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Preface

The workshop entitled Hilbert Spaces of Analytic Functions was held at the
Centre de recherches mathématiques (CRM), Montréal, from 8 to 12 December
2008. Even though this event was not a part of the CRM thematic year, 62 math-
ematicians attended the workshop. They formed a blend of researchers with a
common interest in spaces of analytic functions, but seen from many different an-
gles.

Hilbert spaces of analytic functions are currently a very active field of com-
plex analysis. The Hardy space H? is the most senior member of this family. Its
relatives, such as the Bergman space AP, the Dirichlet space D, the de Branges—
Rovnyak spaces #H b), and various spaces of entire functions, have been extensively
studied by prominent mathematicians since the beginning of the last century. These
spaces hav been exploited in different fields of mathematics and also in physics and
engineering. For example, de Branges used them to solve the Bieberbach conjec-
ture, and Zames, a late professor of McGill University, applied them to construct
his th ry f H® control. But there are still many open problems, old and new,
which attract a wid spectrum of mathematicians.

Inthis nference, 38 speakers talked about Hilbert spaces of analytic functions.

Infive days awi e vanety of applications were discussed. It was a lively atmosphere
i which many mutual research projects were designed.

Javad Mashreghi
Thomas Ransford
Kristian Seip
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Canonical de Branges—Rovnyak Model Transfer-Function
Realization for Multivariable Schur-Class Functions

Joseph A. Ball and Vladimir Bolotnikov

ABSTRACT. Associated with any Schur-class function S(z) (i.e., a contractive
holomorphic function on the the unit disk) is the de Branges— Rovnyak kernel
Ks(2,¢) = [ -5(2)S(¢)*]/(1 - 2{) and the de Branges - Rovnyak reproducing
kernel Hilbert space #(Ks). This space plays a prominent role in system
theory as a canonical-model state space for a transfer-function realization of a
given Schur-class function. There has been recent work extending the notion
of Schur-class function to several multivariable settings. We here make explicit
to what extent the role of de Branges—- Rovnyak spaces as the canonical-model

state space for transfer-function realizations of Schur-class functions extends
to these multivariable settings.

1. Introduction

Let U and Y be two Hilbert spaces and let £{U,)) be the space of all bounded
linear operators between 4 and . The operator-valued version of the classical
Schur class S(U,Y) is defined to be the set of all holomorphic, contractive L(U, V)-
valued functions on D. The following equivalent characterizations of the Schur class
are well known. Here we use the notation H? for the Hardy space over the unit

disk and H3 = H2 @ X for the Hardy space with values in the auxiliary Hilbert
space X.

Theorem 1.1. Let S: D — L(U,Y) be given. Then the following are equiva-
lent:

1) (a) S € S(U,Y), i.e., S is holomorphic on D with ||S(2)|| < 1 for all
zeD.

(b) The operator Mg: f(z) = S(2)f(z) of multiplication by S defines a
contraction operator from HZ to H3.

(c) S satisfies the von Neumann ineguality: ||S(T)|| < 1 for any strictly
contractive operator T on a Hilbert space H, where S(T') is defined

2000 Mathematics Subject Classification. 47TAS7.

Key words and phrases. Operator-valued functions, Schur multiplier, canonical functional
model, reproducing kernel Hilbert space.

This is the final form of the paper.

©2010 American Mathematical Society



2 J. A. BALL AND V. BOLOTNIKOV

by

n=0

S(T)=ZS,.®T"€[,(U®’H,J?®’H) *f5(2)=ZSnz".
n=0
(2) The associated kernel

_ Iy~ S(z)S(O)"
(11) KS(Z)C)— 1_26

18 positive on D x D, i.e., there ezists an operator-valued function H.D o
L(X,Y) for some auziliary Hilbert space X so that

19 Ks(,0) = H(2)H(Q)".
(3) There is an auziliary Hilbert space X and a umitary connect ng operator

A B} |Xx X
o- 12 3] (-]
so that S(2) can be expressed as
(1.3) S(z) =D+ zC(I - zA)™!B.

(4) S(z) has a realization as in (1.3) where the connect ng operator U 1
one of (i) isometric, (ii) coisometric, or (iii contracts e.

We note that the equivalence of any of (1a), (1b, l¢c with 2 and e
be gleaned, e.g., from Lemma V.3.2, Proposition 1.8.3, Proposition V.8.1 and The
orem V.3.1 in [26]. As for condition (4), it is trivial to see that 3 imphes 4
and then it is easy to verify directly that (4) implies (1a . Alternatively, one can
use Lemma 5.1 from Andd's notes [6] to see directly that 4iii implies 41 see
Remark 2.2 below).

The reproducing kernel Hilbert space H(Kgs) with the de Branges-Rotn ok
kernel Kg(z,() is the classical de Branges— Rovnyak reproducing kernel Hulbert
space associated with the Schur-class function S which has been much studied over
the years, both as an object in itself and as a tool for other types of applications s
[6,11-13,16~18,20,21,24,27,28,31]). The special role of the de Branges-Rovn 3
space in connection with the transfer-function realization for Schur-class functions

is illustrated in the following theorem; this form of the results appears at least
implicitly in the work of de Branges Rovnyak [20,21].

Theorem 1.2. Suppose that the function S is in the Schur class S,y and ¢

H(Ks) be the associated de Branges Rounyak space. Define operators A, B,C:
by

A: f(z)l—)f(z):f(o), B!UHS(Z);S(O)‘H,
C: f(z) » £(0), D: uw S(0)u.

Then the operator-block matriz U = [ B] has the following properties:

(1) U defines a coisometry from H(Kgs) @ U to H(Ks) ® Y.
(2) (C,A) is an observable pair, i.e,,

CA"f=0foralln=0,1,2,... = J =0 as an element of H(Ks)-
(3) We recover S(z) as S(2) = D + 2C(I - 24) B,
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@ If [4' '] XDU = X @Y is another colligation matrix with properties

(1), (2) (3) above (with X in place of H(Ks)), then there is a unitary
operator U: H(Kgs) = X so that

U ol{A B]l_[4a B|[U 0
0 Iy||C D] |C D0 I,
It is easily seen from characterization (1a) in Theorem 1.1 that
(1.4) SeSWU,Y) <= SeSO,U) where 5(z) := S(2)*.
Hence for a given Schur-class function S there is also associated a dual de Branges—
Rovnyak space H(Kz) with reproducing kernel Kz(z,¢) = [I-S(2)*S({)}/(1—=2().
The space H(K5) plays the same role for isometric realizations of S as H(Ks) plays

for coisometric realizations, as illustrated in the next theorem; this theorem is just
the dual version of Theorem 1.2 upon application of the transformation (1.4).

Theorem 1.3. Suppose that the function S is in the Schur class SU,Y) and

let H(Kg) be the associated dual de Branges— Rovnyak space. Define operators
A4,Bq,C4, Dy by

Ag: g(2) » zg(2) - S(2)*§(0), Ba: uw (I - S(2)*S(0))u,
Ca: g(2) — g(0), Dg: u— S(0)u,

where § 0) 1s the unique vector in Y such that

5(0)9)y = ( (z),wy> for ally € Y.

H(K7)
Then the operator-block matriz Uq = [A" B"] has the following properties:

1) Uy defines an isometry from H(Kz) @U to H(Kz) @),

2 (A4, Ba) is a controllable pair, i.e., \/,,5o Ran A} Bs = H(K5g), where \/
stands for the closed linear span. -

3 We recover S(z) as S(z) = Dq + 2Cq(I — zAa) " By.

4) If[4 B]: X®U = X @Y is another colligation matriz with properties

a, (2), (3) above (with X in place of H(Kg)), then there is a unitary
operator U: H(Kg) = X so that

U 0]fAa Bal _[4 B'||U 0O
0 Iy{|{Ca D4y |C'" D'||0 I\’
In addition to the kernels Ks and K, there is a positive kernel I?s which
combines these two and is defined as follows:

oo (K0 SEm80) frsase s
(1.5) K(z,() = [ggz)—'sgq K<(z Ol = {5(5)'—5«)- 1-5(2) s@] -

z—C S\ z— 1-2¢
It turns out that K is also a positive kernel on D x D and the associated reproducing
kernel Hilbert space ‘H(I? s) is the canonical functional-model state space for unitary
realizations of S, as summarized in the following theorem. This result also appears
at least implicitly in the work of de Branges and Rovnyak [20,21] and more explicitly
the paper of de Branges and Shulman [22], where the two-component space ‘H(I? s)
associated with the Schur-class function S is denoted as D(S); see also [11] for an
explanation of the connections with the Sz.-Nagy— Foias model space.
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TheOt‘em 1.4. Suppose that the function S is in the Schur class S U, y)A
let K (2,€) be the positive kernel on D given by (1.5). Define operators A,B,C D

b
], e
C: B E:;] = £(0), D:urr SO)u.

Then the operator-block matriz U= [4 E] satisfies the follounng:

(1) 3] defines a unitary operator from 'H(Rs) ®U onto H Ks @Y.
(2) U is a closely connected operator colligation, i.e.,

\/ {Ran A" B,Ran A*"C*} = H(Rs).
n>0

(8) We recover S(z) as S(2) = D +:8(I - zA)1B.

@) If [C', g’,] X DU > X @Y is any other operutor colligation satsfing
conditions (1), (2), (3) above (with X in place of H Ks , then there s
unitary operator U: H(Ks) = X so that

u ollA Bl 14 BY[U o
0 Iy|C D| |¢’ Dilo Iu]'

Our goal in this article is to present multivariable analogues of Theorem 1.2.
The multivariable settings which we shall discuss are (1) the unit ball B? in C¢ snd
the associated Schur class of contractive multipliers between vector-valued Drury
Arveson spaces Hy(ka) and Hy (k4), (2) the polydisk with the associated Schur class
taken to be the class of contractive operator-valued functions on D¢ which satsfy
a von Neumann inequality, and (3) a more general setting where the underlying
domain is characterized via a polynomial-matrix defining function and the Schur
class is defined by the appropriate analogue of the von Neumann inequality. In these
multivariable settings, the analogues of Theorem 1.1 have already been set down
at length elsewhere (see [3,15,23] for the ball case, [1,2,14] for the polydisk case,
and [4,5,9] for the case of domains with polynomial-matrix defining function —see
[8] for a survey). Our emphasis here is to make explicit how Theorem 1.2 can
be extended to these multivariable settings. While the reproducing kernel spaces
themselves appear in a straightforward fashion, the canonical model opersators on
these spaces are more muddled: in the coisometric case, while the analogues of
the output operator C and the feedthrough operator D are tied down, there is no
canonical choice of the analogue of the state operator A and the input operator
B: A and B are required to solve certain types of Gleason problems; we refer to
[25] and (30, Section 6.6] for some perspective on the Gleason problems in general.
The Gleason property can be formulated also in terms of the adjoint operators A*
and B*: the actions of the adjoint operators are prescribed on a certain canonically
prescribed proper subspace of the whole state space. From this latter formulation,
one can see that the Gleason problem, although at first sight appearing to be rather
complicated, always has solutions. Also, the adjoint of the colligation matrix, rather
than being isometric, is required only to be isometric on a certain subspace of the
whole space X @ Y. With these adjustments, Theorem 1.2 goes through in the
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three settings. Most of these results appear in [10] for the ball case and in more
implicit form in [14] for the polydisk case, although not in the precise formulation
presented here. The parallel results for the third setting are presented here for the
first time. We plan to discuss multivariable analogs of Theorems 1.3 and 1.4 in a
future publication.

The paper is organized as follows. After the present Introduction, Section 2
lays out the results for the ball case, Section 3 for the polydisk case, and Section 4
for the case of domains with polynomial-matrix defining function. At the end of

Section 4 we indicate how the results of Sections 2 and 3 can be recovered as special
cases of the general formalism in Section 4.

2. de Branges—Rovnyak kernel associated with a Schur multiplier on
the Drury - Arveson space

A natural extension of the Szegd kernel is the Drury — Arveson kernel
1 1
kye(z,0) = = — = .
(2:€) -2~ —2zaCa 1— (5 ()ce
The kernel ky z,() is positive on B¢ x B¢ where

Bl ={z={(z1,...,20) € C%: (2,2) = |z |2+ --- + |2a)* < 1}

is the unit ball in C¢, and the associated reproducing kernel Hilbert space H(ka)
is called the Drury-Arveson space. For X any auxiliary Hilbert space, we use
the shorthand notation Hx(kq4) for the space H(kq) ® X of vector-valued Drury—
Arveson-space functions. A holomorphic operator-valued function S: B¢ — L(U,Y)
is said to be a Drury Arveson space multiplier if the multiplication operator
Ms: f z & S z f(z) defines a bounded operator from Hy(kd) to Hy(ks). In
case in addition Ms defines a contraction operator (|| Msllop < 1), we say that S
is in the Schur-multiplier class Sa(i,Y). Then the following theorem is the ana-
logue of Theorem 1.1 for this setting; this result appears in [10,15,23]. The alert

reader will notice that there is no analogue of condition (1a) in Theorem 1.1 in the
following theorem.

Theorem 2.1. Let S: BY — L(U,Y) be given. Then the following are equiva-
lent:
1) (b S e 84U,Y), i.e., the operator Mg of multiplication by S defines a
contraction operator from Hy(kq) into Hy(kq).

c) S satisfies the von Neumann inequality: ||S(T)|| < 1 for any com-
mutative operator d-tuple T = (Ty,...,Tq) of operators on a Hilbert
space K such that the operator-block row matriz [Ty ... Ta] defines
a strict contraction operator from K¢ into K, where

21)  S(T)= ) Su®T € LUBH,YBH) ifS(z)= Y Sna".
n€ZY n€Zy
Here we use the standard multivariable notation:
2=20...20¢ and TM=T7"... T3¢
{(2) The associated kernel

22) Ka(a () = 22

ifn= (nl,...,nd) EZi
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is positive on Bx B, i.e., there erists an operator-valued function H. B 4
L(X,Y) for some auziliary Hilbert space X so that Kg(z,{)=H(z H(*
(3) There is an auziliary Hilbert space X and a unitary connecting operator

AL By
A B : : X X
e o-[6 2-|i &l b~ 1]
¢ D
s0 that S(z) can be expressed as
(24) 5(2) = D + CI = Zuow()A)™ Zeon(2) B,

where we have set

Zraw(z)=[lex coe Zde].

(4) S(2) has o realization as in (2.4) where the connecting operator U 1 an
one of (1) isometric, (il) coisometric, or (iii) contractive.

Remark 2.2. Statement (4iii) concerning contractive realizations is not men-
tioned in [15] but is discussed in [10,23]. The approach in [23] is to show that for
S of the form (2.4) with U = [4 B] contractive the inequality ST) <1t &
for any commutative operator d-tuple T' = (T,...,T4 with [T; Td] <1,
i.e, one verifies (4iii) = (lc).

The idea of the second approach in [10] is to embed the contraction U={33
into a coisometry [é %] = [& B B.] with associated transfer function of the form
S(z) = [S(z) S1(2)] equal to an extension of S(z) with a larger input space. From
the coisometry property of [é g one sees that Kz(z,w) =C I—Zw 2z A1 I-
A*Ziow(0)71C", ie., § meets condition (2) for the Schur-class Sq U ®U,Y with
H(2) = C(I = Z;ow(2) A)!. From the equivalence (1b) <= (2 , it is easy now to
read off that S € Sa(U4, ).

A third approach worked out for the classical case but extendable to multr
varisble settings appears in Andd's notes [6, Lemma 5.1]. Given a contractive
colligation U = [4 B), one can keep the input and output spaces the same but

enlarge the state space to construct a coisometric colligation U= Lé g] having
the same transfer function, namely:
A Qun Q12 0 0 Bw
. 0 0 0O I O - 0
A=10 0o o0 o0 I , B=1o}|.
6"=[C Q21 Q22 00 ...], 5=D

where

_|Qu Quf| _ ., _ *1/2
Q—[Qiz Q22]_(I UunE

In this way one gets a direct proof of (4iii) == (4ii).

For colligations U of the form (2.3), it turns out that a somewhat weaker notio®
of coisometry i8 more useful than simply requiring that U be coisometric.
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Definition 2.3. The operator-block matrix U of the form (2.3) is weakly coiso-
metric if the restriction of U* to the subspace

(2.5) Dy =\ {Z"“"“)‘(I -A‘me(o')-lc-y] c [’ﬂ

¢en? y
yey

is isometric.

It turns out that the weak-coisometry property of the colligation (2.3) is exactly
what is needed to guarantee the decomposition

(2.6) Ks(2,) = C(I = Zrow(2)A)I — A* Zeow(0)*)2C*

of the de Branges—Rovnyak kernel Kg associated with § of the form (2.4) (see
Proposition 1.5 in [10]).

2.1. Weakly coisometric canonical functional-model colligations. As
the kernel Kg given by (2.2) is positive on B x B, we can associate a reproducing
kernel Hilbert space H(K3s) just as in the classical case, where now the elements
of # Ks are holomorphic Y-valued functions on B¢. In the classical case, as we
see from Theorem 1.2, there are canonically defined operators A, B, C, D so that
the operator-block matrix U = [4 B) is coisometric from H(Ks) ® U to H(Ks) ®
Y and yields the essentially unique observable, coisometric realization for § €
S U,Y . For the present Drury—Arveson space setting, a similar result holds,
but the operators A, B in the colligation matrix U are not completely uniquely
determined. To explain the result, we say that the operator A: H(Kgs) = H(Kg)?
5 | es the Gleason problem for H(K) if the identity

d
2.7 F2)=f0) =) 2(Afk(z)  bolds for all f € H(Ks),
k=1
(Afi(2)
where we write Af) z) = [ : l € H(Ks)?. We say that the operator B: U —
(Af)al2)
H Ks ¢ solves the H(Ks)-Gleason problem for S if the identity

d
2.8 S 2)u—SO0u= Z 2 (Bu)i(2) holds for all u € U.
k=1

Solutions of such Gleason problems are easily characterized in terms of adjoint
operators.

Proposition 2.4. The operator A: H(Ks) = H(Ks)? solves the Gleason prob-
lem for H(Ks) (2.7) if and only if A*: H(Ks)? = H(Ks) has the following action
on special kernel functions:

29) A*: Z,ow(0)*Ks({)y— Ks(Q)y ~ Ks(,0)y  forall¢ B, ye .

The operator B: U — H(Ks)? solves the H(Ks)-Gleason problem for S (2.8) if
and only if B*: H(Ks)? — U has the following action on special kernel functions:

(210)  B*: Zeow(C)*Ks(»Qy— S)*y—S0O)'y  forali¢eBd, ye ).
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PROOF. By the reproducing kernel property, we have for f € H(Kj),

(f(z) = F(O), )y = (£, Ks(:, 2)y — Ks(-, 0)y) n(Kks)-
On the other hand,

d
<sz Af)k z), y> Z((Af)k, zZKs(-, Z)U)H(Ks
k=1

= (Af, Zrow(2)" Ks (-, 2)W)n ks ¢
= (f, A'Z,W(Z)'KS(-,Z)’_(I H(Ks

and since the two latter equalities hold for all f € H(Ks), z € Bfandyey

the equivalence of (2.7) and (2.9) follows. Equivalence of (2.8) and 2.10 follows
similarly from the computation:

d d
(S aBuelav) = S ((Bue ks, 2 xe
k=1 Y k=1

= (B, Ziow(2)" Ks(2 ¥ # ks

= (’Ll., B*er(z).KS('vz)y u- 8]
Let us introduce the notation

(2.11) D=\ Zww({)Ks(-{)y-
¢eB®
yeY

Definition 2.5. Given S € S4(U,)), we shall say that the block-operator
matrix U = [4 8] is a canonical functional-model colligation for S if

(1) U is contractive and the state space equals H(Ks).

(2) A: H(Ks) = H(Kg)? solves the Gleason problem for H Kg (2.7.

(3) B:U = H(K5s)? solves the H(Kg)-Gleason problem for S 2.8).

(4) The operators C: H(Ks) = Y and D: U — Y are given by
(2.12) C: f(z)— f(0), D:uw— S(0)u.

Remark 2.6. It is useful to have the formulas for the adjoints C*: Y = H Ks
and D: Y - U

(2.13) C*:y— Kg(-,0)y D*:yw S(0)'y

which are equivalent to (2.12). The formula for D* is obvious while the formula for
C* follows from equalities

(£,CWuwks) = (Cryyy = (F(0), v}y = (£, Ks (-, 0)y)n(ks)
holding for every f € H(Ks) and y € Y.

Theorem 2.7. There exists a canonical functional-model realization for every

S € SiU,Y).

PROOF. Let S be in Sq(U,Y) and let H(Ks) be the associated de Branges
Rovnyak space. Equality (2.2) can be rearranged as

d
> 58 Ks(2,0) + Iy = Ks(x,0) + S(z)S()"

j—-1
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which in turn, can be written in the inner-product form as the identity

19 <[Zrow (C)';{S(" C)y] , [me (z)*jl{s(-, z)!/'] > .

= <[KS(IC)y] , [KS('! z)::/]>
S50y S(2)*y H(Ks)oU
holding for every ¥, € Y and (, 2 € B%. The latter identity tells us that the linear
map

extends to the isometry from Dy = D@ Y C H(Ks)? ® Y (where D is given in
(2.11)) onto

KS(’C)y]
Ry = . K u.
v Vd[ S(O)*y C H(Ks)®
¢EB
yey
Extend V to a contraction U*: H(Ks)? ® Y — H(Ks) ®U. Thus,

- A Zeow(Q)* Ks(-,¢)y [KS( Oy]
2.1 Ut=1,. M ° ’ 22 ]
R s o [ = | sy
Comparing the top and the bottom components in (2.16) gives

217 A*Zouw ()" Ks(-¢)y + C*y = Ks(-,Q)y,
2.18 B*Z:ow(()*Ks(-,Q)y + D*y = S({)"y-
Solving (2.17 for Kg(-,¢)y gives

2'19) KS("Oy = (I - A*Zrow(o*)—lcmy'
Substituting this into (2.18) then gives

2.20 B*Zeow({)* (I = A*Ziow({)*)"1C*y + D'y = S({)"y.
By taking adjoints and using the fact that ¢ € B¢ and y € Y are arbitrary, we may

then conclude that U is a contractive realization for S. It remains to show that

U meets the requirements (2) - (4) in Definition 2.5. To this end, we let { = 0 in
2.17) and (2.18) to get

(2.21) C*y=Ks(-,0)y and D*y=S(0)"y.

Substituting (2.21) back into (2.17) and (2.18), we get equalities (2.9) and (2.10)
which are equivalent (by Proposition 2.4) to A and B solving the Gleason prob-

lems (2.7) and (2.8), respectively. By Remark 2.6, equalities (2.21) are equivalent
to (2.12).

Remark 2.8. A consequence of the isometry property of V in (2.15) is that
formulas (2.9) and (2.10) extend by linearity and continuity to give rise to uniquely
determined well-defined linear operators A} and B}, from D to H(Ks) and U,
respectively. In this way we see that the existence problem for operators A solving
the Gleason problem is settled: A: H(Kg) = H(Kg)? solves the Gleason problem
for H(Ks) (2.7) if and only if A* is an extension to all of H(Ks)? of the operator
A%: D = H(Kg) uniquely determined by the formula (2.9). Similarly, the operator
B: U — H(Ks)? is a solution of the H(Ks)-Gleason problem for S (2.8) if and only
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if the operator B*: H(Kg)? = U is an extension to all of H(Ks)? of the operator
By: D = U uniquely determined from the formula (2.10).

The following result is essentially contained in [10}. For the ball setting, we use
the following definition of observability: given an operator pair C,A witho tp
operator C: X = Y and with A: X = X9, we say that C,A is observable §

C(I = Z;ow(2)A)~'z = 0 for all z in a neighborhood of 0 in C? implies that z =
in A. Equivalently, this means that

VU =AZim(2)) Cy =X
z€EA
yeY

for some neighborhood A of 0 in C4.

Theorem 2.9. Let S be a Schur-class multipher in Sq U,Y and suppose that
U = (4 B) is any canonical functional-model colligation for S. Then:
(1) U is weakly coisometric.
(2) The pair (C, A) is observable.
(3) We recover S(z) as S(2) =D+ C(I — Zow(z A "2 Ziow 2 B
@) fU = [éﬁ g’,] XU = X2 @Y is any other ll gatron matng en-
joying properties (1), (2), (3), then there is a canon cal functional-
colligation U = (4 B]: H(Ks)oU - H(Ks @Y so that U 1s unit
equivalent to U', i.e., there is a unitary operator U: X = H Kg so that
AR AN R | -
C Dllo Iy 0 Iu C :
ProoF. Since U is a canonical functional-model colligation for S, the opere
tors A and B solve the Gleason problems (2.7) and (2.8 , respectively. By Propo-

sition 2.4, this is equivalent to identities
A‘Zrow(C)‘KS('aC)y = KS('rC)y - Ks -,0 Yy
B*Ziow(()* Ks (-, Qy = S({)*y — S(0)"y.

Besides, C and D are defined by formulas (2.12). Substituting their adjoints from
(2.13) into the two latter equalities we arrive at (2.17) and (2.18 . Aswehs®

seen, equalities (2.17) and (2.18) imply (2.19) and (2.20). Equality 220 prov&
statement (3). Equality (2.19) gives

(2.22) V I =4 Zew Q) Cy = \] Ks(-,Qy=H(Ks).

yeY
Thus the identity C(I — Zrow (2)A)~2 £ = 0 leads to (f, (I ~ A* Ziow(2)*)2C"y =!
for every 2 € BY and y € ); this together with equality (2.22) implies § =0, sud
it follows that the pair (C, A) is observable.

On the other hand, equalities (2.17) and (2.18) are equivalent to (2.16). Sub-
stituting (2.19) into (2.16) and in (2.14) (for z = ¢ and y = y') gives
U [me(c)*(r - A'zmw(c)*)“c"’] = [(I = A" Ziow()) I Cy
v SO’y

“ [Z,ow(c)‘(l - A"yme(C)‘) lC"‘y] “ - “ [(I - A" Zow(0)*) IC'y]

and

Sy
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respectively. The two latter equalities tell us that U* is isometric on the space Dy-

(see (2.5)) and therefore U is weakly coisometric. For the proof of part (4) we refer
to [10, Theorem 3.4]. O

Definition 2.5 does not require U to be a realization for S: representation
(2.4) is automatic once the operators A, B,C and D are of the required form.
We can look at this from a different point of view as follows. Let us say that

A: H(Ks) = H(Ks)? is a contractive solution of the Gleason problem (2.7) if in
addition to (2.7), inequality

d
(2.23) S AN k) < W Wiy = 15O
k=1

holds for every f € H(Ks). It is readily seen that inequality (2.23) can be equiva-
lently written in operator form as

A*A+CC<I

where the operator C: H(Ks) — Y is given in (2.12). It therefore follows from
Definjtion 2 5 that for every canonical functional-model colligation U = [4 B for

S, the operator A is a contractive solution of the Gleason problem (2.7). The
following theorem provides a converse to this statement.

Theorem 2.10. Let S € Sa(U,Y) be given and let us assume that C, D are
gt en by formulas (2.12). Then

1 For every contractive solution A of the Gleason problem (2.7) for H(K3s),
there ezists an operator B : U — H(K3) such that U = [4 B) is contrac-
tr e and S s reahzed as in (2.4).

2 E ery such B solves the H(Ks)-Gleason problem (2.8) so that U is a
canonical functional-model colligation.

PROOF. Since A solves the Gleason problem (2.7) and since C is defined as in
2.12 , we conclude as in the proof of Theorem 2.9 that identity (2.17) holds which
is equivalent to (2.19). On account of (2.19), it is readily seen that (2.18) and (2.20)
are equivalent. But (2.20) is just the adjoint form of (2.4) whereas (2.18) coincides
with 2.10 since D = §(0)) which in turn, is equivalent to (2.8) by Proposition 2.4.
Thus, it remains to show that there exists an operator B*: H(Kgs) — U completely
determined on the subspace D C H(Ks) by formula (2.10) and such that U* =
[4: G.] is contractive. This demonstration can be found in [10, Theorem 2.4]. O

3. de Branges—Rovnyak kernels associated with a Schur— Agler-class
function on the polydisk

Here we introduce a generalized Schur class, called Schur - Agler class, associ-
ated with the unit polydisk

D? = {z=(21,...,2a) €C?: |z| <1for k=1,...,d}.

We define the Schur- Agler class SA4(U,Y) to consist of holomorphic functions
S: D% — L(U,Y) such that ||S(T)|| < 1 for any collection of d commuting operators

T = (Ty,...,T4) on a Hilbert space K with ||Tk|| < 1 for each k = 1,...,d where
the operator S(T') is defined as in (2.1).
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The following result appears in [1,2,14] and is another multivariable analogy,

of Theorem 1.1. The reader will notice that analogues of both (la) and 1b &
Theorem 1.1 are missing in this theorem.

Theorem 3.1. Let S be a L(U,Y)-valued function defined on B2, The folloy-

ing statements are equivalent:
(1) (c) S belongs to the class SA4(U,DY), i.e., S satisfies the von Neumann
inequality \S(Th,...,Ty)|| < 1 for any commutative d-tuple T =

(Tl’-'-de) of strict contraction operators on an aurtiary Hilbert
space K.

(2) There exist positive kernels Ki,...,Kq: D x D4 = L(Y) such that for
every z = (21,...,24) and { = ((,-..,Ca) in D9,

d
(3.1) Iy = 5(2)8(Q)* = Y _(1 — z8) Kz, Q)

k=1

(3) There exist Hilbert spaces Xi,...,Xa and a unitary connecting operator
U of the structured form

An ... A B X X
An ... Aga By Xa Xa
Ci ... Cq4 D Uu y

so that S(z) can be realized in the form

(3.3) S(z) = D+ C(I = Zaiag(2)A) ™ Zaiag(2)B  for all z € D
where we have set
Z1I X 0
(3.4) Zgieg(2) =
0 Zded
(4) There exist Hilbert spaces X, ..., X4 and a contractive connecting operslor
U of the form (3.2) so that S(z) can be realized in the form (3.3)

Remark 8.2. Although statement (4) in Theorem 3.1 concerning contractivé

realizations does not appear in [1,2,14], its equivalence to statements (1)-(3) ¢
be seen by any one of the three approaches mentioned in Remark 2.2.

Similar to the notion introduced above for the unit-ball case, there is a notio?
of weak coisometry for the polydisk setting as follows.

Definition 8.8. The operator-block matrix U of the form (3.2) is weakly co%"
metric if the restriction of U* to the subspace

(3.5) Dy = \/ [Zdias(C)"(I - A'zdias(gy)—lov-y] c [,;a]

¢ep? Y
vey

is isometric.
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When U is given by (3.2) and S(z) is given by (3.3), it is immediate that we
have the equality

[CU = Zaing(2)A) "2 Zging(2) I) U = [C(I = Zging(2)A)™! S(2)] .
From this it is easy to verify the following general identity:

(36) I-S5(x)5(0) = C(I - Z(2)A)™ (I - Z()Z(C)*)(I - A*Z(Q)")*C*
+[CU - Z(2)4)12() 1) (I -UU") [Z(c)*(r - A;Z(c)*)-lc“]

where here we set Z(z) = Zgiag(2) for short. It is readily seen from (3.6) that

the weak-coisometry property of the colligation (3.2) is exactly what is needed to
guarantee the representation

3.7 I-S(z)S()"

= C(I - Zang(JA) ™ (1 = Zaiag(2) Zanc )T = A" Zatag(0)) 2"
Note that the representation (3.7) has the form (3.1) if we take
3.8) Ki(2,¢) = C(I — Zaing(2)A) ™ P, (I — A* Zaieg(¢)*) ' C*
for k=1,...,d, where Py, is the orthogonal projection of X := EBLI X; onto Xj.
3.1. Weakly coisometric canonical functional-model colligations. Let
us say that a collection of positive kernels {K;(z,(),...,Kqg(2,¢)} for which the
decomposition 3.1) holds is an Agler decomposition for S. In view of (3.7), we see
that a realization 3.3) for S arising from a weakly coisometric colligation matrix
U 3.2 determines a particular Agler decomposition, namely that given by (3.8).
Our next goal is to find a canonical weakly coisometric realization for S com-
patible with the given Agler decomposition. Toward this goal we make the following
definitions.
Suppose that we are given a Schur-Agler class function S € SA4(U,DY) to-
gether with an Agler decomposition {K1(2,¢),..., K4(2,()} for S. We set

K(21 C) = Kl(z: C) RIRRR Kd(z: C)

Then K is also a positive kernel on D? and the associated reproducing kernel Hilbert
space ‘H K) can be characterized as

t=1

d
H(K) = {Zfi:fi € H(K;) for‘i=1,...,d}

with norm given by

d
“Zﬁ“um = 1Paernrs Flaps,. ek,

i=1

where 8: @f:l H(K,) = H(K) is the linear map defined by

h
(3.9)

d
sf=f+-+fa wheref=®f¢:=

i=1

fa



14 J. A. BALL AND V. BOLOTNIKOV

It is clear that kers = {f € @f___l’H(K,;) sfi(z) 4o+ fi(z) = 0}. If we let

Kl(z: C)
(3.10) T(z,() :=

K d(z ] C)
we observe that by the reproducing kernel property,

d
(3.11) TGOV @, nimy = Do Kl Oy
i=1
d
= (L 10) =616 um
i=1
so that
(312) 8"+ K(, )y = T(, Ov-
Furthermore,
d
(kersy" = \/ T(, Oy < EDH(K).
¢en? k=1
yeY
‘We next introduce the subspace
(3.13) D= \/ Zaieg(O) T(, )y
¢ep?
yey

of Gaz___l H(K&x) and observe that its orthogonal complement can be described &

d d d
pt={r=PDre@uE): Y ana =0}
=1

i=1 i=1

In addition, the straightforward computation

d
3
I Oullpt. o = L UKKE O 1) = (RGO, v)y = KGO e
combined with (3.12) shows that s* is an isometry, i.e., that s is a coisometTy: ‘::
remark that all the items introduced so far are uniquely determined from deco
position (3.1). -
Given an operator-block matrix A = [A,,]¢,_, acting on @Ll H(KL) ¥

that A solves the structured Gleason problem for the kernel collection {le""Kd}
if the identity

d
314) A+ + fal2) = [10) + -+ + fa(0)] = D 2 (AN()

=1
4 {2
holds for all f = @2_, f, € @, H(K:), where we write (Af)(z) = Di=1 (and
€ @f_l H(K,). Note that (3.14) can be written more compactly as

d 4
(15 (N -ENO) =Y a(Awf)z)  forall f e @HER

k1
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where s is given in (3.9) and where

d
(3.16) A = [Ag Ayl PHED) 2 HEK)  (i=1,...,d)
k=1
so that
d d d
(3.17) A=P A =14,)0,0,: PHEKL) » D HEK).
=l k=1

=1
We say that the operator B: U —» @:_I'H(Kk) solves the structured H(Kk)-
Gleason problem for S if the identity

(3.18) S(2)u— S(0)u = 21(Bu)1(2) + -+ + z4(Bu)g(z)  holds for all u € U.
The following is the parallel to Proposition 2.4 for the polydisk setting,.

Proposition 3.4. The operator A: @?:1 H(K;) — ®?=1H(Ki) solves the
stru tured Gleason problem (3.15) if and only if the adjoint operator A* has the
follounng a tion on spectal kernel functions:

GKy S Q)y Ki(HQy K (-,0)y

At —

: : - : forall¢ eD? andy e Y.
GK Cy Ka(,¢)y Kq(-,0)y

The operator B. U — @?:1 H(K,) solves the structured Gleason problem (3.18)

f S fa dony if the adjoint operator B*: 4= H(K;) = U has the following
i=1
actr n n special kernel functions:

¢ Ki-Qy
B*: : ~S(¢)y—-80)y forall¢eD? andye Y.
Cde('a C)y

PROOF. Making use of notation (3.10) and (3.4) we can write the definitions
of A* and B* more compactly as
3.19

A" Za1eg(O)"T( Qy = T(, Qy — T(-, 0)y,
3.20

B*Zdiag(C)*T(" C)y = S(C)*'y - S(O).y'
By calculation (3.11),

fr']r('i C)y - T("O)y>ef=1 H(K) = ((Sf) (C) - (Sf)(O), 'y))"
On the other hand, it follows by the reproducing kernel property that

F1 A" Zawag(2)"T(, 2)W @2 | k) = (Zaing ()AL, TC, 2D @2, 30k,
d
- <2[zm(z)Af1i(z),y>y

3=1

= <§::1 z,-[Af]ﬂ(Z),y>y

and the two latter equalities show that (3.15) holds if and only if (3.19) is in force

for every y € Y. Equivalence of (3.18) and (3.20) is verified quite similarly. D
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The following definition of a canonical functional-model colligation is the ana.
logue of Definition 2.5 for the polydisk setting.

Definition 3.5. Given S € SA4(U,Y), we shall say that the block-operator

matrix U = [4 8] of the form (3.2) is a canonical functional-model coll gation
associated with the Agler decomposition (3.1) for S if

(1) U is contractive and the state space equals @‘;1 H(K,).

(2 zé’: Q)}:-i:l H(K;) = @?=1 H(K;) solves the structured Gleason problen
.15).

(3) B: U = @2, H(K;) solves the structured Gleason problem 3.18 for§
(4) The operators C': GB;LI H(K;) > Y and D: Y — Y are given by
(3.21) C: f(2) » (sf)(0), D: uw— S(0)u.

Remark 3.6. For C and D defined in (3.21), the adjoint operators are given
by

(3.22) C*:yw— T(.,0)y D*: y— S(0)*y.
The formula for D* is obvious while the formula for C* follows from equalities
(1, CWeL, ks = (ChHydy ={0), )y ={/, T 0y g _uxk
holding for every f € GB;LI H(K)).
Theorem 3.7. Let S be a given function in the Schur— Agler class SA; U,Y)

and suppose that we are given an Agler decomposition (3.1) for S. Then there ensts
a canonical functional-model colligation associated with {K;,...,Ka}.

PROOF. Let us represent a given Agler decomposition (3.1) in the inner product
form as

d
Y (GK G Qun Kl 20 ) miy + @8 )
i=1

d
=) (K, Qs Kol 21 )i, + (SO 9, S(2)"y s

i=1
or equivalently, as

2 <[zm(c);'n‘(.,<)y] , [zdiag(z);jr(-,z)y']>(®‘d=‘ .

—_ < [T('v C)y] [T('» z)yl] >
S(O)'y] | Sy (@2, H(k,))o¥
where T is given in (3.10). The latter identity implies that the map
(3.24) 7. [deg(C);T(-,C)y] o [E'((C)C“)z]

extends by linearity and continuity to an isometry from Dy = D@ Y (a subspa®
of (@?:1 H(K,)) ® Y —(3.13) for definition of D) onto

rem \[Eo00 c @l

O S()*y
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Let us extend V to a contraction U*: [97 1;‘("‘)] - [ei‘ x&‘("‘)]. Thus,

Computing the top and bottom components in (3.25) gives
(3.26)

A Zaiag ()T Qy + Cy = T(, (),
B* Za1ag(Q)*T(-, )y + D™y = S({)"y.
Letting ¢ = 0 in the latter equalities yields (3.22) which means that C' and D are

of the requisite form (3.21). By substituting (3.22) into (3.26) and (3.27), we arrive

at (3.19) and (3.20) which in turn are equivalent to (3.15) and (3.18), respectively.
Thus, U meets all the requirements of Definition 3.5. O

(3.27)

We have the following parallel of Remark 2.8 for the polydisk setting.

Remark 3.8. As a consequence of the isometric property of the operator
V 3.24) introduced in the proof of Theorem 3.7, formulas (3.19) and (3.20) can
be extended by linearity and continuity to define uniquely determined operators
Ab: D - @1, H(K,) and Bj: D — U where the subspace D of @F_, H(K;) is
defined in (3.13). In view of Proposition 3.4, we see that the existence question
is then settled: any operator A: @Ll H(K;) = @?:1 H(K;) such that A* is an
extension of AL, from D to all of @2, H(K:) is a solution of the structured Gleason
problem 3.15) and any operator B: U — ®g=1 H(K;) so that B* is an eztension

of the operator B},: D — U is a solution of the structured Gleason problem (3.18)
Jor S.

In the polydisk setting we use the following definition of observability: given
an operator A on @Ll&- and an operator C: @?:1 X, — ), the pair (C, A)
will be called observable if equalities C(I — Zgiag(2)A) " 1Py,z = 0 for all z in a

neighborhood of the origin and for all 4 = 1,...,d forces z =0 in @f_l X;. The
latter is equivalent to the equality

3.28 V PulI-AZag(2))'Cy=X  fori=1,..,d
z€AYEY
for some neighborhood A of the origin in C4, The following theorem is the analogue

of Theorem 1.2 for the polydisk setting; portions of this theorem appear already in
[14, Section 3.3.1).

Theorem 3.9. Let S be a function in the Schur - Agler class SAq(U,Y) with
a gwen Agler decomposition {K,,...,Kq} for S and let us suppose that

(3.29) U= [‘é g} : [@Ll;i(fﬁ)] - {EBL)?}(K:')]

18 a canonical functional-model colligation associated with this decomposition. Then:
(1) U is weakly coisometric.
(2) The pair (C, A) is observable in the sense of (3.28).
(3) We recover S(z) as S(2) = D 4+ C(I ~ Zdiag(2)A) ! Zgieg(z)B.
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4) U= [é g] : (@f‘=1 XyelU —~ (@'f:l X,) ®Y is any other co gatiy,
matriz enjoying properties (1), (2), (3) above, then there 135 a canoms
functional-model colligation U = [4 B] as in (3.20) which 15 mitary,

equivalent to U in the sense that there are unitary operators U - D, A
H(K;) so that

d d i D
(330) o ol Bml 0} @l 0112 B)
¢ Dl 0 I o Ijl¢ b
ProoF. Let U =4 8] be a canonical functional-model realization of § asso-
ciated with a fixed Agler decomposition (3.1). Then combining equalities 319

(3.20) (equivalent to the given (3.15) and (3.18) by Proposition 3.4 and also fu-
mulas (3.22) (equivalent to the given (3.21)) leads us to

331)  T(,Qy= (I = A" Zgiag(Q)") " T(-,0)y = (I —~ A*Zaig ¢ * 7'Cy
and

(3.32)  S(Q)'y=5(0)"y + B* Zaiag({)"T(-,{)y = D'y + B* Zaiag ¢ T - ¢

Substituting (3.31) into (3.32) and taking into account that y € Y is arbitrary
get

(3.33) S(0)* = S(0)* 4+ B* Zieg ()" (I — A Za, ¢ ¢ * TIC°

which proves part (3) of the theorem. Also we have from 3.31 and 31 ,

V PugoI - A Zaing(Q))'C*y= \/ Puk T-Cy
¢ebs cep?
yeY yey
=\ K Cy=HK,
¢ep?
yey

and the pair (C, A) is observable in the sense of (3.28). On the other hand, equalites

(3.19), (3.20) are equivalent to (3.25). Substituting (3.31) into 3.25 and o
identity (3.23) (for z =( and y = y/') gives

U* {Z(C)‘(I - A‘Z(C)‘)‘lc‘y] - [(I - A‘Z(C)‘)‘lc"y]

( Sy
“ [Z(C)‘(I - A‘Z(C)')‘lc‘y] - “ [(I - A‘Z(C)‘)‘lc‘y] ‘

( Sy '
respectively, The two latter equalities show that U™ is isometric on the space Dy
(see (3.5)) and therefore U is weakly coisometric.

To prove part (4), let us assume that

(3.34) S(2) = S(0) + CU ~ Zaiag(2)A) ™ Zaing(2) B

is & weakly coisometric realization of S with the state space @Ll X, and sucd

that the pair (C, A) is observable in the sense of (3.28). Then S admits 88 Ager
decomposition (3.1) with kernels K; defined as in (3.8):

Ki(2,¢) = C(I = Zaing(2)A) " Pg, (I — A* Zaing(¢)*) 'C*
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for i =1,...,d. Let H(K;) be the associated reproducing kernel Hilbert spaces and
let Z,: X, = X = @Ll X, be the inclusion maps

Li:rzi =5 00---00@xr;800:--850.
Since the pair (5, A) is observable, the operators U,: X, = H(K;) given by
(3.35) Uyt 23 = C(I — Zaiag(2)A) "' Liz;

are unitary. Let us define A € C(@‘_l H(K,)) and B € L(U, 69‘_1 H(K;)) by

(3.36) A (Qj U.) = (@ U‘-) A ed B= (@ U.-) B.

=1 i=1

In more detail: A =
(3.37)

[Au]?\3=1 where

A.,: 5(.[ - Zdiag(z)ﬁ)‘lljmj — 6(1 - Zdi&s(Z)A)_lLAijmj.

Define the operators A, 8s in (3.16) and similarly the operators A4;, fori =1
Take the generic element f of @f_l'H(Ki) and z € X in the form

d
3.38 f2)= @C(Ix Zsing(2)A) Lz, z=Ps; e x.
=1
By 337, we have
é(I - Zdi,g(z)zi)—lzm:l
3.39 AJ) D) ={Aa ... Au) :

CI = Zging(2) A) T4z

—ZA,, (CU - Zsing(2)A) ' T;2;)
j=1
d
26(.[ - Zdi&g(z)ﬁ)—lziﬁijzj
’=

= C(I - Zaing(2) A 'TiAjezz.
For f and z as in (3.38), we have

d d
8f) 2) =) Clx ~ Zaing(2)A) ' Ljz; = Clx - Zaing() D) Y Ljz
=1 j=1
=C(Ix — Zaing(2)A) 'z
which together with (3.39) gives

(8f)(2) - (sf)(0) = C(I Zd,,g(z)A) z-Cz
= CO(I = Zigiag(2) A) ™ Ziog(2) Az
d

d
= ZZ, . 6(.[ - Zdiu(Z)A)—lIJAj.I = Z Zj5 (Agof)(z)!
J=1 =1
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which means (since f is the generic element of @¢_, H(K.)) that the operaton

Aty ..., Ags satisfy identity (3.15). Furthermore, on account of (3.38), (3.35 and
(3.34),

d
Y z(Bu)i(2) = 2C(I ~ Zaing(2) A) T, Biu

d
i=1 i=

i=1

d
=C(I - Zaing(2)A) ™' 2L Bou

=1
= C(I ~ Zaing(2)A) " Zaiag(z) Bu=S(2)u—S 0 u

and thus, B solves the Gleason problem (3.18) for S. On the other hand, foranz
of the form (3.38), for operators U; defined in (3.35), and for the operator C defined
on @?:1 H(K;) by formula (3.21), we have

d d d d
c(@ Ui) 2= (Uiz:)(0) =) C(I - Zaing(0)A) 'Lz, =CY Lz, =Cx
i=1 i=1 i=1 =1

and thus C(@'f=1 U;) = C. The latter equality together with definitions 336
implies (3.30). Thus the realization U = [4 B} is unitarily equivalent to the ong-

inal realization U = [2-‘: g ] via the unitary operator @Ll Us,. This realization s
a canonical functional-model realization associated with the Agler decompasition
{Kiye- oy Kd} of S since all the requirements in Definition 3.5 are met. a

We conclude this section with a theorem parallel to Theorem 2.9. In analogy
with the ball setting, we say that the operator A on @';1 H(K, is a contrachie

solution of the structured Gleason problem for the kernel collection {Kj,...,Kd}
if in addition to identity (3.15) the inequality

d
VATV iy = D MAie Wiy < 118, mimey = ENO)Y

i=1

holds for every function f € @?___1 H(K;) or equivalently, the pair (C, A) i con-
tractive:
A*A+CC<L,

where C: EBLI H(K;) = Y is the operator given in (3.21). By Definition 35,

for every canonical functional-model colligation U = (£ B associated with a given

Agler decomposition of S, the operator A is a contractive solution of the structured
Gleason problem (3.15).

Theorem 3.10. Let (3.1) be a fired Agler decomposition of a given funchion
S e SAsU,Y) and let C and D be defined as in (3.21). Then
(1) For every contractive solution A of the structured Gleason problem (3.15),

there is an operator B = @ B,: U — @LI‘H(K.) such that U=[45
18 a canonical functional-model colligation for S.
(2) Every such B solves the Gleason problem (3.18) for S.

PROOF. We start the proof with two preliminary steps.
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Step 1. Let A of the form (3.17) solve the Gleason problem (3.15). Then

d
@) CU-Zau@AF=6NE  (rephse @)
=1

where s and C are defined in (3.9) and (3.21), respectively.

PROOF OF STEP 1. To show that identity (3.15) is equivalent to (3.40) we take
A in the form (3.17) and define the operators

Al. 0 0
- 0 - Az. - H
(3-41) A= . ) Agy = . 3 N Age = 0 )
0 Ado

d
50 that A,q: @?:1 H(K,) — @:1:1 H(K;) and A = ZA,-,. On account of (3.41)
i=1
and due to the block structure (3.4) of Zg;ag(2) we have

(I = Zag2)A) ™ = (I = e — - ~ 2gae)

w -~
= Z(zlAlo + - 4 z5A00)k.
k=0

Applying the operator C(I — Zaiag(2)A) ™! to an arbitrary f € @}, H(K:) and
making use of formula (3.21) for C, we get

342 C I—Zawg(2)A)7f

=CS (nhie+ -+ 2da)tf
k=0

d d
= (8£)(0) + D _ zi(sAinf)(0) + > ziz(EAind )0+
i=1 i,j=1

On the other hand, by writing (3.15) in the form

d
(8£)(2) = (8N)0) + Y zi(sAia )(2)

i=1

and iterating the latter formula for each f € @le H(K;), we get

(343) (sf)(2)

d d
= (sf)(0) + Z Zjy \:(SAJﬂf)(o) + Z Zj

n=t

[(sAj,.Aj,.f) )+

Ja=1

d
2 B Apeds O+ H

Jr=1
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Since the right-hand side expressions in (3.42) and (3.43) are identical, 3.40 fu
lows. Now we have from (3.40)

(fo (- A*Zdlag(z)‘)—lcty) = (C(I - Zdiag(z)A)—1f1 Y) = ((3f) z,y

= fvT 32 Y
for every z € D% and f € @?:1 H(K;), and thus, equality (3.31) holds. 0

Step 2. Given operators A,C and D with A of the form 3.17) equal to
contractive solution of the structured Gleason problem for the kernel collechon
{K1,..., K4} and with C and D given by (3.21), if U = [2 B] s a contractirg
realization of S for some operator B=@ B,: U = EBLI H(K,), then B sohes the
@LIH(Kk)-Gleason problem for S, i.e., B satisfies identity 3.18 .

