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Preface

The objective of writing this book is to bring together in a coherent fashion the

foundations of and recent developments in finite temperature quantum field theory

and its applications to physical problems. The basic tool of our presentation is

symmetry.

Symmetry is the cornerstone of contemporary physics. It has played a funda-

mental role in our understanding, in particular, of elementary particles and their

interactions. This concept has been useful not only in ab initio theories, but also in

heuristic formulations, such as thermodynamics. In order to appreciate this point,

let us trace some elements of temperature dependent phenomena. Thermodynamics

is a theory describing macroscopic properties of matter without any microscopic dy-

namic input. For this reason, it was considered by many as a way of systematizing

the properties of measurements. However, it is quite amazing that the description

of entropy, free energy, specific heat and several types of phase transitions can be

related and some conceptual progress has developed. In these developments, a cru-

cial step was taken by Landau, guided by concepts of symmetry, who set forth his

theory of first and second-order phase transitions. This introduced notions such

as the order parameter and spontaneous symmetry breaking. In order to advance

with the Landau theory describing properties of critical phenomena in matter, the

methodology of the quantum field theory was borrowed by thermodynamics. This

was a two-way street. The quantum field theory, describing elementary particles,

adopted the concept of spontaneous symmetry breaking to justify, for instance, the

origin of mass, superconducting transitions and many other phenomena.

As the understanding of the microscopic nature of matter developed, it be-

came imperative to introduce dynamics to describe the thermodynamic properties

in terms of forces and a consistent theoretical structure. But the large number of

particles made it prohibitive to carry out a real microscopic calculation. This led to

ideas of statistical mechanics, starting with Boltzmann and Maxwell, and finding a

synthesis by Gibbs with the ensemble theory.

The last century saw a rapid growth of ideas and sophisticated methods to treat

microscopic systems. The developments of both quantum theory and relativity led

to the quantum field theory that incorporated these two ideas. Then this in turn

vii
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provided results such as the spin-statistics theorem. These formulations, initially

considered to be useful in developing a theory for elementary particles, proved

in fact highly beneficial to an understanding of the properties and phenomena in

many-body physics. However, it still lacked the notion of temperature. Part of this

theoretical apparatus, such as the partition function in statistical mechanics and

Green function in quantum physics, was converted into a proper microscopic theory

at finite temperature by Matsubara in 1955 using the expedient of imaginary-time.

At about that time, there was a tremendous development of quantum field the-

ory with methods due to Feynman, Tomonaga and Schwinger, among others. There

were two other fundamental achievements. One was carried out by Wigner who, in

the late ninteen thirties, when studying representations of the Lorentz group, found

a way to classify elementary particles. The other step was due to Yang and Mills,

that extended the notion of gauge symmetry (due to Weyl) to describe the basic

interactions in nature. These findings of a theory at zero-temperature were enough

motivation for researchers to look for an extension of the Matsubara method. This

was carried out by Ezawa, Tomozawa and Umezawa, in order to describe processes

in relativistic physics, settling then a strong proximation of two different areas:

statistical mechanics and quantum field theory. The consequence was a diversity

of developments of practical and formal interest, such as the periodicity in time

described by the KMS (Kubo-Martin-Schwinger) conditions, with topological im-

plications, and the spontaneous symmetry breaking in particle physics by Dolan

and Jackiw. It is also important to state that many findings, first introduced in the

zero-temperature theories, were brought to the finite temperature theory. For exam-

ple, this is the case for the Ward-Takahashi (W-T) relations, where using symmetry

provides a way to carry out consistent perturbative calculations. Furthermore, the

W-T relations present the only non-perturbative method in quantum field theory,

at both zero and finite temperature.

The imaginary-time formalism is basically a theory for thermal equilibrium.

However, time is a crucial ingredient in many processes in relativistic and in many-

body physics. This led Schwinger, followed by Keldysh, to propose a method using

elements of the imaginary-time formalism with real time. A decade later, while

studying superconductivity, Umezawa and coworkers found that to transpose zero-

temperature methods to imaginary-time problems with field operators and their

products was difficult and cumbersome. The attempt to solve this led Takahashi

and Umezawa to propose a real-time operator field theory at finite temperature,

thermofield dynamics (TFD). This required the Hilbert space to be doubled. The

second Hilbert space was eventually related to the heat bath as the old thermo-

dynamics required a heat bath to have a system at constant temperature. TFD

brought to the realm of thermal theories two elements. One was the Bogoliubov

transformation, describing the temperature effect as a condensate of field in the

vacuum, and it was well-known for superconducting phase transitions. The other

was a Hilbert space structure associated to the thermal state. The latter is, in turn,
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connected to the concept of c*-algebras, the formal structure of statistical physics.

As a consequence, representations of symmetry groups for thermal theories could be

explored. In addition, these algebraic elements were combined with the KMS con-

ditions giving rise to representations of quantum fields in topological manifolds, say

S1 × R3, describing a system in compactified regions of imaginary-time, where the

dimensions of the compactification, represented by the circle S1, is the temperature.

In this book, we explore in detail this symbiosis of symmetry and topology.

The book is divided into five parts. The first part treats fundamental principles.

We start, for the sake of completeness, by considering the status of thermodynamics.

Our goal is to show its connection with the elements of field theory by discussing the

Landau phenomenological description of first and second-order phase transitions.

Then, in the second chapter, basic elements of statistical mechanics are presented.

The Louiville-von Neumann equation and the von Neumann entropy are used to

arrive at the Gibbs ensembles using the variational principle. Starting again from

the Louiville-von Neumann equation, the Wigner function formalism is introduced.

In the third chapter the notion of partition function is explored, leading us to

consider the idea of a generating functional that has proved so very useful in the

perturbative approach for quantum systems; in particular the path integral method,

including gauges fields. Chapter 4 deals with the theory of interacting fields at

zero-temperature. Examples of scalar field and Yang-Mills theory are presented.

It provides a brief look at the set-up of the canonical theory and the perturbative

approach. In this brief review of so many topics, compactified in four chapters in

Part One, we have focussed on concepts that will be explored and developed at

finite temperature in the rest of the book.

Part Two deals with the thermal field theory. We start with some basic notions

of thermofield dynamics and statistical physics to introduce the concept of repre-

sentations of symmetries associated with thermal phenomena. This is called the

thermo-algebra. These ideas are illustrated with examples, by considering oscilla-

tors for bosons and fermions. The doubling of operators is interpreted physically. It

is followed by considering thermal groups based on kinematic symmetries: Poincaré

and Galilei, leading us to thermal Lagrangians. The representations of the kine-

matic groups provide, in particular, relativistic Liouville-von Neumann equations

for fermions and bosons. The relationship among TFD, Matsubara and Keldysh-

Schwinger formalisms is discussed in terms of symmetry, providing a unified view

of these diverse techniques. Finally, the path integral approach at finite tempera-

ture is introduced. This is followed with some examples of calculating decay rates

and cross sections at finite temperature and these are compared with those at zero

temperature. We close this Part with a discussion of topics on renormalization and

Ward-Takahashi relations at finite temperature.

Part Three contains applications to quantum optics. Exploring thermal rep-

resentations in TFD, various thermal states of a field mode are introduced and

defined consistently. In order to study the physical nature of such states, the sta-
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tistical properties are analyzed by considering the Mandel factor and Wigner and

P-functions. Finally bipartite states are introduced and their entanglement is con-

sidered, taking the TFD structure as a guide.

Part Four deals with compactified fields and their application. The basic idea is

to explore the topology associated with the KMS conditions to treat fields in con-

fined spatial regions at finite temperature. Starting with topological arguments, we

discuss how to generalize the Bogoliubov transfomations and the Matsubara imag-

inary time to allow a study of systems confined to finite regions, linear, surface and

volume, consistent with topologies ΓdD = (S1)d×RD−d. Due to the close association

of the Bogoliubov transformation and the imaginary-time method, the process of

space compactification may be understood physically, in one case as in the other,

as a process of condensation of the field in the vaccum. The first example is the

Casimir effect for the electromagnetic field between plates, and in a parallelepiped

box. The generalized discussion implies that the Casimir effect may be viewed as

a condensation of the electromagnetic field in the vacuum. Then we consider the

example of fermions in different configurations. Some results for a simplified QCD

Lagrangian are obtained. This is followed by studying the case of the compact-

ified λφ4 theory and an analysis of spontaneous symmetry breaking for spatially

confined systems at finite temperature. Then the examples of phase transitions

in superconducting material in films, wires and grains are considered. This is to

analyze the role of topology that may change the transition temperatures in these

confined systems. The case of first order phase transition in superconducting films

is also taken up. All these examples provide a strong support for the ideas, using

symmetry representations with topological ingredients, to treat compactified fields.

In Part Five, first we analyze representations of thermo-algebras in the phase

space. The Wigner function is then derived for relativisitic and non-relativistic

fields, followed by a study of the classical version of TFD. These results give us

elements of kinetic theory and stochastic processes from a perspective of the rep-

resentation theory of the kinematic groups, Poincaré and Galilei. Further chapters

provide some ideas about open systems, exploring methods of quantum field the-

ory. Systems in nonequilibrium states are considered only in a simple manner. An

exhaustive analysis of such a problem would require a separate monograph.

The book is structured in such a way that some topics can be studied indepen-

dently. For instance, a reader sufficiently trained in quantum field theory can start

from Chapter 5. Another reader interested in optics can start from reviewing some

basic concepts in Chapters 1 and 2, and then jump to Chapters 5, 6, 12, 13 and

14. Beyond Part One, other basic elements are introduced throughout the book to

make it convenient for beginners and students to study.

Finally, we wish to thank many colleagues and friends for contributing to the

developments in this book. Over the last fifteen years, they have shared their

expertise, their advice and their encouragement to undertake this project and to

take it to completion. Our discussions with many of them have been invaluable
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is also richly deserved. They have brought ideas, enthusiasm and energy to the

development and better understanding of this project. We are fortunate to have

them associate with us. They are: L.M. Abreu, A.A. Alves, M.C.B. Andrade,
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Chapter 1

Elements of Thermodynamics

Thermodynamics provides a phenomenological description of nature, self-contained

from an axiomatic point of view, considering, as a principle, matter in an aggregated

form without any microscopic assumption. During the 20th Century, the common

presentation of this theory followed the historical developments, with laws and ex-

amples fundamentally based on and explained by considering the classical problems

of thermal engineering. Following this trend, it was, and still is, usual to see the

formulation of the second law based on the Kelvin and Clausius prescriptions. His-

torically, with such a law, by using the Carnot cycle and the Clausius theorem,

the existence of a state function called entropy (from the Greek, transformation)

is then formulated. Tisza [1] and Callen [2], in a rigorous presentation, used the

entropy function and the notion of an extremum principle as an ontological starting

point to build the thermodynamic theory. This procedure equips a physicist with a

readable formalism, providing a way to encompass the effect of time in the context

of thermal approaches and yet bringing notions of thermal laws to the realm of the

quantum field theory. We present an outline of the main elements of the equilibrium

thermodynamics along the lines introduced by Tisza and Callen.

We describe four formulations of thermodynamics and the compatibility among

them, that is: (i) the formulation based on the fundamental relation (or equation)

in which the function of state entropy, S, or the energy, E, is given explicitly; (ii)

the formulation using the Legendre transformation of S or E, giving rise to the

thermodynamical potentials, such as the Helmholtz free energy and enthalpy; (iii)

the formulation based on the set of equations of state, involving the first deriva-

tive of the extensive quantities as S or E. Such derivatives are zero-order homoge-

neous functions, and describe intensive variables such as pressure (P = −∂E/∂V ),

temperature (T = ∂E/∂S), and so on; and (iv) the formulation based on second

derivatives, describing quantities like specific heat, among others. The importance

of formulations (iii) and (iv) relies on the straightforward connection with experi-

ments.

Regarding the theoretical structure of the thermal formalism, it is worth em-

phasizing that it is similar to the theory of a mechanical system, in the sense that,

first a definition for the notion of thermal state is introduced, and subsequently

3
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the changes in the states are analyzed with causal laws. Although, in equilibrium,

thermodynamics time does not play a role as it does in mechanics, we can still

distinguish the kinematic and the dynamic aspects of the theory. The former is re-

lated to the definition of thermodynamic (thermal) variables, the measurability, the

definition of the state of a thermal system, and the definition of specific processes.

The dynamical aspects are related to changes in the state and laws regulating such

changes. This scheme also works when time is a relevant parameter, such that

nonequilibrium processes take place. For further readings, we suggest Refs. [1–7].

1.1 Kinematical aspects of thermal physics

The theoretical description of a physical system can be carried out by, first of all,

defining the points in space and time where processes of measurement and tests

of such a theory are supposed to take place. This leads us to the usual notion of

a reference frame, defined by the of transformation from one point to another in

space and time. One important aspect associated with the introduction of a ref-

erence frame is that the notion of space and time are defined simultaneously. For

equilibrium thermal processes space only plays a significant role and is defined by

a proper definition of a ruler. In this chapter we consider non-relativistic thermo-

dynamics, then we have Galilean reference frames. We assume as a reference frame

the laboratory system, without addressing to any change of coordinates. The char-

acterization of a thermal system will then be given by a set of macroscopic variables

selected in advance by an observer located in the laboratory. These variables are,

for example, internal energy (E), pressure (P ), volume (V ), number of moles (N),

temperature (T ), among others. The definition of such thermal variables is given

in association with the measurement process through the use of constraints and

walls. Volume is measured by rulers; temperature, which is interpreted in a first

moment as a quantity providing the degree of warmth of a body, is measured by

thermometers. We say that walls define a volume when their sizes are fixed. Walls

restrictive to energy of any kind give rise to an isolated system. When the walls of a

system permit a very slow flow of energy to a system via mechanical work only, the

walls are called adiabatic. Walls are called diathermic when changes of the energy

between two systems are permitted via a difference of temperature.

There are two kinds of thermal variables. To realize that, consider a macroscopic

homogeneous system, divided into a number of similar subsystems. For instance,

a gas in a box can be seen as formed by a collection of sub-boxes. A variable is

said to be extensive when its value is equal to the sum of values of each subsystem.

Examples of such type of variables are energy, volume and number of moles. A

variable is said to be intensive if its value is independent of subsystems. As examples

we have temperature, pressure and all the densities defined from the extensive

variables as energy density, volume density, number of moles density (or simply,

density), and so on.
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The state of a macroscopic system is defined by specifying a set of thermal

variables, or in a more general sense, by a function of the state of the system.

Usually, the evolution of an isolated system is such that, after some time, the

system reaches a final state in which its variables no longer change in time. Such a

state is the so-called thermal equilibrium state, and is defined by a set of extensive

parameters, including energy necessarily. An equilibrium state will be denoted

by x = {x0, x1, . . . , xr}, with x0 = E. A simple system is defined by setting x1 = V,

x2 = N1, x3 = N2, . . ., where N1, N2, . . . are the number of moles of different

substances; this is the case, for instance, of a mixture of gases in a box with no

chemical reactions.

The measurability of the variables like V and N , as we have said, follows stan-

dard methods. The measurement of the energy E, however, requires a careful

discussion. To begin, we have to recall that the notion of energy has its origin in

mechanics. That is, energy is defined in terms of the notion of work, measured in

the MKS system in Joules, J, with 1 J = 1 Nm, such that the difference between

two energy levels of a system is physically associated with the change of the me-

chanical state. Therefore, even treating a thermal system, the internal energy has

to be measured by a process involving mechanical work. The concept of energy

conservation, however, is supported by the Joule experiment.

Consider a change in a system from a state a to a state b. The Joule experiment

assures that if we isolate this system by adiabatic walls, then always there exists a

mechanical procedure by which we can take the system from a to b or vice versa.

In this way the quantity of energy that the system receives from or liberates to

its neighborhood can be measured by a well defined mechanical method. Take,

for instance, a gas in a box of volume Va at pressure Pa and temperature Ta. The

system is set in contact with a block of ice, such that at the final equilibrium new

values for volume, temperature and pressure are, respectively, Vb, Tb and Pb, with

Ta > Tb. It is not so simple to generate a mechanical procedure to bring the system

from a to b, but is much more trivial to find a mechanical apparatus to raise the

temperature of the system from the state b, taken as the initial state, to the final

state a. In both situations we assume that the energy flow is the same. This is

an example where there are energy flows to or from a system conditioned by the

difference of temperature, via diathermic walls. This flow is called heat and was

initially measured in arbitrary units called calorie (Cal). With Joule, the energy

content of each cal was established experimentally resulting in 1 Cal = 4.184 J.

If we treat equilibrium states, we assume that two arbitrary states can be con-

nected to each other through a process composed of an infinity of intermediary

states. Processes like that are called quasi-static. This notion is necessary in order

to give a proper definition to a differentiable thermal quantity. The mechanical

work associated with a system described by the parameters x = {E, x1, . . . , xr} can
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Table 1.1 Mechanical works and generalized forces

Infinitesimal work dW Type of force

−PdV Pressure P∑l
j=1 µjdNj Chemical potential µj

µ0Hext·dIj Magnetic field H

Eext·dp Electric field E

be written as

dW = f · dx =

l∑

j=1

fjdxj , l ≤ r, (1.1)

where fj is the applied generalized force and xj is the corresponding extensive

parameter modified by the action of fj . Expressions for mechanical work are given

in Sec. 1.1 for different systems, where P stands for pressure; µj for the chemical

potential; µ0 for the vacuum permissivity; Hext for the external magnetic field;

Ij for the magnetic dipole moment, where µ0Hext is the force associated with the

extensive variable Ij ; Eext for the electrical field and p the electric dipole moment.

Up to now the characterization of a thermal system has been based on aspects

involving the definition of a thermal state, without a specification of the laws de-

scribing the changes in the state. This dynamical characterization is the subject of

the following section.

1.2 Dynamical aspects of thermal physics

First law of thermodynamics

In order to establish laws controlling the evolution of a thermal equilibrium

state, first consider an infinitesimal energy flow to a system via work (dW ) and

heat (dQ), and let us assume the conservation of energy. Then from the Joule

experiment we can write infinitesimal changes in the internal energy (dE) in the

following way

dE = dQ+ dW . (1.2)

This expression is called the first law of thermodynamics, and it expresses the energy

conservation taken as a fundamental law. Observe that the content of the mathe-

matical differential can be assumed for dE, since E can be taken as a function of

variables of the thermal system — a function of state. But this is not the case for

dQ and dW , which express only small flows to or from the system.

Second law of thermodynamics

The first law is not enough to treat all the richness of thermal processes. For

instance, it is a well-established experimental result that if two simple systems are
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set forth in thermal contact with one another, the flow of heat will take place

from the hotter system to the colder one. The reversal of this process, without

any external intervention, is not observed, although it does not contradict the first

law. In order to address this question, let us consider a system in a state given

by the set x = {E, x1, . . . , xr} and assume the existence of a state function S =

S(E, x1, . . . , xr) to be called entropy. The entropy S(E, x1, . . . , xr) is, by definition,

an extensive, analytical and monotonically increasing function in the variable E.

Besides that, in the absence of internal constraints, values of extensive variables are

those that make S maximum for an equilibrium state. That is,

δS|equilibrium = 0,

δ2S|equilibrium < 0.

This principle is called the second law of thermodynamics.

With the second law, thermal processes can be classified as reversible or irre-

versible. An irreversible process is that one which, if taken as reversible, would tend

to minimize S, contradicting the second law. A typical example of such a process is

the free expansion of a gas, which is a nonequilibrium process. In the case of equi-

librium, a process is reversible when it can be recovered quasi-statically through a

set of equilibrium states. In this case, the entropy is constant, in agreement with

the second law.

Third law of thermodynamics

The third law states that by a number of finite steps, it is impossible to lower

the temperature to T = 0. A consequence of this principle is that if a system, in a

state characterized by a variable x (finite), is cooled to another state characterized

by x+ δx, then at T = 0, δS|a = 0, or
(
∂S

∂x

)

T→0

= 0. (1.3)

An experimental result derived from this principle is that

lim
T→0

(
∂S

∂P

)

T→0

= − lim
T→0

(
∂V

∂T

)

P

= 0.

This law, formulated by Nerst in 1905, is interpreted sometimes in statistical me-

chanics as an entropy condition, fixing the value of the entropy as S = 0 at

T = 0 [2, 8].

1.3 Equations of state

Due to the second law, the entropy S is an analytical function in the energy variable.

Then we can write in a unique way

S = S(E, x1, . . . , xr) (1.4)
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or equivalently

E = E(S, x1, . . . , xr). (1.5)

Relations given by Eqs. (1.4) and (1.5) are called fundamental equations ( or re-

lations). “Fundamental” in the sense that if we know one of these relations, the

properties of a thermal system can be obtained. We write the fundamental equation

as

Ψ = Ψ(x0, x1, . . . , xr) ≡ Ψ(x), (1.6)

such that taking Ψ = S and x0 = E, Eq. (1.4) is recovered and the fundamental

equation is said to be in the entropy representation. On the contrary, taking Ψ = E

and x0 = S, Eq. (1.5) is obtained and the description is referred to as the energy

representation.

Since S is an extensive function, it is a first-order homogeneous function. Indeed,

for a system composed of m subsystems, the entropy can be written as

S = S(E, x1, . . . , xr)

=

m∑

k=1

Sk, (1.7)

where Sk is the entropy of the k-th system. Then taking for instance a system

characterized by the state E, x1, . . . , xr, with the fundamental equation given by

S(E, x1, . . . , xr), another system can be constructed by a dilation of the former one

by writing λE, λx1, . . . , λxr such that the new fundamental equation is λS. As a

result of Eq. (1.7), the entropy of the new system is given by

S(λE, λx1, . . . , λxr) = λS(E, x1, . . . , xr). (1.8)

The same result is true for the fundamental equation in the energy representation,

that is,

E(λS, λx1, . . . , λxr) = λE(S, x1, . . . , xr). (1.9)

We have stated that Ψ is a first-order homogeneous function, that is

Ψ (λx0, λx1, ..., λxr) = λΨ (x0, x1, ..., xr) . (1.10)

As a consequence, differentiating Eq. (1.10) with respect to λ, we have

∑

j

∂Ψ (...λxj)

∂ (λxj)
xj = Ψ (x0, ..., xr) . (1.11)

On the other hand, taking the differential of Eq. (1.6), we obtain

dΨ =
r∑

j=0

Fjdxj , (1.12)

where

Fi =

(
∂Ψ

∂xi

)

x0...xi−1,xi+1...xr

; i = 0, ..., r. (1.13)
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The notation ( ... )y means that y is held fixed. For simplicity, we drop this index.

Notice that λ is an arbitrary parameter; then setting λ = 1 in Eq. (1.11), and using

Eq. (1.13), we find

Ψ =

r∑

j=0

Fjxj . (1.14)

This is a basic result showing that if we know the set of (r + 1)-relations given

by Eq. (1.13), then we can solve, in principle, the thermodynamical problem by

writing the fundamental relation as given in Eq. (1.14). The (r+ 1)-relations given

by Eq. (1.13) are called the set of equations of state.

The interest in equations of state lies in practical aspects. To see this, let us

analyze the physical content of the functions Fj . Observe that since Ψ (x0, ..., xk)

is a first-order homogeneous function, its derivatives, Fi = (∂Ψ/∂xi), are zero-order

homogeneous functions, that is

Fi (λx0, ..., λxr) = Fi (x0, ..., xr) . (1.15)

The functions Fi (x0, ..., xr), also called “forces,” are natural candidates to stand

for intensive variables, like temperature, pressure and density of moles. Then the

equations of states (1.13), relating intensive variables, are directly accessible by

experiment, which is not the case for Ψ.

Since Fi are zero-order homogeneous functions, we have

Fi =

(
∂Ψ

∂xj

)
= Fi (x0, ..., xr)

= Fi(λx0, ..., λxr)

= Fi

(
x0

xr
, ...,

xr−1

xr
, 1

)
, i = 0, ..., r, (1.16)

where in the last line we have taken the arbitrary quantity λ to be λ = 1/xr .

Therefore, we have r+ 1 functions Fi, each one depending on r intensive variables,

since a ratio like xr−1/xr is an intensive quantity. Thus Eq. (1.16) show that the

set of equations of state can be written exclusively in terms of intensive variables.

The decrease in the variable number (originally Ψ required (r + 1) variables, while

each intensive function is written in terms of r variables) reflects the fact that,

for instance, the molar density, rather than the number of moles, is important in

this description. The elimination of the r variables from Eq. (1.16) gives rise to

a relation among the r + 1 intensive variables. This relation can be derived from

general arguments and it is called the Gibbs-Duhem relation. We proceed with the

physical identification of each intensive variable Fi (x0, ..., xr) .

1.4 The meaning of intensive variables

We consider a simple isolated system composed of two subsystems, denoted by a

and b, such that Va, Vb, Na and Nb are kept fixed. Suppose there is a virtual flow
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of heat between a and b, that is Ea and Eb can suffer a variation, where the total

energy is given by

E = Ea +Eb. (1.17)

The equilibrium conditions are specified by considering S as constant at equilibrium.

Notice that E is constant since the system is isolated. Let us then analyze this fact

in the entropy representation. In this case we denote,

Ψ = S and F
(s)
j =

∂S

∂xj
.

For the composite system, the entropy can be written as

S = Sa (Ea) + Sb (Eb) .

If the system reaches equilibrium, the second law states that δS = 0; therefore

∂S

∂Ea
=
∂Sa
∂Ea

+
∂Sb
∂Eb

∂Eb
∂Ea

= 0.

Using Eq. (1.17) with E being constant, i.e. δEa = −δEb, we derive

∂Sa
∂Ea

=
∂Sb
∂Eb

. (1.18)

In terms of the forces we write

F
(s)
0,a =

∂Sa
∂Ea

, F
(s)
0,b =

∂Sb
∂Eb

,

where F
(s)
0,α stands for the force in the entropy representation (s), considering α = a

or α = b. From Eq. (1.18) we obtain

F
(s)
0,a = F

(s)
0,b . (1.19)

This equation is the equilibrium condition written in terms of the intensive variable

F
(s)
0,α.

At this point, we have to analyze the stability conditions of the systems. That is,

suppose the system is virtually displaced from equilibrium with E = constant, such

that two systems are set in thermal contact with each other. During the evolution

of the system up to the final equilibrium state, S increases, and this fact can be

expressed by δS > 0. Under this condition we have

δS = δSa + δSb =

(
∂Sa
∂Ea

− ∂Sb
∂Eb

)
δEa

= (F
(s)
0,a − F

(s)
0,b )δEa > 0.

Assuming F
(s)
0,a > F

(s)
0,b , it follows that δEa > 0 and δEb < 0. Writing

F
(s)
0,α =

1

τα
,

then we have

τa < τb. (1.20)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Elements of Thermodynamics 11

Table 1.2 Extensive variables

∂E/∂S = T temperature
∂E/∂V = −P pressure
∂E/∂N = µ chemical potential

In the reverse way, assuming F
(s)
0,a < F

(s)
0,b , we have δEa < 0 and δEb > 0. As a

consequence

τa > τb. (1.21)

In conclusion, in either case, heat flows from a system with the higher τ to the one

with lower τ ; and at equilibrium, from Eq. (1.19) we obtain τa = τb, implying that

there is no heat flow between the two systems. Therefore, since τ is an intensive

quantity, it is the natural variable to represent the temperature, T , in accordance

with the intuitive notion of temperature as a measure of the perception of coldness

and warmness.

Recall that S increases monotonically with E, such that (∂E/∂S) = T ≥ 0. This

result ensures that T is positive definite. The third law fixes, as stated, S = 0 for

the state at T = 0. The temperature, T , is measured in Kelvin degrees, denoted

by K. Observe that this interpretation for (∂S/∂E) = 1/T could be derived in the

energy representation. In this case, we use the notation F
(E)
0,α = ∂E/∂S = T.

We proceed with this analysis for the sake of identification of the physical mean-

ing of other intensive variables. Some results are given in Sec. 1.2 for a simple

system. By this procedure, temperature is the “force” regulating the equilibrium

for the energy flow in the form of heat. Pressure is the “force” regulating the equi-

librium for the energy flow in the form of mechanical work defined via the variation

of volume, and the chemical potential regulates the equilibrium for the exchange of

matter among systems.

For a simple system in the energy representation, Eqs. (1.12) and (1.14) are

given by

dE = TdS − PdV +

k∑

j=1

µjdNj (1.22)

and

E = TS − PV +

k∑

j=1

µjNj . (1.23)

Comparing Eq. (1.22) with Eq. (1.2), it results in

dQ = TdS. (1.24)

Therefore, a quasi-static flow of heat to a system is associated with the increasing

of the entropy.

With the result given in Eq. (1.24), the physical content of the second law as

enunciated by Kelvin and Clausius is [2, 3]:
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Kelvin: It is not possible to realize a process, in which the only effect is to

remove heat from a heat bath to give rise to an equivalent quantity of work.

Clausius: It is not possible to realize a process, in which the only effect is

to transfer heat from a colder body to another one that is hotter.

These two statements are equivalent to each other and can be derived from the

second law as presented by following the Clausius procedure. Clausius introduced

the entropy function as a theorem from the above enunciations. Here we have

reversed the order.

Finally, Eqs. (1.12) and (1.14) in the entropy representation are given by

dS =
1

T
dE +

P

T
dV − 1

T

k∑

j=1

µjdNj . (1.25)

and

S =
1

T
E +

P

T
V − 1

T

k∑

j=1

µjNj . (1.26)

1.5 Thermodynamical potentials

We find that the set of relations given in Eq. (1.13) provides an alternative procedure

to treat thermal systems. In addition, as already observed, an advantage of this

formalism based on r+ 1 equations of state is that the intensive variables are more

easily handled from an experimental perspective. For instance, for a dilute and hot

gas, experiments shows that P ∼ ρT , where ρ = N/V is the density. This is a state

equation for the so-called ideal gas. The other equations for such a system are also

available experimentally. A problem here is that despite experimental advantages,

the full set of state equations remains inscrutable for a general situation. Such

a difficulty naturally suggests a search for other formulations of thermodynamics.

We can think of a thermal system considering the state defined by a set of mixed,

intensive and extensive, variables. To find such a formalism, a preliminary step

should be to define the fundamental equation via a function of state depending on a

set of mixed variables, keeping compatibility with the aforementioned formulation.

For a specific situation, consider a system described by the fundamental equation

E = E(S, x1, ..., xr).

Then we look for an equivalent representation for E, such that the state of the

system is characterized by the set of mixed variables {T, x1, ..., xr}, being the fun-

damental equation described by

F = F (T, x1, ..., xr).

Note that a formulation in terms of F is of interest to describe the process of a

system with constant temperature (an isothermal process). In this case, the system



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Elements of Thermodynamics 13

is no longer isolated in reaching the equilibrium state, which is quite often the

experimental situation. Beyond that, we have a reduction in the number of variables

from r+1, with the fundamental equation for E, to r, with the fundamental equation

written in terms of F .

Introducing the function F, observe that the difference between E and F is

in the variable S: in the function E(S, x1, ..., xr), the variable S was changed to

T = ∂E/∂S in F . Therefore, the function F can be introduced from E via a

Legendre transformation. Since the motivation and the solution for the problem

have been identified, there is no need to work with the specific energy representation.

Consider then the fundamental equation Ψ = Ψ (x0, x1, ..., xr) . The Legendre

transformation of Ψ in r − k variables xk+1, ..., xr, is defined by

L = Ψ−
r∑

i=k+1

Fixi, (1.27)

where Fi = ∂Ψ/∂xi. The differential of L is given by

dL =

k∑

i=0

Fidxi −
r∑

i=k+1

(xi) dFi. (1.28)

This shows that L is a function in the variables (x0, ..., xk , Fk+1, ..., Fr), i.e.

L = L (x0, ..., xk, Fk+1, ..., Fr). The functions L are the thermodynamical poten-

tials, and Fi is said to be the conjugate of xi. Therefore Eq. (1.27) defines the

potential, while Eq. (1.28) shows its dependence on the variables. In the following

the thermodynamical potentials for simple systems are identified explicitly using

Eqs. (1.27) and (1.28) in the energy representation.

Helmholtz free energy

Define the Helmholtz free energy, F , as

F (T, V,N1, ..., Nk) = E − TS, (1.29)

such that

dF = −SdT − PdV +

k∑

j=1

µjdNj . (1.30)

This free energy is useful to describe isothermal processes. Part of the internal

energy is then used to keep the temperature constant, and only the rest can be used

for the realization of mechanical work.

Enthalpy

Defining the function

H = H(S, P,N1, ..., NK) = E + PV (1.31)
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we have

dH = TdS + V dP +

k∑

j=1

µjdNj . (1.32)

The enthalpy, H(S, P,N1, ..., NK), is useful to describe processes at constant pres-

sure (isobaric process), as for instance a chemical reaction in an open container,

such that P is the atmospheric pressure.

Gibbs free energy

The Gibbs free energy is defined as

G(T, P,N1, ..., Nk) = E − TS + PV, (1.33)

so that

dG = −SdT + V dP +

k∑

j=1

µjdNj . (1.34)

This free energy combines aspects of the Helmholtz free energy and enthalpy.

Grand thermodynamical potential

Finally the grand thermodynamical potential is given as

ΩG(T, V, µ1, ..., µk) = E − TS −
k∑

i=1

µidNi (1.35)

with

dΩG = −SdT −
k∑

i=1

Njdµj − PdV.

This potential is useful to determine the full set of state equations, as we will see

in the next section.

The Legendre transformations can be introduced in the entropy representation,

in which Ψ = S. Following the same procedure as in the energy representation, with

Eqs. (1.27) and (1.28), we can derive the thermodynamical potentials in the entropy

representation. These potentials are called Massieu functions.

Previously the thermal state was introduced by a set of extensive variable. How-

ever, if the thermodynamic formalism is given in terms of potential functions, the

state is represented by a set of mixed, intensive and extensive, variables. In this

case, the restriction is that the state is not described by pairs of conjugate variables.

For instance (S, P,N) can be used to describe the state of a simple system. But

this is not the case for (S, T,N), since S and T are conjugate variables.
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1.6 Gibbs-Duhem relation

In this section we go back to the equations of state. We have seen that the funda-

mental equation, Ψ = Ψ(x0, ..., xr), can be written as in Eq. (1.14), that is

Ψ =

r∑

i=0

Fixi.

Taking the differential of Eq. (1.14) we have

dΨ =

r∑

j=0

(dFixi + Fidxi).

Using the differential of Ψ = Ψ(x0, ..., xr),

dΨ =

r∑

i=0

Fidxi,

we find the following relation among the intensive variables
r∑

i=0

xidFi = 0. (1.36)

This equation is the Gibbs-Duhem relation.

An immediate consequence of the Gibbs-Duhem relation is in the number of

state equations. As mentioned before, we have to find r+ 1 state equations for the

Fj , functions of r variables. For instance, for a simple system with (S, V,N) the

intensive variables are (T, P, µ). Therefore, we have to look for three equations of

state. We can use experimental results to infer only two of them, since the third

one can be written by using the Gibbs-Duhem relation.

For a simple system in the energy representation with E = E(S, V,N), the

Gibbs-Duhem relation, Eq. (1.36), reads

SdT − V dP +Ndµ = 0. (1.37)

Using Eq. (1.34), the differential for the Gibbs free energy, that is

dG = −SdT + V dP + µdN,

and Eq. (1.37), we find d(µN) = dG. Writing g = G/N , it follows that

g = µ.

Therefore, for simple systems the density of the Gibbs free energy is the chemical

potential.

In the entropy representation, where Ψ ≡ S = S(E, V,N), the Gibbs-Duhem

relation is given by

d(µ/T ) = εd(1/T ) +
1

n
d(P/T ),

where ε = E/N and n = N/V .
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1.7 Second derivatives

We analyze in this section the formulation of thermodynamics using second deriva-

tives of the fundamental relations. The importance of this is that it brings the

formulation of thermodynamics still closer to the experimental language.

The starting point of this formulation is an attempt to establish relations

involving the variation of extensive variables. Consider the variables Fi =

Fi(x0, ..., xj , ..., xr) and Fj = Fj(x0, ..., xj , ..., xr). Notice that by isolating xj in

the function Fi, and using this in Fj , we obtain, for any i, j = 0, 1, 2, ..., r, the

following equation

Fj = Fj(x0, ..., xj−1, Fi, xj+1..., xr);

or in terms of infinitesimals,

dFj = dFi

(
∂Fj
∂Fi

)

x0,...,xj−1,xj+1...,xr

.

These equations can be solved for particular systems if we specify derivatives

∂Fj/∂Fi, which is just a function of second derivatives of the fundamental equation,

since we can write, for instance

dFj =

(
∂Fj
∂xi

)(
∂xi
∂Fi

)
dFi.

This result demands a carefully analysis of second derivatives and relations among

them. The connection among all second derivatives is known as Maxwell relations.

We consider a specific situation of a simple system.

Consider a simple system described by the fundamental equation

E = E(S, V,N), (1.38)

in a closed container of adiabatic walls, with the number of moles, N, fixed. Initially

the system is at a temperature Ti with a pressure Pi. The system is squeezed quasi-

statically up to a final pressure Pf . The thermodynamical problem is then to find

final values for the volume, Vf , the temperature, Tf , the internal energy, Ef , the

entropy, Sf , and the chemical potential, µf .

As the process is quasi-static and adiabatic, then dQ = 0. As a consequence

dS = dQ/T = 0, such that Si = Sf . Assuming that Eq. (1.38) is given, by taking

derivatives, we write equations of state, which are three in number. Two of them

are written as

T = T (S, V,N), (1.39)

P = P (S, V,N). (1.40)

The third equation for µ is derived from the Gibbs-Duhem relation. An equation

between T and P can be derived by elimination of V in Eqs. (1.39) and (1.40). The

result is written as

T = T (S, P,N).
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Since S and N are constant, the variation of T is

dT =

(
∂T

∂P

)

S,N

dP. (1.41)

Besides
(
∂T

∂P

)

S,N

=

(
∂T

∂V

)

S,N

(
∂V

∂P

)

S,N

. (1.42)

Similarly, we verify changes in the temperature with volume, using Eq. (1.39), that

is,

dT =

(
∂T

∂V

)

S,N

dV. (1.43)

These types of equations, as Eqs. (1.41) and (1.43), are all we need to provide an

understanding of the thermodynamical problem; but above all, such relations are

very useful for experimental tests. On the other hand, if we assume that Eqs. (1.41)

and (1.43) are given in advance, then we can reverse the reasoning and write the

state equations, as well as fundamental equations.

Relations as given by Eqs. (1.41) and (1.43) can be determined if we find a

way, may be experimentally, to provide the derivatives like (∂T/∂V )S,N , which are

second derivatives of E or S. This requires an analysis of such second derivatives

and the relations among them.

For this simple system we have only three independent second derivatives, for

instance

∂2E

∂S2
;

∂2E

∂V ∂S
;
∂2E

∂V 2
. (1.44)

Any other relation can be written as a combination of these three derivatives. To see

that this is the case, consider for instance the derivative in Eq. (1.43), (∂T/∂V )S,N ,

which can be written as
(
∂T

∂V

)

S,N

=
∂

∂V

(
∂E

∂S

)
= −

(
∂P

∂S

)

V,N

. (1.45)

By experimental necessity, for a simple system with N being constant, the set

of three independent second derivatives is usually the following.

Thermal expansion coefficient

The thermal expansion coefficient, αP , provides a measure for the fraction of volume

increased by raising the temperature, when N and P are fixed.

αP = − 1

V

(
∂V

∂T

)

P

= −1

v

(
∂v

∂T

)

P

; v = V/N = n−1. (1.46)
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Isothermal compressibility

The isothermal compressibility, κT , provides a measure for the fraction of the de-

creasing volume by an increase of pressure, when T and N are constant.

κT = − 1

V

(
∂V

∂P

)

T

= −1

v

(
∂v

∂P

)

T

. (1.47)

Specific heat

The specific heat provides a measure for the heat flow by mole, necessary to increase

the temperature by one degree. As a matter of convenience, this measure is carried

out at constant pressure or at constant volume, that is

Cp =
T

N

(
∂S

∂T

)

P

= T

(
∂s

∂T

)

P

=
1

N

(
dQ

dT

)

P

(1.48)

and

CV =
T

N

(
∂S

∂T

)

V

= T

(
∂s

∂T

)

V

=
1

N

(
dQ

dT

)

V

. (1.49)

Observe that the second derivative (∂T/∂P )S,N in Eq. (1.41) can be written as

(∂T/∂P )S,N = V TαP/CP

such that

dT = V T
αP
CP

dP. (1.50)

This result shows that a knowledge of the second derivatives CP , αP and κT provides

an alternative way to introducing the thermodynamical theory.

We close this section with a brief discussion about a thermal magnetic system,

defined by the fundamental equation which is a function of S, V,M, N, that is

E = E (S, V,M, N) .

whereM is the magnetic dipole moment. The magnetic coefficients similar to αP ,

κT , CP and CV are:

Coefficient of thermal variation of the magnetic moment

(analogous to αP )

α =

(
∂M
∂T

)

P,Hex

. (1.51)

Magnetic susceptibility, κP , and isothermal susceptibility κT

κT,P =
1

V

(
∂M
∂Hex

)

T,P

=

(
∂M

∂Hex

)

T,P

. (1.52)

Specific heat

CP,Hex = T

(
∂S

∂T

)

P,Hex

or CP,M = T

(
∂S

∂T

)

P,M
, (1.53)
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CV,Hex = T

(
∂S

∂T

)

V,Hex

or CV,M = T

(
∂S

∂T

)

V,M
. (1.54)

The magnetic properties are often described by the susceptibility as a function

of temperature, that is

χT,P = χT,P (T, P,Hex) =

(
∂M

∂H

)

T,P

. (1.55)

Since the relation among H , Hex and M is given, we can find the relation between

χT,P and κT,P , and the state equation

M = M(T, P,Hex), (1.50)

by integration.

1.8 Example: ideal gas and generalizations

Now we treat an example, by considering a simple system as a model characterized

by a mono-component ideal gas, to exemplify the aforementioned thermodynamical

formalism. Later we treat the problem to find a prescription to derive generalized

state equations.

1.8.1 State equation for an ideal gas

An ideal gas is a chemically inert gas satisfying the following state equation

P =
RT

v
and T =

2

3R
ε,

where v = V/N and ε = E/N. The quantity R = 1, 986 cal/mole K is called the

universal constant of gases. Another way to write the state equations is.

PV = NRT and E =
3

2
NRT. (1.56)

These equations were established by experiments and are usually valid for a gas at

high temperature and low pressure.

In order to write the fundamental relations, thermodynamical potentials and

second derivatives, observe first of all that we have two state equations, but three

independent extensive variables, that is, E, V andN. Then in order to use Eq. (1.14)

to write the fundamental equation we have at our disposal another state equation

(since, in principle, we need three of them). The third equation can be found by

integrating the Gibbs-Duhem relation, Eq. (1.36), that is

µ

T
−
( µ
T

)
0

= −3

2
R ln

E

E0
−R ln

V

V0
, (1.57)

where E0, V0, N0 are the values for a reference state. Let us now write Eq. (1.14)

in the entropy representation. This gives rise to

S =
1

T
E − P

T
V − µ

T
N. (1.58)
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Using the state equations, Eqs. (1.56) and (1.57), we get the entropy function in

terms of extensive quantities, that is,

S =
N

N0
S0 +

3

2
NR ln

E

E0
+NR ln

V

V0
− 5

2
NR ln

N

N0
, (1.59)

where

S0 =
5

2
N0R−N0

(µ
T

)
0
.

From Eq. (1.59), writing in the energy representation and using the Legendre

transformation, thermodynamic potentials can be introduced. We leave these steps

for the reader. Let us write the second derivative functions αP , κT , CV , CP :

αP =
1

T
, κT =

1

P
,

CP =
5

2
R , CV =

3

2
R.

Therefore with this simple example we have established the usefulness of the differ-

ent thermodynamical formulations.

1.8.2 The van der Waals equation

Although thermodynamics presents a well-defined formal structure, it would be

interesting to find some prescription, at a theoretical level, to write down the fun-

damental equations or the equations of state, in particular, to describe more com-

plex systems other than the ideal gas. This situation is quite close in nature to

the mechanical problem to write Lagrangians explicitly. In this case the underlying

symmetries can be used as a guide to write, for instance, models for the interactions.

For thermal systems, such a prescription can be found if we recall that originally

thermodynamics did not say a word about the microscopic nature of matter. How-

ever, we can use this microscopic viewpoint, assuming that matter is composed of

particles, i.e. molecules, atoms, and so on, to implement thermodynamics. We

proceed with a naive example, just to provide some flavor to this kind of reasoning.

As we have seen, an ideal gas is described by Eq. (1.56), where V is the volume

of the gas container and P is the pressure. Taking into consideration that this gas is

made of particles, some corrections in the ideal gas equation should be considered,

resulting in a more general theory. In the case of the volume in Eq. (1.56), we can

write

V → V −Nb, (1.60)

where b is a constant measuring the volume of each particle.

Assuming a molecular attraction, we expect a decrease in the pressure. That

is, due to the attraction, collisions of particles with walls induce a reduction in the

change of momentum, thus reducing the force on the wall; as a consequence the
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pressure is lowered. Such a decrease in pressure can be considered as proportional

to the number of pairs of molecules near to the wall region, that is, proportional to

n2 = (N/V )2. Then the pressure should be modified to

P → P − aN
2

V 2
, (1.61)

where a is a parameter related to the molecular interaction. Using the results of

Eq. (1.60) and (1.61) in Eq. (1.56), we find

(V −Nb)
(
P − N2

V 2
a

)
= NRT.

or

P =
N kBT

V −Nb −
N2a

V 2
, (1.62)

which is called the van der Waals equation. In Eq. (1.62) instead of R we have

written kB = R/N = 1.38065× 10−23J/K. And thus N is to be interpreted as

particle number, not moles. There is no need to use another notation since from

now on N will be taken for the particle number only. The constant kB is the

Boltzmann constant.

1.9 Stability conditions and phase transitions

The second law ensures a maximum principle for the entropy, δS = 0 and δ2S < 0,

imposing stability conditions on thermodynamic systems. If the system is forced to

go along a way conflicting with these conditions, then a phase transition may take

place. We analyze some of these aspects in this section.

Consider a system receiving an infinitesimal amount of heat, dQ, from a heat

bath at temperature T0 and pressure P0. In this case, as a consequence of the

second law of thermodynamics, the entropy change of the system, dS, is related to

dQ by

dQ ≤ T0dS.

The equality sign holds for reversible processes. Writing dW = −P0dV for the work

done on the system by the heat bath and using the first law of thermodynamics,

dQ = dE − dW , we have

dA = dE + P0dV − T0dS ≤ 0,

where the quantity

A = E + P0V − T0S,

called availability of the system, describes the maximum amount of work which may

be extracted from a system in contact with a heat bath. Any process taking place in

the system leads to a decrease of A, which has a minimum value at equilibrium. This
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stability condition can also be stated for thermodynamic potentials, implying that

Helmholtz and Gibbs free energies are a minimum at equilibrium. Such stability

conditions can be used to prove that CV > 0 and CP > 0 [7].

The equilibrium state of a simple system is determined by specifying a set of

thermodynamic variables such as (E, V,N). The specification of (E, V,N), however,

is not a sufficient condition to ensure a uniform state of the system. That means, we

can find different states coexisting in equilibrium, which belong to different phases

of the system. A well-known example is the coexistence of phases in water, as

liquid and vapor, or even three phases, liquid, solid and vapor. The phases can be

Fig. 1.1 First-order phase transition.

considered as different thermodynamic systems in equilibrium with each other; and

thus, for a single system with two phases we have to state the following equilibrium

phase conditions:

T1 = T2 = T, (1.63)

P1 = P2 = P, (1.64)

µ1(P, T ) = µ2(P, T ) = µ. (1.65)

We have written Eq. (1.65) with the explicit dependence on T and P to emphasize

that the two phases cannot be in equilibrium at arbitrary T and P .

In a P × T diagram a phase transition can be represented by a line, as given in

Fig. 1.1. If we go from region I to region II , crossing the line, we have an abrupt

change in the nature of the system. That is, we find a separation of phases, at each

point on the curve. The point (Tc, Pc) is called a critical point. Beyond that point,

one can go from one region to another in a continuous way. In this case we do not

meet any abrupt discontinuity among the phases.

In this type of phase transitions, we identify some specific characteristics. While

the free energies of different phases are equal at the transition point, their first

derivatives are discontinuous. This happens, for example, when water turns into

vapor, in which case the discontinuity of entropy implies the existence of latent heat

associated with the transition. This is called a first-order phase transition.
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If the first derivatives of the free energy are continuous at the transition point,

but not the thermodynamic quantities described by the second derivatives, like spe-

cific heat, compressibility and magnetization, then the system undergoes a second-

order phase transition. Well-known examples of this transition are normal-metal

to superconductor and para- to ferro-magnetic phases. In the later case, lower-

ing the temperature below a critical value, Tc, implies a non-null magnetization,

M, appearing in the system. This ferromagnetic phase corresponds to ordered

states, which have lower symmetry when compared with the disordered paramag-

netic phase, where M = 0. Distinctly from the first-order phase transition, no

coexistence of phases occurs in the second-order phase transition; that is, there are

no meta-stable states in either of the transition point.

The ordered phase is characterized by a non-vanishing order parameter, φ, which

in the magnetic case can be identified with the magnetization. On the other hand,

the symmetric phase has φ = 0. Notice that the symmetry changes discontinuously

at the transition point, since if φ 6= 0 (no matter how small it is) the system presents

the symmetry of the full ordered phase. Nevertheless, decreasing the temperature, φ

changes continuously from zero to non-vanishing values at Tc. The overall behavior

of order parameter with temperature is depicted in Fig. 1.2.

Fig. 1.2 Dependence of the order parameter with temperature.

A quantitative, phenomenological theory of second-order phase transition was

proposed by Landau [7] in 1937. At a given temperature T and pressure P , for a sys-

tem in equilibrium, the order parameter is determined in both phases. To describe

the transition, Landau generalized the free energy allowing it to be, a function of,

not only the state variables, but also of φ, which is taken as an independent vari-

able. The actual value assumed by φ is determined by the equilibrium stability

conditions, requiring that the free energy be a minimum for the given values of T

and P . The next step is to assume an expansion of the generalized free energy,

G̃(P, T, φ), near the transition point, T ∼ Tc, in powers of the order parameter, as

G̃(T, φ) = G̃0(T ) +A(T )φ2 +B(T )φ4. (1.66)

For simplicity, we have taken P fixed. Notice that no monomial of odd order has
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been written, a fact that is justified by symmetry arguments [7]. Also the expansion

is truncated at the fourth power, since the order parameter is small, φ ∼ 0, close to

Tc and the second degree monomial alone is not enough to describe the transition.

In order to guarantee that G̃(T, φ) is bounded from below, and thus has a minimum,

we take B(T ) > 0. If A > 0, the minimum occurs at φ = 0, the disordered phase.

To have a minimum of G̃(T, φ) for φ 6= 0, corresponding to ordered phase, we

should have A < 0. Since G̃(T, φ) is continuous at the critical point, we must have

A(Tc) = 0. Thus in the vicinity of Tc, we can expand A(T ) up to the first order in

T − Tc, that is

A(T ) = α(T − Tc),

where α > 0. With a similar reasoning, we find that at the critical point B(T ) is a

positive constant, to be denoted by B(Tc) = b. Therefore, Eq. (1.66) is written as

G̃(T, φ) = G̃0(T ) + α(T − Tc)φ2 + bφ4. (1.67)

The behavior of the Landau free energy as a function of the order parameter is

illustrated in Fig. 1.3.

Φ

GHΦL
T>Tc

T=Tc

T<Tc

Fig. 1.3 Landau free energy, G(φ) = G̃(T, φ) − G̃0(T ), in a second-order phase transition.

The extrema of G̃(T, φ) are determined by

∂G̃(T, φ)

∂φ
= 2α(T − Tc)φ+ 4bφ3 = 0,

having solutions, φ = 0 and

φ2 = −α(T − Tc)
2b

,

corresponding to the minima for T > Tc and T < Tc, respectively, since in both

cases

∂2G̃(T, φ)

∂φ2
= 2α(T − Tc) + 12bφ2 > 0.
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The entropy is given by

S = −∂G̃(T, φ)

∂T
= S0 + αφ2;

and thus we observe that it varies continuously through the transition. On the other

hand, the specific heat for the ordered phase, φ 6= 0, is

C = T
∂S

∂T
= C0 + α2 Tc

2D
,

while for the symmetric phase, φ = 0, C = C0. This shows that the specific heat

has a discontinuity at the critical temperature.

The main features of first-order phase transitions can also be cast within a

Landau thermodynamic theory. In this case, the expansion of the free energy is

taken in the form

G̃(T, φ) = G̃0(T ) + a(T )φ2 − bφ4 + cφ6, (1.68)

where b and c are positive constants and a(T ) = α(T −T0), T0 being a temperature

parameter that does not correspond to the critical temperature. The behavior of

this free energy, as a function of φ, is presented in Fig. 1.4.

Φ

GHΦL

T>Tc

T=Tc

T<Tc

Fig. 1.4 Landau free energy, G(φ) = G̃(T, φ) − G̃0(T ), in a first-order phase transition.

The free energy (1.68) has two local minima occurring at φ = 0 and

φ0(T ) =
1

3c

[
b+

√
b2 − 3a(T )c

]
; (1.69)

which minimum value of G̃ is the lowest one depends on the temperature. While the

absolute minimum prevails in the stable phase, the other local minimum corresponds

to metastable states that show up in the supercooling. The transition temperature,

at which the distinct phases can coexist in equilibrium, is determined by requiring

that the two minimum values of G̃ are equal, i.e. by imposing that G̃(Tc, φ0(Tc)) =

0. This condition is equivalent to a(T ) = b2/4c,which implies that

Tc = T0 +
b2

4αc
. (1.70)
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Note that, in a first order phase transition, the order parameter is discontinuous

at Tc so that both the state and its symmetry change abruptly at the transition

point. We could find the discontinuity of the entropy at the transition point, thus

determining the latent heat, but we will not pursue this issue any further.

The Landau theory of phase transitions in thermodynamics can be extended

to consider inhomogeneous systems, taking into account spatial fluctuations of the

order parameter, such that φ is a field, that is φ = φ(x). In this case, the expansion

of G̃(T, φ) has to include derivatives of φ(x). For long-wavelength fluctuations,

we keep only the lowest derivative terms, which has the form (∇φ)2. Hence, for

instance, concerning a second-order phase transition we write

G̃(T, φ) = G̃0(T ) + α0(T − Tc)φ2 + bφ4 + e(Tc)(∇φ)2. (1.71)

Such a free energy can be viewed as an Euclidian field theory. In the quantum

field theory, the thermodynamic description of the second-order phase transition

is analyzed in terms of spontaneous symmetry breaking, and gives rise to new

concepts such as Goldstone bosons that are related to collective states in many

body systems. We will elaborate this theory including the temperature effects in

the following chapters.
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Chapter 2

Elements of Statistical Mechanics

Having described the macroscopic nature of matter, we turn to consider thermody-

namic properties from a microscopic point of view. The main emphasis is on the

microscopic definition of the Boltzmann entropy, the derivation of the Liouville-von

Neumann equation and the notion of an ensemble. Then using the Boltzmann en-

tropy and the second law of thermodynamics, we derive the Gibbs ensembles by

a variational principle. There are many outstanding books in the literature about

statistical mechanics; see for instance Refs. [2, 5–11].

2.1 Macro- and micro-physics

The heuristic derivation of the van der Waals equation in Chapter 1 has to be gener-

alized. The ideas involved in it point to a possible extension of the thermodynamic

concepts to encompass the notion of particles, such that a prescription to derive, for

instance, equations of state can be available in general. This requires a set of def-

initions connecting the macro-physics of thermodynamics, with the micro-physics

formulation of many-body systems. A theory like that is called statistical mechan-

ics, describing a thermodynamical system in equilibrium or out of equilibrium. Here

we concentrate on systems in equilibrium [9, 10].

In order to formulate statistical mechanics, we have to keep in mind two ele-

ments. First, considering that a macroscopic system is composed of a large number

of particles, a method has to be introduced to take into account the reduction of

the numerous microscopic degrees of freedom, specifying a system, to comparatively

very few macroscopic variables describing a thermal state. This can be implemented

by performing an average of microscopic variables. For instance, the internal energy,

E, can be taken as the sum of the average energy of each particle. This requires a

formulation of mechanics such that the state can be described in terms of a prob-

ability. Assuming the existence of such a formulation, the state of a system can

be represented by a density operator ρ, with Tr ρ = 1. A measurable macroscopic

quantity, say a, can be derived from its corresponding microscopic variable, say A,

27
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by the rule

a = 〈A〉 ≡ Tr(ρA), (2.1)

where the operation Tr stands for the trace and is responsible for the reduction of the

number of degrees of freedom. For instance, in the case of energy, the microscopic

variable is A = H , the Hamiltonian of a system of N particles, and a = E = 〈H〉 is

the internal energy. The 3N degrees of freedom are reduced to few degrees in the

dependence of E on, for instance, the variables T, V,N ; three variables only! The

nature of ρ is not yet fully specified, but we can assume that it is an operator acting

in the same Hilbert space where A is defined. The operator ρ is called the density

operator or density matrix.

The next fundamental step to formulate statistical mechanics is to find a pre-

scription to calculate the entropy function. Entropy represents a very distinguish-

able quality of macroscopic world, as is the temperature, without a mechanical

counterpart. Therefore, from a microscopic standpoint, entropy and temperature

are collective manifestations of the system without the reduction to specific parts.

This is different from any other mechanical quantity, as that described by energy or

macroscopic density, which have their microscopic counterpart. It will be enough

here to focus on entropy, since any other thermodynamic variable, such as tem-

perature, can be derived from it. We then look for a way to write A in Eq. (2.1)

representing entropy. In this case, one way to do this is to use the state of the

system, represented by the density matrix ρ, itself to find an expression for the

entropy. Observe that by definition ρ describes the microscopic properties as well

as the macroscopic quantities. Thus we can think of A for the entropy as a function

of ρ, that is A = s(ρ), such that

S[ρ] = 〈s(ρ)〉 = Tr[ρs(ρ)]. (2.2)

We can find a functional form for s(ρ), considering the properties of S. Recall that

S is an extensive variable; if we divide the system into two independent parts, say 1

and 2, then S = S1+S2 while ρ = ρ1ρ2. Using Eq. (2.2), the required extensiveness

of S is satisfied if we assume that the function s(ρ) has the property that

s(ρ) = s(ρaρb) = s(ρa) + s(ρb),

resulting in

s(ρ) = −kBρ ln ρ,

where kB fixes the unit of S, and the minus sign makes S positive. As a consequence,

S = 〈s(ρ)〉 = −kBTr(ρ ln ρ)

= S1 + S2, (2.3)

where

S1 = −kBTr(ρ1 ln ρ1),

S2 = −kBTr(ρ2 ln ρ2).
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This definition for S is a central point of the theory, establishing a way to derive the

fundamental relation for an arbitrary thermal system in the entropy representation,

using microscopic information. The remaining aspect to be developed explicitly

is to find a formulation of the microscopic theory in terms of the density ρ. In

quantum mechanics we use ρ, the density matrix, which is the subject of the next

section. However, in classical statistical mechanics, we use the notion of distribution

function in phase space as a counterpart of ρ. In this case Tr implies an integration

in phase space.

2.2 Liouville-von Neumann equation

Our proposal here is to introduce the density matrix, using the notion of an ensem-

ble. For a gas in a box, for instance, we expect to find a large number of microscopic

states which are compatible with a given macroscopic description. Indeed,if by some

process, the velocity of only few particles in the gas is changed, virtually, no change

in the macroscopic condition is expected. In principle then we can think of many

such states. Some of them, however, are physically unacceptable. In fact, if by

some process, we change the velocity of all particles along one direction, then at

some moment we expect the gas occupying one side of the box, while the other

side would be empty. This situation is in contradiction with the second law. This

reasoning induces us to consider the set of all states compatible with a macroscopic

situation, such that each state plays a more or less important role in this case.

But this characteristic can be quantified by a proper definition of weight for each

state. Naturally all the microscopic states have to be compatible with macroscopic

constraints.

Consider a set of representative states. Such a set is called ensemble and the

states will be denoted by |ψi〉, i = 1, 2, ..., each one satisfying the Schrödinger equa-

tion

i∂t|ψi(t)〉 = H |ψi(t)〉; (2.4)

here ~ = 1. The expectation value of an observable A in the state |ψi(t)〉 is given

by

〈A〉i = 〈ψi|A|ψi〉, (2.5)

with 〈ψi|ψi〉 = 1. The thermal (macroscopic) variable, say a, is associated with the

average value of the observable A by the following prescription,

a = 〈A〉 =
∑

i

γ(i)〈A〉i, (2.6)

where γ(i) is the weight for each state of the ensemble. The next step is to show

that the notion of ensemble used in Eq. (2.6) gives rise to Eq. (2.1), which describes

the state of the system by a density matrix.
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The vector |ψi(t)〉 is expressed as an expansion by

|ψi〉 =
∑

n

c(i)n |n〉, (2.7)

where |n〉 is an element of the Hilbert space basis. Using Eq. (2.7) in Eq. (2.6) we

obtain

〈A〉 =
∑

i

γ(i)〈ψi|A|ψi〉

=
∑

i

γ(i)
∑

m,n

c(i)∗n c(i)m 〈n|A|m〉

=
∑

m,n

ρmnAnm = Tr(ρA),

where

ρmn =
∑

i

γ(i)c(i)∗n c(i)m = 〈m|ρ|n〉, (2.8)

and Anm = 〈n|A|m〉.
The matrix ρ can be written in terms of the states |ψi〉 by using c

(i)∗
n = 〈ψi|n〉

and c
(i)
m = 〈m|ψi〉 in Eq. (2.8), that is,

ρmn = 〈m|ρ|n〉 =
∑

i

γ(i)〈m|ψi〉〈ψi|n〉

= 〈m|
∑

i

γ(i)|ψi〉〈ψi|n〉.

Hence we have

ρ =
∑

i

γ(i)|ψi〉〈ψi|. (2.9)

From this result, the time evolution equation for ρ(t) can be obtained. Taking

the time derivative of Eq. (2.9), assuming γ(i) is time independent, and using the

Schrödinger equation, we have

i∂tρ(t) =
∑

i

γ(i)[(i∂t|ψi〉)〈ψi|+ |ψi〉(〈ψi|i∂t)]

=
∑

i

γ(i)[(H |ψi〉)〈ψi| − |ψi〉(〈ψi|H)]

= Hρ(t)− ρ(t)H ;

or

i∂tρ(t) = [H, ρ(t)]. (2.10)

This is the Liouville-von Neumann equation, the basic equation in non-relativistic

statistical mechanics. This equation may be written as

i∂tρ(t) = Lρ(t), (2.11)
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where L = [H, . ] is the Liouvillian operator. The formal solution of Eq. (2.11) is

given by

ρ(t) = e−i(t−t0)Lρ(t0).

An important aspect of the density matrix, describing the state of a quan-

tum system, is that when γ(i) = δi,r in Eq. (2.6), one microstate only, say |ψr〉,
plays a role in the set of representative states of the ensemble. In this case

ρ =
∑

i γ
(i)|ψi〉〈ψi| = |ψr〉〈ψr|, and there is actually no ensemble at all. Then

Eq. (2.10) provides us the same information as the Schrödinger equation. In this

case ρ(t) describes a pure state. For a non-trivial ensemble, ρ(t) describes a mixed

state. It is important to note that in order to describe thermal states, ρ(t) has to

provide a convexity condition to S, i.e. S has to be an increasing function of E. For

any thermal or non-thermal system, the convexity of an entropy function establishes

that ρ stands for mixed states; otherwise, ρ describes a system in a pure state.

2.3 Gibbs ensembles

This section is devoted to finding solutions of Eq. (2.10) for the case of thermal

equilibrium, such that

[H, ρ] = 0.

Then a solution for this equation is of the type ρ = ρ(H,C), where C is any set of

constants of motion. To find ρ, we have to recall that the prescription linking micro

physics to thermodynamics is that entropy is a functional of ρ(t) given by Eq. (2.2),

S[ρ] = −kBTr(ρ ln ρ); (2.12)

in addition the equilibrium condition is characterized by the second law,

δS[ρ] = 0. (2.13)

Then ρ can be calculated from the extremum of the functional S under some con-

straints, as for instance the normalization of ρ, that is, Trρ = 1. Different sets of

constraints give rise to different ensembles.

2.3.1 Micro-canonical ensemble

We consider a constraint, the normalization condition for ρ, given by

φ1 = Trρ− 1 = 0. (2.14)

Then the variational principle is implemented by using the notion of Lagrange

multipliers, i.e. the variation of the functional S[ρ] is written as

δ(S + α1φ1) = 0,
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where α1 is the Lagrange multiplier independent of ρ and associated with the con-

straint φ1. Explicitly, we obtain,

δ(−kBTr(ρ ln ρ) + α1Trρ− α1) = Tr[−kB ln ρ− kB + α1]δρ = 0.

Since δρ is arbitrary, this results in

−kB ln ρ − kB + α1 = 0. (2.15)

We have then two unknown quantities, ρ and α1, and two equations, Eqs. (2.14)

and (2.15), providing a solvable algebraic system. From Eq. (2.15), ρ can be written

as

ρ = exp

(
α1

kB
− 1)

)
.

Using Eq. (2.14), we obtain

Trρ = exp(
α1

kB
− 1)Tr1

= exp(
α1

kB
− 1)N = 1

where N = exp(1− α1

kB
) is the total number of states of the ensemble. Hence

ρ =
1

N ,

expressing the fact that each representative state of the ensemble has the same

probability; or all γ(i) are equal in Eq. (2.6). This is the so-called micro-canonical

ensemble, or ensemble where each state has a priori equal probability.

2.3.2 Canonical ensemble

The canonical ensemble is derived by assuming the following set of constraints

φ1 = Trρ− 1 = 0, (2.16)

φ2 = Tr(Hρ)− 〈H〉 = 0. (2.17)

The constraint φ1, as before, expresses the normalization condition for ρ, whilst

φ2 assures that the (thermal) internal energy, which is given by E = 〈H〉, is a

constant, that is, E is explicitly a function of thermal variables, but not a function

of ρ. Using φ1 and φ2, Eq. (2.13) is written with two Lagrange multipliers, α1 and

α2 associated to φ1 and φ2, respectively, that is

δ(S + α1φ1 + α2φ2) = δTr[−kBρ ln ρ+ α1(ρ− 1) + α2(Hρ−E)]

= Tr[−kB ln ρ− kB + α1 + α2H ]δρ = 0.

Since δρ is arbitrary, we obtain

−kB ln ρ− kB + α1 + α2H = 0. (2.18)
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With the two constraint equations for φ1 and φ2, ρ can be calculated. Multi-

plying Eq. (2.18) by ρ, taking the trace and using the definition for φ1 and φ2, we

have

1

α2
S +

−kB + α1

α2
+E = 0. (2.19)

This equation is, by construction, a thermodynamic linear relation between S and

E. It is the Legendre transformation of E in its dependence on S, giving rise to, as

in Chapter 1, to the Helmholtz free energy,

F = E − TS. (2.20)

Comparing Eq. (2.19) with Eq. (2.20), we find that 1/α2 = −T,

F =
kB − α1

α2
= −kBT lnZ, (2.21)

where we have used a new parametrization for α1,

lnZ = (kB − α1)/kB .

But Z can be expressed by the condition φ1, writing from Eq. (2.18)

ρ = exp(
−kB + α1

kB
) exp(

−H
kBT

).

Using the normalization condition for ρ, we get

exp(
kB − α1

kB
) = Z = Tr[exp(−βH)],

where β = 1/kBT. The function Z is called the partition function, and describes

the sum of states, each of which is weighted by exp(−βH). Finally

ρ =
1

Z
exp(−βH). (2.22)

This form of ρ is the density matrix for a canonical ensemble.

2.3.3 Grand-canonical ensemble

The grand-canonical ensemble can be derived with the constraints φ1, φ2 given re-

spectively in Eqs. (2.16) and (2.17), and the constraint,

φ3 = Tr(Nρ)− 〈N〉 = 0,

expressing explicitly that the number of particles can fluctuate.

Using φ1, φ2 and φ3, Eq. (2.13) can be calculated with three respective Lagrange

multipliers, α1, α2 and α3, that is

δ(S + α1φ1 + α2φ2 + α3φ3) = Trδ[−kBρ ln ρ+ α1(ρ− 1)

+α2(Hρ−E) + α3(Nρ− 〈N〉)]
= Tr[−kB ln ρ− kB + α1 + α2H + α3N ]δρ = 0.
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Since δρ is arbitrary, we obtain

−kB ln ρ− kB + α1 + α2H + α3N = 0.

Proceeding as before, using the constraint equations and the grand thermody-

namical potential, the expression for ρ in the grand-canonical ensemble is

ρ =
1

Z
exp[−β(H − µN)],

where µ is the chemical potential, that is the Lagrange multiplier associated with

φ3.

Other constraints can be imposed on the variation of S, resulting in generalized

ensembles. For instance, we can introduce

φ4 = Tr(Pρ)− 〈P 〉 = 0,

where 〈P 〉 is a constant macroscopic momentum of the system. This type of en-

semble is appropriate to treat steady states; and the density matrix is given in the

form

ρ =
1

Z
exp[−β(H − µN − νP )], (2.23)

where ν, the Lagrange multiplier associated with φ4, is a macroscopic “force” con-

trolling the momentum flow to the system. This density matrix describes typical

cases in which the kinematical transformation of frames have to be addressed. (For

a discussion of generalized ensembles see references in [11].)

2.3.4 Equivalence among the ensembles

Using the Boltzmann entropy, as a functional of the density matrix, we have found

different expressions for ρ that, in principle, are appropriate to describe the thermal

equilibrium using the average of operators like 〈A〉 = Tr(ρA). Of course, different

results emerge by the use of different formulas for ρ in different Gibbs-ensembles.

But this is not consistent with the physical situation of thermal equilibrium. We

expect equivalence among ensembles in a general situation. This equivalence is

achieved in the thermodynamic limit, the T -limit, defined as

lim
N,V→∞

N

V
= n0,

where n0 is a constant finite particle density. This limit expresses the physical result

that a macroscopic body, composed of a large number of particles (∼ 1023) in a very

large volume compared to the volume of each particle, has a finite density, n0. One

consequence of the T -limit is the equivalence of the ensembles. Let us discuss this

fact in a heuristic way.

Consider a gas in a box of volume Va. We can describe the gas by the micro-

canonical ensemble, by calculating the thermal average of an observable described

by an operator A; that is we calculate 〈A〉microcanon. On the other hand, consider a
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volume Vb of gas within the original box, Va > Vb. In the case of the volume Vb, we

can use the canonical ensemble to perform the average, i.e. 〈A〉canon. We expect

that 〈A〉microcanon = 〈A〉canon only in the T -limit, when Va, Vb →∞.

Another important consequence of the T -limit is the appearance of phase tran-

sitions. We may understand this, if we consider, for instance, the canonical ensem-

ble. In this case we have to use ρ ∼ exp(−βH), an analytical operator function, to

proceed with the thermal average. However, phase transition phenomena is char-

acterized by the loss of analyticity of some thermal functions. That can be reached

in some cases only in the T -limit.

In the following chapters other aspects about the nature of the Gibbs ensemble

are discussed. Now we turn to a study of the Wigner function formalism, within

quantum mechanics, leading to a consideration of quantum kinetic theory.

2.4 Wigner function formalism

The starting point of statistical mechanics is the Liouville-von Neumann equation,

as given in Eq. (2.10). By a Fourier-like transform the Liouville-von Neumann

equation may be expressed in phase space. This method was first presented by

Wigner [12] in order to study problems in quantum kinetic theory. Since then, the

usefulness of Wigner function has been established in a variety of fields. In this

section we set forth definitions and properties of Wigner function, developing the

approach in one dimension for simplicity. For further developments see for instance

Refs. [12–20].

The matrix elements of ρ corresponding to a given state of a quantum system,

in the coordinate space, are written as ρ(q, q′) = 〈q|ρ|q′〉. Introducing the linear

transformation

q → q − 1

2
v,

q′ → q +
1

2
v,

the Wigner function is defined by

fW (q, p, t) =
1

2π~

∫
exp

(
i

~
pv

)〈
q − 1

2
v

∣∣∣∣ ρ(t)
∣∣∣∣q +

1

2
v

〉
dv. (2.24)

Let us analyze fW (q, p, t) exploring its physical content and its time evolution equa-

tion, using the phase-space version of Eq. (2.10). For simplicity, the Wigner function

is assumed to be associated with a pure state, ρ = |ψ〉〈ψ|, although the results may

be generalized to a mixed state.

The first property to be observed is that fW is real but not positive definite.

Consider two Wigner functions, f
(ψ)
W and f

(φ)
W , respectively associated with the pure

states |ψ〉 and |φ〉; then

|〈ψ | φ〉|2 = 2π~

∫
f

(ψ)
W (q, p, t)f

(φ)
W (q, p, t)dqdp. (2.25)
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The left-hand side is a positive definite number or zero. We can infer that

f
(ψ)
W (q, p, t) and f

(φ)
W (q, p, t), being two independent and arbitrary functions, have

also to be real. Considering that |ψ〉 and |φ〉 are two orthogonal states, i.e.

〈ψ | φ〉 = 0, in the general case f
(ψ)
W and f

(φ)
W cannot be positive definite func-

tions. In this sense, the Wigner function fW cannot be interpreted as a probability

distribution in phase space, despite the fact that it is normalized, that is∫
fW (q, p)dqdp = 1, (2.26)

a consequence of Trρ = 1. This result implies a normalization factor, (2π~)−1, in

Eq. (2.24).

Compatible with this normalization, and useful for practical proposes, we have

|ψ(q)|2 =

∫
fW (q, p)dp,

and

|ψ(p)|2 =

∫
fW (q, p)dq,

where |ψ(q)|2 and |ψ(p)|2 are, respectively, the distribution of probability in the

space and momentum space. Based on this result, fW (q, p) is called a quasi-

distribution of probability.

Since the average 〈A〉 = Tr(ρA) is independent of representation, an operator A

can be represented in phase space as

AW (q, p, t) =

∫
exp

(
i

~
pv

)〈
q − 1

2
v

∣∣∣∣A
∣∣∣∣q +

1

2
v

〉
dv, (2.27)

such that

〈A〉 = Tr(ρA) =

∫
AW (q, p, t)fW (q, p)dqdp.

At this point it is interesting to note that there is another way to represent an

operator in phase space. Using the identities
∫
|q〉 〈q| dq = 1 and

∫
|p〉 〈p| dp = 1,

an operator A we can written as

A =

∫
|q′′〉 〈q′′ | p′′〉 〈p′′|A |p′〉 〈p′ | q′〉 〈q′| dp′dp′′dq′dq′′. (2.28)

With the change of variables,

2p = p′ + p′′, 2q = q′ + q′′,

u = p′′ − p′, v = q′′ − q′,
Eq. (2.28) becomes

A =

∫
AW (q, p)∆(q, p)dqdp, (2.29)

where

∆(q, p) =
1

2π~

∫
exp

(
i

~
pv

) ∣∣∣∣q +
1

2
v

〉〈
q − 1

2
v

∣∣∣∣ dv. (2.30)
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The operator ∆(q, p) is Hermitian, implying that if A is Hermitian, then AW is real.

Using Eq. (2.29), the phase-space representation of a product of two operators

A and B is written as

(AB)W (q, p) = AW (q, p) exp

(
i~

2
Λ

)
BW (q, p), (2.31)

where Λ is the Groenewold operator given by

Λ =

←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q
. (2.32)

Defining the Moyal (or star) product by

A(q, p) ? B(q, p) = A(q, p) exp

[
i~

2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)]
B(q, p), (2.33)

where A(q, p) and B(q, p) are two arbitrary functions in phase space, Eq. (2.31) is

written as

(AB)W (q, p) = AW (q, p) ? BW (q, p). (2.34)

The Moyal product is a mapping taking operators acting in the Hilbert space

of functions defined in phase space; that is, for operators A,B,C,D and a complex

constant λ, we have

? : (AB + λCD)→ (AB + λCD)W = AW ? BW + λCW ? DW .

This result is important to map equations among operators in the usual Hilbert

space to the equivalent relations in phase space. For the case of the Liouville-von

Neumann equation, Eq. (2.10), we obtain

i~
∂

∂t
fW (q, p, t) = HW (q, p, t) ? fW (q, p, t)− fW (q, p, t) ? HW (q, p, t)

= {HW , fW }M , (2.35)

where

{A(q, p), B(q, p)}M = A(q, p) ? B(q, p)−B(q, p) ? A(q, p), (2.36)

The quantity {A(q, p), B(q, p)}M is called the Moyal bracket, which can also be

written, by expanding the exponential in the definition of the star product, as

{A(q, p), B(q, p)}M =
2

~
A(q, p) sin

[
~

2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)]
B(q, p). (2.37)

An immediate consequence of Wigner function formalism is in the analysis of

the classical limit, where ~ can be considered very small. Up to the first order, we

write

sin

(
i~

2
Λ

)
≈ i~

2
Λ =

i~

2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)
. (2.38)
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Therefore, we find

∂fW
∂t

=
∂HW

∂q

∂fW
∂p
− ∂HW

∂p

∂fW
∂q

= {HW , fW }, (2.39)

where {·, ·} is the classical Poisson bracket; and Eq. (2.39) is the Liouville equation,

the starting point of the classical statistical mechanics and the kinetic theory.

It is to be noted that HW is the phase space representation of the Hamiltonian

operator, which is equal to the classical Hamiltonian for a broad class of systems, but

not in general. This is a consequence of a property of the phase space representation

establishing that, for an operator function of momentum, say A(P ), the Wigner

approach leads to AW (P ) = A(p), where A(p) is a function in phase space depending

only on p, with the same functional form as the operator A(P ). The same is true

for a function of the position only. As an example, it is the case for the Hamiltonian

in the form

H(Q,P ) =
P 2

2m
+ V (Q),

since V (Q) → V (Q)W = V (q) and P 2 → (P 2)W = p2. Then H(Q,P )W = H(q, p)

is the classical Hamiltonian. Nevertheless this is not valid in general; and a counter

example is the case of a potential depending on position and momentum.

In addition, for a quadratic potential, V (Q) = a+ bQ+ cQ2, Eq. (2.35) reduces

to Eq. (2.39) but we still have fW (q, p) describing a quantum harmonic oscillator.

This is so since the content of the Liouville equation for such a potential is of a drift

in phase space in the presence of an external field; a result that can be explicitly

expressed by

∂fW
∂t

= {HW , fW }

= (b+ 2cq)
∂

∂p
fW −

p

m

∂

∂q
fW .

This is an expected result for both classical and quantum systems. Therefore, in

the analysis of the classical limit using the Wigner representation, we have to be

careful with the state of the quantum system, described by fW (q, p). Due to these

properties regarding the classical limit, despite the fact that fW (q, p) is only a

quasi-probability, Eq. (2.35) is the natural candidate to be the starting point of the

quantum kinetic theory.

In this brief summary of some aspects of the statistical mechanics we have

stressed the variation method to construct ensembles and the Wigner representa-

tion. The first aspect will be used in Chapter 14 to construct maximally entangled

states for boson and fermion bipartite systems, while the Wigner representation will

be important in the discussion of open systems.
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Chapter 3

Partition Function and Path Integral

The central goal of this chapter is to show that the partition function can be used

to introduce the notion of generating functional, an important tool to carry out

calculations in quantum systems, giving rise to powerful perturbative methods. This

fact opens doors to bring thermodynamics to the realm of quantum field theory.

The concept of path integral was first presented by Wiener [21, 22], in the con-

text of stochastic problems. Feynman [23, 24], based on a generalization of Dirac’s

work [25], developed the idea of path integral as a general scheme for quantization.

The concept of generating functional was introduced by Heisenberg and Euler [26];

and Schwinger [27] used such a notion with the path integral formalism, propos-

ing a theory of particles and sources. It was also Schwinger [28] who, intending

to describe fermions through a path integral formalism, introduced the Grassmann

numbers in physics.

The importance of path integral for contemporary physics, in spite of the re-

maining difficulties, is immeasurable. Here we present an outline for using the

generating functional method, with its extension to quantum fields at zero tem-

perature [29–33]. The effect of temperature will be analyzed in a later chapter.

3.1 Partition function and the propagator

The statistical average of an observable A, as stated in Chapter 2, in the canonical

ensemble is given by

〈A〉 = Tr[ρ(β)A] =
1

Z(β)
Tr[e−βHA],

where the partition function is

Z(β) = Tr(e−βH), (3.1)

β = 1/T is the inverse of temperature (we take kB = 1 everywhere), and H is the

Hamiltonian. The primary role played by the partition function is to work as a sum

of states, supplying the normalization of ρ.

39
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The partition function provides also a way for calculating the ground state en-

ergy at zero temperature. For a basis in which the Hamiltonian is diagonal we

have

〈H〉 = 1

Z(β)
Tre−βHH =

1

Z(β)

∞∑

n=0

〈n| e−βεnH |n〉

=
1

Z(β)
[ε0e

−βε0 +
∞∑

n=1

εne
−βεn ]. (3.2)

Considering β = 1/T → ∞ (equivalent to taking T → 0), the leading term in

Eq. (3.2) is just the ground state energy.

Some basic quantities such as free energy, pressure and entropy are calculated

directly from Z. Indeed, from the definition of the internal energy, we have

〈H〉 =
1

Z(β)
Tr(e−βHH) = − ∂

∂β
lnZ(β). (3.3)

The Helmholtz free energy reads

F = − 1

β
lnZ(β),

which is consistent with the entropy given by

S =
1

T
F +

1

T
E = β2 ∂

∂β
F

= −β2 ∂

∂β

(
1

β
lnZ(β)

)
.

The pressure is then written as

P = − ∂

∂V
F =

1

β

∂

∂V
lnZ(β).

