3.205).



Afterword

We have discussed the physical and mathematical aspects of one-dimensional
quantum particles with 1/r2 interactions. On the physics side, we began with
the simplest two-body system, and culminated in the exact dynamics of a
supersymmetric electronic model. In this way we have tried to draw a com-
prehensive picture of one-dimensional quantum systems, taking the canon-
ical systems with 1/r2 interactions. On the mathematical side, the most
important subjects are first the Jack polynomials, and second the Yangians.
These two subjects were originally developed independently, but are actually
closely interrelated. Our basic viewpoint is that the 1/r2 systems provide
the most natural working model to synthesize these two subjects, and to
sharpen the concepts further.

There are many topics, however, which we could not discuss in this book.
This is firstly because of our insufficient understanding of the topics, and
secondly because of our intention of making a reasonably sized book. We
shall mention some of the omitted topics, hoping that they will be covered
on another occasion.

Examples of other canonical systems, which have escaped our discussion
in this book, include the Calogero–Sutherland model with harmonic confine-
ment. The spectrum of the model is equidistant as in the simple harmonic
oscillator. Because of this feature the model can be compared with the chi-
ral conformal field theory (CFT) with right-going particles only. We refer to
a recent review [88] for the systems. In relation to the CFT, there are ac-
tive studies to investigate the quasi-particle structure for the general case of
the internal symmetry. In particular, special kinds of pseudo-particles have
been proposed to account for the partition function [24, 32, 33]. The CFT
in an advanced version can describe fractional exclusion statistics as well.
Namely, the spinon basis naturally arises by taking the partition function of
the so-called Wess–Zumino–Witten model and its variants.

455
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Another topic that deserves more detailed discussion is the case with gen-
eral SU(KB,KF) supersymmetry, where KB denotes the number of
internal degrees of bosons, and KF of fermions. Especially interesting is
the applicability of the idea of fractional exclusion statistics to these sys-
tems. We have pointed out in Section 5.3 that the statistical parameters
may be different in thermodynamics and dynamics, but more detailed anal-
ysis is desirable. On the other hand, the exact thermodynamics for these
models show that parafermions are the most natural particles to interpret
the entropy. The connection between these partial informations should be
made.

The most challenging remaining problem is to reach the dynamical results
in the thermodynamic limit without doing complicated calculations for finite-
sized systems. We have seen that the dynamical results for finite systems
have a rather complicated form which, however, simplifies dramatically upon
taking the thermodynamic limit. Thus one naturally expects that there must
be an easier way to derive the results, which works only in the thermo-
dynamic limit. It is known that the second quantization approach could
meet this expectation in very restricted cases. Although interesting sug-
gestions have been made in the framework of the so-called “collective field
theory” [14] or “momentum-space bosonization” [51], the results obtained
by these theories need more elaboration.

Although we have discussed only one-dimensional systems in this book,
there appears a close connection to a special two-dimensional system, namely
the fractional quantum Hall system. The Laughlin wave function, which is of
Jastrow type, allows its interpretation in terms of composite fermions [26,92,
123]. The wave functions are very similar to those in the Sutherland model,
or the Calogero–Sutherland model with harmonic confinement. This simi-
larity leads to natural identification of statistics obeyed by quasi-electrons
and quasi-holes. The excitation energy in the bulk has a finite gap. On
the other hand, the edge excitation in a droplet-shaped system is gapless.
Thus the dynamics should interpolate between the one-dimensional and two-
dimensional limits as the location of excitation is changed from edge to bulk.
The dynamical response of the system, which has mainly been obtained nu-
merically, deserves more detailed analysis. The physical interpretation goes
fairly parallel to that in the Sutherland model. Recently, it has been pointed
out that the Jack polynomials may have a negative number for λ provided
this number is rational [56]. Then the fractional quantum Hall systems with
wave functions that are more complicated than the Laughlin-type one can
be described [27].
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Finally we mention a rather different approach to dynamics [97, 171].
One derives matrix elements of the local operators, called the form fac-
tor, exploiting as far as possible general properties such as the Yang–Baxter
relations, unitarity, crossing relations, and assuming the maximal possible
analyticity. Namely, the scattering matrix between elementary excitations
is used as input data. In this approach not only the 1/r2 models but also
the nearest-neighbor interaction models can be dealt with. An interesting
aspect is the role of the scattering phase shift in the physical quantities.
The role in dynamics is to govern the singularity of the spectral weight
of the dynamical correlation function. The relation between the scattering
phase shift and the singularity of the spectral weight is clear in the 1/r2 t–J
model and other 1/r2 models. For the Heisenberg model and short-range
integrable t–J model, form factors have contributions from various numbers
of excited quasi-particles. The explicit calculation of matrix elements has
been pursued [93,96].