ProOF OF STEP 2. Since U = [4 B] is a realization for S, equality 3.3
holds. Making use of equality (3.31) (which holds by Step 1 one can write 3.33

as
B*Zaing({)'T(, Q)y+ D'y =5 ( "y
or, in view of formula (3.21) for D, as

(3.44) B*Z4iag($)"T(- Q)y = S({)'y~ 5 0 *y.
Taking the inner product of both parts in (3.44) with an arbitrary functin f ¢
@?:1 H(K;) leads us to Zgjag(2) Bu = S(2)u—S(0 u which is the sameas 3.18 0

To complete the proof of the theorem, it suffices to show that there exists an

operator B: U — @?:1 H(K;) such that equality (3.33 holds for every u € U and
the operator matrix

(3.45) Ut = [B: g} : [EBLl;l(K.)] - [692':1 z;‘ K)}

is a contraction. As we have seen, equality (3.33) is equivalent to (3.44, wheh

in turn, defines B* on the space D introduced in (3.13). Let us define B: D -
@f___l H(K;) by the formula

B: Z(0)*T(- ¢)y = S(¢)*y — S(0)*y

and subsequent extension by linearity and continuity; it is a consequence of the
isometric property of the operator V' in (3.24) that the extension is well-defined
and bounded. We arrive at the following contractive matrix-completion problem:
find B:UY = EB‘::l'H(K,-) such that B*|p = B and such that U* of the form (3.45
i9 a contraction. Following [10] we convert this problem to a standard matrix
completion problem as follows. Define operators

d d
Tu: D'+ PHK:), Ta:DoY->PHK), Tu:DeY-lU

-1 =1

by

(3.46) T, =4 l.DJ_, T2 = [A' Ip C'] sy Taa= [§ D'] .
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Identifying [1;’3;‘),] with [®d=1y"(x‘)] we then can represent U* from (3.45) as

(3.47) U= [’-’}{1 ’g;ﬂ : [ngy] 5 [ea:;l ;{(K‘)]

where X = B*|p. is unknown. Thus, an operator B gives rise to a canonical
functional-model realization U = [4 8] of S if and only if it is of the form

* DJ_ d
B= L}] U M = UK
=
where X is any solution of the contractive matrix-completion problem (3.47). But
this is a standard matrix-completion problem which can be handled by the well-

known Parrott’s result [29]: it has a solution X if and only if the obvious necessary

conditions hold:
Ty
3.48 fmn Twlli<y, \ [Tn]
Making use of the definitions of 11y, Ti2, Tee from (3.46), we get more explicitly

[Tn T,)={a* C1, {Tu] _ {A'jp C"‘]

<1

Teel | B D*|°
Thus the first expression in (3.48) is contractive since A is a contractive solution
of the stru tured Gleason problem (3.15), while the second expression collapses to
V seef rmula 3.24 ) which is isometric by (3.1). We conclude that the necessary

nditi ns 3.48 are satisfied and hence, by the result of [29], there exists a solution
X to problem 3.47 . This completes the proof of the theorem. O

4. de Branges — Rovnyak kernels associated with a Schur— Agler-class
function on a domain with matrix-polynomial defining function

A generalized Schur class containing all those discussed in the previous sections

as special cases was introduced and studied in [4,9] (see also [5] for the scalar-valued
case and can be defined as follows. Let Q be a p X g matrix-valued polynomial

an(z) ... qi(2)
41 Q(2) = : :C* — CP
api(2) ... Qpe(2)
such that
42 Q0)=0

and let Dq € C™ be the domain defined by

Dq = {2 € C™": |Q(z)l| < 1}.
Now we recall the Schur Agler class S.AqQ(U,Y) that consists, by definition, of
L U, Y)-valued functions S(z) = S(z,. .., 2,) analytic on Dq and such that ||S(T"||
< 1 for any collection of n commuting operators T = (T1,...,T,) on a Hilbert
space K, subject to Q(T)|| < 1. By [5, Lemma 1], the Taylor joint spectrum of
the commuting n-tuple T = (T}, ...,Tx) is contained in Dq whenever ||Q(T)|| < 1,
and hence S(T') is well defined by the Taylor functional calculus (see [19]) for any
L U, Y)-valued function S which is analytic on Dq. Upon using K = C and T}, = z,
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forj 1,...,n where(z,...,2,) is a point in Dq we conclude that any funet
SAq(U,Y) is contractive-valued, and thus, the class SAq U,Y) is th la
the Schur class Spq (U, Y) of contractive valued functions analyt'c on Dq B
von Neumann result, in the case when Q(z) = z, these classes coincide in geners],
SAq(U,Y) is a proper subclass of Spq (U, Y). The following result appears

(see also (5] for the scalar-valued case U — Y = C) and is yet another m ti
analogue of Theorem 1.1. We will often abuse notation and will write Q z msteaq
of Q(z) ® I where I is the identity operator on an appropriate Hilbert space
from the context. When the following theorem is viewed as a parallel fTh req

we see that, just as in the polydisk setting, there is no parallel to  dit s
and (1b).

Theorem 4.1. Let S be a L(U,Y)-valued funct on defined on Dq The
lowing statements are equivalent:

(1) (c) S belongs to SAqQU,Y).

(2) There exists a positive kernel

K1 ... Klp
(4.3) K= : : | :Dq Dq— LI
Kpn ... Kp
which provides a Q-Agler decomposition f r S .e, su thatf

Z,C € DQ,

(44)  Iy-S(z)8(Q)" ZKkk(zo 22«; zq (% 2¢

k-1 ,=1

(2") There exist an auziliary Hilbert space X ¢ da fu &

(4.5) H(z) = [H1(z) ... Hp(z]
analytic on Dq with values in L(XP,Y) so that f r every z,{ € Dq
(4.6) Iy -5(z)S() =H(z)(Ix —QzQ¢* H("
(3) There erist an quziliary Hilbert space X and a u 1 tary connec g perut
U of the form
A B| {ar X
47) U=[C D]. [u]—)[y]

so that S(z) can be realized in the form
(4.8) S(z) = D+ C(Ixe — Q(2)A) 'Q(2)B for all z € Dq.

(4) There exist an auxiliary Hilbert space X and a contractive connecti™ %p-
erator U of the form (4.7) so that S(z) can be realized in the for™ ¢4

Remark 4.2. If S = s“ s,,] € SAq(Uy ® Uz, Y1 ® W), then the plock eotry

2! 22 roof, ‘t
S,, belongs to the Schur Agler class SAq(U, Y,) for 4,5 = 1,2. For the P
suffices to note that [|S,; (D) < IS(TH.



TRANSFER-FUNCTION REALIZATION 25

Remark 4.3. The equivalence (2) <= (2') can be seen by using the Kol-
mogorov decomposition for the positive kernel K:

Hl(z)

(4.9) KzQ=1 : | [H©" ... H()].
Hp(z)

The implication (4) => (1) can be handled by any of the three approaches
sketched in Remark 2.2. Following the approach from [10], we first handle the case
where U is coisometric, using the identity

(410) I-5(2)S(Q)* =CU - Q()4) (I - QRQO)I - 4* Q)™ C*
+[CU - Q(2)4)71Q(z) qu-uuwrmru—ﬁqmw*o}

holding for S of the form (4.8) and U given by (4.7), the straightforward verification
of which is based on the identity

[CU-Q@A1QRE IU=[CI-Q@RA 5)].
Then the general {contractive) case follows by extension arguments and Remark 4.2.

Remark 4.4. With no assumptions on the polynomial matrix Q(z) some de-
gener ies ccur which can be eliminated with proper normalizations. We note first
f all th t it is natural to assume that no row of Q(z) vanishes identically; other-
wise one can cross out any vanishing column to get a new matrix polynomial Q(z)
f smaller size which defines the same domain Dq in C™. Secondly, in the second
term of the Q-Agler decomposition (4.4), the (%, l)-entry K;; of K is irrelevant for
any pair of indices i, such that at least one of q;x(2) and qux(#) vanish identically
freach k =1,...,9. Note that if the first reduction has been carried out, then
all dhag nal entries K,, are relevant in the second term of (4.4) in this sense. It
f Nows that, without loss of generality, we may assume that K;(z,{) = 0 for each
such pair of indices (Z,). To organize the bookkeeping, we may muitiply Q(2) on
the left and right by a permutation matrices II and II' (of respective sizes p x p and
g x q so that Q z) = [1Q(2)II' has a block diagonal form

QM) (2) 0
a1 Q(z) =
0 Q®(z)
with the oth block Q ® (a =1,...,d) of say size pa X g4 and of the form
Q) (2) = [q{ (i,

and irreducible in the sense that Q has no finer block-diagonal decomposition after
permutation equivalence, i.e., for each o for which Q(®) is nonzero and for any
pair of indices i,1 (1 < 4, < pa), there is some k (1 < k < g;) so that either
q,% (2) or q,2)(2) does not vanish identically. Without loss of generality we may
assume that the original matrix polynomial Q is normalized so that Q = Q. We
may then assume that the positive kernel in (4.3) and (4.4) has the block diagonal
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decomposition
KM(z,¢) 0
(412) K(z,) = 5
0 K (z,¢)
where K(®) in turn has the form
KY ... K@
K =1 : . | :DgxDg— L Y= .
() K(a)
al PaPa

Under the normalizing assumption that K has this block diagonal f rm .12

Q(2) is written as a direct sum of irreducible pieces (4.11 , the mnstructi nsto
follow can be done with more efficient labeling but at the cost of an addit: nal ver
of notation. We therefore shall assume in the sequel that this diag nal structure =
not been taken into account (or that the matrix polynomial Q is already frredu

until the very end of the paper where we explain how the polydisk settin, can
seen as an instance of the general setting.

e

As in the previous particular settings of the ball and of the polydisk, we mtro-

duce the weak-coisometry property as the property equivalent to 4.10  Hapsm,
to

I-8)S(C)=CI-Q(x)A)'I-Q(z)Q¢* I-4"Q(*'C.

Definition 4.5. The operator-block matrix U of the form 4.7 is weskl 10-
metric if the restriction of U* to the subspace

(4.13) Dys = C¥Q [Q(C)*(I - A*yq(c)' _IC"‘y] . ﬁ;]
vey

is isometric.

Due to assumption (4.2), the space Dy~ splits in the form Dy« = D@ ) where
(4.14) D= \/ QEUI-4"QE)")'Cyca.

Ce€DqQ.yeY

4.1. Weakly coisometric canonical functional-model Q-realizations-
Let us suppose that we are given a function S in the Schur Agler class SAq U\Y
together with an Agler decomposition K as in (4.3) (so (4.4) is satisfied). We wil

use the notation Quk(¢) for the k-th column of the polynomial matrix Q. What
actually comes up often is the transpose:

(4.15) Quie(O)T = [awe(©) azlQ) .-+ qm({)]-

Note that with this notation the Q-Agler decomposition for S (4.4) can be writte?
more compactly as

P q
(4.16) Iy = S(2)S(¢)" =Y K x(2,0) — >_ QL (2)K(z QL ()"
k1 i1l

an expression more suggestive of the Agler decomposition (3.1) for the pol)d”k
case.
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We say that the operator A: H(K)? — H(K)? solves the Q-coupled Gleason
problem for H(K) if

r q

(4.17) Z(fk,k(z) - frk(0)) = ZQ.k(z)T[Af]k(z) for all f € H(K)?
k=1 k=1

so each f € H(K)? has the form

h fra
f=1: where fr = | 1 | € H(K).
.fp .fk.p
Similarly, we say that the operator B: U = H(K)? solves the Q-coupled H(K)-
Gleason problem for S if the identity

(418 S(2)u— S(0)u = iQ.k(z)T[Bu]k(z) holds for all u € U.

k=1
The following proposition gives the reformulation of Gleason-problem solutions in
terms of the adjoint operators. In what follows, we let {e;,...,ep} to be the
standard basis for C?.

Proposition 4.6. The operator A: H(K)Y? — H(K)? solves the Q-coupled

Gleason problem 4.17) if and only if the adjoint A* of A has the following ac-
twon on special kernel functions:

K(,)Qau()™y K(,{)Ewy K(-,0)Eny
4.19 A*: — -
K(,$)Qeg(0) ™y K(, Q) Epy K(:,0)Epy
fo al{€Dq and y €Y, where E; =Iy ®e, fori=1,...,p
Iy 0 0
0 Iy .
4.20 E, = A E, = aE ceey Ey= 0
0 0

Iy
The operator B: U — H(K)? solves the Q-coupled H(K)-Gleason problem (4.18)

for S of and only if B*: H(K)? — U has the following action on special kernel
functions:

K(,$)Qei () ™y
(421 B*:

K(-, ()QaqlC) ™y
PRrROOF. We start with the identity

— S(()*y - S0)*y forall{ € Dq andye Y.

K(z,¢)Ewy K(2,¢)Qu1 (C)T‘y
(4:22) Q)" = :

K(z) C)EPy K(z’ C)qu (C)T‘y

which holds for all z,{ € Dq and y € Y; once Q(()* is interpreted as Q(¢)*®Iy and
similarly for Qex({)*, this can be seen as a direct consequence of the definitions
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(4.1), (4.3), (4.15) and (4.20). Letting

K(zi C) El
(4.23) T(z,¢) == :
K(zi C)EP

for short, we then can write formulas (4.19), (4.21) more compactly as

(4.24) A* Q)" T(-,Q)y = T(-,Q)y — T(-,0)y,

(4.25) B*Q(Q)'T(-, )y = S()'y — S(0)*y

where now Q()" is to be interpreted as Q(¢)* ® Iy (x). In the following computa-

tions, Q(¢)* is either Q(¢)* ® I'y or Q(¢)* ® Iy (x) according to the context. By
the reproducing kernel property, we have for every f =@,_, fr € H K ?,

14 P
(4.26) T Hme = O KGO By um = 3, Eifi(C .y y

k=1 k=1

(S
= s ,y .
e k.,k v

Therefore,

(4.27) (£ TCOY = TC 0wy = <Z(fk,k(0 ~frx 0 )1y>y'
k=1

On the other hand, it follows again from (4.26) that

(f’ A‘Q(Z)‘T('iz)y)ﬂ(ﬂ()? = (Q(Z)Af’T("z)y)H(K)P = <Z[Q(Z)Af]-"1 z.y y

=1
and since

)4

428) Y Q@A) =D qik(2)[Aflk,(2)
§=i j=1lk=1

= Z(Z q”!(z) [Af]k‘_; (z)) — ZQ.k(Z)T[Af]k(Z ,
k=1 “j=1 —
we get

q
(fa A‘Q(z).T(" Z)y)’H(K p= <Z QOk(z)T [Af]k(z)’y>y'
k=1

the
Since the last equality and (4.27) hold for every f € H(K)?, ¢ € Dq and¥ ev:Zl:anCe
equivalence of (4.17) and (4.24) (which is the same as (4.19)) follows. EQW
of (4.18) and (4.25) follows by the same argument from equalities

(u,S(0)"y = S(0)*y)u = (S(¢)u — SO)u, y)y
and

(ui B‘Q(Z)'T(', Z)y)u = (Q(Z)Bu’ T('w Z)y)’H(K)p

o :1 [Q() Bul,, (z),u>y B <i Q.k(z)T[B"]"(Z)’y%a

2 k=1
holding forall u € Y and y € Y.
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Just as in the particular cases discussed in the previous sections, it turns out
that the formulas (4.19) and (4.21) can be extended by linearity and continuity to
define uniquely determined bounded well-defined operators

AL D 2 H(K)P, Bhr: DU
as a consequence of the isometric property of the operator V defined below in (4.33).

Definition 4.7. We say that the operator-block matrix U = {4 B]: H(K)? &
U - H(K) DY is s canonical functional-model colligation matm for the given
function S and Agler decomposition K if

1) U is contractive.

2) The operator A solves the Q-coupled Gleason problem (4.17) for H(K).
3) The operator B solves the Q-coupled H(K)-Gleason problem (4.18) for S.
4 The operators C: H(K)? - Y and D: U — Y are given by

fi(2)
4.29 C: | ¢+ |~ f0)+-+fpp(0), D:uwr SO)u.

Fo(2)

F rmulas 4.25) can be written equivalently in terms of adjoint operators as
follows:

43 C*:y~T(,0y D*:ym~ S0O)y
where T is defined in (4.23). The next theorem is the analogue of Theorem 3.7.

Theorem 4.8. Let S be a given function in the Schur — Agler class SAqU,Y)
and suppose that we are given an Agler decomposition (4.4) for S. Then there exists
a canonical functional-model colligation associated with the kernel K.

PROOF. Let us rearrange the given Agler decomposition (4.4) or (4.16) as

q P
Iy+ " Qui(2) 'K(z,)Qur(Q) ™ = S(2)S(0)* + D E;K(2,()E;,

k=1 j=1

and then invoke the reproducing kernel property to rewrite the latter identity in
the inner product form as

4.31) Z(K( c)q.k(o“u,K( 2)Qek(2) Y Iy + W v )y
—Z(K( QOE;uK(12)Epy Y + (S(0)*y, S(2)* v -
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The latter can be written in the matrix form as

K(+,¢)Qa (C)T.y K(:, z)Q.l(z)T'

K('aC)Q.Oq(C)T.y ’ K(-,z)Q;;,(z)T’y’
Y Yy HK)T DY
K('aC)Ely K(-,Z El

K(,Q)Epy| K-,z')E,s/>
S)"y S(z ¥

or, upon making use of notation (4.23) and of identity (4.22 , as

@) <[Q(C)'1£(-,oy] , [Q(z)"gl(-,z)y’pmwey

RESE
SOy’ 1S 2] wweu
The latter identity implies that the formula

. Q(C)‘T(':C)y T K C)y
(4.33) V: [ v ] — [S ¢ ,y]

extends by continuity to define the isometry from Dy = DY C H(X 18 Y see
(4.14) for definition of D) onto

- B[
yey

M Kpals

Let us extend V to a contraction U*: ['H(;f)q] - ["(i"‘)’]. Thus,

«_ A" C] | [QE)T(, )y T(-,Oy]
w0 vl O] RO [0
Computation of the top and bottom components in (3.25) gives
(4.35) A'QQ)'T(,Qy+Cy =T(, Oy,
(4.36) B*Q()*T(¢)y+ D'y = S({)"y.

4.30
Letting ¢ = 0 in the latter equalities and taking into account (4.2) leads us-totgon
from which we see that C and D are of the requisite form (4.29). S_“bsmu equiv-
(4.30) into (4.35) and (4.36) then leads us to (4.24) and (4.25) which ar

; nical
alent to (4.17) and (4.18), respectively. Thus we conclude that U 8 8 cano 5
functional-model colligation as wanted.

tor

For this general setting we define observability as follows: given a0 :ﬁ:éaq.

A: XP - X9 and an operator C: XP — ¥, the pair (C,A) will be € nood of
observable if the identities C(I — Q(2)A)"'Ziz =0 for all z in & neighbor denot®
the origin and for all i = 1,...,p forces z =0 in X. By Z,: & — X? we
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the inclusion map which embeds X into the i-th component of X? = X @ - ® X.
Thus

0 T
(4.37) Lz |z, and I (2| >,
0

Tp
The Q-observability can be equivalently defined in terms of adjoint operators as

(4.38 V{I,'(I A'Q(2)*) 'C*y:zeAyeY,i=1,...,p}=4&

where A is some neighborhood of the origin in C". The following theorem is the
analogue of Theorem 1.2 for the present general setting,.

Theorem 4.9. Let S be a function in the Schur - Agler class SAQU,Y), let
the posttwe kernel K of the form (4.3) provide an Agler decomposition (4.4) for S
a d suppose that U=[4 8] : H(K)? U — H(K)T @ Y is a canonical functional-
model lligation assocrated with S and K. Then the following hold:

1 U s eakly corsometric.
Thep (C,A) s Q-observable in the sense of (4.38).
W reco er S as S(z) =D+ C(I - Q(z)A)"1Q(z)B.
U= é 2|: XP@U —» X7 is another colligation matriz enjoying
p ertes (1), (2), (3) above, then there is a canonical functional-model

col ‘g tron U for (8,K) such that U and U are unitarily equivalent in the
sense that there is a unitary operator U: X — H(K) so that

439 A Bl[@’_,U o] _[@L,U o]|A B
C D 0 Ll | o R|l|& Dbl

ProOF. Let U = [4 5] be a canonical functional-model realization of S asso-
ciated with a fixed Agler decomposition (4.4). Then combining equalities (4.24),

425 equivalent to the given (4.17) and (4.18) by Proposition 4.6) and also for-
mulas 4.30 equivalent to the given (4.29)) gives

4.40

2
3
4

T(,¢ y= (I — A"Q(O)")T'T(, 0y = (I - A*QE)")'C*y

and

441 S5y =S©O)*y + B*Q()'T(-,{)y = D*y + B*Q({)*T(,¢)w.

Substituting (4.40) into (4.41) and taking into account that y € Y is arbitrary, we
get
4.42) 5(¢)* = 5(0)* + B*Q()*(I - A*Q(¢)") et
which proves part (3) of the theorem. Also we have from (4.40)
V znd-4aqom'cy=
(€Dq vEY,

¢eDQWEY,
‘I>=1....,p 1 luaP

LTy
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and we can proceed due to (4.37) and (4.23) as follows:

V ZT60y= V K-QEy= V KGQy=HxX
{€Dq,¥EY, {€DqQ,yEY, ¢€Dq
i—1,ep =1,...0 yey
Thus the pair (C, A) is Q-observable in the sense of (4.38). On the other han

equalities (4.24), (4.25) are equivalent to (4.34). Substituting (4.40 into 4.34 an
into identity (4.32) (for z = ¢ and y = y') gives

U [Q(C)‘(I - A‘Q(C)‘)‘lc‘y] - [(I -AQ(¢* “C‘y]

Y S¢*y
|[feru-aawto] _je-agcs o]

respectively. The two latter equalities show that U” is isometric on the space Dy
(see (4.13)) and therefore U is weakly coisometric.

To prove part (4), let us assume that

and

(4.43) S(z) = S(0) + C(I - Q(2)A)~'Q(z B

is a weakly coisometric realization of S with the state space X and such that the
pair (C, A) is Q-observable in the sense of (4.38). Then

I-8(2)5(¢) =CI-Q()A) "I -Q(z)Q¢)* I-AQ¢*~'C

which means that S admits a representation (4.6) with H z =C I-Qz A~
Let I; be given as in (4.37). Representing H in the form 4.5 with

(4.44) Hi(z) =C(I - Q(2)A)'T,

we then conclude from Remark 4.3 that S admits the Agler decompositi n 44
with

Ki;(z,¢) = C(I — Q(2)A)~ LT} (I - A*Q()")IC*  fordi,j=1,...,p
Let H(K) be the reproducing kernel Hilbert space associated with the positive

kernel K = [K]? ;. Let us arrange the functions (4.44) as follows

Hy(2) C(I - Q(2)A) 1,
(4.45) G(2) := : = :
Hp(2)] |8 -Q(2)A)1T,

Since by construction K(z,() =
formula

(4.46)

G(2)G(¢)* and since (C, A) is Q-observable, the
Uiz G(2)z

defines & unitary map from X onto H(K). Let us define the operators A: ’H(K)p -
H(K)? and B: U = H(K)? by

(4.47) A (é U) = (é U) A eand B= (é U) B
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In more detail, using representations

A o Ay By
A= 1| X5 X% and B=|: tU - X9,
Ag o Ag B,
we define
A ... Ay B
A= s | tHEP o HK)? and  B=|: | :U-HE)S
A ... Ay By
block-entrywise by
4.48) Ay: G(z)z =+ G(2)Ayz eand  Bau= G(2)Biu

fori=1,...,gand j =1,...,p. We next show that the operators A and B solve
the Gleason problems (4.17) and (4.18), respectively. To this end, take the generic
element f of H(K)? in the form

G(Z):tl x)
449 f(z) = : wherez:= | ! | € AP,
G(2)z, Tp

On account of 4.45), we have for f and z as in (4.49),

P 4
> feal2) =D CUI - Q(2)A) " Tan
k=1 k=1
— 80 - Q@AS Taay = B - QA
k=1

Therefore, and since Q(0) = 0, we have

e -~ - ~
450 Z(fk'k(z) — frk(0)) = C(I - Q(z)A) 'z - C=
k=1

= C(I - Q(2)A)'Q(2)Az.
On the other hand, we have by {4.45) and (4.48),

Afles(2) = [2 AuB(a)a

=1 v ] , ]
= {G(z) Zﬁkimz} =C(I - Q(2)A)'Z; ZAHSB&
=1 j i=l
and it follows directly from (4.37) and (4.1) that

r 1

P
Z Z Ak (2)Z, Z Ak,-:c,' = Q(z)Ax

=1 k=1 1=l
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Making use of the two last equalities and of (4.28) we get

Zon )" [Afl(2) = ZZ ik (2)[A flk,5(2)

k=1 j=lk=1

P 1
= ZZ q;x(2)CI — Q(2)A)'1, i;lk,z,
i=1k=1 =1

C(I - Q(2)A)~ IZZ%‘ (2)Z, ZAk.z,

i=1lk=1
= &I - Q(2)A)'Q(2) Az

which together with (4.50) implies (4.17). Similarly we conclude from (4.15), (
(4.47) and (4.43) that

3

q

ZQ.k 2)T[Bulk(2) =D > qjr(2)[Brul,(2)

j=1k=1

P q _
=33 au(2)(G(2) Bra;
i=lk=1
P q
=33 q(2)CU - Q(x)A) T, Byu

=1

w.
E
Il

1

P g
=C(I-Q()A)™ YY" quk(2)T, Bru
=1 k=1
= C(I — Q(2)A)™'Q(z)Bu = S(2)u — S(0)u
and thus, B solves the Gleason problem (4.18) for S. Finally, for f and x of the

form (4.49), for the operator U defined in (4.46) and for the operator C defined on
H(K)P by formula (4.29), we have

C(@ UVz=Cf = Zf“ (0) = ZC(I Q(0)A) ' Thzy = ZCIkzk =Cr,

i=1 k= =1
and thus,

P
()
i=1
The latter equality together with (4.47) implies (4.39). According to Definition 4.7,

the colligation U = [4 B] is a canonical functional-model colligation associated
with the Agler decomposition K of S. a

Let us say that the operator A: H(K)? — H(K)? is a contractive solution of the
Q-coupled Gleason problem for H(K) if in addition to identity (4.17) the inequality

k
1AM mye < W Wy = DA (O3
i1

holds for every function f € H(K)P or equivalently, if the pair (C, A) is contractive
where C: H(K)? = ) is the operator given in (4.29).
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Theorem 4.10. Let (4.4) be a fired Agler decomposition of a given function
S € SAQU,Y) and let C and D be defined as in (4.29). Then

(1) For every contractive solution A of the Q-coupled Gleason problem (4.17),
there is an operator B: U — H(K)? such that U = [4 B is a canonical
functional-model colligation for S.

(2) Every such B solves the Gleason problem (4.18) for S.

The proof is very much similar to the proof of Theorem 3.10 and will be omitted.
In conclusion, we compare functional model Q-realizations obtained in this
section with particular cases considered in Sections 2 and 3.

The unit ball setting. In this case, Q = Z,ow (in particular, p = 1) and def-
inition 2.2) can be interpreted as the (uniquely determined) Agler decomposition
of the form (4.4) with the kernel K = Kg. Then (4.23) gives T(z,¢) = K5(2,() and

4.33 coincides with (2.15). Since all canonical functional-model colligations are
obtained via contractive extensions of isometries V' (from (2.15) for the unit ball
setting or from (4.33) for the general Q-setting), it follows that realizations con-
structed in Section 2 can be obtained from those in Section 4 by letting Q = Ziow-.
Moreover, if Q = Z;ow, then observability in the sense of (4.38) collapses to ob-
servability defined in part (2) of Theorem 2.9.

The unit polydisk setting. In this case, Q = Zgiag, p = ¢ = d, and the
Agler representation (3.1) for an § € SA4(U,Y) can be written in the form (4.4)

K, 0
with the kernel K = \ - . Then (4.23) takes the form
o K4
Kl (Z, C) ®e
4.51 T(z,¢{) = :
Kd(zv C) ® €q

where {ey,--.,eq} is the standard basis for C%. Observe that (4.51) is not the same
as 3.10 . Now 4.33) collapses to

51K1(21C)®e1 KI(Z1C)®e1

4.52) : - :
{aKa(2,{) ®eq Ka(2,{) @ eq
Y Sy

whereas 3.24) can be written as

ZlKl(ziC) Kl(za C)

453 o W
CaKa(z,¢) Ka(z, ()

(] 5y
To get canonical functional-model realizations as in Definition 3.5, we extend 7 to

a contraction U* = [%’, g‘_] : L HK) @Y — @, H(K:) ® U. If for such a

contraction we let U to be of the form (3.2) with
A,=A,®ee:, B, =Bwe,, C;=Cjeej,
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then U* will be a contraction from @7_, (H(K.))” @ ¥ to L, (H(K,))’ DU ex-
tending the isometry V given in (4.53). It i8 not hard to see that U is a canonical
functional-model Q-realization for S in the sense of Definition 4.7. Thus, any “poly-
disk” canonical functional-model realization gives rise to a canonical functional-
model Q-realization for S. Of course, the converse is not true.

To see the polydisk setting as a particular instance of the general Q-setting
we need to make use of the block-diagonal decomposition of Q into irreducibe
parts discussed in Remark 4.4. For the polydisk setting with Q 2) = Zu., 2,
this diagonal structure is nontrivial and already apparent. Thus we assume that
Q(2) has the form (4.11) and the positive kernel K giving rise to the Q-Agler
decomposition (4.4) has the compatible block decomposition (4.12 . The Q-Agler
decomposition (4.4) now has the form

d P (%
(4.54) I—S(z)S(o'=ZXZ K (2:¢) - ZZq,k @y O, zcl

a=1 | k=1 k=113,=1
and can be rewritten in inner-product form as

d

o
KD (0Q (™ KO, 2)Quk(2) Y ix

a=1 k=1
d  Pa

=2 KOGOE Y KOG AEDY yug )+ 5 008 2 W

a=1j=1

where E§°‘) = Iy ®e; and where {e1,...,€p,} is the standard basis for CP=. Then
the isometry V in (4.33) has the form

Q(l) (C)*T(l) ('a C)y @ (')C)y

QO T,y T (,¢)y
y SOy
K (2,0 B
where T(®)(z,¢) =

: and where V has domain equal to Dy =D &Y
K (2,0) B

QW) TW(, )y d
D=\ : c P HE)w-

(eDQ.YEY Q(a) (C)-T(d) (_’ C)y a=1
and where V' has range Ry given by

where

T(l) ('1 C)y
) d
Ry = . (- H(K(a) Pa @Ll,
Y (ev\q/mey T, )y S_Bl )
S(¢0)y

all this specializes to (4- 53) for the polydisk case. We say that the operatof
A: @ | H(K@)Pa - o y H(K(@))e= solves the Q-structured Gleason problem
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for the kernel collection {KW,..., KD} if
d Pa d Ga
Y2 URE@ - 200 = 2 AP @ TN ()
a=1 k=1 a-lk 1
f(l)
forall f=1 + | e®*_, HK™); s0
£
72 o
FO =1 with each f® =] : | e HEK®).
(a) (o)
Pa k\pa
We say that the operator B: U — @?,:1 H(K)e= golves the Q-structured
{KY,...,K 9}-Gleason problem for S if
d ga
S@u-SOu=YY QR (2)Buli”(2)
a=1 k=1
[Bu)®
for all u € U, where we write Bu = : € ®i=1 H(K@)% with each
[Bu]®
(Bu); (Buli)
[Bul® = 1 where in turn [Bu]&f') = : € H(K®)). We de-
[Bu) :

(B,
fine a canonical functional-model colligation matriz U for a given function S €

SAqQ U,Y and left Q-Agler decomposition {Kj,...,Kg} (so (4.54) holds) to be
any perator-matrix U=[4 B]: @‘2_1 HEK D )P g — @':_1 HEK)= Y so
that

1 U is a contraction,
2 the operator A solves the Q-structured Gleason problem for the kernel
collection {KW), ..., K@},

the operator B solves the Q-structured {K®, ..., K(9}-Gleason problem
for S, and

4 the operators C and D are given by

(o)
1 d Pa

d
c: @) : | =33 120, Druo SO

a=1| »a) a=1k=1

3

Then we leave it to the industrious reader to check that Theorems 4.8, 4.9 and 4.10
all go through with this block-diagonal modification. Specializing this formalism
to the polydisk case picks up exactly the results of Section 3.
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Two Variations on the Drury— Arveson Space

Nicola Arcozzi, Richard Rochberg, and Eric Sawyer

1. Introduction

The Drury - Arveson space DA is a Hilbert space of holomorphic functions on
B.+1, the unit ball of C*+1. It was introduced by Drury [11] in 1978 in connec-
tion with the multivariable von Neumann inequality. Interest in the space grew
after an influential article by Arveson {7], and expanded further when Agler and
McCarthy [1] proved that DA is universal among the reproducing kernel Hilbert
spaces having the complete Nevanlinna— Pick property. The multiplier algebra of
DA plays an important role in these studies. Recently the authors obtained explicit
and rather sharp estimates for the norms of function acting as multipliers of DA
[3], an alternative proof is given in [17].

In our work we made use of a discretized version of the reproducing kernel for
DA, or, rather, of its real part. In this note we consider analogs of the DA space for
the Siegel domain, the unbounded generalized half-plane biholomorphically equiv-
alent to the ball. We also consider a discrete model of the of the Siegel domain
which carries a both a tree and a quotient tree structure. As sometimes happens
with passage from function theory on the disk to function theory on a halfplane,
the transition to the Siegal domain makes some of the relevant group actions more
transparent. In particular this quotient structure, which has no analog on the unit
disk i.e., n = 0), has a cleaner presentation in the (discretized) Siegel domain than
in the ball.

Along the way, we pose some questions, whose answers might shed more light
on the interaction between these new spaces, operator theory and sub-Riemannian
geometry.

‘We start by recalling some basic facts about the space DA. An excellent source
of information is the book [2]. The space DA is a reproducing kernel Hilbert space
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with kernel, for z,w € Bp41

(1.1) K(z,w) = TTL—

W-z

Elements in DA can be isometrically identified with functions f holomorphic in
Brt1s £(2) = 2 mennsr a(m)z™ (multiindex notation), such that

Ba= 3 Zlam)P < oo.

meENn+1 'mp

When n = 0, DA = H?, the classical Hardy space. The multiplier algebra f
H?, the slgebra of functions which multiply H? boundedly into itself, is H*®, the
algebra of bounded analytic functions. In general the multiplier algebra M(DA f
DA is the space of functions g holomorphic in B, 41 for which the mult plication
operator f +— gf from DA to itself has finite operator norm which we den te by
llgll mcoay- For » > 0, M(DA) is a proper subalgebra f H°, however in some
ways it plays a role analogous to H. In particular the multiplier norm g apa
replaces the H* norm in the multivariable version of von Neumann’s Inequality
[11]. Also, the general theory of Hilbert spaces with the Nevanlinna— Pick property
exposes the fact that many operator theoretic results about H? and H* are speal
cases of general results about Hilbert spaces with the Nevanlinna— Pick property,
for instance DA, and the associated multiplier algebra.

Given {w;}}_, in Bp41 and {),}}L; in C, the interpolation problem f findm,

g in M(DA) such that. g(w;) = A; and ||gllmpa < 1, has soluti n if and only f
the “Pick matrix” is positive semidefinite,

[(1 — ws@R) K (g A)l3h—1 2 0.

Agler and McCarthy [1] showed that the (possibly infinite dimensional DA kernel is
universal among the kernels having the complete Nevanlinna Pick property, which
is a vector valued analog of the property just mentioned. While for n = ( we
have the simple characterization ||g|mma) = 9l m H?) = ¢ He, D0 such formula

exists in the multidimensional case. However, a sharp, geometric estimate of the
multiplier norm was given in [3].

Theorem 1. (A) A function g, analytic m Bnyi1, 18 ¢ multipher for DA
if and only if g € H™ and the measure p = pg, dpg := (1 — z2) Rg?dA(z) s e
Carleson measure for DA,

(12) f.. \FPdp < CU 1B

Here dA is the Lebesgue measure in Bnyy and R is the radial differentiation op-
erator. In this case, with K(u) denoting the infimum of the possible C(1) in the
previous inequality,

lghmpay = lgha= + K (u)*/?

(B) For a in B,y1, let S(a) = {w € By : |1 —a/la)- @] < (1 —la|?)} be the
Carleson boz with vertez a.

Given a positive measure 4 on Bn+1, the following are equivalent:
(a) p is a Carleson measure for DA;
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(b) the inequality

[ [ ReKGuweee) e ) scw [
Bnt1 /Bnya

By
holds for all nonnegative .
(c) The measure u satisfies both the simple condition

(5C) #(S(a)) < CW)(1 - |af?)

and the split-tree condition, which is obtained by testing (2) over the charac-
teristic functions of the sets S(a),

(1) / M( [ Rk (e)) duw) < CI(S(@),
(with C(i) independent of a in Bpy1).

Here C(u) denotes positive constants, possibly with different value at each
occurrence.

The conditions (SC) is obtained by testing the boundedness of J, the inclusion
of DA into L2(dy), on a localized bump. The condition (ST) is obtained by testing
the boundedness of the adjoint, J*, on a localized bump. Hence the third state-
ment of the theorem is very similar to the hypotheses in some versions of the T'(1)
theorem. This viewpoint is developed in [17].

In light of (2) we had used Re K(z,w) in analyzing Carleson measures. When
estimating the size of Re K(z,w) in the tree model it was useful to split the tree
into equivalence classes and use the geometry of the quotient structure. That is
the source of the name “split-tree condition” for (ST). Versions of such a quotient
structure will be considered in the later part of this paper.

Problem 1. Theorem 1 gives a geometric characterization of the multiplier
norm for fixed n, but we do not know how the relationship between the different
constants C u), and between them the multiplier norm of g, depend on the dimen-
sion. Good control of the dependence of the constants on the dimension would open
the possibility of passing to the limit as n — oo and providing a characterization
of the multiplier norm for the infinite-dimensional DA space.

An alternative approach to the characterization of the Carleson measures is in
{17), where Tchoundja exploits the observation made in [3] that, by general Hilbert
space theory, the inequality in (2) is equivalent (with a different C(u)) to

2
0y [ ([ RekGw@we) wwow [ Fa
B4y B4t Bnt1

We mention here that (1.3) is never really used in [3], while it is central in [17).
Tchoundja’s viewpoint is that (1.3) is the L? inequality for the “singular” integral
having kernel Re K(z, w), with respect to the non-doubling measure u. He uses the
fact Re K(z,w) > 0 to insure that a generalized “Menger curvature” is positive.
With this in hand he adapts some of the methods employed in the solution of the
Painlevé problem to obtain his proof. His theorem reads as follows.

Theorem 2. A measure u on Bay1 is Carleson for DA if and only if any of
the following (hence, all) holds.
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(1) For some 1 < p < o0,

LM(MH“Kuﬂwuﬂﬂéymmmscw)L“Wu

(2) The inequality in (1) holds for all 1 < p < oco.

(3) The measure 1 satisfies the simple condition (SC) and also for somel <
p < 00 the inequality

o0 [ ([ ReKtw)du) ) aue) < Cwm(s o).

(4) Condition (3) holds for all 1 < p < co.

(Actually [17] focuses on the p > 2 but self adjointness and duality then give the
expanded range.) Observe that, as a consequence of Theorems 1 and 2 the conditi n
(1.4) equivalently holds for some 1 < p < oo then it holds all 1 < p < 00. On the
other hand, it is immediate from Jensen’s inequality that if the inequality h 1ds for

some p then it holds for any smaller p; hence the condition in Theorem 1, ST), s
a priori the weakest such condition.

Problem 2. Which geometric-measure theoretic properties foll w fr m the

fact that the Carleson measures for the DA space satisfy such “reverse H lder
inequalities”?

Indeed, the same question might be asked for the Carleson measures for a
variety of weighted Dirichlet spaces, to which our and Tchoundja’s methods apply
It is interesting to observe that, while our approach is different in the DA case
and in other weighted Dirichlet spaces (see [3] and the references quoted there ;

Tchoundja’s method works the same way in both cases. On the other hand, s
proof does not encompass (ST) in Theorem 1.

We conclude this introduction with an overview of the article.

Changing coordinates by stereographic projection, we see in Section 2.1 that
on the Siegel domain (generalized upper half-plane)

un+1 = {z = (Z', zn+1) eC*"xC: Im(z'n+1) > 2 2}
K is conjugate to a natural kernel H

H(z,w) = - -
1('!1)-,-.+1 - Zn+1) 2—-2-u
This is best seen changing to Heisenberg coordinates:

[Cat§ r] = [z'aRe(zn+1);Im(zn+l) - |Z'|2].
The Heisenberg group H" has elements [(,t] € C* x R and group law [(, ]

[€,8] = [+ & ¢+ s+ 2Im(¢ - §)]. The kernel can now be written as a convolution
kernel: writing

r+|CJ% ~it
er(lC,2]) = Tr P+
we have
H([C’ t T]’ [&1 85 T]) = 2‘Pr+p([€» s]—l * [C) s])
Because of the connection with the characterization of the multipliers for DA
our main interest is in Re(H (z,w)). The numerator and the denominator of Re(¢r
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each have an interpretation on terms of the sub-Riemannian geometry of H". The
denominator is the Koranyi distance to the origin, at scale /7, while the numerator
is the Koranyi distance from the center of the group H" to its coset passing through
[¢,t], again at the scale /7. We see, then, that the kernel ¢, reflects the two-step
stratification of the Lie algebra of H".

The Heisenberg group, which has a dilation as well as a translation structure,
can be easily discretized, uniformly at each scale; and this is equivalent to a dis-
cretization of Whitney type for the Siegel domain Up4+1. The dyadic boxes are
fractals, but in Section 2.2 we see that they behave sufficiently nicely for us to use
them the same way one uses dyadic boxes in real upper-half spaces. The same
way the discretization of the upper half space can be thought of in terms of a tree,
the discretization of the Siegel domain can be thought of in terms of a quotient
structure of trees, which is a discretized version of the two-step structure of the
Heisenberg Lie algebra.

In Section 3, we see how the DA kernel (rather, its real part) has a natural
discrete analog living on the quotient structure. We show that, although the new
kernel is not a complete Nevanlinna— Pick, it is nonetheless a positive definite kernel.
In [3], the analysis of a variant of that discrete kernel led to the characterization
of the multipliers for DA. We do not know if an analogous fact is true here, if
the discrete kernel we introduce contains all the important information about the
kernel H.

We conclude by observing, in Section 4, that, as a consequence of its “conformal
invariance,” a well-known kernel on the tree, which can be seen as the discretization
of the kernel for a weighted Dirichlet space in the unit disc, has the complete
Nevanlinna—Pick property.

Notation. Given two positive quantities A and B, depending on parameters
a,fB,..., we write A ~ B if there are positive ¢,C > 0, independent of a, 3,...,
such that ¢A < B < CA.

2. A flat version of DA4

2.1. From the ball to Siegel’s domain. In this section, we apply stereo-
graphic projection to the DA kernel and we see that it is conjugate to a natural
kernel on the Siegel domain. In this “fat” environment it is easier to see how the
DAy kernel is related to Bergman, and hence also to sub-Riemannian geometry.
A discretized version of the kernel, analogous to the dyadic versions of the Hardy
space kernel in one complex variable immediately comes to mind.

We follow here the exposition in {15]. As we mentioned, Siegel’s domain Un+1
is defined as

uﬂ-+1 = {Z = (21’ .. -szn+1) = (Z’,Zn+1) € Cn+1 H Im Zn4l > |Z’|2}.
For z,w in Up41, define
i
r(2,) = 5 (Wni1 = znpn) - 21 7.

Consider the kernel H: Uns1 X Un+1 — C,

Zw) = 1
(2:1) H(z,w) o
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Proposition 1. The kernel H is conjugate to the Drury Arveson kernel K
Hence, it is a definite positive, (universal) Nevanlinna - Pick kernel.
In fact, there is a map ®: B, 1 — Up41 such that:

9. K(®-1(2). &1 = @ + 2n41)(i + wny1)
(2:2) (@74(2), 27" (w)) 4-r(o,w)

PROOF. Let Bn,; be the unit ball of C*+?! and let U,, 45 be Siegel’s d man.
There is a biholomorphic map z = &({) from B, 41 onto Uny1:

2 =i 1—Cn+l
n+1 —1+Cn+- 1‘
Ck .
2 = ) f1<k<n,
T T Gt n

having inverse

i- Zn41

i+ Zn41

9;

Gh=r2_, #l1<k<n.
14 Zn41

Equation (2.2) foliows by straightforward calculation.

C"l+1 =

]
Remark 1. The map f — f, f(z) = 2/(G + zn41 f @~ 2z , is an isome-

try from the Hilbert space with reproducing kernel K to the Hilbert space with
reproducing kernel H. We call the latter DAy,.

Problem 3. Find an interpretation of the DAy norm in terms of weighted
Dirichlet spaces on Uy, ;1.

Recall (see [3]) that a positive measure p on Bn4; is a Carleson measure for
DA if the inequality

(23) fm 1fPdu<C) £ Ba

holds independently of f. The least constant | 4 cm pa = C u) for which 23
holds is the Carleson measure norm of u.

The following proposition is in [3].
Proposition 2. The Carleson norm of a measure p on Bny) s comparable

with the least constant Cy(u) for which the inequality below hold for all measurable
920 onBp,,,

[ [ re(rtaw)oe) aualotu) autw) < i) [ Paw
Bay: VBny Bayy
As a corollary, we obtain the following,

Theorem 3. Let 4 > 0 be a measure on Bry1 and define its normalized pull-
back on Un4+1,

dii(z) = |i + zns1 |2 dp(27(2))
Then, p € CM(DA) if and only if [i satisfies

f f Re(H(2,w))g(2) dii(2)g(w) dii(w) < Ca(f) f g dji.
u“+1 u'H'l un+l
Moreover, C(1) = Ca(R)-
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Problem 4. Find a natural, operator-theoretic interpretation for H; in analogy
with the interpretation of K in [11].

The kernel H is best understood after changing to Heisenberg coordinates which
help reveal its algebraic and geometric structure. For z in Uy, 41, set
z=(2,zn1) = [, ;7] := [2/, Re 2nq1; Im 2y — |2'7].

The map z + [(,#;r] identifies Up 41 with R™™*2, and its boundary dlUn+, with

R2**!, In the new coordinates it is easier to write down the equations of some
special families of biholomorphisms of Uy, ;:

(i) rotations: Ra: [¢,t;r] = [A(,t;7], where A € SU(n);
(ii) dilations: D,: [¢, ;7] = [p¢, p2¢; p?r]; and _
(iii) translations: T ¢: [ sp) = C+ét+3+2Im(C-£);p)
This Lie group of the translation is the Heisenberg group H" = R?**! which
can be identified with 8Uy,+1. The group operation is
Gt & s =[C+ &t +s+2Im(¢-8)]
and thus n¢.q: [§,89] = (€, 2] - &, s]; ).
We can foliate Un+1 = | |50 H"(p), where H"(p) = {[¢, ;9] : [¢,t] € H"} is the

orbit of [0, 0; p] under the action of H™. The dilations D, on Un41 induce dilations
on the Heisenberg group:

8ol¢, 1] = [o¢, p7¢].
The relationship between dilations on H™ and on U,+1 can be seen as action
on the leaves:

D, : H™(r) = H"(pr), D, (¢, t; 7] = [6,[¢, t); P71
The zero of the group is 0 = [0,0] and the inverse element of [¢,] is [-¢, —t].

The Haar measure on H" is d{ dt. We let df to be the measure induced by the
Haar measure on OUp+1:

dB(z) = d¢ dt.
‘We also have that dz = d{ dt dr is the Lebesgue measure in Upn41.
We now change H to Heisenberg coordinates.

Proposition 3. If 2 = [(,t;7] and w = [¢, s; p], then
24 H(zw)=2- r+p+|§”d2—i(t—8—2lm(£'3)2
(r+p+ 6 -¢?)2+ (t—s—2Im(¢- ()
= 2¢1‘+p([€a 3]—1 . [Cat])a

where P
r+ -~ it

W)=

er(l¢ 1) r+ [C[2)% +¢2
The expression in Proposition 3 is interesting for both algebraic and geometric
reasons. Algebraically we see that H can be viewed as a convolution operator.
From a geometric viewpoint we note that the quantity ||[¢, ]| := (£ + [¢|*)/* ie
the Koranyi norm of the point [¢,t] in H". The distance associated with the norm it

dun ([, 2], (€, 8)) := [I[€, 8] [¢, ]Il

Hence, the denominator of ¢, might be viewed as the 4th power of the Korany
norm of {,t] “at the scale” rl/2,
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In order to give an intrinsic interpretation of the numerator, consider the center
T ={[0,t] : t € R} of H", and the projection II: H™ — C* = H*/7" II([¢,f] =¢
Then, independently of t € R,

i<l = du~ (T, €, 2] - T
is the Koranyi distance between the center and its left (hence, right) translate by
[¢,#]. The real part of the DA kernel has a twofold geometric nature: the denom-
inator is purely metric, while the numerator depends on the “quotient structure®
induced by the stratification of the Lie algebra of H™. This duality is ultimately

responsible for the difficulty of characterizing the Carleson measures for DA
The boundary values of Re(ypr),
G

(2.5) wo(l¢ ]) l e

were considered in [12] (see condition (1.17) on the potential) in connection with
the Schrddinger equation and the uncertainty principle in the Heisenberg group

Problem 5. Explore the connections, if there are any, between the DA space,
the uncertainty principle on H" and the sub-Riemannian geometry of H".

We mention here that, at least when n = 1, the kernel g in 2.5 satisfies the
following, geometric looking differential equa.tion'

Ampo([(,t]) = 26|C|2<P°([C’ &),

where Ay = XX + YV is the sub-Riemannian Laplacian on H. Here, with { =
z+iy €C, X and Y are the left invariant fields X = 8, +2y8; and Y =9 —2:3,

See [8] for a comprehensive introduction to analysis and PDEs in Lie groups with
a sub-Riemannian structure.

2.2. Discretizing Siegel. The space Uy, 1 admits a dyadic decomposition,
which we get from a well-known [16] dyadic multidecomposition of the Heisenberg
group, which is well explained in [18]. We might get a similar, less explicit decom-
position by means of the general construction in [10].

Theorem 4. Let b > 2n+1 be a fired odd integer. Then, there exists a compact
subset Ty in H™ such that: Ty is the closure of its interior and II(To) = [-1, 31™

(1) m(8Ty) = 0, the boundary has null measure in H";
(2) there are b**2 qffine maps (compositions of dilations and translations

Ax of H™ such that: Tp = Us Ak(To) and the interiors of the sels Ak(To
are disjoint;

(3) the sets H(Ak(To )) divide [—3, 31> into b®® cubes with disjoint interiors,
each such cube being the projection of b sets Ax(To)-

Consider now Un+1, let b be fixed and let m € Z. For each k = (K, kanyy) €
Z*™ x Z, consider the cubes

QF = &p-mmx(To) x [p72™3,p72m]
= Qm [b—Zm-2 b—‘Zml — Qm C Uns1,
with Q™ € H", Let T(™ be the sets of such cubes, U™ the set of their projec-

tions, and T = J,, T, ™, U =, e U™ (M), We say that a cube Q' in Ttm+})
(respectively U(m+1)) is the Chlld of a cube Q in T(™) (respectively U™, if @ ¢ Q-
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In order to simplify notation, if Q is & cube in T, we write [Q] = II(Q),

We state some useful consequences Theorem 4.

Proposition 4. (i) Each cube tn T(™) has b2"*2 children in T(m+1) and

one parent in T(™=1); hence, T is a (connected) homogeneous tree of
degree p2rnt2,

(ii) Each cube in U(™) has b*® children in U(™*)) and one parent in J(™1);
hence, U is a (connected) homogeneous tree of degree b**,

(iii) For each cube Q in T(™), there are Koranyi balls B(zg,cob™™) and
B(wg,1b™™) in H", such that

B(wg,c:b™™) x [b ™ 2 b7 ¢ Q ¢ B(wg, c2b™™) x [b~2™2,b72m],

We say two cubes @1, Q2 in T are graph related if they are joined by an edge of
the tree T, or if they belong to the same T(™) and there are points z; € Q1, 23 € Q2
such that dgr (21, z2) £ b~™. An analogous definition is given for the points of U.
We consider on T the edge-counting distance: d(Q1,@Q2) is the minimum number
of edges in a path going from @; to Q, following the edges of T": the distance
is obviously realized by a unique geodesic. We also consider a graph distance,
de Q1,Q2) £ d(Q1,Q2), in which the paths have to follow edges of the graph G
just defined. The edge counting distance on the graph is realized by geodesics, but

they are not necessarily unique anymore, Similarly, we define counting distances
for the tree and graph structures on U.

Given a cube Q in T, define its predecessor setin T, P(Q) = {Q' € T: Q C Q'},
and its graph-predecessor set Pg(Q) ={Q’ : d¢(Q', P(Q)) < 1}. We define the
level of the confluent of Q; and Q; in G as

2.6 d(Q1 A Q2) := max{d(Q) : Q € Pa(Q1) N Ps(Q2)}.
We don’t need, and hence don’t define, the confluent @, A Q; itself.)

Similarly, we define predecessor sets in T' and G for the elements of U, and the
level of the confluent in the graph structure, using the same notation. Observe that
P [Q] =[P(Q)):={[Q]:Q € P(Q)}, P(IQ)]) = [P(Q)), but that the inequality

d(Q1 A Q2) < d([Q1] AQq))

cannot in general be reversed.

Theorem 5. Let z = [(,t;7], w = [£,s;p] be points in the Siegel domain
Un s, and let Q(2), Q(w) be the cubes in T which contain z,w, respectively (if z is
contained in more than one cube, we choose one of them). Then,
@7)  bHCEA) o ((r 4 pt|¢— ) 4+ (- 5 - 21m(C - £))%) /¢
s apprommately the %-power of the denominator of H(z,w). On the other hand,
(2.8) bA(RENAIR(N)  (p 4 p+ ¢ - €22
18 approrimately the %-power of the numerator of Re H(z,w).

We have then the equivalence of kernels:
(2.9) Re H(z, w) = p2HR(DAQw)-d(R()IAIQ(w)])

Thus we have modeled the continuous kernel by a discrete kernel. This kernel,
however, lives on the graph G, rather than on the tree T'.

