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Preface

The workshop entitled Hilbert Spaces of Analytic Functions was held at the
Centre de recherches mathematiques (CRM), Montreal, from 8 to 12 December
2008. Even though this event was not a part of the CRM thematic year, 62 math-
ematicians attended the workshop. They formed a blend of researchers with a
common interest in spaces of analytic functions, but seen from many different an-
gles.

Hilbert spaces of analytic functions are currently a very active field of com-
plex analysis. The Hardy space H2 is the most senior member of this family. Its
relatives, such as the Bergman space AP, the Dirichlet space D, the de Branges-
Rovnyak spaces fl b), and various spaces of entire functions, have been extensively
studied by prominent mathematicians since the beginning of the last century. These
spaces hay been exploited in different fields of mathematics and also in physics and
engineering. For example, de Branges used them to solve the Bieberbach conjec-
ture, and Zames, a late professor of McGill University, applied them to construct
his th ry f HOD control. But there are still many open problems, old and new,
which attract a wid spectrum of mathematicians.

In this nference, 38 speakers talked about Hilbert spaces of analytic functions.
In five days a wi e variety of applications were discussed. It was a lively atmosphere
in which many mutual research projects were designed.

Javad Mashreghi
Thomas Ransford

Kristian Seip

xi
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Canonical de Branges - Rovnyak Model Transfer-Function
Realization for Multivariable Schur-Class Functions

Joseph A. Ball and Vladimir Bolotnikov

ABSTRACT. Associated with any Schur-class function S(z) (i.e., a contractive
holomorphic function on the the unit disk) is the de Branges-Rovnyak kernel
Kg(z,() = [1-S(z)S(i)']/(1-z() and the de Branges-Rovnyak reproducing
kernel Hilbert space f(Kg). This space plays a prominent role in system
theory as a canonical-model state space for a transfer-function realization of a
given Schur-class function. There has been recent work extending the notion
of Schur-lass function to several multivariable settings. We here make explicit
to what extent the role of de Branges-Rovnyak spaces as the canonical-model
state space for transfer-function realizations of Schur-class functions extends
to these multivariable settings.

1. Introduction

Let U and y be two Hilbert spaces and let £(U, y) be the space of all bounded
linear operators between U and Y. The operator-valued version of the classical
Schur class S(ll, y) is defined to be the set of all holomorphic, contractive £(U, y)-
valued functions on D. The following equivalent characterizations of the Schur class
are well known. Here we use the notation H2 for the Hardy space over the unit
disk and Hex = H2 ® X for the Hardy space with values in the auxiliary Hilbert
space X.

Theorem 1.1. Let S: D -+ £(U, y) be given. Then the following are equiva-
lent:

(1) (a) S E S(U,y), i.e., S is holomorphic on D with 1JS(z)11 < 1 for all
zEID.

(b) The operator Ms: f (z) H S(z) f (z) of multiplication by S defines a
contraction operator from Hu to Hy.

(c) S satisfies the von Neumann inequality: JIS(T)II < 1 for any strictly
contractive operator T on a Hilbert space f, where S(T) is defined

2000 Mathematics Subject Classification. 47A57.
Key words and phrases. Operator-valued functions, Schur multiplier, canonical functional

model, reproducing kernel Hilbert space.
This is the final form of the paper.

Q2010 American Mathematical Society
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by

00 M

S(T) = E Sn ®T- E G(U ®9{, Y (9 'c) if S(z) = >2 Snzn.
n=0 n=0

(2) The associated kernel

(1.1) Ks(z, C) =
Iy - S(z)S(()"

1 - zC

is positive on IID x D, i. e., there exists an operator-valued function H. D -
L(X,Y) for some auxiliary Hilbert space X so that

(1.2) Ks (z, () = H(z)H(C)'.

(3) There is an auxiliary Hiilbert space X ands a unitary connect ng operator

U = [C Dl :
rI

UJ - y
so that S(z) can be expressed as ` L

(1.3) S(z) = D + zC(I - zA)-'B.
(4) S(z) has a realization as in (1.3) where the connect ng operutorU is

one of (i) isometric, (ii) coisometrac, or (iii contracts e.

We note that the equivalence of any of (1a), (lb , lc with 2 and can

be gleaned, e.g., from Lemma V.3.2, Proposition 1.8.3, Proposition V.8.1 and The-
orem V.3.1 in [26]. As for condition (4), it is trivial to see that 3 implies 4
and then it is easy to verify directly that (4) implies (1a . Alternatively, one can
use Lemma 5.1 from Ando's notes [6] to see directly that 4iii implies 4u see

Remark 2.2 below).
The reproducing kernel Hilbert space 9d (KS) with the de Branges -Rare ak

kernel KK(z,C) is the classical de Branges-Rovnyak reproducing kernel Htlbert
space associated with the Schur-class function S which has been much studied over
the years, both as an object in itself and as a tool for other types of applications see
[6,11-13,16-18,20,21,24,27,28,311). The special role of the de Branges-Rose ak
space in connection with the transfer-function realization for Schur-class functions
is illustrated in the following theorem; this form of the results appears at least
implicitly in the work of de Branges Rovnyak [20, 21].

Theorem 1.2. Suppose that the function S is in the Schur class S(U,Y and C
IL(Ks) be the associated de Branges
by

Rovnyak space. Define operators A,B,C,D

A: f (z) f (z) - f (0) , B : u S(z) - S(0) u
z

,
z

C: f (z) f (0), D: u S(0)u.

Then the operator-block matrix U = [C D] has the following properties:
(1) U defines a coisometry from 'H (KS) ® U to 9d (Ks) ® Y.
(2) (C, A) is an observable pair, i.e.,
CAn f - 0 for all n = 0, 1, 2,... f = 0 as an element of

(3) We recover S(z) as S(z) = D + zC(I _ zA) 1B.



TRANSFER-FUNCTION REALIZATION 3

(4) If [ A; D, : X ® U - X ® Y is another colligation matrix with properties
(1), (2), (3) above (with X in place of 1t(Ks)), then there is a unitary
operator U: R(Ks) - X so that

11 11A[U0

iy] [C D] - [C' D']
[U0 Jul.

It is easily seen from characterization (1a) in Theorem 1.1 that

(1.4) S E S(U, Y) S E S(y,U) where S(z) := S(x)*.

Hence for a given Schur-class function S there is also associated a dual de Branges-
Rovnyak space 7-l(Kg) with reproducing kernel KS(z, () = [I-S(z)*S(C)]/(1-zC).
The space W (KS) plays the same role for isometric realizations of S as 7{(Ks) plays
for coisometric realizations, as illustrated in the next theorem; this theorem is just
the dual version of Theorem 1.2 upon application of the transformation (1.4).

Theorem 1.3. Suppose that the function S is in the Schur class S(U, Y) and
let 7t(KS) be the associated dual de Branges-Rovnyak space. Define operators
Ad, Bd, Cd, Dd by

Ad: g(z) -+ zg(z) - S(z)*9(0), Bd: U H (I - S(2)*S(0))u,

Cd: 9(z)'- 9(0), Dd: U H S(0)u,

where g 0) is the unique vector in Y such that

9(0),y)y = (\9(x), S(z)* z S(0)* forfor all y E Y.

Then the operator-block matrix Ud = [
as

Da has the following properties:

1) Ud defines an isometry from 7t(KS) ® U to H(KS) ®y,
2 (Aa, Bd) is a controllable pair, i. e., Vn>0 Ran AaBd = 7{(KS), where V

stands for the closed linear span.
3 We recover S(z) as S(z) = Dd + zCd(I - zAd)-IBd
4) If [A' D; : X ® U - X ® y is another colligation matrix with properties

(1 , (2), (3) above (with X in place of 1- (KS)), then there is a unitary
operator U: 7{(K-§) -+ X so that

[0 IyJ
[Ad

Cd Ddj -LCD D'J L0

Jul

In addition to the kernels Ks and KS, there is a positive kernel Ks which
combines these two and is defined as follows:

rr s: -s - I-s(Z)s(() s Z s S
f Ks(x, S) Z-C I-ZC Z_

(1.5) K(x, ) = I s (z)__9 C '-) I- s Z'-S(y I-s : S (C
L X-C Ks (x,

JJJ :- 1-:C

It turns out that k is also a positive kernel on B x B and the associated reproducing
kernel Hilbert space f(Ks) is the canonical functional-model state space for unitary
realizations of S, as summarized in the following theorem. This result also appears
at least implicitly in the work of de Branges and Rovnyak [20,21] and more explicitly
the paper of de Branges and Shulman [22], where the two-component space f(Ks)
associated with the Schur-class function S is denoted as V(S); see also [11] for an
explanation of the connections with the Sz: Nagy-Foias model space.
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Theorem 1.4. Suppose that the function S is in the Schur class S U,Y) arul
let K(z, S) be the positive kernel on 1D given by (1.5). Define operators A, B,C D
by

A: f z1 C[f(z) - f(0)]/z
)l B : uH

L
[S(z) - S(0

] z
u[g(z) zg(z) - S(z)f(0 (I - S(x)S 0

f (Z)(z)1 '-r f (0), D: U '-+ S(O)u.C: I f

Then the operator-block matrix U =LCD] satisfies the follounng:

(1) U_ defines a unitary operator from 9-l(KS) ® U onto ?i Rs
(2) U is a closely connected operator colligation, i.e.,

V {Ran AnB,RanA* IC } =9l(Ks).
n>O

(3) We recover S(z) as S(z) = D + zC(I - zA)-1B.

® Y-

(4) If c, D, X ®U - X Y is any other operator colligatwn satzsfymg
conditions (1), (2), (3) above (with X in place of ?i Ks , then there u
unitary operator U: 9i(Ks) -> X so that

o[u0

Iy] [C D] = LC' D'1 LO

Jul

Our goal in this article is to present multivariable analogues of Theorem 1.2.
The multivariable settings which we shall discuss are (1) the unit ball ,$d in Od and
the associated Schur class of contractive multipliers between vector-valued Dnuy
Arveson spaces ?lu (kd) and ?iy (kd), (2) the polydisk with the associated Schur class
taken to be the class of contractive operator-valued functions on Dd which satisfy
a von Neumann inequality, and (3) a more general setting where the underlying
domain is characterized via a polynomial-matrix defining function and the Schur
class is defined by the appropriate analogue of the von Neumann inequality. In these
multivariable settings, the analogues of Theorem 1.1 have already been set down
at length elsewhere (see [3, 15, 23] for the ball case, [1, 2, 14] for the polydisk case,
and [4,5,9] for the case of domains with polynomial-matrix defining function-see
[8] for a survey). Our emphasis here is to make explicit how Theorem 1.2 can
be extended to these multivariable settings. While the reproducing kernel spaces
themselves appear in a straightforward fashion, the canonical model operators on
these spaces are more muddled: in the coisometric case, while the analogues of
the output operator C and the feedthrough operator D are tied down, there is no
canonical choice of the analogue of the state operator A and the input operator
B: A and B are required to solve certain types of Gleason problems; we refer to
[25] and [30, Section 6.6] for some perspective on the Gleason problems in general.
The Gleason property can be formulated also in terms of the adjoint operators A'
and B': the actions of the adjoint operators are prescribed on a certain canonically
prescribed proper subspace of the whole state space. From this latter formulation,
one can see that the Gleason problem, although at first sight appearing to be rather
complicated, always has solutions. Also, the adjoint of the colligation matrix, rather
than being isometric, is required only to be isometric on a certain subspace of the
whole space X ® Y. With these adjustments, Theorem 1.2 goes through in the
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three settings. Most of these results appear in [10] for the ball case and in more
implicit form in [14] for the polydisk case, although not in the precise formulation
presented here. The parallel results for the third setting are presented here for the
first time. We plan to discuss multivariable analogs of Theorems 1.3 and 1.4 in a
future publication.

The paper is organized as follows. After the present Introduction, Section 2
lays out the results for the ball case, Section 3 for the polydisk case, and Section 4
for the case of domains with polynomial-matrix defining function. At the end of
Section 4 we indicate how the results of Sections 2 and 3 can be recovered as special
cases of the general formalism in Section 4.

2. de Branges-Rovnyak kernel associated with a Schur multiplier on
the Drury - Arveson space

A natural extension of the Szegd kernel is the Drury - Arveson kernel

kd(z, 0 = 1 11 - zl(1 - xd(d 1 - (x,()Cd
The kernel kd z, S) is positive on 13d x 1EBd where

d = {z = (zl, ... , zd) E Cd : (z, z) = Izl l2 + ... + Ixdl2 < 1}

is the unit ball in Cd, and the associated reproducing kernel Hilbert space 7{(kd)
is called the Drury-Arveson space. For X any auxiliary Hilbert space, we use
the shorthand notation 1Lx(kd) for the space 7{(kd) ® X of vector-valued Drury-
Arveson-space functions. A holomorphic operator-valued function S: lid - £(U, y)
is said to be a Drury Arveson space multiplier if the multiplication operator
MS: f z 4-+ S z f (z) defines a bounded operator from 7{u(kd) to 7{y(kd). In
case in addition MS defines a contraction operator (IlMslloP <_ 1), we say that S
is in the Schur-multiplier class Sd(U, Y). Then the following theorem is the ana-
logue of Theorem 1.1 for this setting; this result appears in [10,15, 231. The alert
reader will notice that there is no analogue of condition (1a) in Theorem 1.1 in the
following theorem.

Theorem 2.1. Let S: lid -) £(U, y) be given. Then the following are equiva-
lent:

1) (b S E Sd(U,Y), i.e., the operator Ms of multiplication by S defines a
contraction operator from Wu(kd) into Ky(kd).

c) S satisfies the von Neumann inequality: IIS(T)II < I for any com-
mutative operator d-tuple T = (T1, ... ,Td) of operators on a Hilbert
space 1C such that the operator-block row matrix [T1 ... Td] defines
a strict contraction operator from ,Cd into 1C, where

2.1) S(T) _ E S (9 T- E C(U ®7{, Y (9 7{) if S(z) _ Snzn.
nEZ+ nEZ+

Here we use the standard multivariable notation:

zn = Z ... zad and TIt = Ti' ... Tad if n = (n1,.. . , nd) E 7G+.

(2) The associated kernel

(2.2) KS (Z' () =
ly - S(z)S(()*

1- (Z'0
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is positive on lB x IB, i.e., there exists an operator-valued function H. Bd .-
£(X, Y) for some auxiliary Hilbert space X so that Ks(z, () = H(z H C

(3) There is an auxiliary Hilbert space X and a unitary connecting operator

BI

(2.3)
U =[A B'j

[U]
[
Y

so that S(z) can be expressed as

(2.4) S(z) = D + C(I -

Zrow(z) _ [z1IX ... zdIj .

(4) S(z) has a realization as in (2.4) where the connecting operator U is an
one of (i) isometric, (ii) coisometric, or (iii) contractive.

Remark 2.2. Statement (4iii) concerning contractive realizations is not men-
tioned in [15] but is discussed in [10, 23]. The approach in [23] is to show that for
S of the form (2.4) with U = [A D ] contractive the inequality S T) < 1 h ds
for any commutative operator d-tuple T = (T1,... ,Td with [T1

i.e, one verifies (4iii) ; (1c).
... Td] < 1,

The idea of the second approach in [10] is to embed the contraction U = [ A n

into a coisometry C D
] = [ C D Dl ] with associated transfer function of the form

S(z) = [S(z) Sl (z)] equal to an extension of S(z) with a larger input space. From

the coisometry property of [
C
A F3

D
] one sees that Kg (z, w) = C I - Zroa, z A '1 1-

A*Zrow(()-1C*, i.e., S meets condition (2) for the Schur-class Sd U ®U1,Y with
H(z) = C(I - Zrow(z)A)-1. From the equivalence (lb) (2 , it is easy now to
read off that S E Sd(U, y).

A third approach worked out for the classical case but extendable to multr
variable settings appears in Ando's notes [6, Lemma 5.1]. Given a contractive
colligation U = [A D ], one can keep the input and output spaces the same but
enlarge the state space to construct a coisometric colligation U = [c n] having
the same transfer function, namely:

A Q11 QI2 0 0 ... B
0 0 0 I 0 ...

= 0 0 0 0 I
ro

A

0 _ [C Q21 Q22

where

0 0 ..], D=D

Q= Q11 Q12Q221 = (I - UU*)1/2.
1Q*12

In this way one gets a direct proof of (4iii) : (4ii).

For colligations U of the form (2.3), it turns out that a somewhat weaker notior
of coisometry is more useful than simply requiring that U be coisometric.
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Definition 2.3. The operator-block matrix U of the form (2.3) is weakly coiso-
metric if the restriction of U` to the subspace

(2.5) D. := V f 7'row(()*(I - A*Zrow(()*)-lCSyl
C IX

yl
y J J

4

is isometric.

SEB
yEY

It turns out that the weak-coisometry property of the colligation (2.3) is exactly
what is needed to guarantee the decomposition

(2.6) Ks(z,() = C(I - Zrow(z)A)(I - A*Zrow(()*)-1C*

of the de Branges-Rovnyak kernel KS associated with S of the form (2.4) (see
Proposition 1.5 in [10]).

2.1. Weakly coisometric canonical functional-model colligations. As
the kernel Ks given by (2.2) is positive on 13 x 13, we can associate a reproducing
kernel filbert space ?t(KS) just as in the classical case, where now the elements
of ?i KS are holomorphic Y-valued functions on 13d. In the classical case, as we
see from Theorem 1.2, there are canonically defined operators A, B, C, D so that
the operator-block matrix U = [ A D I is coisometric from ?l (Ks) ® U to ?t (Ks)
Y and yields the essentially unique observable, coisometric realization for S E
S U,Y . For the present Drury -Arveson space setting, a similar result holds,
but the operators A, B in the colligation matrix U are not completely uniquely
determined. To explain the result, we say that the operator A: ?t(Ks) ?t(Ks)d
s 1 es the Gleason problem for ?-l(Ks) if the identity

d

2.7 f z) - AO) = E zk(Af)k(z) holds for all f E ?t(Ks),
k=1

(A f) i (z)1

where we write Af) z) =
1

E ?-l(Ks)d. We say that the operator B : U -*
(Af)4z)

?t Ks d solves the l(Ks)-Gleason problem for S if the identity
d

2.8 S z)u - S(O)u = E Zk(Bu)k(z) holds for all u E U.
k=1

Solutions of such Gleason problems are easily characterized in terms of adjoint
operators.

Proposition 2.4. The operator A: N(KS) -+ ?t(Ks)d solves the Gleason prob-
lem for N(Ks) (2.7) if and only if A* : %(Ks)d -* N(Ks) has the following action
on special kernel functions:

2.9) A*: Zrow(()*Ks(., ()y -+Ks(-, ()y - 0)y for all ( E 13d, y E Y.

The operator B: U -3 ?t(Ks)d solves the N(Ks)-Gleason, problem for S (2.8) if
and only if B: h(Ks)d -4 U has the following action on special kernel functions:

d yEY.(2.10) B*: ()y+ S(()*y - S(o)*y for all ( E 13
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PROOF. By the reproducing kernel property, we have for f E 1-{(K5),

(f (z) - f (0), y)Y = (f, Ks(-, z)y - Ks(-, 0)y)W(Ks)
On the other hand,

(zk(Af)k(z)
d

\\
d

, y I = E((Af)k, tkKS(', z)Y)W(Ka
k=1 Y k=1

= (Af, Zrow(z)*Ks(', z)y)x K3 d

= (f,A*Zrow(z)*Ks(',z)y 7i(Ks

and since the two latter equalities hold for all f E 7-l(Ks), z E Bd and V E y
the equivalence of (2.7) and (2.9) follows. Equivalence of (2.8) and 2.10 follm
similarly from the computation:

(zk(Bu)k(z)Y) = E((Bu)k, zkKS(, z)y i Ks
k=1 Y k=1

= (Bu, Zrow(z)*KS(', z Y ?i Ks

= (u,B*Zrow(z)*Ks(',z)y u-

Let us introduce the notation

(2.11) V= V ZIow(C)*Ks(',C)y.
SE1Bd
Y/EY

Definition 2.5. Given S E Sd(U, Y), we shall say that the block-operator
matrix U = [A D ] is a canonical functional-model colligation for S if

(1) U is contractive and the state space equals 7-1(Ks).
(2) A:1-l(KS) -+ W (Ks)d solves the Gleason problem for W Ks (2.7.
(3) B: U -+ 1l(Ks)d solves the 11(Ks)-Gleason problem for S 2.8).
(4) The operators C: 11(Ks) -+ Y and D: U -* Y are given by

(2.12) C: f (z) ,- f (0), D : u -+ S(0)u.

Remark 2.6. It is useful to have the formulas for the adjoints C*.- Y -+H Ks
and D:Y-'U:
(2.13) C*: y -+ KS(-, 0)y D* : y H S(0)*y

which are equivalent to (2.12). The formula for D* is obvious while the formula for
C* follows from equalities

(f, C*y)n(Ks) = (Cf, y)Y = (f (0), y)Y = (f, KS (', 0)y)at(Ks)
holding for every f E W(Ks) and y E Y.

Theorem 2.7. There exists a canonical functional-model realization for every
S E Sa(U, Y).

PROOF. Let S be in Sd(U, Y) and let 11(Ks) be the associated de Branges
Rovnyak space. Equality (2.2) can be rearranged as

d

IY = Ks(z,C) + S(z)S(()*
j-1
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which in turn, can be written in the inner-product form as the identity

(2.14) 1 r"
w(C)" Ks(', C)yl f ( z)*Ks(', z)y'DW(Ks)d9Y

y J y

_Ks(.,()yl Ks(',z)y'l
- \ S(()*y J ' S(z)*y' I /

holding for every y, y' E y and (, z E Bd. The latter identity tells us that the linear
map

(2.15) V : f Zrow(()*KS(', ()y Ks(', ()y
I. y L S(()*y

extends to the isometry from Vv = V ®y C 9-l(Ks)d ® y (where V is given in
(2.11)) onto

RV = Ks(', ()y C ?-l(Ks) ® U.]SEaa S(() *y

VEY

Extend V to a contraction U* : f{(Ks)d ® y - ?l(Ks) ® U. Thus,

2.16 U. _ rB'
CDj ; i f

y L S(() y J
Comparing the top and the bottom components in (2.16) /gives

2.17 A*Zrow (()*KS(', ()y + C*y = Ks(', ()y,
2.18 B*Zrow(()*KS(', ()y + D*y = S(()*y

Solving (2.17 for Ks y gives

2.19) Ks(-,()y = (I - A*Zrow(()*)-1C*y.
Substituting this into (2.18) then gives

2.20 B*Zrow(()*(I - A*Zrow(()*)-1C*y +D*y = S(()*y

By taking adjoints and using the fact that C E Bd and y E Y are arbitrary, we may
then conclude that U is a contractive realization for S. It remains to show that
U meets the requirements (2) - (4) in Definition 2.5. To this end, we let ( = 0 in
2.17) and (2.18) to get

(2.21) C*y = Ks(-,0)y and D*y = S(0)*y.

Substituting (2.21) back into (2.17) and (2.18), we get equalities (2.9) and (2.10)
which are equivalent (by Proposition 2.4) to A and B solving the Gleason prob-
lems (2.7) and (2.8), respectively. By Remark 2.6, equalities (2.21) are equivalent
to (2.12).

Remark 2.8. A consequence of the isometry property of V in (2.15) is that
formulas (2.9) and (2.10) extend by linearity and continuity to give rise to uniquely
determined well-defined linear operators A* and BD from V to 'l (Ks) and U,
respectively. In this way we see that the existence problem for operators A solving
the Gleason problem is settled: A: ?{(KS) - ?{(KS)d solves the Gleason problem
for 1- (K8) (2.7) if and only if A* is an extension to all of 9'l(KS)d of the operator
AD: V - 9-l(Ks) uniquely determined by the formula (2.9). Similarly, the operator
B : U -+ 7-l(Ks)d is a solution of the 1-t(Ks)-Gleason problem for S (2.8) if and only
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if the operator B* : W (Ks)d -+ U is an extension to all of 1.i(Ks)d of the oporatnr
BD: D -4 U uniquely determined from the formula (2.10).

The following result is essentially contained in [10]. For the ball setting, we,i
the following definition of observability: given an operator pair C, A with o tp
operator C: X -a Y and with A: X -4 Xd, we say that C, A is observable if
C(I - Zrow(z)A)-1x = 0 for all z in a neighborhood of 0 in Cd implies that x =
in X. Equivalently, this means that

V (I - A*Zrow(z)*)-1C*y = X
zEA
yEY

for some neighborhood A of 0 in Cd.

Theorem 2.9. Let S be a Schur-class multiplier in Sd U, Y and suppose the
U = [A D ] is any canonical functional-model colligation for S. Then:

(1) U is weakly coisometric.
(2) The pair (C, A) is observable.
(3) We recover S(z) as S(z) = D +C(I - Zrow(z A -1Zrr,w z B
(4) If U' = C, D, : X ®U -+ Xd ®y is any other Ll gatzon matrrx en-

joying properties (1), (2), (3), then there is a canon cal functional-
colligation U = [ a D W (Ks) ®U -+ W (K5 d ®y so that U is unit
equivalent to U', i.e., there is a unitary operator U: X -+7{ Ks so that

0 B

VC D1
[U0

IY - L 0 U Iul LC D'1

PROOF. Since U is a canonical functional-model colligation for S, the opera-
tors A and B solve the Gleason problems (2.7) and (2.8 , respectively. By Propo-
sition 2.4, this is equivalent to identities

A*Zrow(()*KS(.,()y = Ks(-,C)y - KS -,0 y
B*Zrow(()*KS(., ()y = S(()*y - S(0)*y.

Besides, C and D are defined by formulas (2.12). Substituting their adjoints from
(2.13) into the two latter equalities we arrive at (2.17) and (2.18 . As we ha 'e
seen, equalities (2.17) and (2.18) imply (2.19) and (2.20). Equality 2.20 prose'
statement (3). Equality (2.19) gives

(2.22) V (I - A*Zrow(()*C*y = V Ks(., ()y = W (Ks).
SEBd CEBd
yEY yEY

Thus the identity C(I -Zro,,,,(z)A)-1 f = 0 leads to (f, (I -A*Zro,,r(z)*)'1C*y =0
for every z E 13d and y E Y; this together with equality (2.22) implies f = 0, and

it follows that the pair (C, A) is observable.
On the other hand, equalities (2.17) and (2.18) are equivalent to (2.16). Sub'

stituting (2.19) into (2.16) and in (2.14) (for z = S and y = y') gives

U. A*Zrow(()*)-lC'*yl = [(I - A*Zrow(C)*)-'C*y
IL y 1 11 S(()*y

and

f fLZrow(C)*(I - A*y row(()*) 'C* yl
J II - II L(I -

A*Zrw(())

IC*yl IIS(* J
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respectively. The two latter equalities tell us that U' is isometric on the space D.
(see (2.5)) and therefore U is weakly coisometric. For the proof of part (4) we refer
to [10, Theorem 3.4].

Definition 2.5 does not require U to be a realization for S: representation
(2.4) is automatic once the operators A, B, C and D are of the required form.
We can look at this from a different point of view as follows. Let us say that
A: W(Ks) -+ 1L(Ks)d is a contractive solution of the Gleason problem (2.7) if in
addition to (2.7), inequality

d

(2.23) FII(Af)kll'c(KS) < IIfII (Ks) - Ilf(o)Ily
k=1

holds for every f E 9i(Ks). It is readily seen that inequality (2.23) can be equiva-
lently written in operator form as

A*A+C*C<I
where the operator C: 9i(Ks) -+ Y is given in (2.12). It therefore follows from
Definition 2 5 that for every canonical functional-model colligation U = [A D ] for
S, the operator A is a contractive solution of the Gleason problem (2.7). The
following theorem provides a converse to this statement.

Theorem 2.10. Let S E Sd(U, Y) be given and let us assume that C, D are
gz en by formulas (2.12). Then

1 For every contractive solution A of the Gleason problem (2.7) for h(Ks),
there exists an operator B : U -+ h(Ks) such that U = [A g] is contrac-
ts e and S zs realized as in (2.4).

2 E ery such B solves the 3{(Ks)-Gleason problem (2.8) so that U is a
canonical functional-model colligation.

PROOF. Smce A solves the Gleason problem (2.7) and since C is defined as in
2.12 , we conclude as in the proof of Theorem 2.9 that identity (2.17) holds which

is equivalent to (2.19). On account of (2.19), it is readily seen that (2.18) and (2.20)
are equivalent. But (2.20) is just the adjoint form of (2.4) whereas (2.18) coincides
with 2.10 since D = S(0)) which in turn, is equivalent to (2.8) by Proposition 2.4.
Thus, it remains to show that there exists an operator B* : W(Ks) -3 U completely
determined on the subspace V C W(Ks) by formula (2.10) and such that U* =
[A' c' ] is contractive. This demonstration can be found in [10, Theorem 2.41.B' D'

3. de Branges - R.ovnyak kernels associated with a Schur - Agler-class
function on the polydisk

Here we introduce a generalized Schur class, called Schur-Agler class, associ-
ated with the unit polydisk

Dd = {z = (z1, .. , , zd) E Cd : 14 1 < 1 for k = 1, ..., d}.

We define the Schur-Agler class SAd(U,Y) to consist of holomorphic functions
S: Dd -+ G(U,Y) such that IIS(T)II < 1 for any collection of d commuting operators
T = (T1,.. . , Td) on a Hilbert space IC with IITk II < 1 for each k = 1,. .. , d where
the operator S(T) is defined as in (2.1).
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The following result appears in [1, 2,14] and is another multivariable analog o
of Theorem 1.1. The reader will notice that analogues of both (1a) and lb h m
Theorem 1.1 are missing in this theorem.

Theorem 3.1. Let S be a L(U, y)-valued function defined on pDd. The follm
ing statements are equivalent:

(1) (c) S belongs to the class SAdA y), i.e., S satisfies the von Neumann
inequality f IS(T1, ... , Td) 11 < 1 for any commutative d-tuple T =
(Ti, .. , ,Td) of strict contraction operators on an auxatary Hihert
space iC.

(2) There exist positive kernels K1,. .. , Kd: lid x Dd L(Y) such that for
every z = (z1i ... , zd) and (= ((1, .. , (d) in Dd,

d

(3.1) Iy - S(z)S(()` = E(1 - z.., s)K.(z,
k=1

(3) There exist Hilbert spaces X1, ... , Xd and a unitary connecting operator
U of the structured form

All . Ald Bl X1 Xl

B
(3.2) U =

r
I C D]
L Adl Add Bd Xd Xd

C1 ... Cd D u Y

so that S(z) can be realized in the form

(3.3) S(z) = D +C(I - Zd;gg(z)A)1Zd1eg(z)B for all z E 1Dd

where we have set

(3.4) ZdIag(z) =

zJlx, 0

0 zdIxaJ

(4) There exist Hilbert spaces Xl,... , Xd and a contractive connecting operator

U of the form (3.2) so that S(z) can be realized in the form (3.3)

Remark 3.2. Although statement (4) in Theorem 3.1 concerning contract's
realizations does not appear in [1, 2,14], its equivalence to statements (1) - (3) caa
be seen by any one of the three approaches mentioned in Remark 2.2.

Similar to the notion introduced above for the unit-ball case, there is a notion
of weak coisometry for the polydisk setting as follows.

Definition 3.3. The operator-block matrix U of the form (3.2) is weakly cou'
metric if the restrictio\nof U' to the subspace

(3.5) DU

Eud

[Zdias((I - A*Zdia(()*)-lC`yl rXd
y

J ly

VEY

is isometric.
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When U is given by (3.2) and S(z) is given by (3.3), it is immediate that we
have the equality

[C(I - Zdiag(Z)A)-1Zdiag(z) I] U = [C(I - Zdiag(z)A)-1 S(z)J.

From this it is easy to verify the following general identity:

(3.6) I - S(z)S(()* = C(I - Z(z)A)-1(I - Z(z)Z(()`)(I - A*Z(()*)-1C*

+ [C(I - Z(z)A)-1Z(z) I] (I - UU*) (()*(I - A"Z(()')-1C']

where here we set Z(z) = Zdig(z) for short. It is readily seen from (3.6) that
the weal- coisometry property of the colligation (3.2) is exactly what is needed to
guarantee the representation

(3.7) I - S(z)S(()*
= C (I - Zdiag(z)A)-1(I - Zdiag(z)Zdiag(()*) (I - A* Zdiag(()*)-1C*

Note that the representation (3.7) has the form (3.1) if we take

3.8) Kk(z,() = C(I - Zdiag(z)A)-1Px,.(I - A*Zdiag(()*)-1C*

for k = 11. .. , d, where PM, is the orthogonal projection of X := ®a 1 Xi onto Xk.

3.1. Weakly coisometric canonical functional-model colligations. Let
us say that a collection of positive kernels {K1(z, (), ... , Kd (z, ()} for which the
decomposition 3.1) holds is an Agler decomposition for S. In view of (3.7), we see
that a realization 3.3) for S arising from a weakly coisometric colligation matrix
U 3.2 determines a particular Agler decomposition, namely that given by (3.8).

Our next goal is to find a canonical weakly coisometric realization for S com-
patible with the given Agler decomposition. Toward this goal we make the following
definitions.

Suppose that we are given a Schur - Agler class function S E SAd (U, 31) to-
gether with an Agler decomposition {K1(z, (), ..., Kd(z, ()} for S. We set

K(z,() = Kl(z,() +... +Kd(Z,()
Then K is also a positive kernel on 1<Dd and the associated reproducing kernel Hilbert
space 1L K) can be characterized as

d

W(K)=
11hi:

fi EN(K) fori=

with norm given by

I(R)
where s: ® 191(Kt) - l(K) is the linear map defined by

d fll .

(3.9) sf =fl+-"+fd, where f =®fi:o
i.=1

fd
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It is clear that ker s = {f E ®d19'{(Ki) : f1 (z) + + fd(z) 0}. If we let

K1(z, C)1
(3.10) T(z,

Kd(z, ()j
we observe that by the reproducing kernel property,

d

(3.11) fl(Kt)
i=1

d
r r= l f i (C),y\ (s f , K(-, ()y 1i

s-1 y

so that

(3.12)

Furthermore,

s* : K(., C)y -+ T(-, C)y

d

(ker s)-L = V T(-, ()y C ®H(Kk).
CED

d k=1
yEY

We next introduce the subspace

(3.13) D = V
CEDD4
yEY

of ®k-19d(Kk) and observe that its orthogonal complement can be described as

d d d

D1 =
I
f=(D fi E E xsfs(z) - 0

I-i=1 i=1 +=1

In addition, the straightforward computation
d

II'Il'(', ()yII®k.,'K (K,,) _ >(Kk ((, ()y, y)Y = (K(C, C)y, y)Y = IIK(-, C)y [(X)

k=1

combined with (3.12) shows that s* is an isometry, i.e., that s is a coisometry
We

remark that all the items introduced so far are uniquely determined from deco
position (3.1).

y
Given an operator-block matrix A = [A,3140=1 acting on ®d 1

sa

that A solves the structured Gleason problem for the kernel collection (K1,."'Kd}
if the identity

d

(3.14) fi(z)+...+fd(z)-[f1(0)+...+fd(0)jz,(Af),(z)
s.1

holds for all d d f-C K; where we write A z =
®d 1(A fMz}

E ®d I W(K,). Note that (3.14) can be written more compactly as
d d

(3.15) (sf)(z) - (sf)(0) = Ez,(A,.f)(z) for all f E ®H(Kk),
ti 1 b 1
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where s is given in (3.9) and where
d

(3.16) A. = [A1 ... Asd] : ® 7{(Kk) -- (Kt) (i = 1, ... ,
k=1

so that
d d d

(3.17) A = ®A.. = ['4tJ]:®7-t(Kk) -* ® 7t(K:)
%=1 k=1 {=1

We say that the operator B. U -4 ®k_17{(Kk) solves the structured h(Kk)-
Gleason problem for S if the identity

(3.18) S(z)u - S(0)u = z1(Bu)1(z) + + zd(BU)d(z) holds for all u E U.

The following is the parallel to Proposition 2.4 for the polydisk setting.

Proposition 3.4. The operator A: ®d17{(Ki) --* ®d7{(Ki) solves the
stru tuned Gleason problem (3.15) if and only if the adjoint operator A* has the
follovnng a tton on special kernel functions:

CiKi Y1 IK1(.,C)y

A*. ,-a andyEy.
6K (yJ Kd(, ()y Ka(0)y

The operator B. U _+ ® L1 h(Ki) solves the structured Gleason problem (3.18)
f S f a d on y if the adjoint operator B*: ®d 1 h(Ki) -+ U has the following
acts n n specw.l kernel functions:

KI'()y
B*: J iS(()*y-S(0)*y

forallCEltDd andyEY.

CdKd(',C)y

PROOF. Making use of notation (3.10) and (3.4) we can write the definitions
of A` and B` more compactly as

3.19

3.20

A*Zdi.g(()*T(., ()y = T(', ()y - T(., 0)y,
()y = S(()*y - S(0)*y.

By calculation (3.11),

()y - T(., 0)y)®d_11.i(Kt) _ ((Sf) (() - (ef)(0), y)y

On the other hand, it follows by the reproducing kernel property that

f, z)y)®d 1 (K _ (Zdiag(z)Af, T(, z)y)®;-l W(K,)

/ d
\\_ , y/

z=1 y
d

_ (zAfi(z)Y)
ti_1 y

and the two latter equalities show that (3.15) holds if and only if (3.19) is in force
for every y E Y. Equivalence of (3.18) and (3.20) is verified quite similarly. 11
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The following definition of a canonical functional-model colligation is the aaa,
logue of Definition 2.5 for the polydisk setting.

Definition 3.5. Given S E SAd(U, Y), we shall say that the block-operates
matrix U = [A B ] of the form (3.2) is a canonical functional-model coil gatwn
associated with the Agler decomposition (3.1) for S if

(1) U is contractive and the state space equals ®L11I(K,).
(2) A: ®d 19-1(Ki) - ®d 1 L(Ki) solves the structured Gleason problem

(3.15).
(3) B : U -* ®d 19d (Ki) solves the structured Gleason problem 3.18 for S
(4) The operators C: ®d1 f(Ki) - Y and D: U - y are given by

(3.21) C: f (z) H (sf)(0), D: u S(O)u.

Remark 3.6. For C and D defined in (3.21), the adjoint operators are given
by

(3.22) C*: y H T(., 0)y D*: y S(0)*y.

The formula for D* is obvious while the formula for C* follows from equalities

(f,C*y)®d_1VK,) = (Cf,y)Y = ((sf)(0),y)Y = (f,T ,0)y ®=1Ii K

holding for every f E ®d 9d (Ki).

Theorem 3.7. Let S be a given function in the Schur-Agler class SAd U, Y)
and suppose that we are given an Agler decomposition (3.1) for S. Then there ensts
a canonical functional-model colligation associated with {K1, ... , Kd}.

PROOF. Let us represent a given Agler decomposition (3.1) in the inner product
form as

d

E(CX (', C)y, ziK%(., z)y)%(K,) + (Y, Y')Y
i=1 d

= E(Ki(', Oy, K,,(., z)y ),. (K,) + (S(()*Y, S(z)'y')U,
i=1

or equivalently, as

(3.23)
(rzdI(c)*T(., C)yl f Zdiag(z)*T(., z)y,

I. Y ' L
YP

1

ER

((D,°_1 W(K,))®Y

IT(., ()Y
T(', z)y'LS(C)*Y

' [S(z)*Y', (®d_1

where T is given in (3.10). The latter identity implies that the map

(3.24) V . f
Zdiag(()*T(', ()yl ,

I

)y]
extends by linearity and continuity to an isometry from VV = D ® y (a subsPace
of (®d19i(Ki)) ® y-(3.13) for definition of V) onto

1

V f
T(', C)y ;1 ?{(Ki)J7Z_

CeDd,yey
LS(()*y] C L®U
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Let us extend V to a contraction U*: [®i ,y (K,) ] --> [®{ lu (K+) , Thus,

(3.25) U. = [A: C+ Zdi g(()*T(., ()y T(', ()y j
B D* y S(() y]

Computing the top and bottom components in (3.25) gives

(3.26) A*ZdIg(()*T(', ()y + C*y = T(., ()y,
(3.27) B* Zdi g(()*T(., C)y + D*y = S(C)*y.

Letting C = 0 in the latter equalities yields (3.22) which means that C and D are
of the requisite form (3.21). By substituting (3.22) into (3.26) and (3.27), we arrive
at (3.19) and (3.20) which in turn are equivalent to (3.15) and (3.18), respectively.
Thus, U meets all the requirements of Definition 3.5. 0

We have the following parallel of Remark 2.8 for the polydisk setting.

Remark 3.8. As a consequence of the isometric property of the operator
V 3.24) introduced in the proof of Theorem 3.7, formulas (3.19) and (3.20) can
be extended by linearity and continuity to define uniquely determined operators
AD : V -4 ®d 1 ?{(Ks) and BD : D -+ U where the subspace D of ®d 1 fl (Ki) is
defined in (3.13). In view of Proposition 3.4, we see that the existence question
is then settled: any operator A: ®d 1 ?l(Ki) -4 ®d1 N(Ki) such that A* is an
extension of AD from V to all of ®d 1 N(KK) is a solution of the structured Gleason

problem 3.15) and any operator B: U -+
®d1

?l(KK) so that B* is an extension
of the operator BD: V -+ U is a solution of the structured Gleason problem (3.18)
for S.

In the polydisk setting we use the following definition of observability: given
an operator A on ®d1 X, and an operator C: ®d_1 Xi - y, the pair (C, A)
will be called observable if equalities C(I - Zd;ag(z)A)-1Px,x = 0 for all z in a
neighborhood of the origin and for all i = 1, ... , d forces x = 0 in ®d Xi. The
latter is equivalent to the equality

3.28 V Px,(I - Xi for i = 1, ... , d
zEO,yEY

for some neighborhood A of the origin in Cd. The following theorem is the analogue
of Theorem 1.2 for the polydisk setting; portions of this theorem appear already in
[14, Section 3.3.11.

Theorem 3.9. Let S be a function in the Schur - Agler class SAd(U, y) with
a given Agler decomposition {K1,.. . , Kd} for S and let us suppose that

(3.29) U = tC D]
'®"

1u (Ki)1 _' {®d-1?i(Ki)I
J Y

is a canonical functional-model colligation associated with this decomposition. Then:

(1) U is weakly coisometric.
(2) The pair (C, A) is observable in the sense of (3.28).
(3) We recover S(z) as S(z) = D + C(I -- Zdiag(z)A)-1Zdie$(z)B.
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(4) If U = [c o] : (®d1 X,) ®Zl _+ (®d1 X,) ®Y is any other co tgatzft
matrix enjoying properties (1), (2), (3) above, then there is a canon,
functional-model colligation U = [ A D ] as in (3.29) which is rutarly

equivalent to U in the sense that there are unitary operators U - X, y
W(Kq) so that

(3.30) `9 B ®j i UU 0- ®d 1 U. 0 A B
[C D] [ 0 IY1 - [ 0 Iu] C D}

PROOF. Let U = [ c
n

] be a canonical functional-model realization of S asso-
ciated with a fixed Agler decomposition (3.1). Then combining equalities 319
(3.20) (equivalent to the given (3.15) and (3.18) by Proposition 3.4 and also for-
mulas (3.22) (equivalent to the given (3.21)) leads us to

(3.31) T(., ()y = (I - A'Zdiag(()')-1T(-,0)y = (I - A*Ztag (* -1C'y
and

(3.32) S(()*y = S(0)*y + B*Zdlag(()*T(-, ()y = D*y + B*Zd,ag ('T - (

Substituting (3.31) into (3.32) and taking into account that y E Y is arbitrary
get

(3.33) S(()' = S(0)* + B*Zdiag(()*(I - A*ZdI g (* _1C'

which proves part (3) of the theorem. Also we have from 3.31 and 3.1

V PP(Ki)(I - A*Zdiag(()*)-lC*y = V P,M K T ., ( y
CEDd CEDd
yEY yEY

V K. , (y = 3{ K,
CEDd
yEY

and the pair (C, A) is observable in the sense of (3.28). On the other hand, equallt 6
(3.19), (3.20) are equivalent to (3.25). Substituting (3.31) into 3.25 and Into
identity (3.23) (for x = ( and y = y') gives

* Z(()*(I - A'Z(()')-IC'y _ (I - A*Z(()*)-IC'yU
y - [ S(()*y

and

If I

II

LZ(()*(I - A' (()')-1C*y1II
- II [(I

- A Z
))

y

respectively. The two latter equalities show that U* is isometric on the space 9U*
(see (3.5)) and therefore U is weakly coisometric.

To prove part (4), let us assume that

(3.34) S(z) = S(0) + C(I - Zdj g(x)A)-1Zdi.,g(z)B

is a weakly coisometric realization of S with the state space ®a 1 X, and sucb

that the pair (C, A) is observable in the sense of (3.28). Then S admits an
A9111

decomposition (3.1) with kernels K; defined as in (3.8):

K,(z,() = C(I - Zdiag(z)A)-1Pj (I - A*Zd,ag(()*) 1C'
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for i = 1, ... , d. Let 1L(Ki) be the associated reproducing kernel Hilbert spaces and
let I, X, - X = ®dI X. be the inclusion maps

04)

Since the pair (C, A) is observable, the operators U,: X, -1L(KK) given by

(3.35) U,: xi -+ C(I - Zd1g(z)A)-1lixi

are unitary. Let us define A E G(®d 11t(K,)) and B E 'C (U, ®d1 f(Ki)) by

/ d \ d

(3.36) A U,l Ui) À and B Ui B.

In more detail:

\\A =
jA,] a=1 where

(3.37) A,j : C(I - Zdiag(z)A)-1l3xj -4 C(I - Zdiag(z)A)-1liAijxj

Define the operators A,. as in (3.16) and similarly the operators Ai. for i = 1, ... , d.
Take the generic element f of ®d f (Ki) and x E X in the form

d _ d

3.38 f z) = ®C(Ix - Zdiag(z)A)-1Ijxj, x = ®xj E X.
3=1 j=1

By 337, we have

3.39

r(I - Zdig(z)A)-1I1xi'

A f) z) = [Ail ... Aid]

(I - Zdiag(z)A)-"dxd
d

>Aij(C(I - Zdiag(z)A)-1ljxj)
j=1
d _

EC(I - Zdiag(z)A)-1liAijxj
3=1

= C(I - Zdiag(z)A)-1IjAi.x.

For f and x as in (3.38), we have

d d

sf) z) >C(Ix - Zdiag(z)A)-lljxj = C(Ix - Zdiag(z)A)-1 EIjxj
3=1 j=1

= C(Ix - Zdiag(z)A)-1x

which together with (3.39) gives

(sf)(z) - (sf)(0) = C(I - Zdig(z)A)'1x - Cx
= C(I - Zdiag(z)A)-1Zdiag(z)Ax

d d

_ E zj C(I - Zdig(z)A)-1I3Aj.x = E zj
3=1 j=1
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which means (since f is the generic element of ®d U(K,)) that the operators
A11,,.. , Ad. satisfy identity (3.15). Furthermore, on account of (3.38), (3.35 and
(3.34),

d d _
zi(Bu){(z) = zaC(I -

Zdig(z)A)-1I,B_iu

i=1 i=1
d

= C(I - Zdiag(z)A) zjT F,u
s=I

_ C(I - Zdiag(z)A)-1Zdiag(z)Bu = S(z)u - S 0 u

and thus, B solves the Gleason problem (3.18) for S. On the other hand, for an s
of the form (3.38), for operators Ui defined in (3.35), and for the operator C defined
on ®d

i=1 1t(K;) by formula (3.21), we have

d

G'(
Ui)

= (Uixi)(0) =
C(I - Zdiag(0)A)-1ZX, = CI,z, = Cs

,-1 i=1 %=I s=1

and thus C(®d 1 U2) = C. The latter equality together with definitions 336
implies (3.30). Thus the realization U = [ A B } is unitarily equivalent to the ong

inal realization U = [ c
D

] via the unitary operator Us. This realization is

a canonical functional-model realization associated with the Agler decomposition
{K1, ... , Kd} of S since all the requirements in Definition 3.5 are met_

We conclude this section with a theorem parallel to Theorem 2.9. In analogy
with the ball setting, we say that the operator A on ®d I W(K, is a
solution of the structured Gleason problem for the kernel collection {K1,...,Ka}
if in addition to identity (3.15) the inequality

d

IIAf II®d W(K.) 1 1 ' <- Ilf 112 d a, fl(K.) - (Sf)(o) y
i=1

holds for every function f E ED", W (Ki) or equivalently, the pair (C, A) is con-
tractive:

A`A+C*C < I,
where C: ® I ?t(K;) - Y is the operator given in (3.21). By Definition 3.5,
for every canonical functional-model colligation U = [ A

D
] associated with a given

Agler decomposition of S, the operator A is a contractive solution of the structured
Gleason problem (3.15).

Theorem 8.10. Let (3.1) be a fixed Agler decomposition of a given function
S E SAd(U,y) and let C and D be defined as in (3.21). Then

(1) For every contractive solution A of the structured Gleason problem (3.15),
there is an operator B = ® B, : U -+ ®d 19.1(K,) such that U = I c p]
is a canonical functional-model colligation for S.

(2) Every such B solves the Gleason problem (3.18) for S.

PROOF. We start the proof with two preliminary steps.
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Step 1. Let A of the form (3.17) solve the Gleason problem (3.15). Then

(3.40) C(I - Zdi g(z)A)'1 f = (sf)(z) I z E Dd; f E ®?l(Ki) I

21

where s and C are defined in (3.9) and (3.21), respectively.

PROOF OF STEP 1. To show that identity (3.15) is equivalent to (3.40) we take
A in the form (3.17) and define the operators

A1. 0
0 A2.

(3.41) A1. A2. _

0 0

...,

d

so that A,.: ®d1?t(K,) -3 ®d1 f(Ki) and A Ai.. On account of (3.41)
s=1

and due to the block structure (3.4) of Zdiag(z) we have

(I - Zdiag(z)A)-1 = (I - z1A1i - ... - ZdAd.)-1
cc

J:(z1A1. + .. + ZdAd.)k
k=O

Applying the operator C(I - Zdiag(z)A)-1 to an arbitrary f E (E)d?j (K,) and
making use of formula (3.21) for C, we get

3.42 C I - Zd,ag(z)A)-1 f
cc

=CE(z1A1.+...+ZdAd.)kf
k=O

d d

_ (sf)(0) +Ezi(sAi.f)(o) + E ziz,(sAi.A;.f)(0) +...
i=1 i,9=1

On the other hand, by writing (3.15) in the form

d

(Sf) (z) = (Sf) (0) + E zi (sAi, f) (z)
i=1

and iterating the latter formula for each f E ®d1 I{(Ki), we get

(3.43) (s f) (z)

\(sA.f)(0)_ (sf)(0) + E zj" + E zi.
7i=1 L j2=1

11ll
d

1J.

ik=1
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Since the right-hand side expressions in (3.42) and (3.43) are identical, 3.40 fol.
lows. Now we have from (3.40)

(f, (I _ A*Zdiag(z)*)-lC*y) = (C(I - Zdiag(z)A)-1f,y) = ((sf) z y
=

for every z E IIDd and f E ®a 14l(Ki), and thus, equality (3.31) holds.

Step 2. Given operators A, C and D with A of the form 3.17) equal to
contractive solution of the structured Gleason problem for the kernel collectwre
{K1,... , Kd} and with C and D given by (3.21), if U = [ A D] ss a contractors
realization of S for some operator B = ® B,: U --> ®d 17-1(K,), then B solies th,
®=1f(Kk)-Gleason problem for S, i.e., B satisfies identity 3.18

PROOF OF STEP 2. Since U = [A D ] is a realization for S, equality 3.33
holds. Making use of equality (3.31) (which holds by Step 1 one can write 3.33
as

B*Zdiag(()"T(', ()y + D*y = S C *y
or, in view of formula (3.21) for D, as

(3.44) B'Zdlag(()`T(-, ()y = S(()'y - S 0 'y.

Taking the inner product of both parts in (3.44) with an arbitrary functi n f E
E )d leads us to Zdiag(z)Bu = S(z)u-S(0 u which is the same as 3.18

To complete the proof of the theorem, it suffices to show that there exists an
operator B : U -3 ® 1 7d (Ki) such that equality (3.33 holds for every u E U and
the operator matrix

(3.45)
U. = [B.

