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Preface

Statistical power analyses differ in important ways from other statistical 
approaches. Most statistical analyses begin with existing data, subject the data to 
analysis, and then focus on interpretation of the results. Power analysis is 
different. Power analysis does not involve existing data. In fact, power analyses 
are only meaningful when conducted prior to data collection. In this manner, it 
is useful to think of power analysis as part of the hypothesis statement process. 
When stating a hypothesis, it is usually of the form of “Group X differs from 
Group Y” on our dependent measure. The statistical core of this statement is 
Group X and Group Y will differ. For power analysis, we go beyond this basic 
statement and specify how large a difference would be meaningful to detect 
between the two groups.
	 Another way power analysis differs from other statistical analyses is in terms 
of interpretation. For most statistical procedures, texts devote considerable time 
to interpretation of result or computer output. In contrast, the output for power 
analysis is simple and requires little interpretation or discussion. Generally, 
output provides a single value, the power for the test of interest. The interpreta-
tion of output for such analyses does not involve much interpretation aside from 
an evaluation of whether our study is sensitive enough to detect our effects of 
interest given a particular sample size.
	 This book also differs considerably from earlier texts on the topic (e.g., 
Cohen, 1988) in that I do not present power tables or formula for extrapolating 
between tabled values. Instead, most chapters present hand calculations to facil-
itate conceptual understanding but rely heavily on computer-generated analyses 
as the primary approaches for analyses. Given the computational tools available 
in R, approaches that involve reference to lengthy tables are no longer 
necessary.
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Chapter 1 reviews significance testing, introduces power, and presents issues 
impacting power. Chapters 2 through 9 cover power analysis strategies for a 
variety of common designs. Chapter 2 (Chi square and proportions) and 
Chapter 3 (t-tests) also introduce issues such as noncentral distributions and 
provide examples of the types of decisions and considerations important to 
power analyses. Regardless of the technique of interest for your design, read 
Chapters 1–3 first. Chapter 4 covers power for correlations and for tests com-
paring correlations. Chapters 5 through 7 address ANOVA designs for between, 
within, and mixed models as well as Multivariate ANOVA. Chapter 8 covers 
multiple regression, comparisons of regression coefficients, and detecting mul-
tiple effects in the same study. Chapter 9 addresses covariate designs, regression 
interactions, logistic regression (LR), and mediation. Chapter 10 focuses on pre-
cision analysis for confidence intervals (CI) around mean difference, correla-
tions, and effect sizes. Chapter 11 addresses a number of smaller topics such as 
how to report power analyses and how to increase power without increasing 
sample size. Chapters focusing on simpler analyses (e.g., t-test, between subjects 
ANOVA) present detailed formulae and calculation examples. However, chap-
ters focusing on more complex topics (e.g., within subjects ANOVA, 
ANCOVA) present only computer-based analyses as calculation examples 
would extend several pages and do little to advance understanding.

What is New in this Edition?

The biggest change from the first to second edition involves statistical software. 
This edition uses R for all power calculations whereas the first edition used 
SPSS. The major additions to the topical coverage are expanded sections on 
power for detecting multiple effects in the same model (primarily in the mul-
tiple regression chapter), linear mixed model approaches for designs including 
within subjects factors, logistic regression, and mediation.

Formulae and Calculations

A major focus of this text is conducting analyses using R. However, under-
standing the basics of the calculations surrounding analyses is very important. 
To that end, whenever it is possible and not too complicated, I provide 
detailed calculations for sample analyses. Often these calculations involve 
several steps and multiple formulae. One of my points of contention with 
many statistical resources is that calculations are often not clearly detailed. 
That is, authors present formulae and then jump to the result without dem-
onstrating the steps of the calculation. When I encounter this approach, it 
often takes some time to figure out what goes where and how the authors 
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derived values. For this reason, I provide detailed calculations, comment on 
what goes where, and how it got there. This approach is likely a bit more like 
an introductory than an advanced statistics text. However, the added detail 
makes the calculations easier to follow.
	 In many places throughout the text, I present formulae for population values. 
In practice, we rarely perform such calculations. I present population values to 
serve as a reminder that the calculations involved in power analyses generally 
involve a priori estimates of what the population looks like (e.g., estimates of 
the population effect size).

Approaches to Power

Several chapters provide three different approaches to the calculation of power. 
The first involves estimation of power. Estimation involves use of central rather 
than noncentral distributions. I debated inclusion of estimation techniques. On 
the one hand, estimation approaches enhance understanding of constructs 
through direct calculation of values. On the other hand, estimation does not 
always yield accurate power because it uses the wrong distribution. Ultimately, 
I included estimation procedures, as these techniques are excellent teaching 
tools. The values may not be completely accurate, but the conceptual piece is 
clearer with estimation demonstrations.
	 The next approach involves hand calculations with R to calculate power. 
Hand calculations provide accurate values for every estimate required for power 
analyses, except the power value itself. Hand calculations end at the noncentral-
ity parameter. We then take that value to R for calculation of power. This is 
because power calculations require the use of noncentral distributions. Calcula-
tions based on noncentral distributions are not practical to complete by hand, as 
they involve numerous iterations. When completing hand calculations in several 
chapters, I include a single line of R code that handles the final step of the 
calculation.
	 The final approach involves use of R functions for all calculations (described 
in more detail below). I present these approaches in Chapters 2–10. This 
approach requires input of descriptive statistics and few calculations.

The pwr2ppl Companion Package

The first edition of this book presented complex SPSS Syntax approaches for 
conducting power analyses. Since that time, I have largely abandoned the SPSS 
environment. R is free and, in my view, infinitely more powerful than SPSS. I 
was able to add several new approaches to this book that could not be easily 
addressed in SPSS. I believe the approaches using R are considerably simpler 
than the SPSS materials presented in the first edition. Most approaches require a 
single line of code.
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	 As a companion to this book, I compiled all of the function in this book in an 
R package called pwr2ppl. This is available from https://github.com/chrisaberson/
pwr2ppl. To install the package (using the devtools package), simply type 
devtools::install_github(chrisaberson/pwr2ppl, dependencies = TRUE). I expect 
to continue to expand the pwr2ppl package after the publication of the text.

https://github.com
https://github.com
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1
What is Power?

Why is Power Important?

This chapter reviews null hypothesis significance (NHST) testing, introduces 
effect sizes and factors that influence power, discusses the importance of power 
in design, presents an introduction to noncentral distributions, addresses mis-
conceptions about power, discusses typical levels of power in published work, 
examines strategies for determining an appropriate effect size for power analysis, 
critiques post hoc power analyses, and discusses typical levels of power used for 
design.

Review of Null Hypothesis Significance Testing

NHST focuses on conditional probabilities. The conditional probabilities used 
in NHST procedures address how likely it is to obtain an observed (i.e., sample) 
result given a specific assumption about the population. Formally, the assump-
tion about the population is called the null hypothesis (e.g., the population 
mean is 0) and the observed result is what the sample produces (e.g., a sample 
mean of 10). Statistical tests such as z, χ 2, t, and Analysis of Variance (ANOVA) 
determine how likely the sample result or any result more distant from the null 
hypothesis would be if the null hypothesis were true. This probability is then 
compared to a set criterion. For example, if a result this far or farther from the 
null hypothesis would occur less than 5% of the time when the null is true, then 
we will reject the null. More formally, the criterion is termed a Type I or α 
error rate (5% corresponds to α = .05).
	 Table 1.1, common to most introductory statistical texts, summarizes deci-
sions about null hypotheses and compares them to what is true for the data 
(“reality”). Two errors exist. A Type I or α error reflects rejecting a true null 
hypothesis. Researchers control this probability by setting a value for it (e.g., 
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use a two-tailed test with α = .05). Type II or β errors reflect failure to reject a 
false null hypothesis. Controlling this probability is at the core of this book. 
Type II errors are far more difficult to control than Type I errors. Table 1.1 also 
represents correct decisions, either failing to reject a true null hypothesis or 
rejecting a false null. The probability of rejecting a false null hypothesis is 
power. As suggested by the title of this book, this topic receives considerable 
coverage throughout the text.
	 For power analysis, the focus is on situations for which the expectation is 
that the null hypothesis is false (see Chapter 10 for a discussion of approaches to 
“supporting” null hypotheses). Power analysis addresses the ability to reject the 
null hypothesis when it is false.

Effect Sizes and Their Interpretation

One of the most important statistics for power analysis is the effect size. Signifi-
cance tests tell us only whether an effect is present. Effect sizes tell us how 
strong or weak the observed effect is.
	 Although researchers increasingly present effect size alongside NHST results, 
it is important to recognize that the term “effect size” refers to many different 
measures. The interpretation of an effect size is dependent on the specific effect 

TA Reality vs. Statistical Decisions

Reality

Null Hypothesis True Null Hypothesis False

Research Decision Fail to Reject Null Correct failure to 
reject null 1–α

Type II or β error

Reject Null Type I or α error Correct rejection of 
null 1–β

TA Measures of Effect Size, Their Use, and a Rough Guide to Interpretation

Effect Size Common Use/Presentation Small Medium Large

Φ (also known as V or w) Omnibus effect for χ2 0.10 0.30 0.50
h Comparing proportions 0.20 0.50 0.80
d Comparing two means 0.20 0.50 0.80
r Correlation 0.10 0.30 0.50
q Comparing two correlations 0.10 0.30 0.50
f Omnibus effect for ANOVA/Regression 0.10 0.25 0.40
η2 Omnibus effect for ANOVA 0.01 0.06 0.14
f  2 Omnibus effect for ANOVA/Regression 0.02 0.15 0.35
R2 Omnibus effect for Regression 0.02 0.13 0.26
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size statistic presented. For example, a value of 0.14 would be relatively small in 
discussing the d statistic but large when discussing η2. For this reason, it is 
important to be explicit when presenting effect sizes. Always reference the value 
(d, r, η2, etc.) rather than just noting “effect size.”
	 Table 1.2 provides a brief summary of common effect size measures and def-
initions of small, medium, and large values for each (Cohen, 1992). Please note 
that the small, medium, and large labels facilitate comparison across effects. 
These values do not indicate the practical importance of effects.

What Influences Power?

I learned an acronym in graduate school that I use to teach about influences on 
power. That acronym is BEAN, standing for Beta (β), Effect Size (E), Alpha (α), 
and Sample Size (N). We can specify any three of these values and calculate the 
fourth. Power analysis often involves specifying α, effect size, and Beta to find 
sample size.
	 Power is 1–β. As α becomes more liberal (e.g., moving from .01 to .05), 
power increases. As effect sizes increase (e.g., the mean is further from the null 
value relative to the standard deviation), power increases. As sample size rises, 
power increases.
	 Several figures represent the influence of effect size, α, and sample size on 
power. Figure 1.1 presents two distributions: the null and the alternative. The 
null distribution is the distribution specified in the null hypothesis and 
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FiGUre 1.1 Null and Alternative Distributions for a Two-Tailed Test and α = .05.
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FiGUre 1.2  Null and Alternative Distributions for a Two-Tailed Test With Increased 
Effect Size and α = .05.

represented on the left hand side of the graph. For this example, the null hypo-
thesis is that the population mean is zero. The null sampling distribution of the 
mean is centered on zero, reflecting this null hypothesis. The alternative sam-
pling distribution, found on the right hand side of each graph, reflects the distri-
bution of means from which we are actually sampling. Several additional figures 
follow and are useful for comparison with Figure 1.1. For simplicity, the popu-
lation standard deviation and the null hypothesis remain constant for each 
figure. For each of the figures, the lines represent the zcritical values.
	 A sample mean allows for rejection of the null hypothesis if it falls outside 
the critical values that we set based on the null distribution. The vertical lines in 
Figure 1.1 represent the critical values that cut off 2.5% in each tail of the null 
distribution (i.e., a two-tailed test with α = .05). A little more than half of 
samples drawn from the alternative distribution fall above the upper critical 
value (the area to the right of the line near +2.0). Sample means that fall above 
the critical value allow for rejection of the null hypothesis. That area reflects the 
power of the test, about .50 in this example.
	 Now compare the power in Figure 1.1 to power in Figure 1.2. The differ-
ence between the situations represented in these two figures is that the effect 
size, represented in terms of the difference between the null and alternative 
means, is larger for Figure 1.2 than Figure 1.1 (recall that standard deviation is 
constant for both situations). The second figure shows that as the effect size 
increases, the distributions are further apart, and power increases because more 
of the alternative distribution falls in the rejection region.
	 Next, we consider the influence of α on power. Figures 1.1 and 1.2 pre-
sented a two-tailed test with α = .05. Figure 1.3 reduces α = .01. Notice the 
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change in the location of the vertical lines representing the critical values for 
rejection of the null hypothesis. Comparing Figures 1.1 and 1.3 shows that 
reducing α decreases power. The area in the alternative distribution that falls 
within the rejection region is smaller for Figure 1.3 than 1.1. Smaller values for 
α make it more difficult to reject the null hypothesis. When it is more difficult 
to reject the null hypothesis, power decreases.
	 Figure 1.4 demonstrates the influence of a larger sample size on power. This 
figure presents distributions that are less disperse than those in Figure 1.1. For 
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with a Large Sample.
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this figure, the x-axis represents raw scores rather than z-values. Recall from the 
Central Limit Theorem that the dispersion of a distribution of sample means 
(standard error of the mean) is a function of the standard deviation in the popu-
lation and the sample size. Specifically, this is the standard deviation divided by 
the square root of sample size. As sample size rises, dispersion decreases. As seen 
in Figure 1.4 (assuming that the difference between the means of the distribu-
tions are the same for Figures 1.1 and 1.4), the reduced dispersion that results 
from larger samples increases power.
	 For an interactive tutorial on the topic, see the WISE (Web Interface for 
Statistics Education) home page at wise.cgu.edu. The web page includes a 
detailed interactive applet and tutorial on power analysis (see Aberson, Berger, 
Healy, & Romero, 2002 for a description and evaluation of the tutorial assign-
ment). Chapters 2 and 3, particularly the material relevant to Figures 2.1 and 
3.1, provide descriptions useful for power calculations.

Central and Noncentral Distributions

The examples presented in the preceding section use the normal distribution. In 
practice, these tests are less common in most fields than those conducted using 
t, F, or χ2. Power analyses become more complex when using these distribu-
tions. Power calculations are based on the alternative distribution. When we use 
a z-test with a normally distributed null distribution, the alternative distribution 
is also normally distributed no matter the size of the effect. Distributions of this 
type are termed central distributions. However, when we deal with other tests, the 
alternative distribution takes on different shapes that vary with effect size. These 
are termed noncentral distributions. When conducting tests such as t, F, or χ2 we 
actually deal with both central and noncentral distributions. The null distribu-
tion is a central distribution and the alternative distribution is a noncentral 
distribution.
	 Central and noncentral distributions differ in important ways. Degrees of 
freedom are the only influence on the shape of central distributions. The null 
distribution when using t, F, or χ2 is a central distribution. Since the null hypo-
thesis specifies no effect, these distributions correspond to situations for which 
the effect size is zero (i.e., effect size is constant). Thus, the shape of the null 
distribution varies only with degrees of freedom. For any specific value for 
degrees of freedom, there is just one distribution used to compute probabilities. 
For example, if we have a t-distribution with df = 50, we can calculate the area 
at or above t = 2.9 (or any other value).
	 Degrees of freedom and effect size define the shape of noncentral distribu-
tions. For any specific value for degrees of freedom, there are infinite possible 
effect sizes. Since there are infinite possible values for effect size for each of the 
infinite possibilities for degrees of freedom, there are simply too many possible 
combinations for construction of tables that allow for simple calculation of 
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probabilities. Suffice it to say, calculations of probabilities associated with these 
distributions are far more complicated than for central distributions. The text 
provides several R functions and code examples for performing these 
calculations.
	 Figure 1.51 demonstrates differences between central and noncentral distribu-
tions using an example of a t-distribution with 10 degrees of freedom. The null 
distribution on the left is symmetrical. Recall that the null distribution is a 
central distribution. The distribution on the right, however, is nonsymmetrical. 
This is the noncentral t-distribution. This is the distribution used to calculate 
power. The noncentral t represents the actual population distribution for t from 
which we are sampling. As in previous examples, the critical value is defined in 
relation to the null distribution, but calculation of power focuses on where the 
critical value falls in relation to the alternative distribution (on the right). On 
this figure, the vertical line slightly to the left of 2.30 on the x-axis represents 
the tcritical value. Because the shape of the noncentral t-distribution depends on 
both the degrees of freedom and the effect size, there is no simple table such as 
we find in the back of statistics texts for the central t-distribution. Calculation of 
area based on the noncentral distribution is much more difficult.
	 Noncentral distributions sometimes look similar to central distributions. 
Figure 1.62 demonstrates a situation with 100 degrees of freedom. Again, the 
vertical line slightly to the left of 2.30 on the x-axis represents the t-critical 
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value. Here, the central and noncentral distributions are similar. As sample size 
increases, central and noncentral distribution shapes begin to converge. In situ-
ations like this, approximations of power using central distributions produce 
reasonably accurate estimates. However, given the availability of computer pro-
tocols that are presented in this book, approximation is a poor strategy for ana-
lysis (but see the discussion of the value of approximation in this chapter).

Misconceptions about Power

Students and researchers often misunderstand factors relating to statistical power. 
One common misunderstanding is the relationship between Type II and Type I 
errors. Given a design with a 5% Type I error rate, researchers often predict the 
rate of Type II errors also to be 5% (Hunter, 1997; Nickerson, 2000). The 
probability of a Type II error is generally much greater than 5%, and in a given 
study, the probability of a Type II error is inversely related to the Type I error 
rate. In practice, a 5% Type II error rate is small. A commonly recommended 
goal for power is 80%. This corresponds to a Type II error rate of 20%.
	 Another misconception is the belief that failure to reject the null hypothesis 
is sufficient evidence that the null hypothesis is true (Nickerson, 2000). Even 
when power is 80% and we have specified the population effect size accurately, 
there still exists a 20% chance of making a Type II error. Compare this rate to 
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the commonly used Type I error rate of 5%. The Type I rate suggests that 
falsely rejecting a true hypothesis occurs 1 time out of 20. The Type II rate sug-
gests that failing to reject a false null hypothesis happens one time out of every 
five samples. Thus, when researchers make claims about supporting the null 
hypothesis based on failing to reject the null hypothesis, these claims usually 
provide little statistical evidence.

Empirical Reviews of Power

Surveys of the power in published work in the behavioral sciences indicate that 
samples generally do not provide adequate power for detecting small and 
medium size effects. Power surveys across fields such as abnormal psychology 
(e.g., Cohen, 1962; Sedlmeier & Gigerenzer, 1989); management (Cashen & 
Geiger, 2004; Mone, Mueller, & Mauland, 1996); rehabilitation counseling 
(Kosciulek & Szymanski, 1993); psychiatry (Brown & Hale, 1992); behavioral 
ecology and animal behavior (Jennions & Møller, 2003); adult education (West, 
1985); consulting and clinical psychology (Rossi, 1990); neuroscience (Button 
et al., 2013); and social and personality (Fraley & Vazire, 2014) all suggest that 
low power is common and has been low for some time. For small effects, these 
surveys report typical power levels of .13 to .26, indicating that power to detect 
small effects is generally low. Power to detect medium effects was higher with 
reported ranges from .39 to .98. Not surprisingly, power for detecting large 
effects was best, ranging from .77 to .99.
	 Notably, in a review of articles published over a 1-year period in major 
health psychology outlets, power was consistently higher than reported in the 
reviews just mentioned (Maddock & Rossi, 2001). This finding existed across 
small (Power = .36), medium (.77), and large (.92) effect sizes. For small and 
medium effects, studies reporting federal funding were more powerful (.41 for 
funded vs. .28 for not funded for small effects and .80 for funded vs. .71 for not 
funded for medium effects). Federally funded projects often require power 
analyses as part of the grant submission so requiring power analyses appears to 
promote more sensitive designs.
	 The relatively poor statistical power observed in published work suggests that 
either researchers do not conduct power analyses or if they do conduct power 
analyses, they assume large effects. However, the Maddock and Rossi (2001) 
study found that when required to conduct power analyses, researchers designed 
studies with more power. Broadly speaking, this suggests that when left to their 
own devices, researchers tend to design underpowered studies.
	 Another possible reason for low power in published work reflects a funda-
mental misunderstanding of how to address issues of effect size for sample size 
planning. Most power analyses begin with an effect size estimate. The researcher 
determines sample size based on effect size, the desired level of power, and Type I 
error. In my experience, estimation of the effect size is problematic to the point of 
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being arbitrary (see also Lipsey, 1990). There are several reasons for this. Research-
ers often use standard effect size estimates (i.e., small, medium, and large) without 
reference to the size of an effect that would be practically important. In consulting 
on power analyses, it is my sense that many researchers think that they are being 
conservative if they choose a medium effect size. Compounding these problems 
are failures to understand typical effect sizes in the field of inquiry. Many fields in 
the behavioral sciences deal with small effects, clearly calling into question the 
“medium effect size as conservative approach.”
	 Another issue is that researchers sometimes begin with a conservative effect 
size estimate but then, discouraged by large sample size requirements for ade-
quate power, increase their effect size to reduce sample size. A related problem 
occurs when researchers begin with an idea of the sample size they want and 
design backward to find the effect size they plan to detect.

Consequences of Underpowered Studies

A typical underpowered study has a relatively low probability of detecting a sta-
tistically significant effect compared to a study with sufficient power. Histor-
ically, within the behavioral sciences, significant results are far more likely to get 
published than nonsignificant results (often discussed as publication bias or the 
file-drawer problem). At first blush, this appears to be a problem for the 
researchers conducting the study. No significant findings leads to unpublishable 
work. Unfortunately, there is also a serious issue regarding underpowered 
studies that do find significant results.
	 When a study is underpowered, statistically significant results occur only 
when effect sizes are larger than the effect size in the population. As an example, 
a study with Power = .20 and a population effect size d = 0.50 requires a sample 
effect size of d = 0.89 or larger for a statistically significant result. In contrast, 
when Power = .80, the effect size required for a significant result is d = 0.35 or 
higher. Statistically significant results from the underpowered study reflects a 
considerable overestimation of the true population effect whereas those from 
well-powered studies provide a range of values both above and below the actual 
population effect size. As power appears low for many fields in the behavioral 
sciences and publication bias remains the norm at many outlets, this suggests 
that published literature provides a skewed view of true population effects.
	 Low power and skewed views of population effects produce a body of research 
that does not stand up to replication (e.g., Open Science Collaboration, 2015). 
Although there are many factors driving failures to replicate, low statistical power is 
among the most prominent. So much so that recent editorials highlight issues with 
power. For example, Stephan Lindsay, in an editorial in Psychological Science stated 
that based on power analyses in submitted manuscripts, “my impression is that 
many authors … have but a shaky grasp on that concept” (2015, p. 1828). Con
sistent with this perception, a study that surveyed published research psychologists 
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revealed widespread overestimation of power and other poor intuitions regarding 
power (Bakker, Hartgerink, Wicherts, & van der Maas, 2016).
	 Echoing the call for a focus on power, Simine Vazire, editor of Social and 
Personality Psychological Science wrote “among all the proposed reforms … I am 
most interested in increasing the statistical power of our published studies” 
(2016, p. 4). Several other outlets such as Journal of Personality and Social Psych-
ology (American Psychological Association, n.d.a), Emotion (American Psycho-
logical Association, n.d.b), Journal of Research in Personality (Lucas & Donnellan, 
2013), Social Psychology (Unkelbach, 2016), and Nature (Nature Publishing 
Group, 2017) demonstrate a substantially increased focus justifying sample size.
	 The American Psychological Association Publication Manual clearly states that 
authors should “[s]tate how this intended sample size was determined (e.g., 
analysis of power …;” 2010, p. 30). These recommendations date back several 
decades (see Wilkinson & Task Force on Statistical Inference, 1999). Despite 
these calls for justifications of sample size via power analysis, it does not appear 
that most authors and outlets adhered to such recommendations. The editorials 
cited previously and the actions of other editors and journals suggest that one of 
the major consequences for the behavioral sciences of underpowered studies is 
an increased focus on providing clear and meaningful justifications of sample 
size (i.e., power analysis) as a requirement for publication.

Overview of Approaches to Determining Effect Size for 
Power Analysis

Perhaps the most difficult requirement of power analysis is estimation of effect 
size. Designing for too small an effect wastes resources through collection of 
more data than needed. Designing for too large an effect does not achieve the 
desired level of power. Unfortunately, determining an effect size for power ana-
lysis is not always easy. Good estimates of effect size require careful considera-
tion. This section reviews strategies for determining effect size for power 
analyses and presents critiques of each approach.
	 Perhaps the most important point in this section is that the effect size you 
choose influences the outcome of the power analysis more than any other deci-
sion. Do not take this choice lightly. Good power analyses start with informed 
choices about effects. The more time, effort, and thought put into this estimate, 
the better the analysis.

Determination of Expectations for Small, Medium, or Large Effects

Use of arbitrary effect size estimates (e.g., small, medium, large) is a bad 
approach. Sometimes this approach is the most effective or useful approach 
available, but premature use takes consideration away from important issues 
such as whether effects are meaningful (discussed in greater detail in the next 
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section), the raw differences we wish to detect, and the precision of measure-
ment. Lenth (2000) gives a useful demonstration of these issues in a test for a 
medium effect. One example involves a between subjects test that detects relat-
ively a roughly 1 mm difference between groups using an instrument with a rel-
atively large standard deviation (1.9 mm). The second test involves a paired test 
using a more precise instrument (SD = 0.7 mm). This test allows for detection of 
mean differences that are nearly six times smaller than in the first example. 
Although the same effect sizes exist for both tests, the second test is far more 
sensitive to the construct of interest.
	 Another issue is that use of “shirt size” effects often does not correspond to 
careful thought about the specific problem of interest. Whenever students 
consult with me on power analysis, I ask what sort of effect size they plan for 
their design. Most say medium. When questioned, few can justify why they 
chose that level of effect, other than to say that it sounded like a reasonable 
compromise between small and large.

Effects Based on Previous Work

Often researchers look to previous work as a guide to estimating effect sizes. 
Certainly, having some information about effects is better than arbitrarily speci-
fying effects. However, this approach does not address whether or not the effect 
sizes presented in previous work reflect a meaningful result. Also, it is important 
to recognize that the effect observed in any single study reflects a sample. This 
sample effect size may or may not be a good estimate of the population effect 
size. As discussed earlier, the sample effect is more likely to be an overestima-
tion of the population effect than an underestimation. Published work tends to 
favor significant results. Studies with larger effects are more likely to produce 
significant results, so the published literature often overrepresents larger effects.
	 Effect size estimates derived from a body of literature (e.g., 10 studies exam-
ining similar effects found d ranging from .10 to .30) temper concerns about 
getting a reasonable estimate of the effect, as there is a larger sample of effect sizes 
used in estimation. In situations like this, overrepresentation of significant (and 
therefore larger) effects remains an issue, so choosing from the lower end of estim-
ates rather than the upper end (e.g., .10ish rather than .30ish) is a conservative 
decision that sometimes offsets overrepresentation. Carefully conducted meta-
analyses that include unpublished literature reduce sampling concerns and may 
provide accurate effect size estimates. However, it is important to note that many 
long-utilized meta-analytic techniques for addressing publication biases now 
appear to be flawed (Carter, Schöbrodt, Gervais, & Hilgard, 2017). Given these 
limitations, it may be more reasonable to pick only the well-powered studies 
found in a meta-analysis as reasonable estimates of the population effect size.
	 Despite issues with the published literature, examining previous work is a good 
reality check when used in conjunction with the “meaningful effect” strategy 
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discussed in the next section. What others found provides some information 
regarding typical effect sizes for the area of inquiry and helps provide context for 
interpretation of effect sizes. For example, if effects in your field typically hover 
around d = 0.20, then designing a study to find a similarly small effect is reasonable 
only if that size of effect is practically meaningful for your research.

Meaningful or Practically Important Effects

The approach that I recommend involves designing for the minimum effect that 
is practically meaningful. This is sometimes termed the “smallest effect size of 
interest” (SESOI, Lakens, 2014). The idea of meaningfulness is slippery and 
often not entirely obvious, particularly for basic areas of research. In thinking 
about meaningful effects, there are a number of questions to ask but not all the 
questions may be relevant to every project.
	 A good beginning question when designing an intervention or similar study 
is how much improvement the intervention needs to make to justify the cost. 
For example, McCartney and Rosenthal (2000) showed that an active learning 
program that produced a small effect of r = .14 on improving student learning 
related to a return of over $7 for every $1 spent on the program. In this case, 
what appears to be a small effect offers considerable gains. Now consider 
another situation in which a similar program costing 10 times as much produced 
a similar effect size. For this program, the return is $0.70 for every $1 spent. 
Both programs produce the same effect size, but the first yields greater benefits 
based on the cost. Continuing the educational program example, another ques-
tion is how this effect compares to those found for similar programs. If a typical 
educational program produces only a $0.25 return on each dollar, then the 
program with the $0.70 return would be a bargain.
	 Unfortunately, for many basic research topics, cost–benefit analyses are not 
relevant. For this type of work, it is important to become familiar with the pub-
lished literature in your area. A good approach is to start with a search of the 
literature to get a sense of typical effects for research in your area, then use those 
effect sizes to construct an initial effect size estimate. After deriving this initial 
estimate, it can be useful to translate the standardized effect size to the actual 
units of interest to get a better understanding of the effect size in practical terms. 
For example, if examining whether an experimental manipulation reduces 
anxiety and the literature shows that this form of anxiety reduction produces 
effects of d = 0.20, translating this information into units on the anxiety scale 
may be easier to interpret than the effect size. If scores on the scale of interest 
ranged from 1 to 10 with higher scores meaning greater anxiety and the scale 
had a standard deviation of 2.0, an effect size of d = 0.20 would reflect a raw 
score difference of less than one point. A reasonable question is whether such a 
small difference is enough to support use of the technique or if the practical 
value of a difference smaller than 1 point is too small to be of interest.
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Effect Sizes for Replication Studies

Replications provide a unique situation for power analysis. There is an empiri-
cal estimate of effect size from the previous work. However, given issues with 
publication bias, this effect is more likely than not an overestimate of the true 
population effect. For such situations, Simonsohn (2015) suggests setting the 
smallest effect size of interest to the effect size that the original study had power 
of 33% to detect. For example, if the original study used a two-group design 
with 64 participants in each group, the study has power of .33 to detect an 
effect size of d = 0.27 (see Chapter 3 for determination of power under these 
conditions). Similarly, Lakens (2017a) argues that the original research design 
reveals the smallest effect size the original researchers cared about detecting. For 
example, a study designed to detect d = 0.50 with n = 64 per group and 80% 
power, will reject the null hypothesis for any sample that yields d > 0.30, sug-
gesting that d = 0.30 is the smallest effect of interest.

Concluding Comments on Determining Effect Size

There are many ways to estimate effect sizes for power analysis. Unfortunately, 
there are issues with most approaches. Designing around small, medium, or 
large effects often reflects arbitrary decision making. Using existing research, 
even meta-analyses, often results in overly optimistic decisions. Designing 
around the smallest effect size that is meaningful is challenging and most obvious 
when engaging in cost–benefit analyses. Despite these challenges, throughout 
the book I focus on designing to detect meaningful effects.

Post Hoc Power (a.k.a. Observed or Achieved Power)

This book focuses on power analyses as an a priori venture. The value of power 
analyses is highest before data collection. There are, however, some arguments 
for providing power analyses for completed work. These approaches, sometimes 
termed post hoc, achieved, observed, or retrospective power, provide a power 
estimate based on the effect size observed in the sample and the sample size. 
Post hoc power analysis therefore tells how much power we had (given our 
sample size and α) to attain statistical significance if the effect size in our sample 
is the true population effect. Proponents of post hoc power analysis argue that 
for nonsignificant results, post hoc power provides useful information about the 
need for replication, with low power suggesting replication is necessary to draw 
conclusions about whether or not a Type II error existed (e.g., Onwuegbuzie & 
Leech, 2004). This perspective suggests that high post hoc power supports the 
veracity of the failure to reject the null hypothesis conclusions (i.e., provides 
support for the null hypothesis). That is, we had relatively high post hoc power 
but still could not reject the null hypothesis.
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	 My view is that post hoc power is not particularly useful. First, power is 
inversely related to both significance test probabilities and effect sizes. Failing 
to reject the null hypothesis generally means that post hoc power was low 
and a larger sample size is needed to obtain statistical significance for the 
observed effect size (e.g., Lenth, 2001; Nakagawa & Foster, 2004). Thus, post 
hoc power tells us nothing new. Another flaw in the logic of post hoc power 
proponents is that power increases as significance test probabilities decrease, 
meaning that higher levels of post hoc power occur when tests approach 
significance. Use of power to support null hypotheses therefore employs a 
procedure wherein results that almost met criteria for rejection of the null 
hypothesis correspond to more support for null effects (Hoenig & Heisey, 
2001). For example, given two analyses with the same sample size, a compari-
son of two groups that produces p = .70 would return an estimate of low 
power (e.g., .10), whereas a sample producing p = .08 (i.e., just missing the 
criteria for rejecting the null at α = .05) would yield substantially more power 
(e.g., .70). Under this flawed view, the second result would suggest stronger 
evidence that the null hypothesis was in fact true, as power was higher in this 
situation.
	 Most uses of post hoc power estimates likely occur for two reasons. First, 
programs such as SPSS provide post hoc power estimates (called “observed” 
power). Second, reviewers sometimes request these values and authors lack the 
knowledge to argue against such presentation. In short, I do not believe post 
hoc power estimates provide useful information and along with others (e.g., 
Maxwell, Kelley, & Rausch, 2008), call for strategies such as CI drawn around 
effect sizes when focusing on “support” for null hypotheses.
	 Post hoc power analysis is perhaps best characterized by this quotation “To 
call in the statistician after the experiment is done may be no more than asking 
him [or her] to perform a post-mortem examination: he [or she] may be able to 
say what the experiment died of ” (Fisher, 1938, p. 17). That is, if we find that 
post hoc power is low, all we know is that the observed effect size was too small 
to be detected with the design we used.

Post hoc Power as a Bias Detection Tool

Since the first edition of this text, some useful approaches utilizing post hoc power 
emerged. For example, post hoc power informs indices of the credibility of a set 
of studies in a single paper. Observed power for each of a set of studies can be 
calculated and then combined to address the overall power of a study to detect 
effects. For example, if a manuscript reports significant effects supporting predic-
tions across four studies with observed power of .90, .80, .95, and .90, the product 
of these values inform power for the entire set of studies. Power to detect all of 
the effects in the same set of studies in this case is .6 (.90*.80*.95*.90), suggesting 
a somewhat unsurprising set of studies.
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	 There are now numerous examples in the research literature of similar 
approaches used to question the credibility of existing results. For, example an 
analysis of Bem’s (2011) controversial paper on pre-cognition (the ability to 
know what will happen in the future), found power of <.001 for a set of 10 
studies yielding 19 tests, 14 of which were significant. The author of this work 
concluded that “it is unlikely that Bem (2011) conducted 10 studies, ran 19 sta-
tistical tests of planned hypotheses, and obtained 14 statistically significant 
results” (Schimmack, 2012, pp. 558–559). For more extensive information on 
the use of post hoc power in this manner, see Schimmack (2016).

How Much Power?

One remaining question for this chapter is how much power to target. Power 
of .80 for tests aiming to reject the null hypothesis seems a de facto standard. 
Many examples in the text design around this 80% value, however, that is not 
an endorsement of 80% as a meaningful level of power in all circumstances. 
Whereas 80% is a reasonable level of power for most situations, other considera-
tions need exploration. For example, if the cost of a Type II error were high 
(e.g., for a treatment that was expensive to develop), then designing for more 
power would be desirable.
	 The 80% standard is interesting to investigate. Figure 1.7 shows power for 
small, medium, and large effect sizes. One thing to note on the graph is that the 
relationship between power and sample size is roughly linear when moving 
from power of .20 to .80. However, moving from power of .80 to higher values 
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corresponds to a sharp upturn in required sample size (the small effect shows this 
relationship most clearly). Table 1.3 shows this in terms of the percentage 
increase in sample size required to increase power.
	 As shown in Table 1.3, increasing power reflects consistent jumps of about 
one-quarter of the sample size for moving from .5 to .6, .6 to .7, and .7 to .8. 
However, moving from .8 to .9 requires an increase of around one-third of the 
sample size. Moving from .9 to .95 requires another one-quarter increase. This 
suggests that power of .80 combines the best sample–power balance. However, 
if you can afford more power, by all means, design for more power. For 
example, if designing for a large effect and additional participants would not 
increase costs considerably then a design with power of .90 or even .95 would 
be advantageous.

Summary

This introductory chapter examined NHST, effect sizes, and basic issues in 
power analysis. Many of the issues in the present chapter receive extended 
coverage in later chapters. For example, throughout the text, there are formulae 
and examples addressing calculation of effect size estimates and noncentrality 
parameters. Similarly, issues relevant to determining effect size estimates receive 
coverage throughout the book.

Notes

1. Figure 1.5 was created using the Exploratory Software for Confidence Intervals soft-
ware program (ESCI). ESCI provides an outstanding visualization tool for exploring 
distribution shapes (see Chapter 11 for information on obtaining this free software).

2. Figure 1.6 was produced using ESCI.

TA Percentage and Sample Size Increases for Small, Medium, and Large Effects

Power Increases From Small Medium Large

.50 to .60 26.8% (104) 28.1% (18) 21.4% (6)

.60 to .70 26.0% (128) 24.4% (20) 23.5% (8)

.70 to .80 27.1% (168) 25.5% (26) 23.8% (10)

.80 to .90 33.8% (266) 34.4% (44) 30.8% (16)

.90 to .95 23.5% (248) 22.1% (38) 23.5% (16)



2
Chi Square and Tests for 
Proportions

Chi square tests for independence (also known as multicategory, contingency) and 
Goodness of Fit (GoF; also known as one-way classification) address questions 
regarding distribution of scores into categories. The GoF test involves distributions 
for categories of a single variable whereas the test for independence examines 
whether membership in one category relates to membership in another (i.e., an 
interaction between variables). This chapter provides a detailed example using the 
test of independence and brief examples for GoF and 3 × 2 independence tests. The 
chapter also addresses tests involving comparing a proportion to a hypothesized 
proportion (one sample test) and tests comparing two independent proportions.
	 As this is the first chapter focusing on specific techniques, I highlight some 
general considerations for power analyses, discuss specific tests, and address 
computer-based approaches. In particular, discussions of noncentrality para-
meters (NCPs), determination of meaningful effects, and use of R functions for 
power analysis are relevant to the material in this chapter and many of the 
designs presented in other chapters.

Necessary Information

The tests covered in this chapter focus on frequencies or proportions. Both forms 
of χ 2 are concerned with frequencies, those expected based on the null hypotheses 
and observed values. Estimating power for χ 2 requires construction of the propor-
tions reflecting the alternative distribution and proportions reflecting the null hypo-
thesis. The two tests of proportions (one sample and independent) involve the 
same type of information, but generally for fewer groups. In either case, the altern-
ative distribution should reflect a population that deviates from the null hypothesis 
in a manner that would be practically meaningful or interesting.
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Factors Affecting Power

Larger deviations between observed and expected values produce larger effect 
sizes as do larger differences between group proportions. Differences between 
more extreme proportions (those closer to 0 or 1.0) produce larger effect sizes. 
For example, the difference between proportions of .8 and 1.0 corresponds to a 
larger effect size than the difference between .4 and .6. As with any analysis, 
larger effect sizes, larger samples, and more liberal α levels yield more power.

Key Statistics

This section presents formulae for Chi square tests. Information for other tests 
of proportions appear in other sections of the chapter. One value that deserves 
special mention is the NCP. NCPs measure the distance between the distribu-
tion from which we are sampling (also known as alternative distribution) and 
the distribution specified in the null hypothesis. The shape of the alternative 
distribution reflects the effects we wish to detect and sample size employed so 
the NCP calculation is driven by the effect size and sample size.
	 For our purposes, the NCP is an intermediate step to determining power. The 
NCP value has little immediately interpretable meaning aside from bigger meaning 
more power. NCPs are available for the t, F, and χ2 distributions. F and χ 2 use a 
value called λ (Lambda); t uses δ (Delta).

Pearson’s Chi Square (χ2)

The fit of observed frequency data to a model of expected frequencies is com-
monly assessed with the Pearson’s χ2 statistic. This statistic, shown in Formula 
2.1, focuses on two frequency values, observed (  fo) and expected (  fe). The more 
deviant the observation is from the expectation, the larger the χ2 value. In short, 
the approach sums the squared difference between the observed and expected 
frequencies of each cell over the expected frequency of the cell. The term 
expected reflects what we would observe if no effect were present. In the 
context of power analysis, observed takes on a slightly different meaning. Power 
analysis is a priori, so we do not have data, making the term “observed” a bit of 
a misnomer. Observed reflects what the population of interest looks like. As 
discussed in the next section, we are interested in what sort of observed differ-
ence would be meaningful. A key question to ask is “how large would the devi-
ation between observed and expected have to be for the result to be interesting 
or practically important?” When conducting power analysis for Chi square, we 
establish the proportions (or frequencies) we would observe if there were mean-
ingful differences between groups.

� (2.1)
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Phi (Φ)

Phi (also known as Cramer’s V or w) is a common measure of effect size for fre-
quency data. When applied to a 2 × 2 test of independence, the value is equi-
valent to Pearson’s correlation coefficient (r). Φ focuses on observed and 
expected proportions rather than frequencies. In comparing the χ 2 and Φ for-
mulae, we see that Φ is simply χ2 expressed proportionally rather than based on 
frequencies (technically, the square root of those values). That is, it is the signifi-
cance test statistic ( χ 2) with all of the elements relevant to sample size removed. 
The second version of the formula (Formula 2.3) demonstrates this concept 
more directly.

� (2.2)

� (2.3)

Lambda (λ)

The NCP for χ 2 is λ. This is a function of Φ and sample size. For power ana-
lyses, λ reflects the χ 2 we would obtain if a sample result reflected the expected 
values exactly.

� (2.4)

Example 2.1: 2 × 2 Test of Independence

In this example, I present power analysis for a replication study addressing 
effects of a prospective tenant’s reference to HIV on responses to inquiries about 
the availability of rooms or apartments for rent (Page, 1999). In the original 
study, callers inquired about availability of rentals and either mentioned or did 
not mention undergoing treatment for HIV. The outcome measure was 
whether the rental was reported as still available or not. The study found that 
40% of applicants who mentioned HIV were told the rental was available com-
pared to 76% of applicants who did not mention HIV.
	 In replicating this study, we address how large a sample size is necessary to 
produce power of .80. The first step in this process is to determine what size of 
effect our design will employ. There are two approaches to determining effect 
size detailed next.

Effect Sizes Based on Previous Research

Determining effect sizes based on previous research asks the question “how 
large a sample is needed to detect a population effect size equivalent to the effect 



Chi Square and Tests for Proportions    21

size in the previous study?” This is a common approach to power analysis but 
not one that I can endorse without considerable qualification. Estimates based 
on a single sample may not accurately represent the population effect size. Pub-
lished research tends to favor statistically significant findings (Rosenthal, 1979). 
Significant findings tend to have larger effect sizes, so reliance on previously 
published work often overestimates the population effect size.
	 When designing a study based on effect sizes from similar studies, it is 
important to recognize that what someone else found may not be relevant to 
whether the size of effect you want to detect is meaningful or practically valu-
able. Of course, this does not mean that the approach is useless. What others 
found may represent a meaningfully sized effect or the smallest effect that you 
are interested in detecting. Do not accept mindlessly what other researchers 
found as a reflection of the size of effect you want to detect. Instead, focus on 
meaningful effects when possible.