Another important result regarding the nature of the canonical (or even the

grand canonical) ensemble is the Kubo-Martin-Schwinger (KMS) [34, 35] conditions

stating that the statistical average of an operator in the Heisenberg picture, say

AH(t) = e−itHA(0)eitH , is periodic in time with a period iβ (the subscript “H” in

AH(t) stands for the Heiserberg picture). This result can be proved directly from

the statistical average:

〈AH(t)〉 = Tr[ρ(β)A(t)] =
1

Z(β)
Tr
[
e−βHA(t)

]

=
1

Z(β)
Tr
[
e−βHe−itHA(0)eitH

]

=
1

Z(β)
Tr
[
e−βHAH(t− iβ)

]
≡ 〈AH(t− iβ)〉.

The change in the argument of AH , t→ t− iβ is called a Wick rotation of the time

axis.
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Let us investigate the consequence of the KMS condition for the partition func-

tion. For that, take the trace in Eq. (3.1) using the position representation; i.e.

Z(β) = Tre−βH =

∫
dq 〈q|e−βH |q〉. (3.4)

Defining

Zba = 〈qb|e−βH |qa〉, (3.5)

we find

Z(β) =

∫
dqaZaa.

Now examine the meaning of the quantity Zab. For this purpose, introduce a Wick

rotation, defined by the identification

β → i(tb − ta),
such that

Zba = 〈qb|e−βH |qa〉 = 〈qb|e−i(tb−ta)H |qa〉 ≡ 〈qbtb|qata〉, (3.6)

where

|qata〉 = eitaH |qa〉 , |qbtb〉 = eitbH |qb〉.
The set of states |q t〉 = eitH |q〉 form a complete basis, with the completeness

relation ∫
dq|q〉〈q| =

∫
dq|q t〉〈q t| = 1.

Such a basis may be used to build a Schrödinger-picture state |ψ(t)〉, in the position

representation, from a state in the Heisenberg picture |ψ〉H . In fact, since

|ψ(t)〉 = e−itH |ψ(0)〉 = e−itH |ψ〉H ,
we have

ψ(q, t) = 〈q|ψ(t)〉 = 〈q t|ψ〉H .
This result shows the physical content of Eq. (3.6), i.e. Zba = 〈qbtb|qata〉 is a tran-

sition amplitude from |qata〉 to |qbtb〉.
The function Zba is called the propagator, for considering an arbitrary amplitude

at a time ta, ψ(qa, ta) = 〈qa ta|ψ〉, and using the completeness relation, we obtain

〈qb tb|ψ〉 =
∫
dqa〈qbtb|qa ta〉〈qa ta|ψ〉

=

∫
dqaZbaψ(qa, ta).

In this expression Zba describes how the state |ψ(t)〉 evolves from |ψ〉 at ta and qa
to |ψ〉 at tb and qb. With tb > ta we insure causality. The fundamental quantity

here is then the propagator Zba. With this understanding for Zba, we find that Zaa
is the propagator in a closed-time interval. In the case of the partition function, we

have then a Wick rotation, with period β.

The results presented above show a close association of Z not only to the thermal

but also to the non-thermal quantities, demanding then a detailed analysis of Zba.
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3.2 Path integral in quantum mechanics

In order to calculate the propagator Zba, we split the time interval from ta to tb in

n-point, resulting in n+1-pieces of size δtj = tj+1− tj ; j = 1, 2, ..., n, with n→∞,
and δt → 0. At each point j, characterized by tj and qj , we use a completeness

relation
∫
dqj |qj tj〉〈qj tj | = 1 in 〈qbtb|qa ta〉, resulting in the expression

〈qbtb|qa ta〉 =
∫
dq1...dqn〈qbtb|qn tn〉〈qntn|qn−1tn−1〉...〈q1t1|qa ta〉. (3.7)

The propagator in an arbitrary small interval δtj results in

Zj+1,j = 〈qj+1tj+1|qj tj〉
= 〈qj+1|e−iδtjH |qj 〉 = 〈qj+1|1− iδtjH |qj 〉
= δ(qj+1 − qj)− iδtj〈qj+1|H |qj 〉. (3.8)

For simplicity we consider one-dimensional one-particle system in a potential V (q̂).

Then the Hamiltonian reads

H(q̂, p̂) =
p̂2

2m
+ V (q̂),

where q̂|qj 〉 = qj |qj 〉 and p̂|pj 〉 = pj |pj 〉, with

〈qj |pi〉 =
1√
2π
eiqjpi ,

and

〈qj |qi〉 = δ(qj − qi) =
1

2π

∫
dpeip(qj−qi) (3.9)

Hence we obtain,

〈qj+1|
p̂2

2m
|qj 〉 =

1

2π

∫
dpeipδqj

p2

2m
,

〈qj+1|V (q̂)|qj 〉 = V (Qj)
1

2π

∫
dpeipδqj

where δqj = qj+1 − qj , and Qj = (qj+1 + qj)/2. Gathering together these results,

we get

〈qj+1|H |qj 〉 =
1

2π

∫
dpeipδqjH(Qj , p).

Using the integral representation for the δ-function, Eq. (3.9), we obtain from

Eq. (3.8),

Zj+1,j =
1

2π

∫
dpeipδqj − iδtj

1

2π

∫
dpeipδqjH(Qj , p)

=
1

2π

∫
dpeipδqj [1− iδtjH(Qj , p)]

=
1

2π

∫
dpeiδtj [pδqj/δtj−H(Qj ,p)]

=
1

2π

∫
dpeiδtj [pvj− p2

2m−V (Qj)] .
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Completing the square in the integration variable p, and using the Gaussian integral

∞∫

−∞

dxe−ax
2+bx+c = exp

(
b2

4ac
+ c

)√
π

a
,

we obtain

Zj+1,j =

(
m

2πiδtj

)1/2

exp

{
iδtj

[
1

2
mv2

j − V (Qj)

]}
.

Substituting this result in Eq. (3.7), and taking the limit n→∞, we obtain

Zba = 〈qbtb|qa ta〉 = lim
n→∞

( m

2πiδτ

)(n+1)/2

×
∫ n∏

j=1

dqj exp



i

n∑

j=0

δτ

[
1

2
m
·
q
2

j − V (Qj)

]
 , (3.10)

where we have defined: δτ ≡ δtj , qb ≡ qn+1 and qa ≡ q0. This limit leads to

Zba = 〈qbtb|qa ta〉 = N
∫
Dq eiSab , (3.11)

where N is a normalization factor,

Dq ≡ lim
n→∞

n∏

j=1

dqj

is the measure od integration and

Sab =

tb∫

ta

dt L(q,
·
q) (3.12)

is the action defined by the Lagrangian

L(q,
·
q) =

1

2
m
·
q
2
− V (q). (3.13)

It is worth emphasizing that this derivation of Zba expresses a sum (a functional

integration) over different trajectories of a classical system; and in turn a quantiza-

tion scheme is provided by using the classical action Sab. Such a procedure is called

the path integral formalism and can be generalized to quantum fields.

3.3 Classical fields

The action given in Eq. (3.12) is, in classical physics, the fundamental tool for

deriving equations of motion through an extremum principle. Indeed, assuming the

condition δSab = 0, we obtain
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δSab =

tb∫

ta

dt δL(q,
·
q) =

tb∫

ta

dt[L(q + δq,
·
q + δ

·
q) − L(q,

·
q)]

=

tb∫

ta

dt(
∂L

∂q
δq +

∂L

∂
·
q
δ
·
q) = 0, (3.14)

where we define δq(t) = εσ(t), with ε being an infinitesimal quantity and σ(t) is an

arbitrary but analytical function of t, such that

δ
·
q(t) = δ

dq(t)

dt
=

d

dt
δq(t).

Using this result in Eq. (3.14) and performing an integral by parts, we obtain

δSab =

tb∫

ta

dt[
∂L

∂q
− d

dt
(
∂L

∂
·
q

)]δq = 0,

where the fixed extremum condition, that is, δq(ta) = δq(ta) = 0, has been used.

Since δq(t) = εσ(t) is an arbitrary quantity, we get the Euler-Lagrange equation,

d

dt
(
∂L

∂
·
q

) =
∂L

∂q
.

For L given in Eq. (3.13) we obtain the Newton’s second law: m
··
q = −∂V/∂q.

This procedure can be generalized for an arbitrary number of parameters,

considering q(τ) = q(τ0, τ1, ...., τr), and L(q, ∂q) = L(q, ∂0q, ∂1q, ..., ∂rq), where

∂αq = ∂q/∂τα. The action is written as

S =

∫

Γ

drτ L(q, ∂q), (3.15)

where L(q, ∂q) is the Lagrangian density. As before, assume the extremum condition

now defined by a hyper-surface Γ, δq(τ)|Γ = 0. From δS = 0, we derive

∂α
∂L

∂(∂αq)
=
∂L
∂q

; α = 0, 1, ..., r, (3.16)

where there is a sum over the repeated indices. If q, has more than one component,

then in Eq. (3.16) we have to replace q by qj , where the subindex j = 1, 2, ... stands

for the number of components of q.

A physical interpretation of this method is realized when we specify the nature

of the parameters τ and the function q. For that, we assume that τ is a 4-vector in

the Minkowski space-time (M3+1) with τ0 ≡ x0 = ct; τ1 ≡ x1, τ2 ≡ x2, τ3 ≡ x3,

that is x = (x0, x1, x2, x3). The metric tensor is given by

(gµν) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 ,
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such that g = g−1; with (gµν)−1 ≡ gµν , xµ = gµνx
ν , and xµ = gµνxν . The general-

ized canonical coordinate, q(x), is then a field, defining some quantity at a point x

of space-time. For a scalar field, instead of q, a Greek letter φ(x) = φ(t,x) is used.

In this case, Eq. (3.16) reads

∂α
∂L

∂(∂αφ)
=
∂L
∂φ

; (3.17)

where α = 0, 1, 2, 3. The Lagrangian density is specified by symmetry conditions,

imposing restrictions on the form of different models. For relativistic fields the

Lorentz invariance is the basic symmetry to be taken into account. This corresponds

to invariance under a set of linear transformations inM3+1 that preserves the scalar

product between vectors, x · y = gµνx
νxµ. Writing the linear transformation as

x′µ = Λµνx
ν ,

the invariance of the scalar product requires the invariance of the metric, ΛT gΛ = g,

where ΛT is the transpose of the matriz Λ, with components given by

Λµν =
∂x′µ

∂xν
.

Then we have det Λ = ±1. For det Λ = 1 the Lorentz map is called the proper

Lorentz transformations, which is the group connected to the identity. For proper

infinitesimal transformations we write

x′µ = xµ + ωµνx
ν

where ωρν = gρµω
µ
ν is an anti-symmetric matrix. In this case, a finite Lorentz

transformation in an infinite-dimensional representation (i.e. acting on, for example,

analytical functions defined in M3+1) can be written as

Λ = exp[ωµνM
µν ],

where Mµν are the generators of Lorentz transformations given by

Mµν = i(xµ∂ν − xν∂µ).
Using this symmetry and requiring that the Lagrangian density be a real Lorentz

scalar, a variety of models can be proposed. A simple one, for a real scalar field, is

L =
1

2
∂αφ∂

αφ− 1

2
m2φ2 + Jφ. (3.18)

Using the Euler-Lagrange equation, we derive

∂α∂
αφ+m2φ = J,

which is the Klein-Gordon equation describing a particle with a mass m, with a

source term, J .

We have then identified a general scheme to treat a classical field as a mechanical

system described by a Lagrangian. Our goal here is to extend the path integral

approach to various fields, and then to construct a quantum field theory. For this

purpose it is useful, first of all, to analyze the canonical quantization of fields,

based on the Dirac correspondence principle. The central ingredient to develop this

method is the Hamiltonian theory.
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3.4 Canonical quantization of scalar fields

In order to introduce the Hamiltonian formalism for a field theory, we define the

canonical momentum density in terms of the Lagrangian density by

π(x) =
∂L(φ, ∂φ)

∂φ̇
= φ̇(x).

The Hamiltonian is defined by a generalization of the usual Legendre transformation

of the Lagrangian, that is,

H =

∫
d3xH(φ, π) =

∫
d3x[π(x)φ̇(x)−L(φ, ∂φ)], (3.19)

where d3x = dx1dx2dx3 = dx. For the Klein-Gordon field in the presence of a

source, J , the Hamiltonian density is

H(φ, π) =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 − Jφ.

A quantum field theory is introduced following the Dirac’s prescription for the

pair of canonical variables, that in the case of a real scalar field are φ and π. We

then demand that at a time t the following commutation relations are fulfilled,

[φ(t,x),π(t,y)] = iδ(x− y), (3.20)

[φ(t,x),φ(t,y)] = [π(t,x),π(t,y)] = 0. (3.21)

The fields φ and π are now operators defined in a Hilbert space to be specified

(we keep the notation for the case of c-number functions for simplicity, since there

is no risk of confusion). The energy spectrum of the scalar field is analyzed by

introducing Fourier components. Thus the real scalar field, φ(x), is written as

φ(x) =

∫
d3k

(2π)3
1

2k0

(
a(k)e−ikx + a†(k)eikx

)
(3.22)

and

π(x) = φ̇(x) =

∫
d3k

(2π)3
(−i) 1

2

(
a(k)e−ikx − a†(k)eikx

)
;

such that from Eqs. (3.20) and (3.21), we require

[a(k), a†(k′)] = (2π)32k0δ(k− k′),

and all other commutation relations being zero. The four-vector k = (k0, k1,

k2, k3) = (k0,k) satisfies the mass-shell condition

k2
0 = k2 +m2.

Here a(k) and a†(k) are the annihilation and creation operators, respectively, for

particles with momentum k.

In terms of operators a(k) and a†(k), the Hamiltonian is

H =

∫
d3k

(2π)3
k0[a

†(k)a(k) + a(k)a†(k)].
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Using the commutation relations, it can be shown that this Hamiltonian is defined

up to an infinite constant. The suppression of this is achieved by normal ordering,

which is defined by taking all creation operators to the left, keeping in mind the

sign from the commutation relations, in a product of basic operators. For instance,

: a(k)a†(k) : = a†(k)a(k). The normal ordering is indicated by the colons. With

this ordering, the Hamiltonian is written as

H =

∫
d3k

(2π)3
k0 a

†(k)a(k).

The vacuum (ground) state, |0〉, for a free field in the Minkowski space is defined

by 〈0|H |0〉 = 0. Requiring

a(k)|0〉 = 0 and 〈0|0〉 = 1,

a basis in this Hilbert space, called the Fock space, is built from vectors given by

[a†(k1)]
n...[a†(kN )]m|0〉.

Let us define, for a real field, the following function

G0(x− y) = −i〈0|T [φ(x)φ(y)]|0〉,

where T is the time ordering operator, such that G0(x− y) can be written as

G0(x− y) = θ(x0 − y0)G(x − y) + θ(y0 − x0)G(y − x),

with the step function θ(x) defined by θ(x) = 1, for x > 1, θ(x) = 0, for x < 1,

and G(x − y) = −i〈0|φ(x)φ(y)|0〉. Using Eq. (3.22), G(x− y) reads

G(x − y) = (−i)〈0|
∫

d3p

(2π)3
1

2ωp

(
a(p)e−ipx + a†(p)eipx

)

×
∫

d3k

(2π)3
1

2ωk

(
a(k)e−iky + a†(k)eiky

)
|0〉

=

∫
d3k

(2π)3
(−i)
2ωk

e−ik(x−y),

and then

G0(x− y) = −i
∫

d3k

(2π)3
1

2ωk
[θ(x0 − y0)e−iωk(x0−y0)

+θ(y0 − x0)eiωk(x0−y0)]eik·(x−y).

Using Cauchy theorem, the θ-functions in these expressions can be written as

∫
dp0 e−ip0(x

0−y0)

p0 − (wk − iε)
= −2πie−iwk(x0−y0)θ(x0 − y0),

∫
dp0 e−ip0(x0−y0)

p0 − (−wk + iε)
= 2πieiwk(x0−y0)θ(y0 − x0),
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with infinitesimal ε resulting in

G0(x− y) = (−i)
∫

d4k

(2π)4
1

2k0
e−ik(x−y)

×
[ −1

k0 − (wk − iε)
+

1

k0 − (−wk + iε)

]

=
−i

(2π)4

∫
d4k

e−ik(x−y)

k2 −m2 + iε
. (3.23)

Then G0(x− y) is the Green’s function for the inhomogeneous Klein-Gordon equa-

tion with a point source

(� +m2)G0(x− y) = −iδ(x− y), (3.24)

where � = ∂α∂
α = ∂0∂

0 −∇.
For m = 0, using the integrals

1

2π

∞∫

−∞

dxeix
2a =

1

2

√
i

πa
,

∞∫

0

dxeixa =
i

a
,

the Green’s function for a scalar particle takes the simple form

G0(x − y) =
i

(2π)2
1

(x− y)2 + iε
. (3.25)

3.5 Path integral for a scalar field

In this section we generalize Eq. (3.11) to a scalar field, using S given in Eq. (3.15)

and the Lagrangian in Eq. (3.18), resulting in

Z0[J ] = N
∫
DφeiSab = N

∫
Dφ exp

{
i

∫
d4x

[
1

2
∂αφ∂

αφ− 1

2
m2φ2 + Jφ

]}

= N
∫
Dφ exp

{
−i
∫
d4x[

1

2
φ(� +m2)φ− Jφ]

}
, (3.26)

where we have used the index 0 in Z0[J ] to indicate free fields. To handle this

expression, we develop some elements of the functional integration.

The product of r Gaussian integrals is given by
∫
e−a1w

2
1/2e−a2w

2
2/2 · · · e−arw

2
r/2dw1 · · · dwr =

(2π)r/2

r∏
i=1

a
1/2
i

, (3.27)

where ai > 0, for i = 1, . . . , r. Defining

A = (Aij) =



a1 · · · 0
...

. . .
...

0 · · · ar


 ; w =



w1

...

wr


 ,
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(w,Aw) =

r∑

i,j=1

wiAijwj =

r∑

i=1

aiw
2
i (3.28)

and Eq. (3.27) reads
∫
e−(w,Aw)/2dw =

1

(detA)1/2
, (3.29)

where the measure of the integral is given by dw = dw1 · · · dwr/(2π)r/2.

Let us go further by analyzing integrals of the type
∫
dw exp(−f(w)), where

f(w) =
1

2
(w,Aw) + (b, w) + c, (3.30)

with b and c being r-component vectors. The minimum of f(w) is calculated by

df =
r∑

i=1

∂f

∂wi
dwi =

r∑

i,j=1

wiAij +
r∑

i=1

ci = 0,

that has the solution w0 = −A−1b. Then Eq. (3.30) is written as

f(w) = f(w0) +
1

2
(w − w0, A(w − w0)),

and from Eq. (3.29) we have
∫
e−[(w,Aw)/2+(b,w)+c]dw = e(b,A

−1b)/2−c 1

(detA)1/2
.

Taking the continuum limit, we write wi → w(x); Aij → A(x, y) such that

(Aw)j =
r∑

i=1

wiAij → (Ab)(x) =

∫
A(x, y)b(y)dy,

(w,Aw) =

r∑

i,j=1

wiAijwj →
∫
w(x)A(x, y)w(y)dxdy

and ∫
dw... =

∫
dw1 · · · dwr/(2π)r/2 →

∫
Dw(x)...

These results are generalized to more than one parameter, such that x can be taken

as a four-vector. Therefore Eq. (3.26) by identifying: w(x) = φ(x); A = i(�+m2);

b = −iJ ; c = 0, becomes,

Z0[J ] = N exp

[
i

2

∫
J(x)(� +m2)−1J(y)d4xd4y

]
[det i(� +m2)]1/2, (3.31)

where

[det i(� +m2)]1/2 =

∫
Dφ exp

{
−i
∫
d4x[

1

2
φ(� +m2)φ]

}
.
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This factor can be incorporated in the normalization factor N . In addition, using

the notation above, Eq. (3.24) is written in an operator form as

G0(x− y) = −(� +m2)−1.

Then Eq. (3.31) reads

Z0[J ] = N exp

[−i
2

∫
J(x)G0(x− y)J(y)d4xd4y

]
.

Here J is arbitrary. This fact is used to take Z0[J ] as a generating functional for

the propagator. This is achieved by taking functional derivatives.

A functional F [w(x)] is a mapping of analytical functions in the real field. The

derivative of F [w(x)] with respect to w(y) is defined as a generalization of the

ordinary derivative of functions, by

δF [w(x)]

δw(y)
= lim

ε→0

1

ε
{F [w(x) + εδ(x− y)]− F [w(x)]}.

Let us test the consistency of such a definition using two examples.

Consider

F [w(x)] =

∫
H(x, y)w(x)dx,

where H(x, y) is a given arbitrary function. Then we have

δF [w(x)]

δw(z)
= lim

ε→0

1

ε
{
∫
H(x, y)[w(x) + εδ(x− z)]dx−

∫
H(x, y)w(x)dx

=

∫
H(x, y)εδ(x − z)dx = H(z, y).

Now take

F [w] = F [w(x)] = exp[

∫
H(x, y)w(x)dx].

In this case we have

δF [w]

δw(z)
= lim

ε→0

1

ε

{
exp

[∫
H(x, y)[w(x) + εδ(x− z)]dx

]
− exp

[∫
H(x, y)w(x)dx

]}

= H(z, y) exp

[∫
H(x, y)w(x)dx

]
= H(z, y)F [w].

These results can be applied to calculate the derivatives of Z0[J ] with respect to J,

involving now a double integral:

δZ0[J ]

δJ(z)
=

{N
ε

exp

[−i
2

∫
[J(x) + εδ(x− z)]G0(x− y)[J(y) + εδ(y − z)]d4xd4y

]

− N
ε

exp

[−i
2

∫
J(x)G0(x− y)J(y)d4xd4y

]}

ε→0

=

[−i
2

∫
J(x)G0(x− y)δ(y − z)d4xd4y
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− i
2

∫
δ(x− z)G0(x− y)J(y)d4xd4y

]
Z0[J ]

= −i
∫
J(x)G0(x− z)d4x Z0[J ]

and

δ2Z0[J ]

δJ(z)δJ(z′)
= −iG0(z − z′)Z0[J ] + (−i)2

[∫
J(x)G0(x− z)d4x

]2
Z0[J ].

From these expressions, Z0[J ] is considered a generating functional for G0(z−z′)
if we define the normalization constant as N = 1, such that, Z0[J = 0] = 1; then

we find

δ2Z0[J ]

iδJ(z)iδJ(z′)
|J=0 = iG0(z − z′) = 〈0|T [φ(z)φ(z′)]|0〉.

3.6 Canonical quantization of the Dirac field

The Klein-Gordon equation expresses the mass-shell condition, since it is written

in the momentum representation as (p2 −m2)φ(x) = 0, which implies p2 = m2. As

a result of the Lorentz invariance, the Lagrangian is a scalar. These facts are used

to search for other Lorentz invariant equations. Let us assume a Lorentz invariant

form iγµ∂µ. Then we compose the equation

iγµ∂µψ(x) = kψ(x). (3.32)

The meaning of the 4-vector γµ and the constant k are determined by requiring

consistency of this equation with the mass-shell condition. Multiplying Eq. (3.32)

by iγµ∂µ we get

−(γµ∂µ)
2ψ(x) = k iγµ∂µψ(x),

or

(γµγν∂µ∂ν + k2)ψ(x) = 0.

Since ∂µ∂ν is symmetric, only the symmetric part of γµγν , i.e. 1
2{γµ, γν}, gives a

non-null contribution

(
1

2
{γµ, γν}∂µ∂ν + k2)ψ(x) = 0,

where

{γµ, γν} = γµγν + γνγµ.

Consistency with the mass-shell condition is obtained by identifying

{γµ, γν} = 2gµν (3.33)
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and γµk
µ = m. Thus we obtain the Dirac equation

(iγµ∂µ −m)ψ(x) = 0. (3.34)

To study this equation, representations of Eq. (3.33), establishing a Clifford algebra,

have to be presented. An irreducible representation of γµ is given in terms of the

following 4× 4 matrices,

γ0 =

(
0 I

I 0

)
, γ1 =

(
0 σ1

σ1 0

)
, γ2 =

(
0 σ2

σ2 0

)
, γ3 =

(
0 σ3

σ3 0

)

where

I =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

In this case ψ(x) is a 4-component object called the Dirac spinor.

To obtain a similar equation in the dual space, the adjoint spinor is defined by

ψ(x) = ψ†(x)γ0,

and the adjoint Dirac equation is given by

ψ(x)(iγ
←−
∂ +m) = 0. (3.35)

To assure the invariance of Eqs. (3.34) and (3.35) under the Lorentz transformation,

specified by x′µ = Λµνx
ν , we take

ψ′(x′) = S(Λ)ψ(x),

where

S(Λ) = exp

(−i
4
σµνω

µν

)
,

with ωµν being an antisymmetric tensor determining the 6 parameters of the Lorentz

transformation and

σµν =
i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ).

Each Dirac matrix is transformed as

S(Λ)γµS−1(Λ) = (Λ−1)µνγ
ν

and from Eq. (3.35), ψ(x) is transformed as ψ
′
(x′) = ψ(x)S−1(Λ).

In order to introduce Lorentz invariant terms that take into account interactions,

it is interesting at this point to evaluate the different ways that a bilinear form of

the type ψ(x)F (γ)ψ(x) is transformed by a Lorentz transformation, where F (γ)

is some function of γ-matrices. For instance, for F (γ) = 1, it is easy to find that

ψ(x)ψ(x) is a Lorentz scalar. In general we have

ψ
′
(x′)F (γ)ψ′(x′) = ψ(x)S−1(Λ)F (γ)S(Λ)ψ(x) ,



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Partition Function and Path Integral 53

with a basic set of combinations that have different properties under the transfor-

mation. These are

ψ
′
(x′)ψ′(x′) = ψ(x)ψ(x) scalar

ψ
′
(x′)γµψ′(x′) = Λµνψ(x)γνψ(x) vector

ψ
′
(x′)σµνψ′(x′) = ΛµρΛ

ν
ζψ(x)σρζψ(x) antisymmetic tensor

ψ
′
(x′)γ5ψ′(x′) = det(Λ)ψ(x)γ5ψ(x) pseudo− scalar

ψ
′
(x′)γ5γµψ′(x′) = det(Λ)Λµνψ(x)γ5γνψ(x) pseudo− vector

where

γ5 = iγ0γ1γ2γ3 =

(
0 I

I 0

)
,

satisfying the properties

{γµ, γ5} = 0, (γ5)2 = 1.

The Lagrangian density for the Dirac field is given by

L =
1

2
ψ(x)γ · i←→∂ ψ(x)−mψ(x)ψ(x),

where

ψ(x)γ · i←→∂ ψ(x) = iψ(x)γµ∂µψ(x)− i∂µψ(x)γµψ(x).

The canonical field momentum densities are derived from the Lagrangian density,

π(x) =
∂L

∂ψ̇(x)
= iψ†(x),

π(x) =
∂L

∂ψ̇(x)
= −iψ †(x),

and the Hamiltonian density reads

H = π(x)ψ̇(x) + π(x)ψ̇(x)− L. (3.36)

The quantization is introduced by equal-time anti-commutation relations,

{ψ(t,x),π(t,y)} = iδ(x− y), (3.37)

{π(t,x),π(t,y)} = {ψ(t,x),ψ(t,y)} = 0. (3.38)

Equal-time anti-commutation relations are needed to introduce a positive definite

Hamiltonian in the theory.

A general solution of the free Dirac equation is written in terms of plane waves,

a Fourier basis, and a basis for the spinor, i.e.,

ψ(x) =

∫
d3k

(2π)3
m

k0

2∑

λ=1

[bλ(k)u
(λ)(k)e−ikx + d†λ(k)v

(λ)(k)eikx] (3.39)

and

ψ(x) =

∫
d3k

(2π)3
m

k0

2∑

λ=1

[b†λ(k)u
(λ)(k)eikx + dλ(k)v

(λ)(k)e−ikx], (3.40)
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where bλ(k) (dλ(k)) and b†λ(k) (d†λ(k)) are annihilation and creation operators

for particles (antiparticles), with momentum k, respectively, and satisfy the anti-

commutation relations:

{bλ(k),b†ξ(k′)} = {dλ(k),d†ξ(k′)} = (2π)3
k0

m
δ(k− k′)δλξ.

All the other anti-commutation relations are zero.

The spinor basis in Eqs. (3.39) and (3.40) is given by

u(1)(k) = A(k0;m)




1

0
k3

k0+m
k1+ik2

k0+m


 , u(2)(k) = A(k0;m)




1

0
k1−ik2

k0+m
−k3

k0+m


 , (3.41)

v(1)(k) = A(k0;m)




k3

k0+m
k1+ik2

k0+m

1

0


 , v(2)(k) = A(k0;m)




k1−ik2

k0+m
−k3

k0+m

0

1


 , (3.42)

with A(k0;m) =
√

(k0 +m)/2, and

u(λ)(k) = u†(λ)(k)γ0; v(λ)(k) = v†(λ)(k)γ0.

These spinors satisfy the orthonormalization conditions

u(λ)(k)u(ξ)(k) = δλξ ,

v(λ)(k)v(ξ)(k) = δλξ ,

u(λ)(k)v(ξ)(k) = 0,

v(λ)(k)u(ξ)(k) = 0,

and the projection operators are
2∑

λ=1

u(λ)(k)u(λ)(k) =
γ · k +m

2m
,

2∑

λ=1

v(λ)(k)v(λ)(k) =
γ · k −m

2m
.

These results can be obtained by analyzing the free Dirac equation in momentum

space.

Now the Hamiltonian is obtained. Here the normal ordering, respecting the

sign of the anti-commutation relations, is used changing the sign for each change of

operator order; for instance, : bλ(k)b
†
ξ(k
′) : = −b†ξ(k′)bλ(k). Then from Eq. (3.36)

we get

H = :

∫
d3xH(x) :

=

∫
d3k

(2π)3
m

2∑

λ=1

[b†λ(k)bλ(k) + d†λ(k)dλ(k)].
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The charge is calculated from the charge density operator j0 = : ψ†(x)ψ(x) :, result-

ing in

Q =

∫
d3x : ψ†(x)ψ(x) :

=

∫
d3k

(2π)3
m

k0

2∑

λ=1

[b†λ(k)bλ(k)− d
†
λ(k)dλ(k)] .

The vacuum is defined by

bλ(k)|0〉 = dλ(k)|0〉 = 0.

Since [bλ(k)]
2 = [dλ(k)]

2 = 0, there are only states with 0 or 1 particle or antipar-

ticle, respectively, with the same momentum k and the same spin label λ. One

particle states are introduced by b†λ(k)|0〉 and d†λ(k)|0〉.
The propagator is given as

S(x− y) = −i〈0|T [ψ(x)ψ(y)]|0〉

=

∫
d4k

(2π)4
e−ik(x−y)

γ · k +m

k2 −m2 + iε

= (iγ · ∂ +m)G0(x− y),
where G0(x− y) is given by Eq. (3.23).

3.7 Path integral for the Dirac field

In order to construct a generating functional for the Dirac field a crucial observation

has to be made: the Dirac field satisfies anti-commutation relations. The nature

of a generating functional is to work with c-number functions instead of operators.

Then we have to be careful in the case of fermions, due to the anti-commuting

property. This difficulty is overcome with the use of Grassmann numbers.

A set of Grassmann numbers is denoted by G = {α, η, χ, . . . }; a one-mode

fermion operator is described by the algebra {a, a†} = 1; complex number will be

denoted by c. The Grassmann variables are characterized by the following proper-

ties:

αη = −ηα,
α(η + cχ) = αη + cαχ.

Concerning the operators a and a† we have

αa = −aα, αa† = −a†α.
The complex conjugation of Grassmann variable is defined by an anti-linear mapping

fulfilling the property,

(α+ caηa†χ∗)† = α∗ + χaη∗a†c∗.
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The Grassmann variables α and α∗ are considered independent of each other. When

α = α∗, α is a real Grassmann variable.

An arbitrary function f(α) of a Grassmann variable is of the form

f(α) = f0 + f1α,

where f0 and f1 are complex numbers. This is indeed like that, since α2 = 0. The

integration is defined by ∫
αdα = 1,

∫
dα = 0,

where the symbol
∫

is linear. From this result we have
∫
f(α)dα =

∫
(f0 + f1α)dα = f1

This definition for integration is equivalent to a right-side derivative, defined by the

linear operation

∂f(α)

∂α
= f1.

This integration is also enough to define in a consistent way a δ-function. Indeed,

a δ-function of the Grassmann variables, δ(α− η), is defined by
∫
δ(α − η)f(α)dα = f(η).

Then δ(α− η) = α− η, which is no longer an even function.

The scalar product involving two Grassmann functions f(α) and g(α) is defined

by

(f, g) =

∫
f∗(α)g(α)e−α

∗αdα,

where f∗(α) = f∗0 + f∗1α. A basis is given by ϕ0 = 1 and ϕ1 = α∗, such that

(ϕn, ϕm) = δnm,

α∗ϕ0 = ϕ1, α
∗ϕ1 = 0,

∂

∂α∗
ϕ0 = 0,

∂

∂α∗
ϕ1 = ϕ0.

This provides a representation for the operators a ≡ ∂
∂α∗ and a† ≡ α∗.

Consider a normal-ordered general operator written as

: A(a, a†) : = A00 +A01a
† +A01a+A11a

†a,

with Anm ∈ C, m, n = 0, 1 In terms of Grassmann variables two functions can be

defined and associated with : A(a, a†) :. The first is the normal ordering symbol

and the other is the kernel, given respectively by

A(α, α∗) =
∑

m,n=0,1

Anm(α∗)n(α)m,

A(α, α∗) =
∑

m,n=0,1

Anm(α∗)n(α)m,
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where Anm = (ϕn, Aϕm) is the matrix element of the operator A in the Grassmann

basis. The relation between A(α, α∗) and A(α, α∗) is

A(α, α∗) = eα
∗αA(α, α∗),

and the representation of the normal-ordered product of two operators A1A2 in the

normal order is given by

A1A2(α, α
∗) =

∫
A1(α

∗, η)A2(η
∗, α)e−η

∗ηdη∗dη,

where we have used the relation∫
(η∗)nηme−η

∗ηdη∗dη = δnm.

Another important result is
∫
e−η

∗Aηdη∗dη = detA.

An infinite-dimensional Grassmann function in the Minkowski space-time is de-

noted by η(x) and satisfies:

{η(x), η(y)} = 0;

∫
η(x)dη(x) = 1,

∫
dη(x) = 0,

∂η(x)

∂η(y)
= δ(x− y),

and

∂η(x)η(y)

∂η(z)
= δ(x − z)η(y)− η(x)δ(y − z).

These results give rise to a definition of the functional derivative.

Let us write the Lagrangian for the Dirac field as

L =
1

2
ψ(x)γ · i∂ψ(x)−mψ(x)ψ(x) + η(x)ψ(x) + ψ(x)η(x),

where η(x) and η(x) are the sources for the independent fields ψ(x) and ψ(x),

respectively. The generating functional for the fermion field is defined by

Z0[η, η] = N
∫
DψDψ exp{i

∫
dxf [ψ, ψ]},

where

f [ψ, ψ] = ψ(x)(iγ · ∂ −m)ψ(x) + η(x)ψ(x) + ψ(x)η(x)

= −η(x)(iγ · ∂ −m)−1η(x)

+(ψ(x)− ψ0(x))(iγ · ∂ −m)(ψ(x) − ψ0(x)).

The functional Z0[η, η] reads

Z0[η, η] = exp

{
−i
∫
dx[η(x)S(x − y)η(x)

}
N det(−iS−1),
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where

S(x− y) = (iγ · ∂ +m)G0(x− y).
The normalized functional is defined by Z0[η, η]η=0,η=0 = 1, such that

Z0[η, η] = exp

{
−i
∫
dx[η(x)S(x − y)η(x)

}
.

As a result we obtain

δ2Z0[η, η]

δη(x)δη(y)
|η,η=0 = iS(x− y) = 〈0|T [φ(x)φ(y)]|0〉.

These results provides a practical tool for calculations, that can be generalized to

more intricate interactions.

The path integral formalism and generating functionals will be the fundamental

tools to construct quantum theories for boson, fermion and gauge fields both at zero

and finite temperature. Given a specific interaction, perturbative series for physical

quantities are obtained. In the following chapter the generating function will lead

to the Green function to be used to calculate the scattering amplitudes. Methods

for working at finite temperature will be elaborated in Chapter 8.
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Chapter 4

Zero Temperature Interacting Fields

We generalize here the notion of generating functional developed in the previous

Chapter to treat interacting fields [30–33, 36–39]. Initially the basic elements are

developed for the λφ4-theory. Subsequently fermions and gauge fields are consid-

ered.

4.1 Generating functional for bosons

For a system of noninteracting bosons, the generating functional is given, up to a

normalization factor, by

Z0 '
∫
DφeiS =

∫
Dφ exp[i

∫
dxL0(φ)] (4.1)

= exp{ i
2

∫
dxdy[J(x)G0(x− y)J(y)]. (4.2)

Considering the interacting Lagrangian density in the form

L(φ; J) = L+ Jφ =
1

2
∂µφ(x)∂µφ(x) − m2

2
φ2 + LI (φ) + Jφ,

we define the generating functional as

Z[J ] '
∫
DφeiS

=

∫
Dφ exp[i

∫
dxL(φ; J)].

This functional satisfies the following equation

(� +m2)
δZ[J ]

iδJ(x)
+ Lint

(
1

i

δ

δJ

)
Z[J ] = J(x)Z[J ];

with a solution

Z[J ] = exp

[
i

∫
dxLint

(
1

i

δ

δJ

)]
Z0[J ].

The n-point Green function is written as,

G(n)(x1, x2, ..., xn) =
1

in
∂nZ[J ]

∂J(x1)∂J(x2) · · · ∂J(xn)

∣∣∣∣
J=0

.

59
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Let us study the specific example where

Lint(φ) =
λ

4!
φ4.

The 2-point and the 4-point functions to first-order in λ are given respectively by

G(2)(x1, x2) = G0(x1 − x2)−
1

2
iλ

∫
dxG0(x1 − x)G0(x− x)G0(x− x2) (4.3)

and

G(4)(x1, x2, x3, x4) = G
(4)
0 (x1, x2, x3, x4)−

1

2
iλ

(
G0(x1 − x2)

∫
dx

×G0(x3 − x)G0(x − x)G0(x− x4)

+G0(x3 − x4)

∫
dxG0(x1 − x)G0(x− x)G0(x− x2)

+G0(x1 − x3)

∫
dxG0(x2 − x)G0(x− x)G0(x− x4)

+G0(x2 − x4)

∫
dxG0(x1 − x)G0(x− x)G0(x− x3)

+G0(x1 − x4)

∫
dxG0(x2 − x)G0(x− x)G0(x− x3)

+G0(x2 − x3)

∫
dxG0(x1 − x)G0(x− x)G0(x− x4)

−iλ
∫
dxG0(x1 − x)G0(x2 − x)G0(x3 − x)G0(x4 − x)

where G
(4)
0 (x1, x2, x3, x4) is the 4-point function for the free field theory,

G
(4)
0 (x1, x2, x3, x4) = (i)2[ G0(x1 − x2)G0(x3 − x4)

+G0(x1 − x3)G0(x2 − x4)

+G0(x1 − x4)G0(x2 − x3)]. (4.4)

We may represent these expressions in a diagrammatic way: we use a line with

the end points x1 and x2 to represent the propagatorG0(x1−x2), Fig. 4.1. Then the

G0(x1 − x2) :
x1 x2

Fig. 4.1 Free propagator.

Green function G(2)(x1−x2), up to the first order, given in Eq. (4.3), is represented

diagrammatically in Fig. 4.2. A factor −iλ at each vertex is included, as indicated

in Fig. 4.3, to recover the expressions. The free 4-point function G
(4)
0 (x1 − x2),

given in Eq. (4.4), is presented in Fig. 4.4. For a closed line, a loop, as in the second

diagram in Fig. 4.2, the expression of the Green function includes an integration

over x of G(x − x).
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x1 x2 x1 x2

+

Fig. 4.2 Propagator G(2)(x1 − x2) up to first order in λ.

−iλ :

Fig. 4.3 Vertex.

1

4

2

2

343

1

21

3 4

+ +

Fig. 4.4 4-point function G
(4)
0 (x1 − x2) at zero order.

We find from these examples that there are two classes of diagrams: the con-

nected, like each diagram in Fig. 4.2 and the unconnected, as each of the diagrams

in Fig. 4.4. All the connected Green functions can be derived from a function, say,

W [J ], defined by

iW [J ] ≡ lnZ[J ].

The connected n-point Green functions are obtained by functional derivative, i.e.

G(n)
c (x1, x2, ..., xn) =

1

in
i∂nW [J ]

∂J(x1)∂J(x2)...∂J(xn)

∣∣∣∣
J=0

.

These are the relevant Green functions for the calculation of cross sections. To first

order, G(2) given in Fig. 4.2 contains only connected parts, and so G
(2)
c = G(2). The

connected 4-point function, up to the first order, is given by the vertex diagram, in

Fig. 4.3.
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4.1.1 Feynman rules in momentum space

Taking the Fourier transform of G(n)(x1, x2, . . . , xn), the Green function in momen-

tum space is defined. Considering translation invariance, we have

G(n)(p1, . . . , pn)(2π)4δ(p1 + · · ·+ pn) =

∫
dnxG(n)(x1, . . . , xn)e

−i(p1x1+···+pnxn),

where dnx = dx1 · · · dxn. The diagrammatic representation of Feynman rules in the

momentum space are,

(1) Each oriented line carries a momentum p and a factor −(p2 −m2 + iε)−1,

−1

p2
−m2+iε

:

(2) Each vertex has a factor of −iλ and has momentum conservation:

p1 + p2 − p3 − p4 = 0,

p4

p1

:

−iλ

p2

p3

(3) Integrate over each internal loop momentum, k, with the factor (2π)−4d4k.

Consider as an example the 2-point Green function up to first order, i.e.

G(2)
c (p,−p) =

−1

p2 −m2 + iε

− iλ
2

∫
d4k

(2π)4
−1

p2 −m2 + iε

−1

k2 −m2 + iε

−1

p2 −m2 + iε
.

This is represented in Fig. 4.5.

pp p p
+

k

Fig. 4.5 2-point function G
(2)
c (p,−p) at first order.
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4.2 The effective action

Using a Legendre transform of the functional W [J ] in the variable J , the functional

Γ[φc] is defined,

Γ[φc] = W [J ]−
∫
dxJ(x)φc(x), (4.5)

where the classical field (see below) is,

φc(x) =
δX [J ]

δJ(x)
. (4.6)

Let us analyze the meaning of φc(x) and Γ[φc] from a physical point of view. The

field φc(x), from Eq. (4.6), is given by

φc(x) =
〈0|φ(x)|0〉J
〈0|0〉J

,

where 〈0|0〉J = Z0[J ]. Now consider a free-field theory. Then

iW [J ] = −1

2

∫
d4xd4yJ(y)G0(x − y)J(x),

such that

φc(x) = −
∫
d4xG0(x− y)J(x),

which is a solution of the inhomogeneous Klein-Gordon equation,

(� +m2)φc(x) = J(x).

Thus φc(x) is a classical field.

Using these results in Eq. (4.5), the functional Γ[φc] is written as

Γ[φc] =
1

2

∫
d4xφc(x)(� +m2)φc(x),

describing the classical action for the field φc(x). The functional Γ[φc] is called the

effective action.

Expanding Γ[φc] in terms of φc, we have

Γ[φc] =
∞∑

n=1

in

n!

∫
d4x1 · · · d4xnΓ(n)(x1, . . . , xn)φc(x1) · · ·φc(xn), (4.7)

where the Γ(n)(x1, ..., xn) are called one-particle irreducible (1PI) Green functions.

The Feynman diagram of an 1PI Green function is a connected graph such that it

cannot be made disconnected by cutting just one of its internal lines. The 1PI Green

functions are basic structures to be used to construct classes of other connected

diagrams. For the free field theory the only non-trivial 1PI Green function is

Γ(2)(x1, x2) = (� +m2)δ(x1 − x2).
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In momentum space, the 1PI Green function is given by

Γ(n)(p1, . . . , pn)(2π)4δ(p1 + · · ·+ pn) =

∫
dnxΓ(n)(x1, . . . , xn)e−i(p1x1+···+pnxn).

(4.8)

This equation is used to expand Γ(n) around zero-momentum. Reverting to the

space-time coordinates, such an expansion is written in the form,

Γ[φc] =

∫
d4x

(
−V (φc) +

A(φc)

2
∂µφc∂

µφc + · · ·
)
,

where the quantity V (φc) is called the effective potential. For a constant classical

field, φc, Γ[φc] =
∫
d4x[−V (φc)], and from Eq. (4.5)

J(x) = −δΓ[φc]

δφc
=
dV (φc)

dφc
.

If the source term is zero, then
dV (φc)

dφc
= 0.

This equation is solved to find the vacuum expectation value of the field operator.

Using Eqs. (4.7) and (4.8), we obtain

V (φc) = −
∞∑

n=1

(i~)n

n!
Γ(n)(0, . . . , 0)φnc ,

where we have introduced for later convenience, the Plack constant ~. As an exam-

ple, consider the scalar free field. We have

Γ(2)(p,−p) = −(p2 −m2),

such that Γ(2)(0, 0) = m2 and

V (φc) =
m2

2
φ2
c .

This gives the potential for the classical field; this is why V (φc) is called the effective

potential.

Now we wish to calculate the effective potential to order ~, i.e. one-loop order.

We start from the generating functional,

Z[J ] = N
∫
Dϕe−

i
~
(L+Jϕ), (4.9)

where N is a normalization factor, and we shift the integration variable ϕ by,

ϕ(x) = ϕc + ϕ1(x) (4.10)

where ϕc is the zeroth order approximation in ~, the classical field. Then we sub-

stitute this expression in∫
d4x(L+ Jϕ) =

∫
d4x(L0 + Jϕc) +

∫
d4x

[
∂µϕ1∂

µϕ1 −m2ϕ1ϕc

−λ
6
ϕ1ϕ

3
c + Jϕ1

]

+

∫
d4x

[
L2(ϕ1, ϕc)−

λ

6
ϕ3

1ϕc −
λ

24
ϕ4

1

]
,

(4.11)
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where

L2 =
1

2
∂µϕ1∂

µϕ1 −
1

2
m2ϕ2

1 −
λ

24
ϕ2
cϕ

2
1. (4.12)

We rescale the field ϕ1 by ϕ1 = ~
1
2ϕ, and use Eq. (4.11), so that the functional

integral, Eq. (4.9), is written as

Z[J ] = N
∫
Dϕ exp

{
− i

~

∫
d4x [L(ϕc) + Jϕc]

}

×
∫
Dϕ exp

{
− i

~

∫
d4x

[
L2(ϕϕc)−

λ

6
~

1
2ϕ3ϕc −

~λ

24
ϕ4
c

]}
.

(4.13)

Neglecting terms proportional to ~
1
2 and ~ we write

∫
d4xL2(ϕ, ϕc) = − i

2

∫
d4x d4x′ϕ(x′)A(x′, x, ϕc)ϕ(x), (4.14)

where

A(x′, x, ϕc) =

(
−∂x′µ∂

µ
x +m2 +

λ

2
ϕ2
c

)
δ(x′ − x). (4.15)

Then to one-loop order, the generating functional of connected Green functions,

W [J ], is W [J ] = W0[J ] +W1[J ], where

W0[J ] =

∫
d4x [L0(ϕc) + Jϕc]

W1[J ] =
1

2
Tr ln [A(x′, x, ϕc)/A(x′, x, 0)] . (4.16)

We diagonalize the matrix A(x′, x, ϕc) by using in Eq. (4.15) the Fourier represen-

tation of the δ-function,

A(x′, x, ϕc) =

∫
d4k

(2π)4

(
−∂x′µ∂

µ
x +m2 +

λ

2
ϕ2
c

)
eik·(x

′−x).

We have

Tr lnA =

∫
d4x

∫
d4k

(2π)4
ln

(
−k2 +m2 +

λ

2
ϕ2
c

)
. (4.17)

Hence, dividing by the total volume
∫
d4x, we get the one-loop correction to the

effective potential,

V1(ϕc) = − i
2

ln

(
−k2 +m2 + λ

2ϕ
2
c

−k2 +m2

)

= − i
2

ln

(
1− λ

2

ϕ2
c

k2 −m2

)
.

(4.18)
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The total effective potential to one-loop order is,

V (ϕc) ≡ V0(ϕc) + V1(ϕc)

=
m2

2
ϕ2
c +

λ

24
ϕ4
c −

i

2
ln

(
1− λ

2

ϕ2
c

k2 −m2

)
. (4.19)

Under the assumption that λ is small, we develop the logarithm term. The

one-loop correction to the effective potential is written as,

V1(ϕc) = − i~
2

∞∑

s=1

(−1)s

2s

(
λϕ2

c

2

)s ∫
d4k

(2π)4
1

(k2 −m2 + iε)s
. (4.20)

In Euclidian space we have,

V1(ϕc) =
~

2

∞∑

s=1

(−1)s

2s

(
λϕ2

c

2

)s ∫
d4k

(2π)4
1

(k2 +m2)s
. (4.21)

The s-order contribution to the sums in these equations is represented diagramati-

cally in Fig. 4.6.

Fig. 4.6 Effective potential: s-vertex term.

4.3 Gauge fields

The study of gauge symmetries started with Weyl [40] as an attempt to write the

electromagnetic field in a geometrical way, following the scheme of general relativity.

The use of gauge transformations in particle physics was introduced by Yang and

Mills [41]. The gauge invariance of the electromagnetic field described by the group

U(1) was generalized to the SU(2) symmetry, the isospin group describing the

nucleon. The formal results achieved by Yang and Mills were then analyzed from

a geometric point of view [29]. Significant advances with the Yang-Mills fields

occurred with the proof of renormalizabibity of such theories. Yang-Mills fields

provides a general unified structure for the description of all known elementary

particles in the context of the the standard model.

The Lagrangian density of N free Dirac fermions is written as

L0(ψ, ∂ψ) = ψ(x)[γ · i∂ −m]ψ(x)

=

N∑

i,j=1

ψi(x)[γ · i∂ −m]δijψj(x), (4.22)
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where the indices i and j stand for the N types of fermions. This Lagrangian is

invariant under the Poincaré group. Besides we find that L0 is also invariant under

the global phase transformation ψ′(x) = Uψ(x), where U = eiΛ, with Λ being a real

constant quantity. The central characteristics of U are the following: (i) U(Λ) is

unitary and is an element of the U(1) group; (ii) the phase transformation does not

affect the space-time coordinates. This last aspect results in the fact that the indices

of the γ-matrices are unchanged by the transformation U . These characteristics are

present in any Lagrangian of a complex field describing matter. We implement two

generalizations of this symmetry. One is associated with the components of ψj(x),

since we have analyzed the phase transformation U = eiΛ as being the same for

any type of fermions, that is for all i = 1, 2, . . . , N. In this case, U is an N × N
matrix. The other possible extension is to consider U as being dependent on points

of space-time. With these characteristics, a transformation of ψj(x) can be formally

written as

ψ′i(x) = Uij(x)ψj(x) and ψi(x) = ψj(x)U
†
ji(x), (4.23)

where we have assumed the sum over repeated Latin indices. This gauge transfor-

mation, Uij(x), has to be connected to the identity; thus we write it as

U(x) = e−igΛ(x) = e−igΛr(x)tr ,

where Λr(x) are real functions of space-time coordinates, g is a constant to fix the

units and the operators tj are the generators of the gauge group. These generators

satisfy the Lie algebra

[tr, ts] = crsltl,

where crsl are the structure constants of the Lie group, with r, s, l = 1, 2, . . . , `. The

quantity ` specifies the maximal number of independent elements in the Lie algebra;

or equivalently, the dimension of the algebra. The simplest finite dimensional rep-

resentation for a Lie algebra is its adjoint representation. In the case of the gauge

group, each matrix ti reads

(tr)sl = (crsl).

For instance, for the the su(2) algebra we have cijk = iεijk i, j = 1, 2, 3, such that

S1 = (iε1ik) = i




0 0 0

0 0 1

0 −1 0


 , S2 = (iε2,ik) = i




0 0 −1

0 0 0

1 0 0


 ,

S3 = (iε3,ik) = i




0 1 0

−1 0 0

0 0 0


 ,

The transformation given by Eq. (4.23) does not leave the Lagrangian L0 in-

variant, i.e.

L0(ψ
′, ∂ψ′) = L0(ψ, ∂ψ) + ψi(x)γ

µ[U−1(x)i∂µU(x)]ijψj(x).
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In order to cancel the extra term,

Lext = ψi(x)γ
µ[U−1(x)i∂µU(x)]ijψj(x),

another term has to be added to the original Lagrangian. This new term involves

a new field, say A, defined in such a way that: (i) the Lagrangian describing the

field A is invariant under the gauge transformation and the Poicaré group, then the

components of the field A are written as Aµij ; (ii) the field Aµij transforms under

the gauge transformation in such a way so as to cancel any non-gauge invariant

term coming from L0. This requires a third term in the original Lagrangian with

the interaction between A and ψj(x). To take into account the extra term Lext, we

introduce the Lagrangian term,

L1(ψ, ∂ψ) = −ψi(x)g(Aµ)ijγ
µψj(x),

requiring that under the gauge transformation the new field is

A′µ(x) = U(x)Aµ(x)U
−1(x) +

i

g
∂µU(x)U−1(x).

If we consider an infinitesimal transformation, Λa, U(x) can be written as

U(x) = I + igΛata.

Then we write

A′µ(x) = Aµ(x)− ∂µΛ(x) + ig[Λ(x), Aµ(x)]. (4.24)

Observe that Λ(x) = Λr(x)tr. The field Aµ(x) is

Aµ(x) = Arµ(x)t
r ,

such that

[Λ(x), Aµ(x)] = [Λr(x)tr , Aµ,s(x)ts]

= Λr(x)Aµ,s(x)[tr , ts] = Λr(x)Aµ,s(x)crsltl.

This is a matrix equation, since each tl is an N × N -matrix. The partial gauge-

invariant Lagrangian is

L0 + L1 = ψi(x)[iδij∂µγ
µ − g(Aµ)ijγµ −mδij ]ψj(x)

= ψ(x)[iγµDµ −m]ψ(x),

where Dµ(A), the covariant derivative, is

Dµ = ∂µ + igAµ.

This derivative is such that Dµψ transforms as ψ in Eq. (4.23); that is, the covariant

derivative does not change the phase factor in a term with Dµψ (as it was the case

of ∂µ for Λ independent of x), such that

(Dµψ)′ = (∂µ + igA′µ)ψ
′ = UDµψ.

Then the term iψ(x)γµDµψ(x) is invariant.
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Another term in the Lagrangian is needed to derive the equation of motion for

A′µ(x). This extra term has to be Poincaré and gauge invariant. Using the fact that

Dµ is gauge invariant, we define

Fµν = DµAν −DνAµ = ∂µAν − ∂νAµ + g[Aµ(x), Aν (x)]. (4.25)

Then the simplest gauge invariant Lagrangian is

L2 = −1

4
FµνF

µν .

The full invariant Lagrangian, L = L0 + L1 + L2, is given by

L = ψ(x)(iDµγ
µ −m)ψ(x) − 1

4
FµνF

µν .

This expression is written in terms of quantities involving different matrix indices.

Indeed we have indices describing the space-time (µ, ν, ..), generators of the gauge

group (r, s, ..) and for the representation of the generators (i, j, ...). Considering

these indices, the explicit expressions for Dµ and Fµν , using Aµ(x) = Arµ(x)t
r , are

Dµ = ∂µ + igAµ = ∂µ + igArµ(x)t
r ,

or

(Dµ)ij = δij∂µ + igArµ(x)t
r
ij ,

such that

[Dµ, Dν ] = igF rµν t
r,

where

F rµν = ∂µA
r
ν(x)− ∂νArµ(x) + gcrslAsµ(x)A

l
ν(x).

In Eq. (4.25) Fµν is

Fµν = F rµν t
r

and g[Aµ(x), Aν(x)] reads

g[Aµ(x), Aν(x)] = gAsµ(x)A
l
ν(x)[t

s, tl] = igcrslAsµ(x)A
l
ν (x)t

r.

Now Eq. (4.24) becomes

A′rµ (x) = Arµ(x) − ∂µΛr(x) + gcrslΛsµ(x)A
l
ν(x). (4.26)

Observe that there is an arbitrariness in the definition of Aµ due to its Λ-

dependence in the gauge transformation. It can be fixed by a proper choice of

Λr(x), that means, imposing some constraints on the field Arµ(x). The Lorentz

invariance gives us a simple option,

∂µArµ(x) = 0.

This is called the Lorentz gauge condition.
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We include the gauge fixing condition in the Lagrangian using an arbitrary

Lagrange multiplier, say, 1/2α. Therefore, the full Lagrangian, is

L = ψ(x)[iDµγ
µ −m]ψ(x) − 1

4
FµνF

µν − 1

2α
(∂µArµ(x))

2.

Using this Lagrangian, the physical results have to be independent of the arbitrary

constant α. For α = 1, the condition is called the Feynman gauge; for α→ 0, one has

the Landau gauge. This term in the Lagrangian establishing the gauge condition

is called gauge fixing term. This Lagrangian is useful, for example, to obtain the

quantization of the electromagnetic field, where the gauge group is U(1). However,

as the gauge fixing term is not gauge invariant, in general, we find inconsistencies.

This type of difficulty is overcome with a proper definition of a generating functional.

In the next section we address this problem.

4.4 Generating functional for gauge fields

Consider the following generating functional for a gauge field

Z[J ] =

∫
DA exp(iS[J ]), (4.27)

with

S[J ] =

∫
dx4[L+AµJ

µ] , L = −1

4
FµνF

µν

andDA =
∏
µ,r
DArµ. Let us analyze the gauge invariance of Z[J ]. L is gauge invariant,

and so is DA. Indeed,

DA′ = DA det

(
∂A′s

∂Ar

)
.

But up to the first order in the gauge parameter Λr, we have

det

(
∂A′s

∂Ar

)
= det(δrs − crslΛl) = 1 +O(Λ2).

Observe that the source term is not gauge invariant, but it is not a major problem

since at the end of the calculations J → 0. Then we can work with Z[0] first. The

basic problem is how to take into account the gauge fixing term in a gauge invariant

way. We proceed as follows. The gauge condition is written as

hµArµ = br,

where hµ and br are to be specified As an example, in the case of the Lorentz gauge

hµ = ∂µ and br = 0. Define the functional relation

∆G[A]

∫ ∏

r

dΛrδn(hµA′rµ − br) = 1, (4.28)

where A′rµ = A′rµ (Λ) is given in Eq. (4.26) and the integration is carried over the

elements of the gauge group manifold. Each element is characterized by the set
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of parameters Λr, and the measure
∏
dΛr is gauge invariant. In the integral, Arµ

acts on Λ, in such a way that ∆G[A], defined in Eq. (4.28), is also gauge invariant.

Inserting Eq. (4.28) into Eq. (4.27), we obtain

Z[0] =

∫
DA

∏

r

dΛrδn(hµA′rµ − br)∆G[A] exp(iS[0]).

All terms in this functional integral are gauge invariant. Then by a proper gauge

transformation, Z[0] is written as

Z[0] =

(∏

r

dΛr

)∫
DAδn(hµArµ − br)∆G[A] exp(iS[0]).

The quantity
∏
r
dΛr provides only an overall factor to the generating functional,

and thus it can be discarded. Therefore, we take the functional in the form

Z[0] =

∫
DAδn(hµArµ − br)∆G[A] exp(iS[0]). (4.29)

For a generating functional this is not sufficient, since we expect to have a functional

integral of the exponential of an action. For that we have to treat the δ-function

and the functional ∆G appropriately.

In Eq. (4.29), we have to specify ∆G and fix the parameters br. From the

definition of ∆G, Eq. (4.28), we have

∆G[A]

∫ ∏

r

dΛrδn(hµA′rµ − br) =
∆G[A]

detMG
= 1;

i.e. ∆G[A] = detMG, with

Mrs
G (x, y) =

δ(hµA′rµ (x))

δ(Λs(y))
.

Using Eq. (4.26), let us write the matrix MG for some gauges.

Coulomb gauge: hµ = (0,∇),

Mrs
G (x, y) = (δrs∇2 − gcrslAl · ∇)δ(x − y). (4.30)

Lorentz gauge: hµ = ∂µ,

Mrs
G (x, y) = (δrs�− gcrsl∂µAlµ)δ(x − y). (4.31)

Temporal gauge: hµ = η̂µ = (1, 0, 0, 0),

Mrs
G (x, y) = (δrs�− gcrsl∂µAlµ)δ(x − y). (4.32)

We use the arbitrariness of br in Eq. (4.29), to rewrite the δ-function as an expo-

nential function. We multiply Eq. (4.29) by the factor

exp

(−i
2α

∫
d4xb2

)
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and integrate over b. The result is

Z[0] =

∫
DA detMG exp

(
iS[0]− i

2α

∫
d4x(gµArµ)

2

)
.

The final step is to write detMG as an exponential. This can be achieved by

using the Grassmann variables. For the operator MG, we write

detMG =

∫
dχdχ∗ exp

{
−i
∫
d4xd4yχr∗(x)Mrs

G (x, y)χs(y)

}
,

where χ(x) is an ancillary field, called the Faddeev-Popov ghost [42]. It is a scalar

field, but satisfies anti-commutation relation, i.e. it behaves like a fermion. Using

Mrs
G (x, y) in the Lorentz gauge, Eq. (4.31), an integration is carried out in the

exponential, resulting in

detMG =

∫
dχdχ? exp

{
i

∫
d4xd4y∂µχr∗(x)Drs

µ χ
s(y)

}
,

where Drs
µ is the covariant derivative.

The Faddeev-Popov ghost, although non-physical, is a field with a dynamics of

its own. The Lagrangian is

LFP = ∂µχr∗(x)Drs
µ χ

s(y)

= ∂µχr∗(x)∂µχ
r(y) + ig∂µχr∗(x)crslAlµχ

s(y).

Discarding the interaction term in this Lagrangian, we find that the ghost field

satisfies a massless Klein-Gordon equation, that shows its bosonic characteristic.

On the other hand, χ is a Grassmann variable, playing the role of a fermion-like

field. So to write the final expression for the generating functional, including sources,

we have to take sources for ghosts in terms of Grassmann variables as it is the case

for fermions. The final result, including the gauge, fermion and ghost fields, the

gauge-fixing term and sources, is

Z[J, η, η, ξ, ξ∗] =

∫
DADψDψDχDχ∗

× exp

[
i

∫
d4x

(
L+AJ + ηψ + ψη + ξ∗χ+ χ∗ξ

)]
,

where ξ∗ and ξ are Grassmann variables describing sources for ghost fields. In

Z[J, η, η, ξ, ξ∗], the Lagrangian density is

L = ψ(x)(iDµγ
µ −m)ψ(x) − 1

4
FµνF

µν

− i

2α
(gµArµ)

2 + ∂µχr∗(x)Drs
µ χ

s(y).
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4.5 U(1) gauge theory

Let us consider the U(1)-gauge theory, quantum electrodynamics (QED). In this

case crst = 0, i.e. the theory is abelian, and gtrij = −e, where e is the magnitude

of the charge of the particle. For spin 1/2 particles, the QED Lagrangian density

is L = L0 + LI with L0 = LG0 + LF0 , LG0 being the free gauge field,

LG0 = −1

4
(∂µAν − ∂νAµ )(∂µAν − ∂νAµ)− 1

2α
(∂µAµ)

2,

where Aµ(x) is the vector potential and α is the electromagnetic gauge parameter.

LF0 describes the matter field.

LF0 = ψ(x)[γ · i∂ −m]ψ(x).

The interaction Lagrangian density is

LI = −eψγµAµ(x)ψ.
For the free gauge field the generating functional is

ZG0 [J ] = exp

{
i

2

∫
dxdy Jµ(x)D0µν (x− y)Jν(y)

}
,

where

Dµν
0 (x) =

1

(2π)4

∫
d4ke−ikxdµν(k)

1

k2 + iε
,

with

dµν(k) = gµν − (1− α)
pµpν

p2
. (4.33)

The generating functional for the interacting fields is given by

Z[J, η, η] =
exp

[
i
∫
dxLI

(
1
i
δ
δJ ,

1
i
δ
δη ,

1
i
δ
δη

)]
Z0[J, η, η]

exp
[
i
∫
dxLI

(
1
i
δ
δJ ,

1
i
δ
δη ,

1
i
δ
δη

)]
Z0[J, η, η]|J,η,η=0

,

with Z0[J, η, η] = ZG0 [J ]ZF0 [J, η, η], where ZF0 [J, η, η] is the generating functional

for fermions, given in Chapter 3.

The Feynman rules in the momentum space for QED are given in Fig. 4.7.

The basic loops in QED are the fermion-photon, which corresponds to an integral

−i
∫
d4p/(2π)4, and the pure fermion-loop, giving an integral i

∫
d4p/(2π)4. These

loops are represented in Fig. 4.8. Sum over spin-projection for the final state and

spin average for the initial state must be done.

Another model for the U(1)-gauge theory describes the interaction of photons

with charged scalar mesons, with the interaction Lagrangian given by

Lint = −ieAµφ†←→∂ µφ+ e2AµAµφ
†φ.

There are two vertices in this theory. One with scalar mesons interacting with a

single photon and a second where the interaction is with two photons. The Feynman

rules for these vertices are presented in Fig. 4.9 [36].
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(m− γp)−1

dµν(p; α)(p2 + iε)−1

−eγµν

fermion

photon

vertex

Fig. 4.7 Feynman rules for the Green functions in QED.

fermion− photon

fermion

Fig. 4.8 Basic loops in QED.

−ie(pµ + p′µ)(2π)4δ(p − p′ − q)

2iegµν(2π)4δ(p − p′ − q − q′)

Fig. 4.9 Feynman rules for charged scalar mesons.

4.6 SU(3) gauge theory

Now we turn to a study of the non-abelian gauge theory where the commutator

of generators are non-zero. Taking now the SU(3) gauge theory in particular, the
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Lagrangian density is

L = L0 + LI ,
where the non-interacting Lagrangian density is,

L0 = LG0 + LFP0 + LF0 ,
with

LG0 = −1

4
(∂µA

r
ν − ∂νAµr)(∂µAνr − ∂νAµr)−

1

2α
(∂µArµ)

2.

LFP0 is the Faddeev-Popov term [42],

LFP0 = (∂µχr∗µ )(∂µχrµ),

and LF0 describes the matter field,

LF0 = ψ(x)[γ · i∂ −m]ψ(x).

The interaction Lagrangian density is

LI = −g
2
crsl(∂µA

r
ν − ∂νArµ)AsµAlν

−g
2

2
crstcultArµA

s
νA

uµAlν

−gcrsl(∂µχr∗)Alµχs(y) + gψtrγµArµψ,

where crsl are the structure constants of the SU(3) gauge group. The superscripts

r, s and l vary from 1 to 8 and refer to the quantum number for color. In addition

the fermion (quark) field ψ has six known flavors (the different types of fermions,

indicated by i, j = 1, 2, . . . , N). In the Lagrangian density L, we refer to fermions

with color and flavor; the gauge field quanta being called gluons. Such a formulation

provides the non-abelian theory of quarks and gluons, called Quantum Chromody-

namics (QCD), the theory of strong interactions.

The generating functional for the non-interacting gauge field is

Z
G(rs)
0 [J ] = exp

{
i

2

∫
dxdy Jµ(x)D

(rs)
0µν (x− y)Jν(y)

}
,

where

D
(rs)µν
0 (x) =

1

(2π)4

∫
d4ke−ikxD(rs)µν

0 (k)

with

D
(rs)µν
0 (k) = δrsdµν(k)

1

k2 + iε
,

where dµν(k) is given by Eq. (4.33). For the Fadeev-Popov fields the generating

functional is

Z
FP (rs)
0 [ξ, ξ] = exp

{
i

2

∫
dxdy ξ(x)D

(rs)
0 (x− y)ξ(y)

}
,
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where ξ and ξ are Grassmann variables and D
(rs)
0 (x − y) = δrsG0(x − y) is the

propagator for the Fadeev-Popov field. The full generating functional for the non-

abelian gauge field is

Z[J, ξ, ξ,η, η] =
exp

[
i
∫
dxLI

(
1
i
δ
δJ ,

1
i
δ
δξ
, 1
i
δ
δξ ,

1
i
δ
δη ,

1
i
δ
δη

)]
Z0[J, ξ, ξ,η, η]

exp
[
i
∫
dxLI

(
1
i
δ
δJ ,

1
i
δ
δξ
, 1
i
δ
δξ ,

1
i
δ
δη ,

1
i
δ
δη

)]
Z0[0]

,

with Z0[J, ξ, ξ,η, η] = Z
G(rs)
0 [J ]Z

FP (rs)
0 [ξ, ξ]Z

F (rs)
0 [η, η].

As an example, the contribution of the 3-gluon coupling to first order is

Dr1r2r3
α1α2α3

(x1, x2, x3) = (−i)2 δ3

δJ1δJ2δJ3

∫
d4xL3G

I (
1

i

δ

δJrα
)ZG0 [J ]|J=0

where Ji = Jriαi , i = 1, 2, 3. The 3-point function for the gluon field is

Dr1r2r3
µ1µ2µ3

(x1, x2, x3) = igcrst
∫
d4x{∂µDrr1

νµ1
(x− x1)− ∂νDrr1

µµ1
(x− x1)}

×Dsr2µ
µ2

(x − x2) D
tr3ν
µ3

(x− x3)

+gcrst
∫
d4x{∂µDrr2

νµ2
(x− x2)− ∂νDrr2

µµ2
(x− x2)}

×Dsr3µ
µ3

(x − x3) D
tr1ν
µ1

(x− x1)

+gcrst
∫
d4x{∂µDrr3

νµ3
(x− x3)− ∂νDrr3

µµ3
(x− x3)}

×Dsr1µ
µ1

(x − x1)D
tr2ν
µ2

(x− x2).

In momentum space, this propagator is written as

Dr1r2r3
µ1µ2µ3

(x1, x2, x3) = igcr1r2r3
∫

d4p1

(2π)4
d4p2

(2π)4
ei(p1x1+p2x2+p3x3)

×dµ1λ1(p1)dµ2λ2(p2)dµ3λ3(p3)

p2
1p

2
2p

2
3

×[(p1 − p2)
λ3gλ1λ2 + (p2 − p3)

λ1gλ2λ3

+(p3 − p1)
λ2gλ1λ3 ],

with p3 = −p1 − p2.

The Feynman rules for the SU(3) gauge theory are given below. The three

propagators, for the quark, gluon and ghost fields, are diagramatically represented

in Fig. 4.10.

In this theory we have four types of vertices, that are given in Fig. 4.11 where

V λ1λ2λ3(p1, p2, p3) = [(p1 − p2)
λ3gλ1λ2 + (p2 − p3)

λ1gλ2λ3

+(p3 − p1)
λ2gλ1λ3 ]

and

W r1r2r3r4
µ1µ2µ3µ4

= (c13,24 − c14,32)gµ1µ2gµ3µ4

+(c12,34 − c14,23)gµ1µ3gµ2µ4

+(c13,42 − c12,34)gµ1µ4gµ3µ2 ,
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quark

gluon

ghost
−δrsp

−2

δrsdµλ(p)p−2

δij(m− γp)−1p

p

p

i

sνrµ

r s

j

Fig. 4.10 Quark, gluon and ghost propagators.

with cij,kl = frirjrfrkrlr.

For the loops, shown in Fig. 4.12, we have to integrate over the internal momenta,

k, as −i
∫
d4k/(2π)4. For each type of loop we have an additional symmetry factor

as indicated in Fig. 4.13. There is a sum over the indices for the final state and an

average over the indices of the initial state.

4.7 Scattering amplitudes

In order to calculate transition amplitudes, we have to estimate the behavior of

fields as the interaction turns off asymptotically. We consider here only scalar fields

such that φ(t,x) ∼ φin(t,x), as t → −∞, φ(t,x) ∼ φout(t,x), as t → ∞, where

φin(t,x) and φout(t,x) satisfy the free Klein-Gordon equation

(� +m2)φin,out(t,x) = 0.

These fields are associated with the positive and negative frequencies, respec-

tively [39], such that

φin(t,x) =

∫
d3p

(2π)32p0
a(p)e−ipx

and

φout(t,x) =

∫
d3p

(2π)32p0
a∗(p)eipx.

The underlying idea for the introduction of in and out asymptotic fields relies on

the fact that interacting fields obey in general coupled non-linear equations which

cannot be solved analytically. So, no realistic possibility of having closed solutions

for problems in field theory is actually available. The main analytical method used

to deal with situations in field theory is, except for a few special cases, perturbation

theory. Actually this is not a particular situation of quantum theories. In fact this

method has been used since the 19th century in problems of celestial mechanics;
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Fig. 4.11 The basic vertices in QCD.

the discovery of Neptune by Le Verrier as a “perturbation” to the orbit of Uranus is

an outstanding example. In this framework, the approach is carried out by means

of the definition of free fields; the interaction being introduced order by order in

powers of the coupling constant in the perturbative series for the observables, in the

present case, cross-sections for collision processes. This happens at both quantum

and classical levels. Indeed perturbation theory was originally introduced to solve

problems in celestial mechanics in the 19th century.

Using the definition of Z[J ], the generating functional, we introduce

Z[J, φ] ≡
∫
Dφ exp

[
i

∫
d4x(L + Jφ)

]
,

where the interacting field φ is such that

φ(x) = φin(x) as t→ −∞,
φ(x) = φout(x) as t→∞.
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Fig. 4.12 The basic loops in QCD.

Consider the λφ4 theory. Define a field φ0(x), such that φ0(x)→ ϕin(x) as t→ −∞
and φ0(x)→ φout(x) as t→ +∞. Then we write

S[J, φ0] ≡ exp

[
i

∫
d4xLI

(
δ

iδJ(x)

)
S0[J, φ0]

]
,

where

S0[J, φ0] =

∫
Dφ exp

[
i

∫
d4x(L0 + Jφ0)

]
. (4.34)

Define

φ(x) = φ(x) + φ0(x),
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Fig. 4.13 Symmetry factors for basic diagrams in QCD.

where φ(x)→ 0 as t→ ±∞. Hence, from Eq. (4.34), we obtain

S0[J, φ0] =

∫
Dφ exp

[
−i1

2

∫
d4xφ( � +m2 )φ + Jφ

]

× exp

[
i

∫
d4yJ(y)φ0(y)

]

= exp

[
i

∫
d4yJ(y)φ0(y)

]
Z0[J ].

From the definition of Z0[J ], we write

( � +m2 )
δZ0[J ]

iδJ(x)
= J(x)Z0[J ].

Then

S0[J, φ0] = exp

(∫
d4xφ0( � +m2 )

δ

δJ(x)

)
Z0[J ]

and

S[J, φ0] = exp

(∫
d4xφ0( � +m2 )

δ

δJ(x)

)

× exp

[
i

∫
d4xLI

(
δ

iδJ(x)

)]
Z0[J ],

or

S[J, φ0] = exp

(∫
d4xφ0( � +m2 )

δ

δJ(x)

)
Z[J ]. (4.35)
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This expression gives the transition between incoming and outgoing states, in the

presence of the source J(x).

Expanding the exponential in Eq. (4.35), we obtain

S[J, φ0] =
∞∑

n=0

1

n!

∫
d4x1 . . . d

4xnφ0(x1) · · ·φ0(xn)

×Kx1 · · ·KxnG
(n)(x1, . . . , xn),

where Kx = �x +m2 . In the momentum space this expression is given by

S[J, φ0] =

∞∑

n=0

1

n!

∫
d4p1

(2π)4
· · · d

4pn
(2π)4

G(n)(p1, . . . , pn)

×(2π)4δ(p1 + · · ·+ pn)(m
2 − p1

2) · · · (m2 − pn2)

×
∫
d4x1 . . . d

4xne
ip1x1+···+ipnxnφ0(x1) · · ·φ0(xn).

In this expression, each field φ0(xi) is expressed as

1

(2π)4

∫
d4xeipxφ0(x) =

∫
d3kρ(k)[a(k)δ(p− k) + a∗(k)δ(p+ k)],

where p2 = m2, k2 = m2 and ρ(k) = [(2π)32k0]
−1.

For a scattering process, with m initial particles, with momenta p1, ..., pm, and

n−m outgoing particles with momenta pm+1, .., pn, the amplitude is given as

Sfi =
1

ρ(p1) · · · ρ(pn)
δnS[J, φ0]

δa(p1) · · · δa(pm)δa∗(pm+1) · · · δa∗(pn)

∣∣∣∣
a=a∗=0

.

Notice that S[J, φ0] describes all the transition processes; while Sfi represents a

specific scattering process from S[J, φ0], such that the mass-shell condition for in-

going and outgoing particles as well as the conservation of energy and momen-

tum are satisfied. The expression is explicitly Lorentz covariant due to the factor

[ρ(p1)...ρ(pn)]−1. Finally, Sfi is an element of the S-matrix. From the definition of

Sfi we obtain

Sfi = (2π)4δ(p1 + · · ·+ pm − pm+1 − · · · − pn)Tfi,
= (2π)4δ(

∑

i

pi −
∑

f

pf )Tfi,

where

Tfi = (i)n(m2 − p1
2) · · · (m2 − pn2)

×G(n)(p1, . . . , pm,−pm+1, . . . ,−pn).

The transition probability is given by

|Sfi|2 = (2π)8δ(0)δ(
∑

i

pi −
∑

f

pf )|Tfi|2,
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where (2π)4δ(p) =
∫
d4xeipx; this gives us (2π)4δ(0) =

∫
d4x = V T, the infinite

space-time volume. Therefore the transition probability per unit volume per unit

time is given as

Pfi = (2π)4δ(
∑

i

pi −
∑

f

pf )|Tfi|2.

The differential cross section is defined by

dσfi =
1

F
dNfi,

where dNfi, the number of particles scattered by a single target particle, is

dNfi =
1

2p10
Pfi

∏

f

d3pf
(2π)32pf0

,

and the incident flux of particles, F , is

F = 2|p1|.

Let us consider the simpler situation of a single incident particle of momentum

p1 scattered by a target particle of mass m2. The differential cross section in the

laboratory frame is,

dσfi = (2π)4δ(
∑

i

pi −
∑

f

pf )
1

2m2

1

2|p1|
|Tfi|2

∏

f

d3pf
(2π)32pf0

.

This relation is valid for spin-zero particles. For particles with non-null spin we have

to average over the initial spin directions and sum over the final spin directions. The

factor m2|p1| may be written in a Lorentz covariant form as

m2|p1| = m2

√
(p10)2 −m2

1 =
√

(p1 · p2)2 −m2
1m

2
2,

where p2 = (m2, 0, 0, 0) in the laboratory frame. Let us consider some examples

[36, 38]

• The scattering of two scalar particles

In the λφ4 theory, up to order λ the 4-point Green functions are given by

the Feynman diagrams in Fig. 4.3. Observe that only the connected diagram

contributes to the transition matrix element, which is then given by Tfi = −iλ.
Then the differential cross-section reads

dσfi
dΩ3

=
λ2

64π2s
,

where s = (p1 + p2)
2 = 4E2. Here E is the centre-of-mass energy, such that

p1 = (E,p) and p2 = (E,−p).
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• Scattering of two charged scalar particles

In the center-of-mass frame, the scattering of two charged bosons is described

by the differential cross-section, that up to order α2, is given as

dσfi
dΩ3

=
α2

16E2
|Tfi|2,

where

|Tfi|2 = 4
p1 · p2 − p1 · p′2

(p1 − p′1)2
+ 4

p1 · p2 − p1 · p′1
(p1 − p′2)2

,

and α = e2/4π~c is the fine-structure constant.

• Electron-electron scattering

Considering the scattering process given in Fig. 4.14, in the center-of-mass

frame, the differential cross-section to order α2 is [36]

dσfi
dΩ3

=
m2α2

E2
|Tfi|2,

with

|Tfi|2 =
1

2m4

{
(p1 · p2)

2 + p1 · p′2)2 + 2m2(p1 · p′2 − p1 · p2)

[(p′1 − p1)2]2

+
(p1 · p2)

2 + p1 · p′1)2 + 2m2(p1 · p′1 − p1 · p2)

[(p′2 − p1)2]2

+2
(p1 · p2)

2 − 2m2(p1 · p2)

(p′1 − p1)2 − (p′2 − p1)2

}
. (4.36)

Writing all invariants in terms of the energy E and the scattering angle θ,

p1 · p2 = 2E2 −m2, p1 · p′1 = E2(1− cos θ) +m2 cos θ ,

p1 · p′2 = E2(1 + cos θ)−m2 cos θ, (4.37)

results in the Möller formula

dσfi
dΩ3

=
α2(2E2 −m2)2

4E2(E2 −m2)2

[
4

sin4 θ
− 3

sin2 θ

+
(E2 −m2)2

(2E2 −m2)2

(
1 +

4

sin2 θ

)]
. (4.38)

• e+e− annihilation (e+e− → qq)

Consider the Feynman graph given in Fig. 4.15, in the center-of-mass frame,

describing the lowest order approximation to the e+e− annihilation. The scat-

tering amplitude is given by

|Tfi| = 〈qq|T |e+e−〉 = uλ′
1
(p′1)(−Qe)γµvλ′

2
(p′2)

dµν
q2

veλ2
(p2)eγ

νuλ1(p1),
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p1(E,p)

p′
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′)

p′
1
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p2(E,−p)

θ

Fig. 4.14 Electron-electron scattering.

where Qe is the charge of the quark and q = p1 + p2. The total cross-section is

written as,

σ =
1

8
√
s(s− 4m2)

∑

λ1λ2λ′
1λ

′
2

∫
d3p′1

(2π)32p′10

d3p′2
(2π)32p′20

×(2π)4δ4(p′1 + p′2 − p1 − p2)|〈qq|T |e+e−〉|2

The differential cross-section to order α2 reads,

dσ

dΩ
=
Q2α2

4s

√
s− 4m2

s− 4m2
e

[
1 +

4(m2 +m2
e)

s

+

(
1− 4m2

s

)(
1− 4m2

e

s

)
cos2 θ

]

The total cross-section is,

σ =
4πQ2α2

3s

√
s− 4m2

s− 4m2
e

(
1 +

2m2

s

)(
1 +

2(m2
e

s

)
, (4.39)

where qµ = (
√
s, 0, 0, 0), m(me) is the mass of the quark (electron), s = q2 and

kµ = (0,k).

e
−

p1

e
+

p2

q̄

p
′

1

q

p
′

2

γ

Fig. 4.15 e+e− annihilation.
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4.8 S-matrix in the canonical approach

In this section we briefly review the notion of S-matrix in the canonical formalism.