D'] [Wi IY (K 1 ui L®d I K
is a contraction. As we have seen, equality (3.33) is equivalent to (3.41 , ,which
in turn, defines B* on the space V introduced in (3.13). Let us define B: V i

d N(Ki) by the formula

B : Z(()*T (', ()y = S(()*y - S(0)*y

and subsequent extension by linearity and continuity; it is a consequence of the
isometric property of the operator V in (3.24) that the extension is well-defined
and bounded. We arrive at the following contractive matrix-completion problem:
find B: U - ® 17l(Ki) such that B* ID = B and such that U' of the form (3.45
is a contraction. Following [10] we convert this problem to a standard matrix
completion problem as follows. Define operators

d d

Tii : Dl -. ®1(Ki), Tia : D ®Y -3 e 9i(KI), T22: V ®Y - U
t-1 s=1

by

.(3.46) Tii = A*jD.L, T12 = [A* Iv Cl , T22 = [B D']
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Identifying CD®y, with [9d_,11(K.) I we then can represent U* from (3.45) as

(3.47) Til T12 Dl ® 1 W(K,)U* = `X T221 `D ®Yj U ]
where X = B*IDi is unknown. Thus, an operator B gives rise to a canonical
functional-model realization U = [ A D ] of S if and only if it is of the form

r 11 r 1 d

B*
L L $=I

where X is any solution of the contractive matrix-completion problem (3.47). But
this is a standard matrix-completion problem which can be handled by the well-
known Parrott's result [29]: it has a solution X if and only if the obvious necessary
conditions hold:

3.48 1 [T11 TI-2J 11 < 1,
II LT221 II < 1.

Making use of the definitions of T11, T12, T22 from (3.46), we get more explicitly

[Tu T12J = [A*
C*J

,
1T121 = A*ID C1
LT22 B D* J

Thus the first expression in (3.48) is contractive since A is a contractive solution
of the stru tured Gleason problem (3.15), while the second expression collapses to
V see f rmula 3.24 ) which is isometric by (3.1). We conclude that the necessary

nditi ns 3.48 are satisfied and hence, by the result of [29], there exists a solution
X to problem 3.47. This completes the proof of the theorem.

4. de Branges-R.ovnyak kernels associated with a Schur-Agler-class
function on a domain with matrix-polynomial defining function

A generalized Schur class containing all those discussed in the previous sections
as special cases was introduced and studied in [4, 9] (see also [5] for the scalar-valued
case and can be defined as follows. Let Q be a p x q matrix-valued polynomial

4.1

g1j(z) giq(z)

gpl(z) ... gpq(z)j

such that

4.2 Q(0) = 0

and let DQ E C' be the domain defined by

DQ={z ECn: 11Q(z)I1 <1}.

Now we recall the Schur Agler class SAQ(U,Y) that consists, by definition, of
G U, Y)-valued functions S(z) = S(zl, ... , zn) analytic on DQ and such that IIS(T) II
< 1 for any collection of n commuting operators T = (Ti, ... , Tn) on a Hilbert
space 1C, subject to Q(T)I1 < 1. By [5, Lemma 1], the Taylor joint spectrum of
the commuting n-tuple T = (T1,...,TT) is contained in DQ whenever JJQ(T) 11 < 1,
and hence S(T) is well defined by the Taylor functional calculus (see [19]) for any
G U, y)-valued function S which is analytic on DQ. Upon using JC = C and T, = z.

Q(z) = : Cn -+ Cpx9
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for J 1, ... , n where (zl, ... , is a point in Dq we conclude that any funrt
SAq (U, Y) is contractive-valued, and thus, the class SAq U, Y) is th IL
the Schur class S.D. (U, y) of contractive valued functions analyt'c on Dq B
von Neumann result, in the case when Q(z) = z, these classes coincide- in gene
SAq (U, Y) is a proper subclass of SDq (U, Y). The following result appears
(see also [5] for the scalar-valued case U - Y = C) and is yet another m to
analogue of Theorem 1.1. We will often abuse notation and will ante Q z unst
of Q(z) ®1 where I is the identity operator on an appropriate Hilbert space
from the context. When the following theorem is viewed as a parallel f Th rem
we see that, just as in the polydisk setting, there is no parallel to dit as

and (lb).

Theorem 4.1. Let S be a C (U, Y) -valued fund on defined on Vq The
lowing statements are equivalent:

(1) (c) S belongs to SAQ(U,Y).
(2) There exists a positive kernel

I[S11 ... K1
(4.3) K = : Dq Dq -3.C Yp

Cpl ... I[S

which provides a Q-Agler decomposition f r S .e , su that f
z,(EDq,

F q

(4.4) Iy - S(z)S(()* = E 1Kkk(x, () - E E 9 z q (,, z
k=1 k-1 , =1

(2') There exist an auxiliary Hilbert space X a d a fu tz

(4.5) H(z) = [H1(z) ... Hp(z 1

analytic on Dq with values zn C(XP,Y) so that f r every z, ( E Dq

(4.6) Iy - S(z)S(()* = H(z)(Ix - Q z Q ( * H C*(3)

There exist an auxiliary Hilbert space X and a u i tary connec g Perat
U of the form

(4.7) U = [C
D1 L UJ 11Y

so that S(z) can be realized in the form

(4.8) S(z) - D + C(Ix - Q(z)A) 'Q(z)B for all z E Dq.

(4) There exist an auxiliary Hilbert space X and a contractive connectIn9 °'
erator U of the form (4.7) so that S(z) can be realized in the form (4'3

Remark 4.2. If S = [ S S12 ] E SAq (Ul ® U2, Yl ® Y2), then the block entry

S,, belongs to the Schur Agler class SAQ (U,, Y,) for i, j = 1, 2. For the P'°°f'

suffices to note that [I S,, (T) 11 S 11 S (T) II
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Remark 4.3. The equivalence (2) (2') can be seen by using the Kol-
mogorov decomposition for the positive kernel K:

H1(z)

(4.9) K(z, C) _ [HI(C)" Hp(()"]
Hp(z)

The implication (4) (1) can be handled by any of the three approaches
sketched in Remark 2.2. Following the approach from [10], we first handle the case
where U is coisometric, using the identity

(4.10) I- S(z)S(()* = C(I - Q(z)A) 1(I - Q(z)Q(C)")(I - A"Q(C)")-IC"

+ [C(I - Q(z)A)-1Q(z) I] (I - UU*) f Q(C)"(I - A"Q(C)")-IC`
I

holding for S of the form (4.8) and U given by (4.7), the straightforward verification
of which is based on the identity

[Q1-Q(z)A)-1Q(z) I] U = [C(I - Q(z)A)-1 S(z)].

Then the general (contractive) case follows by extension arguments and Remark 4.2.

Remark 4.4. With no assumptions on the polynomial matrix Q(z) some de-
gener ies ccur which can be eliminated with proper normalizations. We note first
f all th t it is natural to assume that no row of Q(z) vanishes identically; other-

wise one can cross out any vanishing column to get a new matrix polynomial Q(z)
f smaller size which defines the same domain DQ in C. Secondly, in the second

term of the Q-Agler decomposition (4.4), the (i, l)-entry Kj of iK is irrelevant for
any pair of indices i, I such that at least one of q;k (z) and q1k (z) vanish identically
f r each k = 1,... , q. Note that if the first reduction has been carried out, then
all drag nal entries K,,: are relevant in the second term of (4.4) in this sense. It
f lows that, without loss of generality, we may assume that K11 (z, () - 0 for each
such pair of indices (i, 1). To organize the bookkeeping, we may multiply Q(z) on
the left and right by a permutation matrices II and II' (of respective sizes p x p and
q x q so that Q z) = IIQ(z)II' has a block diagonal form

(1) (Z) 0

4.11

0

with the ath block Q a) (a = 1,. . . , d) of say size pa x qq and of the form

Q(') (z) = [qia) (z)lp-1 j-I

and irreducible in the sense that Q has no finer block-diagonal decomposition after
permutation equivalence, i.e., for each a for which Q(k) is nonzero and for any
pair of indices i,l (1 < i,l < pa), there is some k (1 < k < qj) so that either
q,k (z) or glk)(z) does not vanish identically. Without loss of generality we may
assume that the original matrix polynomial Q is normalized so that Q = Q. We
may then assume that the positive kernel in (4.3) and (4.4) has the block diagonal
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C) 0

0 K(d)(z,C)

where K() in turn has the form

11) K1Po

Y&1= :DgxDqYP° .
Kp.1 P.Pa

Under the normalizing assumption that K has this block diagonal f rm 4.12
Q(z) is written as a direct sum of irreducible pieces (4.11 , the nstructi ns to
follow can be done with more efficient labeling but at the cost of an additi nal rer
of notation. We therefore shall assume in the sequel that this diag nal structure
not been taken into account (or that the matrix polynomial Q is already irredu e

until the very end of the paper where we explain how the polydisk settino can
seen as an instance of the general setting.

As in the previous particular settings of the ball and of the polydisk, we ntro-
duce the weak-coisometry property as the property equivalent to 4.10 Ilapsma

to

I - S(z)S(()* = C(I - Q(z)A)-1(I - Q(z)Q (* I - A*Q C * -1C*.

Definition 4.5. The operator-block matrix U of the form 4.7 is weakl iso-

metric if the restriction of U* to the subspace

(4.13) DU. V (()*(I - A*Q(()* -1C*y1
C L Y 1LSEDQ

VEY

is isometric.

Due to assumption (4.2), the space DU. splits in the form Vu. = V ® Y where

(4.14) V = V Q(()*(I - A*Q(()*)-1C*y C X4.
CEDQ,yEY

4.1. Weakly coisometric canonical functional-model Q-realizations.
Let us suppose that we are given a function S in the Schur Agler class SAQ U,Y
together with an Agler decomposition K as in (4.3) (so (4.4) is satisfied). We aW
use the notation Q.k (S) for the k-th column of the polynomial matrix Q. What

actually comes up often is the transpose:

(4.15) Q.k(C)T = [g1k(() q2k(() ... gpkMI .

Note that with this notation the Q-Agler decomposition for S (4.4) can be written
more compactly as

P 9

(4.16) Iy - S(z)S(()* _ Kk,k(z, S) - E QT (Z)IK(Z' ()QT

k 1 j 1

an expression more suggestive of the Agler decomposition (3.1) for the pol)dvk

case.
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We say that the operator A: f(K)P -+ f(K)9 solves the Q-coupled Gleason
problem for W (K) if

P
/ /(4.17) E(fk,k(z) - fk,k(0)) _ E Q.k(z)T[Af)k(z) for all f E 4l(K)p

k=1 k=1

so each f E f(K)P has the form

f1 fk,l
f = where fk = E f(K).

fP fkP

Similarly, we say that the operator B: U --* 9'l(K)q solves the Q-coupled f(K)-
Gleason problem for S if the identity

(4.18 S(z)u - S(O)u = E Q.k(z)T[Bu]k(z) holds for all u E U.
k=1

The following proposition gives the reformulation of Gleason-problem solutions in
terms of the adjoint operators. In what follows, we let lei.... , ep} to be the
standard basis for CP.

Proposition 4.6. The operator A: f(K)P -4 f(K)q solves the Q-coupled
Gleason problem 4.17) if and only if the adjoint A* of A has the following ac-
twn on special kernel functzons:

()Q.1(()T*y

K(', S)E1y I )Ely

4.19 A*:

K(', c)Q.q(()T*y K(', ()Epy j(', 0)Epy
fo all CEDQ andyEY, where Ei=Iy®e, fori=1,...,p:

Iy 0 0

0 Iy
4.20 E1 = , E2 = , ... , EP =

0
0 0 Iy

The operator B: U --* f(K)q solves the Q-coupled f(K)-Gleason problem (4.18)
for S tf and only if B* : 91(K)q -+ U has the following action on special kernel
functions:

K(., ()Q.1(S)T*}/
(4.21 B*: S(()*y - S(O)*y for all E DQ and y E Y.

(', C)Q.q(C)T *y

PROOF. We start with the identity

(z, C)Ely K(z, )Q.1(S)T*y
(4.22) Q(()*

K(z,C)Epy

which holds for all z, C E DQ and y E Y; once Q(C)* is interpreted as Q(()* ®Iy and
similarly for Q.k(()T*, this can be seen as a direct consequence of the definitions
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(4.1), (4.3), (4.15) and (4.20). Letting

(4.23)

for short, we then can write formulas (4.19), (4.21) more compactly as

(4.24) A* Q(()*T(., ()y = T(-, ()y - T(., 0)y,
(4.25) B*Q(()*T (., ()y = S(()*y - S(O)*y
where now Q(()* is to be interpreted as Q(()* ® I7t(K). In the following computa-
tions, Q(()* is either Q(()* ®Iy or Q(()* (9 IW(K) according to the context. B)
the reproducing kernel property, we have for every f = ®k=1 fk E K X P,

P P

(4.26) ()y)IR(K)P = E(fk,K(., C)Eky)-U(K) _ Ekfk(( y y
k=1 k=1

P r(- (fkk
k=1

Y.

Therefore,

(4.27) (f, T (., ()y - T(., 0)y)n(K)P = ((fk,k(C) - fk.k 0 ), y} .

k_1 Y

On the other hand, it follows again from (4.26) that

(f, A*Q(z)*T(., z)y)N(K), = (Q(z)Af,T (', z)y)f(K)P = z , y
,_1 y

and since
P P 9

(4.28) E[Q(z)Af]j,j(z) = EE qjk(z)[Afl k,,7(z)
j=1 j=1 k=1

=
(
1 g7k(z) [Aflk,., (z)) _ E

k=1 j=1 k=1

we get

(f, A*Q(z)*T(., z)y)-K(K)v
[Af]k(z), y

Yk_1 !! the
Since the last equality and (4.27) hold for every f E 9.1(K P, E VQ and Y E y,

equivalence of (4.17) and (4.24) (which is the same as (4.19)) follows. Equivalence

of (4.18) and (4.25) follows by the same argument from equalities

(u, S(()*y - S(0)*y)u = (S(()u - S(0)u, y)Y
and

(u,B*Q(z)*T(.,z)y)u = (Q(z)Bu,T(-,z)y)R(K)n
P j:4E[Q(z)Bu]j,j (z),yQ.k(z)T[Bu]k(z)lY y

7=1 Y k=1

holding for all u E U and Y E Y.
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Just as in the particular cases discussed in the previous sections, it turns out
that the formulas (4.19) and (4.21) can be extended by linearity and continuity to
define uniquely determined bounded well-defined operators

AD: D-+9d(K)P, BD: D-+U

as a consequence of the isometric property of the operator V defined below in (4.33).

Definition 4.7. We say that the operator-block matrix U = [ A
D

]
:

U -+ 9d(K)4 ® Y is a canonical functional-model colligation matrix for the given
function S and Agler decomposition 1[( if

1) U is contractive,
2) The operator A solves the Q-coupled Gleason problem (4.17) for 4{(1[x).
3) The operator B solves the Q-coupled N(K)-Gleason problem (4.18) for S.
4 The operators C: f(K)P -+Y and D: U -+Y are given by

I
J1(z)

4.29 C: H
fP(z)

F rmulas 4.25) can be written equivalently in terms of adjoint operators as
follows:

4.3 C* : y H 0)y D*: y ,-+ S(O)*y

where T is defined in (4.23). The next theorem is the analogue of Theorem 3.7.

Theorem 4.8. Let S be a given function in the Schur-Agler class SAQ(U, Y)
and suppose that we are given an Agler decomposition (4.4) for S. Then there exists
a canonical functional-model colligation associated with the kernel K.

PROOF. Let us rearrange the given Agler decomposition (4.4) or (4.16) as

9
r r r

P
rly + E C)Q.k(C)T* = S(z)S(C)* + Ej K(z, C)Ej,

k=1 j=1

and then invoke the reproducing kernel property to rewrite the latter identity in
the inner product form as

4.31) t(K(', K(., z)Q.k(z)T*y')n(x) + (y, y')Y
k=1 p

= E(K(., C)Ejy,K(., z)E,,U')W(x) + (S(C) *y, S(z)*y')U.
2_1
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The latter can be written in the matrix form as

K(., C)Q.I (()T*y K(., z)Q.i (z)T*

(K.q()T*y'
y J 7{(K)Q®y

K(', ()Eiy

K -, z)Epy'
S(()'y S(z 'y' x D

or, upon making use of notation (4.23) and of identity (4.22 , as

(4.32) Q(C)'T(', ()yl f (z)'T(, z)y'
y J' L y f(K)Q%y

,Cyl
v]'[Sz*yI

The latter identity implies that the formula

(4.33) V : Q(C)'T(-, ()
y rs

y (()yyl

R K) 6J4

extends by continuity to define the isometry from Vv = D ® Y C fl(X q ® y see
(4.14) for definition of D) onto

T(', ()y W(K)p
` LS(()*y] C

S EDQ
VEY

Let us extend V to a contraction U' (K)q }
[W(A)p1.

Thus,

,y.(4.34) U' = B* AC:[T(.C)l

D L y y S(()'y
omputation of the top and bottom components in (3.25) givesC

(4.35) A'Q(C)'T(', ()y + C'y ()y,
(4.36) B*Q(C)*T(', ()y + D'y = S(()'y

Letting C = 0 in the latter equalities and taking into account (4.2) leads us to (4'36

from which we see that C and D are of the requisite form (4.29). Substitutiot°f
(4.30) into (4.35) and (4.36) then leads us to (4.24) and (4.25) which are eq

alent to (4.17) and (4.18), respectively. Thus we conclude that U is a can° 0
functional-model colligation as wanted.

For this general setting we define observability as follows: given an
calledA: X' - Xq and an operator C: XP -4 Y, the pair (C, A) will be

caapll

Od of
observable if the identities C(I - Q(z)A)-'Zx = 0 for all z in a neighb0tl to

the origin and for all i = 1, ... , p forces x = 0 in X. By Z : X - Xv
den°
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the inclusion map which embeds X into the i-th component of XP = X ® . ® X.
Thus

(4.37) 1,: xi - I x, + and Ti : I x, I - x,.

0 XP

The Q-observability can be equivalently defined in terms of adjoint operators as

(4.38 Vt2Z(I A*Q(z)*) 1C*y:zEA,yEY,i=1,...,p}=X

where A is some neighborhood of the origin in C. The following theorem is the
analogue of Theorem 1.2 for the present general setting.

Theorem 4.9. Let S be a function in the Schur-Agler class SAQ(U,Y), let
the postttve kernel K of the form (4.3) provide an Agler decomposition (4.4) for S
a d suppose that U = [C D] : 9{(K)P ® U -3 9{(K)9 Y is a canonical functional-
model llagatton assoctated with S and K. Then the following hold:

1 U is early cotsometrtc.
2 The p (C, A) is Q-observable in the sense of (4.38).
3 'Kr reco er S as S(z) = D + C(I - Q(z)A)-1Q(z)B.
4 If U =

lA
A 13- D1 : XP ® U -3 X9 ® Y is another colligation matrix enjoying

p ert es (1), (2), (3) above, then there is a canonical functional-model
col -g tzon U for (S, K) such that U and U are unitarily equivalent in the
sense that there is a unitary operator U: X -+9-l(K) so that

4 39 [C D] 1®P01
U ®9p1 II I4 fC D

PROOF. Let U = [C
D]

be a canonical functional-model realization of S asso-
ciated with a fixed Agler decomposition (4.4). Then combining equalities (4.24),
4 25 equivalent to the given (4.17) and (4.18) by Proposition 4.6) and also for-

mulas 4.30 equivalent to the given (4.29)) gives

4.40 y = (I - 0)y = (I - A*Q(()*)-1C*y

and

4.41 S(()*y = S(0)*y + B*Q(()'T ()y = D*y + B*Q(()*T (., ()y

Substituting (4.40) into (4.41) and taking into account that y E Y is arbitrary, we
get

4.42) S(()* = S(0)* + B*Q(()*(I - A*Q(()*)-1C*

which proves part (3) of the theorem. Also we have from (4.40)

V Ze(I-A'Q(C)*Y1C*y= V ZtiT(,()y
tEDq VEY. (EDq,yEY,

+=1,...,P % 1,...,P



32 J. A. BALL AND V BOLOTNIKOV

and we can proceed due to (4.37) and (4.23) as follows-

V Z,*T(., C)y = V C) Esy = V K
(EDq,yEY, (EVq,yEY, (EDQ

i-1,...,p a=1,...,p YEY

Thus the pair (C, A) is Q-observable in the sense of (4.38). On the other han
equalities (4.24), (4.25) are equivalent to (4.34). Substituting (4.40 into 4.34 an
into identity (4.32) (for z = ( and y = y') gives

U. rQ(C)*(I - A*Q(()*)-1C*y1 = [(I - A`Q C * -IC-
Y J L S ('y

and

II

Q(()*(I -
II - II

[(I - A*QS
.y -1C*y,

respectively. The two latter equalities show that U* is isometric on the space Du
(see (4.13)) and therefore U is weakly coisometric.

To prove part (4), let us assume that

(4.43) S(z) = S(0) + C(I - Q(z)A)-1Q(z b

is a weakly coisometric realization of S with the state space X and such that the
pair (C, A) is Q-observable in the sense of (4.38). Then

I - S(z)S(C)* = C(I - Q(z)A)-1(I - Q(z)Q ()' I - A`Q C

which means that S admits a representation (4.6) with H z = C I - Q z A-
Let Z; be given as in (4.37). Representing H in the form 4.5 with

(4.44) HH(z) = C(I - Q(z)A)-1Z

we then conclude from Remark 4.3 that S admits the Agler decompositi n 4 4

with

Kai(z, () = C(I - Q(x)A)-1Z,Z (I - A'Q(C)*)-1C' for i, j =1,.,,,p

Let W(K) be the reproducing kernel Hilbert space associated with the posithe
kernel K = Let us arrange the functions (4.44) as follows

Hj(z) C(I - Q(z)A)-11i
(4.45) G(z) := =

Hp(z) C(I - Q(z)A)-1I

Since by construction K(z, C) _ G(z)G (()' and since (15, A) is Q-observable, the
formula

(4.46) U: x,-4G(z)x

defines a unitary map from X onto ?{(K). Let us define the operators A: ?L(]K)p
?L(K)9 and B: U -+ W(K)9 by

(4.47) AI®U/=I®u)A and B = (ED9U)i=1 \% 1 / ti 1
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In more detail, using representations

All .. A1P

A= :XP-iX4

we define

Aqj ... AqP

Aql

B1

and B= U-}XQ,

Bq

33

Bl

f(K)P -+ 3{(K)9 and B = U -4 4l(I[S)9

B9

block-entrywise by

4.48) A%3- G(z)x -+ G(z)A4'x and Btu. = G(z)Bz'a

for i = 1, ... , q and j = 1. .. , p. We next show that the operators A and B solve

the Gleason problems (4.17) and (4.18), respectively. To this end, take the generic

element f of 3 l (K)P in the form

G(z)xl
4.49 f(z)

U(Z)XP
where x := XP.

xp

On account of 4.45), we have for f and x as in (4.49),

P P _/
F, fk,k(Z) _ F, C(I - Q(z)A)-llkxk
k=1 k=1 P

=CU - Q(z)A)-'Elkxk = C(I - Q(z)A)-lx.

k=1

Therefore, and since Q(0) = 0, we have

P _
4.50 F,(fk,k(z) - fk,k(0)) = C(I - Q(z)A)-lx - Cx

k=1

= C(I - Q(z)A)-1Q(z)Ax.

On the other hand, we have by (4.45) and (4.48),

[Aflk,(z) = It AkYG(x)xY1t-

E Akixs(G(z)
_P

E Akix1 C(I - Q(z)A)-'ij
P

Y=1 a=1

and it follows directly from (4.37) and (4.1) that

P 9 P

E E cjk(z)Z, Akixi = Q(z)AX.
y=1 k=1 s=1
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Making use of the two last equalities and of (4.28) we get
P 9

Q.k(z)T[Af]k(z) -EEgjk(z)[Af]k,j(z)
k=1 j=1 k=1

P 9 _ p

qjk (z)C(I - Q(z)A)-1Zi E Ak,x,
j=1 k=1 1=1
_ P Q P

= C(I - Q(z)A)-1 E E q, k(z)Zi > Ak,x.
j=1k=1 s=1

= C(I - Q(z)A)-1Q(z)Ax

which together with (4.50) implies (4.17). Similarly we conclude from (4.15), (4.45 ,

(4.47) and (4.43) that
P 9

Q.k(z)T[Bu]k(z) = qjk(z)[Bku]3(z)
k=1 j=1 k=1

P 9

1: 1:_ gjk(z)[G(z)Bku]j
j=1 k=1
P 9 _

_ gjk(z)C(I - Q(z)A)-113Bku
j=1 k=1

P q

= C(I - Q(z)A)-1 E E CJU k(z)zjBku
j=1 k=1

= C(I - Q(z)A)-1Q(z)Bu = S(z)u - S(0)u

and thus, B solves the Gleason problem (4.18) for S. Finally, for f and x of the
form (4.49), for the operator U defined in (4.46) and for the operator C defined on
f(]K)P by formula (4.29), we have

P P P _ P _

C(® U)x = Cf = E fk,k(0) _ E C(I -' Q(0)A)-1Zkxk = E CZkxk = Cx,
i=1 k=1 k=1 k=1

and thus,

CI®U/=C.

The latter equality together with (4.47) implies (4.39). According to Definition 4.7,
the colligation U = [A D ] is a canonical functional-model colligation associated
with the Agler decomposition K of S. C

Let us say that the operator A: H.(1K)v -+ f(K)4 is a contractive solution of the
Q-coupled Gleason problem for 7-l(1K) if in addition to identity (4.17) the inequality

k

IIfII2.t(K)P -EIlfk,k(O)IIy
1 1

holds for every function f E f(1K)P or equivalently, if the pair (C, A) is contractive
where C: 4{(1K)P -, Y is the operator given in (4.29).
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Theorem 4.10. Let (4.4) be a fixed Agler decomposition of a given function
S E SAQ(U,Y) and let C and D be defined as in (4.29). Then

(1) For every contractive solution A of the Q-coupled Gleason problem (4.17),
there is an operator B : U -+ W(K)9 such that U = [A

D
] is a canonical

functional-model colligation for S.
(2) Every such B solves the Gleason problem (4.18) for S.

The proof is very much similar to the proof of Theorem 3.10 and will be omitted.
In conclusion, we compare functional model Q-realizations obtained in this

section with particular cases considered in Sections 2 and 3.

The unit ball setting. In this case, Q = Zrow, (in particular, p = 1) and def-
inition 2.2) can be interpreted as the (uniquely determined) Agler decomposition
of the form (4.4) with the kernel K = K. Then (4.23) gives T(z, () = KS(z, () and
4.33 coincides with (2.15). Since all canonical functional-model colligations are

obtained via contractive extensions of isometries V (from (2.15) for the unit ball
setting or from (4.33) for the general Q-setting), it follows that realizations con-
structed in Section 2 can be obtained from those in Section 4 by letting Q = Zr.W.
Moreover, if Q = Zr.,.,, then observability in the sense of (4.38) collapses to ob-
servability defined in part (2) of Theorem 2.9.

The unit polydisk setting. In this case, Q = Zdjag, p = q = d, and the
Agler representation (3.1) for an S E SAd(U, Y) can be written in the form (4.4)

K, o

with the kernel K = Then (4.23) takes the form
0 Kd

K1(z, C) ® e1

4.51 T(z, C) =

Kd(z, C) ® ed

where lei,..., ed} is the standard basis for Cd. Observe that (4.51) is not the same
as 3.10 . Now 4.33) collapses to

4.52)
dKd(z, C) (9 ed

V

whereas 3.24) can be written as

CiKi(z,C) Ki(z,C)

4-53 V:
CdKd(z, C) Kd(z, C)

y s(C)*y

To get canonical functional-model realizations as in Definition 3.5, we extend V to
a contraction U' B; D; : ®d 131(Ki) ® Y -b ®d 13'1(Ki) ® U. If for such a
contraction we let U to be of the form (3.2) with

A1, = All ® e,e,*, B% = B® ® ei, C, = C ® e!,

CiKi(z, C) ® e1

V. H
I
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then U* will be a contraction from ®d=1(7{(Ka))P ® y to (J)", (l (K,))p G U ex-
tending the isometry V given in (4.53). It is not hard to see that U is a canonical
functional-model Q-realization for S in the sense of Definition 4.7. Thus, any "poly-
disk" canonical functional-model realization gives rise to a canonical functional.
model Q-realization for S. Of course, the converse is not true.

To see the polydisk setting as a particular instance of the general Q-setting
we need to make use of the block-diagonal decomposition of Q into irreducib e
parts discussed in Remark 4.4. For the polydisk setting with Q z) = Zd,ag z,
this diagonal structure is nontrivial and already apparent. Thus we assume that
Q(z) has the form (4.11) and the positive kernel K giving rise to the Q-Agler
decomposition (4.4) has the compatible block decomposition (4.12. The Q-Agler
decomposition (4.4) now has the form

d Pa qa Pa

(4.54) I -
S(z)S(()'

_ Kkk (z, C) - 4,k (z)41k
a=1 k=1 k=1 a,1=1

and can be rewritten in inner-product form as

d qo

Q(k)(()T*y,K(a)(',z)Q.k(z)T*y)3{(K
Q=1 k=1

()K,I z, C

d pv

_ ()E;°)y, te(a) (', z y%
c,=1j=1

where Iy ® ej and where {e1, . .. , ep.I is the standard basis for CP Then
the isometry V in (4.33) has the form

Q(1) (()'T(1) (', ()y (1) (', ()y

V : Q(d)
(()`T(d) (', ()y T(d) (, ()y

y S(()yy

where T(°) (z, () = and where V has domain equal to Vv T Y

where

V
r

C ® 7{(K(°))q°
rQ((l.)

d

CEDq,BEY (()+T(d)(' ()y a-1

and where V has range IZv given by

T(1) ()yl
d

RV = V C ®f(K(°`))P- ®U;
CEDQ,VEY (d) (', ()y 0-1

S(()'y
all this specializes to (4.53) for the polydisk case. We say that the operator
A: 1H(K(a))P- - ®Q 17'{(1('))9- solves the Q-structured Gleason problem
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for the kernel collection {K(1), ... ,K(d) } if
d P. d q.

E(fk k (z) - f k'0I. (0)) = E Q(k) (x)t [Af ka) (z)
*=I k=1 a-1k 1
f(i)

for all f = E ®a=1 so
f'd)

fla) fk
a,1

f(°) _ with each fk°) = I I E W (l[S(°))

fP°).I Lfk p°1

We say that the operator B: U -} solves the Q structured
{K 1),...,K d)}-Gleason problem for S if

d Qa
S(z)u---S(0)u=EEQ(k)(z)[Bu]ka)(z)

a=1 k=1

[Bu](1)

for all u E U, where we write Bu = E ®d=17-l(K(a))9a with each
[Bu](d)

[Bu] i [Bu]

[Bu] a = where in turn [Bulk(a) = E f(K(a)). We de-
[Bul ° [B"]k°n

fine a canonical functional-model colligation matrix U for a given function S E
SAQ U, Y and left Q-Agler decomposition {K1 i ... , (so (4.54) holds) to be
any perator-matrix U = [c D]

:
7l(1[S(a))p° ®Zl -} ®d =1 l(1[S(a))9° ®y so

that
1 U is a contraction,
2 the operator A solves the Q-structured Gleason problem for the kernel

collection {K('),.. . ,1[S(d) },

3 the operator B solves the Q-structured {][S(1), ... ,K(d) }-Gleason problem
for S, and

4 the operators C and D are given by

C:

a
d 1f1 d P.

fkk(0),
a=1 (a) a=1 k=1

P.

D: u H S(0)u.

Then we leave it to the industrious reader to check that Theorems 4.8, 4.9 and 4.10
all go through with this block-diagonal modification. Specializing this formalism
to the polydisk case picks up exactly the results of Section 3.
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Two Variations on the Drury-Arveson Space

Nicola Arcozzi, Richard Rochberg, and Eric Sawyer

1. Introduction
The Drury -Arveson space DA is a Hilbert space of holomorphic functions on

Bn+1, the unit ball of Cn+1 It was introduced by Drury [ll] in 1978 in connec-
tion with the multivariable von Neumann inequality. Interest in the space grew
after an influential article by Arveson [7], and expanded further when Agler and
McCarthy [1] proved that DA is universal among the reproducing kernel Hilbert
spaces having the complete Neva.nlinna-Pick property. The multiplier algebra of
DA plays an important role in these studies. Recently the authors obtained explicit
and rather sharp estimates for the norms of function acting as multipliers of DA
[3], an alternative proof is given in [17].

In our work we made use of a discretized version of the reproducing kernel for
DA, or, rather, of its real part. In this note we consider analogs of the DA space for
the Siegel domain, the unbounded generalized half-plane biholomorphically equiv-
alent to the ball. We also consider a discrete model of the of the Siegel domain
which carries a both a tree and a quotient tree structure. As sometimes happens
with passage from function theory on the disk to function theory on a halfplane,
the transition to the Siegal domain makes some of the relevant group actions more
transparent. In particular this quotient structure, which has no analog on the unit
disk i.e., n = 0), has a cleaner presentation in the (discretized) Siegel domain than
in the ball.

Along the way, we pose some questions, whose answers might shed more light
on the interaction between these new spaces, operator theory and sub-Riemannian
geometry.

We start by recalling some basic facts about the space DA. An excellent source
of information is the book [2]. The space DA is a reproducing kernel Hilbert space
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with kernel, for z, w E Bn+i

(1.1) K(z, w) = 1 - w z
Elements in DA can be isometrically identified with functions f holomorphic in
Bn+i, f (z) = EmEN*+1 a(m)zm (multiindex notation), such that

IIfIIDA =
MI'fa(m)12

< o°
mEN' +S ImI

When n = 0, DA = H2, the classical Hardy space. The multiplier algebra f
H2, the algebra of functions which multiply H2 boundedly into itself, is H°°, the
algebra of bounded analytic functions. In general the multiplier algebra M(DA f
DA is the space of functions g holomorphic in Bn+I for which the mult plication
operator f ,-+ g f from DA to itself has finite operator norm which we den to by
II9IIM(DA) For n > 0, M(DA) is a proper subalgebra f H°°, however in some
ways it plays a role analogous to HO°. In particular the multiplier norm g M(DA
replaces the H°° norm in the multivariable version of von Neumann's Inequality
[11]. Also, the general theory of Hilbert spaces with the Nevanlinna- Pick property
exposes the fact that many operator theoretic results about H2 and H°° are special
cases of general results about Hilbert spaces with the Nevanlinna- Pick property,
for instance DA, and the associated multiplier algebra.

Given {wj} 1 in Bn+1 and {)3} 1 in C, the interpolation problem f findma
g in M(DA) such that. g(wj)

=\j
and II9IIM(DA <- 1, has soluti n if and only if

the "Pick matrix" is positive semidefinite,

[(1- wj!Uh)K(Xa, Ah)]Ih-1 ? 0.

Agler and McCarthy [1] showed that the (possibly infinite dimensional DA kernel is
universal among the kernels having the complete Nevanlinna Pick property, -which
is a vector valued analog of the property just mentioned. While for n = 0 we
have the simple characterization 119IIM(DA) = 9I M H2) = 9 H-, no such formula
exists in the multidimensional case. However, a sharp, geometric estimate of the
multiplier norm was given in [3].

Theorem 1. (A) A function g, analytic in l($n+l, is a multiplier for DA
if and only if g E H°O and the measure p = py, dp9 := (1- z 2) Rg 2 dA(z) is a
Carleson measure for DA,

(1.2) f If[2dp <_ C(p)IIfl1A
n+1

Here dA is the Lebesgue measure in l3n+I and R is the radial differentiation op-
erator. In this case, with K(p) denoting the infimum of the possible C(p) in the
previous inequality,

II9IIM(DA) II9IIHm + K(p)1/2

(B) For a in lBn+l, let S(a) = {w E Bn+1 : 11 - a/[aI - -wI < (1 - IaI2)} be tht
Carleson box with vertex a.

Given a positive measure p on 3n+i, the following are equivalent:
(a) p is a Carleson measure for DA;
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(b) the inequality

J r J Re K(z, w)co(z)co(w) d(z) d(w) <_ C() J W
2

+1 +1 +
holds for all nonnegative W.

(c) The measure µ satisfies both the simple condition

(SC) µ(S(a)) < C(µ)(1-1a12)
and the split-tree condition, which is obtained by testing (2) over the charac-
teristic functions rof the sets S(a),

1 dµ(w) < C((S(a)),(ST) f (J ReK(z,w)
dµ(z)\

(a) s(a)

(with C(µ) independent of a in n+1)

Here C(µ) denotes positive constants, possibly with different value at each
occurrence.

The conditions (SC) is obtained by testing the boundedness of J, the inclusion
of DA into L2(dµ), on a localized bump. The condition (ST) is obtained by testing
the boundedness of the adjoint, J`, on a localized bump. Hence the third state-
ment of the theorem is very similar to the hypotheses in some versions of the T(1)
theorem. This viewpoint is developed in [17].

In light of (2) we had used Re K(z, w) in analyzing Carleson measures. When
estimating the size of Re K(z, w) in the tree model it was useful to split the tree
into equivalence classes and use the geometry of the quotient structure. That is
the source of the name "split-tree condition" for (ST). Versions of such a quotient
structure will be considered in the later part of this paper.

Problem 1. Theorem 1 gives a geometric characterization of the multiplier
norm for fixed n, but we do not know how the relationship between the different
constants C µ), and between them the multiplier norm of g, depend on the dimen-
sion. Good control of the dependence of the constants on the dimension would open
the possibility of passing to the limit as n -i oo and providing a characterization
of the multiplier norm for the infinite-dimensional DA space.

An alternative approach to the characterization of the Carleson measures is in
[17], where Tchoundja exploits the observation made in [3] that, by general Hilbert
space theory, the inequality in (2) is equivalent (with a different C(µ)) to

(1.3) f (fBn+l R.e K(z, w)co(z) dµ(z))a dµ(w) < C(µ) J W2 dµ.
B,

We mention here that (1.3) is never really used in [3], while it is central in [17].
Tchoundja's viewpoint is that (1.3) is the L2 inequality for the "singular" integral
having kernel Re K(z, w), with respect to the non-doubling measure µ. He uses the
fact Re K(z, w) > 0 to insure that a generalized "Menger curvature" is positive.
With this in hand he adapts some of the methods employed in the solution of the
Painleve problem to obtain his proof. His theorem reads as follows.

Theorem 2. A measure µ on 1EBn+1 is Carleson for DA if and only if any of
the following (hence, all) holds.
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(1) For some 1 < p < oo,

L+1

(L+1 Re K(z, w)p(z) dµ(z)) dp(w) <_ C(p)
JL. 1

(2) The inequality in (1) holds for all 1 < p < oo.
(3) The measure µ satisfies the simple condition (SC) and also for some 1 <

p < oor3(ath) Se in(a)equality

(1.4) J(J Re K(z, w) dµ(w))p dµ(z) < C(p)p(S a ).

(4) Condition (3) holds for all 1 < p < oo.

(Actually [17] focuses on the p > 2 but self adjointness and duality then give the
expanded range.) Observe that, as a consequence of Theorems 1 and 2 the condrti n
(1.4) equivalently holds for some 1 < p < oo then it holds all 1 < p < oo. On the
other hand, it is immediate from Jensen's inequality that if the inequality h Ids for
some p then it holds for any smaller p; hence the condition in Theorem 1, ST), is
a priori the weakest such condition.

Problem 2. Which geometric-measure theoretic properties foll w fr m the
fact that the Carleson measures for the DA space satisfy such "reverse H lder
inequalities" ?

Indeed, the same question might be asked for the Carleson measures for a
variety of weighted Dirichlet spaces, to which our and Tchoundja's methods apply
It is interesting to observe that, while our approach is different in the DA case
and in other weighted Dirichlet spaces (see [3] and the references quoted there ;
Tchoundja's method works the same way in both cases. On the other hand, his
proof does not encompass (ST) in Theorem 1.

We conclude this introduction with an overview of the article.
Changing coordinates by stereographic projection, we see in Section 2.1 that

on the Siegel domain (generalized upper half-plane)

EC" xC:Im(zn+i)> z' 2}

K is conjugate to a natural kernel H

H(z,w) =
1-

1(wn+i-zn+i) 2-z'.w'
This is best seen changing to Heisenberg coordinates:

[(,t;r] = [z',Re(zn+i);Im(zn+1) - Iz'1a].
The Heisenberg group Hn has elements [(, t] E Cn x R and group law [(, t]

s] = [( + 4, t + s + 2Ini(( Z)]. The kernel can now be written as a convolution
kernel: writing

we have

sOr([(,t])=
r+I(Za2 it

(r + 1(12)2 + ti

H([(, t; r], [f, s; r]) = 2cpr+p([(, s1-1 - [(, s])
Because of the connection with the characterization of the multipliers for DA

our main interest is in Re(H(z, w)). The numerator and the denominator of Re(Vr)
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each have an interpretation on terms of the sub-Riemannian geometry of lIP. The
denominator is the Koranyi distance to the origin, at scale while the numerator
is the Koranyi distance from the center of the group H' to its coset passing through
[(,t], again at the scale f. We see, then, that the kernel pr reflects the two-step
stratification of the Lie algebra of H1.

The Heisenberg group, which has a dilation as well as a translation structure,
can be easily discretized, uniformly at each scale; and this is equivalent to a dis-
cretization of Whitney type for the Siegel domain U,,+i. The dyadic boxes are
fractals, but in Section 2.2 we see that they behave sufficiently nicely for us to use
them the same way one uses dyadic boxes in real upper-half spaces. The same
way the discretization of the upper half space can be thought of in terms of a tree,
the discretization of the Siegel domain can be thought of in terms of a quotient
structure of trees, which is a discretized version of the two-step structure of the
Heisenberg Lie algebra.

In Section 3, we see how the DA kernel (rather, its real part) has a natural
discrete analog living on the quotient structure. We show that, although the new
kernel is not a complete Nevanlinna- Pick, it is nonetheless a positive definite kernel.
In [3], the analysis of a variant of that discrete kernel led to the characterization
of the multipliers for DA. We do not know if an analogous fact is true here, if
the discrete kernel we introduce contains all the important information about the
kernel If.

We conclude by observing, in Section 4, that, as a consequence of its "conformal
invariance," a well-known kernel on the tree, which can be seen as the discretization
of the kernel for a weighted Dirichlet space in the unit disc, has the complete
Nevanlinna-Pick property.

Notation. Given two positive quantities A and B, depending on parameters
a, /3, ... , we write A B if there are positive c, C > 0, independent of a, /3, ... ,
such that cA<B<CA.

2. A flat version of DAd

2.1. From the ball to Siegel's domain. In this section, we apply stereo-
graphic projection to the DAd kernel and we see that it is conjugate to a natural
kernel on the Siegel domain. In this "flat" environment it is easier to see how the
DAd kernel is related to Bergman, and hence also to sub-Riemannian geometry.
A discretized version of the kernel, analogous to the dyadic versions of the Hardy
space kernel in one complex variable immediately comes to mind.

We follow here the exposition in [15]. As we mentioned, Siegel's domain U,,,,+1
is defined as

14n+1 = {z = (z11 ... , zn+i) _ V, zn+1) E Im zn+i > Iz'I2}.
For z, w in U,,+i, define

i
r(z,w) = 2(wn+I - z,,.+I) - z' w'.

Consider the kernel H : U ,,,+l x un+I -1 C,

(2.1) H(z, w) 1
r(z, w)
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Proposition 1. The kernel H is conjugate to the Drury Arveson kernel K.
Hence, it is a definite positive, (universal) Nevanlinna -Pick kernel.

In fact, there is a map I : 13n+1 -+ Un+1 such that:

(2.2) (i+zn+1)(i+wn+1)
4 r(z, w)

PROOF. Let 13n+1 be the unit ball of Cn+1 and let Un+1 be Siegel's d main.
There is a biholomorphic map z = (b(C) from 13n+1 onto Un+1:

1 - Cn+l
Zn+1 = 11 1+(n+1

Zk Ch if1<k<n,
1+(n+1

having inverse
1- zn+1

yn+1 =
i+zn+1
2izk

Sk = i + Zn+1
if1<k<n.

Equation (2.2) follows by straightforward calculation. 13

Remark 1. The map f ' f, 1(z) = 2/(i + zn+l f b-1 z , is an isome-
try from the Hilbert space with reproducing kernel K to the Hilbert space with
reproducing kernel H. We call the latter DAu.

Problem 3. Find an interpretation of the DAu norm in terms of weighted
Dirichlet spaces on Un+1.

Recall (see [3]) that a positive measure µ on 13n+1 is a Carleson measure for
DA if the inequality

(2.3) f If I2 dµ < C(µ) f DA
an+1

holds independently of f. The least constant CM DA = C µ) for which 2.3
holds is the Carleson measure norm of µ.

The following proposition is in [3].

Proposition 2. The Carleson norm of a measure µ on n+1 is comparable
with the least constant C, (p) for which the inequality below hold for all measurable
g > 0 on 13n+1,

J J Re(K(z, w))g(z) dp(z)g(w) dµ(w) < C1(µ) J
+1n n +1 -

As a corollary, we obtain the following.

92 dµ.

Theorem 3. Let µ >- 0 be a measure on Bn+1 and define its normalized pull-
back on Un+l,

dµ(z) := Ii + zn+1I2
Then, µ E CM(DA) if and only if µ satisfies

r f Re(H(z, w))g(z) dµ(z)g(w) dµ(w) < C2(µ) J
.+1U. un+1 .

Moreover, C(µ) = C2(µ)

g2 dµ.
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Problem 4. Find a natural, operator-theoretic interpretation for H; in analogy
with the interpretation of K in [11].

The kernel H is best understood after changing to Heisenberg coordinates which
help reveal its algebraic and geometric structure. For z in U,,+,, set

z = (z', zn+1) _ [(, t; r] :_ [z', Re zn+1; Im zn+1 - 1z' J'].

The map z H [(, t; r] identifies Un+1 with 1R 2n+2, and its boundary OUn+1 with
R2n+1 In the new coordinates it is easier to write down the equations of some
special families of biholomorphisms of Un+1:

(i) rotations: RA : [(, t; r] H [A(, t; r], where A E SU(n);
(ii) dilations: Dp: [(, t; r] H [pC, pet; p2r]; and
(iii) translations: 71C,t] : [C, a; p] H [(+ C, t + s + 2 Im(( C); p].

This Lie group of the translation is the Heisenberg group Hn - R2n+1 which
can be identified with OUn+1. The group operation is

[(,t]' [[, a] = [C+C,t+s+2lm(C C)]
and thus 71C,t] a; P] -3 [[(, t] - [C, a]; P]

We can foliate Un+1 = Up>a Hn (p), where Hn (p) _ { [(, t; p] : [(, t] E Hn } is the
orbit of [0, 0; p] under the action of Hn. The dilations D. on 16+1 induce dilations
on the Heisenberg group:

5pK, t] := [PC, P2t].
The relationship between dilations on Hn and on Un+1 can be seen as action

on the leaves:

Dp : H' (r) -+ lIr(P2r), Dp[(, t; r] = [5 [(, t]; P2r].

The zero of the group is 0 = [0, 0] and the inverse element of [(, t] is [-(, -t].
The Haar measure on Hn is d( dt. We let do to be the measure induced by the

Haar measure on C7un+1:
do (z) = d(dt.

We also have that dz = d( dt dr is the Lebesgue measure in Ul71+1.
We now change H to Heisenberg coordinates.

Proposition 3. If z = [(, t; r] and w = [C, s; p], then

r+p+IC-(I2-i(t-s-2lm(C'())
24 H(z,w)=2

(r+P+IC-(I2)2+ (t - a - 2 lm(C'())2

= 2Wr+p([C, 31-1 - [(, t]),
where

r+I(I2 -it
(Pr([(,t])= (r+1(12)2+t2

The expression in Proposition 3 is interesting for both algebraic and geometric
reasons. Algebraically we see that H can be viewed as a convolution operator.
From a geometric viewpoint we note that the quantity II[(,t]II := (t2 + I(I4)1/4 iE
the Koranyi norm of the point [(, tj in Hn. The distance associated with the norm ie

d11., ([C, t], [[, s]) = II [C, s]-1 [(, t] 11.

Hence, the denominator of cpr might be viewed as the 4th power of the Korany'.
norm of [(, t] "at the scale" r1/2.
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In order to give an intrinsic interpretation of the numerator, consider the center
T = {[0, t] : t E R} of Hn, and the projection 11: H" -+ C" _- H" /T: U([C,t] = C.
Then, independently of t E 118,

JCJ = dH.. (T, [C, tj T)
is the Koranyi distance between the center and its left (hence, right) translate by
[C, t]. The real part of the DA kernel has a twofold geometric nature: the denom-
inator is purely metric, while the numerator depends on the "quotient structure"
induced by the stratification of the Lie algebra of H". This duality is ultimately
responsible for the difficulty of characterizing the Carleson measures for DA.

The boundary values of Re(cp,.),
z

(2.5) coo([(, t]) [Z[f4 + t2
were considered in [12] (see condition (1.17) on the potential) in connection with
the Schrodinger equation and the uncertainty principle in the Heisenberg group.

Problem 5. Explore the connections, if there are any, between the DA space,
the uncertainty principle on H" and the sub-Riemannian geometry of H".

We mention here that, at least when n = 1, the kernel WO in 2.5 satisfies the
following, geometric looking differential equation:

1 (9
OHcpo([C,t]) = 2 8I(I2cpo([C,t]),

where AH = X X + YY is the sub-Riemannian Laplacian on H_ Here, with C =
x + iy E C, X and Y are the left invariant fields X = 8z + 2y8t and Y = 8 - 2x81.
See [8] for a comprehensive introduction to analysis and PDEs in Lie groups with
a sub-Riemannian structure.

2.2. Discretizing Siegel. The space U"+1 admits a dyadic decomposition,
which we get from a well-known [16] dyadic multidecomposition of the Heisenberg
group, which is well explained in [18]. We might get a similar, less explicit decom-
position by means of the general construction in [10].

Theorem 4. Let b > 2n+ 1 be a fixed odd integer. Then, there exists a compact
subset To in 1111" such that: To is the closure of its interior and 1I(To) = [-z, ]2';

(1) m(8To) = 0, the boundary has null measure in H";
(2) there are b2n+2 affine maps (compositions of dilations and translations

Ak of H" such that: To = Uk Ak(To) and the interiors of the sets Ak(To
are disjoint;

(3) the sets II(Ak(To)) divide [-I, 1]2n into b2" cubes with disjoint interiors,
each such cube being the projection of b2 sets Ak(T0).

Consider now U"+1, let b be fixed and let m E Z. For each k = (k', k2,,41) E
Zen x Z, consider the cubes

Q1k = bb-mT&(To) X
[b-2m-2, b-2ml

= Qk X [b-2m-2, b-2ml = Qk C Un+1,

with Qk C H". Let Tim) be the sets of such cubes, U(m) the set of their projec-
tions, and T = U,,,EZ T(m), U = UmEZ U(m) . We say that a cube Q' in T(m+i)
(respectively U(m+l)) is the child of a cube Q in T(m) (respectively U(m)), if Q' C Q.
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In order to simplify notation, if Q is a cube in T, we write [Q] = II(Q).
We state some useful consequences Theorem 4.

Proposition 4. (i) Each cube in T(-) has b2n+2 children in T(-+') and
one parent in T('n-I); hence, T is a (connected) homogeneous tree of
degree b2n+2.

(ii) Each cube in U(m) has b2n children in U("'+I) and one parent in U('n-I);
hence, U is a (connected) homogeneous tree of degree b2n.

(iii) For each cube Q in T('), there are Koranyi balls B(zQ, cob--) and
B(wQ, clb-m) in HII", such that

B(wQ, CIb-m) x [b 2m 2, b-2m] C Q C B(wQ, c2b-m) x [b-2m-2, b-2m].

We say two cubes QI, Q2 in T are graph related if they are joined by an ledge of
the tree T, or if they belong to the same T(m) and there are points z1 E Q1, Z2 E Q2
such that d E[. (zi, z2) < b-m. An analogous definition is given for the points of U.
We consider on T the edge-counting distance: d(Q1, Q2) is the minimum number
of edges in a path going from QI to Q2 following the edges of T: the distance
is obviously realized by a unique geodesic. We also consider a graph distance,
dG QI, Q2) <- d(Q1, Q2), in which the paths have to follow edges of the graph G
just defined. The edge counting distance on the graph is realized by geodesics, but
they are not necessarily unique anymore. Similarly, we define counting distances
for the tree and graph structures on U.

Given a cube Q in T, define its predecessor set in T, P(Q) _ {Q' E T : Q C Q'},
and its graph-predecessor set PG(Q) ={Q' : dG(Q',P(Q)) < 1}. We define the
level of the confluent of Q. and Q2 in G as

2.6 d(Q1 AQ2) := max{d(Q) : Q E PG(Ql) fl PG(Q2)}.
We don't need, and hence don't define, the confluent QI A Q2 itself.)

Similarly, we define predecessor sets in T and G for the elements of U, and the
level of the confluent in the graph structure, using the same notation. Observe that
P [Q] = [P(Q)] := {[Q'] : Q' E P(Q)}, P([Q]) = [P(Q)], but that the inequality

d(Q1 A Q2) :5 d([Q1] A [Q2])

cannot in general be reversed.