Theorem 5 allows a discretization of the Carleson measures problem for the DA
space on Up4+y. Given a measure i on Un+1, define a measure ¥ on the graph G:
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Q) : fQ'd“ Then, ji satisfies the inequality in Theorem 3 if and only if ! is
such that the inequality

(2100 Y Y pUeRO-dRieDo(g)ut (q)p(d )t (e) < C© u‘)Ew’u
qeCG ¢'€q@
holds whenever ¢ > 0 is a positive function on the graph G.
In the Dirichlet case, inequality (2.10) is equivalent to its analog on the tree.
Given ¢,q' in T', let gAg’ be the element p contained in [0,g]N[o, ¢] for whichd(p =

maximal. An analogous definition can be given for elements in U. The tree-analog
of (2.10) is:

211) DD pen-dldrieD g (g)ut () (gt (¢) < C thzﬂ

q€ET ¢'€T

Problem 6. Is it true that the measures p* such that 2.10 h Ilds for alt
@: T — [0, +c0), are the same such that (2.11) holds for all ¢: T — [0,+o0 .

There is a rich literature on the interplay of weighted inequalities, Carleson
measures, potential theory and boundary values of holomorphic functi ns.

Problem 7. Is there a “potential theory” associated with the kernel Re H
giving, e.g., sharp information about the boundary behavior of functions in DA?

Before we proceed, we summarize the zoo of distances usually employed in the
study of U,41 and of H™ as a guide to defining useful distances on T and U. We
have already met the Koranyi distance ||[¢,s]™ - [(,t] between the points [(,¢
and [¢,s] in H”. The Koranyi distance is bi-Lipschitz equivalent to the Carnot-
Carathéodory distance on H". We refer the reader to 8] f r a thorough treatment
of sub-Riemannian distances in Lie groups and their use in analysis. The point we
want to stress here is that the Carnot — Carathéodory distance is a length-distance,
hence we can talk about approximate geodesics for the Koranyi distance itself.

Although it is not central to our story, for comparison we recall the Bergman
metric 8 on Un41. It is & Riemannian metric which is invariant under Heisenberg

translations, dilations and rotations. Define the 1-form w([¢,t]) = dt—21Im ¢-d¢ .
Then,

d¢12 w(i¢,t])? + dr?
(212) ap (¢, yrp = X0 GV Har
This can be compared with the familiar Bergman hyperbolic metric in Bpy;.
o _ |a=l? |z-dz 2
B8, (2) = 1- |22 + =17
Lemma 1. (i) For each r > 0, consider on H"(r) the Riemannian dis-

tance B2 obtained by restricting the two-form d? to H™(r). Then, the
following quantities are equivalent for ||[C,t]l| = v/

(¢ +7)% + )4 = |G, ) = vrBe (G i), 0,05 7)),

(i) A similar relation holds for cosets of the center. Let [T;r] = T-[0,0;r] be
the orbit of [0, 0;7] under the action of the center T. Then,

(G2 + 1)/ 2 dyn ([¢,8] - T, T) = V7B, ([[¢, 8] - T3 7], [T;7])
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ProoF OF LEMMA 1. The first approximate equality in (i) is obvious. For the
second one, using dilation invariance

veB(c,trh0.0ir) = viB(Dor[ So 1i1]),

D (0,051 = v7s([ 2. £i1] o)
Since the metrics 8 and dy» define the same topology on H"(r), the last quantity
is comparable to v/rdu([C/vr,t/7;1],[0,0;1]) when 1 < |I/vr,t/7]ll < 2, by
compactness of the unit ball with respect to the metric and Weierstrass’ theorem.
Since the metric B, is a length metric and dy~ is bi-Lipschitz equivalent to a length
metric (the Carnot Carathéodory distance), then, when 1 < ||[¢/\/7,t/7]l,

hav
efﬁ([ v o 1) =~ vide [ ], 10,01) = dun i1, 0,00

The proof of (ii) is analogous. O

PROOF OF THEOREM 5. We prove (2.7), the other case being similar (easier,
in fact . Suppose that d(Q(z), Q(w)) = m. Then, d(Q(z)),d(Q(w)) < m, hence,
b~™ < /7, /P and there are Q1,Q,Q; in T™ such that Q(2) > Q1 ~ Q ~ Q, <
Q w . We have then that

b > max{V7, VB cda- (6, 1], [€, 8])} = ((r+p+1¢—€1%)2+ (t—s—2Im(C-€))*)*/* :
the left-hand side of (2.7) dominates the right-hand side.

To show the opposite inequality, consider two cases. Suppose first that /v >
vhda [(,1],€,5]) and that b™™ > \/r > b=™=1. Then, Q(z) v

Q(w). Hence,
m<d(Q z) AQ(w)) <m +1 and

b=HR = AR 5™ > ((r 4+ p+|¢ — £2)2 + (t— s — 2Im(C - £))*) /"
Suppose now that dg~([(,t],[£,5]) > /7,/p and choose m with m < d(Q(z) A
Q w) <m+ 1 Let Q™(2) and Q™(w) be the predecessors of Q(z) and Q(w) in

T™ we use here that d(Q(z)),d(Q(w)) > m). Then, Q™(2) ~ Q'"(w) hence
da [Cv 4, [ﬁs 5]) <Hv™:

b HRUDARQ(W)) o p—™ 2 du ([¢, 1], [€,

o ((r+p+1¢—€P)? + (t~ s —2Im(C - £)*)"*.
The theorem is proved.

It can be proved that
1+dg(Q(2), Q(w)) = 1 + B(z,w),

where 3 is the Bergman metric and dg is the edge-counting metric in G,
The expression for the kernel Re H in Theorem 5 reflects the graph structure

of the set of dyadic boxes. We might define a new kernel using the tree structure
only as follows. Given cubes Q1,Q2 in T, let

D AQ:=max{QeT:Q<Q, and Q2 < Q2}
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be the element in T such that [0,Q1) N [0,Q2] = [0,Q1 A Q;]. Define similarly
[@1) A [Q2) in the quotient tree U. Define the kernel:

Hr(z, w) = pa(emrem)-diaaen L, ¢ Upnsr

As in Theorem 5, there is a slight ambiguity due to the fact that there are
several Q’s in T such that 2 € Q. This ambiguity might be removed altogether by
distributing the boundary of the dyadic boxes among the sets sharing it.

Because nearby boxes in a box can be far away in the tree, it is not hard to
see that Hr is not pointwise equivalent to Re H. However, when discretizing the
reproducing kernel of Dirichlet and related spaces the Carleson measure inequalities
are the same for the tree and for the graph structure. We don’t know if that holds
here. See [6] for a general discussion of this matter.

In the next section, we discuss in greater depth the kernel Hyp.

3. The discrete DA kernel

Here, for simplicity, we consider a rooted tree which we informally view as
discrete models for the unit ball. The analogous model for the upper half space
would have the root “at infinity.”

Let T = (V(T), E(T)) be a tree: V(T') = T is the set of vertices and E T) is set
of edges. We denote by d the natural edge-counting distance on T" and,for z,y € T,
we write [z, y] for the geodesic joining « and y. Let o € T be a distinguished element
on it, the root. The choice of o induces on T a level structure: d = d,: T = N,
£+ d(z,0). Let (T, 0) and (U, p) berooted trees. We will use the standard notation
for trees, z Ay, ¢ >y, 72, C(z) for the parent and children of z, Pz and Sz
for the predecessor and successor regions. Also recall that for f a function on the
tree the operators I and I* produce the new functions

If@)= Y f@); I'fz)= Y. f@)-

yEP(z) yeS(x)

A morphism of trees $: T — U is a couple of maps &y: T - U, Pg: E T) -
E(U), which preserve the tree structure: if (z,y) is an edge of T, then ®g(z,y) =
(®v(x),Pv(y)) is an edge of U. A morphism of rooted trees ®: (T,0) — (U,p i
a morphism of trees which preserves the level structure:

dp(3(2)) = do(a).

The morphism & is an epimorphism if ®y is surjective: any edge in U is the
image of an edge in T'.

We adopt the following notation. If z € T, we denote [z] = $y(z). We use the
same symbol A for the confluent in T (with respect to the root o) and in U (with
respect to the root p = [0]).

A quotient structure on (T, 0) is an epimorphism ®: (T, 0) = (U,p). The rooted
tree (U, p) was called the tree of rings in [3].

Recall that b > 2n + 1 is a fixed odd integer. Fix a positive integer N and
let T be a tree with root o, whose elements at level m > 1 are ordered m-tuples
6 = (@102...an), with a; € Zyn+1, the cyclic group of order b¥+1, The childres
of a are the (m + 1)-tuples (a1a3...am@), @ € Zyv+1, and the root is identified
with a O-tuple, so that each element in T has b *+! children. The tree U is defined
similarly, with b¥ instead of bN+1.
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Consider now the group homomorphism i from Zy, to Zy~+a given by i([klmod b)
= [b¥k]moda br+1 and the induced short exact sequence

0— Zb '—') ZypN41 _I'_I’ Zyn — 0.
The projection II induces & map ®v: T — U on the set of vertices,
Qv(a]_ag .s .am) = (q)v(al)‘t‘v(az) v Qv(am)),

which clearly induces a tree epimorphism ®: T' — U. Here a way to picture the
map ®. We think of the elements C of U as “boxes” containing those elements z
in T such that {z] := ®(z) = C. Each box C has b¥ children at the next level,

C,...,Cuo~. Now, each z has b¥+! children at the same level, b of them falling in
each of the boxes C,.

We think of the quotient structure (T, U) as a discretization of the Siegel domain
Unyy, with b=1% and N = n.
The discrete DA y4+1 kernel K: T x T' — [0, 00) is defined by
K (z,y) = b24EA)-d(i=1Al)
Note that it is modeled on the approximate expression in (2.9).

Theorem 6. The kernel K is positive definite. In fact,

T b2 =rn—d =MD (o) ()

x yeT
b-1 . 1 _ " "
=TI'po 2+_b_ElI “(z)|2+§ Z b2d(zAw) d([z]/\[w])l[ w(z) =1 “(w)l2'
z#o0 z#weT
[z)=l[x)

The theorem will follow from the following lemma and easy counting.

Lemma 2 (Summation by parts). Let K: T x T — C be a kernel on T,

having the form K(z,y) = H(z Ay, [z] A [y]) for some function H: T x U — C.
Then, of u: T' — C is a function having finite support,

31 Y K(z,y)u(z)uy) = H(o, [o])|I* u(o)[?
Ty

+ Z [H(z Aw, [Z] A [w]) = H(z7P Aw™, [27Y) A [w™ )] T* () T* p(w)
z weT {o}
[2)=[e]

PRroOOF. Let Q be the left-hand side of (3.1). Then,

Q=Y H(zAp o] AGDu@ED

z,y€T
=Y > HeAw,C) Y, p@)u)
CceU z,weT T2 z,y>w

[lAv}=C

=) Z H(z Aw,C)A(z,w),

ceU z,weT
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If 2 £ w,
A(z,w) = Z p(z)(y)
=2z, y> W
{zlAly)=C

1 u(e) I u(t) + p(2) (I pw) — pw))

==

D#FGU) aeg((z)) [[st]]—F
C(C) teC(w =
e + (1 (2) ~ W RT@) + 1

On the other hand,

') p(w) = () [T ) ~ w(w)) + (" u(z) = p(2)) p(w) + p(2)p w)

+ Z Z IPushpw.

D,FeC(C) [s]=D.s€C z
[t}]=FteC w

Hence, if z # w,
v Ppsi*pt
M) =Pu@TFR@ - > 2, T'w

FeC(C) [s|=D,s€C z)
(tj=F,teC(w

_ruTE@ - Y Y Tee) 3D Tet.

Fec(o) lsj=D, ft =F,
( )seC(z) teC w

In the case of equality,

Alz,2)= Y w(@)p®)
T Y2z
{z]Aly]=C

= W) [T = B(2) + KR (I"p(2) - w(2) + 1 2)

+ Z Y ruElet

{s}=D.s€C(%}
D FGC(C) [t =F,teC(w

On the other hand,
I (=) = w(2) (I () ~ u(z)) + @) (I p2) = p(2) + ()

2
Yo Y rus

DeC(C) [s]=D,
8€C(2)

= p(2)(I*p(2) - p(2)) + p(2) (I*u(2) — p(2)) + |u(2)?

2 e
IS DIRZC REPIRPY I (s TR0

Dec(D)l[s)=D, [s)]=D, s€C(2)
acC(z) DEGC(C) [t}=F, teC(w)
Comparing:
(3:2) A2 =Iu@)P - - 1> I*u(S)
Dec(D)l[s) D

2€C(x)
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Then,
Q= Z ZH(zAw C) {I‘u(z)[‘u(w Z ( ZI‘u(s Zl‘u(t )]
CeU [z}=[wjeC Dec(C) \ [a]_D [t)=F
2€C(2) teC(w)
= 2 [HzAw,C) = H(z Aw 1,C DI u(2)T*ulw) + H(o, [o])|I*u(0)}?,

{2}~ [wl=C
d(z)—d(w)21

which is the desired expression.

In the last member of the chain of equalities,we have taken into account that

each term I*u(z)I*u(w) appears twice in the preceding member (except for the
root term).

Proor OF THEOREM 6. Let @ be the left-hand side of (3.1). By Lemma 2,
Q= I"uo)”

+ Z [b2d(zl\w)—d([z]A[w]) _ bzd(‘_lA‘”_l)"d([‘—lll\[‘”—ll)]I‘u(z)I—*;('tu‘)
+,weT {o}
(z=1u]
We have two consider two cases. If z # w, then zAw = 27!
{z] A w])~2, so that the corresponding part of the sum is

33 Q: = _(b _ 1) Z bZd(zAw)-d([z]A[w])It“(z)'IT“(T)

z#weT\{o}
(z)=[w]

Aw A [ =

If z = w, then 27 A 271 = 271, hence the remaining summands add up to

Q= —— Zbd(‘)ll *u(2)?.
z7#o
The term Q) in (3.3) contains the mixed products of
b-1 zAw)—d([z - *
R= —— Z p2dEaw)—d((=AlD) | 1+ (5) — T p(w)|?
z#weT\{o}
[z}==(w}
= Ql + (b _ 1 Z‘I‘“(z Z b2d(z/\w) d([z]/\[w])
z#o0 w:[w)=(2}

The last sum can be computed, taking into account that, for 1 < k < d(z), there
are (b — 1)b*~1 w’s for which {w] = [z] and

d(z) = d([2] A [w]) = d(z Aw) + &,
by the special nature of ®: T — U

d(z)
Z bZd(zAw)—d([z]A[w]) = Z(b - 1)bk—1b2(d(z)-k) d(z)
wiw]=(z] k=1
d(z)

=(b-1)p4AY 27k-1 = %(bd(‘) -1)
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Hence,

- b-1
R=Qi+Qz- 3;1 D IruEf = Q=" p(0) * = ——3 " I'n()?,
z5#0 250

as wished. a

Problem 8. The discrete DA kernel in Theorem 6 does not have the complete
Nevanlinna—Pick property. This is probably due to the fact that the kernel is a
discretization of the real part of the DA kernel on the unit ball, not of the whole

kernel. Is there a natural kernel on the quotient structure ®: T — U which is
complete Nevanlinna —Pick?

In the next section, we exhibit a real valued, complete Nevanlinna—Pick kernel
on trees.

4. Complete Nevanlinna—Pick kernels on trees

Let T be a tree: a loopless, connected graph, which we identify with the set of
its vertices. Consider a root o in T and define a partial order having o as minimal
element: ¢ < y if z € [0,y] belongs to the unique nonintersecting path joinin,
and y following the edges of T. Given z in T, let d(z) := f[o, ] — 1 be the number
of edges one needs to cross to go from o to z. Define £ A y =: max[o,z] N[0,y to

be the confluent of £ and y in T, with respect to 0. Given a summable function
p: T = C, let I"u(z) = 35, 1Y)

Theorem 7. Let A > 1. The kernel

K(z,y) = A9

is a complete Nevanlinne - Pick kernel.

Our primary experience with these kernels is for 1 < A < 2. At the level of
the metaphors we have been using, 24®A%) models |K(z,y) for the kernel K of
(1.1). We noted earlier that the real part of that kernel plays an important role in
studying Carleson measures. For that particular kernel passage from Re K to K
loses a great deal of information. However in the range 1 < A < 2 the situation is
different. In that range A%=¥) models |K®|, 0 < a < 1 and the K are the kernels
for Besov spaces between the DA space and Dirichlet spaces. For those kernels we
have |K*| ~ Re K* making the model kernels quite useful, for instance in [5].

These kernels also arise in other contexts and the fact that they are positive
definite has been noted earlier, (13, Lemma 1.2; 14, (1.4)].
We need two simple lemmas.

Lemma 3 (Summation by parts). Let h,u: T — C be functions and let
M =1I"u. Then,

Y maAnpE@ul) = hE)IME)F+ Y [ht) - hETIME.

z,y teT\{o}
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PROOF.
S (= Ayu(@)py)
x,y
=Y h(t) Y w@)u)
t TAy=t

=) h(t) [lu(t)l’ + p(t) (M) = () + s (M) — @) + > M(z)'M(w)]

zHwzw>L;
- Ho| MO - X W,

d(w,t)=d(z,t)=1
2>t
d(z,t)=1

which is the quantity on the right-hand side of the statement. a

Lemma 4. Fix @ new root a in T and let d, and A, be the objects related to
thts new root. Then,

da(z Na y) = d(z Ay) + d(a) — d(z Aa) —d(any).
PRrOOF. The proof is clear after making sketches for the various cases. a

PROOF OF THE THEOREM 7. The kernel K is complete Nevanlinna—Pick if
and only if each matrix

41 Ao [1_ K(:z:,',:z:N)K(:z:N,:z:j)]
K(zn,zn)K (26 %5) [ j=1. v
is positive definite for each choice of z1,...,zN in T'; see [2].

Let @ = zn. The (i,7)th entry of A is, by the second lemma, A;; = 1 —
A—de TAT By the first lemma, A is positive definite. a
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The Norm of a Truncated Toeplitz Operator

Stephan Ramon Garcia and William T. Ross

ABSTRACT. We prove several lower bounds for the norm of a truncated Toeplitz
operator and obtain a curious relationship between the H2 and H> norms of
functions in model spaces.

1. Introduction

In this paper, we continue the discussion initiated in [6] concerning the norm of
a truncated Toeplitz operator. In the following, let H? denote the classical Hardy
space of the op n unit disk D and Kg := H? N (©H?)L, where © is an inner
functi n, denote one of the so-called Jordan model spaces [2,4,7]. If H* is the set
of all bounded analytic functions on I, the space Kg° := H* N Kg is norm dense
m Kg see [2 p. 83] or [9, Lemma 2.3]). If Py is the orthogonal projection from
L?:=12? 8D, d{ 27) onto Kg and ¢ € L2, then the operator

A‘Pf = Pe((pf)’ f € Kgos
1s densely defined on Kg and is called a truncated Toeplitz operator. Various aspects

f these operators were studied in [3,5,6,9,10].
If - is the norm on L2, we let

1 | Apll := sup{|| A fl} : f € K&, | fll =1}

and note that this quantity is finite if and only if A, extends to a bounded operator

on Kg. When ¢ € L™, the set of bounded measurable functions on 8D, we have
the basic estimates

0 < flAgll < liplloo

However, it is known that equality can hold, in nontrivial ways, in either of the
inequalities above and hence finding the norm of a truncated Toeplitz operator
can be difficult. Furthermore, it turns out that there are many unbounded symbols
¥ € L? which yield bounded operators A,. Unlike the situation for classical Toeplitz

operators on H?, for a given ¢ € L2, there many ¢ € L? for which A, = Ay
|9, Theorem 3.1].
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For a given symbol ¢ € L? and inner function ©, lower bounds on the quan-
tity (1) are useful in answering the following nontrivial questions:
(1) is A, unbounded?
(2) if p € L™, is A, norm-attaining (i.e., is |A,| = ¢ o)?
When © is a finite Blaschke product and ¢ € H, the paper (6] comp tes
|l Azl and gives necessary and sufficient conditions as to when A, = ¢ . The
purpose of this short note is to give a few lower bounds on A, for general inner

functions © and general ¢ € L2. Along the way, we obtain a curious relationship
(Corollary 5) between the H2 and H* norms of functions in Kg.

2. Lower bounds derived from Poisson’s formula
For p € L?, let

1-1ef? . 1441
2 2 ;=/ el zeD,
2 Bo)e) = | e ?O) g
be the standard Poisson extension of ¢ to D. For ¢ € C dD , the continu us

functions on 0D, recall that Py solves the classical Dirichlet problem with boundary
data ¢. Also note that

kx(z) = 1—%9%?@, AzeD,

is the reproducing kernel for K¢ [9].

Our first result provides a general lower bound for A, which yields a number
of useful corollaries:

Theorem 1. If p € L2, then

1— P
®) T eMP /an #(2)

In other words,

8(2) —6(})
z—A

2
dz
on < A,

sl [ o(2) dVA(Z)\ <4,
AED|JOD
where 2
1= 18(2) -e)|® a2
dva(2) =y BV z—x 21

is a family of probability measures on D indezed by A € D.
PROOF. For A € D we have

_ (1182
from which it follows that
1- A2 1- |22
D — = —
"A‘ﬁ" =312 le(A)lzl(A‘ﬁkhkl)l 1< le(A)lz |(Pe¢kx, k)\)l
1- 2
= ——\{pky,
1-|A)2 o(z) —
1Al / ()| 2= 8
oD

"ol
zZ—A

2

IREIEOE
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That the measures dvy are indeed probability measures follows from (4). O

Now observe that if ©(A\) = 0, the argument in the supremum on the left hand
side of (3) becomes the absolute value of the expression in (2). This immediately
yields the following corollary:

Corollary 1. If p € L2, then

(5) sup |(Pe) (M) < 14,
»e® ({0}

where the supremum is to be regarded as 0 if ©71({0}) = @.

Under the right circumstances, the preceding corollary can be used to prove
that certain truncated Toeplitz operators are norm-attaining:

Corollary 2. Let © be an inner function having zeros which accumulate at
every pownt of ID. If p € C(OD) then ||A,l| = |l¢lloo-

PROOF. Let { € 8D be such that |¢(¢)] = ||l¢llec- By hypothesis, there exists
a sequence A, of zeros of 8 which converge to (. By continuity, we conclude that

Il = lim |(B)he)| < 14l < il
whence A, =|ollo. a

The preceding corollary stands in contrast to the finite Blaschke product set-

ting. Indeed, if O is a finite Blaschke product and ¢ € H®, then it is known that

= § oo if and only if ¢ is the scalar multiple of the inner factor of some
function from Kg [6]Theorem 2.

At the expense of wordiness, the hypothesis of Corollary 2 can be considerably
weakened. A cursory examination of the proof indicates that we only need ¢ to be
a limit point of the zeros of ©, ¢ € L™ to be continuous on an open arc containing
Cand 9¢ = @l

Theorem 1 yields yet another lower bound for |A,|. Recall that an inner
function © has a finite angular derivative at ¢ € O if © has a nontangential limit

© ¢ of modulus one at { and ©’ has a finite nontangential limit ©'(¢) at {. This
is equivalent. to asserting that

8(z) - 8(0)
6 =

has the nontangential limit ©'(¢) at ¢. If © has a finite angular derivative at ¢,
then the function in (6) belongs to H? and

8(2) — O(r¢) |* |dz| _
2 —/;D

z—r(
_ 2
lim -1—-—11—8:(7’_%)]— =0'(¢)| > 0.

r—+l

6(z) - 8(0)
2= ¢

lim

? |de]
r—1 aD )

2m

Furthermore, the above is equal to

See (1,8] for further details on angular derivatives. Theorem 1 along with the
preceding discussion and Fatou’s lemma yield the following lower estimate for || A,||.
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Corollary 3. For an inner function ©, let Dg be the set of { € D for which
© has e finite angular derivative ©'({) at {. If ¢ € L™ or if ¢ € L? with ¢ > 0

e COELGIE
()—Z—— °

1
by A 16'(4)1 <14l

In other words,

s /8 ola) dVA(Z)\ < 14,0,

where O 1]
1 1o —98()|"ldz
W& = EoN T e=¢ | 2=

is a family of probability measures on OD indexed by ¢ € Deg.

3. Lower bounds and projections

Our next several results concern lower bounds on | A, | involving the orthogonal
projection Pg: L2 = Kg.

Theorem 2. If © is an inner function and ¢ € L?, then
[ Pe(p) — 6(0)Pe(Op)|| 1A
(1-le@pP)z =17

PROOF. First observe that ||kol| = (1 —|©(0)|2)! 2. Next we see that if p € L?
and g € K¢ is any unit vector, then

(1= 18(0)3) /2| Al = {Agko, 9)| = |{Pe(pka), g)l = (Pe ¢ —© 0 Pe 67,9
Setting

_ _Po(¢) = B(0)Pe(6¢)
IPo(v) — B(0)Po (6¢)

yields the desired inequality. 0

In light of the fact that Pg(O¢) = 0 whenever ¢ € H2, Theorem 2 leads us
immediately to the following corollary:

Corollary 4. If © is inner and ¢ € H?, then

| Pe ()
M A- PO < < 4.l

Tt turns out that (7) has a rather interesting function-theoretic implication. Let
us first note that for ¢ € H*®, we can expect no better inequality than

lell < llelloo

(with equality holding if and only if ¢ is & scalar multiple of an inner function)-
However, if ¢ belongs to K&, then a stronger inequality holds.

Corollary 8. If © is an inner function, then
(8) lell < (1~ 18(0)1*)*liplloo

holds for all ¢ € K. If © is a finite Blaschke product, then equality holds if 678
only if ¢ is a scalar multiple of an inner function from Ke.
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PRoOOF. First observe that the inequality

lell < (1~ 18O lelleo
follows from Corollary 4 and the fact that Pgyp = ¢ whenever ¢ € Kg. Now
suppose that © is a finite Blaschke product and assume that equality holds in the
preceding for some ¢ € K&. In light of (7), it follows that ||Ay|| = |¢|lcc. From
[6, Theorem 2] we see that ¢ must be a scalar multiple of the inner part of a function

from Ke. But since ¢ € K&, then ¢ must be a scalar multiple of an inner function
from Ke. ]

When O is a finite Blaschke product, then Kg is a finite dimensional subspace

of H? consisting of bounded functions [3,5,9]. By elementary functional analysis,
there are ¢y, ¢y > 0 so that

allel £ lelle < eallell
for all ¢ € Kg. This prompts the following question:

Question. What are the optimal constants c;, ¢z in the above inequality?

4. Lower bounds from the decomposition of Kg
A result of Sarason [9, [Theorem 3.1)] says, for ¢ € L?, that
9 A,=0 < p€cOH? + OH2.
It follows that the most general truncated Toeplitz operator on Kg is of the form

A, +x where ¢, x € Ko. We can refine this observation a bit further and provide
an ther canonical decomposition for the symbol of a truncated Toeplitz operator.

Lemma 1. Each bounded truncated Toeplitz operator on Kg is generated by a
symb [ of the form

10 e= 9 + x©
— S~
here ¢,x € Ko. €H? zH?

Before getting to the proof, we should remind the reader of a technical detail.
It follows from the identity Kg = H? N ©2zH? (see [2, p. 82]) that
C:Ke—)Ke, Cf :=Z_f@,

is an isometric, conjugate-linear, involution. In fact, when A, is a bounded operator
we have the identity CA,C = A7 [9, Lemma 2.1].

Proor oF LEMMA 1. If T is a bounded truncated Toeplitz operator on Kg,
then there exists some ¢ € L% such that T = A,. We claim that this ¢ can be
chosen to have the special form (10). First let us write ¢ = f +%g where f,g € H2.
Using the orthogonal decomposition H? = Kg @ ©H?, it follows that ¢ may be
further decomposed as

o= (fi+0Of2) +2(q1 + Og0)

where f1,91 € Ke and f2,92 € H2. By (9), the symbols ©f, and ©(zg2) yield the
zero truncated Toeplitz operator on Kg. Therefore we may assume that

p=f+7g

for some f,g € Kg. Since Cg = §Z©, we have zj = (Cg)© and hence (10) holds
with ¥ = f and x = Cg. g



64

then

8. R. GARCIA AND W. T. ROSS

Corollary 8. Let © be an inner function. If 1,92 € Ko and © =P+ 1,0

— B(0)

PROOF. If p = 9, + 9,0, then, since 11,%2 € Ko and 120 € zH?2, we have
Pa(p) — ©(0) Pe(Oy) = 11 — ©(0)¢2.

The result now follows from Theorem 2.

10.
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Approximation in Weighted Hardy Spaces for the Unit Disc

André Boivin and Changzhong Zhu

ABSTRACT. In this paper we study polynomial and rational approximation in

the weighted Hardy spaces for the unit disc with the weight function satisfying
Muckenhoupt’s (A?) condition.

1. Introduction

In [4], some basic properties of the weighted Hardy spaces for the unit disc D
with the weight function satisfying Muckenhoupt's (A9) condition were obtained,
including series expansions of functions in these spaces with respect to the systems
{ 2mi l—ékz))_l}, with ax € D, k = 1,2.... In this paper, we continue our study
of appraximation properties in these spaces. In particular, we obtain some results
on the rate of convergence of approximation by polynomial and rational functions.
Let us first recall some definitions and known properties.

Assume that w i8 a nonnegative (with 0 < w < oo a.e.), 2m periodic measurable
fun tion defined on (—o00,00). For 1 < ¢ < 0o, we say w satisfies Muckenhoupt’s

A? condition or w € {A?%) (we also call w an (A?) weight), if there is a constant
C such that for every interval I with |I| < 2m,

(3 ) o) <o

where I denotes the length of I. We say w € (A!) if

1 / w(6) d6 < Cllwlls,
m /s

for every interval I with |I| < 2w, where ||w||; denotes the essential infimum of w
over I.

A%) weights were introduced in [12]. In the general definition, w is not nec-
essarily 27 periodic and I is not restricted by |I| < 2 (see, [8, Chapter VI; 12]).
But in {4] and in the current paper, as in [12, Theorem 10] and [9, Theorem 1],
w is additionally assumed to be 2w periodic since the weighted Hardy spaces we
consider are over the unit disc and integration takes place over the unit circle. For
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Research supported by NSERC (Canada).
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2n-periodic weights, as shown in [4], the imposition or not of the condition I < 2x
does not change the class of (A?) weights (the value of the constant C appearing
in the above definition may change).

Some well-known properties of (A?) weights include: (i) if w(8) € (A7 with
1 < g < oo, then w(f), (w(8)]~*/"V and logw(6) are integrable on [—x,r-
(i) w € (A?) if and only if w'~7 € (A7) wherel< g<ooand1 g+1¢ =1
(iii) if w € (A?) and gp > g, then w € (A%), and (iv) f w € A with1<g< x
then w € (A?) for some g1 with 1 < q; < ¢. Given w € A? for some q wit
1 < g < o0, we denote by g, the critical exponent for w, that is, the infimum of all
r’s such that w € (A7). We have g, > 1,and w € (A") forallr > g .

Example 1.1. Let 1<g< o0, ~-1<8<qg-1, and
1.1) w(f) = |ei¥ —e'™|® (ie,j142t°, t =1.
By (16, p. 236], we have w(8) € (A49).

For w(6) € (49),1 < g < o0 and 0 < p < 0o, the weighted Hardy space H? D

for the unit disc D = {z € C: |2| < 1} (see [7]) is the ollection of functi ns f z
which are holomorphic in D and satisfy

£ g () = sup 517; f_"lf(re“’) Pw 6)df < oo.

The classical Hardy space HP (D) is obtained by taking w = 1. The space L? T)
is the collection of measurable functions f(t) on T = {t € C: ¢ = 1} which satisfy

1 Pery = 5= [ V() Pu(6) 6 < oo

For 1 < p < o0, HE(D) and L (T) are Banach spaces. From now on m this
paper, we assume that w is an (A?) weight for some g with 1 < ¢ < oo and with
critical exponent g,, (for simplicity of writing, in lemmas and theorems involving ,
we will not repeat this assumption), and in most cases, we assume that g, <p <0
Under these conditions, HZ (D) and L?,(T') are Banach spaces since p > 1, and by
the properties of (A7) weights mentioned above, we have w e AP .

By (4] and (12, Theorem 10|, we have

Lemma 1.2. Assume that g, < p < 00, then HE(D)C H? D and L2, T C
LPo(T), for some py with 1 < py < p, that is for any f(2) € HE (D),

(1.2) W f ) azo (D) < C'I | 5y (DY

where C’ is @ positive constant independent of f.

Lemma 1.8. Assume that g, < P < o0. If f(z) € HP(D), then f(z) hos

nontangential limits f(t) a.e. on T (f(t) is called the boundary function of f(2 1
and f(t) belongs to L2 (T) and satisfies

.3 tm [ 1) ~ F(@)Pu(6) a0 =0,
(1.4) lim f ) | f(ret®)|Pw(f) d6 = "|f(ei9)|9w(9)d9,
and

(1.5) N lle ) S ||f(z)||H£’,,(D) < Coll F (Dl 27>
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where Cyp is a constant depending only on p.

Lemma 1.4. Assume that g, < p < co. If f(z) € HE(D), then

1 f(t) - f(z)\ z€ D
(1.6) m.[g|=1h_zdt— {0’ ZEC\E.

Lemma 1.5. Assume that g, < p < co. Let 1/p+1/p' = 1. Then, for every

bounded linear functronall € (HZ(D))", there is a function &(z) € HT;: 1t (D) such
that

() =5 [ eEEm
for § 2) € HE(D).

2. Smirnov’s theorem and examples

It is known (see [10, Chapter IV]) that if f(z) € H?(D) and its boundary
function f t) belongs to L7 (T) for some p; > p, then f(z) € HP* (Smirnov’s
theorem). A similar theorem also holds for the case with (A7) weight.

Theorem 2.1. Assume that w € (A7) for some q with 1 < ¢ < co. Moreover
assume that 0 < p < oo and that p1 > p. If f(z) € HP(D) and if its boundary
functr n f t) € LP T), then f(2) € HP(D).

Before giving the proof, let us recall that for f(t) € L}(T), the Hardy-
Littlewood maximal operator is defined by

0 1 ré+e
Mf(”):= sup — |£(e")| ds.
o<<r 20 Jo_g

By [2, p. 113], the Poisson integral

22 =) = o [ P(O- 05 at,

-

|z =r <1
satisfies

2.1 li(re®)] < Mf(el%), O0<r<i,

where P, ¢) is the Poisson kernel:

Po(¢) = 1—1r2
~(9) = 1—2rcos¢+r12’

If w € (A9) for some g with 1 < g < 00, and 1 < p < oo, by [12], the operator
M f is bounded from L%,(T') into itself, that is, there is a constant Cj, such that for
every f t) € L (T),

f IMf(e)Puw(d)dd < C, / 17(£°)Pw(8) df.
- -
We are now ready to prove Theorem 2.1.

Proor. If f(z) € H?(D), by [6, Theorem 2.7), and multiplication by p/q, we
have

log|f(re'®)P/9 < 21—1 / P.(0 — t) log| f (e®)[?/9 dt.
-
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Exponentiating and using the arithmetic-geometric mean inequality {6, p. 29|, we
have

#rePre s opd - [P0~y togls(ey P/t
1 n

So- | P6-1) Fle®)P/aat.

But, since | f(e')| € L2 (~, ), we have | f(e®)|P/9 € L¥/?(T), and since a1 p>
g > 1 and w € (A9), by property (iii) of the (A?) weight mentioned in the intro-

duction, it follows that w € (A%:/P). Thus, by Lemma 1.2, |f(e®)Pa€ L T).
Hence, by (2.1), we have

" -
supl ()P4 < sup o f Po(0 - 1)l f(&*)|P/ 2 dt < M(F(°)? %),
r<l r<l 27 —
where M is the Hardy —Littlewood maximal operator. Thus, for r <1,

£ (re®)| < [M(1F ()PP,

and
T \reyPu@)as < [ [IMASEPI P w(6) a0
= [ s )™ *ue) o
< ["(1#(&0)P19)™ Pu(o)ds

_ c/"r |£(e) P w(6) 6 < oo,

here in the last 2 steps, we use the facts that the operator M is bounded from
L™/P(T) into itself, and f(e'®) € L?:(T). Hence f(z) € HE (D). 0

Note. Another proof can be obtained using [13, Theorem A4.4.5] and an im-
portant result (see [4, Lemma 2.3} or (7, p. 6]): If f(2) € HE(D) then f(2)Wy(2) €
H?(D) where

it
W, (2) = exp (271); / o * ~ logu(t) dt), z€D.

As an application of Theorem 2.1, let us give an example of a function belonging
to HP(D):
Example 2.2. Let w(f) = |e! —e'™|~1/2, We know (see Example 1.1), w(f) €
(A7) for g with 1 < ¢ € 0. Fix ¢p with 0 < ¢g < &, and define
f(2) = (z-em=9)V2 €D,

It is known that f(z) € HP(D) for 0 < p < 2 (see [6, p. 13, Exercise 1])}, hence
f(z) € H'(D). Meanwhile, its boundary function f(e'’) € L2 (T) for 1 < p; < 2

1As noted in [6], g(z) = (1~ z) ! is in HP(D) for every p < 1. From this it follows that
9q{z) = (1 = 2)~Y/¢ is in HP(D) for every p < q. Thus, with a change of variable, we have
f(z)e HP(D) for0 < p < 2.
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because

) - ! de
— |6 = ei(m=00))[p1/2 e — ein[1/2 < 00, 1<pm<2

(here we note that the singularity of the first factor after the integral sign is at
7 — ¢o with power p;/2 < 1, and the singularity of the second factor, i.e., w(), is
at 7 with power 1/2). Thus, by Theorem 2.1, f(z) € H2' (D) for 1 < p, < 2.

Given a function f(z) and an angle ¢, we will use f o Ry4(2) to denote the
function obtained from f(z) by rotating z by ¢, that is f o Ry(z) = f(2e'%).
The following examples show that if f(z) € HE(D) then fo Ry(z) may or may
not belong to HZ (D).
Example 2.3. Let f be given as in Example 2.2, and consider the function
9(2) = £ 0 Rogo(2) = (ze7H0 — =0y 172,

z€D,
The arguments presented in Example 2.2 show that g(z) € H?(D) for 1 < p < 2.
But since

" 1 1
f_, [ei0—%0) _ eilr—¢a)[p/2 ' i — g7 |1/2 dd =00, p>1

note that the singularity of the function after the integral sign is at = with power

p 2+1 2> 1 when p > 1), the boundary function g(ei®) ¢ L2 (T) for p > 1, so by
Lemma 1.3, it follows that g(z) ¢ HE(D) for 1 <p<2.
If instead we consider the function

h(z) = fo R_4(2) = (2e7'¢ —dlmd0))=1/2 e p

then when 0 < @ < ¢g (or ¢ > ¢y but ¢ — ¢y < 7), as in Example 2.2, we have
hz eHE(D)for1<p<2,

Example 2.4. Let w(f) be given as in Example 2.2, and {¢n} (n=1,2,...)
be a given sequence with the properties that 0 < ¢n < m, ¢; # @; for i # j, and

¢n — 0 as n = co. We will construct a function hy(z) which is in HE (D) but
hioR_4,(2) ¢ HE(D),1<p<2,foralln=1,2,.... Let

fal2) =(2— e"("—%))—l/2 (n=12,...) 2€D.
By Example 2.2, f,(z) € HE(D) for 1 < p < 2,7 =1,2,.... And as shown in
Example 2.3, the functions

o R_,., {2) = (ze'i"’" — i("'_¢n))—1/2

are in H?{D) but not in HE(D) for 1 < p < 2.
Define the function

fi(2)
@2) ula) Z 2"Hf:|lu.';(o) & D.

It is seen that hi(2) € HE(D) for 1<p<.
For any fixed n, we have

n=1,2,..)z€eD

o~ feOR_4,(2) _ fno R-9,(2) froR_¢,(2)
hioR_4 (2) = o =" 2 n
1R = D W oy = Pl 2 Pl

Thus, for 1 < p < 2, hio R4, (2) ¢ HP(D) since f, 0o R_4.(2z) ¢ HE(D) and
feoR_y (2) € HE(D) for all k # n (see Example 2.3).
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3. Approximation in HZ (D)

Recall that a system of functions is called complete in HE (D) if the closed

linear span of elements of the system is the space HE(D); otherwise, it is called
incomplete.

3.1. Approximation by polynomials. As in the classical case, we have:

Lemma 3.1, Assume that q, < p < o0, then the system of polynomials 1s
complete in HE (D).

PrOOF. Suppose that f(z) € HEZ(D). By (1.3), given € > 0, for r < 1 suffi-
ciently close to 1, we have

hf(2) = f("'z)"Hg,(D) < €.

Since the Taylor series of f(r2) converges uniformly for z < 1, it also converges
in the topology of HZ (D). Choosing sufficiently many terms of the series, we get a
polynomial P(z) which satisfies || f(z) — P(2)| w2 (D) < 2- 8]

Definition, Assume that g, < p < oo and f(z) € H? D . For 4 > 0, let

Bsw(@)= sup |[|foRy, —foR .
! |4>1—4>2|<5" “ 1

Now assume that there exists a dg > 0 with By, (o) < co and define

" 1p
whw(6)= sup sup (%/ |n(elo+G+DOl) _p &l 6+ 6 Py g de) _
§=0,1,2,... |¢|<6 \ 2T

-

We call wp ,, the generalized modulus of continuity of h. Note that 8; < §; implies
Whyw(01) < wh w(02).

Noting that wy,,(8) < Bf,w(8), and when § < o, Br.w § < Brw S0 < o0, we
have, for § < &g, wy ., (d) < 0.

It may be expected, like in the case w = 1, that wg (8 — 0 as § = 0, but
unfortunately, in general, this is not guaranteed. Indeed, as shown by the following
example due to G. Sinnamon, there exists a function f such that the functions
f o Ry(z) are in HE(D) for all ¥ € R, with norms in HZ (D) uniformly bounded,
and hence the same holds for the norms of their boundary functions in L, T

by Lemma 1.3, but such that for any § > 0 there exist angles ; and 19 with
|¥1 — | < & and

1f o Ry = F o Ruallizor 2 3

and hence, by Lemma 1.3, ||f o Ry, — f o Ry,llzz (1) = 1 (2C}), where Cj is a
positive constant depending only on p.

Example 3.2 (G. Sinnamon). Fix p with 1 < p < 2 and define w(f) =
|e'®~1|~/2, Thenw € A, as in Example 2.2. For each s > 1set f,(z) = (z~s)"! %,
where the branch cut of the square root is [0, 00) so that fs(z) is analytic in D.
Define

9(s,8) = |ifs o Roll Lz (1)-
It is not hard to verify that
(1) g(1,8) < oo for 6 # 0 (as in Example 2.2);
(2) ¢(1,0) = oo (as in Example 2.3);
(3) g is continuous on [1,2] x {~,7] except at (1,0);



APPROXIMATION IN WEIGHTED HARDY SPACES FOR THE UNIT DISC 71

(4) g(s,0) — 00 83 8 — 1t
(5) g(s,6) < g(1,6) for all s,6;
(6) g(s,0) < g(s,0) for all s,4.

Note that Property 5 does not depend on the weight w, but just on the geomet-

ric observation that for 8 > 1 and |z| =1, |s — 2| > |1 = 2|. Thus |f,(z)| < |f1(2)|
for each z with |z| = 1 and hence g(s,8) < g(1, ).

To get Property 6, note that for any fixed s > 1, the maximum value of the
function

"
(9(s,0))° = 21—“ f (14 s* — 2scos(t + 0))-;;/4 (2- 2cos(t))—1/4 dt
-
occurs at § = 0.

Now let 0, ¢n and &, be three sequences in (0, 7) that decrease to zero and
satisfy
0n+1+6n+1 <¢'n. <0n_6n <0'n. <0n+6ﬂ

for n = 1,2,.... Notice that the intervals (6, — 8,,6, + 6,) are all disjoint and
contain none of the points ¢,.

Let M =4% 2 ) 1/n? and choose a decreasing sequence s,,, with each s,, > 1
such that
9(sn,0) > MnZsup{g(1,9) : 6, < 0| < =}.
Define

f(z) = zfsn“% )

(s'm

o0

For each n, 8, < 6, so g(s,,,0) > Mn?g(1,6,,). Thus,
g(1,6,) 1

fﬂn \ 9(8n,0n) -
9(31“ HZ(D) ,;1 9(sn,0) Mn2g(1,6,) 4

n=1

Since HP (D) is a Banach space this shows that f(z) € HE (D).
Now let 9 be an arbitrary angle.

> fs,oRg o Ry
2 g(3n10)

n=1

g(smo +¢)
H"(D) el g(sn,0)

The inequality |6, + %] < §, means that —1 is in the interval (6,, — &y, 6, +&,) and
80 it can hold for at most one n, For such an n, we use the estimate, g(s,,, 0, +%)

<
g 8,,0) and for the other values of n we estimate as above to see that the sum is
bounded by 1+, 1/(Mn2) = 2. This shows that for any ¥, foRy(z) € HL(D,
and foRylluzn) < §

Now we show that for any § > 0 there exist angles ¥, and ¥, such that |¢; —
Y2 <§and

If o Ry, = £ o Ry llsgior = 5.
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Given 8 > 0 choose N so large that |0y — ¢n| < 8. Set ¥ = —0n and 95 = —¢y

\foRy, —fo R«paﬂua(o)
| fan © Roy 0 Rogy | HZE (D)

_ Z | fonoRo.°R-6y u D
= 9(sn+0) P 9(sm0)
_i fsnoR9. Ry wp
el g 3n,0

The first term is equal to 1 and, arguing as above, each of the two sums is at most
% 50 the result is at least § as required.

Example 3.3. Assume that ¢, < p < 0o and w is bounded say, w6 <K
where K is a positive constant), and f(t) € LP(T). Clearly, f(t € I T) a
particular case is f(t) € LE(T) with w = 1). In this case, we can prove that
wy,w(6) > 0as § = 0: Given an £ > 0, there is a polynomial p z such that

f = plle(ry < €/(3K),
hence,

If =Dl 1y < &/3.
For any ¢, and ¢5, we have

\foRg —poRylleoy <KlfoRg —poRy ey =K f—p o1 <€ 3,
and similarly,
\fo Ry, —po R¢a||Lr;,(T) <eg 3

Meanwhile, by the uniform continuity of p(z) on T, when ¢1—¢2 is sufficiently
small, we have

lpo Ry, —po Ry, I LyT) <€ 3.
Thus, combining the above 3 inequalities, by Minkowski's inequality, when
|#1 — 2| sufficiently small, we have

Ilf o Ry, — f o Reulle iy < &
hence

limsup "f ° R¢1 —fo R¢2 “L?.;(T) <sg
|p1—¢a2{—0

and the required result follows as £ can be arbitrarily small.

This is a very strong condition on the weight w, but it guarantees that wy, ()
—0asd =0 for all f € LP(T). Simple conditions involving not only w but also f
can easily be given to get wy,,(8) = 0 as § — 0. It would be interesting to obtain
a set of necessary and sufficient conditions (on w and f) for wf,,(8) 2> 0asd —0
to hold, as it would have implications on our next two theorems. See below.

Lemma 3.4. For any positive integer k,

(3.1) whw(kd) < k- wh,w(é).
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PROOF. By definition,
Uh,w(k‘s)
1 X , 1/p
= sup sup ( lh(e‘[”"’(-’“)"*’]) h(ellt+ik4}) [Py (6) dﬂ)
1=0,1,2,... |$| <8 \ 2T
1 _ o s /p
= sup sup (— |h(ellotake+kely _ p(eilo+ikel) Poy(g dﬂ)
1=0,1,2,.. ¢ <§ 2 -
L= , ? 1/p
= sup sup ( / Z[h(e1[0+ak¢+(l+1)¢]) - h(ei[9+1k¢+l¢l)]\ w(h) dg)
3=0.1,2,... ¢ <6 27‘- =-7l1=p
which, by Minkowski's inequality,
1 Ly 1/p
< sup sup Z( / |h(ellO+TRHEDELY _ p(ello+Tk+D41) Py (g) dﬂ)
T =002 ¢ <8 g \27 Jx
k-1 1 (" ‘ . 1/p
< Z sup sup¢ <5( / lh(ello+(1k+t+1)¢]) - h(ei[9+(jk+l)¢l)|"w(g) dg)
=012, 21 J_x
<k- wh,.,,(J). o]

Using a classical method similar to that in [14], we obtain

Theorem 3.5. Assume that ¢, < p < oo, h(z) € HE(D), and there ezists a

d >0 with By (8) < co. Then for any positive integer m, there is a polynomial
Pm z of order < m such that

3.2 1A() = Pm (B)l| 2, (1) < C(R) - whw (';2) ’

where C h) is a constant depending on h but not m.

PRrOOF. Note that h(t) € L'(T), as in [14, Chapter III], define

2 [ sinmt \*
IL.(6) = ll/’/ /zh(e(0+2t))<_+) dt,

msint
where .
/2 :
zl/f'—zf (sm,’”t) at
—xj2 \Mmsint
Then
) ~ In(0) = -2 [ (h6) - neesaon) (B2 gy
€ Im M2 | _ea e msint !
and

W)~ In(O)] < 5175 / |h(e®+2) — h(e '°>|(S“””t) dt.

sint
Using Holder’s inequality, we have

HE) = In)] S % (/_Y;lh(e‘“m) e "’)P(S‘“’”t) dt)”’

meint
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where ¢1 = 71/7" with 1 /p+1/¢ = 1. Thus, using Fubini’s theorem, we obtain
T
[ 10) ~ Lnoypuie) ao
~-n
P 1|'/2 v M 1p
< (2c1) [/ |h(e!@+29) — h(e')[Pw(B) dgl (sant)
-

ln Jozp2 msint
. 4p
(2¢1)? /"/2 sinmt
< P
<SR L enwtedr (o

By (3.1), wh 1 (k8) < kwhw(6), it follows that

. 8cy sin mit 1e
18(e*) = Im(B)l| 2, (=m;my < e (_/0 wn,w(®)P (msmt) )
Noting that, for t > 0,
t 1 +1 1
Wh,u(t) = Whu (”—,;) < whuw ([1‘—1,,,—) S (] +1 wh (;)
<(mt+1 whw (l)
m

(note that, here, and in the following, as usual, for a real number s, we use [s] to
denote the greatest integer not over s), we have

2] . 4p 1p
16 C2 1 2 p [ sinmt
M) = EnlO)lzz < 5 on () - ([ 17 (S0) @

5ol ([ Teor o))"

where we used the inequality
(a +b)? < 2P(a® + bP), a>0,b>20,1<p<o0.
But we have the estimates (see [14, pp. 84-85]):

c /2 ( sinmt \ P
I = =, f : dt< 2
m 0 msint m’

, 4
0 msint = mptl’

where ¢; (1 =1,...,5) are constants independent of m. Thus, we obtain

1
IA(E) = IO 2 -rem < CB) w3 )

Noting that, by {14, Chapter III, p. 91}, Im(6) can be re-written as a polynom'“‘l
pm(2) of z = !’ with order m — 1. The lemma is proved. 0

and

Remark 3.6. If w, (8) = 0 as § = 0, this is a Jackson-type theorem.

We will need the following fact in the next section:
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Lemma 3.7. Let g, < p < 00, and pm(2) be a polynomial of order m. Denote
for any p > 0,

63) lm Iz = 3 | m(pe®)P(0) 0.

Then, forr > 1,

cv.m+1
(3.4) Ilomll 22 qu=r) < = 7 |Penll 22 (Tys

where ¢ is a constant independent of m.

Proor. Consider the function

Pm\2
(35) =228, sz
Noting that f(co) =0, by the Cauchy formula, for any t € C with |tj =r > 1,
-1 1O 4

Using Holder’s inequality with 1/p + 1 / p’ =1, we have

10l £©)
ft)s27r./ llt—a“'—zwfe i

< (2 [eru) (& [ wor )"
= a

where ¢; = (1 2r) [*_[w(6)]*~? d0)1/ P Thus, by (3.5), for || =r > 1,

1 ,rm+1
pmlt) =r™H|f() < 2 Mz = =1 Ipmlacn
since f 2 7 = |pmliz(m)- Hence, by (3.3),
pemllize qei=r) < ||Pm||Lr,, Ty

where ¢ = ( 1/27) [7_w(6) d6) e, Letting ¢ = cicq, (3.4) follows. ad

3.2. Approximation by rational functions. For a sequence {ax} Cc D
consider the system of rational functions

1
(36) ex(z) = 57';1' FR—s

In {4) we studied the system {ex(2)} under the assumption that the sequence {ax}
satisfies the Blaschke condition

k=12,

X

o0
Z(l — lak|) < 4c0.
k=1

In particular, it was shown that, under this condition, the system {ex(2)} is incom-

plete in HE (D), for g < p < 00. See [4, Lemma 3.3]. We then proceeded to study
the subspace generated by the system {e,(2)}.
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In the current paper, we consider the case when the sequence {ax} does nct
satisfy the Blaschke condition.

Lemma 3.8. Assume that q, <p < o0. If

oo

Z(l - \a’k‘) = 400,

k=1
then the above system {ex(z)}(k = 1,2,...) is complete sn HE, D .