Consider a field operator φ(x) such that

lim
t→−∞

φ(x) = φin(x),

lim
t→∞

φ(x) = φout(x),

where φin(x) and φout(x) stand for the field before and after interaction takes place.

For a discussion on how these limites are performed and precise definitions we refer

to [37]. These two fields are assumed to be related to each other by a canonical

transformation

φout(x) = S−1φin(x)S,

where S is an unitary operator.

Now we define the evolution operator, U(t, t′), which relates the interacting field

to the incoming and outgoing fields, that is

φ(x) = U−1(t,−∞)φin(x)U(t,−∞)

φ(x) = U−1(+∞, t)φout(x)U(+∞, t). (4.40)

The operator U reduces to the unit operator for t = t′, U(t, t) = 1. The field

operator φ(x) satisfies the Heisenberg equation

−i∂tφ(x) = [H,φ(x)],

where H = H0 +HI ,with H0 being the free-particle Hamiltonian and HI the inter-

action. The fields φin(x) and φout(x) satisfy

−i∂tφin(x) = [H0, φin(x)] (4.41)

and

−i∂tφout(x) = [H0, φout(x)] (4.42)

Requiring the unitarity of U(t, t′), we obtain

∂t(U(t, t′)U−1(t, t′)) = 0.

In addition, from Eq. (4.40) we obtain

∂tφin(x) = ∂t[U
−1(t,−∞)φ(x)U(t,−∞)]

= [U(t,−∞)∂tU
−1(t,−∞) + iH, φin(x)].

Comparing with Eq. (4.41), we get

i∂tU(t, t′) = HI(t)U(t, t′).

This equation is solved by iteration of the integral equation,

U(t, t′) = I − i
∫ t

t′
dt1H(t1)U(t1, t

′)
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resulting in

U(t, t′) = I − i
∫ t

t′
dt1H(t1) + (−i)2

∫ t

−∞

∫ t1

−∞
dt1dt2H(t1) H(t2) + · · ·

+(−i)n
∫ t

t′
· · ·
∫ tn−1

t′
dt1 · · · dtnH(t1) · · ·H(tn) + · · ·

Each product of the interaction Hamiltonian terms in Eq. (4.43) is time ordered,

since t1 ≥ t2 ≥ · · · ≥ tn. Then we can write T (H(t1) · · ·H(tn)) for H(t1) · · ·H(tn)

in Eq. (4.43) and

U(t, t′) = T exp

[
−i
∫ t

t′
dt′H(t′)

]
, (4.43)

where T is the time-ordering operator.

The S-matrix operator is defined by

S = U(∞,−∞) = T exp

[
−i
∫ ∞

−∞
dt′H(t′)

]
.

The transition operator is defined by T = S−I. The expectation values of the oper-

ator T between incoming and outgoing states are elements of the transition matrix.

To obtain explicit expressions for these, the use of the LSZ reduction formulas is

required [37]. The elements of the S-matrix give the probability amplitudes for

specific scattering processes, defined by the incoming and outgoing fields and states

we choose.

With this chapter, we close the brief review of the fundamental grounds we have

to rely on to build thermal quantum field theories. Such a construction starts in the

next chapter by introducing the algebraic basis of the operator formalism known as

thermofield dynamics.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

PART II

Thermal Fields

87



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

88



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Chapter 5

Thermofield Dynamics: Kinematical
Symmetry Algebraic Basis

The derivation of statistical mechanics, based on a constrained variational method,

provides an elegant structure ready to be applied to any system since we are able

to define the density matrix and solve the Liouville-von Neumann equation. This

is not feasible when we have a system described by an interacting quantum field

theory, like many-body systems and relativistic objects in particle physics. One way

to proceed is to look for methods paralleling temperature-independent formalisms

(T = 0 theories). For instance, if we take the Liouville-von Neumann equation

as the equation of motion for the state of a system, then pure and mixed states

can, in principle, be considered at the same level. This observation suggests that

for equilibrium we can think of the operation 〈A〉 = Tr(Aρ) = Z−1(β)Tr(Ae−βH),

with a Wick rotation β → −iτ , as an alternative way to solve problems using,

for instance, perturbative and diagramatic techniques. Another possibility is that

the operator average 〈A〉 would be performed in a Hilbert state, with temperature

dependent states |0(β)〉, such that 〈A〉 = 〈0(β)|A|0(β)〉.
Using these ideas, several methods have been proposed. The first systematic ap-

proach to treat a quantum field theory at finite temperature was presented by Mat-

subara [43], the imaginary-time formalism, using the Wick rotation. Since then the

development of the thermal quantum field formalism has followed the achievements

of the T = 0 quantum field theory. The first generalization of the imaginary-time

formalism was carried out by Ezawa, Tomozawa and Umezawa [44], who extended

the Matsubara’s work to the relativistic quantum field theory, and discovered, in

particular, periodicity (anti-periodicity) conditions for the Green functions of boson

(fermion) fields, a concept that later became known as the KMS (Kubo, Martin and

Schwinger) condition. Some ideas, developing the imaginary-time approach, have

been proposed [45–48], and others, originally introduced in T = 0 theories, have

been considered with the counterpart notions at finite temperature. We can list,

as examples, the thermal Ward-Takahashi relations, the Goldstone theorem, renor-

malization procedures, the notion of non-abelian gauge field among others, with all

its consequences for particles physics [49–52].

Despite the successes, even with its generalizations, difficulties in thermal field

theory remain to be overcome in order to treat experimental and theoretical de-

89
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mands. In fact, numerous studies particularly in lattice quantum chromodynam-

ics (QCD) [53], have been carried out in attempts to understand, for instance,

the quark-gluon plasma at finite temperature; and in this effort, some underly-

ing aspects have been identified. For example, the coupling constants for π, σ, w

and ρ mesons decrease to zero at certain critical temperatures, which are, re-

spectively, given by: T πc = 360 MeV, T σc = 95 MeV, Twc = 175 MeV and

T ρc = 200 MeV [54, 55]. These results require general and consistent calculations

to establish the existence of a phase transition. This reinforces the need for the de-

velopment of a finite temperature field theory for the standard model, which would

provide answers about the transition from hadrons to the quark-gluon plasma. In

this realm, effective models have been largely employed in trials to obtain clues to

the behavior of interacting particles. This is the case of the Gross-Neveu model [56],

dealing with the direct four-fermion interaction, which has also been analyzed at

finite temperature, as an effective model for QCD and for superconducting sys-

tems [57–59]. Along these lines, some achievements have been seminal, as the

paper by Dolan and Jackiw [60], which performs the calculations for the effective

potential at finite temperature to study spontaneous symmetry breaking.

Beyond that, despite the numerous instances in high energy physics and in con-

densed matted physics where (real) time dependance is essential, a nonequilibrium

theory has not been fully developed as yet. This difficulty was recognized early as

a flaw in the Matsubara equilibrium formalism and has been motivating attempts

to construct real-time formalisms at finite temperature [61–66].

One of these real-time methods is the closed-time path formulation due to

Schwinger [67], Mahanthapa and Bakshi [68, 69], and Keldysh [70]. The approach

uses a closed path in the complex-time plane such that the contour goes along the

real axis and then back. From this procedure an effective doubling of the degrees of

freedom emerges, such that the Green functions are represented by 2× 2 matrices.

Actually, this type of doubling has been recognized as an intrinsic characteristic

of real-time theories, providing in turn a correct definition for perturbative series,

which is not the case of the Matsubara method [51].

The fact that a quantum formalism is strongly founded on the basis of repre-

sentations of linear algebras suggests that a T 6= 0 field theory needs a real-time

operator structure. Such a theory, based on the state |0(β)〉, was presented by

Takahashi and Umezawa [71–73] and they called it Thermofield Dynamics (TFD).

As a consequence of the real-time requirement, a doubling is defined in the original

Hilbert space of the system, such that the temperature is introduced by a Bogoli-

ubov transformation.

The Takahashi and Umezawa approach has been developed for practical pur-

poses and some results should be mentioned, as the proof of the Goldstone theorem

within this formalism with a quite amazing physical and mathematical appeal, and

the perturbative scheme with Feynman rules established to carry out calculations

completely in parallel with the zero-temperature quantum field theory [72]. Thus it
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has been successfully applied to study magnetic superconductors [73], magnetic sys-

tems like ferromagnets and paramagnets [74], in quantum optics [75–79], transport

phenomena [80] and d-branes [81, 82], among others. Furthermore, the propagators

are 2× 2 matrices; from this fact the association of the Matsubara and Schwinger-

Keldysh methods has been analyzed in a unified way [72, 83].

Formally the thermal theory can be established, via TFD, within c* alge-

bras [84, 85, 18] and symmetry groups [87, 18, 86], opening a broad spectrum

of possibilities for the study of thermal effects. For instance, the kinetic theory has

been formulated for the first time from the analysis of representations of kinematical

groups [18] and elements of the q-group have been considered, where the effects of

temperature is related to a deformation in the Weyl-Heisenberg algebra [88, 86, 89].

The analysis of thermal theories via c* algebras was carried out long ago [90, 91],

resulting in the doubled structure of the Tomita-Takesaki (standard) representation

that can be immediately used to construct several aspects of TFD. It is worth notic-

ing that the structure of TFD was envisaged in a paper by Leplae, Mancini and

Umezawa [92] studying superconductors; but much earlier the doubled structure

was also explored by Verboven [93, 94], studying thermal oscillators.

Considering topological aspects of a thermal formalism, we can realize that the

final prescription results in a scheme of compactification in time of the T = 0 theory.

That is, the Matsubara formalism is equivalent to a path-integral calculated on

S1×RD−1, where S1 is a circumference of length β = 1/T. In a generalized way the

thermal field theory compactification can be extended to spatial coordinates as it

is valid for finite temperature. These ideas have been developed for the Matsubara

formalism [95, 96] as well as for TFD and applied to the Casimir effect considering

the electromagnetic and fermion fields within a constrained geometry [97, 98], to

the λφ4 model as the Ginsburg-Landau theory of superconductors [99, 100], and to

the Gross-Neveu model at T = 0 [101–103].

In this chapter the main ideas of TFD are introduced, following initially along

the historical developments. Later, we present a derivation of the theory based on

general arguments of symmetry. This provides not only a symmetry basis for TFD,

but also for statistical mechanics, since we can derive the Liouville-von Neumann

equation. This procedure points to the way to explore representations of group

theory to derive properties of thermal (relativistic and non relativistic) physics.

The central aspect is then to present the formalism of statistical physics as a closed

theoretical framework, starting from symmetry.

5.1 Thermal Hilbert space

For a system in thermal equilibrium, the ensemble average of an operator A is given

by

〈A〉 =
1

Z(β)
Tr(e−βHA). (5.1)
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Then assuming that H |n〉 = En|n〉 with 〈n|m〉 = δnm,we write

〈A〉 =
1

Z(β)

∑

n

e−βEn〈n|A|n〉.

We are looking for a state |0(β)〉 such that [71, 73]

〈A〉 ≡ 〈0(β)|A|0(β)〉

=
1

Z(β)

∑

n

e−βEn〈n|A|n〉. (5.2)

Let us initially investigate whether |0(β)〉 may be a vector in the Hilbert space; i.e.

|0(β)〉 =
∑

n

|n〉〈n|0(β)〉 =
∑

n

gn(β)|n〉.

This implies that 〈0(β)|A|0(β)〉 =
∑

nm g
∗
n(β)gm(β)〈n|A|m〉, and the requirement

given by Eq. (5.2) imposes the following condition on the coefficients gm(β) and

g∗n(β),

g∗n(β)gm(β) =
1

Z(β)
e−βEnδnm.

But we know that such a relation cannot be satisfied by c-numbers. Therefore

|0(β)〉 cannot be an element of the original Hilbert space. The above condition is

like an orthogonality condition, thus suggesting that gm(β) should be an element

of a vector space. The simplest way to achieve this is by introducing a doubling

of the Hilbert space. Let us do this, resulting in a tensor product of spaces, such

that a vector of the basis is given by |n, m̃〉 = |n〉 ⊗ |m̃〉. In the present case, taking

gm(β) = fm(β)|m̃〉, we write

|0(β)〉 =
∑

n

fn(β)|n, ñ〉,

such that

〈0(β)|A|0(β)〉 =
∑

n,m

f∗n(β)fm(β)〈n, ñ|A|m, m̃〉

=
∑

n

f∗n(β)fn(β)〈n|A|n〉,

where we have assumed that the operator A acts only on non-tilde vectors, i.e.

〈n, ñ|A|m, m̃〉 = 〈n| ⊗ 〈ñ|A|m〉 ⊗ |m̃〉 = 〈n|A|m〉〈ñ|m̃〉 = Anmδnm.

The tilde in a vector |m, m̃〉 indicates that |m̃〉 is the replica of |m〉, with m and

m̃ standing for the same number: m = m̃. This is why we have written 〈ñ|m̃〉 =

δnm, without reference to the tilde in the δmn. In a vector like |m, ñ〉, the tilde

emphasizes the element of the tilde-Hilbert space only. In order to reproduce the

thermal average, now we have f ∗n(β)fn(β) = Z−1(β) e−βEn , which has the solution

fn(β) = Z−1/2(β) e−βEn/2. Therefore, the thermal state can be written as

|0(β)〉 =
1√
Z(β)

∑

n

e−βEn/2|n, ñ〉.
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The vector |0(β)〉 is then a pure state, defined in this doubled Hilbert space, equiv-

alent to a mixed state describing the thermal equilibrium of a system as far as the

averages are concerned.

Doubling is not a characteristic of TFD only, but rather an ingredient present in

all thermal theories. In terms of the density matrix, the doubling is present when

we write ρ(t) as a projector, that is, ρ ' |ψ〉〈ψ|, and the Liouville-von Neumann

equation is written in the form

i∂tρ(t) = Ĥρ(t). (5.3)

The time evolution is controlled by Ĥ = [H, . ], the Liouvillian, which is an object

associated with, but different from, the Hamiltonian operator, H . In TFD as in the

density matrix formalism, this doubling, at first, looks like an artificial procedure.

But this is no longer true and can be understood by exploring the fact that TFD

is a thermal formalism based on a vector Hilbert space, which can be used as the

carrier space for representations of Lie groups.

5.2 The meaning of the doubling: thermo-algebras

An important point now concerns with the interpretation of the doubling in the

Hilbert space, necessary to introduce the thermal state |0(β)〉. We address this

problem from the point of view of symmetry.

5.2.1 Generators of symmetry and observables

In order to introduce a formalism based on states |0(β)〉 from general assumptions,

we assume that the set of kinematical variables, say V , is a vector space of mappings

in a Hilbert space denoted by HT . The set V is composed of two subspaces and is

written as V = Vobs⊕Vgen, where Vobs stands for the set of kinematical observables

while Vgen is the set of kinematical generators of symmetries.

Both, in quantum and classical theory, usually Vobs and Vgen are identical with

each other and with V . Let us discuss this point a little bit more. Often, to

each generator of symmetry there exists a corresponding observable and both are

described by the same algebraic element. For instance, consider the generator of

rotations L3 = ix1∂/∂x2 − ix2∂/∂x1 and the generator of space translation P1 =

−i ∂/∂x1. As we know, L3 and P1 are also considered as physical observables, an

angular momentum and a linear momentum components, respectively. The effect

of an infinitesimal rotation α around the x3-axis on the observable momentum P1

is

exp(iαL3)P1 exp(iαL3) ' (1 + iαL3)P1(1− iαL3)

= P1 + iα[L3, P1].

The commutator, expressing the effect of how much P1 has changed, is given by

[L3, P1] = L3P1 − P1L3 = iP2.
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Proceeding similarly with other components, we write in general,

[Li, Pj ] = iεijkPk.

This expression shows that P = (P1, P2, P3) is transformed as a vector by a rotation.

In other words, the generator Li changes Pj through the commutator operation

giving rise to another observable, iεijkPk. In this operation Li has to be thought as a

simple generator of symmetry, not as an observable. The same type of interpretation

is valid when we consider

[Li, Lj ] = iεijkLk, (5.4)

the Lie algebra of the rotation group. In this case, the same object, the vector

L = (L1, L2, L3), is used with two different meanings: Li in the commutator is the

generator of an infinitesimal rotation over the physical observable Lj , resulting of

course in another physical quantity, iεijkLk.

It has to be emphasized that, although the one-to-one correspondence among

observables and generators of symmetry is based on physical grounds, there exists no

a priori dynamical or kinematical imposition to consider a generator of symmetry

and the corresponding observable as being described by the same mathematical

quantity. Actually we are free to assume a more general situation; and we have

already observed this separation in the Liouville-von Neumann equation written in

the form of Eq. (5.3). There we have two different objects associated with the time

evolution: H , the Hamiltonian, that describes the observable energy of a system,

and Ĥ , the Liouvillian, the generator of time evolution.

Here we consider the same one-to-one correspondence among generators and

observables, but exploring the case in which Vobs and Vgen are different from each

other. That is, Vobs and Vgen correspond to different mappings inHT . To emphasize

these aspects, we denote an arbitrary element of Vobs by A and by Â the correspond-

ing element in Vgen. Now we analyze the consequences of such separability condition

for an arbitrary symmetry group.

5.2.2 Doubled Lie algebra

Let us denote by ` = {ai, i = 1, · · ·, s} the set of generators that span a Lie algebra

over R, the real field. In the set ` there exists a product, (·, ·), called the Lie product,

given by

(ai, aj) = Ckijak,

where the sum over repeated indices is assumed. The c-numbers Ckij are the struc-

ture constants, which characterize the nature of the symmetry group associated

with `,. The Lie product satisfies the condition of antisymmetry,

(ai, aj) = −(aj , ai),

and the Jacoby identity,

(ai, (aj , ak)) + (ak, (ai, aj)) + (aj , (ak, ai)) = 0.
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A well-known example is the Lie algebra of the rotation group given in Eq. (5.4)

where the Lie product is a commutator.

Taking HT as the carrier space for representations of `, we write

[Âi, Âj ] = iCkijÂk, (5.5)

where Âi ∈ Vgen. The imaginary i in Eq. (5.5) is to characterize that we are

treating a unitary representation. Although Eq. (5.5) provides a representation for

`, operators of type A have to be taken into consideration in a representation in

the full Hilbert space HT , otherwise the representations will be restricted to the set

of hat operators, Vgen; resulting in the usual unitary representation. Therefore we

have additional commutation relations among A and Â operators, and among the

operators of type A. Let us then write

[Âi, Aj ] = iDk
ijAk, (5.6)

[Ai, Aj ] = iEkijAk, (5.7)

where Dk
ij and Ekij are constants to be fixed with the following reasoning. Observe

that Eqs. (5.5)–(5.7) describe a Lie algebra, to be denoted by `T , which is the

definition of a semidirect product of two subalgebras, Vgen and Vobs, characterized

by the fact that Vobs is an invariant subalgebra. The motive for that is a physical

imposition. Since non-hat operators describe kinematical observables, Eq. (5.6)

is interpreted as the infinitesimal action of a symmetry generated by Âi on the

observable Aj , resulting in another observable given by iDk
ijAk. This is found from

the relation

eiαÂiAje
−iαÂi = Aj(α).

Considering α� 1, we write

Aj(α) = Aj + α

(
∂Aj(α)

∂α

)

α=0

and

eiαÂiAje
−iαÂi ' Aj + iα[Âi, Aj ].

Thus, taking α→ 0, we have

[Âi, Aj ] = −i∂Aj(α)

∂α
.

The important thing in this relation is that

∂Aj(α)

∂α

is another observable specified by the commutation relation. On the other hand,

the content of Eq. (5.7) is the nature of commutativity among observables. Before

going further, we give an example.

Let ` = {ai = si, i = 1, 2, 3} be the Lie algebra of the group SU(2), such that

[li, lj ] = iεijklk.
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A representation of su(2)T is given by

[Si, Sj ] = iεijkSk, (5.8)

[Si, sj ] = iεijksk, (5.9)

[si, sj ] = iεijksk, (5.10)

where Si (equivalent to a hat operator) describe a rotation, while sj (equivalent

to a non-hat operator) is the observable of spin. The fact that spin transforms as

a vector under rotations is represented by Eq. (5.9). The components of spin do

not commute with one another, according to Eq. (5.10), as a consequence of the

measurement imposition. In this case we have Ckij = Dk
ij = Ekij = εijk.

With the example above, we find that symmetries can also be used to define the

results of commutation relations among observables, and as such we assume that in

Eqs. (5.5)–(5.7) Ckij = Dk
ij = Ekij . Gathering these comments, we write

[Âi, Âj ] = iCkijÂk, (5.11)

[Âi, Aj ] = iCkijAk, (5.12)

[Ai, Aj ] = iCkijAk. (5.13)

These relations define the Lie algebra in the thermal Hilbert space HT . This repre-

sentation will be called thermo Lie algebra [87]. Notice that this procedure opens

the possibility to explore the notion of Hilbert space in the context of classical

physics, if we consider Ekij = 0 in Eq. (5.7) [104]. Such a classical formalism will be

developed in the last Part of this book.

5.2.3 Tilde conjugation rules

Some properties of `T can be derived. Defining the variable

Ã = A− Â, (5.14)

we show that Eqs. (5.11)–(5.13) are written as

[Ai, Aj ] = iCkijAk, (5.15)

[Ãi, Ãj ] = −iCkijÃk, (5.16)

[Ai, Ãj ] = 0 (5.17)

This result shows that a doubling of degrees of freedom has been introduced, in

the form of a direct product. This is a consequence of the algebraic separability

between mappings in HT describing the generators of symmetry and those of the

observables.

Such a doubling can be considered as a mapping in V = Vobs ⊕ Vgen, say J :
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V → V , denoted by JAJ = Ã, fulfilling the following conditions

(AiAj )̃ = ÃiÃj , (5.18)

(cAi +Aj )̃ = c∗Ãi + Ãj , (5.19)

(A†i )̃ = (Ãi)
†, (5.20)

(Ãi )̃ = Ai. (5.21)

[Ai, Ãj ] = 0. (5.22)

These properties, called tilde conjugation rules, are introduced as a consequence of

Eqs. (5.15)–(5.17). For instance, comparing Eq. (5.15), written as

AiAj −AjAi = iCkijAk,

and Eq. (5.16), written as

ÃiÃj − ÃjÃi = −iCkijÃk,
we find (AiAj )̃ = ÃiÃj . The other relations follow from such comparisons.

5.3 Tilde and non-tilde operators

In this section we analyze, with examples, representations for the tilde and non-tilde

operators. We consider the Hilbert space H, as a Fock space with a basis vector

denoted by

|m〉 = 1√
m!

(a†)m|0〉,

where |0〉 is the vacuum state and a† is a boson creation operator fulfilling the

algebra [a, a†] = 1, with the other commutation relations being zero. We consider

then the thermal Hilbert space as a direct product HT = H⊗ H̃. The meaning of

the tilde space, H̃, has to be specified by the tilde conjugation rules regarding the

representation space. An arbitrary basis vector in HT is obtained by first taking

the tilde conjugation of H, that is JH = H̃. For a vector |m〉 in H we have

J |m〉 = J
1√
m!

(a†)m|0〉 = 1√
m!

(ã†)mJ |0〉,

where the results J2 = 1 and Ja†J = ã† are used. We have to define the following

conjugation J |0〉 = |0〉̃. The simplest choice is

J |0〉 = |0̃〉. (5.23)

Therefore, we have J |m〉 = |m̃〉 and a basis vector in HT is given by

|m, ñ〉 = 1√
m!
√
n!

(a†)m(ã†)n|0, 0̃〉,

where |m, ñ〉 = |m〉 ⊗ |ñ〉 and, in particular, |0, 0̃〉 = |0〉 ⊗ |0̃〉. Using this, we obtain

J |m, ñ〉 = |n, m̃〉.
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Given an operator A in H, then we can construct a corresponding non-tilde

operator, say A, in HT by defining its action on a vector |m, ñ〉, as

A|m, ñ〉 = (A|m〉)⊗ |ñ〉.
In the same way, given Ã in H̃ we have Ã in HT , such that

Ã|m, ñ〉 = |m〉 ⊗ Ã|ñ〉.
Using the completeness relation 1 =

∑
r,s |r, s̃〉〈s̃, r|, we have

A|m, ñ〉 =
∑

r,s,t,u

|r, s̃〉〈s̃, r|A|t, ũ〉〈ũ, t|m, ñ〉

=
∑

r,s

〈s̃, r|A|m, ñ〉|r, s̃〉

=
∑

r

Ar,m|r, ñ〉 = (A|m〉)|ñ〉, (5.24)

where Arm = 〈r|A|m〉. We get the tilde of A taking the tilde conjugation of

Eq. (5.24), resulting in

Ã|m, ñ〉̃ = Ã|n, m̃〉 =
∑

r

A∗rm|n, r̃〉,

where we have used (Arm)̃ = A∗rm, since Arm is a c-number, and |m, ñ〉̃ = |n, m̃〉.
On the other hand we have

Ã|n, m̃〉 =
∑

r,s,t,u

|r, s̃〉〈s̃, r|Ã|t, ũ〉〈ũ, t|n, m̃〉

=
∑

r,s

〈s̃, r|Ã|n, m̃〉|r, s̃〉 =
∑

s

〈s̃|Ã|m̃〉|n, s̃〉.

Then we obtain

〈s̃|Ã|m̃〉 = A∗sm = (AT †)sm = (A†)ms, (5.25)

where AT † is the transpose (T ) and the Hermitian conjugate (†) of A.

Writing

〈s̃, r|A|m, ñ〉 = As̃rmñ = Armsn,
we have

Armsn = Armδns. (5.26)

For the tilde operator we define

〈s̃r|Ã|mñ〉 = Ãs̃rmñ = Ãsnrm,
resulting in

Ãsnrm = δrm(A†)ns (5.27)

From Eqs. (5.26) and (5.27), we can write

A = A⊗1 and Ã = 1⊗A† .
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For example, consider the Pauli matrices:

s1 =
1

2

(
0 1

1 0

)
, s2 =

i

2

(
0 −1

1 0

)
, s3 =

1

2

(
1 0

0 −1

)
. (5.28)

satisfying the Lie algebra

[si, sj ] = iεkijsk. (5.29)

The representation for the corresponding operators A = S and Ã = S̃, can be

obtained using the Hermitian Pauli matrices; we have Sj ≡ sj ⊗ 1 and S̃j ≡ 1⊗ sj
with i = 1, 2, 3, that is

S1 =
1

2




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 , S2 =

1

2




0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0


 ,

S3 =
1

2




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 , S̃1 =

1

2




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 ,

S̃2 =
1

2




0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0


 , S̃3 =

1

2




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 .

These matrices satisfy the algebra given by

[Si, Sj ] = iεijkSk ,
[S̃i, S̃j ] = −iεijkS̃k
[Si, S̃j ] = 0.

We construct another representation for A = S and Ã = S̃ using Eq. (5.25),

that is 〈s̃|Ã|m̃〉 = A∗sm, with an embedding in the higher dimensional space HT . In

the case of the Pauli matrices, we have

S1 =
1

2




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


 , S2 =

1

2




0 −i 0 0

i 0 0 0

0 0 1 0

0 0 0 1


 ,

S3 =
1

2




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


 , S̃1 =

1

2




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 ,

S̃2 =
1

2




1 0 0 0

0 1 0 0

0 0 0 i

0 0 −i 0


 , S̃3 =

1

2




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 .
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A useful result for the tilde and non-tilde operators is derived by considering

the vector

|1〉 =
∑

m

|m, m̃〉 (5.30)

Then we have, from Eq. (5.24), for the non-tilde operator

A|1〉 =
∑

m

A|m, m̃〉 =
∑

m,r

Arm|r, m̃〉; (5.31)

and for the tilde operator

Ã|1〉 =
∑

m

Ã|m, m̃〉 =
∑

m,r

Ãrm|m, r̃〉. (5.32)

Taking the tilde conjugation of Eq. (5.31) we have

Ãrm = A∗rm = 〈r|AT † |m〉 = 〈m|A†|r〉.

Inserting this result into Eq. (5.32) we obtain

Ã|1〉 =
∑

m

(A†|m〉)|m̃〉. (5.33)

Taking A = BC, such that A = BC, then we have

B̃C̃|1〉 = (BC)†|1〉 = C†B†|1〉. (5.34)

5.4 Liouville-von Neumann equation

Let us analyze the effect of time transformations of an arbitrary observable A(t),

generated by Ĥ ,

A(t) = eitĤA(0)e−itĤ. (5.35)

Taking the derivative of Eq. (5.35) with respect to time, we get

i∂tA(t) = [A(t), Ĥ]. (5.36)

Assume that the state of a system is given by a vector |ψ(to)〉 ∈ HT and the average

of an observable A(t) in a state |ψ(0)〉 is given by

〈A〉 = 〈ψ(0)|A(t)|ψ(0)〉,

with 〈ψ(0)|ψ(0)〉 = 1. Then from Eq. (5.35) we write 〈A〉 = 〈ψ(t)|A(0)|ψ(t)〉, where

|ψ(t)〉 satisfies the equation

i∂t|ψ(t)〉 = Ĥ|ψ(t)〉. (5.37)

Despite the appearance, this equation is not the Schrödinger equation in quantum

mechanics due to HT , that provides reducible representations. However, Eq. (5.36)

is in a Heisenberg picture and Eq. (5.37) is in a Schrödinger picture.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Thermofield Dynamics: Kinematical Symmetry Algebraic Basis 101

In this section, we use a representation for |ψ(t)〉 from |1〉, in the following way.

Consider a time-dependent operator F (t) acting in H. In the space HT we have a

vector |F (t)〉 defined by the association F (t)→ |F (t)〉 , with

F (t)|1〉 ≡ |F (t)〉.
Let us verify the scalar product in HT , with the vector constructed in this way.

Consider another vector |G(t)〉 = G(t)|1〉; then we have

〈G|F 〉 =
∑

m,n

〈ñ, n|G†F |m, m̃〉 (5.38)

=
∑

m

〈m|G†F |m〉 = Tr(G†F ) (5.39)

As far as a state of a quantum system is concerned, we take |ψ(t)〉 in Eq. (5.37)

to be |ψ(t)〉 ≡ |F (t)〉. If |ψ(t)〉 is a normalized state, then Tr(F †F ) = 1. It is

then convenient to represent F (t) as the square root of another operator, writing,

F (t) = ρ1/2(t). In this case

|ψ(t)〉 = |ρ1/2(t)〉 = ρ1/2(t)|1〉.
Since

Ĥ = H− H̃ = H ⊗ 1− 1⊗H† = H ⊗ 1− 1⊗H,
we have

Ĥ|ψ(t)〉 = Ĥρ1/2(t)|1〉 = (H− H̃)ρ1/2(t)|1〉
= Hρ1/2(t)|1〉 − H̃ρ1/2(t)|1〉
= [Hρ1/2(t)− ρ1/2(t)H̃ ]|1〉
= [Hρ1/2(t)− ρ1/2(t)H†]|1〉 = [H, ρ1/2(t)]|1〉;

thus we find

i∂t|ψ(t)〉 = i∂tρ
1/2(t)|1〉 = [H, ρ1/2(t)]|1〉.

This leads to

i∂tρ
1/2(t) = [H, ρ1/2(t)].

We can find the time evolution for ρ(t) = ρ1/2†(t)ρ1/2(t), by calculating i∂tρ(t).

The result is

i∂tρ(t) = [H, ρ(t)],

the original Liouville-von Neumann equation, since ρ(t), a Hermitian operator with

Trρ = 1, can be interpreted as the density matrix.

Let us take ρ1/2 diagonal in the basis |n, m̃〉, such that the state |ψ(t)〉 is ex-

panded as

|ψ(t)〉 =
∑

n

ρ1/2
n (t)|n, ñ〉. (5.40)
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Hence, the average of an observable A is

〈A〉 = 〈ψ(t)|A|ψ(t)〉
=
∑

n,m

ρ∗1/2m (t)ρ1/2
n (t)〈m, m̃|A|n, ñ〉

=
∑

n

ρn(t)〈n|A|n〉 = Tr(ρA).

Then the canonical average can be derived. For that let us write

ρ1/2
n =

e−βEn/2

√
Z(β)

,

resulting in the canonical ensemble if we calculate ρ = ρ†1/2ρ1/2. Beyond that, from

Eq. (5.40) the state |0(β)〉, defining the equilibrium average, is

|0(β)〉 =
1√
Z(β)

∑

n

e−βEn/2|n, ñ〉.

In short, considering general aspects of symmetries, the Liouville-von Neumann

equation is derived, but with an additional ingredient: Eq. (5.37) is an amplitude

density matrix equation, such that |ψ〉 = ρ1/2|1〉 is associated with the square root

of the density matrix. In this sense, the theory of Lie groups, so often used in the

case of T = 0 theories, is useful for thermal physics through the doubled repre-

sentation, or the thermo-algebra. This makes statistical mechanics a self-contained

theoretical structure starting from group theory, for with Liouville-von Neumann

equation, we introduce the entropy in the standard way and follow with the proper

connection with thermodynamics. The self-contained elements are reflected in the

fact that no mention to the Schrödinger equation or even the notion of ensemble

has been necessary to develop the statistical mechanics. Some algebraic aspects

that we have derived in this chapter were earlier found but implicitly presented

in the axiomatic structure of quantum statistical mechanics based on c∗-algebra.

Actually the concept of thermo Lie group discussed here is a way to bring part of

the c∗-algebra formalism to the language of Lie groups [85, 86].

5.5 Physical implications of thermo-algebras

In this chapter, the fundamental result has been the notion of thermo-algebra, i.e.

the scheme of representations of Lie algebras, based on the fact that the dynamical

variables of symmetry are composed of two classes of operators. One set describes

the observables, and others are generators of symmetry. Although there is a one-

to-one association among these sets, they are described by different mathematical

objects, each one with its proper physical interpretation. The known example in

statistical physics of this separability is the Liouvillian, describing the evolution of

the system in Liouville-von Neumann equation, and the Hamiltonian.
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From this dichotomy arises a duplication in the original Hilbert space. Here

these elements are related to the language of group theory, and we explore this

fact in depth in following chapters. However, some aspects can be emphasized and

anticipated .

First, it is worth making an additional comment regarding tilde operators. Ac-

cording to Eq. (5.14), a tilde operator is introduced by the difference among gen-

erators of symmetry and observables. On the other hand, in the literature, tilde

operators, when used to define generators of time evolution, are referred to as heat-

bath variables; and this is the case for some specific examples [104]. If the tilde

operators, however, are not interpreted in a consistent way, their use would be con-

sidered somewhat artificial, and for this reason such variables have been, at times,

designated as ghost variables. But this artificiality is removed, since the content

of doubling degrees of freedom in thermal theories is related to symmetries as we

have seen. Beyond that, once there is a connection between the Matsubara formal-

ism and real-time approaches, with the proper interpretation of the doubling, we

understand better the real meaning of working with an imaginary time formalism.

We observe that the role played by tilde variables is to give rise to physical states

described by density matrices, in the sense that we have: |m, m̃〉 → |m〉〈m|. The

meaning of the thermal states introduced from this duplication is interpreted in

terms of this association with the density matrix states; an aspect to be discussed

in Chapter 12. There are other consequences. Since we have a doubling in the de-

grees of freedom, we can explore linear mappings of the type given by a Bogoliubov

transformation in this doubled Hilbert space. Actually, this will be the mecha-

nism to introduce temperature, and thus the thermal phenomena can be viewed

as a condensate process. Furthermore, using the KMS condition with Bogoliubov

transformations, we can extend this method to describe compactification in space

coordinates of a field theory in topologies such as (S1)d × RD−d, where d (< D)

is the number of compactified dimensions in a D-dimensional manifold [105, 106].

These developments will arise from representations of kinematical groups, Poincaré

and Galilei, and will be applied to describe processes such as spontaneous symmetry

breaking and phase transitions for compactified fields in space, at finite temperature.

In order to develop the ideas of symmetry, we initiate our discussion by consider-

ing a simple system with boson and fermion oscillators. Bogoliubov transformations

and the doubled Hilbert space are introduced. This gives us a clear idea about the

nature of TFD in such a system and, thus, prepares us for considering the problem

of fields in TFD.
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Chapter 6

Thermal Oscillators: Bosons and
Fermions

The algebraic approach is applied to bosonic and fermionic oscillators. This provides

new elements for the formalism which will be useful for the study of thermal fields.

In particular the process of thermalization will be implemented via a Bogoliubov

transformation in a doublet notation.

6.1 Boson oscillators

A boson oscillator is described by a Hamiltonian (we use } = 1),

H = wa†a,

neglecting the zero-point energy. The creation and destruction operators, a† and a

respectively, satisfy the algebra

[a, a†] = 1 ; [a, a] = [a†, a†] = 0. (6.1)

The eigenvalues and eigenstates of H are specified by

H |n〉 = nw|n〉,

where the vacuum state |0〉 is such that

a|0〉 = 0 (6.2)

(a†)n|0〉 =
√
n! |n〉, (6.3)

a|n〉 = √n |n− 1〉. (6.4)

These states are orthonormal, i.e. 〈m|n〉 = δmn, and the number operator,N = a†a,
is such that

N |n〉 = n|n〉.

The eigenvalues of N , the integers n = 0, 1, 2, . . . , determine the energy levels of

the oscillator, nw. Since a† and a describe bosons, |n〉 is a state with n bosons.

105
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6.1.1 Thermal vacuum

To double degrees of freedom, tilde operators ã† and ã are introduced. Applying

the tilde conjugation rule to the algebra given in Eq. (6.1) we obtain

(aa† − a†a)̃ = 1̃ = 1,

[ã, ã†] = 1 , [ã, ã] = [ã†, ã†] = 0, (6.5)

and with similar relations as in Eqs. (6.2)–(6.4). The generator of time translations

Ĥ is given by

Ĥ = H − H̃ = w(a†a− ã†ã),

and the thermal state |0(β)〉 is

|0(β)〉 =
1√
Z(β)

∑

n

e−nβw/2|n, ñ〉

=
1√
Z(β)

∑

n

e−nβw/2
1

(n!)1/2
1

(ñ!)1/2
(a†)n(ã†)n|0, 0̃〉. (6.6)

It follows that

〈0(β)|0(β)〉 =
1

Z(β)

∑

n,m

〈m, m̃|e−βw(n+m)/2|n, ñ〉

=
1

Z(β)

∑

n,m

e−βw(n+m)/2δnmδmn

=
1

Z(β)

∑

n

e−βwn.

Using 〈0(β)|0(β)〉 = 1 and the geometric series expansion 1/(1 − x) =
∑
nx

n, we

find

Z(β) =
1

1− e−βw . (6.7)

Observe that in these calculations the tilde in the state |n, ñ〉 is just to indicate

the vector on which a tilde operator acts, but n and ñ are the same number as in

the sum. Finally, from Eq. (6.6) we have

|0(β)〉 =
√

1− e−βw
∑

n

e−nβw/2

n!
(a†)n(ã†)n|0, 0̃〉. (6.8)

In this way we are able to proceed with calculations in statistical mechanics using,

instead of the canonical density matrix, the state |0(β)〉. To explore this possibility,

Eq. (6.8) is written in the form |0(β)〉 = U(β)|0, 0̃〉, where U(β) is a unitary operator.
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6.1.2 Bogoliubov transformation

The sum in Eq. (6.8) is an exponential, that is

|0(β)〉 =
√

1− e−βw exp(e−βw/2a†ã†)|0, 0̃〉. (6.9)

This result is written as an exponential function only, and as such a unitary operator,

by taking into account the operator relation

eα(A+B) = etanhαBeln coshαCetanhαA, (6.10)

where C = [A,B]. First we define

cosh θ(β) =
1√

1− e−βw
≡ u(β), (6.11)

sinh θ(β) =
e−βw/2√
1− e−βw

≡ v(β), (6.12)

which is a consistent definition since

u2(β)− v2(β) = cosh2 θ(β)− sinh2 θ(β) = 1. (6.13)

A result of these definitions is that

tanh θ(β) = e−βw/2. (6.14)

Using then Eqs. (6.11) and (6.14), Eq. (6.9) reads

|0(β)〉 = cosh−1 θ(β)etanh θ(β)a†ã† |0, 0̃〉
= exp

[
tanh θa†ã†

]
exp

[
− ln cosh θ(ãã† + a†a)

]
exp [tanh θ(−ãa)] |0, 0̃〉,

(6.15)

where we have used the commutation relation [ã, ã†] = 1 and

ef(θ)ã†ã|0, 0̃〉 = e0|0, 0̃〉 = |0, 0̃〉,
where f(θ) is an arbitrary function of θ.

Considering Eq. (6.10) with

A = −ãa, B = a†ã†,

C = [A,B] = −ãã† − a†a,
α = θ = θ(β),

Eq. (6.15) reads

|0(β)〉 = e−iG(β)|0, 0̃〉, (6.16)

where

G(β) = −iθ(β)(ãa− ã†a†). (6.17)

Hence the unitary operator, transforming |0, 0̃〉 into |0(β)〉, is given by

U(β) = e−iG(β). (6.18)

The operator U(β) is called a Bogoliubov transformation.
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6.1.3 Thermal operators

Using U(β) let us introduce the following thermal operators through the relations

a(β) = U(β)aU †(β)

a†(β) = U(β)a†U †(β),

ã(β) = U(β)ãU †(β),

ã†(β) = U(β)ã†U †(β).

The importance of these operators lies in the fact that

a(β)|0(β)〉 = U(β)aU †(β)U(β)|0, 0̃〉
= U(β)a|0, 0̃〉 = 0,

and

ã(β)|0(β)〉 = 0.

Then |0(β)〉 is a vacuum for a(β) and ã(β), but it is not a vacuum for a and ã.

In this sense, |0(β)〉 is a pure state for thermal operators, and a thermal state for

non-thermal operators; this is why |0(β)〉 is called a thermal vacuum.

Since U(β) is a unitary transformation, the algebra of the original operators a

and ã is kept invariant, that is, the operators a(β) and ã(β) satisfy the following

commutation relations

[a(β), a†(β)] = 1; [ã(β), ã†(β)] = 1, (6.19)

with all the other commutation relations being zero.

The operator a(β) can be written in the following form

a(β) = u(β)a− v(β)ã†. (6.20)

The proof is given by writing

a(β) = e−iG(β)aeiG(β), (6.21)

with the aid of the operator relation

e−iBAeiB = A+ (−i)[B,A] +
(−i)2

2!
[B, [B,A]]

+
(−i)3

3!
[B, [B, [B,A]]] + · · · , (6.22)

and choosing A = a and B = G. From Eq. (6.21) we have

a(β) = (1 +
1

2!
θ2(β) +

1

4!
θ4(β) + · · · )a

− (θ(β) +
1

3!
θ3(β) +

1

5!
θ5(β) + · · · )ã†

= cosh θ(β)a − sinh θ(β)ã†

= u(β)a− v(β)ã†. (6.23)
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A similar relation is derived for ã†(β),

ã†(β) = u(β)ã† − v(β)a. (6.24)

Such a result is proved by using

ã†(β) = e−iG(β)ã†eiG(β),

or simply using the tilde and the Hermitian conjugation in Eq. (6.20). Then we

find, in short, the following set of consistent relations,

ã†(β) = u(β)ã† − v(β)a,

a†(β) = u(β)a† − v(β)ã,

a(β) = u(β)a− v(β)ã†,

ã(β) = u(β)ã− v(β)a†.

Non-thermal operators a and a† are derived from the thermal ones by inverting

these relations. For instance, multiplying Eq. (6.20) by u(β) and Eq. (6.24) by v(β),

that is

u(β)a(β) = u2(β)a− u(β)v(β)ã†,

v(β)ã†(β) = v(β)u(β)ã† − v2(β)a,

summing up both of these equations and using Eq. (6.13), we get

a = u(β)a(β) + v(β)ã†(β). (6.25)

In a similar way, or simply taking the tilde or the adjoint or both conjugations of

Eq. (6.25), we have

ã = u(β)ã(β) + v(β)a†(β), (6.26)

a† = u(β)a†(β) + v(β)ã(β), (6.27)

ã† = u(β)ã†(β) + v(β)a(β). (6.28)

Such relations are useful in practical calculations. Quite often the physical

observables are written as a combination of a and a†. Then it is convenient to

write the non-thermal operators in terms of thermal ones. Let us consider, as an

example, the average of the number operator N = a†a. We find that

n(β) = 〈N〉 = 〈0(β)|a†a|0(β)〉
= 〈0(β)|[u(β)a†(β) + v(β)ã(β)][u(β)a(β) + v(β)ã†(β)]|0(β)〉

= v2(β) =
1

eβw − 1
, (6.29)

where we have used a(β)|0(β)〉 = 0 and ã(β)|0(β)〉 = 0. This is the boson distribu-

tion function for a system in thermal equilibrium.

Using Eq. (6.13), we show that

a†(β)a(β) − ã†(β)ã(β) = a†a− ã†ã. (6.30)
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Hence the operator Ĥ = H − H̃ is β-independent and is

Ĥ(β) = H(β)− H̃(β) = ω[a†(β)a(β) − ã†(β)ã(β)]

= ω[a†a− ã†ã] = Ĥ.

The thermal Fock space is constructed from the vacuum |0(β)〉, and is spanned

by the set of states given by

{ |0(β)〉, a†(β)|0(β)〉, ã†(β)|0(β)〉, . . . , 1√
n!

1√
m!

(
a†(β)

)n (
ã†(β)

)m |0(β)〉 . . . }.

From the thermal vacuum and the thermal one-particle state, a†(β)|0(β)〉, we have

Ĥ |0(β)〉 = 0.

Ĥa†(β)|0(β)〉 = ωa†(β)|0(β)〉,
Ĥã†(β)|0(β)〉 = −ωã†(β)|0(β)〉,

Ĥa†(β)ã†(β)|0(β)〉 = 0.

Let us prove the second relation above:

Ĥa†(β)|0(β)〉 = ĤU(β)a†U−1(β)|0(β)〉
= (ωa†a− ωã†ã)U(β)a†U−1(β)U(β)|0, 0̃〉
= ω[a†(β)a(β) − ã†(β)ã(β)]U(β)a†|0, 0̃〉
= ωU(β)(a†a− ã†ã)U−1(β)U(β)a†|0, 0̃〉
= ωU(β)(a†a− ã†ã)a†|0, 0̃〉
= ωU(β)a†|0, 0̃〉 = ωa†(β)|0(β)〉.

Similar relations can be derived for states such as 1√
n!

(
a†(β)

)n |0(β)〉.
The action of the thermal creation operator, in terms of non-thermal operators,

on the thermal vacuum is obtained as follows: observe that

a†(β)|0(β)〉 = [u(β)a† − v(β)ã]|0(β)〉. (6.31)

But using a(β)|0(β)〉 = [u(β)a− v(β)ã†]|0(β)〉 = 0, we have

u(β)a|0(β)〉 = v(β)ã†|0(β)〉.

With the tilde conjugation rules it follows that

v(β)ã|0(β)〉 =
v2(β)

u(β)
a†|0(β)〉.

Using this result in Eq. (6.31) we obtain

a†(β)|0(β)〉 =
u2(β)a† − v2(β)a†

u(β)
|0(β)〉 (6.32)

=
1

u(β)
a†|0(β)〉. (6.33)
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This shows that the thermal one-particle state a†(β)|0(β)〉 is constructed by adding

one particle in the thermal vacuum |0(β)〉, weighted by u(β) in order to assure

normalization. The generalization of this expression is given by

(a†(β))n|0(β)〉 =
1

un(β)
(a†)n|0(β)〉,

where we have used a†(β)a† = [u(β)a† − v(β)ã]a† = a†a†(β).

6.1.4 Matrix notation

A condensed doublet notation is introduced by realizing that Eqs. (6.20) and (6.24)

can be written as
(
a(β)

ã†(β)

)
= B(β)

(
a

ã†

)
, (6.34)

where

B(β) =

(
u(β) −v(β)

−v(β) u(β)

)
. (6.35)

We introduce a notation to be adopted from now on. Given two arbitrary (boson)

operators A and Ã, a doublet notation is given by

(Aa) =

(
A1

A2

)
=

(
A

Ã†

)
, (6.36)

with a tilde transposition given by

(A
a
) = (A†,−Ã). (6.37)

In this notation the set of commutation relations given by Eqs. (6.1), (6.5) and

(6.19) reads

[aa, ab] = δab; [aa(β), ab(β)] = δab. (6.38)

In addition, Eq. (6.34) is

aa(β) = B(β)aba
b. (6.39)

The inverse transformation is

B−1(β) =

(
u(β) v(β)

v(β) u(β)

)
,

such that

aa =
(
B−1(β)

)
ab
ab(β).
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6.2 Fermion oscillators

A fermion (or Dirac) oscillator is a system defined by the Hamiltonian

H = wa†a,

where now the operators a† and a satisfy the algebra

{a†, a} = 1, {a†, a†} = {a, a} = 0, (6.40)

where {A,B} = AB+BA is the anti-commutator. The number operator isN = a†a,
with the eigenvalue equation being given by

N |n〉 = n|n〉.

Notice that we are using here the same notation as for the boson case. Using

Eq. (6.40) and the fact that 〈n|n〉 = 1, it can be shown that n = 0, 1, such that

a|0〉 = 0,

a|1〉 = |0〉,
a†|0〉 = |1〉,
a†|1〉 = 0.

The Hilbert space is, therefore, generated by two vectors, only: |0〉 and |1〉. The

energy eigenvalues are then

H |n〉 = εn|n〉 = wn|n〉,

with ε0 = 0 and ε1 = w.

6.2.1 Thermal vacuum

In order to construct TFD for this system, we perform doubling of the degrees of

freedom by introducing the tilde operators furnishing the algebra

{ã†, ã} = 1, {ã†, ã†} = {ã, ã} = 0,

which is a direct consequence of the tilde conjugation rules.

A crucial aspect at this point is to define the relation among tilde and non-

tilde variables. According to the construction presented in the previous chapter,

observables and generators of symmetry have to satisfy commutations relations, and

tilde and non-tilde generators of symmetry commute with each other. However, the

operators a† and a are neither observables nor generators of symmetry, although

combination of them can act in this manner. So we are free to choose physically

correct relations among tilde and non-tilde fermion variables. A consistent theory

is constructed if we define

{a, ã} = {ã†, a} = {a†, ã} = {a†, ã†} = 0. (6.41)
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The doubled system has a vacuum given by |0, 0̃〉, from which we derive

|0, 1̃〉 = ã†|0, 0̃〉,
|1, 0̃〉 = a†|0, 0̃〉,
|1, 1̃〉 = a†ã†|0, 0̃〉.

Therefore, the orthonormalized vectors |0, 0̃〉, |0, 1̃〉, |1, 0̃〉 and |1, 1̃〉 form a basis

which spans the doubled Hilbert space HT of the fermion oscillator. Following the

approach of Chapter 5, we obtain

|0(β)〉 =
1√
Z(β)

∑
ne
−βεn/2|n, ñ〉

=
1√
Z(β)

(|0, 0̃〉+ e−βε1/2|1, 1̃〉)

=
1√
Z(β)

(1 + e−βw/2a†ã†)|0, 0̃〉.

Using the normalization of the thermal state 〈0(β)|0(β)〉 = 1, we get

Z(β) = 1 + e(−βw),

resulting in

|0(β)〉 =
1√

1 + e−βw
(1 + e−βw/2a†ã†)|0, 0̃〉. (6.42)

From the definition of |0(β)〉, the average of the number operator N = a†a is

n(β) = 〈N〉 = 〈0(β)|N |0(β)〉

=
1

1 + e−βw
〈0, 0̃|(1 + e−βw/2ãa)a†a(1 + e−βw/2a†ã†)|0, 0̃〉

=
e−βw

1 + e−βw
〈0, 0̃|ãaa†aa†ã†|0, 0̃〉

=
1

1 + eβw
.

This is the fermion distribution function.

6.2.2 Bogoliubov transformation

Following the scheme for bosons, Eq. (6.42) can be written in terms of a unitary

transformation. Indeed, we define

u(β) = cos θ =
1√

1 + e−βw
,

v(β) = sin θ =
1√

1 + eβw
,

such that

u(β)2 + v(β)2 = cos2 θ + sin2 θ = 1,
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and

|0(β)〉 = (cos θ + sin θa†ã†)|0, 0̃〉 (6.43)

Using the property

(ãa− a†ã†)n|0, 0̃〉 = (−1)n|0, 0̃〉,

and expanding cos θ and sin θ in Eq. (6.43), we write

|0(β)〉 = [1− θ(ãa− a†ã†) +
θ2

2!
(ãa− a†ã†)2 + · · · ]|0, 0̃〉 (6.44)

= U(β)|0, 0̃〉,

where

U(β) = e−iG, (6.45)

with

G = −iθ(ãa− a†ã†).

Note that the ordering of the operators in these expressions is important since ã

and a anticommute with one another. This is the main motive for choosing the

definition given in Eq. (6.41).

6.2.3 Thermal operators

The thermal operators are introduced through the relations

a(β) = U(β)aU †(β),

a†(β) = U(β)a†U †(β),

ã(β) = U(β)ãU †(β),

ã†(β) = U(β)ã†U †(β).

Therefore we have

a(β)|0(β)〉 = U(β)aU †(β)U(β)|0, 0̃〉
= U(β)a|0, 0̃〉 = 0,

and ã(β)|0(β)〉 = 0. Then |0(β)〉 is a vacuum for fermion operators a(β) and ã(β),

but it is not a vacuum for a and ã.

Since U(β) is an unitary transformation, the algebra of the original operators a

and ã is kept invariant, that is, the operators a(β) and ã(β) satisfy the following

anticommutation relations

{a(β), a†(β)} = 1 and {ã(β), ã†(β)} = 1, (6.46)

with all the other anticommutation relations being zero.
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Expanding the unitary operator U , thermal operators are written as,

a(β) = u(β)a− v(β)ã†, (6.47)

ã(β) = u(β)ã+ v(β)a†, (6.48)

a†(β) = u(β)a† − v(β)ã, (6.49)

ã†(β) = u(β)ã† + v(β)a, (6.50)

Note that Eqs. (6.47) and (6.50) are not compatible with the tilde conjugation rules.

For instance, taking the tilde conjugation of Eq. (6.47) we do not get Eq. (6.48).

However, since a† and a are not elements of a thermo-algebra, we can also assume,

without contradiction or loss of generality, that

˜̃a = −a
for fermions. Now the tilde conjugation rules give a consistent result.

The Fock space is constructed from of the vacuum |0(β)〉, and is spanned by the

set of states given by

{ |0(β)〉, a†(β)|0(β)〉, ã†(β)|0(β)〉, a†(β)ã†(β)|0(β)〉 }.
The operator Ĥ = H − H̃ is invariant under the Bogoliubov transformation, i.e.

Ĥ(β) = H(β)− H̃(β) = ω[a†(β)a(β) − ã†(β)ã(β)]

= ω[a†a− ã†ã] = Ĥ.

From the thermal vacuum |0(β)〉 and the thermal one-particle state, a†(β)|0(β)〉,
we have

Ĥ |0(β)〉 = 0.

Ĥa†(β)|0(β)〉 = ωa†(β)|0(β)〉,
Ĥã†(β)|0(β)〉 = −ωã†(β)|0(β)〉,

Ĥa†(β)ã†(β)|0(β)〉 = 0.

It is to be noted that

u(β)a|0(β)〉 = v(β)ã†|0(β)〉 (6.51)

and

a†(β)|0(β)〉 =
u2(β)a† + v2(β)a†

u(β)
|0(β)〉 = 1

u(β)
a†|0(β)〉

6.2.4 Matrix notation

The matrix notation in the case of fermions is introduced from Eqs. (6.47)–(6.50)

by writing
(
a(β)

ã†(β)

)
= B(β)

(
a

ã†

)
, (6.52)
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where

B(β) =

(
u(β) −v(β)

v(β) u(β)

)
. (6.53)

Therefore, for fermion operators A and Ã, the doublet notation is given by

(Aa) =

(
A1

A2

)
=

(
A

Ã†

)
, (6.54)

with the tilde transposition

(A
a
) = (A†, Ã). (6.55)

In this case, the set of anti-commutation relations reads

{aa, ab} = δab; {aa(β), ab(β)} = δab. (6.56)

The Bogoliubov transformation, Eq. (6.53), is given by

aa(β) = Bab(β)ab. (6.57)

The inverse of Eqs. (6.47)–(6.50), is given as

a = u(β)a(β) + v(β)ã†(β), (6.58)

ã = u(β)ã(β) − v(β)ã†(β), (6.59)

a† = u(β)a†(β) + v(β)ã(β), (6.60)

ã† = u(β)ã†(β)− v(β)a(β). (6.61)

such that
(
a

ã†

)
= B−1(β)

(
a(β)

ã†(β)

)
,

with

B−1(β) =

(
u(β) v(β)

−v(β) u(β)

)
.

Notice that, as we have already done, we are using here the same notation as in the

case of bosons. The results derived in this chapter are concerned with one boson

or one fermion mode. However, we can generalize this for an arbitrary number of

modes. This will be important, in particular, to write the thermal propagator for a

quantum field.

6.3 TFD and spin 1/2 lattices

The TFD formalism can be used for spin systems. Here we specify it to consider

spin 1/2 particles.
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6.3.1 Boson representation for the SU(2) algebra

In this subsection we consider the construction of the TFD approach for a system

of particles (or sites in a lattice) of spin 1/2. At first we consider one site described

by the SU(2) algebra,

[si, sj ] = iεijksk. (6.62)

A boson representation of the SU(2) algebra [107] provides an alternative alge-

braic approach to study spin-1/2 systems [18, 74, 108]. Let us first introduce

S± = (s1 ± is2) and S0 = s3,

such that for each spin variable we have,

[S0, S±] = ±S±, (6.63)

[S+, S−] = 2S0. (6.64)

Define then

S+ = a†1a2

S− = a†2a1

S0 =
1

2
(a†1a1 − a†2a2),

with a1 and a2 furnishing a double boson algebra, that is

[a1, a
†
1] = 1, , [a2, a

†
2] = 1, (6.65)

with all the other commutation relations being zero.

The number operators, N1 = a†1a1 and N2 = a†2a2, satisfy

N1|n1, n2〉 = n1|n1, n2〉, N2|n1, n2〉 = n2|n1, n2〉,
where

|n1, n2〉 =
1

(n1!n2!)1/2
(a†1)

n1(a†2)
n2 |0, 0〉.

Other useful results are

S+|n1, n2〉 =
√
n2(n1 + 1) |n1 + 1, n2 − 1〉, (6.66)

S−|n1, n2〉 =
√
n1(n2 + 1) |n1 − 1, n2 + 1〉, (6.67)

S0|n1, n2〉 =
1

2
(n1 − n2)|n1, n2〉. (6.68)

The connection with the original SU(2) algebra emerges if it is assumed that

n1 = s+m, n2 = s−m;

where s and m are related to the usual results:

s2|s,m〉 = s(s+ 1)|s,m〉,
s3|s,m〉 = m|s,m〉,
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and s and s3 are respectively the total and the z-component of spin. In the case of

spin 1/2, we need to consider s = 1/2 and m = 1/2 and −1/2. In terms of the two

bosonic spectra we have n1 = 0, 1 and n2 = 0, 1. As a consequence, the action of

S+ and S− on such states is

S+|s,m〉 = S+|n1, n2〉, (6.69)

S−|s,m〉 = S−|n1, n2〉, (6.70)

such that,

n1 = 0, n2 = 1 ⇒ m = −1/2

n1 = 1, n2 = 0 ⇒ m = 1/2,

i.e.

S+|1/2,−1/2〉 ≡ S+|n1 = 0, n2 = 1〉 = |1, 0〉, (6.71)

S+|1/2, 1/2〉 ≡ S+|n1 = 1, n2 = 0〉 = 0, (6.72)

S−|1/2,−1/2〉 ≡ S−|n1 = 0, n2 = 1〉 = 0, (6.73)

S−|1/2, 1/2〉 = S−|n1 = 1, n2 = 0〉 = |0, 1〉, (6.74)

It is to be noted that

S−|n1, n2〉 = |n1 = 0, n2 = 1〉 = 0, (6.75)

that is, the state |n1 = 0, n2 = 1〉 = |0a〉 is the vacuum state for S−. Now we are in

a position to develop TFD for an N spin-1/2 system.

6.3.2 Thermo-SU(2) algebra

Using the tilde conjugations rules we proceed to the doubling of the su(2) algebra,

resulting in

[S0, S±] = ±S±, (6.76)

[S+, S−] = 2S0, (6.77)

[S̃0, S̃±] = ±S̃±, (6.78)

[S̃+, S̃−] = 2S̃0. (6.79)

There exists a doubling of the bosonic representation of this algebra; and so we

consider this auxiliary bosonic system as our primary system.

A thermal Bogoliubov transformation is introduced by

U(β) = e−iG(θ(β)),

such that generators G(θ(β)) = G(θ) furnish an su(2) algebra, in agreement with

the usual TFD formulation for bosons. The two vacua of the doubled spin vacuum

|0, 0̃〉 is given by |0, 0̃〉 = |0, 1〉⊗|0̃, 1̃〉. Now we have to find an explicit expression

for U(β).
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The unitary operator U(β) is assumed to be a canonical transformation for the

algebra describing the physical system, such that the TFD thermal operators are

now given by

S+(β) = U(β)S+U
−1(β),

S−(β) = U(β)S−U
−1(β),

S̃+(β) = U(β)S̃+U
−1(β),

S̃−(β) = U(β)S̃−U
−1(β).

S0(β) = U(β)S0U
−1(β),

S̃0(β) = U(β)S̃0U
−1(β).

It is easy to show that the thermal operators S+(β), S−(β), S̃+(β), S̃−(β), S0(β) and

S̃0(β) provide a representation for the su(2)T algebra, given by Eq. (6.76) to (6.79).

The thermal operators satisfy the condition below of destroying the thermal

vacuum,

S−(β)|0(β)〉 = 0 and S̃−(β)|0(β)〉 = 0,

where the thermal vacuum |0(β)〉 is defined by

|0(β)〉 = U(β)|0, 0̃〉 = U(β)(|0, 1〉⊗|0̃, 1̃〉);
satisfying the normalization condition

〈0(β)|0(β)〉 = 1.

The thermal average of an observable, say A, is specified by

〈A〉 = 〈0(β)|A|0(β)〉.

From these recipes, we infer an explicit definition of U(β) for the N -spin system;

that is, we write

U(β) = exp

[
N∑

r=1

θr(β)(ã†r,1a
†
r,1ar,2ãr,2 − a†r,2ã†r,2ar,1ãr,1)

]

= exp

[
N∑

r=1

θr(β)(S+,rS̃+,r − S−,rS̃−,r)
]
.

Using the following properties

(S̃−S− − S̃†+S†+)2n|0, 0̃〉 = (−1)n|0, 0̃〉,
(S̃−S− − S̃†+S†+)2n+1|0, 0̃〉 = (−1)n+1|0, 0̃〉, n = 0, 1, 2, · · ·,

derived from Eqs. (6.71)–(6.74), it leads to

|0(β)〉 = U(β)|0, 0̃〉 =
N∏

i=1

(cos θ + sin θS̃†+,iS
†
+,i)|0, 0̃〉.
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As an example, consider a non-interacting N -particle spin-1/2 system in an

external magnetic field h described by the Hamiltonian

H0 = µh

N∑

r=1

s3,r

where µ is the magnetic moment. Since we are taking the spin system as a bosonic

system, we assume that

cosh θ =
1√

1− e−βω
,

sinh θ =
e−βω√

1− e−βω
,

where ω = 1
2µh. Hence we derive the usual result for the magnetization density

m = 〈0(β)|s3|0(β)〉 =
1

2
tanh(

1

2
βµh).

This simple illustration shows how to use such an algebraic approach to treat a

spin system. Here, we do not intend to go much further. However, it should be of

interest to point out that we can use this boson formulation to introduce the Green

functions and diagrammatic approaches to treat spins 1/2 systems. For instance,

consider the average 〈S+S−〉 = 〈0(β)|S+S−|0(β)〉. Using S+ = a†1a2 and S− = a†2a1,

we write

〈S+S−〉 = 〈0(β)|a†1a2a
†
2a1|0(β)〉.

Then we can proceed with the definition of a time-ordered product and the thermal

propagator as is usual for boson systems, and write

〈S+S−〉 = lim
t→t′
〈S+(t)S−(t′)〉

= lim
t→t′
〈0(β)|T [a†1(t)a2(t)a

†
2(t
′)a1(t

′)]|0(β)〉

= lim
t→t′
〈0(β)|T [a†1(t)a1(t

′)a2(t)a
†
2(t
′)]|0(β)〉,

where T is the time-ordering operator.

Here we have analyzed the case with one mode. It can be extended to the multi-

mode case and to the field theory. And in Chapters 12 and 13 we will consider

thermalized states of a boson oscillator and physical implications will become clear.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Chapter 7

Thermal Poincaré and Galilei Groups

The importance of symmetry groups for non-thermal field theories is a fact without

question, and this aspect has already been emphasized in Chapter 4. In Chapter 5,

using the notion of thermoalgebra, we presented a derivation of thermal theories

based on general arguments of symmetry, opening the possibility to bring to the

realm of thermal systems the representation theory for Lie symmetries. This pro-

vides not only a strong basis for the thermal quantum field theory, but also for

statistical mechanics, since we can derive the Liouville-von Neumann equation. In

the present chapter we develop representations of the Poincaré and Galilei groups,

taking the notion of thermoalgebra as the key concept [87]. We begin reviewing some

aspects of the Poincaré group, and then we proceed with the derivation of relativis-

tic density matrices. Tilde and non-tilde Lagrangians are then derived preparing

the way to study the introduction of temperature associated with a quantum field

via a Bogoliubov transformation. The Galilei group results from a contraction of

the Poincaré group. The representations of this group are studied at the end of the

chapter.

7.1 The Poincaré group

The Poincaré group or the inhomogeneous Lorentz group, is the Lorentz group plus

translations in the Minkowski space; the general transformation is written as

x′µ = Λµνx
ν + aµ,

with det Λ = 1. The generators of the symmetry are

Mµν = i(xµ∂ν − xν∂µ), Pµ = i∂µ.

These relations are checked by observing that for the Lorentz group we have

S(Λ)f(x) = exp(−iωµνMµν)f(x) = f(xµ + ωµνx
ν)

and for the translations,

S(Λ)f(x) = exp(−iaµPµ)f(x) = f(xµ + aν).

121
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This defines a representation of the Poincaré group [109, 110], which is used to find

all its algebraic properties. The Lie algebra for generators of symmetry is

[Mµν ,Mσρ] = −i(gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ),

[Mµν , Pσ ] = i(gνσPµ − gσµPν),
with all the other commutation relations being zero. This is the Poincaré-Lie alge-

bra, denoted by p.

The invariants of this algebra are derived from the Pauli-Lubanski matrices de-

fined by wµ = 1
2εµνρσM

νσP ρ, where εµνρσ is the Levi-Civita symbol. The invariants

are w2 = wµw
µ and P 2 = PµP

µ. An invariant is a multiple of the identity operator,

thus each value is a characteristic of the representation. A simple representation

of this algebra is constructed by taking ω = 0 and P 2 = k2I, where I is the iden-

tity operator and k is a c-number. Interpreting P as the momentum, the relation

P 2 = k2I means the mass shell condition, and k ≡ m. Considering the Hilbert

space defined by Lorentz-scalar functions, as the space carrying representations of

the group, that is, where the generators are defined to act as operators, then we

have P 2φ(x) = m2φ(x). The explicit representation for P 2 as a unitary operator,

using Pµ = −i∂µ, leads to the Klein-Gordon equation,

(� +m2)φ(x) = 0.

The general form of the invariant w2 is

w2 = −m2s(s+ 1)

where s is the spin value. When we take w2 = 0, then s = 0, i.e. a scalar field. Such

an equation describes massive spin-zero particles. For ω2 6= 0 it can be shown [12]

that only integral and half-integral spins are possible.

7.2 Relativistic density matrices

The thermo-algebra associated to the Poincaré group [87], denoted by pT , is

[Mµν , Pσ] = i(gνσPµ − gσµPν), (7.1)

[Pµ, Pν ] = 0, (7.2)

[Mµν ,Mσρ] = −i(gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ), (7.3)

[M̂µν , Pσ] = [Mµν , P̂σ] = i(gνσPµ − gσµPν), (7.4)

[P̂µ, Pν ] = 0, (7.5)

[Mµν , M̂σρ] = −i(gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ), (7.6)

[M̂µν , P̂σ] = i(gνσP̂µ − gσµP̂ν), (7.7)

[P̂µ, P̂ν ] = 0, (7.8)

[M̂µν , M̂σρ] = −i(gµρM̂νσ − gνρM̂µσ + gµσM̂ρν − gνσM̂ρµ), (7.9)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal
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where M̂µν stands for the generator of rotations and P̂ µ for translations in the

Minkowski space. This algebra is written in a short notation by

[M,P] = iP, [M̂,M] = iM

[P,P] = 0, [M̂, P̂] = iP̂,

[M,M] = iM, [M̂, M̂] = iM̂.

[M̂,P] = iP, [P̂, P̂] = 0,

[P̂,P]=0.

The invariants of pT are

w2 = wµw
µ, (7.10)

P 2 = PµP
µ = m2, (7.11)

ŵ2 = 2ŵµw
µ − ŵµŵµ, (7.12)

P̂ 2 = 2P̂µP
µ − P̂µP̂ µ; (7.13)

where

ŵµ =
1

2
εµνρσM̂

νσP ρ +
1

2
εµνρσM

νσP̂ ρ − 1

2
εµνρσM̂

νσP̂ ρ.

The vector

wµ =
1

2
εµνρσM̂

νσP̂ ρ

is used to define the scalar w2 = wµw
µ, which is not an invariant of pT but rather

that of the subalgebra of the hat operators, Eqs. (7.7)-(7.9). Using the definition of

the hat variables, it is established that

ŵ2 = (wµw
µ )̂

= wµw
µ − (wµw

µ )̃

= wµw
µ − w̃µw̃µ, (7.14)

and

P̂ 2 = PµP
µ − P̃µP̃ µ. (7.15)

Representations for pT are built from the Casimir invariants, ŵ2 and P̂ 2. From

the definition of tilde variables, P̃ = P−P̂ and M̃ = M−M̂, non-null commutation

relations for the algebra pT are

[M,P] = iP,

[M,M] = iM,

[M̃,P̃] = −iP̃,
[M̃,M̃] = −iM̃.

This is the direct sum of two algebras. Therefore there will be only two invariants

m̃ and m. By definition of the tilde operation, with m being real, we have m̃ = m.
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7.2.1 Bosons

Using the Hilbert space for TFD (Chapter 5), the invariants PµP
µ and P̃µP̃

µ, are

[(P 2 −m2)⊗ 1]|φ(t)〉 = 0, (7.16)

and

[1⊗ (P 2 −m2)]|φ(t)〉 = 0,

where |φ(t)〉 is chosen as

|φ(t)〉 = ρ(φ) ⊗ 1|I〉, (7.17)

with |I〉 =∑
n
|n, ñ〉 and ρ(φ) = |φ〉〈φ|. This defines the TFD representation for the

states |φ〉.
Two equations are associated with the two invariants P 2 ≡ −� and P̂ 2 ≡ −�̂.

For the observable P 2, we have

(P 2 −m2)|φ〉 = (P 2 −m2)ρ(φ) ⊗ 1|I〉 = 0, (7.18)

resulting in

(P 2 −m2)|φ〉〈φ| = 0,

or

(P 2 −m2)|φ〉 = 0.

Using the |x〉 basis, 〈x|φ〉 = φ(x)

〈x|(P 2 −m2)|φ〉 =

∫
d4x′

[
〈x|P 2 x′〉〈x′|φ〉 −m2〈x|x′〉〈x′|φ〉

]
,

we get the Klein-Gordon equation,

(�2 +m2)φ(x) = 0.

The physical content here is that the observable (the non-hat variable) satisfies the

mass-shell condition.

For the generator P̂ 2 we have

P̂ 2|φ〉 = −(�⊗ 1− 1⊗�)|φ〉
= −(�ρ(φ)− ρ(φ)�) ⊗ 1|I〉 = 0, (7.19)

then the Liouville-von Neumann equation for ρ(φ) follows,

[�, ρ(φ)] = 0. (7.20)

The content of the Liouville-von Neumann equation is realized by multiplying

Eq. (7.20) by |φ〉, resulting in

(�|φ〉〈φ| − |φ〉〈φ|�)|φ〉 = (�|φ〉〈φ|φ〉 − |φ〉〈φ|�|φ〉 = 0.

Since 〈φ|�|φ〉 = −m2 and 〈φ|φ〉 = 1, we derive the Klein-Gordon equation for |φ〉.
Using, on the other hand, the bra vector, 〈φ|, the Klein-Gordon equation in the

dual Hilbert space is obtained from Eq. (7.20),

〈φ|(�|φ〉〈φ| − |φ〉〈φ|�) = 〈φ|(m2 + �) = 0.

This result shows that Eq. (7.20) is equivalent to a density matrix equation for the

Klein-Gordon field φ(x).
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7.2.2 Fermions

In order to construct a spinor density-matrix, we introduce the invariant equation

(αµPµ )̂|Ψ〉 = 0, (7.21)

such that,

(αµPµ )̂(α
µPµ )̂ = P̂ 2. (7.22)

With the condition given by Eq. (7.19), a generic solution is found to be

αµ = σγµ, (7.23)

where γµ are Dirac matrices, and σ is some non-null Lorentz invariant to be speci-

fied. A trivial choice is σ = 1. Then we find (γµPµ )̂ |Ψ〉 = 0, or

(γµPµ)|Ψ〉 ⊗ 〈Ψ̄| − |Ψ〉 ⊗ 〈Ψ̄|(γµPµ)† = 0. (7.24)

where now |Ψ〉 is a 16-component spinor, and |ψ〉(〈ψ̄|) is the 4-component (dual)

Dirac spinor.

Multiplying the right hand side of Eq. (7.24) by |Ψ〉, it results in (γµPµ −
m) |Ψ〉 = 0, the Dirac equation. Now, multiplying the left hand side of Eq. (7.24)

by 〈Ψ̄| it results in 〈Ψ̄|(Pµγµ−m) = 0, the conjugate Dirac equation. In this sense,

in fact, Eq. (7.24) is a density matrix equation for the Dirac field.

Looking ahead for solutions, we note that Eq. (7.24) is invariant under the

unitary transformation [18]

̂(γµPµ)
′

= U ̂(γµPµ) U−1, (7.25)

and

|Ψ〉′ = U |Ψ〉. (7.26)

Then Eq. (7.24) reads

̂(γµPµ)
′ |Ψ〉′ = 0. (7.27)

On the other hand, if [U, (γµPµ)̂ ] = 0 then |Ψ〉′ given in Eq. (7.26) is a solution

of Eq. (7.24). In this case, an example is provided by U = U(yµP̂µ) written in the

form

U = U(yP̂ ) = exp[−iyP̂ ], (7.28)

where y is the transformation parameter. Accordingly, Eq. (7.26) reads

|Ψ〉′ → exp(−iyP )|φ〉 ⊗ 〈φ̄| exp(iyP †).

The gauge invariance can be considered if we write

Pµ → −iDµ = pµ + gAµ,

where Dµ is the usual covariant derivative. Then

|Ψ〉′ → exp(−yD)|φ〉 ⊗ 〈φ̄| exp(yD†). (7.30)
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where ⊗ involves, in a general situation, spin and color indices in non-abelian gauge

theory. This function is a solution of the density matrix equation, which is derived

from Eq. (7.24), but rather considering the gauge field, that is

[(γµDµ)⊗ 1− 1⊗ (γµDµ)]|φ〉 ⊗ 〈φ̄| = 0. (7.31)

If we use the definition given by Eq. (7.17), then we write 〈x, x′|Ψ〉 = Ψ(x, x′),
such that Eq. (7.30) is

Ψ(x, y) = exp [−yD(x)] φ(x) ⊗ φ̄(x) exp [yD(x)†]. (7.32)

which is the generalized Heinz density operator [111]. Thus this result shows how to

derive the Heinz’s approach for the spinorial field from a first-principle method based

on the group representation theory of thermo-algebra. The analysis for the scalar

field follows the same lines; and the approach can be generalized for higher spin

fields, taking advantage of the standard methods to derive arbitrary-spin density-

matrix equations.

7.3 The Galilei group

The Galilei group is defined by the set of transformations [112],

x′ = Rx + vt+ a, (7.33)

t′ = t+ b, (7.34)

taking a point of the Newtonian space and time (x, t) to another point given by

(x′, t′) , where x =(x1, x2, x3) stands for the coordinates of Euclidian space; t stands

for the time; R describes the rotations; v =(v1, v2, v3) is a velocity describing the

Galilei boost, the change from one inertial frame to another; a and b are space and

time translations, respectively. Denote the transformations given in Eqs. (7.33) and

(7.34) by the operation G,

(x′, t′) = G(x, t), (7.35)

with G specified by

G = [b, a,v,R]. (7.36)

The transformations G form a group. To prove it, consider G1 = [b1, a1,v1,R1] and

G2 = [b2, a2,v2,R2], then

G2 ◦G1 = [b, a,v,R], . (7.37)

with

b = b2 + b1,

a = a2 +R2a1 + b1v2,

v = v2 +R2v1,

R = R2R1.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal
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The operation G2◦G1, to be denoted simply by G2G1, is a closed product equipping

the set G of all transformations with a group structure. Indeed, the composition

operation defined in Eq. (7.37) is associative; also there is an identity transforma-

tion,

E = (0, 0, 0, 1) ; (7.38)

and, for each transformation G = (b, a,v,R) there is an inverse G−1, such that

G−1G = GG−1 = E, with G−1 given by

G−1 =
(
−b,−R−1 (a−bv) ,−R−1v,R−1

)
. (7.39)

The set of transformations G is called the Galilei Group; it is the kinematical

symmetry group of the non-relativistic physics.

The Galilei group G is specified by ten parameters: three for spatial rotations

given by the three Euler angles, for instance defining the matrix R; three for Galilei

boosts (v); three for space translations (a); and finally one parameter b for the time

translation. The defining representations of G in the space R3 × T (with T ∼ R)

are given by Eqs. (7.33) and (7.34).

The basic subgroups of G are T = {(b, 0, 0, 1)} time translations; S =

{(0, a,0, 1)} space translations; V = {(0, 0,v, 1)} boosts; R = {(0, 0, 0, R)} ro-

tations. The subgroup T × S is an invariant abelian subgroup and G/ (T × S) is

isomorphic to V ×R, the homogeneous Galilei group.

Let us now derive the Lie algebra of G, which will be denoted by g, using the

space of analytical scalar functions of (x, t) . We have

S(G)f (x, t) = S (b, a,v,R) f (x, t) = f(x′, t′). (7.40)

For finite unitary representations,

S (b, a,v,R) = U (b, a,v,R) = eibHeia·peiv·keiθ·J, (7.41)

are such that the generators of the Galilei group are given by

H = i
∂

∂t
is the generator of T ; (7.42)

P = −i∇ is the generator of S; (7.43)

J = −ir×∇ is the generator of R; (7.44)

K = it∇ is the generator of V . (7.45)

The commutation relations among these generators define the Lie algebra g,

[Ji, Jj ] = iεijkJk, (7.46)

[Ji,Kj ] = iεijkKk, (7.47)

[Ji, Pj ] = iεijkPk , (7.48)

[Ki, H ] = −Pi, (7.49)

where εijk is the skew-symmetric pseudo-tensor , and i, j, k = 1, 2, 3. All the other

commutation relations are null.
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7.4 Galilean density matrices

To construct the thermo-algebra of the Galilei group, we distinguish the dynami-

cal variables between generators of symmetry and observables. The commutation

relations for the generators of the Galilei symmetries are [113]

[Ĵi, Ĵj ] = iεijk Ĵk, (7.50)

[Ĵi, P̂j ] = iεijkP̂k, (7.51)

[Ĵi, K̂j ] = iεijkK̂k, (7.52)

[Ĥ, K̂j ] = iP̂j , (7.53)

[K̂i, P̂j ] = 0, (7.54)

where Ĵ = (Ĵ1, Ĵ2, Ĵ3) stand for the generators of rotation, P̂ = (P̂1, P̂2, P̂3) for the

generators of spatial translation, K̂ = (K̂1, K̂2, K̂3) for the Galilei boosts, and Ĥ

for the time translation.

The subalgebra of the generators of the Galilei symmetry, Eqs. (7.50)–(7.54),

describes faithful representations of the Galilei group. Usually, the projective, not

faithful, representation, in which

[K̂i, P̂j ] = constant 6= 0,

is used to derive physical representations, where the constant is the central charge

describing mass. This is not the case here. The physical representation will be

determined by the nature of the invariant subalgebra involving the observables,

Ji, Pi,Ki, H, i = 1, 2, 3. That is, we postulate the existence of the following ob-

servables: the angular momentum, J, the linear momentum, P; the energy, H ; and

a position operator, Q, which can be introduced via the Galilei boost, considering

that an observable

Ki = mQi + f(P) (7.55)

is associated, by construction, with the generator of boosts, K̂i, and m is a constant.