Theorem 5. Let z = [S, t; r], to = [,, s; p] be points in the Siegel domain
Un+i, and let Q(z), Q(w) be the cubes in T which contain z, to, respectively (if z is
contained zn more than one cube, we choose one of them). Then,

(2.7) bd(Q(=)AQ(w)) .;; ((r + p + IC - SI2)2 + (t - s - 2Im( .0)2)1/4

is approximately the a-power of the denominator of H(z,w). On the other hand,

(2.8) bd([Q(=)1t lQ(W)1) (r + p + IC - t12)1/2

is approximately the z-power of the numerator of Re
SH(z,

w).
We have then the equivalence of kernels:

(2.9) Re H(z, w) .;; b2d(12(=)AQ(w))-d(IQ(=)1 AlQ(w)1)

Thus we have modeled the continuous kernel by a discrete kernel. This kernel,
however, lives on the graph G, rather than on the tree T.

Theorem 5 allows a discretization of the Carleson measures problem for the DA
space on U,.+I. Given a measure µ on U," 1, define a measure pO on the graph G:
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Al (Q) := f$ dµ. Then, `i satisfies the inequality in Theorem 3 if and only if At is
such that the inequality

(2.10) eiL: Eb2d(gAq )-d(IgjA[q J)V(q)AO(q)W(q ){i1(q) C
qEG q'EG G

holds whenever w > 0 is a positive function on the graph G.
In the Dirichlet case, inequality (2.10) is equivalent to its analog on the tree.

Given q, q' in T, let q n q' be the element p contained in [o, q] fl to, q'] for which d(p is
maximal. An analogous definition can be given for elements in U. The tree-analog
of (2.10) is: r r(2.11) Lr L C µl J:q2111.

qET q' ET T

Problem 6. Is it true that the measures Al such that 2.10 h Ids for all
gyp: T r [0,+oo), are the same such that (2.11) holds for all c': T [0,+00 .

There is a rich literature on the interplay of weighted inequalities, Carleson
measures, potential theory and boundary values of holomorphic functi ns.

Problem 7. Is there a "potential theory" associated with the kernel Re H
giving, e.g., sharp information about the boundary behavior of functions in DA?

Before we proceed, we summarize the zoo of distances usually employed in the
study of and of H as a guide to defining useful distances on T and U. We
have already met the Koranyi distance II [(, s] -' - [(, t] between the points [(,t
and [[, s] in iFII". The Koranyi distance is bi-Lipschitz equivalent to the Carnot-
Caratheodory distance on ]HII'. We refer the reader to 8] f r a thorough treatment
of sub-Riemannian distances in Lie groups and their use in analysis- The point we
want to stress here is that the Carnot - Caratheodory distance is a length-distance,
hence we can talk about approximate geodesics for the Koranyi distance itself.

Although it is not central to our story, for comparison we recall the Bergman
metric 0 on It is a Riemannian metric which is invariant under Heisenbe g
translations, dilations and rotations. Define the 1-form w([(, t]) = dt - 2 Im S - d( .
Then,

(2.12) t; r])2 =
Idci2 + w([(, t])2 + dr2

This can be compared with the familiar Bergman hyperbolic metric in

la 2

din+, (z) = 1-1z12 + (1 _Izl2)2

Lemma 1. (i) For each r > 0, consider on ]HC' (r) the Riemannian dis-
tance d[3r obtained by restricting the two-form d,(32 to IIl("(r). Then, the

following quantities are equivalent for II I[(, t] II ? v'

((I(I2+r)2+t2)1'4 pt, II[(,t]II \/FO,Q//,t;r],[0,0;r])'
(ii) A similar relation holds for cosets of the center. Let [T; r] = T T. [0, 0; r] be

the orbit of [0, 0; r] under the action of the center T. Then,

(I(I2+r)1'2 ^ da°([c,t]'T,T) fIr([[C,t]'T;r],[T;r])
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PROOF OF LEMMA 1. The first approximate equality in (i) is obvious. For the
second one, using dilation invariance

v ro ([C, t; r], [0, 0; r]) = f P Dr L r' *;1J) ,

D([0,0;1]) _ ``a O_LF '1;1]'[0'0;1])TSincethe metrics 0 and dH" define the same topology on 1II"(r), the last quantity
is comparable to f dH.. ([C/ f, t/r; 1], [0, 0; 1]) when 1 <- II(/f, t/r] II < 2, by
compactness of the unit ball with respect to the metric and Weierstrass' theorem.
Since the metric Or is a length metric and dHn is bi-Lipschitz equivalent to a length
metric (the Carnot Caratheodory distance), then, when 1 < II [C/ f, t/r] 11, we
have

t;1,, [0,0; 1]) , rdH,. (1i5= r[0,01) = dH,.(K,t], [0,0])

The proof of (ii) is analogous.

PROOF OF THEOREM 5. We prove (2.7), the other case being similar (easier,
in fact . Suppose that d(Q(z),Q(w)) = m. Then, d(Q(z)),d(Q(w)) m, hence,
b-m f, vfp- and there are Q1, Q, Q2 in T(m) such that Q(z) > Q1 G Q

G
Q2 <

Q w . We have then that

b-m > max{ J , ,r, cdx. (K, t], s])} -- ((r+p+IC- 12)2+(t-
the left-hand side of (2.7) dominates the right-hand side.

To show the opposite inequality, consider two cases. Suppose first that f >
f, dH [C, t], [C, s]) and that b-m > f > b-m-1. Then, Q(z) G Q(w). Hence,
m<d(Q z)AQ(w)) <m+1 and

b-d(Q z nQ(w)) b-m > ((r +p+ IC - 512)2 + (t - s - 2Im(C C))2)1/4.
Suppose now that d0. ([C,t],[C,s]) > f,vp and choose m with m < d(Q(z) A
Q w) < m + 1. Let Qm(z) and Qm(w) be the predecessors of Q(z) and Q(w) in
T m we use here that d(Q(z)),d(Q(w)) > m). Then, Qm(z)

G
Q-(w), hence

dH [C, t], s]) N b-m:
b-d(Q(-)%%Q(w)) b-m N dH,. ([C, t], [C, 8])C

r((r+p+IrS "12)2+(t-8-2Im(S.C))2)1/4.

The theorem is proved.

It can be proved that

1+dG(Q(z),Q(w)) 1+,13(z,w),

where,6 is the Bergman metric and dG is the edge-counting metric in G.
The expression for the kernel Re H in Theorem 5 reflects the graph structure

of the set of dyadic boxes. We might define a new kernel using the tree structure
only as follows. Given cubes Q1, Q2 in T, let

Q1AQ2:=max{QET:Q<Q1 andQ25Q2}
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be the element in T such that [o, Q1] n [o, Q21 = [o, Q1 A Q21. Define similarly
[Ql] A [Q2] in the quotient tree U. Define the kernel:

HT(z,W) := 62d(Q(=)AQ(,.))-d(iQilA(Q2]), z,w E U,,..1

As in Theorem 5, there is a slight ambiguity due to the fact that there are
several Q's in T such that z E Q. This ambiguity might be removed altogether by
distributing the boundary of the dyadic boxes among the sets sharing it.

Because nearby boxes in a box can be far away in the tree, it is not hard to
see that HT is not pointwise equivalent to Re H. However, when discretizing the
reproducing kernel of Dirichlet and related spaces the Carleson measure inequalities
are the same for the tree and for the graph structure. We don't know if that holds
here. See [6] for a general discussion of this matter.

In the next section, we discuss in greater depth the kernel HT.

3. The discrete DA kernel
Here, for simplicity, we consider a rooted tree which we informally view as

discrete models for the unit ball. The analogous model for the upper half space
would have the root "at infinity."

Let T = (V (T), E(T)) be a tree: V (T) - T is the set of vertices and E T) is set
of edges. We denote by d the natural edge-counting distance on T and,for x, y E T,
we write [x, y] for the geodesic joining x and y. Let o E T be a distinguished element
on it, the root. The choice of o induces on T a level structure: d = do : T - N,
a d(x, o). Let (T, o) and (U, p) be rooted trees. We will use the standard notation
for trees, x A y, x > y, x-1, C(x) for the parent and children of x, P x and S x
for the predecessor and successor regions. Also recall that for f a function on the
tree the operators I and I* produce the new functions

If(x) = f(y); I*f(x) = f(y)-
yE P(z) yE S (z)

A morphism of trees : T U is a couple of maps I)v: T -4 U, 4'E: E T)
E(U), which preserve the tree structure: if (x, y) is an edge of T, then
(bv(x),,Dv(y)) is an edge of U. A morphism of rooted trees 4: (T,o) -+ (Up is
a morphism of trees which preserves the level structure:

dp(b(x)) = do(x)

The morphism D is an epimorphism if ' v is surjective: any edge in U is the
image of an edge in T.

We adopt the following notation. If x E T, we denote [x] = Dv(x). We use the
same symbol A for the confluent in T (with respect to the root o) and in U (with
respect to the root p = [o]).

A quotient structure on (T, o) is an epimorphism (D: (T, o) -+ (U, p). The rooted
tree (Up) was called the tree of rings in [3].

Recall that b > 2n + 1 is a fixed odd integer. Fix a positive integer N and
let T be a tree with root o, whose elements at level m > 1 are ordered m-tuples
a = (aia2 ... a,,,), with a3 E ZbN+1, the cyclic group of order bN+1. The children
of a are the (m + 1)-tuples (ala2 ... a,,,a), a E ZbN+l, and the root is identified
with a 0-tuple, so that each element in T has bN+1 children. The tree U is defined
similarly, with bN instead of bN+1.



TWO VARIATIONS ON THE DRURY ARVESON SPACE 53

Consider now the group homomorphism i from Zb to ZbN+2 given by i([k]mod b)
_ [bNk]modbN+i and the induced short exact sequence

0 'Zb-4 ZbN+t -DiZbN -+ 0.

The projection U induces a map 4Dv: T -+ U on the set of vertices,

'Wala2... am) := (1DV(a1)4,v(a2)... -Dv(am)),

which clearly induces a tree epimorphism 4: T -+ U. Here a way to picture the
map 4). We think of the elements C of U as "boxes" containing those elements x
in T such that [x] :_ ib(x) = C. Each box C has bN children at the next level,
Cl,... , CbN. Now, each x has bN+l children at the same level, b of them falling in
each of the boxes C,,.

We think of the quotient structure (T, U) as a discretization of the Siegel domain
U,,+l, with b = b2 and N = n.

The discrete DAN+l kernel K: T x T -+ [0, oo) is defined by

K(x, y) =
b2d(xny)-d([x1f\[y1)

Note that it is modeled on the approximate expression in (2.9).

Theorem 6. The kernel K is positive definite. In fact,

E b2d MAY)-d z]A[yDN,(x) -(y)

X yET

= I'Ji a 2 + b b l 2 b2d(znw)-d([z1A[wllll.µ(z) - I`µ(w)12.
zoo zOwET

[z1=[w]

The theorem will follow from the following lemma and easy counting.

Lemma 2 (Summation by parts). Let K: T x T -+ C be a kernel on T,
having the form K(x, y) = H(x A y, [x] A [y]) for some function H: T x U -+ C.
Then, of µ: T -+ C is a function having finite support,

3.1 E K(x, y)µ(x)µ(y) = H(o, [o])II*µ(o)l2
zy

+ E [H(z A w, [z] A [w]) - H(z-' A w-1, [z-1] A [w-I])]I'µ(z)I'µ(w)
z wET {o}

[z1=[w]

PROOF. Let Q be the left-hand side of (3.1). Then,

Q= F H(x A y, [x] A [y])µ(x)µ(y)
x,yET

H(zAw,C) µ(x)µ(y)
CEU z,wET z>z,y>w

[x]A[y)=C

_ H(z A w, C)A(z, w),
CEU z,wET
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A(z,w) = µ(x)µ0/)
x>z,y>w
[y1Mv)=C

I* p(s)I*µ(t) + µ(z) (I *µ(W) - µ(w))

DOFEU sEC(z),[s1=D
D,FEC(C) tEC(w),[t1=F

+ (I*µ(z) - µ(z))µ(w) + µ z)µ w .

On the other hand,

I*µ(z)I"µ(w) = A(z)(I*AM - AM) + (I *µ(z) - w)

+
D,FEC(C) [s]= D,sEC z

[t]=F,tEC w

Hence, if z $ w,
A(z,w) = I*A(z)I*µ(w) _ I'l4 s I'µ t

FEC(C) [s]=D,SEC z)
[t]=F,tEC(w

= I'µ(z)I'µ(w) - E "*µ(s) E I*µ t.
FEC(C)

9EC(z) tEC w

In the case of equality,

A(z, z) = E µ(x)µ(Y)
x,y>z

[x]A(y]=C

= µ(z)(I"µ(z) - µ(z)) + µ(z)(I*µ(z) -Az)) + µ z)
2

+ E E I*t'(S)I'µ t
D9F [s]=D,sEC(z)

D,FEC(C) It =F,tEC(w

On the other hand,

II'µ(z)12 = µ(z) (I"µ(z) - µ(x)) + µ(z) (I*µ(z) - P(z)) + Iµ(z)12
a

+ E rµ(S)
DEC(C) [s]=D,

SEC(z)

µ(z)(I*µ(z) - µ(z)) + µ(z)(I'µ(z) - µ(z)) + Iµ(z)I2

+ ` > I*µ(S)
2

+ F, I*µ(s)I ()..

DECD*=D DAF = s Cz
SEC(z) D,FEC(C) [t]=F, tEC(w)

Comparing:

II2
(3.2) A(z,z) _ II*µ(z)i2 - I

DEC(D) [s] D
sEC(z)
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Then,

Q=E EH(zAw,C)II*µ(z)I*p(w)- (ri.sIµ(t))CEU
[z[w]EC DEC(C) [a]-D [t]=F

aEC(z) tEC(w)

[H(z A w,C) - H(z-1 A w ',C 1)]I*µ(z)j*µ(w) + H(o, [o])II*µ(o)I2,
1z]-[w]---G

d(z)-d(w)>> 1

which is the desired expression.
In the last member of the chain of equalities,we have taken into account that

each term rp(z)I*p(w) appears twice in the preceding member (except for the
root term).

PROOF OF THEOREM 6. Let Q be the left-hand side of (3.1). By Lemma 2,

Q = I"µ(o) 2
+ [b2d(znw)-d([zlA[w]) _ b2d(z-'Aw-')-d([z-11A[w'']) I*,a (Z) T* (w)

z,wET {o}
[z=w]

We have two consider two cases. If z w, then z A w = z-1 A w-1, [z-1] A [w-1] _
[z] A w])`1, so that the corresponding part of the sum is

3.3 Ql = -(b - 1) E b2d(znw)-d([z]A[w])I*A(z)I*A(w)

z#wET\{o}
[z]=[w]

If z = w, then z-1 A z-1 = z-1, hence the remaining summands add up to

Q2 = b b 1 E bd(z)
I j*A(z) I2.

zoo

The term Q1 in (3.3) contains the mixed products of

R= b -1 E b2d(zhw)-d([zlA[w])
I j*µ(z) - j*A(w) I21)

zoW ET\{o}
[z1=[w]

Ql + (b - 1) EI j*µ(z) I2 E b2d(zhw)-d([zlA[wl),

zoo w:[ww)=[z]

The last sum can be computed, taking into account that, for 1 < k < d(z), there
are (b - 1)bk-1 w's for which [w] = [z] and

d(z) = d([z] A [w]) = d(z A w) + k,

by the special nature of -V: T -+ U:

d(z)
b2d(zAw)-d([zlA[w1) = E(b - 1)bk-lb2(d(z)-k) d(z)

w:[-]=[z] k=1
d(z)

_ (b - 1)bd(z)E2-k-1 = _1(b d(.) - 1)
k=1 b
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Hence,

R=Q1+Q2--j- LIlrµ(z)I2=Q-II'µ(o)2-bb1E *,u(z) 2,
z#o z#o

as wished. 0

Problem 8. The discrete DA kernel in Theorem 6 does not have the complete
Nevanlinna-Pick property. This is probably due to the fact that the kernel is a
discretization of the real part of the DA kernel on the unit ball, not of the whole
kernel. Is there a natural kernel on the quotient structure 4b: T -+ U which is
complete Nevanlinna- Pick?

In the next section, we exhibit a real valued, complete Nevanlinna-Pick kernel
on trees.

4. Complete Nevanlinna-Pick kernels on trees
Let T be a tree: a loopless, connected graph, which we identify with the set of

its vertices. Consider a root o in T and define a partial order having o as minimal
element: x < y if x E [o, y] belongs to the unique nonintersecting path joimino
and y following the edges of T. Given x in T, let d(x) := [o, x] - 1 be the number
of edges one needs to cross to go from o to x. Define x A y =: max[o, x] n [o, y to
be the confluent of x and y in T, with respect to o. Given a summable function
µ: T -+ C, let I*µ(x) = EY>x µ(y)

Theorem 7. Let A > 1. The kernel

K(x, y) = Ad(yAY)

is a complete Nevanlinna -Pick kernel.

Our primary experience with these kernels is for 1 < A < 2. At the level of
the metaphors we have been using, 2d(zAy) models IK(x, y) for the kernel K of
(1.1). We noted earlier that the real part of that kernel plays an important role in
studying Carleson measures. For that particular kernel passage from Re K to K
loses a great deal of information. However in the range 1 < A < 2 the situation is
different. In that range Ad(x^y) models IK°`I, 0 < a < 1 and the K° are the kernels
for Besov spaces between the DA space and Dirichlet spaces. For those kernels we
have IK" I ..s Re K" making the model kernels quite useful, for instance in [5].

These kernels also arise in other contexts and the fact that they are positive
definite has been noted earlier, [13, Lemma 1.2; 14, (1.4)].

We need two simple lemmas.

Lemma 3 (Summation by parts). Let h, IL: T -a C be functions and let
M = I'lt. Then,

h(x A y)µ(x)µ(y) = h(o)IM(o) 12 + E [h(t) - h(t-1)]IM(t)12.
z.Y tET\{o}
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PROOF.

F h(x A y)µ(x)µ(y)
=.y

57

_ h(t) E 1A(x),u(y)
t zny=t

11

=Eh(t) {I(t)2 + /s(t)(M(t) - µ(t)) + µ(t) (M(t) - µ(t)) + E M(z)M(w)J
t z&w;z,w>t;

ll
d(w,t)=d(z,t)=1

=Eh(t){lM(t)12 _ E ]M(z)12
t :>t

d(z,t)=1

which is the quantity on the right-hand side of the statement.

Lemma 4. Fix a new root a in T and let da and Aa be the objects related to
thss new root. Then,

da(x A. y) = d(x A y) + d(a) - d(x A a) - d(a A y).

PROOF. The proof is clear after making sketches for the various cases.

PROOF OF THE THEOREM 7. The kernel K is complete Nevanlinna-Pick if
and only if each matrix

4.1 A= f - K(xi,XN)K(XN,xj)I[1

K(xN, EN)K(xi, x9) i,9=1...N-1

is positive definite f o r each choice of x1, ... , xN in T; see [2].
Let a = xN. The (i,j)th entry of A is, by the second lemma, Ai3 = 1 -

A--d^ _ "_ . By the first lemma, A is positive definite.
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Stephan Ramon Garcia and William T. Ross

ABSTRACT. We prove several lower bounds for the norm of a truncated Toeplitz
operator and obtain a curious relationship between the H2 and H°° norms of
functions in model spaces.

1. Introduction

In this paper, we continue the discussion initiated in [6] concerning the norm of
a truncated Toeplitz operator. In the following, let H2 denote the classical Hardy
space of the op n unit disk D and Ke := H2 n (E)H2)1, where a is an inner
functi n, denote one of the so-called Jordan model spaces [2,4,7]. If HOD is the set
of all bounded analytic functions on DD, the space Kg' := H°° n Ke is norm dense
in Ke see [2 p. 83] or [9, Lemma 2.3]). If Pe is the orthogonal projection from
L2 := L2 BDD, d( 21r) onto Ke and cp E L2, then the operator

A,, f := Pe(Wf), f E Ke,
is densely defined on Ke and is called a truncated Toeplitz operator. Various aspects
f these operators were studied in [3, 5, 6, 9,10] .

If is the norm on L2, we let

1 1Aw11 sup{IIAwf11;fEK®,IIf1I=1}

and note that this quantity is finite if and only if A,, extends to a bounded operator
on Ke. When cp E L°°, the set of bounded measurable functions on BDD, we have
the basic estimates

0<11A,,II <_ IIwIIoo.

However, it is known that equality can hold, in nontrivial ways, in either of the
inequalities above and hence finding the norm of a truncated Toeplitz operator
can be difficult. Furthermore, it turns out that there are many unbounded symbols
SP E L2 which yield bounded operators A,,. Unlike the situation for classical Toeplitz
operators on H2, for a given V E L2, there many 0 E L2 for which A. = Ay
[9, Theorem 3.1].

2000 Mathematws Sub3ect Clasatficatton. 47A05, 47B35, 47B99.
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For a given symbol cp E L2 and inner function e, lower bounds on the quan-
tity (1) are useful in answering the following nontrivial questions:

(1) is A,, unbounded?
(2) if W E L°O, is A,, norm-attaining (i.e., is IIAPI = cp )?

When a is a finite Blaschke product and cp E H°°, the paper [6] comp tes
IIAwlI and gives necessary and sufficient conditions as to when A. = V ,°. The
purpose of this short note is to give a few lower bounds on A. for general inner
functions a and general cp E L2. Along the way, we obtain a curious relationship
(Corollary 5) between the H2 and HO° norms of functions in Kg'.

2. Lower bounds derived from Poisson's formula

For o E L2, let

(2) (' w)(z)
f1 - Z12

:=
IC

-IzI2 AO
I2dI z E D,

be the standard Poisson extension of cp to D. For cp E C 8D , the contimi us
functions on a D, recall that g3cp solves the classical Dirichlet problem with boundary
data W. Also note that

k,\ (z)
1 -

X, z E IID,1-az
is the reproducing kernel for Ke [9].

Our first result provides a general lower bound for A,., which yields a number
of useful corollaries:

Theorem 1. If W E L2, then

1- IXI2 r 8(z) - e(A) 2 dz
<(3) su r(aED 1 -

Ie(a)I2IJaDW(z)

z - A 27r
Av

In other words,

suplJ W(z) dva(z)I < A,,0
AED an

where

dva(z) := 1 1

eXJ 2

8(zz -
6(a) 2

I-I ()I2I
is a family of probability measures on 8IID indexed by a E D.

PROOF. For AEDwe have

(4) Ilk 11 = 2'f1- Ie(a)I2
1 1,1

from which it follows that

11 Ie(A)12I(Awka,ka)I = 11 Ie(A)I2I(PeWk.\,ka)I

- 1-
IaI2

I(Wka, ka)I_
1 Ie(A)I2

_ 1- aI2 I / I e(z) - e(A) I2 Idzl_ 1 - Ie(.2 Jan W(Z) z - a ` 2`ir
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That the measures dva are indeed probability measures follows from (4).

Now observe that if B(A) = 0, the argument in the supremum on the left hand
side of (3) becomes the absolute value of the expression in (2). This immediately
yields the following corollary:

Corollary 1. If V E L2, then

(5) sup I(` v)(A)I <_ IIAwII,
AEe '({O})

where the supremum is to be regarded as 0 if 6-1({0}) = 0.

Under the right circumstances, the preceding corollary can be used to prove
that certain truncated Toeplitz operators are norm-attaining:

Corollary 2. Let B be an inner function having zeros which accumulate at
every point of BD. If W E C(8IID) then IIAwII = IIwIIoo

PROOF. Let C E 8D be such that Iw(c )! = IIwlloo By hypothesis, there exists
a sequence an of zeros of B which converge to C. By continuity, we conclude that

IlAoo = l(TW)(An)I <- IIAwII 5

whence A. = llcplloo.

The preceding corollary stands in contrast to the finite Blaschke product set-
ting. Indeed, if B is a finite Blaschke product and cp E H°°, then it is known that
AV = ip . if and only if cp is the scalar multiple of the inner factor of some

function from Ke [6]Theorem 2.
At the expense of wordiness, the hypothesis of Corollary 2 can be considerably

weakened. A cursory examination of the proof indicates that we only need ( to be
a limit point of the zeros of B, cp E L°° to be continuous on an open arc containing
C, and W C = W Ioo.

Theorem 1 yields yet another lower bound for IIAwII Recall that an inner
function B has a finite angular derivative at ( E 8® if B has a nontangential limit
B ( of modulus one at ( and B' has a finite nontangential limit E)'(() at C. This
is equivalent to asserting that

®(z) - B(()
6

z - (

has the nontangential limit B'(() at C. If 0 has a finite angular derivative at (,
then the function in (6) belongs to H2 and

B (r() 2Idzj IB(z) B(() I2ldzllim JE)(z)
r-i1 z -r( 12ir !a® z - S 2ir

Furthermore, the above is equal to

lim 1-IB(r()I2 =IB'(()I>0.
r-+1 1 - r2

See [1, 8] for further details on angular derivatives. Theorem 1 along with the
preceding discussion and Fatou's lemma yield the following lower estimate for IIAwII,
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Corollary 3. For an inner function e, let De be the set of C E llmi for whuh
e has a finite angular derivative Y(C) at C. If cp E L°° or if cp E L2 with 'P > 0
then

sup 1 W(z)
6(z) - e(C)

2
Idzl

IIAw I
SEDe 1e'(C)IIJaD I z - 27r

In other words,

w(z) dva(z), <
JJAwll,sup Ifal)CEDe

1
dva(z) :=

le'(C)I

I®(z) _ (C)
2127r

is a family of probability measures on D indexed by C E De.

3. Lower bounds and projections
Our next several results concern lower bounds on I A,, I involving the orthogonal

projection Pe : L2 -* Ke.

Theorem 2. If a is an inner function and cp E L2, then

IIPe(w) - e(0)Pe(eW)11 < Aw
"

PROOF. First observe that 11ko11 = (1 - 10(0)12)1 2. Next we see that if cp E L1
and g E Ke is any unit vector, then

(1 - 10(0)12)1/211Aw11 ? I(Awko, 9)I = I(Pe(coko), 9)I = (Pe W - 0 0 Pe e.p ,9

Setting

Pe(ep) -
9

IIPe(w) - e(0)Pe(e<p)
yields the desired inequality. 11

In light of the fact that P9(0w) = 0 whenever cp E H2, Theorem 2 leads us
immediately to the following corollary:

Corollary 4. If 0 is inner and cp E Ha, then

(7) 1IPe(co)II < IIApII.(1 _ Ie(0)12)1/2 -

It turns out that (7) has a rather interesting function-theoretic implication. Let
us first note that for cp E H°°, we can expect no better inequality than

11W11 < 11<P11oo

(with equality holding if and only if cp is a scalar multiple of an inner function).
However, if cp belongs to K6 1, then a stronger inequality holds.

Corollary 5. If 0 is an inner function, then

(8) (1- 10(0)12)1/21IW11.

holds for all W E K8 1. If 0 is a finite Blaschke product, then equality holds 4 and
only if W is a scalar multiple of an inner function from K9.
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PROOF. First observe that the inequality

11'II < (1 ` o

63

follows from Corollary 4 and the fact that Peep = p whenever 0 E Ke. Now
suppose that a is a finite Blaschke product and assume that equality holds in the
preceding for some W E K9'. In light of (7), it follows that IlAwII = Ilcpll,o. From
[6, Theorem 2] we see that (p must be a scalar multiple of the inner part of a function
from Ke. But since W E K9', then p must be a scalar multiple of an inner function
from Ke.

When a is a finite Blaschke product, then Ke is a finite dimensional subspace
of H2 consisting of bounded functions [3,5,91. By elementary functional analysis,
there are c1ic2 > 0 so that

0111(PI1 <_ C211ca11

for all p E Ke. This prompts the following question:

Question. What are the optimal constants c1i c2 in the above inequality?

4. Lower bounds from the decomposition of K®

A result of Sarason [9, [Theorem 3.1]] says, for p E L2, that

9 AW =0 =. cpEeH2+OH2.
It follows that the most general truncated Toeplitz operator on Ke is of the form
A,+z where t&, X E Ke. We can refine this observation a bit further and provide
an ther canonical decomposition for the symbol of a truncated Toeplitz operator.

Lemma 1. Each bounded truncated Toeplitz operator on Ke is generated by a
symb I of the form

10 + Xe
here tp, X E Ke. EH2 E-ZH

Before getting to the proof, we should remind the reader of a technical detail.
It follows from the identity Ke = H2 n ezH2 (see [2, p. 82]) that

C:Ke-+Ke, Cf:=zfe,
is an isometric, conjugate-linear, involution. In fact, when A. is a bounded operator
we have the identity CA,OC = A,*p [9, Lemma 2.1].

PROOF OF LEMMA 1. If T is a bounded truncated Toeplitz operator on Kei
then there exists some cp E L2 such that T = A.. We claim that this W can be
chosen to have the special form (10). First let us write (p = f +xg where f, g E H2.
Using the orthogonal decomposition H2 = Ke e eH2, it follows that cp may be
further decomposed as

lp=(A+ef2)+z(91+e92)
where f1,g1 E Ke and f2,92 E H2. By (9), the symbols ef2 and e(zg2) yield the
zero truncated Toeplitz operator on Ke. Therefore we may assume that

0=f+zg
for some f,g E Ke. Since Cg = gze, we have xg = (C9)© and hence (10) holds
with t = f and x = Cg.
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Corollary 8. Let 6 be an inner function. If i'i,IP2 E Ke and cp = 1 +',26
then

N11- 80*2ll <
(1- le(o)I )

PROOF. If cp = 01 + P2e, then, since 01, 02 E Ke and 7P26 E zH2, we have

Pe(W) - e(o)Pe(e<P) = 161- e(o) W2-
The result now follows from Theorem 2. p

References
1. J. A. Cima, A. L. Matheson, and W. T. Ross, The Cauchy transform, Math. Surveys Monogr

vol. 125, Amer. Math. Soc., Providence, R1, 2006.
2. J. A. Cima and W. T. Ross, The backward shift on the Hardy space, Math. Surveys Monogr

vol. 79, Amer. Math. Soc., Providence, RI, 2000.
3. J. A. Cima, W. T. Ross, and W. R. Wogen, Truncated Toepitz operators on finite dimensional

spaces, Oper. Matrices 2 (2008), no. 3, 357-369.
4. R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and in armant subspace, for

the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970 , no. 1, 37-76
5. S. R. Garcia, Conjugation and Clark operators, Recent Advances in Operator-Related flmo-

tion Theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 67
111.

6. S. R. Garcia and W. T. Ross, A nonlinear extremal problem on the Hardy space, Comp t.
Methods Funct. Theory 9 (2009), no. 2, 485-524.

7. N. K. Nikol'skil, Treatise on the shift operator, Grundlehren Math. Wiss. voL 273, Spnnger
Berlin, 1986.

8. D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, Univ. Arkansas Lecture N tes Math.
Sci., vol. 10, Wiley, New York, 1994.

9. , Algebraic properties of truncated Toepitz operators, Oper. Matrices 1 2007 no. d,
491-526.

10. , Unbounded Toeplitz operators, Integral Equations Operator Theory 61 2008 , no 2,
281- 298.

DEPARTMENT OF MATHEMATICS, POMONA COLLEGE, CLAREMONT, CA 91711, USA
E-mail address: Stephan.Garcia®pomona.edu
URL:http://pages.pomona.edu/-sg064747

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF RICHMOND, RICs-
MOND, VA 23173, USA

E-mail address: wross@richmond.edu
URL: http://facultystaff.richmond.edu/-vross



Centre de Recherches Mathimatiques
CRM Proceedings and Lecture Notes
Volume 51, 2010

Approximation in Weighted Hardy Spaces for the Unit Disc

Andre Boivin and Changzhong Zhu

ABSTRACT. In this paper we study polynomial and rational approximation in
the weighted Hardy spaces for the unit disc with the weight function satisfying
Muckenhoupt's (At) condition.

1. Introduction
In [4], some basic properties of the weighted Hardy spaces for the unit disc D

with the weight function satisfying Muckenhoupt's (A9) condition were obtained,
including series expansions of functions in these spaces with respect to the systems
{ 27ri. 1-akz))-1}, with ak E D, k = 1, 2.... In this paper, we continue our study
of approximation properties in these spaces. In particular, we obtain some results
on the rate of convergence of approximation by polynomial and rational functions.
Let us first recall some definitions and known properties.

Assume that w is a nonnegative (with 0 < w < oo a.e.), 2ir periodic measurable
fun tion defined on (-oo, oo). For 1 < q < oo, we say w satisfies Muckenhoupt's
A9 condition or w E (A9) (we also call w an (A9) weight), if there is a constant

C such that for every interval I with III < 2-7r,
r \

(W(o)-I/(q-_ r 1)9-1

tI j w(B) do) III JI do l < C

where I denotes the length of/I. We say w E (A1) if f

Ill jw(9)d9 <_ CIIwll1,

for every interval I with III < 2ir, where IIwIII denotes the essential infimum of w
over I.

A9) weights were introduced in [12]. In the general definition, w is not nec-
essarily 2ir periodic and I is not restricted by III < 2ir (see, [8, Chapter VI; 12]).
But in [4] and in the current paper, as in [12, Theorem 101 and [9, Theorem 1],
w is additionally assumed to be 2ir periodic since the weighted Hardy spaces we
consider are over the unit disc and integration takes place over the unit circle. For

2000 Mathematics Sub3ect Classtfcation. 30D55.
Key words and phrases. weighted Hardy spaces, Muckenhoupt condition.
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2,7r-periodic weights, as shown in [4], the imposition or not of the condition I < 2a
does not change the class of (Aq) weights (the value of the constant C appearing
in the above definition may change).

Some well-known properties of (Aq) weights include: (i) if w(O) E (A9 with
1 < q < oo, then w(O), [w(0)]-1/(q-1) and logw(B) are integrable on [-ar,ar
(ii) w E (Aq) if and only if wl-`' E (AQ) where 1 < q < oo and 1 q + 1 q' = 1
(iii) if w E (Aq) and qo > q, then w E (Aq0), and (iv) if w E Aq) with 1 < q < 00
then w E (Aq1) for some ql with 1 < q1 < q. Given w E Aq for some q wit
1 < q < oo, we denote by qw the critical exponent for w, that is, the infimum of all
is such that w E (K). We have qw > 1, and w E (A') for all r > q

Example 1.1. Let 1 < q < oo, -1 < a < q - 1, and

(1.1) w(9) = Ieie - e'-I' (i.e., 11 + t', t = 1
By [16, p. 236], we have w(9) E (Aq).

For w(9) E (Aq), 1 < q < oo and 0 < p < oo, the weighted Hardy space HP D
for the unit disc D = {z E C : IZI < 1} (see [7]) is the collection of functi ns f z
which are holomorphic in D and satisfy

II A Hw (D) '- rP
--
f ,If (reie) Pw 0) dO < oo.

The classical Hardy space HP (D) is obtained by taking w - 1. The space LP T)
is the collection of measurable functions f (t) on T = {t E C : t = 11 which satisfy

IIf IIpW T := 1 Jf(e°) Pw(8) dB < +oo.() -27r
For 1 < p < oo, HP,, (D) and LP,,, (T) are Banach spaces. From now on m this

paper, we assume that w is an (Aq) weight for some q with 1 < q < oo and with
critical exponent qw (for simplicity of writing, in lemmas and theorems involving w,
we will not repeat this assumption), and in most cases, we assume that qw < p < 00
Under these conditions, and LP,,,(T) are Banach spaces since p > 1, and by
the properties of (Aq) weights mentioned above, we have w E AP

By [4] and [12, Theorem 10], we have

Lemma 1.2. Assume that q,,, < p < oo, then HPP,(D) C HP- D and LP
W

T C
j..P° (T), for some po with 1 < po < p, that is for any f (z) E

(1.2) 111 IIHPO(D) S C'IIfl H,,,(D)i

where C' is a positive constant independent of f.

Lemma 1.3. Assume that qw < p < oo. If f (z) E then f (z) has
nontangential limits f (t) a.e. on T (f (t) is called the boundary function of f(z
and f (t) belongs to LPW(T) and satisfies

(1.3) rill J:n'°) - f(e") IPw(O) dO = 0,

lim
r-41

fit

f(reie)IPw(1)dO = JIf(ei°)V'w(O)dO,i
a a

and

(1.5) S IIf(z)IIHW(D) «'PIIf(t)IILW(T),
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where Cp is a constant depending only on p.

Lemma 1.4. Assume that qw < p < oo. If f (z) E H,(D), then

(1.6) 1 f f (t) dt f (x), z E D;
Tri t- z 0, z E C\ D.

Lemma 1.5. Assume that qw < p < co. Let 1/p + l/p' = 1. Then, for every
bounded linear functional 1 E (Hw(D))°, there is a function c(z) E HP''l_,, (D) such
that

1(f) = 7r I ' f (ete) (eie) dO
ir

for f z) E Hw(D).

2. Smirnov's theorem and examples

It is known (see I10, Chapter IV]) that if f (z) E H'(D) and its boundary
function f t) belongs to LP, (T) for some pi > p, then f (z) E HP" (Smirnov's
theorem). A similar theorem also holds for the case with (Aq) weight.

Theorem 2.1. Assume that w E (Aq) for some q with 1 < q < co. Moreover
assume that 0 < p < oo and that pi > p. If f (z) E Hp(D) and if its boundary
funeti n f t) E LP T), then f (z) E Hwi (D).

Before giving the proof, let us recall that for f(t) E L' (T), the Hardy-
Littlewood maximal operator is defined by

e+
Mf (e'B) := sup

s 1
If (e18)I ds.

o 20 0-0

By [2, p. 113], the Poisson integral

7(z) = j(reie) := . - j Pr(9 - t) f (eit) dt, Izl = r < 1
27r

_,

satisfies

2.1 Ij(re")1 <Mf(eie), 0<r<1,
where Pr 0) is the Poisson kernel:

1-r2
1-2rcos0 +r2

If W E (Au) for some q with 1 < q < co, and 1 < p < co, by [12], the operator
M f is bounded from LL(T) into itself, that is, there is a constant Cp such that for
every f t) E Lpw(T),

JMf(e9)w(9) dO < Cp Jj If (e'B)Ipw(B) dB.
x

We are now ready to prove Theorem 2.1.

PROOF. If f (z) E H"(D), by [6, Theorem 2.7], and multiplication by p/q, we
have

loglf(Te'B)lp/q < 2. r*Pr(g-t)logIf(eit)Ip/qdt.
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Exponentiating and using the arithmetic-geometric mean inequality [6, p. 291, we
have

I f (Teie)I111 < exp{ 2- f R P,.(9 - t) loglf
(e't)IP/4 dtl

l r )

S 2x f P(9 - t) I f (eut) IP/g dt.

But, since If (e'e)I E LPw (-1r, 7r), we have If (eie)IP/q EL qWpj /P (T), and since qp1 p >

q > 1 and w E (Aq), by property (iii) of the (A") weight mentioned in the intro-

duction, it follows that w E (AgP1/P). Thus, by Lemma 1.2, if (e'o) P q E L' T).

Hence, by (2.1), we have

suplf (reio)IP/q < s<p
f7r

Pr(9 - t)If (eit)IP/q dt < M( f(eie) P q),
r<1 r1

where M is the Hardy-Littlewood maximal operator. Thus, for r < 1,

If(Tei')1 <- [M(If(e,e)Ip/q)jq/P,

and

ff(rebe)P1w(9)
nn

If dO <
J

PIP'w(0) dO

= f IM(If (e"e)IP/q)IgP1

1e)lPlq)"P1< C f (If(e

Pw(9) d9

Pw(9)d9

7r

= C f If (e'e) IP1w (0) d9 < oo,

here in the last 2 steps, we use the facts that the operator M is bounded from
LwP'/P(T) into itself, and f (eie) E L? (T). Hence f (z) E HP,' (D). 11

Note. Another proof can be obtained using [13, Theorem A4.4.51 and an im-
portant result (see [4, Lemma 2.31 or [7, p. 61): If f (z) E HP,,(D) then f (z)WP(z) E
HP(D) where

WP (z) = exp 21 J eit - x log w(t) dt 1, z E D.
p /

As an application of Theorem 2.1, let us give an example of a function belonging
to Hv,(D):

Example 2.2. Let w(9) = Ieie -ei7rI-1/a We know (see Example 1.1), w(9) E
(Ag) for q with 1 < q < oo. Fix d'o with 0 < d'u < 7r, and define

f (z) _ (z - ei(*-ma))-1/2, z E D.

It is known that f (z) E HP(D) for 0 < p < 2 (see [6, p. 13, Exercise 11)1, hence
f (z) E HI (D). Meanwhile, its boundary function f (e1o) E L,' (T) for 1 < pl < 2

'As noted in (6(, 9(z) = (1 - z) 1 is in HP(D) for every p < 1. From this it follows that
gq(z) = (1 _ z)-l/q is in HP(D) for every p < q. Thus, with a change of variable, we have
f(z) E HP(D) for 0 < p < 2.
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because

dB<oo, 1<p1<2
af 1 1

IeiB _ ei(n-0o)) IPA /2 IeiB - e'a I1/2

(here we note that the singularity of the first factor after the integral sign is at
7r - 00 with power p1 /2 < 1, and the singularity of the second factor, i.e., w(8), is
at 7r with power 1/2). Thus, by Theorem 2.1, f (z) E HP,,, (D) for 1 < pi < 2.

Given a function f (z) and an angle 0, we will use f o Ro (z) to denote the
function obtained from f (z) by rotating z by ¢, that is f o Ro(z) = f (ze'4').

The following examples show that if f (z) E HP,, (D) then f o Ro(z) may or may
not belong to Hu,(D).

Example 2.3. Let f be given as in Example 2.2, and consider the function

g(z) = f o R-0o(z) = (ze-loo - e'(n-0o))-1/2, z E D,

The arguments presented in Example 2.2 show that g(z) E HP(D) for 1 < p < 2.
But since

1A
1 1

dB - _ oo
,r Ie'(e-00) - ei(R-¢o) IP/2 4 Ie'° - e'n I1/2 , p > 1

note that the singularity of the function after the integral sign is at 7r with power
p 2 + 1 2 > 1 when p > 1), the boundary function g(e'B) 0 LPw(T) for p > 1, so by
Lemma 1.3, it follows that g(z) V H,(D) for 1 < p < 2.

If instead we consider the function

h(z) = f o R-O(z) = (ze 'o - ei(*-0o))-I/2' z E D,

then when 0 < 0 < 00 (or 0 > 00 but 0 - 00 < 7r), as in Example 2.2, we have
hz

Example 2.4. Let w(O) be given as in Example 2.2, and {On} (n = 1, 2.... )

be a given sequence with the properties that 0 < On < 7r, qt Oj for i j, and
qn -+ 0 as n -+ oo. We will construct a function h1(z) which is in H. ,(D) but
h1 o R_On(z) V H,(D), 1 < p < 2, f o r all n = 1, 2, .... Let

fn(z) = (z - e'(n-0n))-1/2 (n = 1,2.... ) z E D.
By E x a m p l e 2.2, fn(z) E HP (D) f o r 1 < p < 2, n = 1, 2, .... And as shown in
Example 2.3, the functions

f n o R-0n (z) _ (ze-'On - ei(n-On))-1/2 (n = 1, 2, ...) z E D

are in HP(D) but not in HP,, (D) for 1 < p < 2.
Define the function

00

(2.2) h1(z) _ fk(z)
z E D.

k=12kIIfkIIHw(D)'
It is seen that h1(z) E for 1 < p < 2.

For any fixed n, we have

h1 o R-fin (z)
o f k o R-0n (z) = fn op R-on (z) f k o R-On (z)

k=1 2 IIfkIIHW(D) 2"IIfIIHW(D) k#n 2 IIfkIIHw(D)

Thus, for 1 < p < 2, hi o R_0n (z) HP,, (D) since fn o R_0n (z) 0 H.P (D) and
fk o R-0. (z) E H,(D) for all k 96 n (see Example 2.3).
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3. Approximation in HP. (D)

Recall that a system of functions is called complete in HP,, (D) if the closed
linear span of elements of the system is the space HPW(D); otherwise, it is called
incomplete.

3.1. Approximation by polynomials. As in the classical case, we have:

Lemma 3.1. Assume that qw < p < oo, then the system of polynomials is
complete in HP (D).

PROOF. Suppose that f (z) E HwP (D). By (1.3), given e > 0, for r < 1 suffi-
ciently close to 1, we have

IIf(Z)-f(TZ)IIHP(D) <e.
Since the Taylor series of f (rz) converges uniformly for z < 1, it also converges
in the topology of Hw (D). Choosing sufficiently many terms of the series, we get a
polynomial P(z) which satisfies IIf (z) - P(z)II Hw(D) < 2s.

Definition. Assume that qw < p < oo and f (z) E HP D . For b > 0, let

$f,.(6) = sup ilf o RBI - f o R02 L z.).
101 021<5

Now assume that there exists a So > 0 with o f,w (So) < oo and define

Wh,w(b) = sup sup (1
f'

Ih(e;[e+(i+I)01) - h e' e+ 0 Pw 9 d9)1 P.
i=0,1,2,... IiIG6 21r J ,,

We call Wh,w the generalized modulus of continuity of h. Note that b1 < 62 implies
Wh,w(61) Wh,w(62)

Noting that wf,,(5) < rjf,w(a), and when b < 6o, if,, b < $f,,,, bo < co, we
have, for S < 6o, w f,,,, (6) < oo.

It may be expected, like in the case w = 1, that wf,w(S -> 0 as b -+ 0, but
unfortunately, in general, this is not guaranteed. Indeed, as shown by the following
example due to G. Sinnamon, there exists a function f such that the functions
f o Rp (z) are in HP (D) for all i/ E R, with norms in uniformly bounded,
and hence the same holds for the norms of their boundary functions in LP. T
by Lemma 1.3, but such that for any b > 0 there exist angles ip1 and 02 with
11ki-1P2I<Sand

p R-0.
IIf°`W+i-foIHw(D)>21

and hence, by Lemma 1.3, IIf o Rp, - f o 1 (2Cr), where C. is a
positive constant depending only on p.

Example 3.2 (G. Sinnamon). Fix p with 1 < p < 2 and define w(9)
Ie19-1I-1/2. Then w E AP as in Example 2.2. For each s > 1 set fe(z) = (z-s)-1 2,

where the branch cut of the square root is [0, oo) so that f, (z) is analytic in D.
Define

9(s,0) = Ilfe o RgII L,P,(T)
It is not hard to verify that

(1) g(1, 9) < oo for 9 36 0 (as in Example 2.2);
(2) g(1, 0) = coo (as in Example 2.3);
(3) g is continuous on [1, 21 x [-7r, 7r] except at (1, 0);
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(4) g(s,0)-4ooas s-a1+;
(5) g(s, 9) < g(1, 9) for all s, 9;
(6) g(s, 9) < g(s, 0) for all s, 9.

Note that Property 5 does not depend on the weight w, but just on the geomet-
ric observation that for s > 1 and IzI = 1, Is - zI > 11 - zI. Thus I f3(z)I < I fl(z)I
for each z with Iz1 = 1 and hence g(s, 0) < g(1,0).

To get Property 6, note that for any fixed s > 1, the maximum value of the
function f

(9 (s, 9))P = Z- J (1 + s2 - 2s cos(t + B)) _ 4 (2 - 2 cos(t))-114 dt

occurs at 0 = 0.
Now let On, 0n and Sn be three sequences in (0, 7r) that decrease to zero and

satisfy

en+1+6n+1 <On <On - Sn < On <On+Sn

for n = 1, 2, .... Notice that the intervals (On - Sn, On + Sn) are all disjoint and
contain none of the points On-

Let M = 4r,,° 11/n2 and choose a decreasing sequence sn, with each sn > 1,
such that

9(sn, 0) > Mn2 sup{g(1, 0) : Sn < IOI < 7r}.

Define
00

fg o Ren (z)f(z) _ z E D.
n=1 g(Sn,O)

For each n, Sn < On so g(Sn, 0) > Mn2g(1, On). Thus,

fln ° Ra _ 9(Sn, en) < 9(1, On) _ 1

11 0 z 3ne 0) Mn29(1, 9n) 4n=1ll 9(8n, ) I Hw(D) ^ n=1 9( ,n=1

Since H,(D) is a Banach space this shows that f (z) E Hw (D).
Now let 7p be an arbitrary angle.

fen o RBn O R, 9(Sn_ On + _)00
11,,_l 90n, 0) II Hw(D) - n=1 9(Sn, 0)

The inequality I On + 01 < Sn means that -7G is in the interval (9n - Sn0 On + Sn) and
so it can hold for at most one n. For such an n, we use the estimate, g(sn, On+ P) <
g sn, 0) and for the other values of n we estimate as above to see that the sum is
bounded by 1+E0 11/(Mn2) = 4. This shows that for any ii, f oR,p(z) E Hw(D,
and fOR,,IIHt (D)<g

Now we show that for any S > 0 there exist angles
"Wl

and '02 such that Iiil -
'02 < S and

11f 0 R, f 0 R.2I1HW(D) > 1
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Given b > 0 choose N so large that ION - cNI < S. Set 01 = -ON and 1P2 = -ON

11f o Rot - f 0 RV2IIHw(D)

> II f.,,, o Re,,, o R-o. II Hw (D) - I fs,. o Re.. o R-BN H D
9(sN, 0) n#N 9(sn, 0)

f8n o Re,, o R-,o

9 sn,0
H° D

The first term is equal to 1 and, arguing as above, each of the two sums is at most
a so the result is at least 1 as required.

Example 3.3. Assume that q,,, < p < oo and w is bounded say, w O < K
where K is a positive constant), and f (t) E LP(T). Clearly, f (t E LP T) a
particular case is f (t) E Lw(T) with w = 1). In this case, we can prove that
Wf,w(S) - 0 as S -4 0: Given an e > 0, there is a polynomial p z such that

11f - PII LP (T) < E/ (3K),

hence,

If - PIILw(T) < E/3.

For any 01 and 02, we have

IIfoR,1-P0R4,1IlLw(T)<KIIfoRol-PoRol11LDT)=K f-P LPT <e3,

and similarly,

Ilf o R¢2 - P o R¢2IILP,(T) < E 3.

Meanwhile, by the uniform continuity of p(z) on T, when 01-02 is sufficiently
small, we have

IIP 0 Rol - P o Rm.,11 LW (T) < E 3.

Thus, combining the above 3 inequalities, by Minkowski's inequality, when
101 - 021 sufficiently small, we have

11f o Rm1- f o R¢211Lw(T) <

hence

limsup I1f o Rot - f o R02I1Lw(T) < E,
101-021-0

and the required result follows as e can be arbitrarily small.

This is a very strong condition on the weight w, but it guarantees that wf,w(b)
-4 0 as 5 -+ 0 for all f E LP(T). Simple conditions involving not only w but also f
can easily be given to get wf,w(S) -* 0 as 5 -+ 0. It would be interesting to obtain
a set of necessary and sufficient conditions (on w and f) for w f,w (S) -+ 0 as S -} 0
to hold, as it would have implications on our next two theorems. See below.

Lemma 3.4. For any positive integer k,

(3.1) wh,w(k5) < k . Wh,w(6).
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PROOF. By definition,

wh,,,,(k6)

7r 1/n

= sup sup 1 r Ih(ei[B+(i+1)km]) - h(e'[B+ikm])Ipw(B) dOl

,r \ 1/p
= sup sup 1 r Ih(e'[B+jkm+km]) - h(e'[e+ikm])Ipw(o do l

3=0,1,2,-. , <6 27t
f

,,

7r

p l/
sup sup r 1 r IE[h(ei[e+3km+(1+1)m]) - h(eI[B+ikm+tm])] Iw(o) dol

n

3=0,1,2.... , <6 \2 1-7r 1=0 J

which, by Minkowski's inequality,

k-1 1 ra
< sup sup I J Ih(e'[e+(.ik+1+1)0]) - h(e'[B+(jk+')0) Ipw(B) dO)

1/p

3=0,1,2,... <s 1=o \ 2
k-1

1
a 1/p

sup sup 0 <6I Ih(e'[B+(jk+1+1)0]) - h(e'[O+(ik+1)m])Ipw(o) do I
I=o )=o,1,a..- \ 27

< k wh,,,,(6).

Using a classical method similar to that in [14], we obtain

Theorem 3.5. Assume that q,, < p < oo, h(z) E and there exists a
6 > 0 with Qh,w(60) < oo. Then for any positive integer m, there is a polynomial

z of order < m, such that

3.2 ]]h(t)-P-(t)IILP(T) <C(h)'wh,wl mJ,

where C h) is a constant depending on h but not m.

PROOF. Note that h(t) E LI(T), as in [14, Chapter III], define

I,(B) 2
,/z

h (ai(e+2t)) sinmt
)

4

dt,
Imp

f,r/2 (msint

where

Then

and

I1/p = 2 ir/2 sin mt 4
dt.