ProoF. By the Hahn Banach theorem, and Lemma 1.5, we need nly to prove
that if

x o L 1 I
i6 16 = — . 0 = =
(68) [ en(e)Fe")as ]_” e T eNde=0,  k=12..

3.7)

where &(z) € H?, (D) with 1/p+1/p' =1,then & ¢ =0 ae in —w,7 But

(3.8) is equivalent to
1 j 20) 4o,
27 [tj=1 T — Gk

that is, by Lemma 1.4, ®(ax) = 0 (k = 1,2,...). We note that, by Lemma 12,

®(2) € H® for some 1 < s < p’. Thus, by (3.7) and Corollary f [6, Theorem 23
we have ®(z) = 0. The lemma is proved. ]

It follows that, under the assumptions of the ab ve lemma, we can use hnear
combinations of the system {ex(z)} (k= 1,2,...) to approximate any functi n in
HZ(D). Assume that {ax} contains the point zero. Without loss of generality by
re-indexing, we assume that ag = 0 and all ax # 0 (k= 1,2,... . Thus, for a fixed
positive integer n, a linear combination of the system becomes

n
Cx
3.9 ra(2) =¢cy + E .
(3:9) n(2) k=11—a"z

The poles of (2) are by = 1/ax with |bx} > 1 (k=1,2,...,n . Denote by R, the
collection of all rational functions r4(2) of the above form, and, for h z € H;, D,
denote the best approrimation value of h by r,, in R, by

En(h) = rnlg‘lfi..“h - 1‘“‘ HZ(D)*

By Lemma 3.8, we have En(h) — 0 as n — oo. An interesting question is how
to estimate the speed of En(h) — 0. Similar problems were studied for uniform
approximation on T or D (see {1]), and for the appraximation in H? (see [15])-

Theorem 8.9. Assume that (i) gy < p < 00, h(2) € HE(D), and there exists

a 8y > 0 with Bhr.w(d) < 00; (ii) {ax} satisfies (3.7) and lax] < p (k =1,2,--
with 0 < p < 1. If n is a positive integer satisfying

(3.10) 8 1= :1—5 (1 =lakl) > 2,
k=1

and

o\ (-PIn/3
(3.11) n(-) < whw(1)

€
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(here, assume that wp (1) < 00), then there exists a rational function rn(z) € Ry
such that

1
(312) "h - Tn“H";, (D) <C. Wh,w (;) ,

where C is a positive constant depending on h but not n, and wh w(8) is the gener-
alized modulus of continuity of h. Hence, we have

(3.13) Ea(h) < C-wn (%)

PROOF. Choose a positive integer m = [sn/2]. By (3.10), m > 1, and by
Theorem 3.5, there is a polynomial py,(z) of degree < m such that

(.14 IA6) - pm(®llzzr) < Cr -6 (3 )

where C} is a constant depending on h but independent of m.
Noting that wh 4, (1/m) < whw(1) (since 1/m < 1), by (3.14), we have

315 pm (1) < MRllze + b = Pmllzz ) < IRl o) + Cr - whw(1l) = Ca,

where Cj is a constant depending on h but not m and n.

Assume that a rational function r,(2) € R, interpolates pm(2) at ax (k =
1,2,...,n+1). By [17, Chapter VIII, Theorem 2], the error pm(2) — r,(z) has the
following integral representation: for |2| <1,

316 pm(z) —ra(2)

= _1__/ (z—a1) - (z—ant1)(t —b1) - (t = bn) pm(t)dt
2mi Jy=r =) (t—an1)(z = b1) - (2=bn) t-z '
where r > 1 and r # |b| (6 =1,2,...).
Using (3.16), now we estimate the error |pm(2) — r,.(z)| in |2| <1

n
Z = Ont1 Z=ak b )lpm(t)|
2)—ra(2)| £ o e 4 [ Z 8k dt
lpm( ) n( )‘ 27r lﬂ="( t—a,.+1 ’!;[1 z\bk t-a,k |t | | |
_ 1 (ﬂﬂ ﬁbkﬁl H_t_:”i)lpm(t)l atl
27 Jig=r \| t = Gnr | 53] 2= g | 5| Ot |t - 2|

Clearly, for |z| < 1,

n Zkz_l n
11 = |2 — ant|

k=1 k=1
= |2 = ant1|Br(2)| < (J2] + lan+1DBu(2)| < 2.

And, by [17, Chapter IX, Section 2, Lemma, p. 22g], we have for [t| < r > 1

ﬁt—bk 1 2 bl +7
S bt~ 1" r— 1}11+|b,,|r'

ax - 2
1—& z

z"an+1|

1
t - a,.+1]
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So, for |2] < 1, by Hélder’s inequality,

(3.17) Ipm(2) ~ T (2)| < ('r _2 7] ) H 1|b_l‘c-l ‘:,‘Tr . 21_” [: _ Pmlt) dt

2c17 H bl + 7

< 7‘ _ 1)2 14 ‘bkl"' : lpm“L?,,(t:r)a

where ¢1 = ((1/2m) [7_[w(8)]*~7 do)l/” with1/p+1/p =1.
By Lemma 3.7, and taking r = 2 (note that if |bx = 2 for some k, we can
choose 7 = 2 4+ £ with a sufficiently small positive number €), we have for z <1

bkl +2
(318) Ipm(z) = a(2) s@zm-gl‘j—';b—kl- P 13 T,

where cj is a constant independent of m and n. Therefore, by (3.18 and 3.15
we have

n
{bx] + 2
(3.19) Ipm = Tallez @y < Ca-27 LII 1+2b:°

where Cj is a constant depending on h but not m and n. And by 3.19 and 3.14,
noting that 2m = 2[s, /2] < s, we obtain:

bk +2
. —Tn < * w o
(3.20) b —rallz) < Co - wh, ([ /2]) +Cs-2 H 14+2b°
Let us estimate the product in the right-hand side of the above inequality. Since
1be| + 2
0< ——<2
14+ 2]bg| ’
we have?

|b| + 2 < exp el +2 e b —1
14 2[by] 1+ 2]bg| - 1426 )

Since |bg| > 1, noting (3.10), we have

T bkl 2 (_" lbkl—l) N b 1
}_=Il1+2|bk|-exp Zl+2|bkl <e(-2. S

k=1

( 32( lbkl)) =m(—§k‘;u—|ak|)) _

Thus, by (3.20), it follows that

(3.21) Ik =rallzem < Clwhw([ n/2]) +Cs (%)a“.

Since |ax| < p (k= 1,2,...), we have

—-E(l—lakl Zl—p)-——nl—p)-
k=

— 1
2por0 < z < 2,logz = (z—l)—%(z—l)’+§(z-—1)3-- .+ € g1, and hence z = ¢'°%* <e
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Sn 1
s (1= .
[3]=[so-o]r
Since wh,w(6) is nondecreasing as § increasing, we have by the inequality wp . (a8) <
(a+ 1)wh,w(8) for a > 0,

on(gg) srnn(2),

Com L

21-p)

Meanwhile, noting that 2 e < 1, we have

Sn (1—-p)n/3
& =G
€ €
(1-p)/3
("

then clearly we have 0 < A < 1. Thus, by (3.21), it follows that

1
3.22 |h— Tn“L.’;,(T) <Cs (wh,.,, (H) + -Xn),

where Cj is a positive constant depending only on f and p. But

79
Hence

where

Let

Hence, by 3.11),

(1-p)n/3
(L) 2 2505 (e
n n ]
Thus, 3.22) implies

1
323) I =l cry < C-en(3):
and we have (3.12) since h — r, € H? (D) and, by Lemma 1.3, the two norms of
h—rs up(p) and ||h = ralL2 () are equivalent. The proof is complete. g

Remark 3.10. If wp () = 0 as § = 0, (3.13) gives an estimate of the speed
of Ea(h) — 0.
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Some Remarks on the Toeplitz Corona Problem

Ronald G. Douglas and Jaydeb Sarkar

ABSTRACT. In a recent paper, Trent and Wick [23] establish a strong relation
between the corona problem and the Toeplitz corona problem for a family of
spaces over the ball and the polydisk. Their work is based on earlier work of
Amar [3]. In this note, several of their lemmas are reinterpreted in the language
of Hilbert modules, revealing some interesting facts and raising some questions
about quasi-free Hilbert modules. Moreover, a modest generalization of their
result is obtained.

1. Introduction

‘While isomorphic Banach algebras of continuous complex-valued functions with
the supremum norm can be defined on distinct topological spaces, the results of
Gelfand cf. [12]) showed that for an algebra A C C(X), there is a canonical
ch ice of domain, the maximal space of the algebra. If the algebra A contains the
function 1, then its maximal ideal space, M4, is compact. Determining M4 for a
concrete algebra is not always straightforward. New points can appear, even when
the riginal space X is compact, as the disk algebra, defined on the unit circle T,
demonstrates. If A separates the points of X, then one can identify X as a subset

f M4 with a point zp in X corresponding to the maximal ideal of all functions in
A vanishing at £g. When X is not compact, new points must be present but there
is still the question of whether the closure of X in M4 is all of M4 or does there
exist a “corona” M4 X # 2.

The celebrated theorem of Carleson states that the algebra H°°(D) of bounded
holomorphic functions on the unit disk I» has no corona. There is a corona problem
for H>(Q) for every domain  in C™ but a positive solution exists only for the
case m = 1 with  a finitely connected domain in C.
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One can show with little difficulty that the absence of a corona for an algebra
A means that for {¢;}7%, in A, the statement that

n
(1) Zho,(:z:)l2 >e?>0 forallzin X
=1
is equivalent to

(2) the existence of functions {%,}3=, in A such that

n
Z PP (z) =1 for z in X.
=1
The original proof of Carleson (8] for H°°(D) has been simplified over the years
but the original ideas remain vital and important. One attempt at an alternate
approach, pioneered by Arveson [6] and Schubert [20], and extended by Agler-
McCarthy {2], Amar [3], and finally Trent—Wick [23] for the ball and polydisk,
involves an analogous question about Toeplitz operators. In particular, for {p }L,
in H*(Q) for 2 = B™ or D™, one considers the Toeplitz operator Tp: H2 Q " —
H%(Q) defined Tof = Y iy @ifi for £ in H%(), where f = fi ® --- @ f, and

X" = XD+ - @ X for any space X. One considers the relation between the
operator inequality

3 TeT3 > €*I  for somee >0

and statement (1). One can readily show that (3) implies that one can solve 2
where the functions {;}7—; are in H%(f2). We will call the existence of such
functions, statement (4). The original hope was that one would be able to modify
the method or the functions obtained to achieve {¢,}%, in H= Q. That 1
implies (3) follows from earlier work of Andersson—Carlsson [5] for the unit ball
and of Varopoulos [24], Li {17], Lin [18], Trent [22] and Treil-Wick [21] for the
polydisk.

In the Trent - Wick paper [23] this goal was at least partially accomplished with
the use of (3) to obtain & solution to (4) for the case m =1 and for thecase m > 1
if one assumes (3) for a family of weighted Hardy spaces. Their method was based
on that of Amar [3)].

In this note we provide a modest generalization of the result of Trent—Wick in
which weighted Hardy spaces are replaced by cyclic submodules or cyclic invariant
subspaces of the Hardy space and reinterpretations are given in the language of
Hilbert modules for some of their other results. It is believed that this reformula-
tion clarifies the situation and raises several interesting questions about the corona
problem and Hilbert modules. Moreover, it shows various ways the Corona Theo-
rem could be established for the ball and polydisk algebras. However, most of our
effort is directed at analyzing the proof in [23] and identifying key hypotheses.

2. Hilbert modules

A Hilbert module over the algebra A(Q), for Q a bounded domain in C™, isa
Hilbert space H which is a unital module over A(£2) for which there exists C > 1so
that ll¢- flln < Cllella@lifiln for ¢ in A(Q) and f in H. Here A(R2) is the closure

in the supremum norm over £ of all functions holomorphic in a neighborhood of
the closure of €.
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We consider Hilbert modules with more structure which better imitate the

classical examples of the Hardy and Bergman spaces.

The Hilbert module R over A(R2) is said to be gquasi-free of multiplicity one if
it has a canonical identification as a Hilbert space closure of A(f2) such that:

(1) Evaluation at a point z in £ has a continuous extension to R for which
the norm is locally uniformly bounded.

(2) Multiplication by a ¢ in A(Q) extends to a bounded operator T, in L(R).

(8) For a sequence {wx} in A(S2) which is Cauchy in R, px(z) — 0 for all z in
Q if and only if ||px||lr — 0.

We normalize the norm on R so that ||1||jz = 1.

We are interested in establishing a connection between the corona problem for
M(R) and the Toeplitz corona problem on R. Here M(R) denotes the multiplier
algebra for R; that is, M (= M(R)) consists of the functions 1 on 2 for which
¥R C R. Since 1 is in R, we see that M is a subspace of R and hence consists
of holomorphic functions on 2. Moreover, a standard argument shows that 9 is
bounded (cf. {10]) and hence M C H*(R). In general, M # H>®(Q).

For ¥ in M we let Ty denote the analytic Toeplitz operator in £(R) defined
by module multiplication by 4. Given functions {y;}7, in M, the set is said to

1) satisfy the corona condition if 35, |@i(2)|? > €2 for some € > 0 and all 2
in £

2 have a corona solution if there exist {1;}7.;in M such that Y-, pi(2)¥i(2)
=1 for z in ;

3 satisfy the Toeplitz corona condition if 3 ;. T, T, > €2 I for some e > 0;
and

4 satisfy the R-corona problem if there exist { f;}7_,in R such that ;- T, fi

i=1

=1lor 30, 0.(2)f(z) =1 for z in Q with Y1, [| fil|? < 1/€%.

3. Basic implications

It is easy to show that (2) = (1), (4) = (3) and (2) = (4). As
mentioned in the introduction, it has been shown that (1) = (3) in case 2 is the
unit ball B™ or the polydisk D™ and (1) == (2) for = I} is Carleson’s Theorem.
For a class of reproducing kernel Hilbert spaces with complete Nevanlinna—Pick
kernels one knows that (2) and (3) are equivalent [7] (cf. [4,15]). These results are
closely related to generalizations of the commutant lifting theorem [19]. Finally,

3 = (4) results from the range inclusion theorem of the first author as follows
cf. [11]).

Lemma 1. If {.}%, in M satisfy 37 | T, Ty, > €Iz for some € > 0, then
there ezist {f,}7; 1 R such that Y, i(2)fi(z) =1 forz inQ and 31, | fillk <
1 €2

Proor. The assumption that 3 .., T, Ty, 2 €2I implies that the operator
X:R"™ - R defined by Xf = 3°0; Ty, f; satisfies XX* =Y 0" T, Ty, > €’lr
and hence by [11] there exists Y: R — R™ such that XY = I with ||Y]| < L.
Therefore, with Y1 = f1 @+ & fn, we have Y, 0 (2)fi(2z) = Sy T fi =
XYl =1and Y |Ifilk = IY1? < IY2IT]% < 1/e%. Thus the result is
proved. a

To compare our results to those in [23], we need the following observations.
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Lemma 2. Let R be the Hilbert module L2(1) over A(Q) defined to be the
closure of A(Y) in L%(u) for some probability measure y on clos 2. For f m Ly,

the Hilbert modules L2(|f{? dp) and (f], the cyclic submodule of R generated by f,
are isomorphic such that 1 — f.

PROOF. Note that ||¢ - 1)|2(js2 ap) = N fllL2(u) for ¢ in A( and the closure
of this map sets up the desired isomorphism. il

Lemma 3. If {f;}%, are functions in LZ(x) and g(z) 21_1 fi(z 2,

Li(g d[,l.) is isomorphic to the cyclic submodule [fi ®--- @ f,] of L2(u ™ unth 1 -
fl SARRRS fn

ProOOF. The same proof as before works. |

In [23], Trent ~Wick prove this result and use it to replace the L2 spaces used
by Amar [3] by weighted Hardy spaces. However, before proceding we want to
explore the meaning of this result from the Hilbert module point of view.

Lemma 4. For R = H?(B™) (or H2(D™)) the cyclic submodule of R™ gener-
ated by p1 B -+ D @ with {@;}, in A(B™) (or A(D™)) is isomorphc to a cyche
submodule of H2(B™) (or H?(D™)).

ProoF. Combining Lemma 3 in [23] with the observations made in Lemmas 2
and 3 above yields the result. a

There are several remarks and questions that arise at this point. First, does
this result hold for arbitrary cyclic submodules in H?(B™ ™ or H2 D™ ™, which
would require an extension of Lemma 3 in [23] to arbitrary f in HZ2(B™ " or
H?(D™)"? (This equivalence follows from the fact that a converse to Lemma 2 is
valid.) It is easy to see that the lemma can be extended to an n-tuple of the form
fih® -+ ® foh, where the {f;}7, are in A(Q2) and A is in R. Thus one need only
assume that the quotients {fi/f;}] ;=1 are in A(Q2) or even only equal a.e. to some
continuous functions on 89,

Second, the argument works for cyclic submodules in H2(B™ ®12 or H?(D™ ®
12 as long as the generating vectors are in A(f2) since Lemma 3 in [23] holds in this
case also.

Note that since every cyclic submodule of H2(D) ® I? is isomorphic to H2(D ,
the classical Hardy space has the property that all cyclic submodules for the case of
infinite multiplicity already occur, up to isomorphism, in the multiplicity one case.
Although less trivial to verify, the same is true for the bundle shift Hardy spaces
of multiplicity one over a finitely connected domain in C [1].

Third, one can ask if there are other Hilbert modules R that possess the prop-
erty that every cyclic submodule of R ® C" or R ® 12 is isomorphic to a submodule
of R? The Bergman module L2(D) does not have this property since the cyclic
submodule of LZ(D) & L2(D) generated by 1@ z is not isomorphic to a submodule
of LZ(D). If it were, we could write the function 1 + |z|? = |f(2)|? for some f in
L2(D) which a simple calculation using a Fourier expansion in terms of {z"z™}
shows is not possible.

We now abstract some other properties of the Hardy modules over the ball and
polydisk.

We say that the Hilbert module R over A(f2) has the modulus approzimation
property (MAP) if for vectors {£:}L, in M C R, there is a vector k in R such that
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|6k|% = SN, 1165, )12 for 8 in M. The map 6k — 6f, @ --- ® 8fn thus extends to
a module isomorphism of [k] C R and [f; ®--- ® fn] C RN.

For zp in ©, let I, denote the maximal ideal in A(Q) of all functions that
vanish at zg. The quasi-free Hilbert module R over A(f) of multiplicity one is said
to satisfy the weak modulus approzimation property (WMAP) if

(1) A nonzero vector k., in R © I, + R can be written in the form kg, - 1,
where k., is in M, and T, has closed range acting on R. In this case R
is said to have a good kernel function.

(2) Property MAP holds for f; = Aiks, i =1,...,N with 0 € A\, <1 and
Zfl—l A =1

4. Main result

Our main result relating properties (2) and (3) is the following one which
generalizes Theorem 1 of [23].

Theorem. Let R be a WMAP quasi-free Hilbert module over A(Q)) of multi-
plicity one and {¢:}; be functions in M. Then the following are equivalent:
(a) There exist functions {y;}7; in H®(Q) such that 37 ; pi(2)Pi(z) = 1
and 5 V.(2)] £1/€? for some e > 0 and all z in Q, and
(b) there exists € >0 such that for every cyclic submodule SofR, i TS Tf:
> €215, where TS = T,|s for ¢ in M.

ProoF. We follow the proof in [23] making a few changes. Fix a dense set
{2}2; of Q.

First, we define for each positive integer N, the set Cny to be the convex hull of
the functlons {lk2. 12 /1 k2112 Y, and the function 1 for i = 1 with abuse of notation.
Since R being WMAP implies that it has a good kernel function, Cx consists of
nonnegative continuous functions on 2. For a function g in the convex hull of the
set { k;, 2/ ks |2}, the vector Aiks, /|lkz 2@ - ® ANkzy /|2y ||2 is in RY. By
deﬁmtlon there exists G in R such that [G] = [Aiks, /|lkz, || © - © Ankzp /| kzn ]
by extending the map G — A 0k, /||kz, || ®-- - ® AnOkzy []|kzp || for 6 in M.

Second, let {¥1,-..,¥n} bein M and let Tp denote the column operator defined
fromR* to Rby To(f1® - @ fn) =i Tp.fifor f=(fi® - @ fn) in R™ and
set K = ker Ty C R™. Fix f in R™. Define the function

Fn:Cn x K = [0,00)
by

zi
o] I
where g = S0 | )\2|k,. 12/lkz ||? and 3°7_; A2 = 1. We are using the fact that the
k., are in M to realize k,,(f — h) in R™.
Except for the fact we are restricting the domain of Fy to Cy x K instead of
Cn x R™, this definition agrees with that of [23]. Again, as in [23], this function is
linear in g for fixed h and convex in h for fixed g. (Here one uses the triangular
inequality and the fact that the square function is convex.)
Third, we want to identify Fn(g, h) in terms of the product of Toeplitz opera-
tors (’,If')(’]‘g’)‘, where &, is the cyclic submodule of R generated by a vector P in
R as given in Lemma 3 such that the map P = (A\iks; /K, | © - © Ankay /|| kzp |

}-N(ga h) EA2

forh=h;®: - ®h,inR"
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ext;snds t0 & module isomorphism with g = YTV | A2|k,,[2/Itk2, |12, 0 < A2 < 1, and
i M=1

Note for f in R, infpex F(g, h) < 1/e2||Ta £||2 if T3 (Tp?)* > €21s,. Thus,
if T§(T§)" > €2Is for every cyclic submodule of R, we have infhex Fn(g,h
< 1/e*|Tef||2>. Thus from the von Neumann min-max theorem we obtain
infrex SUPgecy Fn (g, h) = SuPgec, Infhex Fn(g, h) < 1/e? Tof 2.

From the inequality TpT§ > €Iz, we know that there exists f, in R™ such
that || foll < 1/e||1)| = 1/e and Ty f, = 1. Moreover, we can find hy in K such that
Fn(g,hn) < (1/e2 +1/N)||To £o)|12 = 1/€2 + 1/N for all g in Cy. In particular, for
gi = |k, 2/ k., |2, we have Tp (Tg")* > €2Is, , where ki / k, fo—hn 2<
1/e2 +1/N.

There is one subtle point here in that 1 may not be in the range of T§ . However,

if P is a vector generating the cyclic module Sy, then P is in M and Tp has closed
range. To see this recall that the map

ke, I Nezy |
for 6 in M is an isometry. Since the functions {k.,/||k., }}\; are in M by as-
sumption, it follows that the operator Mp is bounded on M C R and has closed
range on R since the operators My, /jk, y have closed range, again by assumption.
Therefore, find a vector f in Sg so that Tef = P. But if f = fi ® --- & [y, then
fi is in [P] and hence has the form f; = P f,- for f; in R. Therefore, TeTpf = P or
Tef =1 which is what is needed since in the proof fo — f is in K.
To continue the proof we need the following lemma.

0P = )\ Ok, ®---® AN Ok

Lemma 5. If zy is a point in Q@ and h is a vector .n R™, then h z 2.
k2o / likzo | 21|12

IA

PROOF. Suppose h = hy @ +-+ ® hn with {h,}}*; in A Q). Then T} k,,
hi(z0)k., and hence

hi(20)kaoll® = (Ti, Fao) kzg) = (Kzo» ThoKzg)

since Ty, h; = T} ky,. (We are using the fact the keohy = k; By 1= hiks, 1=
hikz,.) Therefore,

(i (z0)lkzol* = [(Kzo) Thesg hud| < WkaoN* N Thng/ kaq Bl
or,

IR (z0)| < Tk, /pkagyball-
Finally,

WR(20)lEn = 3 _lhi(20)12 < Tk, /o BIIZ,
[

and since both terms of this inequality are continuous in the R-norm, we can
eliminate the assumption that h is in A(Q)". o

Returning to the proof of the theorem, we can apply the lemma to conclude

that [|(fo = ko) (2)lIge < Wkx,/Mka l|(Fo — ho)||? < 1/€% + 1/N. Therefore, we see
that the vector fy = f, — hy in R™ satisfies

(1) Te(fn—-hy) =1,
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() \fn =hnlk <1/e? +1/N and
(3) [(Fn = hn)(&)|ga <1/ +1/Nfori=1,...,N.
Since the sequence {f5}%-; in R" is uniformly bounded in norm, there exists
a subsequence converging in the weak*-topology to & vector 9 in R™. Since
weak*-convergence implies pointwise convergence, we see that 2;‘ 19;¥; =1 and
¥y(2,) 2« €1 €2 for all 2. Since ¥ is continuous on Q and the set {2} is dense
in £, it follows that ¢ is in HZ () and ||4|| < 1/€? which concludes the proof. O

Note that we conclude that ¥ is in H*(2) and not in M which would be the
hoped for result.

One can note that the argument involving the min-max theorem enables one
to show that there are vectors h in K which satisfy

1 1
2

Wz (F = R* < 5 + -
Moreover, this shows that there are vectors fsothat Tof =1, | |2 < 1/e2+1/N,
and f2z)2<1e+1/Nfori=1,...,N. An easy compactness argument

completes the proof since the sets of vectors for each N are convex, compact and
pnested and hence have a point in common. a

5. Concluding comments

With the definitions given, the question arises of which Hilbert modules are
(MAP r which quasi-free ones are WMAP. Lemma 4 combined with observations
in 23] show that both H2(B™) and H%(D™) are WMAP. Indeed any L2 space
f r a measure supported on JB™ or the distinguished boundary of D™ has these
properties. One could also ask for which quasi-free Hilbert modules R the kernel
functions {k.}.eq are in M and whether the Toeplitz operators T}, are invertible
perators as they are in the cases of HZ(B™) and H2(D™). It seems possible that
the kernel functions for all quasi-free Hilbert modules might have these properties
when {2 is strongly pseudo-convex, with smooth boundary. In many concrete cases,
the k., are actually holomorphic on & neighborhood of the closure of 2 for z in €,
where the neighborhood, of course, depends on zp.
Note that the formulation of the criteria in terms of a cyclic submodule S of
the quasi-free Hilbert modules makes it obvious that the condition

T3 (T9)" > €ls
is equivalent to
TeT} > e2lr

if the generating vector for S is a cyclic vector. This is Theorem 2 of {23]. Also it is

easy to see that the assumption on the Toeplitz operators for all cyclic submodules
is equivalent to assuming it for all submodules. That is because

[(Ps @ Ic»)Ta f|| 2 ||(Prs) ® Icn) T3 f|
for f in the submodule .
If for the ball or polydisk we knew that the function “representing” the modulus
of a vector-valued function could be taken to be continuous on clos(2) or cyclic, the

corona problem would be solved for those cases. No such result is known, however,
and it seems likely that such a result is false.
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Finally, one would also like to reach the conclusion that the function  is in
the multiplier algebra even if it is smaller than H%°(2). In the recent paper [9] of
Costea, Sawyer and Wick this goal is achieved for a family of spaces which includes
the Drury -~ Arveson space. It seems possible that one might be able to modify the
line of proof discussed here to involve derivatives of the {¢,}; to accomplish this
goal in this case, but that would clearly be more difficult.
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Regularity on the Boundary in Spaces of Holomorphic
Functions on the Unit Disk
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ABSTRACT. We review some results on regularity on the boundary in spaces
of analytic functions on the unit disk connected with backward shift invariant
subspaces in HP,

1. Introduction

Fatou’s theorem shows that every function of the Nevanlinna class N = {f €
Hol D :Supge,c; J, log, |f(re®)| dt < oo} admits nontangential limits at almost
every point { of the unit circle T = 8D, D = {# € C : |z| < 1} being the unit
disk. One can easily construct functions (even contained in smaller classes) which
do not admit nontangential limits on a dense set of T. The question that arises
from such an observation is whether one can gain regularity of the functions at
the boundary when restricting the problem to interesting subclasses of . We will
discuss two kinds of subclasses corresponding to two different ways of generalizing
the class of standard backward shift invariant subspaces in H? := {f € Hol(D) :

[ 3:=1lim,,; 1/2r) [7_|f(re®)]?dt < oo}. Recall that backward shift invariant
subspaces have shown to be of great interest in many domains in complex analysis
and operator theory. In H?, they are given by K? := H2oIH?, where I is an inner
function, that is a bounded analytic function in I the boundary values of which
are in modulus equal to 1 a.e. on T. Another way of writing K? is

K}=H*nIHE,
where H = zH? is the subspace of functions in H? vanishing in 0. The bar sign
means complex conjugation here. This second writing K? = H? N IHZ does not
appeal to the Hilbert space structure and thus generalizes to H? (which is defined
as H? but replacing the integration power 2 by p € (0, co); it should be noted that

for p € (0,1) the expression || f||} defines a metric; for p = oo, H* is the Banach
space of bounded analytic functions on D with obvious norm). When p = 2, then
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these spaces are also called model spaces because they arise in the construction of a
universal model for Hilbert space contractions developped by Sz.-Nagy TFoias (see
(71]). Note that if I is a Blaschke product associated with a sequence (zn n»1 of
points in D, then K7 coincides with the closed linear span of simple fractions with
poles of corresponding multiplicities at the points 1/Z,.

Many questions concerning regularity on the boundary for functions in stan-
dard backward shift invariant subspaces were investigated in the extensive existing
literature. In particular, it is natural to ask whether one can find points in the
boundary where every function f in K7 and its derivatives up to a given order
have nontangential limits; or even can one find some arc on the boundary where
every function f in K¥ can be continued analytically? Those questions were in-
vestigated by Ahern- Clark, Cohn, Moeller,.... Another interest in backward shift
invariant subspaces concerns embedding questions, especially when K7} embeds into
some LP(u). This question is related to the famous Carleson embedding theorem
and was investigated for instance by Aleksandrov, Cohn, Treil, Volberg and many
others (see below for some results).

In this survey, we will first review the important results in connection with
regularity questions in standard backward shift invariant subspaces. Then we will
discuss these matters in the two generalizations we are interested in: de Branges—
Rovnyak spaces on the one hand, and weighted backward shift invariant sub-
spaces —which occur naturally in the context of kernels of Toeplitz operators—
on the other hand. Results surveyed here are mainly not followed by proofs. How-
ever, some of the material presented in Section 4 is new. In particular Theorem 18
for which we provide a proof and Example 4.1 that we will discuss in more detail.
The reader will notice that for the de Branges—Rovnyak situation there now ex-
ists a quite complete picture analogous to that in the standard K% spaces whereas
the weighted situation has not been investigated very much yet. The example 4.1
should convince the reader that the weighted situation is more intricate in that the
Ahern—Clark condition even under strong conditions on the weight —that ensure,
e.g., analytic continuation off the spectrum of the inner function—is not sufficient.

2. Backward shift invariant subspaces

We will need some notation. Recall that the spectrum of an inner function I
is defined as o(I) = {¢ € closD : lim inf,_,¢ I(2) = 0}. This set corresponds to the
zeros in I and their accumulation points on T = gD, as well as the closed support
of the singular measure ug of the singular factor of I.

The first important result goes back to Moeller [56] (see also [1] for a several
variable version):

Theorem 1 (Moeller, 1962). Let T be an open arc of T. Then every function
f € K¥? can be continued analytically through T if and only if TNo(l) = 2.

Moeller also establishes a link with the spectrum of the compression of the
backward shift operator to K¥.

It is of course easy to construct inner functions the spectrum of which on T is
equal to T so that there is no analytic continuation possible. Take for instance for I
the Blaschke product associated with the sequence A = {(1 — 1/n?)ei"},,, the zeros
of which accumulate at every point on T. So it is natural to ask what happens in
points which are in the spectrum, and what kind of regularity can be expected there.
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Ahern Clark and Cohn gave an answer to this question in [2,28]. Recall that an
arbitrary inner function I can be factored into a Blaschke product and a singular
inner function: I = BS, where B =[], ba,., ba, (2) = (|an|/an)(as — 2)/ (1 — @52),
Son(1—laq|?) < o0, and

)

s 22

where pg is a finite positive measure on T singular with respect to normalized
Lebesgue measure m on T. The regularity of functions in K7 is then related with
the zero distribution of B and the measure pg as indicated in the following result.

Theorem 2 (Ahern—Clark, 1970, Cohn, 1986). Let I be an inner function
and let 1 < p < +00 and q its conjugated exponent. Ifl is a nonnegative integer
and € T, then the following are equivalent:

(i) for every f in K?, the functions fU), 0 < j <, have finite nontangential
lvmats at (;
(i we have S’(,_H)(() < 400, where

1 SO = Z E‘;‘:l) / l—_lfeTlrd/As(e“) (1<r < o0).

n=1

Moreover n that case, the function (k{)'*! belongs to Kj and we have

2 00 =1 [ FEHE " am),
T
for every function f € K¥.

Here k[ is the reproducing kernel of the space K} corresponding to the point
¢ and defined by

1-1(Q)1(2)
3 K =g
The quantity S}(¢) is closely related to the angular derivatives of the inner function
I. Recall that a holomorphic selfmap f of the unit disk D is said to have an
angular derivative at ( € T if f has nontangential limit of modulus 1 in { and
f ¢ :=lim,,; f'(r{) exists and is finite. Now, in the case where f = I is an inner
function, if S(¢) < +oo, then I has an angular derivative at { and S%(¢) = |I'({)|
see [4, Theorem 2]). Moreover, if S/, ,(¢) < 400, then I and all its derivatives up
to order I have finite radial limits at { (see [3, Lemma 4]).

Note that the case p = 2 of Theorem 2 is due to Ahern-Clark and Cohn
generalizes the result to p > 1 (when [ = 0). Another way to read into the results
of Ahern—Clark, Cohn and Moeller is to introduce the representing measure of the
inner function I, puy = pg + pup, where

pB =Y (1 - lan*)é(a.)-
nzl
Then Theorems 1 and 2 allow us to formulate the following general principle: if
the measure 7 i8 “small” near a point { € T, then the functions f in K¥ must be
smooth near that point.
Another type of regularity questions in backward shift invariant subspaces was
studied by A. Aleksandrov, K. Dyakonov and D. Khavinson. It consists in asking if
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K7 contains a nontrivial smooth function. More precisely, Aleksandrov in [5] proved
that the set of functions f € K7 continuous in the closed unit disc is dense in K?.
It should be noted nevertheless that the result of Aleksandrov is not constructive
and indeed we do not know how to construct explicit examples of functions f € K?
continuous in the closed unit disc. In the same direction, Dyakonov and Khavinson,
generalizing a result by Shapiro on the existence of C'-functions in K7 [68], proved
in [42] that the space K7 contains a nontrivial function of class .A™ if and only if
either I has a zero in D or there is a Carleson set £ C T with us(E > 0; here
A denotes the space of analytic functions on D that extend continuously to the

closed unit disc and that are C*°(T); recall that a set E included in T is said to be
a Carleson set if the following condition holds

/ log dist(¢, E)dm({) > —eo.
T

In [34,36,37,40], Dyakonov studied some norm inequalities in backward shift invari-
ant subspaces of H?(C,); here HP(C, ) is the Hardy space of the upper half-plane
Ct i={z€C:Imz > 0} and if O is an inner function for the upper half-plane,
then the corresponding backward shift invariant subspace of HP C, is also denoted
by K§ and defined to be

K? = HP(C,) NOH?(Cy).

In the special case where ©(z) = €!%* (a > 0), the space K3 is equal to PW? N
H?(C,), where PW? is the Paley — Wiener space of entire functi ns of exponential
type at most a that belong to L” on the real axis. Dyakonov shows that several
classical regularity inequalities pertaining to PW? apply also to K3 provided &' is
in H*?(C,) (and only in that case). In particular, he proved the following result.

Theorem 3 (Dyakonov, 2000 and 2002). Let 1 < p < 400 and let 6 be
an inner function in H*(C,). The following are equivalent:
(i) K§ C Co(R).
(i) K§ C LI(R), for some (or all) q € (p,+00).

(iii) The differentiation operator is bounded as an operator from K§ to LP(R ,
that is

(4) Iflp < Co,O)flp,  Fe KB
(iv) © € H™(C.).

Notice that in (4) one can take C(p,0) = C1(p) O’ «, where C,(p) depends
only on p but not on ©. Moreover, Dyakonov also showed that the embeddings in
(i), (ii) and the differentiation operator on K§ are compact if and only if © satisfies
(iv) and ©'(z) — 0 as |z| — +oo on the real line. In [38], the author discusses
when the differentiation operator is in Schatten von Neumann ideals. Finally in
[40], Dyakonov studied coupled with (4) the reverse inequality. More precisely, he
characterized those © for which the differentiation operator f — f’ provides an
isomorphism between K% and a closed subspace of HP, with 1 < p < +00; namely
he showed that such ©’s are precisely the Blaschke products whose zero-set lies in

some horizontal strip {a < Im z < b}, with 0 < @ < b < 400 and splits into finitely
many separated sequences.

The inequality (4) corresponds for the case ©(z) = €!%* to a well-known in-
equality of S. Bernstein (see [17, Premier lemme, p. 75) for the case p = 400 and
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[19, Theorem 11.3.3] for the general case). For p = +00, a beautiful generalization
of Bernstein's inequality was obtained by Levin [55]: let = € R and |6'(z)| < +00;

then for each f € K&, the derivative f'(z) exists in the sense of nontangential
boundary values and
f'(=)

5| <Wler KT

Recently, differentiation in the backward shift invariant subspaces K% was studied

extensively by A. Baranov. In [11,13], for a general inner function © in H*(C,),
he proved estimates of the form

(5) 1 Owpallogy < Cllfllps  f € KB,

where ! > 1, p is a Carleson measure in the closed upper half-plane and wy; is some
weight related to the norm of reproducing kernels of the space K2 which com-

pensates for possible growth of the derivative near the boundary. More precisely,
put

wpa(z) = (k) H|;/P+Y), (2 eclos(Cy)),
where ¢ is the conjugate exponent of p € [1,+00). We assume that wp(z) = 0,
whenever S2,, | (£) = +00, = € R (here we omit the exact formula of k2 and S©

in the upper half-plane but it is not difficult to imagine what will be the analogue
of 1 and 3) in that case).

Theorem 4 (Baranov, 2005). Let p be a Carleson measure in clos(Cy),
leN, 1<p<+oo. Then the operator

(Tpaf)(2) = FO(2)wpu(2)
ss [ weak type (p,p) as an operator from K& to LP (i) and is bounded as an operator
from Kg to L™ p) for any r > p; moreover there is a constant C = C(u,p,r,1) such
that
“f(l)wp.l“L"(u) < Cl|fll [ €Kg.

The proof of Baranov’s result is based on the integral representation (2) which
reduces the study of differentiation operators to the study of certain integral singular
perators.

To apply Theorem 4, one should have effective estimates of the considered
weights, that is, of the norms of reproducing kernels. Let
Q(0,e) :={z € Cy:|0(2)| <€}
be the level sets of the inner function © and let d.(z) = dist(z,(8,¢)), z € R.
Then Baranov showed in [12] the following estimates:
6 d(z) Swpu(2) S16'(2)|7, zeR.

Using a result of A. Aleksandrov [8], he also proved that for the special class of
inner functions © satisfying the connected level set condition (see below for the
definition in the framework of the unit disc) and such that co € o(©), we have

7 wpi(z) < |6'(z)|"  (z€R).

In fact, the inequalities (6) and (7) are proved in [12, Corallary 1.5 and Lemma 4.5
for I = 1; but the argument extends to general [ in an obvious way. We should men-
tion that Theorem 4 implies Theorem 3 on boundeness of differentiation operator.
Indeed if & € L*°(R), then it is clear (and well known) that supcgllk2llq < +o0,
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for eny g € (1,00). Thus the weights w, = wr,; are bounded from below and thus
inequality

If'welle < Clfl,  (f € KB)
implies inequality (4).

Another type of results concerning regularity on the boundary for functions
in standard backward shift invariant subspaces is related to Carleson’s embedding
theorem. Recall that Carleson proved (see [21,22]) that H? = HP(D embeds
continuously in LP(u) (where p is a positive Borel measure on clos D)) if and only
if p is a Carleson measure, that is there is a constant C = C'(¢) > 0 such that

#(S(¢,h)) < Ch,

for every “square” S(¢,h) = {z € closD : 1 — /2w < |2] < 1, arg(z{ < h 2},
¢ €T, h € (0,2r). The motivation of Carleson comes from interpolation problems
but his result acquired wide importance in a larger context of singular integrals
of Calderon-Zygmund type. In [27], Cohn studied a similar question for model
subspaces K?. More precisely, he asked the following question: given an inner
function I in D and p > 1, can we describe the class of positive Borel measure u
in the closed unit disc such that K7 is embedded into L?(x)? In spite of a number
of beautiful and deep (partial) results, this problem is still open. Of course, due to
the closed graph theorem, the embedding K¥ C LP(u) is equivalent to the estimate

(8) Iflzeey < Clfll,  (f € K).

Cohn solved this question for a special class of inner functions. We recall that I is

said to satisfy the connected level set condition (and we write I € CLS if the level
set Q(I,€) is connected for some € € (0,1).

Theorem 5 (Cohn, 1982). Let u be a positive Borel measure on closD. Let
I be a an inner function such that I € CLS. The following are equ valent:
(i) K? embedds continuously in L%(p).
(i) There is ¢ > 0 such that

1|2 C
(9) /Clos][) ll - ZC‘Z d“(c) < W’ zeD.

It is easy to see that if we have inequality (8) for f = kI z € D, then we
have inequality (9). Thus Cohn’s theorem can be reformulated in the following
way: inequality (8) holds for every function f € K? if and only if it holds for
reproducing kernels f = kI, z € D. Recently, F. Nazarov and A. Volberg [58]
showed that this is no longer true in the general case. We should compare this
property of the embedding operator K? C L2(p) (for CLS inner functions) to the
“reproducing kernel thesis,” which is shared by Toeplitz or Hankel operators in H?
for instance. The reproducing kernel thesis says roughly that in order to show the
boundeness of an operator on a reproducing kernel Hilbert space, it is sufficient to
test its boundeness only on reproducing kernels (see, e.g.. [59, Vol.1, pp. 131, 204,
244, 246] for some discussions of this remarkable property).

A geometric condition on p sufficient for the embedding of K% is due to Vol-
berg Treil [73].

Theorem 6 (Volberg Treil, 1986). Let p be a positive Borel measure on
closD, let I be a an inner function and let 1 < p < +00. Assume that there
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C > 0 such that
(10) #(S(¢,h)) < Ch,

for every square S((, k) satisfying S(¢,h) NQ(I,€) # @. Then K7 embeds contin-
uously in LP(u).

Moreover they showed that for the case where I satisfies the connected level set
condition, the sufficient condition (10) is also necessary, and they extend Theorem §
to the Banach setting. In [8], Aleksandrov proved that the condition of Volberg
Treil is necessary if and only if I € CLS. Moreover, if I does not satisfy the con-
nected level set condition, then the class of measures p such that the inequality (8)
is valid depend essentially on the exponent p (in contrast to the classical theorem
of Carleson).

Of special interest is the case when p =Y .y andyy,} is a discrete measure;
then embedding is equivalent to the Bessel property for the system of reproducing
kernels {k] }. In fact, Carleson’s initial motivation to consider embedding prop-
erties comes from interpolation problems. These are closely related with the Riesz
basis property which itself is linked with the Bessel property. The Riesz basis prop-
erty of reproducing kernels {kf\" } has been studied by S. V. Hruséév, N. K. Nikol’skii
and B. S. Pavlov in the famous paper [51], see also the recent papers by A. Baranov

13,14] and by the first author [23,43). It is of great importance in applications
such as f r instance control theory (see [59, Vol. 2]).

Also the particular case when p is a measure on the unit circle is of great inter-
est. In contrast to the embeddings of the whole Hardy space H? (note that Carleson
measures n T are measures with bounded density with respect to Lebesgue mea-
sure , the class of Borel measures p such that KT C LP(u) always contains
n ntrivial examples of singular measures on T; in particular, for p = 2, the Clark
measures 26] for which the embeddings K? C L%(y) are isometric. Recall that
grnen XA € T, the Clark measure o associated with a function b in the ball of H*
is defined as the unique positive Borel measure on T whose Poisson integral is the
real part of A+ b)/(A —b). When b is inner, the Clark measures o, are singular
with respect to the Lebesgue measure on T. The situation concerning embeddings
f r Clark measures changes for p # 2 as shown by Aleksandrov [6]: while for p > 2
this embedding still holds (see [6, Corollary 2, p. 117]), he constructed an example
fr hich the embedding fails when p < 2 (see [6, Example, p. 123]). See also the
nice survey by Poltoratski and Sarason on Clark measures [60] (which they call
Aleksandrov-Clark measures). On the other hand, if 4 = wm, w € L?(T), then the
embedding problem is related to the properties of the Toeplitz operator T, (see

29] .

In [11,12), Baranov developped a new approach based on the (weighted norm)
Bernstein inequalities and he got some extensions of Cohn and Volberg Treil re-
sults. Compactness of the embedding operator K§ C LP(u) is also of interest and
is considered in [12,15,24, 29, 72].

Another important result in connection with K%-spaces is that of Douglas,
Shapiro and Shields ([32], see also [25, Theorem 1.0.5; 62]) and concerns pseudo-
continuation. Recall that a function holomorphic in D, := C\closD clos E means
the closure of a set E is a pseudocontinuation of a function f meromorphic in
D if ¢ vanishes at oo and the outer nontangential limits of ¥ on T coincide with
the inner nontangential limits of f on T in almost every point of T. Note that
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f € K} = H? N IH implies that f = I with ¢ € H3. Then the meromor-
If_hlc function f/I equals ¥ a.e. T, and writing ¥(2) = 2 n>1bn2™, it is clear that
P(z) = Enzl E/ 2™ is a holomorphic function in D, vanishing at oo, and being
equal to f/I almost everywhere on T (in fact, ¥ € H?(De)). The converse is also
true: if f/I has a pseudocontinuation in D,, where f is a HP-function and I some
inner function I, then f is in K¥. This can be resumed this in the following result.

Theorem 7 (Douglas — Shapiro — Shields, 1972). Let I be an wnner func-

tion. Then a function f € HP is in K¥ if and only if f/I has a pseudocont nuation
to a function in HP(D.) which vanishes at infinity.

Note that there are functions analytic on C that do not admit a pseudocontinu-
ation. An example of such a function is f(z) = e* which has an essential singularity
at infinity.

As already mentioned, we will be concerned with two generalizati ns of the
backward shift invariant subspaces. One direction is to consider weighted versions
of such spaces. The other direction is to replace the inner function by m re general
functions. The appropriate definition of K2 in this setting is that of de Branges-
Rovnyak spaces (requiring that p = 2).

Our aim is to discuss some of the above results in the context of these spaces.
For analytic continuation it turns out that the conditions in both cases are quite
similar to the original KZ-situation. However in the weighted situation some addi-
tional condition is needed. For boundary behaviour in points in the spectrum the
situation changes. In the de Branges— Rovnyak spaces the Ahern—Clark condition
generalizes naturally, whereas in weighted backward shift invariant subspaces the

situation is not clear and awaits further investigation. This will be illustrated in
Example 4.1.

3. de Branges—Rovnyak spaces

Let us begin with defining de Branges— Rovnyak spaces. We will be essentially
concerned with the special case of Toeplitz operators. Recall that for o € L* T,
the Toeplitz operator T,, is defined on H? by

T,(f) =Pi(of) (f€H?),

where P, denotes the orthogonal projection of L?(T) onto H2. Then, for ¢ €
L®(T), ||¢llec €1, the de Branges Rovnyak space H(y), associated with ¢, con-
sists of those H? functions which are in the range of the operator (I1d — T, T)* 2.
It is a Hilbert space when equipped with the inner product

((1d = T,T,)V/2f,(1d = T, T,)' 2g)y = (£, 9)2
where f,g € H? © ker(ld — T,T,)'/2.

These spaces (and more precisely their general vector-valued version) appeared
first in L. de Branges and J. Rovnyak {30,31] as universal model spaces for Hilbert
space contractions. As a special case, when b = I is an inner function (that is |b] =
|I} =1 a.e. on T), the operator (Id — T;T}) is an orthogonal projection and H(I)
becomes a closed (ordinary) subspace of H? which coincides with the model spaces
K; = H?6 IH?. Thanks to the pioneering work of Sarason, e.g., [64-67], we know
that de Branges Rovnyak spaces play an important role in numerous questions of
complex analysis and operator theory. We mention a recent paper by the second



REGULARITY ON THE BOUNDARY 99

named author and Sarason and Seip [47] who gave a characterization of surjectivity
of Toeplitz operator the proof of which involves de Branges-Rovnyak spaces. We
also refer to work of J. Shapiro [69, 70] concerning the notion of angular derivative
for holomorphic self-maps of the unit disk. See also a paper of J. Anderson and
J. Rovnysk [10], where generalized Schwarz Pick estimates are given and a paper
of M. Jury [52], where composition operators are studied by methods based on H(b)
spaces.

In what follows we will assume that b is in the unit ball of H*. We recall here
that since H(b) is contained contractively in H2, it is a reproducing kernel Hilbert
space. More precisely, for all function f in #(b) and every point A in D, we have

11) FO) = (£, )5
where k% = (Id — Ty T} )ka. Thus
1 —b(\)b(2)
1=z '

We also recall that #(b) is invariant under the backward shift operator and in the
following, we denote by X the contraction X := Sl",H(b). Its adjoint satisfies the
important formula

K(z) = zeD.

X*h =Sh— (h,S"b)sb,  h € H(b).

In the case where b is inner, then X coincides with the so-called model operator of
Sz.-Nagy —Foias which serves as a model for certain Hilbert space contractions (in
fact, those contractions T which are C.g and with 8y = 87« = 1; for the general
case, the model operator 15 quite complicated).

Finally, let us recall that a point A € D is said to be regular (for b) if either
A€Dand bA) #0, or A € T and b admits an analytic continuation across a
neighbourhood Vj = {z : |2 — A| < €} of A with |b| =1 on V, N T. The spectrum of
b, den ted by o(b), is then defined as the complement in D of all regular points of
b. F r the case where b = I is an inner function, this definition coincides with the
definition given before.

In this section we will summarize the results corresponding to Theorems 1 and 2
above in the setting of de Branges—Rovnyak spaces. It turns out that Moeller’s
result remains valid in the setting of de Branges— Rovnyak spaces. Concerning the
result by Ahern-Clark, it turns out that if we replace the inner function I by a
general function b in the ball of H*, meaning that b = Iby where by is now outer,
then we have to add to condition (ii) in Theorem 2 the term corresponding to the
absolutely continuous part of the measure: |log|bo|].

In [44], the first named author and J. Mashreghi studied the continuity and
analyticity of functions in the de Branges—Rovnyak spaces H(b) on an open arc
of T. As we will see the theory bifurcates into two opposite cases depending on
whether b is an extreme point of the unit ball of H* or not. Let us recall that if
X i8 a linear space and S is a convex subset of X, then an element = € S is called
an extreme point of S if it is not a proper convex combination of any two distinct
points in S. Then, it is well known (see [33, p. 125]) that a function f is an extreme
point of the unit ball of H* if and only if

/T tog(1 - |£(¢)]) dm(¢) = —oo.
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The following result is a generalization of Theorem 1 of Moeller.

Theorem 8 (Sarason 1995, Fricain—Mashreghi, 2008). Let b be in the
unit ball of H*™ and let T be an open arc of T. Then the following are equivalent:
(i) b has an analytic continuation acrossT and b =1 onT;
(i) T is contained in the resolvent set of X*;
(iii) any function f in H(b) has an analytic continuation across T';
(iv) any function f in H(b) has a continuous extension to DUT;
(v) b has a continuous ertension to DUT and {b| =1 onT.

The equivalence of (i), (ii) and (iii) were proved in [67, p. 42] under the assump-
tion that b is an extreme point. The contribution of Fricain—Mashreghi concerns
the last two points. The mere assumption of continuity implies analyticity and
this observation has interesting application as we will see below. Note that this
implication is true also in the weighted situation (see Theorem 18 .

The proof of Theorem 8 is based on reproducing kernel of H b) spaces. More
precisely, we use the fact that given w € D, then k® = (Id — @X* ~'k® and thus

Fw)= (£, = (f, 1d —®X*) " k§ »,

for every f € H(b). Another key point in the proof of Theorem 8 is the the-
ory of Hilbert spaces contractions developped by Sz.-Nagy—Foias. Indeed, if b is
an extreme point of the unit ball of H*°, then the characteristic function of the
contraction X™* is b (see [63]) and then we know that 6(X*) =0 b .