Effect Sizes Based on Detecting Meaningful Effects

The approach that determines effect size based on detecting meaningful effects 
(i.e., the smallest effect of interest) begins with the question “how large a sample is 
necessary to detect the smallest effect we would term meaningful?” This approach 
requires important decisions about what we consider a meaningful difference. This 
is not always an easy question to answer. Addressing this question adequately 
involves serious thought and can promote large sample requirements, especially if 
the researcher believes small differences are important to detect.
	 It is difficult to provide systematic guidance for determining meaningful 
effects. Every research study is different with unique concerns and outcomes. 
Questions about what is or what is not a meaningful result must be answered in 
the context of each project. I provide rationale for the choices made for the 
determination of meaningful results and general strategies for answering 
questions of meaningfulness but ultimately only the researcher can answer this 
question about their study.
	 In thinking about what is a meaningful result, it is sometimes useful to first 
think about data in terms of raw scores (e.g., frequencies, means) rather than as 
standardized effect sizes. This differs from classic approaches to power analysis that 
focus first on effect size (e.g., Cohen, 1988; Kraemer & Thiemann, 1987). Think-
ing about standardized effect sizes often removes the context of effects, making it 
difficult to determine what is meaningful. In discussing statistical reporting of 
effects, Wilkinson and the Task Force on Statistical Inference noted “if the units of 
measurement are meaningful on a practical level … then we usually prefer an 
unstandardized measure to a standardized measure” (1999, p. 599). Unstandardized 
measures are generally easier to think about and understand than are standardized 
measures. This does not mean that standardized effect sizes are not useful, only that 
it can be easier to begin by examining raw statistics.
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Example of Determining Effect Size for Analysis

Going back to the rental study, a good place to start is by examining differences 
in rental availability between HIV positive applicants and a control group. A 
good beginning question is “how much discrimination would be meaningful?” 
Consideration of the level of discrimination found in the earlier study is a good 
starting point. Page (1999) found a 36% difference in rental availability between 
HIV positive applicants and the control group (40% vs. 76%). It would be 
reasonable to term this level of bias “meaningful.” A large difference in avail-
ability reflects clear discrimination. However, if we designed for power of .80 
to detect this much bias (36% difference), we would have considerably less 
power to detect smaller differences in bias. Unless a 36% difference is the small-
est meaningful difference we were interested in detecting, designing around this 
value would not be a good approach.
	 Given the issues discussed above, an important question is “how large a 
difference is meaningful?” Certainly, any amount of discrimination is troubling, 
so we could design a study that allowed for detection of very small differences 
(e.g., 5%). However, this small a difference does not seem particularly large 
when compared to the previous finding of a 36%. As a compromise, I am going 
to define a 20% difference as the smallest difference I am interested in having 
power to detect.
	 For Chi square, the effect size is a function of the proportions. Differences 
between more extreme proportions produce larger effect sizes than differences 
between proportions closer to .50. For that reason, it is important to establish 
proportions based on reasonable estimates for each group rather than simply 
choosing two proportions that create specific levels of difference. A good start-
ing point is the information from the study about the control group. In the 
previous study, 76% of the rentals in the control group were available. This 
value serves as a reasonable baseline, as there does not appear to be any reason 
to believe availability for this group would change substantially. Table 2.1 shows 
how the 20% difference is applied to construct proportions corresponding to 
these values. Recall that po (proportion observed) establishes the meaningful 
differences whereas pe (proportion expected) describes the null hypothesis.

TaBLe 2.1 Proportions Reflecting a Meaningful Difference (Null in Parentheses)

HIV/AIDS Mentioned 
(Treatment) po (pe )

% of 
Condition

No HIV/AIDS Mentioned 
(Control) po (pe )

% of 
Condition

Rental 
Available

.28 (.33) 56 .38 (.33) 76

Rental Not 
Available

.22 (.17) 44 .12 (.17) 24
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	 A few notes on the values in Table 2.1 are necessary. The proportions reflect 
the overall proportions of the sample with half of the participants assigned to the 
control group and half assigned to the treatment group. The original study 
found 76% of rentals available to those who did not mention HIV. These cells 
are set at .38 and .12. The value of .38 is the proportion of the total that corres-
ponds to 76% of the control group (recall the control group is only half of the 
entire sample). The value of .12 is the proportion corresponding to the 24% of 
the control group for whom the rental was not available. Treatment group pro-
portions are set as deviations from those values. Thus, a 20% difference here 
reflects a .10 difference in proportions across columns. The 20% difference 
reflects a difference in terms of how many people in each condition were told 
the rental was available. The proportional values are out of the total sample, 
with an equal division of participants between treatment and control groups. 
The expected proportions reflect the average of the two proportions in the row, 
or more simply what the proportions would look like if there were no differ-
ences between treatment and control. These proportions are especially 
important as these are the values used for pe in calculations. Based on the pro-
portions in Table 2.1, Φ is calculated using Formula 2.2.

 

The effect size is then used to calculate the NCP. For this calculation, we need 
to choose a sample size as a starting point. The calculations (using Formula 2.4) 
show that with n = 100, λ is equal to 4.41.

As a short aside, it appears that thinking about these differences in terms of per-
centages makes a bit more sense than beginning with an effect size. For example, a 
study designed to detect a minimum of a 20% difference in availability (56% vs. 
76% for HIV and control respectively) would produce Φ = .21. In this case, the 
percentage result is more intuitive to most than the effect size. Please note that my 
focus on proportions instead of effect sizes is not a criticism of the utility of effect 
size measures. Effect sizes are indispensable measures but are not always an easily 
interpretable starting point for determining meaningful effects for power analysis. 
One note of caution is that the percentage difference expressed here (20%) may 
correspond to different effect sizes. Percentage difference and effect size do give 
different information. For example, if the proportions of interest were .80 and 1.0, 
respectively, the effect size would be considerably larger (Φ = .33).



24    Chi Square and Tests for Proportions

Using the Noncentrality Parameter to Calculate Power

Given an effect size of Φ = .21 we can compute power. There are two questions 
addressed in this section. First, how much power does n = 100 yield? Second, 
what sample size produces Power = .80?
	 For the first question, we need λ (4.46) and a critical value for χ 2 with our 
desired α. Using α = .05 corresponds to a critical value of χ 2 = 3.84 for df  = 1. 
The degrees of freedom are Rows-1 times Columns-1 for this test. Since power 
calculations for Chi square distributions require use of a noncentral distribution, 
this calculation requires a computer protocol (see Chapter 1’s discussion of this 
issue).
	 Using R, the following command computes power:

1-pchisq(Chi-Table, df, λ)

The value called Chi-Table reflects the critical value for χ 2 (3.84). The df  = 1 
and Lambda = 4.46 so the command looks like this:

1-pchisq(3.84, 1.4, 4.46)

The pchisq function in R performs calculations based on noncentral distribu-
tions; the value it gives is the area below λ. Because R gives the area below λ, 
the command takes 1 minus the result, as this corresponds to the area above λ 
that gives power. Using this calculation R yields Power = .56.

Approximating Power Calculations

Although it is not possible to calculate correct power estimates for χ 2 by hand, 
good approximations are possible. I include this section as my experience teach-
ing about power suggests that approximation, albeit not always accurate, facilit-
ates theoretical understanding of power. The approach demonstrated here works 
only when df  = 1. This approach does not work particularly well for small 
samples or small effect sizes. As discussed in Chapter 1, with large samples, 
central and noncentral distributions look similar. The approximation procedure 
relies on central distributions.
	 Calculating approximate power directly from λ is relatively simple when 
df  = 1. With df  = 1 the χ 2 distribution is simply the normal distribution squared 
(z2). Converting λ and the critical value of χ 2 to z involves taking the square 
root of each value. Then take these values to Formula 2.5, that yields a z stat-
istic that can be used to approximate power.

� (2.5)

For this example, the critical value for χ 2 with df  = 1 and α = .05 is 3.84. 
Converted to z, we get zcritical = 1.96. λ converts to zλ = 2.10. Inserting these values 
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into Formula 2.5 yields zpower = –0.14. This value reflects the point on the 
alternative (or true) z distribution that corresponds to the critical value of the 
null distribution. The area below zpower reflects samples that do not allow for 
rejection of the null hypothesis. This corresponds to β or Type II error. The 
area above zpower reflects samples that allow for rejection of the null. This is 
1 – β or power.

Taking zpower to a normal distribution table shows that 56% of the distribution falls 
at or above z = –0.14. Figure 2.1 shows these calculated values. In this figure, 
power is the area of the alternative distribution that falls to the right zcritical. This 
area is a little above 50% (56% for this example). The value for zλ represents the 
center of the alternative distribution (Formula 2.6).
	 The approximation technique also allows for the determination of a sample 
size corresponding to a particular level of power. For example, if we want to 
find Power = .80 (or some other value), we can work backward and rearrange 
the formulae. First, find the z-value above which you find 80% of the distribu-
tion. This corresponds to z = –0.85. Plug that value into Formula 2.6 with the 
critical value for zλ and solve for zλ. Square zλ to get λ. Finally, take λ to 
Formula 2.7 and solve for n. In this case, for Power = .80, a sample of 179 is 
necessary. To facilitate assignment of equal numbers of participants to the two 
groups round up to n = 180.

–5 –4 –3 –2 –1 0 1 2 3 4 5 6

Null
Alternativezcritical

zL

FI Graph of Power Area Using Normal Distribution Approximation.
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� (2.7)

Example 2.2: 2 × 2 Chi Square Test for Independence Using R

The calculations detailed in this chapter are effective but impractical for 
complex designs. The R functions demonstrated in this book (and found in the 
pwr2ppl package) generally require a single line of code to run analyses. Most R 
functions return power for a specific sample size. This often necessitates running 
analyses several times, and trying out new sample size values to hone in on the 
solution that provides the desired level of power.
	 The Chi2x2 function presented in Table 2.2 calculates power for a sample of 
n = 100 using the proportions in Table 2.1 and α = .05. The format of the 
function is:

Chi2x2(r1c1, r1c2, r2c1, r2c2, n, alpha)

For the function, r1c1, r1c2, r2c1, and r2c2 refer to the proportion of overall 
scores in each row by column combination. For example, r1c1 is .28, reflecting 
the first row and column in Table 2.1. Sample size is defined by n. Alpha 
defaults to .05 if no value is entered.
	 Table 2.2 shows the output for an initial analysis based on 100 participants, 
yielding power of .56 ( just as calculated earlier).
	 To determine the sample size needed to achieve a desired level of power 
(.80) with the specified effect size, change the value for n in the command 
compute n = 100 to another value. The basic approach to using the R com-
mands is to run the analysis with a specific sample size and then to run again 
with a new sample until achieving the desired level of power. Table 2.3 
shows the code and output for two analyses. For the first analysis, power was 
.56 with n = 100, so we try a larger sample size and then adjust the sample size 
as necessary until the reported power reaches the desired level. With n = 180, 
power is .808.

TaBLe 2.2 R Code and Output for χ2 Independence Test (n = 100)

Chi2x2(r1c1=.28, r1c2=.22, r2c1=.38, r2c2=.12, n=100)
## [1] “Power for n of 100 = 0.56”
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Example 2.3: Other χ 2 Tests

Brief examples of GoF and independence tests with more than two categories 
appear in Table 2.4.

Goodness of Fit

The ChiGOF function in Table 2.4 addresses power for the GoF test. The 
format of the function is:

ChiGOF(po1, po2, po3, po4, po5, po6, groups, n)

The po values reflect proportions in each group. Two is the minimum and six 
is the maximum. Proportions must add to 1.0. The values groups and n define 
number of groups and sample size, respectively.
	 In this example, there is a single variable with four categories. The function 
tests a null hypothesis of equal proportions across groups. The analysis compares 
a population where meaningful differences between categories reflect propor-
tions of .25, .20, .20, and .35 to a null distribution that represents equal propor-
tions across the groups.

Test of Independence with More Than Two Categories

For this example, the only change from the 2 × 2 is the addition of a third cat-
egory for the second variable. The function now requires specification of pro-
portions for r1c3 (row 1, column 3) and r2c3 (row 2, column 3).

Example 2.4: General Effect Size-Based Approaches Using R

An additional tool in the pwr2ppl package is a function called ChiES. The 
format of this function is:

ChiES(phi, df, nlow, nhigh, by, alpha)

TaBLe 2.3 R Code and Output for χ2 Independence Test (n = 180)

Chi2x2(r1c1=.28, r1c2=.22, r2c1=.38, r2c2=.12, n=180)
## [1] “Power for n of 180 = 0.808”

TaBLe 2.4 R Code and Output for Goodness of Fit and 2 × 3 Independence Test

Goodness of Fit 2 × 3 Independence 

ChiGOF(po1=.25, po2=.20, po3=.20, 
po4=.35, groups=4, n=100)
## [1] “Power for n of 100 = 
0.518”

Chi2x3(r1c1=.25, r1c2=.25, 
r1c3=.10, r2c1=.10, r2c2=.25, 
r2c3=.05, n=200)
## [1] “Power for n of 
200 = 0.747”
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The value phi reflects the effect size (Φ). Degrees of freedom are defined by df. 
nlow is the starting sample size and nhigh the ending size. The value by defines 
the incremental increase from nlow to nhigh with a default of 1 unit. Alpha 
defaults to .05, as with the other functions alpha can be set to other values (e.g., 
alpha = .01). See Table 2.5 for an example.

Tests for Single Samples and Independent Proportions

In addition to Chi-square approaches to testing for differences in proportions, 
several other techniques compare proportions. This section presents power ana-
lysis for tests comparing a sample to a hypothesized value for the population 
(single sample test) and comparing proportions between two independent popu-
lations. Calculations for both approaches are similar, so I present general formu-
lae first then address application to each design.

Formulae for Differences in Proportion Tests

The effect size for tests involving differences in proportions is termed h. The 
value h is like d and can be thought of (at least intuitively) in the same manner 
(i.e., units of standard deviation). The calculation of h involves what is 

TaBLe 2.5  R Code and Output for General Effect Size Approach to Power for Chi 
Square

ChiES(phi=.3, df=1, nlow=10, nhigh=200, by=10, alpha=.01)
## [1] “Power for n of 10 = 0.0521”
## [1] “Power for n of 20 = 0.1086”
## [1] “Power for n of 30 = 0.1755”
## [1] “Power for n of 40 = 0.2487”
## [1] “Power for n of 50 = 0.3247”
## [1] “Power for n of 60 = 0.4005”
## [1] “Power for n of 70 = 0.4737”
## [1] “Power for n of 80 = 0.5428”
## [1] “Power for n of 90 = 0.6065”
## [1] “Power for n of 100 = 0.6643”
## [1] “Power for n of 110 = 0.7159”
## [1] “Power for n of 120 = 0.7613”
## [1] “Power for n of 130 = 0.8009”
## [1] “Power for n of 140 = 0.8349”
## [1] “Power for n of 150 = 0.864”
## [1] “Power for n of 160 = 0.8886”
## [1] “Power for n of 170 = 0.9092”
## [1] “Power for n of 180 = 0.9263”
## [1] “Power for n of 190 = 0.9405”
## [1] “Power for n of 200 = 0.9522”
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commonly termed the arcsine transformation. This transformation deserves 
some special mention. The name arcsine transformation is imprecise, sometimes 
leading to incorrect use of the transformation, likely because of confusion over 
the proper calculation. For example, MS Excel provides an arcsine function that 
does not correspond to the transformation in Formula 2.8. MS Excel correctly 
calculates the arcsin portion of the formula but do not include the 2 or square 
root of p parts.
	 Formula 2.8 notes the arcsine transformed proportion as p’. Others (e.g., 
Cohen, 1992) note this value as Φ. I avoid this notation, as Φ is also the effect 
size for Chi square. The calculation is applied to two proportions of interest, 
either the alternative and null proportions or two independent proportions.

� (2.8)

After converting both proportions and the effect size, calculate h by subtracting 
one transformed proportion from the other (Formula 2.9).

� (2.9)

There is not an NCP for this test as the difference between proportions is tested 
against the normal distribution and such tests use a central distribution. Formu-
lae 2.10 and 2.11 use zλ to note the value that is analogous to the NCP in the 
previous parts of the chapter. The choice between Formulae 2.10 and 2.11 
depends on the test. For a one sample test, use Formula 2.10. For a test of inde-
pendent samples, use Formula 2.11. For unequal samples sizes among inde-
pendent groups, use the harmonic sample size defined by Formula 2.12. Once 
zpower is calculated, we apply Formula 2.5. Since this test uses the normal distri-
bution (rather than chi square as seen in the previous examples), accurate hand 
calculation of power is possible.

� (2.10)

� (2.11)

� (2.12)

Example 2.5: Single Sample Comparison

As a graduate student, I worked coding studies for a large-scale meta-analysis 
involving drug abuse treatment programs. One of the outcomes of interest 
was the proportion of program participants who remained abstinent for a 
certain period (e.g., 6 months). This was one of several possible outcomes, 
often with so many categories that the data were not appropriate for χ2. For 
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example, categories might include abstinent 1 year, mostly abstinent for a year 
(one or two slip-ups), abstinent 6 months, abstinent 3 months, abstinent 1 
month, dropped out of treatment, and not abstinent. Two designs for exam-
ining effectiveness of programs involved comparing a sample from the 
program to a program goal for abstinence or comparing two samples of parti-
cipants who received different forms of treatment. For example, a program 
might compare its abstinent rates to a benchmark for abstinence (single sample 
comparisons) or abstinence rates of a sample drawn for a comparison program 
(independent samples comparisons).
	 Imagine that a program would qualify for extended funding if it demon-
strated substantial improvement over a 42% success rate for routine treatments 
as reported in previous meta-analysis of similar programs.1 The program believes 
that, at minimum, they had a 60% success rate. How large a sample of program 
participants is necessary to provide power of .90 to detect this difference? This 
approach involves a one sample proportion test as there is a sample proportion 
compared against a hypothesized value.
	 Calculating the effect size involves transforming both proportions (.60 and 
.42), then taking the difference between the two transformed proportions. 
Next, the effect size can be used to calculate zλ, which is then used to obtain 
power. The examples that follow use an arbitrary sample size of 20 and a one-
tailed α = .05 test.

The area above zpower of 0.035 is .49, indicating that we have Power = .49, well 
below our desired level.
	 Table 2.6 demonstrates use of the prop1 function and output. The format of 
the function is:

prop1(p1, p0, nlow, nhigh, tails, by)

The p values represent the alternative (p. 1) and null (p. 0) proportions. Tails 
defines a one vs. two-tailed approach with two tails the default. Other aspects of 
the function such as nlow, nhigh, by, and alpha are largely the same as previous 
examples.
	 The function returns power for a range of sample sizes, showing that a 
sample of around 70 participants yields the desired power.
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Example 2.6: Independent Proportions Comparison

Imagine that instead of comparing against a benchmark, another program 
wanted to compare the effectiveness of their program to a value-added version 
of the program that included new therapeutic components. The current 
program reports a success rate of 55%. Given the increased costs associated with 
the new program, they would consider the value-added program worthwhile if 
it were to, at minimum, increase success to 62%. By worthwhile this would 
mean that the level of improvement would be enough to justify a full-scale 
change in the program. As the new program is experimental, only a proportion 
of program participants (20%) are scheduled to participate in the value-added 
program.
	 Comparisons of independent samples for proportions proceed in the same 
fashion as the single sample test with some additional considerations. The effect 
size statistic, h, is calculated the same way. The calculation of z differs slightly 
and groups have different sample sizes. With unequal sample sizes, the harmonic 
sample size replaces n in the calculation of z. The following example uses 
sample of 200 participants (20% assigned to the new treatment).

Taking the value of 1.16 to a normal distribution table, shows power is .12 for a 
sample of 200 program participants (.12 is the area at or above z = 1.16).

TaBLe 2.6 R Code and Output for One Sample Proportion Tests

prop1(p1=.60, p0=.42, nlow=20, nhigh=100, tails=1, by=10)
## [1] “Power for n of  20 = 0.4897”
## [1] “Power for n of  30 = 0.6324”
## [1] “Power for n of  40 = 0.7405”
## [1] “Power for n of  50 = 0.82”
## [1] “Power for n of  60 = 0.8769”
## [1] “Power for n of  70 = 0.9169”
## [1] “Power for n of  80 = 0.9445”
## [1] “Power for n of  90 = 0.9633”
## [1] “Power for n of 100 = 0.9759”
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	 Table 2.7 demonstrates use of the propend function. The format of the 
function is:

propind(p1, p2, nlow, nhigh, by, nratio, alpha)

The values p1 and p2 define group proportions. nratio establishes the balance of 
participants per group with equal sample sizes the default (nratio = .5). Other 
aspects of the function such as nlow, nhigh, by, and alpha are the same as previous 
examples.
	 Based on the results in Table 2.7, detecting this effect with Power = .80 
requires a sample of between 2400 and 2500 participants. Although this is a 
large sample, the result should not be surprising as the h statistic is very small.

Additional Issues

The Chi square test for independence is for nominal categories. If categories are 
ordinal (e.g., class rank) other measures such as gamma may be more 

TaBLe 2.7 R Code and Output for Independent Samples Proportion Tests

propind(p1=.62, p2=.55, nlow=200, nhigh=2500, by=100, nratio=.2)
## [1] “Power for sample sizes of  40  160 = 0.1239”
## [1] “Power for sample sizes of  60  240 = 0.1648”
## [1] “Power for sample sizes of  80  320 = 0.2054”
## [1] “Power for sample sizes of 100  400 = 0.2457”
## [1] “Power for sample sizes of 120  480 = 0.2855”
## [1] “Power for sample sizes of 140  560 = 0.3245”
## [1] “Power for sample sizes of 160  640 = 0.3627”
## [1] “Power for sample sizes of 180  720 = 0.3999”
## [1] “Power for sample sizes of 200  800 = 0.4359”
## [1] “Power for sample sizes of 220  880 = 0.4707”
## [1] “Power for sample sizes of 240  960 = 0.5041”
## [1] “Power for sample sizes of 260 1040 = 0.5362”
## [1] “Power for sample sizes of 280 1120 = 0.5668”
## [1] “Power for sample sizes of 300 1200 = 0.596”
## [1] “Power for sample sizes of 320 1280 = 0.6237”
## [1] “Power for sample sizes of 340 1360 = 0.65”
## [1] “Power for sample sizes of 360 1440 = 0.6748”
## [1] “Power for sample sizes of 380 1520 = 0.6982”
## [1] “Power for sample sizes of 400 1600 = 0.7203”
## [1] “Power for sample sizes of 420 1680 = 0.741”
## [1] “Power for sample sizes of 440 1760 = 0.7605”
## [1] “Power for sample sizes of 460 1840 = 0.7787”
## [1] “Power for sample sizes of 480 1920 = 0.7958”
## [1] “Power for sample sizes of 500 2000 = 0.8117”
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appropriate. Siegel and Castellan (1988) provide a good discussion of power for 
nonparametric tests, but certainly more work is necessary in this area.
	 Violations of χ2 assumptions occur when cells have very small expected fre-
quencies (e.g., less than 5). For tests of independence, small expected frequencies 
are a product of low observed frequencies across a category level. For example, a 2 
(Condition: Treatment vs. Control × 3 (Response: Yes vs. Maybe vs. No) design 
might produce a very small proportion of “No” responses across both conditions, 
leading the expected frequencies for “no” cell to be very low. One solution is to 
collapse categories to address this problem (e.g., combine no and maybe responses 
into a single category). Collapsing this way will turn a 2 × 3 design into a 2 × 2. 
The simpler 2 × 2 design often will have more power. However, if you expect a 
problem of this nature, it is a good practice to evaluate power for both the 2 × 2 
and 2 × 3 designs, using whichever yields a larger sample size requirement (pro-
vided that assumptions are met in both cases).

Summary

This chapter addressed power for Chi square tests of independence and GoF, 
tests involving a single proportion compared to a hypothesized value, and com-
parisons of two independent proportions. For each design, power analysis 
involves specifying the null and alternative distributions. The null distribution 
reflects the proportions specified in the null hypothesis (e.g., equal proportions 
across groups). The alternative distribution establishes the proportional differ-
ences we wish to test relative to the null distribution (e.g., a 10% difference 
between two groups). Ideally, proportions reflect the smallest difference the 
researcher defines as meaningful. Relevant to these analyses, this chapter 
includes formulae and R functions for calculating power using the pwr2ppl 
package. The chapter also includes a discussion of determining effect sizes for 
design through consideration of the size of a meaningful difference as well as 
examination of previous research findings.

Note

1. This success rate comes from Prendergast, Podus, Chang, & Urada (2002) but repres-
ents a considerable simplification of the factors contributing to success rate.



3
Independent Samples and 
Paired t-TESTS

This chapter focuses on power for designs traditionally addressed using t-tests 
(either independent or paired). These procedures often examine treatment-
control group comparisons and pre-post designs. I present power analyses for 
independent and paired designs with R functions for primary analyses and for 
tests addressing violation of homogeneity of variances assumptions and unequal 
sample sizes.

Necessary Information

For designs using independent sample t-tests, the initial step is determining 
means (μs) representing meaningful differences between groups and making a 
reasonable estimate of standard deviation (σ) for both groups. For paired t-test 
designs, means representing meaningful differences, standard deviation, and the 
expected correlation (ρ) between dependent measures are required. For the 
paired t-test, the standard deviation of the difference may be substituted for 
σ and ρ; however, it is usually easier to focus on standard deviations and the 
correlation.
	 For both tests, you may also start with an estimate of the effect size. The effect 
size estimate most commonly used for two-group designs is Cohen’s d. Techni-
cally, power analysis involves a population effect size, which is usually noted as δ 
or Δ (lower- and upper-case delta, respectively). This text uses d to designate the 
population effect size. This is because δ represents the noncentrality parameter 
(NCP) (discussed in the next section), and it is confusing to use the same 
symbol for two different values.
	 Estimation of the standard deviation deserves special mention. Estimating the 
population standard deviation (σ) is sometimes tricky. One approach is to 
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pretest. In general, a pretest with even as few as 20 participants helps to establish 
a reasonable estimate of variability for the dependent measure.1 Of course, there 
are other benefits to pretesting such as establishing whether manipulations actu-
ally work and if measures make sense to participants. Another strategy is esti-
mating the standard deviation of the dependent measure from previous uses of 
the measure. This can be accurate when dealing with established measures. 
However, this approach requires close attention to the study populations used. 
For example, a standard deviation based on college students might not represent 
an accurate estimate of the standard deviation for office workers.
	 Finally, when estimating standard deviations, it is important to consider 
potential differences between treatment and control group variability. For 
example, if group assignment is nonrandom (e.g., samples from existing groups), 
groups may differ in terms of standard deviations. Unequal variances across 
groups influence power and complicate estimates of necessary sample sizes. 
Anticipating these issues in the design stage produces more accurate power 
analyses.

Factors Affecting Power

For between subjects designs addressed using the independent samples t-test, the 
mean difference and standard deviations influence power. The mean difference 
and the pooled standard deviation comprise the effect size. For within subjects 
designs addressed using the paired t-test, the correlation between the two 
administrations of the dependent measure also affects the effect size, with corre-
lations of greater than .50 increasing power and correlations of less than .50 
decreasing power.
	 As noted in Chapter 1, sample size, desired alpha error, and the directionality 
of the test (i.e., one or two-tailed) affect power. Use of one-tailed (directional) 
or two-tailed (nondirectional) tests deserves some special mention. A one-tailed 
approach yields a more powerful test when outcomes are in the predicted direc-
tion. For example, a directional test where the expectation is that the treatment 
group outperforms the control group has more power than a nondirectional test 
if the actual study results find the treatment group outperformed the control. If 
it were the case that the control outperformed the treatment group, the direc-
tional test would have no power to detect this effect but the nondirectional test 
retains some power.
	 The choice of a one- or two-tailed test is an a priori decision. You cannot 
peek at the data to see which test allows the best conclusion. Often, the deci-
sion between one- or two-tailed tests hinges on one key question: “Do I 
care if the results are opposite what I expect?” In many situations, researchers 
want to be able to discuss findings in either direction. I rarely see the use of 
one-tailed tests in the literature in Psychology, likely because most statistical 
software defaults to a two-tailed probability for most tests. Recent criticisms 
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of the evidentiary value of probability values just below .05 (two-tailed; Ben-
jamin et al., 2017) suggest increased pressures against using more liberal one-
tailed tests.

Key Statistics

This section presents statistical formulae for the analyses that follow. As dis-
cussed later in the chapter, R functions perform most of these calculations. 
When possible, I provide general formulae relevant to both independent and 
paired samples tests.

Independent Samples t

The t-statistic (Formula 3.1) reflects the difference between the sample means 
minus the hypothesized difference over the standard error of the differences 
(Formula 3.2). The hypothesized difference between means is set at zero (this is 
the default in most statistical packages). Test of nonnil hypothesis (e.g., Thomp-
son, 1998), are not discussed in this chapter, but are easily accommodated by 
simply changing the hypothesized difference (represented in Formula 3.1 as 0) 
to the nonnil value of interest. The nonnil approach is especially useful for ana-
lyses that seek a particular effect size/statistical significance combination (e.g., 
conclude with a reasonable degree of certainty that our samples do not come 
from a population where the true difference between means is 2.5).
	 The standard error of the differences focuses on the standard error of each 
group and the correlation between measures. For independent samples, r = .00 
in Formula 3.2

 (for samples)� (3.1)

 (for samples)� (3.2)

Formulae 3.1 and 3.2 use sample notation for calculations of t and the standard 
error of the differences between means. The formulae that follow reflect popu-
lation values. The use of population values serves as a reminder that the values 
used for calculations are not based on data collection. Power analysis focuses on 
expected or meaningful values for a population determined before data collec-
tion. The effect size, Cohen’s d, as noted in Formula 3.3 is the mean difference 
over the pooled standard deviation (Formula 3.4).2 This value is also known as 
the standardized mean difference.

� (3.3)
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� (3.4)

Formula 3.5 details calculation of the NCP. The value noted as nj reflects the 
number of people per group. The section on unequal variances and sample sizes 
presents formulae addressing designs where group sizes differ.

� (3.5)

Paired Samples t

The paired samples t approach uses the same values as the independent samples 
approach with the exception of the effect size and NCP. For the effect size, shown 
in Formula 3.6, the denominator is the standard deviation of the differences 
(sometimes written as σD). Note that the standard deviation of the differences 
(σx1 – x2 

) is not the same value as the standard error of the differences (s
x1 – x2

), one 
has xs and the other has means as the subscript (x-bars) (Formula 3.7).3

 (3.6)

� (3.7)

Formula 3.8 is the NCP for the paired t-test.

� (3.8)

Approximating Power

Following calculation of the NCP, that value, along with the critical value of t, 
goes in Formula 3.9 to produce a value I term tpower. The tpower value allows for 
calculation of approximate power. As noted in Chapter 1, estimation is a good 
way to get a conceptual understanding of power. However, estimation does not 
always yield accurate power values. The approach detailed here is an excellent 
teaching tool, but I recommend the computer-based approaches detailed in the 
sections that follow for formal analyses.
	 The value called tpower, reflects the area on the alternative distribution above 
which we can reject the null hypothesis. This means that negative values of tpower 

produce more power than positive ones.

� (3.9)



38    Independent Samples and Paired t-tests

Exact Power

Obtaining exact power calculations requires a computer protocol. The follow-
ing R command performs this calculation.

1-pt(tcritical, df, δ)

Other sections in this chapter present formulae for additional topics, such as 
unequal variances and solving for desired sample size as well as R code for com-
pleting all of the calculations presented in the chapter.

A Note about Effect Size for Two-Group Comparisons

Many resources on power analysis begin with an estimate of effect size (e.g., 
Cohen, 1988). The application of these procedures in conjunction with the 
publication of shortcut guides (e.g., Cohen, 1992) sometimes focuses research-
ers on thinking in terms of small, medium, or large effects (corresponding to 
d = 0.20, 0.50, and 0.80, respectively) and addressing power based on these 
estimates. It is not always useful to focus on effect size at the outset of the 
research design stage. Although others criticize this “shirt size” approach (e.g., 
Lenth, 2001) for theoretical reasons, my objection is practical. It is often easier 
for researchers to think in term of units that have meaning to their work rather 
than a standardized measure of effect.
	 In many chapters of the text, the preferred approach is to begin with an estimate 
of raw measures. For the designs in this chapter that would be mean differences. 
For example, if designing a smoking cessation program and comparing smokers 
who participated with those placed on a waiting list for the program, determining a 
meaningful level of effectiveness for the program would be easier to accomplish 
when focusing on mean differences (e.g., Wilkinson & Task Force on Statistical 
Inference, 1999). In this case, we might determine that a difference of 10 cigarettes 
per day (half a pack) would be the minimal level of effectiveness required to term 
the approach successful. This approach does not preclude use of effect sizes; rather 
it encourages a focus on units relevant to the particular study.
	 This does not suggest that effect size estimates are not useful. Effect sizes are, 
of course, vitally important for understanding the context of differences. A 
difference of 10 cigarettes means less if your sample averages 50 cigarettes a day 
compared to a sample that averages 10 cigarettes a day. Similarly, a 10-cigarette 
difference is more meaningful if your samples produced a smaller standard 
deviation (e.g., 10 cigarettes) rather than a larger standard deviation (e.g., 40 
cigarettes). Effect sizes are an important aspect of the context of power analysis, 
just not a great starting point for understanding meaningful differences between 
groups unless some standard is already established (e.g., effective smoking cessa-
tion programs produce a mean d = 0.50).
	 For those interested in beginning with effect sizes, see Example 3.5.
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Example 3.1: Comparing Two Independent Groups

In collaboration with several colleagues, I helped to develop interactive 
computer-based tutorials for teaching core statistical concepts (see wise.cgu.edu 
for some of our work). An assessment of the effectiveness of one of the tutorials 
involved a quasi-experiment where a lab section of one course used a web-
based tutorial and another lab section in the same course completed a standard 
assignment. Following each assignment, students completed a short exam on the 
topic.
	 To estimate the standard deviation, I examined previous grades on a 30-point 
exam used for several previous semesters in the same course. This allowed for a 
standard deviation estimate based on data from several hundred students. Scores 
from previous courses yielded a standard deviation of around 5.0. There was no 
reason to expect different standard deviations for the two groups, so I estimated 
σp at 5.0. The average score on the exam is 20.
	 Determining a meaningful effect involved comparing the work involved in 
implementing the new tutorial assignment to improved student outcomes. One 
practical consideration was the time required for instructors to implement the 
tutorial in courses. Implementation of the tutorial assignment involves several 
hours of work. Instructors would need to complete the tutorial assignment, 
work through common mistakes, anticipate student questions, and explore the 
interactive elements of the assignment to familiarize themselves with the cap-
abilities of the instrument. In addition, because of the unfamiliar tutorial inter-
face, the instructor would likely spend more time on student questions than for 
other types of assignments.
	 Given these new challenges, how large an effect would justify using the 
computer tutorial as a replacement for a more standard assignment? That is, how 
much improvement would convince instructors that the technique was worth 
their time? Based on previous experiences with the exam and what most stu-
dents would accept as a “meaningful” improvement, I judged scores would have 
to improve performance by at least 2 points on the 30-point exam to justify the 
extra effort.

Calculation Examples (Approximate Power)

Given these criteria, we examine the sample size required to find a mean differ-
ence (μ1 – μ2) of 2 points with a standard deviation (σp) of 5. The following 
calculation shows this corresponds to d = 0.40.

The next step is calculation of the approximate power for 80 students per group 
(n = 80 is an arbitrary value used to demonstrate calculations). Calculation of the 
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NCP yields δ = 2.53. This approach requires the values for t above which the 
null is rejected (i.e., the critical value for t). For this example, with n = 80 per 
group, we have df = 158 with for α = .05, two-tailed, corresponding to a tcritical 
value of 1.98. The value of δ = 2.53 is then compared to the tcritical value of 1.98 
using the formula that follows. The approximation approach for this inde-
pendent samples example is appropriate to paired designs as well.

The calculation yields tpower = –0.55. This value reflects the point on the alternative 
distribution above which we reject the null hypothesis. This calculation does 
nothing more than convert a point on the null distribution to a point on the altern-
ative distribution. Figure 3.1 represents these distribution points.4 In this figure, 
there are two distributions. The one on the left is the null distribution. The x-axis 
represents scores on this distribution and range from –2.95 to +6.5. The tcritical value 
of 1.98 is reflected on this axis. The value, δ represents the distance between the 
centers of the distributions, which is 2.53. As seen on the graph, 2.53 is the center 
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FIGUre 3.1 Demonstration of Noncentrality Parameter and Power.

Note
Distribution on the left is null. Distribution on the right is the alternative distribution.
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of the distribution on the top x-axis. The area on the alterative distribution (the 
one on the right) that falls above the tcritical value represents power. From the graphs 
here, we can see that this is a good chunk of the area, roughly about three-quarters.
	 The tpower value is not particularly meaningful for interpretation but it is neces-
sary for calculations of power. One way to think of tpower is as a value that reflects 
a translation of the x-axis, which represents scores on the null distribution to an 
axis that represents scores on the alternative distribution. Conceptually, this 
would involve moving the axis over such that 0 now fell at the center of the 
alterative distribution. Figure 3.1 represents this with the values below the ori-
ginal x-axis (–1 to +1 in bold). Here the center of the alternative distribution 
would become zero. The tpower value of –0.55 is simply where the tcritcal value 
would fall on the new x-axis.
	 Figure 3.1 also demonstrates an important difference between central and 
noncentral distributions. The null distribution is a central t-distribution. This 
distribution is a function of degrees of freedom and is symmetrical. The altern-
ative distribution is a noncentral t-distribution. This distribution is a function of 
degrees of freedom and effect size. Note that the noncentral distribution is not 
completely symmetrical. Although it is subtle, if you look closely, you can see a 
slight positive skew to the distribution.
	 As in Chapter 2, we can approximate power using tpower = –0.55. The R 
command below takes t and df and yields the area above t. The command yields 
a value of .708 for power.

1-pt(–0.55, 158)

Calculation Examples (Exact Power)

R also provides an exact calculation of power. The calculation is based on non-
central distributions, accomplished using the R command below. The command 
requires the tcritical value (1.98), df (158), and δ (2.53). The “1–” value remains 
regardless of the value of tpower.

1-pt(1.98, 158, 2.53)

Using this strategy, the calculation yields Power = .709. This appears consistent 
with Figure 3.1 that shows the power region as approximately three-quarters of the 
alternative distribution (the area to the right of tcritical = 1.98). Note that in this case, 
the approximation technique and the exact technique yield similar but not exactly 
equivalent results. This is because we have a relatively large sample size.

Solving for Sample Size

If we want to find Power = .80 (or some other value), we can work backward 
and rearrange some of the formulae. First, find the t-value above which 80% of 
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the distribution falls. The exact value the t-distribution changes depending on 
degrees of freedom. Practically however, this value changes very little as degrees 
of freedom rise above 10. For example df = 10, t = –0.88 is the point at or above 
which 80% of the distribution falls. For dfs = 50 and 1000 the corresponding 
t-values are –0.85 and –0.84, respectively. Of course, most designs involving 
two groups have df > 10 but as an approximation strategy, using df = 10 produces 
a reasonable estimate.
	 Next, using Formula 3.10, find δ. Then plug δ and d = 0.40 (from the calcu-
lation examples for approximate power) into Formula 3.11. The calculation 
indicates a sample size of 99 per group (nj reflects the sample size per group, not 
the overall sample size). Also, recall that this technique uses an approximate 
rather than an exact technique.

� (3.10)

δ = 1.98 – (–0.84) = 2.82

� (3.11)

Example 3.2: Power for Independent Samples t using R

The calculations for Example 3.1 are straightforward, but can be easily accomp-
lished using R. Tables 3.1 provides R commands using the indt function. The 
general form of the function is as follows:

indt(m1, m2, s1, s2, n1, n2, alpha)

The values for m, s, and n refer to means, standard deviations, and sample size 
for each group. Alpha is set to default to .05.
	 Table 3.1 demonstrates use of this function for the values in Example 3.1. In 
the code, I entered means of 20 and 22 to reflect the two groups. This com-
bined with the standard deviation of 5.0 produces the effect size of d = 0.40 used 
in the example. A second example in the table increased sample size until reach-
ing the desired level of power (with n = 99 per group). For most analyses, you 

TA Power for Independent Samples t-test Using indt Function

indt(m1=22, m2=20, s1=5, s2=5, n1=80, n2=80)
## [1] “Equal Variance Power for n1 = 80, n2 = 80 = 0.71”
indt(m1=22, m2=20, s1=5, s2=5, n1=99, n2=99)
## [1] “Equal Variance Power for n1 = 99, n2 = 99 = 0.8”
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will have to plug in a series of sample size values until you find the desired 
power level. See Chapter 11 for approaches (e.g., loops) for strategies yielding a 
series of estimates.

Example 3.3: Paired t-test

Instead of examining score improvement with a treatment group, a separate 
study examined improvement following student use of a technique where 
they took exams online and received immediate feedback on answers. Later 
in the semester, the students answered the same 30 items as part of a larger 
exam, allowing for a comparison of scores on the items. As the computer-
based technique required programming of exams and feedback answers inde-
pendently, application of the technique to new classes is time consuming, 
suggesting that a strong justification for the procedure would have to be 
present to make it worthwhile. Because the procedure is time consuming, it 
will only be considered effective if participants improve by 5 points on a sub-
sequent exam on the same topics. As before, σ = 5.0.
	 This test requires an estimate of the correlation between the two exams. This 
was not necessary for the independent sample example, as participants were not 
tested twice. Estimating the correlation requires consideration of several factors. 
Correlations between measures in pre-post designs are often large (e.g., .70 or 
higher is not surprising). For research using reliable instruments or standardized 
measures there is often considerable information on scale reliability that informs 
this estimate. If there are no data addressing test–retest reliability, it is best to 
take a conservative approach to estimating the correlation between measures (ρ). 
I recommend using ρ = .50 in these situations. Larger correlations increase the 
effect size through reduction of the standard deviation of the differences whereas 
correlations below ρ = .50 reduce the effect size.

Calculation Examples

This example uses n = 25. As with most calculation examples, this is an arbitrary 
sample size used to demonstrate the calculation. In the example, notice that the 
standard deviation of the differences (σx1−x2 

) is equal to the pooled standard 
deviation. That is because ρ = .50. Note that with ρ = .70, σx1–x2

 = 3.87 and 
d = 1.29. With ρ = .30, σx1–x2

 = 5.92 and d = 0.84.
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The NCP uses the overall sample size, since the same people are in each group. 
Starting with an estimate of 25 students participating in the study, we can calcu-
late power.
	 Taking this value to a computer protocol for calculating noncentral probabili-
ties, a sample of 25 students, df = 24 and t-critical value for a two-tailed test with 
α = .05 of 2.06, yields Power = .998. Thus, a sample of 25 students provides 
considerable power to find differences of the size of interest if they exist. Alterna-
tively, we could reduce the sample size and retain a decent level of power.

Example 3.4: Power for Paired t using R

The function pairt, demonstrated in Table 3.2, requires input that differs slightly 
from the independent samples test. Specifically, we enter a single standard devi-
ation, an overall sample size, and the correlation between measures. The format 
of the function is as follows.

pairt(m1, m2, s, n, r, alpha)

The values for m refer to the two means, s to the pooled standard deviation, n 
for sample size, and r to the correlation. Alpha is set to default to .05. Table 3.2 
demonstrates use of this function for the values in Example 3.3.
	 Given the power for 25 participation, it is reasonable to reduce the sample 
size if desired. The second example in Table 3.2 the code and output for a 
sample of 13 students. With roughly half of the initially proposed sample, we 
retain excellent power (.91). Therefore, in this case, substantially reducing 
sample size retains adequate power.