M J_12msint)(

h(eie) - I n(o) =
I2p

f r/2[h(e`e) - h(ei(B+zt))]
(msinmt

sint) dt,
mil-

f/z 4

h(e'e) - Im(o)] < -LJh(e'(B+zt)) - h(e'B)I (msint) dt.

Using Holder's inequality, we have

18 2c1
/2

i 0+2t 't p sinmt 4p
1/p

h(e ) - Im(O)I <_
lmp Vrx /2lh(e ( )) - h(e )I (msint) dt)
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where c1 = 7rI/p with 1/p + 1/p' = 1. Thus, using Fubini's theorem, we obtain

h(e1e) - Im(0)I' (0) dO

< (2 )P

fff/2[f-,x
irIh(e'(0+2t)) - h(e'B)IPw(9) dO11 msint) dtll

(
sin mt )4P

dt.(Zlm)P
[Wh,w (I2tl)]P

(
\

/2 \msint
By (3.1), w4,,,,(k6) < kwh,,,,(S), it follows that

IIh(e'B) -Im(0)IILm(-ir,+r)
8/P 1 I rl2[Wh,w(t)]P(m

sin Mt p

Noting that, for t > 0,

wh,w(t) = Wh,w (Mt) < wh w
([ini1 + 1) < ([mt] + 1 Wh,w \ /J

< (mt + 1 wh,w (;;)

(note that, here, and in the following, as usual, for a real number s, we use [s] to
denote the greatest integer not over s), we have

\`
//

Ipa 2 4p 1Psinmt
IIh(e'B) - Im(B)IIL,(-1r,n) lmP

Wh w
Cf (mt + 1 P (m sent) dt)

( a
1

f 2 4P \I
P

Wh,w m((mt)P + 1) msint) dtJl

where we used the inequality \ \

(a + b)P < 2P(aP + bP), a > 0, b > 0, 1 < p < oo.

But we have the estimates (see [14, pp. 84-85]):

l
> C /2 sin mt 4P

dt < C 4

"` m' f.ir m sint) - M
and

lr/2 tP sin mt) 4p dt < c5J
0

(m
sin t mP+1 1

where c; (i = 1, ... , 5) are constants independent of in. Thus, we obtain

II h(e'e) - Im(9)II LW(-R,+r) :5 C(h) Wh,w (!).
Noting that, by [14, Chapter III, p. 91], Im(9) can be re-written as a polynomial
pm(z) of z = e's with order m - 1. The lemma is proved. 0

Remark 3.6. If Wh,w(a) - 0 as b -+ 0, this is a Jackson-type theorem.

We will need the following fact in the next section:
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Lemma 3.7. Let q,,, < p < oo, and p,,,(z) be a polynomial of order m. Denote
for any p > 0,

(3.3)

Then, for r > 1,

(3.4)

IIpviIiW(1t1=p) = f x
Ipm(ne'B)Ipw(0) do.

A

Crm+l
IIpmIILW(It1=*) `- r - 1 IIpmIILW(T)

where c is a constant independent of m.

PROOF. Consider the function
Pin (Z)

(3.5) f (z) zm+1 ' z 0.

Noting that f (oo) = 0, by the Cauchy formula, for any t E C with ItI = r > 1,

f(t)=-1 J - 1 - - d .
27rt If1=I l; - t

Using Holder's inequality with 1/p + 1/p' = 1, we have

f t) < 1

J
IdIj < 1

JI 2ir lel=1 Itl - I£I
)1p

r 1 1 Jif(ei0)ilw(O))
1/p i 1r

(_- L[w(0)11-P'dOl
=

rcl
1IIfiiLW (T)'

where cl = ( 1 27r) f""[w(0)]1-p' do)1/p . Thus, by (3.5), for ItI = r > 1,
lrm 4 Tm+1

pm(t) = rm+1If(t)I T -1 if II LO(T)

1
T - 1 IIpmIILw(T)

SU1Ce f L; T = IP,mIILW(T). Hence, by (3.3),

IIpmIILW(Itl=r) < clr T 1 l IIpmiILW(T),

where c2 = ( 1/27r) f ",, w(O) do)'/p. Letting c = c1c2, (3.4) follows.

3.2. Approximation by rational functions. For a sequence {ak} C D,
consider the system of rational functions

(3.6) ek(z) = 1 1 k = 1, 2, .. ,
27ri 1 - akz

In [41 we studied the system {ek(z)} under the assumption that the sequence {ak}
satisfies the Blaschke condition

0
E(1- IakI) < +00-
k=1

In particular, it was shown that, under this condition, the system {ek(z)} is incom-
plete in Hw(D), for q,,, < p < oo. See [4, Lemma 3.31. We then proceeded to study
the subspace generated by the system {ek(z)}.
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In the current paper, we consider the case when the sequence {ak} does not
satisfy the Blaschke condition.

Lemma 3.8. Assume that q,,, < p < oo. If
00

(3.7) E(1 - Iakl) = +00,
k=1

then the above system {ek(z)}(k = 1, 2, ...) is complete in H.P. D .

PROOF. By the Hahn Banach theorem, and Lemma 1.5, we need my to prove
that if

(3.8) f ek(e'e)Z(eie) dO = - 1 1 'e ' -1) e'°) dO = 0,
r 21ri 1- ake

k = 1,2 ...

where (D (z) E Hwl_a, (D) with 1/p + 1/p' = 1, then ' e'9 = 0 a.e. in --W, -T But
(3.8) is equivalent to

t)it (
dt = 0,

1

fit27ri j=i t - ak
that is, by Lemma 1.4, fi(ak) = 0 (k = 1, 2, ... ). We note that, by Lemma 12,
4)(z) E H8 for some 1 < s < p'. Thus, by (3.7) and Corollary f [6, Theorem 2 3
we have 4) (z) __ 0. The lemma is proved. 0

It follows that, under the assumptions of the ab ve lemma, we can use finear
combinations of the system {ek(z)} (k = 1,2,...) to approximate any functi n in
HP (D). Assume that {ak} contains the point zero. Without loss of generality by
re-indexing, we assume that ao = 0 and all ak 0 (k = 1, 2, ... . Thus, for a fixed

positive integer n, a linear combination of the system becomes
n

(3.9) rn(z) = co + Ck

k=1 1 akz

The poles of rn (z) are bk = 1/dk with lbk j > 1 (k = 1,2,... , n . Denote by R the
collection of all rational functions rn(z) of the above form, and, for h z E HP,, D ,
denote the best approximation value of h by rn in Rn by

En(h) inf 11h - rn] HW D)-rn E Rn

By Lemma 3.8, we have En(h) -+ 0 as n -+ oo. An interesting question is how
to estimate the speed of En(h) -+ 0. Similar problems were studied for uniform
approximation on T or D (see [1]), and for the approximation in HP (see [15]).

Theorem 3.9. Assume that (i) q,,, < p < oo, h(z) E Hw(D), and there exists
a bo > 0 with 9h,w(60) < 00; (ii) {ak} satisfies (3.7) and laid < p (k = 1,2,..-)
with 0 < p < 1. If n is a positive integer satisfying

(3.10) sn =

n

3 E(1- jakI) > 2,
k=1

and

(2 < Wh,w\1)
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(here, assume that wh,,,,(1) < oo), then there exists a rational function rn(z) E Rn
such that

(3.12) IIh - rnIIHW(D) < C'wh,w n

where C is a positive constant depending on h but not n, and wh,w(5) is the gener-
alized modulus of continuity of h. Hence, we have

(3.13) En(h) < C Wh,w (h).

PROOF. Choose a positive integer m = [sn/2]. By (3.10), m > 1, and by
Theorem 3.5, there is a polynomial pm(z) of degree < m such that

(3.14) IIh(t) - Pm(t)IILw(T) <- C1 ' wh,w (,n,t),

where C1 is a constant depending on h but independent of m.
Noting that wh,,,,(1/m) < wh,,,,(1) (since 1/m < 1), by (3.14), we have

3.15 Pm L° (T) IIhIILw(T) + IIh - PmIILw(T) S IIhIIL,(T) + C1 ' wh,w(1) = C2,

where C2 is a constant depending on h but not m and n.
Assume that a rational function rn(z) E Rn interpolates pm(z) at ak (k =

1, 2,..., n + 1). By [17, Chapter VIII, Theorem 2], the error p,,, (z) - rn (z) has the
following integral representation: for IzI < 1,

3.16 Pm(z) - rn(z)
1 (z - al) ... (z-an+l)(t-bl) ... (t - bn) Pm(t)dt

27ri jtj=r (t-a,)...(t-an+l)(z-bl)...(z-bn)

where r > 1 and r 0 Ibk l (k = 1, 2, ... ).
Using (3.16), now we estimate the error Ipm(z) - rn(z)I in IzI <- 1:

z-an+l n z - ak n t-bk... 1 ( T
1

,zr Jtj=r\It-an+, kl_11lz bkl kllllt-ak

- an+1 " -
Z'

" t - bk
27r fit =r ( t ' a,,,+, i Ibkzb bkt - 1

1

I

z

I =1 k+ k=11

Clearly, for IzI < 1,

t-z

n bkz-1 _ In
ak - zz -an+1llk-1 bk

I=Iz-an+lllkl_111-iikz

l

Iz - an+1IIBn(z)I S (IzI + Ian+1I)IBn(z)I 5 2.

And, by [17, Chapter IX, Section 2, Lemma, p. 229], we have for Itl = r > 1,

nn t-bk < 1 n Ibkl+r
It-an.+,I

h=1 bkt,-1I r-1 fl 1+Ibklr.



78 A. BOIVIN AND C. ZHU

So, for IzI < 1, by Holder's inequality,

2 IbkI + r 1
(3.17) IPm(z) -rn(z)

(
I r T_+ IbkIT 2a J t

Pm(t) dt- 1)2
=1k

l)2 1 +IbkIT I PmIILm(t =.),
2<

(T c l [k=1

where cl = ((1/21r) f",[w(9)]1-P'dO)l/P with 1/p + 1/p' = 1.
By Lemma 3.7, and taking r = 2 (note that if Ibk = 2 for some k, we can

choose r = 2 + e with a sufficiently small positive number e), we have for z < 1,

(3.18) Ipm(z) - rn(z)I <- c22'n Ij Ibk{
+2

Pm L' ,l,
k=11 + 2IbkI

where c2 is a constant independent of m and n. Therefore, by (3.18 and 3.15 ,
we have

(3.19) fl Ibkl+2
k=11+2bk

where C3 is a constant depending on h but not m and n. And by 3.19 and 3.14,
noting that 2m = 2[sn/2] < sn, we obtain:

1 "
(3.20)

Ilh-rnl1Lw(T)«''1'Wh,,,,([S1

)+C3 2," bk +2

k=1
1+2bk

Let us estimate the product in the right-hand side of the above inequality. Since

0< lbkl+2 <2,
1 + 2IbkI

we have2
IbkI + 2 b- 1
1+2IbkI

(Ibkl+21+2IbkI -1) =exP -1+2bk ).
Since IbkI > 1, noting (3.10), we have

rl IbkI + 2 IbkI - 1 bk 1

kk=l1+2IbkI
<exp(k 1+2IbkI) <eXp\ 3bkl )

=eXp(-3 t(1- 1 ))
=eXp3(1-lakl)

k=1 I k=1

Thus, by (3.20), it follows that g(3.21)
Ilh - C1Wh,.

[Sn/2]+ C3
(e2

Since jakI <p (k 1, 2.... ), we have

sn = 3 E(1- lakl) ?
3
E(i - P) = 3n(1- p).

k=1 k=1

= e8"

2Fbr 0 < x 5 2, log m = (x-1)-1(x-1)2+ (x-1)3< z-1, and hence x elog 3 es
1
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Hence

12
J

> [i_pn.
Since wh,w (6) is nondecreasing as S increasing, we have by the inequality wh,,,, (aS) <
(a+ 1)wh,w (S) for a > 0,

Wh,w [s/2] / C4 ' Wh,w 1
Jn

where

t-,
Us (1- PT

Meanwhile, noting that 2 e < 1, we have

(2)8' (2 (1-P)n/3
f1 < J1

e e

It
A = (2J1 \ (1-P)/3

e
I

then clearly we have 0 < A < 1. Thus, by ((3.21), it follows that

3.22 IIh - rnhjLP (T) G C51 Wh,w ( ,l) +'An),

where C5 is a positive constant depending only on f and p. But

Wh,w(1) = Wh,w (n n) ().
Hence, by 3.11),

1

Wh w(1) (1-P)n/3
Wh,w

(1) n
Ce/

_ a .

Thus, 3.22) implies

3.23) I

(1),IIf - rnIIL,° (T) / li ' Wh,w

and we have (3.12) since h - rn E HP ,,(D) and, by Lemma 1.3, the two norms of
h - rn Hl- (D) and ph - r-11 Lw (T) are equivalent. The proof is complete. 13

Remark 3.10. If wh,w (S) -+ 0 as S -+ 0, (3.13) gives an estimate of the speed
ofEn(h) -- 0.

Acknowledgement. We are indebted to the referee for his/her careful read-
ing and valuable suggestions and corrections which greatly improved this paper,
and to G. Sinnamon for helpful discussions and providing us in particular with
Example 3.2.
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Some Remarks on the Toeplitz Corona Problem

Ronald G. Douglas and Jaydeb Sarkar

ABSTRACT. In a recent paper, Trent and Wick [23] establish a strong relation
between the corona problem and the Toeplitz corona problem for a family of
spaces over the ball and the polydisk. Their work is based on earlier work of
Amar [3]. In this note, several of their lemmas are reinterpreted in the language
of Hilbert modules, revealing some interesting facts and raising some questions
about quasi-free Hilbert modules. Moreover, a modest generalization of their
result is obtained.

1. Introduction
While isomorphic Banach algebras of continuous complex-valued functions with

the supremum norm can be defined on distinct topological spaces, the results of
Gelfand cf. [12]) showed that for an algebra A C C(X), there is a canonical
ch ice of domain, the maximal space of the algebra. If the algebra A contains the
function 1, then its maximal ideal space, MA, is compact. Determining MA for a
concrete algebra is not always straightforward. New points can appear, even when
the riginal space X is compact, as the disk algebra, defined on the unit circle T,
demonstrates. If A separates the points of X, then one can identify X as a subset
f MA with a point Xo in X corresponding to the maximal ideal of all functions in

A vanishing at x0. When X is not compact, new points must be present but there
is still the question of whether the closure of X in MA is all of MA or does there
exist a "corona" MA X# 0.

The celebrated theorem of Carleson states that the algebra H°° (IID) of bounded
holomorphic functions on the unit disk D has no corona. There is a corona problem
for H°° (St) for every domain 1 in C"° but a positive solution exists only for the
case m = I with Il a finitely connected domain in C.
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One can show with little difficulty that the absence of a corona for an algebra
A means that for {W;}=1 in A, the statement that

n
(1) EIW,(x)I2 > e2 > 0 for all x in X

is equivalent to

(2) the existence of functions {*j}; 1 in A such that
n

E Ps(x)'0,(x) = 1
%=1

for x in X.

The original proof of Carleson [8] for H°° (IlD) has been simplified over the years
but the original ideas remain vital and important. One attempt at an alternate
approach, pioneered by Arveson [6] and Schubert [20], and extended by Agler-
McCarthy [2], Amar [3], and finally Trent-Wick [231 for the ball and polydisk,
involves an analogous question about Toeplitz operators. In particular, for {.p }"_1
in H°° (Q) for Q =B"` or D"`, one considers the Toeplitz operator T4,: H2 Sl "
H2 (f) defined Tj, f = F_1 co f= for f in H2 (1l), where f = f, ® - . ® fn and
Xn = X ® . . . ® X for any space X. One considers the relation between the
operator inequality

(3) T5,T, > e21 for some e > 0

and statement (1). One can readily show that (3) implies that one can solve 2
where the functions {V5s}n=1 are in H2 (11). We will call the existence of such
functions, statement (4). The original hope was that one would be able to modify
the method or the functions obtained to achieve in H°° fl . That 1
implies (3) follows from earlier work of Andersson-Carlsson [51 for the unit ball
and of Varopoulos [24], Li [17], Lin [18], Trent [22) and Treil-Wick [211 for the
polydisk.

In the Trent - Wick paper [23] this goal was at least partially accomplished with
the use of (3) to obtain a solution to (4) for the case m = 1 and for the case m > 1
if one assumes (3) for a family of weighted Hardy spaces. Their method was based
on that of Amax [3].

In this note we provide a modest generalization of the result of Trent -Wick in
which weighted Hardy spaces are replaced by cyclic submodules or cyclic invariant
subspaces of the Hardy space and reinterpretations are given in the language of
Hilbert modules for some of their other results. It is believed that this reformula-
tion clarifies the situation and raises several interesting questions about the corona
problem and Hilbert modules. Moreover, it shows various ways the Corona Theo-
rem could be established for the ball and polydisk algebras. However, most of our
effort is directed at analyzing the proof in [23] and identifying key hypotheses.

2. Hilbert modules
A Hilbert module over the algebra A(1l), for S2 a bounded domain in C", is a

Hilbert space % which is a unital module over A(1l) for which there exists C >_ 1 so
that [[v . f 11w 5 CIIW[IA(r )IIf IIx for v in A(Q) and f in N. Here A(Sl) is the closure
in the supremum norm over SZ of all functions holomorphic in a neighborhood of
the closure of Q.
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We consider Hilbert modules with more structure which better imitate the
classical examples of the Hardy and Bergman spaces.

The Hilbert module R over A(f) is said to be quasi-free of multiplicity one if
it has a canonical identification as a Hilbert space closure of A(1) such that:

(1) Evaluation at a point z in n has a continuous extension to R for which
the norm is locally uniformly bounded.

(2) Multiplication by a cp in A(Sl) extends to a bounded operator T,, in L(R).
(3) For a sequence {pk} in A(St) which is Cauchy in R, Wk(z) -a 0 for all z in

fl if and only if IIPkIIR-40.
We normalize the norm on R so that IIIIIR = 1.
We are interested in establishing a connection between the corona problem for

M (R) and the Theplitz corona problem on R. Here M (?Z) denotes the multiplier
algebra for R; that is, Jet (= M(R)) consists of the functions ' on St for which
tPR C R. Since 1 is in R, we see that M is a subspace of R and hence consists
of holomorphic functions on Q. Moreover, a standard argument shows that 0 is
bounded (cf. [10]) and hence M C H°°(1). In general, M H°°(Q).

For 0 in M we let To denote the analytic Toeplitz operator in £(R) defined
by module multiplication by io. Given functions {cpi}n I in M, the set is said to

1) satisfy the corona condition if Et IIW,(z)I2 > E2 for some e > 0 and all z
in fl;

2 have a corona solution if there exist {0i}!' I in M such that Ey+ Icpi (z)O (z)
=1 for z in n;

3 satisfy the Toeplitz corona condition if E", TetTT4 > E2IR for some e > 0;
and

4 satisfy the R-corona problem if there exist { fi} y"_I in 7Z such that Ey` IT,e, fi
=1 or ELa co (z) f (z) = 1 for z in St with Eyi111f,112 < 1/E2.

3. Basic implications

It is easy to show that (2) (1), (4) = (3) and (2) = (4). As
mentioned in the introduction, it has been shown that (1) = (3) in case n is the
unit ball 3' or the polydisk Dm and (1) : (2) for St = D is Carleson's Theorem.
For a class of reproducing kernel Hilbert spaces with complete Nevanlinna-Pick
kernels one knows that (2) and (3) are equivalent [7] (cf. [4,151). These results are
closely related to generalizations of the commutant lifting theorem [19]. Finally,
3 (4) results from the range inclusion theorem of the first author as follows
cf. [11]).

Lemma 1. If {cp,} I in M satisfy En I T,e,TT, > E2IR for some e > 0, then
there exist { ft}i j an R such that I cpi(z) fi(x) = 1 for z in n and En I IIfiIIR <
1 E2.

PROOF. The assumption that Ey`I T,etT 4 > E21 implies that the operator
X: R" -+ R defined by X f = Eyy ,Tei fi satisfies XX` = Et ITe,TW*{ > E2IR
and hence by [11] there exists Y : R -* Rn such that XY = IR with II YII S
Therefore, with Y1 = f i ®- ® fn, we have 1:" I cp,,(z) fi(x) = X:n I TV, fi =
XYl = 1 and > II[fjIIR = IIYlII2 < 1/E2. Thus the result is
proved.

To compare our results to those in [23], we need the following observations.
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Lemma 2. Let R be the Hilbert module L.(µ) over A(S2) defined to be the
closure of A(S2) in L2(µ) for some probability measure µ on clos Q. For f sn L2(µ
the Hilbert modules La(I f 12 dµ) and [f], the cyclic submodule of R generated by f,
are isomorphic such that 1 -i f.

PROOF. Note that Ikv 1IIL2(Ifl2 dµ) = Il(pf IIL'(v) for cp in A(SZ and the closure
of this map sets up the desired isomorphism.

Lemma 3. If { ft} 1 are functions in L2(µ) and g(z) f,(z 2, then
La(g dµ) is isomorphic to the cyclic submodule [fl ® .. ® f"] of La(p " with 1-fl

® ED A.
PROOF. The same proof as before works.

In [23], Trent-Wick prove this result and use it to replace the L2 spaces used
by Amar [3] by weighted Hardy spaces. However, before proceding we want to
explore the meaning of this result from the Hilbert module point of view.

Lemma 4. For R = H2(Bm) (or H2(IIDm)) the cyclic submodule of R" gener-
ated by Cpl ® ®c W. with {'pt}!,'=1 in A(Bm) (or A(lDm)) is isomorphic to a cyclic
submodule of H2(1($m) (or H2(IID"')).

PROOF. Combining Lemma 3 in [23] with the observations made in Lemmas 2
and 3 above yields the result.

There are several remarks and questions that arise at this point. First, does
this result hold for arbitrary cyclic submodules in H2 (B- n or H2 IlD"` ", which
would require an extension of Lemma 3 in [23] to arbitrary f in H2(W' " or
H2(Dm)"? (This equivalence follows from the fact that a converse to Lemma 2 is
valid.) It is easy to see that the lemma can be extended to an n-tuple of the form
f1h ® ® f"h, where the {f}1 are in A(n) and h is in R. Thus one need only
assume that the quotients {f/f}_1 are in A(S2) or even only equal a.e. to some
continuous functions on BSt.

Second, the argument works for cyclic submodules in H2 (13 ®12 or H2 (]IY'
12 as long as the generating vectors are in A(n) since Lemma 3 in [23] holds in this
case also.

Note that since every cyclic submodule of H2(C) ®12 is isomorphic to H2(C ,
the classical Hardy space has the property that all cyclic submodules for the case of
infinite multiplicity already occur, up to isomorphism, in the multiplicity one case.
Although less trivial to verify, the same is true for the bundle shift Hardy spaces
of multiplicity one over a finitely connected domain in C [1].

Third, one can ask if there are other Hilbert modules R that possess the prop-
erty that every cyclic submodule of R ® C" or R ® la is isomorphic to a submodule
of R? The Bergman module La(IID) does not have this property since the cyclic
submodule of La(ll)) ®La(®) generated by 1® z is not isomorphic to a submodule
of La(1D). If it were, we could write the function 1 + I2I2 = I f (Z) 12 for some f in
La(®) which a simple calculation using a Fourier expansion in terms of {z"z }
shows is not possible.

We now abstract some other properties of the Hardy modules over the ball and
polydisk.

We say that the Hilbert module R over A(Sb) has the modulus approximation
property (MAP) if for vectors { fi}N 1 in M 9 R, there is a vector k in R such that
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IIOkIIR = EN1110 f., 112 for 0 in M. The map Ok -+ Of, e ® O f N thus extends to
a module isomorphism of [k] C R and [1' ® o f N] C RN

For zo in n, let I, denote the maximal ideal in A(cz) of all functions that
vanish at zo. The quasi-free Hilbert module R over A(fl) of multiplicity one is said
to satisfy the weak modulus approximation property (WMAP) if

(1) A nonzero vector kzp in R G Izo R can be written in the form kz0 1,
where kzp is in M, and Tk,0 has closed range acting on R. In this case R
is said to have a good kernel function.

(2) Property MAP holds for f; = .1; kz i = 1,...,N with 0 < .1, < 1 and
N1\:=1.

4. Main result

Our main result relating properties (2) and (3) is the following one which
generalizes Theorem 1 of [23].

Theorem. Let R be a WMAP quasi-free Hilbert module over A(1) of multi-
plicity one and {cp,}n 1 be functions in M. Then the following are equivalent:

(a) There exist functions {I/it}n 1 in H°°(1) such that E 1

and F, ?i,(z)l <_ 1/e2 for some e > 0 and all z in f2, and
(b) there exists e> 0 such that for every cyclic submodule S of R, Zn1TS TS

> e2IS, where TS = TcIs for W in M.

PROOF. We follow the proof in [23] making a few changes. Fix a dense set
{Z'10=02 of n.

First, we define for each positive integer N, the set CN to be the convex hull of
the functions {lkzy 12/IlkZ, 112}142 and the function 1 for i = 1 with abuse of notation.
Since R being WMAP implies that it has a good kernel function, CN consists of
nonnegative continuous functions on fl. For a function g in the convex hull of the
set { kZ, 2/ kz, 12}N

1, the vector \l kz1 / II kz,112 ® .. ®ANkZN III kzN 112 is in RN By
definition there exists Gin R such that [G] = [A1kZ1 /I1 kZ, II ® ® ANkzN/II kzN II]
by extending the map OG .11Bkz1 /IIk.1 Il ® ®.1NOkzN/Ilk-N II for 0 in M.

Second, let {cpl, ... ,'pn} be in M and let Tb denote the column operator defined
from Rnto Rby T4, (f, ED ED fn)_En 1Tw,fZfor f=(flED ...ED f,) in Rnand
set 1C = ker Tb C Rn. Fix f in Rn. Define the function

FN : CN X IC -- [0, 00)

by
N

2
FN(g, h) _

at II kZ+ ] (f - h) II

for h = hl ®... ED hn in Rn,
s=1 kz

where g = En1 \t Ikz, I2/ljkZ,112 and En1 a? = 1. We are using the fact that the
kz, are in M to realize kz{ (f - h) in R.

Except for the fact we are restricting the domain of FN to CN x IC instead of
CN X Rn, this definition agrees with that of [23]. Again, as in [23], this function is
linear in g for fixed h and convex in h for fixed g. (Here one uses the triangular
inequality and the fact that the square function is convex.)

Third, we want to identify FN (g, h) in terms of the product of Toeplitz opera-
tors (T 9) (T ° )`, where S. is the cyclic submodule of R generated by a vector P in
R as given in Lemma 3 such that the map P -+ (Alkz, /IIkz, I1® ®aNk-N /ll kz,, 11
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extends to a module isomorphism with g = FN 1 Ik::I2/IIk, Ii2, 0 <_ a < 1, and
N 2 -

Note for f in IV', infhEK FN (9, h) 1/E2IIT'Pf II2 if g ° (T g)* > e213 !Thus,

if TOS(T )* > E2IS for every cyclic submodule of R, we have infhEr, FN(9, h
< 1/e2IIT ,f II2. /Thus from the von Neumann min-max theorem we obtain
inf hc,c suP9ECN FN (9, h) = SUP9ECN lnf hE,c FN (9, h) < 1/E2 TT f 2.

From the inequality TOTS, > e2IR,, we know that there exists f o in R° such
that IIf0 1I e 1/c 11111 = 1/e and To f o = 1. Moreover, we can find hN in IC such that
TN (g, hN) < (1/e2 + 1/N)IITof0II2 = l/e2 + 1/N for all g in CN. In particular, for

9i = Ik=,I2/IIk=,II2, we have TT°4(TT9,)* > e2ISe,, where k../ k= fo - hN 2 <
1/62 + 1/N.

There is one subtle point here in that 1 may not be in the range of T. However,
if P is a vector generating the cyclic module S9, then P is in M and Tp has closed
range. To see this recall that the map

Ok-TN
OP -* Al

IIkV II
...®ANIIk

N [

for 0 in M is an isometry. Since the functions {k,/Ilk, }N 1 are in M by as-
sumption, it follows that the operator Mp is bounded on M C R and has closed
range on 1Z since the operators Mk,{ /IIk=, II have closed range, again by assumption.
Therefore, find a vector f in S9 so that To f = P. But if f = f1 ® ... ® fn, then
fi is in [P] and hence has the form fi = Pfi for f, in R. Therefore, T.Tp f = P or
Tt f = 1 which is what is needed since in the proof f o - f is in 1C.

To continue the proof we need the following lemma.

Lemma 5. If zo is a point in fZ and h is a vector in Rn, then h zo 2L* <

IIk=o/IIk=0IIh1I2.

PROOF. Suppose h = h1 ® ® hn with {h,} 1 in A fl). Then Th,k, _
hi(zo)k:o and hence

hi(zo)Ilkaoll2 = (TT,k=o,k:o) = (kzo,Th.kw)

since Tk,o hi = Th, k,,,. (We are using the fact the k,, h, = kZ h, 1 = h,k20 .1 =
hikzo ) Therefore,

Ihi(zo)Illkzoll2 = I(k=o) Tk.0h+)I a 11kw[I2[ITk.o/ k*o h.II,
or,

Finally,
Ik(zo)I S IITk,o/IIk.oIIkII-

n

IIh(zo)Ilcn = rIhi(zo)I2 .- IITk,0/Ilk.0llhII2,
+_1

and since both terms of this inequality are continuous in the R-norm, we can
eliminate the assumption that h is in A(Q)n. 0

Returning to the proof of the theorem, we can apply the lemma to conclude
that II(fo - ho)(z)IIc, < IIk=,/IIkz,II(f0 - ho)II2 < 1/E2 + 1/N. Therefore, we see
that the vector f N = f o - hN in Rn satisfies

(1) T4(fN - hN) = 1,
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(2) UN - h N I I R-< 1 /e2 + 11N and
(3) II(fN-hN)(z.)112 <1/e2+1/N fori=1,...,N.

Since the sequence { f N}N=1 in R^ is uniformly bounded in norm, there exists
a subsequence converging in the weak'-topology to a vector 0 in R". Since
weak`-convergence implies pointwise convergence, we see that j 1 1 and

c e2 for all zt. Since 0 is continuous on SZ and the set {z,} is dense
in fl, it follows that is in H%(S2) and 110 11 5 1/e2 which concludes the proof.

Note that we conclude that is in H°° (11) and not in M which would be the
hoped for result.

One can note that the argument involving the min-max theorem enables one
to show that there are vectors h in 1C which satisfy

Moreover, this shows that there are vectors f so that Tp f = 1, 111112 < 1/e2 + 1/N,
and f z,) 2 < 1 e2 + 1/N for i = 1, ... , N. An easy compactness argument
completes the proof since the sets of vectors for each N are convex, compact and
nested and hence have a point in common.

5. Concluding comments

With the definitions given, the question arises of which Hilbert modules are
(MAP r which quasi-free ones are WMAP. Lemma 4 combined with observations
in 231 show that both H2(Bm) and H2(IIDm) are WMAP. Indeed any La space
f r a measure supported on 8B'n or the distinguished boundary of IlDm has these
properties. One could also ask for which quasi-free Hilbert modules R the kernel
functions {k=}=ECM are in M and whether the Toeplitz operators Tk, are invertible
perators as they are in the cases of H2(3'n) and H2(IlD'n). It seems possible that

the kernel functions for all quasi-free Hilbert modules might have these properties
when fl is strongly pseudo-convex, with smooth boundary. In many concrete cases,
the k, are actually holomorphic on a neighborhood of the closure of 1 for zo in I,
where the neighborhood, of course, depends on zo.

Note that the formulation of the criteria in terms of a cyclic submodule S of
the quasi-free Hilbert modules makes it obvious that the condition

TT (TT )" > e2Is

is equivalent to
TOT; > e211Z

if the generating vector for S is a cyclic vector. This is Theorem 2 of [231. Also it is
easy to see that the assumption on the Toeplitz operators for all cyclic submodules
is equivalent to assuming it for all submodules. That is because

I (Ps (D Ic..)TT f H >_ 11(pit) (& Ic^ )T.f ll

for f in the submodule S.
If for the ball or polydisk we knew that the function "representing" the modulus

of a vector-valued function could be taken to be continuous on clos(Sl) or cyclic, the
corona problem would be solved for those cases. No such result is known, however,
and it seems likely that such a result is false.
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Finally, one would also like to reach the conclusion that the function it is in
the multiplier algebra even if it is smaller than H°°(Sl). In the recent paper [91 of
Costea, Sawyer and Wick this goal is achieved for a family of spaces which includes
the Drury-Arveson space. It seems possible that one might be able to modify the
line of proof discussed here to involve derivatives of the {V,}",=1 to accomplish this
goal in this case, but that would clearly be more difficult.
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ABSTRACT. We review some results on regularity on the boundary in spaces
of analytic functions on the unit disk connected with backward shift invariant
subspaces in HP.

1. Introduction

Fatou's theorem shows that every function of the Nevanlinna class N :_ If E
,r log+lf (re' )I dt < oo} admits nontangential limits at almostRol D : supo<r<1 f'

every point C of the unit circle T = M, D = {z E C : Izl < 1} being the unit
disk. One can easily construct functions (even contained in smaller classes) which
do not admit nontangential limits on a dense set of T. The question that arises
from such an observation is whether one can gain regularity of the functions at
the boundary when restricting the problem to interesting subclasses of N. We will
discuss two kinds of subclasses corresponding to two different ways of generalizing
the class of standard backward shift invariant subspaces in H2 := if E Hol(D) :
f z := limn_,, 1/21r) f",, If (reit) I2 dt < oo}. Recall that backward shift invariant

subspaces have shown to be of great interest in many domains in complex analysis
and operator theory. In H2, they are given by KI := H2 a IH2, where I is an inner
function, that is a bounded analytic function in D the boundary values of which
are in modulus equal to 1 a.e. on T. Another way of writing KI is

KI=H2nIHo,
where Ho = zHZ is the subspace of functions in H2 vanishing in 0. The bar sign
means complex conjugation here. This second writing KI = H2 n IHo does not
appeal to the Hilbert space structure and thus generalizes to Hp (which is defined
as H2 but replacing the integration power 2 by p E (0, oo); it should be noted that
for p E (0,1) the expression II f II n defines a metric; for p = oo, H°° is the Banach
space of bounded analytic functions on D with obvious norm). When p = 2, then
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these spaces are also called model spaces because they arise in the construction of a
universal model for Hilbert space contractions developped by Sz.-Nagy Foias (see
[71]). Note that if I is a Blaschke product associated with a sequence (z,, ,>, of
points in D, then KI coincides with the closed linear span of simple fractions with
poles of corresponding multiplicities at the points 1/zn.

Many questions concerning regularity on the boundary for functions in stan-
dard backward shift invariant subspaces were investigated in the extensive existing
literature. In particular, it is natural to ask whether one can find points in the
boundary where every function f in KI and its derivatives up to a given order
have nontangential limits; or even can one find some arc on the boundary where
every function f in KIP can be continued analytically? Those questions were in-
vestigated by Ahern - Clark, Cohn, Moeller..... Another interest in backward shift
invariant subspaces concerns embedding questions, especially when KIP embeds into
some L)(µ). This question is related to the famous Carleson embedding theorem
and was investigated for instance by Aleksandrov, Cohn, Treil, Volberg and many
others (see below for some results).

In this survey, we will first review the important results in connection with
regularity questions in standard backward shift invariant subspaces. Then we will
discuss these matters in the two generalizations we are interested in: de Branges-
Rovnyak spaces on the one hand, and weighted backward shift invariant sub-
spaces-which occur naturally in the context of kernels of Toeplitz operators-
on the other hand. Results surveyed here are mainly not followed by proofs. How
ever, some of the material presented in Section 4 is new. In particular Theorem 18
for which we provide a proof and Example 4.1 that we will discuss in more detail.
The reader will notice that for the de Branges-Rovnyak situation there now ex-
ists a quite complete picture analogous to that in the standard KIP spaces whereas
the weighted situation has not been investigated very much yet. The example 4.1
should convince the reader that the weighted situation is more intricate in that the
Ahern - Clark condition even under strong conditions on the weight - that ensure,
e.g., analytic continuation off the spectrum of the inner function -is not sufficient.

2. Backward shift invariant subspaces

We will need some notation. Recall that the spectrum of an inner function I
is defined as v(I) = {( E closD : liminf,z,S I(z) = 0}. This set corresponds to the
zeros in D and their accumulation points on T = OD, as well as the closed support
of the singular measure ps of the singular factor of I.

The first important result goes back to Moeller [56] (see also [1] for a several
variable version):

Theorem 1 (Moeller, 1962). Let I' be an open arc of T. Then every function
f E KIP can be continued analytically through r if and only if r n o,(I) = 0.

Moeller also establishes a link with the spectrum of the compression of the
backward shift operator to KIP.

It is of course easy to construct inner functions the spectrum of which on T is
equal to T so that there is no analytic continuation possible. Take for instance for I
the Blaschke product associated with the sequence A = {(1 - 1/n2)e;n}n, the zeros
of which accumulate at every point on T. So it is natural to ask what happens in
points which are in the spectrum, and what kind of regularity can be expected there.
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Ahern Clark and Cohn gave an answer to this question in [2,281. Recall that an
arbitrary inner function I can be factored into a Blaschke product and a singular
inner function: I = BS, where B = 11n ban, ba (z) = (Ianl/an)(an - z)/(1-
En(1- Ianl2) < oo, and

/
S(z) = exp 1 - f C + z dµs (C))

where 12s is a finite positive measure on T singular with respect to normalized
Lebesgue measure m on T. The regularity of functions in Ki is then related with
the zero distribution of B and the measure µs as indicated in the following result.

Theorem 2 (Ahern-Clark, 1970, Cohn, 1986). LetI be an inner function
and let 1 < p < +oo and q its conjugated exponent. If l is a nonnegative integer
and ( E T, then the following are equivalent:

(i) for every f in KI, the functions f {3), 0 < j < 1, have finite nontangential
ltmtts at (;

(ii we have Sq(I+1) (() < +00, where

1 Sr(C)

00
(1 - Ian 12) +12,

1 di s(eit) (1 < r < oc).
n=1 11- Can Ir 11 - (eitlr

Moreover to that case, the function

j2'f(z)k(z)'

(k)I+1 belong s to Kand we have

2 l!
dm(z),

for every function f E K.

Here kS is the reproducing kernel of the space Kz corresponding to the point
( and defined by

3
_ 1 - I(C)I(z)

kS(z)
1 - (z

The quantity S,i. (() is closely related to the angular derivatives of the inner function
I. Recall that a holomorphic selfmap f of the unit disk D is said to have an
angular derivative at C E T if f has nontangential limit of modulus 1 in ( and
f ( := limr--,l f'(rC) exists and is finite. Now, in the case where f = I is an inner
function, if S2 1(C) < +oo, then I has an angular derivative at ( and S2 ,(C) = lI' (() l
see [4, Theorem 2]). Moreover, if S+1(C) < +oo, then I and all its derivatives up

to order I have finite radial limits at C (see [3, Lemma 4]).
Note that the case p = 2 of Theorem 2 is due to Ahern - Clark and Cohn

generalizes the result to p > 1 (when l = 0). Another way to read into the results
of Ahern -Clark, Cohn and Moeller is to introduce the representing measure of the
inner function I, Al = µs + µB, where

µB E(1 -
n>1

Then Theorems 1 and 2 allow us to formulate the following general principle: if
the measure µr is "small" near a point (E T, then the functions f in KI must be
smooth near that point.

Another type of regularity questions in backward shift invariant subspaces was
studied by A. Aleksandrov, K. Dyakonov and D. Khavinson. It consists in asking if
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KI contains a nontrivial smooth function. More precisely, Aleksandrov in [5] proved
that the set of functions f E KI continuous in the closed unit disc is dense in K.
It should be noted nevertheless that the result of Aleksandrov is not constructive
and indeed we do not know how to construct explicit examples of functions f E Kf
continuous in the closed unit disc. In the same direction, Dyakonov and Khavinson,
generalizing a result by Shapiro on the existence of CI-functions in KIP [68], proved
in [42] that the space KI contains a nontrivial function of class A°° if and only if
either I has a zero in D or there is a Carleson set E C T with ps(E > 0; here
A°° denotes the space of analytic functions on D that extend continuously to the
closed unit disc and that are COO (T); recall that a set E included in T is said to be
a Carleson set if the following condition holds

jlogdist((,E)dm(C) > -oo.

In [34,36,37,40], Dyakonov studied some norm inequalities in backward shift invari-
ant subspaces of HP(C+); here HP(C+) is the Hardy space of the upper half-plane
C+ := {z E C : Imz > 0} and if a is an inner function for the upper half-plane,
then the corresponding backward shift invariant subspace of HP C+ is also denoted
by Ke and defined to be

Ke = HP (C+) n eHP (C+).

In the special case where 6(z) = eiaz (a > 0), the space Ka is equal to PWP n
HP(C+), where PWa is the Paley-Wiener space of entire functi ns of exponential
type at most a that belong to LP on the real axis. Dyakonov shows that several
classical regularity inequalities pertaining to PWa apply also to Ka provided 9' is
in H°°(C+) (and only in that case). In particular, he proved the following result.

Theorem 3 (Dyakonov, 2000 and 2002). Let 1 < p < +oo and let a be
an inner function in H°°(C+). The follovring are equivalent:

(1) Ke C Co(R).
(ii) Ke C L2 (R), for some (or all) q E (p,+oo).
(iii) The differentiation operator is bounded as an operator from Ka to LP (R ,

that is

(4) l[f'llp < C(p, e)I[f 11p, f E K.
(iv) e' E H°O(C+).

Notice that in (4) one can take C(p,e) = C,(p) e' where C, (p) depends
only on p but not on G. Moreover, Dyakonov also showed that the embeddings in
(i), (ii) and the differentiation operator on Ke are compact if and only if a satisfies
(iv) and e'(x) -> 0 as IxI -> +oo on the real line. In [38], the author discusses
when the differentiation operator is in Schatten von Neumann ideals. Finally in
[40], Dyakonov studied coupled with (4) the reverse inequality. More precisely, he
characterized those 6 for which the differentiation operator f H f' provides an
isomorphism between Ke and a closed subspace of HP, with 1 < p < +oo; namely
he showed that such 6's are precisely the Blaschke products whose zero-set lies in
some horizontal strip {a < Im z < b}, with 0 < a < b < +oo and splits into finitely
many separated sequences.

The inequality (4) corresponds for the case e(z) = e`az to a well-known in-
equality of S. Bernstein (see [17, Premier lemme, p. 75] for the case p = +oo and
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[19, Theorem 11.3.3] for the general case). For p = +oo, a beautiful generalization
of Bernstein's inequality was obtained by Levin [55]: let x E R and le'(x)I < +oo;
then for each f E Kg, the derivative f(x) exists in the sense of nontangential
boundary values and

If EKe.
W (x)

Recently, differentiation in the backward shift invariant subspaces Ke was studied
extensively by A. Baranov. In [11,13], for a general inner function a in HO° (C+),
he proved estimates of the form

(5) II f(I)wp,dILP(µ) :! CIIfllp, f E Ke,
where I > 1, µ is a Carleson measure in the closed upper half-plane and wp,I is some
weight related to the norm of reproducing kernels of the space Ke which com-
pensates for possible growth of the derivative near the boundary. More precisely,
put

wp,I(z) =
II(ke)`+i11gp/(p+1) (z E clos(C+)),

where q is the conjugate exponent of p E [1, +oo). We assume that wp,I (x) = 0,
whenever S.9,+1 (x) = +oo, x E R (here we omit the exact formula of ke and S?
in the upper half-plane but it is not difficult to imagine what will be the analogue
of 1 and 3) in that case).

Theorem 4 (Baranov, 2005). Let Is be a Carleson measure in clos(C+),
I E N, 1 < p < +oo. Then the operator

(TT,If) (z) = f (I) (z)wp,l (z)

ss f weak type (p, p) as an operator from Ke to L)(µ) and is bounded as an operator
from K.' to Lr µ) for any r > p; moreover there is a constant C = C(µ, p, r, 1) such
that

IIf(a)wp,111L-(,.) CIIflir, f E K.
The proof of Baranov's result is based on the integral representation (2) which

reduces the study of differentiation operators to the study of certain integral singular
perators.

To apply Theorem 4, one should have effective estimates of the considered
weights, that is, of the norms of reproducing kernels. Let

Q(e,e) := {z E C+ : 10(x)1 < e}

be the level sets of the inner function a and let de(x) = dist(x,Q(e,e)), x E R.
Then Baranav showed in [12] the following estimates:

6 dd(x) < wp,((x) < Ie'(x)I-I, x E R.

Using a result of A. Aleksandrov [8], he also proved that for the special class of
inner functions a satisfying the connected level set condition (see below for the
definition in the framework of the unit disc) and such that oo E v(e), we have

7) wpI(x) X Ie'(x)I-t (x E R).

In fact, the inequalities (6) and (7) are proved in [12, Corallary 1.5 and Lemma 4.5]
for I = 1; but the argument extends to general l in an obvious way. We should men-
tion that Theorem 4 implies Theorem 3 on boundeness of differentiation operator.
Indeed if 6' E L°°(]R), then it is clear (and well known) that supXEallkxllq < +oo,
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for any q E (1, oc). Thus the weights w,. = wr,l are bounded from below and thus
inequality

Ilf'Wrllp :5 CIlfllp (f E Ke)
implies inequality (4).

Another type of results concerning regularity on the boundary for functions
in standard backward shift invariant subspaces is related to Carleson's embedding
theorem. Recall that Carleson proved (see [21, 22]) that H' = HP(ID embeds
continuously in LP (µ) (where µ is a positive Borel measure on clos B)) if and only
if µ is a Carleson measure, that is there is a constant C = C(ii) > 0 such that

µ(S(S, h)) < Ch,

for every "square" S((, h) = {z E closliD : 1 - h/27r < Izl < 1, arg(zS < h 2},
(E T, h E (0, 27r). The motivation of Carleson comes from interpolation problems
but his result acquired wide importance in a larger context of singular integrals
of Calderon - Zygmund type. In [27], Cohn studied a similar question for model
subspaces K. More precisely, he asked the following question: given an inner
function I in ID and p > 1, can we describe the class of positive Borel measure p
in the closed unit disc such that KI is embedded into LP(y)? In spite of a number
of beautiful and deep (partial) results, this problem is still open. Of course, due to
the closed graph theorem, the embedding KI C LP(p) is equivalent to the estimate

(8) IIfIILP(p) <CIIfIip (f E KIP) .

Cohn solved this question for a special class of inner functions. We recall that I is
said to satisfy the connected level set condition (and we write I E CLS if the level
set SZ(I, e) is connected for some e E (0,1).

Theorem 5 (Cohn, 1982). Let µ be a positive Borel measure on closO. Let
I be a an inner function such that I E CLS. The follovring are equ valent:

(i) KI embedds continuously in L2(µ).
(ii) There is c > 0 such that

IIZ
(9)

LOBO 11 - z(I2 dµ(() - 1 - I(z)I2' z E B.

It is easy to see that if we have inequality (8) for f = kZ z E ID, then we
have inequality (9). Thus Cohn's theorem can be reformulated in the following
way: inequality (8) holds for every function f E KI if and only if it holds for
reproducing kernels f = kl, z E B. Recently, F. Nazarov and A. Volberg [58]
showed that this is no longer true in the general case. We should compare this
property of the embedding operator KI C L2(µ) (for CLS inner functions) to the
"reproducing kernel thesis," which is shared by Toeplitz or Hankel operators in H2
for instance. The reproducing kernel thesis says roughly that in order to show the
boundeness of an operator on a reproducing kernel Hilbert space, it is sufficient to
test its boundeness only on reproducing kernels (see, e.g.. [59, Vol.1, pp. 131, 204,
244, 246] for some discussions of this remarkable property).

A geometric condition on µ sufficient for the embedding of KI is due to Vol-
berg Treil [73].

Theorem 6 (Volberg Treil, 1986). Let µ be a positive Borel measure on
closD, let I be a an inner function and let 1 < p < +oo. Assume that there w
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C > 0 such that

(10) µ(S(C, h)) < Ch,

for every square S(C, h) satisfying S(C, h) fl fZ(I, e) # 0. Then KI embeds contin-
uously in LP(µ).

Moreover they showed that for the case where I satisfies the connected level set
condition, the sufficient condition (10) is also necessary, and they extend Theorem 5
to the Banach setting. In [8], Aleksandrov proved that the condition of Volberg
Treil is necessary if and only if I E CLS. Moreover, if I does not satisfy the con-
nected level set condition, then the class of measures µ such that the inequality (8)
is valid depend essentially on the exponent p (in contrast to the classical theorem
of Carleson).

Of special interest is the case when µ = ETEN a discrete measure;
then embedding is equivalent to the Bessel property for the system of reproducing
kernels {ka }. In fact, Carleson's initial motivation to consider embedding prop-
erties comes from interpolation problems. These are closely related with the Ries2
basis property which itself is linked with the Bessel property. The Riesz basis prop-
erty of reproducing kernels {kan } has been studied by S. V. Hruscev, N. K. Nikol'skii
and B. S. Pavlov in the famous paper [51], see also the recent papers by A. Baranov
13,14] and by the first author [23, 43]. It is of great importance in applications

such as f r instance control theory (see [59, Vol. 2]).
Also the particular case when µ is a measure on the unit circle is of great inter-

est. In contrast to the embeddings of the whole Hardy space HP (note that Carleson
measures n T are measures with bounded density with respect to Lebesgue mean
sure , the class of Borel measures µ such that KIP C LP(µ) always contains
n ntnvial examples of singular measures on T; in particular, for p = 2, the Clark
measures 26] for which the embeddings KI C L2 (µ) are isometric. Recall that
glsen A E T, the Clark measure Qa associated with a function bin the ball of H°°
is defined as the unique positive Borel measure on T whose Poisson integral is the
real part of A + b)/(A - b). When b is inner, the Clark measures o are singular
with respect to the Lebesgue measure on T. The situation concerning embeddings
f r Clark measures changes for p # 2 as shown by Aleksandrov [6]: while for p > 2
this embedding still holds (see [6, Corollary 2, p. 117]), he constructed an example
f r hick the embedding fails when p < 2 (see [6, Example, p. 123]). See also the
nice survey by Poltoratski and Sarason on Clark measures [60] (which they call
Aleksandrov-Clark measures). On the other hand, if µ = wm, w E L2(T), then the
embedding problem is related to the properties of the Toeplitz operator T,,, (see
29] .

In [11,12], Baranov developped a new approach based on the (weighted norm)
Bernstein inequalities and he got some extensions of Cohn and Volberg Treil re-
sults. Compactness of the embedding operator KIP C LP(µ) is also of interest and
is considered in [12,15,24,29,72].

Another important result in connection with KP-spaces is that of Douglas,
Shapiro and Shields ([321, see also [25, Theorem 1.0.5; 62]) and concerns pseudo-
continuation. Recall that a function holomorphic in D. :_ C\closD clos E means
the closure of a set E is a pseudocontinuation of a function f meromorphic in
D if 7P vanishes at oo and the outer nontangential limits of V) on T coincide with
the inner nontangential limits of f on T in almost every point of T. Note that
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f E K! = H2 n I Ho implies that f = Il/i with P E Ho 2- Then the meromor-
phic function f/I equals , a.e. T, and writing T/i(z) _ E >.1 b,,z", it is clear that
IP(z) E>1 bn/zn is a holomorphic function in De, vanishing at oo, and being
equal to f 1I almost everywhere on T (in fact, 1/i E H2 (De)). The converse is also
true: if f 1I has a pseudocontinuation in IIDe, where f is a HP-function and I some
inner function I, then f is in KI . This can be resumed this in the following result.

Theorem 7 (Douglas - Shapiro - Shields, 1972). Let I be an inner func-
tion. Then a function f E HP is in KP if and only if f 1I has a pseudocont nuation
to a function in HP(IIDe) which vanishes at infinity.

Note that there are functions analytic on C that do not admit a pseudocontinu-
ation. An example of such a function is f (z) = eZ which has an essential singularity
at infinity.

As already mentioned, we will be concerned with two generalizati as of the
backward shift invariant subspaces. One direction is to consider weighted versions
of such spaces. The other direction is to replace the inner function by m re general
functions. The appropriate definition of Kj in this setting is that of de Branges-
Rovnyak spaces (requiring that p = 2).

Our aim is to discuss some of the above results in the context of these spaces.
For analytic continuation it turns out that the conditions in both cases are quite
similar to the original K!-situation. However in the weighted situation some addi-
tional condition is needed. For boundary behaviour in points in the spectrum the
situation changes. In the de Branges - Rovnyak spaces the Ahern - Clark condition
generalizes naturally, whereas in weighted backward shift invariant subspaces the
situation is not clear and awaits further investigation. This will be illustrated in
Example 4.1.