It is easy to see that condition (i) in the previous result implies that b is an
extreme point of the unit ball of H>. Thus, the continuity or equivalently, the
analytic continuation) of b or of the elements of H(b) on the boundary completely
depends on whether b is an extreme point or not. If b is not an extreme point of
the unit ball of H® and if ' is an open arc of T, then there exists necessarily a
function f € H(b) such that f has not a continuous extension to D UT. On the
opposite case, if b is an extreme point such that b has continuous extension to DUT
with |b| = 1 on T, then all the functions f € H(b) are continuous on I' (and even
can be continued analytically across T').

As in the inner case (see Ahern—Clark’s result, Theorem 2), it is natural to
ask what happens in points which are in the spectrum and what kind of regularity

can be expected there. In [44], we gave an answer to this question and this result
generalizes the Ahern—Clark result.

Theorem 9 (Fricain Mashreghi, 2008). Let b be a point in the unit ball
of H® and let

(12) b(z) = 71'[(1‘;—:' {‘"_%) exp(- [ $22 du(()) exp [ $22 105 1(0) am(o))

-
be its canonical factorization. Let (g €T and let | be a nonnegative integer. Then
the following are equivalent.
(1) each function in H(b) and all its derivatives up to order I have (finite)
radial limits at (p;

(11) 10!k /82|y is bounded as z tends radially to Co;
(iii) thkg belongs to the range of (Id—ax.)l-ﬂ;
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(iv) we have SgHz(Co) < +00, where
lanP ‘/-21- dp.(e“') ‘/-21 lloglb(e“)” it
SP = + —— + — dm(e'*),
r(G) : Z [Go~anl"  Jo 16o—€*" " Jo |Co—ei|" )
(1<r<+x).

In the following, we denote by E,(b) the set of points {; € T which satisfy
52(Go) < +oo.

The proof of Theorem 9 is based on & generalization of technics of Ahern Clark.
However, we should mention that the general case is a little bit more complicated
than the inner case. Indeed if b — I is an inner function, for the equivalence of

iii) and (iv) (which is the hard part of the proof), Ahern Clark noticed that the
condition (iii) is equivalent to the following interpolation problem: there exists
k,g € H? such that

(1 =Coz) ™ k(2) — 112! = I(2)g(2).
This reformulation, based on the orthogonal decomposition H? = H(I) & IH?,
is crucial in the proof of Ahern Clark. In the general case, this is no longer true
because #(b) is not a closed subspace of H? and we cannot have such an orthogonal
decomposition. This induces a real difficulty that we can overcome using other

arguments: in particular, we use (in the proof) the fact that if (o € Ej4+1(b) then,
for 0 < j <1, the limits

i @) 3 (4)
rl_lﬁl—b (rdo) and Rll’nhb (R¢o)

exist and are equal (see [3]). Here by reflection we extend the function b outside
the unit disk by the formula (12), which represents an analytic function for |z| > 1,
z# 1 @,. We denote this function also by b and it is easily verified that it satisfies

13 b(Z) = ;, vz eC.
b(1/2)

Maybe we should compare condition (iii) of Theorem 9 and condition (ii) of
Theorem 8. For the question of analytic continuation through a neighbourhood V¢,
of a point {y € T, we impose that for every z € V;, N T, the operator Id — 2X*
is bijective (or onto which is equivalent because it is always one-to-one as noted
in [43, Lemma 2.2]) whereas for the question of the existence of radial limits at (o
for the derivative up to a given order [, we impose that the range of the operator
Id — (o X*)!*! contains the only function X*'kj. We also mention that Sarason
has obtained another criterion in terms of the Clark measure o) associated with b
see above for a definition of Clark measures; note that the Clark measures here
are not always singular as they are when b is inner).

Theorem 10 (Sarason, 1995). Let {y be a point of T and let | be a nonneg-
atwe integer. The folloutng conditions are equivalent.

(i) Each function in H(b) and all its derivatives up to order | have nontan-
gential limits at (.

(ii) There is a point A € T such that
(14) [189 - G2 dox(e) < +oo.
T

(iii) The last inequality holds for all A € T \ {b(¢o)}-
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(iv) There is a point A € T such that ux has a point mass at (o and
/ | — ¢o| ™2 doa(e?) < .
T\{z0}

Recently, Bolotnikov and Kheifets [20] gave a third criterion (in some sense
more algebraic) in terms of the Schwarz —Pick matrix. Recall that if b is a function

in the unit ball of H*, then the matrix P4 (z), which will be refered to as to a
Schwarz-Pick matrix and defined by

1 8% 1-p@)PRY
Pi(z) = [rj‘ 9207 1—|af? ]

2
3,7=0

is positive semidefinite for every [ > 0 and z € D. We extend this notion to
boundary points as follows: given & point {p € T, the boundary Schwarz-Pick
matrix is
P(Co) = lim Pj(z) (120),
Z—ACD
provided this nontangential limit exists.

Theorem 11 (Bolotnikov—Kheifets, 2006). Let b be a point in the unit
ball of H™, let {y € T and let | be a nonnegative integer. Assume that the bound-

ary Schwarz— Pick matriz P8((y) exists. Then each function in H b) and all its
derivatives up to order | have nontangential limits at {p.

Further it is shown in [20] that the boundary Schwarz—Pick matrix P? (o
exists if and only if

(15) lim dp(2) < o0,
Z—ACO

where

21 2
da(z) o= g 2o L@
Nz 9249z 1 —|z|
‘We should mention that it is not clear to show direct connections between conditions
(14), (15) and condition (iv) of Theorem 9.

Once we know the points (p in the unit circle where f()({o) exists (in & non-
tangential sense) for every function f € #H(b), it is natural to ask if we can obtain
an integral formula for this derivative similar to (2) for the inner case. However, if
one tries to generalize techniques used in the model spaces K? in order to obtain
such a representation for the derivatives of functions in H(b), some difficulties ap-
pear mainly due to the fact that the evaluation functional in #(b) (contrary to the
model space K?) is not a usual integral operator. To overcome this difficulty and
nevertheless provide an integral formula similar to (2) for functions in #(b), the first
named author and Mashreghi used in [45] two general facts about the de Branges-
Rovnyak spaces that we recall now. The first one concerns the relation between
H(b) and H(b). For f € HZ, we have [67, p. 10]

feHb) = Tif € H().
Moreover, if fi,f2 € H(b), then

(16) (f1 f2)o = (1, f2)2 + (T fr, T f2)s
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We also mention an integral representation for functions in #(b) [67, p. 16]. Let

p(¢) = 1—1b(¢)%, ¢ € T, and let L?(p) stand for the usual Hilbert space of
measurable functions f: T — C with ||f|l, < oo, where

W12 = fT F(QRo() dm(Q)-

For each ) € D, the Cauchy kernel ky belongs to L?(p). Hence, we define H2(p)
to be the (closed) span in L2(p) of the functions kx (A € D). If ¢ is & function in
L?(p), then gp is in L%(T), being the product of go*/2 € L2(T) and the bounded
function p! 2. Finally, we define the operator C,: L%(p) — H? by

Cyo(q) == Py (gp)-

Then C, is a partial isometry from L?(p) onto (b) whose initial space equals to

H? p) and it is an isometry if and only if b is an extreme point of the unit ball
of H>®,

Now let w € closD and let [ be a nonnegative integer. In order to get an
integral representation for the [th derivative of f at point w for functions in the
de Branges Rovnyak spaces, we need to introduce the following kernels

R (e e 0 2 BB /)20 — )

1 —wz) ™ ,  (zeD),
and
L @ () /o) P (1 — T
18 kG a(Q) = l"zp:()(b ((;"?_/ ;glﬂ(l w()", (C€T).

Of course, for w = g € T, these formulae have a sense only if b has derivatives (in
a radial or nontangential sense) up to order l; as we have seen this is the case if
¢ € Ei4 b) (which obviously contains Ez14+1)(b)).

F rl1=0, we see that k%, o = k, is the reproducing kernel of #(b) and kf, , =
bw k, is (up to a constant) the Cauchy kernel. Moreover (at least formally) the

function k,; (respectively kf, ) is the ith derivative of ko (respectively of k£ o)
with respect to w.

Theorem 12 (Fricain—Mashreghi, 2008). Let b be o function in the unit
ball of H*® and let l be a nonnegative integer. Then for every point (g € DUEg42(b)
and for every function f € H(b), we have K ; € H(b), k%, ; € L*(p) and

19) fO)= f, FORE Q) dm(Q) + /1r 9(Q)P( QR Q) dm(C),
where g € H%(p) satisfies Tof = Cog.

We should say that Theorem 12 (as well as Theorem 13, Proposition 1, Theo-
rem 14, Theorem 15 and Theorem 16 below) are stated and proved in [16,45] in the
framework of the upper half-plane; however it is not difficult to see that the same
technics can be adapted to the unit disc and we give the analogue of these results
in this context.

We should also mention that in the case where (o € D, the formula (19) follows

easily from the formulae (16) and (11). For (o € Ezn42(b), the result is more
delicate and the key point of the proof is to show that

(20) FOCo) = (f1 k8 )by
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for every function f € #(b) and then show that T,,Iczn,l = Cpkz, 1 to use once again
16

( )A consequence of (20) and Theorem 9 is that if (o € Ep+2(b), then &, ; tends

weakly to k% ; as w approaches radially to {o. It is natural to ask if this weak

convergence can be replaced by norm convergence. In other words, is it true that

[ kzo.l”b — 0 as w tends radially to (p?

In [2], Ahern and Clark claimed that they can prove this result for the case
where b is inner and [ = 0. For general functions b in the unit ball of H*, Sarason
[67, Chapter V] got this norm convergence for the case ! = 0. In [45], we answer
this question in the general case and get the following result.

Theorem 13 (Fricain — Mashreghi, 2008). Let b be @ point in the unit ball
of H*™, let | be a nonnegative integer and let (o € Egp2(b). Then

kb, — k2, 4lls —= 0, as w tends radially to (p.

The proof is based on explicit computations of ||k% 11 and k . b and we
use a nontrivial formula of combinatorics for sums of binomial coefﬁment We
should mention that we have obtained this formula by hypergeometric series. Let
us also mention that Bolotnikov —Kheifets got a similar result in [20] using different
techniques and under their condition (15).

We will now discuss the weighted norm inequalities obtained in [16]. The main
goal was to get an analogue of Theorem 4 in the setting of the de Branges—Rovnyak

spaces. To get these weighted Bernstein type inequalities, we first used a slight
modified formula of (19).

Proposition 1 (Baranov—Fricain —Mashreghi, 2009). Let b be tn the
unit ball of H*. Let (o € DU Eg,5(b), | €N, and let

Yo (D) (=1 ()b (0)
(21) (0 (€)= b(C ) : J-(T_ Col)it ’ ¢

€ H? and £, 1 € L?(p). Moreover, for every function f € H b), we

eT.

Then (kZ, )y
have

@) [O%)=1 ( [ HOTEETTG am(e) + [ s T dm(o)
where g € H*(p) is such that T, f = C,g.

We see that if b is inner, then it is clear that the second integral in (19) is zero
(because p = 0) and we obtain the formula (2) of Ahern -Clark.

We now introduce the weight involved in our Bernstein-type inequalities. Let

1 < p €2 and let g be its conjugate exponent. Let I € N. Then, for 2 € closD, we
define

. 41, _
wp(2) s=min{[|(k3) " I7P/FHY, |ptfag? || P/ FHD

we assume Wy, 1(C) = 0, whenever ¢ € T and at least one of the functions (k)" or
P82 | is not in LI(T).

The choice of the weight is motivated by the representation (22) which shows

that the quantity mex{||(k2)'** ||z, ||o1/28° 4ll2} is related to the norm of the func-
tional f = f®(2) on H(b). Moreover, we strongly believe that the norms of
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reproducing kernels are an important characteristic of the space H(b) which cap-
tures many geometric properties of b. Using similar arguments as in the proof of
Proposition 1, it is easy to see that p!/ qﬁg,l € LY(T) if { € Equ41y(b). It is also
natural to expect that (k2)'*! € L9(T) for { € Eq(4.1)(b). This is true when b is an
inner function, by a result of Cohn [28]; for a general function b with ¢ = 2 it was
noticed in [16]. However, it seems that the methods of [16,28] do not apply in the
general case.

If fe H(b) and 1 < p < 2, then (fPwy;)(z) is well-defined on T. Indeed it
follows from [44] that f(¢) and wy1(¢) are finite if { € Ez42(b). On the contrary
if ( ¢ Enq2(b). then ||(k§)**|l2 = +oo. Hence, ||(k2)"*!||l; = +oo which, by
definition, implies wp,i(¢) = 0, and thus we may assume (fPwp;)(¢) =0.

In the inner case, we have p(t) = 0, then the second term in the definition of
the weight wp; disappears and we recover the weights considered in {12]. It should
be emphasized that in the general case both terms are essential; in [16] we give an
example where the norm [|p' 28 ||, cannot be majorized uniformly by the norm

b 41
k2 a

Theorem 14 (Baranov — Fricain — Mashreghi, 2009). Let u be a Carleson
measure on closD , let L €N, let 1 < p < 2, and let

(Tpaf)(2) = fO(2)wpa(2),  f € HD).

If1 < p<2, then Ty is a bounded operator from H(b) into L%(u), that is, there is
a nstant C = C(p,p,t) > 0 such that

23 N Owpillzzgy < Clflb,  f € HD).
If p=2, then Ty is of weak type (2,2) as an operator from H(b) into LZ(u).

The proof of this result is based on the representation (22) which reduces the
problem of Bernstein type inequalities to estimates on singular integrals. In partic-

ular, we use the following estimates on the weight: for 1 < p < 2 and | € N, there
exists a constant A = A(l,p) > 0 such that

(1— 2|’
wpa(2) 2 A(l — |b(z)])Pt/ (a(pl+1))’ z€D.

To apply Theorem 14 one should have effective estimates for the weight wp,
that is, for the norms of the reproducing kernels. In the following, we relate the

weight wp; to the distances to the level sets of |b|. We start with some notations.
Denote by o,(b) the boundary spectrum of b, i.e.,

a,(b) = {c € T:liminflb(2)| < 1}.

z€D

Then closo,(b) = o(b) N T where o(b) is the spectrum defined at the begining of
this section. For £ € (0,1), we put

Qbe):={zeD:b(z)] <e} and  Q(b,e) := a;(b) U b, &)

Finally, for ¢ € T, we introduce the following two distances

de(Q) := dist (¢, 2(b,e))  and  de() :=dist(¢, (b €)).
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Note that whenever b = I is an inner fu.nction, for all C € U,(I), we have
lim inf|I(z)] = 0,
z-4(
z€D

and thus d.() = de (€), € € T. However, for an arbitrary function b in the unit ball
of H*, we have to distinguish between the distance functions d. and d..
Using fine estimates on the derivatives |b’ ()|, we got in [16] the following result.

Lemma 1. For eachp > 1,1>1 and ¢ € (0,1), there ezists C = C(g,p,l) >0
such that

(24) (de(0)' < Cupa(r0),
foral( €T and0<r L 1.

This lemma combined with Theorem 14 imply immediately the following.

Corollary 1 (Baranov—Fricain—Mashreghi, 2009). For each e € 0,1
and l € N, there exists C = C(g,l) such that

1fOdl2 < Cliflls, £ € H).

As we have said in Section 2, weighted Bernstein-type inequalities of the form
(23) turned out to be an efficient tool for the study of the so-called Carleson-type
embedding theorems for backward shift invariant subspaces K. Notably, methods
based on the Bernstein-type inequalities allow to give umfied proofs and essentially
generalize almost all known results concerning these problems see [12,15] . Here we
obtain an embedding theorem for de Branges— Rovnyak spaces. The first statement

generalizes Theorem 6 (of Volberg—Treil) and the second statement generalizes a
result of Baranov (see [12]).

Theorem 15 (Baranov — Fricain— Mashreghi, 2009). Let u be a posiwve
Borel measure in closD, and let € € (0,1).

(a) Assume that u(S((,h)) < Kh for all Carleson squares S(¢,h satisfying
S(¢,h) NQ(b,e) # 2.
Then H(b) C L?(u), that is, there is a constant C > 0 such that
WAlzay < Cliflle,  F € H(b).

(b) Assume that p is @ vanishing Carleson measure for H(b), that is,

1(S(¢, h))/h — O whenever S(¢,h) N Q(be) # @ and h — 0. Then
the embedding H(b) C L3(u) is compact.

Note that whenever b = I is an inner function, the sufficient condition that ap-
pears in (a) of Theorem 15 is equivalent to the condition of Volberg— Treil theorem
because in that case (as already mentionned) we always have o,(I) C closQ(I,¢)
for every € > 0.

In Theorem 15 we need to verify the Carleson condition only on a special sub-
class of squares. Geometrically this means that when we are far from the spectrum
o (b), the measure p in Theorem 15 can be essentially larger than standard Carleson
measures. The reason is that functions in #(b) have much more regularity at the
points { € T \ o(b) (see Theorem 8). On the other hand, if |b(¢)| < 4 < 1, almost
everywhere on some arc [' C T, then the functions in H(b) behave on [' essentially
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the same as a general element of H? on that arc, and for any Carleson measure for
H(b) its restriction to the square S(I') is a standard Carleson measure.

For a class of functions b the converse to Theorem 15 is also true. As in the
inner case, we say that b satisfies the connected level set condition if the set Q(b, )
is connected for some ¢ € (0,1). Our next result generalizes Theorem § of Cohn.

Theorem 16 (Baranov Fricain Mashreghi, 2009). Let b satisfy the
connected level set condition for some € € (0,1). Assume that o(b) C clos§2(b, ).
Let p be a posstive Borel measure on closD. Then the following statements are
equwvalent:

(a) H(b) € L*(p).

(b) There emsts C > 0 such that u(S(¢,h)) < Ch for all Carleson squares
S(¢, h) such that S(C, h) NQ(b,€) # @.

(c) There exists C > 0 such that

1— |22 C
% / ——=dp({) £ ———, ze€D.
e 11— P 4O < TGy
In [16], we also discuss another application of our Bernstein type inequalities
to the problem of stability of Riesz bases consisting of reproducing kernels in H(b).

4. Weighted backward shift invariant subspaces

Let us now turn to weighted backward shift invariant subspaces. As will be
explained b low, the weighted versions we are interested in appear naturally in the
context of kernels of Toeplitz operators. In Section 4.1 we will present an example
sh wing that the generalization of the Ahern — Clark result to this weighted situation
is far from being immediate. For this reason we will focus essentially on analytic
continuation in this section.

For an outer function g in H?, we define weighted Hardy spaces in the following
way:

HP g? := 19 {f € Hol(D) : | £I,, = f £ (re*) Plg(re")IP dt

- f_”lf(e“)l‘ﬂg(e“)l" dt < oo},

Clearly f + fg induces an isometry from HP(|g|?) onto H?. Let now I be any
inner function.

We shall discuss the situation when p = 2. There are at least two ways
of generalizing the backward shift invariant subspaces to the weighted situation.
We first discuss the simple one. As in the unweighted situation we can con-
sider the orthogonal complement of shift invariant subspaces IH?(|g|?), the shift

S- H? g?) — H?(g|?) being given as usual by Sf(z) = zf(z). The weighted
scalar product is defined by

(052 = = [ Rg(e )P dt = (S0, ho)
Then

(Sf.h) g2 = (2fg,hg) ={fg,zhg) = (fg, P+(zhg)) = <f, %P+(gzh)> .
lgl?
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In other words, with respect to the scalar product {:,-) ;2 the adjoint shift is given
by S := 1Pygz, and

K29 = (IH(|g1?))* = {f € H*(|9|?) : (fg,Ihg) = 0,k € H?( g )}
={f e H*(|g]*) : (fg,Ih) = 0,h € H?}
= {f € H2(lgI*) : (P+(Ifg),h) = 0,h € H?}

= {f € H%(|g1*) : <1P+ffg, h>w =0,h e H(g 2)}-

So, K29 = ker((1/g)P+Ig) = ker IP+Ig) Setting P§ = (I g P_Ig we get a
self-adjoint projection such that

1 1 1
K7 =P{H*(|gP) = i (9H*(19*) = EPIHz = ‘gK?’

where P is the unweighted orthogonal projection onto K?. Hence, in this situation
continuation is completely determined by that in K? and that of 1 g.

We will thus rather consider the second approach. The spaces to be discussed
now appear in the context of kernels of Toeplitz operators. Set

K7 (lgl") = HP(Ig")NIH(|g 7 ,
where now HE(|gl?) = zH? (|gP).

The connection with Toeplitz operators arises in the following way: if p =1g g
is a unimodular symbol, then ker 7, = gK?%(|g|?) (see [48] . Conversely, whenever
0 # f € ker T,,, where ¢ is unimodular and f = Jg is the inner-outer factorization
of f, then there exists an inner function I such that ¢ =Tg g see also [48] .

Note also that the following simple example shows that in general K79 is
different from K?(|g|?). Let I(z) = z be the simplest Blaschke factor. Then
H2(|gP") nTHZ(IgP) = H?(jg?) N BX(Jg]) = C whenever g 15 rigid more on rigidity
follows later). On the other hand, (1/g)K? is the one-dimensional space spanned
by 1/g which is different from C when g is not a constant.

The representation ker T, = gK7(|g|?) is particularly interesting when g is the
extremal function of ker7,. Then we know from a result by Hitt [S0] see also
[66] for a de Branges Rovnyak spaces approach to Hitt’s result) that when p =2,
kerT, = gK?, and that g is an isometric divisor on kerT, = gK7? (or g is an
isometric multiplier on K7?). In this situation we thus have K?( g[*) = K?. Note,
that for p # 2, if g is extremal for gK7(|g|P), then K¥(]gP) can still be imbedded
into K? when p > 2 and in K¥ when p € (1,2) (see [48], where it is also shown that
these imbeddings can be strict). In these situations when considering questions
concerning pseudocontinuation and analytic continuation, we can carry over to
K?(|g|P) everything we know about K? or K¥, i.e., Theorems 1 and 7. Concerning
the Ahern Clark and Cohn results however, when p # 2, we lose information since
condition (ii) in Theorem 2 depends on p.

In general the extremal function is not easily detectable (explicit examples of
extremal functions were given in [48]), in that we cannot determine it, or for a given
g it is not a simple matter to check whether it is extremal or not. So a natural
question is to know under which conditions on ¢ and I, we can still say something
about analytic continuation of functions in K¥(|g|P). It turns out that Moeller's
result is valid under an additional local integrability condition of 1/g on a closed
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arc not meeting the spectrum of I. Concerning the regularity questions in points
contained in the spectrum, the situation is more intricate. As mentioned earlier,
an example in this direction will be discussed at the end of this section.

Regularity of functions in kernels of Toeplitz operators have been considered
by Dyakonov. He in particular establishes global regularity properties of functions
in the kernel of a Toeplitz operator such as being in certain Sobolov and Besov
spaces [35] or Lipschitz and Zygmund spaces [41] depending on the smoothness
of the corresponding Toeplitz operator.

The following simple example hints at some difference between this situation
and the unweighted situation or the context of de Branges—Rovnyak spaces dis-
cussed before. Let I be arbitrary with —1 ¢ o(I), and let g(2) = 1+ 2, 80 that o(I)
is far from the only point where g vanishes. We know that ker T'r;,, = gK7}(|g/?).
We first observe that (1 + 2)/(1 + 2) = z. Hence,

1 c K‘:I — kerTﬁ= kerTI—g/g = gK?(\gF’)

So, K%(lg?) contains the function 1/g which is badly behaved in —1, and thus
cannot extend analytically through —1.

This observation can be made more generally as stated in the following result
[46].

Proposition 2 (Hartmann 2008). Let g be an outer function in HP. If

kerTy o # {0} contains an inner function, then 1/g € K¥(|g|P) for every inner
function I

Note that if the inner function J is in ker Tg/g then T';/,1 = 0, and hence

1 e kerTy; = gK%(|g}?) and 1/g € K%(|g|?), which shows that with this simple
argument the proposition holds with the more restrictive condition I = J.

Let us comment on the case p = 2:

The claim that the kernel of 75/, contains an inner function implies in particular
that T; 4 is not injective and so g2 is not rigid in H! (see [67, X-2]), which means
that it is not uniquely determined —up to a real multiple—Dby its argument (or
equivalently, its normalized version g2/||g?||; is not exposed in the unit ball of H!).

It is clear that if the kernel of a Toeplitz operator is not reduced to {0} —
or equivalently (since p = 2) g? is not rigid —then it contains an outer function
(just divide out the inner factor of any nonzero function contained in the kernel).
However, Toeplitz operators with nontrivial kernels containing no inner functions

can be easily constructed. Take for instance Tz55/9, = T2Tg5/90» Where go(2) =
1-2)* and a € (0,1). The Toeplitz operator Tg;/g, is invertible (|go|? satisfies
the Muckenhoupt (A;) condition) and (Ty5/4,)™* = goP4 o= [61] s0 that the kernel
of Tzg- 4 is given by the preimage under T4, of the constants (which define the
kernel of T,). Since goPy (¢/o) = ¢go/go(0), ¢ being any complex number, we have
ker Tzg-/4, = Cgo which does not contain any inner function.

So, without any condition on g, we cannot hope for reasonable results. In the
above example, when p = 2, then the function g?(z) = (1 + 2)? is in fact not rigid
(for instance the argument of (1 + 2)? is the same as that of 2). As already pointed
out, rigidity of g2 is also characterized by the fact that Ty/4 is injective (see [67, X-
2]). Here T4/, = T; the kernel of which is C. From this it can also be deduced
that g2 is rigid if and only if H?(|g|") N HP(|g|F) = {0} which indicates again that
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rigidity should be assumed if we want to have K7(|g ?) reasonably defined. (See
[53] for some discussions on the intersection HP(|g{P) N HP( g ?).)

A stronger condition than rigidity (at least when p = 2) is that of a Mucken-
houpt weight. Let us recall the Muckenhoupt { Ap) condition: for general1 < p < o
a weight w satisfies the (A4,) condition if

B:= L T{]}—‘ /;'w(a:) dz x (ﬁ /;w‘ll(”_l)(z) d:z)p—l} < o0,

When p = 2, it is known that this condition is equivalent to the so-called Helson—
Szegd condition. The Muckenhoupt condition will play some role in the results to
come. However, our main theorem on analytic continuation Theorem 17) works
under a weaker local integrability condition.

Another observation can be made now. We have already mentioned that rigidity
of g2 in H! is equivalent to injectivity of T, /9> When g is outer. It is also clear that
T,/5 is always injective so that when g2 is rigid, the operator T}, , is injective with
dense range. On the other hand, by a result of Devinatz and Widom see, e.g.,
[59, Theorem B4.3.1]), the invertibility of T, /9, Where g is outer, is equivalent to
|g|? being (A2). So the difference between rigidity and (4, is the surjectivity in
fact the closedness of the range) of the corresponding Toeplitz operator. A criterion
for surjectivity of noninjective Toeplitz operators can be found in [47]. It appeals
to a parametrization which was earlier used by Hayashi [49] to characterize kernels
of Toeplitz operators among general nearly invariant subspaces. Rigid functions do
appear in the characterization of Hayashi.

As a consequence of Theorem 17 below analytic continuation can be expected
on arcs not meeting the spectrum of I when |g|P is (4p) see Remark 1 . However
the (Ap) condition cannot be expected to be necessary since it is a global condition
whereas continuation depends on the local behaviour of I and g. We will even
give an example of a nonrigid function g (hence not satisfying the A, condition
for which analytic continuation is always possible in certain points of T where g
vanishes essentially.

Closely connected with the continuation problem in backward shift invariant
subspaces is the spectrum of the backward shift operator on the space under consid-
eration. The following result follows from [9, Theorem 1.9]: Let B be the backward
shift on HP?(|g|P), defined by Bf(z) = (f — f(0)) z. Clearly, K¥( g?) is invariant
with respect to B whenever I is inner. Then, (B | K}( g ?)) = 0ap(B K} (g?)),
where 04p(T) = {A € C: 3(fn)n with ||ful]l =1 and (A — T)f, — 0} denotes the
approximate point spectrum of T, and this spectrum is equal to

T\ {1/ € T : every f € K}(|g|P) extends analytically in a neighbourhood of ¢}.

The aim is to link this set and o(I). Here we will need the Muckenhoupt
condition. Then, as in the unweighted situation, the approximate spectrum of
B | K?(|g|P) on T contains the conjugated spectrum of I. We will see later that
the inclusion in the following proposition [46] actually is an equality.

Proposition 3 (Hartmann, 2008). Let g be outer tn HP such that [g|P is 6
Muckenhoupt (Ap)-weight. Let I be an inner function with spectrum o(I). Then
a(I) C aap(B | K7 (lgIP))-

We now come to the main result in the weighted situation (see [46])-
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Theorem 17 (Hartmann, 2008). Let g be an outer function in H?, 1 < p <
oo and I an inner function with associated spectrum o(I). Let T’ be a closed arc
in T. If there exists 8 > q, 1/p+1/q =1, with 1/g € L*(T), then every function
f € K?(|g|P) extends analytically through T if and only if T' does not meet o(I).

Note that in [46] only the sufficiency part of the above equivalence was shown.
However the condition that I' must not meet o(I) is also necessary (even under
the a priori weaker condition of continuation through I') as follows from the proof
of Theorem 18 below. A stronger version of Theorem 17 can be deduced from
[5, Corollay 1 of Theorem 3]

It turns also out that like in the de Branges Rovnyak situation discussed in
Theorem 8 — for analytic continuation it is actually sufficient to have continuation.
This result is new, and we will state it as a theorem provided with a proof. It is
based on ideas closed to the proof of the previous theorem.

Theorem 18. Let g be an outer function in HP, 1 < p < 0o and I an inner
Junctron with associated spectrum o(I). Let ' be an open arc in T. Suppose that
every function f € K7(|g|P) extends continuously to T then TNo(I) = @, and every
Junction in K¥( g|P) extends analytically through T

PROOF. Observe first that obviously k4 € K?Z(|g|?). By the Schwarz reflection
principle, in order that k% continues through I we need that I" does not meet o(I)
note that closI' could meet o(I)).
As in the unweighted situation, every meromorphic function f/I, f = I €
K? g2, admits a pseudocontinuation ¢, defined by 9(z) = Pon>0 $(n)1/z" in the
exterior disk D, = C \ closD.

Fix I' any closed subarc of T. Since o(I) is closed, the distance between o (I)
and Ty is strictly positive. Then there is a neigbourhood of I'y intersected with D
where I z) > 48 > 0. It is clear that in this neighbourhood we are far away from
the part of the spectrum of I contained in D. Thus I extends analytically through
T'o. For what follows we will call the endpoints of this arc (; := e'®* and (; := €’s
oriented in the positive sense).

The following argument is in the spirit of Moeller [56] and based on Morera’s
theorem. Let us introduce some notation (see Figure 1).

For suitable ro € (0,1) let Qo = {z =ret € D : t € [t1,t2],70 < 7 < 1}. and
D={z=¢t/reD,:t € t;,ta),r0 < r < 1}. Define

A (116 zeqy
F( ) {’l,b(z) z € Q.

By construction this function is analytic on g U ﬁg and continuous on Qg U ﬁg.
Such a function is analytical on Qg U ﬁo. (]

Remark 1. It is known (see, e.g., [57]) that when |g|P € (4p), 1 < p < o0,
then there exists g € (1, p) such that |g|? € (A) for every r > 1. Take r € (1o, D).
Then in particular 1/g € L?, where 1/r+1/s = 1. Since r < p we have 8 > g which

allows to conclude that in this situation 1/g € L*(T') for every I C T (s independant
of ).

We promised earlier an example of a nonrigid function g for which analytic
continuation of K}’ -functions is possible in certain points where g vanishes.
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To 1/1‘0

F1GURE 1. The regions Qg and ﬁo

Example. For a € (0,3), let g(z) = (1 + 2)(1 — 2)*. Clearly g is an outer
function vanishing essentially in 1 and —1. Set h(z) = 2(1 — z 2@, then by similar
arguments as those employed in the introducing example to this section one can
check that arg g% = argh a.e. on T. Hence g is not rigid it is the “big” zero in —1
which is responsible for nonrigidity). On the other hand, the zero in +1 is “small”
in the sense that g satisfies the local integrability condition in & meighbourhood
of 1 as required in the theorem, so that whenever I has its spectrum far from 1,
then every K?(|g|?)-function can be analytically continued through suitable arcs
around 1.

This example can be pushed a little bit further. In the spirit of Proposition 2 we
check that (even) when the spectrum of an inner function I does not meet —1, there

are functions in K% (|g|P) that are badly behaved in —1. Let again go(z = 1—z °.
Then

i@ _F 902" __al
gz)  (1+2)1—2)  "go(2)’
As already explained, for every inner function I, we have ker Ty, = gK7(gP),s0
that we are interested in the kernel kerT;,,,. We have Ty;  f = 0 when f =1Iu
and u € kerTy; = ker Tigg/g, = Cgo (see the discussion just before the proof of
Proposition 2). Hence the function defined by

Te@ em) T 1+

is in K?(|g|P) and it is badly behaved in —1 when the spectrum of I does not meet
-1 (but not only).

The preceding discussions motivate the following question: does rigidity of ¢
suffice to get analytic continuation for K¥()g)?)-function whenever o (I} is far from
zeros of g7

Theorem 17 together with Proposition 3 and Remark 1 allow us to obtain the
following result. We should mention that it is easy to check that HP(|g|?) satisfies
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the conditions required of a Banach space of analytic functions in order to apply
the results of [9].

Corollary 2 (Hartmann, 2008). Let g be outer in HP such that |g|P is
o Muckenhoupt (A,) weight. Let I be an wmner function with spectrum o(I) =
{A€closD:liminf, ,; I(z) = 0}. Then o(I) = 0.p(B | K}(lg|")).

Another simple consequence of Theorem 17 concerns embeddings. Contrarily
to the situations discussed in Sections 2 and 3, the weight is here on the K}-side.

Corollary 3 (Hartmann, 2008). Let I be an inner function with spectrum
oI). IfT CT s a closed arc not meeting o(I) and if g is an outer function in
HP such that g 2 § on T\T for some constant § > 0 and 1/g € L*(T"), s > gq,

1p+1gqg=1 Then K{(|g|?) C K?. If moreover g is bounded, then the last
ncluston s an equality.

Suppose now p = 2. We shall use this corollary to construct an example where
K? g?) = K? without g being extremal for gK?(|g|?). Recall from Hitt's result
[50], that when g is the extremal function of a nearly invariant subspace M C H?,
then there exists an inner function I such that M = gK?%, and g is an isometric
multiplier on K? so that K7 = K7(|g|?). Recall from [48, Lemma 3| that a function
g is extremal for gKZ(|g|2) if [ flg|?dm = f(0) for every function f € K}(|g]?).
Our example is constructed in the spirit of [48, p. 356]. Fix o € (0,3). Let
4z = 1—2)* and let g be an outer function in H? such that |g|> = Rev a.e. on
T such a function clearly exists). Let now I = B, be an infinite Blaschke product
with 0 € A. If A accumulates to points outside 1, then the corollary shows that
K? = K? g?2). Let us check that g is not extremal. To this end we compute
Jk g2dm for A € A (recall that for A € A, ky € K} = K}(|g}?)):

26 /k;‘glzdmsz;‘Re'ydm=1§(/ kxydm+/kﬁdm>

= SEAOY0) + 5am) = 51+ TT= %)

which is different from k»(0) = 1 (except when A = 0). Hence g is not extremal.

We could also have obtained the nonextremality of g from Sarason’s result
[64, Theorem 2] using the parametrization g = a/(1 — b) appearing in Sarason’s
and Hayashi’s work (see [46] for details on this second argument).

It is clear that the corollary is still valid when I is replaced by a finite union
of intervals. However, we can construct an infinite union of intervals I' = |J,, 5, I'n
each of which does not meet o(I), an outer function g satisfying the yet weaker
integrability condition 1/g € L*(T"), 8 < 2, and |g| 2 § on T\ T, and an inner
function I such that KZ(|g|?) ¢ K?. The function g obtained in this construction
does not satisfy g2 € (Az). (See [46] for details.)

Another simple observation concerning the local integrability condition 1/g €
L* T), 8 > ¢: if it is replaced by the global condition 1/g € L*(T), then by Holder’s
inequality we have an embedding into a bigger backward shift invariant subspace:

Proposition 4 (Hartmann, 2008). Letl<p<oo and1/p+1/g=1. If
there exists 8 > q such that 1/g € L*(T), then for r with 1/r = 1/p + 1/s we have
LP(gP)c L.
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So in this situation we of course also have K7 (|g|P) C K7. In particular, every
function f € K7(|g|P) admits a pseudocontinuation and extends analytically outside
o(I). Again the Ahern- Clark condition does not give complete information for the
points located in the spectrum of I since (ii) of Theorem 2 depends on p.

When one allows g to vanish in points contained in o(I), then it is possible to
construct examples with |g|? € (4,) and K7 (|g|?) ¢ K¥: take for instance I = By
the Blasche product vanishing exactly in A = {1-1/2"},, and g(z) = (1—2)®, where
o € (0, 1) and p = 2 (see [46] for details; the condition |g|> € (Az) is required in the
proof to show that K?%(|g|?) = P4 ((1/9)K?) —see Lemma 2 below — which gives
an explicit description of K7 in terms of coefficients with respect to an unconditional
basis). The following crucial example is in the spirit of this observation.

4.1. An example. In the spirit of the example given in [46, Proposition 4]

we shall now discuss the condition (ii) of Theorem 2 in the context of weighted
backward shift invariant subspaces.

We first have to recall Lemma 1 from [46]:

Lemma 2 (Hartmann, 2008). Suppose |g|P is an (Ap) weight and I an
inner function. Then Ay = Py1/g: H? — HP(|g|P) is an isomorphism of K} onto
K% (|g|P). Also, for every A € D we have

k
(27) ok)\ = _)L#) .
g(})
We return to the situation p = 2. Take g(2) = (1—2z)® with @ € (0,1 2. Then
lg|? is (A2). Let
1 :
Tn=1-— 5;3 (1 - r")s = 211.3’ An = rn.elon

where s € (0, %) Hence the sequence A = {An}n tends tangentially to 1. Set
I = By. We check the Ahern— Clark condition in { = 1 for | = 0 (which means that

we are just interested in the existence of nontangential limits in { = 1). Observe
that for s € (0,1) we have

1 1
(28) ll =T elen |2 (1 - rﬂ)2 + 02 = 22n + Sons 22n.s = 922ns?
and so when ¢ > 1

(29) PP 1-ra ~3 RYLANS 3 gntea1)
n>1 11— rnetfnjs = n>1 1/2nsa n>1

The latter sum is bounded when ¢ = 2 which implies in the unweighted situation
that every function in the backward shift invariant subspace KZ has a nontangential
limit at 1. Note also that since |g|? € (A;), by Proposition 4 and comments
thereafter, K?(|g|2) imbeds into some K7, r < 2. Now teking ¢ = r' > 2, where
1/r+1/r' =1, we see that the sum in (29) diverges when sr’ > 1 and converges
for s7’ < 1. So depending on the parameters s and o we can assert continuation or
not. It will be clear a posteriori that in our situation r has to be such that sr' > 1.

Note that o(I) N'T = {1}, which corresponds to the point where g vanishes.
Clearly, A is an interpolating sequence, and so the sequence {k»,, /||kx, ll2}n is a nor-
malized unconditional basis in K?. This means that we can write K7 l’(m‘-"f:“;)
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meaning that f € K? if and only if

f= 2"" Tl

with 37 5, lanf? € oo (the last sum defines the square of an equivalent norm in k%),

As already mentioned |g|? is Muckenhoupt (Az). This implies in particular
that we have the local integrability condition 1/g € L*(T") for some 8 > 2 and T an
afc containing the point 1. Moreover, we get from (27)

{Ao(kx, /Ikaal2)}n = {g‘@";m}

and {kx, (g(An)llkx.ll2)}n is an unconditional basis in K?(g|2) (almost normalized
in the sense that | Ag(kx,/\|ka, ll2)lljg2 is comparable to & constant independant of
n). Hence for every sequence & = (an)n With 3,,5,}02| < oo, we have

oan ki, 2
for= 2>1 o \\kx..\\ K7 (1)

To fix the ideas we will now pick ay = 1/n'/?+¢ for some € > 0 so that
Yononkr, ka.llz is in K7, and hence f, € K?(|g|?). Let us show that f, does
not have a nontangential limit in 1. Fix t € (0,1). Then

Qn kkn (t)
Fo) =3 B Tl

We have kj.}2=1/y/1—|A\n|2 2272 Also as in (28),
1
g =11 = Aa|* = 62 = onea
Changing the arguments of the oy,’s and renormalizing, we can suppose that
oy, 2n(sa—1/'l)
9O lkaglla i/

Let us compute the imaginary part of f, in t. Observe that the imaginary part of
1 1—1tXy) is negative. More precisely, assuming ¢ € (},1) and n > No,
| S 1—tha  —trpsinb, 8o _ —1/2%
1—th, R N e I A W I S
Also for n > N =logz(1/(1—t)), we have 1 —t > 1/2" and rp, = 1 — 1/2" 2 , 80
that for these n
=l 2 (- tr)? + 02 < (1~ 12)2 + 62 < 401 —1)? + 6%
<S40 -t) (1 -t) < (1 -t)*

So
on(sa—1/2) 1/2‘"’
nt/2te (1 -t)%

Im f, ()| = {Im —_-°‘="__M
fa0) \ 30w \m,nz\izm,%?,u-m
1 1 1 1

D —
~ (1 —1t)2s z — )28 9ylogy (1/(1~t))
( ) n> logg(l/ (- t)) (1 t) 27

2 (1 -)r-2,
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where v = 5 + % ~ go + & for an arbitrarily small § (this compensates the term

n!/2*€). 8o v — 2 = 1 ~ s(1 + &) + § which can be made negative by choosing s
closely enough to 1.

We conclude that the function f, is not bounded in 1 and thus cannot have a
nontangential limit in { = 1
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ABSTRACT. This is a survey article based on an invited talk delivered by the
first author at the CRM workshop on Hilbert Spaces of Analytic Functions
held at CRM, Université de Montréal, December 812, 2008.

1. The main question

Let Q be a smoothly bounded domain in R™. Consider the Dirichlet problem
DP) in Q of finding the function u, say, € C2(Q2) (N C(R) and satisfying

{Au:O
11
ulp =0

where A = 377 8%/82% and T := 8Q, v € C(T). It is well known since the
early 20th century from works of Poincaré, C. Neumann, Hilbert, and Fredholm
that the solution u exists and is unique. Also, since u is harmonic in 2, hence
real-analytic there, no singularities can appear in {). Moreover, assuming I" := )
to consist of real-analytic hypersurfaces, the more recent and difficult results on
“elliptic regularity” assure us that if the data v is real-analytic in a neighborhood
of ) then u extends as a real-analytic function across 852 into an open neighborhood
¥ of Q. In two dimensions, this can be done using the reflection principle. In higher
dimensions, the boundary can be biholomorphically “flattened,” but this leads to a
general elliptic operator for which the reflection principle does not apply. Instead,
analyticity must be shown by directly verifying convergence of the power series
representing the solution through difficult estimates on the derivatives (see [14]).

Question. Suppose the data v is a restriction to I of a “very good” function,
say an entire function of variables z;,z,,...,z,. In other words, the data presents
no reasons whatsoever for the solution u of (1.1) to develop singularities.

(i) Can we then assert that all solutions u of (1.1) with entire data v(z) are
also entire?
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(ii) If singularities do occur, they must be caused by geometry of I' interacting
with the differential operator A. Can we then find data vy that would force the
worst possible scenario to occur? More precisely, for any entire data v, the set of

possible singularities of the solution u of (1.1) is a subset of the singularity set of
ug, the solution of (1.1) with data vp.

2. The Cauchy problem

An inspiration to this program launched by H. 8. Shapiro and the first author
in [22] comes from reasonable success with a similar program in the mid 1980’s
regarding the analytic Cauchy problem (CP) for elliptic operators, in particular,
the Laplace operator. For the latter, we are seeking a function u with Au = 0 near
I’ and satisfying the initial conditions

(u~v)r=0
21) {V(u —-v)|r=0 '’

where v is assumed to be real-analytic in a neighborhood of I'. Suppose as bef re
that the data v is a “good” function (e.g., a polynomial or an entire function - In
that context, the techniques developed by J. Leray [26] in the 1950s and j intly
with L. Garding and T. Kotake {[15]) together with the works of P. Ebenfeit [11,
G. Johnsson [18], and, independently, by B. Sternin and V. Shatalov {33 in Russia
and their school produced a more or less satisfactory understanding of the situation.
To mention briefly, the answer (for the CP) to question 1 in two dimensi ns is

essentially “never” unless I' is a line while for (ii} the data mining all possible
singularities of solutions to the CP with entire data s v = % = T x? see
[19-21,34] and references therein).

3. The Dirichlet problem: When does entire data imply entire
solution?

Let us raise question (i) again for the Dirichlet problem: Does real entire data
v imply entire solution v of (1.1)?

In this section and the next, P will denote the space of polynomials and Py the
space of polynomials of degree < N. The following pretty fact goes back to the 19th
century and can be associated with the names of E. Heine, G. Lame, M. Ferrers,
and probably many others (cf. {20]). The proof is from [22] (cf. [2,3]).

Proposition 8.1. If Q:={z: S22 a2 -1 < 0,8y > +++ > ap > 0} is an
1%

ellipsoid, then any DP with a polynomial data of degree N has a polynomial solution
of degree < N.

PROOF. Let g(z) = 3_)/a — 1 be the defining function for T := 6Q. The
(linear) map T': P — A(gP) sends the finite-dimensional space Py into itself. T is
injective (by the maximum principle) and, therefore, surjective. Hence, for any P,
deg P > 2 we can find Py, deg Py < deg P - 2. TPy = A(qP)) = AP. 4= P~

250
is then the desired solution. (i
The following result was proved in [22].

Theorem 3.2. Any solution to DP (1.1} in an ellipsoid Q with entire data 15
also entire.
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Later on, D. Armitage sharpened the result by showing that the order and the
type of the data are carried over, more or less, to the solution {1]. The following
conjecture has also been formulated in [22].

Conjecture 3.8. Ellipsoids are the only bounded domains in R™ for which
Theorem 3.2 holds, i.e., ellipsoids are the only domains in which entire data implies
entire solution for the DP (1.1).

In 2005 H. Render [30] proved this conjecture for all algebraically bounded
domains  defined as bounded components of {¢(z) < 0,¢ € Py} such that
{¢(z) = 0} is & bounded set in R™ or, equivalently, the senior homogeneous part
dn(z) of ¢ is elliptic, i.e., |pn(z)| = Clz|" for some constant C. For n = 2, an
easier version of this result was settled in 2001 by M. Chamberland and D. Siegel
[6]. At the beginning of the next section we will outline their argument, which
establishes similar results as Render’s for the following modified conjecture.

Conjecture 3.4. Ellipsoids are the only surfaces for which polynomial data
wmplies polynomaal solution.

Remark. We will return to Render’s theorem below. For now let us note that,
unfortunately, it already tells us nothing even in 2 dimensions for many perturba-
tions of a unit disk, e.g., 2 := {z € R? : 22 + 42 — 1 + ¢h(z,y) < 0} where, say, h
is & harmonic polynomial of degree > 2.

4. When does polynomial data imply polynomial solution?

Let v = {¢(x) = 0} be a bounded, irreducible algebraic curve in R%. If the
DP posed on v has polynomial solution whenever the data is a polynomial, then as
Chamberland and Siegel observed, (a) 4 is an ellipse or (b) there exists data f € P
such that the solution u € P of DP has degu > deg f.

In case (b) u — f|, = 0 implies that ¢ divides u — f by Hilbert’s Nullstelensatz,
and, since degu = M > deg f, up = drg; where ¢ and ups are the senior homo-
geneous terms of ¢ and u respectively. The senior term of u must have the form
up = azM + bz™ since u)y is harmonic. Hence, u)s factors into linear factors and
s0 must @x. Hence « is unbounded. This gives the following result [6].

Theorem 4.1. Suppose deg ¢ > 2 and ¢ is square-free. If the Dirichlet problem
posed on {¢ = 0} has a polynomial solution for each polynomial data, then the

sentor part of ¢, which we denote by ¢n, of order N, factors into real linear terms,
namely,
n

¢n = [ [ (a52 - b;),
=0
where a,, b, are some real constants and the angles between the lines a;x —b;y = 0,
for all j, are rational multiples of m.

This theorem settles Conjecture 3.4 for bounded domains 2 C {¢(z) < 0} such

that the set {¢(z) = 0} is bounded in R%, However, the theorem leaves open simple
cases such as z2 +y2 — 1 + &(x% — 3z32).

Example. The curve y(y — z)(y + z) — x = 0 (see Figure 1) satisfies the
necessary condition imposed by the theorem, Moreover, any quadratic data can be
matched on it by a harmonic polynomial. For instance, u = zy(¥? ~ z2) solves the
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1

4

FIGURE 1. A cubic on which any quadratic data can be matched
by a harmonic polynomial.

interpolation problem (it is misleading to say “Dirichlet” pr blem, since there is
no bounded component) with data v(z,y) = 2. On the o her hand, one can sh w
(nontrivially) that the data z® does not have polynomial solution.

5. Dirichlet’s problem and orthogonal polynomials

Most recently, N. Stylianopoulos and the first author showed that if for a poly-
nomial data there always exists a polynomial solution of the DP 1.1, with an
additional constraint on the degree of the solution in terms of the degree of the
data (see below), then Q is an ellipse [23]. This result draws on the 2007 pa-
per of M. Putinar and N. Stylianopoulos [29] that found a simple but surprising
connection between Conjecture 3.4 in R? and (Bergman) orthogonal polynomials,
i.e. polynomials orthogonal with respect to the inner product {p,q q = fn rddd,
where dA is the area measure. To understand this connection let us consider the
following properties:

(1) There exists k such that for a polynomial data of degree n there always
exists a polynomial solution of the DP (1.1) posed on  of degree < n + k.

(2) There exists N such that for all m,n, the solution of (1.1) with data z™z"
is & harmonic polynomial of degree < (N—1)m+n in z and of degree < (N—-1)n+m
in 2.

(3) There exists N such that orthogonal polynomials {pn} of degree n on Q
satisfy a (finite) (VN + 1)-recurrence relation, i.e.,

2ZPn = Gn4+1nPnt+l + GnunPn t+ 0+ + G N+1Pn—-N4),

where @n-; n 8re constants depending on n.
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(4) The Bergman orthogonal polynomials of ) satisfy a finite-term recurrence
relation, i.e., for every fixed k > 0, there exists an N(k) > 0, such that ag, =
(mepk) =0,n2 N(k)‘
(5) Conjecture 3.4 holds for .

Putinar and Stylianopoulos noticed that with the additional minor assumption
that polynomials are dense in L2(Q), properties (4) and (5) are equivalent. Thus,
they obtained as a corollary (by way of Theorem 4.1 from the previous section)
that the only bounded algebraic sets satisfying property (4) are ellipses. We also
have (1) == (2), (2) <= (3), and (3) = (4). Stylianopoulos and the first author

used the equivalence of properties (2) and (3) to prove the following theorem which
has an immediate corollary.

Theorem 5.1. Suppose N is C%-smooth, and orthogonal polynomials on

satisfy a (finite) (N +1)-recurrence relation, in other words property (3) is satisfied.
Then, N =2 and §2 is an ellipse.

Corollary 5.2. Suppose 6% is a C2-smooth domain for which there exists N
such that for all m, n, the solution of (1.1) with data Z™2™ is a harmonic polynomial

of degree < (N —1)m + n in z and of degree < (N —1)n+m in z. Then N =2
and Q 1s an ellipse.

SKETCH OF PROOF. First, one notes that all the coefficients in the recurrence
relation are bounded. Divide both sides of the recurrence relation above by pn,
and take the limit of an appropriate subsequence as n — oo. Known results on
asymptotics of orthogonal polynomials (see [35]) give limy o0 Pry1/pPn = ®(2) on
compact subsets of C \ 7, where ®(2) is the conformal map of the exterior of
to the exterior of the unit disc. This leads to a finite Laurent expansion at oo for
¥ w =& (w). Thus, ¥(w) is a rational function, so { := C\Q is an unbounded
quadrature domain, and the Schwarz function (cf. [7,37]) of 8, S(2) (= Z on 69)
has a meromorphic extension to Q. Suppose, for the sake of brevity and to fix the
ideas, for example, that S(z2) = c2% + E;\il ¢;j/(z — z;) + f(z), where f € H>®(Q),
and z, € £1. Since our hypothesis is equivalent to Q) satisfying property (2) discussed
above, the data ZP(2) = Z H;-'=1 (z — 2;) has polynomial solution, g(2) + h(z) to
the DP. On T we can replace z with S(z). Write h(z) = h#(2), where h* is a

polynomial whose coefficients are complex conjugates of their counterparts in h.
We have on T'

5.1 5(2)P(z) = g(2) + h*(S(2)),
which is actually true off ' since both sides of the equation are analytic. Near z;,
the left-hand side of this equation tends to a finite limit (since S(z)P(z2) is analytic
in  oo!) while the right-hand side tends to co unless the coefficient c; is zero.
Thus,
5.2) 5(z) = c2® + f(2).