Further analysis of these topics, on the basis of the fundamental knowl-
edge provided by this book, should deepen our understanding of strongly
correlated low-dimensional quantum systems.
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Index of symbols

A1(u) T11(u) in gl2 Yangian 402
a(s) arm length of partition or composition 38, 330
a′(s) arm colength of partition or composition 38, 330
A \ B complementary set of B in A 77
A2(u) quantum determinant in Yangian gl2 402
Asym antisymmetrization operator 336
a

(+−)
η coefficient of Eη for η = (ηB, ηF) in the

expansion of J
(+−)
κ for κ = ((ηB)+, (ηF)+)

382

a
(−−)
η coefficient of Eη in the expansion of J

(−−)
η 371

a
(−)
η coefficient of Eη in the expansion of J

(−)
η+ 334

a
(++)

η↑,η↓ coefficients of Eη↑,η↓ in the expansion of J
(++)
κ

with κ = ((η↑)+, (η↓)+)
374

a
(+)
η coefficient of Eη(z) in the expansion of sym-

metric Jack polynomial J+
η (z)

346

B(u) T12(u) in gl2 Yangian 402
(· , ·) inner product between the spin wave func-

tions
392

{·, ·}N,λ inner product defined by (10.18) 444
〈〈·, ·〉〉 inner product between the spin wave func-

tions defined by (8.187)
420

〈·, ·〉0N,q,t inner product between symmetric polynomi-
als defined by (10.5)

442

〈·, ·〉′ inner product between functions in FN,κ 392
〈·, ·〉c combinatorial inner product defined by (7.44) 320

464
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〈·, ·〉c combinatorial inner product of symmetric
functions

57

〈·, ·〉0 integral inner product of symmetric functions 60

c(s) content a′(s) − l′(s) 445
C(u) T21(u) in gl2 Yangian 402
C.T. constant term 320

d particle number density N/L 37
d(s) (a(s) + 1)/λ + l(s) + 1 330
dη

∏
s∈η d(s) 330

d′(s) d(s) − 1 = (a(s) + 1)/λ + l(s) 330
d′η

∏
s∈η d′(s) 330

d′′(s) a(s)/λ + l(s) + 1 349
d′′κ

∏
s∈D(η) d′′(s) 349

δ (N − 1, N − 2, . . . , 1, 0) 339
∆̂N (u)

∏
i(u − D̂i) 430

∆(z) Vandermonde determinant
∏

i<j(zi − zj) 59
δ↑↓ (δ(N↑), δ(N↓)) 375
∆̃

(
∆(z2

1 , . . . , z
2
N )

)λ ∆(z1, . . . , zN ) 444
D̂i di − zi/λ 423
D(µ) set of squares s belonging to Young diagram

of partition µ

38

D(u) T22(u) in gl2 Yangian 402
d̂i Cherednik–Dunkl operators 314
Dij (N/π) sin [π (i − j) /N ] 235
di Cherednik–Dunkl operators 423

e′′(s) a′(s)/λ + N − l′(s) 349
e′′κ

∏
s∈D(η) e′′(s) 349

e(s) (a′(s) + 1)/λ + N − l′(s) 330
e′(s) (a′(s) + 1)/λ + N − l′(s) − 1 330
e′η

∏
s∈η e′(s) 330

Eη(z) non-symmetric Jack polynomial specified by
composition η

319

eη
∏

s∈η e(s) 330
eκ elementary symmetric function 57



466 Index of symbols

E0,N energy of ground state of single-component
Sutherland model

23

η̄ eigenvalue of Cherednik–Dunkl operator for
Eη

314

η+ partition associated with a composition η 312

FN,κ subset of fermionic Fock space defined by
(8.3)