Example 3.5: Power from Effect Size Estimate

The tfromd function takes input of an effect size and outputs power for a range 
of sample sizes. The format of the function is:

tfromd(d, nlow, nhigh, alpha, test, tails, by)

The value d refers to the effect size. nlow and nhigh establish a range of sample 
sizes for estimating power. Alpha defaults to .05, enter a different value if desired 
(e.g., alpha = .01). The value test defaults to independent, use test = “P” for paired. 

TA Power for Paired Samples t-test using pairt Function

pairt(m1=25, m2=20, s=5, n=25, r=.5)
## [1] “Power for n = 25 is 0.998”
pairt(m1=25, m2=20, s=5, n=13, r=.5)
## [1] “Power for n = 13 is 0.911”
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Tails defaults to 2, use tails = 1 if desired. The value by sets the sample size estim-
ates. The default is 1. For example, if nlow = 10 and nhigh = 14, with by = 1, the 
code produces estimates for power for 10, 11, 12, 13, and 14 participants. With 
by = 2, the code produces estimates for power for 10, 12, and 14.
	 Table 3.3 provides a paired t-test example using d = 0.20 and sample sizes 
ranging from 10 to 200.

Dealing with Unequal Variances, Unequal Sample Sizes, and 
Violation of Assumptions

The independent samples procedures presented earlier in the chapter assumed 
homogeneity of variances and employed calculations appropriate for homo
genous variances and equal sample sizes. Heterogeneous variances and unequal 
sample sizes influence power for designs with independent samples so careful 
consideration of these issues may help the researcher avoid disappointment after 
study completion.

Homogeneity of Variance

The independent samples t-test assumes that the variances for the two groups 
are roughly equal. Most statistical packages provide output for analyses both 

TA Power using tfromd Function

tfromd(d=.2, nlow=10, nhigh=200, by=10, test=“P”)
## [1] “Power for total n of (Paired)  10 = 0.092”
## [1] “Power for total n of (Paired)  20 = 0.137”
## [1] “Power for total n of (Paired)  30 = 0.186”
## [1] “Power for total n of (Paired)  40 = 0.235”
## [1] “Power for total n of (Paired)  50 = 0.284”
## [1] “Power for total n of (Paired)  60 = 0.332”
## [1] “Power for total n of (Paired)  70 = 0.379”
## [1] “Power for total n of (Paired)  80 = 0.424”
## [1] “Power for total n of (Paired)  90 = 0.467”
## [1] “Power for total n of (Paired) 100 = 0.508”
## [1] “Power for total n of (Paired) 110 = 0.547”
## [1] “Power for total n of (Paired) 120 = 0.584”
## [1] “Power for total n of (Paired) 130 = 0.619”
## [1] “Power for total n of (Paired) 140 = 0.652”
## [1] “Power for total n of (Paired) 150 = 0.682”
## [1] “Power for total n of (Paired) 160 = 0.71”
## [1] “Power for total n of (Paired) 170 = 0.737”
## [1] “Power for total n of (Paired) 180 = 0.761”
## [1] “Power for total n of (Paired) 190 = 0.783”
## [1] “Power for total n of (Paired) 200 = 0.804”
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assuming and not assuming homogeneity. Some sources suggest that equal vari-
ance estimates are fine so long as the sample sizes are relatively equal (no more 
than a 4:1 ratio between the largest and smallest) and the largest variance is no 
more than 10 times the smallest variance. If the ratio of largest to smallest vari-
ance exceeds 10:1 or sample sizes exceeded a 4:1 then unequal variance estim-
ates are preferred (Tabachnick & Fidell, 2007b). However, recent work suggests 
that alpha error inflates substantially with variance ratios of greater than 1.5:1 
(Blanca, Alarcón, Arnau, Bono, & Bendayan, 2018). Others suggest using the 
unequal variances estimate as a default as such estimates provide better alpha 
error control and do not lose robustness when variances are equal (Delacre, 
Lakens, & Leys, 2017).
	 Many statistical packages include adjustments to degrees of freedom and 
standard error that account for violations of the heterogeneity of variance 
assumption. Formula 3.12 shows this adjustment, with a reduction in the 
degrees of freedom driven by the level of inequality between variances. I refer 
to this as dfunequal. This adjustment reduces the degrees of freedom to account for 
Type I error inflation resulting from unequal variances. Since the adjustment 
involves a reduction in degrees of freedom, the t-test probability for the unequal 
variances approach will be larger (usually) than the probability obtained using 
no adjustment. Of course, tests that make rejection criteria more stringent, 
result in a loss of power.

� (3.12)

Transformation of data addresses many heterogeneity issues effectively. Hetero-
geneity often occurs because of non-normality. Transformations that return data 
to normality often address this problem adequately (see Tabachnick & Fidell, 
2007a).
	 Heterogeneity and non-normality, in addition to influencing power through 
the degrees of freedom adjustment, often reduce the size of observed effects. To 
demonstrate this, Table 3.4 presents data for a treatment and a control group 
and Table 3.5 presents the summaries of raw and transformed analyses. The 
values in the first and second columns of Table 3.4 reflect raw data and the two 
rightmost columns reflect data subjected to a logarithmic transformation. In the 
raw data, the treatment group variance is over 100 times the size of the control 
group’s variance (listed as variance ratio in the table) and the dependent variable 
(dv) shows large values for skew and kurtosis. A general strategy for evaluating 
the skew and kurtosis is to divide those values by their corresponding standard 
errors, with ratios of less than 3.0 indicating a roughly normal distribution (again 
see Tabachnick & Fidell, 2007b). Using these criteria, we see very large ratios 
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(listed as Skew Ratio and Kurtosis Ratio in Table 3.5). The raw data do not 
conform to the assumptions of the t-test. A test based on these data reduces 
power in two manners. First, the effect sizes differ considerably for the situation 
where we failed to meet assumptions (d = 0.53) compared to the transformed 
data analyses (d = 1.52). Second, if using the adjustment for unequal variances, 
dfunequal would be smaller than the unadjusted df (21.3 vs. 42).
	 As demonstrated in Table 3.5, violating assumptions often affects power 
considerably. Techniques to address assumption violations are useful as a data 
analytic tool; however, it is also useful for power analyses to take homogeneity 
of variance issues into account when violations are expected. For example, if 
previous work with a scale regularly produced non-normal data then it is a good 
bet that future uses of the scale will do the same.
	 One strategy to address violations is to conduct a t-test that uses estimates 
appropriate for unequal variances. This strategy adjusts the degrees of freedom 

TA Demonstrating the Impact of Violation of Assumptions on Power

Raw Scores Log Transformed

Control Treatment Control Treatment

33 1811 1.53 3.26
3200 441 3.51 2.65

10 1081 1.04 3.03
0 706 0.00 2.85
0 730 0.00 2.86
5 444 0.74 2.65

328 715 2.52 2.85
10,000 1968 4.00 3.29

500 19,898 2.70 4.30
26 21,331 1.43 4.33
23 526 1.38 2.72

656 669 2.82 2.83
4 684 0.65 2.84

10 12,503 1.03 4.10
301 2685 2.48 3.43
820 1632 2.91 3.21
500 5986 2.70 3.78
492 602 2.69 2.78

3937 125,600 3.60 5.10
13 3734 1.15 3.57
19 20,121 1.30 4.30

500 15,212 2.70 4.18
M 972 10,867 1.95 3.40 
s 2260 26,629 1.16 0.70 
s2 5,107,600 709,103,641 1.35 0.49
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(dfunequal), as shown in Formula 3.12, for what is usually a more conservative test. 
The R code in Example 3.6 provides power analysis for adjusted and unadjusted 
tests. If you expect groups to exhibit even moderately unequal variances, use 
whichever power analysis suggests a larger sample size.

Unequal Sample Sizes

The formulae examined previously assumed equal sample sizes across groups. 
Practically, studies that lack random assignment make equal sample size require-
ments challenging. For most formulae, the harmonic mean of the two sample 
sizes as expressed in Formula 3.13 provides a good substitute. Simply place the 
harmonic mean in the formula for the noncentrality parameter (3.14).

� (3.13)

� (3.14)

If sample sizes are not equal, equal and unequal variance approaches use different 
estimation methods for the standard error of the difference between mean, meaning 
that the denominator of the t-test changes depending on the approach. It is possible 
for unequal variance adjustments to produce tests that have more power than those 
with equal variances. However, this only occurs when you have unequal sample 
sizes and your largest group is the group with the larger variance.

Designing for Unequal Variances or Unequal Sample Sizes

If pretests or previous work suggest that control and treatment groups produce 
different variances, then it is best to address these issues in the design stage. If 

TA Summary Statistics for Raw and Transformed Data

Raw Data Transformed

s2 Ratio 138.8 2.8
Skew 5.79 –0.48
SE Skew 0.36 0.36
Skew Ratio 16.1 1.3
Kurtosis 36.07 –0.16
SE Kurtosis 0.70 0.70
Kurtosis Ratio 51.5 0.2
d 0.53 1.52
Power .40 1.0
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information exists from previous work or pretesting then use those values to 
inform standard deviation estimates. If that information is not available but you 
do want to design for unequal variances and have only an estimate of the overall 
variance (or standard deviation), create two variances that pool to the overall 
variance with the constraint that one is much larger than the other. For 
example, to create two variances where one is 10 times the size of the other 
with a pooled variance expected to be 22, set the first group’s variance as 40 
and the second group as 4.
	 Designs that incorporate unequal sample sizes are a useful strategy for increas-
ing power when one group is involved in an expensive treatment or reflects a 
hard-to-reach population. In these cases, assigning more participants to the 
cheaper of your treatments and sampling more from easier-to-obtain groups 
increases power (Lipsey, 1990; see Chapter 11 for more discussion of this 
approach).

Example 3.6: Unequal Variances and Unequal Sample Sizes

This example deals with legitimately unequal variances, that is, variances that 
are unequal because of differences between the groups rather than non-normal 
distributions. Differences of this nature do not respond to transformations and 
may be a product of the research design.
	 A few years back I developed a reaction time based on attitudes toward hate 
crimes. One phase of the study compared the reactions of gay and heterosexual 
men to the stimulus materials. As no similar measures existed, one approach to 
establishing validity of the instrument involved comparing the responses of the 
two groups, with the expectation that the gay men held attitudes that are more 
negative. At the time there was not a large, visible gay male population on our 
campus, so lab members recruited participants from the local community. The 
control group, heterosexual men, came from traditional sources (e.g., students 
in introductory psychology course).
	 To start the analysis, I estimated σ = 1.0 from previous work with the reac-
tion time task with heterosexual men. The initial study designed for an effect 
size around d = 0.60 with the gay men indicating more negative responses to the 
stimuli than heterosexual men. The choice of d = 0.60 was determined by refer-
ence to other validity studies and was the smallest effect that allowed for a 
reasonable argument for the validity of the instrument. Using the procedures 
outlined in this chapter, these estimates produced a suggested sample size of 
n = 45 per group.
	 Following data collection, an initial look at the data revealed a mean differ-
ence that was larger than expected. There were, however, considerable differ-
ences in standard deviations between the groups. I expected both groups to 
demonstrate variances similar to an earlier group (heterosexual men). This 
assumption held for the heterosexual male sample who produced a standard 
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deviation of roughly 1.0. The gay male group showed a standard deviation of 
4.0. This produced a variance that was 16 times larger than found for the 
heterosexual men. The larger than expected standard deviation for the compari-
son group created larger standard errors, a smaller than desirable t-statistic, and 
an effect size well under the desired value (d ≈ 0.30). In short, the study failed to 
find differences between gay and heterosexual men, giving no support to claims 
of the instrument’s validity.
	 In retrospect, some of these issues might have been avoided. The groups dif-
fered in obvious manners over and above sexual orientation. In particular, the 
gay men from the community were often older. During data collection, 
researcher assistants observed that these participants often took much longer to 
learn the computer task and sometimes could not respond to stimuli before 
response deadlines expired. The heterosexual (college-aged) men performed the 
task consistently, but the gay men (community sample) produced reaction time 
data that were all over the place.
	 A major source of error in the design was estimation of the standard devi-
ation. It was a mistake to expect the comparison group to show the same 
standard deviation as the control group. Although this study represents a unique 
situation, it may be the case that in true experiments manipulations influence 
standard deviations as well as means. For example, a manipulation wherein one 
group solved problems while distracted and a control group solved problems 
without distraction, might produce more variability in the distracted conditions. 
Pretesting seems to be the only way to get a clear estimate of such differences, 
however, considering potential differences between groups that contribute to 
difference in variances is an important step in research design.

Calculations for Heterogeneity and Unequal Sample 
Size Adjustments

Using this example, I present calculations for a modification to the study that uses 
unequal sample sizes and addresses heterogeneity of variance. For the control group 
(heterosexual men), the standard deviation estimate remains σ = 1.0. For the experi-
mental group (gay men), the new estimate is σ = 4.0. This design uses a sample of 
heterosexual men that is three times larger than the sample of gay men.
	 Initially, I was interested in differences of d = 0.60 or larger. However, a 
focus on effect size is a difficult starting point for analyses based on unequal vari-
ances. The effect size uses standard deviation units that undergo an unequal var-
iance adjustment. Following the adjustment, your effect size may differ 
considerably from the one your starting effect size. The strategy I suggest focuses 
on an effect size without adjusting for unequal variances, and then using the 
mean differences (i.e., the numerator) associated with that value as the target 
difference. As seen later, this value may reflect a substantially smaller adjusted 
effect size.
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	 The calculations that follow use an arbitrary starting sample size of 30 com-
parison group participants and 90 control group participants. The first step is to 
calculate the mean difference based on a pooled standard deviation estimate. 
Again, this simply provides some descriptive values for future calculations.

Next are calculations of standard deviation, degrees of freedom, and effect sizes 
that account for unequal variances. The primary issue here is calculation of a 
denominator for the d that does not use a pooled variance estimate. For lack of 
a better name, Formula 3.15 terms this σunequal. The effect size (dunequal) is of 
interest as it is much smaller than the effect size based on a pooled standard 
deviation.

� (3.15)
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Next is the calculation of the harmonic mean of the sample sizes and the NCP. 
Recall that the harmonic mean is used when the sample sizes between groups 
differ.

Calculating power for δ = 1.76 requires the t-critical value for two-tailed test 
with α = .05 and df = 30.2. Recall that the df = 30.2 reflects the unequal variance 
adjustment to the degrees of freedom. Using R (the one line provided in the 
Exact Power section), power is .40, far less than the desired level of .80.

Independent Samples Commands for Unequal Variances and 
Unequal Sample Sizes

The tind function demonstrated in Example 3.2 carries out calculations for both 
equal and unequal variance estimates. In Table 3.6, note the differences in power 
depending on the estimation technique. For equal variances, a sample of 30 in the 
treatment and 90 in the control group yield power of .807 but the unequal vari-
ance power is only .40. Unequal variances tests do not achieve power of .80 until 
a sample of 78 in the treatment and 234 in the control group.

Additional Issues

There are several alternative approaches to the independent samples t-test for situ-
ations when data are non-normal or do not meet homogeneity assumptions. 
Developments in the use of bootstrapping techniques (a.k.a., re-sampling; e.g., 
Keselman, Othman, Wilcox, & Fradette, 2004) and other robust methods of ana-
lysis (e.g., Wilcox & Keselman, 2003) involve techniques that sometimes outper-
form the traditional t-test when assumptions fail. In general, these techniques do 
not perform as well when assumptions are met. Although bootstrapping and other 

TA R Code and Output for Variance and Sample Adjusted Power

indt(m1=1.3, m2=0, s1=4, s2=1, n1=30, n2=90)
## [1] “Equal Variance Power for n1 = 30, n2 = 90 with 
d = 0.601 = 0.807”
## [1] “Unequal Variance Power for n1 = 30, n2 = 90 with 
d = 0.371 = 0.399”
indt(m1=1.3, m2=0, s1=4, s2=1, n1=78, n2=234)
## [1] “Equal Variance Power for n1 = 78, n2 = 234 with 
d = 0.598 = 0.995”
## [1] “Unequal Variance Power for n1 = 78, n2 = 234 with 
d = 0.371 = 0.801”
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procedures are valuable, and often more powerful, alternatives to the procedures 
discussed in this chapter, there are not well-established conventions for the use of 
these procedures or power analysis strategies for these techniques.

Summary

This chapter examined power analysis for designs employing independent and 
paired t-tests. Independent samples designs require estimates of means and 
standard deviations (or just the effect size) to estimate power. Paired designs 
require means, standard deviations, and estimates of the correlation between 
measures. For independent samples, homogeneity of variance and unequal 
sample sizes influence power. Careful consideration of these issues establishes 
more accurate power estimates.

Notes

1. Although pilot studies provide reasonable estimates of variability, pilot testing requires 
substantially larger samples to establish accurate effective size estimates (Lakens & 
Evers, 2014).

2. Several variations on the standardized mean difference exist but the version presented 
here appears to be the most common form.

3. As with the d for the independent samples test, there are several variations of this 
statistic.

4. This graph was produced using ESCI software, see Chapter 11 for information on this 
outstanding visualization tool.



4
Correlations and 
Differences Between 
Correlations

This chapter examines power for tests of zero-order Pearson correlations and 
for tests of differences involving either independent or dependent correlations. 
Approaches to comparing dependent correlations are not widely presented in 
the behavioral sciences literature (i.e., these techniques do not appear in most 
statistics textbooks) so sections on those topics provide details on testing hypo-
theses as well as conducting power analysis.

Necessary Information

The tests covered in this chapter require specification of either a meaningful 
correlation (ρ) for the population or meaningful differences between population 
correlations. Procedures involving three or more correlations require specifica-
tions of correlations between all variables addressed in the procedure.

Factors Affecting Power

Correlations are measures of effect sizes, so larger correlations produce more 
power. For tests involving differences between correlations, the size of the 
difference to be detected, and if relevant, the correlation between the variables 
compared, influence power, with larger differences between predictors yielding 
more power and greater overlap between the predictors being compared yield-
ing less power. In addition, differences between stronger correlations (e.g., .60 
and .80) produce more power than tests of differences between smaller correla-
tions (e.g., .20 and .40). For all tests, larger sample sizes and more liberal α 
increase power.
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Zero-Order Correlation

Key Statistics

Addressing power for a zero-order correlation involves converting the correlation 
( ρ) to Cohen’s d (Formula 4.1) and then computing a noncentrality parameter 
(NCP) (δ) from d (Formula 4.2). After computing these values, the analysis pro-
ceeds like the t-test procedures discussed in Chapter 3. Formula 4.2 for the calcu-
lation of δ uses n-2 in the numerator (degrees of freedom). There is no strong 
agreement on whether to use sample size (n) or degrees of freedom (n – 2) for non-
centrality and power calculations. My recommendation is to use degrees of freedom 
as this yields a more conservative test as this approach makes for a smaller NCP.

� (4.1)

� (4.2)

As discussed in previous chapters, computations of power for several tests in this 
chapter involve the noncentral t-distribution. Computer protocols allow us to 
calculate accurate values for power for those tests.

Example 4.1: Zero-order Correlations

An issue of particular interest in social psychology is the correlation between 
measures of attitudes and behaviors, behavioral intentions, or expectations. The 
example that follows reflects work in my laboratory examining how implicit 
and explicit attitudes differentially predict behavioral expectations of aggression. 
Expectations of aggression are important in that they relate to enactment of 
aggressive scripts that predict actual acts of aggression (Anderson & Bushman, 
2002). One question asked in this example is whether a measure of implicitly 
held attitudes toward gay men predicts expectations of aggression.
	 An important starting point is to ask how large a correlation we want to be able 
to detect. The best question is not “how big the expected correlation is” but 
“how large the minimum meaningful correlation is.” To establish context, one 
approach is to reference results from similar research. Meta-analytic results focus-
ing on relationships between implicit attitudes and other behavior-relevant meas-
ures reported an average correlation of roughly .30 (Greenwald, Poehlman, 
Uhlmann, & Banaji, 2009). Of course, simply being the average correlation found 
across similar studies does not mean a correlation of .30 is practically meaningful. 
At this point, a reasonable question is whether this correlation is large enough to 
be of practical value. For research of this nature, this can be a slippery question. 
On the one hand, expectations of aggression do relate to aggressive behavior, and 
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even small reductions in aggressive behavior can be practically important. On the 
other hand, the research addresses measures potentially related to behavior rather 
than actual behaviors so there is a degree of separation between the dependent 
measure and actual acts of aggression. In addition, there is some evidence that the 
link between predictors and expectations often produces smaller effects than 
predictor–behavior relationships do (e.g., Greitemeyer, 2009). Therefore, it is 
reasonable to expect that the influence of attitudes on behaviors (particularly 
extreme behaviors like aggression) may be substantially smaller than the attitude–
aggressive expectation link. For this reason, we settled on a correlation of .30, 
believing that this would provide some “cushion” for finding relationships 
between attitudes and actual behaviors in future research.
	 It is important to note that even small correlations can be meaningful. For 
example, as Rosenthal and Rubin (1982) discussed a correlation of .10 between 
a treatment and a life or death outcome corresponds to saving 10 more people’s 
lives out of 100 than a treatment producing a correlation of .00 between treat-
ment and outcome. Although a correlation of .10 corresponds to a “small” 
effect size (Cohen, 1988), clearly the treatment demonstrates a meaningful 
effect. Context is far more important than small, medium, and large labels.

Calculations

After determining that a meaningful correlation for the population in this 
example is ρ = .30, we can address power analysis. The example that follows 
begins with a sample size of 66 and a two-tailed test with α = .05. The degrees 
of freedom for this test is n–2, yielding a critical value of t(64) = 2.00

To find power for 66 participants, we can take the NCP to R. Using the line of 
code below, with a critical value of t(64) = 2.00 and δ = 2.52, R computes 
Power = .70 (see the notes in Chapter 2 about using this approach).

R code: 1-pt(2.0, 64, 2.52)

R Function and Code

The code presented in Table 4.1 computes power for a range of sample sizes 
using the function corr. The form of the function is:

corr(r, nlow, nhigh, alpha, tails, by)
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The value r is the correlation. nlow, nhigh, and by set the range of values for 
calculation (as in Example 3.5). The values alpha and tails are the parameters of 
the significance test, the default values are .05 and 2, respectively.
	 As shown in the calculations section, use of 66 participants yield power of 
.70. Power of .80 requires a sample of 84 participants.

Comparing Two Independent Correlations

This test compares correlations drawn from independent populations. For 
example, this approach allows for tests involving meaningful differences among 
correlations between two variables measured for control group participants and 
the correlation between the same measures among experimental group particip-
ants in a between subjects design.

Formulae

The first step in this test is application of Fisher’s transformation (Fisher, 1921) 
to the two expected population correlations. Formula 4.3 notes the converted 
value as zρ. Other sources represent the Fisher’s transformed correlation as zr or 
r´. Many statistics texts provide a table for this transformation, but it is not 

TA R Code and Output for Zero-order Correlation Power Analysis

corr(r=.30, nlow=60, nhigh=100, by=2)
## [1] “Power for n of  60 = 0.6537”
## [1] “Power for n of  62 = 0.6689”
## [1] “Power for n of  64 = 0.6836”
## [1] “Power for n of  66 = 0.6978”
## [1] “Power for n of  68 = 0.7114”
## [1] “Power for n of  70 = 0.7246”
## [1] “Power for n of  72 = 0.7373”
## [1] “Power for n of  74 = 0.7495”
## [1] “Power for n of  76 = 0.7612”
## [1] “Power for n of  78 = 0.7724”
## [1] “Power for n of  80 = 0.7832”
## [1] “Power for n of  82 = 0.7936”
## [1] “Power for n of  84 = 0.8035”
## [1] “Power for n of  86 = 0.8131”
## [1] “Power for n of  88 = 0.8222”
## [1] “Power for n of  90 = 0.8309”
## [1] “Power for n of  92 = 0.8393”
## [1] “Power for n of  94 = 0.8473”
## [1] “Power for n of  96 = 0.8549”
## [1] “Power for n of  98 = 0.8622”
## [1] “Power for n of 100 = 0.8692”
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difficult to compute with a hand calculator. The R package psych (Revelle, 
2018) provides the command fishersz to compute the transformation as well.

� (4.3)

After calculating zp for both correlations, take the difference between these 
values, noted as q and shown in Formula 4.4. This value is the effect size for the 
differences between the correlations.

� (4.4)

Next is the calculation of zδ. That value serves a role much like the NCP discussed 
in other sections. However, this is not a NCP because the normal distribution 
used for this test is a central rather than noncentral distribution. Calculation of zδ 
requires a standard deviation as well. This value, shown in Formula 4.5, is a func-
tion of the sample sizes and serves as the denominator for Formula 4.6. The final 
calculation (Formula 4.7) finds the point on the alternative distribution that cor-
responds to the decision criteria. After computing zpower, take this value to a normal 
distribution table. The area above zpower reflects the proportion of sample results 
given the population correlations we specified that would allow for rejection of 
the null hypothesis. Since the normal distribution is a central distribution, it is pos-
sible to calculate power by hand accurately (see Chapters 1 and 2 for a discussion 
of this issue and for examples of the calculation techniques).

� (4.5)

� (4.6)

� (4.7)

Example 4.2: Comparing Independent Correlations

Extending Example 4.1, we predicted that participants assigned to different 
research conditions would show different levels of correlation between implicit 
attitudes and aggressive expectations. One condition involved priming of particip-
ants to think about their evaluations of gay men. In the second condition, there 
was no priming. We expected that in the first condition priming promoted delib-
eration, a situation usually linked to very small correlations between implicit atti-
tudes and behaviors. The second condition promoted spontaneous processing, a 
situation linked to stronger implicit–behavior correlations. We predicted expecta-
tions to follow the same pattern seen for behaviors. For the first condition, we 
expected little relationship between attitudes and expectations, so we chose a small 
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correlation of .10 for this condition (noted ρ1). The expected correlation for the 
second condition was .30 as before (noted as ρ2).

Calculations

To determine power for detecting differences of this size, first convert both cor-
relations using the Fisher transformation.

After calculating zp for both correlations, calculate the effect size (q). Note that a 
difference between correlations of .20 as found produces different effect sizes 
depending on the correlation values. In this example q = 0.21. However, if the 
correlations were .60 and .80, then q = 0.41.

Following the calculation of the effect size (q), calculate the standard deviation 
and zδ. The example below computes power for a sample of 100 participants 
per condition.

To obtain power for a one-tailed test with α = .05 (z = 1.645) calculate zpower 
using the next formula. Since this test uses the normal distribution, it is not 
necessary to reference a noncentral distribution. To find power, use the normal 
distribution to determine the area corresponding to power. A sample of n = 100 
per group yields power of .43. The value of .43 is simply the area above 
z = 0.187 on the normal distribution (see Chapter 2 for a graphical demonstra-
tion of this technique). For tests involving actual data (i.e., if you are using these 
formulae to perform a calculation rather than conduct a power analysis), the 
value calculated as zδ is the test statistic.

zpower = zcritical – zδ = 1.645 – 1.458 = 0.187
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R Code

The code in Table 4.2 performs calculations for a range of sample sizes (as shown 
in the output) using the indcorr function. The code is flexible, allowing for 
unequal sample sizes. For unequal sample sizes, specify the proportion of the 
sample in each group (as demonstrated in Chapter 3). The form of the function is:

indcorr(r1, r2, nlow, nhigh, propn1, alpha, tails, by)

The values r1 and r2 are the two correlations. The value propn1 sets the pro-
portion of the sample in the first group with a default of .5 (for equal sample 
sizes). nlow, nhigh, and by again set the range of values for calculation. alpha 
and tails are the parameters of the significance test, with the same defaults as 
previously.
	 As shown in Table 4.2, using a one-tailed test with α = .05, power reaches 
.80 at around n = 300 per group.

Comparing Two Dependent Correlations (One Variable 
in Common)

Dependent correlations are correlations that come from the same sample. For 
example, a researcher might measure the correlation between two predictors 
and one outcome variable and ask whether one of the predictors related more 
strongly to the outcome than the other. This section deals with situations where 
the correlations to be compared share a single variable in common (e.g., the 
same outcome variable but different predictors).

TA Code and Output for Comparing Two Independent Correlations

indcorr(r1=.3, r2=.1, nlow=200, nhigh=800, by=50, tails=1)
## [1] “Power for n of 200 = 0.4254”
## [1] “Power for n of 250 = 0.4956”
## [1] “Power for n of 300 = 0.559”
## [1] “Power for n of 350 = 0.616”
## [1] “Power for n of 400 = 0.6669”
## [1] “Power for n of 450 = 0.7119”
## [1] “Power for n of 500 = 0.7517”
## [1] “Power for n of 550 = 0.7866”
## [1] “Power for n of 600 = 0.8171”
## [1] “Power for n of 650 = 0.8436”
## [1] “Power for n of 700 = 0.8666”
## [1] “Power for n of 750 = 0.8865”
## [1] “Power for n of 800 = 0.9036”
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Key Statistics

Testing a difference between dependent correlations requires a more complex 
procedure than testing differences between independent correlations. Power 
depends on the correlation between the two predictors as well as their correlations 
with the shared outcome variable. For this test, it is important to establish accurate 
estimates of the correlations between predictors (ρ12) as this value influences calcu-
lation of the NCP considerably. The first step in these calculations is to average 
the two correlations of interest using Formula 4.8. Next, Formula 4.9 defines a 
value noted as ρdet. This is the determinant of the correlation matrix. You can also 
complete this calculation using a matrix algebra calculator (there are many freely 
available online). Finally using Formula 4.10, calculate the NCP (δ) and then 
address power based on the noncentral t-distribution as in previous sections.
	 The approach detailed next comes from the work of Williams (1959) and 
performs better in terms of Type I errors than approaches based on the normal 
distribution (Hittner, May, & Silver, 2003).

� (4.8)

� (4.9)

� (4.10)

Example 4.3: Comparing Dependent Correlations, One Variable 
in Common

Extending the previous examples, another issue of interest is whether certain 
measures of attitudes predict expectations better than others do. In particular, do 
implicitly held attitudes predict aggression better than explicitly stated attitudes?
	 Tests of this nature require information about how strongly the two variables 
of interest correlate with the dependent measure and how strongly the predic-
tors correlate with each other (i.e., the information in a correlation matrix with 
all three variables). In Example 4.1, we determined that a meaningful relation-
ship between implicit attitudes and expectations was .30. Based on previous 
work, I expected the correlation between explicit attitudes and expectations to 
be no more than .04. Although this was a very weak relationship, the present 
test asks specifically if the implicit–expectation relationship is stronger than the 
explicit–expectation relationship. This is a different question than whether one 
relationship is statistically significant while the other is not. The final estimate 
needed is the correlation between the implicit and explicit measures. These 
values vary widely in the literature and are often context-specific. An earlier 
study in the research lab using both measures found a correlation of .20. This 
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was consistent with the range of correlations found in other studies examining 
relationships between implicit and explicit attitudes for other socially sensitive 
topics. These results suggest that .20 is a reasonable estimate of the correlation 
between predictors.

Calculations

The three correlations of interest were .30 for the implicit (1)-intention (y) rela-
tionship, .04 for explicit (2)-intention (y), and .20 for implicit (1)-explicit (2). 
Formula 4.8 calculates the average of the two predictor–dv correlations. Next, 
Formula 4.9 produces the determinant of the correlation matrix.

After calculating the average and determinant, Formula 4.10 yields the NCP. 
This example used n = 100. The degrees of freedom for this test is n – 3 and the 
critical value for a two-tailed test with α = .05 is t = 1.98. Modifying the line of 
R code for calculating power given the NCP (see the section on zero-order 
correlation) to read 1-pt(1.98, 97, 2.11) yields Power = .55. (Note: For tests 
involving actual data the value calculated as δ is the test statistic.)

R Code

The R code in Table 4.3 performs this calculation for a range of values using 
the function depcorr1. The function takes the following form:

depcorr1(r1y, r2y, r12, nlow, nhigh, alpha, tails, by)

The values r1y is the correlation between the first predictor and the dv, r2y is 
the correlation between the second predictor and the dv, and r12 is the correl-
ation between the predictors. The remaining values are the same as in previous 
functions in the chapter.
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	 Consistent with earlier calculations, a sample of n = 100 produces power of .55. 
The output shows that power of 80% requires a sample between 170 and 180. The 
code in Table 4.3 may be modified to get an exact sample size corresponding to 
the desired level of power (e.g., change nlow to 170, nhigh to 180, and by to 1).

Comparing Two Dependent Correlations (No Variables 
in Common)

This test compares two correlations based on two separate pairs of variables 
when all four variables are measured on the same sample. A common applica-
tion of this technique is for repeated measures test of correlations. For example, 
this test is appropriate for determining whether the strength of a correlation 
between two variables differs across conditions that included the same particip-
ants. Questions of this nature might also examine whether the same variables 
correlate in the same manner across situations or over time.

Key Statistics

For these tests, the four variables yield six correlations representing all possible 
pairs. Power calculations use all six of these correlations. Formulae 4.11–4.14 note 

TA Code and Output for Comparing Two Dependent Correlations (One 
Variable in Common)

depcorr1(r1y=.3, r2y=.04, r12=.2, nlow=100, nhigh=300, by=10, 
tails=2)
## [1] “Power for n of 100 = 0.5529”
## [1] “Power for n of 110 = 0.5949”
## [1] “Power for n of 120 = 0.634”
## [1] “Power for n of 130 = 0.6702”
## [1] “Power for n of 140 = 0.7035”
## [1] “Power for n of 150 = 0.7341”
## [1] “Power for n of 160 = 0.762”
## [1] “Power for n of 170 = 0.7875”
## [1] “Power for n of 180 = 0.8105”
## [1] “Power for n of 190 = 0.8314”
## [1] “Power for n of 200 = 0.8503”
## [1] “Power for n of 210 = 0.8673”
## [1] “Power for n of 220 = 0.8825”
## [1] “Power for n of 230 = 0.8962”
## [1] “Power for n of 240 = 0.9084”
## [1] “Power for n of 250 = 0.9192”
## [1] “Power for n of 260 = 0.9289”
## [1] “Power for n of 270 = 0.9375”
## [1] “Power for n of 280 = 0.9452”
## [1] “Power for n of 290 = 0.9519”
## [1] “Power for n of 300 = 0.9579”
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correlations with the subscripts 1, 2, x, and y. Numbers correspond to the first 
measurement situation and the letters to the second. The test compares ρ12 and ρxy.
	 Formula 4.11 averages the correlations of interest. Formula 4.12 derives the 
covariance for the difference between the Fisher transformed correlations noted 
here as covρs. The q statistic found in Formula 4.13 examines the differences 
between the correlations of interest and requires the Fisher’s transformation on 
each correlation using Formulae 4.3. The zδ value calls for sample size, covari-
ance between the correlations, and q. This test uses the normal distribution, so 
we plug zδ into Formula 4.7. The procedure comes from Steiger (1980) with a 
modification proposed by Silver and Dunlap (1987). This is one of several pro-
cedures recommended by Silver, Hittner, and May (2004). As before, for tests 
involving actual data, zδ is the test statistic.

� (4.11)

� (4.12)

� (4.13)

� (4.14)

Example 4.4: Comparing Dependent Correlations, No Variables 
in Common

An example of this approach comes from the work of a former student and his 
advisor (Davis & Henry, 2008). They examined how strongly two variables 
correlated when measured in the research laboratory compared to measures of 
the same variables provided by the same participants online. Specifically they 
addressed the correspondence of feelings toward African Americans and sym-
bolic racism. The researchers predicted stronger correlations for data collected 
online compared to data collected in the laboratory. Using the author’s work as 
a template for designing a larger-scale investigation, the following example 
addresses the sample size necessary for power of .80.1

Calculations

This test requires all of the pairwise correlations, represented in a matrix of cor-
relations in Table 4.4. Numbered labels designate the first set (correlations in 
the research laboratory) and letter designate the second set (Internet sample).
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	 The calculations first find the average correlation between the two concepts 
of interest.

This test requires application of Fisher’s transformation to both correlations, and 
then computation of the difference between the two to calculate the effect size 
(q). This example assumes a two-tailed test and so uses the absolute value of the 
difference. This corresponds to a test of the difference in magnitudes, disregard-
ing sign. For a test that considers the direction of difference, use the signed 
difference rather than the absolute difference.

The extensive calculation that follows is the covariance between the correlations.

TA Correlations between Variables for Com-
paring Two Dependent Correlations (No 
Shared Variables)

1 2 x

1
2 .40
x .30 .45
y .10 .35 .70
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The final step involves computation of zδ and then use of that value in conjunc-
tion with the zcritical value (.05, two-tailed in this example) to find power. In this 
case, power corresponds to the area above 0.65 on the standardized normal 
distribution. This area (power) is .26.

zpower = zcritical – zδ = 1.96 – 1.31 = 0.65

R Code

Table 4.5 presents R code and output for comparisons between dependent cor-
relations with no variables in common using the depcorr0 function. The func-
tion takes the following form:

depcorr0(r12, rxy, r1x, r1y, r2x, r2y, nlow, nhigh, alpha, tails, by)

The r values reflect the various correlations represented in Table 4.4. The 
remaining values are the same as in previous functions in the chapter.
	 The output in Table 4.5 shows that a sample of about 80 participants yields 
power of .80. Power reaches .90 with a sample of roughly 110.

TA Code and Output for Comparing Correlations between Variables for Com-
paring Two Dependent Correlations (No Shared Variables)

depcorr0(r12=.4, rxy=.7, r1x=.3, r1y=.1, r2x=.45, r2y=.35, 
nlow=20, nhigh=200, by=10, tails=2)
## [1] “Power for n of  20 = 0.2593”
## [1] “Power for n of  30 = 0.3808”
## [1] “Power for n of  40 = 0.4918”
## [1] “Power for n of  50 = 0.5893”
## [1] “Power for n of  60 = 0.6726”
## [1] “Power for n of  70 = 0.7421”
## [1] “Power for n of  80 = 0.7989”
## [1] “Power for n of  90 = 0.8447”
## [1] “Power for n of 100 = 0.881”
## [1] “Power for n of 110 = 0.9096”
## [1] “Power for n of 120 = 0.9317”
## [1] “Power for n of 130 = 0.9488”
## [1] “Power for n of 140 = 0.9618”
## [1] “Power for n of 150 = 0.9717”
## [1] “Power for n of 160 = 0.9791”
## [1] “Power for n of 170 = 0.9846”
## [1] “Power for n of 180 = 0.9887”
## [1] “Power for n of 190 = 0.9918”
## [1] “Power for n of 200 = 0.994”
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Note on Effect Sizes for Comparing Correlations

The formulae presented in Formulae 4.4, 4.10, and 4.13 are applicable to tests 
that examine the magnitude of the differences between correlations and tests 
involving both magnitude and direction. For tests involving magnitude (e.g., is 
one variable a stronger predictor than another?), enter positive correlations for 
the values compared in the test (i.e., the values inside the absolute value nota-
tion), regardless of direction. The reasoning for this is two correlations may be 
similarly predictive but in opposite directions. For a test that examines both 
magnitude and direction, enter each correlation with its direction.
	 For example, consider a test that examines differences between dependent 
correlations with ρ12 = .30 and ρxy = –.20. For a test focused on magnitude only, 
the Fisher transformed correlations, applied to the absolute value of each correl-
ation yields, 0.31 and 0.20, respectively. This produces q = 0.11.

Now consider a test focused on magnitude and direction, again with ρ12 = .30 
and ρxy = –.20. For this test, the Fisher transformed correlations, applied to the 
raw value of each correlation yields, 0.31 and –0.20, respectively. This produces 
q = 0.51.

Clearly, the choice of approach influences the effect size and subsequent power. 
For the formulae presented in 4.4, 4.10, and 4.13, regardless of the type of test 
used, all correlations outside of the absolute value notation should be entered 
with their appropriate direction (i.e., the raw correlation).

Additional Issues

The procedures used for comparing correlations, particularly those for com-
paring dependent correlations are but one of several approaches to these tech-
niques. There remains considerable disagreement regarding the best 
procedures for comparing dependent correlations (see Silver et al., 2004 and 
Wilcox & Tian, 2008 for summaries and comparisons of other approaches). 
As a general consideration, most procedures for addressing these questions 
diverge from expected Type I error rates when data are non-normal. As 
noted in the t-test chapter, transforming data to normality can be an 
important step in maintaining appropriate error rates. Some of the questions 
addressed in this chapter, in particular the comparison of two independent 
correlations, might also be tested as a regression interaction. Chapter 9 
includes more information on this approach.
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Summary

This chapter examined power for zero-order correlations and for several tests 
comparing correlations. For zero-order correlations, the primary information 
required is the size of the correlation to detect (i.e., how large is a meaningful 
correlation). For tests comparing differences between correlations, power ana-
lyses require the size of a meaningful difference between the correlations and 
accurate estimates of correlations between all other variables (e.g., the correl-
ation between the predictor variables compared).

Note

1. I take some liberties with the authors’ data to provide a simple example.



5
Between Subjects ANOVA 
(One and Two Factors)

Between subjects Analysis of Variance (ANOVA) designs focus on approaches 
where researchers either assign participants to or sample from independent 
groups. These tests often include planned or post hoc comparisons to detect 
differences between pairs of means or to interpret interactions. This chapter 
examines power for main effects, interactions, and contrasts/post hoc tests. 
Examples include one and two factor ANOVA, planned and post hoc contrasts, 
and simple effects tests. Additional issues include discussions of power for 
detecting all effects compared to power for an individual effect and artificial 
dichotomization.

Necessary Information

A good starting point is determining meaningful patterns of means (μs) and an 
estimate of standard deviation (σ) for each factor level. When approaching fac-
torial ANOVA designs, it is necessary to determine cell means as well. Also 
important is a clear understanding of which effects are of interest (omnibus or 
contrast) as this influences sample size planning decisions.

Factors Affecting Power

In addition to sample size and Type I error rate, larger differences between means 
and smaller standard deviations yield more power. Also relevant to power are 
decisions regarding follow-up tests such as those involving planned comparisons 
between means and simple effects tests to examine interactions. Some approaches 
make no adjustment for inflation of α whereas others use some form of α adjust-
ment (e.g., Bonferroni). Any downward adjustment to α reduces power.
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Omnibus Versus Contrast Power

This chapter examines power for both omnibus tests and tests involving planned 
contrasts and simple effects. Unless there is a firm theoretical reason for the 
omnibus F being the primary focus, power analyses should focus on contrasts 
corresponding to research hypotheses. For example, if you want to conclude 
that two groups both outperform a third, then design for adequate power for 
those contrasts rather than for the omnibus test. Similarly, when hypotheses 
address specific interaction patterns, simple effects power is often more central 
to the research hypotheses than power for the interaction effect.

Key Statistics

There are two effect size statistics used for ANOVA power calculations. Partial 
eta squared (η2

partial) and f  2. Studies of statistical power often present f and f2. The 
more commonly reported effect size statistic is η2

partial. This value is termed 
partial η2 because for designs with multiple factors the variance explained by all 
factors except the effect of interest is partialed out of the calculation. This dis-
tinction is not important for one factor designs, as there are no other effects to 
partial out of the equation. Formula 5.1 shows the relationship between η2

partial 
and f  2.
	 For the noncentrality parameter (NCP), some approaches use degrees of 
freedom for the error whereas others use sample size. This produces small differ-
ences in power estimates, particularly when sample sizes or effect size are small. 
For this reason, some of the results produced in this text differ slightly from 
those produced by programs such as G*Power. Calculations in this text use dferror 
as it is more conservative (see Formula 5.2). Each of the calculations in Formu-
lae 5.1–5.3 depends on sample size so it is tricky to start with partial η2 and 
design from there. I prefer a strategy that establishes meaningful differences 
between pairs of means and often a focus on power for contrasts rather than 
power for omnibus tests.