Using property (2) again with data |2|2 = zz we can infer that d = 1. Hence, Qisa
null quadrature domain. Sakai's theorem [32] implies now that 2 is an ellipse. O

Remark. It is well-known that families of orthogonal polynomials on the line
satisfy a 3-term recurrence relation. P. Duren in 1965 [8] already noted that in C
the only domains with real-analytic boundaries in which polynomials orthogonal
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with respect to arc-length on the boundary satisfy 3-term recurrence relations are
ellipses. L. Lempert [25] constructed peculiar examples of C* nonalgebraic Jordan
domains in which no finite recurrence relation for Bergman polynomials holds.

Theorem 5.1 shows that actually this is true for all C?-smooth domains except
ellipses.

6. Looking for singularities of the solutions to the Dirichlet problem

Once again, inspired by known results in the similar quest for solutions to the
Cauchy problem, one could expect, e.g., that the solutions to the DP (1.1) exhibit
behavior similar to those of the CP (2.1). In particular, it seemed natural to suggest
that the singularities of the solutions to the DP outside Q2 are somehow associated
with the singularities of the Schwarz potential (function) of Q2 which does indeed
completely determine 8Q (cf. [21,37]). It turned out that singularities of solutions
of the DP are way more complicated than those of the CP. Already in 1992 in his

thesis, P. Ebenfelt showed [9] that the solution of the following “innocent” DP in
Q:= {z* + y* — 1 < 0} (the “TV-screen”)

(6.1) {A“ =0

ulog = 2% + 42

has an infinite discrete set of singularities (of course, symmetric with respect to 90°
rotation) sitting on the coordinate axes and running to oo (see Figure 2 .

To see the difference between analytic continuation of solutions to CP and DP,
note that for the former

Ou =
(62) 'a—zl]f‘:=80 = UZ(zv Z) =Vz (Z, S(Z)),
and since Bu/0z is analytic, (6.2) allows u, to be continued everywhere together
with v and S(z), the Schwarz function of 8. For the DP we have on T

(6.3) w(z,2) = v(z2,%)
for v = f + g where f and g are analytic in Q. Hence, (6.3) becomes

(6.4) f(2) +9(5(2)) = v(2, 5(2)).

Now, v(2, S(z)) does indeed (for entire v) extend to any domain free of singu-
larities of S(z), but (6.4), even when v is real-valued so that g = f, presents a very
nontrivial functional equation supported by a rather mysterious piece of informa-
tion that f is analytic in Q. (6.4) however gives an insight as to how to capture
the DP-solution’s singularities by considering the DP as part of a Goursat problem
in C? (or C" in general). The latter Goursat problem can be posed as follows (cf.
(361)-

Given a complex-analytic variety T in Cn, (f NR"® = T := 980), find w
Y 7=10%u/822 = 0 near T (and also in @ C R") so that uls

= g, where v is,
say, an entire function of n complex variables. Thus, if T := {¢(z) = 0}, where ¢
is, say, an irreducible polynomial, we can, e.g., ponder the following extension of
Conjecture 3.3:

Question. For which polynomials ¢ can every entire function v be split (Fis-

cher decomposition) as v = 4 + ¢h, where Au = 0 and u, h are entire functions (cf.
(13,36))7
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¢

FIGURE 2. A plot of the “TV screen” {z*+y* = 1} along with the

first eight singularities (plotted as circles) encountered by analytic
continuation of the solution to DP (6.1).

7. Render’s breakthrough

Trying to establish Conjecture 3.3 H. Render [30] has made the following inge-
nious step. He introduced the real version of the Fischer space norm

7.1 (f,9) = /mn fge"lmP dz,

where f and g are polynomials. Originally, the Fischer norm (introduced by E. Fis-
cher [13]) requires the integration to be carried over all of C* and has the property

that multiplication by monomials is adjoint to differentiation with the correspond-
ing multi-index (e.g., multiplication by (Z;;l z2) is adjoint to the differential oper-

ator A). This property is only partially preserved for the real Fischer norm. More
precisely [30],

7.2) (Af,9) = (f, Ag) + 2(deg(f) — deg(9))(f, 9)

for homogeneous f, g.

Suppose u solves the DP with data |z|? on 8Q C {P = 0: deg(P) = 2k,k > 1}.
Then u — z|?> = Pgq for analytic ¢, and thus A*(Pgq) = 0. Using (7.2), this (non-
trivially) implies that the real Fischer product ((Pq)m+2k,qm) between all homo-
geneous parts of degree m + 2k and m of Pq and g, respectively, is zero. By &
tour de force argument, Render used this along with an added assumption on the
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senior term of P (see below) to obtain estimates from below for the decay of the
norms of homogeneous parts of g. This, in turn yields an if-and-only-if criterion for
convergence in the real ball of radius R of the series for the solution v =Y, _ um,
%, homogeneous of degree m. Let us state Render’'s main theorem.

Theorem 7.1. Let P be an irreducible polynomial of degree 2k, k > 1. Suppose
P is elliptic, i.e., the senior term Py of P satisfies Pox(z) > cp x 2%, for some
constant cp. Let ¢ be real analytic in {|z} < R}, and A¥(P¢) = 0 at least mn
a neighborhood of the origin). Then, R < C(P,n) < +00, where C 13 a constant
depending on the polynomial P and the dimension of the ambient space.

Remark. The assumption in the theorem that P is elliptic is equivalent to the
condition that the set { P = 0} is bounded in R™.

Corollary 7.2. Assume 82 is contained in the set {P = 0}, a bounded alge-

braic set in R™. Then, if a solution of the DP (1.1) with data = 2 is entire, ) must
be an ellipsoid.

PROOF. Suppose not, so deg(P) = 2k > 2, and the following Fischer decom-
position) holds: |z|> = P¢ + u, Au = 0. Hence, A¥(P¢) = 0 and ¢ cannot be
analytically continued beyond a finite ball of radius R = C P) < co, a contradic-
tion. a

Caution. We want to stress again that, unfortunately, the theorem still tells us
nothing for say small perturbations of the circle by a nonelliptic term of degree > 3,
e.g., 2 +y% — 1+ e(z® — 3zy?).

8. Back to R2: lightning bolts

Return to the R? setting and consider as before our boundary 852 of a domain
as (part of) an intersection of an analytic Riemann surface T in C2 with R2. Roughly
speaking if say 8 is a subset of the algebraic curve I' := { z,y) : ¢ z,y = 0},
where ¢ is an irreducible polynomial, then T' = {(X,Y) € C?: $(X,Y =0}. Now
look at the Dirichlet problem again in the context of the Goursat problem: leen,
say, a polynomla.l data P, find f, g holomorphic functions of one variable near T a
piece of T' containing 8Q C T N R?) such that
(81) U= (Z) + g(w)lf‘ = (Z, w)7
where we have made the linear change of variables z = X+iY,w = X —iY (sow =2
on R? = {(X,Y) : X,Y are both real}). Obviously, Au = 49? 928w =0 and u
matches P on 8. Thus, the DP in R2? has become an interpolation problem in C2 of
matching a polynomial on an algebraic variety by a sum of holomorphic functions
in each variable separately. Suppose that for all polynomials P the solutions u
of (8.1) extend as analytic functions to a ball Bq = {|z[* + w2 < Rgq} in C2.
Then, if T N Bq is path connected, we can interpolate every polynomial P(z,w)
on T N Bq by a holomorphic function of the form f Lz) + g(w). Now suppose we
can produce a compactly supported measure g on I' N Bq which annihilates all
functions of the form f(2) + g(w), f, g holomorphic in B and at the same time
does not annihilate all polynomials P(z,w). This would force the solution u of (8.1)
to have a singularity in the ball Bq in C2. Then, invoking a theorem of Hayman
[17] (see also [20]), we would be able to assert that u cannot be extended as a real-
analytic function to the real disk Bg in R? containing 2 and of radius > v2R. An
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example of such annihilating measure supported by the vertices of a “quadrilateral”
was independently observed by E. Study [38], H. Lewy [27], and L. Hansen and
H. S. Shapiro [16]. Indeed, assign alternating values +1 for the measure supported
at the four points pg := (z1,w1), o ¢ (21,w2), P1 = (22, w2), and q1 :~ (22, ).
Then [(f+g)dp = f(21)+g(w1)—~f(21) —g(w2)+ f(22)+g(w2) f(z2)—g(w1) =0
for all holomorphic functions f and g of one variable. This is an example of a closed

lightning bolt (LB) with four vertices. Clearly, the idea can be extended to any
even number of vertices.

Definition. A complex closed lightning bolt (LB) of length 2(n+1) is a finite
set of points (vertices) po, go,P1, 911 +++ 3 Pn, Gn, Pn+1, dns1 such that po =y, and
each complex line connecting p, t0 g, or g; to pj+1 has either 2 or w coordinate
fixed and they alternate, i.e,, if we arrived at p; with w coordinate fixed then we
follow to ¢, with z fixed etc.

For “real” domains lightning bolts were introduced by Arnold and Kolmogorov
in the 1950s to study Hilbert’s 13th problem (see [24] and the references therein).
The following theorem has been proved in [4] (see also [5]).

Theorem 8.1. Let Q be a bounded simply connected domain in C = R? such
that the Riemann map ¢: Q — D = {|z| < 1} is algebraic. Then all solutions of the
DP with polynomsal data have only algebraic singularities only at branch points of
¢ with the branching order of the former dividing the branching order of the latter

[F ot is a rational function. This in turn is known to be equivalent to Q being a
quadrature domain.

IDEA OF PROOF. The hypotheses imply that the solution 4 = f + g extends
as a single-valued meromorphic function into a C2-neighborhood of I'. By another
theorem of [4], one can find (unless ¢! is rational) a continual family of closed
LBs on T’ of bounded length avoiding the poles of . Hence, the measure with
alternating values +1 on the vertices of any of these LBs annihilates all solutions u =
f z + g(w) holomorphic on f, but does not, of course, annihilate all polynomials
of z,w. Therefore, ¢! must be rational, i.e., Q is a quadrature domain [36). O

The second author [28] has recently constructed some other examples of LBs
on complexified boundaries of planar domains which do not satisfy the hypothesis
of Render’s theorem. The LBs validate Conjecture 3.3 and produce an estimate
regarding how far into the complement C \ Q tbe singularities may develop. For
instance, the complexification of the cubic, 8z(x? ~ y2) + 5722 + 77y* — 49 = 0 has
a lightning bolt with six vertices in the (nonphysical) plane where z and w are real,
ie., z is real and y is imaginary (see Figure 3 for a plot of the cubic in the plane
where z and y are real and see Figure 4 for the “nonphysical” slice including the
lightning bolt). If the solution with appropriate cubic data is analytically continued
in the direction of the closest unbounded component of the curve defining 9, it

will have to develop a singularity before it can be forced to match the data on that
componert.

9. Concluding remarks, further questions

In two dimensions one of the main results in [4] yields that disks are the only
domains for which all solutions of the DP with rational (in z,y) data v are rational.
The fact that in a disk every DP with rational data has a rational solution was
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FIGURE 3. A Maple plot of the cubic 8z(z? —y?) + 5722 + Ty —
49 = 0, showing the bounded component and one unbounded com-
ponent (there are two other unbounded components further away .

101

FIGURE 4. A lightning bolt with six vertices on the cubic
2(z + w)(2? + w?) + 672w — 5(22 + w?) = 49 in the nonphysical
plane with 2 and w real, i.e. z real and y imaginary.

observed in a senior thesis of T. Fergusson at U. of Richmond [31]. On the other
hand, algebraic data may lead to a transcendental solution even in disks (see 201,
also cf. [12]). In dimensions 3 and higher, rational data on the sphere (.8, ¥ =
1/(z; — a), |a] > 1) yields transcendental solutions of (1.1), although we have not
been able to estimate the location of singularities precisely (cf. [10]).

It is still not clear on an intuitive level why ellipsoids play such a disting‘\liSI_led
role in providing “excellent” solutions to DP with “excellent” data. A very similar
question, important for applications, (which actually inspired the program launched
in [22] on singularities of the solutions to the DP) goes back to Raleigh and concerns
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singularities of solutions of the Helmholtz equation ([A — A?Ju = 0, A € R) instead.
(The minus sign will guarantee that the maximum principle holds and, consequently,
ensures uniqueness of solutions of the DP.) To the best of our knowledge, this topic
remains virtually unexplored.

References

1. D. H. Armitage, The Dirichlet problem when the boundary function is entire, J. Math. Anal.
Appl. 291 (2004), no. 2, 565 577.

2. S. Axler, P. Gorkin, and K. Voss, The Dirichlet problem on quadratic surfaces, Math. Comp.
73 (2004), no. 246, 637 651.

3. J. A. Baker, The Dirrchlet problem for ellypsords, Amer. Math. Monthly 108 (1999), no. 9,
829 834.

4. S. R. Bell, P. Ebenfelt, D. Khavinson, and H. S. Shapiro, On the classical Dirvchlet problem
n the plane unth rational data, J. Anal. Math. 100 (2006), 157 -190.

, Algebrascity sn the Dirichlet problem in the plane with rational data, Complex Var.

Elhptic Equ. 52 (2007), no. 2-8, 235—244.

6 M Chamberland and D. Siegel, Polynomial soluttons to Dirichlet problems, Proc. Amer.
Math Soc. 129 (2001), no. 1, 211-217.

7 P J Davis, The Schwarz function and sts applications, Vol. 17, Math. Assoc. America, Buffalo,
NY, 1974 Carus Math. Monogr.

8. P L. Duren, Polynomseals orthogonal over a curve, Michigan Math. J. 12 (1965), 313—-316.

9 P. Ebenfelt, Stngularsties encountered by the analytic continuation of solutions to Dirichlet’s
prob em, Complex Variables Theory Appl. 20 (1992), no. 1-4, 75-91.

1 P Ebenfelt, D. Khavinson, and H. S. Shapiro, Algebraic aspects of the Dirichlet problem,
Quadrature Domains and their Applications, Oper. Theory Adv. Appl., vol. 156, Birkhauser,
Basel, 2005, pp 151—-172.

11. P. Ebenfelt and H. S. Shapiro, The Cauchy- Kowalevskaya theorem and generalizations,
Comm Partial Differential Equations 20 (1995), no. 5-6, 939—960.

12. P Ebenfelt and M. Viscardi, On the solution of the Dirichlet problem with rational holomor-
phic boundary data, Comput. Methods Funct. Theory & (2005), no. 2, 445—-457.

13. E. Fischer, Uber die Differentiationsprozesse der Algebra, J. Reine Angew. Math. 148 (1917),
1-78.

14 A. Friedman, Partial differential equations, Holt, Rinehart and Winston, New York, 1969.

15 L Garding, T. Kotake, and J. Leray, Uniformisation et développ t asymptotique de la
8 lution du probléme de Cauchy linéaire, & données holomorphes; analogie avec la théorie
des ondes asymptotiques et approchées (Probléme de Cauchy, 1 bis et VI), Bull. Soc. Math.
France 92 (1964), 263—361.

16 L. J. Hansen and H. S. Shapiro, Functional equations and harmonic extensions, Complex
Vanables Theory Appl. 24 (1994), no. 1-2, 121-129.

17 W K Hayman, Power series ezpansions for harmonic functions, Bull. London Math. Soc. 2

1970), 152 158.

18. G. Johnsson, The Cauchy problem in CN for linear second order partial differential equations
unth data on a quadric surface, Trans. Amer. Math. Soc. 844 (1994), no. 1, 1-48.

19 D. Khavinson, Singularities of harmonic functions in C™, Several Complex Variables and
Complex Geometry, Part 3 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52,
Amer. Math Soc., Providence, Rl, 1991, pp. 207-217.

Holomorphic partial differentral equations and classical potential theory, Universidad

de La Laguna, Departamento de An4lisis Matemético, La Laguna, 1996.

21. D. Khavinson and H. 8. Shapiro, The Schwarz potential in R® and Cauchy's problem for
the Laplace equation, Technical Report TRITA-MAT-1989-36, Royal Institute of Technology,
Stockholm.

, Dirichlet’s problem when the data 18 an entire function, Bull. London Math. Soc. 24
1992), no. 5, 456 468.

23. D Khavinson and N. Stylianopoulos, Recurrence relations for orthogonal polynomials and the
Khawnnson Shapiro conjecture, in preparation.

24. 8 Ya. Khavinson, Best approzimation by hinear superpositions (approzimate nomography),
Transl. Math. Monogr., vol. 159, Amer. Math. Soc., Providence, RI, 1997,

5.

20

22




132 D. KHAVINSON AND E. LUNDBERG

26. L. Lempert, Recursion for orthogonal polynomials on complex domains, Fourier Analysis and

Approximation Theory, Vol. II (Budapest, 1978), Collog. Math. Soc. J4ncs Bolyai, vol. 19,
North-Holland, Amsterdam, 1978, pp. 481 494.

26. J. Leray, Uniformisation de la solution du probléme linéaire analytiqgue de Cauchy pres de la
variété qui porte les données de Cauchy, C. R. Acad. Sci. Paris 245 (1957), 14831488,

27,

H. Lewy, On the reflection laws of second order differential equations tn two mdependent
variables, Bull. Amer. Math. Soc. 65 (1959), 37-58.

E. Lundberg, Dirichlet's problem and complex lightning boits, Comput. Methods Funct The-
ory 9 (2009), no. 1, 111-125.

28.

29. M. Putinar and N. S. Stylianopoulos, Finite-term relations for planar orthogonal polynomsals,
Complex Anal. Oper. Theory 1 (2007), no. 3, 447 456.

H. Render, Real Bargmann spaces, Fischer decompositions, and sets of uniqueness for poly-
harmonic functions, Duke Math. J. 142 (2008), no. 2, 313-352.

W. T. Ross, private communication.

M. Sakai, Null quadrature domains, J. Analyse Math. 40 (1981), 144—~154 1982 .

B. Yu. Sternin and V. E. Shatalov, Legendre uniformization of multivalued analytic functions,
Mat. Sb. (N.S.) 113(165) (1980), no. 2(10), 263284 (Russian).

B. Yu. Sternin, H. S. Shapiro, and V. E. Shatalov, Schwarz potential and singularities of the

solutions of the branching Cauchy problem, Dokl. Akad. Nauk 341 1995 , no. 3, 307-309
(Russian).

30.

31.
32
33.

34.

35. P. K. Suetin, Polynomials orthogonal over a region and Bieberbach polynom als, Proc. Steklov
Inst. Math., vol. 100, Amer. Math. Soc., Providence, R.1., 1974.

H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorph Goursat problem,
Bull. London Math. Soc. 21 (1989), no. 6, 513—-537.

, The Schwarz function and its generalization to higher dimensions, Univ. Arkansas
Lecture Notes Math. Sci., vol. 9, Wiley, New York, 1992.

E. Study, Einige Elementare Bemerkungen uber den Prozess der analyhischen Fortzetsung,
Math. Ann. 63 (1907), 239—245.

36.

37.

38.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, 4202 E. FOWLER AVE.,
TamPA, FL 33617, USA

E-mail address, D. Khavinson: dkhavins@cas.ust.edu
E-mail address, E. Lundberg: elundber@mail.usf.edu



Centre de Recherches Mathématiques
CRM Proceedings and Lecture Notes
Volume 51, 2010

Invariant Subspaces of the Dirichlet Space

Omar El-Fallah, Karim Kellay, and Thomas Ransford

ABSTRACT. We present an overview of the problem of describing the invariant

subspaces of the Dirichlet space. We also discuss some recent progress in the
problem of characterizing the cyclic functions.

1. Introduction

Let X be a Banach space of functions holomorphic in the open unit disk D,
such that the shift operator S: f(z) — zf(2) is a continuous map of X into itself.
An wvarant subspace of X is a closed subspace M of X such that SM C M.

Given f € X, we denote by [f]x the smallest invariant subspace of X containing
f, namely

[f1x = {pf : p & polynomial}.
We say that f is cyclic for X if [f]x = X.

1.1. The Hardy space. This is the case X = H?, where

#2 o= { 6 = Yo el o= Ylauf? < o,
k20 k>0
Recall that, for every function f € H?\ (0), the radial limit f*(¢) := lim,_,;- f(r¢)
exists a.e. on the unit circle T. The function f has a unique factorization f = 6h,
where 0, h are H2-functions, 6 is inner (this means that |§*| = 1 a.e.), and h is
outer which means that log|h(0)| = (2m)~?! : "log|h*(¢)||d¢]). The inner factor

can be expressed as product of a Blaschke product and singular inner factor. More
precisely, we have 8 = cBS,, where c is a unimodular constant,

an] @, — 2
B2z)= | | —i-n E - =1ifa, =
z) L T-a (anE]D, 3 (1-an|) < o0,lan|/an :=11if a, 0),
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and

S,(z) = exp (- §+ : da(C)) (o> 0,0 L do).
TC—
For more details, see for example [8,11,13].
The invariant subspaces of H? are completely described by Beurling’s theorem
[2):

Theorem 1. Let M # (0) be an invariant subspace of H2. Then M = 0H?,
where 0 is an inner function.

This result leads immediately to a characterization of cyclic functions for H?
Corollary 2. A function f is cyclic for H? if and only if it is an outer function.
1.2. The Dirichlet space. The Dirichlet space is defined by

D= {0 = Dot s U1l i= Tk +1) an? < oo

k>0 k>0

Clearly D is a Hilbert space and D C H?. 1t is called the Dirichlet space because
of the close connection with Dirichlet integral:

D) =7 [IFa)F aa@) = ke

k>0
Thus ||f1% = {f%42 4+ D(f). (The H%-norm is added to ensure that we get a
genuine norm.)

Here are two other formulas for the Dirichlet integral. The first, due to Douglas
[7], expresses the integral purely in terms of f*, and leads to the notion of Besov

spaces:
o - () [ [IL=EG" o,

The second formula is due to Carleson [5]. Using the factorization above (f =

cBS,h), Carleson’s formula expresses D(f) in terms of the data h*,(a,) and o
More precisely:

W o= [ ool 0P e

27r// I — |z|h"(Cl)I’ |d¢i| do(€a)

h* 2 —|h* 2)(log|h* — log|h*
+ o / / ( (Cl)l —| (Cz)lcz(_oilz‘2 (¢€1)] = loglh* (€2)1) 14y 1déal-
It follows directly from Carleson’s formula that, if f € D, then its outer factor h

also belongs to D and satisfies D(h) < D(f). A further consequence is that the
only inner functions which belong to D are finite Blaschke products

In [15,16], Richter established an analogue of Beurling’s theorem for the Dirich-

let space. To state his result, we need to introduce a family of Dirichlet-type spaces
D(p). Given a finite positive Borel measure x on the unit circle, we define

D(p) == {f € H? :Du(f) = ;lr- /I;lf'(z)lch,,(z) dA(z) < oo},
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where @, is the Poisson transform of y, namely

27 22
oule) = e [ 1 aul0)

We equip D(u) with the norm ||-|[, defined by ||f||2 := || f||%2 + Du(f). Note that
the classical Dirichlet space corresponds to taking u to be normalized Lebesgue
measure m on T. The following theorem was proved by Richter [15,16).

Theorem 3. Let M # (0) be an invariant subspace of D. Then there ezists
f € D such that M © SM =Cf and M = [flp = fD(|f|*dm).

In particular, the invariant subspaces of D are all cyclic (of the form [f]p for
some f € D). The next theorem, due to Richter and Sundberg [17], goes one step

further, expressing such subspaces in terms of invariant subspaces generated by an
outer function.

Theorem 4. Let f € D\ {0}, say f = Oh, where 8 is inner and h is outer.
Then

[flp = 8[hlp N D = [Rlp N OH2.

This still leaves us with the problem of describing [h]p when h is outer. In
particular, it leaves open the problem of characterizing the cyclic functions for D.

2. Dirichlet space and logarithmic capacity

Given a probability measure p on T, we define its energy by

I(p) = / log du(z) du(w).
Note that I(u) € (—o0,00]. A simple calculatmn (see [3, p. 294]) shows that
~0oN(2
fi(n
) 3 B
n>1

Hence in fact I(u) > 0, with equality if and only if u is normalized Lebesgue
measure on T.

Given a Borel subset E of T, we define its capacity by
o(E)
:=1/inf{I(g) : 4 is a probability measure supported on a compact subset of E}.

Note that c(E) = 0 if and only if E supports no probability measure of finite energy.
It is easy to see that

countable == capacity zero =—> Hausdorff dimension zero

=5 Lebesgue measure zero.
None of these implications is reversible. A property is said to hold quasi-everywhere
(q9.e.) on T if it holds everywhere outside a Borel set of capacity zero.

The following result, due to Beurling [1], reveals an important connection be-
tween capacity and the Dirichlet space.

Theorem 5. Let f € D. Then f*(¢) :=limro1 f(r() exists g.e. on T, and
@) 20 W > ap)
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The inequality (2) is called a weak-type inequality for capacity. The strong-type
inequality for capacity is

3) / T2 Hdr < Cllf B,

where C is a constant. For a proof, see for example {19]. In Theorem 15 below, we
shall exhibit a ‘converse’ to the strong-type inequality.
Given a Borel subset E of T, we define

Dg:={feD:f" =0qe. on E}.

The following result is essentially due to Carleson [4]. The simple proof given be ow
is taken from [3], where it is attributed to Joel Shapiro.

Theorem 6. Dg is an invariant subspace of D.

PROOF. We just need to show that Dg is closed in D, the rest is lear. Let

(f») be a sequence in Dg and suppose that f, = finD. By 2,ift> 0, then,f r
all n sufficiently large,

_ 2
dEN{f |z <elf - fizn< LI D

Letting n — oo and then ¢ —+ 0, we deduce that f* =0 gq.e.on E. 0

Corollary 7. If f € D, then [flp C Dz(y-), where Z f* = (€ T:
f*(Q) =0}

3. Cyclic functions for the Dirichlet space

Recall that a function f € D is cyclic for D if [f]p = D. So, fr m Corollary 7,
if f is cyclic for D, then f is outer and ¢(Z(f*)) = 0. In [3], Brown and Shields
conjectured that the converse is also true. In this section we will give some sufficient
conditions to ensure cyclicity in the Dirichlet space. For simplicity, we restrict our

attention mostly to functions in the disk algebra A(D). To help state these results,
we introduce a class C.

Definition 8. The class C consists of closed subsets E of the unit circle satisfy-

ing the following property: every outer function f € DNA D) such that Z f CE
is cyclic for D.

For functions in D N A(D), the Brown Shields conjecture thus becomes:
Conjecture 9. If E is a closed subset of T with ¢(E) =0, then E €C.

It was proved by Hedenmalm and Shields [12] that every countable closed subset
of T belongs to C. Richter and Sundberg [18] subsequently obtained a more general
version of this result which also covered the case of functions not necessarily in A(D).
The first examples of uncountable sets in C were given by the present authors in
[9,10], and our aim is now to give an overview of this work.

Let I' C T be a union of disjoint arcs. We denote by dI" the boundary of T in
the unit circle. Given an outer function f, we associate to it the outer function fr

defined by
e = ewp( 5= [ X2 0gir0l14ct).

The following lemma can be obtained from Carleson’s formula (1) (for the details,
see [10]).
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Lemma 10. Let f € D be a bounded outer function. There is a constant C,
which depends only on f, such that, for every union of disjoint arcs T' of T, and
every function g € D satisfying |g* (¢)| < d(¢,0T) a.e., we have frg € D and

| frglio < Cligllo.

Theorem 11. Let f € D be an outer function, and set E := {{ € T :
liminf, ,¢|f(2)| = 0}. If g € D and |g*({)| < d(¢,E) a.e. on T, then g € [f]p.

IDEA OF PROOF. We employ a method developed by Korenblum [14]. Let
(7x)k21 be the connected components of T\ E, and set I'y, := Ug>n77k. First we prove
that gfr,, € [f]p for all n. Then, using Lemma 10, we show that sup,||g/fr.llp < .

Therefore we can extract a subsequence of (gfr,) that converges weakly to g. It
follows that g € [f]p. a

Note that the existence of & function g € H? \ (0) such that |g*(¢)| < d(¢, E)
implies that

" [ 1080176, B3 461 < o,
T

A closed subset E of T satisfying (4) is known as a Carleson set.

Let E C T be a Carleson set. We denote by fg the outer function associated
to the distance function d(¢, E):

5 fote) = e (5 [ SELwutac, B el ).

Using Carleson’s formula (1), it is not difficult to prove that fr € D. As conse-
quences of Theorem 11, we obtain the following results.

Corollary 12. Let E be a Carleson set. Then E € C if and only if fg is cyclic
Jor D.

Corollary 13. If E,F € C and if E is a Carleson set, then EUF € C.

IDEA OF PROOF. Let f be an outer function in D N A(D) such that Z(f) C

EU F. We have to prove that f is cyclic for D. Let I'n, = UrsnYk, where the (k)
are the connected components of T\ E. We can write

£ = fr.fefnr. fx

Note that (T T'n) is a finite set. Since F € C, we have FU (T \T,,) € C. From
the fact that Z(fr r,fg) C F UO(T \I'n), we deduce that fr\r, fE is cyclic in
D. Thus fr, fe € |flp. Using Lemma 10, we obtain that ||fr, fe||p is uniformly

bounded, so fg € [f]p. Since E € C, it follows that fz is cyclic, and therefore so
is f. O

We now turn our attention to Conjecture 9. We shall establish two partial

results in this direction, both of them sufficient conditions for a closed set £ to
elong to the class C.
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3.1. A capacitary sufficient condition. Given a closed set E C T and

t > 0, we write E; := {¢ € T : d(¢,E) < t}, and denote by |E,| the Lebesgue
measure of E;. It is clear that ¢(E) = lim;_,o+ ¢(E:). In the following theorem we
prove that, if c(E:) goes to zero sufficiently rapidly as t — 0%, then E € C.

Theorem 14. Let E be a closed subset of T. If

©) f o(E t)loglog(l/t)

2(1/4) dt < oo,

then E€C.

The proof of Theorem 14 is based on the following converse (proved in [9]) to
the strong-type inequality for capacity (3).

Theorem 15. Let E be a proper closed subset of T, and let : (0,7] = R* be
a continuous, decreasing function. Then the following are equivalent:
(1) there exists h € D such that

R* () 2 n(d(¢, E))  g.e on'T;
(ii) there exists h € D such that

Reh*(() 2n(d(G.E) ond [mh*(Q)|<w/d  qe onT;
(iil) E and n satisfy

) /(; c(Ey) dn?(t) > —oo.

IDEA OF THE PROOF OF THEOREM 14. Suppose that condition 6 holds. By
Theorem 15, there exists h € D such that

Reh*({) > loglog(d(¢,E)) and |Imh*({)| <= 4 g.c.on T.

We consider the analytic semigroup ) := exp(—Xe®) for arg(\) < = 4. It has the
following properties:

(a) the map A+ ¢y is holomorphic from {X : |arg(A)| < 7 4} to D;

(b) Lim¢yo+|loe — 1llp = 0;

(©) loa(2)] = O(d(z, E)) for large A.
Let f € DN A(D) be an outer function such that Z(f) C E, and let 9 be an element
of the dual space of D which is orthogonal to [f}p. It follows from property (c)
and Theorem 11 that ¢, € [f]p for large ¢. Thus (py:,%) = 0 for every polynomial

p. Using property (a), we can extend this equality to all ¢ > 0. Property (b) then
implies that {p,%) = 0. Hence ¢ = 0 and f is cyclic.

3.2. A geometric sufficient condition. By geometric condition, we mean
a condition expressed in terms of |E¢|. It is well known (see for example [6]) that
there exists a constant C' > 0 such that, for every closed set E C T, we have

T ds C
® f AR

In particular, if [ dt/|E:| = oo, then c(E) = 0. In the case of Cantor-type sets
the converse is also true [6]. Using (8) with E, in place of E, we obtain

¥ ds C
—_— .
£ |Esl ~ c(Er)
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So, from Theorem 14, if E satisfies
|Ey|
—dt < 0
-/o (tlog(1/t))? ’
then E € C. The following theorem gives a more precise condition.

Theorem 16. Let E be a closed subset of T such that |E,| = O(t¢) for some
e>0. If
[&
o |Be| ’

To give an idea of the proof of this theorem, we need to digress slightly and
introduce a generalization of the functions fg defined in (5). Let E be & closed

subset of T of Lebesgue measure zero, and let w: (0,7] — R* be a continuous
function such that

then E € C.

9 [ pogwiatc, BVl ac] < o
We shall denote by f,, the outer function satisfying
10 |fu (Ol =w(d((, E))  ace.

Functions of this kind were already studied, for example, by Carleson in [4], in the
course of his construction of outer functions in A*(D) with prescribed zero sets.

The following result gives a two-sided estimate for the Dirichlet integral of certain
of these functions (for the details of the proof, see [10]).

Theorem 17. Let E be a closed subset of T of measure zero, let w: (0,7] - R*
be an wncreasing function such that (9) holds, and let f,, be the outer function given

b 1 . Suppose further that there exists v > 2 such that t — w(t?) is concave.
Then

1 D(fu) < fT w'(d(¢, E))?d(¢, E) ldC],

where the implied constants depend only on 7. In particular, f,, € D if and only if
the ntegral m (11) 15 finite.

IDEA OF THE PROOF OF THEOREM 16. We first suppose that E is regular, in
the sense that E.| =< 1(t), where 4 is a function such that 1(t)/t* is increasing for
some a € (1,1).

For & € (0,1), define ws: (0,7] - R* by

2t 0<t<s,
ws(t) == { As —log J;" ds/y¢(s), & <t< s,
1, n<tLm

Here, the constants Ags, 75 are chosen to make w; continuous. Note that wj is
increasing, and one can show that t — ws(t”) is concave if ¥ > 1/(1 —~ a) and §
is sufficiently small. Using Theorem 17, we obtain that limsupg_,o D(fws) < 0.
From the condition f;dt/|E,] = oo, it is easy to see that lims—o7s = 0, which
implies that lims_,o|f},] = 1 a.e. and that limso|fw,(0)| = 1. Putting these facts
together, we deduce that f,,, — 1 weakly in D as § ~ 0.
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Now, for each & € (0,1), the quotient ws(t)/t'~* is bounded, so fu,/f5 = is
bounded on D. By [17, Lemma 2.4}, it follows that f,, € [fp *lp. Letting § =0,
we obtain 1 € [f5 ®]p. Also, by (17, Theorem 4.3}, we have [f5 *lp = [felp-
Hence fg is cyclic and E € C.

When E is not regular, the result is still true, but now there is an extra step
in the proof. To obtain the function v, we first need to regularize E,, using
a quantitative form of M. Riesz's rising-sun lemma. For the details, we refer to
[10}.

u}
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Arguments of Zero Sets in the Dirichlet Space

Javad Mashreghi, Thomas Ransford, and Mahmood Shabankhah

ABSTRACT. We characterize the unimodular sequences () >y Such that

{rnef®) a>1 13 8 zero set for the Dirichlet space for every positive Blaschke

sequence (Tq)n>1. The principal tool is a characterization of Carleson sets in
terms of their convergent subsequences.

1. Introduction

The Dirichlet space D is the set of functions f, holomorphic on the open unit
disk D, for which

D(f) = / |/ (2)[? d dy < co.

Hfz =32 ,an2", then D(f) = 300, nlan|?. Hence D is properly contained in
the Hardy space

o0 o0
2= { 1) = T ans” i 1= Solonl? < o).

n=0 n=0
D is a Hilbert space with respect to the norm ||-||p defined by {|f||2, := D(f)+||f1|%2-
Let X be a space of holomorphic functions of D. A sequence (zn)n>1 C D is
said to be a zero sequence for X if there exists function f € X, not identically zero,
which vanishes on 2,, n > 1. We do not require that the (z,) be the only zeros of
f. B 2z, a1 is not a zero sequence for X, then we call it a uniqueness sequence

for X.

Zero sequences of the Hardy space H? are completely characterized: a sequence
zn)n>1 C D is a zero sequence for H? if and only if it satisfies the Blaschke condition

1) D (1= |zn]) < co.

n=1
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Since D C H?, this is also a necessary condition for a zero sequence for D.

However, it is far from being sufficient. Indeed, the complete characterization of
the zero sequences of D is still an open problem.

The first breakthrough in this direction was the pioneering work of Carleson
[4). He showed that if a sequence (2n)n>1 in D satisfies

S (cmamn) | <=

for some € > 0, then (zn)n>1 i8 a zero sequence for D. Using a completely different

approach, Shapiro and Shields {10] obtained showed that this result remains true
even with e = 0.

Thus, if & sequence (Tn)n31 in [0,1) satisfies
— 1

2) n2=1 —log(l—ry) <
then (r,el®») .. is a zero sequence for D for every choice of (¢=) _ . Later on,
Nagel, Rudin and Shapiro [8] showed that, if (2) is not satisfied then there exists a
sequence ew")n)1 for which (rnew")n>1 is a uniqueness sequence f r D. Putting
these results together, we conclude that (rne“’")'l>1 is & zero sequence f r D f r
every choice of (e”’")n21 if and only if (2) holds.

The main purpose of this article is to prove the following theorem, which can

be considered as the dual of the last statement. It was already stated as a remark
in [6, p. 704, line 12, but without detailed proof.

i0n . 18
Theorem 1. Let (e )n21 be a sequence in T. Then (r e n>1 1S O Z€T0 se-

quence for D for every positive Blaschke sequence (Tn)n>1 if and nly f{e?® n>1}
8 a Carleson set.

We recall that a closed subset F of T is a Carleson set if
[log dist(¢, F) |d¢] > —o0,
T

where “dist” is measured with respect to arclength distance. These sets were first
discovered by Beurling 1) and then studied thoroughly by Carleson. Carleson (3]
showed that the condition (3) characterizes the zero sets of f 1 for f € A!, where
Al .= {f € C'(D) : f is holomorphic on D}. If F is a closed subset of T of

Lebesgue measure zero whose complementary arcs are denoted by I, n > 1, then
(3) is equivalent to

(3)

(4) > “a|log|I] > —c0.

Our proof of Theorem 1 is based on the following theorem, which we believe is

of interest in its own right. In particular, it characterizes Carleson sets in terms of
their convergent subsequences.

Theorem 2. Let E be a subset of T. Then E is a Carleson set if and only if
the closure of every convergent sequence in E is a Carleson set.

Theorem 2 is proved (in a more general form) in Section 2, and Theorem 1 is

deduced from it in §3. Finally, in §4 we relate these results to the notion of Blaschke
sets.



ARGUMENTS OF ZERO SETS IN THE DIRICHLET SPACE 145

2. Proof of Theorem 2

We shall in fact prove Theorem 2 in a more general form. Let w : [0 @] —= [0, 00}

be & continuous, decreasing function such that w(0) = oo and fo t)dt < c0. A
closed subset F' of T is an w-Carleson set if

) /T w(dist(¢, F)) |d¢] < oo.

If F is a closed subset of T of measure zero, then condition (5) is equivalent to

X rlial/2
Z/ w(t) dt < oo,
0

n=]
where (In)n>1 are the components of T\ F' (see [7, Proposition A.1]). The classical

Carleson sets correspond to the case w(t) = log*(1/t), and so Theorem 2 is a special
case of the following result.

Theorem 3. Let w be as above and let E be a subset of T. Then E is an

w-Carleson set if and only if the closure of every convergent sequence in E is an
w-Carleson set.

PROOF. Set F = E. We need to show that F is an w-Carleson set.

We first show that the closure of every convergent sequence in F' is an w-
Carleson set. As the union of two w-Carleson sets is again one, it suffices to consider
sequences converging to a limit from one side. Suppose that (ei®~) np1 C F, where

0 <0 <... and 8, = 65 as n = oo. Smcehm:,;_,o+f0 t)dt = 0, we may
choose a positive sequence (77,)n>1, such that

Z/ t) dt < oco.

Set § = min{nn,Mn—1, On+1 — n)/2, (6r, — On-1)/2}, n > 2, and choose €~ € E
th¢ € 6p—8p,0n+6y), n > 2. Then ¢ < ¢3 < -+ and ¢, = 0y 88 n = o0.
Swince e¢ )n>2 is a convergent sequence in E, it follows from the assumption that

e :n > 2} is an w-Carleson set, and therefore
(¢n+1 _¢n)/2

Z/ w(t) dt < oo,

n=2

Asf 4y — 6, < Pny1— Pn + 27, and w(t) is a decreasing function,
(9 +l"'on)/2 (¢n+l’¢n)/2 In
/ w(t)dt < / wit) dt + / w(t) dt.
0 0 0

(on+l -—0,-.)/2

Z/ w(t)dt < oo,

n>1

and {&%n ; n > 1} is an w-Carleson set.
We next show that F' has zero Lebesgue measure. Suppose, on the contrary,
that F' > 0. We claim that there exists a positive sequence (£,)n>1 such that

¢n/2

6) Yen<IF|  and Z/ wit)dt =

n=1

Therefore
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Indeed, since (1/) JEw(t)dt >0 asz — 0t, we may choose integers N, i> 1,
such that

|F|/ (241 Ny)
/ wt)dt21/N: (2 1).
0
Then, the sequence

(en)n21=( |F| |F} )

...,2iNi,...,—2m‘;,...
e ——
N, times

satisfies (6). Now choose (6,,)n>1 inductively as follows. Pick 6; such that €® € F.
If 64,...,0, have already been selected, choose 0,11 as small as possible such that
Op41 > Op +€p, and eifn+1 € F. Note that 8, < 01 + 27 for all n, for otherwise F
would be covered by the finite set of closed arcs [e'f7,el(®:+es ]';=1, contradicting

the fact that 37 e; < |F|. Thus (e'~) ., is a convergent sequence in F. Also

(Bn+1—60n)/2 €n/2
2/ w(t)dtZZ/ w(t) dt = oo,
n v0 n YO

so {€~ : n > 1} is not an w-Carleson set. This contradicts what we proved in the
previous paragraph. So we conclude that |F| = 0, as claimed.

Finally, we prove that F is an w-Carleson set. Once again, we proceed by
contradiction. If F is not an w-Carleson set, then, as it has measure zero, it follows
that

(o]

Hnl/2
(7) ¥ /0 w(t) dt = oo,

n=

where (I5)n>1 are the components of T\ F. Denote by €~ the midpoint of I,,, where
6, € [0,27]. A simple compactness argument shows that there exists 8 € [0, 2]

such that, for all § > 0,
11nl/2
/ w(t)dt = oo.
0

We can therefore extract a subsequence (In,,) such that 6,; — 6 and

In, 1/2
> / w(t) dt = oo.
J' 0

0,.€(0—5,0+8)

The endpoints of the I, then form a convergent sequence in F' whose closure is

not an w-Carleson set, contradicting what we proved earlier. We conclude that F
is indeed an w-Carleson set. 0

3. Proof of Theorem 1
If {el%n : n > 1} is a Carleson set then, by [9, Theorem 1.2], for every Blaschke
sequence (rp)n>1 in [0, 1), there exists f € A>, f#0, which vanishes on (1',1e“’")712 v
Here A := {f € C*°(D) : f is holomorphic on D}. In particular, (rne') , isa
zero sequence for D. -

For the converse, we use a technique inspired by an argument in [5]. Suppose
that (1',1e“’")n>1 is a zero sequence for D for every Blaschke sequence (rp)n>1 €
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[0,1). Let (e n) j»1 D@ & convergent subsequence of (elf) a1+ We shall show

that {e®s : j > 1} is a Carleson set. As the union of two Carleson sets is again a
Carleson set, it suffices to consider the case when g, < 05, < ... and 65, = 6o,
8s j — 00. Let 8; = On,4y — On,y j > 1. Consider the Blaschke sequence

7 = (1= §,)e™, (G 21).

By hypothesis, this is a zero sequence for D, and as such it therefore satisfies

2 ad 1_|2J|2
/0 log Z___2 df < oo,

=1 [ — z|

(see for example [5, p. 313, equation (2)]). On the other hand, for 8 € (0n,, 0n, ., )
we have |ei® — 2| < 26 which gives

1-— 2 1
. |2« ] > L
|e|0 - zkl 46

and consequently

2m )
|le ) / 1
/0 log(z ]e"—z l d9>Z log d9 Z&klog‘w

1=1

We conclude that Y, 0;10g8x > —co. Thus {e'% : k > 1} is indeed a Carleson
set. Now apply Theorem 2 to obtain the desired result. O

4. Blaschke sets

Let X be a space of holomorphic functions on I and let A be a subset of D.
We say that A is a Blaschke set for X if every Blaschke sequence in A (perhaps
with repetitions) is a zero sequence for X. Blaschke sets for A™ were characterized
by Taylor and Williams [11], and for D by Bogdan [2]. The following theorem
summarizes their results and takes them a little further.

Theorem 4. Let A be a subset of D. The following statements are egquivalent.
(a) A is a Blaschke set for D.
(b) A is a Blaschke set for A,
(c) Every convergent Blaschke sequence in A is a zero sequence for D.
(d) Every convergent Blaschke sequence in A s a zero sequence for A,
(¢) For every Blaschke sequence (rnei®) . in A, {€ :n>1} is a Car-
leson set. -
(f) The Euclidean distance dist(¢, A) satisfies

/log dist(¢, A) [d¢| > ~oo.
T

PRrROOF. The equivalence of (a), (b), (¢) and (f) was already known. Indeed,
a) <= (f) is Bogdan’s theorem [2, Theorem 1], and (b) <= (f) is due to Taylor
and Williams [11, Theorem 1]. Also (b) <= (e) follows from a result of Nelson
[9, Theorem 1.2].

The new element is the equivalence of these conditions with (c) and (d). It is
obvious that (b) == (d) and that (d) == (c), so it suffices to prove that (c) == (e).
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Assume that (c) holds. Let (rnei®~) be a Blaschke sequence in A, and let (')
be a convergent subsequence of (e!~). Set B := {r,, e : j > 1}. Then every
Blaschke sequence in B is a convergent Blaschke sequence in A, so by hypothesis (¢)
it is a zero sequence for D. In other words B is a Blaschke set for D. By the equjva-
lence of (a) and (e), but applied to B in place of A, it follows that {ew"i :j> 1} is

a Carleson set. By virtue of Theorem 2, we deduce that {ei"" tn> 1} is Carleson
set. Thus (e) holds, and the proof is complete. u]

Remark. Theorem 2 can be deduced, in turn, from Theorem 4. Let E be a

subset of T such that the closure of every convergent sequence in E is a Carleson
set. Define

A:={reé®:ref0,1),6 € E}.
Let (rne'®) . be a convergent Blaschke sequence in A. Then (e!’) is a convergent
sequence in E, so {ei’» : n > 1} is a Carleson set. By [9, Theorem 1.2}, the sequence
('rne"o") is a zero sequence for A™. To summarize, we have shown that A satisfies

condition (d) in Theorem 4. Therefore A also satisfies condition e). From this it
follows easily that F is a Carleson set.
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Questions on Volterra Operators

Jaroslav Zemének

Consider the classical Volterra operator

V) = /o £(s)ds

on the Lebesgue spaces L?(0,1), 1 < p £ oo, and its complex analogue

wne = [ " F() A

on the Hardy spaces H? on the unit disc, 1 < p < o0.
The important Allan—Pedersen relation

S I-V§=I+V),

where Sf)(t) = etf(t), f € LP(0,1), 1 < p < oo was noticed in [1] and extended
by an elegant induction to

STHI-mV)§=(I - (m-1)V)I+ V)™

m [10}, for m = 1,2,.... Analogously, we have the corresponding complex formulas.
In fact, the formula

SHI-2V)S=(I-(z-1)V)I+V)!

is true for any complex number z. Indeed, from the Allan—Pedersen relation we
have

S-WS=I-(I+V)'=vI+V)},
and then
S I-2V)S=1-2VI+V) ' '=(I-(G-1)V)T+V)™L

Since (I 4+ V) {2 =1 on L?(0,1) by [5, Problem 150), it follows that every
operator of the form I —tV, with ¢ > 0, is power-bounded on L?(0,1). This in turn
implies, as observed in [10] by using [3, Lemma 2.1] and [9, Theorem 4.5.3), that

1 U=V =(I-V)"*};=0m"?)  asn—o.
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The exact order of the norms of powers (I — V)® on LP(0,1) and of their
consecutive differences was obtained in [8], connecting the power boundedness on
L?%(0,1) with the result ||(I — V)*||; = O(r/4) on L*(0,1) obtained in [6].

In particular, the operator I — V is power-bounded on L?(0,1),1 < p < o0, if
and only if p = 2. Similarly, the order (1) holds on L2(0,1) only.

More generally, the following characterization has recently been obtained by
Yu. Lyubich [7]. Let ¢(2) be an analytic function on a disc around zero such that
#(0) =1, ¢(2) £ 1. Then ¢(V) is power-bounded on LP(0, 1) if and only if ¢'(0) < 0
and p = 2.

If p # 2, a sequence of functions was found in [8] on which the powers of
the operator I — V increase correspondingly. However, by the Banach —Steinhaus

theorem, plenty of single functions should exist in LP(0,1), p # 2, on which the
powers of I — V are not bounded.

Question 1. Find a function f in L?(0,1), p # 2, such that
sup ||(I —V)"fllp =o0.

n=1,2,...

We were not able to do that! Only indirectly, J. Sanchez-Alvarez showed that
on the function

f(z) =27
with (p—1)/p < B < % and 1 < p < 2 we have

limsup n |[(I - V)" = (I = V)*"|f , =00,

by considering the subsequence n = 4m?. So (1) does not hold, hence the operator
I — V cannot be power-bounded (the same reasoning as above that led to (1)). If
p = 2, then such a B does not exist, thus no contradiction.

The complex operator I — W is not power-bounded on H2. It was observed by
V. L. Vasyunin and S. Torba that the norms of the polynomials (I — W)"1 (i.e., the
Euclidean norms of their coefficients) increase very fast.

Question 2. Is it possible to characterize the space H? among the spaces HP,
1 < p < o0, in terms of the growth of the operator norms of the powers of I — W?

The numerical range of the operator V on the Hilbert space L2(0, 1) is described
in [5, Problem 166]. Since the operator I + V preserves positivity of functions, the
numerical ranges of all the powers are symmetric with respect to the real axis.
Moreover, they are not bounded (since the operator I 4 V is not power-bounded,
see [12]) and not contained in the right half-plane Rez > 0 (since the operator V is
not self-adjoint, see [4] and some references therein).

Question 3. What is the union of the numerical ranges of the powers of the

operator I +V on L?(0,1)? Is it all the complex plane? What about the operators
I+ W on H?? Or, even I -V on L?(0,1)?

The numerical ranges of (I + V)™ on L?(0, 1) were approximately determined
on computer by I. Domanov, for n = 1,2,...,7. It turns out that these seven sets

are increasing, for n = 2 catching 1 as an interior point, and for n = 5 already
reaching the negative half-plane Rez < 0.
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Question 4. Fix a half-line ! starting at the spectral point 1 of the operator
I+V on L?(0,1), and denote by I, the length of the intersection of ! with the
numerical range of (I + V)". What is the behaviour of !,, with respect to n? Does
the limit I,/n exist? Does it depend on the direction of I?

It is interesting to observe, as pointed out by M. Lin, that the power bounded-
ness of operators is very unstable even on segments: the operator

(l-a)I-V)+a(l+V)=aVi-(1-a)V+I

on L?(0,1) is power-bounded for 0 € & < 1 by [11, Theorem 5), but not for e =1
by [10, Theorem 3].

Question 5. Does there exist a quasi-nilpotent operator @ such that the op-
erators I — t@Q are power-bounded for 0 < ¢ < 1, but not for t = 17

Let
(Mf)(t) = tf(t)
be the multiplication operator on L?(0,1). It was shown in [2, Example 3.3] that
the Volterra operator V belongs to the radical of the Banach algebra generated
by M and V. Consequently, all the products in M and V, involving at least one
factor V, as well as their linear combinations, are quasi-nilpotent operators (which
does not seem to be obvious from the spectral radius formula!). Hence all these
candidates can be tested in place of @ above.

Moreover, a number of variants of Question 5 can be considered for various
versions of the well-known Kreiss resolvent condition (studied, e.g., in [8]). The
answer is particularly elegant for the Ritt condition [10, Proposition 2].

I wish to thank the referee for his interesting comments.
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Nonhomogeneous Div-Curl Decompositions for Local Hardy
Spaces on a Domain

Der-Chen Chang, Galia Dafni, and Hong Yue

ABSTRACT. Let 2 C R"™ be a Lipschitz domain. We prove div-curl type
lemmas for the local spaces of functions of bounded mean oscillation on Q,
bmor(€2) and bmo, (), resulting in decompositions for the corresponding lo-
cal Hardy spaces hl(02) and Al(2) into nonhomogeneous div-curl quantities.