3. de Branges - Rovnyak spaces

Let us begin with defining de Branges-Rovnyak spaces. We will be essentially
concerned with the special case of Toeplitz operators. Recall that for W E LO° T ,
the Toeplitz operator T. , is defined on H2 by

,P(f) P+(cof) (f E H2),
where P+ denotes the orthogonal projection of L2(T) onto H2. Then, for cp E
L°O(T), 1, the de Branges Rovnyak space ?{(gyp), associated with cp, con-
sists of those H2 functions which are in the range of the operator (Id - T,PT-qi)1 2

It is a Hilbert space when equipped with the inner product

((Id - T,PT,P)1/2f, (Id - T,PT,P)1 2g)W = (f, g)2,

where f, g E H2 a ker(Id - T,T,p)I/2
These spaces (and more precisely their general vector-valued version) appeared

first in L. de Branges and J. Rovnyak [30,311 as universal model spaces for Hilbert
space contractions. As a special case, when b = I is an inner function (that is IbI =
III = 1 a.e. on T), the operator (Id - TIT,) is an orthogonal projection and 9{(I)
becomes a closed (ordinary) subspace of H2 which coincides with the model spaces
K, = H2 e IH2. Thanks to the pioneering work of Sarason, e.g., [64-67], we know
that de Branges Rovnyak spaces play an important role in numerous questions of
complex analysis and operator theory. We mention a recent paper by the second
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named author and Sarason and Seip [47] who gave a characterization of surjectivity
of Toeplitz operator the proof of which involves de Branges-Rovnyak spaces. We
also refer to work of J. Shapiro [69,701 concerning the notion of angular derivative
for holomorphic self-maps of the unit disk. See also a paper of J. Anderson and
J. Rovnyak [10], where generalized Schwarz Pick estimates are given and a paper
of M. Jury [52], where composition operators are studied by methods based on 7t(b)
spaces.

In what follows we will assume that b is in the unit ball of H°O. We recall here
that since 7{(b) is contained contractively in H2, it is a reproducing kernel Hilbert
space. More precisely, for all function f in 7{(b) and every point a in D, we have

11)

where kb = (Id - TbTb)ka. Thus

f (A) = (f, ka)b,

kb
1 - b(a)b(z)

1-ax
We also recall that 7{(b) is invariant under the backward shift operator and in the
following, we denote by X the contraction X := SI*Uibl. Its adjoint satisfies the
important formula

X*h = Sh - (h, S*b)bb, h E 7{(b).

In the case where b is inner, then X coincides with the so-called model operator of
Sz.-Nagy-Foias which serves as a model for certain Hilbert space contractions (in
fact, those contractions T which are C.o and with 0 = 69T. = 1; for the general
case, the model operator is quite complicated).

Finally, let us recall that a point a E U is said to be regular (for b) if either
A E D and b A) # 0, or a E T and b admits an analytic continuation across a
neighbourhood Va = {z : Iz -XI < e} of a with JbI = 1 on Va fl T. The spectrum of
b, den ted by or(b), is then defined as the complement in U of all regular points of
b. F r the case where b = I is an inner function, this definition coincides with the
definition given before.

In this section we will summarize the results corresponding to Theorems 1 and 2
above in the setting of de Branges-Rovnyak spaces. It turns out that Moeller's
result remains valid in the setting of de Branges-Rovnyak spaces. Concerning the
result by Ahern-Clark, it turns out that if we replace the inner function I by a
general function b in the ball of HO°, meaning that b = Ibo where bo is now outer,
then we have to add to condition (ii) in Theorem 2 the term corresponding to the
absolutely continuous part of the measure: (loglbo I1.

In [44], the first named author and J. Mashreghi studied the continuity and
analyticity of functions in the de Branges - Rovnyak spaces 7L (b) on an open arc
of T. As we will see the theory bifurcates into two opposite cases depending on
whether b is an extreme point of the unit ball of HO° or not. Let us recall that if
X is a linear space and S is a convex subset of X, then an element x E S is called
an extreme point of S if it is not a proper convex combination of any two distinct
points in S. Then, it is well known (see [33, p. 125]) that a function f is an extreme
point of the unit ball of HOD if and only if

jlog(1 - If(() 1) dm(C) = -oo.
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The following result is a generalization of Theorem 1 of Moeller.

Theorem 8 (Sarason 1995, Fricain-Mashreghi, 2008). Let b be in the
unit ball of H°° and let I' be an open arc of T. Then the following are equivalent:

(i) b has an analytic continuation across r and b = 1 on t;
(ii) r is contained in the resolvent set of X *;
(iii) any function f in 1-t(b) has an analytic continuation across I';
(iv) any function f in 7-t (b) has a continuous extension to l[D U r;
(v) b has a continuous extension to IID u r and Jbi = 1 on I'.

The equivalence of (i), (ii) and (iii) were proved in [67, p. 421 under the assump-
tion that b is an extreme point. The contribution of Fricain-Mashreghi concerns
the last two points. The mere assumption of continuity implies analyticity and
this observation has interesting application as we will see below. Note that this
implication is true also in the weighted situation (see Theorem 18 .

The proof of Theorem 8 is based on reproducing kernel of 9{ b) spaces. More
precisely, we use the fact that given w E IID, then k' _ (Id - wX * -1k b and thus

f (w) = (f, ku,)b = (f, (Id - wX*)-1ko b,

for every f E 9{(b). Another key point in the proof of Theorem 8 is the the-
ory of Hilbert spaces contractions developped by Sz.-Nagy-Foias. Indeed, if b is
an extreme point of the unit ball of H°°, then the characteristic function of the
contraction X* is b (see [63]) and then we know that v(X*) = or b .

It is easy to see that condition (i) in the previous result implies that b is an
extreme point of the unit ball of H°°. Thus, the continuity or equivalently, the
analytic continuation) of b or of the elements of 9{(b) on the boundary completely
depends on whether b is an extreme point or not. If b is not an extreme point of
the unit ball of HOO and if r is an open arc of T, then there exists necessarily a
function f E 9{(b) such that f has not a continuous extension to lD U I'. On the
opposite case, if b is an extreme point such that b has continuous extension to IDUI'
with tbj = 1 on r, then all the functions f E W(b) are continuous on r (and even
can be continued analytically across r).

As in the inner case (see Ahern-Clark's result, Theorem 2), it is natural to
ask what happens in points which are in the spectrum and what kind of regularity
can be expected there. In [44], we gave an answer to this question and this result
generalizes the Ahern-Clark result.

Theorem 9 (Fricain Mashreghi, 2008). Let b be a point in the unit ball
of H°° and let

I an-z S+z S+z
(12) b(z)

(La
leg b(C) dm(()a 1 - exp (- J r (-Z p Ir (-Z

be its canonical factorization. Let Co E T and let I be a nonnegative integer. Then
the following are equivalent.

(i) each function in 9{(b) and all its derivatives up to order 1 have (finite)
radial limits at Co;

(ii) 11c)`ki f az1II b is bounded as z tends radially to Co;
(iii) X*tko belongs to the range of (Id - CoX*)'+1;
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(iv) we have S21+2((o) < +00, where

Srb((o)
1 - lanI2 + dµ(eit) + 2" Ilogjb(ett)jI

dm(e't),
n 1(0 -an]r 0 1C0 -eitlr 0 ICO - eitrJ

(1 < r < +oo).

In the following, we denote by Er(b) the set of points Co E T which satisfy
Srb ((o) < +oo.

The proof of Theorem 9 is based on a generalization of technics of Ahern Clark.
However, we should mention that the general case is a little bit more complicated
than the inner case. Indeed if b - I is an inner function, for the equivalence of
iii) and (iv) (which is the hard part of the proof), Ahern Clark noticed that the

condition (iii) is equivalent to the following interpolation problem: there exists
k, g E H2 such that

(1 - Soz)'+lk(z) - llzt = I(z)g(z).
This reformulation, based on the orthogonal decomposition H2 = 7-1(I) ® IH2,
is crucial in the proof of Ahern Clark. In the general case, this is no longer true
because 11(b) is not a closed subspace of H2 and we cannot have such an orthogonal
decomposition. This induces a real difficulty that we can overcome using other
arguments: in particular, we use (in the proof) the fact that if (o E E1}1(b) then,
for 0 < j < 1, the limits

lim b(-') (r(o) and lim b(-') (R(o)
r-r 1- R-+ l+

exist and are equal (see [31). Here by reflection we extend the function b outside
the unit disk by the formula (12), which represents an analytic function for jzj > 1,
z # 1 an. We denote this function also by b and it is easily verified that it satisfies

13 b(z) = 1 ,
b(1/2)

`dz E C.

Maybe we should compare condition (iii) of Theorem 9 and condition (ii) of
Theorem 8. For the question of analytic continuation through a neighbourhood V(o
of a point Co E T, we impose that for every z E VVo fl T, the operator Id - 2X*
is bijective (or onto which is equivalent because it is always one-to-one as noted
in [43, Lemma 2.2]) whereas for the question of the existence of radial limits at (o
for the derivative up to a given order 1, we impose that the range of the operator
Id - (oX*)1+1 contains the only function X*lko. We also mention that Sarason

has obtained another criterion in terms of the Clark measure Qa associated with b
see above for a definition of Clark measures; note that the Clark measures here

are not always singular as they are when b is inner).

Theorem 10 (Sarason, 1995). Let Co be a point of T and let l be a nonneg-
attve integer. The following conditions are equivalent.

(i) Each function in W (b) and all its derivatives up to order l have nontan-
gential limits at Co.

(ii) There is a point A E T such that

(14)
IT

Ie'o - Co1-21-2 doA(eis) < +oo.
T

(iii) The last inequality holds for all A E T \ {b((o)}
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(iv) There is a point A E T such that µ,\ has a point mass at Co and

f{zo}
less _ Col-2t doa(ess) < oo.

Recently, Bolotnikov and Kheifets [20] gave a third criterion (in some sense
more algebraic) in terms of the Schwarz -Pick matrix. Recall that if b is a function
in the unit ball of H°°, then the matrix Pr (z), which will be refered to as to a
Schwarz-Pick matrix and defined by

PI
L(z) i! jl 8za8zj 1- lzl21

a'+'
1- lb(z)12

is positive semidefinite for every l > 0 and z E D. We extend this notion to
boundary points as follows: given a point Co E T, the boundary Schwarz-Pick
matrix is

Pi(CO) = lim°Pj(z)
4

provided this nontangential limit exists.

(l > 0),

Theorem 11 (Bolotnikov - Kheifets, 2006). Let b be a point in the unit
ball of H°°, let (o E T and let l be a nonnegative integer. Assume that the bound-
ary Schwarz-Pick matrix Pi (Co) exists. Then each function in 71 b) and all its
derivatives up to order 1 have nontangential limits at Co.

Further it is shown in [20] that the boundary Schwarz-Pick matrix Pi Co
exists if and only if

(15) lim db,I(z) < +oo,
4

where

db,i(z) := 1
alt 1 - lb(z)12

(11)2 8z18zI 1 - lz12

We should mention that it is not clear to show direct connections between conditions
(14), (15) and condition (iv) of Theorem 9.

Once we know the points Co in the unit circle where f (1) ((o) exists (in a non-
tangential sense) for every function f E 7d(b), it is natural to ask if we can obtain
an integral formula for this derivative similar to (2) for the inner case. However, if
one tries to generalize techniques used in the model spaces KI in order to obtain
such a representation for the derivatives of functions in 7L(b), some difficulties ap-
pear mainly due to the fact that the evaluation functional in W (b) (contrary to the
model space KI) is not a usual integral operator. To overcome this difficulty and
nevertheless provide an integral formula similar to (2) for functions in 7{(b), the first
named author and Mashreghi used in [45] two general facts about the de Branges-
Rovnyak spaces that we recall now. The first one concerns the relation between
W (b) and 7 l(b). For f E H2, we have [67, p. 101

f E W (b)(b) b Tb f E 7l (b) .

Moreover, if fl, f2 E 7l (b), then

(16) (fl,f2)b = (11,f2)2 + (T6fl,Tbf2)b
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We also mention an integral representation for functions in 3{(b) [67, p. 161. Let
p(C) := 1 - Ib(()I2, C E T, and let L2(p) stand for the usual Hilbert space of
measurable functions f : T -+ C with 11 f IIP < oo, where

I[fII2
f f(C)2p(C) dm(C).

For each A E D, the Cauchy kernel ka belongs to L2(p). Hence, we define H2(p)
to be the (closed) span in L2(p) of the functions ka (A E D). If q is a function in
L2(p), then qp is in L2(T), being the product of qp1/2 E L2(T) and the bounded
function p1 2. Finally, we define the operator C,,: L2(p) -+ H2 by

CP(q) P+(qp)
Then CP is a partial isometry from L2 (p) onto 1l (b) whose initial space equals to
H2 p) and it is an isometry if and only if b is an extreme point of the unit ball
of H°°.

Now let w E closD and let d be a nonnegative integer. In order to get an
integral representation for the lth derivative of f at point w for functions in the
de Branges Rovnyak spaces, we need to introduce the following kernels

6
ZL b(z) L.p_0(b(P)(w)/p!)zL-P(1 -Wz)P

17 I
(1- wz)L+1

(z E IID),

and

18 k° L(C) := l!
rr=o(b(P) (w)/p!)C`+1(1 - wC)P

(C E T).
(1 - WC)

Of course, for w = Co E T, these formulae have a sense only if b has derivatives (in
a radial or nontangential sense) up to order 1; as we have seen this is the case if

E E1+1 b) (which obviously contains E2(1+1)(b))
F r I = 0, we see that o = kb, is the reproducing kernel of 9d(b) and k 0 =

b w k,,, is (up to a constant) the Cauchy kernel. Moreover (at least formally) the
function k,',,1 (respectively L) is the lth derivative of kb ,O (respectively of 0)

with respect to w.

Theorem 12 (Fricain - Mashreghi, 2008). Let b be a function in the unit
ball of H°° and let l be a nonnegative integer. Then for every point Co E ] DUE2L+2(b)
and for every function

f
f E 3{(b), we have k0

j
E d(b), kL E L2(p) and

19) f (1) ((o) = f (C)kC0,!(() dm(C) + g(C)p(C)kco,!(C) dm(C),

where 9 E H2 (P) satisfies Tbf = Cpg.

We should say that Theorem 12 (as well as Theorem 13, Proposition 1, Theo-
rem 14, Theorem 15 and Theorem 16 below) are stated and proved in [16,451 in the
framework of the upper half-plane; however it is not difficult to see that the same
technics can be adapted to the unit disc and we give the analogue of these results
in this context.

We should also mention that in the case where Co E D, the formula (19) follows
easily from the formulae (16) and (11). For Co E E2,+2(b), the result is more
delicate and the key point of the proof is to show that

(20) f(L)((o) = (f,k<o,L)be



104 E. FRICAIN AND A. HARTMANN

for every function f E al(b) and then show that Tbk ,,I = to use once again

(16).
A consequence of (20) and Theorem 9 is that if Co E E21+2(b), then tends

weakly to kS01 as w approaches radially to Co. It is natural to ask if this weak
convergence can be replaced by norm convergence. In other words, is it true that
II k ,,1 - k(0,111b ---> 0 as w tends radially to Co?

In [2], Ahern and Clark claimed that they can prove this result for the case
where b is inner and 1 = 0. For general functions b in the unit ball of H°°, Sarason
[67, Chapter VI got this norm convergence for the case 1 = 0. In [45], we answer
this question in the general case and get the following result.

Theorem 13 (Fricain-Mashreghi, 2008). Let b be a point in the unit ball
of H°°, let 1 be a nonnegative integer and let Co E E21+2(b). Then

IIkw,l - kS0,lI b -+0, as w tends radially to Co.

The proof is based on explicit computations of 11kb'I Ib and kb 1 b and we
use a nontrivial formula of combinatorics for sums of binomial coefficient. We
should mention that we have obtained this formula by hypergeometric series. Let
us also mention that Bolotnikov - Kheifets got a similar result in [20] using different
techniques and under their condition (15).

We will now discuss the weighted norm inequalities obtained in [16]. The main
goal was to get an analogue of Theorem 4 in the setting of the de Branges-Rovnyak
spaces. To get these weighted Bernstein type inequalities, we first used a slight
modified formula of (19).

Proposition 1 (Baranov - Fricain - Mashreghi, 2009). Let b be m the
unit ball of H°°. Let Co E lID UE21+2(b), I E N, and let

(21) qp
ri=O i 1)(-1),bi (S0)V(S)SCo,l (C) R(O) (1 - 0_01+1

E T.

Then (kS0)1+1 E H2 and AP
co' 1

E L2(p). Moreover, for every function f E 71 b), we
have

(22) f (1) ((o) = 1! (jT f (()C1(k10)'+1(() dm(C) + fT g(()P(CKIAPC°,1(() dm(C) J,

where g E H2(p) is such that Tb f = Cpg.

We see that if b is inner, then it is clear that the second integral in (19) is zero
(because p = 0) and we obtain the formula (2) of Ahern -Clark.

We now introduce the weight involved in our Bernstein-type inequalities. Let
1 <p < 2 and let q be its conjugate exponent. Let 1 E N. Then, for Z E we

define
wp,l (z) := min{ II

(kZ)1+1

II q
pl/(p1+1), IIP1/q Az,I

IIq
pI/(p1+1)

we assume wp,l(() = 0, whenever C E T and at least one of the functions (kb)1+1 or

P1/gAfC I is not in Lq(T).
The choice of the weight is motivated by the representation (22) which shows

that the quantity max{II(kb)1+1112, IIP1/2. ,1112} is related to the norm of the fume-
tional f -+ f(z) on 9{(b). Moreover, we strongly believe that the norms of
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reproducing kernels are an important characteristic of the space 7{(b) which cap-
tures many geometric properties of b. Using similar arguments as in the proof of
Proposition 1, it is easy to see that p11qA<,i E L9(T) if ( E Eq(i+l)(b). It is also
natural to expect that (kb)I+1 E L9(T) for E Eq(j+1)(b). This is true when b is an
inner function, by a result of Cohn [28]; for a general function b with q = 2 it was
noticed in [16]. However, it seems that the methods of [16,281 do not apply in the
general case.

If f E 7{(b) and 1 < p < 2, then (f (1)wp,1) (x) is well-defined on T. Indeed it
follows from [44] that f(l)(() and wp,i(() are finite if ( E E21+2 (b). On the contrary
if ( E21+2(b). then 11(kt)1+1112 = +oo. Hence, 11(kb)1+111q = +oo which, by

definition, implies wp,I(() = 0, and thus we may assume (f (t)wp,i)(() = 0.
In the inner case, we have p(t) = 0, then the second term in the definition of

the weight wp,I disappears and we recover the weights considered in [12]. It should
be emphasized that in the general case both terms are essential: in [16] we give an
example where the norm 11p1 gfp,i I1q cannot be majorized uniformly by the norm

b 1+1
kZ q.

Theorem 14 (Baranov - Fricain - Mashreghi, 2009). Let u be a Carleson
measure on clos IID , let l E N, let 1 < p < 2, and let

(Tp,if)(z) = f(I)(z)wp,z(z), f E 7{(b).

If 1 < p < 2, then Tp,1 is a bounded operator from h(b) into L2(µ), that is, there is
a nstant C = C(µ, p,1) > 0 such that

23 II f(=)wp,IIIL2(F+) < ClIfIlb, f E 7{(b)

If p = 2, then T2,1 is of weak type (2, 2) as an operator from 7{(b) into L2(µ).

The proof of this result is based on the representation (22) which reduces the
problem of Bernstein type inequalities to estimates on singular integrals. In partic-
ular, we use the following estimates on the weight: for 1 < p < 2 and l E N, there
exists a constant A = A(1, p) > 0 such that

wpi(z)>A
(1-MY

(1 - Ib(z)I)Pt/(q(Pl+1))'
z E D.

To apply Theorem 14 one should have effective estimates for the weight wp,i,
that is, for the norms of the reproducing kernels. In the following, we relate the
weight wp I to the distances to the level sets of Ibl. We start with some notations.
Denote by a,(b) the boundary spectrum of b, i.e.,

a,(b) :_ {(E T : liminlflb(z)l < 1}.
zED

Then closa,, (b) = a (b) n T where a(b) is the spectrum defined at the begining of
this section. For e E (0,1), we put

fl(b, e) {z E D : Ib(z)] < e} and S1(b, e) := a=(b) U Sl(b, e).

Finally, for ( E T, we introduce the following two distances

dE (() := dist ((, Q (b, e)) and c1(() := dist ((, S2(b, e)).
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Note that whenever b = I is an inner function, for all S E os(I), we have

liminfII(z)0,
zED

and thus dE (S) E T. However, for an arbitrary function b in the unit ball
of H°°, we have to distinguish between the distance functions dE and de.

Using fine estimates on the derivatives Ib'(()I, we got in [16] the following result.

Lemma 1. For each p > 1, 1 > 1 and e E (0,1), there exists C = C(e, p, l) > 0
such that

(24) (&E(C))1 < Cwr.i(r(),

forallCET and0<r<1.
This lemma combined with Theorem 14 imply immediately the following.

Corollary 1 (Baranov-Frieain-Mashreghi, 2009). For each e E 0,1
and 1 E N, there exists C = C(e, 1) such that

Ilf(`)dEjI2<Cllfjib, f EW(b).

As we have said in Section 2, weighted Bernstein-type inequalities of the form
(23) turned out to be an efficient tool for the study of the so-called Carleson-type
embedding theorems for backward shift invariant subspaces Kt. Notably, methods
based on the Bernstein-type inequalities allow to give unified proofs and essentially
generalize almost all known results concerning these problems see [12,15] . Here we
obtain an embedding theorem for de Branges-Rovnyak spaces. The first statement
generalizes Theorem 6 (of Volberg-Treil) and the second statement generalizes a
result of Baranov (see [12]).

Theorem 15 (Baranov-Fricain-Mashreghi, 2009). Let µ be a positive
Borel measure in clos D, and let e E (0, 1).

(a) Assume that µ(S(C, h)) < Kh for all Carleson squares S((, h satisfying

S((, h) n S2(b, 0 0.
Then N(b) C L2(µ), that is, there is a constant C > 0 such that

IIf1IL'(,.) <-CIIf1Ib, f E 'H (b).

(b) Assume that µ is a vanishing Carleson measure for 4t(b), that is,
µ(S(C, h))/h -- 0 whenever S((, h) n 1l(b, e) # 0 and h -+ 0. Then
the embedding ?-t(b) C L2(µ) is compact.

Note that whenever b = I is an inner function, the sufficient condition that ap-
pears in (a) of Theorem 15 is equivalent to the condition of Volberg-Treil theorem
because in that case (as already mentionned) we always have a,(I) C closf)(I,e)
for every e > 0.

In Theorem 15 we need to verify the Carleson condition only on a special sub-
class of squares. Geometrically this means that when we are far from the spectrum
o(b), the measure µ in Theorem 15 can be essentially larger than standard Carleson
measures. The reason is that functions in 1-1(b) have much more regularity at the
points C E T \ o(b) (see Theorem 8). On the other hand, if Ib(C)I < 5 < 1, almost
everywhere on some arc r C T, then the functions in 71(b) behave on r essentially
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the same as a general element of H2 on that are, and for any Carleson measure for
7{(b) its restriction to the square s(r) is a standard Carleson measure.

For a class of functions b the converse to Theorem 15 is also true. As in the
inner case, we say that b satisfies the connected level set condition if the set l(b, e)
is connected for some e E (0, 1). Our next result generalizes Theorem 5 of Cohn.

Theorem 16 (Baranov Fricain Mashreghi, 2009). Let b satisfy the
connected level set condition for some e E (0,1). Assume that o (b) C clos 11 (b, E).
Let p be a positive Borel measure on clos dD. Then the following statements are
equivalent:

(a) 71 (b) C L2 (µ)
(b) There exists C > 0 such that µ(S((, h)) < Ch for all Carleson squares

S(C, h) such that S(C, h) fl SZ(b, e) * 0.
(c) There exists C > 0 such that

JclosD
25

2 dµ(C) 1- (z)' x E D.

In [16], we also discuss another application of our Bernstein type inequalities
to the problem of stability of Riesz bases consisting of reproducing kernels in 7-l(b).

4. Weighted backward shift invariant subspaces

Let us now turn to weighted backward shift invariant subspaces. As will be
explained b low, the weighted versions we are interested in appear naturally in the
context of kernels of Toeplitz operators. In Section 4.1 we will present an example
sh wing that the generalization of the Ahern- Clark result to this weighted situation
is far from being immediate. For this reason we will focus essentially on analytic
continuation in this section.

For an outer function g in HP, we define weighted Hardy spaces in the following
way:

HP g P :_ I HP = { f E Hol(D) - lif 111919
osup l nI

If (re`t)IPjg(re't)IP dt

n

_ J_f(eit)Pg(ettPdt < oo .

Clearly f H fg induces an isometry from HP(IgIP) onto HP. Let now I be any
inner function.

We shall discuss the situation when p = 2. There are at least two ways
of generalizing the backward shift invariant subspaces to the weighted situation.
We first discuss the simple one. As in the unweighted situation we can con-
sider the orthogonal complement of shift invariant subspaces IH2(IgI2), the shift
S H2 g 2) -+ H2 ( gI2) being given as usual by S f (z) = z f (z). The weighted
scalar product is defined by

(f, h) g. =
1

T f (ett)h(7)
I9(ett)I2 dt = (f9, hg).

27r r

Then

(fP+(9zh))(Sf, h) 9 z = (zf9, h9) = (f9, zh9) = (f9, P+(zh9))
9 I91'
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In other words, with respect to the scalar product 9 9 the adjoint shift is given
by S9 := gP+gz, and

KI,e (IH2 (IgI2))l = if E H2(1912) : (f 9, Ih9) = 0, h E Hz(g 2)}

If E H2(1g12) (f9,Ih)=0,hEH2}
=If E H2(I9I2) (P+(If9),h) = 0,h E H2}

={f EH2(IgI2):(1P+If9,h) =0,hEH2(92)}.
9 I91'

So, K?'9 = ker((1/g)P+Ig) = ker(9P+Ig). Setting PI :_ (I g P_Ig we get a
self-adjoint projection such that

KI,9 = PI H2(IgI2) = 9Pr (9H2(IgI2)) = P H2 = - 2r 1 K2
9 9

where Pr is the unweighted orthogonal projection onto KI. Hence, in this situation
continuation is completely determined by that in K2 and that of 1 g.

We will thus rather consider the second approach. The spaces to be discussed
now appear in the context of kernels of Toeplitz operators. Set

Ki (I9Ip) = HP(I9I1) fl IHI (Ig P

where now Ho (I9Ip) = zHP(IgI')
The connection with Toeplitz operators arises in the following way: if q = Ig g

is a unimodular symbol, then ker T. = gK1(I9I2) (see [48] . Conversely, whenever
0 # f E ker T., where q is unimodular and f = Jg is the inner-outer factorization
of f, then there exists an inner function I such that cp = Ig g see also [48] .

Note also that the following simple example shows that in general K1 is
different from K?(JgJ2). Let I(z) = z be the simplest Blaschke factor. Then
H2(I9I2) flIHo(I9I2) = H2(I9I2) nH2(J9I) = C whenever g is rigid more on rigidity
follows later). On the other hand, (llg)KI is the one-dimensional space spanned
by 1/g which is different from C when g is not a constant.

The representation ker T. = gKl (I9Ip) is particularly interesting when g is the
extremal function of ker T.. Then we know from a result by Hitt [50] see also
[66] for a de Branges Rovnyak spaces approach to Hitt's result) that when p = 2,
kerT,p = 9K?, and that g is an isometric divisor on ker T,, = gKl (or g is an
isometric multiplier on K2). In this situation we thus have KI (gi2) = KI. Note,
that for p # 2, if g is extremal for gK1P(Iglp), then KI (Ig p) can still be imbedded
into KI when p > 2 and in KI when p E (1, 2) (see [48], where it is also shown that
these imbeddings can be strict). In these situations when considering questions
concerning pseudocontinuation and analytic continuation, we can carry over to
Ki(I9IP) everything we know about K2 or KI, i.e., Theorems 1 and 7. Concerning
the Ahern Clark and Cohn results however, when p # 2, we lose information since
condition (ii) in Theorem 2 depends on p.

In general the extremal function is not easily detectable (explicit examples of
extremal functions were given in [48] ), in that we cannot determine it, or for a given
g it is not a simple matter to check whether it is extremal or not. So a natural
question is to know under which conditions on g and I, we can still say something
about analytic continuation of functions in KP(IgIp). It turns out that Moeller's
result is valid under an additional local integrability condition of 1/g on a closed
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are not meeting the spectrum of I. Concerning the regularity questions in points
contained in the spectrum, the situation is more intricate. As mentioned earlier,
an example in this direction will be discussed at the end of this section.

Regularity of functions in kernels of Toeplitz operators have been considered
by Dyakonov. He in particular establishes global regularity properties of functions
in the kernel of a Toeplitz operator such as being in certain Sobolov and Besov
spaces [35] or Lipschitz and Zygmund spaces [41] depending on the smoothness
of the corresponding Toeplitz operator.

The following simple example hints at some difference between this situation
and the unweighted situation or the context of de Branges-Rovnyak spaces dis-
cussed before. Let I be arbitrary with -1 ¢ a(I), and let g(z) = 1 +z, so that a(I)
is far from the only point where g vanishes. We know that kerTj9/9 = gKj (IgIP)
We first observe that (T-+--z) /(1 + z) = z. Hence,

1 E Kx1 = kerTZy = kerTj9/9 = gKj (IgIP)

So, KI(]g P) contains the function 1/g which is badly behaved in -1, and thus
cannot extend analytically through -1.

This observation can be made more generally as stated in the following result
[461.

Proposition 2 (Hartmann 2008). Let g be an outer function in HP. If
kerTT g {0} contains an inner function, then 1/g E KI (IgIP) for every inner
functwn I.

Note that if the inner function J is in ker T9/9 then T ,91 = 0, and hence
1 E g = gKJ(Ig[2) and 1/g E KJ(Igl2), which shows that with this simple
argument the proposition holds with the more restrictive condition I = J.

Let us comment on the case p = 2:
The claim that the kernel of T ,9 contains an inner function implies in particular

that T9 g is not injective and so g2 is not rigid in Hl (see [67, X-2]), which means
that it is not uniquely determined-up to a real multiple-by its argument (or
equivalently, its normalized version g2 / II g2 II, is not exposed in the unit ball of Hl).

It is clear that if the kernel of a Toeplitz operator is not reduced to {0} -
or equivalently (since p = 2) g2 is not rigid -then it contains an outer function
(just divide out the inner factor of any nonzero function contained in the kernel).
However, Toeplitz operators with nontrivial kernels containing no inner functions
can be easily constructed. Take for instance T g-.1g0 = 7'=7'90190+ where go(z) =
1- z)0' and a E (0, 2), The Toeplitz operator T9190 is invertible (Igol2 satisfies

the Muckenhoupt (A2) condition) and (T. 190)-1 = goP+ 90 [61] so that the kernel
of T=g g is given by the preimage under TT0,9o of the constants (which define the
kernel of Ti). Since goP+(c/9o) = ego/go(0), c being any complex number, we have
kerT=g /90 = Cgo which does not contain any inner function.

So, without any condition on g, we cannot hope for reasonable results. In the
above example, when p = 2, then the function g2 (z) = (1 + z)2 is in fact not rigid
(for instance the argument of (1 + x)2 is the same as that of z). As already pointed
out, rigidity of g2 is also characterized by the fact that T919 is injective (see [67, X-
2]). Here Tg19 = T= the kernel of which is C. From this it can also be deduced
that g2 is rigid if and only if HP(IgIP) n HP(Ig[P) = {0} which indicates again that
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rigidity should be assumed if we want to have K!p(Ig p) reasonably defined. (See
[53] for some discussions on the intersection HT(Iglp) fl HP( g p).)

A stronger condition than rigidity (at least when p = 2) is that of a Mucken-
houpt weight. Let us recall the Muckenhoupt (Ap) condition: for general 1 < p < oo
a weight w satisfies the (Ap) condition if

r

< oo.B := sup jIII 1
w(x) dx x (x) dx)

p

!ubarcfI \III I 111

When p = 2, it is known that this condition is equivalent to the so-called Helson-
Szeg6 condition. The Muckenhoupt condition will play some role in the results to
come. However, our main theorem on analytic continuation Theorem 17) works
under a weaker local integrability condition.

Another observation can be made now. We have already mentioned that rigidity
of g2 in H1 is equivalent to injectivity of Tg/g, when g is outer. It is also clear that
Tglg is always injective so that when g2 is rigid, the operator Tg g is injective with
dense range. On the other hand, by a result of Devinatz and Widom see, e.g.,
[59, Theorem B4.3.1]), the invertibility of Tg/g, where g is outer, is equivalent to
1912 being (A2). So the difference between rigidity and (A2 is the surjectivity in
fact the closedness of the range) of the corresponding Toeplitz operator. A criterion
for surjectivity of noninjective Toeplitz operators can be found in [47]. It appeals
to a parametrization which was earlier used by Hayashi [491 to characterize kernels
of Toeplitz operators among general nearly invariant subspaces. Rigid functions do
appear in the characterization of Hayashi.

As a consequence of Theorem 17 below analytic continuation can be expected
on arcs not meeting the spectrum of I when I9Ip is (Ap) see Remark 1 . However
the (Ap) condition cannot be expected to be necessary since it is a global condition
whereas continuation depends on the local behaviour of I and g. We will even
give an example of a nonrigid function g (hence not satisfying the A. condition
for which analytic continuation is always possible in certain points of T where g
vanishes essentially.

Closely connected with the continuation problem in backward shift invariant
subspaces is the spectrum of the backward shift operator on the space under consid-
eration. The following result follows from [9, Theorem 1.91: Let B be the backward
shift on Hp(Iglp), defined by B f (z) = (f - f (O)) z. Clearly, KI ( g p) is invariant
with respect to B whenever I is inner. Then, a(B I KIP ( g p)) = aap(B KIP ( g p)),
where cap(T) = {A E C : 2(f,,),, with IIf,.II = 1 and (A - T)f -4 0} denotes the
approximate point spectrum of T, and this spectrum is equal to

T \ {1/C E T : every f E K! (I9Ip) extends analytically in a neighbourhood of C}.

The aim is to link this set and a(I). Here we will need the Muckenhoupt
condition. Then, as in the unweighted situation, the approximate spectrum of
B I K7(IgIp) on T contains the conjugated spectrum of I. We will see later that
the inclusion in the following proposition [46] actually is an equality.

Proposition 3 (Hartmann, 2008). Let g be outer in Hp such that 191P is a
Muckenhoupt (Ap)-weight. Let I be an inner function with spectrum a(I). Then
o(I) C aap(B I KP(IgIP)).

We now come to the main result in the weighted situation (see [461)
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Theorem 17 (Hartmann, 2008). Let g be an outer function in HP, I < p <
0o and I an inner function with associated spectrum a(I). Let r be a closed arc
in T. If there exists s > q, 1/p + 1/q = 1, with 1/g E L' (r), then every function
f E Ki (IgIP) extends analytically through r if and only if r does not meet a(I).

Note that in [46] only the sufficiency part of the above equivalence was shown.
However the condition that r must not meet a(I) is also necessary (even under
the a priori weaker condition of continuation through r) as follows from the proof
of Theorem 18 below. A stronger version of Theorem 17 can be deduced from
[5, Corollay 1 of Theorem 3]

It turns also out that like in the de Branges Rovnyak situation discussed in
Theorem 8-for analytic continuation it is actually sufficient to have continuation.
This result is new, and we will state it as a theorem provided with a proof. It is
based on ideas closed to the proof of the previous theorem.

Theorem 18. Let g be an outer function in HP, 1 < p < oo and I an inner
function with associated spectrum o,(I). Let r be an open arc in T. Suppose that
every function f E KI (IgIP) extends continuously to r then rna(I) = 0, and every
function in KI ( gIP) extends analytically through r.

PROOF. Observe first that obviously ka E KI (IgI2) By the Schwarz reflection
principle, in order that ka continues through r we need that r does not meet a(I)
note that closI could meet a(I)).

As in the unweighted situation, every meromorphic function f /I, f = Iii E
KI g 2 , admits a pseudocontinuation i, defined by (z) = >n>o ,i(n)1/z" in the
exterior disk De = e \ clos D.

Fix r any closed subarc of r. Since a(I) is closed, the distance between cr(I)
and I'o is strictly positive. Then there is a neigbourhood of ro intersected with D
where I z) > b > 0. It is clear that in this neighbourhood we are far away from
the part of the spectrum of I contained in D. Thus I extends analytically through
ro. For what follows we will call the endpoints of this arc (1 := eit, and (2 := eit2
oriented in the positive sense).

The following argument is in the spirit of Moeller [56] and based on Morera's
theorem. Let us introduce some notation (see Figure 1).

For suitable ro E (0,1) let S2o = {z = ret E D : t E [t1i t2], ro < r < 1}. and
520 = {z = et /r E De : t E [tl, t2], ro < r < 1}. Define

F(z) = rf(z)/I(z) z E Sloe

%b(z) z r= SZo.

By construction this function is analytic on S2o U S2o and continuous on S2o U Q.
Such a function is analytical on S2o U S2o.

Remark 1. It is known (see, e.g., [571) that when IgIP E (AP), 1 < p < oo,
then there exists ro E (1, p) such that IgIP E (A,.) for every r > ro. Taker E (ro, p)
Then in particular 1/9 E L°, where 1/r+1/s = 1. Since r < p we have s > q which
allows to conclude that in this situation 1/g E L" (I') for every I' C T (s independant
of I').

We promised earlier an example of a nonrigid function g for which analytic
continuation of KI-functions is possible in certain points where g vanishes.
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FIGURE 1. The regions SZo and SZo

Example. For a E (0, 2), let g(z) _ (1 + z)(1 - z)Q. Clearly g is an outer
function vanishing essentially in 1 and -1. Set h(z) = z(1 - z 2Q, then by similar
arguments as those employed in the introducing example to this section one can
check that arg g2 = arg h a.e. on T. Hence g is not rigid it is the "big" zero in -1
which is responsible for nonrigidity). On the other hand, the zero in +1 is "small"
in the sense that g satisfies the local integrability condition in a neighbourhood
of 1 as required in the theorem, so that whenever I has its spectrum far from 1,
then every KI(J912)-function can be analytically continued through suitable arcs
around 1.

This example can be pushed a little bit further. In the spirit of Proposition 2 we
check that (even) when the spectrum of an inner function I does not meet -1, there
are functions in KP(IgIP) that are badly behaved in -1. Let again go(z = 1-z °.
Then - ygo(z)g(z) - (1 + z)(1 - Z) C'

9(z) (1 + z)(1 - z)Q
-
9o(z)

As already explained, for every inner function I, we have kerTl9 9
= gKI (g P), so

that we are interested in the kernel ker T1g/9. We have TT, 9f = 0 when f = lu
and u E ker TT/9 = ker T ,9o = C90 (see the discussion just before the proof of
Proposition 2). Hence the function defined by

F(z) = f W - I(z)go(z) - I(z)
g(z) g(z) 1 + z

is in KI(IgIP) and it is badly behaved in -1 when the spectrum of I does not meet
-1 (but not only).

The preceding discussions motivate the following question: does rigidity of g
suffice to get analytic continuation for KI(Igl2)-function whenever o(I) is far from
zeros of g?

Theorem 17 together with Proposition 3 and Remark 1 allow us to obtain the
following result. We should mention that it is easy to check that HP(IgIP) satisfies
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the conditions required of a Banach space of analytic functions in order to apply
the results of [9].

Corollary 2 (Hartmann, 2008). Let g be outer in HP such that IMP ie
a Muckenhoupt (Ap) weight. Let I be an inner function with spectrum a(I) _
{A E closD : liminft_,a I(z) = 0}. Then o(I) = oap(B I Ki (I9IP))

Another simple consequence of Theorem 17 concerns embeddings. Contrarily
to the situations discussed in Sections 2 and 3, the weight is here on the K,'-side.

Corollary 3 (Hartmann, 2008). Let I be an inner function with spectrum
Q I). If r C T is a closed arc not meeting a(I) and if g is an outer function in
HP such that g > S on T \ I' for some constant 8 > 0 and 1/g E L8(I'), s > q,
I p + I q = 1. Then KI (I9IP) C KI. If moreover g is bounded, then the last
inclusion is an equality.

Suppose now p = 2. We shall use this corollary to construct an example where
KI g 2) = KI without g being extremal for gKl (lgl2). Recall from Hitt's result
[50], that when g is the extremal function of a nearly invariant subspace M C H2,
than there exists an inner function I such that M = gKl , and g is an isometric
multiplier on KI so that KI = K I (Ig12). Recall from [48, Lemma 3] that a function
g is extremal for gKj (IgI2) if f flgl2dm = f (0) for every function f E KI (I9I2).
Our example is constructed in the spirit of [48, p. 356]. Fix a E (0, 2). Let
-y z = 1 - z)' and let g be an outer function in H2 such that Igl2 = Rery a.e. on
T such a function clearly exists). Let now I = BA be an infinite Blaschke product
with 0 E A. If A accumulates to points outside 1, then the corollary shows that
KI = KI g 2). Let us check that g is not extremal. To this end we compute
f k 92 dm for A E A (recall

f
tfor A E A, E K= K(IgfkA?dm)2)):

26
J

ka g2 dm = ka Re y dm = 2

= 1 kA(0)'y(0) + 1(ka,'y) = 2(1 + (1 - a)° )
2 2

which is different from kA(0) = 1 (except when A = 0). Hence g is not extremal.
We could also have obtained the nonextremality of g from Sarason's result

[64, Theorem 2] using the parametrization g = a/(1 - b) appearing in Sarason's
and Hayashi's work (see [46] for details on this second argument).

It is clear that the corollary is still valid when r is replaced by a finite union
of intervals. However, we can construct an infinite union of intervals r = U,,,1 r
each of which does not meet o-(I), an outer function g satisfying the yet weaker
integrability condition 1/g E L°(I'), s < 2, and IgI > b on T \ F, and an inner
function I such that KI (Igl2) ¢ K. The function g obtained in this construction
does not satisfy g 2 E (A2). (See [46] for details.)

Another simple observation concerning the local integrability condition 1/g E
L, r), s > q: if it is replaced by the global condition 1/g E L8 (T), then by Holder's
inequality we have an embedding into a bigger backward shift invariant subspace:

Proposition 4 (Hartmann, 2008). Let 1 < p < oo and 1/p + 1/q = 1. If
there exists s > q such that 11g E L°(T), then for r with 1/r = 1/p + 1/s we have

LP(gP)CLr.
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So in this situation we of course also have KI (IgIP) C K. In particular, every
function f E KI (IgIP) admits a pseudocontinuation and extends analytically outside
a(I). Again the Ahern-Clark condition does not give complete information for the
points located in the spectrum of I since (ii) of Theorem 2 depends on p.

When one allows g to vanish in points contained in v(I), then it is possible to
construct examples with IgJr E (AP) and K! (IgIP) ¢ K;: take for instance I = BA
the Blasche product vanishing exactly in A = {1-1/2"}n and g(z) = (1-z)", where
a E (0, 2) and p = 2 (see [46] for details; the condition IgI2 E (A2) is required in the
proof to show that Ki(Ig12) = P+((1/g)KK)-see Lemma 2 below-which gives
an explicit description of KI in terms of coefficients with respect to an unconditional
basis). The following crucial example is in the spirit of this observation.

4.1. An example. In the spirit of the example given in [46, Proposition 4]
we shall now discuss the condition (ii) of Theorem 2 in the context of weighted
backward shift invariant subspaces.

We first have to recall Lemma 1 from [46]:

Lemma 2 (Hartmann, 2008). Suppose IgIP is an (AP) weight and I an
inner function. Then A0 = P+1/g: HP -* HP(IgIP) is an isomorphism of K! onto
Ki (IgIP) Also, for every A E 1[D we have

ka(µ)
(27) Aok. =

g0')

We return to the situation p = 2. Take g(z) = (1- z)° with at E (0,1 2 . Then
IgI2 is (A2). Let

rn = 1 - 2n1 , 0,, _ (1 - rns = 2ns, an = rneio-,

where s E (0, 2). Hence the sequence A = {an}n tends tangentially to 1. Set
I = BA. We check the Ahern- Clark condition in ( = 1 for I = 0 (which means that
we are just interested in the existence of nontangential limits in ( = 1). Observe
that for a E (0, 2) we have

(28) 11 - rneie" I2 _ (1 -r ")2 + 6n=
1 1 1

22n + 22ns 22ns'

and so when q > 1

1 - rn 1/2"
- n(sq-1)

(29) n I1 - r"e'B" I4 1/2"aq n 2
n>1 n>1 n>1

The latter sum is bounded when q = 2 which implies in the unweighted situation
that every function in the backward shift invariant subspace KI has a nontangential
limit at 1. Note also that since Ig12 E (A2), by Proposition 4 and comments
thereafter, KI(IgI2) imbeds into some K1, r < 2. Now taking q = r' > 2, where
1/r + 1/r' = 1, we see that the sum in (29) diverges when sr' > 1 and converges
for sr' < 1. So depending on the parameters s and a we can assert continuation or
not. It will be clear a posteriori that in our situation r has to be such that sr' > 1.

Note that v(I) flT = {1}, which corresponds to the point where g vanishes.
Clearly, A is an interpolating sequence, and so the sequence {k.,,/Ilk." I[2}n is a nor-

( ka )malized unconditional basis in K21. This means that we can write K1 12



REGULARITY ON THE BOUNDAIty 116

meaning that f E KI if and only if
_ ka

n>1
f - an IIk.\..II2

with En>1IanI2 < oo (the last sum defines the square of an equivalent norm in K2).
As already mentioned I9I2 is Muckenhoupt (A2). This implies in particular

that we have the local integrability condition 1/g E Ls (F) for some a > 2 and r an
an containing the point 1. Moreover, we get from (27)

kXn{and
{ka is an unconditional basis in K2 (IgI2) (almost normalized

in the sense that is comparable to a constant independant of
n). Hence for every sequence a = (an)n with F-n>IIan\ < oo, we have

f.
9(1\n) IIkx..II2 E KI (I9I2)

To fix the ideas we will now pick an = 1/nl/2+e for some e > 0 so that
Enanka ka..II2 is in K2, and hence f. E KI(IgI2). Let us show that fa does
not have a nontangential limit in 1. Fix t E (0,1). Then

fa(t) E an
Ix- (1)

n 9(\n)

We have kanl 2 = 1/ 1- 2n/2. Also as in (28),

I9(Xn)II1-Xnl'en= I2 -nsa

Changing the arguments of the an's and renormalizing, we can suppose that

an 2n(sa-1/2)

9(^n)Ilka..II2 n'/2+E

Let us compute the imaginary part of fa in t. Observe that the imaginary part of
1 1- tAn) is negative. More precisely, assuming t E [2, 1) and n > No,

11n
1

11n
I - t,\n -trn sin On -On -1/2ns

t\n Il-t\nl2
Also for n > N =1og2(1/(1- t)), we have 1- t 1/2n and rn = 1-1/2n >- t, so
that for these n

11- trn)2 + 02 < (1- t2)2 + 02n < 4(1- t)2 + BN

4(1- t)2 + c(1- t)28 < (1- t)28
So

E
2n(sa-1/2) 1/2ns

im
an >fa(t)[ = \1m___ / -

1n 9(Xn) n1 2+eIlka..II2 n>log2(1/(1't))
(1- t

2e

> ti 1 1
^' (j - t\2e 2ryn (j- t)2a 2'Y1og2(1/(1-t))

11 n>jog2(1/(1-t))

> (1 - t)ry-2s,
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where ry = s + 2 - sa + 6 for an arbitrarily small 6 (this compensates the term
,m1/2+e). So ry - 28 = 2 - s(1 + a) + 6 which can be made negative by choosing s
closely enough to 2.

We conclude that the function fa is not bounded in 1 and thus cannot have a
nontangential limit in ( = 1
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ABSTRACT. This is a survey article based on an invited talk delivered by the
first author at the CRM workshop on Hilbert Spaces of Analytic Functions
held at CRM, Universit de December 8-12, 2008.

1. The main question

Let 11 be a smoothly bounded domain in R". Consider the Dirichlet problem
DP) in fl of finding the function u, say, E C2(1l) n C(1) and satisfying

IDu=O
1.1

ulr=v f

where 0 = E, 182/8x? and r := 81, v E c(r). It is well known since the
early 20th century from works of Poincare, C. Neumann, Hilbert, and Fredholm
that the solution u exists and is unique. Also, since u is harmonic in SZ, hence
real-analytic there, no singularities can appear in ft. Moreover, assuming r := aQ
to consist of real-analytic hypersurfaces, the more recent and difficult results on
"elliptic regularity" assure us that if the data v is real-analytic in a neighborhood
of 1 then u extends as a real-analytic function across 8S2 into an open neighborhood
0' of SZ. In two dimensions, this can be done using the reflection principle. In higher
dimensions, the boundary can be biholomorphically "flattened," but this leads to a
general elliptic operator for which the reflection principle does not apply. Instead,
analyticity must be shown by directly verifying convergence of the power series
representing the solution through difficult estimates on the derivatives (see [14]).

Question. Suppose the data is is a restriction to r of a "very good" function,
say an entire function of variables x1, X2, ... , xn. In other words, the data presents
no reasons whatsoever for the solution u of (1.1) to develop singularities.

(i) Can we then assert that all solutions u of (1.1) with entire data v(x) are
also entire?

2000 Mathematics Subject Claseificatson. Primary 31B20; Secondary 30H20.
Both authors gratefully acknowledge partial support from the National Science Foundation.
This is the final form of the paper.

@2010 American Mathematical Society

121



122 D. KHAVINSON AND E. LUNDBERG

(ii) If singularities do occur, they must be caused by geometry of r interacting
with the differential operator A. Can we then find data vo that would force the
worst possible scenario to occur? More precisely, for any entire data v, the set of
possible singularities of the solution u of (1.1) is a subset of the singularity set of
uo, the solution of (1.1) with data vo.

2. The Cauchy problem
An inspiration to this program launched by H. S. Shapiro and the first author

in [22] comes from reasonable success with a similar program in the mid 1980's
regarding the analytic Cauchy problem (CP) for elliptic operators, in particular,
the Laplace operator. For the latter, we are seeking a function u with Du = 0 near
r and satisfying the initial conditions

(u - v)lr = 0
(2.1)

V(u-01r=0

where v is assumed to be real-analytic in a neighborhood of r. Suppose as bef re
that the data v is a "good" function (e.g., a polynomial or an entire function . In
that context, the techniques developed by J. Leray [26] in the 1950s and j intly
with L. Garding and T. Kotake [15]) together with the works of P. Ebenfelt [11,
G. Johnsson [18], and, independently, by B. Sternin and V. Shatalov [33 in Russia
and their school produced a more or less satisfactory understanding of the situation.
To mention briefly, the answer (for the CP) to question 1 in two dimensi us is
essentially "never" unless r is a line while for (ii) the data mining all possible
singularities of solutions to the CP with entire data is v = x 2 x2 see
[19-21,341 and references therein).

3. The Dirichlet problem: When does entire data imply entire
solution?

Let us raise question (i) again for the Dirichlet problem: Does real entire data
v imply entire solution u of (1.1)?

In this section and the next, P will denote the space of polynomials and PN the
space of polynomials of degree < N. The following pretty fact goes back to the 19th
century and can be associated with the names of E. Heine, G. Lame, M. Ferrers,
and probably many others (cf. [20]). The proof is from [22] (cf. [2,31).

Proposition 3.1. If 52 := {x : F_ x2 a2 - 1 < 0, a1 > ... > a, > 0} is an
ellipsoid, then any DP with a polynomial data of degree N has a polynomial solution
of degree < N.

PROOF. Let q(x) _ E x2 /a - 1 be the defining function for r := 852. The
(linear) map T: P -+ 0(qP) sends the finite-dimensional space PN into itself. T is
injective (by the maximum principle) and, therefore, surjective. Hence, for any P,
deg P > 2 we can find P0, deg Po < deg P - 2. TPo = A(gPo) = OP. u = P - qPo
is then the desired solution.

The following result was proved in [22].

Theorem 3.2. Any solution to DP (1.1) in an ellipsoid 1 with entire data is
also entire.
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Later on, D. Armitage sharpened the result by showing that the order and the
type of the data are carried over, more or less, to the solution [1). The following
conjecture has also been formulated in [22].

Conjecture 3.3. Ellipsoids are the only bounded domains in R's for which
Theorem 3.2 holds, i.e., ellipsoids are the only domains in which entire data implies
entsre solution for the DP (1.1).