� (5.1)

For the omnibus ANOVA, tests calculate λ using Formula 5.2.

� (5.2)

. .� (5.3)

Contrast tests require calculation of a noncentrality value (δ) that reflects the 
differences between the weighted (noted with c) means in a particular compari-
son. For the contrasts, examples present both λ and δ (Formulae 5.4 and 5.5). 
Both are correct ways to represent the NCP.
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� (5.4)

� (5.5)

One Factor ANOVA Formulae

Formulae 5.6–5.9 are for equal sample sizes. With unequal sample sizes, replace 
nj with the harmonic mean of the sample sizes (see Formula 3.13). The value j 
reflects the number of levels of the factor, or when used as a subscript, a nota-
tion to perform the operation for each group. The value μt reflects the grand 
mean (the mean of all scores irrespective of group).

� (5.6)

� (5.7)

� (5.8)

� (5.9)

Factorial ANOVA Formulae

Calculations for factorial ANOVA follow a similar logic, with cell means and 
sample size replacing the j term (see Formulae 5.10–5.20). For main effects, A 
and B note levels of the factor with the same subscripts (A and B) used as j was. 
The MSw/in is the same as shown in Formula 5.6.

. .� (5.10)

� (5.11)

� (5.12)

� (5.13)

� (5.14)

� (5.15)
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� (5.16)

� (5.17)

� (5.18)

Simple Effects Formulae

Test involving simple effects use the same logic as in the previous section but 
examine the influence of one factor isolated at the level of another.

� (5.19)

� (5.20)

Example 5.1: One Factor ANOVA

This example presents a design to examine the effectiveness of dorm room 
interventions to improve intergroup attitudes. Based on previous work, college 
students score, on average 80 (μ) with a standard deviation of 10 (σ) on an 
established attitude scale. There are three separate interventions with the oppor-
tunity to assign students randomly to one of the interventions or a control 
group. The first treatment is an inexpensive program that involves students 
rooming with a student of another ethnic group and existing curricular 
enhancements where the students take a one-unit course (1 hour per week) in 
their first semester on campus. The second treatment involves the same room-
mate pairing but develops a new curriculum for the one-unit class. This 
program would also be relatively inexpensive. The third treatment involves a 
roommate pairing with a more extensive (and expensive) program utilizing a 
three-unit course (3 hours per week) with structured intergroup experiences 
that involve both roommates.
	 In determining an effect size for our design, the primary question should 
address the sort of effect that would be meaningful. This question is complex, 
but for the present example, a cost–benefit approach is relevant. The first two 
treatments involve low-cost options whereas the third program involves an 
expensive approach. To justify the high cost, it would be reasonable to expect a 
better performance from the third program (i.e., a larger effect size). A previous 
large-scale study examining predictors such as roommate contact in dorm rooms 
found moderate changes in ethnic attitudes predicted by roommate experiences 
such as living with students from other ethnic groups (d ≈ 0.30; Van Laar, Levin, 
Sinclair, & Sidanius, 2005).
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	 Based on these effects, combined with the cost of the interventions, we 
might decide to design to detect small effects for the inexpensive program 
(d = 0.20) but larger effects (d = 0.60) for the more expensive program. These 
effects would correspond to the following mean values: Control group with no 
intervention, μ = 80; Treatment 1, μ = 82; Treatment 2, μ = 82; and Treatment 
3, μ = 86. Using these values with the standard deviation noted and n = 60 per 
group allows for several calculations.

 

For the η2 and f  2 calculations, it is best to use several extra decimal places to 
ensure calculation accuracy. This likely will not make a great deal of difference 
calculation of power, but rounding often produces results that differ slightly 
from other sources.
	 Calculation of power for ANOVA and other designs using the F distribution 
is complex and best left to a computer. However, an approximation technique 
exists. Formula 5.21 presents the unit normal approximation approach to calcu-
lating power. As in other chapters, I present approximate formulae and then 
computer approaches for obtaining exact power estimates. Formula 5.21 differs 
slightly from the version that appears in Cohen (1988) to produce z-statistics 
consistent with the approaches discussed in Chapter 2.
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� (5.21)

From zpower we find an area of .817 (this is the area above z = –0.90 on the 
normal curve). An exact calculation is accomplished using λ in conjunction with 
following line of R code.

1-pf(F_Table, dfbg, dfwin, Lambda)

Using the values yields:

1-pf(2.643, 3, 236, 11.4)

Using this approach, Power = .812 (the .005 difference resulting from the 
approximation used Formula 5.21). This result suggests adequate power (>.80) 
for the omnibus test. However, detecting differences on the omnibus test may 
not be the primary effect of interest. For example, if our interest was whether 
the new programs outperform the older practices (no program and the current 
program), if the current program is better than no program, and whether one of 
the new programs is substantially better than the other, then planned compari-
sons rather than an omnibus test would be more relevant. The next section 
includes calculations for power for contrasts then provides R code for both the 
omnibus and contrast tests.

Example 5.2: One Factor ANOVA with Orthogonal Contrasts

The present study allows for a set of three orthogonal contrasts. One contrast 
that makes sense involves comparing the Control and Current procedures 
(Groups 1 and 2) to the New and Extended procedures (Groups 3 and 4). This 
contrast establishes whether the new programs differ from what the campus is 
currently doing. Contrast 2 is Control vs. Current and Contrast 3 compares the 
two new programs (New vs. New Extended). Calculating contrast values for 
each involves placing a weight on each mean as shown in Table 5.1 (for more 
on the contrast procedures, see Keppel, 1991 or Kirk, 1995). The weights in 
this table serve as the values of “c” in Formula 5.4.
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	 I labeled each δ and λ with a subscript reflecting the contrast.

Next, take the values for δ to R, using the code that follows.

1-pt(tcritical, df, δ)

For this test, degrees of freedom correspond to df error from the ANOVA (236 
in this case). The critical value for two-tailed t at .05 is 1.97. Alternatively, the 
code presented earlier for F and Lambda produces the same result. For the first 
contrast, the code is:

1-pt(1.97, 236, 2.32)

This yields power of .64. This suggests that if the first contrast involves a 
research question of interest designing for adequate power (e.g., .80) requires a 
larger sample size.

T Contrast Weights (c) for One Factor ANOVA Example

Contrast Control Current New New Extended

1 1  1 –1 –1
2 1 –1  0  0
3 0  0  1 –1
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	 Table 5.2 summarizes power for the remaining contrasts. Note that each 
contrast failed to produce power that approached the level of the omnibus test. 
This is not always the case, but outcomes like this are common enough that, 
unless there is a firm theoretical reason for omnibus F as the primary focus of 
the research, it is better to focus design efforts and power analyses on contrasts.

R Code for the One Factor ANOVA

Table 5.3 presents R code and output for completing the analyses detailed 
earlier. Note that the code requires the descriptive statistics but no calculations. 
The format of the functions are as follows:

anova1f_4(m1, m2, m3, m4, s1, s2, s3, s4, n1, n2, n3, n4, alpha)

anova1f_4c(m1, m2, m3, m4, s1, s2, s3, s4, n1, n2, n3, n4, alpha, c1, c2, c3, c4)

The values m1-m4, s1-s4, and n1-n4 reflect means, standard deviations, and 
sample size for each factor level, respectively. Alpha defaults to .05 if no value is 
entered. For the second function, the values c1-c4 reflect the contrast weights.
	 At this point, it is important to consider which hypotheses are of the most 
interest and design for optimal power on those specific contrasts. For example, 

T Power for n = 60 per group for Omnibus Test and Contrasts

λ (δ) tpower Power

Omnibus F 11.40 –0.90 .81
Contrast 1   5.40 (2.32) –0.36 .64
Contrast 2   1.20 (1.10)   0.86 .19
Contrast 3   4.80 (2.19) –0.23 .59

T R Code and Output Omnibus F and Contrasts (n = 60 per cell)

anova1f_4(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=60, n2=60, n3=60, n4=60)
## [1] “Power = 0.812”
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=60, n2=60, n3=60, n4=60, c1=1, c2=1, c3=-1, c4=-1, 
alpha=.05)
## [1] “Power for Contrast = 0.638”
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=60, n2=60, n3=60, n4=60, c1=1, c2=-1, c3=-0, c4=0, 
alpha=.05)
## [1] “Power for Contrast = 0.194”
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=60, n2=60, n3=60, n4=60, c1=0, c2=0, c3=1, c4=-1, 
alpha=.05)
“Power for Contrast = 0.588”
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a reasonable decision is to focus on power for Contrasts 1 and 3. These tests address 
whether the new procedures outperform the old and whether the extended new 
procedure outperforms the new program without extension. As before, we can 
modify the sample sizes in the R code in Table 5.3 and re-run the analysis until we 
find the optimal level of power. The code and output in Table 5.4 shows that 100 
participants per cell produces power > .80 for Contrasts 1 and 3.

Polynomial Contrasts for One Factor ANOVA

Polynomial contrasts produce trend analyses. There are four levels to our factor, 
allowing for tests of the linear, quadratic, and cubic trends. Chapter 7 includes a 
more detailed discussion of trend analyses.
	 The pwr_anova1f_4c function allows for polynomial contrasts. For four 
factors, the linear contrasts are –3, –1, 1, 3. The quadratic contrast is 1, –1, –1, 
1. The cubic contrast is –1, 3, –3, 1. See Kirk (1995), Keppel (1991), or 
perform an internet search on the term “polynomial contrasts” for codes for 
designs with different factor levels (see Table 5.5 for an example).

T R Code and Output Contrasts (n = 100 per cell)

anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=100, n2=100, n3=100, n4=100, c1=1, c2=1, c3=-1, 
c4=-1, alpha=.05)
## [1] “Power for Contrast = 0.849”
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=100, n2=100, n3=100, n4=100, c1=1, c2=-1, c3=0, 
c4=0, alpha=.05)
## [1] “Power for Contrast = 0.292”
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=100, n2=100, n3=100, n4=100, c1=0, c2=0, c3=1, 
c4=-1, alpha=.05)
## [1] “Power for Contrast = 0.806”

T R Code and Output for Polynomial Contrasts

anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=60, n2=60, n3=60, n4=60, c1=-3, c2=-1, c3=1, c4=3, 
alpha=.05)
## [1] “Power for Contrast = 0.874”
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=60, n2=60, n3=60, n4=60, c1=1, c2=-1, c3=-1, c4=1, 
alpha=.05)
## [1] “Power for Contrast = 0.12”
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, 
s4=10, n1=60, n2=60, n3=60, n4=60, c1=-1, c2=3, c3=-3, c4=1, 
alpha=.05)
## [1] “Power for Contrast = 0.179”
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Comparisons among All Means

Although power analysis is an a priori venture, some research situations call for 
designs using conservative post hoc analyses. Conservative post hoc options 
(e.g., Tukey tests) involve comparisons between all pairs of means.
	 The R code (again using the anova1f_4c function) in Table 5.6 takes each 
mean, and assigns it as the comparison group for a simple contrast. This requires 
six tests to cover all the comparisons produced by the four factor levels.
	 The tests presented in Table 5.6 do not conduct tests such as the Tukey 
HSD. However, Bonferroni or Šidák adjustments provide a reasonable approxi-
mation. Formulae 5.22 and 5.23 detail these adjustments. With four groups, 
there are six comparisons between means. To adjust for tests using α = .05, we 
end up with Bonferroni: α = .0083 and Šidák: α = .0085. Enter values from 
whichever test you plan to use in the code (the example uses Šidák).

� (5.22)

� (5.23)

ANOVA with Two Factors

Power for effects involving multiple factors in ANOVA have been described 
elsewhere with a focus that begins with estimating the effect size associated 
with main effects and interactions. This approach is difficult as effect sizes for 

T R Code and Output for All Pairwise Comparisons

anova1f_4c(m1=80,  m2=82,  m3=82,  m4=86,  s1=10,  s2=10,  s3=10,  s4=10, 
n1=60,  n2=60,  n3=60,  n4=60,  c1=1,  c2=-1,  c3=0,  c4=0,  alpha=.0085)
## [1] “Power for Contrast = 0.061”
anova1f_4c(m1=80,  m2=82,  m3=82,  m4=86,  s1=10,  s2=10,  s3=10,  s4=10, 
n1=60,  n2=60,  n3=60,  n4=60,  c1=1,  c2=0,  c3=-1,  c4=0,  alpha=.0085)
## [1]  “Power  for  Contrast  =  0.061”
anova1f_4c(m1=80,  m2=82,  m3=82,  m4=86,  s1=10,  s2=10,  s3=10,  s4=10, 
n1=60,  n2=60,  n3=60,  n4=60,  c1=1,  c2=0,  c3=0,  c4=-1,  alpha=.0085)
## [1]  “Power  for  Contrast = 0.736”
anova1f_4c(m1=80,  m2=82,  m3=82,  m4=86,  s1=10,  s2=10,  s3=10,  s4=10, 
n1=60,  n2=60,  n3=60,  n4=60,  c1=0,  c2=1,  c3=-1,  c4=0,  alpha=.0085)
## [1]  “Power  for  Contrast  =  0.008”
anova1f_4c(m1=80,  m2=82,  m3=82,  m4=86,  s1=10,  s2=10,  s3=10,  s4=10, 
n1=60,  n2=60,  n3=60,  n4=60,  c1=0,  c2=1,  c3=0,  c4=-1,  alpha=.0085)
## [1] “Power  for  Contrast = 0.324”
anova1f_4c(m1=80,  m2=82,  m3=82,  m4=86,  s1=10,  s2=10,  s3=10,  s4=10, 
n1=60,  n2=60,  n3=60,  n4=60,  c1=0,  c2=0,  c3=1,  c4=-1,  alpha=.0085)
## [1] “Power for Contrast = 0.324”



Between Subjects ANOVA    79

interactions are neither intuitive nor specific to the pattern of effects of 
interest. For example, designing for an interaction with a partial η2 of .03 pro-
vides no information about whether this is a meaningful result or the pattern 
of effects underlying the interaction.
	 Because of these concerns, I prefer an approach that generates a set of mean-
ingful pattern of cell means. That is, what is the specific pattern of result that is 
of interest and what means correspond to the result? Determining meaningful 
means for cells requires considerable thought. Far more than simply designing 
for a certain effect size. However, this approach likely provides better power 
and sample size estimates.

Example 5.3: Two Factor ANOVA with Interactions

One of my long-standing areas of research involves examining attitudes toward 
affirmative action (AA). One project examined how policy features and the 
presence of policy justifications influence support for different forms of AA. 
There is considerable research on topics relevant to both justification and policy 
type. However, little is known about justifications for specific applications of 
AA as most work on justification examined attitudes toward AA in general and 
did not manipulate policy type and justification in the same study.
	 The study in this example uses a 2 (Policy Type: Recruitment of Applicants 
vs. Tiebreaker) by 2 (Justification: No Justification or Increased Diversity) 
design. The dependent measure was a four-item policy support scale used in a 
previous study, producing a standard deviation of 1.70. Table 5.7 details the 
expected cell and marginal means (an explanation of how I generated these 
values appears later). The primary hypothesis for the present study was that jus-
tifications influence evaluations of stronger policies like the tiebreaker policy 
wherein minority applicants received preference when their qualifications were 
equal to those of a non-minority applicant. However, justifications were not 
expected to influence policies wherein organizations made special outreach 
efforts to recruit minority applicants.
	 Several sources of information went into the determination of cell means. 
Results from a meta-analysis focusing on diversity justifications reported a 
correlation of .17 for differences between justified and not justified policies 
among studies examining attitudes toward AA in general (Harrison, Kravitz, 
Mayer, Leslie, & Lev-Arey, 2006). Analyses apply this effect size to the expected 
value for tiebreak (but not recruitment) conditions as previous work found indi-
viduals view tiebreakers as more typical of AA than is recruitment (Aberson, 
2007). Converting r to d using Formula 4.1 yields d = 0.35. Given σ = 1.7, this 
corresponds to a difference of 0.60 between justified and not justified tiebreaker 
policies. Table 5.7 shows this difference in the row labeled “Tiebreak.”
	 For policies presented without justifications, previous work in my lab found a 
difference in support for recruitment and tiebreaker policies that were presented 
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without justification of roughly d = 0.50 favoring recruitment approaches. Given 
σ = 1.7 (the standard deviation from a previous use of the scale), this corresponds 
to a difference of 0.85 between recruitment and tiebreaker policies. The column 
of Table 5.7 labeled “No justification” shows this difference.
	 The final cell mean is for the recruit-justified condition. Although there are 
no previous data to base this on, part of the interaction hypothesis was that jus-
tification would not influence evaluations of the recruitment policy. Thus, ana-
lyses set the means to show no difference between the recruitment policies 
between not justified and justified conditions.

Calculations

Power for the factorial ANOVA may be calculated (mostly) by hand using the 
approaches that follow. Although the primary hypothesis involves the inter-
action, the calculation approach addresses all of the effects (but presents power 
only for the interaction). Calculations began with an estimate of n = 100 per 
cell. This may seem like a very large sample but the study itself involved only a 
single page of measures that took participants roughly 2 minutes to complete so 
large samples sizes were not unreasonable.

T Means for Factorial ANOVA Example

Factor B M

No Justification (B1) Justified (B2)

Factor A Recruit (A1) 0.85 (m1.1) 0.85 (m1.2) 0.85
Tiebreak (A2) 0.0 (m2.1) 0.60 (m2.2) 0.30
M 0.425 0.725 0.575
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Taking λ = 3.11 to R (using the single line of code demonstrated earlier in the 
chapter) finds power of .42. A sample of n = 100 per cell is not adequate if we 
want power of .80.

R Code for Factorial ANOVA

Power calculations for this design use the anova2x2 function. The structure of 
the function is as follows:

anova2x2(m1.1, m1.2, m2.1, m2.2, s1.1, s1.2, s2.1, s2.2, n1.1, n1.2, n2.1, 
n2.2, alpha, all)

The values for m, s, and n correspond to cell means (see the numbering in 
Table 5.7). alpha defaults to .05. I discuss the remaining item (“all”) in the 
section on multiple effects.
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	 The R code in Table 5.8 completes all of the intermediate calculations and 
provides an estimate of power for the two main effects and the interaction using 
n = 100 per group. As in the earlier example, Power = .42 for the interaction. 
Also included in the table is an analysis that increases the sample size to n = 250. 
This analysis finds power of roughly .80 for the interaction.

Simple Effect Tests

Of primary interest when examining interactions are simple effects tests. Much 
as contrasts offer a more precise explanation of effects than do omnibus F tests, 
simple effects tests address specific aspects of the interaction by focusing on the 
influence of one factor at the levels of the other. For the current example, the 
hypothesis stated that justification makes a difference for tiebreaker policies but 
not for recruitment policies. To test these predictions, we can examine differ-
ences in support for tiebreaker policies between the justified or not justified 
conditions and then differences in support for recruitment policies between the 
justification conditions. Addressing power for simple effects tests is important as 
these tests often relate directly to hypotheses.

The following calculations yield λ = 15.2, for this value, power is .97, suggesting 
that the current design provides excellent power for detecting the simple effect 
of interest.

T R Code and Output for Two Factor ANOVA

anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=100, n1.2=100, n2.1=100, n2.2=100,
alpha=.05)
## [1] “Power for Main Effect Factor A = 0.898”
## [1] “Power for Main Effect Factor B = 0.421”
## [1] “Power for Interaction AxB = 0.421”
anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=250, n1.2=250, n2.1=250, n2.2=250,
alpha=.05)
## [1] “Power for Main Effect Factor A = 0.999”
## [1] “Power for Main Effect Factor B = 0.796”
## [1] “Power for Interaction AxB = 0.796”
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R Code for Simple Effects

This test uses a function called anova2x2_se. The function requires the follow-
ing input, this input is identical to the anova2x2 function for omnibus tests.

anova2x2_se(m1.1, m1.2, m2.1, m2.2, s1.1, s1.2, s2.1, s2.2, n1.1, n1.2, n2.1, 
n2.2, alpha)

Table 5.9 shows the code and output for simple effects. When running this ana-
lysis, the output includes all possible simple effects tests and the means corre-
sponding to those tests.
	 Note that the power for the contrast of interest, comparing the two justifica-
tions for tiebreaker policies, is .97. The power for comparing the two justifica-
tions for recruitment policies is is .05. Since the means for that contrast were 
equal, power is equal to α.

Power for Multiple E

Designs involving multiple factors address two forms of power. The first is 
power for a single effect (e.g., a main effect or an interaction). This is the sort of 
power examined in the current chapter. Another conceptualization of power 
involves the power for detecting all effects in a specific design. I term this 
Power(All). For example in a study with two factors designed to yield power 
for both main effects and the interaction as .50, power for single effects reflects 
three different estimates [Power(A), Power(B), and Power(AxB)]. Power for 
detecting all effects on the other hand, reflects how likely it is to reject all three 
null hypotheses in the same study. You might be tempted to think this power 

T R Code and Output for Simple Effects

anova2x2_se(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60, 
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7, n1.1=250, n1.2=250, 
n2.1=250, n2.2=250, alpha=.05)
## [1] “Simple Effect Comparing M = 0.85 and 0.0 Power = 1”
## [1] “Simple Effect  Comparing M = 0.85 and 0.6. Power = 0.364”
## [1] “Simple Effect  Comparing M = 0.85 and 0.85. Power = 0.05”
## [1] “Simple Effect  Comparing M = 0 and 0.6. Power = 0.974”
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would be .50 as well. This is not the case. As a thought exercise, consider flip-
ping a coin three times. The probability of the coin coming up heads is .50 on 
each flip. This is analogous to Power(A), Power(B), and Power(AxB) with each 
set at .50. However, the probability that the coin comes up heads on all three 
flips is far less than .50. Using the binomial approximation approach, this prob-
ability would be .13. This is analogous to Power(All) or how likely any one 
study is to reject all three null hypotheses.
	 Table 5.10 reflects Power(All) corresponding to various levels of power for 
individual effects. This table is simplistic as it only examines situations when 
the same level of power exists for each effect. In addition, this assumes that 
the factors are independent (i.e., participants randomly assigned to levels of 
the factor). Power(Each Effect) refers to a situation where both main effects 
and the interaction have equal power. The row labeled p(One or more reject) 
is the probability that one or more of the effect are detected and p(Two or 
more reject) is the probability that two or more effects are rejected. The row 
labeled p(Reject all H0) is the probability that all three null hypotheses are 
rejected. Note that to obtain Power = .80 for rejecting all three null hypo-
theses, we would need to design for each test to have Power = .93. Table 5.11 
shows the same calculations for a three factor ANOVA. In this table, the 
probabilities for rejecting at least one H0 and for rejecting all the H0s become 
more extreme.
	 Another way to think about power for multiple effects is in terms of Type I 
and Type II error rates. This issue is similar to inflation of α or Type I error. 
When conducting multiple significance tests, Type I error rates for the family of 

T Power for Rejecting All Effects (and At Least One) for Various Levels of 
Individual Effect Power for Two Factor ANOVA

Power (Each effect) .50 .60 .70 .80 .90 .93 .95
p(One or more reject H0) .88 .94 .97 .99 >.99 >.99 >.99
p(Two or more reject H0) .50 .65 .78 .90 .97 .99 >.99
p(Reject all H0) .13 .22 .34 .51 .73 .80 .86

T Power for Rejecting All Effects (and At Least One) for Various Levels of 
Individual Effect Power for Three Factor ANOVA

Power (Each effect) .50 .60 .70 .80 .85 .90 .95 .964
p(One or more reject H0 ) .98 >.99 >.99 >.99 >.99 >.99 >.99 >.99
p(Two or more reject H0 ) .89 .96 .99 >.99 >.99 >.99 >.99 >.99
p(Three or more reject H0 ) .66 .82 .93 .98 >.99 >.99 >.99 >.99
p(Four or more reject H0 ) .34 .54 .74 .90 .98 >.99 >.99 >.99
p(Five or more reject H0 ) .11 .23 .42 .66 .89 .97 .98 >.99
p(Reject all H0 ) .02 .05 .12 .26 .38 .53 .74 .80
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tests (a.k.a., familywise alpha) increase. Equation 5.24 provides an estimate of 
familywise α error for multiple comparisons and is the conceptual basis for 
development of tests such as the Bonferroni adjustment. According to the 
formula, with three tests using a pairwise alpha (αpw) of .05, familywise alpha 
(αfw) is .14.

αfw = 1 – (1 – αpw)
c

� (5.24)
αfw = 1 – (1 – .05)3 = .14

The same process is at work with regard to the familywise probability of making 
a β or Type II error (Formula 5.25), a value referred as βfw in the formula. For 
example, take a study designed for β of .20 (called βind for Beta individual) for 
each of its three effects (a.k.a., Power = .80 for both main effects and the inter-
action). The likelihood of making a single β error among those three tests is 
substantially higher than the error rate of .20 for the individual tests. Just as with 
α error, multiple tests inflate the chances to make a single β error among a set of 
significance tests. The βfw value easily converts to power to detect all of the 
effects in the design by taking 1 – βfw. For three factors in this example, βfw = .488 
and Power(All) = .512.

βfw = 1 – (1 – βind)
c

� (5.25)
βfw = 1 – (1 – .20)3 = .488

For ANOVA designs where assignment to factor levels is random, calculation of 
Power(All) is straightforward (as the factors are not correlated). Simply multiple 
the power of the main effects and interaction together to obtain the estimate. In 
many ANOVA designs, Power(All) may not be relevant as it is common for 
research using such designs to only be interested in the interaction term. However, 
as discussed in Chapter 9, this issue becomes more complicated when dealing with 
designs that involve correlated predictors (e.g., multiple regression).
	 Table 5.12 provides an example that obtains Power(All) for the analyses in 
the present example. The anova2x2 function simply adds all = “ON” to produce 
the analysis.

T R Code and Output for Power(All)

anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=100, n1.2=100, n2.1=100, n2.2=100,
alpha=.05, all=“ON”)
## [1] “Power for Main Effect Factor A = 0.898”
## [1] “Power for Main Effect Factor B = 0.421”
## [1] “Power for Interaction AB = 0.421”
## [1] “Power(All) = 0.159”
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Additional Issues

Additional issues focus on artificial dichotomization of continuously scaled 
predictors.

Artificial Dichotomization

An approach sometimes used with ANOVA designs involves taking continu-
ously scaled variables and dichotomizing those values to create a factor. For 
example, scores on a self-esteem scale might be collected for a sample, then 
participants classified as high or low in self-esteem based on a median split of 
scores to create two roughly equal groups.
	 The best advice regarding this approach is do not dichotomize. Use regres-
sion instead. Artificially dichotomizing variables reduces power (see Cohen, 
1984; Fitzsimons, 2008). Regression analysis is a more complicated statistical 
approach but regression yields more power as the variable remains in its original 
continuously scaled format.
	 Other important reasons for avoiding dichotomization also deserve mention. 
It is possible that dichotomizing produces groups that do not reflect clearly dif-
ferentiated categories. For example, analyses of self-esteem data indicated a 
tendency to dichotomize self-esteem scale scores into high and low self-esteem 
categories based on median scores (Aberson, Healy, & Romero, 2000). Much 
of this dichotomization resulted in questionable classification of individuals as 
having “low self-esteem.” Many individuals who scored moderately high on the 
scale end up classified as low self-esteem. For data on several major scales parti-
cipants with scores that reflected 70% of the total possible score (e.g., a score of 
70 on scale ranging from 1 to 100) were classified as “low self-esteem” despite 
scores that would more accurately be termed “medium self-esteem.”
	 Dichotomization influences power through reduction of observed effect size. 
Formula 5.26 presents the attenuation factor statistic (Hunter & Schmidt, 1990) 
and Formula 5.27 presents the effect size attenuation statistic. In Formulae 5.26, ad 
refers to attenuation due to dichotomization. The value Φ(c) is the unit normal 
density function for the z-transformed cutpoint (i.e., the “height” of the normal 
distribution curve). To command used to compute this value with R is 
dnorm(0,0,1). The first 0 reflects the cutpoint. The 0 and 1 that follow are the 
mean and standard deviation (use 0 and 1 to make this a normal distribution calcu-
lation). The values p and q reflect the proportion of participants in each group. If 
using a median split approach, p = .50 and q = .50, producing Φ(c) = .40.

� (5.26)

Equation 5.27 demonstrates the influence of artificial dichotomization on the 
effect size. The attenuating factor (ad) reduces the size of the observed effect.
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� (5.27)

The example that follows reflects a typical study utilizing dichotomization based 
on a median split. If population effect size is 0.50 and ad = .80, the observed 
effect sizes is 0.40.

Regarding the influence of artificial dichotomization on power, a study 
designed to detect effects of d = 0.50 for a two-group design would require a 
sample size of n = 128 for Power = .80. However, the observed effect size does 
not accurately reflect the population effect. In this case, the observed effect size, 
dobserved = 0.40, with a sample of n = 128, yields Power = .61. If you must dicho-
tomize, then recognize the influence this has on effect sizes and adjust sample 
sizes accordingly.

Summary

This chapter presented tests for one and two factor between subjects designs. 
These designs require estimation of meaningful patterns of means and accurate 
standard deviations. One factor designs require means across levels of each factor 
whereas two factor designs require cell means. A primary issue with both 
designs is whether hypotheses reflect omnibus tests or specific comparisons (e.g., 
planned contrast, simple effects). Well-developed hypotheses often predict out-
comes best addressed through specific comparisons rather than omnibus tests. 
Power for specific comparisons often differs considerably from omnibus power.

Note

1. This section relies heavily on work by Maxwell (2004). I urge interested readers to 
consult this article as it details aspects of this issue that the present chapter does not 
address.



6
Within Subjects Designs 
with ANOVA and Linear 
Mixed Models

Within subjects (also known as repeated measures) designs focus on approaches 
involving measurement of the same participants at multiple levels of a factor 
(also known as independent variable). Often these designs involve measurement 
over two or more time periods. This chapter examines power for one and two 
factor within subjects Analysis of Variance (ANOVA) designs and trend ana-
lyses. Examples focus on calculations and analyses using univariate and linear 
mixed model (LMM) approaches, and present R functions for primary analyses, 
sphericity-adjusted tests, and trends.

Necessary Information

As with between subjects ANOVA designs, a good starting point is determining 
meaningful patterns of means (μs) and estimates of standard deviation (σ) for 
each factor level or cell. Also necessary are the expected correlations (ρs) 
between dependent measures.

Factors Affecting Power

Larger effect sizes and stronger positive correlations between dependent meas-
ures yield more power. Conceptually, correlations between measures explain 
variance that is otherwise attributed to error. The reduction of error when 
employing repeated measures makes within subjects designs more powerful than 
between subjects designs. As with other designs increases in sample size, α, and 
decreases in standard deviation increase power.
	 Although within subjects designs have great advantages regarding power, 
they also present an additional challenge. Designs that include three or more 
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levels of the within subjects factor come with an additional test assumption, 
namely the sphericity assumption. Sphericity is a complex issue that is dis-
cussed nicely elsewhere (e.g., Field, 1998). A simple (but incomplete) way to 
understand sphericity is that the assumption is satisfied if the correlations 
between each pair of measures are similar and variances across measures are 
homogeneous. Measures taken close together usually show higher correla-
tions than those taken further apart, so the sphericity assumption is often 
violated. Sphericity assumption violations increase Type I error rates. As 
Type I error rates rise, so does power. This increase in power is fleeting; 
adjustments exist to account for this violation and drive the Type I error (and 
power) down.
	 This chapter presents two strategies for addressing violations of the spheric-
ity assumption. The first approach involves downward adjustment of degrees 
of freedom in the univariate tests to account for inflated Type I error rates. 
This strategy, commonly termed epsilon adjustment, employs procedures such 
as the Greenhouse–Geisser (G–G) or Huynh–Feldt (H–F ) statistics. Another 
approach involves use of LMM. LMM does not assume sphericity, so adjust-
ments are unnecessary.
	 In the first edition of this text, I included a section on doing repeated 
measures via Multivariate Analysis of Variance (MANOVA). MANOVA 
approaches also do not require the sphericity assumption and are generally a 
bit more powerful than univariate ANOVA when assumptions are violated 
and sample sizes exceed two cases per dv (Tabachnick & Fidell, 2007b). 
However, the behavioral sciences appear to be shifting away from use of both 
ANOVA and MANOVA approaches for repeated measures and increasingly 
embracing LMM.
	 The main advantage of LMM over both ANOVA (and MANOVA 
approaches) is that LMM does not require complete data for participants. For 
example, a study with measures at three time points often includes particip-
ants that miss one or more of the measurement periods. ANOVA/MANOVA 
excludes participants with any missing data. LMM includes those participants 
with incomplete data (sometimes referred to as accommodating unbalanced 
designs). Practically, this means that LMM retains participants that missed any 
measurement period whereas ANOVA/MANOVA throws them out (i.e., 
uses listwise deletion). Including these participants affords LMM more power 
than ANOVA/MANOVA in these situations. This advantage does not influ-
ence the process of power analysis, but it does provide major benefits after 
data collection.
	 The present chapter addresses both univariate tests with epsilon adjustments 
and LMM approaches to repeated measures. Given the advantages LMM shows 
in dealing with missing data, my recommendation is to use LMM whenever 
possible.
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Key Statistics

Univariate ANOVA

This chapter does not include discussion of sums of squares and related statistics. 
These calculations are more involved than those for between subjects ANOVA. 
For this reason, the techniques presented rely on computer-generated calcula-
tions for most values. Several sources provide excellent overviews of these cal-
culations (e.g., Keppel, 1991).
	 Formulae 6.1 and 6.2 present two measures of effect size, partial η2 and f  2. 
Partial η2 is the more commonly presented effect size for ANOVA designs, 
reflecting the proportion of variance explained by a factor while partialing out 
the effects of other factors. In within subjects ANOVA, there are several error 
terms, so take care to choose the right one for this calculation (more on this in 
the calculation example). The value f  2 is less commonly presented in conjunc-
tion with significance test statistics, but it is necessary for calculating the non-
centrality parameter (NCP). The NCP (Formula 6.3) is a function of the size of 
the effect size (partial η2) and dferror.

� (6.1)

� (6.2)

� (6.3)

The formulae presented in this text differ slightly from values used in other 
sources (e.g., G*Power3). With regard to effect size, some programs request 
partial η2 but define this value using formulae that do not account for correla-
tions among dependent measures (these approaches adjust for the correlations 
later). The value presented in this chapter is consistent with what most sources 
and statistical software calls partial η2. Specifically, the variance explained by 
other variables in the model are partialed out (e.g., in a two-factor design, the 
partial η2 for factor A is SSA/SSA+SSError). Similarly, some sources calculate λ 
based on sample size and levels of the factor rather than degrees of freedom for 
error. I prefer to use degrees of freedom as it is more conservative (dferror is always 
less than the sample size). Different power estimates produced through different 
approaches likely reflect this choice.

Linear Mixed Models (LMM)

The NCP in LMM is the likelihood ratio Chi-square value derived by compar-
ing the fit of a null model with a model that includes the predictor(s) of interest. 
This is often referred to as –2log or –2LL (see Formula 6.4).

� (6.4)
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Sphericity Adjustments

Sphericity adjustment for univariate tests require a value called epsilon (ε). The 
ε value ranges from 0 to 1.0 with 1.0 meaning no violation of the assumption. 
Multiplying ε by degrees of freedom (df ) produces adjusted df that make it more 
difficult to reject the null hypotheses. This approach is analogous to the df 
adjustment seen in Chapter 3 for t-tests with unequal variances. An alternative 
to using ε adjusted values, is to use LMM which does not assume sphericity.

Example 6.1: One Factor Within Subjects Design

The example for power for a one factor within subjects design focuses on a 
project designed to modify implicit attitudes through stereotype negation train-
ing. One study involved measures of implicit attitudes toward gay men taken at 
pretest, posttest (after training), 2 hours after posttest, and 6 hours after posttest. 
In between the pretest and posttest, participants engaged in a stereotype nega-
tion task that forced them to categorize nonstereotypical words with pictures of 
gay and heterosexual couples.
	 Determining the size of a meaningful effect required judgments regarding 
what size effect would be worth the time and effort required to develop and 
administer the test. Other researchers had success with similar approaches in 
improving attitudes toward other groups, so we were interested in detecting 
similar size outcomes. That work found raw score changes of +0.25 to +0.40 
(meaning more positive attitudes) from pre to post and gradual increases there-
after. Based on this information, we judged +0.25 as the minimum value for a 
practically important pre-post change. That is, to term the technique effective, 
it was important to achieve at worst the same level of attitude change as the 
least-effective previous study.
	 We were also interested in whether attitudes continued to change over time and 
judged smaller increases as meaningful at 2 and 6 hours. Estimates of standard devi-
ations relied on reported uses of similar dependent measures, yielding an estimate of 
σ = 0.40 with slight increases in variability for each subsequent measure. For the 
correlations between measures, large-scale studies of attitudes toward other groups 
reported test–retest correlation of .50. However, correlations tend to degrade over 
time, and the test–retest reliabilities for similar measures expressed a considerable 
range across studies, suggesting smaller correlations for measures further apart (e.g., 
correlations for pre-twohour = = .30, correlations for pre-sixhour = .15).
	 Table 6.1 presents the estimates of population means, variances, and correla-
tions needed for establishing power. Many of the values reflect conservative 
estimates. In general, smaller correlations between measures mean less power, 
larger standard deviations mean less power, and greater heterogeneity of vari-
ances means less power. Also, the divergent correlation values promote viola-
tion of the sphericity assumption.
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	 The code and output in Table 6.2 demonstrate use of the win1F function. 
The format of the function is:

win1F(m1, m2, m3, m4, s1, s2, s3, s4, r12, r13, r14, r23, r24, r34, n, alpha)

The values m1-m4 and s1-s4 reflect means and standard deviations for each 
factor level. The r values correspond to correlations between the dvs. The code 
allows for two to four factors. Leave out values not relevant to your analyses. 
For example, if you have three factors, omit, m4, s4, r14, r24, and r34. The 
value n is overall sample size. Alpha defaults to .05 if no value is entered.
	 Based on the univariate tests (also known as univariate unadjusted or spheric-
ity assumed) in Table 6.2, a sample of 25 participants yields power of .809.
	 Table 6.3 provides output from an ANOVA using the means, standard devi-
ations, correlations, and sample sizes from the present analysis. This is presented 
to demonstrate where the various values for calculation come from, it is not a 
step to determine power. Regarding calculations, η2 uses SSerror = 14.53 and SSef-

fect = 2.38 (bolded in Table 6.3). The noncentrality parameter (NCP) (λ) uses the 
value labeled DFd for iv = 72. Computations use Formulae 6.1, 6.2, and 6.3.

T Descriptive Statistics for Within Subjects ANOVA Example

Pre Post 2 Hour 6 Hour

Pre μ = –0.25
σ = 0.40

– – –

Post ρ = .50 μ = 0.00
σ = 0.50

– –

Two Hour ρ = .30 ρ = .50 μ = 0.10
σ = 0.60

–

Six Hour ρ = .15 ρ = .30 ρ = .50 μ = 0.15
σ = 0.70

T R Code and Output for One Factor Within Design using ANOVA

win1F(m1=-.25,  m2=.00,  m3=.10,  m4=.15,  s1=.4,  s2=.5,  s3=.6,  s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
## [1] “Power (Unadjusted) for n = 25 = 0.809”
## [1] “Power   H-F   Adjusted   (Epsilon = 0.914)   for   n = 25 = 0.782”
## [1] “Power   G-G   Adjusted   (Epsilon = 0.815)   for   n = 25 = 0.745”

T Information for One Factor ANOVA Calculation Example

## $ANOVA
##  Effect DFn DFd SSn   SSd        F          p p<.05        ges
## 1 (Intercept) 1 24 0.000 15.708 0.000000 1.00000    0.00000000
## 2          iv 3 72 2.375 14.532 3.922378 0.01187129 0.07281925
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Example 6.2: Sphericity Adjustments

The output in Table 6.2 also displays the epsilon adjustments (Greenhouse–Geisser 
etc.). Often data collected using within subjects designs do have a sphericity 
problem, so I recommend a conservative approach that assumes a problem exists. 
Satisfying the conservative assumption yields adequate power when violating 
assumptions and even better power if there is no assumption violation. The output 
shows Greenhouse–Geisser ε = .815. Although there are some situations where 
Huynh–Feldt is the preferred statistic for epsilon adjustment, I recommend G–G, 
for use in power analysis because is the more conservative approach. The spheric-
ity adjustment is applied to the df. For example, the df involved in the significance 
test for Time are 3 and 72. The G–G adjustment multiplies the G–G epsilon value 
of .815 by each df, producing 2.44 (3 * .815) and 58.65 (72 * .815). These values 
become the degrees of freedom for that adjusted test. The dfs based on these 
adjustments are then used along with the F statistic to calculate the probability 
[F(2.44, 58.65) = 3.92, p = .018]. For researchers who prefer the H–F adjustment, 
the approach detailed in Table 6.2 works in the same manner, simply substitute ε 
of .914 for .815. Regardless of the approach, both adjustments suggest a slightly 
larger sample to obtain power of .80.

Example 6.3: Linear Mixed Model Approach to 
Repeated Measures

LMM is an increasingly popular alternative to the univariate within subjects 
ANOVA approaches demonstrated earlier. As noted earlier in this chapter, 
LMM has two major advantage: it does not require the sphericity assumption 
and it retains participants with missing data. The example that follows first 
presents output from a LMM analysis (shown in Table 6.4 and corresponding to 
the values in Example 6.2).

T Information for One Factor LMM Calculation Example

##    Model df      AIC      BIC  logLik    Test  L.Ratio p-value
## base   1  4 168.4380 178.8587 –80.21902
## model1 2  7 163.0849 181.3211 –74.54247 1 vs 2 11.3531   0.01
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Using the code 1-pchisq(7.815, 3, 11.35) where 7.815 represents Chi square at 
.05 for 3 degrees of freedom (the second value in the code), yields power of .82 
for the LMM test.
	 Table 6.5 presents code and output for the LMM approach using the lmm1F 
function. The values required by the function are as follows and are the same as 
those values for win1F demonstrated in Example 6.2.

lmm1F(m1, m2, m3, m4, s1, s2, s3,s4, r12, r13, r14, r23, r24, r34, n, alpha)

Example 6.4: A Serious Sphericity Problem

To demonstrate how power for the univariate adjusted and LMM tests differ 
when violating the sphericity assumption, I modified Example 6.1 to represent 
worse problems with sphericity. The code in Table 6.6 demonstrates issues that 
contribute to violation of the sphericity assumption. When compared to the 
parameters in Table 6.1, the standard deviations are more unequal and the cor-
relations between measures more divergent. For this analysis, with a sample of 
100, the G–G statistic is smaller than in the previous example (.662 vs. .815), 
reflecting a greater deviation from the sphericity assumption. Under these con-
ditions, LMM provides a bit more power than the adjusted tests.