Here we are looking for unitary operators describing quantum systems, then as

another postulate, we assume that the three components of the observable angular

momentum do not commute with each other. So we have

[Ji, Jj ] = iεijkJk. (7.56)

The other non-null relations for the observables arise then by consistency,

[Ji, Pj ] = iεijkPk, (7.57)

[Ji,Kj ] = iεijkKk, (7.58)

[H,Kj ] = iPj , (7.59)

[Kj , Pk] = imδjk. (7.60)
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The relations among generators of symmetry and observables are represented

by the following commutations relations

[Ji, Ĵj ] = [Ĵi, Jj ] = iεijkJk, (7.61)

[Ji, P̂j ] = [Ĵi, Pj ] = iεijkPk, (7.62)

[Ji, K̂j ] = [Ĵi,Kj ] = iεijkKk, (7.63)

[H, K̂j ] = [Ĥ,Kj ] = iPj , (7.64)

[Ki, P̂j ] = [K̂i, Pj ] = imδij . (7.65)

Therefore, the observable angular momentum, J , transforms as a vector, a rotation

generated by Ĵ, as indicated in Eq. (7.61). The other relations, Eqs. (7.62)–(7.65),

can be interpreted in a similar way by considering the corresponding transforma-

tions.

The set of commutation relations given by Eqs. (7.50)–(7.65) is, then, a thermal

Galilei Lie algebra, gT . In this case, for some values of the structure constants, we

have the situation in which Cijk 6= Dijk = Eijk .

The interpretation of each observable is obtained from transformation rules. For

instance, consider the observables Q and P under a boost transformations, that is,

U(K̂) Q U−1(K̂) = Q+ vt1 (7.66)

and

U(K̂) P U−1(K̂) = P +mv1 (7.67)

where

U(K̂) = exp(−imvK̂).

Therefore, under the boost the operators Q and P transform the position and

momentum, respectively; and so are candidates to describe observables, if m is the

mass. In addition we have, due to Eq. (7.60) with m 6= 0 only, [Qi, Pj ] = iδij . This

corresponds to the Heisenberg uncertainty relations and for the sake of consistency

Ji = εijkQjPk + Si with Si being an operator commuting with all the operators in

the algebra. In this way, Eqs. (7.56)–(7.60) furnish a compatible set of algebraic

relations among the basic observables with Ji being used to describe the angular

momentum. If m = 0, along these lines of reasoning, we do not derive physical

representations, since Eq. (7.60), in this case, is incompatible with Eqs. (7.56)–

(7.59). In other words, rigorously we cannot find a representation for particles with

zero mass in the non-relativistic context. This discussion would be different in the

realm of a Fock space representation, important to many-body systems.

Another important aspect is that gT is a reducible algebra, in the sense that,

we can rewrite it in terms of the tilde and nontilde operators. That is,

Ã = A− Â.
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Then we find that gT is the direct product of two unfaithful representations of the

Galilei group, i.e.

[Ji, Jj ] = iεijkJk, [J̃i, J̃j ] = −iεijkJ̃k. (7.68)

[Ji, Pj ] = iεijkPk, [J̃i, P̃j ] = −iεijkP̃k, (7.69)

[Ji,Kj ] = iεijkKk, [J̃i, K̃j ] = −iεijkK̃k, (7.70)

[H,Kj ] = iPj , [H̃, K̃j ] = −iP̃j , (7.71)

[Kj , Pk] = imδjk, [K̃j , P̃k] = −imδjk, (7.72)

and the other commutation relations among tilde and nontilde variables are null.

Notice that, in the case of classical systems, the commutation relations given by

Eqs. (7.56)–(7.60) are null, representing abelian observables. In that case gT is no

longer a reducible representation, in the sense that we cannot derive Eqs. (7.68)–

(7.72).

The invariants of gT are

I1 =
P 2

2m
−H ,

I2 =

(
J − 1

m
K × P

)2

,

I3 = Î1 =

(
P 2

2m

)∧
− Ĥ ,

I4 = Î2 =

[(
J − 1

m
K × P

)2
]∧

.

These invariants are used to specify representations. Their meaning is: I1 defines

the conservation of energy and I2 the spin. The operators I3 and I4 are invariants

associated with I1 and I2, respectively.

The invariant I3 is associated with the so-called Liouvillian in the density matrix

formalism. From the thermal Galilei-Lie algebra, Ĥ is the generator of time trans-

lation, such that the time evolution of an arbitrary dynamical variable is specified

by A(t) = eitĤ A (0) e−itĤ , where A stands for Â or A operator. Hence the time

evolution equation for A(t), is,

i∂tA(t) = [A(t), H ],

which corresponds to the Heisenberg equation.

In the Schrödinger picture, as seen in Chapter 5,

i∂t |ψ(t)〉 = Ĥ |ψ(t)〉. (7.73)

where we have assumed a representation with I2 = 0, i.e., there is no spin. Consid-

ering the state of the system, |ψ(t)〉, written as

|ψ(t)〉 = |ρ1/2(t) · 1〉,
= |ρ1/2(t)〉|1〉
≡ ρ1/2(t)|1〉, (7.74)
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where |1〉 = ∑
n
|n, ñ〉, we derive

i∂tρ(t) = [H, ρ(t)] = Lρ(t)

the Liouville-von Neumann equation, where L = Ĥ = [H, ·] is the Liouvillian. In

order to include a spin index, we have to consider representations I2 6= 0. The main

result of this section is to show that the Liouville-von Neumann equation is derived

directly from the group theory.

Observe that in terms of the tilde and non-tilde operators, we find two

Schrödinger equations,

i∂t ψ(x, t) = Hψ(x, t),

−i∂t ψ̃(x, t) = H̃ψ̃(x, t).

7.5 Lagrangians

In this section we write the Lagrangians for the Klein-Gordon and Dirac fields

using the thermal representations. This will be used to construct the thermal field

theory, in the next two chapters. For the case of bosons, using the invariant P̂ 2 =

PµP
µ − P̃µP̃

µ, it stands for the hat-Hamiltonian of the theory. Then there is

a Lagrangian associated with it. For the Klein-Gordon field we have the set of

equations

(�2 +m2)φ(x) = 0,

(�2 +m2)φ̃(x) = 0,

which are derived from the Lagrangian density,

L̂ = L−L̃ =
1

2
∂αφ∂

αφ− 1

2
m2φ2 − 1

2
∂αφ̃∂

αφ̃+
1

2
m2φ̃2. (7.75)

For the Dirac field we have

L̂ =
1

2
ψ(x)γ · i←→∂ ψ(x) −mψ(x)ψ(x)

+
1

2
ψ̃(x)γ∗ · i←→∂ ψ̃(x) +mψ̃(x)ψ̃(x).

The γ-matrices in these equations are taken in the representation with γ̃ = (γT )† =

γ∗, as in Chapter 4. Both representations for the tilde matrices are compatible

with the algebra of the γ-matrices, that is, {γµ, γν} = 2gµν or {γ∗µ, γ∗ν} = 2gµν .

This doubled structure points us to explore Bogoliubov transformations in these

representations. This is analyzed in the next chapter.
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Chapter 8

Thermal Propagator

We introduce now temperature effects in a quantum field theory. We consider a

field in the space HT , with the modes thermalized via the Bogoliubov transfor-

mation. The main goal is to write the thermal free field propagator, following in

parallel with the T = 0 theories. First we derive the imaginary-time propagator

for boson and fermion fields, and in what follows, the so called real-time propa-

gator. Interacting fields at finite temperature are considered with a path integral

formalism [105, 114, 115].

8.1 Thermal Klein-Gordon field

The Lagrangian density of the Klein-Gordon scalar field with an external source is

written in the thermal representation as

L̂ = L−L̃
=

1

2
∂αφ∂

αφ− 1

2
m2φ2 + Jφ− 1

2
∂αφ̃∂

αφ̃+
1

2
m2φ̃2 − J̃ φ̃.

In order to introduce the Hamiltonian formalism, we define the canonical momentum

density by

π(x) =
∂L(φ, ∂φ)

∂φ̇
,

π̃(x) =
∂L̃(φ̃, ∂φ̃)

∂
˙̃
φ

The Hamiltonian is defined by

Ĥ =

∫
Ĥ d3x =

∫
[H(φ, π) − H̃(φ̃, π̃)] d3x, (8.1)

where the Hamiltonian density is

Ĥ =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 − Jφ− 1

2
π̃2 − 1

2
(∇φ̃)2 − 1

2
m2φ̃2 + J̃ φ̃).

133
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A quantum field theory is introduced by requiring that the equal-time

commutation relations are fulfilled,

[φ(t,x),π(t,y)] = iδ(x− y), (8.2)

[φ(t,x),φ(t,y)] = [π(t,x),π(t,y)] = 0, (8.3)

[φ̃(t,x),π̃(t,y)] = −iδ(x− y), (8.4)

[φ̃(t,x),φ(t,y)] = [π(t,x),π(t,y)] = 0 (8.5)

The fields φ and π are operators defined to act on a Hilbert space HT . We use the

Bogoliubov transformation to introduce thermal operators. In this case there are

infinite modes and so a Bogoliubov transformation is defined for each mode, i.e.

φ(x;β) =

∫
d3k

(2π)3
1

2ωk
[a(k;β)e−ikx + a†(k;β)eikx]

and

φ̃(x;β) =

∫
d3k

(2π)3
1

2ωk
[ã(k;β)eikx + ã†(k;β)e−ikx],

where a(k;β) (ã(k;β)) and a†(k;β) (ã†(k;β)) are thermal (tilde) annihilation and

creation operators respectively. For the momenta, π(x;β) and π̃(x;β), we have

π(x;β)=φ̇(x;β) =

∫
d3k

(2π)3
(−i) 1

2
[a(k;β)e−ikx − a†(k;β)eikx]

and

π̃(x;β)=
˙̃
φ(x;β) =

∫
d3k

(2π)3
i

2
[ã(k;β)eikx − ã†(k;β)e−ikx],

where we have used the tilde conjugation rules to write φ̃(x;β) and π̃(x;β) from

φ(x;β) and π(x;β), respectively.

The algebra given by Eqs. (8.2)–(8.5) is still valid for the operators φ(x;β),

φ̃(x;β), π(x;β) and π̃(x;β). Then the commutation relations for the thermal modes

read

[a(k;β), a†(k′;β)] = (2π)32k0δ(k − k′), (8.6)

[ã(k;β), ã†(k′;β)] = (2π)32k0δ(k − k′), (8.7)

with all the other commutation relations being zero. The general Bogoliubov trans-

formation applied to all modes is written in the form

U(β) = exp

{∑

k

θk(β)[a†(k)ã†(k)− a(k)ã(k)]
}

=
∏

k

U(k, β), (8.8)

where

U(k, β) = exp{θk(β)[a†(k)ã†(k)− a(k)ã(k)]},
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with θk defined by cosh θk = v(k, β), in the continuum limit. However in this limit

the unitary nature of the Bogoliubov transformation is lost, a property that gives

rise to non-equivalent vacua in the theory [116, 117]. Despite the loss of unitarity,

the Bogoliubov transformation is still canonical, in the sense that, the algebraic

structure of the theory is preserved [72].

The Hilbert space is constructed from the thermal vacuum, |0(β)〉 = U(β)|0, 0̃〉,
where

|0, 0̃〉 =
⊗

k

|0, 0̃〉k

and |0, 0̃〉k is the vacuum for the mode k. The thermal vacuum is such that

a(k;β)|0(β)〉 = ã(k;β)|0(β)〉 = 0

and 〈0(β)|0(β)〉 = 1. The basis vectors are given in the form

[a†(k1;β)]n1 · · · [a†(kN ;β)]nN [ã†(k1;β)]m1 · · · [ã†(kM ;β)]mM |0(β)〉,
where ni,mi ∈ N and ki refers to an arbitrary mode.

The thermal and non-thermal operators are related by

a(k;β) = U(β)a(k)U−1(β) = U(k, β)a(k)U−1(k, β)

= u(k, β)a(k)− v(k, β)ã†(k), (8.9)

where

v(k, β) =
1√

exp(βωk)− 1

and u2(k, β)− v2(k, β) = 1. The inverse is

a(k) = u(k, β)a(k;β) + v(k, β)ã†(k;β). (8.10)

The other operators, a†(k), ã(k) and ã†(k) are derived by using the Hermitian and

the tilde conjugation rules.

The thermal average of an observable, A, has already been defined as 〈A〉 =

〈0(β)|A|0(β)〉. Let us calculate the thermal propagator, using the thermal vacuum.

The thermal Feymann propagator for the real scalar field is then defined by

G0(x− y, β) = −i〈0(β)|T [φ(x)φ(y)]|0(β)〉, (8.11)

or

iG0(x− y, β) = θ(x0 − y0)g(x− y, β) + θ(y0 − x0)g(y − x, β), (8.12)

with θ(x) being the step function, such that θ(x) = 1, for x > 1, θ(x) = 0, for

x < 1, and g(x− y;β) = 〈0(β)|φ(x)φ(y)|0(β)〉. Explicitly, we have

g(x− y, β) = 〈0(β)|
∫

d3k

(2π)3
1

2ωk
[a(k)e−ikx + a†(p)eikx]

×
∫

d3p

(2π)3
1

2ωp
[a(p)e−ipy + a†(p)eipy ]|0(β)〉.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

136 Thermal Quantum Field Theory: Algebraic Aspects and Applications

Separating the terms, g(x− y, β) reads

g(x− y, β) =

∫
d3p

(2π)3
d3k

(2π)3
1

2ωp

1

2ωk

×[〈0(β)|a†(k)a†(p)|0(β)〉ei(kx+py)

+〈0(β)|a(k)a†(p)|0(β)〉e−i(kx−py)

+〈0(β)|a†(k)a(p)|0(β)〉ei(kx−py)

+〈0(β)|a(k)a(p)|0(β)〉e−i(kx+py)]. (8.13)

Using Eq. (8.10), and the equivalent expressions for a†, ã and ã† each of them

written in terms of the thermal operators, each term in the integrand is calculated.

The first one is

〈0(β)|a†(k)a†(p)|0(β)〉 = 〈0(β)|[u(k, β)a†(k;β) + v(k, β)ã(k;β)]

×[u(p, β)a†(p;β) + v(p, β)ã(p;β)]|0(β)〉

resulting in

〈0(β)|a†(k)a†(p)|0(β)〉 = 0.

The second term in Eq. (8.10) is

〈0(β)|a(k)a†(p)|0(β)〉 = 〈0(β)|[u(k, β)a(k;β) + v(k, β)ã†(k;β)]

×[u(p, β)a†(p;β) + v(p, β)ã(p;β)]|0(β)〉
= u(k, β)u(p, β)〈0(β)|a(k;β)a†(p;β)|0(β)〉
= u(k, β)u(p, β)〈0(β)|a†(p;β)a(k;β) + [a(k;β), a†(p;β)]|0(β)〉
= u(k, β)u(p, β)〈0(β)|a†(p;β)a(k;β) + (2π)32k0δ(k− p)|0(β)

= u(k, β)u(p, β)(2π)32k0δ(k− p)

where we have used Eq. (8.6). The same procedure is used for the other terms to

get

〈0(β)|a†(k)a(p)|0(β)〉 = v(k, β)v(p, β)δ(k − p),

〈0(β)|a†(k)a†(p)|0(β)〉 = 0.

Substituting these results in Eq. (8.13), it leads to

g(x− y, β) =

∫
d3k

(2π)3
1

2ωk
[u2(k, β)e−ik(x−y) + v2(k, β)eik(x−y)].

Then Eq. (8.12) reads

iG0(x− y, β) = θ(x0 − y0)

∫
d3k

(2π)3
1

2ωk
[u2(k, β)e−ik(x−y) + v2(k, β)eik(x−y)]

+θ(y0 − x0)

∫
d3k

(2π)3
1

2ωk
[u2(k, β)e−ik(y−x) + v2(k, β)eik(y−x)].
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As u2(k, β) − v2(k, β) = 1, then

iG0(x− y, β) = θ(x0 − y0)

∫
d3k

(2π)3
1

2ωk
[(v2(k, β) + 1)e−ik(x−y) + v2(k, β)eik(x−y)]

+θ(y0 − x0)

∫
d3k

(2π)3
1

2ωk
[(v2(k, β) + 1)e−ik(y−x)

+v2(k, β)eik(y−x)]

=

∫
d3k

(2π)3
1

2ωk

[
θ(x0 − y0)e−ik(x−y) + θ(y0 − x0)e−ik(y−x)

]

+

∫
d3k

(2π)3
v2(k, β)

1

2ωk
[θ(x0 − y0)e−ik(x−y) + θ(y0 − x0)e−ik(y−x)]

+

∫
d3k

(2π)3
v2(k, β)

1

2ωk
[θ(x0 − y0)eik(x−y) + θ(y0 − x0)eik(y−x)].

Using the Fourier representation of θ(x), we obtain

G0(x− y, β) =

∫
d4k

(2π)4
e−ik(x−y)G0(k, β), (8.14)

where

G0(k, β) = G0(k) + v2(k, β)[G0(k)−G∗0(k)]. (8.15)

Since

G0(k)−G∗0(k) =
−1

k2 −m2 + iε
+

1

k2 −m2 − iε
= 2πiδ(k2 −m2),

we have

G0(k, β) = G0(k) + 2πin(k;β)δ(k2 −m2), (8.16)

where n(k;β) = v2(k, β) is the boson distribution function for the mode k.

Using the definition of the TFD propagator, Eq. (8.11), in the Heisenberg pic-

ture, we have

G0(x− y, β) = −i〈0(β)|T [φ(x, t)φ(y, t)]|0(β)〉

= −iTr{ 1

Z
e−βHT [φ(x, t)φ(y, t)]}

= −iTr{ 1

Z
e−βHT [φ(x)φ(y − iβn0)]}

= −i〈0(β)|T [φ(x)φ(y − iβn0)]|0(β)〉
= G0(x− y − iβn0, β), (8.17)

where n0 = (nµ0 ) = (1, 0, 0, 0). This means that the propagator is a periodic function

with a period β in the imaginary-time axis, with frequencies

wn =
2πn

β
,
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which are called Matsubara frequencies. Therefore, we can also write G0(x − y, β)

as

G0(x− y, β) =
−1

iβ

∑

n

∫
d3p

e−ikn·x

k2
n −m2 + iε

, (8.18)

where kn = (k0
n,k). The connection between these two representations of the ther-

mal free propagator, Eqs. (8.14)–(8.16) and Eq. (8.18), will be discussed in detail

in Chapter 15. The propagator G0(x − y, β) given in Eq. (8.18) is one of the main

results of the method first proposed by Matsubara, using the Wick rotation from

real to imaginary time. This method is called the imaginary time formalism [43].

In Chapter 3, it is shown that the partition function is a generating function

Zab but with a = b, and a Wick rotation. We introduce here the partition function

as a generating functional for G0(x− y, β), generalizing the previous results. Using

the generating functional defined in Chapter 3 for the scalar field, we write

Z0[β, J ] = N

∫
Dφ exp

{∫ β

0

dτ

∫
d3x

[
1

2
φ(�τ +m2)φ− Jφ

]}
, (8.19)

where τ = it, such that

� +m2 = −∂2
τ −∇2 +m2

and the the field φ satisfies the periodicity condition φ(0) = φ(β). The effect of finite

temperature is taken into account by implementing a Wick rotation of the real axis,

limiting the imaginary time in a range from 0 to β and to perform the functional

integration with the field satisfying periodic boundary conditions. Performing the

φ integration we get,

Z0[β, J ] = N exp

[
i

2

∫ β

0

J(x)(� +m2)−1J(y)d4x

]
[det(� +m2)]1/2, (8.20)

where we are using the notation
∫ β
0 dτ

∫
d3x =

∫ β
0 d4x and

[det(� +m2)]1/2 =

∫
Dφ exp

{
−
∫ β

0

d4x[
1

2
φ(� +m2)φ]

}
≡ Z0[β]. (8.21)

The kernel of the operator (� + m2)−1 is the propagator G0(x − y, β) given in

Eq. (8.11), since G0(x− y, β) is a solution of

(� +m2)G0(x − y, β) = −δ(τx − τy)δ(x − y).

This solution is unique since the boundary condition given in Eq. (8.17) is satisfied.

This shows that Z0[β, J ] is the generating functional of G0(x− y, β).

For an arbitrary operator A we have ln(detA) = Tr(lnA) and so we write

lnZ0[β] =
1

2
ln[det(� +m2)] =

1

2
Tr ln(� +m2).
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In the Fourier representation we have

lnZ0[β] =
1

2

2π

β

∞∑

n=−∞

∫
d3k

(2π)3
ln(ω2

n + ω2
k +m2)].

This leads to the result for the scalar field free energy, given by F (β) = − 1
β lnZ0(β).

As a final observation it is worth mentioning that the propagator G0(x − y, β)

can also be written in the form

G0(x− y, β) = −i〈0, 0̃|T [φ(x, β)φ(y, β)]|0, 0̃〉.

To prove this, observe that in |0(β)〉 = U(β)|0, 0̃〉, the Bogoliubov transformation

U(β) is given by Eq. (8.8), involving all the modes, and that a(k;β) is defined in

Eq. (8.9) involving only one mode k.

8.2 Thermal Dirac field

The hat Lagrangian density of the Dirac field with an external source in the thermal

representations is written as

L̂ =
1

2
ψ(x)[γ · i←→∂ −m]ψ(x) + η(x)ψ(x) + ψ(x)η(x)

−1

2
ψ̃(x)[−γ∗ · i←→∂ −m]ψ̃(x) + η̃(x)ψ̃(x) + ψ̃(x)η̃(x),

where γ∗ = (γT )†. In order to introduce the Hamiltonian formalism for the thermal

quantum field theory, we define the canonical momentum density in terms of the

hat Lagrangian density by

π(x) =
∂L(ψ, ∂ψ)

∂ψ̇
= iψ†(x),

π̃(x) =
∂L̃(ψ̃, ∂ψ̃)

∂
˙̃
ψ

= −iψ̃†(x).

The Hamiltonian is defined by,

Ĥ =

∫
Ĥ d3x =

∫
[π̂(x)

˙̂
ψ(x)− L̂] d3x.

Each operator is mapped into a thermal operator by a Bogoliubov transformation.

The anti-commutation relations are given by

{ψ(x,t;β),π(y,t;β)} = iδ(x− y),

{ψ(x,t;β),ψ(y,t;β)} = {π(x,t;β),π(y,t;β)} = 0,

{ψ̃(x,t;β),π̃(y,t;β)} = −iδ(x− y),

{ψ̃(x,t;β),ψ(y,t;β)]} = {π(x,t;β),π(y,t;β)} = 0.
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The fields are expanded in modes, k, by

ψ(x, β) =

∫
d3k

(2π)3
m

ωk

2∑

α=1

[bα(k, β)u(α)(k)e−ikx + d†α(k, β)v(α)(k)eikx],

ψ(x) =

∫
d3k

(2π)3
m

ωk

2∑

α=1

[b†α(k, β)ū(α)(k)eikx + dα(k, β)v̄(α)(k)e−ikx],

ψ̃(x, β) =

∫
d3k

(2π)3
m

ωk

2∑

α=1

[b̃α(k, β)u∗(α)(k)eikx + d̃†α(k, β)v∗(α)(k)e−ikx],

ψ̃(x) =

∫
d3k

(2π)3
m

ωk

2∑

α=1

[b̃†α(k, β)ū∗(α)(k)e−ikx + d̃α(k, β)v̄∗(α)(k)eikx].

The anti-commutation relations for the creation (b†α and d†α), annihilation (bα and

dα) and the corresponding tilde operators are

{bα(k, β),b†γ(k
′, β)} = {dα(k, β),d†γ(k

′, β)} = (2π)3
k0

m
δ(k− k′)δαγ ,

{b̃α(k, β),b̃†γ(k
′, β)} = {d̃α(k, β),d̃†γ(k

′, β)} = (2π)3
k0

m
δ(k− k′)δαγ ,

with all the other anti-commutation relations being zero.

The Bogoliubov transformation is

U(β) = exp

{∑

k

{θb,k[b†(k)b̃†(k)− b(k)b̃(k)] + θd,k[d
†(k)d̃†(k)− d(k)d̃(k)]}

}

=
∏

k

Ub(k, β)Ud(k, β),

where

Ub(k, β) = exp{θb,k[b†(k)b̃†(k)− b(k)b̃(k)]},
Ud(k, β) = exp{θd,k[d†(k)d̃†(k)− d(k)d̃(k)]}

with θb,k defined by cos θb,k = vb(k, β), and θd,k defined by cos θd,k = vd(k, β), where

v2
b (k, β) =

1

eβ(wk−µb) + 1
,

v2
d(k, β) =

1

eβ(wk+µd) + 1
,

with µb,d being the chemical potentials, v2
d(k, β) + u2

d(k, β) = 1 and v2
b (k, β) +

u2
b(k, β) = 1. Here v2

b (k, β) and v2
d(k, β) give the distribution functions of particles

and anti-particles, respectively.

The Hilbert space is constructed from the thermal vacuum, |0(β)〉 = U(β)|0, 0̃〉,
where

|0, 0̃〉 =
⊗

k

|0, 0̃〉k
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and |0, 0̃〉k is the vacuum for the mode k considering particles and anti-particles.

The thermal vacuum is such that

b(k;β)|0(β)〉 = b̃(k;β)|0(β)〉 = 0,

d(k;β)|0(β)〉 = d̃(k;β)|0(β)〉 = 0,

and 〈0(β)|0(β)〉 = 1. Basis vectors are given in the form

[b†(k1;β)]n1 · · · [d†(kM ;β)]nM [b̃†(k1;β)]m1 · · · [d̃†(kN ;β)]mN |0(β)〉,
where now ni,mi = 0, 1.

Thermal and non-thermal fermion operators are related by

b(k;β) = U(β)b(k)U−1(β) = U(k, β)b(k)U−1(k, β)

= ub(k, β)b(k)− vb(k, β)b̃†(k),

d(k;β) = U(β)d(k)U−1(β) = U(k, β)d(k)U−1(k, β)

= ub(k, β)d(k) − vb(k, β)d̃†(k);

The inverse formulas are written as

b(k) = ub(k, β)b(k, β) + vb(k, β)b̃†(k, β),

d(k) = ub(k, β)b(k, β) + vb(k, β)b̃†(k, β).

Observe that each operator b or d carries a spin index. This is understood to be in

the mode k.

The thermal Feynman propagator for the Dirac field is defined by

S0(x− y, β) = −i〈0(β)|T [ψ(x)ψ(y)]|0(β)〉, (8.22)

such that

iS0(x− y, β) = θ(x0 − y0)S(x− y, β)− θ(y0 − x0)S(y − x, β), (8.23)

with S(x− y, β) = 〈0(β)|ψ(x)ψ(y)|0(β)〉 and S(x− y, β) = 〈0(β)|ψ(y)ψ(x)|0(β)〉.
Let us calculate Sij(x− y, β) = 〈0(β)|ψi(x)ψj(y)|0(β)〉, i.e.

Sij(x− y, β) =

∫
d3p

(2π)3
d3k

(2π)3
m

ωp

m

ωk

∑

α

∑

α′

×[〈0(β)|u2(k, β)bαk(β)b†α′p(β)uαk,iū
α′

p,j e
−ikxeipy|0(β)〉]

+〈0(β)|v2(k, β)d̃αk(β)d̃†α′p(β)vαk,i v̄
α′

p,je
ikxe−ipy|0(β)〉

=

∫
d3k

(2π)3
m

ωp

∑

α

×[u2(k, β)uαk,iū
α
k,j e

−ik(x−y) + v2(k, β)vαk,i v̄
α
k,j e

ik(x−y)].

Using the projection operators,
2∑

α=1

u
(α)
i (k)ū

(α)
j (k) =

1

2m
(γ · k +m)ij ,

2∑

α=1

v
(α)
i (k)v̄

(α)
j (k) =

1

2m
(γ · k −m)ij ,
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we obtain

Sij(x− y, β) =

∫
d3k

(2π)3
1

2ωk
[(1− v2(k, β))(iγ · ∂ +m)ije

−ik(x−y)

−v2(k, β))(iγ · ∂ +m)ije
ik(x−y)].

Suppressing the matrix indices we have

S(x− y, β) = (iγ · ∂ +m)

∫
d3k

(2π)3

×[
e−ik(x−y)

2ωk
− v2(k, β)

2ωk
(e−ik(x−y) − eik(x−y))]. (8.24)

For the term S(x− y, β) we get

S(x − y, β) = (iγ · ∂ +m)

∫
d3k

(2π)3

×[−e
ik(x−y)

2ωk
+
v2(k, β)

2ωk
(e−ik(x−y) + eik(x−y))]. (8.25)

Using Eqs. (8.24) and (8.25) in Eq. (8.23) we obtain

S0(x− y, β) = (iγ · ∂ +m)G0(x− y, β).

8.3 Doubled notation for bosons

In this section we analyze the two-by-two propagator in TFD which accounts also

for the tilde fields. This analysis will give us the possibility to introduce a thermal

path integral in real time. In chapter 6, we have defined

(Aa) =

(
A(β)

Ã†(β)

)
, (Aa†) =

(
A†(β),−Ã(β)

)
. (8.26)

Then the algebraic rules for the thermal boson operators are written as

[aa(β), ab†(β)] = δab; a, b = 1, 2; and all other commutation relations being zero.

The Bogoliubov transformation, Eq. (6.35), is therefore written as a 2× 2 matrix,

B =

(
u (β) −v(β)

−v(β) u(β)

)
, (8.27)

such that for Eq. (8.10) we write

aa = (B−1)abab(β) and aa† = ab†(β)Bba.
In the doubled notation, the Lagrangian density is

L̂ =
1

2
∂µΦ

†(x) ∂µΦ(x) − m2

2
Φ†(x)Φ(x),

where

Φ(x) =

(
φ(x)

φ̃(x)

)
, Φ†(x) =

(
φ(x), −φ̃(x)

)
.
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The thermal Green function is given by

iG(x− y;β)ab = 〈0, 0̃|T [φ(x;β)aφ(y;β)b|0, 0̃〉

=
1

(2π)4

∫
d4kG(k;β)abeik(x−y), (8.28)

where G(k;β)ab = B−1(k0)G0(k)
abB(k0), with

G0(k)
ab =

(
1

k2−m2+iε 0

0 −1
k2−m2−iε

)
. (8.29)

Using the definition of B(k0) given in Eq. (8.27), the components of G(k;β)ab read

G(k;β)11 =
1

k2 −m2 + iε
− 2πi n(k0) δ(k

2 −m2),

G(k;β)22 =
−1

k2 −m2 − iε − 2πi n(k0) δ(k
2 −m2),

G(k;β)12 = G(k;β)21 = −2πi [n(k0) + n2(k0)]
1/2 δ(k2 −m2),

where n(k0) = v2
k(β). The propagator G(k;β)11 is the same as in the Matsubara

method; and the two-by-two Green function in Eq. (8.28) is similar to the propagator

in the Schwinger-Keldysh approach [72].

8.4 Generating functional for bosons

For a system of free bosons, we consider, up to normalization factors, the following

generating functional

Z0 '
∫
DφDφ̃eiS

=

∫
DφDφ̃ exp[i

∫
dx(L− L̃)]

=

∫
DφDφ̃ exp{−i

∫
dx[

1

2
φ(� +m2)φ− Jφ− 1

2
φ̃(� +m2)φ̃+ J̃ φ̃]}.

Such a functional can then be written as

Z0 ' exp{ i
2

∫
dxdy J(x)(� +m2 − iε)−1J(y)

+J̃(x)(−1)(� +m2 + iε)−1J̃(y)]} (8.30)

The Feynman propagators for the non-tilde and tilde variables are then given as,

(� +m2 + iε)G0(x) = −δ(x) and (−1)(� +m2 − iε)G̃0(x) = −δ(x), such that

G̃0(x) = −G∗0(x).
Using these results in Eq. (8.30) we find the normalized functional

Z0[J
T ,J] = exp

[
i

2

∫
dxdy JT (x)G0(x− y)J(y)

]
(8.31)
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where

J(x) =

(
J1(x)

J2(x)

)
; JT (x) = (J1(x), J2(x))

with J1(x) = J(x), J2(x) = J̃(x) and

G0(x) = (Gab0 (x)) =

(
G0(x) 0

0 −G∗0(x)

)
,

with the Fourier transform given by Eq. (8.29). From Z we have

G0(x− y) = i
δ2Z0[J

T ,J]

δJ(y)δJT (x)

∣∣∣∣
J=JT =0

,

where the short notation we have used is such that, for instance,

Gab0 (x) = i
δ2Z0[J

T ,J]

δJa(x)δJb(y)

∣∣∣∣
J=JT =0

.

In order to introduce the effect of temperature in this doubled quantum field

theory, we transform Z0[J
T ,J] using a Bogoliubov transformation. Then we reach

Z0[J
T ,J;β] = exp

[
i

2

∫
dxdy JT (x)G0(x− y;β)J(y)

]
,

where G0(x − y;β) = (Gab0 (x − y;β)) and

Gab
0 (x− y;β) = i

δ2Z[JT ,J, β]

δJa(x)δJb(y)
|J=JT =0,

reproducing the results from the canonical formalism.

In order to treat interactions, we consider the Lagrangian density

L̂ =
1

2
∂µφ(x)∂µφ(x) − m2

2
φ2 + Lint(φ) − 1

2
∂µφ̃(x)∂µφ̃(x) +

m2

2
φ̃(x)2 − L̃int(φ).

In this case, using the doubling formalism, the functional Z[JT ,J] obeys the follow-

ing equation

(� +m2)
δZ[JT ,J]

iδJ(x)
+ L̂int

(
1

i

δ

δJ
;
1

i

δ

δJT

)
Z[JT ,J] = J(x)Z[JT ,J]

with the solution

Z[JT ,J] = N exp

[
i

∫
dxL̂int

(
1

i

δ

δJ
;
1

i

δ

δJT

)]
Z0[J

T ,J],

where

L̂int

(
1

2

δ

δJ

)
= Lint

(
1

2

δ

δJ

)
− L̃int

(
1

2

δ

δJ̃

)
.

To introduce a temperature dependent functional, we map

U(β) : Z[JT ,J]→ Z[JT ,J;β],

by mapping

U(β) : Z0[J
T ,J]→ Z0[J

T ,J;β],

as before, resulting in

Z[JT ,J, β] =
exp

[
i
∫
dxL̂int

(
1
i
δ
δJ ; 1

i
δ
δJT

)]
Z0[J

T ,J;β]

exp
[
i
∫
dxL̂int

(
1
i
δ
δJ ; 1

i
δ
δJT

)]
Z0[JT ,J;β]|J=JT =0

.

For β →∞, we recover the zero temperature results.
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8.5 Generating functional for fermions

The Lagrangian density for fermions with an external source, is

L̂ = iψγµ∂µψ −mψψ + iψ̃γ∗µ∂µψ̃ +mψ̃ ψ̃ + ψη + ηψ − ψ̃η̃ − η̃ψ̃.
The functional

Z0 '
∫
DψDψDψ̃Dψ̃eiS

in a normalized form reduces to

Z0[η, η, η̃, η̃] = exp{−i
∫
dxdy[η(x)S(x − y)η(x) + η̃(x)S̃(x− y)η̃(x)]},

where η, η, η̃ and η̃ are Grassmann variables, and

S−1 = iγµ∂µ −m,
S̃−1 = iγ∗µ∂µ +m.

Since

S−1S = δ(x), S̃−1S̃ = δ(x),

then S and S̃ are given respectively by

S = (iγ · ∂ +m)G0,

S̃ = (iγ∗ · ∂ −m)G∗0,

such that S̃ = −S∗. In a matrix notation we have

Z0[η, η] = exp{−i
∫
dxdy[η(x)S(x − y)η(x)]},

where

η =
(
η, η̃
)
, η =

(
η

η̃

)

with η1 = η, η2 = η̃, η1 = η, η2 = η̃ and

S =

(
S0 0

0 S̃0

)

This functional provides correct expressions for the propagator components accord-

ing to the canonical formalism, that is

S(x − y) = i
δ2

δηδη
Z0[η, η]|η=η=0.

The temperature dependent functional is obtained by using

U(β) : S(x− y)→ S(x − y, β),

as in the case of bosons, resulting in the thermal propagator. For interacting fields,

we obtain

Z[η, η, β] =
exp

[
i
∫
dxL̂int

(
1
i
δ
δη ; 1

i
δ
δη

)]
Z0[η, η;β]

exp
[
i
∫
dxL̂int

(
1
i
δ
δη ; 1

i
δ
δη

)]
Z0[η, η;β]|η=η=0

.

This leads to the full interacting propagator in TFD.
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8.6 Thermal gauge fields

Consider the case of gauge fields such as QCD as presented in Chapter 4. The

thermal generating functional and the thermal propagator for each sector of the

QCD theory can now be written for TFD. The free fermion sector has been already

discussed in the last section. Let us focus on the Gauge and the Faddeev-Popov

terms.

For the gauge field we have

Z
G(A,B)
0 [JT ,J;β] = exp{ i

2

∫
dxdy[JTµ(x)D

(A,B)
0µν (x− y;β)Jν(y)},

where (A,B) stands for the gauge group indices and

D
(A,B)µν
0 (x;β) =

1

(2π)4

∫
d4ke−ikxD

(A,B)µν
0 (k;β)

with

D
(A,B)µν
0 (k;β) = δAB

(
D11,µν

0 (k;β) D12,µν
0 (k;β)

D21,µν
0 (k;β) D22,µν

0 (k;β)

)
,

such that

D11,µν
0 (k;β) = Dµν

0 (k;β)− 2πiv2(k, β)dµν(k)δ(k), (8.32)

D12,µν
0 (k;β) = D21,µν

0 (k;β) = −2πiv(k, β)u(k, β)dµν(k)δ(k), (8.33)

D22,µν
0 (k;β) = −Dµν ∗

0 (k;β)− 2πiv2(k, β)dµν (k)δ(k), (8.34)

with

Dµν
0 (k;β) = dµν(k)

−1

k2 + iε
,

where

dµν(k) = gµν − (1− α)
pµpν

p2
.

For the Fadeev-Popov fields we have

Z
FP (A,B)
0 [ξ, ξ;β] = exp{ i

2

∫
dxdy[ξ

T
(x)D

(A,B)
0 (x− y;β)ξ(y),

where ξ and ξ are Grassmann variables and D
(A,B)
0 (x−y;β) is the finite temperature

propagator for the scalar field. In terms of the (1, 1)-(TFD physical) component,

we have for the perturbative expression

Z[J, ξ, ξ,η, η, β] = N exp

[
i

∫
dxL̂int

(
1

i

δ

δJ
,
1

i

δ

δξ
,
1

i

δ

δξ
,
1

i

δ

δη
,
1

i

δ

δη

)]

×Z0[J, ξ, ξ,η, η, β],

where

N−1 = exp

[
i

∫
dxL̂int

(
1

i

δ

δJ
,
1

i

δ

δξ
,
1

i

δ

δξ
,
1

i

δ

δη
,
1

i

δ

δη

)]

×Z0[J, ξ, ξ,η, η, β]|J,ξ,ξ,η,η=0.
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As an example, the contribution to the 3-gluon coupling to the first order is

given by

DA1A2A3
α1α1α1

(x1x2x3;β) = (−i)2 δ3

δJ1δJ2δJ3

∫
d4xL3G

I (
1

i

δ

δJAµ
)ZG0 [J ;β]|J=0,

where Ji = JAiµi , i = 1, 2, 3. We obtain for the physical propagator (1,1-TFD

component)

DA1A2A3
α1α2α3

(x1x2x3) = gcABC
∫
d4x{∂µDAA1

νµ1
(x− x1;β)− ∂νDAA1

µµ1
(x − x1;β)}

×DBA2µ
µ2

(x− x2;β) DCA3ν
µ3

(x− x3;β)

+gcABC
∫
d4x{∂µDAA2

νµ2
(x− x2;β)− ∂νDAA2

µµ2
(x− x2;β)}

×DBA3µ
µ3

(x− x3;β) DCA1ν
µ1

(x− x1;β)

+gcABC
∫
d4x{∂µDAA3

νµ3
(x− x3;β)− ∂νDAA3

µµ3
(x− x3;β)}

×DBA1µ
µ1

(x− x1;β)DCA2ν
µ2

(x− x2;β).

It is worth emphasizing that the doubling is a natural structure of the thermal

formalism, and we have taken advantage of this fact to introduce the thermalization

procedure through a Bogoliubov transformation in the generating functional. How-

ever, in calculations treating equilibrium, we have to use just the (1,1)-component

of the generating functional, and also for the Green function. Using the (1,1)-

functional component, the interaction emerges from the term involving powers of

the functional derivatives with respect to the sources, for instance (∂/i∂J)m; thus

the effect of temperature does not change the interaction terms. As a consequence,

the Feynman rules are the same as the ones for T = 0 theory, except that we have

to use the thermal propagator. This propagator, as that given in Eq. (8.34), can

be mapped in the Matsubara propagator, written in term of the Matsubara fre-

quencies, using the analytical procedure presented by Dolan and Jackiw [60]. This

aspect is treated in detail in Chapter 15.
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Chapter 9

Scattering Process at Finite Temperature

The finite temperature quantum field theory has been used to define response func-

tions in many-body systems [73, 118]. As for zero temperature field theory, the self-

energy Σ and the polarization (Π) parts are defined and then the response function

is obtained to an arbitrary level of accuracy. This has been applied to the case of

magnetic systems, superconducting magnetic systems and just about any other case

of a many-body system. TFD has provided results that are valid at any time, t,

and finite temperature, T . However, the question of applying TFD to microscopic

processes like decay rates, reactions and transition amplitudes has been considered

only recently [119]. Use of the imaginary time method [43], a multiple scattering

expansion of the self-energy has been attempted. It has been used to calculate the

finite temperature response function. Retarded Green’s functions have been used

to calculate the forward scattering amplitude at two loops. The closed-time path

method [120] has been employed to calculate the decay rates and scattering ampli-

tudes [121, 122]. It is important to emphasize that the imaginary time approach

is particularly useful for processes in equilibrium. The closed-time path method

may be used for both equilibrium and nonequilibrium processes. Over the years

these two methods have been used extensively for both many-body systems and for

quantum field theory. However, the method using TFD will be considered here in

order to provide a general procedure to calculate decay rates, transition amplitudes

and reaction rates for particles at finite temperature.

It is worth indicating that such aspects are useful in many diverse areas of

physics. In the interior of stars, the particles form a gas at finite temperature. In

colliding heavy ion beams at collider facilities such as Relativistic Heavy Ion Collider

(RHIC) and at Large Hadron Collider (LHC) the collisions lead to a gas of baryons,

nucleons and mesons, or a quark-gluon plasma (QGP). The latter is formed if the

temperature of the baryon gas is raised close to 200 MeV, a temperature just above

the critical temperature to deconfine the quarks and gluons. The reaction rates of

these particles will be affected by the temperature of the interacting particles. This

entails a knowledge of reaction rates, decays and transition amplitudes at finite

temperature. All of this requires a formalism to calculate such processes.

It should be stressed that a better understanding of dense nuclear matter and

149
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hot QGP would help us to get a better understanding of the early universe. It

is important to mention that both in hot QGP and in early universe, the system

is strongly time-dependent (i.e. the systems are not in equilibrium). This would

require a development of treating many-body systems in a nonequilibrium state.

This would lead to the development of mechanisms that lead to a phase transition.

Such a study constitutes a distinct subject. However, it should be mentioned that

both closed-time path method and TFD are, in principle, capable of handling such

nonequilibrium processes leading to phase transitions. Both methods still require

further developments. Possible procedures are discussed in the last part of this

book.

9.1 Scattering matrix in TFD

In order to calculate quantities such as decay rates, reaction rates and transition

amplitudes at finite temperature the Feynman method is adopted. This method is

described very well by Dyson [123] when he compares the approach of Schwinger,

Tomonaga and Feynman to solve the problem of quantum electrodynamics (see

Chapter 4). In the Feynman approach [23], F1(x1), F2(x2), . . . , Fn(xn) are operators

defined at points x1, x2, . . . , xn, respectively. The expression

T [F1(x1)F2(x2)...Fn(xn)]

denotes a product of these operators, taken in the order, reading from right to left,

in which the surfaces σ(x1), σ(x2), . . . , σ(xn) occur ordered in time. This defines

the time ordering operator T . In practical cases Fi(xi) and Fj(xj) will commute if

xi and xj are located outside the light cone. In such a case, the product depends

only on x1, x2, . . . , xn time ordering. Now, consider an integral

In =

∫ ∞

−∞
dx1 · · ·

∫ +∞

−∞
dxn T (H`(x0)HI(x1) · · ·HI(xn)),

where HI(xi) is the interaction Hamiltonian and H`(x0) is an arbitrary operator.

The integral is a symmetrical function of xi, . . . , xn. The value of the integral is

exactly equal to n! times the integral obtained by restricting the integral such that

the surface σ(xi) occurs after σ(xi+1) for each i. Now the restricted integral may

be split into (n + 1) parts, the jth part being an integral with σ(x0) lies between

σ(xj−1) and σ(xj). Then we have

In = n!

N∑

j=1

∫ σ(x0)

−∞
dxj ...

∫ σ(xn−1)

−∞
dxn

×
∫ ∞

σ(x0)

dxj−1...

∫ ∞

σ1n0

HI(x1)...HI(xj−1)H
`(x0)HI (xj)...HI (xn).
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We finally get

HF (x0) =

∞∑

n=0

(−i)n 1

n!
In

=

∞∑

n=0

(−i)n
n!

∫ ∞

−∞
dx1...

∫ +∞

−∞
dxn

×T [H`(x0)HI(x1)...HI (xn)].

With the choice of H`(x0) = 1, we have

HF =

∞∑

n=0

(−i)n
n!

∫ ∞

−∞
dx1...

∫ +∞

−∞
dxn

×T [HI(xn1)...HI (xnn)]. (9.1)

By taking matrix elements of this operator between appropriate states, various

amplitudes and decay rates are obtained not only at zero temperature but also

at finite temperature. The states need to be defined appropriately. It should be

noticed that the operator HF , as defined by Feynman, is the same as the S-matrix

defined by using asymptotic scattering states. However it is important to point

out that at finite temperature there are no well-defined asymptotic states. This

necessitated the use of the Feynman method to write down such an operator.

Now we can proceed to calculate individual processes at finite temperature.

It is possible to find Cutkosky rules [124] for getting imaginary parts of Feynman

diagrams. We calculate the imaginary parts by using the above expression explicitly

as well as using the Cutkosky rules.

Symbolically Eq. (9.1), as an S-matrix, is written as

S =

∞∑

n=0

Sn

=

∞∑

n=0

(−i)n
n!

∫
dx1dx2...dxnT [HI(x1)HI (x2)...HI(xn)]. (9.2)

Considering the doubling and the tilde-conjugation rules, the S-matrix for TFD is

Ŝ =

∞∑

n=0

Ŝn

=
∞∑

n=0

(−i)n
n!

∫
dn1dx2...dxnT [ĤI(x1)ĤI (x2)...ĤI(xn)], (9.3)

where ĤI = HI(x)− H̃I (x). In particular at the tree level

Ŝ = 1− i
∫
d4x[HI (x)− H̃I (x)]. (9.4)

In order to calculate amplitudes, expressions for HI(x) and H̃I(x) have to be

introduced, explicitly. Then Wick theorem is used, as in the zero temperature field
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theory, to obtain all the contributions in any order of perturbation theory. To find

the temperature dependence, the Bogoliubov transformations of boson and fermion,

creation and annihilation, operators have to be used. These operations bring the

temperature dependent factors in the matrix elements of the 2× 2 Green functions.

The cross-section and decay rates depend on the matrix elements, with the phase

space remaining unaffected by the finite temperature.

9.2 Reaction rates

Consider a process

p1 + p2 + ...+ pr → p′1 + p′2 + ...+ p′r.

The amplitude at T = 0 for this process is obtained by the usual Feynman rules by

taking

〈f |S |i〉 =
∞∑

n=0

〈f |Sn |i〉 ,

where |i〉 = a†p1a
†
p2 ...a

†
pr
|0〉 and |f〉 = a†p′1

a†p′2
...a†p′r |0〉 with |0〉 being the vacuum

state, such that ap |0〉 = 0. For T 6= 0, similar procedure may be used. The

amplitude for the process is given as

〈f | Ŝ |i〉 =
∞∑

n=0

〈f | Ŝn |i〉 ,

where

|i〉 = a†p1(β)a†p2(β)...a†pr
(β) |0(β)〉 ,

|f〉 = a†p′1
(β)a†p′2

(β)...a†p′r (β) |0(β)〉 ,
we use the same notation for |i〉 and |f〉, since there is no risk of confusion. The

state |0(β)〉 is the thermal vacuum. The phase-space factors are the same in both

cases. The differential cross-section for the process

p1 + p2 → p′1 + p′2 + ...+ p′r

is given as

dσ = (2π)4δ4(p′1 + p′2 + p′3 + ...+ p′r − p1 − p2)

× 1

4E1E2vrel

∏

j

(2mj)
r∏

j=1

d3p′j
(2π)32E′j

|Mfi|2 , (9.5)

where Ej =
√
m2
j + p2

j and vrel is the relative velocity of the two initial particles

with momenta p1 and p2. The amplitude Mfi is related to the S-matrix element

by

〈f | Ŝ |i〉 = i (2π)4Mfi

∏

ext

(
M

V E

) 1
2 ∏

ext

[ m
V w

] 1
2

δ4(pf − pi). (9.6)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Scattering Process at Finite Temperature 153

Here pf and pi are the total 4-momenta in the final and initial state; the product

extends over all the external fermions and bosons, with E(M) and w(m) being the

energy (mass) of fermions and bosons respectively, and V is the volume.

9.3 Decay of particles and generalized Cutkosky rules

It is well-known that at T = 0, the decay rates can be calculated by evaluating

appropriate Feynman amplitudes. These can also be obtained by evaluating the dis-

continuities of the self-energy of the decaying particles (Cutkosky rules [124]). These

rules have been generalized to finite temperature by Kobes and Semenoff [125]. Here

we will use both methods, Feynman amplitudes and generalized Cutkosky rules, to

calculate the decay rates. This would validate the use of Feynman diagrams to find

decay rates and scattering amplitudes at finite temperature. We analyze the decay

rate: σ → ππ.

Considering σ and π boson fields, the interaction Lagrangian is

LI = λσπ π, (9.7)

that leads to the TFD-interaction Lagrangian

L̂I = LI − L̃I = λσπ π − λσ̃π̃π̃. (9.8)

The initial and final states at finite temperature are, respectively,

|i〉 = a†k(β) |0(β)〉 ,

and

|f〉 = b†k1(β)b†k2 (β) |0(β)〉 ,

where a†k(β) and b†k(β) are creation operators at finite temperature for the σ- and

π- particles with momenta k. (The association of states like |i〉 and |f〉 with the

density matrix is discussed in Chapter 12.) At the tree level, the transition matrix

element is

〈f | Ŝ |i〉 = iλ

∫
dx 〈0(β)| bk2(β)bk1 (β)

×[σ(x)π(x)π(x) − σ̃(x)π̃(x)π̃(x)]a†k(β) |0(β)〉 .

Using the expansion of the boson fields, σ(x) and π(x), in momentum space, Bo-

goliubov transformation and the commutation relations, various parts of the matrix

elements are:

〈0(β)|σ(x)a†k(β) |0(β)〉 = e−ikx cosh θk,

−〈0(β)| σ̃(x)a†k(β) |0(β)〉 = e−ikx sinh θk,

〈0(β)| bk2(β)bk1 (β)π(x)π(x) |0(β)〉 = ei(k1+k2)x cosh θk1 cosh θk2 ,

〈0(β)| bk2(β)bk1(β)π̃(x)π̃(x)|0(β)〉 = ei(k1+k2)x sinh θk1 sinh θk2 .



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

154 Thermal Quantum Field Theory: Algebraic Aspects and Applications

Combining these factors, the amplitude for the process is

Mfi(β) = λ[cosh θk cosh θk1 cosh θk2 − sinh θk sinh θk1 sinh θk2 ].

The decay rate for the σ-meson is given as

Γ(w) =
1

2w

∫
d3k1d

3k2(2π)4δ4(k − k1 − k2)

(2w1)(2w2)(2π)3(2π)3
|Mfi(β)|2

=
λ2

32wπ2
Iβ(T ),

where

Iβ(T ) =

∫
d3k1

w1

d3k2

w2
δ4(k − k1 − k2)Wβ(w;w1, w2), (9.9)

Wβ(w;w1, w2) = [cosh θk cosh θk1 cosh θk2 − sinh θk sinh θk1 sinh θk2 ]
2
,

with

wi =
√
κ2
i +m2, w =

√
k2 +M2.

This expression simplifies as

δ(w − w1 − w2)Wβ(w;w1, w2)

= n1n2nw[eβ(w+w1+w2)/2 − 1]2δ(w − w1 − w2)

= n1n2nw(eβw − 1)
(
eβ(w1+w2) − 1

)
δ(w − w1 − w2)

= n1n2nw[
1 + nw
nw

− 1]{ (1 + n1)(1 + n2)

n1n2
− 1}δ(w − w1 − w2)

= (1 + n1 + n2)δ(w − w1 − w2)

where we have used ni = nβ(wi), i = 1, 2, and nw = nβ(w), with sinh2 θk = nβ(w)

and cosh2 θk = eβwnβ(w), nβ(w) =
(
eβw − 1

)−1
.

The integral in Eq. (9.9) is calculated explicitly in the rest frame of the decaying

particle: w = M, k = 0, wi =
√

k2
i +m2 =

√
q2 +m2 = wq ,

IB(β) =

∫
d3k1

w1

d3k2

w2
δ4(k − k1 − k2)Wβ(w;w1, w2)

= 4π

∫
dqq2

w2
q

δ(2wq −M)Wβ(M ;wq , wq)

= 8π

√
1

4
− (

m

M
)2WB(M ;

M

2
,
M

2
).

Therefore, the ratio of the decay width at T 6= 0 and at T = 0 is

Γ(T 6= 0)

Γ(T = 0)
= Wβ(M ;

M

2
,
M

2
) = (1 + 2nB(

M

2
)). (9.10)

This result is checked by using the generalized Cutkosky rule.
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At T = 0, the decay ratio relates to the discontinuity of the self-energy of the

decaying particle. For finite temperature, these rules were generalized by Kobes and

Semenoff [125]. To illustrate the utility of these rules, we consider the decay of σ-

meson into two pions, ignoring the isospin factors. With the interaction Lagrangian

given by Eq. (9.8), the generalized Cutkosky rules are applied to calculate the decay

rates. The σ-meson is assumed to have a rest mass of M and four-momentum

k = (w,k) with w =
√

k2 +M2. Then the decay rate is related to the self-energy

by

ΓGCR(w) = − 1

w
Im
∑

(k) =
(eβw − 1)

w(eβw + 1)
Im
∑

(k), (9.11)

where
∑

(k) = λ2

∫
d4p

(2π)4
iG0

11(p)G
0
11(p− k).

From generalized Cutkosky rules, we get the imaginary part of the self-energy,
∑

(k),

using the two contributions shown in Fig. 9.1 This leads to the expression

+

Fig. 9.1 Generalized Cutkosky rules for the imaginary part of the boson self-energy.

∑
(κ) =

λ2

2

∫
d4p

(2π)4
[
iG+

0 (p)iG−0 (p− k)

+iG−0 (p)iG+
0 (p− k)

]
, (9.12)

where iG±0 (p) = 2π
[
θ(±p0) + nB(p)]δ(p2 −m2)

]
. The two terms in the integrand

are related by

iG±0 (p) = ie±βp0G∓0 (p).

Therefore, we get

ΓGCR(w) =
(eβw − 1)(e−βw + 1)λ2

2w(eβw + 1)

∫
d4p

(2π)4
(2π)2

×δ(p2 −m2)δ((p− k)2 −m2)[θ(p0) + nβ(p0)]

×[θ(−p0 + w) + nβ(p0 − w)]. (9.13)

Let us calculate this expression explicitly. It is to be noted that at T 6= 0

Lorentz invariance is lost and hence, the decay rate will not be invariant. It will be

frame dependent. Let us choose the rest frame of the σ-meson so that k = 0 and

k = (M, 0, 0, 0). The δ-functions reduce to

δ(p2 −m2)δ((p− k)2 −m2) =
1

4Mwp
δ(p0 − wp)δ(wp −

M

2
),
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which is non-zero for p0 = wp = M/2. This follows since σ is at rest. The thermal

factors, F (β), in Eq. (9.13) reduce to

F (β) =
(eβw − 1)(e−βw + 1)λ2

(eβw + 1)
[θ(p0) + nβ(p0)]

×[θ(−p0 + w) + nβ(p0 − w)]

= (1− eβM )[1 + nβ(M/2)]2.

The ratio for the decay rate at T 6= 0 and T = 0 is

ΓGCR(T 6= 0)

Γ(T = 0)
= [1 + nβ (M/2)]

2 − n2
β (M/2) =

[1 + nβ(M/2)]2

1 + nβ(M)
, (9.14)

where we used

e−βM = e−βM/2e−βM/2

and

e−βM =
nβ(w)

1 + nβ(w)
.

Therefore, the results for the decay of σ → ππ agree with the direct calculation

from the Feynman graphs.

9.4 Decay of Higgs meson

Here we consider the decay of a scalar Higgs meson, h(x), into electron-positron

pair. The interaction Lagrangian density is

L̂I = LI − L̃int = −igh (x)ψ (x)ψ (x) + igh̃ (x) ψ̃ (x) ψ̃ (x) . (9.15)

At the tree level the decay amplitude is

〈f | Ŝ |i〉 = i (−ig)
∫
d4x 〈f |

[
h (x)ψ (x)ψ (x) + h̃ (x) ψ̃ (x) ψ̃ (x)

]
|i〉

and the transition amplitude reads

Mfi (β) = (−ig) [cos θk1 cos θ−k2 cosh θku (k1) v (k2)

− sin θk1 sin θ−k2 sinh θk ṽ (k2) ũ (k1)],

where u(k1) and v(k2) are the basic spinors (see Chapter 3). The decay rate is

Γ (w) =
1

2w

∫
d3k1

(2π)
3

d3k2

(2π)
3

δ4 (k − k1 − k2) (2m)
2

(2w1) (2w2)

∑

spins

|Mfi|2 ,

where

∑

spins

|Mfi|2 = g2WF (w,w1, w2) Tr

[
γ · k1 +m

2m

γ · k2 +m

2m

]
,
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with

WF (w,w1, w2) = [cos θk1 cos θ−k2 cosh θk − sin θk1 sin θ−k2 sinh θk]
2

= cos2 θk1 cos2 θ−k2 cosh2 θk

[
1− e−β(w+w1+w2)/2

]2

where we use sin2 θ±k =
[
1 + eβ(k0∓µ)

]−1
, cos2 θ±k = eβ(k0±µ)/2 sin2 θ±k with

sin2 θ+k = nF (k) and sin2 θ−k = nF (k). Here nF (κ) and nF (κ) refer to the

distribution function of fermions and anti-fermions respectively.

Hence the ratio of decay width is

Γ (T 6= 0)

Γ (T = 0)
= WF (w,w1, w2)

= [1− nF (M/2)] [1− nF (M/2)]
(
1− eβM

)

where M is the mass of the scalar particle.

9.5 The detailed balance

The decay rate of a boson into r bosons is

Γ (w) =
1

2w

∫
d3k1d

3k2...d
3kr

(2w1) (2w2) ... (2wr) (2π)
3 δ (k − k1 − k2...− kr) |Mfi (β)| ,

where

|Mfi (β)|2 = [cosh θk cosh θk1 ... cosh θkr − sinh θk sinh θk1 ... sinh θkr ]
2

= n1...nrnw
[
1− e−βw

] [
1− e−β(w1+w2+...+wr)

]

= [(1 + n1) (1 + n2) ... (1 + nr)− n1n2...nr] ,

with ni is the boson distribution function. The total decay rate is

Γ (w) = Γd (w)− Γi (w) ,

where Γd (w) and Γi (w) are the forward and inverse process for the decay. These

are related by the detailed balance principle

Γd (w)

Γi (w)
=

(1 + n1) (1 + n2) ... (1 + nr)

n1n2...nr
.

This is a relation discovered by Weldon [126].

It is important to remark that an experiment measures only the total decay

rate, Γ (w), and not any partial decay rates like Γd (w) and Γi (w). This follows

from the fact that the total rate, Γ (w), is connected to the pole of the one-particle

Green function. The rates like Γd (w) and Γi (w) have no such direct relation to the

physical quantities.
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9.6 Scattering cross-section of 1 + 2 → 1′ + 2′

The cross-section for the process 1+2→ 1′+2′, in terms of the transition amplitude,

is

dσ

dΩ′
=

|Mfi(β)|2
[

2∏
j=1

2mj

]
|k′1|2

64π2νrelw1w2w′1w
′
2

{δ (w′1 + w′2)

δ|k′1|
}−1

Therefore the ratio of cross-sections is

(dσ/dΩ′|T 6=0

(dσ/dΩ′|T=0
=

|Mfi(T )|2
|Mfi(T = 0)|2 ≡W (T )

Now we analyze some particular examples and evaluate the expression for W (β).

9.6.1 Boson-boson scattering

Assume an interaction Lagrangian for two bosons a and b denoted by field φa and

φb, respectively,

LI = λφ2
aφ

2
b

and

L̂I = LI − L̃I .

Proceeding as in the case of the decays processes, the tree level amplitude can be

obtained at finite temperature and the ratio is written as

WBB(T ) =
|Mfi(T 6= 0)|2
|Mfi(T = 0)|2 = [C(T )S(T )]2

where

C(T ) = cosh θk1 cosh θk2 cosh θk3 cosh θk4 ,

S(T ) = sinh θk1 sinh θk2 sinh θk3 sinh θk4 .

Using the notation ni = nB(ki) and n′i = nB(k′i), the expressionWBB(T ) is reduced

to

WBB(T ) = [(1 + n1)(1 + n2)− n1n2][(1 + n′1)(1 + n′2)− n′1n′2]

Energy conservation, w1 + w2 = w′1 + w′2, is needed to get this relation.

9.6.2 Fermion-fermion scattering

Assume an interaction Lagrangian for two fermions a and b described by the fermi

fields Ψa(x) and Ψb(x) respectively to be

LI = λΨ̄a(x)ΓαΨa(x)Ψ̄bΓ
αΨb(x)
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where Γα is an appropriate Dirac matrix. In this case the temperature dependent

factor is

WFF (β) =
|Mfi (T 6= 0)|2

|Mfi (T = 0)|2

=
[
cos θk1 cos θk2 cos θk′1 cos θk′2 − sin θk1 sin θk2 sin θk′1 sin θk′2

]2

= nF (k1)nF (k2)nF (k′1)nF (k′2)
[
eβ(w1+w2−µ1−µ2+w

′
1+w′

2−µ′
1−µ′

2)
]
.

At equilibrium, µ1 + µ2 = µ′1 + µ′2 and using the conservation of energy, w1 +w2 =

w′1 + w′2, this expression is simplified to

WFF (β) = [(1− n1)(1− n2)− n1n2][(1− n′1)(1− n′2)− n′1n′2],
where ni = nF (ki) and n′1 = nF (k′i) are fermion distribution functions.

9.7 Fermion-boson scattering

Assume an Lagrangian describing the interaction between a fermion (Ψ(x)) and a

boson (φ(x)) to have the form

LI = −gΨ̄(x)ΓΨ(λ)φ(x).

At the tree level, the temperature dependant factor has the form

WFB (T ) =
|Mfi (T 6= 0)|2

|Mfi (T = 0)|2

=
[
cos θk1 cosh θk2 cos θk′1 cosh θk′2 − sin θk1 sinh θk2 sin θk′1 sinh θk′2

]2

= [(1− nF (k1)) + nB (k2)] [1− nF (k′1) + nB (k′2)] .

Use of the energy conservation, w1+w2 = w′1+w′2, is essential to prove this relation.

These examples show that calculations for decay rates, transition probability

and reaction cross-sections at finite temperature are quite simple with TFD. It

is important to note that these results are only useful in the study of matter at

high temperatures. This is the case, for instance, for particles in the early days of

the universe. Ultimately, these results have to be included in an equation like the

Boltzmann equation in the collision term to describe the full process. A similar

procedure, for instance, would be needed to describe the results from RHIC, heavy

ion collider.

We have considered the decay and scattering amplitudes at the tree level. These

can be extended to loop diagram contributions that require renormalization. How-

ever, it is possible to carry out the calculation to higher order perturbation theory.

For particles in a many-body system at high temperature, it is not quite correct to

use the Lagrangian density as obtained for decay of particles in free space. The par-

ticular problem arises since coupling constants and mass of particles change with

temperature [127]. In such a case a self-consistent calculation has to be carried
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out. A consistency can be achieved by using Ward-Takahashi relations at finite

temperature. This assures that the results obey the symmetry of the interaction

Lagrangian. Renormalization procedures and Ward-Takahashi relations at finite

temperature are discussed in the next two chapters.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Chapter 10

Topics on Renormalization Theory

In this chapter we present some of the structural elements underlying renormaliza-

tion theory. We concentrate ourselves on the massive λφ4-theory, and skip almost

all the proofs. For rigorous treatments of the presented topics, specific references are

indicated throughout the chapter. Our plan is to be neither rigorous nor exhaustive,

but to discuss the main aspects of the techniques of dealing with ultraviolet diver-

gences in Feynman amplitudes. For the renormalization group and the Bogoliubov

recurrence only an overview is presented. In particular, we analyze procedures of

renormalization including the effect of temperature and spatial confinement.

10.1 Ultraviolet divergences

We start from the Lagrangian density,

L =
1

2
∂µφ(x)∂µφ(x) +

m2

2
φ2(x) +

λ

4!
φ4(x), (10.1)

and let us examine some properties of Feynman integrals. The set of Feynman

amplitudes with a given number of vertices, V and external lines N , is the coefficient

of λV in the perturbative expansion of the N -point Green function. For the moment

finiteness and dimension of the coupling constant are not considered, we just look

at some formal properties of the integrals.

Products of fields at the same point are, in general, divergent, and the translation

of this fact to Feynman diagrams in momentum space gives rise to divergences of the

Feynman integrals over the momenta of independent loops at the upper limit. The

structure of these divergences has been clarified and a way to treat them has been

established with a recursive process, the Bogoliubov recurrence [128, 129]. This and

similar procedures are known under the general denomination of renormalization.

The underlying idea is to hide the infinities into unobservable bare parameters,

that would describe phenomena at vanishingly small distances, or equivalently at

extremely high energies. Unless some fundamental graininess of space-time is as-

sumed, as could be the case of the Planck scale in string theory [130], these distances

should truly vanish, corresponding to the product of fields at the same point, lead-

161
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ing to infinities. The procedure then prescribes to add to the Lagrangian density

equally infinite counterterms, such that lead to finite, physically observable, quan-

tities. For a clear and pedagogical presentation on the subject see [130] and for a

rigorous treatment for both commutative and non-commutative field theories, the

reader is referred to [131].

But renormalization is not only a way to remove divergences by, at first sight, a

rather artificial procedure. Renormalization was discovered to apply to condensed

matter physics [132], besides particle physics. The important point is that precisely

one of the disturbing aspects of the renormalization process in particle physics, the

existence of an arbitrary scale parameter, plays a central role. The renormaliza-

tion group (RG), was discovered to be the appropriate mathematical tool to move

through the different scales of physics. RG techniques become a major tool for a

better understanding of phase transitions, in particular of the universal character

of critical exponents and the relations among them [133].

The simplest example of these divergences occurs in the diagram of Fig. 10.1(a),

the first correction to the two-point function. More generally, any insertion of the

type shown in Fig. 10.1(b) in a larger diagram does give rise to the same diver-

gence. The diagram of Fig. 10.1(b) corresponds to an integral (in the 4-dimensional

Euclidian space) given by
∫

d4k

(2π)4
1

k2 +m2
. (10.2)

This integral is quadratically divergent. As a second example, we consider the

(a) (b)

Fig. 10.1 Diagrams with the same type of divergence: (a) Mass correction diagram, (b) General
diagram insertion.

diagram given in Fig. 10.2. The corresponding Feynman integral is given by
∫

d4k

(2π)4
1

(k2 +m2)[(p− k)2 +m2]
, (10.3)

which is logarithmically divergent at the upper limit.

As a third example, we consider the diagramatic insertion of Fig. 10.3, corre-

sponding to the integral,
∫

d4k1d
4k2

(k2
1 +m2)(k2

1 +m2)[(p− k1 − k2)2 +m2]
, (10.4)
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p2

k

p1

p′
2

p′
1

p

p − k

Fig. 10.2 Logarithmically divergent diagram.

pp k2

k3

k1

Fig. 10.3 Quadratically divergent diagram.

which is quadratically divergent at the upper limit.

In general in a D-dimensional Euclidian space, a diagramatic insertion G has

an expression of the form (omitting external factors and coefficients)

AG({p}) =

∫ I∏

i=1

dDqi
(2π)D

I∏

i=1

1

q2i +m2

V∏

v=1

δ(
∑

i

εviqi), (10.5)

where {p} stands for the set of external momenta, V is the number of vertices, I is

the number of internal lines and qi stands for the momentum of each internal line

i. The quantity εvi is the incidence matrix, which equals 1 if the line i arrives at

the vertex v, −1 if it starts at v and 0 otherwise. Performing the integrations over

the internal momenta, leads to a choice of independent loop-momenta {kl} and we

get,

AG({p}) =

∫ L∏

l=1

dDkl
(2π)D

I∏

i=1

1

q2i ({p}, {kl}) +m2
(10.6)

where L is the number of independent loops. The momentum qi is a linear function

of the independent internal momenta kl and of the external momenta {p}. The

integral is convergent if DL − 2I < 0; otherwise, if DL − 2I ≥ 0, the integral is

ultraviolet divergent in the upper integration limit. So, given a diagram G, we

define the quantity

d(G) = DL(G)− 2I(G) (10.7)

as the superficial divergence degree of the diagram. If d(G) ≥ 0 the diagram will

be ultraviolet divergent.
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For any sub-diagram S ⊂ G there are corresponding sub-integrations,

AS({p}) =

∫ L(S)∏

α=1

dDkl
(2π)D

I(S)∏

i=1

1

q2i ({p}, {kl}) +m2
(10.8)

where L(S) and I(S) are, respectively, the number of loops and the number of

internal lines of the sub-diagram S. Then if the quantity

d(S) = DL(S)− 2I(S) ≥ 0, (10.9)

an ultraviolet divergence will appear associated with the sub-diagram S. Thus even

if the diagram G is said to be superficially convergent, d(G) < 0, the Feynman

integral AG is divergent. For this, it is enough that there is a sub-diagram S such

that d(S) ≥ 0. This has been stated in [128] as:

If for all subdiagrams S ⊆ G we have d(S) < 0 the Feynman integral AG is ultravi-

olet convergent. If there is at least one S ⊆ G, such that d(S) ≥ 0, AG is ultraviolet

divergent.

The divergent subdiagrams of a given diagram are called renormalization parts. For

the full renormalization process, we need consider only non-overlaping renormaliza-

tion parts [128, 129].

10.2 Regularization

Regularization is a procedure to replace divergent Feynman amplitudes with more

general integrals by means of a set of supplementary parameters, such that the

theory does not have ultraviolet divergences when these parameters belong to some

domain. For a certain limit of these parameters we find the original theory with

their divergences. This is a provisional procedure allowing to perform formal cal-

culations to explore more precisely the divergences to be suppressed. Some types

of regularization are described in the following.

• Cutoff in the momenta

In this case we introduce an upper bound in the momentum modulus, that is

|k|2 ≤ Λ, and the original theory is recovered when Λ→∞.

• Pauli-Villars regularization

We introduce a mass parameter M by the correspondence

1

k2 +m2
→ M2 −m2

(k2 +m2)(k2 +M2)
; M →∞ (10.10)

• Analytic regularization

By changing the propagators
1

k2 +m2
→ 1

(k2 +m2)s
, (10.11)

the integrals converge for high enough values of {s} and define regular functions

of the variables s, for which one looks for the analytical continuation notably

in the neighborhood of {s = 1}.
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• Lattice regularization

In this case we proceed with a discretization of the continuous space-time by

introducing lattice characterized by a spacing parameter a between neighboring

sites. The original theory is recovered by taking a → 0. This method is an

important tool particularly in the non-perturbative domain of non-abelian field

theories.

• Dimensional regularization

The central idea is to define the Feynman integrals in a generic space-time

of dimension D for which the integrals are convergent. The divergences are

recovered as poles of some functions. We will be particularly concerned with

the integral,

∫
dDp

(2π)D
1

(p2 +M)
s =

Γ
(
s− D

2

)

(4π)
D
2 Γ(s)

1

Ms−D
2

, (10.12)

This method was developed, independently, by Bollini and Giambiagi [134] and

’t Hooft and Veltman [135]. In this book we largely employ this method.

Let us emphasize that regularization does not suppress the divergences. This

will be performed by the renormalization procedure, a concept to be summarized

in the next section.

10.3 Renormalization

Let us consider a primitively divergent diagram, that is, a diagram that is divergent

but does not contain divergent sub-diagrams. Moreover we start with the simple

case of a logarithmically divergent diagram. Let N be the number of external lines

of a diagram G. The basis of the pertubative renormalization method is that the

starting theory is not consistent as a physical model, and this fact manifests itself as

divergences. Then one attempts to modify the theory, by introducing supplementary

terms, counter-terms, in the original Lagrangian, in such a way to cancel the original

divergences. It is outside the scope of this chapter to present all the steps of the

proof of renormalizability. However we present some examples and will describe in

a simplified manner the basic steps of the technique [128, 136].

In the simple case of a logarithmically primitive-divergent diagram, depicted in

Fig. 10.4, we change the Lagrangian according to

L → L+ cGφ
N . (10.13)

With this new Lagrangian, we have not only the amplitude AG for the diagram in

Fig. 10.4(a), but also the amplitude cG for the new diagram in Fig. 10.4(b). Next we

introduce anyone of the regularization methods described in the previous section,

represented by a parameter η. We represent symbolically by η → 0 the suppression

of the regularization. Then it is verified that the regularized amplitude is written
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p1

p2

pj

pN−1

pN

(a)

p2

p1 pN

pj

(b)

pN−1

Fig. 10.4 Logarithmically primitive-divergent diagram.

in the form

AReg
G ({p}; η) = ADiv

G (η) +ARen
G ({p}; η), (10.14)

where

lim
η→0

ADiv
G (η) =∞ ; lim

η→0
ARen
G ({p}; η) = ARen

G ({p}) <∞ (10.15)

If we choose in the Lagrangian L the coefficient cG with the value cG = −ADiv
G (η),

we find that the sum of the amplitudes corresponding to Fig. 10.4(a,b) tends to

the finite limit ARen
G ({p}) when the regularization is suppressed. The amplitude

ARen
G ({p}) is said to be the renormalized amplitude. Before going to the general

situation we give some examples of ultraviolet divergent diagrams, and how these

divergences can be suppressed. Let us start by presenting some comments about

dimensional analysis. We are presenting results in dimension 4. The action (energy

× time) is measured in units of the Planck constant, ~, and velocity in units of the

speed of light, c. We take ~ = c = 1, the natural units. The Lagrangian density

has the same dimension as the Hamiltonian density, i.e., [L] = [H] = Energy/L3,

where L stands for the linear dimension of space. Then energy has dimension of

mass, M , i.e. [energy] = M = L−1 = T−1, with T standing for time. As the action

is dimensionless, then [L] = M4. For the scalar field, φ(x), we find [φ] = M . Let us

remark that, for the perturbative series to be meaningful, the coupling constant has

to be dimensionless. This is true for the λφ4 model in the 4-dimension space-time.

If we use dimensional regularization, we need to take D 6= 4, and in this case we

can choose a dimensionless coupling constant defined by λ
′

= λµ−4+D, where µ is

an arbitrary constant with dimension of mass. This kind of arbitrariness is present

also when we use other regularizations.
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As a first example, we consider the tadpole diagram given by,

ATadpole ∼ λ

∫
dDk

(2π)D
1

k2 +m2

=
λ′µ−D+4

(2π)D
πD/2 (m2)

D−2
2 Γ(

2−D
2

), (10.16)

where we have used Eq. (10.12). If we take D = 4, Γ( 2−D
2 ) = Γ(−1), which is

singular. Taking D = 4− 2ε we have,

Γ(
2−D

2
) = Γ(−1 + ε), (10.17)

which can be expanded around ε = 0 using the formula

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ ψ(n+ 1) +O(ε)

]
, (10.18)

where ψ(z) = d ln(z)/dz.

Taking n = 1 in Eq. (10.18) and replacing it in Eq. (10.16), we get

ATadpole ∼ −
λ′πD/2

(2π)D
(m2)

D−2
2

1

ε

−λ
′πD/2

(2π)D

[
ψ(2)− 2 ln

(
m

µ

)
+O(ε)

]
.

When ε→ 0 the divergence is isolated in the term

AdivTadpole = − λ′πD/2

(2π)D
(m2)

D−2
2

1

ε

∣∣∣∣
D=4

= − λ

16π2
m2 1

ε
.

Let us now take a look at the contribution of the tadpole to the 2-point Green

function, depicted in Fig. 10.5(a). We have,

(a) (b)

p p p p

c1λ

Fig. 10.5 Tadpole contribution to the 2-point Green function.

G(2) =

(
1

p2 +m2

)2{
−λ
′πD/2

(2π)D
(m2)

D−2
2

1

ε

−λ
′πD/2

(2π)D

[
ψ(2)− 2 ln

(
m

µ

)
+O(ε)

]}
.
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If we add to the Lagrangian a partial counterterm c1λ
′φ2 with the choice

c1 =
λ′πD/2

(2π)D
(m2)

D−2
2

1

ε
,

then it results that the renormalized two point Green function, given by the sum of

the two diagrams in Figs. 10.5(a) and 10.5(b), in the limit of ε→ 0, is

ARen
G(2) =

λπ2

(2π)4

{[
−ψ(2) + 2 ln

(
m

µ

)]}
. (10.19)

This gives us a finite amplitude.

As a second example, let us analyze a two-loop contribution to the two-point

function, depicted in Fig. 10.6(a). More involved calculations are required in this

case. We find,

p p p p

pp

c′
2
p2λ2

c2λ
2

(a) (b)

(c)

Fig. 10.6 2-loop contribution to the mass.

AG(2)(p; ε) =
λ2

6(16π2)2

[
3m2

2ε2
+

3m2

ε

(
3

2
+ ψ(1) + ln

(
4πµ2

m2

))]

+
λ2

6(24π2)2
p2

ε
+ARen

G (p; ε),

where ARen
G(2) (p; ε) tends to a finite limit, ARen

G (p), when ε→ 0. In this case, we have

to add to the Lagrangian two partial counterterms of the form,

c2λ
2φ2 + c′2λ

2∂µφ∂
µφ,

giving rise to the diagrams depicted in Figs. 10.6(b) and 10.6(c). With the choice

c2 = − 1

6(16π2)2

[
3m2

2ε2
+

3m2

ε

(
3

2
+ ψ(1) + ln

(
4πµ2

m2

))]
(10.20)

and

c′2 = − 1

24(16π2)2
1

ε
(10.21)

the sum of the three diagrams in Fig. 10.6(a–c) gives the finite result ARen
G(2) (p).
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(a)

(b) (c)

Fig. 10.7 Diagrams corresponding to counterterms given in Eqs. (10.22) and (10.23).

The diagrams in Figs. 10.7(a)–10.7(c) correspond to partial counterterms of the

type

c3λ
3φ2 + c′3λ

3∂µφ∂
µφ, (10.22)

and

c4λ
4φ2 + c′4λ

4∂µφ∂
µφ. (10.23)

The definition of a 1PI (one-particle-irreducible) diagram, as a diagram such

that it cannot be transformed into a disconnected diagram by cutting just one line,

means that the diagrams considered above of order λ2, λ3 and λ4 are 1PI diagrams.

If we represent by a full circle, as depicted in Fig. 10.8(a), the sum of all 1PI

diagrams with two external lines cut, any insertion as represented in Fig. 10.8(b)

can be written in the form

Σ(p)
1

p2 +m2
Σ(p),

where Σ(p) is the sum of all 1PI diagrams in Fig. 10.8(a). For complete evaluation

of the 2-point Green function, we limit ourselves to just 1PI-diagrams.

The logical structure of the process tells us that in order to suppress the ul-

traviolet divergences of the two-point function, it is necessary to introduce two

counterterms (not partial counterterms) of the form

c(2)λ2φ2 + c(2)′λ2∂µφ∂
µφ

where each counterterm c(2) and c(2)′, is an infinite series in λ corresponding to

ultraviolet divergent diagrams to all orders, i.e.

c(2)(η) = λc
(2)
1 (η) + λ2c

(2)
2 (η) + · · ·+ λnc(2)n (η) + · · · ,

c(2)′(η) = λc
(2)′
1 (η) + λ2c

(2)′
2 (η) + · · ·+ λnc(2)′n (η) + · · · ,
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p p p

p p

(a)

(b)

Fig. 10.8 Tadpole contribution to the 2-point Green function.

where c
(2)
n (η) and c

(2)′
n (η) are such that

lim
η→0

c(2)n (η) → ∞

lim
η→0

c(2)′n (η) → ∞,

in order to cancell the ultraviolet divergences of all the diagrams contributing to

the two-point function. Each coefficient, c
(2)
n (η) and c

(2)′
n (η) is exactly what we have

called partial counterterms.

Let us now consider the 4-point insertion to lowest order (Fig. 10.2), given by

AG(4) =
(µ2)2−

D
2 (λ′)2

(2π)D

∫
dDk

[(p− k)2 +m2](k2 +m2)
. (10.24)

This amplitude can be evaluated using the identity,

1

A1 · · ·AI
=

∫ 1

0

dx
1
· · · dx

I
δ

(
I∑

i=1

xi − 1

)

× (I − 1)!