In 2005 H. Render [30] proved this conjecture for all algebraically bounded
domains 11 defined as bounded components of {¢(x) < 0,0 E PN} such that
{¢(x) = 0} is a bounded set in R's or, equivalently, the senior homogeneous part
¢N(x) of ¢ is elliptic, i.e., J¢N(x)J > CJxJN for some constant C. For n = 2, an
easier version of this result was settled in 2001 by M. Chamberland and D. Siegel
[6]. At the beginning of the next section we will outline their argument, which
establishes similar results as Render's for the following modified conjecture.

Conjecture 3.4. Ellipsoids are the only surfaces for which polynomial data
smplses polynomial solution.

Remark. We will return to Render's theorem below. For now let us note that,
unfortunately, it already tells us nothing even in 2 dimensions for many perturba-
tions of a unit disk, e.g., Sl := {x E R2 : x2 + y2 - 1 + eh(x, y) < 0} where, say, h
is a harmonic polynomial of degree > 2.

4. When does polynomial data imply polynomial solution?

Let ry = {O(x) = 0} be a bounded, irreducible algebraic curve in R2. If the
DP posed on ry has polynomial solution whenever the data is a polynomial, then as
Chamberland and Siegel observed, (a) ry is an ellipse or (b) there exists data f E P
such that the solution u E P of DP has deg u > deg f .

In case (b) u - f l.y = 0 implies that ¢ divides u - f by Hilbert's Nullstelensatz,
and, since deg u = M > deg f , um = Okgc where ¢k and um are the senior homo-
geneous terms of ¢ and u respectively. The senior term of u must have the form
um = azM + b2m since um is harmonic. Hence, um factors into linear factors and
so must Ok. Hence y is unbounded. This gives the following result [6].

Theorem 4.1. Suppose deg ¢ > 2 and ¢ is square free. If the Dirichlet problem
posed on {¢ = 0} has a polynomial solution for each polynomial data, then the
sensor part of 0, which we denote by ON, of order N, factors into real linear terms,
namely,

n

ON = [I(ajx - bjy),
j=0

where a., b,, are some real constants and the angles between the lines aj x - bjy = 0,
for all j, are rational multiples of ir.

This theorem settles Conjecture 3.4 for bounded domains S2 C {¢(x) < 0} such
that the set {¢(x) = 0} is bounded in R2. However, the theorem leaves open simple
cases such as x2 + y2 - 1 + e(x3 - 3xy2).

Example. The curve y(y - x)(y + x) - x = 0 (see Figure 1) satisfies the
necessary condition imposed by the theorem. Moreover, any quadratic data can be
matched on it by a harmonic polynomial. For instance, u = xy(y2 - x2) solves the
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FIGURE 1. A cubic on which any quadratic data can be matched
by a harmonic polynomial.

interpolation problem (it is misleading to say "Dirichlet" pr blew, since there is
no bounded component) with data v(x, y) = x2. On the o her hand, one can sh w
(nontrivially) that the data x3 does not have polynomial solution.

5. Dirichlet's problem and orthogonal polynomials
Most recently, N. Stylianopoulos and the first author showed that if for a poly-

nomial data there always exists a polynomial solution of the DP 1.1 , with an
additional constraint on the degree of the solution in terms of the degree of the
data (see below), then SZ is an ellipse [23]. This result draws on the 2007 pa-
per of M. Putinar and N. Stylianopoulos [29] that found a simple but surprising
connection between Conjecture 3.4 in 1R2 and (Bergman) orthogonal polynomials,
i.e. polynomials orthogonal with respect to the inner product (p, q a := fo pq dA,
where dA is the area measure. To understand this connection let us consider the
following properties:

(1) There exists k such that for a polynomial data of degree n there always
exists a polynomial solution of the DP (1.1) posed on 11 of degree < n + k.

(2) There exists N such that for all m, n, the solution of (1.1) with data z zn
is a harmonic polynomial of degree < (N-1)m+n in z and of degree < (N-1)n+m
in Z.

(3) There exists N such that orthogonal polynomials {pn} of degree n on fl
satisfy a (finite) (N + 1)-recurrence relation, i.e.,

zpn = an+1,npn+1 + an,,p, + - .. + an-N+1Pn-N+1,

where an-2,n are constants depending on n.



SEARCH FOR SINGULARITIES OF SOLUTIONS TO THE DIRICHLET PROBLEM 125

(4) The Bergman orthogonal polynomials of Sl satisfy a finite-term recurrence
relation, i.e., for every fixed k > 0, there exists an N(k) > 0, such that ak,n =
(zpn, pk) = 0, n > N(k).

(5) Conjecture 3.4 holds for f.
Putinar and Stylianopoulos noticed that with the additional minor assumption

that polynomials are dense in La(st), properties (4) and (5) are equivalent. Thus,
they obtained as a corollary (by way of Theorem 4.1 from the previous section)
that the only bounded algebraic sets satisfying property (4) are ellipses. We also
have (1) (2), (2) . (3), and (3) (4). Stylianopoulos and the first author
used the equivalence of properties (2) and (3) to prove the following theorem which
has an immediate corollary.

Theorem 5.1. Suppose On is C2-smooth, and orthogonal polynomials on SZ
satisfy a (finite) (N + 1) -recurrence relation, in other words property (3) is satisfied.
Then, N = 2 and cl is an ellipse.

Corollary 5.2. Suppose On is a C2 -smooth domain for which there exists N
such that for all m, n, the solution of (1.1) with data z zn is a harmonic polynomial
of degree < (N - 1)m + n in z and of degree < (N - 1)n + m in 2. Then N = 2
and SZ u an ellipse.

SKETCH OF PROOF. First, one notes that all the coefficients in the recurrence
relation are bounded. Divide both sides of the recurrence relation above by Pn
and take the limit of an appropriate subsequence as n -* oo. Known results on
asymptotics of orthogonal polynomials (see [35]) give limn-rooPn+1/Pn ='D (z) on
compact subsets of C \ fl, where '1(z) is the conformal map of the exterior of fl
to the exterior of the unit disc. This leads to a finite Laurent expansion at 00 for
IQ w = ib-1(w), Thus,' (w) is a rational function, so si := C \ Ills an unbounded
quadrature domain, and the Schwarz function (cf. [7,37]) of On, S(z) (= x on 8I)
has a meromorphic extension to st. Suppose, for the sake of brevity and to fix the
ideas, f o r example, that S(z) = czd + FM1 c /(z - zj) + f (z), where f E H°°(5),
and zj E 5. Since our hypothesis is equivalent to Il satisfying property (2) discussed
above, the data zP(z) = x llj=1(z - zj) has polynomial solution, g(z) + h(z) to
the DP. On r we can replace z with S(z). Write h(z) = h#(2), where h# is a
polynomial whose coefficients are complex conjugates of their counterparts in h.
We have on r

5.1 S(z)P(z) = g(z) + h# (S(z)),

which is actually true off r since both sides of the equation are analytic. Near zj,
the left-hand side of this equation tends to a finite limit (since S(z)P(z) is analytic
in I oo!) while the right-hand side tends to oo unless the coefficient cl is zero.
Thus,

5.2) S(z) = czd + f (Z).

Using property (2) again with data ]z12 = zz we can infer that d = 1. Hence, Sl is a
null quadrature domain. Sakai's theorem [32] implies now that Il is an ellipse.

Remark. It is well-known that families of orthogonal polynomials on the line
satisfy a 3-term recurrence relation. P. Duren in 1965 [8] already noted that in C
the only domains with real analytic boundaries in which polynomials orthogonal
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with respect to arc-length on the boundary satisfy 3-term recurrence relations are
ellipses. L. Lempert [25] constructed peculiar examples of C°° nonalgebraic Jordan
domains in which no finite recurrence relation for Bergman polynomials holds.
Theorem 5.1 shows that actually this is true for all C2-smooth domains except
ellipses.

6. Looking for singularities of the solutions to the Dirichlet problem
Once again, inspired by known results in the similar quest for solutions to the

Cauchy problem, one could expect, e.g., that the solutions to the DP (1.1) exhibit
behavior similar to those of the CP (2.1). In particular, it seemed natural to suggest
that the singularities of the solutions to the DP outside f2 are somehow associated
with the singularities of the Schwarz potential (function) of 8f2 which does indeed
completely determine 8f2 (cf. [21, 37]). It turned out that singularities of solutions
of the DP are way more complicated than those of the CP. Already in 1992 in his
thesis, P. Ebenfelt showed [9] that the solution of the following "innocent" DP in
it := {x4 + y4 - 1 < 01 (the "TV-screen")

(6.1)
J Du = 0

Ulan = x2 + y2

has an infinite discrete set of singularities (of course, symmetric with respect to 90°
rotation) sitting on the coordinate axes and running to oo (see Figure 2 .

To see the difference between analytic continuation of solutions to CP and DP,
note that for the former

(6.2)
8z fir:=ocz = vz(z, z) = vZ (z, S(z)),

and since 8u/8z is analytic, (6.2) allows uZ to be continued everywhere together
with v and S(z), the Schwarz function of 812. For the DP we have on r

(6.3) u(z, z) = v(z, z)

for u = f + g where f and g are analytic in Q. Hence, (6.3) becomes

(6.4) f (z) + g(S(z)) = v(z, S(z)).

Now, v(z, S(z)) does indeed (for entire v) extend to any domain free of singu-
larities of S(z), but (6.4), even when v is real-valued so that g = f, presents a very
nontrivial functional equation supported by a rather mysterious piece of informa-
tion that f is analytic in Q. (6.4) however gives an insight as to how to capture
the DP-solution's singularities by considering the DP as part of a Goursat problem
in C2 (or C" in general). The latter Goursat problem can be posed as follows (cf.
[36]).

Given a complex-analytic variety f in C", (I' n ]R" = r := 812), find u:
82u/8zI = 0 near f (and also in Q C 1[t") so that u[r = v, where v is,

say, an entire function of n complex variables. Thus, if £ := {O(z) = 0}, where 0
is, say, an irreducible polynomial, we can, e.g., ponder the following extension of
Conjecture 3.3:

Question. For which polynomials 0 can every entire function v be split (Fis-
cher decomposition) as v = u + Oh, where Au = 0 and u, h are entire functions (cf.
113,361)?
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FIGURE 2. A plot of the "TV screen" {x4+y4 = 1} along with the
first eight singularities (plotted as circles) encountered by analytic
continuation of the solution to DP (6.1).

7. Render's breakthrough

Trying to establish Conjecture 3.3 H. Render [30] has made the following inge-
nious step. He introduced the real version of the Fischer space norm

7.1 (f, 9) = f 9e-1,,12 dx,

where f and g are polynomials. Originally, the Fischer norm (introduced by E. Fis-
cher [131) requires the integration to be carried over all of C" and has the property
that multiplication by monomials is adjoint to differentiation with the correspond-
ing multi-index (e.g., multiplication by (E, 1 is adjoint to the differential oper-
ator A). This property is only partially preserved for the real Fischer norm. More
precisely [30],

7.2) (Of, 9) = (f, 0g) + 2 (deg(f) - deg(g)) (f, g)

for homogeneous f , g.
Suppose u solves the DP with data x12 on 8S2 C {P = 0: deg(P) = 2k, k > 1}.

Then u - xI2 = Pq for analytic q, and thus Ak(Pq) = 0. Using (7.2), this (non-
trivially) implies that the real Fischer product ((Pq)m+2k, qm) between all homo-
geneous parts of degree m + 2k and m of Pq and q, respectively, is zero. By a
tour de force argument, Render used this along with an added assumption on the
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senior term of P (see below) to obtain estimates from below for the decay of the
norms of homogeneous parts of q. This, in turn yields an if-and-only-if criterion for
convergence in the real ball of radius R of the series for the solution u = E',U.,

homogeneous of degree m. Let us state Render's main theorem.

Theorem 7.1. Let P be an irreducible polynomial of degree 2k, k > 1. Suppose
P is elliptic, i.e., the senior term P2k of P satisfies P2k(x) > cP x 2k, for some
constant cp. Let 0 be real analytic in {IxI < R}, and Ok(Po) = 0 at least in
a neighborhood of the origin). Then, R 5 C(P,n) < +oo, where C is a constant
depending on the polynomial P and the dimension of the ambient space.

Remark. The assumption in the theorem that P is elliptic is equivalent to the
condition that the set {P = 0} is bounded in R".

Corollary 7.2. Assume 8SZ is contained in the set {P = 0}, a bounded alge-
braic set in R". Then, if a solution of the DP (1.1) with data x 2 is entire, S2 must
be an ellipsoid.

PROOF. Suppose not, so deg(P) = 2k > 2, and the following Fischer decom-
position) holds: Ix12 = P0 + u, Du = 0. Hence, Ok(Po) = 0 and 0 cannot be
analytically continued beyond a finite ball of radius R = C P) < oo, a contradic-
tion. 0

Caution. We want to stress again that, unfortunately, the theorem still tells us
nothing for say small perturbations of the circle by a nonelliptic term of degree > 3,
e.g., x2 + y2 -1 + e(x3 - 3xy2).

8. Back to 1R2: lightning bolts

Return to the R2 setting and consider as before our boundary O 1 of a domain St
as (part of) an intersection of an analytic Riemann surface f in Ca with W. Roughly
speaking if say 8Q is a subset of the algebraic curve r := { x, y) : 4o x, y = 0},
where 0 is an irreducible polynomial, then f = {(X,Y) E C2: O(X,Y = 0}. Now
look at the Dirichlet problem again in the context of the Goursat problem: Given,
say, a polynomial data P, find f, g holomorphic functions of one variable near f a
piece of r containing 8St C f n R2) such that

(8.1) u = f (z) + g(w) IV = P(z, w),
where we have made the linear change of variables z = X+iY, to = X-iY (so w = z
on R2 = {(X, y) : X, Y are both real} ). Obviously, Du = 482 8zow = 0 and u
matches P on BSt. Thus, the DP in R2 has become an interpolation problem in C2 of
matching a polynomial on an algebraic variety by a sum of holomorphic functions
in each variable separately. Suppose that for all polynomials P the solutions u
of (8.1) extend as analytic functions to a ball Bo = {Ix12 + Iw 2 < Rol in C:2.
Then, if 1' fl Bo is path connected, we can interpolate every polynomial P(z, w)
on f fl Bn by a holomorphic function of the form f (z) + g(w). Now suppose we
can produce a compactly supported measure µ on f fl Bo which annihilates all
functions of the form f (z) + g(w), f, g holomorphic in Bn and at the same time
does not annihilate all polynomials P(z, w). This would force the solution u of (8.1)
to have a singularity in the ball Bo in C2. Then, invoking a theorem of Hayman
[171 (see also [201), we would be able to assert that u cannot be extended as a real-
analytic function to the real disk BR in R2 containing 1 and of radius > sR. An
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example of such annihilating measure supported by the vertices of a "quadrilateral"
was independently observed by E. Study [38], H. Lewy [27], and L. Hansen and
H. S. Shapiro [16]. Indeed, assign alternating values ±1 for the measure supported
at the four points po := (z1, w1), qo : (zl, w2), P1 :_ (z2, w2), and ql :- (z2, w1)
Then f(f+g)dµ=f(zI)+9(wi)-f(zi)-9(w2)+f(z2)+9(w2) f(z2)-g(w1)=0
for all holomorphic functions f and g of one variable. This is an example of a closed
lightning bolt (LB) with four vertices. Clearly, the idea can be extended to any
even number of vertices.

Definition. A complex closed lightning bolt (LB) of length 2(n+1) is a finite
set of points (vertices) po, qo, pI, qI, ... ,p, qn, pn+I, qn+I such that po = Pn+I, and
each complex line connecting pj to q,, or q, to p5+I has either z or w coordinate
fixed and they alternate, i.e., if we arrived at p5 with w coordinate fixed then we
follow to q4 with z fixed etc.

For "real" domains lightning bolts were introduced by Arnold and Kolmogorov
in the 1950s to study Hilbert's 13th problem (see [24] and the references therein).

The following theorem has been proved in [4] (see also [5]).

Theorem 8.1. Let 11 be a bounded simply connected domain in C = R2 such
that the Rtemann map 0: 11 -+ ]D = {IzI < 1} is algebraic. Then all solutions of the
DP with polynomial data have only algebraic singularities only at branch points of
¢ unth the branching order of the former dividing the branching order of the latter
if ¢-1 is a rational function. This in turn is known to be equivalent to 1 being a
quadrature domain.

IDEA OF PROOF. The hypotheses imply that the solution u = f + g extends
as a single-valued meromorphic function into a C2-neighborhood of P. By another
theorem of [4], one can find (unless 0-1 is rational) a continual family of closed
LBs on f of bounded length avoiding the poles of u. Hence, the measure with
alternating values ±1 on the vertices of any of these LBs annihilates all solutions u =
f z + g(w) holomorphic on P, but does not, of course, annihilate all polynomials
of z, to. Therefore, 0-1 must be rational, i.e., ) is a quadrature domain [36].

The second author [28] has recently constructed some other examples of LBs
on complexified boundaries of planar domains which do not satisfy the hypothesis
of Render's theorem. The LBs validate Conjecture 3.3 and produce an estimate
regarding how far into the complement C \ SZ the singularities may develop. For
instance, the complexification of the cubic, 8x(x2 - y2) + 57x2 + 77y2 - 49 = 0 has
a lightning bolt with six vertices in the (nonphysical) plane where z and w are real,
i.e., x is real and y is imaginary (see Figure 3 for a plot of the cubic in the plane
where x and y are real and see Figure 4 for the "nonphysical" slice including the
lightning bolt). If the solution with appropriate cubic data is analytically continued
in the direction of the closest unbounded component of the curve defining 8SZ, it
will have to develop a singularity before it can be forced to match the data on that
component.

9. Concluding remarks, further questions

In two dimensions one of the main results in [4] yields that disks are the only
domains for which all solutions of the DP with rational (in x, y) data v are rational.
The fact that in a disk every DP with rational data has a rational solution was
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FIGURE 3. A Maple plot of the cubic 8x(x2 - y2) + 57x2 + 77y2 -
49 = 0, showing the bounded component and one unbounded com-
ponent (there are two other unbounded components further away .

FIGURE 4. A lightning bolt with six vertices on the cubic
2(z + w)(z2 + w2) + 67zw - 5(x2 + w2) = 49 in the nonphysical
plane with z and w real, i.e. x real and y imaginary.

observed in a senior thesis of T. Fergusson at U. of Richmond [31]. On the other
hand, algebraic data may lead to a transcendental solution even in disks (see [10],

also cf. [12]). In dimensions 3 and higher, rational data on the sphere (e.g., V =
11(x1 - a), jal > 1) yields transcendental solutions of (1.1), although we have not

been able to estimate the location of singularities precisely (cf. [10]).
It is still not clear on an intuitive level why ellipsoids play such a distinguished

role in providing "excellent" solutions to DP with "excellent" data. A very simper

question, important for applications, (which actually inspired the program launched
in [22] on singularities of the solutions to the DP) goes back to Raleigh and concerns
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singularities of solutions of the Helmholtz equation ([0 - A21u = 0, A E IR) instead.
(The minus sign will guarantee that the maximum principle holds and, consequently,
ensures uniqueness of solutions of the DP.) To the best of our knowledge, this topic
remains virtually unexplored.
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Invariant Subspaces of the Dirichlet Space

Omar El-Fallah, Karim Kellay, and Thomas Ransford

ABSTRACT. We present an overview of the problem of describing the invariant
subspaces of the Dirichlet space. We also discuss some recent progress in the
problem of characterizing the cyclic functions.

1. Introduction

Let X be a Banach space of functions holomorphic in the open unit disk IlD,
such that the shift operator S : f (z) '-+ z f (z) is a continuous map of X into itself.
An tnvanant subspace of X is a closed subspace M of X such that SM C M.
Given f E X, we denote by [fix the smallest invariant subspace of X containing
f , namely

[fix = {p f: p a polynomial}.

We say that f is cyclic for X if [fix = X.

1.1. The Hardy

{f(z)

space. This is the case X H2, where

H2 _ > akzk If I2 IakI2
k>O k>0

Recall that, for every function f E H2 \ (0), the radial limit f*(() := lim,.-'1- f (r()
exists a.e. on the unit circle T. The function f has a unique factorization f = 9h,
where 9,h are H2-functions, 0 is inner (this means that 19*1 = 1 a.e.), and h is
outer which means that loglh(0)I = (27r)-1 f' loglh`(()I Id(I). The inner factor
can be expressed as product of a Blaschke product and singular inner factor. More
precisely, we have 0 = cBSa, where c is a unimodular constant,

B z)
and an - zan 1-anz, (an ED,F (1-Ianl) <oo,Ia

n
nl/an:=1 if an=0) ,
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and

S, (z) = exp C- j : ± z do(C) 1 (a > 0, a 1 d9).
Z

For more details, see for example [8,11,13].
The invariant subspaces of H2 are completely described by Beurling's theorem

[211.

Theorem 1. Let M # (0) be an invariant subspace of H2. Then M = 9H2,
where 9 is an inner function.

This result leads immediately to a characterization of cyclic functions for H2.

Corollary 2. A function f is cyclic for H2 if and only if it is an outer function

1.2. The Dirichlet space. The Dirichlet space is defined by
1

D :_ {f(z) = akzk : := (k + 1) ak 2 <
1k>O k>O

Clearly V is a Hilbert space and D C H2. It is called the Dirichlet space because
of the close connection with Dirichlet integral:

D(f) := 1 f If,(z)12 dA(z) _ k ak 2.
k>O

Thus IIf IID = II.f IIH2 + D(f ). (The H2-norm is added to ensure that we get a
genuine norm.)

Here are two other formulas for the Dirichlet integral. The first, due to Douglas
[7], expresses the integral purely in terms of f *, and leads to the notion of Besov
spaces:

D(f) =
(1)2 f f If(() - f*(C2) 2

T T IC1 - 5212

The second formula is due to Carleson [5]. Using the factorization above (f =
cBSvh), Carleson's formula expresses V(f) in terms of the data h' , (an) and a.
More precisely:

(1) D(f) = 1 IT
IC

la,1a

2Ih*(C)12 Id(I
27r

1

+ 2 LL K

2

(2Ih*h* ((1)12 IdCuI da(C2)

1 f f (Ih*(C1)12 - Ih*(C2)I2)(loglh*(Cl)I - loglh*(C2)1) d d l
+ 47x2 T T IC1 - 0212

I C1II C2

It follows directly from Carleson's formula that, if f E D, then its outer factor h
also belongs to V and satisfies D(h) < D(f). A further consequence is that the
only inner functions which belong to V are finite Blaschke products.

In [15,16], Richter established an analogue of Beurling's theorem for the Dirich-
let space. To state his result, we need to introduce a family of Dirichlet-type spaces
D(µ). Given a finite positive Borel measure u on the unit circle, we define

D(µ) :_ { f E H2 : Dµ(f) :=
a I If1(z)12wµ(z) dA(z) <

ooe

},
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where Wµ is the Poisson transform of µ, namely

(vµ(z) 1 f
tar

1- IZI2
dµ(C).

27r o IC - zI2

We equip D(µ) with the norm II IIµ defined by IIfII IIfIIH2 +D,(f). Note that
the classical Dirichlet space corresponds to taking µ to be normalized Lebesgue
measure m on T. The following theorem was proved by Richter [15,16].

Theorem 3. Let M (0) be an invariant subspace of D. Then there exists
f E D such that M e SM = C f and )4 = [ f ]D = f D(I f 12 dm).

In particular, the invariant subspaces of D are all cyclic (of the form If ]D for
some f E D). The next theorem, due to Richter and Sundberg [17], goes one step
further, expressing such subspaces in terms of invariant subspaces generated by an
outer function.

Theorem 4. Let f E D \ {0}, say f = Oh, where 0 is inner and h is outer.
Then

[f]D = 0[h]v n D = [h]v n OH2.

This still leaves us with the problem of describing [h]D when h is outer. In
particular, it leaves open the problem of characterizing the cyclic functions for D.

2. Dirichlet space and logarithmic capacity

Given a probability measure µ on T, we define its energy by

,(A) := f f log
Ix wI

dµ(z) dµ(w).

Note that I (A) E (-oo, oo]. A simple calculation (see [3, p. 294]) shows that

I(µ) _ Iµ(n)I2
n

n>1

Hence in fact I (A) > 0, with equality if and only if µ is normalized Lebesgue
measure on T.

Given a Borel subset E of T, we define its capacity by

c(E)

:= I/ inf {I (µ) : µ is a probability measure supported on a compact subset of E}.

Note that c(E) = 0 if and only if E supports no probability measure of finite energy.
It is easy to see that

countable capacity zero Hausdorff dimension zero

Lebesgue measure zero.

None of these implications is reversible. A property is said to hold quasi-everywhere
(q.e.) on T if it holds everywhere outside a Borel set of capacity zero.

The following result, due to Beurling [1], reveals an important connection be-
tween capacity and the Dirichlet space.

Theorem 5. Let f E D. Then f*(C) := limr_,1 f (r() exists q.e. on T, and

(2) 41 f*I >_ t) < (t > 4IIfIID)
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The inequality (2) is called a weak-type inequality for capacity. The strong-type
inequality for capacity is

(3) v,

where C is a constant. For a proof, see for example [19]. In Theorem 15 below, we
shall exhibit a `converse' to the strong-type inequality.

Given a Borel subset E of T, we define

DE:={f ED: f*=0q.e.onE}.
The following result is essentially due to Carleson [4]. The simple proof given be ow
is taken from [31, where it is attributed to Joel Shapiro.

Theorem 6. DE is an invariant subspace of D.

PROOF. We just need to show that DE is closed in D, the rest is lear. Let
(f,,,) be a sequence in DE and suppose that fn -> f in D. By 2 , if t > 0, then, f r
all n sufficiently large,

c(Efl{lf*1 >t})<c(lf*- fns>t)<16 f t2fn 2

Letting n -* oo and then t -* 0, we deduce that f * = 0 q.e. on E. 0
Corollary 7. If f E D, then [f]' C DZ(f.), where Z f* = ( E T

f*(() = 0}.

3. Cyclic functions for the Dirichlet space

Recall that a function f E V is cyclic for D if [fly = D. So, fr m Corollary 7,
if f is cyclic for D, then f is outer and c(Z(f*)) = 0. In [3], Brown and Shields
conjectured that the converse is also true. In this section we will give some sufficient
conditions to ensure cyclicity in the Dirichlet space. For simplicity, we restrict our
attention mostly to functions in the disk algebra A(D). To help state these results,
we introduce a class C.

Definition 8. The class C consists of closed subsets E of the unit circle satisfy-
ing the following property: every outer function f E D fl A ID) such that Z f C E
is cyclic for D.

For functions in V fl A(D), the Brown Shields conjecture thus becomes:

Conjecture 9. If E is a closed subset of T with c(E) = 0, then E E C.

It was proved by Hedenmalm and Shields [12] that every countable closed subset
of T belongs to C. Richter and Sundberg [18] subsequently obtained a more general
version of this result which also covered the case of functions not necessarily in A(D).
The first examples of uncountable sets in C were given by the present authors in
[9,10], and our aim is now to give an overview of this work.

Let r C T be a union of disjoint arcs. We denote by OF the boundary of r in
the unit circle. Given an outer function f, we associate to it the outer function fr
defined by

fr(z) exp(2 fr S± z loglf-(()I Id([).
The following lemma can be obtained from Carleson's formula (1) (for the details,
see [101).
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Lemma 10. Let f E V be a bounded outer function. There is a constant C,
which depends only on f, such that, for every union of disjoint arcs r of T, and
every function g E V satisfying Ig*(()I < d((,or) a.e., we have frg E V and

IIfr9IIa <- CII91ID

Theorem 11. Let f E V be an outer function, and set E :_ {( E T
liminfx,tl if (z) I = 0}. If g E D and Ig*(C)I < d((, E) a.e. on T, then g E [f]D.

IDEA OF PROOF. We employ a method developed by Korenblum [14]. Let
('Yk)k>i be the connected components of T\E, and set rn := Uk>n'Yk First we prove
that gfr, E [f ]D for all n. Then, using Lemma 10, we show that supnllg f r IID < 00-
Therefore we can extract a subsequence of that converges weakly to g. It
follows that g E [fID.

Note that the existence of a function g E H2 \ (0) such that Ig*(()I <- d((,E)
implies that

4 Jlog(1/d(C,E)) IdCI < .

A closed subset E of T satisfying (4) is known as a Carleson set.
Let E C T be a Carleson set. We denote by fE the outer function associated

to the distance function d((, E):

1 f5 fE(z) := exp C+ z log(d((, E)) Id(I).
27r z

Using Carleson's formula (1), it is not difficult to prove that fE E D. As conse-
quences of Theorem 11, we obtain the following results.

Corollary 12. Let E be a Carleson set. Then E E C if and only if fE is cyclic
for D.

Corollary 13. If E, F E C and if E is a Carleson set, then E U F E C.

IDEA OF PROOF. Let f be an outer function in v fl A(lm) such that Z(f) C
E U F. We have to prove that f is cyclic for D. Let rn = Uk>n'Yk, where the ('yk)
are the connected components of T \ E. We can write

ffE =

Note that 8(T rn) is a finite set. Since F E C, we have F U 8(T \ rn) E C. From
the fact that Z(fT C F U 8(T \ rn), we deduce that is cyclic in
D. Thus fr., fE E [f]D. Using Lemma 10, we obtain that is uniformly
bounded, so fE E [f]D Since E E C, it follows that fE is cyclic, and therefore so
isf.

We now turn our attention to Conjecture 9. We shall establish two partial
results in this direction, both of them sufficient conditions for a closed set E to
elong to the class C.
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3.1. A capacitary sufficient condition. Given a closed set E C T and
t > 0, we write Et :_ {C E T : d((, E) < t}, and denote by 1Etj the Lebesgue
measure of Et. It is clear that c(E) = limt.io+ c(Et). In the following theorem we
prove that, if c(Et) goes to zero sufficiently rapidly as t -+ 0+, then E E C.

Theorem 14. Let E be a closed subset of T. If

(6) c(Et) log log(1/t)
dt < oo,

Jo tlog(1/t)
then E E C.

The proof of Theorem 14 is based on the following converse (proved in [91) to
the strong-type inequality for capacity (3).

Theorem 15. Let E be a proper closed subset of T, and let r,: (0,ir] -+ R+ be
a continuous, decreasing function. Then the following are equivalent:

(i) there exists h E V such that

Ih*(C)I ? 77 (d((, E)) q. e. on T;

(ii) there exists h E V such that

Re h* (() > (d((, E)) and jIm h* (()I < ,7r/4 q. e. on T;

(iii) E and satisfy

(7)

fo
c(Et) d77 2 (t) > -oo.

IDEA OF THE PROOF OF THEOREM 14. Suppose that condition 6 holds. By
Theorem 15, there exists h E V such that

Re h* (C) > log log (d((, E)) and 1Im h* (C) I < ir 4 q.e. on T.

We consider the analytic semigroup cpa := exp(-aeh) for arg(A) < 7r 4. It has the
following properties:

(a) the map A - cpa is holomorphic from {A : jarg(A)[ < 7r 4} to D;
(b) l11v = 0;
(c) jcpa(z)l = O(d(z, E)) for large A.

Let f E Df1A(IID) be an outer function such that Z(f) C E, and let b be an element
of the dual space of V which is orthogonal to [f]v. It follows from property (c)
and Theorem 11 that Wt E [f ]v for large t. Thus (ptpt, tti) = 0 for every polynomial
p. Using property (a), we can extend this equality to all t > 0. Property (b) then
implies that (p, ?P) = 0. Hence Eli = 0 and f is cyclic.

3.2. A geometric sufficient condition. By geometric condition, we mean
a condition expressed in terms of lEtj. It is well known (see for example [61) that
there exists a constant C > 0 such that, for every closed set E C T, we have

(8)

ds CE).

foiT<(
n particular, if fo dt/jEtl = oo, then c(E) = 0. In the case of Cantor-typeI

the converse is also true [6]. Using (8) with Et in place of E, we obtain

f (" ds C
it IE81 c(Et).

sets
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So, from Theorem 14, if E satisfies

J
EtI dt < co,

(tlog(1/t))2
then E E C. The following theorem gives a more precise condition.

Theorem 16. Let E be a closed subset of T such that IEt] = 0(t6) for some
E > 0. If

f
dt

o IEt]
00,

then E E C.

To give an idea of the proof of this theorem, we need to digress slightly and
introduce a generalization of the functions fE defined in (5). Let E be a closed
subset of T of Lebesgue measure zero, and let w : (0, a] -* R+ be a continuous
function such that

9 jIlogw(d(C,E))I IdCI < co.

We shall denote by f,. the outer function satisfying

10 I fv, (C) I = w(d(C, E)) a.e.

Functions of this kind were already studied, for example, by Carleson in [4], in the
course of his construction of outer functions in Ak (IID) with prescribed zero sets.
The following result gives a two-sided estimate for the Dirichlet integral of certain
of these functions (for the details of the proof, see [10]).

Theorem 17. Let E be a closed subset of T of measure zero, let w: (0, a] -+ R+
be an increasing function such that (9) holds, and let f,,, be the outer function given
b 1 . Suppose further that there exists ry > 2 such that t H is concave.
Then

11 D(f-) ^ f w'(d(C, I'))2d(C, E) IdCI,
T

where the implied constants depend only on ry. In particular, fw E D if and only if
the ntegrul an (11) zs finite.

IDEA OF THE PROOF OF THEOREM 16. We first suppose that E is regular, in
the sense that EtI where z/i is a function such that lp(t)/ta is increasing for
some aE(2,1).

For h E (0, 1), define w6: (0,-7r] -* R+ by

1 1* t1-a, 0 < t < 6,
W6(t) := A6 - log ft ds/o (8), 6 < t < 716,

1, 716<t<7r.

Here, the constants A6,776 are chosen to make ws continuous. Note that w6 is
increasing, and one can show that t -+ w6(t") is concave if ry > 1/(1 - a) and b
is sufficiently small. Using Theorem 17, we obtain that lim sup6.io D(fw6) < co.
From the condition fo dt/]Et] = oo, it is easy to see that lims_,o'is = 0, which
implies that limb of f,,,6] = 1 a.e. and that lims_,ol fv,6(0)I = 1. Putting these facts
together, we deduce that fw, -* I weakly in D as 6 -+ 0.
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Now, for each b E (0,1), the quotient w6(t)/t1_° is bounded, so f-8/ f1E ° is
bounded on D. By [17, Lemma 2.41, it follows that f,,,d E [fE °]v. Letting 6 -i 0,
we obtain I E [fE °]D. Also, by [17, Theorem 4.31, we have V" ID = [fEIn.
Hence fE is cyclic and E E C.

When E is not regular, the result is still true, but now there is an extra step
in the proof. To obtain the function 1p, we first need to regularize Et , using
a quantitative form of M. R.iesz's rising-sun lemma. For the details, we refer to
[10]. 0
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Arguments of Zero Sets in the Dirichlet Space

Javad Mashreghi, Thomas Ransford, and Mahmood Shabankhah

ABSTRACT. We characterize the unimodular sequences (eien)n>1 such that

(rne1e^)n>1 is a zero set for the Dirichlet space for every positive Blaschke
sequence (ra)n>1. The principal tool is a characterization of Carleson sets in
terms of their convergent subsequences.

1. Introduction
The Dirichlet space D is the set of functions f, holomorphic on the open unit

disk D, for which

D(f) :_' f If'(z)I2dxdy <oo.

If f z = anzn, then D(f) = F_', nlanl2. Hence V is properly contained in
the Hardy space

00
00H2

=_ {f(z) anzn : II1IIH2 Ian12 < oo}.
n=0 n=0

D is a Hilbert space with respect to the norm II II v defined by 11f 11'D D(f )+ II f 112232
Let X be a space of holomorphic functions of D. A sequence (zn)n>1 C IID is

said to be a zero sequence for X if there exists function f E X, not identically zero,
which vanishes on Zn, n > 1. We do not require that the (zn) be the only zeros of
f. If zn n>1 is not a zero sequence for X, then we call it a uniqueness sequence
for X.

Zero sequences of the Hardy space H2 are completely characterized: a sequence
zn)n>1 C i is a zero sequence for H2 if and only if it satisfies the Blaschke condition

1)

00

E(1-Iznl)<00.
n=1
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Since D C Ha, this is also a necessary condition for a zero sequence for D.
However, it is far from being sufficient. Indeed, the complete characterization of
the zero sequences of D is still an open problem.

The first breakthrough in this direction was the pioneering work of Carleson
[4]. He showed that if a sequence (zn)n>1 in D satisfies

00 1 1-e

n-, \-log(1- Iznl) < 00

for some e > 0, then (zn)n>1 is a zero sequence for D. Using a completely different
approach, Shapiro and Shields [10] obtained showed that this result remains true
even with E = 0.

Thus, if a sequence (rn)n>1 in [0, 1) satisfies
00

1
(2) 2.1 < 00,- log(1 - r)n-1 n

then (rne'° )n>1 is a zero sequence for D for every choice of (ei°')n> . Later on,
Nagel, Rudin and Shapiro [8] showed that, if (2) is not satisfied then there exists a
sequence (e'BR)n>1 for which (rne'0^),n>1 is a uniqueness sequence f r D. Putting
these results together, we conclude that (rne'°")

n>_1
is a zero sequence f r D f r

every choice of (e'B°)n>1 if and only if (2) holds.
The main purpose of this article is to prove the following theorem, which can

be considered as the dual of the last statement. It was already stated as a remark
in [6, p. 704, line 12], but without detailed proof.

Theorem 1. Let (e'°")n>1 be a sequence in T. Then (r eie n>1 is a zero se-

quence for D for every positive Blaschke sequence (rn)n>1 if and my f {e'a :n> 1}
is a Carleson set.

We recall that a closed subset F of T is a Carleson set if

(3) flogdist((,F) Jd(l > -oo,

where "dist" is measured with respect to arclength distance. These sets were first
discovered by Beurling [1] and then studied thoroughly by Carleson. Carleson [31
showed that the condition (3) characterizes the zero sets of f T for f e A', where
Al := If E C' (IID) : f is holomorphic on IID}. If F is a closed subset of T of
Lebesgue measure zero whose complementary arcs are denoted by In, n > 1, then
(3) is equivalent to

(4) ElInlloglln] > -00-
n

Our proof of Theorem 1 is based on the following theorem, which we believe is
of interest in its own right. In particular, it characterizes Carleson sets in terms of
their convergent subsequences.

Theorem 2. Let E be a subset of T. Then R is a Carleson set if and only if
the closure of every convergent sequence in E is a Carleson set.

Theorem 2 is proved (in a more general form) in Section 2, and Theorem 1 is
deduced from it in §3. Finally, in §4 we relate these results to the notion of Blaschke
sets.
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2. Proof of Theorem 2

We shall in fact prove Theorem 2 in a more general form. Let w : [0, 7r] -+ [0, ccl
be a continuous, decreasing function such that w(0) = oo and fo w(t) dt < oo. A
closed subset F of T is an w-Carleson set if

(5) Id(I < oo.

If F is a closed subset of T of measure zero, then condition (5) is equivalent to
00 plr..l/a

J w(t) dt < oo,
n=1 0

where (In)n>1 are the components of T\F (see [7, Proposition A.1]). The classical
Carleson sets correspond to the case w(t) = log+(1/t), and so Theorem 2 is a special
case of the following result.

Theorem 3. Let w be as above and let E be a subset of T. Then E is an
w-Carleson set if and only if the closure of every convergent sequence in E is an
w-Carleson set.

PROOF. Set F = E. We need to show that F is an w-Carleson set.
We first show that the closure of every convergent sequence in F is an w-

Carleson set. As the union of two w-Carleson sets is again one, it suffices to consider
sequences converging to a limit from one side. Suppose that (e19n )n>1 C F, where
01 < 02 < ... and On -+ Oo as n -+ oo. Since lima ,o+ fo w(t) dt = 0, we may
choose a positive sequence (77n)n>1, such that

00 fa..
w(t) dt < oo.

n=1 0

Set b := min{qn, 7/n-1, (Bn+1 - 0n)/2, (0n - 0n-1)/2}, n > 2, and choose e'O" E E
7th 4' E On - bn, On + bn), n > 2. Then 02 < 0s < ... and On --f 0o as n -* 00.

Since e'0 )n>2 is a convergent sequence in E, it follows from the assumption that
--------------

e'¢ - n > 2} is an w-Carleson set, and therefore

As0

Therefore

w(t) dt < oo.
n=2 0

+1 - On On+1 - On + tin and w(t) is a decreasing function,

f w(t) dt < f w(t) dt + J w(t) dt.

(8..+1-6n )/2

fo w(t) dt < oo,
n>1

and {e'B n > 1} is an w-Carleson set.
We next show that F has zero Lebesgue measure. Suppose, on the contrary,

that F > 0. We claim that there exists a positive sequence (cn)n>1 such that

6)

00

En < I F] and
n=1

00 je./2
w(t) dt oo.

n 1
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Indeed, since (11x) fo w(t) dt -+ oo as x -+ 0+, we may choose integers N,, i > 1,
such that s+,

Jo
Then, the sequence

IFI/(2 Ns)

w(t) dt > 1/Ni (i > 1).

N{ times

satisfies (6). Now choose (Bn)n>1 inductively as follows. Pick 01 such that e'9' E F.
If 01, ... , Bn have already been selected, choose 0n+1 as small as possible such that
0n+1 >_ 9n + En and e'B^+' E F. Note that Bn < 01 + 27r for all n, for otherwise F
would be covered by the finite set of closed arcs {eie,,ei(e,+e, ];1, contradicting
the fact that =1 ej < IF1. Thus (eie°)n>1 is a convergent sequence in F. Also

J
w(t) dt > E

jen/2
w(t) dt = oo,

n n

so {e1en : n > 11 is not an w-Carleson set. This contradicts what we proved in the
previous paragraph. So we conclude that jFj = 0, as claimed.

Finally, we prove that F is an w-Carleson set. Once again, we proceed by
contradiction. If F is not an w-Carleson set, then, as it has measure zero, it follows
that

(7)

00

f1: w (t) dt = oo,
n=1

where (In)n> 1 are the components of T\F. Denote by e1e' the midpoint of In, where
Bn E [0, 27r]. A simple compactness argument shows that there exists 9 E [0, 27r]
such that, for all 5 > 0,

w(t) dt = oo.
a+a)

J

We can therefore extract a subsequence (In3) such that Bn j -+ 9 and

rII,,, l/2

o

w(t) dt = oo.

The endpoints of the Inj then form a convergent sequence in F whose closure is
not an w-Carleson set, contradicting what we proved earlier. We conclude that F
is indeed an w-Carleson set.

3. Proof of Theorem 1

If {eiOn : n > 1} is a Carleson set then, by [9, Theorem 1.21, for every Blaschke
sequence (rn)n>1 in [0, 1), there exists f EAO°, f -0 0, which vanishes on (rne'°')n>1
Here AO° :_ {f E C°°(U) : f is holomorphic on D}. In particular, (rne'0°)n>1 is a
zero sequence for V.

For the converse, we use a technique inspired by an argument in [5]. Suppose
that (rne'On)n>1 is a zero sequence for V for every Blaschke sequence (rn)n>1 C
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[0,1). Let (eie"s ),>1 be a convergent subsequence of (e'e")n>i. We shall show

that {e'B"s j > 1} is a Carleson set. As the union of two Carleson sets is again a
Carleson set, it suffices to consider the case when Bn, < Bn, < ... and 0,, - 00,
as j - 00. Let d3 9ne+1 - 9n,, j > 1. Consider the Blaschke sequence

z. 3 := (1- d.,)e1e"s, (j > 1).

By hypothesis, this is a zero sequence for D, and as such it therefore satisfies
j2lr log

(,=,
1- I Z12)

dO < oo,
le zj

(see for example [5, p. 313, equation (2)]). On the other hand, for 9 E (8,l,,, Bnk+1),
we have l e'B - zk l < 26k which gives

1-Izkl2 > 1

lee - zkl2 - 4bk,

and consequently

Io2,r

o° 1 - Iz I2 Ig"k+l 1 °° 1

log /E leie - z 12
1 dB >

9"
log

4bk
dB = bk log

46k=1 1 k=1 k k=1

We conclude that E. bJ logbk > -oo. Thus {eie"k : k > 1} is indeed a Carleson
set. Now apply Theorem 2 to obtain the desired result.

4. Blaschke sets

Let X be a space of holomorphic functions on D and let A be a subset of D.
We say that A is a Blaschke set for X if every Blaschke sequence in A (perhaps
with repetitions) is a zero sequence for X. Blaschke sets for A°° were characterized
by Taylor and Williams [11], and for D by Bogdan [2]. The following theorem
summarizes their results and takes them a little further.

Theorem 4. Let A be a subset of D. The following statements are equivalent.
(a) A is a Blaschke set for D.
(b) A is a Blaschke set for A°°.
(c) Every convergent Blaschke sequence in A is a zero sequence for D.
(d) Every convergent Blaschke sequence in A is a zero sequence for A°°.
(e) For every Blaschke sequence (rne'B")n>1 in A, {e'0" : n > 1) is a Car-

leson set.
(f) The Euclidean distance dist((, A) satisfies

IT
log dist((, A) Id(I > -oo.

PROOF. The equivalence of (a), (b), (e) and (f) was already known. Indeed,
a) (f) is Bogdan's theorem [2, Theorem 1], and (b) . (f) is due to Taylor

and Williams [11, Theorem 1]. Also (b) b (e) follows from a result of Nelson
19, Theorem 1.2].

The new element is the equivalence of these conditions with (c) and (d). It is
obvious that (b) (d) and that (d) (c), so it suffices to prove that (c) . (e).
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Assume that (c) holds. Let (rne'B") be a Blaschke sequence in A, and let (eie'))
be a convergent subsequence of (e'B"). Set B :_ j > 1}. Then every
Blaschke sequence in B is a convergent Blaschke sequence in A, so by hypothesis (c)
it is a zero sequence for V. In other words B is a Blaschke set for V. By the equiva-
lence of (a) and (e), but applied to B in place of A, it follows that t e'B"t : j > I} is
a Carleson set. By virtue of Theorem 2, we deduce that {ei°" : n > 1} is Carleson
set. Thus (e) holds, and the proof is complete. i3

Remark. Theorem 2 can be deduced, in turn, from Theorem 4. Let E be a
subset of T such that the closure of every convergent sequence in E is a Carleson
set. Define

A := {rein : r E [0, 1), e'0 E E}.

Let (rne'B") n> 1 be a convergent Blaschke sequence in A. Then (e'°') is a convergent
sequence in E, so {ei0r : n > 1} is a Carleson set. By [9, Theorem 1.21, the sequence
(rne'8") is a zero sequence for A°°. To summarize, we have shown that A satisfies
condition (d) in Theorem 4. Therefore A also satisfies condition e). From this it
follows easily that E is a Carleson set.
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Questions on Volterra Operators

Jaroslav Zemanek

Consider the classical Volterra operator

(Vf)(t)=ff(s)ds
t0

on the Lebesgue spaces Lp(0,1), 1 < p < oo, and its complex analogue

(W f) (z) = f f (A) d)
0

on the Hardy spaces Hp on the unit disc, 1 <_ p < oc.
The important Allan-Pedersen relation

S-1(I -V)S = (I +V)-1,
where Sf)(t) = et f (t), f E Lp(0,1), 1 < p < oc was noticed in [1] and extended
by an elegant induction to

S-1(I - mV)S = (I - (m -1)V)(I +V)-1
in [10], for m = 1, 2,.... Analogously, we have the corresponding complex formulas.
In fact, the formula

S-1(I - zV)S = (I - (z - 1)V)(I +V)-1

is true for any complex number z. Indeed, from the Allan- Pedersen relation we
have

and then

S-1VS = I - (I +V)-1 = V(I +V)-1,

S-1(I - zV)S = I - zV (I + V)-1 = (I - (z -1)V) (I + V)-1.

Since (I + V)-'112 = 1 on L2 (0, 1) by [5, Problem 1501, it follows that every
operator of the form I - tV, with t > 0, is power-bounded on L'(0, 1). This in turn
implies, as observed in [10] by using [3, Lemma 2.1] and [9, Theorem 4.5.3], that

1 ] (I - V)n - (I - V)n+l112 = Q(n-112) as n --1 Co.
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The exact order of the norms of powers (I - V)n on LP(0,1) and of their
consecutive differences was obtained in [8], connecting the power boundedness on
L2(0,1) with the result II(I - V)nlll = 0(n1/4) on L'(0, 1) obtained in [6].

In particular, the operator I - V is power-bounded on LP(0,1), 1 <_ p < co, if
and only if p = 2. Similarly, the order (1) holds on L2 (0,1) only.

More generally, the following characterization has recently been obtained by
Yu. Lyubich [7]. Let O(z) be an analytic function on a disc around zero such that
q(0) = 1, O(z) # 1. Then O(V) is power-bounded on LP(0,1) if and only if 0'(0) < 0
andp=2.

If p # 2, a sequence of functions was found in [8] on which the powers of
the operator I - V increase correspondingly. However, by the Banach-Steinhaus
theorem, plenty of single functions should exist in LP(0,1), p # 2, on which the
powers of I - V are not bounded.

Question 1. Find a function f in LP(0,1), p 2, such that

sup II (I - V )n.f llP = oo.
n=1,2,...

We were not able to do that! Only indirectly, J. Sanchez-Alvarez showed that
on the function

f (x) = xJ9-1

with (p - 1)/p < ,Q < 1 and 1 < p < 2 we have

limsupn2 [[[(I - V)n - (I - V)n+l] f P = 00,
n-+oo

by considering the subsequence n = 4rn2. So (1) does not hold, hence the operator
I - V cannot be power-bounded (the same reasoning as above that led to (1)). If
p = 2, then such a Q does not exist, thus no contradiction.

The complex operator I - W is not power-bounded on H2. It was observed by
V. I. Vasyunin and S. Torba that the norms of the polynomials (I- W)n1 (i.e., the
Euclidean norms of their coefficients) increase very fast.

Question 2. Is it possible to characterize the space H2 among the spaces HP,
1 < p < co, in terms of the growth of the operator norms of the powers of I - W?

The numerical range of the operator V on the Hilbert space L2(0,1) is described
in [5, Problem 166]. Since the operator I + V preserves positivity of functions, the
numerical ranges of all the powers are symmetric with respect to the real axis.
Moreover, they are not bounded (since the operator I + V is not power-bounded,
see [12]) and not contained in the right half-plane Rez > 0 (since the operator V is
not self-adjoint, see [4] and some references therein).

Question 3. What is the union of the numerical ranges of the powers of the
operator I + V on L2(0,1)? Is it all the complex plane? What about the operators
I ± W on H2? Or, even I - V on L2(0,1)?

The numerical ranges of (I + V)n on L2(0, 1) were approximately determined
on computer by I. Domanov, for n = 1,2,.. . , 7. It turns out that these seven sets
are increasing, for n = 2 catching 1 as an interior point, and for n = 5 already
reaching the negative half-plane Rez < 0.
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Question 4. Fix a half-line 1 starting at the spectral point 1 of the operator
I + V on L2 (0, 1), and denote by In the length of the intersection of I with the
numerical range of (I + V)1. What is the behaviour of In with respect to n? Does
the limit do/n exist? Does it depend on the direction of 1?

It is interesting to observe, as pointed out by M. Lin, that the power bounded-
ness of operators is very unstable even on segments: the operator

(1-a)(I-V)+a(I+V2)=aV2-(1-a)V+I
on L2(0,1) is power-bounded for 0 < a < 1 by [11, Theorem 5], but not for a = 1
by [10, Theorem 3].

Question 5. Does there exist a quasi-nilpotent operator Q such that the op-
erators I - tQ are power-bounded for 0 < t < 1, but not for t = 1?

Let

(Mf)(t)=tf(t)
be the multiplication operator on L2(0,1). It was shown in [2, Example 3.3] that
the Volterra operator V belongs to the radical of the Banach algebra generated
by M and V. Consequently, all the products in M and V, involving at least one
factor V, as well as their linear combinations, are quasi-nilpotent operators (which
does not seem to be obvious from the spectral radius formula!). Hence all these
candidates can be tested in place of Q above.

Moreover, a number of variants of Question 5 can be considered for various
versions of the well-known Kreiss resolvent condition (studied, e.g., in [8]). The
answer is particularly elegant for the Ritt condition [10, Proposition 2].

I wish to thank the referee for his interesting comments.
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Nonhomogeneous Div-Curl Decompositions for Local Hardy
Spaces on a Domain

Der-Chen Chang, Galia Dafni, and Hong Yue

ABSTRACT. Let f2 C Rn be a Lipschitz domain. We prove div-curl type
lemmas for the local spaces of functions of bounded mean oscillation on f2,
bmo,.((2) and bmos(f2), resulting in decompositions for the corresponding 1o-
cal Hardy spaces hi (f2) and h,l. (f2) into nonhomogeneous div-curl quantities.