1. Div-curl lemmas for Hardy spaces and BMO on R™

This article is an outgrowth, among many others, of the results of Coifman,
Lions, Meyer and Semmes ([7]) which connected the div-cur]l lemma, part of the
theory of compensated compactness developed by Tartar and Murat, to the theory
of real Hardy spaces in R™ (see [10]). In particular, denote by H*(R™) the space of
distributions (in fact L' functions) f on R™ satisfying

1 My (f) € L'(R™)
f r some fixed choice of Schwartz function ¢ with [¢ = 1, with the maximal
function My, defined by
My(f)(z)= sup |fxge(z)l, () =tT"o(t").
8<t<oo

One version of the results in [7] states that for exponents p,q with 1 < p < oo,
1 p+1/g =1, and vector fields V in L?(R",R"), W in L¢(R™,R™) with

djv17=0, curl W =0
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in the sense of distributions, the scalar (dot) product f = V- W belongs to H'(R™ .
Moreover, one can bound the H! norm (defined, say, as the L! norm of My(f ) by
Vo | W1 2. .

While a local version of this result, in terms of H}_, is given in [7], in order
to obtain norm estimates we use instead the local Hardy space h! R™ . This was

defined by Goldberg (see [11]) by replacing the maximal function in 1 by its
“local” version

(2) me(f)() = sup |f * de(z) .
0<t<1

Again the norm can be given by |mg(f)||L1(rn) and different choices of ¢ give

equivalent norms. In addition, we can replace the number 1 in 2 by any fimte
constant without changing the space.

For this space the following nonhomogeneous versions of the div-curl lemma
can be shown (these are special cases of Theorems 3 and 4 in [8] :

Theorem 1 ([8]). Suppose T and ¥ are vector fields on R™ s tisfynng

Ve’ RY)", WeL{R™", 1<p<oo, %+—=1.

q
(a) Assume

(3) divVP =f € LP(R"), culW=0

in the sense of distributions. Then V-W b 1 ngst th local H vy space
h(R™) with

(4) IV Wi <CUIVI@y+if L = Wi r -
(b) If M™*™ denotes the space of n-by-n matrices over R a d
(5) divV =0, culW =B € LY(R",M *")

in the sense of distributions, then V.-w belongs to th 1 cal Hardy space
R (R™) with

© 17 Wl < OV o W ey + X B 2w |-

N
Before continuing further, let us make clear what we mean by the divergence
and curl of a vector field in the sense of distributions. Let Q2 be an open subset

of R™, and suppose ¥ = (v1,...,Us) with v, locally integrable on Q. For a locally
integrable function f on {2, one says that divt' = f in the sense of distributions on
Qif

(1) /nt'fﬁ<p=-/nf¢

for all p € C§(Q) (i.e., smooth functions with compact support in Q),

Similarly, if ¥ = (w1,...,wn) with w, locally integrable on Q , and B is an

n X n matrix of locally integrable functions B,; on {2, we say curl®@ = B in the
sense of distributions on Q if

d¢ ¢ _ ,
(8) nw‘a_:l:: —w, 9z, = -/nBsJ‘P
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forall i,5 € {1,...,n} and all ¢ € CZ(N). If the components of ¥ or 17 are suffi-
ciently smooth, these definitions are equivalent to the classical notions of divergence
and curl via integration by parts.

Recall that C. Fefferman [9] identified the dual of the real Hardy space H' with
the space BMO of functions of bounded mean oscillation, introduced by John and
Nirenberg [13]). In the local case, Goldberg [11] showed that the dual of A!(R™)
can be identified with the space bmo(R"), the Banach space of locally integrable
functions f which satisfy

) W lhme i= sup 7 [1 = fil+ sup 2 [171 < o
in< | Ji > 11 Js

Here I can be used to denote either balls or cubes with sides parallel to the axes, ||
denotes Lebesgue measure (volume) and f; is the mean of f over 1, ie., (1/1]) [, f.
As in the case of h!, the upper-bound 1 on the size of the cubes in the definition can
be replaced by any other finite nonzero constant, resulting in an equivalent norm.

In [5], the authors prove (in Theorem 2.2) a kind of dual version to the div-curl
lemmas in Theorem 1, which is a local analogue of a result proved in [7] for BMO:
for G € bmo(R"),

- =

10 [1Gllome = sup/ GV . W,
v,WJ/R"

where the supremum is taken over all vector fields V', W as above, satisfying (3),
with V z», f . and ||W||L¢ all bounded by 1. Here, and below, one must
obviously consider only real-valued functions g in bmo.

Moreover, the same equation (10) holds if the vector fields, instead of (3),
satisfy 5 with B[z« <1 for all i,5 € {1,...,n}, as well as ||V|| s, |W||z. < L.

As a consequence of these results, one is able to show (see [5, Theorem 3.1})
a decomposition of functions in A!(R™) into nonhomogeneous div-curl quantities
V- W of the type found in Theorem 1, part (a) or part (b).

The goal of this paper is to prove analogues of (10) for functions in local bmo
spaces on a domain 2, and obtain decomposition results for the local Hardy spaces.
This was done in the case of BMO and with homogeneous, L? div-curl quantities in

3], and independently by Lou [16]. In [1] homogeneous div-curl results on domains
were stated under the assumption that one of the vector fields is a gradient, and
extended to Hardy —Sobolev spaces. Related work may be found in [12,17].

In the next section we introduce some definitions of Hardy spaces and BMO
on domains, as well as explain the boundary conditions for equations (7) and (8).
The statements and proofs of our results are contained in Section 3.

2. Preliminary definitions for a domain 2

For the moment we will just assume 2 is an open subset of R", but often we
will restrict ourselves to a Lipschitz domain, i.e., one whose boundary is made up,
piecewise, of Lipschitz graphs.

Miyachi [19] defined Hardy spaces on £ by letting d(z) = dist(z, 0%), replacing
the maximal function M in (1) by

Mya(f)(z) =My s (F)(z) = \ )lf * gy ()|,

sup
<t<L(z
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for f € L},.(R), and requiring My a(f) € L!(). The space of such functions was
later denoted by H}!(Q) in [6], since when the boundary is sufficiently nice (say
Lipschitz), H}(f2) can be identified with the quotient space of restrictions to § of
functions in H'(R™) (see [6,19]). Moreover,

£ |20y == WMol @y = nf{|F |ggny : F a = f}.

The space h}(Q), corresponding to restrictions to Q of functions in A! R" ,
can be defined by replacing §(z) = dist(x, Q) in Miyachi’s definition by § z) =
min (4, dist(z, 8Q)), for some fixed finite § > 0. Since different choices of § give
equivalent norms, when £ is bounded one can choose § > diam ), so h! Q is the
same as H!(Q) (with norm equivalence involving constants depending on 2 .

For Q a Lipschitz domain, the dual of h}(£2) (see [19] for the case of H! and
BMO, and [2]) can be identified with the subspace

bmo,(2) = {g € bmo(R") : supp(g) C Q}.

Analogously, one can consider the subspace
hL(Q) = {g € ' (R™) : supp(g) C O}.

This was originally done in [15] in the case of H! functions supported on a closed
subset with certain geometric properties, and later in [6] for a Lipschitz d main
and in [4] for a domain with smooth boundary, in connection with boundary value
problems. For a bounded domain Q, H}(Q) and A1(R2) do not coincide since func-
tions in H} must satisfy a vanishing moment condition over the whole domain (2,
while those in k! do not.

The dual of hl(2) can be identified with bmo, (2 , defined by requiring the
supremum in (9) to be taken only over cubes I contained in Q2. In fact, one can
actually require the cubes to satisfy 27 C Q. This space was originally studied,
in the case of BMO, by Jones [14], who showed that when the boundary of Q is
sufficiently nice, BMO,.(Q) is the same a3 the quotient space of restrictions to Q of

functions in BMO(R"). This holds in particular when (2 is a Lipschitz domain, and
is also true in the case of bmo,, with

l9llbmo, 2y = If{||Gllbmomn) : G 2 = g}-

Note that when  is a bounded domain, every element of BMO, () is in bmo,(02),
but the bmo, norm depends also on the norm of the function in L!(f2).

Since elements of hl(2) are controlled in norm up to the boundary, when
discussing div-curl quantities in this space one needs to consider the “boundary
values” of the vector fields ¥ and 1. As these vector fields are only defined in L*(2)
and do not have traces on the boundary, the appropriate boundary conditions are
expressed, as in the case of Dirichlet and Neumann boundary value problems, by
specifying the class of test functions. In particular, for the equations

divi=f and curlw = B,

we now require (7) and (8) to hold in the case when the test functions do not have
compact support in Q. This is equivalent to saying that the vector fields

¥ inQ
(1) V={6 in R"\ Q
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and

- W inQ

W=<,
(12) {0 in R*\
satisfy divV = f and curl W = B in the sense of distributions on R", with f and
B vanishing outside of 2.

When the boundary 69 of (1 is sufficiently smooth, let i = (1, -.-,7n) denote
the outward unit normal vector. If the vector fields are sufficiently smooth (so as
1o have a trace on the 8Q), we can integrate by parts in (7) and (8). If ¢ does not
have compact support in 2, the boundary values of # must satisfy fi- % =0, and in
the case of & bounded domain, this also entails fn f =0, while for @ it must hold
that on 90

w;Tk = Wiy,
meaning that @ is colinear with .
We will denote these conditions as follows. Let Q be a Lipschitz domain and

suppose f and the components of the vector fields ¥ and @ are locally integrable
on Q. As in the statement of the Neumann problem on 2, write

divi=f inQ,
13 Jo f =0 if Qis bounded,
R-v=0 ondQ

to indicate that (7) holds for all ¢ € C§°(R"), and

14 {curl'w=B in Q,

axw=0 ondQ

to indicate that (8) holds for all ¢,j € {1,...,n} and all p € C(R").

3. Div-curl lemmas for local Hardy spaces and BMO on a domain

In order to prove an analogue of (10) for bmo,(f2), one needs the following
versions of the nonhomogeneous div-curl lemma for h}(Q2). The first is a special
case of Theorem 7 in [8]:

Theorem 2 ([8]). Suppose ¥ and W are vector fields on an open set Q C R,
sahisfinng

FePLRY, @eli(QRY), 1l<p<oo, =+

Q|-

=1,

=R R

and
divi= feL?(Q), curld=0

tn the sense of distributions on 2. Then ¥-1 belongs to the local Hardy space h1(Q2)
with

(15) 17+ Wllpsny < CUITllzr ey + 1l 22 @)) 10| Lo ().

The second is a domain version of Theorem 4 in (8], whose proof we shall adapt
below:
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Theorem 3. Suppose ¥ and W are vector fields on an open set O C R™, satis-
fying

g€ LP(,R™), @€ LIQ,R"), 1<p<oo

+==1,

3| -
Qe

and

divd = 0, curly = B € LU(Q; M™*™)
in the sense of distributions on Q. Then 7. belongs to the local Hardy space hl )
with

(16) 17 Blinz iy < CHl Loy (1B Loy + I _IBsy 1o my)-

.2
PROOF. Consider a point € {2 and a cube QF, centered at = and of sidelength
! > 0, depending on . We choose ! = min(1, dist(z,8Q))/+/n, which guarantees
1

n
Qf lies inside 2. Without loss of generality assume QF = [0,I]"

. Writing ¥ =
(’Ul,.. .

,Un), and fixing i, we solve — A u; = v; with mixed boundary conditions: on
he two faces ¢; = 0 and z; = | we impose Neumann boundary values
Bu.-
611,'

and on the other faces (corresponding to z; = 0 and =, = I, j # i) Dirichlet
boundary values u; = 0. This can be done by expanding in multiple Fourier series
(with even coefficients in z; and odd coefficients in z,, j # i). By the Marcinkiewicz
multiplier theorem (see {18, Theorem 4]) the second derivatives of the solution u,
will be bounded in L*(QF) by "’Ui“La(QT), for every ¢ < p, "=1,...,n. Note that
by the homogeneity of the multipliers, the constants will be independent of l. Since

we have taken | < 1, we also get that “ulnwﬁ.p(qr) < C v Le(q= With a constant
independent of 1.

Set U = (uy, .-
tion satisfies

=0,

., Up) and consider the function div € W' @7 . This func-
A(divD) = -divi =0

in the sense of distributions on QF, since QFf C §2, and moreover

div(j=z%—0

on the boundary, by the choice of boundary conditions above. By the uniqueness

of the solution of the Dirichlet problem in Wy'P(QF), we must have div U=0on
QF. Let A be the matrix curl U, ie.,

These are functions in W®(Q%) with first derivatives bounded in the L*(Q%)-norm
by |\Ui||La(Qr), for every a < p.

Now writing A',- for the jth column of the matrix A, we have, in the sense of
distributions on QF,

0%y, 0%u, 0 .. -
(17) div 4, = Z(az‘a%—--b—E-)=5z—jdwU—Auj=vJ,
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for each j = 1,...,n. Taking the dot product with i and recalling that we identify

curl 0, in the sense of distributions on ), with a matrix B whose components are
in L9(Q2), we have

8
@ = Z dlvA Zdlv W) ZA., 612

=1 i
= Z div(Ayw;) + Y AijByjy
=1 i<j

again in the sense of distributions on Q7.
Take ¢ € C* with support in B(0,1/(2y/n)) and [¢ = 1, and define, for

0 < t < min(1,dist(z,09)), ¢7 by ¢2(y) = t™"¢(t"}(z — y)). Since I =
min(1, dist(z, 6Q)) /n we have

supp(¢) C B(z,t/2v/n) C Q C Q.

Denote B(z,t 2/n) by B?.

We integrate - against ¢7, noting that equation (17) holds even if we change
A by adding a vector field which is constant on @QF. In particular we modify each
A,, by subtracting its average (A;;) 5z B3 over B" Integration by parts yields:

[ 9 == % [ree e i) o) - sl o

+Zf (@ - 1) (A — (Ai)53) Bos

i<g

Take a,B with1 << p, 1< B8 <gand 1/a+1/8=1+1/n. The Sobolev—

Poincaré inequality in BY, together with the fact that ¢ < 1, gives (see the proof of
Lemma II.1 in [7]):

1/a Y8
. - V Ayl B Bi'ﬁ>
+Cll Z(t /~| ,|) (t /..l i

sC¢M(lt7l“)(z)"°[ (181°)(&)* + T M(Byl)a l/ﬁ]

,.7

Here the Hardy Littlewood maximal function on R®, denoted by M, is applied
to the functions |7], |@W|® and |B;;|® by extending them by zero outside 2. The
constant depends on the choice of ¢ but not on ¢ or z.

Recalling that the maximal function is bounded on L™(R™), r > 1, we conclude
that:
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./rz sup  |ée* (¥ W)(x)| d=

0<t<dist(z,00)

1/p

<G ( [ gy @ye dm)
«[(fmoarvon )+ ([ oxem, e o) ]

L CyllDliLe oy [\Wl\m(ﬂ) + Z"Bu "Lv(n)]-

2

This shows 7+ @ € h1(Q), and (16) holds. O

Lemma 4. Suppose T and @ are vector fields on a Lipschitz doma n 2 C R",
satisfying the hypotheses of either Theorem 2 or Theorem 3, but with the cond t ons
on the divergence and the curl satisfied in the stronger sense of 13 and 14 . Then
7% € h1(Q) with norm bounded as in (15) or (16).

ProoF. Given such vector fields ' and W on 2, define the zero extensi ns vV
and W as in (11) and (12). The L? and L9 norms of V and W are the same as
those of 7 and w on §2. Moreover, conditions (13) and (14) guarantee that V and W
satisfy (3) (respectively (5)) in the sense of distributions on R". Therefore, by using
Theorem 1, part (a) (respectively part (b)), we can conclude that V - W € h1(R"
with the appropriate bound on its norm. But V - W is equal to zero outside Q and
is 7 - 10 on Q, hence this is a function in h1(Q). The hl norm is the same as the A’

norm and the bounds can be given in terms of the L? and L? norms of the relevant
quantities on Q. a

Now we can proceed to state and prove the local bmo versions of the div-curl
lernma on a Lipschitz domain:

Theorem 5. Let 2 C R™ be a Lipschitz domain.
(a) If g € bmo, (), then

(18) lollomo, =500 [ 975,
suw Ja
where the supremum is taken over all vector fields ¥ € L?(Q,R"), w € LI(Q,R"),
ol ey < 1, |0} ey < 1, satisfying (3) in the sense of distributions on Q, with
Il ey < 1.
(b) If g € bmo,(), then equation (18) holds with the supremum now taken
over all vector fields ¥ € LP(Q,R"), & € LI(Q,R™), |Tl triq) £ 1, W) <

1, satisfying (5) in the sense of distributions on Q, with ||B,;||1«(Q) < 1 for all
Bj€L...,n

(c) If g € bmo,(Q) then

llgllbmo,. = sup/ gv-,
117 Q

the supremum being taken over all vector fields ¥ and W as in part (a) or in part
(b), but satisfying the stronger conditions (13) and (14).



NONHOMOGENEOUS DIV-CURL DECOMPOSITIONS ON A DOMAIN 161

ProoF. Let g € bmo,(R2) (real-valued) and take #,10 as in the hypotheses of
part (a) (respectively part (b)). By Theorem 2 (resp. Theorem 3), the dot product
¢~ o belongs to h1(€2) with norm bounded by a constant. The duality of bmo,(Q)
with A} (Q) then gives

f 970 < C|gllbmo.-
Q

Conversely, by the nature of bmo, (), the extension G of g to R™ by setting it
zero outside §2 is in BMO(R™) with ||G|lbmo = [|9|lbmo,- Hence, by (10), one has

lollomo. = sup [ GV W =sup [ g¥]q W]y,
VW /R vwJia
where the supremum is taken over all vector fields V € L?(R", R"), W e LY(R*,R™),
V 1» <1, WlLe <1, satisfying (3) (resp. (5)) in the sense of distributions on
R". The restrictions ¥’ = Vln, o= Wln satisfy the same conditions in Q, proving
the inequality < in (18).

If g € bmo,(Q) and ¥,w are as in part (c), by Lemma 4 ¢ @ € hL(Q) with
norm bounded by a constant, so the duality of bmo, and Al implies

fn 973 < Cllgllomo, |17 Blag < Cllgllbmon

This shows that
SUP/ 97+ @ £ C||gllbmo.-
d9 JQ

It remains to prove the other direction, i.e.,

lgllbmo. < C" sup f 07 B,
g, JQ

The left-hand side is given by

1 1
sup anlg(z)—gql dz + sup rqulg(w)l dz.
Q<1 |Q|>1

As explained in the proof of Theorem 2.1 in [3] (for the case of BMO,.(Q2) but
the same arguments apply to bmo, (£2)), it suffices to take the supremum over cubes
Q satisfying Q = 2Q C Q (or with some constant Cg replacing 2). In that case it
just remains to point out that in the proof of estimate (10) in [5] (see the proof of
Theorem 2.2., Case I), it was shown that for a ball B C R" with radius bounded

by 1,
(157 Lot - ao? dz)l/z < Cusup [ 973,

where the supremum is taken over all vector fields 7,7 €Cg° (B) with ||7]|» <1,
¥ <1anddivy = 0,curl®¥ = 0. There we took B = 2B Put the argument
immediately applies to B = CqB for some Cp > 1. Note that if B C £, such vector

fields will vanish on the boundary 8Q and thus satisfy the boundary conditions (13)
and (14).
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Similarly, for a ball B C R™ with radius larger than 1, we showed in [5] (see
the proof of Theorem 2.2., Case I) that

1 1/2
(‘73-‘ fB lo(=)P dz) < Cosup [ 95,

where this time the supremum can be taken over all vector fields 7,1 € C® B with
|9llze < 1, || L« < 1 satisfying the relaxed div-curl conditions (3), or alternatively
the supremum can be taken over such vector fields satisfying 5 . Again such vector
fields will automatically satisfy (13) and (14) —the boundary conditions follow
from the vanishing on the boundary and the condition fn div# = 0, in the case

of bounded 2, follows from the divergence theorem since we are now dealing with
smooth functions. O

Finally we arrive at the desired nonhomogeneous div-curl decompositions for
the local Hardy spaces on (2. These are corollaries of Theorem 5 and follow from the

duality between bmo, and h} (respectively bmo, and hl by using Lemmas 1.1
and IIL.2 in [7]:

Theorem 6. Let Q C R™ be a Lipschitz domainandl <p<oo,1 p+1 ¢g=1.

(a) For a function f in h1(Q), there erists a seque ce of scal s {\} th
3 1| M| <00, and sequences of vector fields {Ux} in LP Q,R  {wi} m L? Q,R"

with || Uk |\ Lo, |Bkllze £ 1 for all k, satisfying, for each k, condt n 3 n the sense
of distributions on Q, so that

)
f= E AUk - Wk
k=1

(b) The same result holds as in part (a) but with U and T sahisfying 5
instead of (3), for each k.

(c) For a function f € hi(R), there erists @ sequence of scalars {\x} wath
S reql Mkl < 00, and sequences of vector fields {Ux} and {@Wi}, as m part (a or
part (b), but satisfying the div-curl conditions in the stronger sense of 13 for
each Uy and (14) for each Wy, so that

o0
F=> Mg - .

k-1
Remark. As pointed out in Section 2, when the domain {2 is bounded the
“local” Hardy space hl({) coincides with H}(Q) and similarly for BMO,(Q) and
bmo, (). By taking the constants in the definitions and proofs sufficiently large
(depending on the size of §2), we do not need to deal with the case of “large” balls
or cubes, 50 everything reverts to the homogeneous case. As previously mentioned,

this case was dealt with in [3] and [16], but only for p = ¢ = 2, so the current
results are a generalization of the older ones.
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On the Bohr Radius for
Simply Connected Plane Domains

Richard Fournier and Stephan Ruscheweyh

ABSTRACT. We give various estimates and discuss sharpness questions for a
generalized Bohr radius applicable to simply connected domains of the complex
plane.

1. Introduction and statement of the results

Let D = {z] |2]| < 1} be the open unit disc in the complex plane and H(D) the
class of analytic maps on D. Let f € H(D) with f(2) = Y oo ak2® and f(D) C D.
Then,

(e )
Zlaklrk <1 ifr<i
k=0

This result was first obtained by Harald Bohr [2] in 1914 with the constant
replaced by % and later improved by M. Riesz and others who established that in
this context the constant 3 is best possible; different proofs were later published
while similar problems were considered for Hy, spaces or more abstract spaces or
else in the context of several complex variables by a number of authors. We refer
to a paper [6] and a book [7] by Kresin and Maz'ya for a rather complete survey of
recent and less recent related results.

Our point of view is the following: we consider a simply connected domain D
with D C D and define the Bohr constant B = Bp as

o0 o0

sup{r €(0,1): Z]aklr" <1 for all f(z) = Zakzk €BMD), z¢ ]D}
k=0 k=0

while B(D) is the class of functions f € H(D) such that f(D) C D. Clearly Bp =}

coincides with the classical Bohr radius and we wish to estimate Bp for more general

domaing D. Our main results are the following:
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Key words and phrases. Bohr radius, power series, plane simply connected domains.
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Theorem 1. Let 0 <y < 1 and D, the disc {w : jw+v/(1—7)| < 1/(1 -7)}

Then Bp, p7 = (L+79)/(3+ 1) and T3> olax p% = 1 holds for a function
f(z) = zk 0 ak2z® in B(Dy) if and only if f = c with |c = 1.

Theorem 2. Let D be a simply connected domain with D 2 D and let

- - |ax|
A= XAD): feigj}’){l —Jaof tag # f(2) = Zakz z€ D}

k=0

Then 1/(1 + 2)) < Bp and the eguality 3o jlax (1/(1 +2)) ¥ =1 holds for a
function f(z) =3 pegaxz® in B(D) if and only if f=c wnth ¢ =1.

In the case of a convex domain D, it is possible to estimate Bp in terms of the
conformal radius:

Theorem 3. Let D be a convez domain with D 2D and F 2):=Ayz+o0 2
a conformal map of D onto D with A, > 0. Then

1
= mi — 1 <L .
B mm(l, 4A1) < Bp

Our next result is a limiting case of Theorem 1, but should also be compared
to Theorem 3.

Corollary 4. Let P denote the half-plane {z | Re 2

<1} and fz =
Ym0 @n2™ for |2| <1 where f € B(P). Then

[= <]

(1) Mlaarm <1 fo<r<

n=0

NI'—‘

2. Proofs

The proof of Theorem 1 is based on the following result which may be of
independent interest:

Lemma 5. Let a € D and f € B(D) with

f(z)=§:ak(z—a)", lz—a <1- a.

k=0
Then

) a2
@) St S1 - r <o X +‘;jl .

Furthermore, ¢ i3 the largest number with this property, and

oo
> lexlrh =1
k=0
if and only if f = c with |c| = 1.

PRroor. We make use of the following estimate (see [9] for a proof; this estimate

i}
is of course an extension of the Schwarz-Pick inequality and has shown to be useful
in a number of situations):

112
3) ol < (1 + |a|)'=-1(11—_%{-’2‘7, k> 1,
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and note that |ao] < 1. We get

o0
(1 = jeo?)r
jaklr® < ool +
kz_o o (@ +lal)(1 = a| = ))
and the last quantity is seen to be less or equal to 1 for all admissible o if and
only if 2r/(1 + |a|)(1 = ja| —~ r) < 1. This leads to (2).
Again using (3) it is easily established that

o0
4) Zlaklr('f =1 4+ (lap|=1and ax =0,k > 1).
k=0

Further, the functions
z~-b

1—bz

belong to B(D) and one has

fo(z) =

o0
Zak(a,b)(z—a)", beD,
k=0

oo
5) > lak(ab)ir* <1 forallbeD

if and only if » < rg which implies that the constant ry is indeed optimal with
respect to the statement of the lemma. 0O

PROOF OF THEOREM 1. For some 0 < v < 1let f € B(D,) such that f(z) =

T2 gaxz®, z € D. Then g(2) := f((z — 7)/(1 — 7)) belongs to B(D) and if
z—7 < 1—+4}, we have

g(Z)=f(—) gl '7)" z—7)~.

The lemma now gives,

0o k 1— 72
z:lakl £ ) <1 ifp<

1—
k=0 v

and 1-7%)/(3+) < Bp, follows together with the statement of equality which is a
consequence of (4). The functions f € B(D,) defined by f((z—7)/(1-7)) = fi(2),
b,z € D, may be used as in (5) to show that the constant (1 ++)/(3 + ) is best
possible with respect to Theorem 1, i.e. Bp, = (1+7)/(3+1). ]

PROOF OF COROLLARY 4. Under the hypothesis, f € B(D,) for all  in [0, 1)
and the result follows from Theorem 1 by letting v — 1. The constant } is best
possible as can be seen from the Taylor expansion at the origin of the functions

z/(z—2)—-a

RS

Re(z) <1, a€D.

We omit the details.

Due to the limiting process used in the above argument, the case of equality
in (1) is no more a simple consequence of (4) and a separate proof must be given,
We first apply inequality (3) to obtain

1~ |aol?
(6) ‘akl S "l_l_;’(;—l, k .>.. 11
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for any g € B(D,), g(2) = ¥3° gaxz*, 2 € D.
This leads to
lak| < %(1 - |a0|2), k>1
for any f € B(P) = Nycy<y B(Dy) such that f(z) = Y 5igarz®, z € D. If, in
particular, 3 y—olak|(1)F =1 for f as above, we obtain

1 > r1\* 1— ag?
1< Z(1 = |ag|? 2} = 2— %0
< lao| + 5 (1 ~ |ao| ):?—1'(2) lao + >

and |ao| = 1, i.e., f is & constant function of modulus 1. O

PROOF OF THEOREM 2. The proof of the main statement is rather straight-
forward: if f belongs to B(D) with f(z) = 3 4 akz" in D, then foranyre 1
[e o]
Ar
3 loxlr* < laol + (1 ag ?)5
-7
k=0
sothat Y joolak|r® < 1when 2)\r/(1—-7) € 1,ie., whenr <1 142 . This early
shows that Bp > 1/(1 + 2)). As in the last step of the proof f Cor llary 4, the
equality > r—olax|(1/1 +2X)* = 1 holds only for constant functions f modulus 1.

O

Remark. It does not seem entirely trivial to characterize domains D for which

Bp = 1/(142X). It is not hard to see that this indeed is the case see 6 f r ahmt

in this direction) when D = D,, 0 < ¥ < 1. Next we exhibit a class fd mainsf r

which this is definitely not true. Consider a sufficiently regular simply connected

domain D 2 D such that 8D N 8D # 2, together with the ass c¢i ted conformal

map F of D onto D with F(0) = 0, F/(0) =: A; > 0. Theinversem p F-': DD
satisfies F~1(u) = (1/A1)u + o(u) and by the classical growth theorem,

) AF ()] > (1—+‘“l—‘m weD.

Our hypothesis on 0 and 0D implies that for some sequence of elements u, € D
we have |u;j| = 1 and |F~1(y,)| —» 1. It then follows from (7) that A; > 1.
Let f(2) = Yoo arz*, z € D, for some f in B(D) where D is to be determined
later. We have, thanks to estimates due to Avkhadiev andWirths [1, pp.60 75],
4n—1/2
lanl <

\/—n_TIA?(l - laolz), n>2

This estimate is actually also valid for n = 1: For if w(u) := f(F~!(u)),u €D,
then w € B(D) and ap = w(0), a1 = w'(0)A, and

i _ 1w
T ol ~ T- P < 41 < V24

Therefore
— 2 — n-l 2A'1‘ n 1
E aplr™ <lagl+ (1—-la E —_—r" <
£ ol nl ‘ 0‘ ( ‘ 0‘ )n=1 m

if Yo 1 (44;7)"/vn+1 < 1. Let X be the unique root in (0,1) of the equation

i X" =1
n-—1

vn+1
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We now produce domains D for which 4A;/(1 + 2)) < X: this will clearly imply
that for such domains 1/(1 + 2A) < Bp.

Since A; = F'(0) = |F'(0)|/(1 = |F(0)|?) < ), it shall be sufficient to 1dent1fy
domains D 2 ID with 44;/(1 + 241) < X, ie, A1 < 1/(4 ~ 2X). Since } <

1/(4 - 2X) < 3 it follows that any simply connected domain D containing the
plane P ¢ (for which 4; = %) and close enough, in the sense of kernel convergence,
to the slit plane C \ [L,00) (for which A; = 1) will serve as an example.

PROOF OF THEOREM 3. Let D be a convex domain, D O D and F the confor-
mal map as above with F(0) =0, F'(0) =: 4; > 0.

If f € B(D) and f(z) = .42, ak2*, 2z € D, another estimate due to Avkhadiev
and Wirths [1, pp. 60—76] yields
® lox] < 271 AT(1 = Jaol), k22,

and as in the proof of Theorem 2, this extends to k = 1.
First assume that A; < 1; then by (8),

Zlaklr < aol + laol ;(2&)’%" < lap| +(1— |ao|2)1 _iq;Al

and thls last quantity is easily seen to be less or equal to 1 for all admissible ap.
When A; > § and 7 £ 1/(44,), we also obtain from (8)

> laklr® < lao] + llgilz 3 @Air)*
k=1

k=0
1- lao|2 ad 1 k 1- lao|2
< laol + —; kz_l 5) =lal+——=<1
and the result follows. It should also be clear from our arguments that the equality

case Y 4o ax|B*¥ = 1 can occur only when f is a constant function of moduluS
one.

Remarks. (1) When A; > }, it again does not seem easy to characterize
the convex domains D for which 8 = 1/(44;) = Bp. Indeed, 1/(44:) < Bp = § if
D is the unit disc D and 1/(44;) = Bp = 1/(1 +2)) = } if D is the half-plane P.
Further, we sometimes have 1/(4A4;) < 1/(1 4 2)) (as in the case of the unit disc)

and 1/(44;) > 1/(1 + 2)) (as in the case where D is a disc centered at the origin
with radius > 4).

(2) Theorem 3 does not necessarily hold for non-convex domains. Let D be the
slit plane C\(—o0, —1]; then F(z) is the mverse of 4k(2) where k(z) =2/(1 - 2)?
is the Koebe map and A; = § with F(2) = 32— 322+ $2°+---. For0<a<1
define f € B(D) by

F(z)+a

1@ = T eF @)
1- 0,2)‘z + (1-a?)(a+2) 24 (1 - a?)(a® + 4a + 10) A

4 16 64
where z € D. Then, for a = .9, we have
1-a2 (1-a?)(a+2) + (1 — a?)(a? + 4a + 10)

4 + 16 64

=a-

ot =1.0247...> 1,
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which shows that Bp < 1= 8.

3. Conclusion

Given a domain D 2 D, the determination of the function

o0
9 M(r,D) := sup 2|an|r", 0<r«i,

n=0
(here the sup is taken over all functions f(z) = Y v @nz®, z € D, in B D)) may
be seen as a generalized Bohr problem. Because the coefficients a,, of functions f
in B(D) are uniformly bounded, it should be clear that M(r) =1 for r sufficiently
small and indeed M(r) =1 for 0 < r < Bp where of course } < Bp.

Very little seems to be known about the function M (r, D) in general; a result of
Bombieri [3] (see also [8] for related matters) says that M (r,D) = (3—+/8 1 —12 r
when < r < 1/v/2 (Bombieri studies in fact the inverse function of M r,D . It
also follows from the results of Bombieri that M (r,D) <1/v1-r2if0 <r < 1and

a recent result due to Bombieri and Bourgain [4] says that M r,D) <1 1 —¢2if
1/V/2 < r < 1; in [4], a deeper result implies that 1/+/1 — 2 is in some sense the
sharp order of growth of M(r,D) as r — 1.

Think of B(D) as a topological vector space endowed with the topology of
uniform convergence on compact subsets of D. It follows from a simple compacity
argument that the sup in (9) is indeed a maximum and there exists foreachr € 0,1
a function f,(z) := Y 02 an(fr)2" such that M (r,D) = Y72 | ap f» r". Bombieri
has proved in [3] that f, is a disc automorphism (i.e., a Blaschke product of order
1) when 3 <r < 1/V2.

This last result can be extended to general domains D in the following fashion;
let, given r € (0,1), fr(2) = 2y an(fr)z® with an(fr) = @n fr € where
0, = 6,(r) is an angle in [0, 27). We define a linear functional L over B D) by

L) =3 an(fe ™ i f(5) =3 ans™, 2 <1.
n=0 n=0

The complex-valued functional L is continuous over B(D) and Re L is not constant
there. Further

ReL(f) =Re_an(fle™r" < Y lan(f)r™

n=0 n=0

< Y lan(f)IP" = L(£:) = Re L(f,).

n=0
Since

feB(D)«< f=woF
where w € B(D) and F is a conformal map of D onto D, we may therefore think of

L as a continuous linear functional over B(D) whose real part is nonconstant there
and maximized by a function w, € B(D) with

fr(2) = w(F(2)), 2€D.

It is well-known (5, Chapter 4] that such a function w, must be a finite Blaschke
product. We may therefore state that any function f for which the sup is attained
in (9) is such that f o F~?! is a finite Blaschke product.
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Completeness of the System {f(\.2)} in L[]
André Boivin and Changzhong Zhu

ABSTRACT. Given an anslytic function f defined on the Riemann surface of
the logarithm and represented by a generalized power series with complex
exponents {7x}, & sequence of complex numbers {An}, and an unbounded
domain Q on the complex z plane, we study the completeness of the system
{f An2)} in L32[} (mean square approximation).

1. Introduction

For an entire function f(2) and a sequence {\.} of complex numbers, the
ocompleteness in a domain € of the system {f(A,2)} in LP-norms has been studied
by many authors under various conditions on f, {)\.}, p and Q. See, for example,

1,9; 10; 12, Chapter 4; 14-16].

In particular, M. M. Dzhrbasian studied the completeness of {f(\nz)} in L2

when () is an unbounded domain which does not contain the origin and is located

utside an angle with vertex at the origin (see [6, Section 5]). In [3], we also
considered this problem. We gave some sufficient conditions under which the system
{f A z }is complete. Qur conditions are different, though similar, to Dzhrbasian’s.
These results are recalled in Section 2. Besides, in [3, Section 3], we also studied a
similar question where this time, the entire function f is replaced by one analytic

n the Riemann surface of the logarithm. This generalized a result obtained by
X. Shen in [22]. We used in [3] the classical Ritt order and Ritt type to characterize
the growth of the function. This seems not suitable in general, as we pointed out
m a later paper [5]. Hence, we introduced a modified Ritt order and modified
Ritt type in [5]. After recalling the definitions, we will use them in this paper.
Corresponding to this change, we modify related arguments used in (the second
part of [3]. Besides, comparing with [3], in this paper we will impose weaker
conditions on the sequence of exponents {7 }. In particular, we do not assume that
the limit limg_, o k/|7%] exists.

The paper is organized as follows. In the next two sections, we review some
of the definitions, notations, examples and results from [3-5]. In Sections 4 and 5,
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Key words and phrases. mean square approximation, completeness, analytic functions, un-
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we present three new results: An estimate of the coefficients in the (generalized)
Dirichlet series of an entire function in terms of the modified Ritt order and type;
a uniqueness theorem for analytic functions defined on the Riemann surface of the
logarithm; and finally conditions for the completeness of the system {z™} in L2[()],
where {7x} is a sequence of complex numbers. In Section 6, we give our main result

on the completeness of the system f(A,2)} in LZ[Q}]. The proofs of a few lemmas
are gathered in the last section.

2. Dzhrbasian’s theorem

Let Q be a domain in the complex z-plane. Denote by LZ[Q] the space of
functions g analytic on 2 which satisfy

leg(z)|2dzdy<w (z=z+1y).

Endowed with the inner product

0.0 = [[ s@hE dzay,

and associated norm ||g|| = (g,9)*/?, L[] becomes a Hilbert space. A sequence
{hn} (hn € L2[Q], n =1,2,...) is complete in LZ[Q)] if for any g € L2[)] and any
¢ > 0, there is a finite linear combination h of elements of the sequence {h,n}, such
that |lg — hll <.

For a function f(2) and a sequence {\,} of complex numbers we studied in (3]
the completeness of {f(Anz)} in LZ[Q].

For f(z), we assumed that it is an entire function with p wer series expansion

(2.1) f(z)=§:akzk, a, #0(k=0,1,2, ...
k=0

A simple example of such an entire function is f{z) = e*. Hence, our results
provided sufficient conditions for the completeness of the system {e* *} in L2[Q].
For {An}, we assumed it to be a sequence of complex numbers with

(2.2) A #0.
For other conditions on {)\,}, see Theorem 2.1 below.

For ), we assumed it is an unbounded simply-connected domain satisfying the
following two conditions:

Condition Q(I). For r > 0, let o(r) denote the Lebesgue measure of the
intersection of the circle |z| = r and ; we assume that there erists rg > 0 such
that for r > 7o,

a(r) < exp(-p(r)),
where p(r) has the form

(2.3) p(r) = a'r*,
for two pogitive constants o' and s’.

Condition 2(II). The complement of Q consists of m unbounded simply con-

nected domains G, (i = 1,2,...,m), each G; contains an angle domain A, with
measure /o, & > 3 (see Figure 1).
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Y\

A,

G~
S|

A2>2_ : /J;

4,

X;

FIGURE 1. Domain )

Remark 1. Since o' and s are positive, it follows from condition (I) that
there exists a constant C, 0 < C < 00, such that

ro o0 00 )
// da_<_/ 27rrd'r+/ a(r)dr50+/ e " dr < +oo.
Q (1] ro L)

0

To study the completeness of {f (A nz)} in L2[Q], we needed a result on the
completeness of the sequence {1,z,2%,2%,...}in % 2[0)], which is a special case of a
result of M. M. Dzhrbasian (see [6], or [19 Theorem 10.1]):

Let us define 9 by

24 ¥ = max{a,...,am},
where the a, are the constants appearing in condition Q(II).
Theorem (M. M. Dzhrbasian). Suppose that Q is a domain satisfying con-

ditions ) 1) and Q(II) and that s’ and @ are defined by (2.3) and (2.4), respectively.
I

b 1
/ 1+19 8 —re—a dr = 00,

where [~ means that the lower limit of the integral is a sufficiently large number,
then the system {1,2,2%,23,...} is complete in L2[0)].

Remark 2. The “sufficient large number” in the integral condition above can
be replaced by “strictly positive number.” In fact, the integral condition can be
replaced by the simpler condition ¥ < &'.

Example 1. This example is taken from [3]. Let Q be the unbounded domain
containing the real axis and having the curves y = :l:le"” (—o0 < = < c0) as
its boundary. It is not hard to see that ) satisfies condltlons Q(T) and Q(I1) with
pr)=13r’ (e, =2ando/ =4)andm=2,0y =y =1. So we have ¥ = 1,

d 0 d 00
T
/ m = / dr = +00.

Let us now recall some concepts from the theory of entire functions (see, for
example, (12, Chapters 1 and 4]). Let ¢ be an entire function. The quantity
. log log My(r)
= limsup —————
’ r—)eop logr
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is called the order of ¢, and if 0 < p < oo, the quantity

o = limsup
=300

log My(r)
——=
is called the type of ¢, where

My(r) = max|¢(z)].

For a sequence {A,} of complex numbers, we denote by n(r the number
(counted according to multiplicities) of A, with |\, < 7.
Now we state the first main result from [3].

Theorem 2.1. Assume that f, {\,} and Q satisfy conditions 2.1, 22 ,Q1,
and QUII) stated previously in this section. Let p and o be the order and type of
the entire function f(z), respectively, and assume that 0 < p < 8’ and 0 < 0 < o
where s’ is the exponent appearing in (2.3). Suppose that either

, n(r) 2 \*? s
(2.5) h:lsol:p e e(s’a') (po)®
or
8
’ e n(r) 2 \* B
(2.5") hrn_lvlogf e (s’a') (po)® P,

where B =1/(s' — p) > 0.
If

®  dr
rl+o—s’ +00

where § is defined in (2.4), then the system {f(Anz)}, n =1,2,3,. . 1s complete
in L2[Q).

Example 2 (Taken from [3]). Let Q be the domain described in Example 1
and let f(z) = e*. Then f is an entire function with p = o = 1. It thus follows
that 8=1/(s'— p) =1 and s'pB = 2. Consequently (2.5) and (2.5 become

(2‘5)- ( )

limsup —5~ > 2e,
T=>00
and
(2.5')* lim inf —22 ( )
r—oo

respectively. Hence by Theorem 2.1, if {)\ } satisfies (2) and (2.5)* or (2.5")* (for
example A\, = 1/n/3ei), then the system {e**}22,, is complete in L2[Q)]
3. The Riemann surface of the logarithm

For the remaining of this paper, we assume that f is an analytic function defined

on the Riemann surface of the logarithm and is represented by a generalized power
series

(3.1) f(z)= idkz"', z=re' (r>0,]0] < ),
k
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or, which is the same, we assume that F(s) — f(e ?) is an entire function repre-
sented by the (generalized) Dirichlet series

o0
(3.2) F(s) = z dre ™, =y +iv
k1

where {7} is a sequence of complex numbers.

In the sections that follow, we will study the completeness of the system
{f(An2)} in L2[Q). X. Shen studied this problem for the case when {7y} is a
sequence of real numbers (see [22]). We consider the case when the 7}, are complex.

We now make some assumptions on the exponential sequence {7y}, the domain
Q and the sequence {An}.

For the sequence of complex numbers {7}, we will assume some or all of the
following (for (II)(3.5)), see [21]; for (III)’ and (III)", see [23)):

M) 0 <l <l <o < [l <5

(II)

. k * *

3.3) limsup— =D (0 < D* < 00),
k—roo lTkl

3.4) liminf =~ =D,  (D.>0),
k—+o0 ITkI

and
35 sup limsup M =T < 400,

Q<E<l r—roo r—71§

where n.(r) denotes the number of the elements of the sequence {7} with
Te{ < T
(o’ thelre is’ a K > 0 such that for sufficiently large z and each ¢ > 1, the
number of 7 with £ < |7x| < z + t is less than Kt;
IOI ” for any fixed § > 0, the inequality ||n|—|rk|| > e~I™!% holds for sufficiently
large k and any [ # k;
IV) there is an o with 0 < @ < 7/2 such that

36 larg(mk)| < o

Assume that the domain  satisfies conditions Q(I) and Q(II) given in Section 2.
Moreover assume that one of the angle domains defined in Q(II), say A, is given
by

37 =

2y

where the constant (a; =)y > 1. Note that this implies that Q does not contain
the origin 0. Moreover, we assume that for any z € QQ,

3.8

|arg(2) — | <

2l >ra >0, rq<m.
For {A\n} (n=1,2,...), assume that it is a sequence of complex numbers with
39) Al =72 >0,  |arg(An)l < @,

where 0 < a, < 00. Since a, can be greater than m, we think of A, as being located
on the Riemann surface of the logarithm.

If the sequence of exponents {7}, (k = 1,2,...) consists only of strictly positive
thus real) terms tending to oo, that is, if F is represented by an ordinary Dirichlet
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FIGURE 2

series, the classical (R)-order p* and (R)-type o* of F (the Ritt order and Ritt type
of F') are defined respectively by (see [17], [22] or [11])

(3.10) 5 = lim sup 28108 ME (W)
©——00 —Uu
and when 0 < p* < oo,
(3.11) o” =limsup M,
U—F—00 e"”"’
where

Mp(u) = Sup |F(u+ i)l

It is known (see, for example, [22] and [11, Chapter 2]) that, in this case, if

lim sup lig_lg < og,
k=0 Tk
then
!
(3.12) p* = limsup Tk 08 Tk

k—oco 1°gl1/dkl’
and when 0 < p* < o0 and

logk

lim =0,
k—=oo T}
then
(3.13) o* = limsup (ﬂ;ldklﬂ'/ﬂ).
k=00 ep

We would like to derive similar relations when the entire function F is rep-
resented by a generalized Dirichlet series (3.2). But if {nx} contains non-real ele-
ment(s), the definitions of order and type given above seem no longer suitable. For
example, if F(s) = e~*" with |7| > 0 and argt = a # 0, we see that for any u <0,

M}(u) = sup e |r|(ucos a—vsina) = +o00.
lvl<oo

For this reason, we modified in [5] the above definitions as follows:
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Define, for © < 0,

(3.14) Mp(u) = | slgg |F(u + w)),

then define the (mR)-order p and (mR)-type o of F (the modified Ritt order and
modified Ritt type of F) by

(3.15) p = lim sup 28108 MF(v)
U—p~00 -u

and if 0 < p < 00,

(3.16) o = limsup log M (u)

u——00 e~uwe
respectively. In other words, we consider the growth of |F(s)| only in the angle
domain |args — 7| < w/4.

Example 8. For F(s) = e™*" with |7|> 0 and argT = @, 0 < la| < w/2, we
have for u < 0,

Mp(u) = sup e~ Iml(ucosa—veina) _ e—|-r|u(cosa+|aina|)’
lv[€-u

so the (mR)-order of F is 0.

Example 4. Let + be a complex number with |r| > 0 and argr = @ = 7/4.
Counsider the entire function

o0
—er 1
(3.17) F(s)=e*  —-1= E ;l—'e_‘("") (s =u+iv).
n=1"

For the function G(s) = e* ", we have

|G(3)] = |G(u + iv)| = exp[e~II(vcose—vsina) cos(—|r|(usina + v cos )]
= exp[exp(—:};]ﬂ(u - v)) . cos(\/iih'l(u + 'u))]

Mg(u) = sup |G(u + v)| = |G(u — iu)| = exp(e~VZI),
lv|€-u

So, for u < 0,

Thus the (mR)-order of G and the (mR)-type of G are p = v2|7| and ¢ = 1
respectively. From the inequalities |G(s)| — 1 < |F(s)| < |G(s)| + 1, it immediately
follows that the (mR)-order and (mR)-type of F are also p = v2|7| and ¢ = 1.

4. An estimate of |d¢| and a uniqueness theorem

Now we give an estimate for the upper bound of |dk|, where di (k =1,2,...)
are the coefficients of the generalized Dirichlet series (3.2) which represents an entire
function F(s). .

First we need the following estimate. Its proof will be given in Section 7.

Lemma 4.1. Under the assumptions @, (II)(§-3) and (3-4§)a (1) and (III).”,
denoting by n(t) the number of 7; with i} < t, if (a) there is a number p with
0 < p <1, for sufficiently large n,

D,
(4.1)

n
—_ <P R
n@m) D
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or (b) for sufficiently large n, n(3|tn|) = n, then we have

(4.2) log| Tie(7s)| "

lim sup <H,
k00 el
where
(4.3) Ti(2) = H(l - ;5)
i=1 ?
i£k
and, for case (a),
(4.4) H = (L +3r — 3log(1 — p)) D*;
for case (b),
(4.5)

H = (L+3n)D*-2K.
with L satisfying LD* > 5K.

Theorem 4.1. Assume that the ezponential sequence {rx} satisfies condi-
tions (I), (I1)(3.3) and (3.4), (MY, (UI)” and (IV) given in Section 3, and the
condition (a) or (b) given in Lemma 4.1, and that p and o are the (mR -order and

(mR)-type of F(s), respectively. If 0 < p < oo, then, given € > 0, for k sufficiently
large,

R
|dy| < Cye(D*+H'+39) Re(m) {ep(" + 5)] e

Re(x) ’
If p =0, then, given € > 0, for k sufficiently large,

( . ec ReTh ¢
d C mD*+H'+2¢)-Re(Ty)

lds] < Cre Re(y) ’
where C; 18 a constant

o0
Ci=(xD" +e) [ glerPom e,
0

with
o0 T2
(4.6) g(r) = g(1 + |—Tk—|2)

and H' = H/cosa with H given by (4.4) or (4.5) corresponding to the condition
(a) or (b).

The proof is basically the same as that of Theorem 3 in [5] except for the
following two points: (1) We can use D* instead of D. Indeed in [5] it is assumed
that the limit im0 k/|7k|= D < 00 exists, but here by [11, Lemma 2.2] and the
assumption (11)(3.3), we have
4.7

I
lim sup 29T f(r)

r—oo

< wD*.

Hence we can still use [5, Lemma 3.2]) if we use D* instead of D. (2) We need to

use the above Lemma 4.1 to estimate 1/|T;(—7%)| rather than using [5, Lemma 3.1}.
We now prove a uniqueness theorem which is a modification of Lemma 1 in
[22].
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Let {An} be a sequence of complex numbers satisfying (3.9) given in Section 3,
4 be a fixed number with 7v'/2 > aj, let (2) be a function analytic in a domain

D= {z : |Z| 2T |arg(z)| s Zr%{}

on the Riemann surface of the logarithm, and {An} (n = 1,2,...) be its zeroes

ie., ®(An) = 0. Denote by nx(r) the number of the elements of the sequence {)\,}
with |An] < 7. Define, for r > rj,

(4.8) Mo(r,y) = sup I@(Te“’)l

jol<my’/
Let B = bcosb be the maximum of the function z cosz in (0, 7/2).

Theorem 4.2. If for some p > 0, 0 < 00,

!
(49) l_imSup w <o
r—o0 i
and one of the following two conditions holds
na(r) S TP . _
4.10) hr—+£"f - 5 if ay > s
.o malr) o ) m
. lim inf =
4.11) iminf —C= > T cos(anp)’ ifay< 2%’

then ®(2) =0 for z € D.

PROOF. Consider the function G(z) = ®(2"'), where 27 is the branch with
27 >0 for z = > 0. Now G(2) is an analytic function on the domain

! ™
D= {221 2 ¥ gl < 3}

and GOY7) =0, ie., by = A7 (n=1,2

arg b,)| < /2. We claim that G(2) = G(rei®) = 0 for z € Dy, and hence, $(z) =0
for z € D. If G(2) £ 0 for z € Dy, then by Carleman formula (see, for example,

[13] , for ry 17 < X\ < R, we have

,..) are the zeroes of G(2). Clearly,

2 —1 —|b l < —1 i 1 G(R i0 0dé
412) E o~ R R og|G(Re'’)| cos
A< bp|<R
+—1 1_ log|G(iy)G(—iy)|dy + O(1

where 0,, = arg(\n), and O(1) is with respect to R — oo for fixed A. Since for
6 < /2, we have that

IG(R)) = |8(RY 7)< sup |(RY 7))
18|<m/2
= sup |B(Re¥)| = Ma(R",7),
|l<my/2
it follows that, by (4.9), given £ > 0, and for R sufficiently large, we have
log|G(Re?)| < (o +€)RT"?.
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The remaining of the proof is to estimate the upper bound of right hand side and
the lower bound of left hand side of the inequality (4.12). By the same arguments
as in the proof of Lemma 1 in {22, pp. 105-107], we then obtain

limint () < 700

rdo0 TP — 7B if o > ;;
and
liming ) <@ if ay < —,
r—oo0 TP ™ cos(axp) 2p

& contradiction with (4.10) or (4.11).