Trend Analysis

Often research involving measures taken over time seek to examine trends. For 
example, a linear trend might exist where scores rise (or fall) over time or a 
quadratic (curvilinear) trend shows that scores improve initially but later return 
to pretest levels. This is a qualitatively different question than the one addressed 
in the example where power analysis focused on tests examining whether the 
four means (one for each time) differed. Trend analyses ask whether means 

T R Code and Output for One Factor Within Design using LMM

lmm1F(m1=-.25,   m2=.00,   m3=.10,   m4=.15,   s1=.4,   s2=.5,   s3=.6,   s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
## [1] “Power for n = 25 = 0.817”

T Code and Output for Serious Sphericity Problem Example

win1F(m1=-.25,  m2=.00,  m3=.10,  m4=.15,  s1=.4,  s2=.5,  s3=2.5, s4=2.0,
r12=.50,  r13=.30,  r14=.10,  r23=.5,  r24=.30,  r34=.40,  n=100)
## [1]   “Power   (Unadjusted)   for   n = 100 = 0.397”
## [1]   “Power   H-F   Adjusted   (Epsilon = 0.675) for n = 100 = 0.321”
## [1] “Power   G-G   Adjusted   (Epsilon = 0.662)   for   n = 100 = 0.318”
lmm1F(m1=-.25,   m2=.00,   m3=.10,   m4=.15,   s1=.4,   s2=.5,   s3=2.5, s4=2.0,
r12=.50, r13=.30, r14=.10, r23=.5, r24=.30, r34=.40, n=100)
## [1] “Power for n = 100 = 0.403”
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differ in a specific manner. Trend analyses do not require a sphericity adjust-
ment. Trends involve a single degree of freedom in the numerator. Sphericity is 
not an issue when dfnum = 1.

Example 6.5: Trend Analysis

Imagine that in the example from the previous section, hypotheses focused on 
steady and consistent changes in attitudes over each measurement period. For 
example, instead of predicting different levels of improvement across each measure 
(e.g., +0.25, then +0.10, then +0.05), we expected a +0.10 improvement in atti-
tudes for each measurement period. This prediction reflects a hypothesis about a 
linear trend rather than an omnibus ANOVA test that simply specifies differences 
between means. This distinction is important as the two types of tests (omnibus vs. 
trend analysis) sometimes produce markedly different power analyses.
	 The R code and output in Table 6.7 modified Example 6.1 to represent 0.10 
mean improvements over at each time period using both the ANOVA and 
LMM approaches. The format of the functions that follows is the same as those 
in previous analyses, the only difference is the name of the functions.

win1Ftrends(m1, m2, m3, m4, s1, s2, s3, s4, r12, r13, r14, r23, r24, r34, n, alpha)

lmm1Ftrends(m1, m2, m3, m4, s1, s2, s3, s4, r12, r13, r14, r23, r24, r34, n, alpha)

The output contains two tests for each effect for the ANOVA test. Researchers 
differ in preference for degrees of freedom with some using the larger value (72) 
taken from the denominator of the omnibus ANOVA and others splitting the df 
between tests (24).
	 Notice that the power for detecting the linear trend (.69) for the LMM is 
considerably higher than the power for the ANOVA (.49) with n = 25. The 

T R Code and Output for Trend Analysis

win1Ftrends(m1=-.25, m2=-.15, m3=-.05, m4=.05, s1=.4, s2=.5, 
s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
## [1] “Power Linear Trend for n = 25 df = 24 = 0.487”
## [1] “Power Linear Trend for n = 25 df = 72 = 0.508”
## [1] “Power Quadratic Trend for n = 25 df = 24 = 0.05”
## [1] “Power Quadratic Trend for n = 25 df = 72 = 0.05”
## [1] “Power Cubic Trend for n = 25 df = 24 = 0.05”
## [1] “Power Cubic Trend for n = 25 df = 72 = 0.05”
lmm1Ftrends(m1=-.25, m2=-.15, m3=-.05, m4=.05, s1=.4, s2=.5, 
s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
## [1] “Power Linear Trend for n = 25 = 0.69”
## [1] “Power Quadratic Trend for n = 25 = 0.05”
## [1] “Power Cubic Trend for n = 25 = 0.055”
## [1] “Tests use df = 72”



96    Within Subjects Designs

pattern of means contains no quadratic or cubic component, so power for these 
trends are low for both analyses.
	 Power for the specific contrasts or patterns of effect of interest often produce 
different power than omnibus tests. The best question to ask is what the effect 
of interest is. Does the research hypothesis focus on the trend, the omnibus test, 
or both? In addition, what trend is important? Whatever your interest, design 
for detecting that effect.

Example 6.6: Two Within Subject Factors Using ANOVA

The previous examples examined a single within subjects factor. The example 
that follows adds a second within subjects factor (length of negation task). Parti-
cipants complete a short negation task (15 minutes; Condition A) then return a 
month later and complete a longer negation task (1 hour; Condition B). Both 
conditions involve pre, post, 2 hour, and 6-hour measures.
	 For simplicity, the code reflects all the correlations as .5. The code does 
accept a full correlation matrix. For this example that would require correlation 
estimates for all eight measurement periods. Unless you can provide very good 
estimates of those values, it is best to choose a conservative overall estimate of 
the correlation. The means reflect the expectation that the longer test produces 
stronger attitude change. The difference between the means for the short and 
long tasks reflect the size of effect that justifies increasing the length of the inter-
vention. For this design, there are two main effects and an interaction.
	 The code and output in Table 6.8 demonstrate use of the win2F function. 
The format of the function is:

win2F(m1.1, m2.1, m3.1, m4.1, m1.2, m2.2, m3.2, m4.2, r, s1.1, s2.1, s3.1, 
s4.1, s1.2, s2.2, s3.2, s4.2, n, alpha)

The values m1.1 through m4.2 reflect cell means and s1.1 through s4.2 reflect 
cell standard deviations. The notation places the level of the first factor before 
the decimal and the level of the second factor after the decimal. For equal 
standard deviations, provide one value for s (e.g., s = 1.5). The value r reflects 
correlations between dvs (use r12, r13, etc. to specify individual correlations). 
The code allows for two to four levels on the first factor and two levels on the 
second factor. Leave out values not relevant to your analyses. For example, if 
you have three factors, omit, m4.1 and m4.2. The value n is overall sample size. 
Alpha defaults to .05 if no value is entered.
	 The analysis in Table 6.8 with n = 80 demonstrates good power for Time 
(Factor A) but lackluster power for Condition (Factor B) and the interaction. If 
the research goal is to determine that one condition outperforms another, then 
a sample of 80 participants is too small to ensure adequate power.
	 The second analysis in the table finds sample size for a design that yields power 
of at least .80 for both main effects. This analysis used a sample of n = 337.
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Example 6.7: Simple Effects Using ANOVA

As with between subjects factorial ANOVA, when interactions exist, designs often 
probe interactions using simple effects tests. For example, we might be interested 
in showing significant improvements in attitudes for both groups individually. 
That is, that both techniques did in fact change attitudes for the better.
	 The code and output in Table 6.9 demonstrate use of the win2Fse function. 
The format of the function is the same as for win2f:

win2Fse(m1.1, m2.1, m3.1, m4.1, m1.2, m2.2, m3.2, m4.2, r, s1.1, s2.1, s3.1, 
s4.1, s1.2, s2.2, s3.2, s4.2, n, alpha)

Table 6.9 shows the code and output for these analyses using the n = 337 sample 
size. Output includes all possible simple effects. Based on this analysis, there 

T R Code and Output for Two Factor Within Design using ANOVA

win2F(m1.1=-.25, m2.1=0, m3.1=.10, m4.1=.15, m1.2=-.25, 
m2.2=.10, m3.2=.30, m4.2=.35, s1.1=.4, s2.1=.5, s3.1=2.5, 
s4.1=2.0, s1.2=.4, s2.2=.5, s3.2=2.5, s4.2=2.0, r=.5, n=80)
## [1] “Power Factor A (Unadjusted) for n = 80 = 0.748”
## [1] “Power Factor A H-F Adjusted (Epsilon = 0.61) for 
n = 80 = 0.592”
## [1] “Power Factor A G-G Adjusted (Epsilon = 0.597) for 
n = 80 = 0.585”
## [1] “Power Factor B (Unadjusted) for n = 80 = 0.272”
## [1] “Power Factor B Adjusted – There is no adjustment when 
levels = 2”
## [1] “Power Factor AB (Unadjusted) for n = 80 = 0.102”
## [1] “Power Factor AB H-F Adjusted (Epsilon = 0.628) for 
n = 80 = 0.092”
## [1] “Power Factor AB G-G Adjusted (Epsilon = 0.614) for 
n = 80 = 0.091”
win2F(m1.1=-.25, m2.1=0, m3.1=.10, m4.1=.15, m1.2=-.25, 
m2.2=.10, m3.2=.30, m4.2=.35, s1.1=.4, s2.1=.5, s3.1=2.5, 
s4.1=2.0, s1.2=.4, s2.2=.5, s3.2=2.5, s4.2=2.0, r=.5, n=337)
## [1] “Power Factor A (Unadjusted) for n = 337 = 1”
## [1] “Power Factor A H-F Adjusted (Epsilon = 0.6) for 
n = 337 = 0.997”
## [1] “Power Factor A G-G Adjusted (Epsilon = 0.597) for 
n = 337 = 0.997”
## [1] “Power Factor B (Unadjusted) for n = 337 = 0.8”
## [1] “Power Factor B Adjusted – There is no adjustment when 
levels = 2”
## [1] “Power Factor AB (Unadjusted) for n = 337 = 0.314”
## [1] “Power Factor AB H-F Adjusted (Epsilon = 0.618) for 
n = 337 = 0.246”
## [1] “Power Factor AB G-G Adjusted (Epsilon = 0.614) for 
n = 337 = 0.245”
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exists considerable power to detect differences in time across each condition 
(A at B1, A at B2). The analyses noted B at A1, etc. reflect comparisons across 
conditions at each of the four time periods.

Example 6.8: Two Factor Within and Simple Effects Using LMM

The code and output in Tables 6.10 and 6.11 provide power using LMM 
approaches. The format of the functions is identical to the win2F and win2Fse 
functions in the previous examples (except for the name of the function):

lmm2F(m1.1, m2.1, m3.1, m4.1, m1.2, m2.2, m3.2, m4.2, r, s1.1, s2.1, s3.1, 
s4.1, s1.2, s2.2, s3.2, s4.2, n, alpha)

T R Code and Output for Two Factor Within Design With Simple Effects 
Using ANOVA

win2Fse(m1.1=-.25, m2.1=0, m3.1=.10, m4.1=.15, m1.2=-.25, 
m2.2=.10, m3.2=.30, m4.2=.35, s1.1=.4, s2.1=.5, s3.1=2.5, 
s4.1=2.0, s1.2=.4, s2.2=.5, s3.2=2.5, s4.2=2.0, r=.5, n=220)
## [1] “Power Factor A at B1 (Unadjusted) for n = 220 = 0.803”
## [1] “Power Factor A at B1 H-F Adjusted (Epsilon = 0.652) 
for n = 220 = 0.668”
## [1] “Power Factor A at B1 G-G Adjusted (Epsilon = 0.647) 
for n = 220 = 0.666”
## [1] “Power Factor A at B2 (Unadjusted) for n = 220 = 0.994”
## [1] “Power Factor A at B2 H-F Adjusted (Epsilon = 0.652) 
for n = 220 = 0.965”
## [1] “Power Factor A at B2 G-G Adjusted (Epsilon = 0.647) 
for n = 220 = 0.964”
## [1] “Power Factor B at A1 for n = 220 = 0.05”
## [1] “Power Factor B at A2 for n = 220 = 0.84”
## [1] “Power Factor B at A3 for n = 220 = 0.219”
## [1] “Power Factor B at A4 for n = 220 = 0.315”

T R Code and Output for Two Factor Within Design using LMM

lmm2F(m1.1=-.25, m2.1=0, m3.1=.10, m4.1=.15, m1.2=-.25, 
m2.2=.10, m3.2=.30, m4.2=.35, s1.1=.4, s2.1=.5, s3.1=2.5, 
s4.1=2.0, s1.2=.4, s2.2=.5, s3.2=2.5, s4.2=2.0, r=.5, n=80)
## [1] “Power Factor A for n = 80 = 0.752”
## [1] “Power Factor B for n = 80 = 0.28”
## [1] “Power AxB for n = 80 = 0.104”
lmm2F(m1.1=-.25, m2.1=0, m3.1=.10, m4.1=.15, m1.2=-.25, 
m2.2=.10, m3.2=.30, m4.2=.35, s1.1=.4, s2.1=.5, s3.1=2.5, 
s4.1=2.0, s1.2=.4, s2.2=.5, s3.2=2.5, s4.2=2.0, r=.5, n=337)
## [1] “Power Factor A for n = 337 = 1”
## [1] “Power Factor B for n = 337 = 0.802”
## [1] “Power AxB for n = 337 = 0.315”



Within Subjects Designs    99

lmm2Fse(m1.1, m2.1, m3.1, m4.1, m1.2, m2.2, m3.2, m4.2, r, s1.1, s2.1, 
s3.1, s4.1, s1.2, s2.2, s3.2, s4.2, n, alpha)

Additional Issues

Issues related to detecting power for multiple effects, as discussed in Chapter 5, 
also pertain to within subjects designs. Recall that the power to detect all the 
effects of interest is a function [termed Power(All)] of the product of the power 
of all the tests. In the example with n = 337, Power(All) reflects the product of 
the three power values (1 * .8 * .34 = .27). Designing to find significance for all 
three effects in the same study requires larger sample sizes.

Summary

This chapter examined one and two factor within subjects designs. The primary 
information required for each design are meaningful patterns of means, standard 
deviations for each dependent measure, and correlations between measures. For 
standard deviations and correlations, accurate estimates improve power analysis. 
When expecting heterogeneous standard deviations or different correlations 
across measures (i.e., violation of the sphericity assumption), power analysis 
should address these issues through consideration of sphericity-adjusted 
approaches or use of LMM. Power analysis results for hypotheses specifying 
trends or simple effects often diverge from results for omnibus tests so power 
analysis should focus on the specific tests of interest.

T R Code and Output for Two Factor Within Design With Simple Effects 
Using LMM

lmm2Fse(m1.1=-.25, m2.1=0, m3.1=.10, m4.1=.15, m1.2=-.25, 
m2.2=.10, m3.2=.30, m4.2=.35, s1.1=.4, s2.1=.5, s3.1=2.5, 
s4.1=2.0, s1.2=.4, s2.2=.5, s3.2=2.5, s4.2=2.0, r=.5, n=220)
## [1] “Power A at B1 for n = 220 = 0.804”
## [1] “Power A at B2 for n = 220 = 0.994”
## [1] “Power B at A1 for n = 220 = 0.05”
## [1] “Power B at A2 for n = 220 = 0.837”
## [1] “Power B at A3 for n = 220 = 0.221”
## [1] “Power B at A4 for n = 220 = 0.317”



7
Mixed Model ANOVA and 
Multivariate ANOVA

This chapter presents power analyses for ANOVA or Linear Mixed Models 
(LMM) with both between and within subjects factors and Multivariate ANOVA 
(MANOVA). MANOVA address designs with multiple dependent measures and 
at least one factor. This chapter examines power for models with one between and 
one within subjects factor, one factor MANOVA, and discusses how different pat-
terns of effect sizes and correlations in MANOVA influence power.

Necessary Information

As with the ANOVA designs in Chapters 5 and 6, power analysis requires 
means (μs) corresponding to meaningful differences (or patterns of differences) 
among factor levels, estimates of the standard deviation (σ) for each factor level, 
and the expected correlations (ρs) between dependent measures.

Factors Affecting Power

For ANOVA with between and within factors, larger effect sizes and stronger 
positive correlations between dependent measures yield more power. Sphericity 
influences power for within subjects factors as discussed in Chapter 6. As with 
other designs larger sample sizes and alpha increase power.
	 For MANOVA, the pattern of correlations between variables and the pattern 
of differences between means (e.g., effect sizes for each dependent measure) 
influence power. This is a complex issue, so I devote a chapter section to it.

Key Statistics

There are no new statistics introduced in this chapter. Calculation of effect sizes 
and noncentrality parameters (NCP) use Formulae 6.1–6.3, presented in detail 
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in Chapter 6. A full review of the statistics associated with these procedures and 
their calculation is outside the scope of this chapter. For a highly readable over-
view of the techniques, see Tabachnick and Fidell (2007a; 2007b).

ANOVA with Between and Within Subject Factors

This section examines power for ANOVA designs with at least one within 
subjects and one between subjects factor. Some sources refer to designs with 
both between and within factors as mixed model ANOVA, mixed 
randomized-repeated, or split-plot designs. As the term “mixed” is increas-
ingly used to address approaches random and fixed factors (e.g., LMM), I 
refer to these designs as ANOVA with both between and within subjects 
factors.

Example 7.1: ANOVA with One Within Subjects Factor and One 
Between Subjects Factor

The example in this section expands the one factor within subjects study from 
Chapter 6 through addition of a between subjects factor. In the initial example, 
participants engaged in a stereotype negation procedure and our interest was 
whether attitudes improved over time. Another reasonable question could be 
whether this level of change differed from the change in the control group. To 
address this issue, the study in this example includes a control group that com-
pleted a stereotype maintenance procedure (e.g., Kawakami, Dovidio, Moll, 
Herrasen, & Russin, 2000). Participants in this condition engaged in a task that 
forced them to respond in stereotype-consistent rather than stereotype-negating 
manners. Earlier work demonstrated that participants who completed a main
tenance task showed consistent attitudes across all levels of measurement. There-
fore, in this example, we did not expect participants in the maintenance 
condition to experience changes in their attitudes.
	 Table 7.1 details the means, standard deviations, and correlations for the 
measures. Note that the expected control group means (μc ) remain constant 
while the treatment group means (μt ) change in the same manner as in the 
Chapter 6 example.
	 Table 7.2 presents the R code and output for this analysis. The code addresses 
correlations by group. The negation group is listed first and noted with a “1” (e.g., 
M1.1 = –.25, M2.1 = .00) and the maintenance groups appears second with a “2” 
(e.g., M1.2 = –.25, M2.2 = –.25).
	 The format of the function is as follows:

win1bg1(m1.1, m2.1, m3.1, m4.1, m1.2, m2.2, m3.2, m4.2,

s1.1, s2.1, s3.1, s4.1, s1.2, s2.2, s3.2, s4.2,
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r1.2_1, r1.3_1, r1.4_1, r2.3_1, r2.4_1, r3.4_1,

r1.2_2, r1.3_2, r1.4_2, r2.3_2, r2.4_2, r3.4_2,

r, s, n, alpha)

The values m1-m4 and s1-s4 reflect means and standard deviations for each 
factor level. These are defined by group with m1.1 meaning the mean at time 1 
for the first group and m1.2 being the time 1 mean for the second group. The 
r values correspond to correlations between the dvs. The _1 or _2 defines 
the group. The code allows for two to four within subjects factors. Leave out 
values not relevant to your analyses. For example, if you have three factors, 
omit, m4.1, m4.2, s4.1, s4.2, r14, r24, and r34. The value n is overall sample 
size. Alpha defaults to .05 if no value is entered. The values r and s should be 
left blank if providing individuals means and standard deviations. For the same 
standard deviation or correlation across all values, omit the individual values 
(e.g., s1.1, r1.2_1) and enter a single value for r or s.

Example 7.2: Linear Mixed Model with One Within Subjects 
Factor and One Between Subjects Factor

As in Chapter 6, LMM approaches provide an alternative analysis approach. 
The function presented below performs the analysis from Example 7.1 using 
LMM. The format of the function is:

T R Code and Output for ANOVA with One Between and One Within 
Factor Example

win1bg1(m1.1=-.25, m2.1=0, m3.1=0.10, m4.1=.15, m1.2=-.25, 
m2.2=-.25,
m3.2=-.25, m4.2=-.25, s1.1=.4, s2.1=.5, s3.1=0.6, s4.1=.7,
s1.2=.4, s2.2=.5, s3.2=.6, s4.2=.7, n=50,
r1.2_1=.5, r1.3_1=.3, r1.4_1=.15, r2.3_1=.5, r2.4_1=.3, 
r3.4_1=.5,
r1.2_2=.5, r1.3_2=.3, r1.4_2=.15, r2.3_2=.5, r2.4_2=.3, 
r3.4_2=.5)
## [1] “Power Factor A (Between) for n = 50 = 0.864”
## [1] “Power Factor A H-F Adjusted (Epsilon = 0.837) for  
n = 50 = 0.819”
## [1] “Power Factor A G-G Adjusted (Epsilon = 0.815) for  
n = 50 = 0.812”
## [1] “Power Factor B (Within) for n = 50 = 0.827”
## [1] “Power Factor B Adjusted – There is no adjustment when 
levels = 2”
## [1] “Power Factor AB (Unadjusted) for n = 50 = 0.827”
## [1] “Power Factor AB H-F Adjusted (Epsilon = 0.837) for  
n = 50 = 0.761## [1] “Power Factor AB G-G Adjusted  
(Epsilon = 0.815) for n = 50 = 0.765
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lmm1w1b(m1.1, m2.1, m3.1, m4.1, m1.2, m2.2, m3.2, m4.2,

s1.1, s2.1, s3.1, s4.1, s1.2, s2.2, s3.2, s4.2,

r1.2_1, r1.3_1, r1.4_1, r2.3_1, r2.4_1, r3.4_1,

r1.2_2, r1.3_2, r1.4_2, r2.3_2, r2.4_2, r3.4_2,

r, s, n, alpha)

The input values for the function do not differ from the win1bg1 function. 
Note that the first 1 in the function name is a lowercase l (the letter). The char-
acters before w and b are 1 (the number one).
	 As shown in Table 7.3, the LMM approach provides slightly different power 
estimates. For each effect the LMM power is higher than power for the 
sphericity-adjusted tests.

Multivariate ANOVA

MANOVA procedures address comparisons across groups on two or more 
dependent variables (dv). For power analysis, MANOVA brings additional com-
plexity. With MANOVA, patterns of effect sizes across the dependent measures 
and patterns of correlations between dependent measures influence power 
considerably. For that reason, discussion of how these patterns affect power appears 
before coverage of MANOVA power because understanding these relationships is 
important in designing for adequate power. As suggested throughout the text, 
when in doubt (and when it is feasible) it is good practice to design conservatively. 
An understanding of how the patterns of correlations and effects influence power 
helps to determine what is and what is not a conservative design decision.

Patterns of Effects and Correlations

Aside from the basic issues influencing power for all ANOVA designs, two new 
issues affect MANOVA power. The first involves the type of effect sizes 

T R Code and Output for LMM with One Between and One Within Factor 
Example

lmm1w1b(m1.1=-.25, m2.1=0, m3.1=0.10, m4.1=.15, m1.2=-.25, 
m2.2=-.25,
m3.2=-.25, m4.2=-.25, s1.1=.4, s2.1=.5, s3.1=0.6, s4.1=.7,
s1.2=.4, s2.2=.5, s3.2=.6, s4.2=.7, n=50,
r1.2_1=.5,   r1.3_1=.3,   r1.4_1=.15,   r2.3_1=.5,   r2.4_1=.3,   r3.4_1=.5,
r1.2_2=.5,   r1.3_2=.3,   r1.4_2=.15,   r2.3_2=.5,   r2.4_2=.3,   r3.4_2=.5)
## [1] “Power Factor A (Between) for n = 50 = 0.862”
## [1] “Power Factor B (Within) for n = 50 = 0.817”
## [1] “Power AxB for n = 50 = 0.833”
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observed for each dependent measure. In general, if all the effect sizes are 
consistent, one pattern of power results exist whereas for inconsistent effects 
there is a different pattern. In this context, consistent means roughly the same 
effect size across all dependent measures. When effects are inconsistent (e.g., 
some dependent measures differ strongly across the between subjects factor and 
others show small differences), a different pattern of power results exists.
	 Power also depends on correlations between dependent measures. For con-
sistent effects (e.g., Small–Small), power increases as we move from strongly 
positive to strongly negative correlations. For inconsistent effects (e.g., Small–
Strong), power increases when moving toward more extreme relationships 
(either stronger positive or stronger negative correlations). Regardless of the 
relationship, negative correlations between predictors usually produce more 
power than positive correlations of the same magnitude (but see the discussion 
that follows regarding recoding variables).
	 Table 7.4 summarizes these relationships for a MANOVA with two 
dependent measures (see also Cole, Maxwell, Arvey, & Salas, 1994 for a technical 
description). All situations in the table use n = 20 except for the Small–Small effect 
column where tests used n = 50 to more clearly demonstrate the pattern of results. 
In the table, small refers to a d = 0.20 between two conditions on a single dv. 
Moderate refers to d = 0.50 and strong indicates a d = 0.80. The column labeled 
Small–Small reflects when two dv both show d = 0.20, in the Small–Strong 
column one measure has d = 0.20 and the other d = 0.80, and so on. All effects in 
the table represent results in the same direction (e.g., both positive).
	 One interpretation drawn from Table 7.4 is that negative correlations 
increase power. This leads to an obvious question. Every time I teach or 
present on this topic someone asks, “If negative correlations between 
dependent measures increase my power, does this mean I can reverse code 
one of my dvs to yield more power?” The answer is no. Table 7.4 presents 
power for situations where predictors relate to the dependent measure in the 
same manner (e.g., Group 1 scores higher than Group 2 on both measures). 
That is, the independent variable (iv)–dv relationships are all in the same 
direction. If one variable were reversed coded (e.g., high scores converted to 
low scores), a reversal of the direction of the effect size would follow for that 
variable. To obtain values for situations where one iv has a positive and one 
has a negative relationship with the dv, the values in the correlation table 
reverse. For example, with d = 0.5 for one iv and d = –0.5 for the other, and 
the dvs correlated at –.40, the power would be .34 (the value listed for 
r = .40) rather than .69 which is the value for r = –.40 (see the Additional 
Issues section for a more detailed explanation).
	 Table 7.4 illustrates several other important considerations for MANOVA. 
First, power tends to be higher when negative correlations exist between 
dependent measures. Practically if iv–dv relationships are in the same direction, 
strong negative correlations between dependent measures are not common. 
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When negative correlations are present, they are usually small. However, small 
negative correlations give more power than small positive correlations. Second, 
in several cases strong positive correlations between dependent measures reduce 
power. If strong positive correlations exist between dependent measures, con-
sider a design that collapses across these values and conduct power analyses using 
the collapsed variables to address whether that approach improves power. 
Finally, the table highlights the importance of accurate estimates of correlations 
between dependent measures when designing for optimal power. In the absence 
of accurate estimates for correlations between dependent measures, I recom-
mend a conservative approach where the choice of correlations reflects values 
that limit power. For example, if we had no information about the size of the 
expected correlations in the present example and were designing to detect a 
combination of small and strong effects, setting correlations between .1 and .3 
provides the most conservative power analysis.

Example 7.3: Multivariate ANOVA

Taking the example used in the previous section, imagine we chose to address 
whether differences existed across conditions on several dependent measures 
(i.e., a cross-sectional design) instead of examining change over time. Specifi-
cally, we are interested in whether differences exist between groups across 
different measures of attitudes rather than whether there are differential changes 
between groups in attitudes over time. This design includes the implicit attitude 
measure as before but adds paper and pencil measures addressing other aspects of 
bias (e.g., stereotype endorsement, anxiety, and dislike). MANOVA addresses 
whether the combination of the dependent measures differs between the two 
conditions.
	 Although it may be difficult to estimate correlations between measures, espe-
cially for research addressing measures that have not been used together previ-
ously, reference to other sources helps establish reasonable estimates. For 
example, several studies of attitudes toward African Americans used similar 
dependent measures, so in the absence of information specific to our study 
targets, relationships found in this work provide some useful estimates of corre-
lations. In examining other studies, correlations between the anxiety, stereo-
typing, and dislike measures ranged from .35 to .45 (e.g., Tropp & Pettigrew, 
2005) and comparatively small correlations (.10) existed between implicit atti-
tudes and the other measures (Aberson & Gaffney, 2009). Table 7.5 shows the 
pattern of correlations used for the present analysis.
	 Previous examples discussed the mean differences shown in Table 7.5 for 
implicit attitudes but did not address the mean differences for the other meas-
ures. Earlier, we established a meaningfully sized effect for implicitly held atti-
tudes (see Chapter 6). With regard to the effects for the other variables, we can 
consider both the size of the implicit effect and content of the experimental 
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manipulation. First, since the experimental manipulation focuses on negating 
stereotypes, it is reasonable to expect a strong effect for stereotype endorsement. 
For this reason, I set the differences for the stereotyping measures at the same 
level as the implicit attitude measure. Note that this reflects a moderately strong 
effect size (d ≈ 0.60). The liking and anxiety measures are less closely related to 
the manipulation, so an expectation of smaller effects is reasonable (d = 0.25).
	 As seen in Table 7.4, there are small effects for some variables across con-
dition (anxiety and liking) and moderate to strong effects for others (implicit 
and stereotyping). The correlations between the dependent measures were set 
between .10 and .45. The column in Table 7.4 labeled “Small–Moderate” indi-
cates that even if correlations were substantially larger, power would remain rel-
atively constant.
	 The format of the function is as follows:

MANOVA1f(m1.1, m2.1, m3.1, m4.1, m1.2, m2.2, m3.2, m4.2,

s1.1, s2.1, s3.1, s4.1, s1.2, s2.2, s3.2, s4.2,

r1.2_1, r1.3_1, r1.4_1, r2.3_1, r2.4_1, r3.4_1,

r1.2_2, r1.3_2, r1.4_2, r2.3_2, r2.4_2, r3.4_2,

r, s, n, alpha)

The values m1.1-m4.1 and m1.2-m4.2 reflect means across the dvs for the first 
(.1) and second (.2) levels of the between subjects factor. The values s1.1-s4.1 and 
s1.2-s4.2 reflect standard deviation of the dvs for the first and second levels of the 
between subjects factor. The r values correspond to correlations between the dvs. 
The _1 or _2 defines the group. The code allows for two to four dvs. The value n 
is overall sample size. Alpha defaults to .05 if no value is entered. The values r and 
s should be left blank if providing individuals correlations and standard deviations. 
For the same standard deviation or correlation across all values, omit the individual 
values (e.g., s1.1, r1.2_1) and enter a single value for r or s.

T Descriptive Statistics for MANOVA Example

Implicit Stereotype Anxiety Dislike

Implicit μt = 0.0, σt = .40
μc = –.25, σc = .40

ρ = .10 ρ = .10 ρ = .10

Stereotype ρ = .10 μt = 1.0, σt = 5.0
μc = -2.0, σc = 5.0

ρ = .35 ρ = .45

Anxiety ρ = .10 ρ = .35 μt = 2.4, σt = 1.6
μc = 2.0, σc = 1.6

ρ = .40

Dislike ρ = .10 ρ = .45 ρ = .40 μt = –0.7, σt = 1.2
μc = –1.0, σc = 1.2
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	 The code and output in Table 7.6 show that 40 participants per group provide 
adequate power for the MANOVA (.82). If research hypotheses specified rejec-
tion of both the multivariate hypothesis and hypotheses for each univariate test, 
then we would need to investigate power for each univariate ANOVA as well. 
However, keep in mind that power for detecting multiple effects in the same 
study is generally lower than power for detecting a single effect (see the discussion 
of power for multiple tests found in Chapters 5 and 6).

Direction of Correlations in MANOVA

To demonstrate further the influence of patterns of correlations in MANOVA, 
Table 7.7 shows the analysis from Table 7.6 for a situation where some of the 
dv expressed negative correlations with each other (stereotyping, anxiety, and 
liking in this case). When small positive correlations are replaced with small 
negative correlations while retaining the same pattern of effect sizes, power for 
the MANOVA jumps from .82 (Table 7.6) to .95 (Table 7.7).

Additional Issues
As mentioned, a common question asked by students and researchers regarding 
MANOVA is whether reverse coding variables in MANOVA to produce neg-
ative correlations improves power. Typically, the question goes something like 
this: “If I have two positively correlated dv, can I reverse the scale on one of 
them to yield negatively correlated dv that produce more power?” The short 
answer is no, this will not affect power.

T R Code and Output for Multivariate ANOVA

MANOVA1f(n=40, m1.1=0, m2.1=1, m3.1=2.4, m4.1=-0.7, m1.2=-0.25, 
m2.2=-2, m3.2=2, m4.2=-1, s1.1=.4, s2.1=5, s3.1=1.6, s4.1=1.2, 
s1.2=.4, s2.2=5, s3.2=1.6, s4.2=1.2, r1.2_1=.1, r1.3_1=.1, 
r1.4_1=.1, r2.3_1=.35, r2.4_1=.45, r3.4_1=.40, r1.2_2=.1, 
r1.3_2=.1, r1.4_2=.1, r2.3_2=.35, r2.4_2=.45, r3.4_2=.40, 
alpha=.05)
## [1] “Power MANOVA for n = 40 = 0.8165”

T R Code and Output for Multivariate ANOVA Examining Different 
Correlations

MANOVA1f(n=40, m1.1=0, m2.1=1, m3.1=2.4, m4.1=-0.7, m1.2=-0.25, 
m2.2=-2, m3.2=2, m4.2=-1, s1.1=.4, s2.1=5, s3.1=1.6, s4.1=1.2, 
s1.2=.4, s2.2=5, s3.2=1.6, s4.2=1.2, r1.2_1=.1, r1.3_1=.1, 
r1.4_1=.1, r2.3_1=-.3, r2.4_1=-.2, r3.4_1=-.2, r1.2_2=.1, 
r1.3_2=.1, r1.4_2=.1, r2.3_2=-.3, r2.4_2=-.2, r3.4_2=-.2, 
alpha=.05)
## [1] “Power MANOVA for n = 40 = 0.9483”
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	 To demonstrate this, Table 7.8 shows a MANOVA with two variables with 
a positive correlation (.40). Table 7.9 shows the same variables with the scale for 
the second variable reversed so that the correlation between the two variables is 
–.40 and the signs on the means reversed for the second variable in both groups.
	 Output in Tables 7.8 and 7.9 find the same power estimate (.49). This is 
because, for the second example, although there is a negative correlation 
between the predictors, the effects now run in opposite directions. When effects 
run in opposite directions, the power estimates found in Table 7.9 reverse as 
shown in Table 7.10.

T R Code and Output for Multivariate ANOVA without Reverse Coded Variables

MANOVA1f(n=20, m1.1=0, m2.1=1, m1.2=-0.25, m2.2=-2, s1.1=.4, 
s2.1=5, s1.2=.4, s2.2=5, r1.2_1=.4, r1.2_2=.4, alpha=.05)
## [1] “Power MANOVA for n = 20 = 0.4879”

T R Code and Output for Multivariate ANOVA with Reverse Coded Variables

MANOVA1f(n=20, m1.1=0, m2.1=-1, m1.2=-0.25, m2.2=2, s1.1=.4, 
s2.1=5, s1.2=.4, s2.2=5, r1.2_1=-.4, r1.2_2=-.4, alpha=.05)
## [1] “Power MANOVA for n = 20 = 0.4879”

T Power as a Function of Effect Size and Correlation Patterns for Effects in 
Opposite Directions

Corr. Between 
Measures

Small–Small 
d = +0.2, –0.2

Moderate–Moderate 
d = 0.5, –0.5

Strong–Strong 
d = 0.8, –0.8

.9 .98 1.00 1.00

.8 .80 .99 1.00

.7 .61 .94 1.00

.6 .49 .86 1.00

.5 .40 .77 .99

.4 .34 .69 .98

.3 .30 .61 .96

.2 .26 .55 .93

.1 .24 .50 .90

.0 .22 .46 .87
–.1 .20 .42 .83
–.2 .19 .39 .80
–.3 .18 .36 .76
–.4 .17 .34 .73
–.5 .16 .32 .70
–.6 .15 .30 .67
–.7 .15 .29 .64
–.8 .14 .27 .61
–.9 .14 .26 .59



Mixed Model ANOVA and Multivariate ANOVA    111

	 A final issue when using MANOVA is a clear focus on analysis plans and 
predictions. Many studies begin with a MANOVA then proceed to univariate 
ANOVA as follow-up tests on each dv. If a study includes specific predictions 
regarding individual dependent measures, then I do not see any point in begin-
ning with MANOVA. As stressed in previous chapters, power analyses should 
address the tests relevant to specific hypotheses.

Summary

Power for ANOVA or LMM designs with between and within subjects factors 
and MANOVA require estimates of patterns of means, standard deviations for 
each dependent measure, and the correlation between dependent measures. For 
both designs, accurate estimates of standard deviation and correlations are par-
ticularly important. In addition, careful consideration of the specific test reflect-
ing hypotheses (e.g., omnibus tests vs. tests of trends) is necessary as different 
types of tests often produce different power estimates. Power for MANOVA is 
particularly sensitive to estimates of correlations. In the absence of correlation 
information, the chapter provides guidance for choosing conservative correl-
ation estimates.



8
Multiple Regression

Multiple regression focuses on the prediction of a criterion variable (also known 
as dependent variable (dv), outcome variable, or response variable) from two or 
more predictors (also known as independent variables or regressors). The cri-
terion must be continuously scaled. Predictors may be continuously scaled or 
dichotomous. Predictors with three or more categories are converted to a set of 
dichotomous predictors via dummy coding (see Cohen, Cohen, West, & Aiken, 
2003). This chapter presents power analyses for R2 Model, R2 Change, and 
regression coefficients in designs using multiple predictors. In addition, the 
chapter includes tests that examine differences between independent and 
dependent predictors as well as tests comparing R2 across independent samples. 
The chapter also addresses power for detecting multiple effects, how this form 
of power differs from power to detect individual effects, and the importance of 
considering the distinction in sample size planning. The Additional Issues 
section discusses the influence of reliability on power.

Necessary Information

Power analyses for multiple regression focus on the size of meaningful correla-
tions between predictors and the criterion measure. Unlike experimental designs 
with random assignment where predictors (i.e., factors) are unrelated, predictors 
in regression analysis often correlate. This correlation between predictors, dis-
cussed below as multicollinearity, requires accurate estimation of correlations 
between predictors to establish realistic estimates of power.

Factors Affecting Power

Several forms of power are of interest for multiple regression. The most common 
issues are power for the set of all predictors (R2 Model), power for tests of one set 
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of predictors over another set (R2 Change), and power for a single predictor within 
a model (regression coefficients). Researchers may seek to address power on some 
or all forms, depending on their research goals. Additional questions addressed in 
this chapter involve power for detecting whether predictors are different in size 
and whether predictors from one sample are stronger than predictors in another 
sample are. Power considerations differ for each approach but for all tests, larger 
sample sizes and more liberal alpha increase power.
	 Many research questions involving regression analysis focus on R2 Model, R2 
Change, and tests of coefficients. Power for a set of predictors is tested through 
estimation of the variance explained by all predictors, termed here R2 Model. The 
power for the R2 Model is influenced by the amount of variance explained (larger 
effect size = more power) and the number of predictors. More predictors can 
lower power because predictors add degrees of freedom to the numerator of the F 
statistic used to test null hypotheses. However, more predictors may increase R2 
Model and thus increase power. A small number of predictors that explain a 
considerable amount of variance are more powerful than a large number of pre-
dictors that explain the same amount of variance.
	 Power for R2 Change involves explanation afforded by addition of a set of pre-
dictors over predictors already entered into the prediction model (also known as 
control variables). This value is of interest for hierarchical multiple regression 
where the goal is often to address whether addition of a set of variables explains 
variance over and above existing predictors. Power for change statistics is stronger 
for predictors that correlate more strongly with the criterion.
	 Another form of power is for a single predictor within a model. The statistic 
reflecting this effect is the regression coefficient, either the unstandardized (b) or 
standardized (b*). This is often called the slope or beta (not to be confused with 
Type II error). The regression coefficient reflects the strength of the unique rela-
tionship between predictor and criterion. That is, what the variable predicts that 
others cannot. The presentation in this chapter focuses on power for the coeffi-
cient. However, the test for the coefficient is equivalent to a test of partial and 
semipartial correlations for the predictor as well. As with the other approaches, the 
strength of correlations with the criterion variable affects power. For sets with a 
single predictor, the power for R2 Change is equivalent to power for the coeffi-
cient if the R2 Change reflects the final step of the regression model.
	 Another form of power is power to detect effects for all of the predictors in 
the model. As discussed in Chapter 5, Power(All) corresponds to the likelihood 
of detecting effects across all variables. For example, in the multiple regression 
context with a three predictor model, Power(All) reflects our ability to find sta-
tistically significant results for all three regression coefficients. Power(All) may 
be substantially smaller than power for individual effects. This form of power is 
a function of individual power and the correlation between predictors.
	 Regardless of the test of interest, multicollinearity is a concern. Multicollinearity 
refers to how strongly the predictor(s) of interest correlate with each other. The 
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unique explanation afforded by predictors determines the value of R2 Change 
and the coefficient. The more strongly correlated the predictors, the less unique 
variance explanation exists, so multicollinearity reduces power. A predictor may 
be highly correlated with the criterion however, if that predictor correlates 
strongly with other predictors in the model, the variance it explains over and 
above the other predictors is limited. In most cases, multicollineary substantially 
decreases Power(All) as well. For this reason, deriving accurate estimates of the 
correlations between predictor variables is essential to establishing accurate 
power estimates.
	 Other issues covered in this chapter focus on differences between predictors 
or models. The primary factors affecting power in these cases are the magnitude 
of the differences between the predictors (or sets of predictors).

Key Statistics

Calculations for R2 and coefficients are useful for understanding power. Most 
formulae included here present values for demonstration purposes. The formu-
lae are not necessary for most power calculations but do facilitate an under-
standing of how multicollinearity influences power. I present formulae for 
models with two predictors. Adding predictors to a model expands most formu-
lae to increasing levels of complexity such that most texts present only the two 
predictor formulae.

Formulae for R2 and Coefficient Tests

Formula 8.1 presents the calculation of R2 for a model with two predictors. 
The unstandardized coefficient seen in Formula 8.2 technically reflects a 
population coefficient. Often the symbol beta (β) denotes the unstandardized 
coefficient for the population. However, β is also used to note the standard-
ized regression coefficient and Type II error. To avoid confusion, I use b to 
reference the unstandardized population regression coefficient (e.g., Formulae 
8.2). I use b* to represent the standardized coefficient (e.g., Formula 8.3). I 
use population values for correlations to reflect that in power analysis we 
make estimates of population values for correlations rather than using values 
derived from samples.

� (8.1)

� (8.2)

� (8.3)
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For Formulae 8.1–8.3, y refers to the criterion, 1 refers to the first predictor and 2 
to the second. For example, y.12 means y predicted from both 1 and 2; y1.2 means 
y predicted from 1 while controlling for predictor 2; ρy2 refers to the correlation 
between the criterion variable and the second predictor; ρ12 reflects the correlation 
between predictors; and by1.2 is the unstandardized coefficient for the predictor of 
the criterion by the first predictor while controlling for the second predictor. More 
simply, this is the coefficient obtained when both predictors are in the same model.
	 The numerators for each term are a product of the strength of the relation-
ship of interest minus a value that multiplies the correlation between the other 
predictor and dependent measure by the correlation between predictors. The 
numerator gets smaller when the predictors overlap more strongly (e.g., predic-
tors positively correlated and predictor–dv relationships in same direction), 
making for smaller effect sizes. As shown in Formulae 8.1–8.3, under these con-
ditions, the correlation between the predictors (called collinearity with two pre-
dictors and multicollinearity with three or more) reduces the size of the R2 and 
coefficients. In this way, overlapping predictors limit power.
	 For designs with a single predictor, Formula 8.4 present the calculation of 
the unstandardized coefficient (b). For these designs, the standardized coefficient 
(b*) is equal to the correlation.