[x1A1 + · · ·+ xIAI ]I
, (10.25)

and Eq. (10.12). By taking D = 4− 2ε, and using Eq. (10.18), we get

AG(4) = (µ2)2−
D
2

(λ′)2

16π4ε
+ (µ2)2−

D
2

(2λ′)2

(32π)2

×
[
ψ(1)−

∫ 1

0

dx ln
m2 + p2x(1− x)

4πµ2

]
+O(ε). (10.26)
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The choice of the partial counterterm

c
(4)
2 = − (λ′)2

16π4ε
(10.27)

suppresses the ultraviolet divergence of the diagram in the limit ε→ 0.

Similarly, for higher order diagrams, we have respectively partial countertems

of the form λ3c
(4)
3 and λ4c

(4)
4 . This can be extended to all orders, which correspond

to the addition of a counterterm of the type

c(4)(η) = λ2c
(4)
2 (η) + · · ·+ λnc(4)n (η) + · · · . (10.28)

10.3.1 Renormalization parts in the λφ4 theory

An essential aspect of renormalization is to determine how many counterterms must

be introduced in the theory to make it convergent. In order to examine this point let

us first note that for a given diagramG of the λφ4 model, the number of independent

loops L(G), internal lines I(G) and vertices V (G) satisfies the topological formula,

L(G) = I(G)− V (G) + 1.

Moreover, if the diagram has N(G) external lines, the relation

2I(G) +N(G) = 4V (G),

holds. Then the superficial degree of divergence d(G) = DL(G)− 2I(G) becomes

d(G) = D − V (G)(D − 4) +N(G)

(
1− D

2

)
. (10.29)

For D = 4, we find that d(G) ≥ 0 if, and only if, N(G) ≤ 4. This implies that, to

any order, the only ultraviolet divergent diagrams are those for which N(G) = 2, 4;

see Fig. 10.9. Note that, as one infers from topological considerations, there are no

diagrams with N(G) = 3 in the λφ4 model.

p

(b) d = 0(a) d = 2

Fig. 10.9 Tadpole contribution to the 2-point Green function.

The insertions AG(2) and AG(4) with 2 and 4 external lines respectively, and

only those, are ultraviolet divergent. Thus for D = 4, we need to introduce only

two counterterms, c(2)φ2 + c(2)′∂µφ∂µφ and c(4)φ4, to get a divergence free theory,

at least as far as primitively divergent diagrams are concerned. We will see later
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that this holds also in the general case. Recall that c(2) and c(4) are infinite series

in the coupling constant, corresponding to the infinity of diagrams with 2 and 4

external lines. Theories of this type, in which we need to introduce a finite number

of counterterms to render the theory finite, are called renormalizable, or strictly

renormalizable.

10.3.2 The Callan-Zimanzik equation

Whenever regularization is not suppressed, amplitudes are finite to a given pertur-

bative order. Trouble starts when we suppress the regulator. So, let us focus for

the moment on our regularized objects (Feynman amplitudes, counterterms, etc)

emerging from the “bare” Lagrangian density,

L =
1

2
∂µφ ∂

µφ+
m2

2
φ2 +

λ

4!
φ4. (10.30)

Two sets of counterterms, corresponding to two distinct renormalization schemes

(see Eqs. (10.40) and (10.41) in Sec. 10.4), or two values of the parameter µ in

Eq. (10.26), differ by a finite counterterm. To completely define the theory this

ambiguity has to be eliminated. This can be done by defining the theory by means

of physical conditions, fixing the normalization of some Green functions. In the

case of the λφ4 theory it is enough to fix the two- and four-point functions.

The full two-point function, including corrections to all orders is

G(2)(p) =
1

p2 +m2 + Σ(p)
.

Since G(2)(p) must have a pole at the physical mass, p2 = −m2 we have[
p2 + Σ(p) +m2

]∣∣
p2=−m2 = 0, and the residue of the pole is equal to 1. Analo-

gously, we fix the physical coupling constant by means of a normalization condition,

for instance, such that the amputated four-point function, including the correction

from the counterterm c(4)),

G(4)amputaded(p1, p2, p3, p4) + c(4), (10.31)

equals the physical coupling constant at the symmetric point p2
j = µ2 ; (pi+pj)

2 =
4µ2

3 . Then the theory is dependent on an arbitrary constant µ.

The renormalized Lagrangian density, is obtained from the bare Lagrangian by

including the counterterms (10.24) and (10.28) as,

LRen =
Z

2
∂µφ ∂

µφ+
Z

2
(m2 + c(2))φ2 +

Z2(λ + c(4))

4!
φ4, (10.32)

where Z =
√

1 + c(2)′. Z and the counterterms c(2) and c(4) are dependent on the

regulator η and on the arbitrary parameter µ. With the rescaling of the field, φ =√
Zφ and defining the physical mass and renormalized constant by m2 = m2 + c(2)

and λ = λ+ c(4) respectively, we have,

LRen =
1

2
∂µφ ∂

µφ+
1

2
m2φ

2
+
λ

4!
φ

4
. (10.33)
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When the regularization is suppressed, everything explodes: the counterterms and,

for consistency, the bare mass and coupling constant diverge, in such a way as

to provide finite physical mass and coupling constant. The Lagrangian given in

Eq. (10.33) generates a perturbative series in the physical coupling constant λ. All

Feynman diagrams will have the factor λ at each vertex. Among them, those strictly

containing subdiagrams with two and four external legs will have UV divergences

to be subtracted along the lines described above. The main difference is that the

series is in the physical coupling constant λ.

Since there is a factor
√

Z for each field, the N -point renormalized amputated

1PI Green function is obtained from the non-renormalized one by,

Γ(N)(λ(µ),m(µ), µ, η) = Z
N
2 (η, µ)Γ

(N)
0 (λ,m, η). (10.34)

In Eq. (10.34) Γ
(N)
0 is independent of µ but depends on the regulator η. When the

regularization is suppressed, Γ(N) is independent of η, but depends explicitly on µ.

Or, µ is an arbitrary parameter and we expect on physical grounds that results do

not depend on it. We rewrite Eq. (10.34),

Γ
(N)
0 (λ,m, η) = Z−

N
2 (η, µ)Γ(N)(λ(µ),m(µ), µ). (10.35)

The independence of Γ
(N)
0 on µ implies that the right hand side of Eq. (10.35) does

not depend on this parameter,

µ
∂

∂µ

[
Z−

N
2 (η, µ)Γ(N)(λ(µ),m, µ)

]
= 0, (10.36)

which can be rewritten in the form,
[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ βm(λ)

∂

∂m
−Nγ(λ)

]
Γ(N)(λ, µ) = 0, (10.37)

where the functions β, γ and βm are given by,

β(λ) = µ
∂λ

∂µ
; βm(λ) = µ

∂m

∂µ
; γ(λ) = µ

∂

∂µ
ln
√

Z. (10.38)

The independence of the renormalized Green functions on the arbitrary parameter

µ is given in Eq. (10.37). It is known as the Callan-Symanzik or the renormalization

group equation .

10.4 Bogoliubov recurrence

For a renormalizable theory, we look for the organization of the set of subtraction

to be performed in order to define the complete set of counterterms. When a

counterterm cS1 for a subdiagram S1, with N1 external lines is present, the modified

Lagrangian contains a new vertex with N1 lines. For any S2 ⊃ S1, to subtract the

divergent integration corresponding to S1 is equivalent to considering the sum

ARen
S2

= AS2 + cS1AS2/S1
,
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where AS2/S1
is the reduced diagram obtained by shrinking the subdiagram S1 to a

point. If S2 is superficially divergent (independently of the S1-divergence), we must

define another counterterm cS2 , such that

ARen
S2

= AS2 + cS1AS2/S1
+ cS2 .

The process is continued in a recurrent manner, starting from the smaller diagram

to the larger ones. It may be shown that, in order to obtain finite amplitudes, it is

enough to take simultaneously all the non-overlapping subdiagrams S. This is the

origin of the BPH (Bogoliubov, Parasiuk, Hepp) recursive process [128, 129, 136].

Suppose that we have defined all counterterms up to a given order n. Then for

a diagram G of order n + 1, we define the renormalized amplitude, ARen
G , by the

formula

ARen
G =

∑

{S}


AG/{S}

∏

S∈{S}
cS


+ cG, (10.39)

where cG is present if G itself is superficially divergent. The sum in Eq. (10.39) is

over all the families {S} of superficially divergent non-overlapping subdiagrams of

G, including the empty family, which corresponds to the term AG. The amplitude

AG/{S} corresponds to the diagram obtained by reducing to a point each subdiagram

of the family {S}. In the recursive process, it is understood that the intermediary

step of the regularization has been done, which is suppressed after the recurrence

is performed up to a given order.

An equivalent way to introduce counterterms and implement renormalization

using the Bogoliubov recurrence formula (10.39), consists in taking the regularized

amplitude Taylor-subtracted at a fixed point in the external momenta, {p} = {ω};
that is, for a logarithmically divergent diagram, for example, we subtract the zeroth

order term in the Taylor expansion on the external momenta, around the point {ω}.
We can verify that the divergence is contained in the first term of the expansion.

This procedure is in principle not unique, due to the arbitrariness of the choice of

the point {ω}. Consider now a primitively divergent subdiagram S ⊂ G with {pi},
i = 1 · · ·N , external momenta, for which d(S) > 0. In this case it is not enough to

subtract only the zeroth order term in the Taylor expansion, but to subtract up to

the order d(S),

ARen
S ({p}) = lim

η→0

[
1− τd(S)

S (ω)
]
AReg
S ({p}; η) (10.40)

where τ
d(S)
S (ω) is the Taylor operator up to order d(S), around the point {ω}; it is

defined, in a simplified version, by

τ
d(S)
S (ω)AReg

S ({p}; η) = AReg
S (ω; η) +

∑

i

(pi − ωi)µi

[
∂AReg

S ({p}η)
∂pµi

i

]

pi=ωi

+ · · ·

+
∑

{i}

(p1 − ω1)
µi1 · · · (pN − ωN )µiN

d(S)!

[
∂d(S)AReg

S ({p}; η)
∂pµ1 · · ·∂pµN

]

{pi=ωi}
.

(10.41)
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It is not a trivial task to show that this procedure can be generalized to take

into account all renormalization parts of every diagram G. We define a forest F
of G as a set {Si ⊆ G} of proper (connected and 1PI) subdiagrams such that for

Si, Sj ∈ F , either Si ⊂ Sj , Si ⊃ Sj , or Si ∩ Sj . Then the renormalized amplitude

of the diagram G can be written as

ARen
G ({p}) = lim

η→0
RAReg

G ({p}; η), (10.42)

where the renormalization operator, R, is given by

R =
∑

F

∏

Si∈F

(
−τd(Si)

)
(10.43)

and the sum extends to all forests F of G, including the empty forest ∅, which

corresponds to the term 1.

In Eq. (10.42) the product of Taylor operators is to be performed following the

ordering in each forest, that is from smaller to bigger diagrams. Each Taylor op-

erator τd(Si) takes the beginning of the Taylor expansion up to the order d(Si) in

the external momenta of Si which can be internal momenta of G or of a bigger

diagram. The definition of R may therefore depend on the choice of momentum

routing, that is, on the choice of the independent loop momenta solving the delta

function in Eq. (10.5). This difficulty has lead to the definition for each diagram,

of sets of admissible momenta and for these, to the statement of the theorem [128]:

Theorem: The amplitude ARen
G ({p}) in Eq. (10.42) is convergent for any dia-

gram G in Euclidian space and its analytical continuation to the Minkowski space

define tempered distributions.

In Fig. 10.10(a) we have a 4th order diagram and the set of its renormalization

parts is shown in Fig. 10.10(b). The list of forests of this diagram is,

∅ , {S1} , {S2} , {S3} , {G} , {S1, S3} , {S2, S3} ,
{S1, G} , {S2, G} , {S3, G} , {S1, S3, G} , {S2, S3, G}. (10.44)

We invite the courageous reader to apply formula given in Eq. (10.42) to this case

and verify that a finite amplitude is obtained [128, 137].

10.4.1 Dimensional renormalization

The simplest case of dimensional regularization consists in generalizing the dimen-

sion D in the formula given by Eq. (10.12) to complex values D′, by considering

the analytical extension of its right hand side. This may be done for more involved

Feynman integrals, with the result that they become meromorphic functions of D′,
AG(D′), and the ultraviolet divergences appear as poles of gamma functions at

D′ = D. The expansion around these poles allows us to define the dimensional



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

176 Thermal Quantum Field Theory: Algebraic Aspects and Applications

GS1 S2 S3

(a)

(b)

Fig. 10.10 (a) The 4th order diagram of the λφ4 theory. (b) Renormalization parts of the diagram
in (a).

renormalization: at each step in the BPH recurrence, we perform an expansion in

powers of D′ −D = ε of the dimensionally regularized amplitudes,

ADimReg
G (D′) =

∑

{S}


AG/{S}(D′)

∏

S∈{S}
cS(D′)


+ARen

G (D′)

=

mmax∑

m=1

am
(D −D′)m +ARen

G (D′), (10.45)

where

lim
D′→D

ARen
G (D′) = ARen

G (D) <∞. (10.46)

Dimensional renormalization consists, essentially, in subtracting the pole terms in

the limit D′ → D, i.e. by subtracting the counterterms

−
mmax∑

m=1

am
εm

. (10.47)

This is not obvious, but the counterterms are polynomials in the external mo-

menta, in the dimension D, supposed to be an integer. It is worth mentioning that

there is no convenient definition of the momentum in complex dimensions; actually

it is hard to imagine a complex number of components of a vector. It is necessary

to work with the invariants directly.

The main advantage of the dimensional renormalization is that, in general, it

respects the symmetry properties of the theory, which are often dimensionally in-

dependent. On the contrary, in other renormalization schemes, one need usually to

reestablish the symmetry by adding new finite counterterms. However, a defect of
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the dimensional renormalization in practical applications is that it must be done

following the Bogoliubov recurrence, step-by-step. A solution to this situation has

been found with the BPHZ systematics [136], where an explicit global solution is

obtained for the dimensional renormalization [138].

10.4.2 Other renormalization procedures

(i) renormalization in the α-parametric representation

The Bogoliubov-Schwinger parametric α-representation is introduced by ex-

pressing each propagator in Eq. (10.6) in the form,

1

k2
l +m2

=

∫ ∞

0

dα e−α(k2
l +m2) (10.48)

Upon integration over each kl the Feynman amplitude is expressed as [139]

AG({p}) =

∫ ∞

0

∏I
l=1 dαl

Ud/2(α)
e−

∑
l αl m

2

e−N(sK ;α)/U(α), (10.49)

where U and N are homogeneous polynomials in the αl parameters, of order L and

L + 1, respectively, constructed with topological relations defined by the 1- and

2-trees of the diagram G:

U(α) =
∑

T

∏

l/∈T
αl, N(α) =

∑

K

sK

(∏

l/∈K
αl

)
. (10.50)

The symbols
∑

T and
∑

K denote, respectively, summation over the 1-trees T (a

tree is a set of lines of the diagram connecting all the vertices without loops) and

2-trees K of G (a two-tree is a tree with two connect components); sK is the cut-

invariant of one of the two connected pieces of the 2-tree K, that is, the square of

the total external momentum entering one piece of K (any one of them equivalently,

by momentum conservation). U and N are known in the literature as the Symanzik

polynomials.

The Bogoliubov-Schwinger parametric α-representation has been employed to

provide a simpler proof of the Bogoliubov recurrence [137, 140].

(ii) renormalization in the complete Mellin representation

Starting from the parametric α-representation, we rewrite the Symanzik poly-

nomials as [141, 142, 150],

uij =

{
0 if the line i belongs to the 1-tree j

1 otherwise
(10.51)

and

niK =

{
0 if the line i belongs to the 2-tree K

1 otherwise
(10.52)
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with

∑

i

uij = L , ∀ j ,
∑

i

niK = L+ 1 , ∀K .

The Feynman amplitude in Eq. (10.49) has a complete Mellin (CM) representa-

tion [142]. For convergent amplitudes it reads,

AG(sK) =

∫

∆

∏
j Γ(−xj)

Γ(−∑j xj)

∏

K

syK

K Γ(−yK)
∏

l

(
m2
)−φl

Γ (φl) , (10.53)

where ∆ is the nonempty convex domain (σ and τ standing respectively for Re xj
and Re yK),

∆ =

{
σ, τ

∣∣∣∣∣
σj < 0; τK < 0;

∑
j xj +

∑
K yK = −D2 ;

∀i, Re φi ≡
∑
j uijσj +

∑
K niKτK + 1 > 0

}
(10.54)

and the symbol
∫
∆

is defined by,

∫

∆

≡
∫ +∞

−∞

Im xj
2πi

Im yK
2πi

. (10.55)

If the Feynman integral, Eq. (10.6), is ultraviolet divergent, the domain ∆ in the

complete Mellin representation, Eq. (10.53), is empty. The renormalization proce-

dure does not alter the algebraic structure of integrands of the CM representation

[142, 143]. It only changes the set of relevant integration domains in the Mellin

variable space. Actually, by the action of the renormalization operator R, the inte-

gration domain ∆ is split into a set of cells C corresponding to integration domains

∆C in the Mellin variables, in such a way that the renormalized amplitude has the

form,

ARen
G (sK ,m

2) =

∫ ∞

0

∏I
l=1 dαl

Ud/2(α)
R
(
e−

∑
l αlm

2

e−N(sK ;α)/U(α)
)

=
∑

C

µC

∫

∆C

∏
j Γ(−xj)

Γ(−∑j xj)

∏

K

syK

K Γ(−yK)
∏

l

(
m2
)−φl

Γ (φl) ,

(10.56)

where µC are numerical coefficients and

∆C =

{
σ ∈ C, τ ∈ C

∣∣∣∣∣
σj < 0; τK < 0;

∑
j xj +

∑
K yK = −D2 ;

∀i, Re φi ≡
∑

j uijσj +
∑

K niKτK + 1 > 0

}
. (10.57)
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10.4.3 Borel summability

Perturbation theory makes sense if the coupling constant is small and dimensionless.

The renormalizaton procedure gives a way to get finite coefficients of the perturba-

tive expansion (Feynman diagrams) at any order in the physical coupling constant,

but nothing is said about the convergence of the expansion itself. On the contrary,

there are indications that some physically relevant perturbative series asymptot-

ically diverge [144], but even so, very precise predictions can be made using the

perturbation theory. QED is an example of this. However, in spite of its remark-

able achievements, there are situations where the use of the perturbative method

is not possible, or is of little use. These situations have led to attempts to improve

analytical methods to circumvent the limitations of the perturbation theory. In

particular, non-perturbative renormalization methods in constructive field theory

have been improved [144].

In perturbation theory there are a number of successful attempts to solve the

problem. There are methods that perform resummations of perturbative series, even

if they are divergent, which amounts in some cases to extending the weak-coupling

regime to a strong-coupling domain [145–149]. For instance, starting from a series

in powers of a coupling constant g, not necessarily convergent,

f(g) =

∞∑

n=0

angn, (10.58)

it is possible under the assumption of the validity of the Watson-Nevanlinna-Sokal

theorem [144] to define its associated Borel transform series in the Borel variable,

say b,

B(b) =

∞∑

n=0

an

n!
bn. (10.59)

It can be easily verified that the inverse Borel transform,

B(g) =
1

g

∫ ∞

0

db e−(b/g)B(b), (10.60)

reproduces, formally, the original series in g. From a physical point of view, the

important point is that the Borel series in b can be convergent and can be summed

even if the original series in g diverges. In this case, the inverse Borel transform

defines a function of g, which can be taken as the sum of the divergent series in g.

This function is defined for values of g not necessarily small and, in this sense, an

extension from a weak to a strong-coupling regime can be performed.

10.5 Temperature effects

We now address the question about the renormalizability of a theory at finite tem-

perature. Specifically, we indicate how to use dimensional regularization and ana-

lytic zeta function techniques to calculate Feynman amplitudes at T 6= 0. Let us
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start with Eq. (10.6), written in the form

AG({p}) ∼
∫ L∏

α=1

dDkα
(2π)D

I∏

i=1

1

Ai
, (10.61)

where Ai = q2i ({p}, {k})+m2. Using the identity Eq. (10.25) and the fact that each

qi is a linear function of the internal momenta, Eq. (10.61) becomes

AG({p}) =

∫ 1

0

dx
1
· · · dx

I−1

∫ L∏

α=1

dDkα
(2π)D

(I − 1)!

[k2
1 + · · ·+ k2

L + ∆2]I
,

where

∆2 = ∆2({p}, {xj};m)

is a function of the external momenta, {p}, of the Feynman parameters, {xi}, and

of the mass m [31].

As pointed out in Chapter 8, the thermal (TFD) free-boson propagator,

Eq. (8.11), fulfills the KMS conditions and is periodic in the imaginary time, with

period β = T−1. Thus, in its Fourier expansion, k0 takes values on the discrete set

of Matsubara frequencies, {ωn = 2πn/β}. For an amplitude with L independent

loops, AG, the Matsubara prescription should be applied to all k0
α to get the finite

temperature expression,

AG({p};β) =
1

βL

∞∑

{lα=−∞}

∫ 1

0

dx
1
· · · dx

I−1

∫ L∏

α=1

dD−1kα
(2π)D−1

× (I − 1)!

[k2
1 + · · ·+ k2

L +
∑L

α=1
4π2l2α
β2 + ∆2]I

.

We rewrite this equation as

AG({p};β) =
1

βL

∞∑

{lα=−∞}

∫ 1

0

dx
1
· · · dx

I−1
BG({p}, {xj}; {lα}, β),

where

BG({p}, {xj}; {lα}, β) =

∫ L∏

α=1

dD−1kα
(2π)D−1

(I − 1)!

[k2
1 + · · ·+ k2

L +
∑L
α=1 b

2l2α + ∆2]I
,

(10.62)

with

b =
2π

β
.

To perform the integration in Eq. (10.62), we proceed by recurrence. We start

by rewriting Eq. (10.62) as

BG({p}, {xj}; {lα}, β) =

∫ L∏

α=1

dD−1kα
(2π)D−1

(I − 1)!

[k2
1 + ∆2

1]
I
,
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with ∆2
1 given by

∆2
1 = ∆2

1({p}, {xj}; {lα}, β; {kα>1})

= k2
2 + · · ·+ k2

L +

L∑

α=1

b2l2α + ∆2({p}, {xj};m).

Then, we perform the integration over k1 by using the formula given in Eq. (10.12)

and obtain

BG({p}, {xj}; {lα}, β) =
Γ
(
I − D−1

2

)

(4π)
D−1

2

∫ L∏

α=2

dD−1kα
(2π)D−1

1

[k2
2 + ∆2

2]
I−D−1

2

,

where

∆2
2 = ∆2

2({p}, {xj}; {lα}, β; {kα>2})

= k2
3 + · · ·+ k2

L +
L∑

α=1

b2l2α + ∆2.

The second step is to integrate over the momentum k2, again using Eq. (10.12).

The result is

BG({p}, {xj}; {lα}, β) =
Γ
(
I − 2

[
D−1

2

])

(4π)2[
D−1

2 ]

∫ L∏

α=3

dD−1kα
(2π)D−1

1

[k2
3 + ∆2

3]
I−2[D−1

2 ]
,

where

∆2
3 = ∆2

3({p}, {xj}; {lα}, β; {kα>3})

= k2
4 + · · ·+ k2

L +

L∑

α=1

b2l2α + ∆2({p}, {xj};m).

This procedure is continued until we have integrated over all momenta. The final

result is

AG({p};β) =
1

βL
Γ
(
I − L

[
D−1

2

])

(4π)L[D−1
2 ]

×
∫ 1

0

dx
1
· · · dx

I−1

∞∑

{lα=−∞}

1

[∆2
L]I−L[D−1

2 ]
, (10.63)

where

∆2
L = ∆2

L({p}, {xj};m,β)

=

L∑

α=1

b2l2α + ∆2({p}, {xj};m).

We recognize the sum over the set {lα} in Eq. (10.63) as one of the multivariable

Epstein-Hurwitz zeta function defined by

Ac
2

d (ν; a1, . . . , ad) =
+∞∑

{nj=−∞}

1(∑d
r=1 a

2
rn

2
r + c2

)ν . (10.64)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

182 Thermal Quantum Field Theory: Algebraic Aspects and Applications

This function can be analytically continued to the whole complex ν-plane. We

postpone to Chapter 18 the full construction of such an analytic extension [284]

and present now only the result:

Ac
2

d (ν; {aj}) =
π

d
2

a1 · · ·ad Γ(ν)

[
Γ

(
ν − d

2

)
cd−2ν + F

(
ν − d

2
; {aj}, c

)]
, (10.65)

where the function F (ν − d/2; {aj}, c) is the finite part, which is expressed by sums

with j indices (and 1 ≤ j ≤ d) involving modified Bessel functions, Kν−d/2 (see

Chapter 20), while the first term, proportional to Γ (ν − d/2), has simple poles at

the values ν = −n+ d/2, n ∈ N.

Now, if we take

d = L , a1 = · · · = aL = b , c2 = ∆2({p}, {xj};m) , ν = I − L
(
D − 1

2

)

in the above expression, the L-loop amplitude, Eq. (10.63), becomes

AG({p};β) =
1

2LDπL(D−1)

[
Γ

(
I − LD

2

)∫ 1

0

dx
1
· · · dx

I−1
[∆({p}, {xj};m)]

LD−2I

+

∫ 1

0

dx
1
· · · dx

I−1
F

(
ν − d

2
;β,∆({p}, {xj};m)

)]
. (10.66)

The first term in this expression does not depend on the temperature, β−1, and car-

ries a singularity for space-time dimensions D satisfying I −LD/2 = 0,−1,−2, . . . .

The second term is finite. To get the renormalized amplitude, this term should be

added to the finite part that remains when the pole of the first term is suppressed.

Applications of this method will be presented in Chapters 18 to 21.

The general aspects of the topic presented here can be extended to models where

the matter field (bosons or fermions) is coupled with a gauge field. In these theories,

an important role is played by the gauge symmetry in the discussion of perturbative

renormalization. The Ward-Takahashi relations, that manifestly contain the full

implications of the symmetry, are discussed in the next chapter.
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Chapter 11

Ward-Takahashi Relations and Gauge
Symmetry

Ward [151] established a relationship between the vertex and the propagator for

quantum electrodynamics. It played a fundamental role in the renormalization

theory and the theory of spontaneous symmetry breaking. This relationship was

generalized by Takahashi [152] to many particle Green’s functions. These non-

perturbative results, called Ward-Takahashi (W-T) relations, have played an impor-

tant role in keeping perturbative schemes in quantum field theory and many-particle

systems consistent with the underlying symmetry properties. Quantum electrody-

namics (QED) with a U (1) gauge symmetry leads to the continuity conditions on

the current, i.e. ∂µj
µ (x) = 0. Similar relation exists for the axial current JAµ which

is only partially conserved, i.e. ∂µJAµ (x) = Cφ (x) where φ is a pseudo-scalar field

that is taken to be the pion field.

Relationships of the type mentioned above provide a limitation on the longi-

tudinal part of the vertex function. The transverse part is not determined by the

W-T relations. In order to study gauge theories through Dyson-Schwinger equa-

tion [153], a complete knowledge of the vertex function is required. A great deal

of effort has been devoted to gain a better understanding, and thus construct the

transverse part of the vertex function. Perturbative schemes [154–161] have been

devised to get a handle on the transverse part. However these attempts are not

unique since these are not based on a basic symmetry property of the system. It is

possible to establish a proper constraint on the transverse part of the vertex by a

WT-type relation as is possible for the longitudinal part of the vertex, by a method

suggested by Takahashi [162].

This chapter provides a detailed operator relationship that gives W-T relations

at T = 0 and at finite temperature. First we present an analysis of the W-T

relationship that gives the longitudinal part of the vertex function. These are exact

results, only ones available for quantum field theory. Then we establish a WT-type

relationship for the transverse part of the vertex [163] and these are obtained to

one-loop level. Again these results are used for both T = 0 and finite temperature.

183
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11.1 Ward relation

The Ward relation in momentum space is obtained from the definition of the Feyn-

man propagator for a fermion

SF (p) =
1

γ · p−m,

then

∂

∂pµ
SF (p) = −SF (p) γµSF (p) . (11.1)

This relation has proved very useful in understanding the connection between

renormalization constants defined by Dyson and then indicated that all divergences

in quantum electrodynamics may be removed by a renormalization of charge and

mass. Dyson conjectured that Z1 = Z2 and the above identity led to a formal proof

of this equivalence by Ward. However this started a search for a generalized Ward

relation valid for arbitrary momentum transfer q that was discovered by Takahashi.

11.2 Ward-Takahashi relations

The Ward relation has played a fundamental role in canonical quantum field theory.

Now we will discuss the generalization as given by Takahashi. In canonical field the-

ory, the Lagrangian depends on the field operators, φα (x), their conjugate, φ†α (x),

and their derivatives, ∂µφα (x) and ∂µφ
†
α (x). Consider an infinitesimal transforma-

tion of the field operator

φα (x)→ φ′α (x) = φα (x) + δφα (x) . (11.2)

The Lie derivative of the transformation is defined as

δLφα (x) ≡ φ′α (x)− φα (x) (11.3)

= δφα (x)− δxµ∂µφα (x) .

It follows that

∂µδ
Lφα (x) = δL∂µφα (x)

and

δLT (φα (x1)φβ (x2) · · · ) = T
(
δLφα (x1)φβ (x2) · · ·

)

+T
(
φα (x1) δ

Lφβ (x2) · · ·
)

+ · · · (11.4)

where T is the time-ordering operator. Then the current is defined by the relation

∂µJ
µ − g (x) = δLφ†α (x)

{
∂L

∂φ†α (x)
− ∂µ

∂L
∂∂µφ

†
α (x)

}

+

{
∂L

∂φ†α (x)
− ∂µ

∂L
∂∂µφ

†
α (x)

}
δφα(x) (11.5)
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where g (x) should not have any time derivatives of the canonical variables. The

Euler-Lagrange equation i.e the dynamical equation, has not been used in defining

this equation for a given Lie derivative.

The relation for the current is not unique; divergence of an anti-symmetric

tensor would still satisfy this relation. The generator of the transformation given

by Eq. (11.2) leads to the quantization conditions of the field, φα (x),

−iδLφα (x) = [φα (x) , G (σ)] (11.6)

where x lies on the space-like surface σ and G (σ) is the generator of the transfor-

mation given as

G (σ) =

∫
dσµ (x) Jµ (x) . (11.7)

Thus the field quantization is given by the two equations: Eq. (11.5) determines the

form of the generating current for a given transformation and a given Lagrangian

and Eq. (11.6) provides a restriction on the algebra satisfied by the field operator.

We are ready to define the generalized Ward-Takahashi relations. The Lie deriva-

tives of the field operator is written as

−iδLφα (x) = φα (x)G (σ)−G (σ)φα (x)

= φα (x) [G (σ) −G (−∞)]− [G (σ)−G (+∞)]φα (x)

+φα (x)G (−∞)−G (+∞)φα (x)

=

∫
d4x′

{
T
(
φα (x) ∂′µJ

µ (x′)
)
− ∂′µT (φα (x) Jµ (x′))

}
. (11.8)

This relation may be generalized to arbitrary number of field operators with a

time-ordering operator, T , leading to

−iδLT (φα (x1)φβ (x2) · · · ) =

∫
d4x′∂′µT (φα (x1)φβ (x2) · · · Jµ (x′))

−T
(
φα (x1)φβ (x2) · · · ∂′µJµ (x′)

)
. (11.9)

It is important to make a few remarks about these relations.

The Euler-Lagrange equations, the dynamical equations for the field operators,

have not been used. The use of the field equations implies that the right-hand side

of Eq. (11.5) is zero, and we get

∂µJ
µ (x) = g (x) . (11.10)

Using this relation in Eq. (11.9) we obtain

−iδLT (φα (x1)φβ (x2) · · · ) =

∫
d4x′

{
∂′µT (φα (x1)φβ (x2) · · · Jµ (x′))

−T (φα (x1)φβ (x2) · · · g (x′))} . (11.11)

This defines the most general Ward-Takahashi relation. It is clear that for a gauge

theory, the current Jµ (x) is conserved,

∂µJ
µ (x) = 0
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and g (x) = 0. However it is well-known that for weak interactions, the axial current

is partially conserved while the vector current is conserved. For the axial current

we have

∂µJAµ (x) = Cφπ(x)

where C is a constant and φπ(x) is the pion field. In such a case the generalized W-T

relations given by Eq. (11.11) provide a relation between the fields interacting with

the axial current and the pion field. Such relations for many particle systems have

been analyzed. These have proved very useful in providing important information

about perturbation schemes and cancelation among several different contributions.

The generalized W-T relations, being the only exact relations in quantum field

theory, have proved very useful not only for gauge theories but also for fields that

have a partial conservation of the current. The generalized W-T relation given in

Eq. (11.9) is an operator relation. The Ward relation given by Eq. (11.1) is for the

expectation values of the product of operators i.e. for Green functions. The operator

form provides a much wider applications not only for quantum field theory at zero

temperature but also for finite temperature quantum field theory. In defining the

Green functions, the operator form of the generalized W-T relation requires the

vacuum state to find the expectation value. Applications to finite temperature are

considered later.

11.3 Applications of generalized Ward-Takahashi relations

The generalized W-T relations are completely equivalent to the canonical quanti-

zation conditions. These relations have played a fundamental role in quantum field

theory. Some of the important applications of the W-T relations for the longitudinal

component of the generating current are to the Dyson equation and the dynamical

rearrangement of symmetry that is connected to the Goldstone theorem and to the

presence of Goldstone bosons in cases of spontaneous breaking of a symmetry of

the ground state. These aspects have been studied in detail [164].

11.3.1 W-T relations for the case of n-body current amplitudes

An explicit form for the case of the Noether current and its divergence is given by

a Lagrangian. Assume that

J Aµ = ξAαJ
A
µα (11.12)

and

J Vµ = ξV αJ
V
µα, (11.13)

where ξAα and ξV α are infinitesimal parameters for the axial-vector and vector

transformations in the chiral-spin space. The subscript α indicates the isospin
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components. Assumptions for low-energy hadron physics lead to conservation of

vector current (CVC) and partially conservation of axial current (PCAC), i.e.

∂µJ Vµα = 0, (11.14)

∂µJ Aµα = µ2fπφπ , (11.15)

where µ is the pion mass and fπ is the pion decay constant. A simple Lagrangian

to allow the relation for axial current is the linear σ-model [165]. The equation of

motion of the nucleon field becomes

δAψ (x) = iξAαταγ5ψ (x) , (11.16)

δAψ (x) = iψ (x) γ5ξAατα, (11.17)

and

δV ψ (x) = iξV αταψ (x) , (11.18)

δV ψ (x) = iψ (x) ταξV α. (11.19)

The generalized n-particle W-T relations for the axial current [166] are
∑

i

{
δ4 (xi − z) γi5τ iαM +Mτ iαγ

i
5δ

4 (xi − z)
}

= µ2fπM(π)α − ∂µzMµα, (11.20)

where

M = T
[
ψ1 (x1) · · ·ψi (xi) · · ·ψn (xn)ψ1 (x′1) · · ·ψn (x′n)

]
,

M(π)α = T
[
ψ1 (x1) · · ·ψi (xi) · · ·ψn (xn)ψ1 (x′1) · · ·ψn (x′n)πα (z)

]
,

Mµα = T
[
ψ1 (x1) · · ·ψi (xi) · · ·ψn (xn)ψ1 (x′1) · · ·ψn (x′n) JAµα (z)

]
.

Taking an expectation value with zero temperature vacuum state we get the general

relation

∂µz Γ
(n)
Aµα (xi, . . . , xn;x

′
1, . . . , x

′
n; z) = µ2fπ

×
∫
dz′Γ

(n)
πβ (xi, . . . , xn;x′1, . . . , x

′
n; z′) ∆βα (z′ − z)

−
∑

i

[
S−1δ4 (x′i − z) γi5τ iα + τ iαγ

i
5δ

4 (x′i − z)S−1
]
,

where

S ≡ S(n) (xi, . . . , xn;x
′
1, . . . , x

′
n) = 〈0|M |0〉 .

The proper current functions are defined as

〈0|Mµα |0〉 =
∫ n∏

i=1

d4yid
4y′iSΓ

(n)
Aµα (y1, . . . , yn; y

′
1, . . . , y

′
n; z)S,

〈0|M(π)α |0〉 =
∫ n∏

i=1

d4yid
4y′idz

′S∆αβ (z − z′) Γ
(n)
πβ (y1, . . . , yn; y

′
1, . . . , y

′
n; z
′) S
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and

∆αβ (z − z′) = 〈0|T [πα (z)πβ (z′)] |0〉 .
It is easy to find the familiar results to one-body system, i.e. for the weak decay

of a nucleon in momentum space,

qµΓ
(1)
Aµα (k; k + q; q) = iµ2fπΓ

(1)
πβ (k; k + q; q) ∆αβ (q)

−i
[
S−1 (k) γ5τα + ταγ5S

−1 (k + q)
]
. (11.21)

This is to be compared to the one-body W-T relations for the case of vector current,

i.e. QED, that is conserved

qµΓ(1)
µ (k; k + q; q) = −i

[
S−1 (k) τα − ταS−1 (q + k)

]
. (11.22)

It is important to note the difference in sign for CVC while for PCAC the last two

terms in Eq. (11.21) have the same sign. This implies that for Eq. (11.22)

lim
q→0

qµΓ(1)
µ (k; k + q; q)→ 0, (11.23)

while for the axial-vector current, the right-hand side of Eq. (11.21) does not vanish

in the limit q → 0. This leads to a relation for the pion radiative amplitude

µ2fπΓπβ (k; k; 0)∆βα (0) =
{
S(1)−1, γ5πα

}
(11.24)

where {A,B} = AB + BA. This relation was obtained as a consistency condition

by Adler and Dothan [167].

11.3.2 Ward-Takahashi relations at finite temperature

So far we have presented W-T relations at zero temperature where the operator

relations are sandwiched between T = 0 vacuum states. However we have learned

that at finite temperature the Lagrangian density, L, is replaced by L̂ given as

L̂ = L − L̃. (11.25)

In order to write the W-T relations in a compact form, we consider Eq. (11.5) and

write the Noether current, Jµ (x), in terms of change in the Lagrangian
∫
d4x′L

[
φ′ (x′) , ∂′µφ

′ (x′)
]
−
∫
d4xL [φ (x) , ∂µφ (x)] = ε

∫
d4x δL (x) , (11.26)

where ε is an infinitesimal constant. Now using the relation

∂ (x′1x
′
2x
′
3x
′
4) /∂ (x1x2x3x4) = 1 + ε∂λδxλ

leads to

εδL = L
[
φ′ (x′) , ∂′µφ

′ (x′)
]
−L [φ (x) , ∂µφ (x)] + ε∂λδxλL (x) . (11.27)

With the definition

∂′µφ
′ (x′) = ∂µφ (x) + ε∂µδφ (x)− ε∂νφ (x) ∂µxν , (11.28)
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we find

δL (x) =
∂L
∂φ

δφ (x) +
∂L
∂∂µφ

δ∂µφ (x)− ∂L
∂∂µφ

∂νφ∂µδxν + ∂νδxνL.

= ∂µ

[
∂L
∂∂µφ

δφ (x)

]
− ∂L
∂∂µφ

∂νφ∂µδxν + ∂νδxνL. (11.29)

Using the Heisenberg equation we get

δL (x) = ∂µ

{
∂L
∂∂µφ

(δφ (x)− ∂νφδxν) + δxµL
}
. (11.30)

This defines the Noether current Nµ as

Nµ =
∂L
∂∂µφ

δLφ (x) + δxµL (11.31)

and it satisfies the relation

∂µN µ (x) = δL (x) . (11.32)

Then the generator of transformations is given as

N (t) =

∫
d3xN0 (x) . (11.33)

Here Nµ (x) is the same as Jµ (x) defined in Eq. (11.10).

The W-T relation may be written in the following form

∂

∂t
〈0|T [N (t)φ (x1) · · ·φ (xn)] |0〉 =

n∑

i=1

δ (t− ti)

×〈0|T [φ (x1) · · · [N (t) , φ (xi)] · · ·φ (xn)] |0〉 (11.34)

+ 〈0|T
[ ·
N (t)φ (x1) · · ·φ (xn)

]
|0〉 . (11.35)

Since

Ṅ =

∫
d3x δL,

we get

∂

∂t
〈0|T [N (t)φ (x1) · · ·φ (xn)] |0〉 = −i~

n∑

i=1

δ (t− ti)

×〈0|T
[
φ (x1) · · · δ0φ (xi) · · ·φ (xn)

]
|0〉

+

∫
d3x 〈0|T [δL (x) φ (x1) · · ·φ (xn)] |0〉 .

The left-hand side vanishes leading to

i~

n∑

i=1

δ (t− ti) 〈0|T
[
φ (x1) · · · δ0φ (xi) · · ·φ (xn)

]
|0〉

=

∫
d3x 〈0|T [δL (x)φ (x1) · · ·φ (xn)] |0〉 . (11.36)
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To find a compact expression for W-T relations, define

L =

∫
d4xfi (x)ψi (x) (11.37)

where f (x) is a c-number. Then using the transformation given by Eq. (11.28) we

get

L′ =
∫
d4x′f ′i (x′)ψ′i (x

′)

=

∫
d4xfi (x)ψi (x) + ε

∫
d4xfi (x) δ

0ψi (x)

= L+ ε

∫
d4xfi (x) δ

0ψi (x) . (11.38)

This leads to

δL =
(
L′ −L

) 1

ε

=

∫
d4xfi (x) δ

0ψi (x) . (11.39)

Now multiplying Eq. (11.36) by f1 (x1) · · · fn (xn) and then integrating over

x1, . . . , xn we get
∑

n

i~n 〈0|T
[
δL
(
L
)n−1

]
|0〉 =

∫
d4x 〈0|T

[
δL (x)

(
L
)n] |0〉 . (11.40)

With sum over n on the left side we get

〈0|T
[
iδL exp

(
i

~
L
)]
|0〉 = −

∫
d4x 〈0|T

[
iδL (x) e(

i
~
L)
]
|0〉 . (11.41)

In order to get W-T relation for different number of field operators, n, take

functional derivative with −i δ
δf(x1)

n-times then take f (x) → 0. For example for

n = 1, we find

〈0| δ0φ (x1) |0〉 = −
∫
d4x 〈0|T [iδL (x) φ (x1)] |0〉 (11.42)

and for n = 2,

〈0| δ0φ (x1)φ (x2) |0〉+ 〈0|φ (x1) δ
0φ (x2) |0〉

= −
∫
d4x 〈0|T [iδL (x) φ (x1)φ (x2)] |0〉 . (11.43)

In this way we can get W-T relations with an arbitrary number of fields.

Now we can make two changes to write down the W-T relations at finite

temperature: (i) change the vacuum state, |0〉, to finite temperature vacuum state,

|0 (β)〉 and (ii) change the Lagrangian L to L̂ = L − L̃ . Then the W-T relation is

written as

〈0 (β)|T
[
i

~
δL̂ exp

(
i

~
L̂
)]
|0 (β)〉 = −

∫
d4x 〈0 (β)|T

[
i

~
δL̂ exp

(
i

~
L̂
)]
|0 (β)〉
(11.44)
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where

L̂ =

∫
d4x

[
fα†i (x) φαi (x) + φα†i (x) fαi (x)

]
,

δL̂ =

∫
d4x

[
fα†i (x) δ0φi (x) + δ0φ†i (x) fαi (x)

]

and

δL̂ = δL − δL̃.
Here doublet notation for the field, φi (x), is used i.e.

ψ′i = ψi, ψLi = ψ̃†i

and δL and δL̃ define the change due to the transformation in L and L̃ respectively.

It is important to note that the operators need to be in the finite temperature

form using Bogoliubov transformations and then use of the vacuum at T 6= 0 leads

to an explicit form for the W-T relations. These relations are essential to check

whether the perturbation expansion obeys the symmetry properties of the model

to any order.

11.4 Transverse Ward-Takahashi relations

We have discussed the Ward-Takahashi relations for the Noether current that follows

from the gauge symmetry and is, thus, conserved

∂µJµ = 0.

This implies that the relationship established here refers to the longitudinal com-

ponent of the current and thus leads to W-T relations, at T = 0 or T 6= 0, put

restriction on the longitudinal components and no restriction on the transverse

component. This implies that if we wish any limitation on these components we

are forced to use the Euler-Lagrange equations of motion.

In order to obtain the transverse W-T relations we define the Lie transformation

for a fermion field

δLµνψ (x) = σµνψ (x) (11.45)

and

δLµνψ (x) = ψ (x)σµν , (11.46)

where σµν = i
2 [γµ, γν ] . This would imply that

δLψ (x) =
1

2
εµνσµνψ (x) ≡ 1

2
εµνδLµνψ (x) ,

δLψ (x) =
1

2
εµνψ (x) σµν ≡

1

2
εµνδLµνψ (x) ,
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Jλ (x) =
1

2
εµν
{(
ψ (x) γµψ (x)

)
δλν −

(
ψ (x) γνψ (x)

)
δλµ
}

and

q (x) =
1

2
εµν
{

2mψ (x) σµνψ (x)− εµνλρψ (x) iγ5γ
ρ
(
∂λ −←−∂ λ

)
ψ (x)

}
. (11.47)

This leads to the transverse W-T relation

iδLµνT
(
ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn)

)

=

∫
d4x′

[
∂′µT

[
ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn) Jν (x′)

]

−∂′νT
[
ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn) Jµ (x′)

]

−T
[
ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn) ∂

′
µJν (x′)

]

−T
[
ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn) ∂

′
νJµ (x′)

]]
(11.48)

The first two terms on the right hand side are similar to the curl operation on the

current operator.

It is important to emphasize that both the longitudinal and transverse W-T

relations are obtained by using the Lie derivatives in canonical field theory. Next

we will give the example of U (1) gauge theory i.e. quantum electrodynamics.

Example: U (1) gauge theory

We construct the time-ordered product of the three-point function for the U (1)

gauge theory with the fermion-gauge boson vertex

T
(
jµ (x)ψ (x1)ψ (x2)

)
(11.49)

with jµ (x) = ψ (x) γµψ (x). The longitudinal W-T relations relate the divergence

of the current operator and the transverse W-T relations arise from the curl of the

current operator. Therefore we need to calculate

∂µxT
[
jν (x)ψ (x1)ψ (x2)

]
− ∂νxT

[
jµ (x)ψ (x1)ψ (x2)

]
. (11.50)

In order to obtain an explicit expression we need the identity

δLT [φα (x1)φα (x2) · · · ] = T
[
δLφα (x1)φα (x2) · · ·

]

+T
[
φα (x1) δ

Lφα (x2) · · ·
]
+ · · · (11.51)

and a bilinear covariant current operator

V λµν (x) =
1

2
ψ (x)

[
γλ, σµν

]
ψ (x) ,

= i
(
gλµjν (x) − gλνjµ (x)

)
, (11.52)
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where we have used the anti-commutator {γµ, γν} = 2gµν . In order to calculate the

curl of the three point function we note the general identity

∂xµT
[
Jµ (x)ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn)

]

= δµ0

n∑

i=1

T
[{

[Jµ (x) , ψ (xi)]ψ (yi) δ
(
x0 − x0

i

)

+ψ (xi)
[
Jµ (x) , ψ (yi)

]
δ
(
x0 − y0

i

)}

ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn)
̂ψ (xi)ψ (yi)

]

+T
[
∂xµJµ (x)ψ (x1) · · ·ψ (xn)ψ (y1) · · ·ψ (yn)

]
(11.53)

where the symbol ̂ implies that ψ (xi)ψ (yi) are omitted in the preceding set of

field operators. The curl-like terms for the three-point functions may be written as

i∂µxT
[
jν (x)ψ (x1)ψ (x2)

]
− i∂νxT

[
jµ (x)ψ (x1)ψ (x2)

]

= δ4 (x− x1)
1

2

(
γ0σµνγ0 − σµν

)
T
(
ψ (x1)ψ (x2)

)

+δ4 (x− x2)T
(
ψ (x1)ψ (x2)

) 1

2

(
γ0σµνγ0 − σµν

)

+T
[
ψ (x)

(←−6 ∂xσµν − σµν
−→6 ∂x
)
ψ (x)ψ (x1)ψ (x2)

]

+T
[
ψ (x)Sλµν

(−→
∂ xλ −

←−
∂ xλ

)
ψ (x)ψ (x1)ψ (x2)

]
(11.54)

where

Sλµν =
1

2

{
γλ, σµν

}
= −ελµνργργ5.

In order to express the right-hand side of Eq. (11.54) in terms of Green func-

tions, we have to take the derivative operation outside the time-ordered product by

making the right and left derivatives for x and x′. Furthermore to recover the gauge

invariant expression we include the line integral so that the last term becomes
(
∂xλ − ∂x

′

λ

)
T

[
ψ (x′)Sλµν exp

(
−ig

∫ x′

x

Aρ (y) dyρ

)
ψ (x)ψ (x1)ψ (x2)

]
(11.55)

where Aρ (y) is the gauge field and g is the coupling constant between fermions and

the gauge boson. For the U (1) gauge field, QED, g = e and Aρ (y) is the photon

field. For the SU (3) gauge field, QCD, Aρ = Aaρt
a, Aaρ is the gluon field and ta are

the generators of the SU (3) color group. Explicitly Eq. (11.55) becomes(
∂xλ − ∂x

′

λ

)
T
[
ψ (x′)SλµνUP (x′, x)ψ (x)ψ (x1)ψ (x2)

]

= T
([(

∂xλ − ∂x
′

λ

)
ψ (x′)Sλµνψ (x)

]
UP (x′, x)ψ (x1)ψ (x2)

)

+δ4 (x− x2)T
(
ψ (x′)UP (x′, x)ψ (x1)

)
γ0Sλµν

+δ4 (x′ − x1)S
0µνγ0T

(
ψ (x)ψ (x2)UP (x′, x)

)

−2δ4 (x− x′) Tr(γ0S0µν)T
(
ψ (x1)ψ (x2)

)

+T
[
ψ (x′)Sλµν

((
∂xλ − ∂x

′

λ

)
UP (x′, x)

)
ψ (x)ψ (x1)ψ (x2)

]
(11.56)
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where

UP (x′, x) ≡ T
[
exp

(
−ig

∫ x′

x

Aρ (y) dyρ

)]

with T being the time ordering operator so that functions from right to left are

ordered with increasing time.

Combining all the terms we get

∂µxT
[
jν (x)ψ (x1)ψ (x2)

]
− ∂νxT

[
jµ (x)ψ (x1)ψ (x2)

]

= iT
(
ψ (x1)ψ (x2)

)
σµνδ4 (x− x2) + iσµνT

(
ψ (x1)ψ (x2)

)
δ4 (x− x1)

+ lim
x→x′

i
(−→
∂ xλ −

←−
∂ xλ

)
T
[
ψ (x′) ελµνργργ5UP (x′, x)ψ (x)ψ (x1)ψ (x2)

]

+T
[
ψ (x)

(
σµν i
−→
/D x − i

←−
/D xσ

µν
)
ψ (x)ψ (x1)ψ (x2)

]
(11.57)

where
−→
Dµ =

−→
∂ µ + igAµ and

←−
Dµ =

←−
∂ µ − igAµ are covariant derivatives and

/D = Dµγ
µ.

Now using the fact that the dynamics for the fermion field i.e. the Euler-Lagrange

equation implies that
(
i
−→
D −m

)
ψ = 0 and ψ

(
i
←−
D +m

)
= 0.

These equations are valid for both QED and QCD. Finally we arrive at the W-T

relation for the transverse fermion-gauge boson vertex to be

∂µxT
[
jν (x)ψ (x1)ψ (x2)

]
− ∂νxT

[
jµ (x)ψ (x1)ψ (x2)

]

= iT
(
ψ (x1)ψ (x2)

)
σµνδ4 (x− x2)

+iσµνT
(
ψ (x1)ψ (x2)

)
δ4 (x− x1)

+ lim
x→x′

i
(−→
∂ xλ −

←−
∂ xλ

)
ελµνρT

[
ψ (x′) γργ5UP (x′, x)ψ (x)ψ (x1)ψ (x2)

]

+2mT
[
ψ (x)σµνψ (x)ψ (x1)ψ (x2)

]
(11.58)

The transverse vertex depends on tensor and axial-vector vertex. In addition the

line integral in the axial-vector makes the calculations complicated and has to be

considered loop-wise [168]. This operator equation may be converted into a Ward-

Takahashi relation between Green functions by taking its vacuum expectation value.

11.5 Transverse W-T relation in momentum space

The transverse W-T relation has a simpler form in the momentum space. As usual

the three-point function in momentum space is defined as
∫
d4xd4x1d

4x2e
i(p1·x1+p2·x2+p3·x3) 〈0| jΛ (x)ψ (x1)ψ (x2) |0〉

= (2π)
4
δ (p1 − p2 − q) iSF (p1) ΓΛ (p1, p2) iSF (p2) (11.59)
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where the subscript Λ = V, A, T , denote vector, axial-vector and tensor vertices

respectively for ΓΛ. The corresponding currents are:

j Vµ = ψγµψ , j Aµ = ψγµγ5ψ , j Tµν = ψσµνψ .

This now leads to the transverse W-T identity in momentum space

iqµΓ ν
V (p1, p2)− iqνΓµ

V (p1, p2) = S−1
F (p1) σ

µν + σµνS−1
F (p2)

+ 2mFΓµν
T (p1, p2)

+ (p1λ + p2λ) ε
λµνρ ΓAρ (p1, p2) (11.60)

where q = p1−p2 and mF is the mass of the fermion. Again the axial-vector vertex

has the line integral, which forces a perturbative analysis. This equation is valid at

tree level. For loop corrections, Wilson loops have to be included.

11.5.1 Full vertex for the fermion-gauge boson vertex

The longitudinal W-T relation in Eq. (11.22) after multiplying with qµ is

qµqνΓν (p1, p2) = qµ
(
S−1
F (p1)− S−1

F (p2)
)

(11.61)

while the transverse W-T relation is

qνq
νΓµ (p1, p2)− qνqµΓν (p1, p2) = iqνh

µν (11.62)

where hµν is the expression on the right-hand side of Eq. (11.60). Combining the

last two expressions we get

q2Γµ (p1, p2) = qµ
(
S−1
F (p1)− S−1

F (p2)
)

+ iqνh
µν . (11.63)

The full vertex for the gauge theory has two components: longitudinal (first term)

and transverse (second term). Explicitly the full vertex is given as

Γµ
V (p1, p2) = q−2qµ

(
S−1
F (p1)− S−1

F (p2)
)

+ iS−1
F (p1) q

−2qνσ
µν + q−2qνσ

µν iS−1
F (p2)

+ 2imF q
−2qνΓ

µν
T (p1, p2)

+ q−2qν (p1λ + p2λ) ε
λµνρΓAρ (p1, p2) . (11.64)

This shows that the vector vertex depends on the axial-vector and the tensor vertices

in addition to the fermion propagator. However for QCD in the chiral limit, mF = 0,

the dependance on the tensor vertex disappears.

It is interesting to note that in the case of bare vertices and free propagators,

the transverse W-T relation reduces to

i (qµγν − γνqµ) = (6 p1 −m)σµν + σµν ( 6 p2 −m)

+ 2mσµν + (p1λ + p2λ) ε
λµνργµγ5 (11.65)

which is a trivial identity of the γ-matrices. The longitudinal W-T relation at tree

level is similarly a trivial identity

qµγ
µ = (6 p1 −m)− ( 6 p2 −m) . (11.66)
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Thus the transverse, longitudinal and total vertices for gauge fields satisfy gener-

alized W-T relations. It is to be stressed again that the longitudinal and transverse

W-T relations have to be considered differently, in the sense, that the former is

a consequence of the gauge symmetry while the latter depends on Euler-Lagrange

equations and does not emerge from any symmetry considerations. There are pre-

vious attempts to obtain the transverse component of the vertex. They met with

limited success [169–172].

11.5.2 Tranverse W-T relation for axial current

By a procedure used to calculate the W-T relation for vector current, a similar

relation is obtained for the axial current, ψ (x) γµγ5ψ (x), as

∂µxT
[
j ν5 (x)ψ (x1)ψ (x2)

]
= ∂νxT

[
j µ5 (x)ψ (x1)ψ (x2)

]

+ iσµνγ5T
[
ψ (x1)ψ (x2)

]
δ4 (x1 − x)

− iT
[
ψ (x1)ψ (x2)

]
σµνγ5δ

4 (x1 − x)
+ i lim

x′→x

(
∂xλ − ∂x

′

λ

)
ελµνρ

×T
[
ψ (x′) γρUP (x′, x)ψ (x)ψ (x1)ψ (x2)

]
.

After taking the expectation value of this expression between vacuum states the

transverse W-T relation in momentum space is

iqµΓ ν
A (p1, p2)− iqνΓµ

A (p1, p2)

= S−1
F (p1)σ

µνγ5 − σµνγ5S
−1
F (p2)

+ (p1λ + p2λ) ε
λµνρΓV ρ (p1, p2) .

This is valid at tree level. For corrections at loop level, Wilson loops have to be

considered. Thus we find that the transverse vector and axial vertex functions are

connected. These relations have been shown to be accurate to one-loop order [168].

11.5.3 Transverse W-T relation at finite temperature

In order to get the transverse W-T relation at finite temperature, the expectation

value of the expression in Eq. (11.58) is taken between finite temperature vacuum,

|0 (β)〉, state. This suggests the versatility of the W-T relations that are operator

relations. Taking expectations value between finite temperature vacuum transverse

relations are obtained. Bogoliubov transformation has to be applied to the operators

in transverse W-T relations.

11.6 W-T relations and spontaneous symmetry breaking

It is possible to relate W-T relations and spontaneous symmetry breaking and thus

deduce that Goldstone boson has zero mass. It was shown by Takahashi [164] and
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the results are similar to those obtained elsewhere [173].

From Noether current we obtain for the Lie derivative of a field to be

−iδLφ (x) =

∫
d4x′T

[
φ (x) ∂′µJ

µ (x′)
]

−
∫
d4x′∂′µT [φ (x) Jµ (x′)] .

An invariant transformation implies that

∂µJ
µ (x) = 0.

Therefore we have

iδLφ (x) =

∫
d4x′∂′µT [φ (x) Jµ (x′)] .

If the vacuum expectation value of δLψ (x) is non-zero, i.e.

〈0| δLφ (x) |0〉 = a 6= 0

where a is a c-number then∫
d4x′∂′µT [φ (x) Jµ (x′)] = ia (11.67)

However we can write the left-hand side in terms of its spectral representation by

using
∫
d4x′T [φ (x) Jµ (x′)] = −i

∫ ∞

0

dk2ρJ
(
k2
)
∂µ∆

+
(
x− x′; k2

)

which gives for current conservation condition

k2ρJ
(
k2
)

= 0. (11.68)

However we wish to write

∂′µ 〈0|T [φ (x) Jµ (x′)] |0〉 = i

∫ ∞

0

dk2ρJ
(
k2
)
�∆c

(
x− x′; k2

)

= i

∫ ∞

0

dk2ρJ
(
k2
)
k2∆c

(
x− x′; k2

)

+ i

∫ ∞

0

dk2ρJ
(
k2
)
δ (x− x′) .

Therefore we get the following expression for a

a =

∫
d4x′

∫ ∞

0

dk2ρJ
(
k2
)
k2∆c

(
x− x′; k2

)
+

∫ ∞

0

dk2ρJ
(
k2
)
.

However k2ρJ
(
k2
)

= 0, leading to

a =

∫ ∞

0

dk2ρJ
(
k2
)
.

Therefore this relation along with the one in Eq. (11.68), we have that there exists

a massless boson. This is the Goldstone theorem.
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It is important to remark that the presentation in this chapter has focussed on

quantum field theories with U(1) gauge symmetry. This provides longitudinal W-T

relations for the vertex function. The transverse W-T relations are studied by look-

ing at an expression that appears curl-like. The combination gives the complete

vertex function. These have proved very useful in assuring that the perturbative

calculations are gauge-invariant at every order. However these ideas are much more

general and are equally applicable to a perturbative study of many-body systems.

The W-T relations provide a consistency condition so that all conservation laws

are obeyed. Such procedures have been used for spin systems among others. As

mentioned earlier, the W-T relations provide us relations for renormalization con-

stants in quantum electrodynamics. These relations are important for studies at

low energies and other gauge theory. For many-body systems, the sum rules can be

easily derived by using W-T relations.

Ending this chapter we close the second part of this book, where we consider the

quantum field theory at finite temperature from symmetry bases. Now we explore

some consequences of the thermal states that we have introduced. In particular we

analyze the meaning of the different thermal states, by studying their non-classical

properties.
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Chapter 12

Thermalized States of a Field Mode

Thermofield dynamics formalism provides a general prescription to define thermal-

ized states of a boson oscillator. We shall show that TFD states, obtained by re-

peated action of a†(β) on the thermal vacuum |0(β)〉 and their linear combinations,

correspond to physical states of a field mode which incorporate thermal effects. We

also show how these states are represented within the density matrix formalism of

quantum mechanics and investigate procedures to determine expectation values of

physical observables in order to discuss their nonclassical properties. Other classes

of elements of the thermal Hilbert space HT are also considered.

12.1 Thermalized states

Consider the thermal Hilbert space, HT , of a boson oscillator at a given temperature

T = β−1. As we have discussed earlier, this space is spanned by vectors of the type

|n, m̃;β〉 = U(β) |n, m̃〉 = 1√
n!
√
m!

[
a†(β)

]n [
ã†(β)

]m |0(β)〉 , (12.1)

with n,m = 0, 1, 2, . . . ; that is, HT corresponds to the application of the Bogoliubov

transformation U(β) to the doubled space H⊗H̃. It is easy to verify that, fixing the

value of m̃ = m0 say, the subspace of HT spanned by {|n,m0;β〉 , n = 0, 1, 2, . . .}
is isomorphic to the physical Hilbert space (H) of the boson oscillator. Among all

these subspaces, we initially detach the one for which m0 = 0, corresponding to the

subspaceHβ that is spanned by the set of vectors
{[
a†(β)

]n |0(β)〉 , n = 0, 1, 2, . . .
}
.

The isomorphism between Hβ and the usual zero-temperature Hilbert space of a

single mode of the electromagnetic field, H, can be directly demonstrated from the

correspondence

a†n |0〉 ←→
[
a†(β)

]n |0(β)〉 ,
[
a, a†

]
= 1←→

[
a(β), a†(β)

]
= 1 .

Therefore, we can construct thermal states of a field mode by mimicking states usu-

ally considered in quantum optics [174–177] with the zero-temperature formalism.

As we are going to show later, such states are physical states of a field mode that

carry temperature effects. Before treating this physical interpretation, however, we

work out some basic examples.

201
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12.1.1 Thermal number states

Let us first write the hat Hamiltonian for a boson oscillator as Ĥ = Ĥ(β) =

H(β)− H̃(β), where

H(β) = ωa†(β)a(β) (12.2)

and, similarly, H̃(β) = ωã†(β)ã(β). It is then easy to check that [H(β), a(β)] =

−ωa(β) and
[
H(β), a†(β)

]
= ωa†(β), so that a(β) and a†(β) are annihilation and

creation operators of quanta of H(β), respectively. Now, since a(β) |0(β)〉 = 0, the

normalized eigenstates of H(β) are given by

|n(β)〉 =
1√
n!

[
a†(β)

]n |0(β)〉 , n = 0, 1, 2, . . . , (12.3)

with the corresponding eigenvalues being nω. Naturally, these states are also eigen-

states of the thermal number operator N(β) = a†(β)a(β), i.e.

N(β) |n(β)〉 = n |n(β)〉 .
Also, the action of a(β) and a†(β) on the thermal number states |n(β)〉 is given by

a(β) |n(β)〉 =
√
n |(n− 1)(β)〉 ,

a†(β) |n(β)〉 =
√
n+ 1 |(n+ 1)(β)〉 .

Note that, being non-degenerate eigenstates of a hermitian operator, these ther-

mal number states are orthonormal, that is

〈m(β)|n(β)〉 = δm,n ,
∞∑

n=0

|n(β)〉 〈n(β)| = 1.

Therefore, an arbitrary normalized state |Ψ(β)〉 of Hβ can be written as

|Ψ(β)〉 =

∞∑

n=0

cn |n(β)〉 , (12.4)

where cn = 〈n(β)|Ψ(β)〉 and
∑∞
n=0 |cn|

2 = 1.

12.1.2 Thermal coherent states

Similarly to the zero-temperature case, we define displacement operators acting on

states of Hβ and then introduce the notion of coherent states. The unitary thermal

displacement operator, D(α;β), is defined by

D(α;β) = exp
[
αa†(β) − α∗a(β)

]
, (12.5)

where α is an arbitrary complex number. Notice that D†(α;β) = D−1(α;β) =

D(−α;β). The name “displacement operator” comes from the property

D†(α;β)a(β)D(α;β) = a(β) + α, (12.6)
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which is readily verified by using the normal ordered form of D(α;β),

D(α;β) = e−|α|
2/2 exp

[
αa†(β)

]
exp [−α∗a(β)] . (12.7)

This expression is a particular case of the Baker-Campbell-Hausdorff operator iden-

tity

eA+B = eAeBe−[A,B]/2,

which holds only if [A, [A,B] = [B, [A,B]] = 0. It also follows from this identity

that the repeated action of thermal displacement operators corresponds, apart from

a phase factor, to a displacement by the sum of the complex parameters, that is

D(γ;β)D(α;β) = eiIm[γα∗]D(γ + α;β). (12.8)

Multiplying Eq. (12.6) from the left by D(α;β) and applying the resulting op-

erator identity to the thermal vacuum |0(β)〉, one obtains

a(β)D(α;β) |0(β)〉 = D(α;β) (a(β) + α) |0(β)〉 = αD(α;β) |0(β)〉 .
This means that the state

|α(β)〉 = D(α;β) |0(β)〉 (12.9)

is an eigenstate of the thermal annihilation operator a(β) with eigenvalue given by

α. Notice that the eigenvalues of a(β) are complex numbers in accordance with

its nonhermiticity. We shall refer to states of the kind presented in Eq. (12.9)

as thermal coherent states. By construction, due to the unitarity of the thermal

displacement operator D(α;β), the thermal coherent states are normalized,

|〈α(β)|α(β)〉|2 = 1.

The expansion of thermal coherent states in the thermal number basis of Hβ is

found by directly applying the thermal displacement operator, in the normal form

(12.7), to the thermal vacuum |0(β)〉; one gets,

|α(β)〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n(β)〉 . (12.10)

Also, it follows that the scalar product between two thermal coherent states is a

nonvanishing complex number given by

〈γ(β)|α(β)〉 = exp

[
−1

2

(
|α|2 + |γ|2

)
+ αγ∗

]
, (12.11)

implying that distinct coherent states are not orthogonal. The square of the absolute

value of this scalar product is

|〈γ(β)|α(β)〉|2 = e−|α−γ|
2

,

which shows that the coherent states |α(β)〉 and |γ(β)〉 can be taken as approx-

imately orthogonal only if α and γ are very distant apart complex numbers, i.e.

when |α− γ| � 1.
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For a given β, the set of thermal coherent states, which is labeled by a two-

dimensional continuous parameter, constitutes an overcomplete basis of Hβ . In

fact,

1

π

∫
d2α |α(β)〉〈α(β)| = 1

π

∞∑

n,m=0

|n(β)〉〈m(β)|√
n!m!

∫
d2α e−|α|

2

αnα∗m = 1, (12.12)

since ∫
d2α e−|α|

2

αnα∗m = πn! δnm,

where d2α = dRe(α)dIm(α). Thus, an arbitrary normalized thermal state is written

in the thermal coherent basis as

|Ψ(β)〉 =
1

π

∫
d2α 〈α(β)|Ψ(β)〉|α(β)〉. (12.13)

Particularly, we find that any thermal coherent state |γ(β)〉 is written as

|γ(β)〉 =
e−|γ|

2/2

π

∫
d2α e−(|α|2−2γα∗)/2|α(β)〉.

12.1.3 Thermal displaced number states

In a similar fashion as thermal coherent states are defined as displacements of the

thermal vacuum, we can introduce thermal displaced number states by applying

the thermal displacement operator to thermal number states, i.e.

|n(β);α〉 = D(α;β) |n(β)〉 . (12.14)

These states are eigenstates of the thermal displaced number operator,

Nα(β)|n(β);α〉 ≡ a†α(β)aα(β)|n(β);α〉 = n|n(β);α〉,
where

aα(β) = D(α;β)a(β)D†(α;β) = a(β)− α,
a†α(β) = D(α;β)a†(β)D†(α;β) = a†(β)− α∗,

are the thermal displaced annihilation and creation operators, respectively. From

these relations, we find that the thermal displaced number state can also be ex-

pressed as

|n(β);α〉 =
1√
n!

[
a†(β) − α∗

]n |α(β)〉 . (12.15)

The unitarity of the thermal displacement operator, together with the orthonor-

mality of the thermal number states, implies that the set of thermal displaced num-

ber states, for an arbitrary but fixed value of α, constitutes a discrete orthonormal

basis of Hβ , i.e.

〈m(β);α|n(β);α〉 = δm,n ,

∞∑

n=0

|n(β);α〉 〈n(β);α| = 1.
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The projection of the thermal displaced number state |n(β);α〉 onto the thermal

number state |m(β)〉, which corresponds to the matrix element of the thermal dis-

placement operator in the thermal number basis, is given by

〈m(β)|n(β);α〉 = (−α∗)n−m
√
m!

n!
L(n−m)
m (|α|2)e−|α|2/2 , if n ≥ m,

〈m(β)|n(β);α〉 = [〈n(β)|m(β);−α〉]∗ , for n < m ,

where L
(s)
r (z) denote Laguerre polynomials.

On the other hand, the overlap of |n(β);α〉 with the thermal coherent state

|γ(β)〉 is found from Eq. (12.8) to be

〈γ(β)|n(β);α〉 =
〈
0(β)|D†(γ;β)D(α;β)|n(β)

〉

=
(γ∗ − α∗)n√

n!
exp

[
−1

2
(|γ|2 + |α|2) + γ∗α

]
. (12.16)

We notice that two displaced thermal states, with the same value of n but distinct

values of the displacement parameter, are not orthogonal to each other; in fact, it

follows from Eq. (12.8) that

〈n(β); γ|n(β);α〉 = e−iIm(γα∗) 〈n(β)|D(α − γ;β)|n(β)〉
= e−iIm(γα∗)

1F1(−n, 1; |α− γ|2),
where 1F1(p, q; z) is the Kummer confluent hypergeometric function. Also, expand-

ing |n(β);α〉 in the thermal coherent basis by using (12.16), one can show that

1

π

∫
d2α |n(β);α〉〈n(β);α| = 1;

therefore, for fixed n, the set of all thermal displaced number states (with α ∈ C)

forms an overcomplete basis of Hβ .

12.1.4 Thermal squeezed states

The thermal version of the unitary squeezing operator, acting on Hβ , has the form

S(ξ;β) = exp

(
1

2
ξ∗a2(β)− 1

2
ξa†2(β)

)
, (12.17)

where

ξ = reiϕ

is a complex parameter. It is such that S†(ξ;β) = S(−ξ;β). Using the operator

identity

eη(A+B) = e(tanh η)B eln(cosh η)[A,B] e(tanh η)A,

with η = r, A = 1
2e
−iϕa2(β) and B = − 1

2e
iϕa†2(β), the thermal squeezing operator

is written in normal-ordered form as follows

S(ξ;β) =
1√
µ

exp

[
− ν

2µ
a†2(β)

]
e−(lnµ) a†(β)a(β) exp

[
ν∗

2µ
a2(β)

]
, (12.18)
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where

µ = cosh r , ν = eiϕ sinh r

and, therefore, µ2 − |ν|2 = 1. Under the action of S(ξ;β), the thermal annihilation

and creation operators transform accordingly

aξ(β) = S(ξ;β)a(β)S†(ξ;β) = µa(β) + ν a†(β), (12.19)

a†ξ(β) = S(ξ;β)a†(β)S†(ξ;β) = µa†(β) + ν∗ a(β). (12.20)

We have [aξ(β), a†ξ(β)] = 1, since S(ξ;β) is unitary.

Many states of Hβ can be formed with the use of the operator S(ξ;β). For

example, the thermal squeezed vacuum state is defined by

|ξ, 0;β〉 = S(ξ;β) |0(β)〉 . (12.21)

More generally, thermal squeezed coherent states are generated by first displacing

the thermal vacuum and then applying the thermal squeezing operator; that is,

|ξ, α;β〉 = S(ξ;β)D(α;β) |0(β)〉 = S(ξ;β) |α(β)〉 . (12.22)

One naturally wonders whether inverting the order of these operations, i.e. first

squeezing the vacuum and then displacing, would lead to a distinct type of state.

To answer this question, first observe that the thermal squeezed coherent state,

Eq. (12.22), corresponds to the displacement of the thermal squeezed vacuum im-

plemented with the transformed thermal displacement operator, that is

|ξ, α;β〉 = Dξ(α;β) |ξ, 0;β〉 ,
where, using Eqs. (12.19) and (12.20), we have

Dξ(α;β) = S(ξ;β)D(α;β)S†(ξ;β)

= exp
[
αa†ξ(β)− α∗aξ(β)

]

= exp
[
αξa

†(β) − α∗ξa(β)
]

= D(αξ ;β), (12.23)

with

αξ = µα− να∗. (12.24)

Therefore, the state defined by Eq. (12.22) can also be written as

|ξ, α;β〉 = D(αξ;β)S(ξ;β) |0(β)〉 . (12.25)

Conversely, the state

|γ, ξ;β〉 = D(γ;β)S(ξ;β) |0(β)〉
is the same as the state

|ξ, γ−ξ;β〉 = S(ξ;β)D(γ−ξ ;β) |0(β)〉 ,
where

γ−ξ = µγ + νγ∗.
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In other words, changing the order of squeezing and displacing operations acting on

the thermal vacuum leads to the same kind of state but with a modified displacement

parameter.

It is important to note that, since S(ξ;β) and D(α;β) are unitary operators, all

these thermal squeezed states are normalized. Moreover, it follows that the set of

all thermal squeezed coherent states, for a fixed value of the squeezing parameter

ξ, constitutes an overcomplete basis of Hβ . In fact, from Eqs. (12.12) and (12.22)

we have

1

π

∫
d2α |ξ, α;β〉〈ξ, α;β| = S(ξ;β)

[
1

π

∫
d2α |α(β)〉〈α(β)|

]
S†(ξ;β) = 1,

and, also,

〈ξ, γ;β|ξ, α;β〉 =
〈
γ(β)|S†(ξ;β)S(ξ;β)|α(β)

〉

= exp

[
−1

2
(|α|2 + |γ|2) + γ∗α

]
.

Furthermore, the overlap between the thermal squeezed coherent state |ξ, α;β〉 and

the thermal coherent state γ(β) is given by

〈γ(β)|ξ, α;β〉 =
1√
µ

exp

(
−|α|

2 + |γ|2
2

+
2γ∗α− νγ∗2 + ν2α2

2µ

)
,

while the projection of the state |ξ, α;β〉 onto the thermal number state |n(β)〉 is

〈n(β)|ξ, α;β〉 =

√
νn

2nµn+1n!
exp

[
−1

2

(
|α|2 − ν∗

µ
α2

)]
Hn

(
α√
2µν

)
,

where Hn(z) denotes the Hermite polynomial of order n.

12.2 Physical interpretation

In the preceding section we have presented examples of basic thermalized states that

are constructed mimicking some zero-temperature states. Although these states

were consistently introduced and form bases of Hβ , a natural question emerges

relative to their meanings. We address this question with the goal of providing a

physical interpretation for a general thermalized state |Ψ(β)〉; that is, to find what

such a state represents in the standard quantum mechanical description, where the

Hilbert space does not carry any thermal degree of freedom and thermal effects

appear in the density matrix representation of states. In other words, we would

pursue the search for the density matrix associated with the thermal state |Ψ(β)〉.
We start by recalling the density matrix description of the thermal vacuum

|0(β)〉. By construction, given any observable A acting on H, we have

〈0(β)|A|0(β)〉 = Tr

(
1

Z(β)
e−βωa

†aA

)
,
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where

Z(β) =

∞∑

n=0

e−βωn =
1

1− e−βω

is the partition function for the boson oscillator system. This means that the

density matrix associated with the thermal vacuum state is the density matrix of

the thermal (chaotic or Bose-Einstein) mixed state of the boson oscillator, that is

ρ
|0(β)〉

≡ ρ
β

=
1

Z(β)
exp

(
−βωa†a

)

=
1

1 + n̄(β)

∞∑

n=0

(
n̄(β)

1 + n̄(β)

)n
|n〉〈n|. (12.26)

Here we use the notation

n̄(β) =
1

eβω − 1

for the mean number of thermal photons in the chaotic state at temperature β−1.

Following this observation, we associate with a general thermalized state |Ψ(β)〉
the density matrix ρ

|Ψ(β)〉
defined such that, for an arbitrary operator A acting on

the physical Hilbert space H, we have

〈Ψ(β)|A|Ψ(β)〉 = Tr
(
ρ

|Ψ(β)〉
A
)
. (12.27)

On general grounds, this can be accomplished if we manage to write |Ψ(β)〉 in the

form

|Ψ(β)〉 = f(a, a†;β) |0(β)〉 , (12.28)

in which case we get

〈Ψ(β)|A|Ψ(β)〉 =
〈
0(β)|f †(a, a†;β)Af(a, a†;β)|0(β)

〉

= Tr
[
ρ

β
f †(a, a†;β)Af(a, a†;β)

]

= Tr
[
f(a, a†;β)ρ

β
f †(a, a†;β)A

]
,

leading to the identification

ρ
|Ψ(β)〉

= f(a, a†;β)ρ
β
f †(a, a†;β). (12.29)

Note that the density operator ρ
|Ψ(β)〉

will have unit trace as a consequence of the

normalization of the state |Ψ(β)〉.
Before proceeding with the analysis for the case of a general state |Ψ(β)〉, we

have to calculate the density matrix associated with basis states. Consider, initially,

the thermal number state |n(β)〉. The expectation value of an arbitrary physical

operator A, 〈n(β)|A|n(β)〉, is calculated as follows. First, recall that

a†(β) = u(β)a† − v(β)ã

and that

ã|0(β)〉 =
v(β)

u(β)
a†|0(β)〉,
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which is a consequence of ã(β)|0(β)〉 = 0. These relations imply that

a†(β)|0(β)〉 =
1

u(β)
a†|0(β)〉. (12.30)

Thus, since [a†(β), a†] = 0, the thermal number state |n(β)〉 can be obtained by

repeated applications of a† on the thermal vacuum as

|n(β)〉 =
1√

n! [u(β)]n
a†n |0(β)〉 . (12.31)

Now, it follows that

〈n(β)|A|n(β)〉 =

〈
0(β)

∣∣∣∣
1

n![u(β)]2n
anAa†n

∣∣∣∣ 0(β)

〉

= Tr

(
ρ

β

1

n![u(β)]2n
anAa†n

)

= Tr

([
1

n![u(β)]2n
a†nρ

β
an
]
A

)
. (12.32)

Therefore, the density matrix associated with the thermal number state |n(β)〉 is

given by

ρ
|n(β)〉

=
1

n![u(β)]2n
a†nρ

β
an. (12.33)

Taking A = 1 in Eq. (12.32) leads immediately to Tr ρ
|n(β)〉

= 1 as a consequence

of the normalization of |n(β)〉. However, it is instructive to check directly whether

the operator ρ
|n(β)〉

, given by Eq. (12.33), does indeed correspond to an acceptable

density matrix. In fact, working in the number basis and taking into account that

an|m〉 = 0, if n > m, while

an|m〉 =
√
m(m− 1) · · · (m− n+ 1) |m− n〉 , if n ≤ m ,

ρ
|n(β)〉

can be written as

ρ
|n(β)〉

=

(
1

1 + n̄(β)

)n+1 ∞∑

r=0

(
n̄(β)

1 + n̄(β)

)r
(n+ r)!

n! r!
|n+ r〉〈n+ r|, (12.34)

where we have used u2(β) = 1 + n̄(β). Now, with the aid of the identity

∞∑

r=0

(n+ r)!

r!
ϑr =

n!

(1− ϑ)n+1
,

which holds for ϑ < 1, one easily demonstrates that

∞∑

l=0

〈l|ρ
|n(β)〉

|l〉 = 1.

The density matrix written in Eq. (12.34) has appeared before [178] referred to

as the number-chaotic state, since it is seen as a state interpolating between the

number state |n〉 (when T = β−1 = 0, i.e. n̄(β) = 0) and the chaotic state (when
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n = 0). From Eq. (12.33), we notice that this state also corresponds to the n-photon

added thermal state [179] of a field mode.

We now determine the density matrix associated with the general state |Ψ(β)〉
by working with its representation in the thermal number basis, Eq. (12.4). In fact,

using Eq. (12.31) we have

|Ψ(β)〉 =
∞∑

n=0

cn√
n! [u(β)]n

a†n |0(β)〉 , (12.35)

so that

〈Ψ(β)|A|Ψ(β)〉 =

∞∑

n,m=0

c∗mcn√
m!
√
n!

1

[u(β)]m+n
〈0(β)|amAa†n|0(β)〉

=

∞∑

n,m=0

c∗mcn√
m!
√
n!

1

[u(β)]m+n
Tr
[
ρ

β
amAa†n

]

= Tr

[( ∞∑

n,m=0

c∗mcn√
m!
√
n!

1

[u(β)]m+n
a†nρ

β
am

)
A

]
,

which implies that

ρ
|Ψ(β)〉

=

∞∑

n,m=0

c∗mcn√
m!
√
n!