392

gη 〈Eη, Eη〉c 322

h(s) hook length a(s) + l(s) + 1 445
h∗

κ(s) upper hook length [a(s) + 1]λ + l(s) 58
hκ
∗(s) lower hook length a(s)/λ + l(s) + 1 58

hij −zizj/(zi − zj)2 424

jκ 〈Jκ, Jκ〉c 360
Jκ(z) Jack symmetric polynomials 56
J

(−)
κ (z) antisymmetric Jack polynomial 334

J̃
(−)
κ (z) J

(−)
κ (z)/∆(z) 353

J
(−−)
κ (z) U(2) Jack polynomials 133

J̃
(−−)
µ (z) J

(−−)
µ (z)/[∆(z↑)∆(z↓)] 373

J
(++)
κ (z) UB(2) Jack polynomials 373

J
(+−)
κ (z) U(1,1) Jack polynomials 382

J̃
(+−)
κ (z) J

(+−)
κ /∆(zF) 383

κ(0) (0NB , δ(NF)) 384
κR (κN , . . . , κ2, κ1) 336
k′′

i ]{l ∈ {i + 1, . . . , N}|ηl > ηi} 314
|F 〉 fully polarized reference state 221
k′

i ]{l ∈ {1, . . . , i − 1}|ηl ≥ ηi} 314
Ki Kii+1 318
Kij = (i, j) coordinate exchange operator 314

λ coupling parameter of Sutherland model 22
λ/µ skew Young diagram 189
ΛN set of composition 312



Index of symbols 467

Λ+
N set of non-negative integers arranged in non-

increasing order
37

Λ+>
N {κ|κ = (κ1, . . . , κN ) ∈ Z≥0; κ1 > · · · > κN > 0} 133

Λ+
N,2 set of partitions where at most two of κi can

take the same value
396

≤ dominance order on partitions 313
≺ partial order on compositions 313
|g, N〉 state vector of the ground state for N -particle

system
62

ll(s) lower leg length defined by (7.108) 330
ll′(s) lower leg colength defined by (7.110) 330
l(η) length of composition 312
l(µ) length of partition defined as the number of

nonzero elements in partition µ

38

l(s) leg length of composition defined by (7.105) 330
l(s) leg length of partition 38
l′(s) leg colength of composition defined by (7.106) 330
l′(s) leg colength of partition 38
L+

N set of integers arranged in non-increasing
order

37

L0i(u) single-site monodromy operator defined by
(8.41)

398

Lij Lax operator 431
L+>

N {κ|κ = (κ1, . . . , κN ) ∈ Z; κ1 > · · · > κN} 106

|µ| weight of partition 38

N̂ij (zi − zj)−1 (1 − Kij) 315
ν(k) momentum distribution function in the

thermodynamic limit
49

Ô(−) symmetry-changing operator which trans-
forms J

(−)
κ into Jκ

352

Ô(−−) symmetry-changing operator which trans-
forms J

(−−)
κ to J

(++)
κ

374

Ô(+−) symmetry-changing operator which trans-
forms J

(+−)
κ to J

(++)
κ

384



468 Index of symbols

Ω an isomorphism defined by (10.30) 446
Ω thermodynamic potential of Sutherland

model
48

Ω(z|y) function defined by (7.43) 320
ωλ duality transformation defined by

ωλJκ(z; λ) = jκ(λ)Jκ′(z; 1/λ)
366

P projection operator to exclude double
occupation

234

φη plane wave basis, zη1
1 zη2

2 . . . zηN
N 101

ϕ(σ) spin wave function 392
πκ

∏
i<j (κ̄i − κ̄j + 1) 352

π̃κ
∏

i<j (κ̄i − κ̄j) 353
πF

κ

∏
i<j (κ̄i − κ̄j − 1) 359

Pi(u) Drinfeld polynomials 435
pκ power-sum symmetric functions 57
Pµ Macdonald symmetric polynomials 233, 441
P̃ij graded spin exchange operator defined by

(3.2)
99

P (γ) Uglov polynomials 444

qdet quantum determinant 426

Řii+1(u) R-matrix 393
ρ(p) rapidity distribution function 50
ρ∗(p) hole distribution function 51
ρ
(−−)
η factor defined by (7.350) 372

ρ
(−)
η factor defined by (7.148) 336

ρ
(+)
η factor defined by (7.216) 348

ρ
(+−)
κ factor defined by (7.408), ρB

κ ρF
κ 383

ρ
(++)
η factor defined by (7.363) 374

R
(λ)
η product of R-matrix defined by (8.20) and

(8.21)
394

Rij(u) R-matrix defined by (8.36) 397
(r)k generalized shifted factorial defined by

r(r + 1) · · · (r + k − 1) = Γ(r + k)/Γ(r)
341
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(r)κ generalized shifted factorial defined by (7.174)
for partition κ