� (8.4)

The noncentrality parameter (NCP) for tests of R2 is the same as for Analysis of 
Variance (ANOVA) since significance tests use the F distribution. Both f  2 and λ 
may be derived for either the model or the change value, however the approach 
differs slightly for both tests with regard to the calculation of the effect size (  f  2). 
This effect size estimate is sometimes called partial f  2 as it removes the influence 
of the other predictors from the denominator (see Formulae 8.5–8.8).

� (8.5)

� (8.6)

� (8.7)

� (8.8)

For tests of coefficients, Formulae 8.9–8.12 present calculations of standard 
errors and the NCP for unstandardized and standardized values. These formulae 
use variable 1 as an example but maybe adapted to variable 2 by changing refer-
ences to variable 1 to variable 2 (i.e., change subscripts from 1 to 2). These tests 
use δ for tests as the NCP. For these tests δ2 = λ.
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� (8.9)

� (8.10)

� (8.11)

� (8.12)

Formulae for Detecting Differences between Two Independent 
Coefficients

Tests that address power for detecting differences between two independent coef-
ficients compare coefficients from samples comprised of different people. Analyses 
comparing a single predictor across two independent samples use Formulae 
8.13–8.18. Several formulae use the value “i” to refer to the predictor. We com-
plete this calculation for both coefficients separately with “yi” referring to the rela-
tionship between the dependent measures and the predictor of interest. 
Calculations address either unstandardized (b) or standardized coefficients (b*).
	 Calculations first address standard error for each predictor (Formulae 8.13 or 
8.16). After calculating the standard error for each of the two bs or b*s (depending 
on which is used for the analyses), calculate the standard error of the differences 
(Formulae 8.14 or 8.17). Next, calculate the NCP using Formulae 8.15 or 8.18 
(depending on whether using standardized or unstandardized coefficients).
	 For tests using unstandardized coefficients, refer to Formulae 8.13–8.15.

� (8.13)

� (8.14)

� (8.15)

Tests using standardized coefficients refer to Formulae 8.16–8.18.

� (8.16)

� (8.17)
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� (8.18)

The calculations represented in Formulae 8.15 and 8.18 test differences in mag-
nitude. That is, whether one predictor is stronger than another is. If you are 
interested in tests that involve magnitude and direction, simply remove the 
absolute value symbols.

Formulae for Detecting Differences between Two Dependent 
Coefficients

Dependent coefficients are those that come from the same analysis. The primary 
question addressed when comparing dependent coefficients is whether two pre-
dictors in the same model differ significantly. Formula 8.19 defines the NCP for 
this test. The formula requires values from the calculation of the inverse of the 
correlation matrix (ρii, ρjj, and ρij). Cohen et al. (2003) includes calculation 
details for interested readers, later in the chapter, I provide R code for inverting 
the matrix and deriving these values.

� (8.19)

Formulae for Comparing Two Independent R2 Values

A question similar to that addressed by comparing coefficients from independent 
samples compares R2 values from different samples. In this case, hypotheses 
address whether a set of variables predicts more strongly in one analysis than 
another. Formula 8.20 is appropriate for model or change values.

� (8.20)

Example 8.1: Power for a Two Predictor Model (R2 Model and 
Coefficients)

This example focuses on predicting behavioral intentions relevant to affirmative 
action policies (Intent; y) from two predictors, internal motivation to control 
prejudice (1) and external motivation to control prejudice (2). Table 8.1 
presents correlations between two predictors (internal and external) and a 
criterion variable (intention). Correlations between the predictors of interest 
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and the criterion should reflect meaningful observed relationships. That is, what 
sort of effect would be important to detect. The correlations between predictors 
should be estimated as accurately as possible, as should predictor–criterion rela-
tionships when the researcher is not interested in power for that particular 
predictor.
	 Of the three forms of power, my interest here is detecting significant coeffi-
cients for internal and external, as well as a significant R2 Model. The variable 
modern racism, shown in the table is not used for the two predictor example. 
Another example in the chapter with three predictors makes use of that 
variable.
	 Based on commonly observed effect sizes in the affirmative action literature, 
I determined that a meaningful correlation between each predictor and criterion 
would have a minimum value of ρ = .40. Many predictors of affirmative action 
beliefs exist so additional variables would have to show moderately large effects 
to influence on the literature. In short, for the present study, I was not inter-
ested in trying to find weak predictors so I set the correlations relatively high. 
Here, a meaningful relationship is a relatively large one.
	 Correlations between predictors are not values where it is important to estab-
lish the size of a meaningful relationship. For these values, it is more important 
to have an accurate estimate of the strength of the relationship. That is, how 
strongly can we expect the predictors to be associated? This is because accu-
rately estimating power for predictor–criterion relationships is dependent on the 
size of the predictor–predictor correlations. A good source for information 
when using existing measures are empirical studies that present these correla-
tions, particularly when these relationships are unrelated to focal hypotheses. A 
scale development study presenting correlations between internal and external 
motivations (Plant & Devine, 1998) suggested a correlation of –.15 between the 
two variables.
	 The distinction between predictor–criterion and predictor–predictor rela-
tionships is an important one. When dealing with the criterion variable, focus 

T Correlations and SDs for Two and Three Predictor Examples

Intent Internal External Modern Racism

Intent (y) μ = 1.0
σ = 7.0

– – –

Internal (1) ρ = .40 μ = 1.0
σ = 1.0

– –

External (2) ρ = .40 ρ = –.15 μ = 1.0
σ = 1.0

–

Modern Racism (3) ρ = –.40 ρ = –.60 ρ = .25 μ = 1.0
σ = 2.0
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on the size of a meaningful relationship. When dealing with correlations 
between predictors, use the literature (or pretesting) to establish a reasonable 
estimate. One exception is a design where predictors serve as control variables. 
For example, when entering a set of variables in the first step of a hierarchical 
regression analysis and then assessing the influence of one or more variables over 
and above that set. In that case, the control variables should reflect the accurate 
instead of meaningful approach (see the three predictor section for an example 
of this approach).
	 Calculations based on Formula 8.1, yield R2 Model = .376. One item of 
interest is that sum of the squared correlations (.402 + .402 = .32) is smaller than 
R2 Model. This may seem counterintuitive, but this is a product of the direction 
of the correlations between the predictors. As shown in the following calcu-
lation, negative correlations (ρ12) between predictors increase effect sizes, pro-
vided that the predictor–dv correlations (ρy1 and ρy2) are in the same direction 
(i.e., both negative or both positive). Following the R2 calculation is calculation 
of the effect size (Formula 8.5) and NCP (Formula 8.6).

As demonstrated in Chapter 5, computer approaches allow for calculation of 
power given λ, df, and an Fcritical value. For example, with a sample of 30 particip-
ants, for a test with α = .05, with dfnum = 2 (the number of predictors) and dfdenom = 27 
(n – Number of predictors – 1), Fcritical = 3.35, and λ = 16.3, power is .94.
	 The line of code below calculates power:

1-pf(3.35, 2, 27, 16.3)

Table 8.2 presents R code and output for conducting power analyses for R2 
Model and the coefficient. As in other chapters, the R functions require only the 
descriptive statistics. The primary information for entry are the correlations. 
Estimates of the M and SD can be set at arbitrary values for most analyses. The 
standard deviation affects the coefficient, but not the power analysis for the 
coefficient. This is because the ratio of the coefficient to its standard error is a 
function of the correlations.
	 The format of the function is as follow:

MRC(ry1, ry2, r12, n, alpha, my, m1, m2, sy, s1, s2)
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Values noted as y indicate the dv. Those noted with numbers are predictors. ry1 
and ry2 are the correlations between the predictor and dv. r12 is the correlation 
between predictors. n is sample size. Alpha defaults to .05 if not entered. The 
means and standard deviation are represented with m and s. These values default 
to means of 0 and standard deviations of 1. The function handles up to five 
predictors.
	 Table 8.2 includes the output relevant to power for R2 Model. With a sample 
of 30 participants, given the correlations presented in Table 8.1, power is 94%. 
Keep in mind that power for the R2 Model does not necessarily suggest the same 
level of power to detect effects for both coefficients in the model.
	 Tests of coefficients involve calculation of the coefficient, its standard error, 
and the NCP. As an example, I present calculation of one the unstandardized 
coefficients, standard error, and the NCP using Formulae 8.2, 8.9, and 8.10.

A sample of 30 participants, for a test with α = .05, df = 27 (n – # predictors – 1) 
yields tcritical = 2.05. With δ = 3.061 (alternatively, we can square this value to 
produce λ = 9.37), the line of code below calculates power as .84.

1-pt(2.05, 27, 3.061)

Table 8.2 also shows power analysis for the coefficients for each predictor. This 
comes from the same analysis produced by the code in Table 8.2. With a sample 
of 30, power is around 84% for both predictors. These values are equal as both 
predictor–dv correlations were .40. Although power is good for both predic-
tors, power for the coefficients are less than the power for R2 Model.

T R Code and Output for Two Predictors

MRC(ry1=.40, ry2=.40, r12=-.15, n=30)
## [1] “Sample size is 30”
## [1] “Power R2 = 0.937”
## [1] “Power b1 = 0.839”
## [1] “Power b2 = 0.839”
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Example 8.2: Power for Three Predictor Models

The three predictor model expands on Example 8.1 through addition of a third 
predictor (modern racism). In this example, one additional test is power for R2 
Change for a set including internal and external after considering the influence 
of modern. Set analyses of this sort would be the preferred approach for 
dummy-coded predictors (e.g., a predictor with three categories coded into two 
dichotomous variables then entered as a set). Also addressed is power for coeffi-
cients within a three predictor model.
	 This analysis controls for the influence of modern racism, so this is not a test 
where we are interested in a meaningful relationship between this predictor and 
the criterion per se. This analysis investigates the influence of internal and exter-
nal over modern because modern racism is an established predictor of affirma-
tive action relevant beliefs that may be correlated with internal and external 
motivations to control prejudice. Estimates for the modern racism variable cor-
relations come from two sources. Information from meta-analyses (Harrison et 
al., 2006) and a scale development article (Plant & Devine, 1998), suggested 
correlations for modern racism and the other variables found in Table 8.1.
	 The format of the R2ch function is:

R2ch(ry1, ry2, ry3, r12, r13, r23, n, alpha)

The inputs for this function are the same as the MRC function.
	 Table 8.3 shows that we need 24 participants for power ≥ .80 for R2 Change. 
In this example, small increases in sample size influence power considerably. 
This result focuses on R2 Change for a set of variables. Researchers often desire 
an outcome wherein not only was R2 Change significant but also individual con-
tribution of each variables within that set were significant. Addressing this issue 
requires power analysis for the coefficients for our predictors (the internal and 
external motivation variables). Keep in mind that the sample size yielding ade-
quate power for the model and the set (change) will not necessarily yield high 
power for each coefficient.
	 Table 8.4 shows that with n = 24, the power for the coefficients (.853 for 
external and .215 for internal) are divergent. The output also shows power for 
R2 Model (.90). Power for the coefficients diverge because of differences in the 
predictor’s correlation with modern racism (the control variable). Internal 

T R Code and Output for R2 Change Power (n = 24)

R2ch(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25, 
n=24)
## [1] “R2 Model = 0.4667”
## [1] “R2 Change Vars2 and 3 over Var1 = 0.3067, Power = 0.8097”
## [1] “R2 Change Vars1 and 3 over Var2 = 0.3067, Power = 0.8097”
## [1] “R2 Change Vars1 and 2 over Var3 = 0.3067, Power = 0.8097”
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motivation had a stronger relationship with modern racism, as a result internal 
motivation is a weaker unique predictor of intentions.
	 To achieve power of .80 (or more) for both internal and external coefficients 
requires a larger sample. Table 8.5 presents an analysis producing the desired 
level of power for the coefficients.
	 The differences between sample size requirements for tests of the model, 
change, and coefficients highlight important considerations in multiple regression 
designs. First, different research questions correspond to different power estimates. 
Researchers should first decide on the question that is most relevant then design 
for appropriate power for that question. Second, multicollinearity influences 
power. When predictors are highly correlated, power for coefficients drop 
considerably. Tests of coefficients examine variability explained uniquely by a pre-
dictor. The more strongly predictors correlate, the less unique variance there is to 
go around. This can be seen by examining power in the three predictor design. 
External motivation had small correlations with the other predictors but internal 
had a strong correlation with modern. External has greater power because it 
explains more variance that the other variables cannot account for.

Example 8.3: Power for Detecting Differences between Two 
Dependent Coefficients

This section deals with determining if one predictor in a model is significantly 
stronger than another predictor in the same model. For example, an analysis 
designed to test whether internal motivation was a stronger predictor than 
external motivation within Example 8.2, involves dependent coefficients as the 

T R Code and Output for Three Predictors (n = 24)

MRC(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25, 
n=24)
## [1] “Sample size is 24”
## [1] “Power R2 = 0.904”
## [1] “Power b1 = 0.215”
## [1] “Power b2 = 0.853”
## [1] “Power b3 = 0.417”

T R Code and Output for Coefficient Power (n = 110)

MRC(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25, 
n=110)
## [1] “Sample size is 110”
## [1] “Power R2 = 1”
## [1] “Power b1 = 0.798”
## [1] “Power b2 = 1”
## [1] “Power b3 = 0.987”
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coefficients come from the same participants. It is tempting to think that if one 
predictor is statistically significant and the other is not that this would mean that 
one predictor is stronger than the other is. However, imagine an analysis where 
one coefficient in the model was barely significant (e.g., p = .049) and the other 
missed the mark (e.g., p = .051). In this case one predictor is not likely stronger 
than the other.
	 For Example 8.2, imagine that we wanted to design to conclude that internal 
motivations were stronger predictors of intentions than external motivations. 
Using the data from Table 8.1, output from Table 8.6 to obtain the necessary 
beta and se values, and some additional calculations allows for determination of 
the NCP using Formula 8.19.
	 To get values for calculation, I used the MRC_shortcuts function.1 The 
format of the MRC_shortcuts function is:

MRC_shortcuts(ry1, ry2, ry3, r12, r13, r23, n, my, m1, m2, m3, sy, s1, s2, s3)

The format of the function is the same as for MRC.
	 One aspect of this calculation that deserves special mention are the values 
noted ρii, ρij, and ρjj. These values come from the inverse of the correlation 
matrix. For those with matrix algebra backgrounds, the calculation is simple. 
For those without, computer protocols easily accomplish these calculations.
	 Table 8.6 provides values for the coefficients, yielding b1 = 3.73 and b2 = 1.75 
with the corresponding standard errors of SEb1 = 0.513 and SEb2 = 0.621. Based 
on the inverted matrix of predictor correlations (calculated by the computer2) 
ρii = 1.56, ρij = 0.00, and ρjj = 1.07. Using Formula 8.19, produces δ = 2.46.

For a sample of n = 110, plug δ = 2.46 with df = 106 (n minus the total number 
of predictors minus 1; 110–3 –1) and a tcritical value of 1.98 (.05, 2-tailed) into the 
code line below. Another approach is to square delta to get λ. Either approach 
yields Power = .68.

Using t and δ: 1-pt(1.98, 106, 2.46)

Using F and λ: 1-pf(3.93, 1,106, 6.05)

The R code in Table 8.7 conducts these tests but does not require the calcula-
tions. The code makes all possible coefficient comparisons. The depb function 
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takes the same form as MRC but requires only correlations, sample size, and 
alpha. The code produces power for all coefficient comparisons.
	 The format of the depb function is:

depb(ry1, ry2, ry3, r12, r13, r23, n, alpha)

	 Table 8.7 shows power for n = 110, is about .68. A sample of 143 would 
achieve 80% power for the test of differences.

T R Code and Output for Comparing Dependent Coefficients

depb(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25, 
n=110, alpha=.05)
## [1] “Sample size is 110”
## [1] “Power Comparing b1 and b2 = 0.685”
## [1] “Power Comparing b1 and b3 = 0.161”
## [1] “Power Comparing b2 and b3 = 0.243”
depb(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25, 
n=143, alpha=.05)
## [1] “Sample size is 143”
## [1] “Power Comparing b1 and b2 = 0.8”
## [1] “Power Comparing b1 and b3 = 0.197”
## [1] “Power Comparing b2 and b3 = 0.304”

T Output for Dependent Coefficients Calculation Example

MRC_shortcuts(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, 
r23=.25, n=110, my=1, m1=1, m2=1, m3=1, sy=7, s1=1, s2=1, s3=2)
##
## Call:
## lm(formula = X1 ~ X2 + X3 + X4, data = pop2)
##
## Residuals:
## Min 1Q Median 3Q Max
## –11.4388 –3.4470 –0.1457 3.4365 15.6208
##
## Coefficients:
##	 Estimate   Std.	 Error	 t value	 Pr(>|t|)
## (Intercept)	 –3.1417	 1.0762	 –2.919	 0.00429**
## X2	 1.7500	 0.6207	 2.820	 0.00574**
## X3	 3.7333	 0.5128	 7.280	 6.11e-11***
## X4	 –1.3417	 0.3169	 –4.234	 4.90e-05***
## –
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
## Residual standard error: 5.184 on 106 degrees of freedom
## Multiple R-squared: 0.4667, Adjusted R-squared: 0.4516
## F-statistic: 30.92 on 3 and 106 DF, p-value: 1.939e-14
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Example 8.4: Power for Detecting Differences between Two 
Independent Coefficients

Another possible question is whether a predictor is stronger for one group than 
another. For example, in the internal and external motivation example, a 
reasonable argument might be that a sample of college students might respond 
more strongly to external motivations than an older, non-college sample.
	 Example 8.4 uses the data from the earlier example to represent a college 
student sample and adds a second set of values to represent a non-college (adult) 
sample. Table 8.8 shows these values.
	 The basic approach is to take the difference between the unstandardized 
regression coefficients divided by the standard error of the differences between 
coefficients using Formulae 8.15 or 8.18. As with other aspects of analyses in 
this chapter, I use R code to derive several values (i.e., skipping hand calcula-
tions). The function called mrc_short2 requires the same input as the indb func-
tion that is detailed later in the chapter.
	 For calculations, I use R code (MRC_short2) to derive coefficients, R2

y, and 
R2

i for calculations and/or input into the power analysis code. For each of the 
two samples, we derive R2 for prediction of the dv. Tables 8.9 presents output 
from these analyses. As there is a considerable amount of output, the relevant 
values are bolded.
	 The output in Table 8.9 shows R2

y = .467, reflecting how well the criterion 
variable is predicted by predictors in the student sample. Also from this output, 
we take b1 = 3.733, the unstandardized coefficient for external. Table 8.9 also 
presents output for R2

i. From the table, R2
i = .063, reflecting how well the pre-

dictor of interest (external) is predicted by the other predictor variables (again 
for the student sample). Since the predictors show the same correlations across 
both samples, I present this analysis only once (it produces R2

i = .063 for both 
samples). Using these values and Formula 8.13 we can calculate the standard 
error of each coefficient (shown only for the college sample).

T Correlations for Both Populations with Student Sample on Lower Diagonal 
and Adult Sample on Upper Diagonal

Intent Internal External Modern

Intent (y) σ = 7.0 ρ = .40 ρ = .10 ρ = –.40
Internal (1) ρ = .40 σ = 1.0 ρ = –.15 ρ = –.60
External (2) ρ = .40 ρ = –.15 σ = 1.0 ρ = .25
Modern Racism (3) ρ = –.40 ρ = –.60 ρ = .25 σ = 2.0
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Note that in Table 8.9, the standard error for external is 0.778, just as found 
in the calculation. The values for the adult sample are b2 = 1.493 and 
seb2 = 0.928. These values and those from the student sample, allow for calcu-
lation of the standard error of the differences (Formula 8.14) and then the 
NCP (Formula 8.15).

Power for δ = 1.85, using tcritical for a two-tailed test with α = .05 and df = 92 (total 
sample size – # of predictors in first model – # of predictors in second model –2) 
comes to .45.

T Output for Independent Coefficients Calculation Example

MRC_short2(ry1_1=.40, ry2_1=.40, ry3_1=-.40, r12_1=-.15, 
r13_1=-.60, r23_1=.25, ry1_2=.40, ry2_2=.10, ry3_2=-.40, 
r12_2=-.15, r13_2=-.60, r23_2=.25, n1=50, n2=50, alpha=.05, 
my_1=1, m1_1=1, m2_1=1, m3_1=1, sy_1=7, s1_1=1, s2_1=1, 
s3_1=2, my_2=1, m1_2=1, m2_2=1, m3_2=1, sy_2=7, s1_2=1, 
s2_2=1, s3_2=2)
## [1] “Overall Analyses for R2 Full model and coefficients, 
First Group”
## 	 Estimate	 Std. Error	 t value	 Pr(>|t|)
## (Intercept)	 –3.1417	 1.6318	 –1.925	 0.06040
## X2	 1.7500	 0.9422	 1.857	 0.06966
## X3	 3.7333	 0.7785	 4.796	 1.74e-05***
## X4 –1.3417	 0.4810	 –2.789	 0.00766**
## –
## Multiple R-squared: 0.4667, Adjusted R-squared: 0.4319
## [1] “Analyses for R2i (how well predictor is explained by 
other predictors, First Group)”
## Coefficients:
## 	 Estimate	 Std. Error	 t value	 Pr(>|t|)
## (Intercept)	 8.750e-01	 2.779e-01	 3.149	 0.00285**
## X2	 –3.172e-16	1.765e-01	 0.000	 1.00000
## X4	 1.250e-01	 8.827e-02	 1.416	 0.16334
## Multiple R-squared: 0.0625, Adjusted R-squared: 0.02261
## [1] “Overall Analyses for R2 Full model and coefficients, 
Second Group”
## Coefficients:
## 	 Estimate	 Std. Error	 t value	 Pr(>|t|)
## (Intercept)	 –1.1817	 1.9446	 –0.608	 0.5464
## X2	 1.7500	 1.1227	 1.559	 0.1259
## X3	 1.4933	 0.9276	 1.610	 0.1143
## X4	 –1.0617	 0.5732	 –1.852	 0.0704
## Multiple R-squared: 0.2427, Adjusted R-squared: 0.1933
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	 Table 8.10 provides R code and output for the analysis used in hand calcula-
tions. The format of the function (indb) is as follows:

indb(ry1_1, ry2_1, ry3_1, r12_1, r13_1, r23_1, n1,

ry1_2, ry2_2, ry3_2, r12_2, r13_2, r23_2, n2, alpha = .05)

The values in the function are the same as for MRC with _1 and _2 used to 
designate the group.
	 As shown in the earlier calculation, the output in Table 8.10 indicates that 
n = 50 per group produces Power = .45. For n = 115 per sample, power is .82.

Example 8.5: Comparing Two Independent R2 Values

Another option with regression is to compare overall prediction across samples. 
For example, if our interest was to test if our ability to predict intentions was 
significantly better in the student sample compared to the adult sample, this sort 
of question involves comparison of the R2 Model values for each analysis.
	 This example examines the R2 for both samples. Although the example 
presents comparisons of R2 Model, this approach works for R2 Change compari-
sons as well. Again, the shortcut code used in the previous example does this 
calculation easily, producing R2 for the student sample of .467 and .243 for the 
adult sample taken from Table 8.9. Table 8.9 presents R2 for each sample. Apply 
these values to Formula 8.20 to calculate the NCP. The example begins with 
n = 115 for each group (230 overall), reflecting the sample size found for differ-
ences between coefficients as a starting point.

T R Code and Output for Comparing Independent Coefficients

indb(ry1_1=.40, ry2_1=.40, ry3_1=-.40, r12_1=-.15, r13_1=-.60, 
r23_1=.25, ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15, 
r13_2=-.60, r23_2=.25, n1=50, n2=50, alpha=.05)
## [1] “Sample size Group 1 = 50 Group 2 = 50”
## [1] “Power Comparing b1 across samples = 0.05”
## [1] “Power Comparing b2 across samples = 0.449”
## [1] “Power Comparing b3 across samples = 0.066”
indb(ry1_1=.40, ry2_1=.40, ry3_1=-.40, r12_1=-.15, r13_1=-.60, 
r23_1=.25, ry1_2=.40, ry2_2=.10, ry3_2=-.40, r12_2=-.15, r13_2=-
.60, r23_2=.25, n1=115, n2=115, alpha=.05)
## [1] “Sample size Group 1 = 115 Group 2 = 115”
## [1] “Power Comparing b1 across samples = 0.05”
## [1] “Power Comparing b2 across samples = 0.816”
## [1] “Power Comparing b3 across samples = 0.089”
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Evaluating power for δ = 2.43, requires a t-critical value for two-tailed test with 
α = .05 and df = 222 (that is total sample size – # of predictors in first model – # 
of predictors in second model –2). Using the procedures detailed earlier, 
δ = 2.43 corresponds to Power = .67.
	 Table 8.11 provides code and output for comparing independent R2 values. 
Power estimates deviate slightly from hand calculations due to rounding. The 
format of the function is as follows:

indR2(ry1_1, ry2_1, ry3_1, r12_1, r13_1, r23_1, n1,

ry1_2, ry2_2, ry3_2, r12_2, r13_2, r23_2, n2, alpha = .05)

The input for the function is identical to indb shown in the previous section.
	 Table 8.11 shows that for this analysis, power of .80 requires a sample of 320 
overall, given that there are equal numbers of participants in each group.

Multiplicity and Direction of Predictor Correlations

As discussed in Chapter 5, designs involving two or more predictors require 
different conceptualizations of power. In ANOVA, a researcher might only 

T R Code and Output for Comparing Two Independent R2s

indR2(ry1_1=.40, ry2_1=.40, ry3_1=-.40, r12_1=-.15, r13_1=-.60, 
r23_1=.25, ry1_2=.40, ry2_2=.10, ry3_2=-.40, r12_2=-.15,  
r13_2=-.60, r23_2=.25,
n1=115, n2=115, alpha=.05)
## [1] “Power = 0.672, n1 = 115, n2 = 115, LLdiff = 0.041, 
ULdiff = 0.407”
indR2(ry1_1=.40, ry2_1=.40, ry3_1=-.40, r12_1=-.15, r13_1=-.60, 
r23_1=.25, ry1_2=.40, ry2_2=.10, ry3_2=-.40, r12_2=-.15, 
r13_2=-.60,  r23_2=.25, n1=160, n2=160, alpha=.05)
## [1] “Power = 0.801  n1 = 160, n2 = 160, LLdiff = 0.067, ULdiff = 0.381”
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have an interest in detecting a single effect (i.e., the interaction). However, in 
multiple regression designs, researchers commonly want to detect significant 
coefficients for all of the predictors in the model. Applications of power analyses 
for designs with multiple predictors typically yield an estimate of power for each 
predictor, but not power to detect all of them in the same study. Problemati-
cally, power to detect multiple effects differs considerably from power to detect 
individual effects. In most situations, power to detect multiple effects is 
considerably lower than the power for individual effects. The lack of attention 
to this form of power is a likely source underpowered research in the behavioral 
sciences (Maxwell, 2004).

Inflation of Beta Error

Power is reduced in designs that aim to detect significant effects for multiple 
predictor variables through inflation of the familywise beta error rate (Maxwell, 
2004 for a technical discussion). This issue is similar to inflation of α or Type I 
error. When conducting multiple tests, Type I error rates for the family of tests 
(a.k.a., familywise alpha) rise as a function of alpha and number of tests con-
ducted. Equation 8.21 provides an estimate of familywise α error for multiple 
comparisons. With three tests using a pairwise alpha (αpw) of .05, familywise 
alpha (αfw) is .14.

αfw = 1 – (1 – αpw)
c� (8.21)

The same process occurs for the familywise probability of making a β or Type II 
error (Equation 8.22). I refer to the familywise β as βfw. In a study designed to 
produce β = .20 (called βind for beta individual) for each of its three predictors 
(i.e., Power = .80 for each predictor), the likelihood of a single β error among 
those tests is higher than the .20 Beta error rate for the individual tests. The βfw 
value converts to power to detect all of the effects in the design by taking 1 – βfw. 
I refer to this value as Power(All).

βfw = 1 – (1 – βind)
c� (8.22)

Table 8.12 shows βfw and Power(All) for two through 10 predictors. The table 
includes results for design with Power = .80 and Power = .95 for each indi-
vidual predictor. The difference between individual power suggests that more 
predictors make it unlikely to find significant for every effect. This table is 
useful for a conceptual understanding of βfw, however these results (and 
Formula 8.22) are only accurate for calculations where all tests have the same 
power. More importantly, correlations between predictors dramatically influ-
ences Power(All).
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Power(All) for Designs with Correlated Predictors

Calculation of βpw and Power(All) is simple when predictors are uncorrelated. 
However, predictors usually correlate to some degree in multiple regression 
applications. The influence of correlations between predictors and Power(All) is 
a function of the strength and direction of correlations between predictors.3 
When predictors correlate positively with each other, Power(All) decreases. 
When predictors correlate negatively, Power(All) increases.
	 Table 8.13 shows how predictor correlations influence Power(All) for two 
predictor models. Power for each predictor is set at .80 (the size of the correla-
tions between the predictors and the dv, listed as “required correlations” change 
to obtain Power = .80). The Reject All column reflects Power(All) estimates 
derived by simulation of 10,000 samples drawn from a population with the 
given correlations. The range of values for Power(All) is roughly .59 to .72 with 
more power generated as correlations between predictors move from strongly 
positive to strongly negative. Since this approach involves simulation, there is 
deviation from the theoretical probabilities. For example, Power(All) for two 
predictors with Power = .80 and no correlation between predictors is theoretic-
ally .64 but is it .6348 in the simulation.
	 Table 8.13, suggests that negative correlations between predictors are advant-
ageous. However, it is unlikely to find predictors that correlate strongly in the 
negative direction with each other when both predictors have a consistent (i.e., 
all positive or all negative) relationship with the dv. Situations consistent with 
the positive correlation results in the table are far more common.
	 Table 8.14 provides Power(All) for three predictors. In each situation, 
Power = .80 for the individual predictors and sample size is 100. Despite 

T Familywise Type II Error (Beta) Rates for Predictors using βpw = .20 
(Power = .80)

Number of Predictors Power = .80 Power = .95

βfw Power(All) βfw Power(All)

  2 .360 .640 .098 .903
  3 .488 .512 .143 .857
  4 .590 .410 .185 .815
  5 .672 .328 .226 .774
  6 .738 .262 .265 .735
  7 .790 .210 .302 .698
  8 .832 .168 .337 .663
  9 .866 .134 .370 .630
10 .893 .107 .401 .599

Note
All predictors uncorrelated. This table is not accurate for correlated predictors.
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substantial power for individual predictors, Power(All) can be as low as .44 for a 
model with strongly correlated predictors. As with two predictor models, 
Power(All) increases as predictor correlations move from positive to negative. 
However, Power(All) is smaller with more predictors.
	 Some of the values in Table 8.14, represented as n/a, are not possible. For 
example, there is no predictor–dv correlation where it is possible to have corre-
lations of –.60 or –.80 between the predictors (given n = 100).
	 Given these issues, I offer several recommendations for designs where the 
goal is to detect multiple effects. First, whenever possible use uncorrelated or 

T Power(All) for Two Predictors with Power = .80 and Varying Levels of 
Correlation

Correlation Between 
Predictors

Required x–y 
Correlations

Reject None Reject One Reject All

–.80 .1274 .1294 .1492 .7214
–.60 .1891 .1074 .2029 .6897
–.40 .2445 .0816 .2458 .6726
–.20 .2999 .0564 .2912 .6524
.00 .3594 .0463 .3189 .6348
.20 .4266 .0279 .3518 .6203
.40 .5070 .0190 .3708 .6102
.60 .6102 .0102 .3864 .6034
.80 .7561 .0033 .4107 .5860

Note
Required x–y correlation is the correlation between each predictor and the dv to produce 
Power = .80 with n = 50.

T Power(All) for Three Predictors with Power = .80 and Varying Levels of 
Correlation

Correlation Between 
Predictors

Required x–y 
Correlations

Reject None Reject One Reject Two Reject All

–.80 n/a – – – –
–.60 n/a – – – –
–.40 .0804 .0793 .1030 .1800 .6377
–.20 .1692 .0268 .1129 .3046 .5557
.00 .2583 .0091 .1005 .3678 .5226
.20 .3569 .0033 .0892 .4251 .4824
.4 .4703 .0008 .0678 .4681 .4633
.6 .6057 .0001 .0506 .5000 .4493
.8 .7747 .0000 .0435 .5211 .4354

Note
Required x–y correlation is the correlation between each predictor and the dv to produce 
Power = .80 with n = 100.
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slightly negatively correlated predictors. If predictors demonstrate strong positive 
correlations, recognize that this increases sample size requirements. Second, 
consider factor/components analyses to help identify uncorrelated predictors. 
Third, if your goal is to have Power(All) = .80, design for greater power on 
individual predictors. Example 8.6 demonstrates tools for such analyses. Finally, 
consider set analyses for highly correlated predictors. In general, test of R2 
Change for the set are more powerful than tests of the unique contribution of 
each predictor when the predictors are highly correlated.

Example 8.6: Power(All) with Three Predictors

The example in the table demonstrates use of the MRC_all function. The 
format of the function is:

MRC_all(ry1, ry2, ry3, r12, r13, r23, n, my, m1, m2, m3, sy, s1, s2, s3, rep)

The input for the function is identical to that for MRC with one exception. 
Power produced by this function involves simulation samples. The value rep 
defines the number of simulations of size n from a large population (100,000 
cases). As a default, rep is set at 10,000. For this reason, the code may take a 
minute or two to run (particularly on slower computers). To run faster (e.g., to 
get a quick estimate before running a full analysis) reduce the number of reps.

T Power(All) for Three Predictors

MRC_all(ry1=.50, ry2=.50, ry3=.50, r12=.2, r13=.3, r23=.4, n=82)
## [1] “Sample size is 82”
## [1] “Power R2 = 1”
## [1] “Power b1 = 0.9758”
## [1] “Power b2 = 0.9354”
## [1] “Power b3 = 0.8012”
## [1] “Proportion Rejecting None = 0”
## [1] “Proportion Rejecting One = 0.007”
## [1] “Proportion Rejecting Two = 0.2736”
## [1] “Power ALL (Proportion Rejecting All) = 0.7194”
MRC_all(ry1=.50, ry2=.50, ry3=.50, r12=.2, r13=.3, r23=.4, n=94)
## [1] “Sample size is 94”
## [1] “Power R2 = 1”
## [1] “Power b1 = 0.9888”
## [1] “Power b2 = 0.9639”
## [1] “Power b3 = 0.852”
## [1] “Proportion Rejecting None = 0”
## [1] “Proportion Rejecting One = 0.0022”
## [1] “Proportion Rejecting Two = 0.1909”
## [1] “Power ALL (Proportion Rejecting All) = 0.8069”
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	 Table 8.15 represents a situation where the predictors all share .5 correlations 
with the dv and correlations of .2, .3, and .4 with each other. A sample of 82 
yields a minimum power of .80 for each predictor. However, the power to 
detect significance for all the coefficients in the same design is only .72 for 
detecting all of the effects in the same design. To obtain Power(All) = .80 
requires a sample of 94 participants. This may seem like a small number but it 
represents a 15% increase in sample size.

Additional Issues

Reliability

Reliability plays a major role in regression analysis with continuously scaled 
variables. Less reliable measures reduce the size of correlations observed in 
samples (e.g., Hunter & Schmidt, 1994). Since poor reliability attenuates 
observed relationships, less reliable measures produce smaller effect sizes and 
reduce power. For example, two variables might have a .60 correlation in the 
population (ρtrue); however, unreliable measures may reduce the observed correl-
ation (ρobs). Formula 8.21 show how reliability influences the observed correl-
ation (α1 is the reliability for the predictor, αy is for the criterion).

� (8.21)

In the example below both the variables demonstrate mediocre reliability 
(α1 = αy = .50). In this case, the observed correlation is half the size of the popu-
lation correlation. Of course, if the effect size observed is considerably smaller 
than the expected effect in the population (i.e., the value used in power ana-
lysis), power falls.

The next calculation shows a situation where both variables have strong reliabil-
ities (α1 = αy = .90). In this case, the observed correlation is closer to the popula-
tion value.

Reliability is also important for experimental designs, but often to a lesser 
extent. For experimental designs factors based on random assignment are con-
sidered perfectly reliable (i.e., α1 = 1.0) so the influence of reliability on observed 
relationships comes only from the dv rather than the dv and the factor.
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Summary

This chapter presented power for R2 Model, R2 Change, and coefficients for mul-
tiple regression. For these tests the primary information required are the correla-
tions between variables or alternatively, estimates of R2. Estimates of correlations 
between predictors and the dependent measure (as well as R2) should reflect 
meaningful levels of association whereas estimates for correlations between pre-
dictors focus on accuracy. This chapter also presented tests for comparisons 
between independent coefficients, dependent coefficients, and independent R2 
values. Each test requires estimates of the value of interest and correlations 
between all predictors and/or R2 values. Finally, the chapter focused on detect-
ing all effects in a model. In general, power to detect all effects is smaller than 
power for individual effects.

Notes

1. The MRC_shortcuts function can be used to obtain R2 and coefficient values that 
correspond to power analyses.

2. r12<-.15; r13←.60; r23<-.25
	 mat<-cbind(c(1, r12, r13),c(r12, 1, r23),c(r13, r23, 1))
	 inv<-solve(mat)*mat
	 # 1 vs 2
	 pij1<-inv[1,2] #inv of cor between pred of interest 1 vs 2
	 pii1<-inv[1,1] #inv of cov, v1
	 pjj1<-inv[2,2] #inv of cov, v2
3. I discuss these issues in terms of the directions of the correlations between variables. 

Maxwell (2004) focuses on correlations between coefficients. A positive correlation 
between predictors would reflect a negative relationship among coefficients (i.e., as 
one coefficient rises the other tends to fall).



9
Analysis of Covariance, 
Moderated Regression, 
Logistic Regression, and 
Mediation

This chapter examines ANCOVA, regression designs with interactions, logistic 
regression (LR), and indirect effects (mediation). Some analyses in the chapter 
expand work in Chapters 6–8, and in some cases continue examples from those 
chapters. Additional issues include reliability influences on detection of regression 
interactions. Few new formulae are presented as calculations of some effect sizes 
and other values for the analyses are outside the scope of this text. For details on 
these calculations, see the work of Tabachnick and Fidell (2007a; 2007b), Cohen, 
Cohen et al. (2003), Aguinis (2004), Menard (2009), and Hayes (2017).

Analysis of Covariance

Necessary Statistics

Covariate analyses require means and standard deviations for each group or cell 
(as with ANOVA designs) and estimates of correlations between the covariate 
and dependent measure (as with regression).

Factors Affecting Power

Inclusion of covariates often increases power. Ideally, a covariate explains varia-
bility in the dependent variable (dv) that the factors do not explain. This reduces 
the error variance. Reducing error variance causes F and the noncentrality para-
meter (NCP) (λ) for factors to become larger because the denominator of the 
test gets smaller. As F and λ increase, power increases. Well-chosen covariates 
do wonders for power. As with other designs, larger sample size, more liberal 
alpha error criteria, larger differences between means, and smaller standard 
deviations yield more power.
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	 The value of a covariate is limited to the extent that it unrelated to the 
factors. This issue is similar to multicollinearity considerations discussed in 
Chapter 8. If factors relate to the covariate, then the covariate explains some of 
the variability in the dv that the factors would otherwise explain. This causes a 
reduction in the F statistic for the factors of interest. Poorly selected covariates 
reduce power by removing variance explained by factors and reducing error 
degrees of freedom.
	 An important assumption of ANCOVA is that the covariate and dv demon-
strate the same relationship across every level of the iv. This is equivalent to 
assuming that there is no interaction between the covariate and the factor(s). 
This assumption is stated formally as the homogeneity of covariance or homo-
geneity of regression assumption. If you expect a covariate by factor interaction, 
then do not use ANCOVA. Regression approaches described in this chapter 
handle violations of this assumption nicely.
	 Although, power analyses assume a priori covariate selection, I want to 
further stress the importance of clearly justifying covariates in designs. Highly 
influential work (e.g., Simmons, Nelson, & Simonsohn, 2011) highlights 
how post hoc covariate inclusion increases Type I error rates. For this reason, 
some editors and reviewers scrutinize covariate analyses more critically than 
in the past.

Example 9.1: ANCOVA

In Chapter 5, an example focused on a two factor between subjects ANOVA 
design involving prediction of attitudes toward specific affirmative action (AA) 
policies based on policy type (recruitment vs. tiebreaker) and justification (none 
vs. increased diversity) for the policy. That design required a sample of over 
1000 participants to produce power of roughly 80% for the test of the inter-
action. The next example examines how adding a covariate (general AA atti-
tudes) reduces the sample size requirements.
	 Previous work found correlations between general AA attitudes and attitudes 
toward specific policies of around .40 for several applications of AA (e.g., 
Aberson, 2007). That is, how people feel about AA in general (e.g., “I support 
Affirmative Action”) relates to their evaluations of specific AA policies, regard-
less of policy content. Based on this information, the example uses an estimated 
correlation between general attitudes and attitudes toward each policy of .40. 
Like the process involved in addressing correlations between control variables in 
regression analysis, this estimate should focus on accuracy rather than meaning-
fulness (i.e., what we expect the value to be in the population rather than how 
large the effect would be to have practical importance).
	 The anc function in Table 9.1 adds a covariate to the analyses found in 
Chapter 5. The format of the function follows and differs only slightly from 
functions used for factorial ANOVA.
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anc(m1.1, m2.1, m1.2, m2.2, m1.3, m2.3, m1.4, m2.4,

s1.1, s2.1, s1.2, s2.2, s1.3, s2.3, s1.4, s2.4,

r, s, alpha, factors, n)

Means are noted with m. The first number denotes level of the first factor (up 
to four). The second denotes level of the second factor (2 only). Users can 
specify 2 × 2, 3 × 3, or 4 × 2 designs. For a one factor design, use m1.1, m2.1, 
etc. Standard deviations are noted with s and follow the same conventions as 
means. The value r specifies the correlation between the covariate and the dv. 
Alpha defaults to .05. Factors specifies whether the design has 1 or 2 factors. 
Sample size, noted by n, addresses sample size per cell.
	 As shown in Table 9.1, a sample of 251 per cell yields power of .86 for the 
interaction. Comparing power from the covariate analysis to power for the ori-
ginal analysis found in Table 9.2 shows there is more power for detecting effects 
for the factors and the interaction following addition of the covariate.
	 To explore the how ANCOVA increases power, Tables 9.1 (ANCOVA) 
and 9.2 (ANOVA) also include output for each analysis that includes sums of 
squares. Note that the sum of squares for both factors and the interaction are the 
same across the two analyses. That is, the effects explain the same amount of 
variance in attitudes. The difference between the two analyses is that the error 
variance (noted as Residuals) is smaller for the covariate analysis (2427.60) than 
for the ANOVA without the covariate (2890.00). The addition of the covariate 
accounts for 462.40 sums of squares toward the explanation of the dependent 
measure (note that 462.40 is the difference between 2427.60 and 2890.00).