1

[u(β)]m+n
a†nρ

β
am. (12.36)

Again, Trρ
|Ψ(β)〉

= 1 follows directly from the normalization of |Ψ(β)〉. But, also,

we readily verify that the operator (12.36) has unit trace by using the formula

Tr
[
a†nρ

β
am
]

= n![u(β)]2nδnm,

which is a consequence of ρ
β

being diagonal in the number basis and Trρ
|n(β)〉

= 1.

Therefore, any normalized linear combination of states belonging toHβ is associated

with a unit trace density matrix and so corresponds to a physical mixed state of

the boson oscillator that incorporates thermal effects.

Consider, as another specific example, the thermal coherent state |α(β)〉. Using

the normal-ordered thermal displacement operator, Eq. (12.7), we rewrite |α(β)〉 in

the form of Eq. (12.28) as

|α(β)〉 = e−|α|
2/2 exp

[
αa†(β)

]
|0(β)〉 = e−|α|

2/2 exp

[
α

u(β)
a†
]
|0(β)〉 . (12.37)

From this expression for the thermal coherent state, using the general procedure

described above, we get its corresponding density matrix,

ρ
|α(β)〉

= e−|α|
2

exp

[
α

u(β)
a†
]
ρ

β
exp

[
α∗

u(β)
a

]
. (12.38)

Naturally, this density matrix can be obtained directly from Eq. (12.36), by gath-

ering the coefficients of the expansion of |α(β)〉 in the thermal number basis,
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Eq. (12.10), in the form that corresponds to the Taylor expansion of the expo-

nentials in Eq. (12.38). Also, if we consider the expansion of a general state |Ψ(β)〉
in the thermal coherent basis, Eq. (12.13), we have

ρ
|Ψ(β)〉

=
1

π2

∫
d2αd2γ 〈Ψ(β)|γ(β)〉〈α(β)|Ψ(β)〉 e−(|α|2+|γ|2)/2 e

α
u(β)

a†ρ
β
e

γ∗

u(β)
a.

(12.39)

We now determine the density matrix associated with the thermal displaced

number state. Notice initially that, using a(β) = u(β)a − v(β)ã† and the corre-

sponding expression for a†(β) in Eq. (12.5), the thermal displacement operator is

written as

D(α;β) = D(u(β)α)D̃(v(β)α∗), (12.40)

where D̃(γ) = exp (γã† − γ∗ã) is the displacement operator acting on H̃. Further-

more, writing D̃(v(β)α∗) in the normal-ordered form and considering that

ã|0(β)〉 =
v(β)

u(β)
a†|0(β)〉

and

ã†|0(β)〉 =
u(β)

v(β)
a|0(β)〉,

it is shown that

D̃(v(β)α∗)|0(β)〉 = e−|α|
2/2D†(u(β)α) exp

[
α

u(β)
a†
]
|0(β)〉. (12.41)

Therefore, using Eqs. (12.31), (12.40) and (12.41), the thermal displaced number

state is written as

|n(β);α〉 =
e−|α|

2/2

√
n![u(β)]n

D(u(β)α)a†nD†(u(β)α) exp

[
α

u(β)
a†
]
|0(β)〉,

which leads to the density matrix

ρ
|n(β);α〉

=
e−|α|

2

n![u(β)]2n
D(u(β)α)a†nD†(u(β)α)

× exp

[
α

u(β)
a†
]
ρ

β
exp

[
α∗

u(β)
a

]
D(u(β)α)anD†(u(β)α).

Using that

D(γ)anD†(γ) = [a− γ]n,
we rewrite ρ

|n(β);α〉
in the form

ρ
|n(β);α〉

=
e−|α|

2

n![u(β)]2n
[a† − u(β)α∗]n

× exp

[
α

u(β)
a†
]
ρ

β
exp

[
α∗

u(β)
a

]
[a− u(β)α]n. (12.42)
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This simpler form can be obtained, alternatively, using directly Eqs. (12.15) and

(12.37).

To obtain the density matrices corresponding to thermal squeezed states, we

start by considering the thermal squeezed vacuum state, |ξ, 0;β〉. Taking the ther-

mal squeezing operator S(ξ;β) in the normal-order form, Eq. (12.18), the thermal

squeezed vacuum state, Eq. (12.21), is written as

|ξ, 0;β〉 =
1√
µ

exp

[
− ν

2µ
a†2(β)

]
|0(β)〉

=
1√
µ

exp

[
− ν

2µ

1

[u(β)]2
a†2
]
|0(β)〉 ,

so that the associated density matrix is

ρ
|ξ,0;β)〉

=
1

µ
exp

[
− ν

2µ

1

[u(β)]2
a†2
]
ρ

β
exp

[
− ν
∗

2µ

1

[u(β)]2
a2

]
. (12.43)

Now consider the thermal squeezed coherent state

|ξ, α;β〉 = |αξ, ξ;β〉 = D(αξ;β)|ξ, 0;β〉,
where αξ = µα − να∗ as in Eq. (12.24). Using Eqs. (12.40) and (12.41) with α

replaced by αξ, and taking |ξ, 0;β〉 in the form (12.43), we obtain

|ξ, α;β〉 =
e−|αξ|2/2
√
µ

D(u(β)αξ) exp

[
− ν

2µ

1

[u(β)]2
a†2
]

×D†(u(β)αξ) exp

[
αξ
u(β)

a†
]
|0(β)〉 .

Thus, the density matrix associated with thermal squeezed coherent state is

ρ
|ξ,α;β)〉

=
e−|αξ|2

µ
D(u(β)αξ) exp

[
− ν

2µ

1

[u(β)]2
a†2
]
D†(u(β)αξ)

× exp

[
αξ
u(β)

a†
]
ρ

β
exp

[
α∗ξ
u(β)

a

]

×D(u(β)αξ) exp

[
− ν
∗

2µ

1

[u(β)]2
a2

]
D†(u(β)αξ). (12.44)

Before closing this section a word must be said about these states in the zero-

and the infinite-temperature limits. Consider initially the density matrix associated

with the thermal vacuum |0(β)〉, given by Eq. (12.26). As T → 0 (i.e. β → ∞),

u(β)→ 1 and n̄(β)→ 0. Then it follows from Eq. (12.26) that, in the limit T → 0,

the density matrix ρ
β

reduces to that of the pure vacuum state of the Hilbert space

H, that is limT→0 ρβ
= |0〉〈0|. Using this fact, one finds that the density matrix

corresponding to the thermal number state |n(β)〉, given by Eq. (12.34), tends to

that of the single number state |n〉 of H, that is ρ
|n(β)〉

→ |n〉〈n|. This argument

can be readily generalized to show that the density matrix associated with the

general state |Ψ(β)〉 of Hβ reduces, as T → 0, to the general state of H having
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the same coefficients, that is, as follows from Eq. (12.36), ρ
|Ψ(β)〉

→ |Ψ〉〈Ψ| where

|Ψ〉 =
∑∞
n=0 cn|n〉. In other words, density matrices of all thermalized states we

have discussed so far reduce to the corresponding pure states of H as T → 0.

The other limit to be considered is the infinite-temperature limit. As T → ∞
(i.e. β → 0), u(β) → ∞ and n̄(β) → ∞, which implies that the density matrix ρ

β

tends to the mixed state where all Fock states are occupied with the same weight,

that is

lim
T→∞

ρ
β

= lim
N→∞

1√
N

N∑

n=0

|n〉〈n|;

of course, such a “hell” state possesses infinite energy. Also, in this limit, none of

the states we have discussed makes any sense at all, since they have been defined

from actions taken over the thermal state.

12.3 Other possibilities of thermalized states

States belonging to the subspace Hβ of the thermal Hilbert space HT , which is

spanned by the set {a†n(β)|0(β)〉, n ∈ N} have been considered so far. A natural

question emerges about the meaning of other states belonging to HT but not to

Hβ . In fact, taking the set of states pertaining to HT of the form U(β)|n, m̃〉 with

either n or m̃ fixed, we get a subspace that is isomorphic to H and, therefore,

also isomorphic to Hβ . From all those subspaces, we choose to look specifically

at the one with n = 0 fixed, that is, we consider the subspace H̃β spanned by

{ã†m|0(β)〉,m = 0, 1, 2, . . .}. Other interesting possibility is to take states of HT
of the form U(β)|φ, φ̃〉, where |φ̃〉 is a “replica” of the state |φ〉 in the tilde Hilbert

space; such type of states will be considered later.

12.3.1 Thermal tilde states

To begin, let us construct the Fock basis of H̃β . The normalized thermal tilde

number state is defined by

|m̃(β)〉 =
1√
m!

[
ã†(β)

]m |0(β)〉, (12.45)

where m ∈ N, the thermal vacuum state corresponding to m = 0. These states are

eigenstates of the thermal tilde number operator Ñ(β) = ã†(β)ã(β), that is

Ñ(β)|m̃(β)〉 = m|m̃(β)〉.
They are also eigenstates of the tilde Hamiltonian H̃(β) = ωã†(β)ã(β), with eigen-

values mω. Notice that the action of the thermal tilde annihilation and creation

operators on |m̃(β)〉 is given by

ã(β) |m̃(β)〉 =
√
m |(m̃− 1)(β)〉 ,

ã†(β) |m̃(β)〉 =
√
m+ 1 |(m̃+ 1)(β)〉 .
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The set of states defined by Eq. (12.45) constitutes a complete orthonormal basis

for H̃β , so that an arbitrary normalized state |Ψ̃(β)〉 can be written as

|Ψ̃(β)〉 =

∞∑

m=0

cm |m̃(β)〉 , (12.46)

where
∑∞

m=0 |cm|
2

= 1.

Similarly to thermal coherent states described in the last section, we can in-

troduce thermal tilde coherent states by applying the thermal tilde displacement

operator,

D̃(α;β) = exp
[
αã†(β) − α∗ã(β)

]
, (12.47)

on the thermal vacuum state, that is

|α̃(β)〉 = D̃(α;β)|0(β)〉. (12.48)

This state is an eigenstate of the thermal tilde annihilation operator with eigenvalue

α, i.e.

ã(β)|α̃(β)〉 = α|α̃(β)〉.

Its expansion in the thermal tilde number basis is given by

|α̃(β)〉 = e−|α|
2/2

∞∑

m=0

αm√
m!
|m̃(β)〉 , (12.49)

which allows us to conclude that distinct thermal tilde coherent states are not

orthogonal to each other but satisfy

〈γ̃(β)|α̃(β)〉 = exp

[
−1

2

(
|α|2 + |γ|2

)
+ αγ∗

]
.

The scalar product above shows explicitly that the thermal tilde coherent states are

normalized, |〈α̃(β)|α̃(β)〉|2 = 1. Also, the set of thermal tilde coherent states, for

a fixed value of β, constitutes an overcomplete basis of H̃β , with the completeness

relation given by

1

π

∫
d2α|α̃(β)〉〈α̃(β)| = 1.

It is worth mentioning that the thermal tilde displacement operator defined by

Eq. (12.47) is such that D̃(α;β) = [D(α∗;β)] ,̃ since α is a complex number and so

α̃ = α∗.
With the same underlying structure as presented in the last section, we introduce

thermal tilde displaced-number states defined by

|m̃(β);α〉 = D̃(α;β)|m̃(β)〉. (12.50)

All the relations presented for the displaced thermal number states in subsec-

tion 12.1.3 can be written down by just replacing a(β) (a†(β)) by ã(β) (ã†(β)).
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Similarly, thermal tilde squeezed states can be defined: the thermal tilde squeezed-

vacuum state is given by

|ξ, 0̃;β〉 = S̃(ξ;β)|0(β)〉, (12.51)

while the thermal tilde squeezed-coherent state is introduced as

|ξ, α̃;β〉 = S̃(ξ;β)D̃(α;β)|0(β)〉 = S̃(ξ;β)|α̃(β)〉, (12.52)

where S̃(ξ;β) is the thermal tilde squeezed operator,

S̃(ξ;β) = exp

(
1

2
ξ∗ã2(β)− 1

2
ξã†2(β)

)
. (12.53)

Again, all relations stated in subsection 12.1.4 apply to the present case if the

thermal annihilation and creation operators, and the thermal squeezed states, are

replaced by their thermal tilde counterparts.

12.3.2 Physical meaning of the thermal tilde states

The introduction of thermal tilde states was performed simply by relying on the

isomorphism that exists between Hβ and H̃β , that is, mutatis mutandis by replacing

the algebra of the thermal annihilation and creation operators by the isomorphic

algebra of the thermal tilde annihilation and creation operators. However, a fun-

damental question left out from this isomorphism concerns the physical meaning

of these thermal tilde states. Since we are assigning physical significance to the

Hilbert space H, and the operators acting on it, we expect that corresponding ther-

mal and thermal tilde states are associated with density matrices possessing distinct

characteristics.

To obtain the density matrix associated with an arbitrary thermal tilde state,

we must be able to write it in a form similar to Eq. (12.28), that is

|Ψ̃(β)〉 = g(a, a†;β)|0(β)〉. (12.54)

This can be implemented, in general, if we manage to write the action of ã†(β) on

|0(β)〉 in terms of a and a† acting on the thermal vacuum. In fact, from a(β)|0(β)〉 =

0, we infer that

ã†|0(β)〉 =
u(β)

v(β)
a|0(β)〉.

Then, from

ã†(β) = u(β)ã† − v(β)a,

we find that

ã†(β)|0(β)〉 =
1

v(β)
a|0(β)〉 (12.55)

and
[
ã†(β), a

]
= 0. (12.56)
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These relations permit us to write |Ψ̃(β)〉 in the form shown in Eq. (12.54).

Let us start searching for the density matrix associated with the thermal tilde

number state. Using Eqs. (12.55) and (12.56), we write |m̃(β)〉 in the form

|m̃(β)〉 =
1√

m! [v(β)]m
am|0(β)〉. (12.57)

Then it follows that, for an arbitrary physical observable A = A(a, a†),

〈m̃(β)|A|m̃(β)〉 =

〈
0(β)

∣∣∣∣
1

m! [v(β)]2m
a†mAam

∣∣∣∣ 0(β)

〉

= Tr

(
ρβ

1

m! [v(β)]2m
a†mAam

)

= Tr

([
1

m! [v(β)]2m
amρβa

†m
]
A

)
.

Thus, we find the density matrix associated with the thermal tilde number state as

ρ
|m̃(β)〉

=
1

m! [v(β)]2m
amρ

β
a†m. (12.58)

From this expression we verify that the thermal tilde state |m̃(β)〉 corresponds to

the m-photon subtracted thermal state.

This density matrix is clearly diagonal in the number basis of H since ρ
β

is

diagonal in this basis. Using

a†m|r〉 =
√

(r + 1)(r + 2) · · · (r +m) |r +m〉,
Eq. (12.26) leads to the following representation of the density matrix ρ

|m̃(β)〉
in the

number basis

ρ
|m̃(β)〉

=

(
1

1 + n̄(β)

)m+1 ∞∑

r=0

(
n̄(β)

1 + n̄(β)

)r
(m+ r)!

m! r!
|r〉〈r|. (12.59)

Although this expression looks similar to Eq. (12.34), the nature of the mixed

state described by ρ
|m̃(β)〉

is very distinct from that of ρ
|n(β)〉

. In fact, we find that

ρ
|m̃(β)〉

→ |0〉〈0| as T → 0, independently of the value of m, while ρ
|n(β)〉

reduces to

the number state |n〉 in this limit.

For a general thermal tilde state, using Eq. (12.57), we have

|Ψ̃(β)〉 =

∞∑

m=0

cm√
m! [v(β)]m

am|0(β)〉, (12.60)

so that

〈Ψ̃(β)|A|Ψ̃(β)〉 =

∞∑

n,m=0

c∗ncm√
n!
√
m!

1

[v(β)]n+m
〈0(β)|a†nAam|0(β)〉

=

∞∑

n,m=0

c∗ncm√
n!
√
m!

1

[v(β)]n+m
Tr
[
ρβ a

†nAam
]
,
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which leads to the identification

ρ
|Ψ̃(β)〉

=

∞∑

n,m=0

c∗ncm√
n!
√
m!

1

[v(β)]n+m
amρβa

†n. (12.61)

That ρ
|Ψ̃(β)〉

is a physical density matrix, with unit trace, follows from the normal-

ization of the state |Ψ̃(β)〉. This can be proved directly from the above expression

if one uses

Tr
[
amρβa

†n] = m![v(β)]2mδmn.

Also, using the number basis representation of ρβ, Eq. (12.26), it can be shown that

lim
T→0

ρ
|Ψ̃(β)〉

= |0〉〈0|

for all thermal tilde states.

We can work out various cases as we did for thermal states. For example, using

the normal-order form of D̃(α;β) and Eq. (12.55), the thermal tilde coherent state

is written as

|α̃(β)〉 = e−|α|
2/2 exp

[
αã†(β)

]
|0(β)〉 = e−|α|

2/2 exp

[
α

v(β)
a

]
|0(β)〉 .

Therefore, the density matrix associated with |α̃(β)〉 is

ρ
|α̃(β)〉

= e−|α|
2

exp

[
α

v(β)
a

]
ρ

β
exp

[
α∗

v(β)
a†
]
. (12.62)

This expression is very similar to that for ρ
|α(β)〉

; we can get one from the

other just by making the replacements a† ↔ a and v(β) ↔ u(β). This is not a

particular feature for coherent states but rather a general consequence of the fact

that H̃β and Hβ , being isomorphic to H, are themselves isomorphic. This can

be inferred by comparing ρ
|Ψ(β)〉

and ρ
|Ψ̃(β)〉

, Eqs. (12.36) and (12.61), and it is a

result of the comparison of the actions of a†(β) and ã†(β) on |0(β)〉, Eqs. (12.30)

and (12.55). Therefore, properly using these replacements, we can find the density

matrix associated with a thermal tilde state if we know the density matrix of the

corresponding, non-tilde, thermal state.

12.3.3 General states of HT

We now address the question about the construction of the density matrix corre-

sponding to states of HT which can, in general, be written as linear superpositions

of the states |n, m̃;β〉 = U(β) |n, m̃〉. The thermalized Fock states |n, m̃;β〉 were

used to treat the Jaynes-Cummings model [180] in the context of thermofields [75].

Among the general states of HT , the class of states of the type

|α, γ̃;β〉 = U(β)|α, γ̃〉, (12.63)

where |α〉 and |γ̃〉 are coherent states in H and H̃, respectively, has been widely

used, particularly to discuss the interplay between thermalization and coherence
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[75, 181, 76, 182, 183] and generalizations of uncertainty relations to include both

quantum and thermal fluctuations [77, 184, 185]. Also, states of the type

|φ, φ̃;β〉 = U(β)|φ, φ̃〉, (12.64)

where |φ̃〉 (∈ H̃) is a replica of the state |φ〉 (∈ H), can be considered as an alter-

native thermalization of the state |φ〉.
Let us analyze a simple case, considering the state

|1, 1̃;β〉 = a†(β)ã†(β)|0(β)〉. (12.65)

Using Eqs. (12.30) and (12.55), and the commutation relation
[
a†(β), a

]
= −u(β) ,

[
ã†(β), a†

]
= −v(β) , (12.66)

we find

|1, 1̃;β〉 =
1

v(β)
a†(β) a |0(β)〉

=
1

v(β)

[
aa†(β)− u(β)

]
|0(β)〉

=
1

v(β)

[
1

u(β)
aa† − u(β)

]
|0(β)〉

=
1

u(β)v(β)

[
aa† − u2(β)

]
|0(β)〉

=
1

u(β)v(β)

[
a†a− v2(β)

]
|0(β)〉,

where we have used [a, a†] = 1 and u2(β) = 1 + v2(β). Proceeding as before, we

find the density matrix associated with this state as

ρ
|1,1̃;β〉

=
1

u2(β)v2(β)

[
a†a− v2(β)

]
ρ

β

[
a†a− v2(β)

]
. (12.67)

Other simple examples are obtained in a similar way:

ρ
|2,1̃;β〉

=
1

2v2(β)u4(β)

[
a†2a− 2v2(β)a†

]
ρ

β

[
a†a2 − 2v2(β)a

]
; (12.68)

ρ
|2,2̃;β〉

=
1

4v4(β)u4(β)

[
a†2a2 − 4v2(β)a†a− 2v2(β)

]

× ρ
β

[
a†2a2 − 4v2(β)a†a− 2v2(β)

]
; (12.69)

also, the density matrix ρ
|1,2̃;β〉

can be obtained from Eq. (12.68) making the re-

placements a† ↔ a and v(β) ↔ u(β). These examples clearly indicate that all the

thermalized Fock states of the type |n, ñ;β〉 have density-matrix representations

which are diagonal in the number basis of H; particularly, we find

ρ
|1,1̃;β〉

=
1

[1 + n̄(β)]2n̄(β)

∞∑

r=0

(
n̄(β)

1 + n̄(β)

)r
[r − n̄(β)]2 |r〉〈r| . (12.70)
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For a generic thermalized Fock state |n, m̃;β〉 = (n!m!)−1/2a†n(β)ã†m(β)|0(β)〉,
one can proceed by using Eqs. (12.30) and (12.55) and repeatedly applying the

commutations relations given by Eq. (12.66). Since an arbitrary normalized state

of HT can be written as

|Ψ, Φ̃;β〉 =
∞∑

n,m=0

Cnm |n, m̃;β〉, (12.71)

where
∑∞
n,m=0 |Cnm|2 = 1, in principle, one can write down the density matrix

associated with any given state of HT , although this can be a hard task. We shall

not provide examples here, leaving for the reader to work out those states he (she)

gets interested with.

The general structure of the states of HT is such that their density matrices

have the form

ρ
|Ψ,Φ̃;β〉

= F (a, a†;β)ρβF
†(a, a†;β).

Conversely, any density matrix of the form

ρ = G(a, a†)ρβG
†(a, a†)

can be associated with a state of HT . In fact, the average value of an arbitrary

operator A in the mixed state ρ is given by

〈A〉ρ = Tr
[
G(a, a†)ρβG

†(a, a†)A
]

= Tr
[
ρβG

†(a, a†)AG(a, a†)
]

= 〈0(β)|G†(a, a†)AG(a, a†)|0(β)〉.
Now, using the relations

a = u(β) a(β) + v(β) ã†(β) ,

a† = u(β) a†(β) + v(β) ã(β) ,

we write

G(a, a†) = G′(a(β), a†(β), ã(β), ã†(β)).

Then we have

〈A〉ρ = 〈0(β)|G′†AG′|0(β)〉,
which leads to the identification

ρ←→ G′(a(β), a†(β), ã(β), ã†(β))|0(β)〉 ∈ HT .
Finally, it is worth to point out that the TFD approach allows us to cal-

culate averages of physical observables of the form A = A(a, a†) in these ther-

malized states, which are mixed states, without using their density matrix rep-

resentations. First, we write the operator A(a, a†), acting on H, as a function

of the thermal and thermal tilde creation and annihilation operators, that is,



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

220 Thermal Quantum Field Theory: Algebraic Aspects and Applications

A(a, a†) = A′(a(β), a†(β), ã(β), ã†(β)). Then, it follows from the definition of the

density matrix associated with a given state |Ψ, Φ̃;β〉 that

〈A〉
|Ψ,Φ̃;β〉

= Tr
[
ρ

|Ψ,Φ̃;β〉
A
]

= 〈Ψ, Φ̃;β
∣∣A′(a(β), a†(β), ã(β), ã†(β))

∣∣Ψ, Φ̃;β〉; (12.72)

since tilde and non-tilde operators commute, the expectation value in the right hand

side of the this equation is easily calculated for states in HT . Such a procedure

will be employed in the next chapter where we discuss nonclassical properties of

thermalized states of a field mode.
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Chapter 13

Nonclassical Properties of Thermal
Quantum States

The thermal quantum states introduced in the preceding chapter, elements of the

thermal Hilbert space HT , are all, by construction, mixed states of the physical

boson oscillator that incorporate thermal effects. Some of such states, like thermal

number states, |n(β)〉, and thermal-tilde number states, |m̃(β)〉, correspond to den-

sity matrices that are diagonal in the number basis of the physical Hilbert space,

H. Nevertheless, some of them present nonclassical features that are fingerprints

of the original, non-thermalized, states that have quantum nature. In the present

chapter, we discuss some nonclassical properties of these thermal quantum states.

We will mainly concentrate on states of Hβ and H̃β , spaces which are isomorphic to

H, establishing comparisons among them. To be definite, we will consider states of

a linearly polarized electromagnetic field mode of frequency ω, although the results

can be applied to other bosonic fields.

13.1 Photon statistics

One of the quantum characteristics of states of an electromagnetic field mode, not

having classical counterpart, is the occurrence of sub-Poissonian photon statistics.

Although this property does not appear in all quantum states of a field mode, when

it does the state is guaranteed not to have a classical analogue. The nature of the

photon statistics of a state is determined by comparing the dispersion of the number

operator, 〈(∆N)2〉 = 〈N2〉 − 〈N〉2, with the mean number of photons, 〈N〉, where

N = a†a is the physical number operator. In terms of the Mandel Q-parameter

[186], defined by

Q =
〈(∆N)2〉 − 〈N〉

〈N〉 =
〈N2〉
〈N〉 − 〈N〉 − 1, (13.1)

we have: Poissonian states, when Q = 0, super-Poissonian states, for Q > 0, and

sub-Poissonian states [187] when Q belongs to the interval [−1, 0). Coherent states

are pure states for which the photon statistics is Poissonian, while the smallest

admissible value of Q, −1, occurs for number states where no dispersion in the

number of photons exists. The chaotic (thermal) state, on the other hand, is super-

221
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Poissonian. In any case, the photon number distribution of a sub- (or super-)

Poissonian state is narrower (broader) than that of coherent states with the same

average photon number.

To calculate the Mandel parameter for a given thermal quantum state, we can

use directly the density matrix representation of the state to evaluate the mean

values appearing in Eq. (13.1). Alternatively, and in a simpler way, we express

the physical number operator, and its square, in terms of the thermal creation and

annihilation operators and get benefit from the fact that thermal quantum states

are pure states of the thermal Hilbert space, HT . For the number operator, we have

N = a†a

=
[
u(β)a†(β) + v(β)ã(β)

] [
u(β)a(β) + v(β)ã†(β)

]

= u2N(β) + v2Ñ(β) + uv
[
a†(β)ã†(β) + ã(β)a(β)

]
+ v2, (13.2)

where N(β) = a†(β)a(β) and Ñ(β) = ã†(β)ã(β) are the thermal and the thermal-

tilde number operators, respectively. Similarly, the square of the number operator

is expressed as

N2 = u4N2(β) + v4
(
Ñ(β) + 1

)2

+ u2v2
(
3N(β)[Ñ(β) + 1]

+ [N(β) + 1] Ñ(β) + a2(β)ã2(β) + a†2(β)ã†2(β) + 1
)

+u3v
(
[2N(β) + 1] a(β)ã(β) + [2N(β)− 1]a†(β)ã†(β)

)

+uv3
(
[2Ñ(β) + 3]a(β)ã(β) + [2Ñ(β) + 1]a†(β)ã†(β)

)
. (13.3)

Then, the Q-factor for thermal quantum states is determined by calculating expec-

tation values of N and N2. Let us now consider some examples.

13.1.1 Thermal states

We start investigating thermal quantum states belonging to Hβ . Consider, initially,

the thermal number state

|n(β)〉 =
1√
n!

[
a†(β)

]n |0(β)〉 .

Using ã(β)|n(β)〉 = 0 and remembering that u2 = 1 + v2, we find

〈N〉
|n(β)〉

= n+ (n+ 1) n̄(β) (13.4)

and

〈N2〉
|n(β)〉

= n2 + (2n2 + 3n+ 1) n̄(β) + (n2 + 3n+ 2) n̄2(β), (13.5)

where

n̄(β) = v2(β) =
1

eβω − 1
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is the mean number of photons in the chaotic state, corresponding to |0(β)〉, at

temperature β−1. Note that the mean number of physical photons in the state

|n(β)〉 is given by n plus a contribution of thermal photons which is linear in n̄(β).

Using these expressions, we get the Mandel parameter of the thermal number

state as

Q
|n(β)〉

=
(n+ 1) n̄2(β) − n
(n+ 1) n̄(β) + n

. (13.6)

Note that, for n = 0, we obtain

Q
|0(β)〉

= n̄(β), (13.7)

which is the correct Mandel parameter for the chaotic, thermal, state at temperature

β−1. On the other hand, as n̄(β)→ 0, i.e. as T = β−1 → 0, we find Q
|n〉

= −1+δn0

properly reproducing the Q-factor of the zero-temperature number states. The

Mandel parameter of some thermal quantum states are plotted in Fig. 13.1 as a

function of n̄. From this figure, and directly from Eq. (13.6), we find that the

thermal number state with n ≥ 1 changes from sub-Poissonian to super-Poissonian

statistics as the temperature is increased [179]. This transition in the nature of the

photon statistics occurs at a critical value

n̄(n)
c =

√
n

n+ 1
, (13.8)

corresponding to the “critical” temperature (in units of ω)

T (n)
c =

[
ln

(
1 +

√
n+ 1

n

)]−1

;

below this value, Q
|n(β)〉

< 0, while above it we have Q
|n(β)〉

> 0. This means

that the sub-Poissonian character of the number state gradually disappears as the

temperature is raised. From Eq. (13.8), we obtain 1/
√

2 ≤ n̄
(n)
c < 1 as n varies

in N∗ = {1, 2, 3, . . .}, so that all thermal number states are sub-Poissonian for low

temperatures (n̄(β) < 1/
√

2) and become super-Poissonian for high temperatures

(n̄(β) ≥ 1).

The mean number of photons and the expectation value of N 2 for an arbitrary

state of Hβ ,

|Ψ(β)〉 =

∞∑

n=0

cn |n(β)〉 ,

are given by

〈N〉
|Ψ(β)〉

= 〈N〉
|Ψ〉

+
(
〈N〉

|Ψ〉
+ 1
)
n̄(β) (13.9)

and

〈N2〉
|Ψ(β)〉

= 〈N2〉
|Ψ〉

+
(
2〈N2〉

|Ψ〉
+ 3〈N〉

|Ψ〉
+ 1
)
n̄(β)

+
(
〈N2〉

|Ψ〉
+ 3〈N〉

|Ψ〉
+ 2
)
n̄2(β) , (13.10)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

224 Thermal Quantum Field Theory: Algebraic Aspects and Applications

0.2 0.4 0.6 0.8 1 1.2
n�

-0.5

0

0.5

1

1.5
Q

n=0

n=1 n=6

n=50

Fig. 13.1 Mandel parameter for some thermal number states.

where 〈N〉
|Ψ〉

= 〈Ψ|N |Ψ〉 and 〈N2〉
|Ψ〉

= 〈Ψ|N2|Ψ〉 refer to the corresponding state

in H, |Ψ〉 =∑n cn|n〉. This is a direct generalization of Eqs. (13.4) and (13.5). The

Mandel parameter for |Ψ(β)〉 is then

Q
|Ψ(β)〉

=

[
〈N2〉

|Ψ〉
− 〈N〉2

|Ψ〉

]
[1 + n̄(β)]2 +

[
〈N〉

|Ψ)〉
+ 1
]
n̄2(β)− 〈N〉

|Ψ〉[
〈N〉

|Ψ〉
+ 1
]
n̄(β) + 〈N〉

|Ψ〉

. (13.11)

Note that, as n̄ → 0 (T → 0), Q
|Ψ(β)〉

tends to the Q
|Ψ〉

, the Mandel parameter of

the zero-temperature state |Ψ〉, as expected; also, Eq. (13.11) reduces to Eq. (13.6)

for thermal number states since |n〉 has vanishing photon number dispersion.

Let us consider some particular examples. For the thermal coherent state |α(β)〉,
we find

Q
|α(β)〉

=
2|α|2n̄(β)[1 + n̄(β)] + n̄2(β)

|α|2[1 + n̄(β)] + n̄(β)
. (13.12)

Note that, for n̄(β) → 0, Q
|α(β)〉

goes to 0 while, for any finite temperature, the

thermal coherent state is super-Poissonian. Actually, it follows from the general

expression, Eq. (13.11), that the Mandel parameter of an arbitrary state |Ψ(β)〉
increases with n̄(β), which is the expected effect of the temperature on photon

statistics of the state.

In the case of the thermal displaced number state, |n(β);α〉, we find

Q
|n(β);α〉

=
(2|α|2 + 1)(n+ 1)n̄2(β) + 2|α|2(2n+ 1)n̄(β) + (2|α|2 − 1)n

(|α|2 + n)[1 + n̄(β)] + n̄(β)
. (13.13)

This expression reduces to the Mandel parameters of the thermal number,

Eq. (13.6), and thermal-coherent states, Eq. (13.12), in the limits α→ 0 and n→ 0,

respectively. Also, taking T → 0 we obtain the Mandel parameter of the displaced
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number state, namely

Q
|n;α〉

=
(2|α|2 − 1)n

|α|2 + n
,

which is a sub-Poissonian state for |α| < 1/
√

2 irrespective of the value of n. Thus,

in this case, raising the temperature leads to a change in the nature of the photon

statistics similar to the effect observed for thermal number states. On the other

hand, if |α| ≥ 1/
√

2, at T 6= 0, all thermal displaced number states are super-

Poissonian.

Let us now consider elements of Hβ that correspond to the thermalization of

normalized superpositions of two coherent states belonging to H. When the overlap

between the coherent states is negligible, such states are referred to as Schrödinger-

cat states since the component states are macroscopically distinguishable. For sim-

plicity, we consider the even (+) and odd (−) coherent states [188], defined in H by

∣∣Ψ±(α)
〉

= N±(α) (|−α〉 ± |α〉) , (13.14)

where the normalization constants are

N±(α) =
[
2± 2 exp(−2|α|2)

]−1/2
.

Even and odd coherent states are degenerate eigenstates of a2 with eigenvalue equal

to α2. Without loss of generality, we take α ∈ R. For these states, we have:

〈N〉
|Ψ+〉

= α2 tanhα2; (13.15)

〈N〉
|Ψ−〉

= α2 cothα2, (13.16)

and
〈
N2
〉
|Ψ+〉

= α2 tanhα2 + α4; (13.17)

〈
N2
〉
|Ψ−〉

= α2 cothα2 + α4 , (13.18)

which lead to

Q
|Ψ+〉

= α2
(
cothα2 − tanhα2

)
, (13.19)

Q
|Ψ−〉

= −Q
|Ψ+〉

. (13.20)

This means that even states have super-Poissonian statistics while odd states are

sub-Poissonian [189], for all values of α.

Thermal even and odd coherent states in Hβ , corresponding to the thermaliza-

tion of even and odd coherent states (13.14), are given by
∣∣Ψ±(β;α)

〉
= N±(α) (|−α(β)〉 ± |α(β)〉) . (13.21)

Note that, due to the isomorphism between H and Hβ , the normalization constant

is the same as that for |Ψ±(α)〉; also, these states are eigenstates of a2(β) with
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eigenvalue α2. For α moderately large, i.e. such that 〈−α|α〉 = exp(−2α2) is small,

these states can be referred to as thermal Schrödinger-cat states of the field mode.

Using the corresponding mean numbers of photons and expectation values of N 2

of Eqs. (13.15) to (13.18) in Eq. (13.11), we find the Q-parameter for the states

|Ψ±(β;α)〉. For the even state, we get

Q
|Ψ−(β;α)〉

=
[(1 + α4) cothα2 + α2(2− α2 tanhα2)] n̄2(β)

(α2 + cothα2) n̄(β) + α2

+
α4(cothα2 − tanhα2)(2n̄(β) + 1) + 2α2n̄(β)

(α2 + cothα2) n̄(β) + α2
, (13.22)

while, for the odd state, we find

Q
|Ψ−(β;α)〉

=
[(1 + α4) tanhα2 + α2(2− α2 cothα2)] n̄2(β)

(α2 + tanhα2) n̄(β) + α2

+
α4(tanhα2 − cothα2)(2n̄(β) + 1) + 2α2n̄(β)

(α2 + tanhα2) n̄(β) + α2
; (13.23)

these expressions transform one into the other with the replacements tanh↔ coth.

The even states, which have Q > 0 at T = 0, remain super-Poissonian. On

the other hand, odd states gradually loose their sub-Poissonian character as the

temperature is increased. The Q-parameters for the thermal odd coherent states,

at some temperatures, are illustrated in Fig. 13.2. We find that, for all values of α

(6= 0), the thermal odd coherent states become super-Poissonian if the temperature

is such that n̄(β) ≥ n̄
(1)
c = 1/

√
2; this value reflects, consistently, the fact that

|Ψ−(α)〉 → |1〉 in the limit α→ 0.
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ÈΑÈ2-0.5
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Fig. 13.2 Mandel parameter for thermal odd coherent states, for some values of n̄(β).

Many other states ofH are sub-Poissonian; for instance, squeezed coherent states

can present sub-Poissonian statistics for some ranges of values of the squeezing and

displacing parameters. In all cases, however, the effect of raising the temperature

in the corresponding thermal state leads to the change of the nature of the photon

statistics at some temperature, as in examples presented above.
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13.1.2 Thermal tilde states

We now investigate the photon statistics for states in the Hilbert space H̃β . Con-

sider, initially, the thermal tilde number state

|m̃(β)〉 =
1√
m!

[
ã†(β)

]m |0(β)〉 .

Since u2 = 1 + v2 and a(β)|m̃(β)〉 = 0, from Eqs. (13.2) and (13.3), we get

〈N〉
|m̃(β)〉

= (m+ 1) n̄(β) (13.24)

and

〈N2〉
|m̃(β)〉

= (m+ 1) n̄(β) + (m2 + 3m+ 2) n̄2(β). (13.25)

Then we obtain the Q-parameter for the thermal tilde number states as

Q
|m̃(β)〉

= n̄(β) , ∀m ∈ N . (13.26)

In words, all thermal tilde number state have the same super-Poissonian photon

statistics as that of the chaotic, thermal, state ρ
β
.

Now consider a general thermal tilde state,

|Ψ̃(β)〉 =

∞∑

m=0

cm |m̃(β)〉 .

The mean number of photons and the expectation value of N 2, in this case, are

〈N〉
|Ψ̃(β)〉

= (〈N〉
|Ψ〉

+ 1) n̄(β) (13.27)

and

〈N2〉
|Ψ(β)〉

=
(
〈N〉

|Ψ〉
+ 1
)
n̄(β) +

(
〈N2〉

|Ψ〉
+ 3〈N〉

|Ψ〉
+ 2
)
n̄2(β) , (13.28)

where 〈N〉
|Ψ〉

and 〈N2〉
|Ψ〉

refer to the state |Ψ〉 =
∑

n cn|n〉, as before. Inserting

Eqs. (13.27) and (13.28) into Eq. (13.1) we obtain the Mandel parameter for the

state |Ψ̃(β)〉,

Q
|Ψ̃(β)〉

=

(
〈N2〉

|Ψ〉
− 〈N〉2

|Ψ〉

〈N〉
|Ψ〉

+ 1
+ 1

)
n̄(β). (13.29)

Note that all thermal tilde states have a positive Q-parameter for T 6= 0, which is

equal to the Mandel parameter of the thermal vacuum |0(β)〉 multiplied by a factor

greater than 1. In particular, for a thermal tilde coherent state |α̃(β)〉, we have

Q
|α̃(β)〉

=

(
1 +

|α|2
1 + |α|2

)
n̄(β). (13.30)

Other examples can be readily worked out. Therefore we find that all thermal tilde

states are super-Poissonian irrespective of the nature of the photon statistics of the

original, non-thermalized, state.
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13.2 Quadrature squeezing

We now turn the discussion to another important nonclassical feature which may

be present in quantum states of a field mode, which is the reduction of the quantum

noise of a field quadrature below the vacuum value. The field-quadrature operators,

acting on H, are defined as

X1 =
1

2

(
a+ a†

)
(13.31)

and

X2 =
1

2i

(
a− a†

)
. (13.32)

They correspond to position and momentum operators of a boson oscillator and

satisfy the commutation relation

[X1, X2] =
i

2
.

Therefore, their variances, 〈(∆Xj)
2〉 = 〈X2

j 〉 − 〈Xj〉2, fulfill the Heisenberg uncer-

tainty relation
√
〈(∆X1)2〉

√
〈(∆X2)2〉 ≥

1

4
. (13.33)

This quantum mechanical requirement must be respected for all states of the system,

irrespective of the nature of the state, whether pure or mixed.

For coherent states |α〉, including the vacuum |0〉, we have
√
〈(∆X1)2〉|α〉

=
√
〈(∆X2)2〉|α〉

=
1

2

and the equality in Eq. (13.33) holds. These states are minimum uncertainty states

but not the only ones. Consider the squeezed vacuum state

∣∣reiϕ, 0
〉

= exp

(
1

2
re−iϕa2 − 1

2
reiϕa†2

)
|0〉 ; (13.34)

for this state, we have

〈(∆Xj)
2〉

|reiϕ,0〉
=

1

4

[
cosh2 r + sinh2 r + (−1)j2 sinh r cosh r cosϕ

]
. (13.35)

Taking ϕ = 0, we get

〈(∆X1)
2〉

|r,0〉
=

1

4
e−2r , 〈(∆X2)

2〉
|r,0〉

=
1

4
e2r,

while, for ϕ = π, we have the same values but with X1 exchanged with X2. Thus

the squeezed vacuum states |r, 0〉 and | − r, 0〉 are also minimum uncertainty states.

However, for these states, one of the quadratures presents less quantum noise than

for the vacuum state or a coherent state; that is, fluctuations in that quadrature

are squeezed while in the other they are augmented to preserve the uncertainty

relation. Naturally, this does not happen for all the squeezed vacuum states; for

example, when ϕ = π/2 none of the quadrature variances are squeezed at all.
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Also, by varying the parameters r and ϕ, we easily find squeezed vacuum states

presenting quadrature squeezing without equalizing the uncertainty relation. This

kind of analysis can be extended for squeezed coherent states.

Quadrature squeezing is a quantum property which is not restricted to states

obtained by applying the squeezing operator to other state. In the case of the even

and odd coherent states, Eq. (13.14), for example, we find

〈(∆X1)
2〉

|Ψ±(α)〉
=

1

4
+

α2

1± exp(−2α2)
, (13.36)

〈(∆X2)
2〉

|Ψ±(α)〉
=

1

4
∓ α2 exp(−2α2)

1± exp(−2α2)
; (13.37)

this shows that, while odd states do not present reduced fluctuations in the quadra-

tures, even coherent states, with α not too large, have the X2 quadrature squeezed.

Another example is the Yurke-Stoler state [190],

|Ψi(α)〉 =
1√
2

(i| − α〉 + |α〉) , (13.38)

for which (taking α ∈ R)

〈(∆X1)
2〉

|Ψi(α)〉
=

1

4
+ α2,

〈(∆X2)
2〉

|Ψi(α)〉
=

1

4
− α2 exp(−4α2);

in this case, the X2 quadrature is squeezed for all values of α.

Let us now consider thermalized states of the field mode. The variances of

the quadrature operators for thermalized states are more easily calculated if the

the operators Xj and X2
j , j = 1, 2, are written in terms of thermal creation and

annihilation operators. We have

X1 =
1

2

{
u(β)

[
a†(β) + a(β)

]
+ v(β)

[
ã†(β) + ã(β)

]}
; (13.39)

X2 =
1

2i

{
u(β)

[
a(β)− a†(β)

]
− v(β)

[
ã(β) − ã†(β)

]}
, (13.40)

and

X2
1 =

1

4

{
u2(β)

[
2N(β) + 1 + a†2(β) + a2(β)

]

+ v2(β)
[
2Ñ(β) + 1 + ã†2(β) + ã2(β)

]

+ 2u(β)v(β)
[
a†(β)ã†(β) + a†(β)ã(β) + a(β)ã†(β) + a(β)ã(β)

]}
;

(13.41)

X2
2 =

1

4

{
u2(β)

[
2N(β) + 1− a†2(β)− a2(β)

]

+ v2(β)
[
2Ñ(β) + 1− ã†2(β)− ã2(β)

]

+ 2u(β)v(β)
[
ã†(β)− a†(β)ã(β)− a(β)ã†(β) + a(β)ã(β)

]}
,

(13.42)
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where, again, N(β) = a†(β)a(β) and Ñ(β) = ã†(β)ã(β).

Let us analyze the occurrence of quadrature squeezing in thermal states. In this

case, from the isomorphism between Hβ and H, we immediately get, for a generic

state |Ψ(β)〉,
〈Xj〉|Ψ(β)〉

= u(β) 〈Xj〉|Ψ〉
(13.43)

and

〈X2
j 〉|Ψ(β)〉

= u2(β) 〈X2
j 〉|Ψ〉

+
1

4
v2(β), (13.44)

with j = 1, 2, where |Ψ〉 is the corresponding state in H. These equations lead to,

for both quadratures,

〈(∆Xj)
2〉

|Ψ(β)〉
= [1 + n̄(β)] 〈(∆Xj)

2〉
|Ψ〉

+
1

4
n̄(β) , j = 1, 2 . (13.45)

Note that the effect of temperature is the same on both quadratures although the

variances are not equal in the general case. The quadrature variances in the state

|Ψ(β)〉 reduce to those of the state |Ψ〉 in the limit T → 0. On the other hand, as

n̄(β) increases from 0, the quadrature variances also increase; therefore, if a state

|Ψ〉 presents squeezing in one of its quadratures at T = 0, by raising the temperature

the Heisenberg limit is reached and the squeezing effect disappears. Let us look at

a typical example.

Consider the thermal Yurke-Stoler state, defined by

|Ψi(β;α)〉 =
1√
2

(i| − α(β)〉 + |α(β)〉) ; (13.46)

in this case, we find

〈(∆X2)
2〉

|Ψi(β;α)〉
= [1 + n̄(β)]

[
1

4
− α2 exp(−4α2)

]
+

1

4
n̄(β). (13.47)

The square of the variance of the X2 quadrature for this state is plotted in Fig. 13.3

as a function of |α|2, for some values of n̄(β). We find that the quadrature squeezing,

which occurs for all values of α at T = 0, gradually disappears as the temperature

is increased. Also, the minimum value of S2(|α|2; n̄(β)) = 〈(∆X2)
2〉

|Ψi(β;α)〉
− 0.25,

with respect to variations of |α|2 (for fixed n̄(β)) which occurs at |α|2 = 0.25, reaches

0 for n̄(β) = 0.2254; this means that, for T & 0.59ω no quadrature squeezing exists

for any thermal Yurke-Stoler state. Other examples can be worked out in the same

way, leading to similar results.

Consider now states pertaining to H̃β . For an arbitrary state |Ψ̃(β)〉, we find

〈Xj〉|Ψ̃(β)〉
= (−1)j−1v(β) 〈Xj〉|Ψ̃〉

(13.48)

and

〈X2
j 〉|Ψ̃(β)〉

= v2(β) 〈X2
j 〉|Ψ̃〉

+
1

4
u2(β), (13.49)

with j = 1, 2. These expressions lead to, for both quadratures,

〈(∆Xj)
2〉

|Ψ̃(β)〉
= n̄(β)〈(∆Xj )

2〉
|Ψ̃〉

+
1

4
[n̄(β) + 1] , j = 1, 2 . (13.50)

We find that 〈(∆Xj)
2〉 > 0.25 for any value of T (no matter how small it is), so

that quadrature squeezing does not appear for thermal tilde states, irrespective of

the occurrence of this effect in the state |Ψ〉. Therefore, the thermal tilde states do

not present any of the nonclassical features we have discussed so far.
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Fig. 13.3 Plot of S2 = 〈(∆X2)2〉 − 0.25 for the thermal Yurke-Stoler state, for some values of
n̄(β). The dotted line corresponds to the value n̄(β) = 0.2254.

13.3 Atomic population inversion

In some experiments in cavity quantum electrodynamics, the population of atomic

states is monitored as a function of time. For the case of a two-level (Rydberg)

atom interacting with a cavity-field mode, as described by the single-photon Jaynes-

Cummings model [180] in the rotating wave approximation, the atom-field Hamil-

tonian is given by

H =
ω0

2
σ3 + ω a†a+ λ

(
σ+ a + σ− a

†) , (13.51)

where ω0 is the frequency of the transition between the ground and excited atomic

states, ω0 = E|e〉−E|g〉, ω is the field-mode frequency and λ is the coupling param-

eter. In the above equation, σ3, σ+ and σ− are the Pauli matrices,

σ3 =

(
1 0

0 −1

)
, σ+ =

(
0 1

0 0

)
, σ− =

(
0 0

1 0

)
,

with σ+ and σ− corresponding to the raising and lowering operators in the atomic

two-level basis, respectively. For a general state of the field mode, described by the

density matrix ρF, the time evolution of the atomic population inversion is

W (t) = Tr [ρAF(t)σ3]

= Tr
[
e−iHt {|ψA(0)〉 〈ψA(0)| ⊗ ρF(0)} eiHt σ3

]
, (13.52)

where |ψA〉 represents a pure atomic state.

When the initial atomic state is an arbitrary superposition of the ground, |g〉,
and excited, |e〉, states

|ψA(0)〉 = cg |g〉+ ce |e〉 ,
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the atomic population inversion [191, 192] is given by

Wδ(t) = |ce|2
{

1− 2
∞∑

l=0

l + 1

ν(l) + 1
sin2

(
λt
√
ν(l) + 1

)
〈l| ρF(0) |l〉

}

− |cg|2
{

1− 2

∞∑

l=0

l

ν(l)
sin2

(
λt
√
ν(l)

)
〈l| ρF(0) |l〉

}

+ 2 |ce| |cg |
∞∑

l=0

√
l+ 1


sin(φ+ γ)

sin
(
2λt
√
ν(l) + 1

)

√
ν(l) + 1

+ δ cos(φ+ γ)
sin2

(
λt
√
ν(l) + 1

)

ν(l) + 1


 |〈l| ρF(0) |l + 1〉| . (13.53)

Here

ν(l) = l +
δ2

4
,

the detuning parameter is

δ =
ω0 − ω
λ

,

and the phases φ and γ are defined by

ce c
∗
g = |ce| |cg | exp(−iφ)

and

〈l| ρF(0) |l + 1〉 = |〈l| ρF(0) |l + 1〉| exp(−iγ) .
Note that the last term in Eq. (13.53) does not appear when one deals with a

mixture of number states but it is relevant for treating pure states; in fact, for pure

states, this general expression reduces to that obtained in [193].

Considering the resonant case, δ = 0, and the initial state of the atom being the

excited state |e〉, the expression for the atomic population inversion becomes much

simpler than Eq. (13.53),

W0(t) =
∞∑

l=0

cos
(
2λt
√
l + 1

)
〈l| ρ̂F(0) |l〉 . (13.54)

For simplicity, we shall consider this case in the analysis of some examples, without

loosing the relevant physical aspects. For the number state |n〉, we have

W
|n〉
0 (t) = cos

(
2λt
√
n+ 1

)
, (13.55)

which is periodic and similar to the behavior obtained with the semiclassical Rabi

model. On the other hand, for a coherent state |α〉, we get

W
|α〉
0 (t) = e−|α|

2
∞∑

l=0

|α|2l
l!

cos
(
2λt
√
l + 1

)
. (13.56)
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Fig. 13.4 Atomic population inversion for the field in a coherent state with |α| = 4, at zero
detuning with the atom initially at the excited level.

The atomic population inversion for the field mode in a coherent state [194] is shown

in Fig. 13.4. We clearly find that collapses and revivals of the Rabi oscillations

in a non-periodic pattern is quite different from the semiclassical case where the

oscillations have constant amplitude. This happens for the field in the most-classical

pure state, the coherent state, distinctly from the number state; this somewhat

counterintuitive aspect is a feature of the quantum model.

Consider now the field mode in a thermal number state |n(β)〉. Using the number

basis expansion of ρ
|n(β)〉

, Eq. (12.34), we find

W
|n(β)〉
0 (t) =

1

(1 + n̄)n

∞∑

l=0

(n+ l)!

n! l!
PBl (n̄) cos

(
2λt
√
n+ l + 1

)
, (13.57)

where we have introduced the notation

PBl (n̄) =
1

1 + n̄

(
n̄

1 + n̄

)l
(13.58)

for the Bose-Einstein distribution. Since

lim
n̄→0

PBl (n̄) = δl0 ,

for n̄ → 0, Eq. (13.57) reduces to the inversion for the number state given above.

On the other hand, taking n = 0 one obtains the atomic population inversion for

the field in a thermal vacuum state

W
|0(β)〉
0 (t) =

∞∑

l=0

PBl (n̄) cos
(
2λt
√
l + 1

)
. (13.59)

The atomic inversion, when the field is in a chaotic (thermal) state, is illustrated in

Fig. 13.5 for the mean number of thermal photons fixed as n̄(β) = 16; the pattern

shows a chaotic behavior very distinct from that of the coherent state with the same

mean number of photons.
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Fig. 13.5 Atomic population inversion for the field in thermal vacuum state with n̄(β) = 16, at
zero detuning with the atom initially at the excited level.

The atomic population inversion, in the case of the thermal number state with

n = 1, is illustrated in Figs. 13.6(a)–13.6(d) for some values of n̄. It is seen that,

from a nearly regular oscillatory behavior at low T , similar to that of the number

state |1〉, one gets a more chaotic inversion pattern, like that of the thermal (ρ
β
)

state [194], at a moderate temperature, and a collapse and revival configuration as

the temperature is increased further. For larger n, we get a more marked behavior

with collapses and revivals of the atomic population inversion appearing at lower

temperatures and being greatly enhanced at high temperatures. This interesting

feature of the thermal number state is illustrated in Figs. 13.6(e)–13.6(h), where

the atomic inversion is plotted as a function of the rescaled time λt for n = 5 and

some values of n̄(β).

It follows from the discussion of the nature of the photon statistics and of the

atomic population inversion made above that nonclassical properties of the ther-

mal number states gradually disappear as the temperature is increased; it looks as

though |n(β)〉 evolves continuously from being quantum to becoming classical as

the temperature is raised from zero.

Let us now consider the atomic population inversion for a two-level atom inter-

acting with a field mode in the thermal tilde number state. Using the number-basis

representation of ρ
|m̃(β)〉

, Eq. (12.59), we find

W
|m̃(β)〉
0 (t) =

1

(1 + n̄)m

∞∑

l=0

(m+ l)!

m! l!
PBl (n̄) cos

(
2λt
√
l + 1

)
, (13.60)

where PBl (n̄) is given by Eq. (13.58). For n̄→ 0, we obtain the atomic population

inversion when the field is in the vacuum state and the atom initially in the excited

state |e〉,
W
|0〉
0 = cos(2λt),

associated with the spontaneous emission and reabsorption of photons by the atom.

The behavior of W
|m̃(β)〉
0 (t) as temperature is varied is shown in Fig. 13.7 for two
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Fig. 13.6 Atomic population inversion for the field the thermal number states |1(β)〉 (a)–(d) and
|5(β)〉 (e)–(h), at zero detuning with the atom initially at the excited level. The values of n̄(β)
are: (a) and (e) 0.1; (b) and (f) 1.5; (c) and (g) 3.0; and (d) and (h) 5.0.

cases, m = 1 and m = 5. Comparison with the plots of the inversion for the

thermal number states |1(β)〉 and |5(β)〉 (Fig. 13.6) shows that differences when the

temperature is low but essentially the same behavior of collapses and revivals for

large T .

On general grounds, and as indicated by the examples discussed above, one



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

236 Thermal Quantum Field Theory: Algebraic Aspects and Applications

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HgL

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HhL

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HeL

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HfL

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HcL

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HdL

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HaL

10 20 30 40 50 60
Λt

-0.5

0

0.5

1
W0HtL HbL

Fig. 13.7 Atomic population inversion for the field in thermal tilde number state |1̃(β)〉 (a)–(d)
and |5̃(β)〉 (e)–(h), at zero detuning with the atom initially at the excited level. The values of
n̄(β) are: (a) and (e) 0.1; (b) and (f) 1.5; (c) and (g) 3.0; and (d) and (h) 5.0.

expects that quantum characteristics of the thermalized states tend to disappear

as the temperature is raised. But the question whether a thermalized state, like

the thermal number state, becomes a classical state above a certain temperature

cannot be answered by analyzing few nonclassical properties. To properly address

this point, one should investigate the representation of the state in phase space with
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increasing temperatures.

13.4 Phase space representation

The basic representations of a field-mode state in phase space are the P -, Q- and

Wigner functions. These are linear representations of the corresponding density

matrix, ρ, defined as two-dimensional Fourier transforms of the normally, anti-

normally and symmetrically ordered characteristic functions,

χN (η) = Tr[ρ eηâ
†

e−η
∗â] ,

χA(η) = Tr[ρ e−η
∗âeηâ

†

] ,

χ(η) = Tr[ρ eηâ
†−η∗â] ,

respectively:

P (γ) =
1

π2

∫
d2η exp (γη∗ − γ∗η) χN(η) , (13.61)

Q(γ) =
1

π2

∫
d2η exp (γη∗ − γ∗η) χA(η) , (13.62)

W (γ) =
1

π2

∫
d2η exp (γη∗ − γ∗η) χ(η) , (13.63)

where γ and η are complex numbers and d2η = dRe(η)dIm(η) [174].

The P representation, introduced by Glauber and Sudarshan [195, 196], is the

diagonal representation of the density matrix in the coherent basis and is also defined

by

ρ =

∫
d2γ P (γ) |γ〉 〈γ|

where γ = x+ iy and d2γ = dxdy, while the Q-function corresponds to the diagonal

matrix elements of ρ in the coherent basis, namely

Q(γ) =
1

π
〈γ| ρ |γ〉 .

On the other hand, the Wigner function is a coordinate-momentum representation

which can be alternatively defined by

W (x, y) =
1

π

∫
< x− z/2| ρ |x+ z/2 > e−i y zdz,

as presented in Chapter 3.

Distinctly from the P -function, which is usually highly singular, the Q-function

is always a positive regular function. The Wigner function is also regular, but it is

not a true probability distribution in phase space for a quantum state since, even

being regular, it may assume negative values. Both the Q-and the Wigner functions

are Gaussian convolutions of the P - function,

W (γ) =
2

π

∫
d2η P (η) e−2|η−γ|2 ,

Q(γ) =
1

π

∫
d2η P (η) e−|η−γ|

2

,



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

238 Thermal Quantum Field Theory: Algebraic Aspects and Applications

which accounts for their rather smoother behaviors.

Now consider the case of mixed states whose density matrices can be written in

the form

ρ =

∞∑

j=0

pj |ψj〉 〈ψj | (13.64)

with
∑∞

j=0 pj = 1, where |ψj〉 are normalized pure state of the field mode. The

linearity of the P -, Q- and Wigner representations assures that these functions, for

mixed states of the type presented in Eq. (13.64), are expressed in terms of the

corresponding functions of the constituent pure states as

P (γ) =
∞∑

j=0

pj P|ψj〉(γ) , (13.65)

Q(γ) =
∞∑

j=0

pj Q|ψj〉(γ) , (13.66)

W (γ) =

∞∑

j=0

pjW|ψj〉(γ) , (13.67)

with P|ψj〉(γ), Q|ψj〉(γ) and W|ψj〉(γ) denoting the P - , Q- and Wigner functions of

the state |ψj〉, respectively. Here we consider particularly the case where |ψj〉 = |j〉
is a number state.

We now use these observations to find the phase space representation of thermal

states focusing, particularly, on thermal number states. Since the P -function is a

more complicated object, we concentrate on the Q- and Wigner functions.

13.4.1 Q-function of the thermal number state

For a single number state |n〉, the Q-function is given by

Q|n〉(γ) =
1

π
|〈n, | γ〉|2 =

1

π
exp

(
−|γ2|

) |γ2|n
n!

, (13.68)

where γ = x + iy. Note that Q|n〉(0, 0) = 0, for all n 6= 0. Now, it follows from

Eqs. (12.34) and (13.66) that the Q-function of the thermal number state |n(β)〉 is

given by

Q|n(β)〉(x, y) =
1

π
exp

[
−(x2 + y2)

] 1

(1 + n̄)n

∞∑

r=0

(n+ r)!

n! r!
PBr (n̄)

(x2 + y2)n+r

(n+ r)!
.

(13.69)

where PBr is given by Eq. (13.58). Note that, for n = 0, the above equation reduces

to the Q-function of the chaotic, thermal, state

Q|0(β)〉(x, y) =
1

π

1

1 + n̄
exp

(
−x

2 + y2

1 + n̄

)
, (13.70)
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which becomes the Gaussian Q-function of the vacuum state as n̄(β) → 0; the

temperature effect on the vacuum state is manifested in the broadening of this

Gaussian function.

On the other hand, the Q-function of a number state |n〉 (with n 6= 0) is a

Gaussian with a crater dug symmetrically in it, reaching zero at the origin. As the

temperature is increased (n̄ grows), the Q-function of the thermal number state pre-

serves the form of a non-active volcano, but with the mountain becoming broader

and losing height, as illustrated in Fig. 13.8. Since the Q-function is everywhere

positive, vanishing only at the origin, for all values of T , it is not a good represen-

tation to show any eventual change in the nature of the thermal number state as

the temperature is varied; this may not be the case of the Wigner quasi-probability

distribution.
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Fig. 13.8 Q-function for the thermal number state |3(β)〉 for two values of n̄(β): (a) 0.1, (b) 1.0.

13.4.2 Wigner function of the thermal number state

The Wigner function of the number state [174], |n〉, is given by

W|n〉(γ) =
2

π
exp

(
−2|γ|2

)
(−1)nLn(4|γ|2) , (13.71)

where Ln(z) stands for the Laguerre polynomial. Therefore, it follows from

Eqs. (12.34) and (13.67) that the Wigner function of the thermal number state

is

W|n(β)〉(x, y) =
2

π
exp

[
−2(x2 + y2)

] 1

(1 + n̄)n

×
∞∑

r=0

(n+ r)!

n! r!
PBr (n̄)(−1)n+rLn+r

[
4(x2 + y2)

]
(13.72)

Naturally, when n = 0, Eq. (13.72) becomes the Wigner function of the chaotic,

thermal, state

W|0(β)〉(x, y) =
1

π

2

1 + 2n̄
exp

(
−2
(
x2 + y2

)

1 + 2n̄

)
, (13.73)

having a Gaussian form which reduces to that of the vacuum state as n̄→ 0.
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Both Q- and Wigner functions of the thermal number state are symmetric

around the origin, since they are mixtures of number states which have random

phases. For n 6= 0, the Wigner function varies gradually, as the temperature is

increased, from the shape of an active volcano, characteristic of a number state,

to that of a non-active one, similar to the form of the Q-function, as illustrated

in Fig. 13.9. Apparently, for a given n 6= 0, the thermal number state changes

its nature from being a quantum state at low temperatures, the Wigner function

possessing negative values, to becoming classical for high values of n̄. However, a

detailed analysis of the crater of the volcano shows that the Wigner function never

becomes nonnegative and thus the thermal number state does not reduce exactly

to a nonclassical state as the temperature grows. This leads to the question about

the nonclassical depth of the thermal number state, the point addressed in the next

section.
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Fig. 13.9 Wigner function of the state |6(β)〉 for two values of n̄(β): (a) 0.1 and (b) 1.5.

13.4.3 R-representation and nonclassical depth of the thermal

number state

To discuss the nonclassical depth of the thermal number state, we consider the Lee

procedure [197] and introduce the one-parameter representation

R(γ; s) =
1

πs

∫
d2η P (η) e−|η−γ|

2/s, (13.74)

where γ = x + iy. The function R(γ; s) interpolates between P -, W - and Q-

functions, reducing to them for the values s = 0, 1/2, 1 respectively. This one-

parameter representation is a simplified version of the complex-parameter represen-

tation earlier introduced by Cahill and Glauber [198]. The nonclassical depth of a
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given state is defined as the minimum (sm) among the values of s for which the

R-function becomes strictly nonnegative. Naturally, 0 ≤ sm ≤ 1 with 0 being the

classical value, associated with coherent states for example, and 1 corresponding to

the maximum degree of nonclassicality, as for a number state.

For a number state |n〉, we have

R|n〉(γ; s) =
1

πs
exp

(
−|γ

2|
s

)[
− (1− s)

s

]n
Ln

( |γ|2
s(1− s)

)
. (13.75)

Since the R-representation is linear in the density matrix, using Eq. (12.34), we

obtain the R-function for the thermal number state |n(β)〉 as

R|n(β)〉(x, y; s) =
1

πs
exp

[
− (x2 + y2)

s

]
1

(1 + n̄)n

×
∞∑

r=0

(n+ r)!

n! r!
PBr (n̄)

[
− (1− s)

s

]n+r

Ln+r

[
(x2 + y2)

s(1− s)

]
.

(13.76)

The value of this function at the origin when 1/2 < s < 1,

R|n(β)〉(0, 0; s) =
1

π
(−1)n

(1− s)n
(s+ n̄)n+1

, (13.77)

shows that, for n odd, the R-function has a negative value at origin for s in this

range; thus, sm = 1 and the thermal number state with n odd is as nonclassical

as possible. When n is even, R|n(β)〉(0, 0; s) is positive and one has to analyze the

minimum value of the R-function. As illustrated in Fig. 13.10, where profiles of

R-functions along the x-axis are plotted for a specific thermal number state, the

minimum value of R (for n even) tends to zero as s approaches 1 but remains nega-

tive for all s < 1, implying that the thermal number state is always as nonclassical

as possible within the measure discussed. In this way, it is clear that the thermal

number state satisfies the Lee’s theorem [199] by which a state with density oper-

ator not containing the vacuum component, |0〉 〈0|, possesses the maximum degree

of nonclassicality. Analyzing how a given R-function changes as the temperature is

increased, it is found that its minimum value tends to zero but it is negative for all

s < 1, as occurs with the Wigner function (s = 1/2) illustrated in Fig. 13.9. It may

be stated that the quantum fingerprint of the number state remains in the thermal

number state and cannot be completely erased by increasing the temperature.

13.4.4 Phase space representations of the thermal tilde number

state

A thermal tilde number state, |m̃(β)〉, is represented by a density matrix that is also

diagonal in the number basis of H. Thus, from the linearity of the R-representation

and the R-function for the number state |n〉, Eq. (13.75), we find the R-function
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Fig. 13.10 Profiles along the x-axis of some R-functions for the thermal number state |4(β)〉 with
n̄(β) = 0.5: (a) s = 0.7; (b) s = 0.8; (c) s = 0.9; (d) s = 0.99.

for the thermal tilde number state |m̃(β)〉 as

R|m̃(β)〉(x, y; s) =
1

πs
exp

[
− (x2 + y2)

s

]
1

(1 + n̄)m

×
∞∑

r=0

(m+ r)!

m! r!
PBr (n̄)

[
− (1− s)

s

]r
Lr

[
(x2 + y2)

s(1− s)

]
.

(13.78)

Taking the limit s→ 1 in this expression, and using

lim
s→1

[
− (1− s)

s

]r
Lr

[
z

s(1− s)

]
=
zr

r!
,

we obtain the Q-function for |m̃(β)〉 as

Q|m̃(β)〉(x, y) =
1

π
exp

[
−(x2 + y2)

] 1

(1 + n̄)n

∞∑

r=0

(n+ r)!

n! r!
PBr (n̄)

(x2 + y2)r

r!
.

(13.79)

This function is plotted in Fig. 13.11 for a given thermal tilde number state at two

distinct temperature. We find that, for low temperatures, the Q-function has a

nearly Gaussian shape that resembles that of the vacuum state of H,

Q|0〉 =
1

π
exp[−(x2 + y2)] ,

which is the proper limit of Eq. (13.79) as n̄(β) → 0. Note that, distinctly of the

case of the thermal number state, the Q-function of |m̃(β)〉 does not vanish at the

origin or on any other point at a finite distance from the origin.
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Fig. 13.11 Q-function for the thermal tilde number state |3̃(β)〉 for two values of n̄(β): (a) 0.1,
(b) 1.0.

Now fixing s = 1/2 in Eq. (13.78), we get the Wigner function of the thermal

tilde number state |m̃(β)〉 as

W|m̃(β)〉(x, y) =
2

π
exp

[
−2(x2 + y2)

] 1

(1 + n̄)m

×
∞∑

r=0

(m+ r)!

m! r!
PBr (n̄) (−1)

r
Lr
[
4(x2 + y2)

]
.

(13.80)

In Fig. 13.12, we illustrate the Wigner function of the state |6̃(β)〉, for two distinct

values of the temperature.
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Fig. 13.12 Wigner function of the state |6̃(β)〉 for two values of n̄(β): (a) 0.12 and (b) 1.5.

Comparison between these figures clearly shows that the thermal tilde number

state has a much more classical behavior than the thermal number state; its Wigner

function does not assume negative values. Actually, its R-function is non-negative
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even for s smaller than (but close to) 0.5; this can be verified by plotting profiles of

the type shown in Fig. 13.10.

The discussion of phase-space representations can also be made, along these

lines, for other thermalized states of a field mode. In particular, for simple states

of the type |n, ñ;β〉, which have diagonal density matrices in the number basis

and have R-functions that are symmetric around the origin, one can look at the

competition between the tilde and non-tilde parts to establish the degree of non-

classicality of the state. We leave such analysis to the interested reader. In the next

chapter we move on to another relevant aspect for quantum optics and discuss the

amount of entanglement of states of bipartite systems constructed with inspiration

from TFD.
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Chapter 14

SU(2) and SU(1, 1) Systems:
Entanglement

Considering states of systems with SU(2) and SU(1, 1) symmetry, the TFD ap-

proach is applied to spin 1/2 systems and bipartite entangled states. This analysis

of entangled states constructed with the inspiration of TFD is the main goal of the

present chapter.

We study the nature of the entanglement for boson and fermion states. We

first investigate two-mode squeezed states in the case of bosons, then we construct

the fermionic version, to show that such states are maximally entangled, for both

bosons and fermions. For the case of fermions, the situation is more intricate, de-

manding coherent fermion state and density operator, which is achieved by using

Grassmann variables. Hence the problem of constructing entangled states, using

squeezed states, can be put in a succinct form. We start by deriving some prop-

erties of the two-mode squeezed-vacuum state and its generalization, the Caves-

Schumaker states [200]. These results will be used later to prove the property of

maximum entanglement of boson squeezed states; then the fermion counterpart of

the boson squeezed-vacuum and the Caves-Schumaker states are introduced and

some properties, like the maximum entanglement, are analyzed.

14.1 Maximum entanglement

Quantum mechanics gives rise to the notion of entangled states, which are states

of two or more systems correlated with each other, but without a classical analog.

Indeed, this entanglement may have non-local features. Bell [201, 202] was the first

to present a way to analyze entangled states, by comparing such correlations to the

classical correlated states, that are defined via classical probability distributions.

The appearance of entangled states is a consequence of the direct-product struc-

ture of the Hilbert space of multipartite systems and the superposition principle of

quantum mechanics.

A recent interest in entangled states arose since they are essential for teleporting

quantum states, from one locus to another, which is a basic ingredient in the theory

of quantum computers [203, 204]. In order to progress with such a program of quan-

245
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tum communication, the measure of entanglement is a crucial aspect of the theory

that has to be fully developed; and this has been discussed in the literature in differ-

ent ways [205–211]. On the other hand, the ideal conditions for teleporting require

specific entangled states characterized by a maximum entanglement [212, 213], a

characteristic feature that can be present not only in boson systems, but also for

fermions.

The notion of maximum entanglement of a bipartite system, say (A,B), de-

scribed by a pure state |ψ(A,B)〉 is analyzed. Let us introduce the reduced density

operator, ρA, by

ρA = TrB(|ψ(A,B)〉〈ψ(A,B)|), (14.1)

where TrB stands for the trace over the variables of the subsystem B. A measure

of entanglement of the pure state |ψ(A,B)〉 is defined by the von Neumann entropy

associated with the reduced density operator [212, 213],

S(ρA) = −Tr (ρA ln ρA) . (14.2)

The condition for a maximum entanglement of A and B, that is, the condition for

| ψ(A,B)〉 to be a maximally entangled state, is that S(ρA ) be a maximum. Note

that, for a product state of the type |Φ(A)〉 ⊗ |Φ(B)〉, the reduced density operator

corresponds to a pure state of the subsystem and, therefore, its von Neumann

entropy vanishes.

Since S(ρA ) is a homogeneous function of first degree in its dependency on EA ,

the energy of the sub-system A, we require δS(EA ) = 0 under the constraints

EA = 〈HA 〉 = TrρAHA, TrρA = 1, (14.3)

where HA is the Hamiltonian of system A. Following methods similar to those of

statistical mechanics, as presented in Chapter 2, we derive a constraint equation for

ρA,

α0 − 1 + α1HA + ln ρA = 0, (14.4)

where α0 and α1 are Lagrange multipliers associated with given constraints. Using

Eq. (14.4) we get a Gibbs-like density operator,

ρA =
1

Z
exp(α1HA), (14.5)

where Z = exp(1 − α0). Multiplying Eq. (14.4) by ρA , taking the trace and using

Eqs. (14.3) and (14.5), we derive

lnZ + α1EA + S = 0.

For convenience, let us write α1 = −1/τ , then we have τ lnZ = EA − τS. The

function F (τ) = τ lnZ describes the Legendre transform of S since we assume that

τ = ∂E/∂S. Here τ is an intensive parameter describing the fact that EA, given

by Eq. (14.3), is constant in the state described by ρA . Although fluctuations can

exist, these are not a result for any heat bath (or ensemble of states) but rather a
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consequence of the entanglement of the states A and B. We thus have a prescription

for a bipartite pure state |ψ(A,B)〉 to be maximally entangled, under the energy

constraint: its corresponding reduced density matrix, as defined in Eq. (14.1), is

explicitly given by Eq. (14.5), such that

Z = Tr exp(−τHA). (14.6)

This provides the maximum entangled state. In this way we show in the following

that, using the scheme of TFD for the SU(1, 1) and SU(2) symmetries, we can

explicitly construct examples of maximally entangled states, such that the mea-

surement of the entanglement is given by Eq. (14.2).

14.2 Maximally entangled states and SU(1, 1) symmetry

Let us consider a two boson oscillators described by creation, a† and b†, and anni-

hilation, a and b, operators satisfying the algebraic relations

[b, b†] = [a, a†] = 1, (14.7)

[a, b] = [a, b†] = [a†, b] = [a†, b†] = 0. (14.8)

Following the TFD approach, we construct a two-mode linear canonical transfor-

mation presenting an SU(1, 1) symmetry. First, define the following operators

S+ = a†b†,

S− = ab,

S0 =
1

2
(a†a+ bb†),

which satisfy the su(1, 1) algebra, namely

[S0, S±] = S±,

[S+, S−] = −S0.

Now, introduce a canonical transformation

U(γ) = exp[γ(S+ − S−)],

where γ is a parameter to be specified later. The canonical nature of U(γ) maintains

the invariance of the algebra specified by Eqs. (14.7) and (14.8) for the transformed

operators, which are given by

a(γ) = U(γ)a†U(γ),

a†(γ) = U(γ)a†U(γ),

b(γ) = U(γ)b†U(γ),

b†(γ) = U(γ)b†U(γ).

Consider the two-mode vacuum

|0a, 0b〉 = |0a〉 ⊗ |0b〉,
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such that a|0a〉 = b|0b〉 = 0. Applying the transformation U(γ), we have

|0(γ)〉 = exp[γ(S+ − S−)] | 0a, 0b〉, (14.9)

Here we use the notation |0(γ)〉 = |ψ(A,B)〉 for the transformed vacuum in order to

emphasize that we are dealing with a bipartite system, with A and B referring to the

degrees of freedom associated with the boson operators a†, a and b†, b respectively.

For convenience we write Eq. (14.9) as

|ψ(A,B)〉 = etanhγa†b†e− ln cosh γ(bb†+a†a)etanh(−ba)|0a, 0b〉

= exp(− ln cosh γ)
∑

m

(− tanh γ)m
1

m!
(a†b†)m|0a, 0b〉. (14.10)

Using this expression, we show that the state |ψ(A,B)〉 is a maximally entangled

state.

Consider the density matrix corresponding to the state |ψ(A,B)〉, ρ(A,B) =

|ψ(A,B)〉〈ψ(A,B)|, and take the trace in the B variables; the resulting reduced

density matrix is then

ρA = TrB [|ψ(A,B)〉〈ψ(A,B)|]

=
1

(cosh γ)2

∑

m,n

∑

l

1

m!n!
(− tanh γ)m+n(a†)n|0a〉〈0a|am〈l|(b†)n|0b〉〈0b|bm|l〉

=
1

(cosh γ)2

∞∑

m=0

(− tanh γ)2m|m〉〈m|.

Define the parameter τ such that

cosh γ(τ) =
1√

1− e−τw
tanh γ(τ) = e−τw/2 ;

with this parametrization, ρA is written as

ρA = (1− e−τw)

∞∑

m=0

e−τwm|m〉〈m|.

This expression can be cast in the canonical-Gibbs ensemble form by defining

HA = wa†a

and

Z(τ) = Tre−τHA = (1− e−τw)−1.

Then we have

ρA =
1

Z(τ)
e−τHA ,

showing that the state |ψ(A,B)〉 = exp[γ(S+−S−)]|0a, 0b〉, is a maximally entangled

state with the symmetry SU(1, 1).
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14.3 Maximally entangled states and SU(2) symmetry

In order to construct bipartite states of two systems A and B of maximum entan-

glement, with an SU(2) symmetry, we use the two-boson Schwinger representation

for the su(2) Lie algebra, developed before in Chapter 6.

The two bosons, with annihilation operators b1 and b2, are such that these op-

erators commute among themselves and also with the boson annihilation operators

a1 and a2, giving rise to the doubling of the su(2) algebra, i.e.

[S0, S±] = ±S±, (14.11)

[S+, S−] = 2S0, (14.12)

[S̃0, S̃±] = ±S̃±, (14.13)

[S̃+, S̃−] = 2S̃0, (14.14)

such that the tilde operators S̃−, S̃+ and S̃0 commute with the non-tilde operators

and are now given by

S̃+ = b†1b2 (14.15)

S̃− = b†2b1 (14.16)

S̃0 =
1

2
(b†1b1 − b†2b2). (14.17)

The non-tilde operators are

S+ = a†1a2

S− = a†2a1

S0 =
1

2
(a†1a1 − a†2a2).

It is important to point out that tilde operators here do not refer to the TFD

operators. Instead, these mimic TFD operators to underline the SU(2) symmetry.

Consider the state |ψ(A,B)〉 given by

|ψ(A,B)〉 = exp[γ(S+S̃+ + S−S̃−)]|0a, 0b〉,
= exp[γ(a†1b

†
1a2b2 − a†2b2†a1b1)]|0a, 0b〉

= (cos γ + sin γa†1b
†
1a2b2)|0a, 0b〉, (14.18)

where A represents the degrees of freedom described by the operators S; B rep-

resents the other system described by the operators S̃, and |0a, 0b〉 = |0a〉⊗|0b〉 =

|0, 1〉a⊗|0, 1〉b ≡ |0〉a1 |1〉a2 |0〉b1 |1〉b2 (see Chapter 6). The quantity γ is an arbitrary

constant to be specified. Consider ρ(A,B) = |ψ(A,B)〉〈ψ(A,B)|, and take the trace

in the B variables, that is

ρA = TrB|ψ(A,B)〉〈ψ(A,B)|
=
∑

m,n

(b)〈m|b1〈n|b1(cos γ + sin γa†1b
†
1a2b2)|0〉a1 |1〉a2 |0〉b1 |1〉b2〈1|b2〈0|b1〈0|a2〈1|a1

× (cos γ + sin γa†1b
†
1a2b2)

†|n〉b1 |m〉b2 ,
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where the indices in the states, as b2 in |1〉b2 or 〈1|b2 , are used to specify the action

of the different operators, so that |1〉b2 = b†2 |0〉b2 , and so on. With some algebraic

manipulations we get

ρA = cos2 γ|0〉a1 |1〉a2〈1|a2〈0|a1 + sin2 γ|1〉a1 |0〉a2〈0|a2〈1|a1 . (14.19)

In the case of spin 1/2, we have

|0〉a1 |1〉a2 = |s = 1/2,m = −1/2〉 ≡ | − 1/2〉,
and

|1〉a1 |0〉a2 = |s = 1/2,m = 1/2〉 ≡ |1/2〉.
Defining

cos γ =
1√

1 + e−τω
, sin γ =

e−τω/2√
1 + e−τω

,

ρA is written as

ρA =
1

Z
e−τωS0 |1/2〉 〈1/2|+ 1

Z
e−τωS0 |−1/2〉 〈−1/2| ,

since the eigenvalues of S0 are ± 1
2 . As TrρA = 1, then Z = e−τω/2 + eτω/2. Then

we have

ρA =
1

Z

∑

m=1/2,−1/2

e−τωS0 |m〉〈m|

=
1

Z
e−τωS0

∑

m=1/2,−1/2

|m〉〈m| = 1

Z
e−τHA ,

where HA = ωS0. Therefore the state given by Eq. (14.18) is a maximally entangled

state. The generalization for any value of spin is straightforward.