341

R̃ij(u) R-matrix for t–J model 439

σ spin coordinate (σ1, . . . , σN ) 392
σ̂ an element of symmetric group SN 336
σ̂R operator defined by (7.220) 348
Jκ/µ skew Jack functions defined by (7.329) 368
sκ Schur functions 57
SN symmetric group of order N 57
SN set of symmetric functions 446
Sym symmetrization operator 110, 347

τ coordinate of internal symmetry 112
T̂

(n)
ab coefficient of u−n in T̂ab(u) 425

τ̂ KN−1 · · ·K2K1 324
T̂ab(u) monodromy matrix 423
T̂i Dunkl operator defined by (7.20) 316
Θ generating operator zN τ̂ of non-symmetric

Jack polynomials
324

θ(x) Heaviside step function 63
θij zi/(zi − zj) 314
T̃ab(u) monodromy matrix for t–J model 439

ul(s) upper leg length defined by (7.107) 330
ul′(s) upper leg colength defined by (7.109) 330
U(κ; λ) operator defined by (8.22) 394

wij (Zi + Zj)/(Zi − Zj) 182

ξi 1/ (η̄i − η̄i+1) 327
Xαβ

i |α〉〈β| for site i 221
Xαβ operator defined by (8.45) 399

z complex coordinate (z1, . . . , zN ) 392
Z set of integers 37
Z≥0 set of non-negative integers 312
ζκ 1l1 l1!2l2 l2! · · · 57



470 Index of symbols

zi exp(i2πxi/L), complex spatial coordinate 24
Zj exp(2πij/N) 152
zη zη1

1 · · · zηN
N 314

zR (zN , zN−1, . . . , z1) 343
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absolute ground state, 100, 222, 237
annihilation operator, 415
antiholon, 253, 254, 278, 282, 284,

295
antiperiodic boundary condition, 173
antispinon, 179, 201, 251
antisymmetric Jack polynomials, 334
anyon, 55
arm colength, 39
arm length, 39, 330
associated Laguerre polynomial, 14
asymptotic Bethe ansatz, 172
auxiliary space, 397, 399

binomial formula, 71, 134–136, 144,
364, 377, 380, 388

block diagonal, 412

Calogero–Sutherland model, 14
Cappelli determinant, 427
Cauchy product expansion formula,

322, 368, 373, 377, 378
Cauchy’s double alternant formula,

362, 373
charge structure factor, 244
Cherednik–Dunkl operator, 130, 185,

404, 423, 439
co-product, 401, 412
color, 98, 221
combinatorial norm, 321, 342

composition, 102, 312
confluent alternant, 161, 168, 242
conjugate partition, 38, 57, 83
conjugate representation, 178, 227
coordinate exchange operator, 9,

222, 236, 314
coordinate representation, 281
creation operators, 324
cumulant, 166

degenerate affine Hecke algebra, 319
des Cloizeaux–Pearson mode, 209
dominance order, 313
Drinfeld polynomial, 426, 435–437
duality, 45, 365, 366
Dunkl operator, 316
dynamical charge structure factor,

290
dynamical density–density correla-

tion function, 86
dynamical spin structure factor, 280
dynamical structure factor, 208, 231

electron addition spectral function,
293

electron removal spectral function,
295

elementary excitation, 4, 54, 194,
233, 456

elementary motif, 226

471
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elementary symmetric function, 57,
294

evaluation formula, 333
exclusion statistics, 35, 47, 61, 98,

124, 135

factorization method, 5
first-quantized representation, 156,

157, 222, 237
Fock condition, 22, 392–396
fractional exclusion statistics, 4, 53,

199, 200, 213, 227, 233, 262,
277, 286, 291

freezing trick, 188, 205, 227, 230
fully polarized reference state, 151,

221, 235
fully polarized spin gas (FPSG),

177, 183
fundamental representation, 178, 226,

227

Gegenbauer polynomial, 8
generalized shifted factorial, 341,

380
graded permutation operator, 12,

234–236
Green function, 62, 136, 299
Gutzwiller wave function, 231
Gutzwiller–Jastrow wave function,

155, 156, 167, 169, 174, 177,
181, 187, 223, 238, 456

Haldane–Shastry model, 151
hard-core boson, 151
Hermite polynomial, 15
highest-weight state, 407,

410, 413
hole propagator, 62, 71, 134
hole representation, 154
holon, 233, 253, 264, 279, 280, 282,