1. Div-curl lemmas for Hardy spaces and BMO on 1(S"

This article is an outgrowth, among many others, of the results of Coifman,
Lions, Meyer and Semmes ([7]) which connected the div-curl lemma, part of the
theory of compensated compactness developed by Tartar and Murat, to the theory
of real Hardy spaces in 1R (see [10]). In particular, denote by H1 (R') the space of
distributions (in fact L1 functions) f on 1R'd satisfying

1 M,(f) E L1(Rn)

f r some fixed choice of Schwartz function 0 with f 0 = 1, with the maximal
function M defined by

M4(f)(x) = sup If* 0t(x)I, 0(t
-1.).

o<t<ao

One version of the results in [7] states that for exponents p, q with 1 < p < oo,
1 p+ 1/q = 1, and vector fields V in LP (R", R'), W in LQ(1RY , RT) with

div V = 0, curl W = 0
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in the sense of distributions, the scalar (dot) product f = V W belongs to H1(Rn
Moreover, one can bound the H1 norm (defined, say, as the Ll norm of MO(f ) by

IIVIIL11IIu'IIL9-
While a local version of this result, in terms of HI, is given in [71, in order

to obtain norm estimates we use instead the local Hardy space h' R" . This was
defined by Goldberg (see [11]) by replacing the maximal function in 1 by its
"local' version

(2) mm(f)(x) = sup If * 4t(x)
O<t<l

Again the norm can be given by II m. (f) II L1(a^) and different choices of 0 give
equivalent norms. In addition, we can replace the number 1 in 2 by any finite
constant without changing the space.

For this space the following nonhomogeneous versions of the div-curl lemma
can be shown (these are special cases of Theorems 3 and 4 in [8] :

Theorem 1 ([8]). Suppose v and w are vector fields on Rn s tzsfytng

VELr(111")n, WELq(Rn)n, 1<p<oo, 1+1=1.
p q

(a) Assume

(3)

(4)

(5)

(6)

div V= f E L' (111"), curl W= 0

y space

in the sense of distributions, then V W belongs to th I cal Hardy space
hl (Rn) with

in the sense of distributions. Then V %V b l ngs t th local H
h' (Rn) with

II'V i1'Ilhl(R^) C(II'VIILP(R^) + If L It WV L R -

(b) If Mn" denotes the space of n-by-n matrices over R a d

div V = 0, curl 4'V = B E Lq (R-, M xn)

-(R^) +E B,3 L R ,.III CII'VIIL-(R^) [II V IIL
'.1

Before continuing further, let us make clear what we mean by the divergence
and curl of a vector field in the sense of distributions. Let l be an open subset
of Rn, and suppose v = (v1, . . . , v,) with v, locally integrable on 5l. For a locally
integrable function f on 1, one says that div v = f in the sense of distributions on
ft if

(7) in
v '

for all p E Co (cl) (i.e., smooth functions with compact support in fl).
Similarly, if 0 = (wl,... , w,) with w, locally integrable on l , and B is an

n x n matrix of locally integrable functions B,j on SZ, we say curl w' = B in the
sense of distributions on 52 if

B1 co
(8) in w,2x -w,ax = - In
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for all i, j E {1, ... , n} and all p e Co (S2). If the components of V or w are suffi-
ciently smooth, these definitions are equivalent to the classical notions of divergence
and curl via integration by parts.

Recall that C. Fefferman [9] identified the dual of the real Hardy space HI with
the space BMO of functions of bounded mean oscillation, introduced by John and
Nirenberg [13]. In the local case, Goldberg [11] showed that the dual of hl(1R' )
can be identified with the space bmo(Rn), the Banach space of locally integrable
functions f which satisfy

(9) IIfIIbmo := SUP -1 fil + suP -
IIf

I <oofii
1r1<1III 1'r1>1 III I

Here I can be used to denote either balls or cubes with sides parallel to the axes, III
denotes Lebesgue measure (volume) and fi is the mean off over I, i.e., (1/III) fr f.
As in the case of h', the upper-bound 1 on the size of the cubes in the definition can
be replaced by any other finite nonzero constant, resulting in an equivalent norm.

In [5], the authors prove (in Theorem 2.2) a kind of dual version to the div-curl
lemmas in Theorem 1, which is a local analogue of a result proved in [7] for BMO:
for G E bmo(R' ),

10 IIGIIbmo ^ SuP J GV - W,
T7,r a°

where the supremum is taken over all vector fields V, W as above, satisfying (3),
with V LP, f L and II W II LQ all bounded by 1. Here, and below, one must
obviously consider only real-valued functions g in bmo.

Moreover, the same equation (10) holds if the vector fields, instead of (3),
satisfy 5 with B,3I]LQ < 1 for all i, j E as well as IIVIILP, IIWIILQ < 1.

As a consequence of these results, one is able to show (see [5, Theorem 3.1])
a decomposition of functions in hI(Rn) into nonhomogeneous div-curl quantities
V W of the type found in Theorem 1, part (a) or part (b).

The goal of this paper is to prove analogues of (10) for functions in local bmo
spaces on a domain ft, and obtain decomposition results for the local Hardy spaces.
This was done in the case of BMO and with homogeneous, L2 div-curl quantities in
3], and independently by Lou [16]. In [1] homogeneous div-curl results on domains
were stated under the assumption that one of the vector fields is a gradient, and
extended to Hardy-Sobolev spaces. Related work may be found in [12,17].

In the next section we introduce some definitions of Hardy spaces and BMO
on domains, as well as explain the boundary conditions for equations (7) and (8).
The statements and proofs of our results are contained in Section 3.

2. Preliminary definitions for a domain 11

For the moment we will just assume ci is an open subset of R1, but often we
will restrict ourselves to a Lipschitz domain, i.e., one whose boundary is made up,
piecewise, of Lipschitz graphs.

Miyachi [19] defined Hardy spaces on ft by letting 5(x) = dist(x, O l), replacing
the maximal function M in (1) by

M0,n(f)(x) = M0,d(s)(f)(x) = 0<SUP2)If * 0t(x)I'



156 D: C. CHANG ET AL.

for f E L1 ,, (Sl), and requiring MO,n(f) E Ll (12). The space of such functions was
later denoted by HT (12) in [6], since when the boundary is sufficiently nice (say
Lipschitz), HT (12) can be identified with the quotient space of restrictions to 12 of
functions in H1(R') (see [6,19]). Moreover,

11f 11H, (n) := IIMO,sl(f)IIL=(n) inf{IIF IH1(R.) : F n = f}.
The space hl.(12), corresponding to restrictions to 12 of functions in hl It" ,

can be defined by replacing J(x) = dist(x, 812) in Miyachi's definition by 6 x) _
min(6, dist(x, 812)), for some fixed finite 6 > 0. Since different choices of 6 give
equivalent norms, when 12 is bounded one can choose 6 > diam 12), so hl. 12 is the
same as HT (12) (with norm equivalence involving constants depending on 12 .

For 12 a Lipschitz domain, the dual of hl(Q) (see [19] for the case of H' and
BMO, and [2]) can be identified with the subspace

bmo,(12) = {g E bmo(R") : supp(g) c S2}.

Analogously, one can consider the subspace

hl (12) = {g E hl (R) : supp(9) C 12}.

This was originally done in [15] in the case of H1 functions supported on a closed
subset with certain geometric properties, and later in [6] for a Lipschitz d main
and in [4] for a domain with smooth boundary, in connection with boundary value
problems. For a bounded domain 12, HZ (12) and hl (f2) do not coincide since func-
tions in Hz must satisfy a vanishing moment condition over the whole domain 12,
while those in hl

Z
do not.

The dual of hi(12) can be identified with bmor(12 , defined by requiring the
supremum in (9) to be taken only over cubes I contained in 12. In fact, one can
actually require the cubes to satisfy 21 C 12. This space was originally studied,
in the case of BMO, by Jones [14], who showed that when the boundary of 12 is
sufficiently nice, BMOT (12) is the same as the quotient space of restrictions to 12 of
functions in BMO(IR"). This holds in particular when 12 is a Lipschitz domain, and
is also true in the case of bmor, with

II9IIbmor(n) mf{IIGIIbmo(Rf) : G n = 9}.

Note that when 12 is a bounded domain, every element of BMOr(12) is in bmo,.(12),
but the bmor norm depends also on the norm of the function in Ll (12).

Since elements of h' (Q) are controlled in norm up to the boundary, when
discussing div-curl quantities in this space one needs to consider the "boundary
values" of the vector fields v and w. As these vector fields are only defined in LP (Q)
and do not have traces on the boundary, the appropriate boundary conditions are
expressed, as in the case of Dirichlet and Neumann boundary value problems, by
specifying the class of test functions. In particular, for the equations

div v = f and curl w = B,

we now require (7) and (8) to hold in the case when the test functions do not have
compact support in Q. This is equivalent to saying that the vector fields

(11) c= v inIl
6 in R'\12
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and

(12)
W__ u7 inn

inR"\fZ

satisfy div V = f and curl W = B in the sense of distributions on R", with f and
B vanishing outside of f2.

When the boundary OIl of f2 is sufficiently smooth, let ii = (r11, ... , .%) denote
the outward unit normal vector. If the vector fields are sufficiently smooth (so as
to have a trace on the Oil), we can integrate by parts in (7) and (8). If w does not
have compact support in f2, the boundary values of v" must satisfy ii v = 0, and in
the case of a bounded domain, this also entails fo f = 0, while for u7 it must hold
that on 8i

Wf 77i = Wi 77.7 ,

meaning that w is colinear with n.
We will denote these conditions as follows. Let ft be a Lipschitz domain and

suppose f and the components of the vector fields v" and w" are locally integrable
on fl. As in the statement of the Neumann problem on Il, write

div v" = f in fZ,

13 fn f = 0 if fZ is bounded,

on On

to indicate that (7) holds for all p E Co (R"), and

14
fcurl w" = B in ft,
1iixiu=0 onOi

to indicate that (8) holds for all i, j E {1, ... , n} and all W E Co (R").

3. Div-curl lemmas for local Hardy spaces and BMO on a domain

In order to prove an analogue of (10) for bmoz (fl), one needs the following
versions of the nonhomogeneous div-curl lemma for h,I.(1). The first is a special
case of Theorem 7 in [8]:

Theorem 2 ([8]). Suppose v and u7 are vector fields on an open set ft C IIt",
satisfying

vELP(Sl,V), wEL9(I,IIt"), 1<p<00, 1+1=1,
p q

and

div i7 = f E LP (il), curl u7 = 0

in the sense of distributions on Q. Then V. t9 belongs to the local Hardy space h' (Q)
oath

(15) III C(IIvIILP(o) + IIfIILP(n))IIWIILa(It)

The second is a domain version of Theorem 4 in [8], whose proof we shall adapt
below:
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Theorem 3. Suppose it and O are vector fields on an open set iZ C R", satis-
fying

1fELP(f,lR ), w"ELQ(Sl,R"), 1<p<00, 1+1= 1,

p q

and

div fi = 0, curl w" = B E LQ(Q; M"x")

in the sense of distributions on Q. Then iY zi belongs to the local Hardy space hT Q)
with

(16) III wllhr(a <_ LQ O))-
i,

PROOF. Consider a point x E Sl and a cube Q', centered at x and of sidelength
l > 0, depending on x. We choose I = min(1,dist(x,aQ))//, which guarantees
Qi lies inside Q. Without loss of generality assume Q7 = [0, l}". Writing v =
(v1,. .. , v,,), and fixing i, we solve - A ui = vi with mixed boundary conditions: on
the two faces xi = 0 and xi = l we impose Neumann boundary values

aui
= 0,

axi

and on the other faces (corresponding to xj = 0 and x, = 1, i) Dirichlet
boundary values ui = 0. This can be done by expanding in multiple Fourier series
(with even coefficients in xi and odd coefficients in x,, j i). By the Marcinldewicz
multiplier theorem (see [18, Theorem 4]) the second derivatives of the solution u,
will be bounded in L° (Qi) by II vi II La (Q; 1, for every a < p, = 1, ... , n. Note that
by the homogeneity of the multipliers, the constants will be independent of 1. Since
we have taken 1 < 1, we also get that Ilu',llwa,,(Q. 1 < C v,l LP(Q= with a constant
independent of 1.

Set U = (ul, ... , u") and consider the function div U E W 1,P Qi . This func-
tion satisfies

A(div U) = - div e' = 0

in the sense of distributions on Q1, since Qi C &1, and moreover

divU=1a, =0
on the boundary, by the choice of boundary conditions above. By the uniqueness
of the solution of the Dirichlet problem in Wo'P(Qi ), we must have div U = 0 on
Q'. Let A be the matrix curl U, i.e.,

aui auj
Aij - ax, -axi

These are functions in W 1,P (Qf) with first derivatives bounded in the L° (Q')-norm
by IlviIIL-(Q; ), for every a < p.

Now writing Aj for the jth column of the matrix A, we have, in the sense of
distributions on Q'I,

(17) div A, =
n a ui - a2sj div U -Auj =v,,(axiax, -ax? - axj
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f o r each j = 1, ... , n. Taking the dot product with w and recalling that we identify
curl w", in the sense of distributions on fi, with a matrix B whose components are
in L9 (Q), we have

E(divAj)wj=Ediv(Ajw,)-1: At'8wj

j-1 j=1 id
axi

n
_ div(A, wj) +EAijB,j,

3=1 i<j

again in the sense of distributions on Q11.
Take 0 E C°° with support in B (0,1/(2y')) and f ¢ = 1, and define, for

0 < t < min(1,dist(x,B9l)), 0t by qt(y) = t-ncb(t-1(x - y)). Since l =
min (1, dist(x, 89l)) Vfn- we have

supp(g ) C B(x, t/2/) C Qi C SZ.

Denote B(x, t 2v/n) by Bt B.
We integrate 6- w against Of, noting that equation (17) holds even if we change

AJ by adding a vector field which is constant on Q1. In particular we modify each
A,j by subtracting its average (Aij) s-. over Bt . Integration by parts yields:

e t v ,;,) = - J t-(n+1)- (t-1(x - y)) (A2j(y) - (Aij)s`t)wj(y) dylE eyi
e,j

+E J t-no(t-1(x - y)) (Aij - (Aij)s=)Bij
i<j

t

Take a,f with 1 < a < p, 1 < 0 < q and 1/a + 1/0 = 1 + 1/n. The Sobolev-
Poincare inequality in Y, together with the fact that t < 1, gives (see the proof of
Lemma 11.1 in [7] ):

x(v"w){x)l IvAijl°

J-IBijl0)1/a

i j B

< C [M(Iti)(x)hi'8 +>M(IBijl0)(x)1/al.
ij

Here the Hardy Littlewood maximal function on R", denoted by M, is applied
to the functions I1°`, Iwl' and IBijl'3 by extending them by zero outside Q. The
constant depends on the choice of 0 but not on t or x.

Recalling that the maximal function is bounded on L''(Rn), r > 1, we conclude
that:
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sup I0t * (v w)(x)I dx
in 0<t<dist(x,8n)

<
co(Jn(M(Ivla)(x))P/a ax

1/p

{(J(M(ts)(x))'dx
1/4

+ B,8)())/srs R

< cmIIvIILP(n) [I1wIILq(n)(n)+ Ell B,, 11 D' (0)]
-

M10

This shows i7 w E h,1. (SZ), and (16) holds.

a

0

Lemma 4. Suppose U and w are vector fields on a Lipschitz doma n fl C R",
satisfying the hypotheses of either Theorem 2 or Theorem 3, but with the cond t ons
on the divergence and the curl satisfied in the stronger sense of 13 and 14 . Then
v z7 E hx(SZ) with norm bounded as in (15) or (16).

PROOF. Given such vector fields v and w on 92, define the zero extensi ns V
and W as in (11) and (12). The LP and L9 norms of V and W are the same as
those of ,6 and w on Il. Moreover, conditions (13) and (14) guarantee that V and 1IV
satisfy (3) (respectively (5)) in the sense of distributions on R". Therefore, by using
Theorem 1, part (a) (respectively part (b)), we can conclude that V - 17V E h' (R"
with the appropriate bound on its norm. But V - W is equal to zero outside f2 and
is v w on n, hence this is a function in h' (0). The hz norm is the same as the h1
norm and the bounds can be given in terms of the LP and Lq norms of the relevant
quantities on 0.

Now we can proceed to state and prove the local bmo versions of the div-curl
lemma on a Lipschitz domain:

Theorem 5. Let 92 C R" be a Lipschitz domain.
(a) If g E bmoZ (il), then

(18) g v w,II9IIbmo, s sup fn
97,0

where the supremum is taken over all vector fields v E LP(52,R"), w E Lq(SZ,R"),
IIvIILP(n) <_ 1, IIwlIL9(n) < 1, satisfying (3) in the sense of distributions on n, with
Ilf IILP(n) < 1-

(b) If g E bmo2(Sl), then equation (18) holds with the supremum now taken
over all vector fields v E LP(c2,R"), w E Lq(&,R"), IIVI LP(n) <_ 1, 119IIL9(n) <
1, satisfying (5) in the sense of distributions on S2, with IIB,.,IIL9(S2) < 1 for all
i,j E 1,...,n.

(c) If g E bmo,.(f2) then

IIgllbmo " sup J
g 'U w,

e,+s n

the supremum being taken over all vector fields v and u7 as in part (a) or in part
(b), but satisfying the stronger conditions (13) and (14).



NONHOMOGENEOUS DIV-CURL DECOMPOSITIONS ON A DOMAIN 161

PROOF. Let g E bmox (Q) (real-valued) and take v, ti as in the hypotheses of
part (a) (respectively part (b)). By Theorem 2 (resp. Theorem 3), the dot product
V. w" belongs to h' (Q) with norm bounded by a constant. The duality of bmox(fl)
with h,1.(fl) then gives

L
Conversely, by the nature of bmoa (Sl), the extension G of g to Rn by setting it

zero outside fl is in BMO(R") with IIGIIbmo 1I9IIbmo, Hence, by (10), one has

II9IIbmo. Szt: sup J G1 4V=sup J
V,VV JR. V,W In

where the supremum is taken over all vector fields V E LP (][8", ][1"), f V LQ(R'1, R"),
V Lp < 1, IT' ILa < 1, satisfying (3) (resp. (5)) in the sense of distributions on

R". The restrictions v = V I A, w = f V satisfy the same conditions in fl, proving
the inequality < in (18).

If g E bmo,. (Sl) and V, ,O are as in part (c), by Lemma 4 v 7Z E hz (Sl) with
norm bounded by a constant, so the duality of bmor and hZ implies

jgil. w < wlIhl <_ CII9IIbmor.

This shows that

sup f g16 19 <CII9IIbmo,.

It remains to prove the other direction, i.e.,

II9II bmor : C'Sup f g v w.
$,w n

The left-hand side is given by

sup
iff I9(x) - 9QI dx + sup 1 f I9(x)I dx.

Qcn QI Q QcO IQI Q
Q <1 IQI>1

As explained in the proof of Theorem 2.1 in [3] (for the case of BMOr(fl) but
the same arguments apply to bmor (Sl)), it suffices to take the supremum over cubes
Q satisfying Q = 2Q C Cl (or with some constant Co replacing 2). In that case it
just remains to point out that in the proof of estimate (10) in [5] (see the proof of
Theorem 2.2., Case I), it was shown that for a ball B C R" with radius bounded
by 1,

\1/2

B
`IBI

I g(x)-9B12 dx l <Cnsup f
where the supremum is taken over all vector fields 6,0 E Co (B) with I I v I ILn < 1,
w L < 1 and div v = 0, curl w = 0. There we took b = 2B but the argument

immediately applies to B = COB for some Cn > 1. Note that if b C 11, such vector
fields will vanish on the boundary Oil and thus satisfy the boundary conditions (13)
and (14).
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Similarly, for a ball B C Rn with radius larger than 1, we showed in [5] (see
the proof of Theorem 2.2., Case I) that

1 \112

ClB
fBlg(x)12 dx 1

where this time the supremum can be taken over all vector fields v, w E Co B with
II v II Lp <_ 1, II w II LQ <_ 1 satisfying the relaxed div-curl conditions (3), or alternatively
the supremum can be taken over such vector fields satisfying 5 . Again such vector
fields will automatically satisfy (13) and (14)-the boundary conditions follow
from the vanishing on the boundary and the condition ff div v = 0, in the case
of bounded 1, follows from the divergence theorem since we are now dealing with
smooth functions. 0

Finally we arrive at the desired nonhomogeneous div-curl decompositions for
the local Hardy spaces on fl. These are corollaries of Theorem 5 and follow from the
duality between bmo5 and hr (respectively bmo,. and hl

Z
by using Lemmas III.1

and 111.2 in [7]:

Theorem 6. Let fl C lR be a Lipschitz domain and 1 < p < oo, 1 p+1 q = 1.
(a) For a function f in h,l.(1l), there exists a seque ce of scat rs {ak} th
llakI <oo, and sequences of vector fields {vk} in LP Q,18 {wk} m L9 Sl,It"

with IlvkllLp, llwklIL9 < 1 for all k, satisfying, for each k, cond t n 3 in the sense
of distributions on St, so that

00

f = I\kvk "Oh; .

k=1

(b) The same result holds as in part (a) but with vk and u%k satisfying 5
instead of (3), for each k.

(c) For a function f E hi(SZ), there exists a sequence of scalars {Ak} with
E' llakl < oo, and sequences of vector fields {vk} and {wk}, as in part (a or
part (b), but satisfying the div-curl conditions in the stronger sense of 13 for
each vk and (14) for each wk, so that

00

f = > \kwk -,OA;.
k-1

Remark. As pointed out in Section 2, when the domain n is bounded the
"local" Hardy space h,'.(Sl) coincides with H,1 (n) and similarly for BMO.(12) and
bmo5(Il). By taking the constants in the definitions and proofs sufficiently large
(depending on the size of 1), we do not need to deal with the case of "large" balls
or cubes, so everything reverts to the homogeneous case. As previously mentioned,
this case was dealt with in [3] and [16], but only for p = q = 2, so the current
results are a generalization of the older ones.
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On the Bohr Radius for
Simply Connected Plane Domains

Richard Fournier and Stephan Ruscheweyh

ABSTRACT. We give various estimates and discuss sharpness questions for a
generalized Bohr radius applicable to simply connected domains of the complex
plane,

1. Introduction and statement of the results
Let D = {z I ]zl < 1} be the open unit disc in the complex plane and H(DD) the

class of analytic maps on D. Let f E H(D) with f (z) = E' o akzk and f (DD) C llD.
Then,

00

Elaklrk < l if r C 3.
k=0

This result was first obtained by Harald Bohr [2] in 1914 with the constant 3
replaced by s and later improved by M. Riesz and others who established that in
this context the constants is best possible; different proofs were later published
while similar problems were considered for Hp spaces or more abstract spaces or
else in the context of several complex variables by a number of authors. We refer
to a paper [6] and a book [7] by Kresin and Maz'ya for a rather complete survey of
recent and less recent related results.

Our point of view is the following: we consider a simply connected domain V
with D C V and define the Bohr constant B = BD as

00 00

sup{r E (0,1) : Elaklrk < 1 for all f (z) := E akzk E B(D), z E DD}

k=0 k=0

while B(D) is the class of functions f E H(D) such that f (D) C DD. Clearly B® = 3
coincides with the classical Bohr radius and we wish to estimate BD for more general
domains D. Our main results are the following:

2000 Mathematics Subject Claaaification. Primary 30B10; Secondary 30A10.
Key words and phrases. Bohr radius, power series, plane simply connected domains.
This is the final form of the paper.

@2010 American Mathematical Society

166



166 R. FOURNIER AND ST. RUSCHEWEYH

Theorem 1. Let 0 < -y < 1 and D.y the disc {w: lw+-y/(1-ry)l < 1/(1--y)}.
Then BD, = pry := (1 + y)/(3 +'y) and )k olak pry = 1 holds for a function
f (z) = F_' o akzk in B(D1,) if and only if f - c with Ic =1.

Theorem 2. Let D be a simply connected domain with D Q D and let
00 l

) := A(D) :=
f $u ){ 1 lal l

: ao # f (z) _ akzk, z E D}
k=0k>1

Then 1/(1 + 2A) < BD and the equality E0 0lak (1/(1 + k = 1 holds for a
function f (z) = Ek 0 akzk in B(D) if and only if f = c unth c = 1.

In the case of a convex domain D, it is possible to estimate BD in terms of the
conformal radius:

Theorem 3. Let V be a convex domain with V D ID and F z) := Alz + o z
a conformal map of V onto IID with Al > 0. Then

Q := min C1,
4A l

< BD.
1

Our next result is a limiting case of Theorem 1, but should also be compared
to Theorem 3.

Corollary 4. Let P denote the half-plane {z I Re z < 1} and f z =
E°°_0 anzn for lzl < 1 where f E B(P). Then

00

(1) Elanlrn < 1 if 0 < r < a.
n=o

2. Proofs

The proof of Theorem I is based on the following result which may be of
independent interest:

Lemma 5. Let a E llD and f E B(D) with
00

f(z)=Eak(z-a)', Iz-a <1- a.
k=0

Then
00 2

(2)
Elaklrk < I if r < ro

8+ 1111
,

a
k=0

Furthermore, ro is the largest number with this property, and
00

Elaklro = 1
k=0

if and only if f = c with Icl = 1.

PROOF. We make use of the following estimate (see [9] for a proof; this estimate
is of course an extension of the Schwarz-Pick inequality and has shown to be useful
in a number of situations):

(3) lakl < (1 + lal)k-1
1 - laol2
1 2 k k > 1 ,( - la` ) ,
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and note that gaol < 1. We get
00

a
(1 -

la0 )r
El klrk

<-

laof + ((1
+ lal)(1 - lal - r))

and the last quantity is seen to be less or equal to 1 for all admissible ao if and
only if 2r/(1 + lal)(1- lal - r) < 1. This leads to (2).

Again using (3) it is easily established that
00

(4) Elaklrok = 1 (gaol = 1 and ak = 0, k > 1).
k-0

Further, the functions

b
00

fb(z) =
z -

:_ E ak(a, b) (z - a) k, b E i1D,
1 - bz k=o

belong to B(D) and one has
00

5) Elak(a, b)lrk < 1 for all b E IID
k=0

if and only if r < ro which implies that the constant ro is indeed optimal with
respect to the statement of the lemma.

PROOF OF THEOREM 1. For some 0 < -y < 1 let f E B(D.y) such that f (z) =
E'akzk, z E D. Then g(z) := f ((z - -y)/(1 - -y)) belongs to B(D) and if
z-ry < 1-'yl, we have

E a ry)k
(z - y)k.9(z) = f (1-7) -

k=O

The lemma now gives,

2

Elakl
7

P <1 ifp< 3+y'k=0

and 1-ryz)/(3+ y) < BD,, follows together with the statement of equality which is a
consequence of (4). The functions f E B(D.y) defined by f ((z-'y)/(1--y)) = fb(z),
b, z E D, may be used as in (5) to show that the constant (1 + 'y)/(3 + y) is best
possible with respect to Theorem 1, i.e. BD,, = (1 +,y)/(3 +,y).

PROOF OF COROLLARY 4. Under the hypothesis, f E B(D.y) for all -y in [0,1)
and the result follows from Theorem 1 by letting -y --* 1. The constant 1 is best
possible as can be seen from the Taylor expansion at the origin of the functions

ga(z) = 1 /(az/(z -
2)

Re(z) < 1, a E D.

We omit the details.
Due to the limiting process used in the above argument, the case of equality

in (1) is no more a simple consequence of (4) and a separate proof must be given.
We first apply inequality (3) to obtain

(6) lakl<11+ol,t k>1,
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for any 9 E B(I)..), g(z) = F-° oakZk, z E D.
This leads to

lakl <_ 1(1- Iaol2), k > 1
for any f E 13(P) - no<7<1 L3(D.y) such that f (z) = F akzk, z E D. If, in
particular, Ek olakl(2)k = 1 for f as above, we obtain

00 k _ z
1 < laol + 2(1- laol2) E(2) = Iao +

1 2
and gaol = 1, i.e., f is a constant function of modulus 1. 0

PROOF OF THEOREM 2. The proof of the main statement is rather straight-
forward: if f belongs to 13(D) with f (z) = F,' o akzk in ID, then for any r E 1

00
EIaklrk < laol + (1- ao 2)

ar_
k=0

so that Fk olaklrk < 1 when 2ar/(1-r) < 1, i.e., when r < 1 1+2 . This early
shows that BD > 1/(1 + 2A). As in the last step of the proof f Cor llary 4, the
equality Ekolakl(1/1 + 2A)k = 1 holds only for constant functions f modulus 1.

Remark. It does not seem entirely trivial to characterize domains V for which
BD = 1/(1+2A). It is not hard to see that this indeed is the case see 6 f r a hmt
in this direction) when D = D.y, 0 < ry < 1. Next we exhibit a class f d mains f r
which this is definitely not true. Consider a sufficiently regular simply connected
domain V ID such that OD fl 8D * 0, together with the ass ci ted conformal
map F of D onto D with F(0) = 0, F'(0) _: Al > 0. The inverse m p F-1: D -+ D
satisfies F-1(u) _ (1/Ai)u + o(u) and by the classical growth theorem,

(7) AlIF-1(u)l ? (1 +
lul

I)2'
u E D.

Our hypothesis on a D and 8ID implies that for some sequence of elements u., E ID
we have I uj l - 1 and I F-1(u,) l -+ 1. It then follows from (7) that Al > a

Let f (z) _ Ek= akzk, z E ID, for some f in 6(D) where D is to be determined
later. We have, thanks to estimates due to Avkhadiev andWirths [1, pp.60 751,

4"-I/2
Ianl <

n
+ 1 Ai (1 - IaoI2), n > 2.

This estimate is actually also valid for n = 1: For if w(u) f (F'1(u)), u E D,
then w E B(ID) and ao = w(0), a1 = w'(0)Az and

lazl Iw'(0)l Al < Az < fAz.
1 - Iaol2 1- Iw(0)12

Therefore
00 00

Elanlr" <- laol
+ (1- laol2) 4n Az rn < 1

n 0 n=1 n+ 1
if F_-, (4Azr)n/ n -+1 <_ 1. Let X be the unique root in (0, 1) of the equation

E Xn =1.
n+1
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We now produce domains V for which 4A1/(1 + 2A) < X: this will clearly imply
that for such domains 1/(1 + 2)) < BD.

Since Al = F'(0) = IF'(0)1/(1 - IF(0)12) < A, it shall be sufficient to identify
domains V D with 4A1/(1 + 2A1) < X, i.e., Al < 1/(4 - 2X). Since 4 <
1/(4 - 2X) < 2, it follows that any simply connected domain D containing the
plane P1,o (for which Al = a and close enough, in the sense of kernel convergence,
to the slit plane C \ [1, oo) (for which Al = 4) will serve as an example.

PROOF OF THEOREM 3. Let V be a convex domain, D D and F the confor-
mal map as above with F(0) = 0, F'(0) =: Al > 0.

If f E CI(D) and f (z) = E' o akzk, z E D, another estimate due to Avkhadiev
and Wirths [1, pp. 60-76] yields

(8) Iakl <- 2k-lAi(1 - laol2), k > 2,

and as in the proof of Theorem 2, this extends to k = 1.
First assume that Al 1; then by (8),

aklrk
< L.

00

Iaol +
1 -2ao12 E(2A1)krk

< laol + (1 - lao12) 1
A 2A

EI
1

k__0 k-1
and this last quantity is easily seen to be less or equal to 1 for all admissible ao.

When Al > 4 and r < 1/(4A1), we also obtain from (8)
00 00EIaklrk < laol + 1 2ao12

E(2Alr)k
k=0 k=1

M=gaol+1-2ao12 <<lao l+1 2ao12 (12)'

and the result follows. It should also be clear from our arguments that the equality
case F_ko aklfk = 1 can occur only when f is a constant function of modulus
one.

Remarks. (1) When Al > 4, it again does not seem easy to characterize
the convex domains D for which Q = 1/(4A1) = B. Indeed, 1/(4A1) < BD = s if
V is the unit disc D and 1/(4A1) = BD = 1/(1 + 2.1) = 2 if D is the half-plane P.
Further, we sometimes have 1/(4A1) < 1/(1 + 2)) (as in the case of the unit disc)
and 1/(4A1) > 1/(1 + 2a) (as in the case where D is a disc centered at the origin
with radius > 4).

(2) Theorem 3 does not necessarily hold for non-convex domains. Let D be the
slit plane C\(-oo, -1]; then F(z) is the inverse of 4k(z) where k(z) := z/(1- z)2
is the Koebe map and Al =

4
with F(z) = 4x - Iz2 + 32 z3 +..,. For 0 < a < 1

define f E B(D) by

f(x)=
F(z)+a.

1 + aF(z)
(1 - a2) (1 - a2)(a + 2)z2 + (1 - a2) (a2 + 4a + 10)x3 +

...=a- 4
z+

16 64

where z E D. Then, for a = .9, we have

a + 1- a2 +
(1 - 0 ) ( a + 2) + (1- a2) (a2 + 4a + 10) = 1.0247... > 1,

4 16 64
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which shows that BD < 1 = Q.

3. Conclusion

Given a domain V Q D, the determination of the function

(9)

00

M(r,D) := supEjanjrn, 0< r < 1,
n=0

(here the sup is taken over all functions f (z) = EO° o anzn, z E BD, in B 'D)) may
be seen as a generalized Bohr problem. Because the coefficients an of functions f
in B(D) are uniformly bounded, it should be clear that M(r) = 1 for r sufficiently
small and indeed M(r) = 1 for 0 < r < BD where of courses < BD.

Very little seems to be known about the function M(r,D) in general; a result of
Bombieri [3] (see also [8] for related matters) says that M(r, D) = (3- 8 1 -- r2 r
when s < r < 1/f (Bombieri studies in fact the inverse function of M r,D . It
also follows from the results of Bombieri that M (r, BD) < 1 / 1 - r2 if 0 < r < 1 and
a recent result due to Bombieri and Bourgain [4] says that M r, BD) < 1 1 - r2 if
1/ f < r < 1; in [4], a deeper result implies that 1/ 1 - r2 is in some sense the
sharp order of growth of M(r, BD) as r -3 1.

Think of 8(D) as a topological vector space endowed with the topology of
uniform convergence on compact subsets of V. It follows from a simple compacity
argument that the sup in (9) is indeed a maximum and there exists for each r E 0,1
a function fr(z) :_ E° 0 an(fr)zn such that M(r, BD) = F,°n°_o an fr rn. Bombieri
has proved in [3] that fr is a disc automorphism (i.e., a Blaschke product of order
1)when s<r<

This last result can be extended to general domains V in the following fashion;
let, given r E (0, 1), fr(z) = F,n__0 an(fr)zn with an(fr) = an Jr eio- where
On = On(r) is an angle in [0, 27r). We define a linear functional L over 8 D) by

00

L(f) = Ean(f)e len,r.n
n=0

00

if f(z)=>a.nzn, x <1.
n-0

The complex-valued functional L is continuous over B(D) and Re L is not constant
there. Further

00

Re L(f) =Re an(f )e-ienrn <_
E[an(f)jrn

n=0 n=0
00

Since

Elan(fr)Irn = L(fr) = Re L(fr)
n=0

f EB(D)b f =woF
where w E B(BD) and F is a conformal map of D onto BD, we may therefore think of
L as a continuous linear functional over B(D) whose real part is nonconstant there
and maximized by a function wr E B(D) with

fr(z) = wr(F(z)), z E D.

It is well-known [5, Chapter 41 that such a function wr must be a finite Blaschke
product. We may therefore state that any function f for which the sup is attained
in (9) is such that f o F-1 is a finite Blaschke product.
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Completeness of the System {f (a,az)} in La[S2]

Andre Boivin and Changzhong Zhu

ABSTRACT. Given an analytic function f defined on the Riemann surface of
the logarithm and represented by a generalized power series with complex
exponents {rk}, a sequence of complex numbers and an unbounded
domain n on the complex x plane, we study the completeness of the system
(f A.z)} in L' [n] (mean square approximation).

1. Introduction

Fbr an entire function f (z) and a sequence {An} of complex numbers, the
completeness in a domain S2 of the system {f (A,,z)} in LP-norms has been studied
by many authors under various conditions on f, {A,,}, p and Q. See, for example,
1, 9; 10; 12, Chapter 4; 14-16].

In particular, M. M. Dzhrbasian studied the completeness of {f in L2
when 1 is an unbounded domain which does not contain the origin and is located
utside an angle with vertex at the origin (see [6, Section 5]). In [3], we also

considered this problem. We gave some sufficient conditions under which the system
(f A z } is complete. Our conditions are different, though similar, to Dzhrbasian's.
These results are recalled in Section 2. Besides, in [3, Section 3], we also studied a
similar question where this time, the entire function f is replaced by one analytic
n the Riemann surface of the logarithm. This generalized a result obtained by

X. Shen in [22]. We used in [3] the classical Riitt order and Ritt type to characterize
the growth of the function. This seems not suitable in general, as we pointed out
m a later paper [5]. Hence, we introduced a modified Ritt order and modified
Ritt type in [5]. After recalling the definitions, we will use them in this paper.
Corresponding to this change, we modify related arguments used in (the second
part of [3]. Besides, comparing with [3], in this paper we will impose weaker
conditions on the sequence of exponents {Tk}. In particular, we do not assume that
the limit hmk_o0 k/ Irk I exists.

The paper is organized as follows. In the next two sections, we review some
of the definitions, notations, examples and results from [3-5]. In Sections 4 and 5,

2000 Mathemattc Subject Classificatton. 30E10, 30B60.
Key words and phrases. mean square approximation, completeness, analytic functions, un-

bounded domain.
Research supported by NSERC (Canada).
This is the final form of the paper.
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we present three new results: An estimate of the coefficients in the (generalized)
Dirichlet series of an entire function in terms of the modified Ritt order and type;
a uniqueness theorem for analytic functions defined on the Riemann surface of the
logarithm; and finally conditions for the completeness of the system {zrk } in L. [sl],
where {Tk} is a sequence of complex numbers. In Section 6, we give our main result
on the completeness of the system f (Anz)} in L2[fl . The proofs of a few lemmas
are gathered in the last section.

2. Dzhrbasian's theorem
Let Q be a domain in the complex z-plane. Denote by La [S2] the space of

functions g analytic on fZ which satisfy

I'llIg(z) 12 dx dy < oo (z = x + iy).

Endowed with the inner product

(g,h) _ JJg(z)d2dy,
and associated norm ligil = (g, g)1/2, L2 [fl] becomes a Hilbert space. A sequence
{hn} (hn E La[st], n = 1, 2, ...) is complete in L2 [Q] if for any g E La[1Z and any
e > 0, there is a finite linear combination h of elements of the sequence {hn}, such
that jig - h1l < E.

For a function f (z) and a sequence {An} of complex numbers we studied in [3]
the completeness of {f (Anz)} in L2 [Q].

For f (z), we assumed that it is an entire function with p wer series expansion
00

(2.1) f (z) _ > akzk, ak # 0 (k = 0,1,2, .. .

k=0

A simple example of such an entire function is f (z) = ea. Hence, our results
provided sufficient conditions for the completeness of the system {ea z} in La[st].

For {An}, we assumed it to be a sequence of complex numbers with

(2.2) An * 0.

For other conditions on {An}, see Theorem 2.1 below.
For Sl, we assumed it is an unbounded simply-connected domain satisfying the

following two conditions:

Condition 11(I). For r > 0, let v(r) denote the Lebesgue measure of the
intersection of the circle IzI = r and Sl; we assume that there exists ro > 0 such
that for r > r0,

a(r) S exp(-p(r)),
where p(r) has the form

(2.3) p(r) = a'r' ,
for two positive constants a' and s'.

Condition 11(II). The complement of st consists of m unbounded simply con-
nected domains G. (i = 1, 2, ... , m), each Gi contains an angle domain A, with
measure it/ai, a. > 1 (see Figure 1).
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Remark 1. Since a' and s are positive, it follows from condition 11(I) that
there exists a constant C, 0 < C < oo, such that

JJ j jdv < r 2irr dr + a(r) dr <C + e-rdr < +oo.
1 o o .

To study the completeness of {f (A z)} in La[S1], we needed a result on the
completeness of the sequence {1, z, z2, z3, ... } in L2 [cl], which is a special case of a
result of M. M. Dzhrbasian (see [6], or [19, Theorem 10.1]):

Let us define ,9 by

2.4 z9 = max{a1, ... , a,,,},

where the as are the constants appearing in condition fl(II).

Theorem (M. M. Dzhrbasian). Suppose that Sl is a domain satisfying con-
ditwns SI I) and 11(II) and that s' and d are defined by (2.3) and (2.4), respectively.
If

rOD 1J r1+1y-e, dr = +oo,

where f W means that the lower limit of the integral is a sufficiently large number,
then the system {1, z, z2, z3'...1 is complete in La[11].

Remark 2. The "sufficient large number" in the integral condition above can
be replaced by "strictly positive number." In fact, the integral condition can be
replaced by the simpler condition 0 < s'.

Example 1. This example is taken from [3]. Let IZ be the unbounded domain
containing the real axis and having the curves y = ±se-'2 (-oo < x < oo) as
its boundary. It is not hard to see that IZ satisfies conditions Q(I) and 11(II) with
Pr)=2r2(i.e.,s'=2anda'=2)andm=2,a1=a2=1. Sowehavev9=1,
and r°° dr _ r°°

J r1+9 - J dr = +oo.-81

Let us now recall some concepts from the theory of entire functions (see, for
example, [12, Chapters 1 and 4]). Let ¢ be an entire function. The quantity

log log Mf(r)
P = lim up log r
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is called the order of 0, and if 0 < p < oo, the quantity

log M,(r)
v = lim sup

r-+oo rP

is called the type of ¢, where

Mf(r) = max1,(z)I-
1=1-

For a sequence {An} of complex numbers, we denote by n(r the number
(counted according to multiplicities) of An with [a < r.

Now we state the first main result from [3].

Theorem 2.1. Assume that f, {an} and Q satisfy conditions 2.1 , 2.2 , 111
and 92(II) stated previously in this section. Let p and or be the order and type of
the entire function f (z), respectively, and assume that 0 < p < s' and 0 < or < 00,
where s' is the exponent appearing in (2.3). Suppose that either

n(r)
(2.5) lim sup > e

r 2 ) (pa)° 19,

r-+oo r8 po Slat

or

(2.5') liminf n(r) > ( 2 l P0 (p6)8 ,9,
r-roo rs p slat J

where (3=11(s'-p)>0.
If

f dr
+oo

where t9 is defined in (2.4), then the system { f (Anz)}, n = 1,2,3,. . is complete
in La[S1].

Example 2 (Taken from [31). Let SZ be the domain described in Example 1
and let f (z) = ez. Then f is an entire function with p = or = 1. It thus follows
that $ = 1/(s' - p) = 1 and s'p(3 = 2. Consequently (2.5) and (2.5 become

(2.5)* lim sup
n()

> 2e,
r-+oo r2

and

(2.5')* liminf
n(r)

> 2
r-+oo Ta

respectively. Hence by Theorem 2.1, if {An} satisfies (2) and (2.5)* or (2.5')* (for
example ar, = n/3ei), then the system is complete in L2[0].

3. The Riemann surface of the logarithm

For the remaining of this paper, we assume that f is an analytic function defined
on the Riemann surface of the logarithm and is represented by a generalized power
series

00

(3.1) f (z) dkz"-, z = re'B (r > 0,19[ < oo),
k 1
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or, which is the same, we assume that F(s) - f (e ") is an entire function repre-
sented by the (generalized) Dirichlet series

00

(3.2) F(s) = E dke s = u + iv
kk I

where {7k} is a sequence of complex numbers.
In the sections that follow, we will study the completeness of the system

{f(a,,z)} in LQ[1l]. X. Shen studied this problem for the case when {Tk} is a
sequence of real numbers (see [221). We consider the case when the Tk are complex.

We now make some assumptions on the exponential sequence {Tk}, the domain
S1 and the sequence {an}.

For the sequence of complex numbers {Tk}, we will assume some or all of the
following (for (II)(3.5)), see [21]; for (III)' and (III)", see [23]):

(I) 0<1711<IT2I<...<I7kI<...;
(II)

3.3) limsup
k

= D" (0 < D* < oc),

3.4)

and

ITkI

lim f
-

D

3.5 sup Urn sup
n, (r) _ n,.

T < +oo,
0«<1 r - r

where n.,.(r) denotes the number of the elements of the sequence {Tk} with
rk I < r;

(III ' there is a K > 0 such that for sufficiently large x and each t > 1, the
number of Tk with x < ITk I < x + t is less than Kt;

III " for any fixed 5 > 0, the inequality I ITI I - ITk I I > e-1 rk 15 holds for sufficiently
large k and any 1

IV) there is an a with 0 < a < 7r/2 such that

3.6 Iarg(Tk)I < a.

Assume that the domain SZ satisfies conditions 1(I) and Q(II) given in Section 2.
Moreover assume that one of the angle domains defined in 1(II), say A,, is given
by

3.7 Iarg(z) - i1 <
2-y

where the constant (al =)-y > 2. Note that this implies that SZ does not contain
the origin 0. Moreover, we assume that for any z E 1,

3.8 IzI > rn > 0, rQ < ro.

For {A,,} (n = 1, 2, ... ), assume that it is a sequence of complex numbers with

3.9) lanl >- ra > 0, Iarg(an)I < aA,
where 0 < as < oo. Since as can be greater than in, we think of an as being located
on the Riemann surface of the logarithm.

If the sequence of exponents {Tk}, (k = 1, 2, ...) consists only of strictly positive
thus real) terms tending to oo, that is, if F is represented by an ordinary Dirichlet
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FIGURE 2

series, the classical (R)-order p* and (R)-type a* of F (the Ritt order and Ritt type
of F) are defined respectively by (see [171, [221 or [11))

(3.10)

and when 0 < p* < oo,

(3.11)

where

p* = lim sup
log log M. (u)

u-+-oo -U

log M; (U)
a* = lim sup

u-+-oo a-up

MF(u) = sup JF(u + iv)[.
Jvk<oo

It is known (see, for example, [221 and [11, Chapter 21) that, in this case, if

lim sup
log k < 00,

k-+oo Tk

then

(3.12)

and when 0 < p* < oo and

then

p* = lim sup Tk
log Tk

k-+oo logll/dkl

lim
log k = 0,

k-+oo Tk

(3.13) a* = limsupI 1dkjP /'1tr
k-+oo \eP

We would like to derive similar relations when the entire function F is rep-
resented by a generalized Dirichlet series (3.2). But if {Tk} contains non-real ele-
ment(s), the definitions of order and type given above seem no longer suitable. For
example, if F(8) = e-sr with ITI > 0 and argT = Q# 0, we see that for any u < 0,

M; (U) = sup e Irl(u cos a-v siu a) = +00.
IvI<oo

For this reason, we modified in [51 the above definitions as follows:
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Define, for u < 0,

(3.14) MF(u) = sup IF(u+iv)j,
It,iS-u

then define the (mR)-order p and (mR)-type a of F (the modified Ritt order and
modified Ritt type of F) by

log log MF (u)
(3.15) p = lim sup

U-+-00 -u
and if0<p<oo,

(3.16) a = lim sup log MF (u)

a-uP

respectively. In other words, we consider the growth of IF(s)j only in the angle
domain jarg s - 7rj < 7r/4.

Example 3. For F(s) = e-" with Irj> 0 and argr = a, 0 < Ial < 7r/2, we
have for u < 0,

MF(u) = sup a Irl(ucoea-vsina) = e-Irlu(coea+join al)lvl<-u

so the (mR)-order of F is 0.

Example 4. Let r be a complex number with Iri > 0 and argr = a = 7r/4.
Consider the entire function

00(3.17) F(s) = ee-o' - 1 = 0 ni es(nr) (s = u + iv).
n=1

For the function G(s) = ee ',
, we have

IG(s)I = JG(u+iv)l = exp[e Irl(ucoBa-vsina) . cos(-jrj(usina+vcosa))]
1 1 1=exp exp - IrI(u-v)) cos( Irl(u+v)

So, for u < 0,

MM(u) = sup IG(u+iv)I _ JG(u - iu)l = exp(e N/2-uITI)
Ivl<-u

Thus the (mR)-order of G and the (mR)-type of G are p = f 1T I and a = 1
respectively. From the inequalities JG(s)l - 1 < JF(s)I < JG(s)I + 1, it immediately
follows that the (mR)-order and (mR)-type of F are also p = f -follows and a = 1.

4. An estimate of IdkI and a uniqueness theorem
)Now we give an estimate for the upper bound of Idkl, where dk (k = 1, 2....

are the coefficients of the generalized Dirichlet series (3.2) which represents an entire
function F(s),

First we need the following estimate. Its proof will be given in Section 7.

Lemma 4.1. Under the assumptions (I), (II)(3.3) and (3.4), (III)' and (III)",
denoting by n(t) the number of rt with 1TtI < t, if (a) there is a number p with
0 < p < 1, for sufficiently large n,
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or (b) for sufficiently large n, n(3Ir I) = n, then we have

(4.2) limss op
logIT

)I-1 <
H,

Irk I

where

i#k
i=1

and, for case (a),

(4.4) H = (L + 37r - 3 log(1- p)) D';

for case (b),

(4.5) H = (L + 37r)D' - 2K.

with L satisfying LD* > 5K.

Theorem 4.1. Assume that the exponential sequence {Tk} satisfies condi-
tions (I), (II)(3.3) and (3.4), (III)', (III)" and (IV) given in Section 3, and the
condition (a) or (b) given in Lemma 4.1, and that p and a are the (mR -order and
(mR)-type of F(s), respectively. If 0 < p < oo, then, given e > 0, for k sufficiently
large,

Idkl <
ep(a + e) Re(Tk) P

P(T,)
If p = 0, then, given e > 0, for k sufficiently large,

Re -r&eeIdk I < C1e(7rD'+H
Re(Tk)

where C1 is a constant

C1 = (7rD* + e) f
F

g(t)e-(,D'+E)t dt,
0

with

v

E

2

(4.6) g(r) =
11

1 + r
C ITkl'k=1

and H' = H/ cos a with H given by (4.4) or (4.5) corresponding to the condition
(a) or (b).

The proof is basically the same as that of Theorem 3 in [5] except for the
following two points: (1) We can use D* instead of D. Indeed in [5] it is assumed
that the limit limk. k/I7k1= D < oo exists, but here by [11, Lemma 2.2] and the
assumption (II) (3.3), we have

(4.7) lien sup
log g(r) < 7rD'.

r
Hence we can still use [5, Lemma 3.2]) if we use D* instead of D. (2) We need to
use the above Lemma 4.1 to estimate 1/ITk(-Tk)I rather than using [5, Lemma 3.1].

We now prove a uniqueness theorem which is a modification of Lemma 1 in
[22].

x2Tk(x) =11(I - 2
Ts
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Let be a sequence of complex numbers satisfying (3.9) given in Section 3,
ry' be a fixed number with iry'/2 > a,\, let be a function analytic in a domain

D = S Z - IzI ? rA, larg(z)l : it }

on the Riemann surface of the logarithm, and {An} (n = 1, 2,. . . ) be its zeroes,
i.e., -P(An) = 0. Denote by nA(r) the number of the elements of the sequence {an}
with IAnl < r. Define, for r > rA,

(4.8) M,(r,y') = sup I(D(reie)I.
IBI<ir7l/2

Let B = b cos b be the maximum of the function x cos x in (0, it/2).

Theorem 4.2. If for some p > 0, a < 00,

(4.9) lim sup
log Mp (r, y') <

Q,
r-+oo rP

and one of the following two conditions holds

b
4.10) lim in n\(r)

> aa.\ , if a,\ > P;

4.11) lim inf nA(r) > , if a,\ <
-

,
r-+oo rP it cos(aAp) 2p

then fi(x)m0 forzED.

PROOF. Consider the function G(z) = (D(z7 ), where z7' is the branch with
z' > 0 for z = x > 0. Now G(z) is an analytic function on the domain

IlDl = {z: Izl > r,'\/", jarg(z)l : 2

a n d G(An/1) = 0, i.e., bn = A/ (n = 1, 2, ...) are the zeroes of G(z). Clearly,
arg bn)l < 7r/2. We claim that G(z) = G(re'B) - 0 for z E DI, and hence, (D(z) - 0
for z E D. If G(z) * 0 for z e IlDI, then by Carleman formula (see, for example,
[131,for ra.Y <A<R,wehave

\
ry <

1R JlogjG(Re19)lcosodo4.12)
G1ni - IR2 I cos On

A< b I<R R /
/2

+
J

R (1 - ) logIG(iy)G(-iy)I dy +G(1),
27r

R2
A

where On = arg(An), and 0(1) is with respect to R -+ oo for fixed A. Since for
0 < ir/2, we have that

IG(Re`B)j = Ib(R-f'e'7 B){ sup B)I
Ie l <,r/2

= sup I(D(Rry'e'0)I
Iml<_'r7'/2

it follows that, by (4.9), given e > 0, and for R sufficiently large, we have

loglG(Re'0)I < (a+e)R7'P.
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The remaining of the proof is to estimate the upper bound of right hand side and
the lower bound of left hand side of the inequality (4.12). By the same arguments
as in the proof of Lemma 1 in [22, pp. 105 -1071, we then obtain

rPr) <
va if as >

b;
l r m n

n
P

and

liminf
n,\ (r) < a if as < a

,r-oo rP 7r cos(axp) 2p

a contradiction with (4.10) or (4.11). 0

5. Completeness of the system {z'% }

The next theorem is on the completeness of the system {z--} in La[st]. We stud-
ied this problem in [4], but there we assume a stronger condition for the sequence
of exponents {Tk}, namely, the limit

lim
k

= D (0 < D < oo)
k-oo ITkI

exists. Instead of this, in this paper we assume the weaker condition (II given in
Section 3.