T R Code and Output for Two Factor ANCOVA (n = 251 per cell)

anc(m1.1=.85, m2.1=2.5, s1.1 = 1.7, s2.1=1,
m1.2=0.85, m2.2=2.5, s1.2=1.7, s2.2=1,
m1.3=0.0, m2.3=2.5, s1.3=1.7, s2.3=1,
m1.4=0.6, m2.4=2.5, s1.4=1.7, s2.4=1, r=0.4,
n=251, factors=2)
## [1] “Sample size per cell = 251”
## [1] “Sample size overall = 1004”
## [1] “Power IV1 = 0.9999 for eta-squared = 0.030”
## [1] “Power IV2 = 0.8613 for eta-squared = 0.009”
## [1] “Power IV1*IV2 = 0.8613 for eta-squared = 0.009”
##	 Sum Sq	 Df	 F value	 Pr(>F)
## cov	   462.40	   1	 190.2857 < 2.2e-16***
## iv1	    75.93	   1	  31.2455	 2.933e-08***
## iv2	    22.59	   1	   9.2962	 0.002357**
## iv1:iv2	    22.59	   1	   9.2962	 0.002357**
## Residuals 2427.60	 999
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	 Calculations using Formulae 5.1–5.3 illustrate how the covariate increases 
power in this analysis. The first calculations are based on the ANCOVA, using 
information from Table 9.1. The interaction, with the covariate included in the 
analysis yields η2 = .009. The NCP λ gets larger as the effect size increases.

Next are calculations for the analysis using the values in Table 9.2. This analysis 
reflects the two factor ANOVA that did not include a covariate.

Comparing the calculations for ANCOVA and ANOVA shows that the 
inclusion of the covariate reduced the error variance, which in turn increased 
the effect size and the NCP. The covariate also consumed a degree of freedom 
(999 vs. 1000). In the present example, the degree of freedom loss does little to 
influence the analysis. However, with small samples that degree of freedom 
influences power more. Well-chosen covariates make up for the lost degrees of 
freedom.

T R Code and Output for Two Factor ANOVA (for comparison)

anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=251, n1.2=251, n2.1=251, n2.2=251,
alpha=.05)
## [1] “Power IV1 = 0.9992 for eta-squared = 0.0256”
## [1] “Power IV2 = 0.7976 for eta-squared = 0.0078”
## [1] “Power IV1*IV2 = 0.7976 for eta-squared = 0.0078”
## 	 Sum Sq 	 Df	 F value	 Pr(>F)
## iv1	    75.93	    1	 26.2725	 3.558e-07***
## iv2	    22.59	    1	  7.8166	 0.005276**
## iv1:iv2	    22.59	    1	  7.8166	 0.005276**
## Residuals	 2890.00	 1000
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	 The next step in this analysis examines how large a sample (with the covariate 
included) is necessary for adequate power. Table 9.3 shows that a sample of 
n = 213 per group yields power of approximately 80% for the interaction. 
Although still a large sample (852 participants), there is a net savings of 152 parti-
cipants over the factorial ANOVA without the covariate. At this point, a good 
question is whether the sample size savings justifies inclusion of the covariate 
measures. In this study, the covariate measure is a five-item general AA attitudes 
scale, requiring only about a minute of the participant’s time to complete. Adding 
this short measure reduces the sample size requirement by 15%.

Moderated Regression Analysis (Regression with Interactions)

Moderated regression analysis focuses on regression models with interactions. 
Interactions can be between categorical variables, continuous variables, or both. 
However, ANOVA procedures handle categorical-by-categorical interactions 
more simply. This section includes three approaches to moderated regression 
analysis. Two expand on the covariate and multiple regression tests found in this 
chapter and in Chapter 8. These techniques work for interactions between 
categorical and continuous predictors as well as interactions between continu-
ously scaled predictors. The third approach focuses on interactions between a 
dichotomous variable and a continuous variable. Necessary statistical values for 
each approach differ and are presented in the sections that address each 
procedure.

Factors Affecting Power

A number of issues affect power for moderated effects in regression. The first are 
measurement issues associated with use of continuously scaled variables. These 
issues include range restriction, artificial dichotomization (see Chapter 5), and poor 
reliability (see Aguinis, 2004). In short, if one first-order predictor (i.e., main effect) 

T R Code and Output for Two Factor ANCOVA (n = 213 per cell)

anc(m1.1=.85, m2.1=2.5, s1.1=1.7, s2.1=1,
m1.2=0.85, m2.2=2.5, s1.2=1.7, s2.2=1,
m1.3=.0, m2.3=2.5, s1.3=1.7, s2.3=1,
m1.4=0.6, m2.4=2.5, s1.4=1.7, s2.4=1, r=0.4,
n=213, factors=2)
## [1] “Sample size per cell = 213”
## [1] “Sample size overall = 852”
## [1] “Power IV1 = 0.9993 for eta-squared = 0.0303”
## [1] “Power IV2 = 0.7999 for eta-squared = 0.0092”
## [1] “Power IV1*IV2 = 0.7999 for eta-squared = 0.0092”
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possesses poor psychometric properties, these shortcomings also appear in the 
interaction term. If both first-order predictors possess poor psychometric prop-
erties, the problems are amplified for the interaction. The Additional Issues section 
of this chapter addresses this problem with regard to reliability. Another issue is the 
strength of the relationship between the first-order predictors and the criterion 
variable. Broadly, interaction effects are constrained by the size of these relation-
ships. The less variance the first-order predictors explain, the smaller the possible 
interaction effect size (for a technical description see Rogers, 2002). The size of the 
interaction effect is discussed in the section that follows. As with other designs 
larger sample sizes and more liberal α increase power.

Size of Interaction Effects

The techniques discussed in this section focus either on estimating patterns of 
correlations or the amount of variance explained by the interaction. The effect 
size reflects the relationship between the interaction term and the dv. Many 
forms of interactions typically produce small effects. For example, Aiken and 
West note in discussing interactions between continuous variables that 
“[o]bserved effect sizes for interactions are very small, accounting for about 1% 
of the variance in outcomes. … The social scientist is forewarned” (1991, 
pp. 170). Similarly, a review of 30 years of publications in applied psychology 
and management found the median effect size for regression interactions 
between categorical and continuous predictors was f  2 = .002 or 0.2% variance 
explained by the interaction on the dv (Aguinis, Beaty, Boik, & Pierce, 2005).
	 In considering these findings, it is important to note that Aguinis et al. (2005) 
concentrated on areas of investigation that tend to employ designs addressing 
interactions between demographic variables such as gender and a measured vari-
able. In many of these studies, tests were exploratory (e.g., does gender 
moderate the predictor–dv relationship?) rather than theoretically derived. 
Although complimentary meta-analyses examining designs that include a 
manipulated variable that interacts with a measured variable are not available, a 
cursory examination of work in fields such as social psychology suggests that 
when manipulated variables are included in the interaction, larger effect sizes are 
common. Similarly, it is reasonable to expect that when interaction hypotheses 
follow from well-established theory, larger effects are likely.
	 Previous chapters discussed the importance of designing for “meaningful” 
effects. When discussing interactions, it is difficult to determine what size of 
effect would be meaningful but there are several useful approaches to obtaining 
estimates. First, focus on the sort of effects detected typically in your area of 
inquiry. Examination of a handful of studies presenting regression interactions 
can give a sense of the typical effect size for the topical area. Second, it appears 
that regression interactions are strongest when one variable is manipulated and 
predictions are theoretically supported. Interactions are weakest when neither 
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variable is manipulated and tests are exploratory. This should serve as a reality 
check for power analyses. For example, effects approaching even 1% explained 
variance represent a relatively large interaction for a correlational design focused 
on exploratory analyses of interactions between two measured variables.

Regression Analogy Approaches

One regression analogy approach is conceptually the same as the multiple 
regression approach for coefficients found in Chapter 8. This approach treats 
the interaction in the same manner as the other predictors. This strategy requires 
estimates of correlations between all variables in the model, including the inter-
action. In practice, the interaction–dv correlation is often difficult to estimate, 
so the discussion regarding commonly observed effect sizes is particularly rel-
evant. This approach is flexible and accommodates designs with categorical by 
continuous interactions as well as continuous by continuous interactions.
	 A second approach is to estimate the R2 Change provided by the addition of 
the interaction to a model that includes the other predictors. This analysis pro-
ceeds according to the R2 Change analyses in Chapter 8. This approach requires 
particular attention to effect size estimation for the interaction and an estimate 
of the variance explained by all the predictors. This approach is necessary for 
any design where the interaction degrees of freedom exceed one.

Comparison of Correlations/Simple Slopes Analogy Approach

An alternative approach uses calculations presented by Aguinis (2004). The 
primary difference between this approach and the regression analogy approach 
is that it is limited to situations with a single dichotomous predictor and a single 
continuous predictor. This approach focuses on the size of the correlation (or 
the unstandardized regression coefficient) for the relationship between the con-
tinuous predictor and the dependent measure in each of the two groups.
	 The analyses presented in this section use Formula 9.1 to calculate the effect 
size. The primary advantage to this formula is that it provides an adjustment for 
heterogeneity of variance that is represented in the formula through the con-
sideration of standard deviations across the levels of the categorical moderator. 
Homogeneity of variance violations are common in studies examining categori-
cal by continuous predictor interactions (Aguinis, Petersen, & Pierce, 1999).

� (9.1)

The correlation/simple slope approach may be more intuitive than the first two 
approaches discussed in this chapter. For this approach, we address relationships 
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between the continuously scaled predictor and dv for each category (i.e., estimates 
of correlations between the predictor and dv in Group 1 and Group 2). Hypotheses 
that specify relationships between the predictor and dependent measure for one 
condition but not another can be modeled nicely with this approach.

Moderated Regression Examples

The following examples show each of the approaches discussed applied to the 
same example. Many of the estimates required for moderated regression analysis 
are not obvious, so I devote considerable space to approaches used to derive 
estimates from a published article.
	 Ayduk, Gyurak, and Luerssen (2008) examined the moderating effects of 
rejection sensitivity on the relationship between social rejection and aggression. 
The researchers exposed participants to a manipulation wherein a potential 
partner either rejected or did not reject them. Participants then aggressed by 
allocating hot sauce to the partner after being informed that he/she disliked 
spicy food. This example follows the design of a study to replicate these find-
ings. The initial step takes information from the study as a guide to expected 
effect sizes. Ideally, authors provide a correlation matrix and standard deviations 
for the dv and predictors with these values also presented for each level of the 
categorical predictor. Of course, a single study does not necessarily provide an 
accurate estimate of the population effect size.
	 Regarding effect sizes, the effect for condition as d = 0.34 and the interaction as 
d = 0.53 based on n = 122 (see Ayduk et al., 2008. Using Formula 9.2 for convert-
ing d to ρ, these values become .17 and .26, respectively. The authors did not 
report the sensitivity–aggression or condition–sensitivity relationships; however, 
the article suggested that these were very small relationships, so it is reasonable to 
estimate them with zero or near zero effect sizes. Similarly, the authors did not 
present correlations between the interaction term and the first-order variables. 
Theoretically, the covariate was not expected to relate to the condition, so estimat-
ing a correlation of zero is a reasonable approach as is using a small correlation (e.g., 
ρ = .05). Since the authors did not report these values, you may have to plug and 
play a bit to find values that reproduce the analyses found in the research report 
(alternatively, you can contact the authors). Table 9.4 presents estimates of the 
correlations and standard deviations.

T Descriptive Statistics for Moderated Regression Example

Aggression Condition Sensitivity C × S

Aggression σ = 2.72  –  – –
Condition ρ = .17 σ = 0.50  – –
Sensitivity ρ = .00 ρ = .00 σ = 3.25 –
C× S Interaction ρ = .26 ρ = .05 ρ = .05 σ = 1.00
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� (9.2)

Example 9.2: Regression Analogy (Coefficients)

The first set of analyses found in Table 9.6 uses the mrc_shortcuts function to 
produce analyses based on the correlations. This analysis verifies that the rela-
tionships specified corresponded to the relationships the authors reported. Of 
particular interest are the interaction results for which the authors reported 
F(1, 118) = 8.3. With a single df for the interaction, F-change is equivalent to t 2. 
For the interaction, t(118) = 2.875. 2.8752 is 8.27, matching the authors results. 
This step is not required if you are not trying to reproduce results.
	 Table 9.6 presents the power analysis for coefficients using the MRC func-
tion. The format of that function is detailed in Chapter 8. A sample of n = 122 
produces power of .81 for the interaction (noted as b3 in the output).
	 Another important question is whether we are comfortable using the previ-
ously reported effect size as the target effect size for power. Recall that through-
out the text, I encourage designing for meaningful effects so we need to add 
some additional context to the discussion.

T R Shortcuts to Obtain Values for R2 Change (Bolded Values Used for 
Calculations)

MRC_shortcuts(ry1=.17, ry2=-.00, ry3=.26, r12=.00, r13=.05, 
r23=.05, n=122)
##
## Call:
## lm(formula = X1 ~ X2 + X3 + X4, data = pop2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.60804 -0.53056 0.09744 0.58337 2.77310
##
## Coefficients:
##	 Estimate	 Std. Error	 t value	 Pr(>|t|)
## (Intercept)	 1.507e-17	 8.734e-02	 0.000	 1.00000
## X2	 1.574e-01	 8.781e-02	 1.792	 0.07568
## X3	 -1.264e-02	 8.781e-02	 -0.144	 0.88580
## X4	 2.528e-01	 8.792e-02	 2.875	 0.00479**
## –
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1
##
## Residual standard error: 0.9647 on 118 degrees of freedom
## Multiple R-squared: 0.09247, Adjusted R-squared: 0.0694
## F-statistic: 4.008 on 3 and 118 DF, p-value: 0.009319
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	 To calculate an effect size, take the t-value (2.875) for the interaction, df 
residual (118), and the model R2 (.092) to Formula 9.3.

� (9.3)

The f  2 value (.07), calculated using Formula 8.7, for the interaction is large 
when compared to the meta-analytic results discussed, likely because the 
researchers experimentally manipulated one of the variables (rejection).

At this point, a conservative approach suggests designing for a smaller effect size. 
Keep in mind that the reported effect size may or may not be a good repres-
entation of the population effect. The population effect may be larger or smaller 
than observed in any single study. A conservative approach when replicating 
studies is to reduce the effect size ( f  2) to design for a study that was sensitive to 
the detection of smaller effects.

Example 9.3: Regression Analogy (R2 Change)

The regintR2 function handles R2 Change approaches. The example that follows 
reduces the effect size (  f  2 change) by cutting it in half to .035. Rearranging the 
f2 change formula yields R2 Change of .032. Note that this calculation used the R2 
Model estimate of .092 from Table 9.5. Although this value would likely be 
smaller if the R2 Change were smaller, using the larger estimate is more 
conservative.

The regintR2 function in Table 9.7 addresses power across a range of sample 
sizes. The format of the function is as follow:

T R Code and Output for Moderated Regression (Test of Coefficient Approach)

MRC(ry1=.17, ry2=-.00, ry3=.26, r12=.00, r13=.05, r23=.05, 
n=122)
## [1] “Sample size is 122”
## [1] “Power R2 = 0.828”
## [1] “Power b1 = 0.428”
## [1] “Power b2 = 0.052”
## [1] “Power b3 = 0.814”
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regintR2(R2Mod, R2Ch, mod_pred, ch_pred, nlow, nhigh, by)

R2Mod is R2 Model and R2Ch is R2 Change. The values noted as pred are 
number of predictors in the full model (mod_pred) and number of predictors in 
the interaction (i.e., degrees of freedom for interaction; ch_pred). nlow and 
nhigh define the range of sample sizes. by specifies the increase in sample size 
from nlow (e.g., if nlow is 10 and by is 5, the code produces power for 10, 15, 
20, etc. until reaching nhigh).
	 Table 9.7 addresses power for R2 Change = .032 and R2 Model = .092. With 
this smaller R2 Change value, to attain power of .80 we require n = 240, almost 
double that in the original analysis.

Example 9.4: Comparison on Correlations/Simple Slopes

The third approach to power analysis for moderated regression involves com-
paring relationships across the experimental conditions. The present example 
requires estimates of the sensitivity–aggression correlation (or regression coeffi-
cients) for the control group and the rejection group as well as standard devi-
ations for sensitivity and aggression for each of the conditions. This approach is 
intuitive as it provides a direct comparison of descriptive values (rather than the 
effect size for the interaction). This approach is more accurate than the others 
when the distribution of variances on the dv across levels of the categorical 
moderator are unequal (i.e., heterogeneity of variance).

T R Code and Output for R2 Change Analysis for Interaction

regintR2(R2Mod=.092, R2Ch=.032, mod_pred=3, ch_pred=1, 
nlow=100, nhigh=400, by=20)
[1] “Power with n = 100 = 0.4448”
[1] “Power with n = 120 = 0.5181”
[1] “Power with n = 140 = 0.5847”
[1] “Power with n = 160 = 0.6444”
[1] “Power with n = 180 = 0.6974”
[1] “Power with n = 200 = 0.7439”
[1] “Power with n = 220 = 0.7843”
[1] “Power with n = 240 = 0.8192”
[1] “Power with n = 260 = 0.8491”
[1] “Power with n = 280 = 0.8745”
[1] “Power with n = 300 = 0.896”
[1] “Power with n = 320 = 0.9142”
[1] “Power with n = 340 = 0.9294”
[1] “Power with n = 360 = 0.9421”
[1] “Power with n = 380 = 0.9526”
[1] “Power with n = 400 = 0.9614”
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	 The article (Ayduk et al., 2008) reported the standard deviations for aggres-
sion as 3.22 and 2.10 for the rejection and control conditions, respectively. 
However, the authors reported the standard deviation for the sensitivity score 
for only the entire sample (3.25). This may seem problematic, but unless there 
is an expectation of heterogeneity of variances, we can use the same standard 
deviation for both groups. The authors reported unstandardized regression coef-
ficients (b) for the sensitivity–aggression relationship in the control condition as 
b = –0.17 and as b = 0.25 for the rejected condition. Using Formula 9.4 to 
convert these values finds correlations of –.26 and .25. Table 9.8 summarizes 
the descriptive statistics used in the analysis.

� (9.4)

	 The key to this analysis is the calculation of the f  2 statistic from the group-
based statistics. An example of this calculation, using a sample of n = 61 per 
group appears below. Given λ = 7.92 with df = 1, 118 and α = .05, power is .797. 
This result is consistent with the earlier analysis using coefficients.

T Descriptive Statistics by Group for 
Moderated Regression

Control Rejected 

σx 3.25 3.25
σy 2.10 3.22
ρ –.26 .25
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Table 9.9 demonstrates uses of the regint function for power calculations. The 
format of the function is as follow:

regint(Group1, Group2, Estimates, sx1, sx2, sy1, sy2, alpha, Prop_n1, nlow, 
nhigh, by)

The values Group1 and Group2 are either correlations or unstandardized regres-
sion coefficients for the iv–dv relationship. Estimates = 1 reflects use of correlation, 
Estimates = 2 is for coefficients. The sx and sy values reflect standard deviations for 
the continuously scaled predictor (sx1 and sx2) and dv (sy1 and sy2). Prop_n1 
indicates the overall proportion of the sample in the first group. As before, nlow, 
nhigh, and by define the range of sample sizes.

Logistic Regression

Logistic regression (LR) involves predicting a dichotomous outcome from 
either categorical or continuous predictor variables. This section covers designs 
with a single dichotomous predictor, a single continuous predictor, and multiple 
predictors.

Necessary Statistics

Power analyses for LR with a categorical predictor require proportion of out-
comes broken down by cell. Specifically, the proportion of people in the first 

T R Code and Output for Group-based Interaction Tests

regint(Group1=-.26, Group2=.25, alpha=.05, Prop_n1=0.5, 
nlow=110, nhigh=140, by=2, Estimates=1)
[1] “Power with n1 = 55 n2 = 55 = 0.7751”
[1] “Power with n1 = 56 n2 = 56 = 0.7827”
[1] “Power with n1 = 57 n2 = 57 = 0.79”
[1] “Power with n1 = 58 n2 = 58 = 0.7972”
[1] “Power with n1 = 59 n2 = 59 = 0.8041”
[1] “Power with n1 = 60 n2 = 60 = 0.8108”
[1] “Power with n1 = 61 n2 = 61 = 0.8174”
[1] “Power with n1 = 62 n2 = 62 = 0.8237”
[1] “Power with n1 = 63 n2 = 63 = 0.8298”
[1] “Power with n1 = 64 n2 = 64 = 0.8358”
[1] “Power with n1 = 65 n2 = 65 = 0.8416”
[1] “Power with n1 = 66 n2 = 66 = 0.8472”
[1] “Power with n1 = 67 n2 = 67 = 0.8526”
[1] “Power with n1 = 68 n2 = 68 = 0.8578”
[1] “Power with n1 = 69 n2 = 69 = 0.8629”
[1] “Power with n1 = 70 n2 = 70 = 0.8678
## [1] “Effect size (R2 Change/Squared Semi Partial) = 0.066”
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category of the predictor who had a favorable outcome on the dv (p1) and the 
proportion of people in the other category of the predictor with a favorable 
outcome (p0). Additionally, some calculations require the proportion of the 
total sample expected in the first category of the predictor (prop), event rate 
(ER), and how well one predictor is explained by the others in the model (R2).
	 Expanding on an example appearing in Cohen et al. (2003), Examples 
9.5–9.7 examine power for LR models with a single dichotomous predictor, a 
single categorical predictor, and multiple predictors.

Example 9.5: Logistic Regression with a Single Categorical 
Predictor

This example examines predicting compliance with mammography screening 
recommendations (in compliance vs. not in compliance). The predictor of com-
pliance is doctor’s recommendations (received recommendation vs. did not 
receive recommendation). Table 9.10 provides descriptive statistics for a sample 
of 164 women. I use these values to estimate values for a replication study with 
Power = .95. The table provides examples of the calculation of the proportion 
in the recommended group who complied [p(1)] and those in the no recom-
mendation group who complied [p(0)]. The value prop reflects the proportion 
of the sample in the recommendation group.
	 Formula 9.5 provides an estimate of sample size for a dichotomous predictor 
(Hseih, Bloch, & Larsen, 1998).

� (9.5)

Where ER is the event rate. The ER corresponds to the overall proportion 
with a favorable outcome. The z-values reflect the z-score corresponding each 
proportion. For example, z1–β for Power = .95 is 1.64. This is the z-score at the 
95%ile.

T Descriptive Statistics for One Categorical Predictor

Recommend Yes Recommend No

Complied 69  7
Did not Comply 44 44

p(1) = 69/(69 + 44) = .611 p(0) = 7/(7 + 44) = .137
prop = 69 + 44/(69 + 4 + 7 + 44) = .689 –
p– = 76/164 = .463 –

Odd comply 69/44 = 1.568 7/44 = 0.159
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	 Applying the formula to the example, using α = .05 and Power = .95 yields a 
sample size of 55.

Table 9.11 demonstrates us of the LRcat function to complete these calcula-
tions. The format of the function is:

LRcat(p0, p1, prop, alpha, power)

The values for p0 and p1 are the probability of a desirable outcome in the 
control and treatment conditions, respectively. Prop is the proportion in the 
treatment condition. Alpha defaults to .05.
	 As shown in Table 9.11, a sample of 55 provides Power = .95. The output 
also provides an odds ratio. The odds ratio is odds for the treatment group over 
the odds for the control group (1.568/.159 = 9.86).

Example 9.6: Logistic Regression with a Single Continuous 
Predictor

This example examines predicting compliance with mammography screening 
recommendations (in compliance vs. not in compliance) from perceived bene-
fits of mammography. Table 9.12 provides descriptive statistics for this relation-
ship as well as several others (used in Example 9.7). In the present example, 
there is not an odds ratio (OR) provided, however, the correlation of .36 con-
verts to an OR using Formula 9.6

T R Code and Output for Logistic Regression, One Categorical Predictor

LRcat(p0=.137, p1=.611, prop=.689, power=.95)
## [1] “Sample Size = 55 for Odds Ratio = 9.894”
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� (9.6)

Formula 9.7 provides the calculation for sample size.

� (9.7)

Table 9.13 demonstrates use of the LRCont function. The form of the function is:

LRcont(OR, ER, r, power, alpha, R2)

T Descriptive Statistics for Logistic Power Examples

Comply Recommend Know Benefits Barriers

Comply – – – – –
Recommend  .44 – – – –
Knowledge –.06 –.08 – – –
Benefits  .36  .40 –.01 – –
Barriers –.41 –.31 .06 –.39 –
Prop Yes (M) .46 .69 0.62 4.16 1.42
SD n/a n/a 0.18 1.04 1.38
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OR is the odds ratio. Instead of OR, the function accepts entry of the correl-
ation (r) directly. ER is the event rate (estimated from 76 complied over total 
sample size of 164). Power defaults to .80 and alpha defaults to .05. R2 is dis-
cussed in the context of Example 9.7. It is set to a default of .00.

Example 9.7: Power for One Predictor in a Design with 
Multiple Predictors

This example addresses power for one predictor within a model that contains 
additional predictor. Specifically, the power for Benefits in a model that includes 
Knowledge, Barriers, and Recommendation. This approach requires a single 
piece of additional information, how well the other variables in the model 
explain the predictor of interest (termed R2 in Formula 9.8).
	 To calculate R2, we can use the shortcut code from Chapter 8. The code 
will handle up to four predictors. In this context, the predictor of interest 
serves as the dependent measure. Table 9.14 finds R2 = .239. Correlations 
come from Table 9.12

T R Code and Output for Logistic Regression, One Continuous Predictor

LRcont(OR=4.05, ER=.463, power=.95)
## [1] “Sample Size = 27, Odds Ratio = 4.05”

T R Code and Output for R2 Estimation

MRC_shortcuts(ry1=.40, ry2=-.01, ry3=-.39, r12=-.08, r13=-.31, 
r23=.06, n=164)
##
## Call:
## lm(formula = X1 ~ X2 + X3 + X4, data = pop2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.81913 -0.49634 0.03331 0.50482 2.17843
##
## Coefficients:
## 	 Estimate	 Std. Error	 t value	 Pr(>|t|)
## (Intercept)	  3.756e-17	 6.874e-02	  0.000	 1.000
## X2	  3.110e-01	 7.268e-02	  4.279	 3.22e-05***
## X3	  3.261e-02	 6.922e-02	  0.471	 0.638
## X4	 -2.956e-01	 7.257e-02	 -4.072	 7.30e-05***
## –
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1
##
## Residual standard error: 0.8803 on 160 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2251
## F-statistic: 16.78 on 3 and 160 DF, p-value: 1.582e-09
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	 Formula 9.8 demonstrates an adjustment to the sample size based on the ana-
lysis in Table 9.13 (see Hsieh et al., 1998).

�

(9.8)

Table 9.15 demonstrates use of the LRcont to complete the calculation.

Mediation (Indirect Effects)

Mediated or indirect effects address how well an intervening variable explains 
the relationship between a predictor variable and an outcome. There are many 
possible mediation models. This section provides power analyses for single and 
multiple parallel mediation models. For more information on mediation, Hayes 
(2017) provides details regarding a wide range of models. I use the terms “medi-
ator” and “indirect” effects interchangeably in this section. Often mediation 
implies a causal effect, so I prefer the term indirect effects but use both since 
mediator is more commonly used.

Factors Affecting Power

Figure 9.1 provides a basic overview of values that influence on power. The 
primary values of interest are the “a” and “b” paths. The a path represents 
the regression coefficient of a model predicting the mediating variable from the 
independent variable (m predicted by x). Conceptually, this is simply a function 
of the strength of the x-m correlation. The b path is the regression coefficient 

T R Code and Output for One Continuous Predictor with Other Variables 
in Model

LRcont(r=.36, ER=.463, power=.95, R2=.239)
## [1] “Sample Size = 36, Odds Ratio = 4.0543”

a

c'

b

m

yx

FIG Model of Effects in Mediation Analysis.
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for a model predicting y from both x and m. The size of the b path is deter-
mined by both the correlation between m and y and the x-m correlation (see 
Chapter 8 for calculation examples). The indirect (also know as “mediated”) 
effect is a times b (ab). As ab rises, power increases.
	 Table 9.16 explores power (using n = 100) for indirect effects across a variety 
of situations. Correlations between the predictor and mediator, the predictor 
and outcome variable, and the mediator and outcome variable are presented in 
varying sizes (.1, .3, and .5). For most situations, stronger correlations between 
the mediator and outcome variable produce more power for indirect effects.

Necessary Statistics

Correlations between all variables in the model are the only required values for 
addressing power. This is identical to multiple regression models.

Example 9.8: One Mediating Variable

This example examines power for a single indirect effect. Table 9.17 presents 
correlations for several relationships. This section examines the role of anxiety 
in mediating the relationship between contact and attitudes. Table 9.18 uses the 

T Power for Indirect Effects by Size of Relationship (n = 100)

rxy = .10

rmy = .10 rmy = .30 rmy = .50

rmx = .10 .10 .16 .17
rmx = .30 .11 .58 .79
rmx = .50 .08 .77 .99

rxy = .30

rmy = .10 rmy = .30 rmy = .50

rmx = .10 .09 .16 .17
rmx = .30 .03 .47 .76
rmx = .50 .09 .42 .95

rxy = .50

rmy = .10 rmy = .30 rmy = .50

rmx = .10 .07 .16 .17
rmx = .30 .08 .36 .74
rmx = .50 .49 .10 .85
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med function to calculate power for a sample of 150. The structure of the func-
tion is as follows:

med(rxm1, rxy, rym1, mvars, n, alpha)

rxm1 is the correlation between the predictor variable (x) and the mediator 
(m1). rxy is the correlation between the predictor variable (x) and the outcome 
(y). rym1 is the correlation between the outcome variable (y) and the mediator 
(m1). mvars is the number of mediating variables. The function allows up to 
four. n is sample size and alpha defaults to .05.

Example 9.9: Multiple Mediating Variables

The example expands Example 9.8 by adding realistic and symbolic threat as 
additional mediating variables. Table 9.19 demonstrates use of the med function 

T Correlations for Indirect Effects Examples

Neg. Contact Anxiety Real Threat Symb. Threat

Neg. Contact – – – –
Anxiety .25 – – –
Real Threat .30 .40 – –
Symb. Threat .30 .40 .70 –
Attitudes –.35 –.50 –.50 –.50

T R Code and Output for Indirect Effects with a Single Mediator

med(rxm1=.25, rxy=-.35, rym1=-.5, mvars=1, n=150)
## [1] “Power for n = 150 mediator 1 = 0.8057”

T R Code and Output for Indirect Effects with Multiple Mediators (n = 150, 335)

med(rxm1=.3, rxm2=.3, rxm3=.25, rxy=-.35, rym1=-.5, rym2=-.5, 
rym3=-.5, rm1m2=.7, rm1m3=.4, rm2m3=.4, mvars=3, n=150)
## [1] “Power for n = 150 mediator 1 = 0.4675”
## [1] “Power for n = 150 mediator 2 = 0.4675”
## [1] “Power for n = 150 mediator 3 = 0.7228”
## [1] “Power for n = 150 Total Mediation = 0.9757”
med(rxm1=.3, rxm2=.3, rxm3=.25, rxy=-.35, rym1=-.5, rym2=-.5, 
rym3=-.5, rm1m2=.7, rm1m3=.4, rm2m3=.4, mvars=3, n=335)
## [1] “Power for n = 335 mediator 1 = 0.8016”
## [1] “Power for n = 335 mediator 2 = 0.8016”
## [1] “Power for n = 335 mediator 3 = 0.968”
## [1] “Power for n = 335 Total Mediation = 1”
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for calculation of power. The function uses m1, m2, and m3 to define each 
mediator. The output shows that with multiple mediators, a substantially larger 
sample is required to reach Power = .80. Of note is that the first two mediators 
(realistic threat and symbolic threat) had substantially less power than the third 
mediator (anxiety). The two threat variables correlate strongly, reducing the size 
of the indirect effect substantially. Multicolinearity reduces power for indirect 
effect in the same manner as for multiple regression.

Additional Issues

Reliability for Interactions

Chapter 8 included a discussion of how reliability affects power for regression 
analyses. Interactions between continuously scaled predictors complicate this 
problem. The reliability of the interaction is a product of the reliabilities of the 
interacting variables. Practically this means the reliability for the interaction is 
usually lower than reliability for first-order effects (i.e., main effects). Formula 
9.9 details the calculation for the reliability of an interaction. This calculation is 
accurate only for centered predictors (Aiken & West, 1991). Formula 9.10 
calculates the observed effect size for the interaction after adjusting the true 
effect size for reliability of the measures.

� (9.9)

� (9.10)

The first calculation example reflects a design with two continuously scaled predic-
tors; each demonstrates strong reliability (α1 and α2 = .90) as does the dependent 
measure (αy = .90). The relationship between the predictors in the population is 
small (ρ12 = .20) and the relationship between the interaction and the dependent 
measures in the population is ρtrue = .10. The value α1x2 represents reliability for the 
interaction. Even with measures demonstrating considerable reliability, the inter-
action reliability is lower than for the first-order effects (α1x2 = .82).

The interaction effect observed, as compared to the relationship in the population, 
is related to the reliability of both the interaction and the dv. Taking these values 
to Formula 9.5, the correlation observed in the sample is .086 whereas the popu-
lation correlation is .100. This may seem like a small reduction (.100 to .086) but 
it does reflect a 14% drop in effect size.
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Now consider a situation where the reliabilities are more modest (α1, α2, and 
αy = .80). This produces a 28% reduction in the expected observed effect (from 
.100 in the population to .072 in the sample). Most researchers would not con-
sider α = .80 poor reliability, however when dealing with regression interactions, 
even moderate departures from perfect reliability produce considerable reduc-
tions in observed effect sizes.

Summary

This chapter addressed power analysis for ANCOVA, regression interactions, 
LR, and mediated effects. ANCOVA requires estimates of correlations between 
variables as well as patterns of mean differences. For covariate designs, a par-
ticular concern is selection of covariates that relate to the dependent measure 
but are unrelated to the factors. For regression interactions, several approaches 
exist, with all requiring some estimate of the size of the relationship between 
the interaction term and the dependent measure. Power for LR requires an 
estimate of the odds ratio (or related) values, event rates, proportional group 
sizes, and multicollinearity between predictors. Mediation power calculations 
requires correlations between all variables in the model.



10
Precision Analysis for 
Confidence Intervals

Precision analyses (also known as accuracy in parameter estimation) focus on the 
width of confidence intervals (CIs). Precision analysis provides information that 
supplements power analyses and in some cases is more appropriate to research 
goals. Power analysis determines the likelihood of rejecting a null hypothesis 
given a particular population effect size, sample size, and Type I error rate. 
However, rejecting the null hypothesis is only half of the story. Another 
important issue is what range of values is reasonable to expect for the population 
given the sample result. A CI provides this information but can be very wide or 
very narrow. The wider the confidence limits, the less precise the results are. 
We can design for more precise (i.e., narrower) CIs around effect sizes or raw 
values (e.g., mean differences). However, increasing precision requires larger 
samples or a better design to reduce error variability.
	 Power analyses and precision analyses often reflect different research goals. 
For example, if a researcher compared two established HIV risk reduction inter-
ventions (e.g., psychoeducational interventions and cognitive–behavioral 
approaches) the primary question of interest would likely be whether the treat-
ments are differentially effective. This question fits nicely with power analysis. 
In the design phase, the researcher determines how large differences would have 
to be to be practically meaningful and then decides on an appropriate sample 
size using the power analysis techniques discussed in previous chapters.
	 Now consider a project addressing how much a cognitive–behavioral inter-
vention reduces HIV risk over no intervention. In this study, it would be hard 
to imagine that an established intervention based on sound psychological theory 
would not reduce risk. Instead, a better question is how much the technique 
reduces risk. For this question, power analysis would address the sample size 
necessary to support claims of a nonzero effect. More relevant is how large the 
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effect is and what the effect might reasonably look like in the population. For 
example, if we wanted to estimate the population effect within 0.20 units of 
standard deviation, precision analyses would establish the sample size necessary 
to produce this estimate.

Necessary Information

This chapter covers precision analyses for confidence limits around mean differ-
ences, correlations, and confidence limits based on noncentral distributions for 
effect sizes such as Cohen’s d for mean differences and R2 Model. For all ana-
lyses, the primary information is the desired width of the CI (see the section on 
determining levels of precision). Tests involving mean differences require 
means, standard deviations, and proportional sample sizes (what proportion in 
Group 1, what proportion in Group 2) for each group. For correlations, only ρ 
is necessary. Confidence limits on effect sizes such as d or R2, involve the effect 
size and, if relevant, degrees of freedom.

Confidence Intervals

Before discussing precision analysis, it is useful to review CIs. Many sources 
argue that CIs are superior to traditional null hypothesis significance testing 
procedures (see Finch, Thomason, & Cumming, 2002; Hunter, 1997; and 
Nickerson, 2000; see also Belia, Fidler, Williams, & Cumming, 2005 and 
Cumming & Finch, 2005 for a discussion of misunderstandings of CIs). 
Whereas null hypothesis significance tests yield a simple dichotomy of out-
comes (reject or fail to reject), confidence limits provide more information 
and better quality of information. For instance, CIs indicate a reasonable 
range of values for a parameter, with values outside of the confidence limits 
being relatively implausible. In addition, the distance between the upper and 
lower limits of the CI indicates the precision of the result. Finally, confidence 
limits allow for the same decisions about the null hypothesis as significance 
testing procedures do. Hypothesized values that fall outside of the confidence 
limits allow for rejection of a null hypothesis at a probability corresponding to 
the CI (e.g., values falling outside of a 95% CI correspond to p < .05 to; 
values outside a 90% CI indicate p < .10).
	 One reason CIs are valuable is because CIs provide information that is not 
clearly provided by other statistical values. Imagine the following situations:

Situation 1: Group 1 (M = 5.0; SD = 1.4) outperformed Group 2 (M = 3.2; 
SD = 1.5), t(10) = 2.23, p = .025, d = 1.29.

Situation 2: Group 1 (M = 5.0; SD = 1.4) outperformed Group 2 (M = 3.2; 
SD = 1.5), 95% CI around mean difference [0.0003, 3.700], d = 1.29.
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The first situation shows a statistically significant effect and a large effect size. The 
second situation represents the same differences between the groups and a CI that 
suggests plausible values for the mean differences in the population are somewhere 
between large (3.7 points) and miniscule (0.0003 points). Both examples reflect 
the same data but the CI presentation clearly suggests limited confidence regarding 
the size of the differences between the two groups. A narrower CI (e.g., ranging 
from 1.5 to 2.1) supports a stronger conclusion about how much the groups likely 
differ in the population. Precision analysis allows for determination of sample size 
requirements that produce confidence limits of a desired width.

Types of Confidence Intervals

Interval estimates around mean differences are included in most statistical pack-
ages. Constructing this sort of interval requires taking the differences between 
two sample means plus or minus margin of error. For example, for the CI 
around the difference between two means, the margin of error involves a 
t-statistic corresponding to the confidence level multiplied by an index of 
standard error. Intervals of this type are often termed central intervals as their 
calculation involves the central t-distribution.
	 Less commonly presented are interval estimates around effect sizes (e.g., 
Thompson, 2002). Use of such values fits nicely with recommendations to 
present effect sizes and confidence limits (e.g., Wilkinson & Task Force on Sta-
tistical Inference, 1999), so presentation of these values to should become 
increasingly common (although they have not in the period between the first 
edition of the book and the present edition). A CI around an effect size yields 
information about likely values for the effect size in the population. This 
concept is appealing as it opens the door to determining what effect sizes are 
likely or unlikely for the population. For example, a CI of 0.40 to 0.80 drawn 
around an observed effect size d suggests that it would be unlikely for the stand-
ardized difference between means in the population to be smaller than 0.40.
	 CIs around effect sizes require specialized calculations because these intervals 
involve noncentral distributions that require iterative procedures to achieve 
accurate calculations. In short, there is no simple approach for deriving CIs for 
noncentral distributions by hand. A full explanation of the calculation of these 
intervals is outside of the scope of this book. Both Smithson (2003) and Kelley 
and Rausch (2006) provide calculation details.

Example 10.1: Confidence Limits around Differences 
between Means

For independent group comparisons, Formula 10.1 presents the 95% CI around 
the difference between two means. The right hand side of the formula (follow-
ing the ± symbol) defines the precision. This is commonly termed the margin 
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of error. Sample size exerts considerable influence over the standard error of the 
differences between means. As sample size rises, the standard error decreases, 
making for a smaller margin of error. Larger samples therefore give results that 
are more precise.
	 Formula 10.1 notes a 95% CI. For other CIs (e.g., 99%), simply replace t.95 
with the t-value corresponding to the appropriate interval. Regarding notation, 
I use t.95, 2-tailed to represent the t-value in Formula 10.1. This value corresponds 
to the two-tailed critical value for t with α = .05. Other sources might note this 
value as t.975, indicating the t-value where 97.5% of the distribution falls at or 
below or t.05.

� (10.1)

In Chapter 3, one example examined a study designed to detect a difference 
between exam score means of 2 points (corresponding to d = 0.40) when com-
paring students who completed a computer tutorial to those completing a 
standard laboratory assignment. In that example, a sample of n = 99 per group 
(198 overall) was necessary to achieve power of .80 to detect a 2-point mean 
differences between the groups. Imagine that for this study, we instead wanted 
to make particular claims regarding the how much improvement could reason-
ably be expected in the population (i.e., an estimate of the true effect).
	 The md_prec function demonstrated in Table 10.1 creates a series of CIs 
based on the mean difference (u1 – u2 = 2.0) shown in the Chapter 3 example. 
The format of the function is as follows:

md_prec(m1, m2, s1, s2, nlow, nhigh, propn1, ci, by)

The values m and s values reflect the means and standard deviations of each 
group. nlow and nhigh define the range of sample sizes. by specifies the increase 
in sample size from nlow. propn1 defines the proportion in the first group. This 
defaults to .50 for equally sized groups. ci determines the type of CI.
	 Table 10.1 demonstrates use of the function and provides output for a 
2-point difference. This was the minimum difference between means termed 
meaningful for that Example 3.1. For precision analysis, the difference between 
the means does not influence precision. Regardless of the difference between 
means in the sample, given that the expected population standard deviations are 
accurate, the precision of the interval remains the same.
	 In thinking about precision, a good place to begin is consideration of the 
standard deviation. The present example involves a measure with an expected 
standard deviation of 5.0. Thinking about these values as they relate to the mean 
difference of 2.0 provides additional context. If our sample mean differed by 
2.0, an interval width of 4.0 would correspond to a 95% CI around u1 – u2 that 
ranged from 0.0 to 4.0. An interval width of 2.0 would produce a 95% CI 
around u1 – u2 that ranged from 1.0 to 3.0. If our standard deviations were 20.0, 
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analyses producing these intervals would suggest greater precision. For example, 
with a standard deviation of 5.0, a width of 4 points would be large in compari-
son to a width of 4.0 when the standard deviation is 20.0.
	 Before discussing the analysis, it is important to review what power tells us and 
what confidence limits tell us in the context of this example. In Chapter 3, we 
determined that if the true population difference was 2 points (i.e., the tutorial 
improved scores by 2 points) that 80% of the samples drawn from this population 
with n = 99 per group would allow for rejection of the null hypothesis. Confi-
dence limits drawn around our sample provide different information. Specifically, 
CIs indicate what sort of population mean differences might reasonably produce 
the differences observed in the sample. Even with adequate power to detect a 
2-point difference, we may not be able to conclude that a difference of less than 2 
points is unlikely in the population. For example, if the sample means differed by 
3.5 points (considerably larger than what we termed a meaningful difference) a 
95% CI with an interval width of 4.0 would range from 1.5 to 5.5. Although the 
CI clearly rules out conclusions of no difference between the means (u1 – u2 = 0) it 
does not rule out differences that are smaller than meaningful (1.5 ≤ (u1 – u2) < 2.0).
	 As shown in Table 10.1, 100 participants per group and a mean difference of 2 
points found in the sample, the CI for the population difference would range from 
0.6 to 3.4. Reasonable estimates of the actual difference between the population 
means includes not only some small differences (e.g., 0.6) but also some large ones 
(e.g., 3.4). The table provides the sample size for each group (n1, n2), the lower 
limit (LL) and upper limit (UL) of the CI, and the precision of the interval which 
is simply the range between the UL and the LL. Please note that you cannot accu-
rately convert the CI presented in this table to effect size intervals by dividing the 
mean values by the pooled standard deviation (I discuss this issue in more detail in 
the section titled “Confidence Intervals around Effect Sizes).
	 Of note here is that in Example 3.1, power of .80 corresponded to a sample 
size of 99 per group. Table 10.1 suggests that 100 per group produces confidence 
limits from roughly 0.60 to 3.40. Even with Power = .80, precision remains low.