290, 294, 304

inner product, 320
inscription, 260
integral norm, 319, 321, 338, 359
intertwine, 403, 405
involution, 366

Jack polynomial, 9, 55–58, 61, 62,
88, 177, 191, 212, 282, 297,
306, 311

Jacobi coordinates, 14
Jastrow, 22
Jastrow-type wave function, 22
Jordan–Wigner transformation, 209

Laurent expansion, 212
Lax operator, 422, 431
Lax pair, 426, 431, 434
leg colength, 39, 330
leg length, 39, 330
Legendre polynomial, 8
length, 38
length of a composition, 312
level one generator, 181
lower hook length, 59, 88
lowering operator, 405, 410, 413,

416
lowest-weight state, 414

Macdonald polynomial, 227
Macdonald symmetric polynomials,

442
magnon, 150, 157, 171, 194, 221,

227, 235, 250
momentum distribution, 301
monic, 132, 436
monodromy matrix, 397–399, 401,

404, 412, 423–425, 427, 431,
432, 435, 438, 439

monodromy operator, 398, 400
monomial symmetric functions, 55
motif, 40, 172, 191, 224, 227
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non-orthogonal basis, 393
non-symmetric Jack polynomials,

312, 404

orthogonal basis, 129, 132, 408, 412,
416, 418

orthogonal set, 405
orthogonality, 319

parafermion, 226, 230
partial order, 313
particle propagator, 77
particle–hole duality, 196
partition, 102, 312
parts, 38
permutation operator, 9, 221
Pfaffian, 169
Pieri formula, 368
polynomial wave function, 157, 172,

191, 222, 223, 226, 237, 245,
257, 262

power-sum decomposition, 364, 381
power-sum symmetric functions, 57

quantum determinant, 407, 412, 426
quantum group, 98
quark, 221
quaternions, 167

R-matrix, 397
raising operator, 405, 416
random matrix theory, 158, 162,

164
rapidity, 224, 265
ribbon diagram, 188–191, 193–195,

225, 258–262
Rodrigues formula, 8
Rogers–Szegö polynomial, 227

Schur function, 57, 134, 442, 446,
453

semion, 177, 269

semistandard tableau, 190, 229
separated state, 302, 304
skew Jack function, 368
skew Young diagram, 189
Sommerfeld-type expansion, 53,

204, 274
spectral parameter, 404
spin–charge separation, 252
spinon, 150, 157, 173, 188, 191, 193,

196, 200, 211, 216
spinon orbital, 192
squeezing, 28–30
static structure factor, 157
statistical matrix, 264
statistical parameter, 263
Stirling formula, 49, 76
strcture constant, 426
strong spin–charge separation, 253,

269, 270, 273, 278, 284, 291
structure constant, 224
structure factor, 243
supermultiplet, 181, 191, 224, 229,

258, 261, 426, 431, 435, 437
supersymmetric monodromy ma-

trix, 438
supersymmetric quantum mechan-

ics, 5
supersymmetric Yangian, 257, 258,

260, 293, 440
supersymmetry, 7, 10, 13, 16, 233,

234, 256, 438
SUSY, 10, 233, 438
symmetric Jack polynomial, 55, 56,

346
symmetrization operator, 348
symplectic circular ensemble, 167

thermodynamic potential, 123
thermodynamics, 120, 196
threshold singularity, 214, 286
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Tomonaga–Luttinger liquid, 2, 97,
205, 275

Tomonaga–Luttinger theory, 302
triangular(ity), 315, 408, 413

Uglov polynomial, 231, 441, 444
ultraspherical polynomial, 8
unfractionalized electron, 286
upper hook length, 59, 88, 330

Vandermonde determinant, 168

Weierstrass elliptic function, 15
weight, 38
weight of a composition, 312

X-operator, 11
XXZ model, 209
XY chain, 202, 209

Yang–Baxter relation, 256, 391, 394,
397, 398, 424, 428, 430, 432,
433, 439

Yangian, 98, 181, 397
Yangian Gelfand–Zetlin basis, 392,

408, 411, 415, 435
Yangian generator, 223, 224, 256,

257, 281, 291, 293
Yangian highest-weight state

(YHWS), 157, 177, 183, 185,
226, 258, 282

Yangian lowering operator, 192, 258
Yangian raising operator, 258
Yangian symmetry, 4, 11, 192, 196,

198, 202, 253, 266, 288
Young diagram, 175–177, 179, 187,

188, 190, 192, 195–197, 246,
259, 260, 262, 313
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