14.4 Entanglement of a system with fixed spin

In the last section |ψ(A = S,B = S̃; γ)〉 was used to describe a maximally entangled

state. If we consider an arbitrary spin value, corresponding to arbitrary values of

the number operators n1 and n2, |ψ(A = S,B = S̃; γ)〉 is a maximally entangled

state of two systems, each one with two bosons. However, for the system of two

(defined) spin 1/2 particles, for instance, we have the eingenvalues of the number

operator as n1 = 0, 1 and n2 = 0, 1, which no longer correspond to the spectrum

of bosonic number operators, but rather to fermionic-like ones. In such a case the

bosonic algebra does not describe physical bosons but works as auxiliary variables

to treat the entanglement of two spin systems. Accordingly, since we define a fixed

(not arbitrary) value for the spin, we have to analyze more closely the consequences

of that, with the Schwinger representation which is usually introduced for arbitrary

spin.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

SU(2) and SU(1, 1) Systems: Entanglement 251

Returning to the Schwinger bosonic representation, imposing the conditions on

the spectrum of n1 (= 0, 1) and n2 (= 0, 1), and defining s with a fixed value, then

we are lead to a situation of redefining the algebra of the auxiliary operators a1

and a2. Summarizing first our results, originally operators a1 and a2, and their

hermitian adjoint operators, a†1 and a†2, satisfy the bosonic algebra

[a1, a
†
1] = [a2, a

†
2] = 1, (14.20)

[a1, a2] = [a1, a
†
2] = [a†1, a2] = [a†1, a

†
2] = 0. (14.21)

In addition, for the spin 1/2, we have the subsidiary conditions (allowing the fixed

value for the spin),

[a1, a
†
1]+ = [a2, a

†
2]+ = 1, (14.22)

[a1, a2]+ = [a1, a
†
2]+ = [a†1, a2]+ = [a†1, a

†
2]+ = 0, (14.23)

where [, ]+ stands for the anticommutator. A solution that fulfills all these condi-

tions, Eqs. (14.20)–(14.23), is found by assuming the algebra for the operators ai
and a†i , (i = 1, 2) to be

aia
†
i = 1, (14.24)

[Ni, a
†
i ] = a†i , (14.25)

[Ni, ai] = −ai, (14.26)

with aiai = a†ia
†
i = 0 and Ni = a†iai . Indeed it is a simple matter to show that in

this case the eigenvalues of the number operators are ni = 0, 1, i = 1, 2.

For the case of spin 1, we consider the basic algebra given by Eqs. (14.24)–(14.26)

with Ni given by

Ni = a†iai + a†ia
†
iaiai,

such that a†ia
†
ia
†
i = aiaiai = 0, that is third and higher order monomials of a†i and

ai are zero. In this case we derive ni = 0, 1, 2, (see Chapter 6) and we find s = 1

and m = −1, 0, 1.

This procedure can be generalized for an arbitrary but fixed value of spin. That

is, for a spin s, such that ni = 2s, we consider Eqs. (14.24)–(14.26) supplemented

by a proper definition of Ni, which reads

Ni =

2s∑

j=1

(a†i )
j(ai)

j . (14.27)

For the particular situation in which s → ∞, we will find the approach of infinite

statistics proposed by Greenberg [214, 215].

In short, we have explored the similarity with the usual definition of entropy in

statistical mechanics to construct maximally entangled states using the approach of

TFD. As TFD is a thermal formalism founded on algebraic bases (duplication of the

usual Hilbert space and Bogoliubov transformations), it has been used as a compass

to give the proper direction to build maximum entangled states with a well-defined
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symmetry. We have studied the case of two bosons with SU(1, 1) symmetry and

four bosons (actually two systems, each one with two bosons) with SU(2) symmetry.

Still in the case of SU(2) symmetry, the entanglement of two systems with fixed

value of spin ia considered, using a modified version of the two-boson Schwinger

representation for the su(2) Lie algebra.

The usual way to describe fixed value of spin using boson operators was proposed

by Holstein and Primakof [218]. However such a method works if we are interested

in describing a system with spin via one bosonic operator. But this has not been

the case here, since it needed two operators associated to each spin to introduce

the state of maximum entanglement through TFD. Obviously for a finite spectrum,

the pair of Schwinger operators loses the bosonic characteristic, giving rise to a new

algebra.

14.5 Entanglement of two-boson squeezed states

Let us consider a two-boson system specified by the operators a and b obeying the

algebra [a, a†] = [b, b†] = 1, [a, b] = 0. Initially, we restate the results presented

in Sec. 14.2 with the language of squeezed states. In general, we can consider this

in terms of two independent electromagnetic field modes. We define two unitary

displacement operators, one for each mode,

Da(ξ) = exp[ξa† − ξ∗a], (14.28)

Db(η) = exp[ηb† − η∗b], (14.29)

and the two-mode squeezing operator

Sab(γ) = exp[γ(a†b† − ab)], (14.30)

with γ a real non-negative number for simplicity. From now on, we use the subscript

a and b referring to the subsystems (the field modes) A and B of the bipartite system

(A,B).

The operator Sab(γ) engenders a rotation in the two-mode space, similar to that

of the Bogoliubov transformation in TFD; thus, using the standard TFD procedure

(see Chapters 5 and 6), we get

a(γ) = Sab(γ)aS
†
ab(γ) = u(γ)a− v(γ)b†,

a†(γ) = Sab(γ)a
†S†ab(γ) = u(γ)a† − v(γ)b,

b(γ) = Sab(γ)bS
†
ab(γ) = u(γ)b− v(γ)a†,

b†(γ) = Sab(γ)b
†S†ab(γ) = u(γ)b† − v(γ)a,

where u(γ) = cosh(γ) and v(γ) = sinh(γ).

Let us first consider the two-mode squeezed vacuum (TMSV) defined by

|γ〉ab = Sab(γ)|0〉ab, (14.31)
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where

|0〉ab = |0〉a ⊗ 0〉b ≡ |0〉a|0〉b (14.32)

is the two-mode vacuum with a|0〉a = b|0〉b = 0. For the two-mode squeezed state,

we have

a(γ)|γ〉ab = b(γ)|γ〉ab = 0, (14.33)

so that it has the same structure as the thermal vacuum used to introduce TFD.

Another important result is that Sab(γ) is a canonical transformation, i.e.

[a(γ), a†(γ)] = [b(γ), b†(γ)] = 1 , [a(γ), b(γ)] = 0 .

Using the operator identity

exp[γ(A+B)] = exp[(tanh γ)B] exp[(ln cosh γ)C] exp[(tanh γ)A],

with A = −ab, B = a†b† and C = [A,B] = −a†a− bb†, the TMSV is written as

|γ〉ab =
1

cosh γ
exp[(tanh γ)a†b†] |0〉ab.

Introducing the change of parametrization by taking tanh γ = exp(−τ/2), and

defining

Z(τ) = [1− exp(−τ)]−1 = Tr exp[−τa†a],
we find

|γ〉ab =
1√
Z(τ)

∞∑

n=0

e−τn/2|n〉a|n〉b. (14.34)

Therefore, the TMSV |γ〉ab is written as

|γ〉ab =
√
fa(τ)

∞∑

n=0

|n〉a|n〉b, (14.35)

where

fa(τ) =
1

Z(τ)
exp(−τa†a). (14.36)

This form makes it easy to show that the TMSV is a maximally entangled state;

however, we use it to prove a more general result.

Consider two-mode squeezed coherent states, also referred to as Caves-

Schumaker (CS) states, which are defined as a result of the action of the two-mode

squeezing operator on a two-mode coherent state, i.e.

|ξ, η, γ〉〉 = Sab(γ)Da(ξ)Db(η)|0〉ab. (14.37)

It can be shown that, with an appropriate choice of parameters, this state coincides

with a two-mode displaced squeezed vacuum, that is

|ξ, η, γ〉〉 = |ξ̄, η̄, γ〉,
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with

|ξ̄, η̄, γ〉 = Da(ξ̄)Db(η̄)Sab(γ)|0〉ab. (14.38)

The new parameters, ξ̄ and η̄, are related with the former ones by
(
ξ̄

η̄∗

)
= BB(γ)

(
ξ

η∗

)
; (14.39)

where BB(γ) is the matrix form associated with Sab(γ) given by

BB(γ) =

(
u(γ) −v(γ)
−v(γ) u(γ)

)
. (14.40)

Note that, for ξ = η = 0, the CS state reduces to the TMSV, |γ〉ab = Sab(γ)|0〉.
We explore these results to show that the state |ξ, η, γ〉〉 leads to a well-defined

Gibbs-like density matrix.

To do so, we calculate the reduced density matrix, say ρa = Trbρab, associated

with the density operator describing the CS state, taking ρab = |ξ, η, γ〉〈γ, η, ξ|.
Using the notation,

|r〉b =
1√
n!

(b†)r|0〉b

(similarly for mode a) to represent the number states, we write the matrix elements

of ρa as

〈s|ρa|t〉 =
∑

r

a〈s|b〈r|ρab|r〉b|t〉a

=
∑

r,m,n

a〈s|Da(ξ)
√
fa(τ)|n〉ab〈r|Db(η)|n〉b

× b〈m|Db(η)
†|r〉ba〈m|

√
fa(τ)Da(ξ)

†|t〉a.
Changing the order of the matrix elements in the bmode, and using the completeness

relation, we obtain

〈s|ρa|t〉 = 〈s|Da(ξ)fa(τ)Da(ξ)
†|t〉.

Thus, we get

ρa = Da(ξ)fa(τ)D
†
a(ξ) =

1

Z(τ)
exp

[
−τa†(ξ)a(ξ)

]
, (14.41)

where

a(ξ) = Da(ξ)aD
†
a(ξ)

is the displaced annihilation operator of mode a. Therefore, ρa is a Gibbs-like

density matrix. In particular, for ξ = 0, we find ρa = fa(τ) showing that the

TMSV, |γ〉ab, also generates a Gibbs-like reduced density matrix.

Using the displaced Fock basis, {Da(ξ)|n〉a}, we show that the reduced von

Neumann entropy for a CS state is

S(τ) =
τ

eτ − 1
− log

(
1− e−τ

)
. (14.42)
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Thus, all CS states, with the same (fixed) squeezing parameter, have the same

amount of entanglement independent of the displacement parameters. Among them,

the one having the smallest energy is the TMSV (ξ = 0); its reduced energy, Ea =

Tr(ρaa
†a), is given by

E(τ) =
1

eτ − 1
.

Since both actions of displacing and squeezing the vacuum lead to states with greater

energy, the TMSV is the maximum entangled state when the energy is fixed.

Let us now analyze comparatively the amount of entanglement of the TMSV.

Consider the state

|Ψ〉(N)
ab =

1

N

N−1∑

n=0

|n〉a |n〉b

which has reduced energy and entropy given by

E ′(N) = (N − 1)/2,

S ′(N) = logN.

This state has the greatest amount of entanglement among all pure

states belonging to the finite (N 2) dimensional subspace spanned by

{|0〉a |0〉b , |0〉a |1〉b , . . . , |N − 1〉a |N − 1〉b}, corresponding to equal occupation

probability. Naturally, as N → ∞, both energy and amount of entanglement of

|Ψ〉(N)
ab goes to ∞.

Now, take another parametrization of the TMSV by writing

τ = log(χ+ 1)− log(χ− 1);

the limiting cases of zero and infinite squeezing correspond to χ = 1 (γ = 0, τ =∞)

and χ = ∞ (γ = ∞, τ = 0), respectively. The reduced energy and the amount of

entanglement of the TMSV are then written as

E(χ) =
χ− 1

2

S(χ) =
1

2
[(χ+ 1) log(χ+ 1)− (χ− 1) log(χ− 1)− 2 log 2] .

We find that both E(χ) and S(χ) go to∞ as χ→∞, with S(χ) ∼ logχ in this limit.

In Fig. 14.1, we plot the difference between S(χ) and logχ, showing explicitly that

the TMSV has an amount of entanglement greater than that of the state |Ψ〉(N)
ab

with the same energy, for all N ≥ 2. This comparison emphasizes the fact that the

maximum entanglement states, that we discussed, are under the energy constraint.

14.6 Coherent fermion states and density matrix operators

The experimental tools of laser cooling, magnetic and magneto-optic traps have

advanced tremendously [219, 220]. This leads to the production of a degenerate
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Fig. 14.1 Plot of ∆S = S(χ)− log χ as a function of χ. The dots on the curve indicate the values
of the difference S(N) − S ′(N).

Fermi gas as well as condensates of rare isotopes, a fact that has been achieved

through the technique called sympathetic cooling [220]. Due to the nature of the

Fermi gas, it is not possible to cool it to very low temperatures by itself. However, if

it is mixed with a Bose condensate, then that would produce a degenerate Fermi gas,

and recent experiments have pointed out such a possibility [221–224]. In fact such a

gas has been employed to form Fermi molecular gas using the Feshbach resonances.

These experiments have formed a 6Li degenerate Fermi gas. Then by introducing

a magnetic field and ramping it over the Feshbach resonances, molecular (6Li2) gas

is formed. The probability of formation varies from ∼ 50% to ∼ 80%, which is

to be compared with the Boson case where the molecule formation probability is

∼ 100%. These results suggest that a careful study of the Fermi coherent state and

Fermi density operators is needed. Some of these concepts have been introduced

for fermion systems [225–227, 78]. Cahill and Glauber [228] have introduced P -

function, Q-function and Wigner function for fermions; all of them are described

as a counterpart of the bosonic systems and are made possible through the use of

Grassmann variables.

A coherent fermion state [225, 226, 228] can be defined by introducing a

displacement-like operator D(ξ), where ξ is a Grassmann variable, trying to repro-

duce formally the basic results of the boson case. This is accomplished in the follow-

ing way. Consider two Grassmann numbers ξ and η; as we discussed in Chapter 3

we have {ξ, η} = ξη+ηξ = 0, and {ξ, a} = {ξ, a†} = 0, where the fermion operators

a and a† satisfy the anticommutation relation {a, a†} = 1. (In this section, without

risk, we keep the same notation for the creation and annihilation operators as that

for bosons.) The complex conjugation is taken as an antilinear mapping ∗ : ξ→ ξ∗

such that, for a general expression involving Grassmann numbers and the operators

a and a†, with c ∈ C, we have

(ξiξ
∗
j + cηiηj)

∗ = ξjξ
∗
i + c∗η∗j η

∗
i ,

(aiξja
†
kη
∗
l )
† = (η∗l ξjaia

†
k)
† = aka

†
i ξ
∗
j ηl .

The Grassmann variable ξ is considered independent of ξ∗.
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The fermion displacement operator is defined by

Da(ξ) = exp(a†ξ − ξ∗a), (14.43)

such that

Da(ξ)aD
†
a(ξ) = a− ξ,

with the coherent state given by

|ξ〉 = Da(ξ)|0〉a,
such that a|ξ〉 = ξ|ξ〉. Then we prove that the dual coherent state is given by

〈ξ| = 〈0|D†a(ξ), with D†a(ξ) = D−1
a (ξ). As a consequence

〈ξ|η〉 = exp

(
ξ∗η − 1

2
ξ∗ξ − 1

2
η∗η

)

and 〈ξ|D†a(ξ) = 〈ξ|ξ∗. In terms of the number basis, the state |ξ〉 is written as

|ξ〉 = e−ξ
∗ξ/2

1∑

n=0

(−ξ)n|n〉 (14.44)

and, then, we have 〈n|ξ〉 = exp(−ξ∗ξ/2)(ξ)n.

The integration is defined, as usual, by
∫
dξ = 0 and

∫
dξξ = 1. Note that, in

particular, we have
∫
dξ∗ξ∗ = 1, resulting in (dξ)∗ = −dξ∗, and∫

dξ∗dξ ξξ∗ = 1 ,

∫
dξ∗dξ |ξ〉〈ξ| =

∫
d2ξ |ξ〉〈ξ| = 1

Cahill and Glauber [228] introduced the following coherent fermion state repre-

sentation for a density operator, i.e.

ρ =

∫
d2ξ P (ξ) | − ξ〉〈ξ|,

where P (ξ) is the corresponding P -function. Notice that the density operator

ρξ = | − ξ〉〈ξ|. (14.45)

possesses the expected properties to be taken as representing the coherent state |ξ〉.
First, it is normalized, Trρξ = 1. This property can be proved from the matrix

representation of ρξ , by calculating 〈m|ρξ |n〉 = exp(ξξ∗)(−ξ)m(ξ∗)n, giving rise to

ρξ =

(
1− ξ∗ξ ξ∗

−ξ ξ∗ξ

)
.

Secondly, Tr(ρξa
†a) = ξ∗ξ, which is similar to the boson case. Observe that ρξ,

although not being hermitian, is introduced in such way that ρ† = ρ [228].

Using the properties described above, we can prove that the displaced fermion

number state is given by

Da(ξ)|n〉 = (a† − ξ∗)n|ξ〉,
with n = 0, 1. Another property useful for calculations but reflecting also the nature

of ρξ is given by

〈m|ρξ |n〉 = (−1)m(n+1)〈ξ|n〉〈m|ξ〉, (14.46)

where 〈m|ρξ |n〉 = 〈m|− ξ〉〈ξ|n〉. For m = n we have 〈n|− ξ〉〈ξ|n〉 = 〈ξ|n〉〈n|ξ〉. The

usefulness of this result is apparent in proving that Trρξ = 1.
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14.7 Entanglement of two-mode squeezed fermion states

Let us now consider a two-fermion system, specified by the operators a and b sat-

isfying the algebra {a, a†} = {b, b†} = 1, with all other anti-commutation relations

being zero. A fermionic two-mode squeezed vacuum state is defined by

|γ〉ab = Sab(γ)|0〉ab, (14.47)

where

Sab(γ) = exp[γ(a†b† − ab)]

and γ is taken as a real number, for simplicity. Similarly to the bosonic case, some

useful formulas can be derived using Sab(γ):

a(γ) = Sab(γ)aS
†
ab(γ) = u(γ)a− v(γ)b†,

b(γ) = Sab(γ)bS
†
ab(γ) = u(γ)b+ v(γ)a†,

and the corresponding ones for a†(γ) and b†(γ); now, however, u(γ) = cos(γ) and

v(γ) = sin(γ). Thus, for the fermion two-mode squeezed vacuum state |γ〉ab, we

have a(γ)|γ〉ab = b(γ)|γ〉ab = 0, since a|0〉a = b|0〉b = 0.

The squeezing operator Sab(γ) is a canonical transformation, in the sense that,

the anti-commutation relations are preserved,

{a(γ), a(γ)†} = {b(γ), b(γ)†} = 1 , {a(γ), b(γ)} = 0 .

The matrix form BF (γ) associated with Sab(γ) is

BF (γ) =

(
u(γ) v(γ)

−v(γ) u(γ)

)
. (14.48)

The vector |γ〉ab can be written as a TFD state. To see that let us write

|γ〉ab = [1− γ(ba− a†b†) +
γ2

2!
(ba− a†b†)2 + ...]|0〉ab. (14.49)

Using the property

(ba− a†b†)2n|0〉ab = (−1)n|0〉ab ,

and introducing the following reparametrization

u(γ) = cos γ =
1√

1 + e−τ

v(γ) = sin γ =
1√

1 + eτ
,

we obtain

|γ〉ab =
(
cos γ + sin γ a†b†

)
|0〉ab

1√
1 + e−τ

(1 + e−τ/2a†b†)|0〉ab. (14.50)
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Defining Z(τ) = 1 + e−τ , we get

|γ〉ab =
1√
Z(τ)

e−τN/2 (|0〉a|0〉b + |1〉a|1〉b) , (14.51)

where N = a†a, the fermion number operator for the mode a, is such that N |n〉a =

n|n〉a. Therefore, we obtain

|γ〉ab =
√
fa(τ)

1∑

n=0

|n〉a|n〉b,

with

fa(τ) =
1

Z(τ)
exp(−τa†a).

With these results, we can prove the following statement. Given the two fermion

displacement operators,

Da(ξ) = exp(a†ξ − ξ∗a),
Db(η) = exp(b†η − η∗b),

where ξ and η are Grassmann numbers, then

Sab(γ)Da(ξ)Db(η) = Da(ξ̄)Db(η̄)Sab(γ) (14.52)

where (
ξ̄

η̄∗

)
= BF (γ)

(
ξ

η∗

)
. (14.53)

Thus, the fermion version of the CS state, defined by

|ξ, η; γ〉〉ab = Sab(γ)Da(ξ)Db(η)|0〉ab,
is related to the state

|ξ, η; γ〉ab = Da(ξ)Db(η)Sab(γ)|0〉ab
by the transformation given in Eqs. (14.52) and (14.53). As in the bosonic case,

when ξ = η = 0 we have the two-fermion squeezed vacuum state |γ〉ab = Sab(γ)|0〉ab.
Now we turn our attention to the nature of the entanglement in squeezed fermion

states. Considering the states |ξ, η; γ〉 and inspired by the definition of the density

operator given in Eq. (14.45), we introduce the following density matrix, associated

with the CS state,

ρab = | − ξ,−η, γ〉〈γ, η, ξ|. (14.54)

Performing the trace in the mode b and using the properties derived before, we can

prove that

ρa = Da(ξ)fa(τ)Da(ξ)
†,

similar to the boson case. Then we find that the state |ξ, η, γ〉 has reduced density

operator in the form of a Gibbs-like density. The reduced entropy is thus maximal.
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However, in the fermionic case, the CS states are not in general physical states [228]

since they involve Grassmann variables. The two-fermion squeezed vacuum state

|γ〉ab, corresponding to the CS state with ξ = η = 0, is nevertheless physical and

maximally entangled.

It is worth mentioning that, in the case of fermions, there is another class of

physical states having maximum entanglement for a given value of the reduced

energy. In fact, one can show that the state

|γ〉′ab =
1√
Z(τ)

(
|0〉a|1〉b + e−τ/2|1〉a|0〉b

)
(14.55)

has a reduced density operator, ρ′a, identical to the reduced density operator ρa,

associated with the state |γ〉ab; therefore, these states have identical reduced energy

and entropy to those of the two-fermion squeezed vacuum and are also maximally

entangled states.

Summarizing, in this chapter we have analyzed some classes of two-mode boson

and fermion states, looking for explicit realization of maximum entangled states

with fixed energy. We have studied the case of squeezed two-mode boson states,

and then, constructed the fermion version, to show that such states, in both cases,

are maximum entangled. For achieving these results we have demonstrated some

relations involving the squeezed boson states, which are then extended to the case

of fermions. The calculations for fermions are performed with a generalization of

the fermion density operator introduced by Cahill and Glauber [228].



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

PART IV

Compactified Fields

261



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

262



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Chapter 15

Compactified Fields

Considering a topology of the type ΓdD = S11 × ... × S1d × RD−d, fields compacti-

fied in space and time are studied. In the analysis, a Bogoliubov transformation is

introduced which accounts simultaneously for spatial compactification and thermal

effects. Such a Bogoliubov transformation provides a generalization of the ther-

mofield dynamics [95–97, 106, 231]. In the same context the generalization of the

Matsubara formalism is analyzed. For both cases the Feynman rules are stated and

these results are the basic tool for applications discussed in the following chapters.

The formulation of the quantum field theory on curved space time is, for long,

one of the most intricate and still not fully solved problem in physics. Its im-

portance lies in the fact that several physical systems are described within such

a formalism. In particular, we find the class of systems defined on flat spaces,

with non-trivial topologies. This is the case of space-time considered as a simply

or non-simply connected D-dimensional manifold with topology of type ΓdD . The

topological structure of the space-time does not modify local field equations written

in the Minkowski space. However, the topology imposes modifications on boundary

conditions over fields and Green functions [232, 233]. The physical manifestation

of this type of topology includes, for example, vacuum energy fluctuations, giving

rise to the Casimir effect, or in phase transitions, the dependence of the critical

temperature on the parameters of compactification. In the later case, there is, in

the literature, an experimental interest in the analysis of the dependence of the crit-

ical temperature of superconductors on spatial boundaries such as films, wires and

grains [234–236]. In the case of the Casimir effect, as was first analyzed [237], the

vacuum fluctuations of the electromagnetic field confined between two conducting

plates with separation L give rise to an attractive force between the plates. The

effect has been applied to different geometries, fields and physical boundary condi-

tions [238–241] with interest in different areas such as the confinement in particle

physics and cosmological models.

In another context, this type of topology ΓdD emerges in quantum field theory

at finite temperature, as we have pointed out in Chapter 8. In this case we have

Γ1
4 = S1 × R3, where the dimension of compactification is the time axis, and the

circumference S1 has length β = 1/T, where T is the temperature. The formal-

263
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ism of the quantum field theory at finite temperature can be extended for space

coordinates. One aspect still to be understood in this case is how to derive this

prescription from a topological level, such that one can take into account bound-

ary conditions other than those imposed by the KMS condition. This is one of

the central aspects to be considered in the present chapter. For this a purpose, we

start with purely topological elements and consider the ingredients of the imaginary

time formalism and the thermofield dynamics to describe a quantum field theory

in ΓdD. A physical consequence of such a procedure is that the compactification is

interpreted as a process with condensation of the field in the vacuum.

15.1 Compactification and topology

Consider a D dimensional Minkowski space, as a simply or non-simply connected

flat space-time, but with a topology ΓdD where d is the number of compactified

dimensions. Taking initially the scalar field, the Green function satisfies the D-

dimensional Klein-Gordon equation

(� +m2)G(x;β) = δ(x). (15.1)

The topology ΓdD does not change the local properties of the system. This implies

that locally the Minkowski space, as well as the differential equation describing the

evolution of the system, are the same. However, the topology imposes modifications

on boundary conditions to be fulfilled by the field and the respective Green function.

15.1.1 Compactification of one space dimension

To start we take d = 1 and D = 4, with S1 standing for the compactification in one

spatial dimension, say x1, and with the length of the circumference S1 being L1.

For this Γ1
4 topology, the Green function satisfies the periodic boundary condition,

G(x0, x1, x2, x3) ≡ G(x0, x1 + L1, x
2, x3) = G(x + L1n1), (15.2)

where n1 = (nµ1 ) = (0, 1, 0, 0) is a space-like vector. Note that x1 = 0 is identified

with x1 = L1 due to the topology, such that 0 ≤ x1 ≤ L1; the other space-

axis variables run in the interval (−∞,+∞). A solution for Eq. (15.1), respecting

Eq. (15.2), is obtained by analyzing the Fourier expansion of the Green function,

resulting in

G(x − y;L1) =
1

L1

∞∑

n=−∞

1

(2π)3

∫
dp0dp2dp3e

−ipn(x−y)G(pn;L1), (15.3)

where

pn = (p0, p1n, p2, p3), p1n =
2πn

L1
,

and

G(pn;L1) =
−1

p2
n −m2

. (15.4)
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In addition, we write,

G(pn;L1) =

∫ L1

0

dx1

∫
dx0dx2dx3eipn(x−y)G(x− y;L1). (15.5)

This solution is useful to treat perturbative theories, as shown by Birrel and

Ford [232]. However, it would be interesting to separate the divergent contribu-

tion of the flat space-time from terms describing the topological effect in the ex-

pression for G(x − y;L1). In this case, we can investigate and treat the divergent

contributions arising from the free space-time, and analyze the limits as, for in-

stance, L1 → ∞, resulting in a 3 + 1 flat space-time, or L1 → 0, a 2 + 1 flat

space-time. This is accomplished here, following some adaptation of the Dolan and

Jackiw calculations to separate the effect of temperature in the Green function for

the scalar field [60]. The method is based on finding the Fourier transform (the

integral Fourier representation) of G(x− y;L1).

We write G(x− y;L1) as

G(x− y;L1) = θ(x1 − y1)G>(x− y;L1) + θ(y1 − x1)G<(x− y;L1). (15.6)

From Eq. (15.2), we have

G<(x;L1) |x1=0 = G>(x;L1) |x1=L1
. (15.7)

Using this form, Eq.(15.5) reads

G(pn;L1) =

∫ L1

0

dx1

∫
dx0dx2dx3eipnxG>(x;L1). (15.8)

The integral Fourier transform of G(x− y;L1), denoted by G(p;L1), is

G(p;L1) = G
(1)

(p;L1) +G
(2)

(p;L1), (15.9)

where

G
(1)

(p;L1) =

∫
d4xeipxθ(x1)G>(x;L1), (15.10)

G
(2)

(p;L1) =

∫
d4xeipxθ(−x1)G<(x;L1). (15.11)

Writing

G>(x;L1) =

∫
d4p

(2π)4
e−ipxG

>
(p;L1) (15.12)

and using the integral representation of the step function,
∫
dk1 e−ik

1x1

k1 + p1 + iε
= (−2πi)eip

1x1

θ(x1),

in Eq. (15.10), we derive

G
(1)

(p;L1) = i

∫
dk1

2π

G
>

(p0, k1, p2, p3;L1)

k1 − p1 + iε
. (15.13)
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With

G<(x;L1) =

∫
d4p

(2π)4
e−ipxG

<
(p;L1),

and the integral representation of the step function,
∫
dk1 e−ik

1x1

k1 + p1 − iε = 2πieip
1x1

θ(−x1),

in Eq. (15.11. ), we derive

G
(2)

(p;L1) = −i
∫
dk1

2π

G
<

(p0, k1, p2, p3;L1)

k1 − p1 − iε . (15.14)

Substituting Eqs. (15.13) and (15.14) in Eq. (15.9), we get

G(p;L1) = i

∫
dk1

2π

[
G
>

(p0, k1, p2, p3;L1)

k1 − p1 + iε
− G

<
(p0, k1, p2, p3;L1)

k1 − p1 − iε

]
(15.15)

Now we show how the periodicity condition is written in momentum space. From

Eq. (15.7) we have

G<(x0, x1, x2, x3;L1) = G>(x0, x1 + L1, x
2, x3;L1)

= eL1∂1G>(x0, x1, x2, x3;L1).

Considering the Fourier transform of G<(x, L1), we get

G
<

(p;L1) =

∫
d4peipxG<(x;L1)

=

∫
d4peipxeL1∂1G>(x;L1).

Using Eq. (15.12) in this expression, we find

G
<

(p;L1) = eiL1p
1

G
>

(p;L1). (15.16)

Defining

fL1(p
1) =

1

eiL1p1 − 1
,

we write

G
>

(p;L1) = fL1(p1)A(p;L1) (15.17)

G
<

(p;L1) = [fL1(p1) + 1]A(p;L1), (15.18)

that, using Eq. (15.16), gives

A(p;L1) = G
<

(p;L1)−G
>

(p;L1).

With these results, Eq. (15.15) reads

G(p;L1) = i

∫
dk1

2π

[
fL1(k

1)A(p0, k1, p2, p3;L1)

k1 − p1 + iε

− [fL1(k
1) + 1]A(p0, k1, p2, p3;L1)

k1 − p1 − iε

]
. (15.19)
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We do not have as yet an explicit expression for A(p;L1). To determine this func-

tion, we use the fact that we know G(pn;L1), according to Eq. (15.4). Combining

Eqs. (15.8) and (15.12) we have

G(pn;L1) =

∫ L1

0

dx1

∫
dx0dx2dx3epnx

∫
d4k

(2π)4
e−ikxG

>
(k;L1).

Using Eq. (15.17) and the integral
∫ L1

0

dx1e−i(p
1
n−k1)x1

=
1

fL1(k
1)

i

p1
n − k1

,

we obtain

G(pn;L1) = i

∫
dk1

2π

A(p0, k1, p2, p3;L1)

p1
n − k1

,

where A(p) is the spectral function associated with the momentum p1.

We consider the analytic continuation of G(pn;L1) to take p1
n to a continuum

variable, p1. The only possible analytical continuation of G(pn;L1) without essential

singularity at p→∞ is the function

G0(p) = i

∫
dk1

2π

A(p0, k1, p2, p3)

p1 − k1
,

where, by definition,

G0(p) =
−1

p2 −m2
. (15.20)

Using this result, we calculate A(p) by showing that

G(p; ε) = G0(p0, p
1 + iε, p2, p3)− G0(p0, p

1 − iε, p2, p3)

= i

∫
dk1

2π
A(p0, k1, p2, p3)

[
1

p1 − k1 + iε
− 1

p1 − k1 − iε

]

= i

∫
dk1

2π
A(p0, k1, p2, p3)(−2πi)δ(p1 − k1).

where we have used

δ(x) = lim
ε→0

1

2πi

[
1

x− iε −
1

x+ iε

]
.

It results in

A(p) = G0(p0, p
1 + iε, p2, p3)− G0(p0, p

1 − iε, p2, p3)

describing a discontinuity of G0(p) across the real axis p1.

As G0(p) is given in Eq. (15.20), we find the spectral function

A(p) =
−1

(p0)2 − (p1 + iε)2 + (p2)2 − (p3)2 −m2

+
1

(p0)2 − (p1 − iε)2 + (p2)2 − (p3)2 −m2
,
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resulting in

A(p) = −2πiδ(p2 −m2). (15.21)

Then the spectral function ensures the mass-shell condition.

Using Eq. (15.21) and the identity

δ(x2 − y2) =
1

2|y| [δ(x + y) + δ(x− y)] ,

Eq. (15.19) reads

G(p;L1) = G0(p) + v2
B(p1;L1)[G0(p)−G∗0(p)],

where

G0(p) =
−1

p2 −m2 + iε

and

v2
B(p1;L1) = fL1(p

1) =
∞∑

l=1

e−ilL1p
1

.

The subscript B in v2
B(p1, β) is to emphasize the boson nature of the field. As a

final result we find

G(x− y;L1) =

∫
d4p

(2π)4
e−ip(x−y){G0(p) + v2(p1, L1)[G0(p)−G∗0(p)]}, (15.22)

where

G0(p)−G∗0(p) = 2πiδ(p2 −m2) = −A(p).

One basic and important result in this representation is that the content of the flat

space is given in a separated term involving only G0(p), while the topological effect

is present in the term with v2
B(p1, L1), describing the effect of compactification.

This feature will play an important role in calculating Casimir effect.

15.1.2 Compactification of time dimension

In quantum field theory at finite temperature we have the KMS condition, that for

boson operators, reads

〈AH (t)BH(t′)〉β = 〈BH(t′)AH(t+ iβ)〉β .
An immediate consequence of the KMS condition is that the Green function is also

periodic, i.e.

G(x − y;β) = G(x− y − iβn0;β), (15.23)

where n0 is a time-like vector given by (nµ0 ) = (1, 0, 0, 0). With a Wick rotation,

such that t → iτ , the KMS condition assures that G(x − y, β) is a solution of the

Euclidian Klein-Gordon equation with � = −(∂2
τ +O) under the periodic boundary

condition, with period β.
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As a result of the periodicity, the Fourier representation for G(x, β) is written

as

G(x− y;β) =
1

β

∞∑

n=−∞

∫
d3p

(2π)3
e−ipn(x−y)

p2 +m2 + iε
, (15.24)

with pn = (p0
n, p

1, p2, p3), and p0
n = 2πn/β being the Matsubara frequency. There-

fore, the effect of temperature introduced by the Matsubara formalism corresponds

to taking the T = 0 Euclidian theory written in a topology S1 × R3, where the

circumference S1 has perimeter β. This is the content of the KMS condition. There-

fore, the integral Fourier representation of G(x − y;β) is calculated following the

same steps used for the compactification of one-space dimension, using the energy

spectral function given by [60, 243]

A(p) = G0(p0 + iε,p)− G0(p0 − iε,p).

The final result is

G(x − y;β) =

∫
d4p

(2π)4
e−ip(x−y)G0(p;β), (15.25)

where

G0(p;β) = G0(p) + v2
B(p0;β)[G0(p)−G∗0(p)]

= G0(p) + 2πiv2
B(p0;β)δ(p2 −m2) (15.26)

and

v2
B(p0;β) =

∞∑

n=1

e−nβ|p0| =
1

eβ|p0| − 1
= n(β). (15.27)

15.1.3 Compactification of space and time

We consider now the topology Γ2
4 = S1 × S1 × R2, treating a boson field in two

compactified dimensions in the directions x0 and x1. This is equivalent to imposing

on the Green function periodic boundary conditions along two directions. In the x1-

axis, the compactification is in a circumference of length L1; and in the Euclidian

x0-axis, the compactification is in a circumference of length β. In this case, the

series-integral Fourier expansion of the Green function is

G(x − y;β, L1) =
1

L1

∞∑

l=−∞

1

β

∞∑

n=−∞

1

(2π)2

×
∫
dp2dp3e

−ipnl(x−y)G(pnl;β, L1), (15.28)

where

pnl = (p0
n, p

1
l , p

2, p3),

with

p0
n =

2πn

β
; p1

l =
2πl

L1



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

270 Thermal Quantum Field Theory: Algebraic Aspects and Applications

and

G(pnl;β, L1) =
−1

p2
nl −m2

. (15.29)

In order to find the integral Fourier representation of G(x−y;β;L1), we proceed

by first treating the sum in l. We write Eq. (15.28) as

G(x− y;β, L1) =
1

β

∞∑

n=−∞
Gn(x− y;L1), (15.30)

where

Gn(x− y;L1) =
1

(2π)2
1

L1

∞∑

l=−∞

∫
dp2dp3e

−ipnl(x−y)G(pnl;L1).

Therefore, following the same steps as for the case of G(x − y;L1), we obtain

Gn(x− y;L1) =
1

(2π)3

∫
dp1dp2dp3e

−ipn(x−y)G(pn, L1),

where

G(pn, L1) = G0(pn) + v2
B(p1, L1)[G0(pn)−G∗0(pn)] .

Using this result in Eq. (15.30), and following the steps for the case of time con-

finement, we derive

G(x− y;β, L1) =

∫
d4p

(2π)4
e−ip(x−y){G(p;L1)

+v2
B(p0;β)[G(p;L1)−G

∗
(p;L1)]},

that can be written as

G(x− y;β, L1) =

∫
d4p

(2π)4
e−ip(x−y){G0(p)

+v2
B(p0, p1;β, L1)[G0(p)−G∗0(p)]},

where

v2
B(k0, k1;β, L1) = v2

B(p0;β) + v2
B(p1;L1) + 2v2

B(p0;β)v2
B(p1;L1), (15.31)

Observe that

v2
B(k0;β) = lim

L1→∞
v2
B(k0, k1;β, L1),

v2
B(k1;L1) = lim

β→∞
v2
B(k0, k1;β, L1).

The same procedure can be carried out for fermion fields. In this case, we impose

anti-periodic boundary conditions for fields and Green functions. Physically, these

conditions mean that, for the time axis, we reproduce the KMS boundary conditions,

and so the compactification describes the temperature. For the space components,

anti-periodicity for fermions is equivalent to the bag-model boundary conditions,
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stating that fermion currents do not cross the bag boundary. This condition is

convenient to treat phenomenological or effective models for quark confinement.

Taking the topology S1 × S1 × R2, the result after compactifications is

S(x− y;β, L1) =

∫
d4p

(2π)4
e−ip(x−y){S0(p)

+v2
F (p0, p1;β, L1)[S0(p)− S∗0 (p)]},

where

v2
F (p0, p1;β, L1) = v2

F (p0;β) + v2
F (p1;L1) + 2v2

F (p0;β)v2
F (p1;L1), (15.32)

with v2
F (p0;β) and v2

F (p1;L1) given by

v2
F (p0;β) =

∞∑

l0=1

(−1)l0+1e−l0βp0 =
1

1 + eβp0

v2
F (p1;L1) =

∞∑

l1=1

(−1)l1+1e−il1L1p
1

.

Again it is important to note that

v2
F (p0;β) = lim

L1→∞
v2
F (p0, p1;β, L1),

v2
F (p1;L1) = lim

β→∞
v2
F (p0, p1;β, L1).

Explicitly we have

v2(p0, p1;β, L1) =

∞∑

l0=1

(−1)l0+1e−βp0l0 +

∞∑

l1=1

(−1)l1+1e−iL1p
1l1

+2

∞∑

l0,l1=1

(−1)l0+l1+2e−βp0l0−iL1p
1l1 . (15.33)

15.1.4 Compactification in d-dimensions

The results derived for bosons and fermions in two compactified dimensions can

be generalized to a D-dimensional manifold and the topology ΓdD = S11 × ... ×
S1d × RD−d. To treat this general case, we distinguish the time variable and take

d = 1 +N , N being the number of compactified space coordinates. Then writing

α = (α0, α1, α2, ..., αN ), for the set of compactification parameters, and k(α) =

(k0, ..., kN ), we obtain

v2
ξ (k(α);α) =

N+1∑

s=1

∑

{σs}

(
s∏

n=1

f(ασn)

)
2s−1

×
∞∑

lσ1 ,...,lσs=1

(−ξ)s+
∑s

r=1 lσr exp{−
s∑

j=1

ασj lσjkσj}, (15.34)
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where f(αj) = 0 for αj = 0, f(αj) = 1 otherwise and {σs} denotes the set of all

combinations with s elements, {σ1, σ2, ...σs}, of the first N + 1 natural numbers

{0, 1, 2, ..., N}, that is all subsets containing s elements, which we choose to write

in an ordered form, σ1 < σ2 < · · · < σs. Here v2
ξ (k(α), α) stands for both boson

(ξ = −1) and fermion (ξ = +1) fields.

The Green function for bosons and fermions are, respectively, given by

G(x − y;α) =

∫
d4k

(2π)4
e−ik(x−y){G0(k) +

v2
B(kα;α)[G0(k)−G∗0(k)]}, (15.35)

and

S(x− y;α) =

∫
d4k

(2π)4
e−ik(x−y){S0(k) +

v2
F (kα;α)[S0(k)− S∗0 (k)]}. (15.36)

Since there is no risk of confusion, we are using the notation:

v2
−(k(α);α) = v2

B(kα;α),

v2
+(k(α);α) = v2

F (kα;α).

These results are similar to the case of the TFD propagator. This points to the way

to construct a field theory in a topology ΓdD.

15.2 Generalized Bogoliubov transformation

Since the structure of G(x − y;α) is similar to the propagator in quantum field

theory for bosons at finite temperature, we use vB(kα;α) to introduce a Bogoliubov

transformation following the algebraic rules of TFD. Define u(kα;α) by

u2(kα;α)− v2(kα;α) = 1,

and

B(kα;α) =

(
u(kα;α) −v(kα;α)

−v(kα;α) u(kα;α)

)
. (15.37)

We have dropped the subscript of B for simplicity. We write a doubled Green

function as

Gab0 (x− y;α) =

∫
d4k

(2π)4
e−ik(x−y) Gab0 (k;α), (15.38)

where

Gab0 (k;α) = B(ac)(kα;α)G
(cd)
0 (k)B†(db)(kα;α),

with
(
G

(cd)
0 (k)

)
=

(
G0(k) 0

0 −G∗0(k)

)
.
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In terms of components we have

G11
0 (k;α) = G0(k) + v2(kα;α)[G0(k)−G∗0(k)], (15.39)

G12
0 (k;α) = G21

0 (k;α) = v(kα;α)u(kα;α)[G0(k)−G∗0(k)], (15.40)

G22
0 (k;α) = −G∗0(k)− v2(kα;α)[G0(k)−G∗0(k)]. (15.41)

This Green function is a generalization of the TFD Green function, since here

v2(kα, α) describes space and time compactification. Therefore the doubled struc-

ture of TFD is used to introduce the canonical form of Gab0 (x − y;α) in terms of

quantum fields. The doubling is defined by the tilde conjugations rules.

In order to introduce the unitary transformation equivalent to the matrix B, a

new parametrization is defined in terms of the parameter θ(kα;α) as

u(kα;α) = cosh θ(kα;α),

v(kα;α) = sinh θ(kα;α).

Using θ(kα;α), the Bogoliubov transformation applied to all modes is written in

the form

U(α) = exp

{∑

k

θ(kα;α)[a†(k)ã†(k)− a(k)ã(k)]
}

=
∏

k

U(k;α), (15.42)

where

U(kα;α) = exp{θ(kα;α)[a†(k)ã†(k)− a(k)ã(k)]}.
The k in the sum and the product of the above equation is to be taken in the

continuum limit. Since U(α) has the same form as in the case of standard TFD,

all results derived for fields follow along the same lines. We show here only some

results, in order to emphasize the d-compactification and that there is no need of

Gibbs ensemble in the analysis.

Using the boson creation and annihilation operators, a†(k) and a(k), we intro-

duce the α-operators by

a(k;α) = U(kα;α)a(k)U−1(kα;α)

= u(kα;α)a(k) − v(kα;α) ã†(k).

The inverse is

a(k) = u(kα;α)a(k;α) + v(kα;α) ã†(k;α),

such that the other operators a†(k), ã(k) and ã†(k) can be obtained by applying the

hermitian or the tilde conjugation rules. Commutation relations for modes read,

[a(k;α), a†(k′;α)] = (2π)32k0δ(k− k′), (15.43)

[ã(k;α), ã†(k′;α)] = (2π)32k0δ(k− k′), (15.44)

with all other commutation relations being zero.
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The Hilbert space is constructed from the α-vacuum, |0(α)〉 = U(α)|0, 0̃〉, where

|0, 0̃〉 =
⊗
k

|0, 0̃〉k and |0, 0̃〉k is the vacuum for the mode k. The α-vacuum is such

that

a(k;α)|0(α)〉 = ã(k;α)|0(α)〉 = 0

and 〈0(α)|0(α)〉 = 1. The basis vectors are given in the form

[a†(k1;α)]m1 · · · [a†(kM ;α)]mM [ã†(k1;α)]n1 · · · [ã†(kN ;α)]nN |0(α)〉, (15.45)

where ni,mj = 0, 1, 2, ..., with N and M being indices for an arbitrary mode.

Considering one mode for simplicity, we write |0(α)〉 in terms of u(α) and v(α),

|0(α)〉 =
1

u(α)
exp[

v(α)

u(α)
a†ã†]|0, 0̃〉

=
1

u(α)

∑

n

(
v(α)

u(α)

)n
|n, ñ〉. (15.46)

Defining

ρ1/2
nn =

1

u(α)

(
v(α)

u(α)

)n
,

we write

|0(α)〉 =
∑

n

ρ1/2
nn |n, ñ〉,

which is, for arbitrary compactification, the counterpart of TFD. As a consequence,

the average of an observable A, a non-tilde operator, is given by

〈0(α)|A|0(α)〉 =
∑

n

ρnnAnn = Tr(ρA),

where the matrix ρ is

ρ =
1

u2(α)

(
v(α)

u(α)

)2a†a

.

Notice that this result is a generalization of TFD in the sense that if we consider, as

an example, S1 × R3, compactified in the time axis, then ρ = e−βH/Z, where H is

the Hamiltonian for the free boson system and Z(β) = u2(β) . In the next section

we use the Bogoliubov transformation in order to introduce α-dependent fields.

15.3 Field theory

We define for bosons

φ(x;α) = U(α)φ(x)U−1(α),

φ̃(x;α) = U(α)φ̃(x)U−1(α).
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Using a Bogoliubov transformation for each of the infinite modes, we have

φ(x;α) =

∫
d3k

(2π)3
1

2k0
[a(k;α)e−ikx + a†(k;α)eikx]

and

φ̃(x;α) =

∫
d3k

(2π)3
1

2k0
[ã(k;α)eikx + ã†(k;α)e−ikx].

Let us calculate the propagator, using the α-vacuum. The α-propagator for real

scalar field, as calculated in the last section, is given by

G(x− y;α) = −i〈0(α)|T [φ(x)φ(y)]|0(α)〉. (15.47)

Following standard TFD calculations, we obtain

G(x − y;α) =

∫
d4k

(2π)4
e−ik(x−y)G(k;α), (15.48)

where

G(k;α) = G0(k) + v2(kα;α)[G0(k)−G∗0(k)], (15.49)

as in Eq. (15.35).

We can also show that G(x − y;α) can be calculated by using the α-field oper-

ators, that is,

G(x− y;α) = −i〈0̃, 0|T [φ(x, α)φ(y, α)]|0, 0̃〉.
This is a motivation to write this field theory in terms of α-field operators; that is,

the Lagrangian density for the Klein-Gordon field giving rise to the α-propagator is

L̂ = L−L̃ =
1

2
∂µφ(x;α)∂µφ(x;α) − 1

2
m2φ2(x;α)

−1

2
∂µφ̃(x;α)∂µφ̃(x;α) +

1

2
m2φ̃2(x;α).

Similar structures can be introduced for the compactification of fermion fields.

In this case, the Lagrangian density of the Dirac field is

L̂ =
1

2
ψ(x;α)[γ · i←→∂ −m]ψ(x;α)

−1

2
ψ̃(x;α)[−γ∗ · i←→∂ −m]ψ̃(x;α),

where γ∗ = (γT )†. In this expression, the fields ψ(x;α) and ψ̃(x;α) are expanded

in modes by

ψ(x;α) =

∫
d3k

(2π)3
m

k0

2∑

ζ=1

[bζ(kα;α)u(ζ)(k)e−ikx + d†ζ(kα;α)v(ζ)(k)eikx],

ψ̃(x;α) =

∫
d3k

(2π)3
m

k0

2∑

ζ=1

[b̃†ζ(kα;α)u∗(ζ)(k)e−ikx + d̃ζ(kα;α)v∗(ζ)(k)eikx].
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As a consequence of anti-commutation relations for these fields, we obtain

{bζ(kα;α),b†
κ
(k′α;α)} = {dζ(kα;α),d†

κ
(k′α;α)} = (2π)3

k0

m
δ(k− k′)δζκ ,

{b̃ζ(kα;α),b̃†
κ
(k′α;α)} = {d̃ζ(kα;α),d̃†

κ
(k′α;α)} = (2π)3

k0

m
δ(k− k′)δζκ .

with all other anti-commutation relations being zero.

The Bogoliubov transformation is

U(α) = exp
∑

k

{θb(kα;α)[b†(k)b̃†(k)− b(k)b̃(k)]

+θd(kα;α)[d†(k)d̃†(k)− d(k)d̃(k)]}
=
∏

k

Ub(kα;α)Ud(kα;α),

with

Ub(k;α) = exp{θb(kα;α)[b†(k)b̃†(k)− b(k)b̃(k)]},
Ud(k;α) = exp{θd(kα;α)[d†(k)d̃†(k)− d(k)d̃(k)]},

where θb and θd are defined by

cos θb(kα;α) = vb(kα;α),

cos θd(kα;α) = vd(kα;α),

while vb(kα;α) and vd(kα;α) are given in Eq. (15.34), with ξ = +1. In the case of

the compactification of the time axis, we have

v2
b (k0;β) =

1

eβ(wk−µb) + 1
,

v2
d(k0;β) =

1

eβ(wk+µd) + 1
,

µb and µd being the chemical potentials for particles and anti-particles, respec-

tively, and vb(k;β) and vd(k;β) fulfilling the relations: v2
b (k;β) + u2

b(k;β) = 1 and

v2
d(k;β) +u2

d(k;β) = 1. The Bogoliubov transformation in the form of 2× 2 matrix

for particles (b) and anti-particles (d) is

Bb,d(kα;α) =

(
ub,d(kα;α) vb,d(kα;α)

−vb,d(kα;α) ub,d(kα;α)

)
. (15.50)

The Hilbert space is built from the α-vacuum, |0(α)〉 = U(α)|0, 0̃〉, where

|0, 0̃〉 =
⊗

k

|0, 0̃〉k

and |0, 0̃〉k is the vacuum for the mode k considering particles and anti-particles.

The α-vacuum is such that

b(kα;α)|0(α)〉 = b̃(kα;α)|0(α)〉 = 0,

d(kα;α)|0(α)〉 = d̃(kα;α)|0(α)〉 = 0,
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and 〈0(α)|0(α)〉 = 1. Basis vectors are given in the form

[b†(k1α;α)]n1 · · · [d†(kMα;α)]nM [b̃†(k1α;α)]n1 · · · [d̃†(kNα;α)]nN |0(α)〉,

where now ni,mi = 0, 1.

The fermion α-operators are written in terms of non α-operators by

b(kα;α) = U(α)b(k)U−1(α) = U(k, α)b(k)U−1(k, α)

= ub(kα;α)b(k) − vb(kα;α)b̃†(k),

d(k;α) = U(α)d(k)U−1(α) = U(kα;α)d(k)U−1(kα;α)

= ud(kα;α)d(k)− vd(kα;α)d̃†(k).

The inverse formulas are

b(k) = ub(kα;α)b(kα;α) + vb(kα;α)b̃†(kα;α),

d(k) = ud(kα;α)d(kα;α) + vd(kα;α)d̃†(kα;α).

Here each operator, b or d, carries a spin index that is suppressed.

The α-Green function for the Dirac field is defined by

S(x− y;α) = −i〈0(α)|T [ψ(x)ψ(y)]|0(α)〉, (15.51)

resulting in Eq. (15.36).

15.4 Feynman rules

We have presented a formalism to consider the quantum field theory in a flat mani-

fold with topology (S1)d×RD−d, such that the fields and the Green functions fulfill

periodic (bosons) or antiperiodic(fermions) boundary conditions. The result of the

topological analysis is a generalization of thermofield dynamics and the Matsubara

formalism. Let us collect the main results, emphasizing the Feynman rules.

(i) α-fields

In this case we have the generalization of TFD but using the same algebraic meth-

ods. That is the Hilbert space of TFD, HT , is denoted by Hα to emphasize that we

have a generalized (α-dependent) Bogoliubov transformation acting on the doubled

Hilbert space H ⊗ H̃, giving rise to a theory of compactified field in a topology

(S1)d × RD−d. Interacting fields in TFD theory are described by exploring the

algebraic properties of the Bogoliubov transformation. Hence for α-fields the per-

turbative theory is the same as for TFD. Considering the (1, 1)-component for the

generating function, the diagrams are the same as for the α = 0 (flat space) theory.

The Feynman rules are defined by taking the α = 0 (flat space) theory and substi-

tuting the α-dependent n-point functions. For the Klein-Gordon field, for instance,

the Feynman rules in momentum space are obtained by the substitution

G0(p)→ G0(p;α).
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(ii) Generalized Matsubara formalism

In the case of the imaginary-time (Matsubara) formalism, the perturbative theory is

the same as for the α = 0 (flat space) theory. The Feynman rules in the momentum

space are modified by taking, for each compactified dimension, the integrals in

momentum space replaced by sums as
∫
dpi → 1

Li

∞∑

li=−∞

with

pi → pli =
2πli
Li

,

for bosons, and

pi → pli =
2π(li + 1

2 )

Li
,

for fermions.

In the above rules, i runs over the compactified dimensions.

Finally it is important to clarify the meaning of the Bogoliubov transformation.

Since it is used to define the α-vacuum, |0(α)〉, this state can be interpreted as

a condensate for the observable operators. This is the case since a|0(α)〉 6= 0. In

this language, the a(α) and a†(α) are the annihilation and creation operators of

quasi-particles. The pair that gives rise to the quasi-particles are the operator a

and ã, since, for instance in the case of bosons we have a(α) = u(α)a − v(α)ã†. In

terms of these quasi-particles, the field operator φ(x;α) leads to the Green function

G(x − y;α) = −i〈0̃, 0|T [φ(x, α)φ(y, α)]|0, 0̃〉. As a consequence, the effect of com-

pactification in the topology ΓdD is described by a process of condensation of the

field in vacuum.

In the following chapters, we use this approach to study the Casimir effect,

superconducting systems in compactified space dimensions and the Gross-Neveu

model. In these applications, the effect of space as well as time compactification

plays a dominant role.
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Chapter 16

Casimir Effect for the
Electromagnetic Field

The Casimir effect [237] was discovered while studying vacuum fluctuations of the

electromagnetic field confined between two conductor plates with separation a, de-

fined by the Dirichlet boundary conditions. The effect was an attractive force

between the plates given by the negative pressure P = −π2/240a4. It has been gen-

eralized to different fields defined in space-time manifolds with non-trivial topologies

and geometries [238–242, 244–263, 98, 264–266]. The Casimir force was measured

with a precision of few percents [251, 267, 268] only at the end of 1990’s; raising

interest, in particular, in the context of microelectronics and nanotechnologies as a

practical tool for switching devices [269]. The Casimir force is strictly a quantum

effect, in fact an effect from the vacuum, that has manifestation at the level of

mesoscopic systems.

The effect of temperature was first studied by Lifshitz [270, 271] who presented

an alternative derivation for the Casimir force, including an analysis of the dielec-

tric material between the plates. Actually, the effect of temperature on the in-

teraction between the conducting parallel plates may be significant for separations

greater than 3µm [272]. Brown and Maclay [273] treated the effect of tempera-

ture using the imaginary time-formalism and the image-method, deriving expres-

sions for the energy-momentum tensor for the electromagnetic field. As a result

the Casimir effect appears from the propagator by summing an infinite set of im-

ages [241, 273].

In this chapter we address the Casimir effect using the method of compactified

fields based on the generalized Bogoliubov transformation. Two points are worth

emphasizing. The calculations are carried out in a covariant way presenting the

propagator with a separation of the flat space contribution and the effect of com-

pactification. For practical purposes, these aspects are interesting when associated

with the renormalization scheme. As a physical consequence, due to the Bogoliubov

transformation, the Casimir effect is interpreted as a vacuum condensation effect

of the electromagnetic field. For convenience the presentation is carried out in the

canonical formalism.

279
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16.1 The vacuum state of the electromagnetic field

The Lagrangian density for the free electromagnetic field is

L = −1

4
F µνF µν ,

where

Fµν = ∂µAν − ∂νAµ.

The vector potential, Aµ, satisfies the equation

(gµν�− ∂µ∂ν)Aν(x) = 0.

Let us discuss briefly the quantization of the electromagnetic field in the canonical

formalism, using the Coulomb gauge.

The momentum conjugate to Aν is

πµ =
∂L

∂(∂0Aµ)
,

resulting in π0 = 0 and πi = ∂0Ai − ∂iA0. We can get consistency working in

the Coulomb gauge, with A0 = 0 and ∇ · A = 0; imposing a constraint among

the three components of A. It follows that π = ∂0A and the equation of motion

reads �Aν(x) = 0. In this gauge, as we do not keep the Lorentz covariance, it is

convenient to take the Fourier series of A and π , that is

A(x, t) =
1

V

∑

k,λ

eik·xε(λ)
k q

(λ)
k (t),

where ε
(λ)
k are three unit vectors. The 3-momentum density is then

π(x, t) =
1

V

∑

k,λ

eik·xε(λ)
k p

(λ)
k (t),

where p
(λ)
k (t) = ∂0q

(λ)
k (t). The Hermicity of the field implies that

ε
(λ)
−kq

(λ)
−k(t) = ε

(λ)
k q

(λ)†
k (t), ε

(λ)
k p

(λ)
−k(t) = ε

(λ)
−kp

(λ)†
k (t).

The vectors ε
(λ)
k are assumed to form an orthonormal basis, that is, ε

(λ)
k ·ε

(λ′)
k = δλλ′ ,

and due to the gauge, ε
(λ)
k · k = 0. We specify the notation for the index λ in the

relations above, by defining:

ε
(λ)
k , λ = 1, 2; ε

(3)
k =

k

|k| ,

where ε
(3)
k is the longitudinal direction for the propagation of A(x, t). Therefore,

A(x, t) is in the plane defined by the two polarization vectors, ε
(1)
k and ε

(2)
k . This is

the polarization plane, which is perpendicular to the propagation direction ε
(3)
k .
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Keeping in mind these results, the non-null commutation relations are defined

by

[Ai(x, t), πj(x
′, t)] = i[δij −

1

∇2
∂i∂j ]δ(x− x′). (16.1)

The second term in this relation ensures that there is no photon with longitudinal

polarization. In terms of q
(λ)
k (t) and p

(λ)
k (t), the non-null commutation relations

read

[q
(λ)
k (t), p

(λ′)
k′ (t)] = iδλλ′δk,k′ . (16.2)

With these operators, the energy of the electromagnetic field is written as

H =
1

2

∫

V

d3x(π2 + A · ∇2A)

=
1

2

∑

k,λ

(
p
(λ)†
k p

(λ)
k + ω2

kq
(λ)†
k q

(λ)
k

)
,

where we have used ω2
k = k2. The Hamiltonian describes a collection of quantum

oscillators. Then we introduce the operator

a
(λ)
k =

√
1

2
ωk

(
q
(λ)
k +

i

ωk
p
(λ′)†
k′

)
.

From Eq. (16.2) we derive

[a
(λ)
k , a

(λ′)†
k′ ] = δλλ′δk,k′ ,

showing that a
(λ)
k (t) and a

(λ)†
k′ are the annihilation and the creation operators of

photons with momentum k and polarization λ.

The Hamiltonian reads

H =
∑

k,λ

ωk(n
λ
k +

1

2
), (16.3)

where nλk = a
(λ)†
k a

(λ)
k is the number operator. In this expression, the term indepen-

dent of nλk ,

Hvac =
∑

k

ωk,

corresponds to the energy of the fundamental state, being called the vacuum energy

(observe that we have summed over the two polarization states). When the theory

is formulated in the flat, without boundary, space-time, this energy provides an

infinite contribution to the average of H in the vacuum state. In this case, as

proved by Takahashi [274] for massive particles, the term Hvac is subtracted out

by imposition of the Lorentz symmetry; then we perform the normal ordering. The

same procedure is assumed valid for non-massive particles, as is the case of photons.

The physical consequence is that, in flat space-time, the vacuum state energy is

zero, as a consequence of symmetry. The situation is more involved, however, with
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non-trivial space-times, considering boundary conditions, non-trivial geometries or

topologies, etc. In this case, the Takahashi theorem does not work anymore. Since

the back-ground manifold for the theory has changed, there are implications in the

energy spectrum, resulting in particular, to modifications in the ground state. The

analysis of this change is possible if we compare the non-trivial case with the field in

the flat-space time. For instance, we can calculate the difference of energy in both

cases. The result is measurable, at least for the electromagnetic field, and is called

the Casimir effect. We develop this analysis starting with the energy-momentum

tensor for the electromagnetic field considering the field in the topology ΓdD.

For the electromagnetic field, the energy-momentum tensor operator is

T µλ(x) = −F µα(x)F λα(x) +
1

4
gµλFβα(x)Fαβ(x).

In order to get physical quantities, we have to calculate the expectation value of

the operator T µλ in the vacuum state. This is not possible due to the product of

field operators at the same point on the space-time. However, it is accomplished by

relating the vacuum average of T µλ(x) to the Green function. For that we split the

operator T µλ as

T µλ(x) = lim
x→x′

T

[
−F µν(x)F λν(x′) +

1

4
gµλF νρ(x)Fνρ(x

′)

]

= lim
x→x′

[
−Fµν,λ ν(x, x

′) +
1

4
gµλFνρ, νρ(x, x′)

]
, (16.4)

where T is the time order operator and

Fµν,λρ(x, x′) = T [F µν(x)F λρ(x′)]

= F µν(x)F λρ(x′)θ(x0 − x′0) + F λρ(x′)F µν(x)θ(x′0 − x0).

Consider

∂µθ(x0 − x′0) = nµ0δ(x0 − x′0),
where nµ0 is the µ-component of the time-like vector n0 = (1, 0, 0, 0), and the com-

mutation relation, Eq. (16.1), to calculate Fµν,λρ(x, x′). The result is

Fµν,λρ(x, x′) = Γµν,λρ,αβ(x, x′)T [Aα(x), Aβ(x′)]

−nµ0δ(x0 − x′0)Iν,λρ(x, x′)
+nν0δ(x0 − x′0)Iµ,λρ(x, x′),

where

Γµν,λρ,αβ(x, x′) = (gνα∂µ − gµα∂ν)(gρβ∂′λ − gλβ∂′ρ)
and

Iµ,λν(x, x′) = [Aµ(x), F λν(x′)]

= [Aµ(x), ∂′λAν(x′)]− [Aµ(x), ∂′νAλ(x′)]

= inν0(gµλ +∇−2∂µ∂λ)δ(x− x′)

−inλ0 (gµν +∇−2∂µ∂ν)δ(x − x′).
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Using Eq. (16.4), we obtain

T µλ(x) = − lim
x→x′

{
∆µν,αβ(x, x′)T [Aα(x), Aβ(x′)]

+2i(nµ0n
λ
0 −

1

4
gµν)δ(x− x′), (16.5)

where

∆µν,αβ = Γµν,λ ,αβ
ν − 1

4
gµλΓνρ, ,αβ

νρ .

The vacuum expectation value of T µλ(x) is

〈T µν(x)〉 = 〈0|T µν(x)|0〉 = −i lim
x→x′
{Γµν(x, x′)G0(x − x′)

+2(ηµην − 1

4
gµν)δ(x− x′)},

where

Γµν(x, x′) = Γµν, ,ρλ
ρλ = 2(∂µ∂′ν − 1

4
gµν∂ρ∂′ρ).

We have used

iDαβ(x− x′) = 〈0|T [Aα(x)Aβ(x)]|0〉
= gαβG0(x− x′),

with

G0(x − x′) =
1

4π2i

1

(x− x′)2 − iε .

The interaction of the electromagnetic field with matter is described in some

cases by imposing boundary conditions on the fields. For example, in the case of

matter being a perfect conducting wall, the boundary conditions over the fields are

nνF ∗µν = 0 , (16.6)

where F ∗µν = εµναβF
αβ is the dual of Fµν and nν is a space-like vector orthogonal

to the plane of the wall. This is equivalent to stating that n ·B = 0 and n×E = 0,

where B and E are the magnetic and electric fields, respectively. Otherwise, for

permeable walls, the boundary conditions are

nνFµν = 0; (16.7)

which, in terms of the electric and the magnetic fields, read n ·E = 0 and n×B = 0.

We now turn our attention to calculate the energy-momentum tensor for α-

dependent fields. Following the tilde conjugation rules, the doubled operator de-

scribing the energy-momentum tensor of the electromagnetic field is [275]

T µλ(ab)(x) = −F µα(ab)(x)F λ(ab)
α (x) +

1

4
gµλF

(ab)
βα (x)Fαβ(ab)(x), (16.8)

where the indices a, b = 1, 2 are defined according to the doubled notation, and

F (ab)
µν = ∂µA

a
ν − ∂νAbµ.
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The doubled free photon propagator is given by

iD
(ab)
αβ (x − x′) = 〈0, 0̃|T [Aaα(x)Abβ(x)]|0, 0̃〉

= gαβG
(ab)
0 (x− x′), (16.9)

where the non-zero components of G
(ab)
0 (x− x′) are

G
(ab)
0 (x − x′) =

1

(2π)4

∫
d4k eik(x−x

′)G
(ab)
0 (k),

with
(
G

(ab)
0 (k)

)
=

(
G0(k) 0

0 −G∗0(k)

)
=

(
−1
k2+iε 0

0 1
k2−iε

)
.

In the configuration space, we have
(
G

(ab)
0 (x− x′)

)
=

(
G0(x − x′) 0

0 −G∗0(x− x′)

)
.

The vacuum average of the energy-momentum tensor

〈T µν(ab)〉 = 〈0, 0̃|T µν(ab)|0, 0̃〉
reads

〈T µν(ab)〉 = −i lim
x→x′
{Γµν(x, x′)G(ab)

0 (x − x′)

+2(nµ0n
ν
0 −

1

4
gµν)δ(x − x′)δab}.

In terms of the α-dependent fields, we introduce the tensor

〈T µλ(ab)(x;α)〉 = 〈0, 0̃|T µλ(ab)(x;α)|0, 0̃〉
= 〈0(α)|T µλ(ab)(x)|0(α)〉,

which is given by

〈T µλ(ab)(x;α)〉 = −i lim
x→x′
{Γµλ(x, x′)G(ab)(x− x′;α)

+2(nµ0n
λ
0 −

1

4
gµλ)δ(x − x′)δab}.

In order to estimate the effect of the topology, characterized by the set of parameters

α, we denote, with some regularization procedure, a finite energy-momentum tensor

T µλ(ab)(x;α) = 〈T µλ(ab)(x;α)〉 − 〈T µλ(ab)(x)〉. (16.10)

This is the central definition here and describes a renormalization procedure to

obtain a finite expression describing measurable physical quantities. Explicitly we

have

T µλ(ab)(x;α) = −i lim
x→x′
{Γµλ(x, x′)G(ab)

(x− x′;α)}, (16.11)

where

G
(ab)

(x − x′;α) = G(ab)(x− x′;α)−G(ab)
0 (x− x′).
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In the Fourier representation we get

G(ab)(x− x′;α) =
1

(2π)4

∫
d4k eik(x−x

′)G(ab)(k;α),

where

G(ab)(k;α) = B
−1(ac)
k (α)G

(cd)
0 (k)B

(db)
k (α);

the components of G
(ab)
0 (k;α) are

G
(11)

(k;α) = G
(22)

(k;α) = v2
k(α)[G0(k)−G∗0(k)],

G
(12)

(k;α) = G(21)(k;α) = vB(k, α)[1 + v2
B(k, α)]1/2[G∗0(k)−G0(k)].

The generalized Bogoliubov transformation is

v2(kα;α) =

N+1∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

)

×
∞∑

lσ1 ,...,lσs=1

exp{−
s∑

j=1

ασj lσjkσj}, (16.12)

where α = (α0, α1, α2, ..., αN ). We denote, without risk of confusion, v2
k(α) =

v2(kα;α). This leads to the general case of (N + 1)-dimensions, considering v2
k(α),

we obtain

G
11

0 (x− x′;α) = lim
x′→x

N+1∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

) ∞∑

lσ1 ,...,lσs=1

×


G∗0(x′ − x− i

s∑

j=1

ησjασj lσjnσj )

− G0(x− x′ − i
s∑

j=1

ησjασj lσjnσj )


 , (16.13)

where ησj = +1, if σj = 0, and ησj = −1 for σj = 1, 2, ..., N . To get the physical

case of finite temperature and spatial confinement, α0 has to be taken as a positive

real number while αn, for n = 1, 2, ..., N , must be pure imaginary of the form iLn;

in these cases, one finds that α∗2j = α2
j .

As a basic application, let us calculate the Stefan-Boltzmann radiation formula,

by taking the (3+1)-Minkowski space, and one compactified dimension. The ther-

mal effects appears by taking α = (β, 0, 0, 0), such that

v2
k(β) =

∞∑

l=1

e−βk0l . (16.14)
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As G
11

(x− x′;β) = G11
0 (x− x′;β)−G0(x− x′), we have

G
(11)

(x− x′;β) =
1

(2π)4

∫
d4k eik(x−x

′)G(11)(k;β)

=
1

(2π)4

∫
d4k eik(x−x

′)
∞∑

j=1

eβjk0 [G0(k)−G∗0(k)]

= 2

∞∑

j=1

G0(x − x′ − iβjn0).

The average of the energy-momentum tensor operator at finite temperature in the

vacuum is

〈T µν(ab)(x;β)〉 = 〈0, 0̃|T µν(ab)(x;β)|0, 0̃〉
= −i lim

x→x′
{Γµν(x, x′)G(ab)(x− x′;β)

+2(nµ0n
ν
0 −

1

4
gµν)δ(x− x′)δab}.

This leads to

T µν(11)(β) = −i
{
Γµν(x, x′)G

11
(x− x′;β)

}∣∣∣
x→x′

= − 2

π2

∞∑

l=1

gµν − 4nµ0n
ν
0

(βl)4
=
−π2

45β4
(gµν − 4nµ0n

ν
0) , (16.15)

where we have used the Riemann zeta function ζ(4) =
∑∞
l=1 l

−4 = π4/90. As

expected,

E(T ) = T 00(11)(β) =
1

15
π2T 4,

which gives the correct energy-density of the photon gas at temperature T , the

Stefan-Boltzmann law.

In the more general situation of 4-dimensional space-time (corresponding to

N = 3), using the explicit form of G
11

0 (x − x′;α), we obtain the renormalized α-

dependent energy-momentum tensor

T µν(11)(α) = −i lim
x→x′

{
Γµν(x, x′)G

11

0 (x− x′;α)
}

= − 2

π2

4∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

)

×
∞∑

lσ1 ,...,lσs=1

[
gµν

[
∑s

j=1 ησj (ασj lσj )
2]2

−
2
∑s
j,r=1(1 + ησjησr )(ασj lσj )(ασr lσr )n

µ
σj
nνσr

[
∑s

j=1 ησj (ασj lσj )
2]3

]
. (16.16)

In the following we analyze the space and the time compactifications.
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16.2 The Casimir effect

In this section we derive the Casimir effect at zero and non-zero temperature. We

proceed with the same prescription for the energy-momentum tensor but with a

proper definition of the parameter α for different options.

16.2.1 Casimir effect at zero temperature

Taking α = (0, 0, 0, iL), corresponding to confinement along the z-axis, we have

v2
k(L) =

∞∑

l=1

e−iLk3l . (16.17)

Using this v2
k, and G

11

0 (x− x′;L) = G11
0 (x− x′;L)−G0(x− x′), we get

G
11

0 (x− x′;L) =

∞∑

l=1

[G∗0(x
′ − x−Lln3)−G0(x− x′ −Lln3)] (16.18)

where n3 = (nµ3 ) = (0, 0, 0, 1). For this case, we obtain

T µν(11)(L) = − 2

π2

∞∑

l=1

gµν + 4nµ3n
ν
3

(Ll)4
= − π2

45L4
(gµν + 4nµ3n

ν
3), (16.19)

The Casimir energy and pressure for the electromagnetic field under periodic bound-

ary conditions are, respectively,

E(L) = T 00(11)(L) = − π2

45L4
,

P (L) = T 33(11)(L) = − π2

15L4
.

0 a

x
′

x

x
3

L

Fig. 16.1 Periodicity in x3, with period L, and images for the electromagnetic field between two
plates separated by a distance a = L/2. The images correspond to an even number of reflections
on the walls.

These expressions correspond to the Casimir effect for the electromagnetic field

in the topology Γ1
4 = S1×R3 where S1 correspond to the compactification of x3-axis

in a circumference of length L. However, if we take L = 2a in the Green functions

that we have used, this corresponds to the contribution of even images used by

Brown and Maclay to calculate the Casimir effect [273]. The even images are defined

by the even number of reflections of the electromagnetic field in a region limited
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by two conducting plates separated by a distance a; that is, the field propagates

from x′ to x reflecting on the walls an even number of times. These even images

correspond also to a periodic function with period L = 2a, as it is shown in Fig. 16.1

Brown and Maclay proved that the odd images, i.e. the images generated by an odd

number of reflections, do not contribute to the energy-momentum tensor. Notice

that, with L we have an equivalent Stefan-Boltzmann law in the direction x3, i.e. we

have a symmetry by the change L = 2a ↔ β, basically as a result of the topology

S1, where the theory is written for each case. This symmetry has been analyzed in

different ways [260–263]. The basic observation is that when we consider symmetric

boundary conditions on the two plates, these imply periodicity in the direction x3,

normal to the plates, with period L = 2a. The fields move unconstrained in the

two transverse directions, obeying the symmetry L = 2a↔ β. Using then L = 2a,

the Casimir energy and pressure for the electromagnetic field between two parallel

conducting plates, separated by a distance a, is

E(a) = T 00(11)(a) = − π2

720a4
,

P (a) = T 33(11)(a) = − π2

240a4
.

The negative sign shows that the Casimir force between the plates is attractive.

16.2.2 Casimir effect at non-zero temperature

Assume that the electromagnetic field satisfies Dirichlet boundary conditions on

parallel planes, corresponding to conducting plates, normal to the x3-direction, at

finite temperature. This case corresponds to the choice α = (β, 0, 0, i2a), resulting

in

T µν(11)(β, a) = − 2

π2

{ ∞∑

l0=1

gµν − 4nµ0n
ν
0

(βl0)4
+

∞∑

l3=1

gµν + 4nµ3n
ν
3

(2al3)4

+ 4

∞∑

l0,l3=1

(βl0)
2[gµν − 4nµ0n

ν
0 ] + (2Ll3)

2[gµν + 4nµ3n
ν
3 ]

[(βl0)2 + (2al3)2]3



 .

The Casimir energy (T 00(11)) and pressure (T 33(11)) are given respectively by

E(β, a) =
π2

15β4
− π2

720a4
+

8

π2

∞∑

l0,l3=1

3(βl0)
2 − (2al3)

2

[(βl0)2 + (2al3)2]3
, (16.20)

P (β, a) =
π2

45β4
− π2

240a4
+

8

π2

∞∑

l0,l3=1

(βl0)
2 − 3(2al3)

2

[(βl0)2 + (2al3)2]3
. (16.21)

The first two terms of these expressions reproduce the black-body radiation and the

Casimir contributions for the energy and the pressure, separately. The last term

represents the interplay between the two effects [241, 273].
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Notice that the positive black-body contributions for E and P dominate in the

high-temperature limit, while the energy and the pressure are negative for low T .

The critical curve βc = χ0a, for the transition from negative to positive values of P ,

is determined by searching for the value of the ratio χ = β/a for which the pressure

vanishes; this value, χ0, is the solution of the transcendental equation

π2

45

1

χ4
− π2

240
+

8

π2

∞∑

l,n=1

(χl)2 − 3(2n)2

[(χl)2 + (2n)2]3
= 0,

given, numerically, by χ0 ' 1.15.

Define functions f(ξ) and g(ξ), with ξ = χ−1 = a/β [273],

f(ξ) = − 1

4π2

∞∑

j,l=1

(2ξ)4

[(2lξ)2 + (j)2]2
,

and

s(ξ) = − d

dξ
f(ξ)

=
24

π2

∞∑

j,l=1

ξ3j2

[(2lξ)2 + (j)2]3
.

The renormalized energy-momentum tensor reads

T µν(11)(β, a) =
1

a4
f(ξ)(gµν + 4nµ3n

ν
3) +

1

βa3
(nµnν + nµ3n

ν
3)s(ξ).

The energy density, E(β, a) = T 00(11)(β, a), is then written as

E(β, a) =
1

a4
[f(ξ) + ξs(ξ)].

As this is a thermodynamical expression, the function f(ξ) describes the free energy

density for photons and s(ξ) is the entropy density.

For the case of a cubic box of edge a at finite temperature, using Eq. (16.16)

with α = (β, i2a, i2a, i2a), we have for the pressure

P (β, a) = T 33(11)(β, a) = g(χ)
1

a4
, (16.22)

where χ = β
a and the function g(χ) is given by

g(χ) =
1

π2



Ce +

π4

45

1

χ4
+ 8

∞∑

l,n=1

1

[χ2l2 + 4n2]2
+ 4

∞∑

l,n=1

χ2l2 − 12n2

[χ2l2 + 4n2]3

+ 8

∞∑

l,n,r=1

1

[χ2l2 + 4(n2 + r2)]2
+ 16

∞∑

l,n,r=1

χ2l2 + 4(n2 − 3r2)

[χ2l2 + 4(n2 + r2)]3

+ 16
∞∑

l,n,r,q=1

χ2l2 + 4(n2 + r2 − 3q2)

[χ2l2 + 4(n2 + r2 + q2)]3



 ,
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with

Ce =
1

4

∞∑

l,n=1

1

[l2 + n2]2
+

1

6

∞∑

l,n,r=1

1

[l2 + n2 + r2]2
− π4

720
≈ 0.00737 . (16.23)

The pressure is always positive: for T → 0,

T 33(11)(a) =
Ce
π2

1

a4

For T → ∞, the pressure in Eq. (16.22) is dominated by the term ' T−4. A plot

of the Casimir pressure as a function of T and a is presented in Fig. 16.2.

0.5

1
1.5

2

T

0.5

1

1.5 a

0

2

4

P

0.5

1
1.5

2

T

0

2

4

P

Fig. 16.2 Casimir pressure for the electromagnetic field in a cubic box under Dirichlet boundary
conditions.

16.3 Casimir-Boyer model

Next we consider the Casimir-Boyer model [276, 277], corresponding to a mixed

case of plates: one conducting plate at x3 = 0 and the other one, a permeable

plate, at x3 = d. This is equivalent to taking a twisted boundary condition for the

electromagnetic field [275]; corresponding to an anti-periodic boundary condition

on the electromagnetic field in the topology S1. In order to have a Green function

satisfying these conditions, we consider α = (β, 0, 0, i2a), (nµ0 ) = (1, 0, 0, 0) and

(nµ3 ) = (0, 0, 0, 1). Then we have

v2(k0, k1;β, a) =

∞∑

l0=1

e−βk0l0 +

∞∑

l3=1

(−1)l3e−i2ak
3l3

+2

∞∑

l0,l3=1

(−1)l3e−βp0l0−i2ak
3l3 , (16.24)
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and we find

G
(11)

(x− x′;β, a) =
1

(2π)4

∫
d4k eik(x−x

′)G
(11)

(k;β, a)

=
1

(2π)4

∫
d4k eik(x−x

′)

×v2(k0, k1;β, a)
[
G0(k) + G̃0(k)

]
.

Using this result in Eq. (16.11) we find the energy-momentum tensor

T µν(11)(β, a) = − 2

π2

{ ∞∑

l0=1

gµν − 4nµ0n
ν
0

(βl0)4
+

∞∑

l3=1

(−1)l3
gµν + 4nµ3n

ν
3

(2al3)4

+ 2

∞∑

l0,l3=1

(−1)l3
(βl0)

2[gµν − 4nµ0n
ν
0 ] + (2Ll3)

2[gµν + 4nµ3n
ν
3 ]

[(βl0)2 + (2al3)2]3



 .

Observe that for the term a → ∞, the component T 00(11)(β) is the black-body

radiation term, and for β →∞ (T → 0), we have the energy E(a) = T 00(11)(a),

E(a) =
7

8

π2

720a4
,

which is the Casimir energy for the Casimir-Boyer model [276, 275]. This expression

is −7/8 of the Casimir energy for plates of the same material. The force, in this

case, is repulsive.

Using ξ = a/β , we introduce

f̄(ξ) = − 1

4π2

∞∑

l0,l3=0′

(−1)l3
(2ξ)4

[(2l3ξ)2 + (l0)2]2
,

and

s̄(ξ) = − d

dξ
f(ξ)

=
24

π2

∞∑

l0,l3=0′

(−1)l3
ξ3j2

[(2l3ξ)2 + (l0)2]3
,

where the notation 0′ is to indicate that the term l0 = l3 = 0 is excluded from the

sum. We obtain

T µν(11)(β, a) =
1

a4
f̄(ξ)(gµν + 4nµ3n

ν
3) +

1

βa3
(nµ0n

ν
0 + nµ3n

ν
3)s̄(ξ).

The energy density E(β, a) = T 00(11)(β, a) is written as

E(β, a) =
1

a4
[f̄(ξ) + ξs̄(ξ)].

The function f̄(ξ) is the free energy density for photons and s̄(ξ) is the entropy

density.
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From these applications, we observe that, the method based on the Bogoliubov

transformation for compactified space-time regions provides an effective way to

study the Casimir effect in different topologies. From a physical point of view,

in addition, the Casimir effect is interpreted as a process of condensation of the

electromagnetic field. The quasi-particles are described (for an arbitrary mode) by

a(α) = u(α)a− v(α)ã†

ã†(α) = u(α)ã† − v(α)a,

with a†(α), ã†(α), a(α) and ã(α) fulfilling the canonical algebra of the creation and

destruction operators, that is [a(α), a†(α)] = [ã(α), ã†(α)] = 1. From these operators

a vacuum state |0(α)〉 is defined, such that a(α)|0(α)〉 = 0. Therefore, regarding

the operators a and a†, the state |0(α)〉 describes a condensate, as is the case for

the temperature. The result is that, in the vacuum state we have

〈0(α)|a†a|0(α)〉 = 〈0, 0̃|a†(α)a(α)|0, 0̃〉 6= 0.