Theorem 5.1. Assume conditions n(I), fl(II) for the d man fl, and (I , (II
and (IV) for the sequence {'rk} given in Section 3. Furthermore assume that

(5.1) D, - (2 +'r)(1 - cos a) - 1- 27/ > 0.

Denote

(5.2) h = max g(x,y),
(x,y) ED

where

g(x,y)= 2x [D. -(2+T+y)(1-coca)-2x-
(2 + T + y)2 sin2 a + x2

and

IID = { (x, y) : x > G, y > 0, D* - (2 +T +'Y)(1 - cos a) - 2x

Let

l

(5.3) 71 = Inax al, ... , a,,,, + eo

with co some positive number.
If

(5.4) r00 dr

then the system {z',-} (k = 1,2,...) is complete in La [st] .

('-th) >0 }.
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PROOF, We only need to prove that if f E L2 [f1] and

(5.5)
(f(z),zT) = 0, k

163

then f (z) _- 0. So we assume that (5.5) holds. By Lemma 2 in [21], condi-
tion (II)(3.5) implies that for any h with 0 < h < 2+r, we can find a number
q > 0 and a sequence {vk} of positive numbers with vk+1 - vk > q such that the
sequence {µk} = {Tk} U {vk} satisfies

k _1
lim

k-+00 jjAkj h'
By (IV), clearly

And we have (see [21])

larg(pk)I <- a < 2

(5.6) D,*, =lim sup
k = 1 - lim inf

k = 1 - D .
Vk h ITkI

Let

and

Denote

z2
T(z) 1j 1 - 2 ,r k=1 µk

a-18y
I(s)

27r J . T(ly)
dy, s = u+iv.

Q' _ { _ 1 + 7r Cl - 2'y/

Q. 11,

and for sufficiently small b > 0 and b1 > 0, denote

S6={s=u+iv:Ivl <7rLhcosa-81},

Qr= { s=u+iv: lvl
C1- 2ry/1}

and
\1

Q=(s=u+iv:Ivl <7rfDr-(2+T+b1)(1-cosa)-2b- (1-try I }.

LLet us take _ 1
h 2+T+b1

Then, by (5.1) and (5.6), we will have for 5 and b1 sufficiently small,

cosa-b- (i_-)] -(D+b)

I=11- )] - I ./Rcos2o
/ /
\ / J \\ 1

=D,-(2+T+b1)(1-cosa)-2b-(1-Zry)>0
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Thus, the strip Q is located inside the strip Q,ay, and the distance from the boundary
of Q to the boundary of Q,ay is greater than ir(D.*, + 5).

Let z = e{, f = b1 + i6 and ST be the image of SZ in the plane. By condition
S2(II), Sl' must be located inside Q'. If s E Q.y and 4 E S1', s - 4 must be inside
S6, so the function I(s - £) is analytic (see [4, Lemma 2.2]). If S E Qay and 4 E St',
I (s - C) must be uniformly bounded. Fix f (z) E La[S1], and define, for s E Q,, the
function

(5.7) G(s)= JJ f (e)Ie{I2I(s-)d1d2, =1+i.
As mentioned above, G(s) is analytic in Q.y (hence in Q,) and unif rmly b unded
in .Q'

By [4, Lemma 2.41, if for s E Q,ay the above G(s) - 0, then

(5.8) Jff(z)z'%dz=O, n=1,2,....
I

By Dzhrbasian's theorem, if (5.4) holds, the system {z } n = 1,2.... is
complete in L2 [S1]. Thus, by the Hahn-Banach theorem, from 5.8 it f Il ws th t
f (z) - 0 for z E Q. So, we only need to prove that G s = 0 for s E Q.y whenever
f satisfies (5.5). We will use p(r) to denote a're below.

We will now make use of the sequence {vk}. Let

z2) 00
Inl(z) = fl 1- 2 J nj

Zn'

Ik-1 Vk n-0 n.

and ry(z) be the Borel transform of 1(z), that is

7(x) - ,n+1
n=0

We know that l(z) is an entire function of exponential type 7rD', and -y z is analytic
outside the vertical line segment with centre at the origin and length 2;rD'. For
sufficiently small 8 > 0, define the convolution operator

L[y(s)] _ -1
E

7( s) . y(C)
21ri al

where the function y(s) is analytic in Q.
Since the series representing -y(C - s) is convergent uniformly on - s =

ir(D,`, + 8), we can interchange the order of the integration and the summation as
follows:

(5.9) L[y(s)] = 1 L `n n+l) . y(C) dC21ri .1 a(D'+a)l' o (C - s)

000o
in V

+I d !n y(n)
W.

21ri f1jC 81 *(D;,+a) (S - s) - O n.
Note that G(s) is analytic and uniformly bounded in Qy, the strip Q is located
inside the strip Q,ay and the distance from the boundary of Q to the boundary of
Q7 is greater than .7r(D,', + 8). So, for s E Q, we can define the function

ib(s) = L[G(s)].
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s E Q6, we haveorBy (5.7), f

r r
G(s) f }(e{)Ie1I2[I(3

n
CC

e µk(e f)

dS
CS) - E T'(µk) 1 d 2

1µk1<tn

µk(s-PA

+ Jrj

f(j)1e,12 E
e'(

9192
1µk1<tn

T

186

= G1,tn(8) + G2,tn(s),

where the sequence {tn} satisfies n > to > (1 - A)n while A is a sufficiently small
positive number, G1,tn (s) and G2,tn (s) denote the above first and second integra-
tion, respectively.

Note that, using condition (5.5), we have

t 1G2,tn(s) = L.: T'(µk) ff
f

(e{)Ief I2eµkE db, db2
a

µk8

Iµkl<tn '

zµk dx d e µk8
T''(µk)

[ff (z) y]
1µk1<tn

Lk<tn

We claim that for n E N, and for s E Q,

5.10) L[G2,tn(s)] = 0.

Since G2,tn(s) is a linear combination of a-'k', it is enough to show that L[e "ks] _
0. Indeed, by (5.9), we have for any k E N,

L[e-'ks]
ii

(-Vk)i] e
vks = l(-Vk) - evke = 0.

i=0

As in [4, pp. 13-14], we have that for Re(s) = u > 0, and s E Qay,

n (f r2nep(") dr)1/2
5.11) IG1,tn(S)I <_ n1EfNC IasI(l-a)resin(-rrµ)

where C is a constant independent of s and n, and p is a small positive number
satisfying

t(g) '-an
b

For s E Q, noting (5.10), we have

IL[G(s)U = IL[G,,tn(s)]I
< C1(b) max{IG1,t, E Q7, IRe(6) - Re(s)I < ir(D* + 5)),

where C1(5) is a constant only depending on 5. By (5.11), for s E Q, Re(s) ? 0
we have

l
"ke.

1Z' Vk) L
ffJ?z'k dxdye

'( J

(f'° r2ne-p(r) dr) 1/2
n (J0 r2ne-p(r) dr) 1/2

(s)[ < nEN Ie8/e7r(D*+d)I(1-A)nsin(rrµ) - nENC Ieel(1-A)nsin(aµ)

where C2 and C3 are constants independent of s and n.
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Let

and

where

00

Mn = J me-P(*) dr,
0

H(r) - su
r

nEN M2n

f; = cleal(1-a)sin(1! )

with c a constant independent of s and n. By [4, Lemma 2.61, we have for s E Q
and Re(s) > 0 sufficiently large,

(s)I < exp[-q p(cIe8[(1-")9in NA))j,g(r) -
where q > 0 is a constant.

Now we transform Q (with respect to s) into the upper half-plane Im w >- 0:
(i) by w1 = ee, Q is transformed into an angle domain arg(wl < irl with

(5.12) l=D.-(2+'r+bi)(1-cosa)-26- Cl- 2

(ii) by w2 = wi/(Zl) the above angle domain is then transformed into the right
half-plane Re(w2) > 0; (iii) by w = iw2i the right half-plane is transformed into
the upper half-plane Im(w) > 0. The remaining of the proof is the same as that
in [4, pp. 15 -17] except that the quantity I is now given by 5 12 rather than
l = D cos a - 6 - 1 + 1/(2y) given in [4, (23)], and correspondly the quantity h
is also given by the expression (5.2) rather than that expressed m [4, 18 ]. Thus,
by the assumption (5.4), we have (b(s) - 0 for s E Q. Hence G s - 0 for s E Q,
and G(s) - 0 for s E Q' since G(s) is analytic in Qry and Q C Q. The proof is
complete.

6. Completeness of the system If P--z)1
We now present the main result of this paper:

Theorem 6.1. Assume that:
(i) the functions f (z) and F(s) are given by (3.1) and (3.2), respectively, their

complex coefficients dk 0 0 (k = 1,2,...), and the sequence IT),) of complex expo-
nents satisfies conditions (I), (II), (III)', (III)", (IV) and the condatson (a) or (b)
given in Lemma 4.1;

(ii) the unbounded domain 1 satisfies conditions n(I) and S2(II);
(iii) the complex sequence {An} satisfies condition (3.9).

Moreover assume that
(iv) the entire function F(s) has (mR)-order p and (mR)-type or, with P <

e cos a; and either
P(3

(6.1) lim
r8P.e) > 1rB

(sa2

') if a" > sPf'
or

lPB
(6.2) lim i f rn aPr) > as p3 cos(a"sp#) so'

of a"
<

2sPQ,
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where B = b cos b is the maximum of the function x cos x in (0, 7r/2) as in Theo.
rem4.2, and 9=1/(s--p)>0,

If

and

(i_) >0,
ry

1°O dr
r1+ l e = +00,

where r) is given as in Theorem 5.1, then the system If (Anz)} is complete in L2.[f1j.

PROOF. Consider the function f (wz) with z E fl and w on the Riemann surface
of the logarithm. Clearly, for fixed z, f (wz) is an analytic function with respect to
w on the Riemann surface of log w. Now we restrict w to the domain

ID= z: z >r ar x < 7ry

2 1'
where ry' is a fixed number satisfying 7r-y'/2 > aA. It is clear that An E D for n =1,
2,....

Since F(s) = f (e-e) has (mR)-order p and (mR)-type v, for any A' > a, and
for u sufficiently large with u < 0, say u < -u1 with

u1>an+ 2
we have

log MF (u) < A'e-1v.

Hence, noting that z = reis = e'8 = e-(1}19), for jzi = r sufficiently large, say
r > r1i and

101 < an +
Try'

we have
If (z) I= If (re") l < eA r°

.

Thus, for iwzj > r1 and jarg(wz)l !f- an + 7r-y'/2,

If(wz)i < eA lwlPlxlP.

For fixed w E D, letting Q1 = SZ fl {z : Iwzi < r1} and S22 = S2 fl {z : iwz1 > r1}, we
have (noting that z = x + iy, and rS1 < ro by (3.8))

e2A'lwIPIxl° dxdy6.3) fJif(wz)i2dxdY < JJa e2A'1w1i P dxdy <j°°
J
rJr

sa

<j ro 27rre2A'I7IPr° dr + e2A'IwjPrP0,(r) dr
p p

00

C2 0 0 are constants independent of w. It is clear that, for w E I
since wl > rA, for Iwzi < r1, and z E Sl (so jzj > rn), we have rA < jwI < r1/rn
And since Iarg(wz)I < an + 7rry'/2, we must have

6.4) Jfif(wz)12±cdy cl,
1
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where cl is a constant independent of w. Thus, by (6.4) and (6.3), we have
00

JJlf(wz)12 dx dy c1 + + ea, dr.
o

Hence, for any u with 0 < µ < a', we have

ffn f If(WZ)I2 dx dy <_ c1 + c2e°alwl° + c4 sup exp[-µr° + 2A' w °rP],
r>O

where c4 is a constant independent of w. As in [3, p. 2821, we have

, 1 , A'
l 2(22d6 5 d calP

1
$ 8) pJf f(wz)I( . +c4expx y) <ci+c2e

L `\sµ J spo J1

where /3 = 1/(s-p). Hence for any fixed w E D, f (wz) E L2[ 11, and f E L2 [a
since an E IID for n = 1, 2, .... To prove the theorem we only need to prove th t f r
any h(z) E L2[SZ], if

(6.6) (f(az),h(z)) _ JJ dx dy = 0, n = 1,2,...,

then h(z) - 0 for z E fl. So we assume that (6.6) holds. Consider the functi n

wz)dx dy, E'.D,-t (w) = (f (wz), h(z)) = Jj f (

where h(z) satisfies (6.6). By (6.6), we see that -ib 0 n =1, 2,. . . We need
to prove that ob(w) - 0 for w E D. By (6.5), as in [3, p. 283 , we h ve, f r E IID,

[r PB

(6.7) <c4Lcs+ec71wl°+csexp f (L\
2

.

1

s Ap
"I'

ws pJ

where c5, c6, C7, cs are positive constants independent of w. Thus, by Appendix A
in [3], ob(w) is analytic in D. By (6.7), letting i -i a' and A -+ a, we have

lim sup
logMP(IWI 71) < 2

PO
. 1 (pa)

JwI-+oo IWISP9 (say) sPj
s

Thus, by Theorem 4.2 and either condition (6.1) or condition (6.2), we must have
-t(w) - 0 for w E D. Then we have for w E D,

00

(6.8) ib(w) = fJ>dk(vJz)Thi(z)dxdy =1,dk[JJz ( z)dxdyw" 0,

and, since dk 0 0 (k = 1, 2, ... ), we get

'JO
zTh h(z) dx dy = 0, k=1,2,....

Note that Theorem 4.1 is used in the justification for interchanging the integration
and summation in (6.8) (see Appendix B in [31), except that here we need to use
the condition p < s cos a. The remaining of the proof is the same as in [3]: by
Theorem 5.1, using the completeness of the system {z"- } (k = 1,2,...) in L2[111,
we get h(z) = 0. The proof is complete. 0
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7. Proof of Lemma 4.1

First we need a few more lemmas:

Lemma 7.1. Under conditions (I) and (II)(3.3), Tn(z) is an entire function
of exponential type irD'.

PROOF. By (II)(3.3), given e > 0, there exists an I > 0 such that for all i > I,
Ir,I > i/(D' + e). Thus, for any R > 0, if IzI < R, we have

z2
<

R2(D'+e)2
ITi I i2

Hence the infinite product in (4.3) converges uniformly in any bounded domain of
the complex plane, and Tn(z) is an entire function. For r > 0, let (see (4.6))

g(r) = [1 1 + ITij2).
i=1

Since for I z I = r,

IT-WI _< 11 (1 + 1212) < g(r),
i=1
ion

lim sup
log9(r) < irD*,

r

lim sup
logI Mn (r) I < 7rD',

r-+oo r

MT,.(r) = sup ITn(z)I
IzI=r

The following two estimates can be found in [13, pp. 76-78]:

Lemma 7.2. Let z1, ... , zn be any n complex numbers. Given H with 0 <
H < 1. If

n

P(z) = fJ (z - Zk),
k=1

then the inequality

IP(z)I ? (H)n
e

holds outside exceptional disks with the sum of diameters not exceeding 10H.

Lemma 7.3. If an analytic function f (z) has no zeros in a disk {z : IzI < R}
and if f(0)1 = 1, then as IzI = r < R,

loglf(z)I >
--R2rr

logMf(R),

where

Mf(R) =
Im

RIf(z)I.
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Let wi = Ii- I (i = 1, 2, ... ). For fixed n, denote

P2 =
wn1--I.

Iwt-w,.I<1

Wi

ion
Using Lemma 7.2, we can prove

Lemma 7.4. Under conditions (I), (11) (3.3), (III)' and (III)", we have, for n
sufficiently large

(7.1) P2 > e2K(5+1)w

where we choose

(7.2)
LD'

2K
-5K

with L satisfying LD* > 5K.

PROOF. Consider the function
w i

P(z) 11 (z - wi) l -x -wIw,-w^I<1
w,-w., <1

wi
IwtwnI<1

,

ion ion s#n

Suppose the numerator is a polynomial of degree q. By (III)', we know that q 2K.
By (III)", for n sufficiently large and p# n,

(7.3) 1wn - wpl > e-w^

Taking H = (1/10)e-'-a, by Lemma 7.2, the inequality

(7.4) (z - wj)
q

Iwi -w., I <1
in

holds outside exceptional disks with the sum of diameters not exceeding aw^a

It is not hard to see that in every exceptional disk there is at least one ws with
wn - wil < 1 (if some disk does not contain such a w then this disk should not
be an exceptional disk since in this disk the inequality (7.4) holds for n sufficiently
large). Thus, by (7.3), we know that wn must be outside these exceptional disks.
Hence

Iw.-w^I<1
ion

When n is sufficiently large, we have (1A10e))e-w^a < 1, hence, noting that q S
2K, for n sufficiently large,

II
Iw{-w.,I<1

ion

1 2K

(wn - w+) ? C l0ee-w^al

Obviously, we have

11> 1
>(_L)q

(2w,11 w; 11 wn + 1 2wIws-w,.I
<1 *-W.1<1

ion ion
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Thus, by (7.5) and (7.6), for n sufficiently large, we have

rf

1 2K ev,n6)2K
(7.7) P2 _ > e 2K(6+1)w,,. 0(20e ( wn

For t > 0, use n(t) to denote the number of ri with Ir;l < t. For fixed n, let

l = n(3wn)

and

P4= [I 1- 2 .
wi-WIW

Using Lemma 7.3, we can prove

+ I

Lemma 7.5. Under conditions (I) and (II)(3.3), given e' > 0, we have, for n
sufficiently large,

7.8)

PROOF. Consider the function

P4>e (31rD'+E )w

x2\
Q(x) _ IT (1 2 1

wiw >wi I

By the proof of Lemma 7.1, we see that Q(z) is an entire function of exponential
type 7rD*. Clearly Q(0) = 1, and Q(z) has no zeros in Iz < 3wn (since when
w, > w; we have w; > wt+1, but w1+1 > 3wn). Thus, by Lemma 7.3,

logIQ(wn) I > -
2wn

log MQ (3wn) log MQ (3wn).
3wn - wn

When n is sufficiently large (since Q(z) is of exponential type irD`),

e'
logMQ(3wn) < (,7rD` +

3
)3wn = (3,rD* + 6')w,,,

hence, noting that P4 = IQ(wn)l, we get (7.8).

We now prove Lemma 4.1:

PROOF. As before, denote w; = 1r;l (i = 1,2,...), n(t) the number of r; with
rt S t. For any fixed n, let l = n(3wn), denote 'L the nearest left w; to wn with
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1, and WR" the nearest right tug to wn with lwi - w, 1. We have

(7.9) ITn(Tr)l

L2 2 T

Tz) (_) I II C1 T;)I
i>1 >1,196 >Win -t<-'Wt

11 I (1 +
!Ln

Wi / I \1 Wi
la>

w{ <wt

n
I 1 -

w- 1-> IIwi
i>1,i#n w.>wt
wi <wt

wn - Wi
Wi

wl<w.<WL.

H 1 1 -
w
w$

W >w t

w2

w?`

wn ws - wn
II 1- M1I. TI W,

cwt-w,.J<1
w WR"<w.<wt

s

i#n

2

1-w2rI2
w>

where PI, P2, P3, P4 denote the above four products in order.
We have estimated P2 and P4 in Lemmas 7.4 and 7.5, so we only need to

estimate Pi and P3.
For P1:

log P1 =-log(wIw2...WL")+log[(wn-WL,.)(wn-WL.._1 ... wn-wl

P1,1 + P1,2-

P1,1 = - Ln log wLn + (Ln - 1) [log wL" - log wL"-11

+ (Ln - 2) [log wL,-1 - log wL"-21 + ... + []og w2 - log w11

L"-1
_ -Ln log wL + L 7 (log wj+1 - log w.7).

j=1

Since when wj : t < wj+1, n(t) = j. Thus, we have

w
L

7+1

Pi,1 -Ln log wL" + t
3

L"-1 w,+1 mo(t) JwL" 76(t)r
dt._ -L n log wLn + J t dt = -Ln log wL" + wl t

j-1 w3

P1,2 = Ln log(wn - w1) - (Ln - 1)[log(wn - w1) - log(wn - w2)1
- (Ln - 2) [1og(wn - w2) - 109(W- - w3)1- .. .

[1og(wn - WL"_1) - 1og(wn - WL")1
Ln 1

= Ln 1og(wn - w1) - j [log(wn - wL"-j) -1og(wn - WL"-j+1)1

= Ln 1og(wn - w1) - ? dt.
j-1

J" tLn 1+1 t
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Let ni(t) be the number of wi with Iwt wnI <_ t and w1 < w{ <
When Wn - wLn 7+1 S t < Wn -- wLn-f, ni(t) - j, we have

Ln 1 Wn-wLn ! nl(t
P1,2 = Ln log(wn WI) - E jW ) d t

.7=1 n-tutu !+1 t
Wn-W1 .n/t\/

=Lnlog(wn-wl)- dt.
Wn-WLn

WL, . Since

Now we have

log P1 = P1,1 + P1,2
wLn n(t) wn-W1 n' (f)f

W.-W1
nl (t) dt> -Ln log wn + Ln log(wn - w1) -

JWn-WLn t

/ w Wn-wl nl t= L 1og I 1 - 1 -
fWWL

dt.\ w n

Since nl(t) < n(wn) - n(wn - t), we have

/ Wn-W1
log P1 > Ln log (1 -

wl - / n wn) - n(wn - t)
dt

wn Jw.,-WL t
/ 1111 \ rWLn n(wn) - n(x)= Ln log I 1 - - I - J dx.

Wn ` w1 wn - x

Given E' > 0, for n sufficiently large,

log 1--wl) >wn

By 111)',

So, we have

J dt + L log(w - w)
t

n n 1- t dt
w -wwl n L

n(wn) - n(x) < K(wn - x).

log P1 > -e'Ln - K(WLn - WO > -s'Ln - Kwn.

By the definition of wLn, Ln < n, hence

-e'Ln > -,-'n.

By (11)(3.3), for n sufficiently large, n < (D* + £')wn. Hence we have, for n
sufficiently large,

7.10) log P1 > -E (D* + e')wn - Kwn -- -[E (D* + e') + K]wn.

For P3:
First, consider the case when the condition (a) holds. Assume that WRn,

w1 are all the wi satisfying wR,. <wi < w1, then

log P3 = -log(wRnwRn+1 ... wL) +log[(wRn - Wn)(WRn+1 - wn) ... (w! - wn)1

_ P3,1 + P3,2

-Ln log wLn +
n
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Denote n2(t) the number of w{ with w{ < t and wR < w, < wt. Denote
n3(t) the number of such wj with 1w, - wn[ < t. Suppose the total number of

wRn+1, ... , wt is ,n . It is not hard to see that

'inn=n(3wn)-Rn+1=1-Rn+L
Similar to that in log P1, we can get

net
t

dt.P3,1 = -M,, log wt +
fW -

and

P3,2 = Mn log(w1 - wn) - E .7 [log(wR,.+3 - wn) -1og wR,.+)-1 - wn
j=1

mn-1 wRn+1-w+
= Mn log(wi - wn) - E I t dt.

7=1 WR,.+i-1-w,.

Since when wn < t < wR,.+; - wn, n3(t) = 7 we have
+nn_1 -W,

P3,2 = Mn log(wi - wn) - E
7=1 WRn+ -I-

W1 -W n t
= Mn log(wl - wn) - dt.

By (III)', n3(t) < Kt. Thus

wRn-Wn t

3t dtt

log P3 = P3,1 + P3,2 > Mn log (1 - w; ) - K w - p .
Now we estimate the value of w for n sufficiently large. B 4.1 in the

condition (a), there is a sufficiently small positive number c with z < D. such
that for n sufficiently large,

n D. - Ep
< p D' +n(3wn)

Thus, by (3.3) and (3.4), for n sufficiently large,

wn wn 1 n D' + Co

Hence

n_
WI n wt 1 D. - co n(3wn) < p

109 P3 > Mn 1og(1 - p) - K(wt - WRY).

Noting that WR,. > wn hence wt - wR, < 2w, and Rn > 1, we have,
sufficiently large

for n

(7.11) log P3 > rnn log(1- p) - 2Kwn = log(1 - p) [n(3wn) - Rn + 11- 2Kwn

> log(1- p)n(3wn) - 2Kwn > log(1- p)(D' + E')3wn - 2Kwn
= -(C'D' + C'E' + 2K)wn,

where c' = -3log(1- p).
Combining (7.7), (7.8), (7.10) and (7.11), we have for n sufficiently large,

log(P1P2P3P4) > -[K+e'(D'+e')+2K(b+1)+CD'+C'e'+2K+31rD*+e']wn-



COMPLETENESS OF THE SYSTEM (f(Anz)l IN L2.jnj

Given e > 0, take e' > 0 such that E'(D' + E') + de' + e' < E. Let

H = 3K + 2K(5 + 1) - 3log(1- p)D' +
i.e., by (7.2),

H = (L + 3a - 3log(1- p)/bigr)D',
then we have for n sufficiently large

ITn(Tn)) > 6 (H+e)wn,

195

hence (4.2) holds.

For the case when the condition (b) holds, since l = n, wl = wn for n sufficiently
large, and since, by its definition, wRn > wn + 1, we have wRn > wi + 1 > wl. In
this case, it is impossible to have a wi satisfying WRn < wi < wj so, for n sufficiently
large, the factor P3 should not appear in the product PI P2 P3 P4 in (7.9), or
we should set it to be P3 = 1. Thus, by the above calculation, it is not hard to see
that, in this case, the H should be changed to H = (L + 3ir)D - 2K. The proof
is complete.

Acknowledgement. We thank the referee for careful reading of the paper.
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A Formula for the Logarithmic Derivative and Its
Applications

Javad Mashreghi

ABSTRACT. We show how an explicit formula for the imaginary part of the
logarithmic derivative of f, where f is in the Cartwright class of entire func-
tions of exponential type leads to a new integral representation of the Hilbert
transform of logl f I and also to a representation for the first moment of 1112.

1. Introduction
An entire function f (z) is said to be of exponential type if there are constants

A and B such that if (z)1< BeAIZI for all z E C. In this note, we are interested
in two special subclasses of entire functions of exponential type. Both classes are
defined by putting a growth restriction on the modulus of the function on the real
line. The Cartwright class Cart consists of entire functions of exponential type
satisfying the boundedness condition

(o log' I.f WI
1

dx < oo,
00 + x2

and the Paley-Wiener class PW contains entire functions of exponential type ful-
filling f E L2(I8). The inequality log+I f I

2
I f 12 shows that PW is contained in

Cart.
In this paper we obtain an explicit formula for Qr(f(t)/ f (t)), f E Cart, in terms

of nonreal zeros of f and its rate of growth on the imaginary axis. Then we provide
two applications of this formula. First, we derive an integral representation of the
Hilbert transform of log f [. Secondly, we calculate the first moment of 1f I2, where f
is the Fourier-Plancherel transform of f, for functions in the Paley-Wiener space.

2. Reminder on representation theorems
In this section we gather some well known representation theorems about entire

functions of exponential type. These results can be found for example in [1-31.
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198 3. MASHREGHI

Let f E Cart and let {zn} denote the sequence of zeros of f in the upper
half-plane. Since )n !a'xn/Iznl2 < oo and limn-+wIznl = oo, the Blaschke product

B.(z) _= n 1 x/zn
1 - x /z

formed with this sequence is a well defined meromorphic function. Let

a,,If]=limsuploglf(iy)I at[f]=limsuplogf(iy)

y-++oo y y

In what follows, for simplicity we will write au and at respectively for a.[f ] and
at If). The following theorem is a celebrated result of Cartwright.

Theorem 1 (Cartwright).

(11

Let f E Cart. Then, for z > 0,

f (z) = ce-'Q°Z B,,(z) exp
JOO(_1

t + 1 + t2) log f (t) dt) ,
o0

where c is a constant of modulus one.

Put f * (z) := f (z). Then f * E Cart and

a.If*] = limsup
loglf*(iy)I

= lim sup
loglf(-iy) = at[fl.

y y-r+oo y

Moreover, the upper half-plane zeros of f * are conjugates of the lower half plane
zeros of f, say {wn}n>1i and for the Blaschke product formed with this sequence
we write

Bi(z)
= 11

1 - x/wn
(1-Z/Wn)-n

Therefore, by Theorem 1,

(1) f*(z)=c'e'°'zB1(z)exp( J
\x

t+1+t2)Ilogf(t) dt)
7r -00

for allcz > 0. We also need the following celebrated theorem of Paley-Wiener.
We remind that I. i. m. stands for the limit in mean and implicitly implies that the
sequence is convergent in L2-norm.

Theorem 2 (Paley-Wiener). Let f E PW. Then
a

f (z) =
J

f (a)eta: dA,

where
N

moo 27f J'N f(t)e 'fit dt

is the Fourier Plancherel transform of f on the real line. Furthermore, the sup-
porting interval of f is precisely [-au, at].

In particular, if f (R) C R, then f (A) = 1(-A) and thus the supporting interval
of f is symmetric with respect to the origin, i.e., au = at.
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3. The logarithmic derivative
Let zn be a point in the upper half-plane. Then the Blaschke factor

1-z/zn
bze (z) z/zn

satisfies Ib,.(t)I = 1 for all t E R. As a matter of fact, there exists a unique real
function arg b,,, E C°° (R) such that

b=., (t) = e' -g b.n (t) (t E R),

with arg b= (0) = 0. Hence, by taking the logarithmic derivative of bswe obtain

d \ 2E zn

dt

arg bs is given by

j2) erg b (t) = I 2 arctan ( zn) .

n \ n / \ zn

Let {zn} be a sequence of complex numbers in the upper half-plane such that

zn
<00EIz 12

n n

and limn-so° z,, = oo. Let B = rjn bZ . Since the zeros of B do not accumulate at
any finite point of the complex plane, the function B is a meromorphic Blaschke
product. In particular, B is analytic at every point of the real line. Hence, for all
t E R,

3 Br(t) = 2i E
B(t) "n" It - xnl2

(t E R),

and the series is uniformly convergent on compact subsets of R.

Lemma 3. Let f E Cart. Then, for all t E R,
rfi(t)l al - Qu 2`(n

f(t)) 2 + n It-SnI2

where {(n} is the sequence of zeros of f in C \ R.

PROOF. Let F = f If *. Then, one one hand,

F'(t) f'(t)
(L(-t)

F(t) f (t) - f (t)) = \ f (t) J
On the other hand, by Theorem 1 and (1),

F(z) = cei(c,-au)Z Bu(z) (!3'z > 0).F(z)
Bl (z)

By continuity, this relation holds for &z > 0. Hence, we also have

F(t) = i(v1- au) + Bu(t)
Bj (t)

(t E R).
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Thus, by (3),

Fl (t) = i(oi - ou) + 2i E -zn - 2i E
F(t)

-
n It - zn12 n

+2in
n It zn12 n

=2i of - ou+!aCn l
2

n It-(n12/.

t-wn2

Therefore, comparing with the first formula, we obtain the result. 0
Note that the real zeros of f do not cause discontinuity in $ (f' t f t . Their

effect appears in $2 (f '(t) / f (t)). An immediate consequence of Lemma 3 and 2 is
the following result.

Corollary 4. Let f E Cart. Let {zn} and {wn} be respectx e y th sequence f
upper and lower half plane zeros of f. Then, for all t E R,

Jot (4) ds =
(0"

2
cu

/ t + 2 uarg bz,. (t - a arg b- t
n n

where arg b is given by (2).

4. An integral formula for logl f I and the first moment of f 2

Let {xn} be a sequence of real numbers such that lim n -+cc xn = coo and
xk < x` if k < 1. Let {mn} be a sequence of nonnegative integers. The counting
function of the sequence {xn} is defined to be constant between x -1 and
xn and at each point xn jumps up by mn units. The value of v{: } t at x is
not important. For one-sided or finite sequences, v{: } is defined similarly and it
is adjusted such that its value between -oo and the first point of the sequence is
zero.

Let f E Cart. In [4], we showed that

to f I (t) = -7rv{x,.} (t) + 1
au

2 0`) t - 2 E arg b, (t) - 2 E arg b, t,
\ n n

where - stands for the Hilbert transform. This formula has been used to obtain
a partial characterization of the argument of outer functions on the real line [5].
By a standard technique, one can shift all zeros of f in the lower half plane to
the upper half-plane without changing If I on the real line. Furthermore, one can
multiply f by e-1Ot', to get a new function with the same absolute value on the real
line, but instead al = 0. Therefore, to find logl f 1, without loss of generality we can
assume that f has no zeros in the lower half plane and besides of = 0. Therefore,
by Corollary 4, we find the following formula for the Hilbert transform of logl f 1.

Theorem 5. Let f E Cart. Suppose that f has no zeros in the lower half-plane
and that o` = 0. Let v denote the counting function of the sequence of real zeros of
f. Then

tto f I (t) = -irv(t) - f `3` ( f (s)) ds.
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Another consequence of Lemma 3 is an explicit formula for the first moment of
1 J12, in terms of au, at and nonreal zeros of f, for functions in the Paley Wiener
space PW.

Theorem 6. Let f E PW. Then(

f"a.

Cal 2au+
It

IS 12)If(t)12dt,
n

where {(,n} is the sequence of nonreal zeros of f.

PROOF. Since \I(,\) E L7 (R), the Fourier Plancherel transform of f' (t) is
is f (a). Thus, by the Parseval's identity,

l f'(t)f (t) dt = 27r
J

iaf (A)f (a) dA = 27r
J

ialI(X) 12 da.
00

The right-hand side is purely imaginary. Therefore, by Lemma 3,

27C f ' \11(,\)12 dA = JT00(f't) dt = J_:(4f(t)I2)

j(4)If(t)2dt
00

(n12L
(at;

2au +E It
)If(t)12dt.

°O n
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Composition Operators on the
Minimal Mobius Invariant Space

Hasi Wulan and Chengji Xiong

ABSra&eT. Two sufficient and necessary conditions are given for 0 to ensure
the composition operator C. to be compact on the minimal Mobius invari-
ant space. Meanwhile, our results show that some known results about the
compactness of CC on the Besov spaces are still valid for the minimal Mobius
invariant space.

1. Introduction

Throughout this paper D will denote the open unit disc in the complex plane C.
The set of all conformal automorphisms of D forms a group, called Mobius group
and denoted by Aut(D). It is well-known that each element of Aut(D) is a fractional
transformation cp of the following form

w(z) = e`Baa(z), a. (z) = 1- az'
where 0 is real and a E D. Denote by dA the normalized area measure:

dA(z) = 1 dx dy, z = x + iy.
7r

Let X be a linear space of analytic functions on D which is complete in a norm
or seminorm X is called Mobius invariant if for each function f in X and
each element cp in Aut (D), the composition function f o cp also lies in X and satisfies
that f o Sp Ix = 11f lix; see [2]. For example, the space HO° of bounded analytic
functions f on IID with the norm li f 11,,. = supfif (z) I : z E D} is Mobius invariant.
BMOA, the space of analytic functions f on D for which

sup r 2
r2,r

If (eie) I2 I1
12

l2 dB - if (a) 12 : a E DI <00,
l Jo

is Mobius invariant. Actually, some other spaces of analytic functions on IID such
as Q, and QK spaces are Mobius invariant, too. See [2-4]. However, the Hardy
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204 H. WULAN AND C. XIONG

spaces Hp are not Mobius invariant. Now we return to our primary interest, the
Besov spaces.

For 1 < p < oo the space Bp consists of all analytic functions f on D for which

(1.1) jLf'(zW(l _ `z2)p2 dA(z) < oo.

For p = oo the requirement is that the quantity

(1.2) sup(1 - lzt2)If'(z)l
ZED

be finite. When 1 < p < oo the space Bp is called the Besov space and Bo, = B
is called the Bloch space. The seminorm [I'IIB, on Bp is the pth root of the left of
(1.1) if 1 < p < oo and the quantity (1.2) if p = oo. The space B2 is known as the
Dirichlet space and usually denoted by V. It is immediately clear that the Besov
spaces are Mobius invariant. Unlike Bp spaces for p > 1, we define the B1 by ther
way since (1.1) does not converge when p = 1 for any non-constant functi n.

Arazy, Fisher and Peetre [2] defined BI as a set of those analytic functions f
on D which have a representation as

00 "0(1.3) f (z) = E Ckaak (z), ak E D and E Ck < 00-
k-1 k=1

Since a function f could conceivably have several such representation, the norm of
B1 can be defined by

inf (E Ickl : (1.3) holds}.
00lk=1

By [2] we know that the space B1 is the minimal Mobius invariant space since it is
contained in any Mobius invariant space X. Also, we say that the Bloch space B
is the maximal Mobius invariant space; see [7].

We know that for 1 < p < oo a function f belongs to Bp if and only if the
seminorm

(1.4) IIf IIs, jf"(z)tP(1 - x12)22 dA(z) < oo.

Arazy, Fisher and Peetre showed in [2] that there exist constants cl and c2 such
that

(1.5) ci lf1I <_ If (0)I + If'(0)I + 1 [f"(z)I dA(z) < c111f11.
D

Hence, (1.4) and (1.5) do permit us to pass the case p = 1 and the connect the
space B1 with the Besov spaces Bp. We define now the seminorm of B1 as

(1.6) 11fIla, := ID If "(z)JdA(x) < co.

Modulo constants, B1 is a Banach space under the norm defined in (1.6).
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2. Composition operators on Bl
Let ¢ be a holomorphic mapping from D into itself and f E H(D), the set of

all analytic functions on D. Then ¢ induces a composition operator CO: f - f o 0
on H(D). Tjani [9] gave the following result.

Theorem A. Let ¢ be a holomorphic mapping from D into itself and 1 < p <
q < oo. Then the following are equivalent:

(a) CO: Bp -+ BQ is a compact operator.
(b) IICOaOIIBQ -+ 0 as at -+ 1.

It is natural to ask what condition for 0 ensures the composition operator CO
to be compact for the critical case p = 1. This paper mainly answers this question.

Theorem I. Let ¢ be a holomorphic mapping from D into itself. Then Co is
compact on B1 if and only if

2.1) lim IIC0aaIIB, = 0.
IaI-+I

PROOF. NECESSITY. Assume that Co is compact on B1. We have that
Cgoa B, = I CO(aa - a) II B, -1 0 as I al -+ 1 since oa (z) - a - 0 uniformly on

compacts of D. Thus (2.1) holds.

SUFFICIENCY. We first show that (2.1) implies that

2.2 rim sup
(LED

I (o o dA(z) = 0.
>r

In fact, by (1.5) we see that (2.1) gives that

2.3 lim J
I (oa o O(z))"l dA(z) = 0.

ID

Hence

LI(O))"IdA(Z) < 1
f r some a E D. It follows that oa o 0 E BI for some a E D. Since BI C B2 = D
and Qa is analytic on 11), we have ¢ = aa o oa o 0 E B1. Note that by (2.3) we know
that for given e > 0 there exists a d > 0 such that

sup I (oa a (z))" I dA(z) < e
6<IaI<1 0(z)I>r

f r all r E (0, 1). Letting r -+ 1- gives

s f¢ s) >rI (a-a o
dA(z)

I-V

G sup Ioa(O(z))II0'(z)I2dA(z)+ sup
a <<5 o(z)I>r

/
jaI<6 I0(z)I>r

G
C \J (z) >rl0'(z)I2 dA(z) + Jlm(= I>rI "(z)I dA(z)) <f,

where

max{ sup Ioa(z)I, sup Ioa(z)I}.
l Ia1_ IaI<6
zED zED
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Note that 0 E B1 and 0 E V have been used in the above estimate. Thus we show
that (2.2) holds.

Now we prove the compactness of Co. For any bounded sequence {f.) C B1,
without loss of generality, we assume that fn converges to zero uniformly on any
compact subset of pD and II fn II B, < 1. To end our proof it suffices to show that
Ilfn o 4IIB1 -D 0 as n -D oo since I fn o 0(0)1+1(fn e 0)'(0)I 0 as n oo. We write

00

fn(z) = E Cn,kQan.i. (z)+
k=1

with

00IIfnIIB, < Ejcn,kl 2,

k=1

Using (1.5), it suffices to prove

fDI (f
n(O(z))"j dA(z) i 0,

By (2.2) for given e > 0, there exists an r, 0 < r < 1 such that for all a E D

sup I (oa o 4,(z))"I dA(z) < 2.
aED 10(z)I>r

Hence

(fn(4,(z))"I dA(z)

= ftcb(z) (f( 4,(z))"dA(z) + jl(() dA z
I<r 0(=)I >r

(f(m(z))"dA(x) + E`cn,kl 110(z) >(0 z )) ' dA z)< J

I(.fn('(z))"IdA(z)+e.

< I
Notice that

10(x)1<r

(fn(4(z))"I

dA(z) -* 0

as n -D oo. We obtain II fn o III B, -+ 0. The proof is completed. 0

Arazy, Fisher and Peetre [21 obtained following theorem.

Theorem B. The composition operator CO is bounded on B1 if and only if

suPf Ia"(4,(z))II4,'(z)I2dm(z) <00
aED D

and

Ioa (O(z)) I I0 (z) I dm(z) < oo.sup JDaED

Now we show a similar result for compact operators.
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Theorem 2. Let 0 be a holomorphic mapping from D into itself. Then Co is
cotnpact on B1 if and only if the following two expressions are true:

(2.4) lim JI((z))IIl(z)I2dA(z) = 0
IaI-i1

and

(2.5) lim LI((z))h'(z)I dA(z) = 0.

PROOF. Since

C40'a B1 ^ JDI a (z)) (11(z))2 + a(m(z))0"(z)I dA(z),

it is easy to see that (2.4) and (2.5) imply

lim1IIC4oJIIB1 = 0.

By Theorem 1, Co is compact on B1.
Conversely, assume that C4, is compact on B1. By Theorem 1 we have

lime C40a B1 = I lime J I (Qa o q5(z))"I dA(z) = 0.

Since o is zero-free and analytic in IID, we can find a function fa analytic in IID
with f 0 = 0 such that (fa)2 = a',. So fa E B2 and IIfa1IB2 is bounded. By the
estimate

C40'oIIB2 <- CIIC40'alIB1

and the assumption, we know that Co is compact on B2 by Theorem A. A direct
computation gives o- w) -+ 0 in IID as Jai - 1. Hence fa tends to 0 uniformly on
any compact subset of D. Thus I C4, f a I I B2 - 0 and

liml CO f B2 = liml J

On the other hand, since

0'a O
If = 0'a (0,)2 + o

R e have

jas ¢ z -o' z dA(z) < JD a P)"(z)I dA(z) + Iaa(O(z)) II0'(z)I2 dA(z).

By 2 4 and the assumption we obtain (2.5). We complete the proof.

3. Composition operators between Bl and Bp

Theorem 3. Let cp be a holomorphic mapping of IID into itself and 1 < p:5 oo.
Then C4, zs compact from B1 to Bp if and only if

3.1 l m1IIC4aaI1B, = 0.

PROOF. Suppose Co is compact from B1 to Bp. Choose aa(z) - a E B1 which
converges to 0 uniformly on any compact subset of D. Thus

liml C4,aaII B, = Ilim1IIC4,(Qa - a)llB, = 0.
a
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Conversely, for the case 1 < p < oo we consider a bounded sequence {fn} C B1
converges to zero uniformly on any compact subset of D and Ifn B1 < 1. To end
our proof it suffices to show that 11fn o 011 B, -> 0 as n -> oo. Let

co

fn(z) _ 1 Cn,kQa,,.k (z), an k E D
k=1

with
00

IIfnIIB, <- EIcn,kl <- 2, n =1,2,... .
k=1

Similar to the proof of Theorem 1 one can prove that (3.1) implies that

(3.2) lim sup f I (Qa c ( z ) ) " ' ( 1 1- 1z12)2p-2 dA(z) = 0.
r-+1 aEn ,,(z)I>r

Thus, for given e > 0, there exists an r, 0 < r < 1 such that for all a E D

sup f I (Qa c 1z12)2p-2 dA(z) < 1.
aED Iq(z)I>r

Therefore, by Holder's inequality

I (fn(O(z)))"I p (1 - Iz12)2p-2 dA(z)

II(z)IJE
IP

Cn,k (aan.k
(4(x)))"

(1 - IzI2)2p-2 dA(z

00 p-1 00

< (lcmicI'J
J10(Z)>r

Z 2 2p-2 dA z
k=1 k=1

(cmiv)
00

Sup f (1 - z 2)2P-2dA z <_ E 2.
k=1 JJ aE® I, (z)I>r f

On the other hand, we have

IO(z)l<r
as n -+ oo. Hence

I (fn (O(z)))11 IP (1 - Iz12)2p-2 dA(z) < e 2

lim f I(fn(O(z)))--IP (1 - lz12)2p-2 dA(z) = 0.
IaI-r1

Thus, C., is compact from B1 to Bp.
For the case p = oo, if (3.1) holds, then

(3.3) Ilim111cmaa11B = 0.

By Theorem 1, Cm is compact from B to B. Since B1 C B, Co is compact from Bi
to B. The proof is completed. 0

Combining our theorems with Tjani's result, we are able to build the following
new theorem,

Theorem 4. Let 0 be a holomorphic mapping from D into itself and 1 <- P
q < oo. Then the following are equivalent:

(a) C,6: Bp -+ BQ is a compact operator.
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(b) ItCCaa1IB, -4 0 as jai - 1.
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Whether Regularity is Local for the
Generalized Dirichlet Problem

Paul M. Gauthier

ABSTRACT. We give an example which shows that a regular boundary point for
the classical Dirichlet problem need not be regular for the generalized Dirichlet
problem.

Let C be a bounded open set in ]Rn. The classical Dirichlet problem for G is
the problem of the existence, for every continuous function co on 8G, of a harmonic
function u in G having V as boundary values. To solve the Dirichlet Problem,
Leleune Dirichlet introduced a variational method, which asserts that a solution u
can be attained as a minimizer of the Dirichlet energy in a certain function space.
Bernard Riemann named this method the Dirichlet Principle and assumed that such
a minimizer exists. However Karl Weierstrass, in 1870, provided a counterexample
to the existence in general of a minimizer. In 1899, David Hilbert gave a rigourous
solution to the Dirichlet problem by justifying the Dirichlet principle, under certain
conditions, thereby foreshadowing the introduction of Hilbert space.

The Dirichlet problem is attacked by somehow providing a candidate u,, for
a soluti n. Let us call such a candidate a generalized solution. Once we have
a generalized solution u ,, there remains the problem of showing that u,, has the
desired boundary values V. For any continuous function co on 8G, the Perron
method provides a generalized solution, which we denote by uG and call the Perron
solution.

A boundary point p E 8G is said to be a regular point for the (classical) Dirichlet
problem for G, if for each continuous function co on 8G, the Perron solution uG has
the desired boundary behavior at p. That is,

1 lim uG(x) = co(p).

Thus, it is a tautology to say that the classical solution to the Dirichlet problem
exists for a bounded open set G if and only if each boundary point is regular.

Of course, if S, is not continuous, then there is no solution to the classical
Dirichlet problem for the boundary data W. However, the Dirichlet problem can be

2000 Mathematics Subject Ciaaetfcatton. 31B20, 31B05, 31A25, 31A05.
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212 P. M. GAUTHIER

generalized as follows. For many functions cp defined on 0G, but not necessarily
continuous, Perron's method still produces a harmonic function uc, which it is
natural to call a Perron solution to the Dirichlet problem for the boundary function
cp. In some sense, the Perron solution is the harmonic function which makes the
best attempt at being a classical solution. If a classical solution exists, then the
Perron solution exists and coincides with the classical solution.

Marcel Brelot has shown that the Perron solution uG exists if and only if p is
integrable with respect to harmonic measure µa, for some (equivalently, f r every
a E G. Moreover, we have the integral representation

uD (a) = jcod, a E G.
c

Norbert Wiener showed that a boundary point p E aG is regular f r the las-
sical) Dirichlet problem if and only if the complement of G is not th n at p. F r
example, if the complement of G contains a cone with vertex at p, then p is a
regular point.

Of course this implies that regularity is a local condition. The regularity r
non-regularity of a boundary point p E aG depends only on the nature f the pen
set G near the point p.

Our definition of regularity (which is the usual one) is f r the classical Dnlchlet
problem. Now that we have introduced the more general Perr n solut' n to the
Dirichlet problem, it is very tempting to think that regularity is I al also m terms
of Perron solutions. Namely, one might think that if p E aG is regular f r the
(classical) Dirichlet problem, then (1) holds whenever u,D makes sense and cp is
continuous at p.

The purpose of this note is to provide a counterexample. This example was
formulated in a conversation with Aurel Cornea over 30 years ago.

Example 1. There exists a bounded simply connected domain D in R2, having
the point (0, 0) as a regular boundary point for the (classical Dirichlet problem
and containing the interval { (x, 0) : 0 < x < 1}, and there exists a function cp on
aD integrable with respect to harmonic measure (so the Perron solution uD exists
and a neighborhood U of (0, 0) in R' such that: cp(x, y) = 0 for (x, y E U fl aD,
but

lim sup u,° (x, 0) = +00.
x\,o

PROOF. It is easy to give an example of an open set G having the required
properties, except that it is not connected. We shall then add (carefully chosen)
connecting channels between components of G to obtain the desired domain D.

F o r n = 0,1, 2, ... , let Rn be the open rectangle

Rn = {(x, y) E R2 : 2-n-1 < x < 2-n, Iyj < 1}

and denote by
Hn = {(x, y) : 2-n-1 < x < 2-", y = ±1}

the upper and lower boundary segments of Rn. Let (xn, 0) be the mid-point of the
rectangle Rn. Thus, xn = (2-n 1 + 2 n)/2).

Set G = U,n Rn. We now define the function co on aG. First of all, we
put cp(x, y) = 0 on all vertical boundary segments {(2-11,y) : lyl <_ 1}, n =
0,1, 2, ... , and {(0, y) : jy` < 1}. On horizontal boundary segments {(x, ±1)
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2 " 1 < x < 2 n}, n -- 0, 1, 2, ... , we set V(x, fl) = Xn, where An > 0 is chosen
so large that the value of uG, at the mid-point (xn, 0) of the rectangle Rn, is greater
than n:

(2)
ti (xn,0) > n.

The open set G and the boundary function V have all of the required properties
with the exception that G is not connected.

We shall now construct a domain D from G. For each n = 1, 2, ... , let Sn be
a segment

Sn = J) : IyI < En},
for some 0 < En < 1 to be chosen later. Set

n n
Dn=URkUUSk

k=0 k=1

and
00

00D= URkUUSk.
k=0 k=1

By abuse of notation, we denote by uw the Perron solution of the Dirichlet problem
on D,,, with boundary values p restricted to BDn. This makes sense, since 8Dn C
G. Let pDb and µa,b denote harmonic measure for the domains D and Dn at a

point a, b respectively in D or D.
From the maximum principle,

o (S1), (x, y) E R0.1Li,y(H1 U S2) < 1,RM,Y

Thus, we may choose E1 so small, that

3 Al µy 0,0(H1 U S2) < 21.

We note that on D1i by the maximum principle,

µDy(H1) < µy,y(H1 U S2),

and so, by 3,

4 X1 µD ,o(H1) < 21.

Suppose, for j = 1, 2,..., n - 1, we have defined e j such that

aj ' µDxo,0(H3) <
1

2 .

We may choose en so small, that

< 2n5 X. µzo,0(Hn U Sn+l)
1

We note that on Dn, by the maximum principle,

µ4y(Hn) < µx,y(Hn U Sn+1),

and so, by (5),

1
6 An ' µD ,0(Hn) < in-'
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Thus, by induction, (6) holds for all n = 1, 2, ... , and so
00

Jduo
,0 = A.. pD,0(Hn) < 1 < +00.

8D n=

Hence, cp is integrable with respect to harmonic measure for D. Therefore, the
Perron solution u,', by which we mean the Perron solution for the restriction of cp
to 8D, exists.

It follows from Theorem 6.3.6 in [1] that uD > UG on R and so by the maxi-
mum principle and (2) it follows that

UIR(xn,0) > n, n=0,1,2,....
Thus, the Perron solution uD has all of the required properties. 0
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