Determining Levels of Precision

Unlike power analysis where power of .80 (or .95) is often considered a 
standard; there is no de facto standard for precision analysis. The desired level of 
precision can be expected to vary widely across applications but a primary issue 
to consider for all situations is the consequence of a lack of precision. For 
example, a study of the absorption of a drug likely requires considerable preci-
sion as this information lends itself to dosage decisions. However, for most 
behavioral science fields, decisions regarding determination of an adequate level 
of precision are less clear. In the previous example, imagine we designed for a 
CI width of 2.0, and the sample results indicated that the true difference 
between the computer tutorial and standard laboratory was between 1 and 3 
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points of improvement in the population. In a worst-case scenario, we would 
find a difference of 1 point favoring the computer tutorial. A 1.0-point 
improvement is less than desirable given that implementation of the tutorial 
assignment involves several hours of work from instructors.
	 Now compare the computer tutorial situation to one involving estimates of 
drug absorption. Poor precision estimates could lead to absorption is less than 
desired. In this case, patients end up with less medicine than intended. Similarly, 
absorption might be greater than expected, potentially causing overdose. 
Clearly, considerable precision is required as the cost of an imprecise estimate 
may have serious health consequences for patients. In this context, the con-
sequences of imprecision in the computer tutorial example are minor.

T R Code and Output for Confidence Interval around Mean Differences 
Precision Analysis

md_prec(m1=2, m2=0, s1=5, s2=5, nlow=100, nhigh=1600, propn1=.5, 
ci=.95, by=100)
## [1] “n1 = 50, n2 = 50, d = 0.4, LL = 0.0152, UL = 3.9748, 
precision = 3.9596”
## [1] “n1 = 100, n2 = 100, d = 0.4, LL = 0.5977, UL = 3.3973, 
precision = 2.7996”
## [1] “n1 = 150, n2 = 150, d = 0.4, LL = 0.8554, UL = 3.1413, 
precision = 2.2859”
## [1] “n1 = 200, n2 = 200, d = 0.4, LL = 1.009, UL = 2.9885, 
precision = 1.9795”
## [1] “n1 = 250, n2 = 250, d = 0.4, LL = 1.1137, UL = 2.8843, 
precision = 1.7706”
## [1] “n1 = 300, n2 = 300, d = 0.4, LL = 1.191, UL = 2.8073, 
precision = 1.6163”
## [1] “n1 = 350, n2 = 350, d = 0.4, LL = 1.2511, UL = 2.7475, 
precision = 1.4964”
## [1] “n1 = 400, n2 = 400, d = 0.4, LL = 1.2995, UL = 2.6992, 
precision = 1.3997”
## [1] “n1 = 450, n2 = 450, d = 0.4, LL = 1.3396, UL = 2.6593, 
precision = 1.3197”
## [1] “n1 = 500, n2 = 500, d = 0.4, LL = 1.3735, UL = 2.6255, 
precision = 1.252”
## [1] “n1 = 550, n2 = 550, d = 0.4, LL = 1.4027, UL = 2.5964, 
precision = 1.1937”
## [1] “n1 = 600, n2 = 600, d = 0.4, LL = 1.4282, UL = 2.571, 
precision = 1.1428”
## [1] “n1 = 650, n2 = 650, d = 0.4, LL = 1.4506, UL = 2.5486, 
precision = 1.098”
## [1] “n1 = 700, n2 = 700, d = 0.4, LL = 1.4706, UL = 2.5287, 
precision = 1.0581”
## [1] “n1 = 750, n2 = 750, d = 0.4, LL = 1.4886, UL = 2.5108, 
precision = 1.0222”
## [1] “n1 = 800, n2 = 800, d = 0.4, LL = 1.5048, UL = 2.4946, 
precision = 0.9898”
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Confidence Intervals around Effect Sizes

Confidence limits for effect sizes provide both an index of the likely population 
value of the effect size and valuable information for comparing standardized values 
across completed studies. When I first heard the term confidence interval around 
an effect size, my initial thought was that calculation involved taking a regular CI, 
such as one around mean differences as described in the previous section, and con-
verting it to an effect size CI by dividing the LL and UL of the mean difference by 
the standard deviation. This approach sometimes provides a reasonable approxi-
mation, but an accurate calculation requires far more work. Most sources simply 
say something to the effect of “let the computer do this.” These calculations are 
outside the scope of the present text but Steiger and Fouladi (1997) and Kelley 
(2007a) offer considerable insight on the concepts and calculations. The sections 
that follow present computer-based approaches for each analysis.

Example 10.2: Confidence Limits around d

Precision analysis for d use the function d_prec demonstrated in in Table 10.3. 
This function uses calculations addressed by the MBESS package (Kelley, 
2007b). The format of the function is as follows:

d_prec(d, nlow, nhigh, propn1, ci, by)

The value d represents the effect size expressed as a standardized mean differ-
ence. nlow and nhigh define the range of sample sizes. by specifies the increase 
in sample size from nlow. propn1 defines the proportion in the first group. This 
defaults to .50 for equally sized groups. ci determines the type of CI.
	 The CI for the population effect size shown in Table 10.2 for n = 100 per 
group ranges from 0.1195 to 0.6795. This LL indicates that our CI (provided 
that the sample produced d = 0.40) would rule out only very small population 
effect sizes (i.e., anything less than 0.1195).
	 As a brief aside, compare the CI around the effect sizes (0.1195, 0.6795) to 
the interval for the mean differences (0.6056, 3.3944). Taking the mean differ-
ences and dividing by the standard deviation of 5.0 does not provide exact con-
fidence limits around the effect size. Dividing the mean difference limits by the 
standard deviation yields a LL of 0.1211 and an UL of 0.6789. These values are 
close to the confidence limits for the effect size, but are not exact. CIs around 
mean differences are constructed using a central t-distribution whereas the effect 
size intervals use the noncentral t-distribution. As noted in Chapters 2 and 3, 
with smaller samples, estimates based on the central t diverge considerably from 
estimates based on noncentral distributions.
	 The results shown in Table 10.2 indicate that an interval that is precise to 0.20 
units requires a sample of 750 participants per group. That is a very large sample, 
but it does provide a particularly narrow range of effect sizes.
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	 Another approach is to design for an interval that excludes a certain effect. For 
example, Cohen (1988) suggests d = 0.20 as the criterion for a small effect. Despite 
the reluctance expressed throughout this book to design around small, medium, 
and large effect size conventions, an attractive strategy for CIs is to find the sample 
size that yields a CI where the LL exceeds d = 0.20. This strategy allows for claims 
that at worst, the effect was small. Of course, whether d = 0.20 is meaningful is 

T R Code and Output for Confidence Interval around Cohen’s d Precision 
Analysis

d_prec(d=.4, nlow=100, nhigh=2000, propn1=.5, ci=.95, by=100)
## [1] “n1 = 50, n2 = 50 d = 0.4, LL = 0.003, UL = 0.795, 
precision = 0.792”
## [1] “n1 = 100, n2 = 100 d = 0.4, LL = 0.1195, UL = 0.6795, 
precision = 0.56”
## [1] “n1 = 150, n2 = 150 d = 0.4, LL = 0.1711, UL = 0.6283, 
precision = 0.4572”
## [1] “n1 = 200, n2 = 200 d = 0.4, LL = 0.2018, UL = 0.5977, 
precision = 0.3959”
## [1] “n1 = 250, n2 = 250 d = 0.4, LL = 0.2227, UL = 0.5769, 
precision = 0.3542”
## [1] “n1 = 300, n2 = 300 d = 0.4, LL = 0.2382, UL = 0.5615, 
precision = 0.3233”
## [1] “n1 = 350, n2 = 350 d = 0.4, LL = 0.2502, UL = 0.5495, 
precision = 0.2993”
## [1] “n1 = 400, n2 = 400 d = 0.4, LL = 0.2599, UL = 0.5398, 
precision = 0.2799”
## [1] “n1 = 450, n2 = 450 d = 0.4, LL = 0.2679, UL = 0.5319, 
precision = 0.264”
## [1] “n1 = 500, n2 = 500 d = 0.4, LL = 0.2747, UL = 0.5251, 
precision = 0.2504”
## [1] “n1 = 550, n2 = 550 d = 0.4, LL = 0.2805, UL = 0.5193, 
precision = 0.2388”
## [1] “n1 = 600, n2 = 600 d = 0.4, LL = 0.2856, UL = 0.5142, 
precision = 0.2286”
## [1] “n1 = 650, n2 = 650 d = 0.4, LL = 0.2901, UL = 0.5097, 
precision = 0.2196”
## [1] “n1 = 700, n2 = 700 d = 0.4, LL = 0.2941, UL = 0.5057, 
precision = 0.2116”
## [1] “n1 = 750, n2 = 750 d = 0.4, LL = 0.2977, UL = 0.5022, 
precision = 0.2045”
## [1] “n1 = 800, n2 = 800 d = 0.4, LL = 0.301, UL = 0.4989, 
precision = 0.1979”
## [1] “n1 = 850, n2 = 850 d = 0.4, LL = 0.3039, UL = 0.496, 
precision = 0.1921”
## [1] “n1 = 900, n2 = 900 d = 0.4, LL = 0.3066, UL = 0.4933, 
precision = 0.1867”
## [1] “n1 = 950, n2 = 950 d = 0.4, LL = 0.3091, UL = 0.4908, 
precision = 0.1817”
## [1] “n1 = 1000, n2 = 1000 d = 0.4, LL = 0.3114, UL = 
0.4885, precision = 0.1771”
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another issue. A sample of n = 200 per group corresponds to a result where the LL 
of the effect size exceeds d = 0.20. This reflects addition of 200 participants (100 per 
group) over that necessary to obtain power of .80. This increase in sample size 
achieved a change of 0.1641 in precision (0.56–0.3959). Improving the precision 
by that much again (to roughly .23), requires nearly 600 participants per group, an 
increase of 800 participants (see sample for N1 and N2 = 600). A rough rule of 
thumb is that to cut error in half we need to quadruple the sample size.

Precision for a Correlation

Another form of CI around an effect size is the CI around ρ, the population 
correlation. Formula 10.2 defines this CI. The value zρ reflects the Fisher trans-
formed correlation (see Formula 4.3). This approach uses a central distribution 
(the normal distribution) so it is possible to calculate the CI by hand. The part 
of the equation with 1 over the square root of the sample size minus 3 is termed 
the standard deviation of Fisher’s z or sdz. The final step in constructing this 
interval is to convert values back to correlation units using Formulae 10.3. This 
calculation reverses the Fisher’s transformation (see Chapter 4 for examples dis-
cussion of the transformations). As before, I present a 95% CI. To produce 
other intervals simply replace z.95 with the value of interest. For example, a 99% 
CI would use z.01 whereas a 90% CI uses z.90

� (10.2)

� (10.3)

Example 10.3: Confidence Limits around r

Chapter 4 presented an example examining the correlation between implicit 
attitudes and aggression where a meaningful correlation was .30. In that 
example, a sample of 84 participants produced power of .80. Extending this 
example, imagine that we wanted a correlation that was precise to .10 in either 
direction (precision would be .20 in this case). Table 10.3 demonstrates use of 
the r_prec function for completing this calculation. The format of the function 
is as follows:

r_prec(r, nlow, nhigh, ci, by)

The value r represents the correlation. nlow and nhigh define the range of 
sample sizes. by specifies the increase in sample size from nlow. ci determines 
the type of CI.
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	 The output in Table 10.3 provides the precision estimates. The desired level 
of precision of .20 requires a sample of over 300 participants.
	 An important feature of the correlation CI (as well as any CI based on effect 
sizes) is that the intervals are not symmetrical. Take for example the interval for 
n = 80. The interval, based on a correlation of .30, ranges from .09 to .48. 
Because of asymmetry of the sampling distribution, the LL is .21 units below 
.30 but the UL is .18 above. Example 4.1 found that a sample size of 84 
produced Power = .80. Even with 100 per group, the CI in Table 10.3 is wide 
(.11 to .47) and imprecise. As in previous examples, conventional levels of 
statistical power do not translate to precise estimates.

T R Code and Output for Confidence Interval around Correlation Precision 
Analysis

r_prec(r=.3, nlow=80, nhigh=400, by=20, ci=.95)
## [1] “n = 80 r = 0.3, LL = 0.0859, UL = 0.4876, precision = 
0.4017”
## [1] “n = 100 r = 0.3, LL = 0.1101, UL = 0.4688, precision = 
0.3587”
## [1] “n = 120 r = 0.3, LL = 0.1276, UL = 0.4548, precision = 
0.3272”
## [1] “n = 140 r = 0.3, LL = 0.1411, UL = 0.4438, precision = 
0.3027”
## [1] “n = 160 r = 0.3, LL = 0.1519, UL = 0.4349, precision = 
0.283”
## [1] “n = 180 r = 0.3, LL = 0.1608, UL = 0.4275, precision = 
0.2667”
## [1] “n = 200 r = 0.3, LL = 0.1683, UL = 0.4212, precision = 
0.2529”
## [1] “n = 220 r = 0.3, LL = 0.1747, UL = 0.4158, precision = 
0.2411”
## [1] “n = 240 r = 0.3, LL = 0.1802, UL = 0.411, precision = 
0.2308”
## [1] “n = 260 r = 0.3, LL = 0.1851, UL = 0.4068, precision = 
0.2217”
## [1] “n = 280 r = 0.3, LL = 0.1894, UL = 0.403, precision = 
0.2136”
## [1] “n = 300 r = 0.3, LL = 0.1933, UL = 0.3997, precision = 
0.2064”
## [1] “n = 320 r = 0.3, LL = 0.1968, UL = 0.3966, precision = 
0.1998”
## [1] “n = 340 r = 0.3, LL = 0.2, UL = 0.3938, precision = 
0.1938”
## [1] “n = 360 r = 0.3, LL = 0.2029, UL = 0.3912, precision = 
0.1883”
## [1] “n = 380 r = 0.3, LL = 0.2056, UL = 0.3889, precision = 
0.1833”
## [1] “n = 400 r = 0.3, LL = 0.2081, UL = 0.3867, precision = 
0.1786”
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Example 10.4: Precision for R2

In Chapter 8, an example addressed a situation where R2 Model = .467. A 
sample of 24 participants yielded power of .90 for R2. The code shown in 
Table 10.4 demonstrates use of the R2_prec function to examines confidence 
limits on R2, starting with n = 24 and including additional values to show a 
range of limits. The approaches presented here use a fixed effects approach. 

T R Code and Output for R2 Model Precision Analysis

R2_prec(R2=.467, nlow=24, nhigh=100, pred=3, by=4)
## [1] “n = 24 R2 = 0.467, LL = 0.0693, UL = 0.6242, precision 
= 0.5549”
## [1] “n = 28 R2 = 0.467, LL = 0.1065, UL = 0.618, precision 
= 0.5115”
## [1] “n = 32 R2 = 0.467, LL = 0.1365, UL = 0.6124, precision 
= 0.4759”
## [1] “n = 36 R2 = 0.467, LL = 0.161, UL = 0.6074, precision 
= 0.4464”
## [1] “n = 40 R2 = 0.467, LL = 0.1814, UL = 0.6029, precision 
= 0.4215”
## [1] “n = 44 R2 = 0.467, LL = 0.1987, UL = 0.5989, precision 
= 0.4002”
## [1] “n = 48 R2 = 0.467, LL = 0.2135, UL = 0.5952, precision 
= 0.3817”
## [1] “n = 52 R2 = 0.467, LL = 0.2264, UL = 0.5918, precision 
= 0.3654”
## [1] “n = 56 R2 = 0.467, LL = 0.2377, UL = 0.5887, precision 
= 0.351”
## [1] “n = 60 R2 = 0.467, LL = 0.2476, UL = 0.5858, precision 
= 0.3382”
## [1] “n = 64 R2 = 0.467, LL = 0.2565, UL = 0.5832, precision 
= 0.3267”
## [1] “n = 68 R2 = 0.467, LL = 0.2645, UL = 0.5807, precision 
= 0.3162”
## [1] “n = 72 R2 = 0.467, LL = 0.2717, UL = 0.5784, precision 
= 0.3067”
## [1] “n = 76 R2 = 0.467, LL = 0.2783, UL = 0.5762, precision 
= 0.2979”
## [1] “n = 80 R2 = 0.467, LL = 0.2843, UL = 0.5742, precision 
= 0.2899”
## [1] “n = 84 R2 = 0.467, LL = 0.2898, UL = 0.5722, precision 
= 0.2824”
## [1] “n = 88 R2 = 0.467, LL = 0.2949, UL = 0.5704, precision 
= 0.2755”
## [1] “n = 92 R2 = 0.467, LL = 0.2996, UL = 0.5687, precision 
= 0.2691”
## [1] “n = 96 R2 = 0.467, LL = 0.3039, UL = 0.5671, precision 
= 0.2632”
## [1] “n = 100 R2 = 0.467, LL = 0.308, UL = 0.5655, precision 
= 0.2575”
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For information on precision for random effects, see Kelley (2008). The 
format of the function is as follows:

R2_prec(R2, nlow, nhigh, ci, by)

The value R2 represents R2 for the model. nlow and nhigh define the range of 
sample sizes. by specifies the increase in sample size from nlow. ci determines 
the type of CI.

T R Code and Output for Mean Difference “Support the Null” Analysis

md_prec(m1=0, m2=0, s1=5, s2=5, nlow=100, nhigh=40000, propn1=.5, 
ci=.95, by=100)
## [1] “n1 = 50, n2 = 50, d = 0, LL = –1.96, UL = 1.96, 
precision = 3.92”
## [1] “n1 = 100, n2 = 100, d = 0, LL = –1.3859, UL = 1.3859, 
precision = 2.7718”
## [1] “n1 = 150, n2 = 150, d = 0, LL = –1.1316, UL = 1.1316, 
precision = 2.2632”
## [1] “n1 = 200, n2 = 200, d = 0, LL = –0.98, UL = 0.98, 
precision = 1.96”
## [1] “n1 = 250, n2 = 250, d = 0, LL = –0.8765, UL = 0.8765, 
precision = 1.753”
## [1] “n1 = 300, n2 = 300, d = 0, LL = –0.8002, UL = 0.8002, 
precision = 1.6004”
## [1] “n1 = 350, n2 = 350, d = 0, LL = –0.7408, UL = 0.7408, 
precision = 1.4816”
## [1] “n1 = 400, n2 = 400, d = 0, LL = –0.693, UL = 0.693, 
precision = 1.386”
## [1] “n1 = 450, n2 = 450, d = 0, LL = –0.6533, UL = 0.6533, 
precision = 1.3066”
## [1] “n1 = 500, n2 = 500, d = 0, LL = –0.6198, UL = 0.6198, 
precision = 1.2396”
## [1] “n1 = 550, n2 = 550, d = 0, LL = –0.591, UL = 0.591, 
precision = 1.182”
## [1] “n1 = 600, n2 = 600, d = 0, LL = –0.5658, UL = 0.5658, 
precision = 1.1316”
## [1] “n1 = 650, n2 = 650, d = 0, LL = –0.5436, UL = 0.5436, 
precision = 1.0872”
## [1] “n1 = 700, n2 = 700, d = 0, LL = –0.5238, UL = 0.5238, 
precision = 1.0476”
## [1] “n1 = 750, n2 = 750, d = 0, LL = –0.5061, UL = 0.5061, 
precision = 1.0122”
## [1] “n1 = 800, n2 = 800, d = 0, LL = –0.49, UL = 0.49, 
precision = 0.98”
## [1] “n1 = 3050, n2 = 3050, d = 0, LL = -0.2509, UL = 0.2509, 
precision = 0.5018”
## [1] “n1 = 4800, n2 = 4800, d = 0, LL = -0.2, UL = 0.2, 
precision = 0.4”
## [1] “n1 = 8550, n2 = 8550, d = 0, LL = -0.1499, UL = 0.1499, 
precision = 0.2998”
## [1] “n1 = 19200, n2 = 19200, d = 0, LL = -0.1, UL = 0.1, 
precision = 0.2”
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	 Of particular interest is the result for n = 24, shown in Table 10.4. In the 
example from Chapter 8, a sample of 24 participants gave power of .90 for R2. 
However, the CI ranges from .0693 to .6242. This interval is quite wide and 
the LL is uninspiring. This interval suggests the variance explained by the pre-
dictors could be anywhere from roughly 7 to 62%. Doubling the sample size 
produces a considerably more precise interval (ranging from .2135 to .5952).

Supporting Null Hypotheses1

Analyses of precision provide a context for discussion of designing to support 
null hypotheses. Of course, “support the null hypothesis” is usually not a valid 
statement because the null generally refers to a statement that is rarely true (see 
Loftus, 1996). For example, a typical null hypothesis for a two-group compari-
son states that the difference between the two groups is exactly zero. In most 
situations, a difference of exactly zero is not plausible. More importantly, it does 
not usually matter if the group means are exactly equal or if they are merely 
very similar in the population. It is far more important to be able to determine 
if the means differ by enough to be practically important.2

 Differing enough to be important or meaningful is the key to testing claims 
of support for the null hypothesis. For example, if we establish that a reasonable 
range of estimates (i.e., confidence limits) for the mean differences in the popu-
lation fall below the criteria set for a meaningful difference then there is support 
for the conclusion that the differences between groups are likely not large 
enough to matter. Practically, this conclusion indicates that the differences 
between the groups are not deviant enough from zero to suggest a meaningfully 
important difference in the population.

Example 10.5: “Supporting” Null Hypotheses

The first step in this process is to determine a value that reflects the smallest 
meaningful difference between the groups. This is the same process as for power 
analyses focusing on differences. The next step is to establish the minimum pre-
cision necessary to construct a CI that excludes certain effects. Returning to the 
example from Chapter 3, we determined that a difference favoring a tutorial 
assignment over a standard assignment would have to be 2 points or more to be 
meaningful given the investment of instructor time for implementation. An 
analysis that produces a CI that falls entirely below 2.0 would suggest that the 
tutorial was not effective enough to improve learning meaningfully.
	 One approach to this question explores precision for a situation where the 
null is true (means exactly equal in the population). This is not a realistic expec-
tation but it does provide some focus for the analysis. This analysis involves 
minor modifications to the code in Table 10.1, changing it so that the means 
for both groups are equal.
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	 The precision values found in Table 10.5 are particularly useful in helping to 
determine sample size. First, note that at 50 participants per group, the CI 
excludes the meaningful difference of 2.0. This result suggests that if differences 
existed between the groups they likely were not big enough to be meaningful. 
However, note that 50 participants per group yields this result only when the 
sample means are equal. For a study designed to conclude that the groups do 
not differ, a design with 50 people per group provides enough precision only if 
the means differ by zero or the relationship is in the opposite direction in the 
sample.
	 Of course, this discussion fails to address how much precision we need. The 
most practical answer when dealing with supporting null results is often “How 
much can you afford?” Note that with 200 participants per group precision 
would be slightly less than 2 points. This level of precision means that sampled 
differences between means of less than a single point produce a result that sup-
ports a claim of no meaningful difference. To double precision (i.e., reducing 
the width of the CI by half ), requires roughly 800 additional participants per 
group. For reference, the bottom of the table shows sample size necessary for 
precision of 0.5, 0.4, 0.3, and 0.2.
	 The basic approach outlined in this section is applicable to any of the preci-
sion analyses appearing in this chapter. Simply choose a meaningful effect size 
and then determine precision.
	 One final note on the “support the null” approach. As the example in this 
section highlights, ruling out small effects requires large samples. To demonstrate 
equivalency between groups, be clear on the resources required before beginning.

Additional Issues

In this section, I address the balance between precision and sample size. It is 
important to note that the present chapter scratches the surface on confidence 
limits on effect sizes and precision analysis. There are several outstanding 
resources on this topic. The MBESS package for R provides tools for many CI 
calculations (see also Kelley, 2007b; Kelley & Maxwell, 2003).

Precision Versus Sample Size

Examining the relationship between precision and sample size is a useful guide 
to determining reasonable levels of precision. For tests involving mean differ-
ences, doubling precision requires quadrupling sample size. For example, in 
Table 10.1, a sample of 50 participants per group produces a CI with a roughly 
4-point width (approximately 0 to 4.0). An interval that is twice as precise (i.e., 
the width is 2.0) requires a sample of 200 per group. To obtain an interval twice 
as precise as found for n = 200 per group requires n = 800 per group.
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	 The relationship is similar for precision estimates of d and r. Figure 10.1 
presents precision for large effects but the same general pattern holds for small 
and medium effects. For d, precision falls below 0.5 at around n = 275, falls to 
0.4 around n = 400, drops to 0.3 near n = 700, but does not hit 0.2 until roughly 
n = 1600. For r, precision is about .20 at n = 275, near .15 at n = 500, about .10 
at n = 1100, and does not reach .05 until around n = 4500.
	 The information in Table 10.1 and Figure 10.1 should inform decisions 
about designing for greater precision. If you want a more precise result and can 
afford another 100 participants, that is a great investment when moving from 
n = 100 to n = 200. However, a similar investment returns very little added pre-
cision when moving from n = 2000 to n = 2100.

Summary

Precision analysis addresses the sample size required to produce a CI with a 
particular width. Whereas power analysis addresses sample sizes required for 
detecting a nonzero effect, precision analyses are relevant to questions of 
accurately estimating population parameters. Designing for considerable pre-
cision often requires larger sample sizes than for power analysis. This chapter 
presented precision analyses for mean differences and effect sizes including r, 
d, and R2. For most analyses, the primary information required is the desired 
level of precision.
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Notes

1. This section assumes a frequentist perspective. There are Bayesian approaches relevant 
to “supporting” null results as well.

2. Recent work on equivalence testing (Lakens, 2017b) power provide results that are 
functionally equivalent to those discussed in this section. The TOSTER package is an 
excellent resource for those and other approaches.



11
Additional Issues and 
Resources

This chapter presents a variety of topics including reporting power analyses, testing 
assumptions, converting between effect size estimates, additional resources for 
power, sources for learning about analyses not covered in this text, and how to 
deal with them, and improving power without increasing sample size.

Accessing the Analysis Code

Interested readers can investigate all of the functions used in the text by opening 
the individual functions in R. Functions can be found at https://github.com/
chrisaberson/pwr2ppl (see the R directory). The name of each function corres-
ponds to the command used in the text.

Using Loops to Get Power for a Range of Values

Most of the functions in pwr2ppl provide power for a single sample size. An 
additional piece of code using loops provides power across a range of sample 
sizes. This approach can be used with just about any of the functions in the 
package. The approach detailed below gives power estimates for the three pre-
dictor multiple regression example in Chapter 8.

for (i in seq(100, 200, 10))

{MRC(ry1=.40, ry2=.40, ry3=–.40, r12=–.15, r13=–.60, r23=.25, n=i)}

The first part, for (i in seq), is what is a for-loop command. The basic idea is for 
each value in the sequence that follows, perform the command wrapped in the 
{}. The three numbers that follow (100, 200, 10) feed values of 100 to 200 in 

https://github.com
https://github.com
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increments of 10 to the MRC command below. This produces analyses for 
sample sizes of 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, and 200. 
Inside the MRC command, values are as before, except the n is now set equal 
to i (corresponding to the “i in seq” part of the command).

How to Report Power Analyses

After conducting a power analysis, it is important to report the analysis accu-
rately and completely. Power analysis is a design issue, so discussions of power 
go in the Method section of an American Psychological Association (APA) style 
paper. As Wilkinson and the Task Force for Statistical Inference noted 

[b]ecause power computations are most meaningful when done before 
data are collected and examined, it is important to show how effect size 
estimates have been derived from previous research and theory in order to 
dispel suspicions that they might have been taken from data used in the 
study or, even worse, constructed to justify a particular sample size. 

(1999, p. 596)

 Similarly, the APA Style Manual instructs authors to “give the intended size of 
the same and number of individuals meant to be in each condition if separate 
conditions were used … [s]tate how this intended sample size was determined 
(e.g., analysis of power or precision)” (2010, pp. 30–31).
	 Based on these statements, there is a clear directive that researchers should 
report in detail how they arrived at decisions about a meaningfully sized effect 
and all the statistical values used or assumed in estimation. However, it appears 
that these recommendations are not widely followed. As noted in Chapter 1, 
recent changes to editorial policies at several outlets suggest reporting power 
analyses is now a point of emphasis.

Suggested Guidelines for Reporting Statistical Power

1.	 Report power analyses for all focal hypotheses.
2.	 Justify each value used in the analysis. If you design around an effect size of 

d = 0.50, explain why you selected that value. Do not simply note that 
d = 0.50 corresponds to a medium-sized effect.

3.	 Design to detect the smallest effect size of interest. Justify why that effect 
size is the smallest of interest.

4.	 When using complex designs, discuss all considerations that influence power. 
For example, in multiple regression, when designing to detect a particular R2 
value, discuss all the correlations in the design. Justify your decisions.

5.	 If using software approaches, cite the source of power calculations.
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Example 11.1: Reporting a Power Analysis for a 
Chi-Square Analysis

To determine sample size requirements for the present study, I first estimated a 
baseline value for rental availability based on Page (1999) who found that renters 
indicated to 76% of those in the control group that the property was available. 
Next, I determined that a 20% difference between groups (i.e., the HIV group 
hearing “available” 56% of the time), constituted a meaningful difference 
between the two groups. In determining how large a difference would be 
meaningful, I note that previous work detected larger differences (36%). A 20% 
difference allows for detection of smaller effects than found in the original study 
while allowing for detection of considerable levels of discrimination. These 
values correspond to Φ = .21. The techniques outlined in Aberson (2019) found 
a sample of 180 participants would yield power of .80 for detecting this effect.

Example 11.2: Reporting a Power Analysis for Repeated 
Measures ANOVA

To determine sample size requirements for the present study, we examined use of 
the stereotype negation procedure in other samples. These techniques produced 
standard deviations of approximately 0.40 with raw score changes of +0.25 to 
+0.40 (meaning more positive attitudes) for pre to post improvement and gradual 
increases thereafter. Based on this information, we judged +0.25 as the minimum 
value for a practically important pre-post change with smaller changes expected 
from the posttest to 2-hour measurement and from the 2-hour to 6-hour measure. 
Previous work reported test–retest reliability at .50. However, correlations between 
measures often decay over time so we set pre-2-hour and 2 hour–6 hour correla-
tions at .30 and the pre-6-hour correlation at .15. We also expected standard devi-
ations to increase slightly over time so we set the posttest standard deviation at 
0.50, the 2-hour SD at 0.60, and the 6-hour SD at 0.70. Changes to the standard 
deviations and correlations produce more conservative power estimates than would 
use of the initial estimates across each measurement period. These parameters 
reflect an omnibus effect size of η2 = .14. Since the expected pattern of correlations 
suggest issues with sphericity, we adjusted power estimates for a test using the 
Greenhouse–Geisser adjustment. Based on these values, power analyses following 
the procedures outlined by Aberson (2019) found that a sample of 29 participants 
produced adequate power for the omnibus test (.81).

Reporting Power if Not Addressed A Priori

It is not uncommon for researchers to collect data without a clear power analysis 
to guide sample size. In cases like this it is still useful to report power for the 
obtained sample size. In such reports, clearly note that data collection reflected 
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convenience, cost limitations, or whatever factors drove your approach. Then 
note, given your sample size, what sort of power your sample affords.
	 For example, if you conducted a simple between subjects treatment-control 
comparison, a reasonable power analysis might read as follows. Data collection 
reflected the maximum number of participants that could be obtained over the 
course of a single semester. A sample of 45 participants per group (90 overall), 
yields 80% power to detect effects of d = 0.60, 90% power to detect d = 0.70, 
and 95% power to detect d = 0.77.
	 This approach is not ideal but it does allow readers a clear understanding of 
the sort of effects that might reasonably be detected given your sample size. For 
this approach, a larger sample size leads to more convincing power statements as 
you do not have the opportunity to make a case for why you designed around a 
particularly effect size.

Statistical Test Assumptions

Assumptions are mentioned throughout the text with regard to specific tests. 
Regardless of study design, most statistical procedures are most accurate when 
data meet test assumptions. More often than not, meeting assumptions yields 
more power for data analyses. This is especially important when dealing with 
relatively small samples. Pay careful attention to issues such as data cleaning and 
assumptions prior to analyses as these can impact power considerably.

Effect Size Conversion Formulae

Occasionally, it is useful to convert between effect size estimates. Formulae 
below address conversions between several major estimates.

Eta squared to d

The values p1 and p2 are the proportion of participants in each group. For equal 
sample sizes (p1 = p2 = .50), the numerator simplifies to 4η2

partial. Some sources 
present this conversion formula with 4η2

partial in the numerator, but that approach 
is only appropriate for equal sample sizes whereas the proportional values pre-
sented in Formula 11.1 are applicable to equal and unequal samples.

� (11.1)

d to Eta squared

For equal sample sizes, the denominator in Formula 11.2 simplifies to d2 + 4. 
Some versions of this formula include d2 + 4 in the denominator but that is 
appropriate only when sample sizes are equal across groups.
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� (11.2)

Correlation to d

This approach applies only to between group designs. I use ρ to note the popu-
lation correlation in Formulae 11.3 and 11.4. When dealing with samples simply 
substitute r for ρ

� (11.3)

d to Correlation

Again, this is applicable only to between group designs.

� (11.4)

General (Free) Resources for Power and Related Topics

Two excellent programs for power analysis are available as freeware. The first is 
G*Power 3 (see www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/). 
The second resource is a set of applets called PiFace (see www.math.uiowa.
edu/~rlenth/Power/). Both programs are easy to use for simple analyses. 
G*Power’s authors provide papers that detail most of the procedures (Faul, 
Erdfelder, Lang, & Buchner, 2007; Faul, Erdfelder, Buchner, & Lang, 2009). 
For both programs, users must make sure to understand completely what values 
the program requires for input. Both programs use language that may be unfa-
miliar to some users, particularly for complex analyses. When using one of these 
programs, I strongly recommend checking results against those produced by 
another program or testing an example where the correct answer is known. If 
you misunderstand the required input, power analysis is meaningless.
	 The Web Interface for Statistics Education (wise.cgu.edu) provides an inter-
active power tutorial that is an outstanding resource for learning about power 
analysis (note: I co-wrote the tutorial). The website also provides tutorials on 
other relevant topics like the Central Limit Theorem and hypothesis testing as 
well as an easy-to-use spreadsheet for calculating distribution probabilities. 
Another tool useful for hand calculations is the Noncentral Distribution Calcu-
lator (see www.statpower.net). Finally, there are several excellent protocols in 
Stata, SAS, and R for simple power analyses. See https://stats.idre.ucla.edu/
other/dae/ for a summary of these approaches.

http://www.psycho.uni-duesseldorf.de
www.math.uiowa.edu
www.math.uiowa.edu
www.statpower.net
https://stats.idre.ucla.edu
https://stats.idre.ucla.edu
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Resources for Additional Analyses

There are many analyses not covered in the present text and analyses where 
presentation was limited. For these topics, the listings below provide helpful 
resources and references.

Confidence Intervals around Effect Sizes

A number of tools exist for confidence intervals (CI) around effect sizes. Michael 
Smithson’s text (2003) on CI is particularly useful. His web site at www.
michaelsmithson.online/stats/CIstuff/CI.html also includes resources written for 
SPSS, SAS, SPlus, and R. Ken Kelley’s MBESS web site contains analysis packages 
for confidence limits around most parameters (nd.edu/~kkelley/site/MBESS.html; 
see also Kelley, 2007a; 2007b; 2008).
	 Another outstanding tool is Exploratory Software for Confidence Intervals 
(ESCI). ESCI provides modules for exploring CI and noncentral distributions. I 
used ESCI to create several of the figures in Chapters 1 and 3. See https://
thenewstatistics.com/itns/esci/ for materials.

Mediation Power

For power of mediated effects, Fritz and MacKinnon (2007) provide an over-
view and power tables. Approaches for using Monte Carlo methods to test 
mediation models and address power for both parallel and serial mediation 
designs exist at http://marlab.org/power_mediation/ (Schoemann, Boulton, & 
Short, 2017).

Structural Equations Modeling Power

Several approaches are available for power analyses for structural equations 
modeling. MacCallum, Browne, and Sugawara (1996) present tables for 
addressing close, not close, and exact fit. Also see Satorra and Saris (1985) and 
the May 2007 issue of Personality and Individual Differences that is devoted to 
structural equations modeling. More recent work on Monte Carlo provides 
additional guidance (Wolf, Harrington, Clark, & Miller, 2013).

Multilevel Modeling Power

An outstanding resource for multilevel modeling modeling (also known as hier-
archical linear modeling) is the Optimal Design program and accompanying 
manual (Spybrook, Raudenbusch, Liu, Congdon, & Martínez, 2008). Both are 
available from sitemaker.umich.edu/group-based/optimal_design_software. 
Monte Carlo approaches provide addition guidance (Lane & Hennes, 2018).

www.michaelsmithson.online
www.michaelsmithson.online
https://thenewstatistics.com
https://thenewstatistics.com
http://marlab.org
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Improving Power without Increasing Sample Size or Cost

The major focus of this text is statistical approaches to power analysis where the 
remedy for low power is usually the addition of more participants. However, 
several methodological approaches increase power without increasing sample 
size. These are great options to consider before adding participants. There are 
obvious benefits to increasing power without adding costs associated with larger 
samples. Several of these suggestions receive a more thorough consideration in 
Lipsey (1990).
	 Stronger experimental manipulations increase effect size. Stronger manipula-
tions result from stronger treatments, weaker controls, or both. As an example 
of this, a few years back I conducted a series of studies that manipulated the 
qualifications and ethnicity of potential job applicants. Manipulations consisted 
of a cover page attached to a questionnaire that summarized the applicant’s 
qualifications and presented a one paragraph personal statement that varied 
ethnicity. Later I supervised a project where a student modified the approach by 
creating files for each applicant that included a resume on nice paper and a 
photograph of the applicant. The student’s study produced a considerably larger 
effect size than the earlier studies, likely because of the stronger and more 
engaging manipulation.
	 Another option is assigning more participants to cheaper conditions and 
fewer to more expensive conditions, or sampling relatively more participants 
from cheaper or easier-to-obtain groups. When sampling from existing groups 
this strategy can be of great use. Chapter 3 presented an example comparing gay 
men from the community to heterosexual men from campus. The gay men 
received monetary compensation for their time but the campus sample particip-
ated for course credit. The campus sample could have been increased consider-
ably with minimal cost, resulting in substantial increases in power.
	 Simplifying research designs reduces sample size requirements as well. 
Researchers often strive to answer so many questions that the design becomes 
overwhelming. For example, imagine a 2 × 2 × 2 design where power analyses 
suggest 25 participants per cell. Cutting out a factor makes this a 2 × 2 design 
and likely reduces total sample size requirements considerably. On a similar 
note, researchers should always ask whether all factor levels are necessary in 
designs with more than two levels.
	 Within subjects designs usually produce considerably more power than 
between subjects approaches. Although within subjects approaches are not 
always possible, they are likely underutilized. Researchers with concerns about 
carryover effects might evaluate carryover by pretesting using within subjects 
approaches.
	 Several chapters included discussions of reliability. Poor or even mediocre 
reliability reduces observed effect sizes considerably. Insist on the most reliable 
measures possible.
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	 Finally, I want to close with something a colleague once said about power 
and research design. I consulted briefly on a project and asked my colleague if 
he had conducted a power analysis. He laughed and said, “that stuff is for people 
who don’t understand research design.” I do not agree entirely, but it is clear 
that good research design substantially improves statistical power.
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94, 94; linear mixed model, one within 
and one between subject factor 104, 
104; linear mixed model, trends 95, 95; 
logistic regression, one categorical 
predictor 149, 149; logistic regression, 
one continuous predictor 150, 151; 
logistic regression, one continuous 
predictor with other variables in model 
152; moderated regression, comparing 
correlations/simple slopes 147, 147; 
moderated regression, regression 
analogy 144; multiple regression, 
coefficients 119, 121, 120, 121, 122; 
multiple regression, comparing 
dependent coefficients 124, 124; 
multiple regression, comparing 
independent coefficients 127, 127; 
multiple regression, comparing 
independent R2s 128, 128; multiple 
regression, Power (All) 132, 132; 
multiple regression, R2 change 121, 121; 
multiple regression, R2 model 119, 120, 
122; multiple regression, shortcuts 123, 
124; multiple regression, three 
predictors 119, 121, 122; multiple 
regression, two predictors 119, 120, 
121; proportions, comparing 
independent 32, 32; proportions, single 
sample 30, 31; “supporting” null 
hypothesis 168; t-test, from d 44, 45; 
t-test, independent samples 42, 42; 
t-test, paired samples 46, 46; see also 
pwr2ppl (R package)

regression interactions see moderated 
regression

reliability 175, 177, 198–200; see also 
attenuation of effect size

repeated measures see Analysis of Variance, 
one factor within subjects; Analysis of

Variance, two factor within subjects
reporting power analyses 174–5; chi-

square example 175; within subjects 
Analysis of Variance example 175

robust data analysis 52–3

sample size-power tradeoff 15–16 “shirt 
size” effects 12, 38

software ( free) resources 177
sphericity: epsilon adjustment 93; example 

one factor within subjects 91–3, 92; 
example of serious sphericity problem 
94, 94; Greenhouse-Geisser adjustment 
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93; Huynh-Feldt adjustment 93; see also 
Analysis of Variance, one-factor within 
subjects

split plot design see Analysis of Variance, 
mixed model

structural equations modeling 231
supporting null hypothesis, precision 

analysis 169–70, 168

transformations: arcsine 29; assumption 
violations, addressing 46–7, 47; Fisher r 
to z 57–9

trend analysis: Analysis of Variance, one 
factor within subjects 94–6, 95; linear 
mixed model, one factor within subjects 
94–6, 95

t-test, correlated mean see t-test, paired 
samples

t-test, independent samples: calculations 
39–41; designing to address violation of 
assumptions 48–52; effect size (d) 37; 
example 39–43; factors affecting power 
35–6; formulae 36–7; necessary 
information 34–5; noncentrality 
parameter (δ) 37, 40; one vs. two tailed 
tests 35–6; power calculations, 
approximate 41–2; power calculation 
with noncentrality parameter 41–2; 

R code 42, 42; unequal sample sizes 
45–52, 52; unequal variances 45–52, 
52; unequal variances/sample size 
example 49–53; violation of 
assumptions 45–8, 47, 48; see also 
unequal sample sizes; unequal variances

t-test, paired samples: calculation 43; 
correlation between measures 35; effect 
size (d) 37; example 43–4; factors 
affecting power 35–6; formulae 37; 
necessary information 35–6; 
noncentrality parameter (δ) 37; one vs. 
two tailed tests 35–6; power 
calculations, approximate 37; power 
calculation with noncentrality parameter 
38; R code 44, 44

Type I error inflation see alpha error 
inflation adjustment

underpowered studies 9–11
unequal sample sizes: Analysis of Variance 

71; independent samples t 45–52; 
harmonic n 29, 31, 48, 52; independent 
proportions 29, 31

unequal variances: degrees of freedom 
adjustment 46; independent samples t 
45–52; influence on power 45–8, 47, 
48
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