5. Completeness of the system {z™}

The next theorem is on the completeness of the system {z™} in L2[2]. We stud-

ied this ptoblem in [4], but there we assume a stronger condition for the sequence
of exponents {7}, namely, the limit

k
lim — =D (0<D <)
k—o0 |Tkl

exists. Instead of this, in this paper we assume the weaker condition (II given in
Section 3.

Theorem 5.1. Assume conditions Q(I), Q(II) for the d ma'n Q, and (1, (1
and (IV) for the sequence {Tx} given in Section 3. Furthermore assume that

(5.1) D, - (@2 +7)1 - oos0) - (1- 2)>o
Denote
(5.2) h= max o(zy),
where
2z 1
9(z,y) = [D.—(2+r+y)(1—cosa)—2::—( ——)],
V(@47 +y)?sin o+ o3 2y
and
D= {(a:,y) 1x>0,y>0,0.-(2+7+y)(1 —cosa) -2z — (1— 21—7) > 0}.
Let
(5.3)

1
n= ma.x{al,...,am, h +50}
with €9 some positive number.
If
o0
(5.4) / dr

rln-s +oo,

then the system {27} (k =1,2,...) is complete in L2[Q].
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PRrooF. We only need to prove that if f € LZ[Q?] and
(5.5) (f(z),2™) =0, k=12,

then f(z) = 0. So we assume that (5.5) holds. By Lemma 2 in [21], condi-
tion (I1)(3.5) implies that for any h with 0 < h < 51, we can find a number

¢ > 0 and a sequence {vk} of positive numbers with vk41 — vk 2 ¢ such that the
sequence {ux} = {7k} U {vx} satisfies

By (IV), clearly

And we have (see [21])

(5.6) D% = limsup - =

1
— ~liminf — =+~ - D,
k—oco Vi h E+1c2 |‘rk| h b
Let
(e o] Zz
19 =-11(1- %),
k1 Hi
and 1 o i y
e—s
I(s s=u-+iv.
@ =5 | T Y
Denote

Q'={§=E1+iﬁz=|§2|<‘"(1—2%)},
Q,={s=u+iu:|v|<1r[-’1;cosa— (1—5‘1;)]}

and for sufficiently small § > 0 and 4; > 0, denote

Ss={s=u+iv:leSW[%cosa—d]},

1 1
b —ds=u+iv: | <= —§—[1-—
Q {s 'u.+1'u.|u|_7r[hcosa ) (1 27)]}
and

Q= {8=u+w lul<1r[ —(2+7+6)(1—cosa)—25— ( —1—)]}

2y
Let us take )

ST
Then, by (5.1) and (5.6), we will have for § and 4 sufficiently small,

nes- (- )] -0
= [%cosa—%— (1—51’;)] —-(%—D.)
=D,

1
-(2+‘r+51)(1-—cosa)—26—(1—-2;;) >0
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Thus, the strip Q is located inside the strip Qf,, and the distance from the boundary
of Q to the boundary of Q? is greater than #(D} + §).

Let 2 = ef, £ = £, + i€, and Q' be the image of Q in the £ plane. By condition
Q(11), & must be located inside Q’. If s € @, and £ € ¥, s — £ must be inside
S5, so the function I(s — £) is analytic (see (4, Lemma 2.2]). If s € Qf, and £ € ¥

I(s — £) must be uniformly bounded. Fix f(z) € L2[€], and define, for s € @/, the
function

60 G0= [[ TErIe-0dadn  €=aria

As mentioned above, G(3) is analytic in Q, (hence in Qf,) and unif rmly b unded
in Qf,.

By (4, Lemma 2.4], if for s € Q) the above G(s) = 0, then
(5.8) / f(z)2"dz =0, n=12,....
Q

By Dzhrbasian’s theorem, if (5.4) holds, the system {z } n= ,1,2,... is
complete in LZ[(?]. Thus, by the Hahn—Banach theorem, from 5.8 it f Il wsth t

f(z) =0 for 2z € Q. So, we only need to prove that G s =0 for s € Qf, whenever
f satisfies (5.5). We will use p(r) to denote &'r® below.

We will now make use of the sequence {vx}. Let

l == 1 -_—— = "
@=11(-5%)-Z 5
and y(2) be the Borel transform of I(2), that is
o— In
7(2) z Zntl’
n=0

‘We know that I(z) is an entire function of exponential type #D*, and 4 2 1s analytic

outside the vertical line segment with centre at the origin and length 27xD*. For
sufficiently small § > 0, define the convolution operator

Y IR I RGE

where the function y(s) is analytic in Q4.
Since the series representing 4(§ — s) is convergent uniformly on £ —s =

w (D} + §), we can interchange the order of the integration and the summation as
follows:

(59 L= o /la o 1r(D'+6)(,Z (- S)"“) v

© )
—2211'1/ s| w(D3+6) (gfs)vw-l 4§ = Z nl -yt )(S)

Note that G(s) is enalytic and uniformly bounded in Q?, the strip Q is located

inside the strip Qf, and the distance from the boundary of Q to the boundary of
Qf, is greater than n(D} + §). So, for 8 € @, we can define the function

o(s) = L{G(s)).
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By (5.7), for 8 € Q%, we have

Bnle &)
£
o = [[ TNl 0~ .>.:« o ] 461 dty
¢ o~ Hule— ﬁ)
+/./ f(ef)le l lix |<t ’(ﬂ ) ¢ dz

= G1,4n(8) + G, (3),

where the sequence {t,} satisfies n > t, > (1 — A\)n while ) is a sufficiently small
positive number, G14,(s) and Gy 4, (8) denote the above first and second integra-
tion, respectively.

Note that, using condition (5 5), we have

Grenls)= 3 % i | T et dey oo

luaxi<tn
= - f(2)z# dz dy} s
h‘%, (uk) [/
= vk 4 —Vk8_
VE T'(Vk) [/ f(z)z zdy}
We claim that for n € N, and for s € Q,
5.10) LG4, (s)] =0.

Since G2 4, (s) is a linear combination of e~¥**, it is enough to show that L{e™*] =
0. Indeed, by (5.9), we have for any k € N,

L] = Z [(—ve)] e = U(-w) e =0,
1—0

As in [4, pp. 13-14], we have that for Re(s) =u >0, and s € Q¢,
*° p2ng—p(r) d'r)l/ 2
|es|(1 AMnsgin(ry) !

5.11) |G1,6a (9)] < inf oo

where C is a constant independent of 5 and n, and p is a small positive number
satisfying

tan(mp) < d

an(mh) (1/h)sina’

For s € Q, noting (5.10), we have
&(8)| = ILIG(9)]] = |L[G1,¢. (3]
< C1(9) - max{|G1 4, ()] : € € @3, IRe(§) ~ Re(s)| < 7(D} + 9)},

where C1(4) is & constant only depending on 4. By (5.11), for s € Q, Re(s) 2 0
we have

- 1/2 00 2'n. - 1/2
(fo_r2re—?) dr) ¢ on o e PN dr)
<I>(s)| < l C" |e°/e"(D'+5)l(1 “Nnsin(rp) = <y nrgqcl‘l |ea|(1 Mnsin(rp) ?

where C, and Cj are constants independent of 8 and n.
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Let o
M, = / e P dr,
0
and
H(7) =su
( ) nEIP)l v 211
where

F= c|ea|(1-—A) sin(mp)

with c a constant independent of s and n. By [4, Lemma 2.6, we have for s € Q
and Re(s) > 0 sufficiently large,

12(s)} < 7=
where ¢ > 0 is a constant.

Now we transform Q (with respect to s) into the upper half-plane Im w 2> 0:
(i) by w; = e®, Q is transformed into an angle domain arg(wy, < «l with

(5.12) l=D,.-—(2+'r+61)(1—cosa)—26—(1—%);

H( ) xp[—q R p(cleal(l—x)sin -xu))],

(ii) by we = wi/ (21), the above angle domain is then transformed into the right
half-plane Re(w;) > 0; (iil) by w = iws, the right half-plane is transformed into
the upper half-plane Im(w) > 0. The remaining of the proof is the same as that
in [4, pp. 15-17] except that the quantity I is now given by 512 rather than
l=Dcosa—6—1+1/(2y) given in [4, (23)], and correspondly the quantity h
is also given by the expression (5.2) rather than that expressed mn [4, 18 ]. Thus,
by the assumption (5.4), we have ®(s) =0for s€ Q. Hence G s =0fors € Q,

and G(s) =0 for s € Qf, since G(s) is analytic in Q% and Q C Qg. The proof is
complete.

6. Completeness of the system {f(An2)}
‘We now present the main result of this paper:
Theorem 6.1. Assume that:
(i) the functions f(z) and F(s) are given by (3.1) and (3.2), respectively, their

complez coefficients di # 0 (k =1,2,...), and the sequence {7} of complez ezpo-
nents satisfies conditions (I), (II), (III)’ (II1)”, (IV) and the condition (a) or (b)
given in Lemma 4.1;

(if) the unbounded domain QU satisfies conditions Q(I) and Q(II);

(iii) the complez sequence {\n} satisfies condition (3.9).
Moreover assume that

(iv) the entire function F(s) has (mR)-order p and (mR)-type o, with p <
8 cos a; and either

B
(61) limint ™0 5 2 (—2—) (p0)*8, for> ;,’:—5;
or
,\(7‘) 1 2 \** B
(6.2) lim inf 708 = T3pB co8(Gxsph) (F) (po)*?,  ifay<—3 2spﬁ
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where B = bcosb is the mazimum of the function zcosz in (0,7/2) as i Theo-
rem 4.2, and 8 = 1/(s - p) > 0.
I

1
D.-(2+7)(1 —-cosc)— (1—-2-;> > 0,

% dr
7l s = T

where 1 is given as in Theorem 5.1, then the system {f(Anz)} is complete in L2[Q)].

ProoF. Consider the function f(wz) with 2z € @ and w on the Riemann surface

of the logarithm. Clearly, for fixed z, f(wz) is an analytic function with respect to
w on the Riemann surface of log w. Now we restrict w to the domain

D= {s i1z ratol < L )

where 9/ is a fixed number satisfying my'/2 > ;. It is clear that A\, € Dforn =1,
2,

and

Since F(s) = f(e™®) has (mR)-order p and (mR)-type o, for any A’ > o, and
for u sufficiently large with u < 0, say u < —u; with

1rl
U1>an+—1,
2

we have

log Mp(u) < A'e™™,

Hence, noting that z = rel = e~® = e~(“+i¥), for |z| = r sufficiently large, say
r>ry,and
™
16| £ cq + —271,
we have

7)) = £ (re)] < ¥
Thus, for {wz| > r, and |arg(wz)| € aq + 1v'/2,
If (wa)] < 4TV,

For fixed w € D, letting Q; = QN {z: |wz| < r1} and Qy = QN {2 : |wz| >}, we
have (noting that 2z = z + iy, and rq < rq by (3.8))

6.3) / / |f(we)|2dzdy < / / 24112’ g dy < / / A 1w’z 4g dy
Qa2 Qa Q

70 , o0 ;
< / 2rrelA v’ d’r+/ 241’ 5 (r) dr
Q To
o0
R ™
0
where ¢; > 0 and c3 > 0 are constants independent of w. 1t is clear that, for w € D.

since w| > 7y, for |{wz| < r1, and 2 € Q (80 |2| > rq), we have 7y < |w| < r1/ra
And since |arg(wz)| < aq + 77 /2, we must have

64) [ rwar ey <
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where c; is a constant independent of w. Thus, by (6.4) and (6.3), we have

oo
// |f(wz)|2da:dy <ec + cqec:ﬂwl’ +/ eZA' w r’e—o"r" dr.
Q 0

Hence, for any g with 0 < p < o/, we have

// |f(w2)2dzdy < ¢y + cae?™V 4 ¢4 Slil()) -exp[—pr® + 24" w ],
Q 2

where ¢4 is a constant independent of w. As in [3, p. 282], we have

]
©5) [ / |f(w2)? dzdy < ¢y + cpesal” +c4exp[2(2)’ s AP w].

sp 8p

where 8 = 1/(s—p). Hence for any fixed w € D, f(wz) € L2[Q),and f Az € L2[Q

since A, € D forn =1,2,.... To prove the theorem we only need to prove th ¢ f r
any h(z) € L2[Q), if

(6.6) (f(An2),h(2)) = // f(Anz)h(z)dzdy =0, n=12...,
Q
then h(2) = 0 for z € Q. So we assume that (6.6) holds. Consider the functi n

B(w) = (f(wa), h(z)) = [ /n fw)h@)dzdy, €D,

where h(z) satisfies (6.6). By (6.6), we see that ®(A\,) =0 n=1,2,. - . We need
to prove that ®(w) =0 for w € D. By (6.5), asin [3,p. 283 ,weh ve,f r €D,

ertul® 2\” 1 o8 s B
(6.7) |®(w)| € c5|ce + e +c8exp[(;) spﬁAp w ]

where cs, cg, C7, Cg axe positive constants independent of w. Thus, by Appendix A
in (3], ®(w) is analytic in D. By (6.7), letting p = o and A — o, we have

. 10gM¢("U)‘,’Y s
tman S < ()7 st

Thus, by Theorem 4.2 and either condition (6.1) or condition (6.2), we must have
&(w) =0 for w € D. Then we have for w € D,

(6.8) ®(w) = //(iidﬂwz)"]ﬁdzdy = fzzdk [/j; Z“Tz)da:dy]w“ =0,

and, since d, # 0 (k =1,2,...), we get

// 2™ h(2)dzdy =0, k=1,2,....
Q

Note that Theorem 4.1 is used in the justification for interchanging the integration
and summation in (6.8) (see Appendix B in [3]), except that here we need to use
the condition p < scosa. The remaining of the proof is the same as in [3]: by

Theorem 5.1, using the completeness of the system {z™} (k =1,2,...) in L2[Q],
we get h(z) = 0. The proof is complete. 0
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7. Proof of Lemma 4.1
First we need a few more lemmas:

Lemma 7.1. Under conditions (1) and (11)(3.3), Tn.(2) is an entire function
of exponential type mD*.

ProoF. By (II)(3.3), given € > 0, there exists an I > 0 such that for all i > J,
in| > #/(D* + €). Thus, for any R > 0, if |2| < R, we have

22| _ R¥(D* +¢)?
T2 12 )

Hence the infinite product in (4.3) converges uniformly in any bounded domain of
the complex plane, and Ty, (2) is an entire function. For 7 > 0, let (see (4.6))

t=1
Since for |2| =1,
r2
el < [T (1+ 57 ) <o),
i=1 :
and by (4.7),
h s gg(r) < D*,
r—o00
hence
r—00
where
Mz, (r) = sup |T,(2)]. |

|al=r
The following two estimates can be found in [13, pp. 76—78]:

Lemma 7.2. Let 21,...,2, be any n compler numbers. Given H with 0 <
H<1. If

P(Z) = H(Z - zk);
k=1

P2 ()

holds outside exceptional disks with the sum of diameters not exceeding 10H.

then the inequality

Lemma 7.3. If an analytic function f(2) has no zeros in a disk {z : || < R}
and if f(0)| =1, then as |z| =r < R,

log|f(2)| 2 —5

2r7_ log M(R),

where

M; (R) = max|f(2)]
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Let w; = |1| (i =1,2,...). For fixed n, denote

w

P, = - 21

= I -2

jwi~wn|<1
i%n

Using Lemma 7.2, we can prove

Lemma 7.4. Under conditions (1), (I1)(3.3), (IIIY and (I11)", we have, for n
sufficiently large

(7.1) P > e 2KGFDun
where we choose

* —
(7.2) = LD —5K

2K’
with L satisfying LD* > 5K.

PRroOOF. Consider the function
z—w 1
P(2) = L. — —.

= I Z=2= I Ge-w ]

w,
lwi—w,|<1 * *
i%n

lw, —.'w..|<1 w,—wy, <1

i#En 1¥#n

Suppose the numerator is a polynomial of degree g. By (IIT)’, we know that ¢ < 2K.
By (II1)", for n sufficiently large and p # n,

(7.3) jwn — wp| > ™0,

Taking H = (1/10)e~*~%, by Lemma 7.2, the inequality
7.4 > 1 —wné 1
(7.4) H (2 —wy)| 2 me

|lwi—wq|<1
i%n
holds outside exceptional disks with the sum of diameters not exceeding e_wt‘5~
It is not hard to see that in every exceptional disk there is at least one wh with
|wa —wi] < 1 (if some disk does not contain such a w,, then this disk should not
be an exceptional disk since in this disk the inequality (7.4) holds for n suiﬁdeflﬂy
large). Thus, by (7.3), we know that w, must be outside these exceptional disks.

Hence
1 P 1
—_ > ——e ™ ¥n .
“ (wn —wy)| > (IOee )

|lwy—wa|<1
i%n

When n is sufficiently large, we have (1/{10e))e*~% < 1, hence, noting that ¢ <
2K, for n sufficiently large,

2K
1
> [ S_e—wnd .
- (IOee )
Obviously, we have

H (wp — wy)
(7.6) 1—[ wl‘.z H 1 (1)‘12(_1_- zx‘

(7.5)

lwi-wa|<l
i#n
—_— >
w, 1 2w 2w
|uu-:w..|<1 jwi—wy|<1 n ¥ " "
i#n i#En
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Thus, by (7.5) and (7.6), for n sufficiently large, we have

1 2K e—wné 2K 2K (541)
p>(_) ( ) > e M@+, o
) 2 20e Wy,

For t > 0, use n(t) to denote the number of 7; with |r;| < t. For fixed n, let
I = n(3wy)

and

Po= 1]

wp
1- — |-

wy
wy>wy

Using Lemma 7.3, we can prove

Lemma 7.5. Under conditions (1) and (I1I)(3.3), given £’ > 0, we have, for n
sufficiently large,

7.8) P> e—(31rD'+e')w,.._

ProoF. Consider the function

A= I (1— Z—Z)

wy>w; :

By the proof of Lemma 7.1, we see that Q(z) is an entire function of exponential
type #D*. Clearly Q(0) = 1, and Q(2) has no zeros in |2| < 3w, (since when
w, > w; we have w; > w41, but w1 > 3wy). Thus, by Lemma 7.3,

2w
loglQ(un)| > — 5= log Mq(3un) = ~log Mq(3u,).
Wp — Wn
When r is sufficiently large (since Q(2) is of exponential type 7D*),
/
log Mo(3wn) < (1" + )3, = (31D" +)u,
hence, noting that Py = |Q(wy)|, we get (7.8). a
We now prove Lemma, 4.1:

PROOF. As before, denote w; = |1;| (i =1,2,...), n(t) the number of ; with
T <t. For any fixed n, let I = n(3wy), denote wr.,, the nearest left w; to wy with
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w; ~ wn| =1, and wr, the nearest right w; to w, with jwi —wal 2 1. We have

(79) ‘Tn(Tn)‘
2
JL0-)

i#n wiSwy

(-3

Wy >4

w w w2
> T0|(-3)|0+ %) IJ-33)
i21in : i) wsw! W
wyLwy
Wn w2
> 1-—" 1--—35
> T -5} M-3
i>1,i#n w, >wy ¢
wiSwy
2
Wq — W4 Wy Wy — Wn 1—-2
= 1l = I -2 I = Il -3
wy Sw, SWLy |wi—wn|<1 tl pp, <w.<w w >
i#n
=P1'P2'P3'P41

where Py, Ps, P3, P4 denote the above four products in order.

We have estimated P, and P in Lemmas 7.4 and 7.5, so we only need to
estimate Py and Ps.

For Py:

log P, = —log(wiwz - -~ wg,) +10g[(wn — wr,,)(Wn — WL,—1 =*7 W~ W1 1
=P+ Pya.

Pyy =— Lylogwr, + (Ln —1)logwr,, —logwr, 1]
+ (Ln — 2)log w1 — logwp, 2] + -+ + [logwa — 10g wi]

L,.-1
= —Lylogwr, + Y jllogw,4; —logw,).
i=1
Since when wj < t < Wjt1, n(t) = j. Thus, we have
La=l  fwyp g
Py =—Lplogwp, + Y j Jdt
j=1 W,
Lozl pwyqy n(t) Win n(t)
= —L..log wg, + Z / ——=dt=-Lylogwr, + / —=2 dt.
j-1 Y% t u

Py3 = Ly log(wn — 1) = (Ln — 1){log(wn — wy) — log(wn — w3)]
— (Ln — 2)[log(wn — ws) — log(wn —w3)l =
— [log(wn — wp,—1) — log(wn — wL.)]
L, 1
= Lalog(wn —wy) — Z jllog(wn — wi, ;) — log{wn — WEa—j+1)]
-1
Lo 1
= L,log(wn —wy) — Z

j=1 Y¥Un=wWL, j+1 t

Yn=WLp-j 4
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Let n1(t) be the number of w; with |,

wn| €t and wy € w; < We. Since
when Wn —

Wy, ;41 <t < Wp = wr,~4, n1(t) — j, we have

Ln 1 ,wa-wg, 4 77'1 )
Pia=Lylog(w, wy)— Z/ dt

j=1 Wn=WLy 41

Wy — w1 ¢
= L, log(w, — w1) —-/ ™ mt) dt.

Wn~WLn
Now we have

logAA=P, +P g

WLy, t Wey —~wi n
=-Lylogwg,_ +/ Il%dt+L,,log(w,.—'u)l)—f —l@dt
wy Wn—~WLy
Wn — W1 n
>—Lnlogwﬂ+L"log(w"—w1)—/ 1( ) dt
Wn—WLn t
—
= L,.log(1 - ﬂ) - / ™) 4.
Wp wa—w, t
Since n1(t) < n(wy,) ~ n(wy, — t), we have
Wn—wWi w,) — " — t
log P, > L,,log(l— ﬂ) -/ n(wn) - n(wn 1) 4
Wy Wn—wg, t
wbn -—
=L, log(l——)—/ Md&:
w" wy w", - &
Given €' > 0, for n sufficiently large,
log (1 - ﬂ) >—€.
Wn
By my’,
n{wn) — n(z) < K(w, — ).
So, we have
log P, > —€'L, — K(wg, — w,) > —€'Ln ~ Kwp,.
By the definition of wr_, Ly < n, hence
—€'Ly, > —€'n.
By (I1)(3.3), for n sufficiently large, n < (D* + €')w,. Hence we have, for n
sufficiently large,

7.10) log P, > —¢'(D* + €')w,, — Kwy,
For P;:

First, consider the case when the condition (&) holds. Assume that WRns
Wg, 41,.--, W are all the w; satisfying wg, < w; £ wi, then

log Py = —log(wg, wg, +1 -
=: P33 + P; 2.

= —[€'(D* +¢) + Kluwn.

-wy) + log{(wr,, — Wn) (WRu41 — W) -+« (W) — Wn)]
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Denote nz(t) the number of w; with w; < £ and wg, € w, < w;. Denote
ns(t) the number of such w; with jw, — w,| < t. Suppose the total number of
WR, s WRL+11-++ W] 18 My, It i3 not hard to see that

my,=n(3w,)~-R,+1=1—-R,+1.
Similar to that in log P;, we can get

t t
P31 = ~myglogw + /w nz_t()_ dt.
WR,
and

mp—1
P33 = my log(w; — wn) - Z jllog(wR,+5 — Wn) —10g WR,4;-1 —wn |
i=1

mn—1

WRp+9~Wn 4
= my, log(w; — wy) — Z / %dt.

j=1 YWRn4i~1"Wn

Since when wg, 4+j—1 — Wn <t < WR,4; — Wn, na(t) =7 we bave

M=l cwp 4 —wn t
Pyg = myloglw —wa) = Y 3t dt
3=1 YWRnt 21—
WY pa
= My log(w; — wy) — / 3T dt.
WRy —Wn

By (I11), n3(t) < Kt. Thus

logP3=P3,1+P3,2 >m,,10g<1— %) - Kw-—- g, .
1

Now we estimate the value of Yn for n sufficiently large. B 4.1 in the
condition (a), there is a sufficiently small positive number € with ¢ < D, such
that for n sufficiently large,

n < D, — gy
2wy P D ter
Thus, by (3.3) and (3.4), for n sufficiently large,
wn, wp, n<D‘+Eo‘ n <p.
wy n w !  D.i—ego n(3w,)

Hence

log P3 > malog(l — p) — K(w; — wg,).

Noting that wgr, > w, hence w; — wg, < 2wn, and R, > 1, we have, for n
sufficiently large

(7.11) log P3 > mplog(1l — p) — 2Kwn = log(1 — p)[n(3ws) — Rn + 1] — 2Kwn

> log(1 — p)n(3wn) — 2Kwn 2 log(1 — p)(D* + €')3w, — 2K wn
= —(c'D* 4+ c'¢’ + 2K)wn,
where ¢/ = —3log(1 - p).
Combining (7.7), (7.8), (7.10) and (7.11), we have for n sufficiently large,
log(PLP;P3Py) > ~[K +¢' (D* +€') +2K(§ +1) + ¢ D* + ¢’ +2K +3xD* +€'lwn:
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Given € > 0, take &' > 0 such that e'(D* +¢') + ¢€’ +¢' <e. Let

H =3K + 2K (6 + 1) — 3log(1 — p)D* 4 37D",
ie., by (7.2),

H = (L + 37 - 3log(1 — p)/bigr) D",
then we have for n sufficiently large

|Tn(Tn)| > e—(H+g)Wn,
hence (4.2) holds.

For the case when the condition (b) holds, since ! = n, w; = wp, for n sufficiently
large, and since, by its definition, wg, > w, + 1, wehave wg, 2w +1>w. In
this case, it is impossible to have a w; satisfying wr, < w; < w; 8o, for n sufficiently
large, the factor P should not appear in the product P - P; - P3 - Py in (7.9), or
we should set it to be P; = 1. Thus, by the above calculation, it is not hard to see

that, in this case, the H should be changed to H = (L + 37)D* — 2K. The proof
is complete. O

Acknowledgement. We thank the referee for careful reading of the paper.
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A Formula for the Logarithmic Derivative and Its
Applications

Javad Mashreghi

ABSTRACT. We show how an explicit formula for the imaginary part of the
logarithmic derivative of f, where f is in the Cartwright class of entire func-
tions of exponential type leads to a new integral representation of the Hilbert
transform of log|f| and also to a representation for the first moment of |f|2.

1. Introduction

An entire function f(2) is said to be of exponential type if there are constants
A and B such that |f(2)| < BeAl®l for all z € C. In this note, we are interested
in two special subclasses of entire functions of exponential type. Both classes are
defined by putting a growth restriction on the modulus of the function on the real

line. The Cartwright class Cart consists of entire functions of exponential type
satisfying the boundedness condition

/°° log*|£(z)|
o 1422

and the Paley—Wiener class PW contains entire functions of exponential type ful-
ﬁllmg f € L*(R). The inequality log™|f| < 1|f|* shows that PW is contained in

dz < oo,

I.u this paper we obtain an explicit formula for S(f'(t)/f(t)), f € Cart, in terms
of nonreal zeros of f and its rate of growth on the imaginary axis. Then we provide
two applications of this formula. First, we derive an integral representation of the
Hilbert transform of log| f|. Secondly, we calculate the first moment of | f|2, where f
is the Fourier —Plancherel transform of f, for functions in the Paley — Wiener space.

2. Reminder on representation theorems

In this section we gather some well known representation theorems about entire
functions of exponential type. These results can be found for example in [1-3].

2000 Mathematics Subject Classification. Primary 30D20; Secondary 42A38.
Key words and phroses. Entire functions, Fourier —Plancherel transform, Hilbert transform
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198 J. MASHREGHI1

Let f € Cart and let {zn} denote the sequence of zeros of f in the upper
half-plane. Since 3°, Szn/ |2n/? < 0o and lim,_»o0|2,,| = 00, the Blaschke product

1~2/z2
B..(2) = l l (__ﬁﬂ)
u(2) \1 - 2/z,
formed with this sequence is a well defined meromorphic function. Let

1 . .

oulf] = limeup SELODL o log fG)
y—++oo ) y—+—o0 Y

In what follows, for simplicity we will write o, and o; respectively for o.,[f] and

o1{f]. The following theorem is a celebrated result of Cartwright.

Theorem 1 (Cartwright). Let f € Cart. Then, for Sz >0,

f(2) = ce™*** B, (2) exp (% ‘/._:(z ! 1 :—t2) log f(t) dt)

where ¢ is a constant of modulus one.

Put f*(z) := f(2). Then f* € Cart and
Uu[f*] = limsup l—ggl—f.(i—y)" = 1imsup EM_ = ol[ﬂ-
y—+r+oo Yy y—r+oo Y

Moreover, the upper half-plane zeros of f* are conjugates of the lower half plane
zeros of f, say {Wn}n>1, and for the Blaschke product formed with this sequence

we write
Bi(2) =TI (1‘—"/&)

LI\ - z/wn
Therefore, by Theorem 1,

(1) f*(2) = e By(z)exp (% f_ Z (zl_—t + ﬁ) llog £(t) dt)

for all Sz > 0. We also need the following celebrated theorem of Paley - Wiener

We remind that 1.i. m, stands for the limit in mean and implicitly implies that the
sequence is convergent in L2-norm.

Theorem 2 (Paley - Wiener). Let f € PW. Then

f@ = FoePsan,
where

N
FN =1N1;Ig511—r f_ . f(t)e P tdi

is the Fourier Plancherel transform of f on the real line. Furthermore, the sup-
porting interval of f is precisely [—oy,01).

In particular, if f(R) C R, then f (/\) f (=) and thus the supporting interval
of ,f is symmetric with respect to the origin, i.e., o, = 0.
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3. The logarithmic derivative
Let zn be a point in the upper half-plane. Then the Blaschke factor

_l=2z/2,
ban(2) = 1w z/2,
satisfies by, (t)] = 1 for all £ € R. As a matter of fact, there exists a unique real
function arg b,, € C*(R) such that
b, (t) = &' 2Edan () (t € R),

with arg b; (0) = 0. Hence, by taking the logarithmic derivative of b,,, we obtain

d b, (1) _ 2%z,
dt (a.r ben (t)) ib,, (t) - t = 2n 2

and thus arg b, is given by

¢ 29z, t— Rz, Rz,
2) argb..‘(t) = 0 l—stz—n‘; ds = 2 arctan (S—zn) + 2arctan (E) .

Let {z.} be a sequence of complex numbers in the upper half-plane such that

and limyy00 20| = 00. Let B =[], b;,. Since the zeros of B do not accumulate at

any finite point of the complex plane, the function B is a meromorphic Blaschke

product. In particular, B is analytic at every point of the real line. Hence, for all
teR,

g (t) S'fzn
=2i R
3 B Al R
and the series is uniformly convergent on compact subsets of R.

Lemma 3. Let f € Cart. Then, for allt € R,

f (t)) o = au X
1)
(s N
where {{.} is the sequence of zeros of f in C\R.
PROOF. Let F = f/f*. Then, one one hand,

FO) _£O_[FOY o L0
Fo) = 70 (f(t)) =2 9‘(f(t))‘
On the other hand, by Theorem 1 and (1),

10';-0'.,,1 u(z)
F(z) = ce!or=ov) ) (32 > 0).

By continuity, this relation holds for 3z > 0. Hence, we also have

L) R u(t) _ Bi(t)
Fg ~ o= ..)+B(t) Bz(t) (teR).
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Thus, by (3),
t Szn S,
F((t)) i(oy —0y) + 212 = 212 =

t—w,?

(a;-au)+212lt ‘2+22 Sw,

t—w,?2
| Tl Oy gCn
_21( 5 +;‘t"’<n|2).

Therefore, comparing with the first formula, we obtain the result.

O
Note that the real zeros of f do not cause discontinuity in S(f* t ft . Their

effect appears in §R(f’(t)/ f (t)) An immediate consequence of Lemma 3 and 2 is
the following result.

Corollary 4. Let f € Cart. Let {z,} and {w,} be respects e y th sequence f
upper and lower half plane zeros of f. Then, for allt € R,

/%(fl((:))> s = (2—2—0">t+22argbz"(t —%Zargb— t,

where argb is given by (2).

4. An integral formula for log|f| and the first moment of f 2

Let {z,} be a sequence of real numbers such that im , . Tn = oo and
zr < 71 if k < I. Let {m,} be a sequence of nonnegative integers. The counting
function v(s,} of the sequence {z,} is defined to be constant between z _; and
Tn and at each point z, jumps up by my units. The value of v(; } t atz 1s
not important. For one-sided or finite sequences, v, } is defined similarly and it

is adjusted such that its value between —oco and the first point of the sequence is
zero.

Let f € Cart. In [4], we showed that

lzgl-ﬂ(t)=—m/{z"}(t)+(a";m>t— Zargb (t)—2):axgb— t,

where ~ stands for the Hilbert transform. This formula has been used to obtain
a partial characterization of the argument of outer functions on the real line [5].
By a standard technique, one can shift all zeros of f in the lower half plane to
the upper half-plane without changing |f| on the real line. Furthermore, one can
multiply f by e~i%%, to get a new function with the same absolute value on the real
line, but instead oy = 0. Therefore, to find log| f|, without loss of generality we can
assume that f has no zeros in the lower half plane and besides o7 = 0. Therefore,
by Corollary 4, we find the following formula for the Hilbert transform of log| f|.

Theorem 5. Let f € Cart. Suppose that f has no zeros in the lower half-plane
and that o, = 0. Let v denote the counting function of the sequence of real zeros of

f. Then
loglf(¢) = —mw(t) - / (J}((s))>d




LOGARITHMIC DERIVATIVE 201

Another consequence of Lemma 3 is an explicit formula for the first moment of
! f|’, in terms of o4, 07 and nonreal zeros of f, for functions in the Paley Wiener
space PW.

Theorem 6. Let f € PW Then
T . o -0 XCn
NOFar= g [~ (252 + 2 e rore,
—ou

where {(,} is the sequence of nonreal zeros of f.

PROOF. Since Af()\) € L!(R), the Fourier Plancherel transform of f/(t) is
iAf()). Thus, by the Parseval’s identity,

= FOf)dt=2n /

—00 —0Cu

g Tt

AFOVFN) dr = 2r / AFO)RdA

—0y

The right-hand side is purely imaginary. Therefore, by Lemma. 3,

w [ Njorar= [~ s(ro7@)e= [ o Liror)a
- [ o(ED) e

—Cu %Cn
[T ere o
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Composition Operators on the
Minimal Maobius Invariant Space

Hasi Wulan and Chengji Xiong

ABSTRACT. Two sufficient and necessary conditions are given for ¢ to ensure
the composition operator Cy to be compact on the minimal Mobius invari-
ant space. Meanwhile, our results show that some known results about the

compactness of Cy on the Besov spaces are still valid for the minimal M6bius
invariant space.

1. Introduction

Throughout this paper D will denote the open unit disc in the complex plane C.
The set of all conformal automorphisms of D forms a group, called Mdbius group

and denoted by Aut(D). It is well-known that each element of Aut(D) is a fractional
transformation i of the following form

. a—z
o) =%0a(a),  oale) = 1o,
where 0 is real and a € D. Denote by dA the normalized area measure:

dA(z)=%dzdy, z=z+iy.

Let X be a linear space of analytic functions on D which is complete in & norm
or seminorm {|-||x. X is called Mdbius invariant if for each function f in X and
each element ¢ in Aut(D), the composition function fo¢ also lies in X and satisfies
that fop|x = ||fllx; see [2]. For example, the space H* of bounded analytic
functions f on D with the norm || f||cc = sup{|f(2)| : z € D} is Mobius invariant.
BMOA, the space of analytic functions f on D for which

sup{ & [ 15(P o a0~ @) sa €D} < oo

2r Jo {1 —aei|? ' !
is Mobius invariant. Actually, some other spaces of analytic functions on D such
a8 Qp and Qg spaces are Mobius invariant, too. See [2—4]. However, the Hardy

2000 Mathemaiics Subject Classification. 30D45, 47B38.
Key words and phrases. composition operator, minimal Mo6bius invariant space, Besov
spaces

The authors are partially supported by NSF of China (No. 10671115), RFDP of China
No 20060560002) and NSF of Guangdong Province of China (No. 08105848).
This is the final form of the paper.

©2010 American Mathematical Society
203



204 H. WULAN AND C. XIONG

spaces HP are not Mobius invariant. Now we return to our primary interest, the
Besov spaces.

For 1 < p < 0o the space B, consists of all analytic functions f on D for which

(1) [1 P - a2 dac) < oo
D

For p = oo the requirement is that the quantity

(1.2)

sup(1 — |2f*)1£"(2))
z€D

be finite. When 1 < p < oo the space B, is called the Besov space and B, = B
is called the Bloch space. The seminorm ||-||g, on B, is the pth root of the left of
(1.1) if 1 < p < 0o and the quantity (1.2) if p = co. The space B3 is known as the
Dirichlet space and usually denoted by D. It is immediately clear that the Besov
spaces are Mobius invariant. Unlike B, spaces for p > 1, we define the B; by ther
way since (1.1) does not converge when p =1 for any non-constant functi n.

Arazy, Fisher and Peetre [2] defined B; as a set of those analytic functions f
on D which have a representation as

(1.3) f(z)= choa,‘(z), ax € D and Z cx < co.

k=1 k=1

Since a function f could conceivably have several such representation, the norm of
B; can be defined by

Il = inf{zlc,cl  (13) holds}.
k=1

By [2] we know that the space Bj is the minimal Mobius invariant space since it is

contained in any Mgbius invariant space X. Also, we say that the Bloch space B
is the maximal MGbius invariant space; see [7].

We know that for 1 < p < co & function f belongs to B, if and only if the
seminorm

(14) NF1, ~ /D F"@)P(L - |22)%~2 dA(z) < oo.

Arazy, Fisher and Peetre showed in [2] that there exist constants ¢; and ¢; such
that

(15) el Fl < O +1£0)] + /., \F"(2)1dA () < enll 1.

Hence, (1.4) and (1.5) do permit us to pass the case p = 1 and the connect the
space B; with the Besov spaces By. We define now the seminorm of B; as

(1.6) 13, = /., |£"()|dA(2) < co.

Modulo constants, B, is a Banach space under the norm defined in (1.6).
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2. Composition operators on B,

Let ¢ be a holomorphic mapping from D into itself and f € H(D), the set of
all analytic functions on ID. Then ¢ induces a composition operator Cy: f —+ fo ¢
on H(D). Tjani [9] gave the following result.

Theorem A. Let ¢ be a holomorphic mapping from D into itself and 1 <p <
g < 00. Then the following are equivalent:
{(a) Cy: B, — B, is a compact operator.
(®) IICs0allB, — 0 as |a| = 1.

It is natural to ask what condition for ¢ ensures the composition operator Cy
to be compact for the critical case p = 1. This paper mainly answers this question.

Theorem 1. Let ¢ be a holomorphic mapping from D into itself. Then Cy is
compact on B; if and only if

2.1) l11|m |Cs0ellB, = 0.

NECESSITY. Assume that Cy is compact on B;. We have that
C40a B, = |Cy(0a — a)l|B, = 0 as |a| — 1 since 04(2z) — a = 0 uniformly on
compacts of D. Thus (2.1) holds.

Proor.

SUFFICIENCY. We first show that (2.1) implies that

2.2 lim sup/ Gq 0 ¢(2)) | dA(z
Yim sup |¢(z>|>r|( )|
In fact, by (1.5) we see that (2.1) gives that
"
23 la|—b1_/| 000 $(2)) |dA
Hence

/D |(0a 0 ¢(2))"| dA(2) <1

f r some a € D. It follows that o, 0 ¢ € By for some a € D. Since B C B, =D

and g, is analytic on D, we have ¢ = 6,00, 0¢ € B;. Note that by (2.3) we know
that for given ¢ > 0 there exists a § > 0 such that

Sl -/|¢(z)|>,-| (a0 d(2))"|dA(2) <e

§<|al<l
fralre(0,1). Letting r — 1~ gives

G0 (2 " dA(z
e M»'( $(2)) | dA(2)

< iﬂ& / |a"(¢(z) )14 (z)[* dA(2) + sup /¢(z)|>r|a;(¢(z))|‘¢”(z)|dA(z:

la|<6

< C(/ “ >r|¢’(z){2 dA(z) + /|¢(;)|>r|¢”(z)| dA(z)) <,
where

0 = max{ sup 172, s |a::(z>|}-
la|<é lal<é

zeD zeD
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Note that ¢ € B; and ¢ € D have been used in the above estimate. Thus we show
that (2.2) holds.

Now we prove the compactness of Cy. For any bounded sequence {fn} C B,
without loss of generality, we assume that f, converges to zero uniformly on any
compact subset of D and ||f,||z, < 1. To end our proof it suffices to show that
| fn o #llB, = 0 as n — oo since | fa © ¢(0)|+|(fn 0 $)'(0)] = 0 as n = co. We write

00
fn(z) = Z Cn.kTan,i (z), Gnx €D
k=1
with

o0
IfallB, €D lennl <2, n=1,2,
k=1

Using (1.5), it suffices to prove

L1061 aA@ 0, 7> co.

By (2.2) for given € > 0, there exists an r, 0 < r < 1 such that for all a € D

sup/ [CAC ¢(z))"\ dA(2) < %
a€D Jig(z)|>r
Hence

AwnwmﬂMm

= - (6(z " dA(z . ) , A
'/|.¢(z)|5r‘(f (¢( )) ‘ ( )+ / (z)|>,.‘(f (¢( ))

lo
< [ 6@ 1A + Ehenal [ sl 2))" a2
< / |(£(6(2))"| dA(2) + €.
lo(2)|<r

Notice that
[ a6\ dA) 0
lo(2)I<r
8s 7 — 0o, We obtain ||fn 0 ¢||5, = 0. The proof is completed.
Arazy, Fisher and Peetre [2] obtained following theorem.
Theorem B. The composition operator Cy is bounded on B, if and only if
sup [ |o4(8(2)|14 ()" dm(z) < oo
a€D JD
and
sup [ |04 (8())]16" (2)l dm(z) < oo,
a€D JD

Now we show a similar result for compact operators.
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Theorem 2. Let ¢ be a holomorphic mapping from D into itself. Then C, is
compact on By if and only if the following two expressions are true:

24 N ACOICORIORL
and
23) lm, [ ],(6(2)6" ()] dAG) =o.

PROOF. Since

Cy0a B, ™ /D |0 (6(2)) (#/(2))* + 04 (#(2)) #"(2)| dA(z),
it is easy to see that (2.4) and (2.5) imply
lim ||Co0all3, = 0.

By Theorem 1, Cy is compact on Bj.
Conversely, assume that Cy is compact on B;. By Theorem 1 we have

tim, Cora oy = i, [ [(0008)|4A) =0

Since o is zero-free and analytic in D, we can find a function f, analytic in D

with f 0 =0 such that (f2)2 = o). So f, € B, and ||fs||B, is bounded. By the
estimate

Co0allB; < CliCy00all 5,
and the assumption, we know that Cy is compact on Bz by Theorem A. A direct

computation gives of, w) — 0in D as |a| = 1. Hence f, tends to 0 uniformly on
any compact subset of D. Thus |Cyfs| 5, = 0 and

tim Cof 5, = lim, [|02(8(2))1¢ (2 dA(a) =0

a—1

On the other hand, since
0a0 )" = a3(p)(¢) + au(e)e"s
we have

[D Aoz ¢ z dA(s) < /D (60 0 9)" ()| dA(z) + /D 107 (8(2)) |16/ (2)? dA2):

By 24 and the assumption we obtain (2.5). We complete the proof. O

3. Composition operators between B; and B,

Theorem 3. Let @ be a holomorphic mapping of D into itself and 1 < p < o0.
Then Cy 18 compact from B, to By if and only if

3.1 i =0.
3‘131"04’00 “Bp 0
PROOF. Suppose Cy is compact from B; to Bp. Choose 0,(z) —a € B; which
converges to 0 uniformly on any compact subset of D. Thus
lim Cs0allB, = |.£1|IB1"C¢(G° -a)ls, =0.
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Conversely, for the case 1 < p < 0o we consider a bounded sequence {f»} C B1
converges to zero uniformly on any compact subset of D and |f, 5, < 1. Toend
our proof it suffices to show that || f, o ¢lig, = 0 as n — co. Let

0
fa@) =) cnk0a,s(2), Gnk€D
with k:
Ifalle, € lenl <2, n=1,2,....
Similar to the proof of Theorem—l one can prove that (3.1) implies that
(3.2) lim sup / ¢(z)|>rl (020 (2))" [P (1 - |22)?P2 dA(z) = 0.
Thus, for given € > 0, there exists an r, 0 < r < 1 such that foralla € D

"o 2\2p—2
sup/ 0q0 ¢(z 1-|z dA(2) <
oup | 1(oaod(2)" P = o7 4AG) < 5
Therefore, by Holder’s inequality

/I.¢( N>r

(fa(6(2)))"] (1 = 1al?y2dA(2)
3 ek (Tans (#(2))) \(1 |22~ dA(z

/¢(Z)I>T k=1

= (k{:l‘c"’kl) " /¢(z)|>rzlc"kl

[ )

P
< (Z|cn,kl> sup /
k=1 aeD J|¢(z)|>r

On the other hand, we have

/|.¢(=)|ST

as n — oo, Hence

Tann (6(2) )"‘ (1— 22 2P-2dA z

(Ua(¢(z)))"r (1— 2%)%23A 2 <€ 2

(fa(6(2))"] (1 = 1P 2 dA(z) < e 2

im | |((6()") (1= 12872 dAG) = 0.
la|—1
Thus, Cy is compact from Bi to B,.
For the case p = o0, if (3.1) holds, then
(3.3)

Im ICyoalla = .

By Theorem 1, Cy is compact from B to B. Since B; C B, Cy is compact from By
to B. The proof is completed.

Combining our theorems with Tjani’s result, we are able to build the following
new theorem.

Theorem 4. Let ¢ be a holomorphic mapping from D into itself and 1 £p <
g < 0. Then the following are equivalent:

(a) Cy: Bp = By is a compact operator.
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() ICs0allB, = 0 as |a] = 1.
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Whether Regularity is Local for the
Generalized Dirichlet Problem

Paul M. Gauthier

ARBSTRACT. We give an example which shows that a regular boundary point for
the classical Dirichlet problem need not be regular for the generalized Dirichlet
problem.

Let G be a bounded open set in R™. The classical Dirichlet problem for G is
the problem of the existence, for every continuous function ¢ on dG, of a harmonic
function u in G having ¢ as boundary values. To solve the Dirichlet Problem,
Lejeune Dirichlet introduced a variational method, which asserts that a solution u
can be attained as a minimizer of the Dirichlet energy in a certain function space.
Bernard Riemann named this method the Dirichlet Principle and assumed that such
a minimizer exists. However Karl Weierstrass, in 1870, provided a counterexample
to the existence in general of a minimizer. In 1899, David Hilbert gave a rigourous
solution to the Dirichlet problem by justifying the Dirichlet principle, under certain
conditions, thereby foreshadowing the introduction of Hilbert space.

The Dirichlet problem is attacked by somehow providing a candidate u, for
a soluti n. Let us call such a candidate a generalized solution. Once we have
a generalized solution w,, there remains the problem of showing that u, has the
desired boundary values . For any continuous function ¢ on 9G, the Perron
method provides a generalized solution, which we denote by uS and call the Perron
solution.

A boundary point p € 8G is said to be a regular point for the (classical) Dirichlet
problem for G, if for each continuous function ¢ on 9G, the Perron solution "‘8 has
the desired boundary behavior at p. That is,

1 Jim uS(2) = p(p)

Thus, it is a tautology to say that the classical solution to the Dirichlet problem
exists for a bounded open set G if and only if each boundary point is regular.

Of course, if ¢ is not continuous, then there is no solution to the classical
Dirichlet problem for the boundary data . However, the Dirichlet problem can be
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generalized as follows. For many functions ¢ defined on G, but not necessarily
continuous, Perron’s method still produces a harmonic function u&, which it is
natural to call a Perron solution to the Dirichlet problem for the boundary function
. In some sense, the Perron solution is the harmonic function which makes the
best attempt at being a classical solution. If a classical solution exists, then the
Perron solution exists and coincides with the classical solution.

Marcel Brelot has shown that the Perron solution u$ exists if and only if y is
integrable with respect to harmonic measure u$, for some (equivalently, f r every
a € G. Moreover, we have the integral representation

ug(a) =/ edul, acG.
aG

Norbert Wiener showed that a boundary point p € 0G is regular f r the las-
sical) Dirichlet problem if and only if the complement of G is not thn at p. F r
example, if the complement of G contains & cone with vertex at p, then p is a
regular point.

Of course this implies that regularity is a local condition. The regularity r
non-regularity of a boundary point p € G depends only on the nature fthe pen
set G near the point p.

Our definition of regularity (which is the usual one) is f r the classical Dinchlet
problem. Now that we have introduced the more general Perr n solut’ n to the
Dirichlet problem, it is very tempting to think that regularity is1 al also mn terms
of Perron solutions. Namely, one might think that if p € 9G is regular f r the
(classical) Dirichlet problem, then (1) holds whenever u$ makes sense and ¢ is
continuous at p.

The purpose of this note is to provide a counterexample. This example was
formulated in a conversation with Aurel Cornea over 30 years ago.

Example 1. There exists a bounded simply connected domain D in R?, having
the point (0,0) as a regular boundary point for the (classical Dirichlet problem
and containing the interval {(x,0) : 0 < x < 1}, and there exists a function ¢ on

D integrable with respect to harmonic measure (so the Perron solution ug exists
and a neighborhood U of (0,0) in R? such that: ¢(z,y) =0 for (z,y € UNAID,
but

lim sup ug(a:, 0) = +o0.
x™\0

PROOF. It is easy to give an example of an open set G having the required
properties, except that it is not connected. We shall then add (carefully chosen)
connecting channels between components of G to obtain the desired domain D.

Forn=0,1,2,..., let R, be the open rectangle

R.={(z,9) eR?: 27" 1 <z < 27" |y| < 1}
and denote by
Hy={(z,9): 27" <z <27, y=%1}

the upper and lower boundary segments of R,. Let (xn,0) be the mid-point of the
rectangle R,. Thus, z, = (27" 142 ")/2).

Set G = |J,, Rn. We now define the function ¢ on 8G. First of all, we
put ¢(x,y5) = 0 on all vertical boundary segments {(27",y) : |ly| < 1}, n =

0,1,2,..., and {(0,%) : |yl € 1}. On horizontal boundary segments {(z,+1) :
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gnrlezr<c2 *,n=0,1,2,..., we set p(z,£1) = A\, where A\, > 0 is chosen
s0 large that the value of u$, at the mid-point (zn,0) of the rectangle Ry, is greater

than n:

(2 ug(a:,.,O) > n.

The open set G and the boundary function ¢ have all of the required properties
with the exception that G is not connected.

We shall now construct a domain D from G. For eachn =1,2,..., let S, be
a segment

n = {(2_n)y) . ‘y‘ < eﬂ})
for some 0 < ¢, < 1 to be chosen later. Set

n n
D, = U Ry U U Sk
k=0 k=1

and

oo o0
D= U R U U Sk.
k=0 k=1
By abuse of notation, we denote by u, the Perron solution of the Dirichlet problem
on D,,, with boundary values ¢ restricted to 8D,,. This makes sense, since D, C
8G. Let u2, and p?, denote harmonic measure for the domains D and Dy, at a
point a,b respectively in D or D,.
From the maximum principle,

Mi,y(Hl U Ss) < Mff;,(sl), (z,y) € Ro.
Thus, we may choose €; so small, that

3 A1 - gy o(H1 U Ss) < %
We note that on Dy, by the maximum principle,
poy(H) < pg,(H1U S5),
and so, by 3,
4 A1 - po o(Hi) < %
Suppose, for j =1,2,...,n — 1, we have defined ¢; such that

1
Xj + by o(Hj) < bYh
We may choose ¢, so small, that

1
5 An #:o,O(Hﬂ U Sn+1) < 5;

We note that on Dy, by the maximum principle,

#zD,y(Hn) < py,(HaU Spya),
and s0, by (5),

1
6 An * #go,o(Hn) < ‘2-ﬂ'
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Thus, by induction, (6) holds for al n = 1,2,..., and so

o0
[ @B =3 B o(Hn) < Yo 45, o(Ho) +1 < 4.

n=0
Hence, ¢ is integrable with respect to harmonic measure for D. Therefore, the
Perron solution uf , by which we mean the Perron solution for the restriction of ¢

to 9D, exists.
It follows from Theorem 6.3.6 in [1] that v2 > 4G on R, and so by the maxi-

mum principle and (2) it follows that
vl (zn,0) > n, n=0,1,2....

Thus, the Perron solution ug has all of the required properties. ]
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