This represents a modification of the energy spectrum in the vacuum, resulting in the

Casimir effect. To derive a finite and measurable result, a renormalization procedure

has to be introduced. Here we take the difference of the energy-momentum tensor in

the topology ΓdD and the energy-momentum tensor written in the empty space-time.

The result is the physical tensor T µν(α).

With these calculations, we observe the following facts. Since the energy for

the empty space is not part of the Casimir energy, such a term is not included

in the present calculations. Therefore, problems of renormalization, that plagues

other methods, are not a part of the consideration here. Only the Casimir energy

is calculated directly. The basic ingredient for this behavior is that the generalized

Bogoliubov transformation separates the Green function into two parts. One is

associated with the empty space-time; the other describes properties of the com-

pactification. This fact represents a natural ease in the calculation of T µν(α), the

renormalized energy, and hence the Casimir effect. As a final observation, in order

to study the Casimir force in real media, we have to use ε(x, β) (not ε0 = 1), the

dielectric permittivity in the Drude model, for example [251].
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Chapter 17

Casimir Effect for Fermions

The Casimir effect for a fermion field is of interest in considering, for instance, the

structure of proton in particle physics. In particular, in the phenomenological MIT

bag model [279], quarks are assumed to be confined in a small space region, of the

order of 1.0 fm, in such a way that there is no fermionic current outside that region.

The fermion field fulfills the bag model boundary conditions. The Casimir effect

in such a small region is important to define the process of deconfinement. This

may appear in heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) or

at Large Hadron Collider (LHC), giving rise to the quark-gluon plasma. For the

quark field, the problem of the Casimir effect has been quite often addressed by

considering the case of two parallel plates [259–263, 280, 281], although there are

some calculations involving spherical geometries [241].

As first demonstrated by Johnson [282], for plates, the fermionic Casimir force is

attractive as in the case of the electromagnetic field. On the other hand, depending

on the geometry of confinement, the nature of the Casimir force can change. This

is the case, for instance, for a spherical cavity and for the Casimir-Boyer model,

using mixed boundary conditions for the electromagnetic field, such that the force

is repulsive. [98, 264–266, 275–277]. Therefore, the analysis considering fermions

in a topology of type ΓdD is of interest. We analyze the energy-momentum tensor for

the Casimir effect of a fermion field in a d-dimensional box at finite temperature.

As a particular case the Casimir energy and pressure for the field confined in a

3-dimensional parallelepiped box are calculated. It is found that the attractive or

repulsive nature of the Casimir pressure on opposite faces changes depending on

the relative magnitude of the edges. We also determine the temperature at which

the Casimir pressure in a cubic box changes sign and estimate its value when the

edge of the cube is of the order of the confining length for baryons. At the end

we use these results to perform calculations for estimating the Casimir energy for

a non-interacting massless QCD model.

293
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17.1 Casimir effect in Γ1
4

In order to treat the case of fermions, we follow in general the same prescription,

developed for the electromagnetic field, to derive the physical (renormalized) energy-

momentum tensor. The energy-momentum tensor for a massless fermionic field is

T µν(x) = lim
x′→x
〈0|iψ(x′)γµ∂νψ(x)|0〉

= lim
x′→x

γµ∂νS(x− x′)

= −4i lim
x′→x

∂µ∂νG0(x− x′), (17.1)

where

S(x− x′) = −i〈0|T [ψ(x)ψ(x′)]|0〉
and G0(x−x′) is the propagator of the free massless bosonic field. With T µν(x), we

introduce the confined α-dependent energy-momentum tensor T µν(ab)(x;α) defined

by

T µν(ab)(x;α) = 〈T µν(ab)(x;α)〉 − 〈T µν(ab)(x)〉, (17.2)

where T µν(ab)(x;α) is a function of the field operators ψ(x;α), ψ̃(x;α).

Using

S(ab)(x− x′) =

(
S(x− x′) 0

0 S̃(x− x′)

)
,

with S̃(x− x′) = −S∗(x′ − x), we have

T µν(ab)(x;α) = −4i lim
x′→x

∂µ∂ν [G
(ab)
0f (x− x′;α)−G(ab)

0f (x− x′)], (17.3)

corresponding to changing in Eq. (17.1), S(ab)(x−x′) by S(x−x′). The 2×2 Green

functions G
(ab)
0f (x − x′;α) and G

(ab)
0f (x− x′) are

G
(ab)
0f (x− x′) =

1

(2π)4

∫
d4k G

(ab)
0f (k) e−ik·(x−x

′),

where

G
(ab)
0f (k) =

(
G0(k) 0

0 G∗0(k)

)
.

Observe that, G
(ab)
0f (k) is different from G

(ab)
0 (k) for bosons by a sign in the compo-

nent G
(22)
0 (k). The α-counterpart is

G
(ab)
0f (x − x′;α) =

1

(2π)4

∫
d4k G

(ab)
0f (k;α) e−ik·(x−x

′), (17.4)

with

G
(ab)
0f (k;α) = B−1(ac)(k;α)G

(cd)
0f (k)B(db)(k;α),
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where B
(ab)
k (α) is the Bogoliubov transformation for fermions

(
B(ab)(k;α)

)
=

(
uk(α) −vk(α)

vk(α) uk(α)

)
.

Explicitly, the components of G
(ab)
0 (k;α) are given by

G11
0f (k;α) = G0(k) + v2

k(α)[G∗0(k)−G0(k)],

G12
0f (k;α) = G21

0 (k;α) = vk(α)[1− v2
k(α)]1/2[G∗0(k)−G0(k)],

G22
0f (k;α) = G∗0(k) + v2

k(α)[G0(k)−G∗0(k)].
The physical quantities are derived from the component G11

0f (k;α). Therefore, the

physical α-tensor is given by the component T µν(11)(x;α).

Let us consider α = (β, 0, 0, 0). In this case vk(β) is defined through the fermion

number distribution function,

vk(β) =
e−βk0/2

[1 + e−βk0 ]1/2
.

We write it as

v2
k(β) =

∞∑

l=1

(−1)l+1e−βk0l; (17.5)

leading to the thermal Green function,

G11
0f (k;β) = G0(k) +

∞∑

l=1

(−1)l+1e−βk0l[G∗0(k)−G0(k)].

Using this result in Eq. (17.4), we have

G11
0f (x− x′;β) = G0(x− x′) +

∞∑

l=1

(−1)l+1

×[G∗0(x
′ − x+ iβln0)−G0(x− x′ − iβln0)],

where (nµ0 ) = n0 = (1, 0, 0, 0). Therefore, the renormalized tensor, given by

Eq. (17.2), is

T µν(11)(β) = −4i lim
x′→x

∞∑

l=1

(−1)l+1∂µ∂ν

×[G∗0(x
′ − x+ iβln̂0)−G0(x− x′ − iβln̂0)].

Performing the covariant derivatives, this expression reads

T µν(11)(β) =
4

π2

∞∑

l=1

(−1)l
[
gµν − 4nµ0n

v
0

(βl)4

]
. (17.6)

Well known results for thermal fermionic fields can be derived from this tensor.

For instance, the internal energy is given by E(T ) = T 00(11)(β), that is,

E(T ) =
7π2

60
T 4, (17.7)
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where we have used the Riemann alternating zeta function

ς(4) =

∞∑

l=1

(−1)l+1 1

l4
=

7π4

720
. (17.8)

As another application, we derive the Casimir effect at zero temperature. For

parallel plates perpendicular to the x3-direction and separated by a distance a,

instead of Eq. (17.5), we take α = i2a, we write

v2
k(a) =

∞∑

l=1

(−1)l+1e−i2ak3l (17.9)

and use n3 = (nµ3 ) = (0, 0, 0, 1), a space-like vector. As a consequence, we derive

T µν(11)(a) =
4

π2

∞∑

l=1

(−1)l
[
gµν + 4nµ3n

ν
3

(2al)4

]
, (17.10)

resulting in the Casimir energy and pressure given, respectively, by

E(a) = T 00(11)(a) = − 7π2

2880

1

a4
, (17.11)

P (a) = T 33(11)(a) = −7π2

960

1

a4
. (17.12)

It is to be noticed that the choice of α as a pure imaginary number is required

in order to obtain the spatial confinement, while the factor 2 is needed to ensure

antiperiodic boundary conditions on the propagator and the bag model boundary

conditions. In the next section we extend this procedure to the case where multi-

ple compactifications of (imaginary) time and spatial coordinates are implemented

simultaneously .

17.2 Compactification in higher dimensions

We calculate the Casimir effect for massless fermions in a topology ΓdN+1; i.e. within

a d-dimensional box at finite temperature. We consider the (1 + N)-dimensional

Minkowski space with v(α) given by

v2
k(α) =

N∑

j=0

∞∑

lj=1

(−1)1+lj f(αj) exp{iαj ljkj}

+

N∑

j<r=0

2 f(αj)f(αr)

∞∑

lj ,lr=1

(−1)2+lj+lr exp{iαjljkj + iαrlrkr}+ · · ·

+ 2N f(α0)f(α1) · · · f(αN )

∞∑

l0,l1,...,lN=1

(−1)N+1
∑N

r=1 lr exp{i
N∑

i=0

αiliki},

(17.13)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Casimir Effect for Fermions 297

where α = (α0, α1, α2, ..., αN ), f(αj) = 0 for αj = 0 and f(αj) = 1 otherwise. This

expression leads to the simultaneous compactification of any d (1 ≤ d ≤ N + 1)

dimensions corresponding to the non-null parameters αj , with α0 corresponding to

the time coordinate and αn ( n = 1, ..., N) referring to the spatial ones.

A more compact expression for v2
k(α) is

v2
k(α) =

N+1∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

)

×
∞∑

lσ1 ,...,lσs=1

(−1)s+
∑s

r=1 lσr exp{−
s∑

j=1

ασj lσjkσj}. (17.14)

where {σs} denotes the set of all combinations with s elements, {σ1, σ2, ...σs}, of the

first N+1 natural numbers {0, 1, 2, ..., N}, that is all subsets containing s elements,

which we choose to write in an ordered form with σ1 < σ2 < · · · < σs. Using this

v2
k(α) the (1,1)-component of the α-dependent Green function in the momentum

space becomes

G11
0 (k;α) = G0(k) +

N+1∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

)

×
∞∑

lσ1 ,...,lσs=1

(−1)s+
∑s

r=1 lσr exp{i
s∑

j=1

ασj lσjkσj} [G∗0(k)−G0(k)].

Taking the inverse Fourier transform of this expression and defining the vectors

n0 = (1, 0, 0, 0, ...), n1 = (0, 1, 0, 0, ...), ..., nN = (0, 0, 0, ..., 1), in the (1 + N)-

dimensional Minkowski space, written in the the contravariant coordinates, the

energy-momentum tensor is

T µν(11)(α) = −4i

N+1∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

) ∞∑

lσ1 ,...,lσs=1

(−1)s+
∑s

r=1 lσr

× ∂µ∂ν lim
x′→x


G∗0(x′ − x+

s∑

j=1

ξσjασj lσjnσj )

−G0(x− x′ −
s∑

j=1

ξσjασj lσjnσj )


 , (17.15)

where ξσj = +1, if σj = 0, and ξσj = −1 for σj = 1, 2, ..., N .

In order to get the physical conditions of finite temperature and spatial confine-

ment, α0 has to be taken as a positive real number while αn, for n = 1, 2, ..., N ,

must be pure imaginary of the form i2an ; in these cases, one finds that α∗2j = α2
j .

Considering such choices for the parameters αj and using the explicit form of G0(x)
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for the 4-dimensional space-time (corresponding to N = 3), we obtain

T µν(11)(α) = − 4

π2

4∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

)

×
∞∑

lσ1 ,...,lσs=1

(−1)s+
∑s

r=1 lσr
1

[
∑s

j=1 ξσj (ασj lσj )
2]2

×
[
gµν −

2
∑s
j,r=1(1 + ξσj ξσr )(ασj lσj )(ασr lσr)n

µ
σj
nνσr∑s

j=1 ξσj (ασj lσj )
2

]
.

(17.16)

It is important to observe that the results given by Eqs. (17.6) and (17.10) are

particular cases of the energy-momentum tensor given by Eq. (17.16), correspond-

ing to α = (β, 0, 0, 0) and α = (0, 0, 0, i2a) respectively. Another important aspect

is that T µν(11)(α) is traceless, as it should be. To obtain the physical meaning

of T µν(11)(α), we have to analyze particular cases. Thus we rederive, first, some

known results considering N = 3. Let us emphasize that Eq. (17.14) is the gener-

alization of the Bogoliubov transformation, compatible with the generalizations of

the Matsubara formalism, for the case of fermions.

17.3 Casimir effect for two plates

The particular case of two parallel plates at zero temperature has already been

analyzed. For this case, taking α = (0, 0, 0, i2a), Eq. (17.16) reduces to Eq. (17.10)

and the standard Casimir effect is recovered. Let us then consider two parallel

plates at finite temperature. Then both time and space compactification need to

be considered; this is carried out by taking α = (β, 0, 0, i2a) in Eq. (17.16), where

β−1 = T is the temperature and a is the distance between plates perpendicular to

the x3-axis. Therefore we find,

T µν(11)(β, a) =
4

π2

{ ∞∑

l0=1

(−1)l0
[gµν − 4nµ0n

ν
0 ]

(βl0)4
+
∞∑

l3=1

(−1)l3
[gµν + 4nµ3n

ν
3 ]

(2al3)4

− 2

∞∑

l0,l3=1

(−1)l0+l3
[
(βl0)

2[gµν − 4nµ0n
ν
0 ]

[(βl0)2 + (2al3)2]3

+
(2al3)

2[gµν + 4nµ3n
ν
3 ]

[(βl0)2 + (2al3)2]3

]}
.

Using the summation in Eq. (17.8), the Casimir energy E(β, a) = T 00(11)(β, a)

is given by

E(β, a) =
7π2

60

1

β4
− 7π2

2880

1

a4
− 8

π2

∞∑

l0,l3=1

(−1)l0+l3
3(βl0)

2 − (2al3)
2

[(βl0)2 + (2al3)2]3
.
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Taking the limit a → ∞, this energy reduces to the Stefan-Boltzmann term given

in Eq. (17.7), while making β → ∞ one regains the Casimir effect for two plates

at zero temperature presented in Eq. (17.11). The third term, which stands for

the correction due to temperature and spatial compactification, remains finite as

β → 0 and, as expected, the high temperature limit is dominated by the positive

contribution of the Stefan-Boltzmann term.

The Casimir pressure, P (β, a) = T 33(11)(β, a), is similarly obtained as

P (β, a) =
7π2

180

1

β4
− 7π2

960

1

a4
+

8

π2

∞∑

l0,l3=1

(−1)l0+l3
(βl0)

2 − 3(2al3)
2

[(βl0)2 + (2al3)2]3
. (17.17)

It is to be noted that for low temperatures (large β) the pressure is negative but,

as the temperature increases, a transition to positive values happens. It is possible

to determine the critical curve of this transition, βc = χ0a, by searching for a value

of the ratio χ = β/a for which the pressure vanishes; this value, χ0, is the solution

of the transcendental equation

7π2

180

1

χ4
− 7π2

960
+

8

π2

∞∑

l,n=1

(−1)l+n
(χl)2 − 3(2n)2

[(χl)2 + (2n)2]3
= 0,

given, numerically, by χ0 ' 1.38177.

In the following sections we shall discuss situations in which the field is com-

pactified in more than one space directions. We start by describing the Casimir

effect for the massless fermion field in a rectangular waveguide, that is, considering

compactification of two space directions, then we include temperature.

17.4 Casimir effect for a waveguide

The situation of a rectangular waveguide is defined here by considering the confine-

ment along the x2- and the x3-axis. Then the Casimir effect at zero temperature is

obtained from Eq. (17.16) by taking α = (0, 0, i2a2, i2a3), that is

T µν(11)(a2, a3) =
1

4π2

{ ∞∑

l2=1

(−1)l2
[gµν + 4nµ2n

ν
2 ]

(a2l2)4
+

∞∑

l3=1

(−1)l3
[gµν + 4nµ3n

ν
3 ]

(L3l3)4

− 2

∞∑

l2,l3=1

(−1)l2+l3
[
(a2l2)

2[gµν + 4nµ2n
ν
2 ] + (a3l3)

2[gµν + 4nµ3n
ν
3 ]

[(a2l2)2 + (a3l3)2]3

+
4(a2l2)(a3l3)[n

µ
2n

ν
3 + nµ3n

ν
2 ]

[(a2l2)2 + (a3l3)2]3

]}
. (17.18)

Making use of Eq. (17.8), the Casimir energy, E(a2, a3) = T 00(11)(a2, a3), is given

by

E(a2, a3) = − 7π2

2880

(
1

a4
2

+
1

a4
3

)
− 1

2π2

∞∑

l2,l3=1

(−1)l2+l3

[(a2l2)2 + (a3l3)2]2
, (17.19)
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while the Casimir pressure , Pc(L2, L3) = T 33(11)(L2, L3), reads

P (a2, a3) = − 7π2

2880

(
3

a4
3

− 1

a4
2

)
+

1

2π2

∞∑

l2,l3=1

(−1)l2+l3
(a2l2)

2 − 3(a3l3)
2

[(a2l2)2 + (a3l3)2]3
. (17.20)

For a square waveguide, a2 = a3 = a, the Casimir energy and the Casimir

pressure (in this case, T 33(11) = T 22(11)) reduce, respectively, to

E(a) = −
(

7π2

1440
+
C2
2π2

)
1

a4
, (17.21)

P (a) = −
(

7π2

1440
+
C2
2π2

)
1

a4
, (17.22)

where the constant C2 is given by

C2 =

∞∑

l,n=1

(−1)l+n

(l2 + n2)2
' 0.19368.

We find that E and P for a square waveguide behave, as functions of a , in the

same way as in the case of two parallel plates, both being negative, but with the

energy decreasing (increasing in absolute value) and the pressure increasing (smaller

absolute value) in the waveguide case as compared with the case of two plates.

On the other hand, if the case a2 6= a3 is considered, althoughE remains negative

whatever the ratio ξ = a3/a2 is, it is clear from Eq. (17.20) that the sign of the

Casimir pressure depends heavily on the relative magnitude of a2 and a3. In fact, a

transition from negative to positive pressure is observed as ξ is increased; this feature

is presented in Fig. 17.1 where we plot P = T 33(11) for some rectangular waveguides

(characterized by different values of ξ) as a function of a (= a2). These plots indicate

the existence of a specific value of the ratio ξ, ξ0, for which the Casimir pressure

vanishes identically. This value is the solution of the transcendental equation

− 7π2

2880

(
3

ξ4
− 1

)
+

1

2π2

∞∑

l,n=1

(−1)l+n
l2 − 3(ξn)2

[l2 + (ξn)2]3
= 0,

which is given, numerically, by ξ0 ' 1.44742; all rectangular waveguides with the

ratio between a3 and a2 equal to ξ0 have null Casimir pressure P = T 33(11).

It is important to note that a similar reasoning applies to T 22(11)(a2, a3), which

is obtained from T 33(11) by exchanging a2 ↔ a3. So the force on the faces of the

wage-guide perpendicular to the x2-direction will also change from attractive to

repulsive if the ratio a2/a3 = ξ−1 increases, passing by the value ξ0. It is clear that

T 33(11) and T 22(11) will never be simultaneously positive; in fact, both are negative

for ξ−1
0 < ξ < ξ0 but they have opposite signs whenever ξ > ξ0 or ξ < ξ−1

0 . It is

also worth mentioning that, in a sense, this transition is similar to the transition

from negative to positive pressures for two plates as the temperature is increased;
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0.5 1 1.5 2
a

-3
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-1

1
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P

Fig. 17.1 The Casimir pressure, P = T 33(11) , for some rectangular waveguides, as a function of a
(= a2): the full and the dashed lines below the horizontal axis correspond to ξ = 0.8 and ξ = 1.2,
respectively; the dashed and the full lines above the horizontal axis refer to ξ = 1.5 and ξ = 2.0,
respectively.

the effect in both cases arises from the compactification of a second space-time

coordinate.

In order to incorporate the effect of temperature in the waveguide, we consider

Eq. (17.16) with α = (β, 0, i2a2, i2a3). Then the Casimir energy becomes

E(β, a2, a3) =
7π2

60

1

β4
− 7π2

2880

(
1

a4
2

+
1

a4
3

)

+
8

π2

∞∑

l0,l2=1

(−1)l0+l2
3(βl0)

2 − (2a2l2)
2

[(βl0)2 + (2a2l2)2]3

+
8

π2

∞∑

l0,l3=1

(−1)l0+l3
3(βl0)

2 − (2a3l3)
2

[(βl0)2 + (2a3l3)2]3

− 1

2π2

∞∑

l2,l3=1

(−1)l2+l3

[(a2l2)2 + (a3l3)2]2

− 16

π2

∞∑

l0,l2,l3=1

(−1)l0+l2+l3
3(βl0)

2 − (2a2l2)
2 − (2a3l3)

2

[(βl0)2 + (2a2l2)2 + (2a3l3)2]3
,

(17.23)
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while the Casimir pressure, P = T 33(11), is given by

P (β, a2, a3) =
7π2

180

1

β4
− 7π2

2880

(
3

a4
3

− 1

a4
2

)

+
8

π2

∞∑

l0,l3=1

(−1)l0+l3
(βl0)

2 − 3(2a3l3)
2

[(βl0)2 + (2a3l3)2]3

+
8

π2

∞∑

l0,l2=1

(−1)l0+l2

[(βl0)2 + (2a2l2)2]2

+
1

2π2

∞∑

l2,l3=1

(−1)l2+l3
(a2l2)

2 − 3(a3l3)
2

[(a2l2)2 + (a3l3)2]3

− 16

π2

∞∑

l0,l2,l3=1

(−1)l0+l2+l3
(βl0)

2 + (2a2l2)
2 − 3(2a3l3)

2

[(βl0)2 + (2a2l2)2 + (2a3l3)2]3
.

(17.24)

For simplicity, we concentrate on the problem of a square waveguide at finite

temperature. As in the two-plate case, the Casimir energy changes sign from neg-

ative to positive values with increasing temperature, as expected since the Stefan-

Boltzmann term dominates all others as β → 0. Let us then look at the Casimir

pressure P = T 33(11) (= T 22(11)). Taking a2 = a3 = a and defining χ = β/a,

Eq. (17.24) is written as

P (χ,L) = g(χ)
1

a4
, (17.25)

where

g(χ) =
7π2

180

1

χ4
− 7π2

1440
− C2

2π2

+
8

π2

∞∑

l,n=1

(−1)l+n
(χl)2 − 3(2n)2

[(χl)2 + (2n)2]3

+
8

π2

∞∑

l,n=1

(−1)l+n

[(χl)2 + (2n)2]2

− 16

π2

∞∑

l,n,r=1

(−1)l+n+r (χl)2 + (2n)2 − 3(2r)2

[(χl)2 + (2n)2 + (2r)2]3
. (17.26)

As for two plates, in a square waveguide the Casimir pressure changes sign from

negative to positive values as the temperature increases, the transition point given

by the value of χ, χ0, such that g(χ0) = 0. Numerically it is found that χ0 '
1.50448, and so the critical curve is given by βc = χ0 a. In the general case,

a2 6= a3, increasing the temperature tends to make all diagonal components of

T µν(11) positive.
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17.5 Casimir effect for a box

The fermion field is confined in a 3-dimensional closed box having the form of

a rectangular parallelepiped with faces a1, a2 and a3. At zero temperature,

the physical energy-momentum tensor is obtained from Eq. (17.16) by taking

α = (0, i2a1, i2a2, i2a3). The Casimir energy is then given by

E(a1, a2, a3) = − 7π2

2880

(
1

a4
1

+
1

a4
2

+
1

a4
3

)

− 1

2π2

∞∑

l1,l2=1

(−1)l1+l2

[(a1l1)2 + (a2l2)2]2

− 1

2π2

∞∑

l1,l3=1

(−1)l1+l3

[(a1l1)2 + (a3l3)2]2

− 1

2π2

∞∑

l2,l3=1

(−1)l2+l3

[(a2l2)2 + (a3l3)2]2

+
1

π2

∞∑

l1,l2,l3=1

(−1)l1+l2+l3

[(a1l1)2 + (a2l2)2 + (a3l3)2]2
, (17.27)

and the Casimir pressure, P = T 33(11), reads

P (a1, a2, a3) = − 7π2

2880

(
3

a4
3

− 1

a4
1

− 1

a4
2

)

+
1

2π2

∞∑

l1,l3=1

(−1)l1+l3
(a1l1)

2 − 3(a3l3)
2

[(a1l1)2 + (a3l3)2]3

+
1

2π2

∞∑

l1,l2=1

(−1)l1+l2

[(a1l1)2 + (a2l2)2]2

+
1

2π2

∞∑

l2,l3=1

(−1)l2+l3
(a2l2)

2 − 3(a3l3)
2

[(a2l2)2 + (a3l3)2]3

− 1

π2

∞∑

l1,l2,l3=1

(−1)l1+l2+l3
(a1l1)

2 + (a2l2)
2 − 3(a3l3)

2

[(a1l1)2 + (a2l2)2 + (a3l3)2]3
.

(17.28)

For a cubic box (a1 = a2 = a3 = a), the Casimir energy and pressure, respec-

tively, become

E(a) = −
(

7π2

960
+

3C2 − C3
2π2

)
1

a4
,

P (a) = −
(

7π2

2880
+

3C2 − C3
6π2

)
1

a4
,
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where the constant C3 is given by

C3 =

∞∑

l,n,r=1

(−1)l+n+r

(l2 + n2 + r2)2
' −0.06314,

and the constant C2 = 0.1937 was given earlier. In this case one has T 33(11) =

T 22(11) = T 11(11). It is clear that both energy and pressure in cubic boxes behave

similarly to the cases of two parallel plates and of square waveguides. In Fig. 17.2

the Casimir pressure for all these symmetrical cases is plotted, for comparison. It

is curious that, in the natural units, the Casimir pressure is three times the energy

for parallel plates, they are equal in a square waveguide, while in a cubic box,

P (a) = E(a)/3.

0.5 1 1.5 2
a

-2

-1.5

-1

-0.5

0.5
P

Fig. 17.2 The Casimir pressure, P , for two parallel plates separated by a distance L (full line);
for a square waveguide with transversal section of edge L (dashed line); and for a cubic box of
edge L (dotted line).

Changing the relative magnitude of the edges of the parallelepiped box leads

to similar effects as in the case of the rectangular waveguide. For example, taking

a1 = a2 = a and defining ξ = a3/a, one can show that P (a, ξ) = T 33(11)(a, ξ)

vanishes for ξ = ξ0 ' 1.68433, being negative for ξ < ξ0 and positive for ξ > ξ0.

However, as in the case of the waveguide, T 22(11) (= T 11(11) in the present situation)

will be negative whenever T 33(11) > 0.

To treat the effect of temperature in the case of a box, all four coordinates in the

Minkowski space have to be compactified by considering α = (β, i2a1, 12a2, i2a3)

in Eq. (17.16). This amounts to the addition to Eqs. (17.27) and (17.28) terms

involving β and the distances aj like those appearing in Eqs. (17.23) and ( 17.24).

In the simpler case of a cubic box at finite temperature, the expressions for the
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Casimir energy and pressure are

E(β, a) =
7π2

60

1

β4
−
(

7π2

960
+
C

2π2

)
1

a4
+

24

π2

∞∑

l,n=1

(−1)l+n
3β2l2 − 4a2n2

[β2l2 + 4a2n2]3

−48

π2

∞∑

l,n,r=1

(−1)l+n+r 3β2l2 − 4a2(n2 + r2)

[β2l2 + 4a2(n2 + r2)]3

+
32

π2

∞∑

l,n,r,q=1

(−1)l+n+r+q 3β2l2 − 4a2(n2 + r2 + q2)

[β2l2 + 4a2(n2 + r2 + q2)]3
, (17.29)

P (χ, a) =
1

a4





7π2

180

1

χ4
−
(

7π2

2880
+
C

6π2

)
+

16

π2

∞∑

l,n=1

(−1)l+n

[χ2l2 + 4n2]2

+
8

π2

∞∑

l,n=1

(−1)l+n
χ2l2 − 12n2

[χ2l2 + 4n2]3
− 16

π2

∞∑

l,n,r=1

(−1)l+n+r

[χ2l2 + 4(n2 + r2)]2

−32

π2

∞∑

l,n,r=1

(−1)l+n+r χ
2l2 + 4(n2 − 3r2)

[χ2l2 + 4(n2 + r2)]3

+
32

π2

∞∑

l,n,r,q=1

(−1)l+n+r+q χ
2l2 + 4(n2 + r2 − 3q2)

[χ2l2 + 4(n2 + r2 + q2)]3



 , (17.30)

where χ = β/L and the constant C is defined by

C = 3 C2 − 2 C3

= 3

∞∑

l,n=1

(−1)l+n

(l2 + n2)2
− 2

∞∑

l,n,r=1

(−1)l+n+r

(l2 + n2 + r2)2
' 0.707 . (17.31)

The plot of P , as a function of the temperature (T = β−1) and of the size

of the cube edge (L), is shown in Fig. 17.3. The Casimir pressure changes sign

from negative to positive values when the ratio χ = β/a passes through the value

χ0 ' 2.00. The critical curves,

Tc =
1

χ0 a
, (17.32)

for all symmetrical cases analyzed here (parallel plates, square waveguide and cubic

box) appears in Fig. 17.4. It is important to note that the behavior of Tc × a , in

all three cases, is very similar, with Tc scaling with the inverse of the length a.

Let us present an estimate about of the critical temperature Tc = (χ0a)
−1.

Taking a = 1 we have Tc = (χ0)
−1 ≈ 0.5. However, a = 1 means, a ≈ 1fm, a

length of the order of hadron radius; corresponding to Tc = (χ0a)
−1 ≈ 100 MeV.

This temperature is of the same order of magnitude as the temperature for the

deconfinement transition for hadrons. Let us analyze this fact in more detail, for a

more realistic model of QCD with massless quarks and gluons.
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Fig. 17.3 Casimir pressure for free fermionic field in a box at finite temperature.
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Fig. 17.4 Critical curves for the transitions from negative to positive Casimir pressure, induced
by the temperature, for: (i) two parallel plates separated by a distance L (full line); (ii) square
waveguide of transversal section of edge L (dashed line); (iii) cubic box of edge L (dotted line).
In all cases, the points below the curves correspond to Pc < 0, while above them one has Pc > 0.

17.6 Casimir effect for a non-interacting massless QCD

The QCD Lagrangian is given by

L = ψ(x)[iDµγ
µ −m]ψ(x) − 1

4
FµνF

µν − 1

2α′
(∂µArµ(x))

2 +Arµ(x)t
rJµ (x) .

where

F rµν = ∂µA
r
ν(x)− ∂νArµ(x) + gcrslAsµ(x)A

l
ν(x),
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Fµν =
∑
r
F rµν t

r, is the field tensor describing the gluons; tr and crsl are, re-

spectively, the generators and the structure constants of the gauge group SU(3);

Dµ = ∂µ + igArµ(x)t
r is the covariant derivative; ψ(x) is the quark field, carrying

flavor and color quantum numbers. The term 1
2α′ (∂

µArµ(x))
2 is the Gauge fixing

term. We consider an approximation for L describing a baryon-free massless quark-

gluon plasma, confined in a space-time with topology Γ4
4, where the circumferences

are specified by the set of parameters α. For high temperatures, to zero-order ap-

proximation, the interactions and the quark mass can be discarded. In order to

calculate the Casimir energy and pressure, the results for bosonic and fermionic

fields have to be combined.

The free energy-momentum tensor for the quark field is given by

T µνq (x) = inc lim
x′→x

∑

f

ψ(x)γµ∂′νψ(x′),

= incnf lim
x′→x
{ψ(x)γµ∂′νψ(x′)},

where nc and nf are the number of colors and flavors, respectively, in the SU(3)

non-abelian gauge theory. From T µνq (x), we introduce the renormalized tensor

T µν(ab)q (x;α) by

T µν(ab)q (x;α) = 〈T µλ(ab)
q (x;α)〉 − 〈T µλ(ab)

q (x)〉, (17.33)

where

〈T µλ(ab)
q (x)〉 = −i4ncnf lim

x′→x
∂′ν∂µG(ab)

0f (x− x′), (17.34)

〈T µλ(ab)
q (x;α)〉 = −i4ncnf lim

x′→x
∂′ν∂µG(ab)

0f (x− x′;α). (17.35)

Neglecting self-interaction of gluons, the energy-momentum tensor for the gluon

field is similar as for the electromagnetic field, up to the color number, ng. Then

we have

T µν(11)g (α) = −ing lim
x′→x

{
Γµν(x, x′)Ḡ11

0 (x− x′;α)
}

= −2ng
π2

4∑

s=1

2s−1
∑

{σs}

(
s∏

n=1

f(ασn)

)

×
∞∑

lσ1 ,...,lσs=1

[
gµν

[
∑s

j=1 ησj (ασj lσj )
2]2

−
2
∑s
j,r=1(1 + ησjησr )(ασj lσj )(ασr lσr )n

µ
σj
nνσr

[
∑s

j=1 ησj (ασj lσj )
2]3

]
; (17.36)
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and for the quark field

T µν(11)q (α) = −i4ncnf∂µ∂ν [Ḡ11
0 (x− x′;α)]x′→x

= −4ncnf
π2

4∑

s=1

∑

{σs}

(
s∏

n=1

f(ασn)

) ∞∑

lσ1 ,...,lσs=1

(−1)s+
∑s

r=1 lσr

×2s−1

[
gµν

[
∑s
j=1 ησj (ασj lσj )

2]2

−
2
∑s
j,r=1(1 + ησjησr )(ασj lσj )(ασr lσr )n

µ
σj
nνσr

[
∑s

j=1 ησj (ασj lσj )
2]3

]
. (17.37)

The energy-momentum tensor for the quark-gluon system, in our approximation, is

T µν(11)qg (α) = T µν(11)q (α) + T µν(11)g (α).

Considering the case of a cubic box of edge L at finite temperature, we have

α = (β, iL, iL, iL) and the gluon contribution for the Casimir pressure is

Pg(β, L) = T 33(11)
g (β, L) = ng g(χ)

1

L4

where

g(χ) =
2

π2



Cg +

π4

90

1

χ4
+ 4

∞∑

l,n=1

1

[χ2l2 + n2]2
+ 2

∞∑

l,n=1

χ2l2 − 3n2

[χ2l2 + n2]3

+ 4

∞∑

l,n,r=1

1

[χ2l2 + n2 + r2]2
+ 8

∞∑

l,n,r=1

χ2l2 + n2 − 3r2

[χ2l2 + n2 + r2]3

+ 8

∞∑

l,n,r,q=1

χ2l2 + n2 + r2 − 3q2

[χ2l2 + n2 + r2 + q2]3



 ,

with χ = β
L and

Cg = 2

∞∑

l,n=1

1

[l2 + n2]2
+

4

3

∞∑

l,n,r=1

1

[l2 + n2 + r2]2
− π4

90
≈ 0.582 .

The pressure of the gluon field is always positive: for T → 0,

T 33(11)
g (L) = ng

2Cg
π2

1

L4
;

for T →∞, the pressure is dominated by the term ngπ
2T 4/45.

For the quark field we have

Pq(β, L) = T 33(11)
q (β, L) = ncnf f(χ)

1

L4
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where

f(χ) =
1

π2



Cf +

7π4

180

1

χ4
+ 16

∞∑

l,n=1

(−1)l+n

[χ2l2 + n2]2

+8
∞∑

l,n=1

(−1)l+n
χ2l2 − 3n2

[χ2l2 + n2]3

− 16

∞∑

l,n,r=1

(−1)l+n+r

[χ2l2 + n2 + r2]2

−32

∞∑

l,n,r=1

(−1)l+n+r χ
2l2 + n2 − 3r2

[χ2l2 + n2 + r2]3

+ 32

∞∑

l,n,r,q=1

(−1)l+n+r+q χ
2l2 + n2 + r2 − 3q2

[χ2l2 + n2 + r2 + q2]3





with χ = β
L and

Cf = −8
∞∑

l,n=1

(−1)l+n

[l2 + n2]2
+

16

3

∞∑

l,n,r=1

(−1)l+n+r

[l2 + n2 + r2]2
− 7π4

180
≈ −5.67

For the quark field the pressure changes sign from negative to positive as the tem-

perature is increased: for T → 0,

Pq(β, L) = ncnf
Cf
π2

1

L4
< 0;

for T →∞, the pressure is dominated by the term ∼ T 4, which is positive.

The total Casimir pressure for the system of free, massless, quarks and gluons

is given by

Pqg(β, L) = [ncnf f(χ) + ng g(χ)]
1

L4
. (17.38)

For high temperatures both parcels give positive contributions to the Casimir pres-

sure, but for low T , there exists a competition between quark and gluon contri-

butions to determine the nature of the pressure, since they have opposite signs.

Considering a hadron specified by two flavors, u and d, each with 3 colors and an

octet of gluons, we have ng = 8, nc = 3 and nf = 2; in this case, the low-T pressure

is negative and a transition to positive pressure appears by raising the temperature.

The value of χ = β/L at which the pressure vanishes, in the case of a cubic box, is

the root of the equation ncnff(χ) + ngg(χ) = 0 which is obtained, numerically, as

χc ≈ 2.66; this leads to the critical curve

Tc = χ−1
c

1

L
.

If we take L ≈ 1fm, a length of the order of a hadron radius, one finds Tc ≈ 75 MeV.

Such an estimative provides a rough idea of the importance of Casimir effect in the
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deconfinement transition for hadrons; this is to be compared with the estimated

temperature, 175 MeV, for the deconfinement of quarks and gluons in lattice QCD.

This points to the fact that we have to analyze the Casimir effect in QCD in more

detail. The Casimir energy may change the deconfining temperature, estimated by

using lattice gauge theory, in production of the quark-gluon plasma RHIC.

We have also to emphasize that, as for the case of the electromagnetic field, for

fermions and non-abelian gauge fields the Casimir effect is also described as an effect

of condensation of the vacuum, due to the use of the Bogoliubov transformation.

These examples show that this method provides an important tool for studies of

this nature, in particular for QCD. However, the case of a topology like S3 has to

be considered to get a better understanding of the role of the Casimir effect in the

process of confinement and deconfinement of quarks and gluons.
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Chapter 18

Compactified λϕ4 Theory

This chapter is devoted to the compactified λϕ4 theory, considering its N -

component version. We work in the Euclidian space-time and treat compactified

space and time coordinates with the generalized Matsubara formalism presented

in Chapter 15. At T = 0 and with only one spatial dimension compactified, we

compare the boundary-dependent renormalized coupling constant for the model

with and without Wick ordering and discuss the breaking of the O(N) symmetry

induced by varying the compactification length. Taking the compactified model

at finite temperature, the spontaneous symmetry breaking is considered and the

equation for the critical curve in the β × L plane is derived.

18.1 Compactification of a d-dimensional subspace

Let us consider the N -component, massive, λϕ4 theory described by the Lagrangian

density,

L =
1

2
∂µϕa∂

µϕa +
1

2
m2ϕaϕa +

u

4!
(ϕaϕa)

2, (18.1)

in D-dimensional Euclidian space-time, where u is the coupling constant, m is the

mass and summation over repeated flavor index a is assumed. To simplify the

notation, in the following, we drop the flavor index, summation over them be-

ing understood in field products. We consider the system in thermal equilibrium

with a reservoir at temperature β−1 and confined to a (d − 1)-dimensional spa-

tial parallelepiped box of sides Lj , j = 2, 3, ..., d. We use Cartesian coordinates

r = (x1, ..., xd, z), where z is a (D − d)-dimensional vector, with corresponding

momentum k = (k1, ..., kd,q), q being a (D − d)-dimensional vector in momentum

space. Then we use a generalized Matsubara prescription, performing the following

multiple replacements,
∫
dki
2π
→ 1

Li

+∞∑

ni=−∞
; ki →

2niπ

Li
, i = 1, 2..., d. (18.2)

This generalizes the standard procedure used in finite temperature field theory, as

for instance in [283] We consider the large N limit, in which N →∞, u→ 0, with

311
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Nu = λ fixed.

We start from the well-known expression for the one-loop contribution for the

effective potential for the non-compactified theory, as discussed in Chapter 4,

U1(ϕ0) =

∞∑

s=1

(−1)s+1

2s

[
λϕ2

0

2

]s ∫
dDk

(2π)D
1

(k2 +m2)s
, (18.3)

where m is the physical mass. For the Wick-ordered model, since in this case the

tadpoles are suppressed, it is unnecessary to perform a mass renormalization to

order 1
N in the one-loop approximation, the parameter m in Eq. (18.1) playing in

this case the role of the physical mass.

We introduce dimensionless parameters c2 = m2/4π2µ2, (Liµ)2 = a−1
i , g =

(u/8π2), (ϕ0/µ) = φ0, where ϕ0 is the normalized vacuum expectation value of

the field (the classical field) and µ is a mass scale. In terms of these parameters

and performing the Matsubara replacements Eq. (18.2), the one-loop contribution

to the effective potential is written as,

U1(φ0, a1, ..., ad) = µD
√
a1 · · · ad

∞∑

s=1

(−1)s+1

2s
gsφ2s

0

+∞∑

n1,...,nd=−∞

×
∫

dD−dq

(a1n2
1 + · · ·+ adn2

d + c2 + q2)s
.

(18.4)

Using formula Eq. (10.12) to perform the integration over the (D − d) non-

compactified momentum variables, we obtain

U1(φ0, a1, ..., ad) = µD
√
a1 · · · ad

∞∑

s=1

f(D, d, s)gsφ2s
0 A

c2

d (s− D − d
2

; a1, ..., ad),

(18.5)

where

f(D, d, s) = π(D−d)/2 (−1)s+1

2sΓ(s)
Γ(s− D − d

2
) (18.6)

and Ac
2

d is the Epstein-Hurwitz multivariable zeta function defined by,

Ac
2

d (ν; a1, ..., ad) =

+∞∑

n1,...,nd=−∞
(a1n

2
1 + · · ·+ adn

2
d + c2)−ν =

1

c2ν

+2

d∑

i=1

∞∑

ni=1

(ain
2
i + c2)−ν

+22
d∑

i<j=1

∞∑

ni,nj=1

(ain
2
i + ajn

2
j + c2)−ν + · · ·

+2d
∞∑

n1,...,nd=1

(a1n
2
1 + · · ·+ adn

2
d + c2)−ν .

(18.7)
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We proceed by generalizing to several variables the mode-sum regularization pro-

cedure described in [284, 285]. Using the identity,

1

∆ν
=

1

Γ(ν)

∫ ∞

0

dt tν−1e−∆t, (18.8)

we get

Ac
2

d (ν; a1, ..., ad) =
1

Γ(ν)

∫ ∞

0

dt tν−1e−c
2t

[
1 + 2

d∑

i=1

T1(t, ai)+

+22
d∑

i,j=1

T2(t, ai, aj) + · · ·+ 2dTd(t, a1, ..., ad)


 ,

(18.9)

where

T1(t, ai) =

∞∑

ni=1

e−ain
2
i t , (18.10)

Tj(t, a1, ..., aj) = Tj−1(t, a1, ..., aj−1)T1(t, aj), j = 2, ..., d. (18.11)

Considering the property of the function T1,

T1(t, ai) = −1

2
+

√
π

ait

[
1

2
+ S(

π2

ait
)

]
, (18.12)

where

S(x) =
∞∑

n=1

e−n
2x, (18.13)

we find that the surviving terms in Eq. (18.9) are proportional to (a1 · · · ad)−(1/2).

Therefore,

Ac
2

d (ν; a1, ..., ad) =
π

d
2

√
a1 · · ·ad

1

Γ(ν)

∫ ∞

0

dt t(ν−
d
2 )−1e−c

2t

×


1 + 2

d∑

i=1

S(
π2

ait
) + 22

d∑

i<j=1

S(
π2

ait
)S(

π2

ajt
)

+ · · ·+ 2d
d∏

i=1

S(
π2

ait
)

]
.

(18.14)

Using the explicit form of the function S(x) and the representation for Bessel func-

tions of the third kind, Kν ,

2(a/b)
ν
2Kν(2

√
ab) =

∫ ∞

0

dx xν−1e−(a/x)−bx, (18.15)
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we obtain

Ac
2

d (ν; a1, ..., ad) =
2ν−

d
2 +1π2ν− d

2

√
a1 · · · ad Γ(ν)

[
2ν−

d
2−1Γ(ν − d

2
)(
m

µ
)d−2ν

+2
d∑

i=1

∞∑

ni=1

(
m

µ2Lini
)

d
2−νKν− d

2
(mLini) + · · ·

+2d
∞∑

n1,...,nd=1

(
m

µ2
√
L2

1n
2
1 + · · ·+ L2

dn
2
d

)
d
2−ν

Kν−d
2
(m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d)

]
.

(18.16)

Taking ν = s − (D − d)/2 in Eq. (18.16), the one-loop correction to the effective

potential in D dimensions with a compactified d-dimensional subspace is

U1(φ0, a1, ..., ad) =

∞∑

s=1

usϕ2s
0 h(D, s)

[
2s−

D
2 −2Γ(s− D

2
)mD−2s

+

d∑

i=1

∞∑

ni=1

(
m

Lini
)

D
2 −sKD

2 −s(mLini)

+2

d∑

i<j=1

∞∑

ni,nj=1

(
m√

L2
in

2
i + L2

jn
2
j

)
D
2 −s

×KD
2 −s(m

√
L2
in

2
i + L2

jn
2
j ) + · · ·

+2d−1
∞∑

n1,···nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)
D
2 −s

×KD
2 −s(m

√
L2

1n
2
1 + · · ·+ L2

dn
2
d)

]
,

(18.17)

with

h(D, s) =
1

2D/2−s−1πD/2−2s

(−1)s+1

sΓ(s)
, (18.18)

where we have recovered the original parameters and eliminated the auxiliary mass

scale µ.

18.2 Subtraction scheme

We consider in the following the zero external momentum four-point function, which

will be used to define the coupling constant. The four-point function to leading order
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in 1/N is given by the sum of all diagrams of the type depicted in Fig. 18.1. This

gives

Γ
(4)
D (0, {Li}) =

u

1 +NuΣ(D, {Li})
, (18.19)

where Σ(D, {Li}) corresponds to the one-loop (bubble) subdiagram in Fig. 18.1.

To obtain an expression for Σ(D, {Li}), we use concurrently dimensional and zeta

function analytic regularizations, to evaluate formally the integral over the contin-

uous momenta and the summation over the Matsubara frequencies. These results

contain terms proportional to Γ-functions which are singular for even dimensions.

We subtract them to get finite quantities. To have an uniform procedure in any

dimension, these subtractions are also performed for odd dimension D, where no

poles of Γ-functions are present. In what follows this subtraction procedure is called

renormalization, although it is not a perturbative renormalization, and the quanti-

ties obtained are denoted renormalized quantities.

Fig. 18.1 Typical diagram contributing to the four-point function at leading order in 1
N

. To each

vertex there is a factor λ
N

and for each single bubble a color circulation factor of N .

To proceed, we use the normalization conditions,

∂2

∂ϕ2
U(D, {Li})

∣∣∣∣
ϕ0=0

= m2 (18.20)

and

∂4

∂ϕ4
U(D, {Li})

∣∣∣∣
ϕ0=0

= λ. (18.21)

We deduce that formally the single bubble function, Σ(D, {Li}), is obtained from

the coefficient of the fourth power of the field (s = 2) in Eq. (18.17). Such a coef-

ficient is divergent for even dimensions and a renormalization procedure is needed.

Then using Eqs. (18.21) and (18.17) we can write Σ(D, {Li}) in the form,

Σ(D, β, L) = Σ1(D) + Σ2(D, {Li}), (18.22)

where the Li-dependent contribution Σ2(D, {Li}), coming from the second term
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between brackets in Eq. (18.17), is given by

Σ2(D, {Li}) =
3

2

1

(2π)D/2

[
d∑

i=1

∞∑

ni=1

(
m

Lini

)D
2 −2

KD
2 −2(mLini) +

+2

d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j




D
2 −2

×KD
2 −2

(
m
√
L2
in

2
i + L2

jn
2
j

)
+ · · ·+

+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D
2 −2

× KD
2 −2

(
m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d

)]
(18.23)

The first term between brackets in Eq. (18.17) gives

Σ1(D) ∝ Γ(2− D

2
)mD−4. (18.24)

We find that, for even dimensions D ≥ 4, Σ1(D) is divergent, due to the pole of

the Γ-function. Accordingly this term must be subtracted to give the renormalized

single bubble function ΣR(D, {Li}),
ΣR(D, {Li}) = Σ2(D, {Li}). (18.25)

It is important to note that Σ1(D) does not depend on {Li}. As mentioned before,

the term Σ1(D) is also subtracted for odd dimension D also which corresponds to a

finite renormalization. Using properties of Bessel functions, we find from Eq. (18.23)

that, for any dimension D, ΣR(D, β, L) satisfies the conditions

lim
Li→∞

ΣR(D, {Li}) = 0 , lim
Li→0

ΣR(D, {Li})→∞, (18.26)

and ΣR(D, {Li}) > 0 for any values of D, and Li.

The Li-dependent renormalized coupling constant λR(D, {Li}) to the leading

order in 1/N is defined by,

NΓ
(4)
D (0, {Li}) ≡ λR(D, {Li}) =

λ

1 + λΣR(D, {Li})
. (18.27)

The renormalized coupling constant in the absence of boundaries is,

λR(D) = N lim
Li→∞

Γ
(4)
D,R(0, {Li}) = λ, (18.28)

where we have used Eq. (18.26). Thus we conclude that we have made a choice

of the renormalization scheme such that the constant λ = Nu introduced in the

Lagrangian corresponds to the physical largeN coupling constant in the unbounded

space. Then the Li-dependent renormalized coupling constant is,

λR(D, {Li}) =
λ

1 + λΣR(D, {Li})
. (18.29)
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18.3 The zero-temperature compactified model

We study in this section the boundary behavior of the mass and the coupling con-

stant when only one spatial dimension is compactified. We consider the cases with

Wick-ordering and without Wick-ordering.

18.3.1 Wick-ordered model

As we mentioned earlier, no mass renormalization is needed if we take the Wick-

ordered model. In the case of only one compactified spatial dimension, particular-

izing Eq. (18.17) for d = 1, L1 = L for d = 1, we obtain from Eqs. (18.21) and

(18.25),

ΣR(D,L) =
3

2

1

(2π)D/2

∞∑

n=1

[ m
nL

]D/2−2

KD
2 −2(mnL), (18.30)

which gives the L -dependent renormalized coupling constant,

λR(D,L) =
λ

1 + λΣR(D,L)
. (18.31)

An exact result is obtained in dimension D = 3. Using [286],

Kn+ 1
2
(z) = K−n− 1

2
(z), K 1

2
(z) =

√
π

2z
e−z, (18.32)

we obtain the coupling constant in the large N limit,

λWR (D = 3, L) =
8πmλ(emL − 1)

8mπ(emL − 1) + 3λ
, (18.33)

where the superscript W is used to indicate explicitly Wick-ordering. A plot of

λWR (D = 3, L) is given in Fig. 18.2.

18.3.2 The model without Wick-ordering

The effect of suppression of Wick-ordering is that the renormalized mass cannot be

taken as the coefficient m of the term ϕaϕa in the Lagrangian. We must take an

L-corrected physical mass which is obtained from Eq. (18.20). We get,

m2
R(L) = m2 +

4λ(N + 2)

N(2π)D/2

∞∑

n=1

[
mR(L)

Ln

]D/2−1

KD
2 −1(mR(L)nL). (18.34)

To obtain the L-dependent coupling constant the constant mass parameterm should

be replaced in Eq. (18.31) and Eq. (18.30) by the L-corrected mass mR(L) and the

resulting system of equations should be solved with respect to mR(L). Exact closed

expressions are not possible, since it would be equivalent to solving the Dyson-

Schwinger equations exactly.
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Fig. 18.2 Renormalized coupling constant (in units of 1
N

) for the Wick-ordered model as a func-
tion of the separation between the planes in dimension D = 3. The dashed, full and dotted lines
correspond, respectively, to λ/m = 0.2, 1.0 and 3.0.

Nevertheless, results can be obtained, both analytic and numerical, for D = 4.

We take an integral representation for the Bessel function [286],

Kν(z) =

√
π

Γ(ν + 1
2 )

(
z

2
)ν
∫ ∞

1

e−zt(t2 − 1)ν−
1
2 dt, (18.35)

valid for Re(ν) > − 1
2 and |arg(z)| < π

2 . Using this representation, the L-dependent

renormalized mass is

m2
R(L) = m2 +

4λ(N + 2)

N
F (D)mD−2

R (L)

×
∫ ∞

mR(L)L

dτ

mR(L)L

[(
τ

mR(L)L

)2

− 1

]D−3
2

1

eτ − 1
,

(18.36)

where

F (D) =
1

2D
1

π
D−1

2

1

Γ(D−1
2 )

.

When D is odd, the power (D − 3)/2 is an integer and Newton binomial theorem

gives an algebraic equation for m2
R(L). When D is even the expansion of

[(
τ

mR(L)L

)2

− 1

]D−3
2

yields an infinite power series leading to

m2
R(L) = m2 +

4λ(N + 2)

NLD−2

∞∑

k=0

g(D, k)(mR(L)L)2k
∫ ∞

mR(L)L

dτ
τD−3−2k

eτ − 1
(18.37)

where

g(D, k) = F (D)(−1)kCkD−3
2
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and the C’s are the generalized binomial coefficients,

Ckn =
n!

k!(n− k)! .

For k = 0, the Debye integral is

I(x, n) =

∫ ∞

x

dτ
τn

eτ − 1
=

∞∑

q=1

e−qx xn
(

1

q
+
n

q2
+ · · ·+ n!

qn+1

)
, (18.38)

which is valid for x > 0 and n ≥ 1. For k > D − 3)/2, the exponent of τ in

Eq. (18.37) becomes negative and the integral is undefined. Then for small values

of L, a generalization to negative odd powers of the argument of the integrand in

the Debye integral can be carried out [245] and the integral has the expansion

J(u, n) =

∫ ∞

u

dτ
τ−n

eτ − 1
= −

∞∑

q=0,q 6=n

Bq
q!

uq−n

q − n −
1

n!
Bn lnu+ αn (18.39)

where Bk are the Bernoulli numbers and αn is a constant. Now using this result in

Eq. (18.37) we have, in the small L regime, the following expression

m2
R(L) = m2 +

4λ(N + 2)

NLD−2
[A(L,D) +B(L,D)] , (18.40)

where,

A(L,D) =

k≤D−3
2∑

k=0

g(D, k)(mR(L)L)2kI(mR(L)L,D − 3− 2k) (18.41)

and

B(L,D) =

k=∞∑

k>D−3
2

g(D, k)mR(L)L)2kJ(mR(L)L,D − 3− 2k). (18.42)

This provides a non-perturbative expression for the L-corrected renormalized mass

in the small L regime, for even dimensional Euclidean space. In arbitrary even

dimensions, for L sufficiently small, the series in Eq. (18.42) can be truncated, giving

an approximate algebraic equation for the L-corrected mass. Use this expression

in Eq. (18.31) gives the L-corrected coupling constant in the small L regime. We

will not perform these manipulations here. Instead, we get some exact results for

D = 3.

In dimension D = 3, using Eqs. (18.32) the sum over n in Eq. (18.34) can be

performed exactly. We obtain a closed transcendental equation for the L-corrected

renormalized mass,

m2
R(L) = m2 − λ(N + 2)

NπL
log(1− e−mR(L)L), (18.43)

or, in the large N limit,

m2
R(L) = m2 − λ

πL
log(1− e−mR(L)L). (18.44)
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Fig. 18.3 Renormalized mass for the non-Wick-ordered model as a function of the spacing L
between the planes in dimension D = 3. The dashed, full and dotted lines correspond, respectively,
to λ/m = 0.2, 1.0 and 3.0.

The large N renormalized mass is plotted as a function of L in Fig. 18.3.

An exact expression for the coupling constant in the large N limit as a function

of the renormalized L-dependent mass is

λR(D = 3, L) =
8πmR(L)λ(emR(L)L − 1)

8πmR(L)(emR(L)L − 1) + 3λ
. (18.45)

In Fig. 18.4 the L-corrected coupling constant for the non-Wick-ordered model in

dimension D = 3, in the same scale used in Fig. 18.2 is presented. Comparison

of the coupling constant for Wick-ordered and without Wick-ordering shows quite

different behaviors. The coupling constant without Wick-ordering slightly decreases

for decreasing values of L until some minimum value and then starts to increase. In

the Wick-ordered model the coupling constant tends monotonically to zero as L goes

to zero. In the non-Wick ordered model it has a non-vanishing value even for very

small values of L. In fact, numerical analysis of the solution of Eq. (18.45) shows

that mR(L)L→ 0 and m2
R(L)L→∞ as L→ 0 and, therefore, the L-corrected non-

Wick-ordered coupling constant has a non-vanishing value at L = 0. This value is

equal to the free space value λ. As a general conclusion it can be said that for the

non-Wick-ordered model the L-dependent renormalized coupling constant departs

slightly to lower values, from the free space coupling constant. Furthermore this

departure is smaller for smaller values of λ.

For space dimension D > 2 the correction in L to the squared mass is positive

and the L-dependent squared mass is a monotonically increasing function of 1
L .

If we start in the disordered phase with a negative squared mass m2, the model

exhibits spontaneous symmetry breaking of the O(N) symmetry to O(N − 1), but

for a sufficiently small critical value of L the symmetry is restored. The critical

value of L, Lc is defined as the value of L for which the inverse squared correlation
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Fig. 18.4 Renormalized coupling constant (in units of 1
N

) for the non-Wick ordered model as a
function of the distance between the planes in dimension D = 3.

length, ξ−2(L,ϕ0), vanishes in the gap equation,

ξ−2(L,ϕ0) = m2 + 2λϕ2
0 +

2λ(N + 2)

NL

+∞∑

n=−∞

∫
dD−1k

(2π)D−1

1

k2 + ω2
n + ξ−2(L,ϕ0)

,

(18.46)

where ϕ0 is different from zero in the ordered phase. In the neighborhood of the

critical point ϕ0 vanishes and the gap equation reduces to Eq. (18.34). In the small

L regime, we may use an asymptotic formula for small values of the argument of

Bessel functions,

Kν(z) ≈
1

2
Γ(ν)

(z
2

)−ν
(z ∼ 0 ; Re(ν) > 0) (18.47)

in Eq. (18.34). Then takingmR(L) = 0 in the resulting equation, it is not difficult to

obtain the large N critical value of L in the Euclidian space dimension D (D > 2),

(Lc)
D−2 = −4λg(D)

m2
, (18.48)

where

g(D) =
1

4π
D
2

Γ(
D

2
− 1)ζ(D − 2), (18.49)

ζ(D − 2) being the Riemann zeta function. For D = 3 the zeta function in g(D)

has a pole and a subtraction procedure is needed: we use the Laurent expansion of

ζ(z),

ζ(z) =
1

z − 1
+ γ0 − γ1 (z − 1) + · · · , (18.50)

where γ0 ' 0.577 and γ1 ' 0.0728 (the Euler-Mascheroni and the first Stieltjes

constants, respectively). We get the critical value of L in dimension D = 3,

(Lc) = − λγ0

16m2
π−

5
2 , (18.51)
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The result above extends to a phase transition driven by a spatial boundary, esti-

mates and numerical simulations for temperature-driven transitions [287, 288].

Taking the Wick-ordering, which eliminates all contributions from the tadpoles,

we decouple in some sense the boundary behavior of the coupling constant from

boundary behavior of the mass. Wick-ordering is a useful and simplifying proce-

dure in applications of the field theory to particle physics, but the same is not

necessarily true in applications of field theory to investigate critical phenomena,

where the contribution from tadpoles are physically significant. As a consequence

of the suppression of Wick-ordering the boundary behavior of the coupling constant

is sensibly modified with respect to the monotonic behavior in the Wick-ordered

case (see comments following Eq. (18.45)).

18.4 The compactified model at finite temperature: spontaneous

symmetry breaking

We consider in this section the non-Wick-ordered model; we get the β- and L-

corrected effective potential to one-loop approximation from Eq. (18.17), taking

d = 2, with L1 = β and L2 = L. Then the renormalized physical mass is obtained

from Eqs. (18.20) and (18.17),

m2(β, L) = m2 +
4µ4−Dλ

(2π)D/2

×
[ ∞∑

n=1

(
m

nβ
)

D
2 −1KD

2 −1(nβm) +

∞∑

n=1

(
m

nL
)

D
2 −1KD

2 −1(nLm)

+ 2
∞∑

n1,n2=1

(
m√

β2n2
1 + L2n2

2

)
D
2 −1KD

2 −1(m
√
β2n2

1 + L2n2
2)

]
.(18.52)

Using Eq. (18.32), we obtain for the physical mass and the renormalized one-loop

diagram, the following expressions

ΣR(D, β, L)(β, L) =
3µ

8πm

[
(emβ − 1)−1 + (emL − 1)−1

+2

∞∑

n1,n2=1

e−m
√
β2n2

1+L2n2
2

]
, (18.53)

and

m2(β, L) = m2 +
µλ

π

[
− log(1− e−mβ)

β
− log(1− e−mL)

L

+2

∞∑

n1,n2=1

e−m
√
β2n2

1+L
2n2

2

√
β2n2

1 + L2n2
2

]
.

(18.54)
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18.4.1 Mass behavior and critical curve

The critical curve is a curve in the β × L plane and is defined by the vanishing of,

ξ−2(β, L, ϕ0), the inverse squared correlation length, in the gap equation,

ξ−2(β, L, ϕ0) = m2 + λϕ2
0

+
λ(N + 2)

2NβL

∞∑

n1,n2=−∞

×
∫

dD−2q

(2π)D−2

1

q2 + ( 2πn1

β )2 + ( 2πn2

L )2 + ξ−2(β, L, ϕ0)
,

(18.55)

where ϕ0 is different from zero in the ordered phase.

Close to the critical curve, ϕ0 vanishes and the gap equation at one-loop order

reduces, in the large N limit, to Eq. (18.52). In the neighborhood of criticality,

m2 ≈ 0, the asymptotic formula for small values of the argument of Bessel functions,

Eq. (18.47) may be used and Eq. (18.52) becomes,

m2(β, L) ≈ m2 +
4λµ4−D

(π)D/2
Γ

(
D

2
− 1

)

×
[
(β2−D + L2−D)ζ(D − 2) + 2E2

(
D − 2

2
;β, L

)]
,

(18.56)

where ζ(D − 2) is the Riemann zeta function,

ζ(D − 2) =

∞∑

n=1

1

nD−2
, (18.57)

and E2((D − 2)/2;β, L) is the two-variable Epstein zeta function,

E2

(
D − 2

2
;β, L

)
=

∞∑

n1,n2=1

1

(β2n2
1 + L2n2

2)
D−2

2

. (18.58)

ζ(D − 2) has an analytical extension to the whole complex D-plane, having an

unique simple pole of residue 1 at D = 3.

We can also obtain an analytic continuation of the two-variable Epstein zeta

function, writing it in terms of the one-variable Riemann zeta functions plus an

analytic part, if we use the analytic extension of the one-variable Epstein-Hurwitz

zeta function [284, 289],

∞∑

n=1

1

(n2 + p2)
ν = −1

2

1

p2ν
+

√
π

2p2ν−1Γ(ν)

×
[
Γ

(
ν − 1

2

)
+ 4

∞∑

n=1

(πpn)ν−
1
2Kν− 1

2
(2πpn)

]
. (18.59)
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Using this expression to perform first the summation over n2 in Eq. (18.58), we get

E2

(
D − 2

2
;β, L

)
=

1

LD−2

∞∑

n1=1

( ∞∑

n2=1

1

(n2
2 + L−2β2n2

1)
D−2

2

)

= − 1

2

1

βD−2
ζ(D − 2) +

√
π

2

Γ
(
D−3

2

)

Γ
(
D−2

2

) 1

LβD−3
ζ(D − 3)

+

√
2π

Γ
(
D−2

2

) 1

L

∞∑

n1,n2=1

(
π

Lβ

n1

n2

)D−3
2

KD−3
2

(
2π
β

L
n1n2

)
.

However, under the interchange β ↔ L this expression is not symmetrical, a sym-

metry that is expected from the definition of the two-variable Epstein zeta function.

In order to preserve the β ↔ L symmetry of Eq. (18.58), we adopt a symmetrized

summation and define

E2

(
D − 2

2
;β, L

)
=

1

2

[ ∞∑

n1=1

( ∞∑

n2=1

1

(β2n2
1 + L2n2

2)
D−2

2

)

+

∞∑

n2=1

( ∞∑

n1=1

1

(β2n2
1 + L2n2

2)
D−2

2

)]
, (18.60)

where the parentheses indicate that the sums must be performed in this order.

The symmetric analytical extension of the two-variables Epstein function [285]

is then given by

E2

(
D − 2

2
;β, L

)
= −1

4

(
1

βD−2
+

1

LD−2

)
ζ(D − 2)

+

√
π Γ
(
D−3

2

)

4 Γ
(
D−2

2

)
(

1

LβD−3
+

1

βLD−3

)
ζ(D − 3)

+

√
π

Γ
(
D−2

2

) W2

(
D − 3

2
;β, L

)
, (18.61)

where the analytic part W2 is

W2

(
D − 3

2
;β, L

)
=

1

L

∞∑

n1,n2=1

(
π

Lβ

n1

n2

)D−3
2

KD−3
2

(
2π
β

L
n1n2

)

+
1

β

∞∑

n1,n2=1

(
π

βL

n1

n2

)D−3
2

KD−3
2

(
2π
L

β
n1n2

)
. (18.62)

This procedure will be generalized for multivariable Epstein zeta functions in Chap-

ter 21.

Then we find that the function E2((D−2)/2;β, L) has two simple poles at D = 4

and D = 3. The solution of Eq. (18.56) for mR(β, L) = 0 and m2 < 0 defines the

critical curve in dimension D, with D 6= 4 and D 6= 3, as

m2 +
4λµ4−D

(π)D/2
Γ

(
D

2
− 1

)[
(β2−D
c + L2−D

c )ζ(D − 2) + 2E2

(
D − 2

2
;βc, Lc

)]
= 0.

(18.63)
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For D = 4 the generalized zeta function E2 has a pole and for D = 3 both

the Riemann zeta function and E2 have poles. We cannot obtain a critical curve

in dimensions D = 4 and D = 3 by a limiting procedure from Eq. (18.63). For

D = 4, which corresponds to the physically interesting case of the system at T 6= 0

confined between two parallel planes embedded in a 3-dimensional Euclidean space,

Eqs. (18.56) and (18.63) are meaningless. To obtain a critical curve in D = 4, a

regularization procedure is carried out using Eq. (18.50). Then from Eq. (18.61),

we redefine the mass as,

lim
D→4−

[
m2 +

1

D − 4

4λ

π2βL

]
= m2 , (18.64)

in terms of which we obtain the critical curve in dimension D = 4,

m2 +
λ

3

(
1

β2
c

+
1

L2
c

)
+

πγ0

βcLc
+ 4
√
πW2(2;βc, Lc) = 0 , (18.65)

where we have used ζ(2) = π2/6 and Γ(1/2) =
√
π.

We have presented a formalism that accounts for compactification of the λϕ4

theory in a d-dimensional subspace. This includes both cases of only spatial coor-

dinates and simultaneous compactification of time and spatial coordinates. In both

cases, equations for the L- and β and L-dependent mass and coupling constant are

derived. A critical value for L in the case d = 1 is obtained and an equation for the

critical curve in the β × L plane is derived.

The case of simultaneous compactification of time and spatial coordinates leads

to the study of spontaneous symmetry breaking in a spatially compactified theory.

In fact, consider the system initially at a high enough temperature such that, for a

small enough, but fixed, value of L, m2
R(β, L) > 0. In this case, the potential

V (ϕ) =
1

2
m2
R(β, L)ϕ2 + λ(β, L)ϕ4 (18.66)

has only one minimum at ϕ = 0. As the temperature is lowered, eventually,

m2
R(β, L) vanishes. As the temperature is lowered further, m2

R(β, L) becomes neg-

ative. When this situation is attained the potential has two minima, the original

symmetry is spontaneously broken.
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Chapter 19

Phase Transitions in Confined Systems:
Application to Superconducting Films

The idea of describing thermodynamical phases through classical (in general com-

plex) fields, the order parameters, was first introduced by Landau [290]. The free

energy of a system is written as a functional of the order parameter, φ(r), and the

equilibrium state is obtained by a variational principle. First- and second-order

phase transitions can be described by choosing an appropriated expansion of the

free energy functional around the critical point.

19.1 Overview

For a second-order phase transition, the free energy [291] is written (in natural

units, ~ = c = kB = 1) as

F [φ(r)] =

∫
drF(φ(r),∇φ(r)) , (19.1)

with the free energy density given by

F(φ(r),∇φ(r)) = |∇φ(r)|2 + a(T ) |φ(r)|2 +
b

2
|φ(r)|4 , (19.2)

where a(T ) = α(T−T0), T0 being the critical temperature, and b > 0 is independent

of the temperature T . The truncated expansion Eq. (19.2), is assumed to be correct

near the transition point, where the order parameter is close to zero. In equilibrium,

the order parameter satisfies the equation

∇2φ(r)− a(T )φ(r) − b|φ(r)|2φ(r) = 0. (19.3)

Neglecting spatial variations of φ, the possible solutions are φ0 = 0 and φ2
0 =

−a(T )/b; the null solution is stable when T > T0, while the other one gives the

true minimum of the free energy for T < T0, corresponding to the ordered phase.

The spatial changes of the order parameter φ(r) are characterized by the Ginzburg-

Landau (GL) coherence length η2 = 1/|a(T )|.
In this chapter, our aim is to address the question of second-order phase transi-

tions for systems with compactified dimensions (that is, in films, wires and grains),

using methods of the quantum theory of fields.

327



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

328 Thermal Quantum Field Theory: Algebraic Aspects and Applications

Under a field theoretical point of view, the Ginzburg-Landau free energy den-

sity in the absence of external fields, Eq. (19.2), can be considered as the Hamil-

tonian density for the Euclidean self-interacting scalar field theory, the λφ4 model.

Therefore, we take advantage of this similarity to explore the powerful methods of

quantum field theory to treat fluctuations of the order parameter in the GL model.

A large amount of work has already been done on applications of the Ginzburg-

Landau model to the study of the superconducting transition, both in the single

component and in the N - component versions of the model, using the renormaliza-

tion group approach [292–298]. Questions concerning stability and the existence of

phase transitions may also be raised if one considers field theories in the presence of

spatial boundaries. In particular, an analysis of the renormalization group in finite

size geometries can be found in [133, 299]. These studies have been performed to

take into account boundary effects on scaling laws. The existence of phase tran-

sitions would be in this case associated to some spatial parameters describing the

breaking of translational invariance, for instance the distance L between planes

confining the system. Also in other contexts, the influence of boundaries in the

behavior of systems undergoing transitions have been investigated [300, 301].

Here, we shall take a distinct route, analyzing directly the effects of bound-

aries on the transition. Such confined systems will be modelled by compactifying

spatial dimensions. Compactification will be engendered as a generalization of the

Matsubara (imaginary-time) prescription to account for constraints on the spatial

coordinates. In the original Matsubara formalism, the time is rotated to the imagi-

nary axis, t→ iτ where τ (the Euclidean time) is limited to the interval 0 ≤ τ ≤ β,

with β = 1/T standing for the inverse temperature. The fields then fulfill periodic

(bosons) or anti-periodic (fermions) boundary conditions and are compactified on

the τ -axis in an S1-topology, the circumference of length β. Such a formalism leads

to the description of a system in thermal equilibrium at the temperature β−1. Since

in an Euclidean field theory space and time are treated on the same footing, one can

envisage a generalization of the Matsubara approach to any set of spatial coordinates

as well [231, 232, 302, 303] as presented in Chapter 15. In such a case, however,

the interpretation of this prescription is quite different: it provides a general and

practical way to account for systems confined in limited regions of space at finite

temperature. Distinctly, here, we will be concerned with stationary field theories

and shall employ the generalized Matsubara prescription to implement spatial com-

pactification. No imaginary-time compactification will be done, the temperature

will be introduced through the mass parameter in the Hamiltonian.

Let us consider a system described by an N -component bosonic field, ϕa(r) with

a = 1, 2, ..., N , in a D-dimensional Euclidean space, constrained to a d-dimensional

(d ≤ D) parallelepiped box with edges L1, L2, . . . , Ld, satisfying periodic boundary

conditions on its faces, that is, ∀a, ϕa(xi ≤ 0, z) = ϕa(xi ≥ Li, z). The generating
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functional for correlation functions is

Z [ϕa] =

∫
Dϕ1 · · · DϕN

× exp

[
−
∫ L1

0

dx1 · · ·
∫ Ld

0

dxd

∫
dD−dz H(ϕ(r),∇ϕ(r))

]
, (19.4)

where H(ϕ(r),∇ϕ(r)) is the Hamiltonian density, r = (x1, ..., xd, z) with z being a

(D − d)-dimensional vector; the corresponding momentum is k = (k1, ..., kd,q), q

referring to a (D− d)-dimensional vector in momentum space. For the coordinates

x1, . . . , xd, the field is defined in the intervals [0, L1], . . . , [0, Ld], it will have a mixed

series-integral Fourier expansion of the form,

ϕa({xi}, z) =
1

L1 · · ·Ld

∞∑

n1,...,nd=−∞
(19.5)

×
∫
dD−dq e−iωn1x1−···−iωnd

xd −iq·zϕa(ωn1 , . . . , ωnd
,q) , (19.6)

where ωni = 2πni/Li, i = 1, . . . , d. The Feynman rules should be modified, as de-

scribed in Chapters 15 and 18, according to the generalized Matsubara prescription,
∫
dki
2π
→ 1

Li

+∞∑

ni=−∞
; ki →

2niπ

Li
, i = 1, 2..., d. (19.7)

In this sense we will refer equivalently in this and following chapters to confinement

in a segment of length Li, or to compactification of the coordinate xi with a com-

pactification length Li. General arguments based on topology have been given in

Chapter 15. The development of these applications to first- and second order phase

transitions is provided by the detailed consideration presented there.

Thus, for D = 3 and d = 1, 2, 3 we have respectively the system constrained to a

slab of thickness L1 (a film), to a wire of rectangular section L1 ×L2 and to a par-

allelepiped of volume L1×L2×L3 (a grain). Studies using this approach have been

performed [95, 285] with the spontaneous symmetry breaking in the λφ4 theory.

Also, if the Ginzburg-Landau model confined to limited regions of space is consid-

ered, the question of how the critical temperature depends on the relevant lengths of

the system can be considered. This method will be applied to the Ginzburg-Landau

model to both second- and first-order phase transitions. A physical application is

found to the problem of superconducting transitions in films, wires and grains. For

second-order phase transitions the critical temperature decreases with the inverse

of the relevant linear dimension characterizing the confined system. This agrees

generally with scaling arguments [133, 299].

19.2 Second-order phase transition in superconducting films

In this section we consider the N -component Ginzburg-Landau model in D-

dimensions at leading order in 1/N , the system being contained between two parallel
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planes a distance L apart from one another (compactification of one spatial dimen-

sion). From a physical point of view, for D = 3, this corresponds to a film-like

material undergoing a second-order phase transition. The large N limit allows us

to incorporate in the model the L-dependent corrections to the coupling constant

in a non-perturbative manner. It is interesting to investigate how the physically

relevant quantities, such as the coupling constant, the mass, and in particular the

critical temperature, depend on L. After a redefinition of the physical mass (mass

renormalization), the equation relating the transition temperature and the film

thickness is established. Finally it is important to find the effect of renormalising

the coupling constant.

19.2.1 The effective potential for the Ginzburg-Landau model with

one compactified dimension

We consider the N -component vector model described by the Ginzburg-Landau

Hamiltonian density,

H = ∇ϕa · ∇ϕa + m̄2
0ϕaϕa + u (ϕaϕa)

2 , (19.8)

in Euclidian D-dimensional space, where u is the coupling constant and m̄2
0 is an

L-modified mass parameter such that

lim
L→∞

m̄2
0(L, T ) = m2

0(T ) ≡ α (T − T0) , (19.9)

m2
0(T ) being the bulk mass parameter present in the usual free space Ginzburg-

Landau model and T0 the bulk transition temperature. Summation over repeated

indices a is assumed. In the following we will consider the model described by the

Hamiltonian (19.8) and take the large N limit with Nu = λ fixed.

The system is confined between two parallel planes, normal to the x-axis sep-

arated by a distance L; we use Cartesian coordinates r = (x, z), where z is a

(D − 1)-dimensional vector, with corresponding momentum k = (kx,q), q being a

(D − 1)-dimensional vector in momentum space.

The partition function is obtained from Eq. (19.4) with d = 1,

Z =

∫
Dϕ1 · · ·DϕN exp

[
−
∫ L

0

dx

∫
dD−1z H(ϕ,∇ϕ)

]
, (19.10)

where the field ϕ(x, z) satisfies periodic boundary conditions along the x-axis, ϕ(x =

0, z) = ϕ(x = L, z). Then the field has a mixed series integral Fourier expansion of

the form,

ϕ(x, z) =

∞∑

n=−∞

∫
dD−1q e−iωnx −iq·zϕ(ωn,q) , (19.11)

where ωn = 2πn/L. Following Eq. (19.7), for the particular case of d = 1, the

modified Feynman rules are,
∫
dkx
2π
→ 1

L

+∞∑

n=−∞
, kx →

2nπ

L
≡ ωn . (19.12)
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We start from the well known expression for the one-loop contribution to the

effective potential in unbounded space presented in Chapter 4,

U1(ϕ0) =
∞∑

s=1

(−1)s+1

2s

[
12λϕ2

0

]s ∫ dDk

(2π)D
1

(k2 +m2)s
, (19.13)

where m is the physical mass and ϕ0 is the normalized vacuum expectation value

of the field, the classical field. We introduce dimensionless parameters

c =
m

2πµ
, b =

1

Lµ
, g =

λ

4π2µ4−D , φ2
0 =

ϕ2
0

µD−2
, (19.14)

where µ is a mass scale. In terms of these parameters the one-loop contribution to

the effective potential is written as,

U1(φ0, b) = µD b

∞∑

s=1

(−1)s

2s

[
12gφ2

0

]s +∞∑

n=−∞

∫
dD−1q′

(b2n2 + c2 + q′2)s
, (19.15)

where q′ = q/2πµ is dimensionless.

Using the dimensional regularization formula, Eq. (10.12),
∫

dDp

(2π)D
1

(p2 +M)
s =

Γ
(
s− D

2

)

(4π)
D
2 Γ(s)

1

Ms−D
2

, (19.16)

Eq. (19.15) can be cast in the form

U1(φ0, b) = µD b

∞∑

s=1

f(D, s)
[
12gφ2

0

]s
Ac

2

1

(
s− D − 1

2
; b

)
, (19.17)

where

f(D, s) = π(D−1)/2 (−1)s+1

2sΓ(s)
Γ(s− D − 1

2
) (19.18)

and Ac
2

1

(
s− D−1

2 ; b
)

is one of the Epstein-Hurwitz zeta functions [284] defined by

Ac
2

K (ν; b1, ..., bK) =

+∞∑

n1,...,nK=−∞
(b21n

2
1 + · · ·+ b2Kn

2
K + c2)−ν , (19.19)

which is regular for Re(ν) > K/2 (in our case Re(s) > D/2).

The function Ac
2

1 (ν; b) is analytically continued to the whole complex ν-plane

[284] as follows (this is the simplest case of the developments in Sec. 18.1): using

the identity [286]

1

∆ν
=

1

Γ(ν)

∫ ∞

0

dt tν−1e−∆t, (19.20)

we write

Ac
2

1 (ν; b) =

+∞∑

n=−∞

1

(b2n2 + c2)
ν =

1

c2ν
+ 2

∞∑

n=1

1

(b2n2 + c2)ν

=
1

Γ(ν)

∫ ∞

0

dt tν−1e−c
2t [1 + 2T1(t, b)] , (19.21)
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where the function T1(t, b) is given by

T1(t, b) =

∞∑

n=1

e−b
2n2t . (19.22)

The function T1(t, b) possesses the property

T1(t, b) = −1

2
+

√
π

b2t

[
1

2
+ S(

π2

b2t
)

]
, (19.23)

with S(x) defined by

S(x) =

∞∑

n=1

e−n
2x . (19.24)

Next, considering the representation for Bessel functions of the third kind,

Kν(z) [286],

2(a/b)
ν
2Kν(2

√
ab) =

∫ ∞

0

dx xν−1e−(a/x)−bx, (19.25)

it is found that

Ac
2

1 (ν; b) =
2ν+

1
2π2ν− 1

2

bΓ(ν)

[
2ν−

3
2 Γ

(
ν − 1

2

)
(2πc)

1−2ν

+ 2

∞∑

n=1

( n

2πcb

)ν− 1
2

Kν− 1
2

(
2πcn

b

)]
. (19.26)

Taking ν = s − (D − 1)/2 in Eq. (19.26) and inserting it in Eq. (19.17), we

obtain the one-loop correction to the effective potential in D dimensions, with one

compactified dimension. Recovering the dimensional parameters we find,

U1(ϕ0, L) =

∞∑

s=1

[
12λϕ2

0

]s
h(D, s)

[
2s−

D
2 −2Γ(s− D

2
)mD−2s

+

∞∑

n=1

( m
Ln

)D
2 −s

KD
2 −s (mLn)

]
, (19.27)

where

h(D, s) =
1

2D/2+s−1πD/2
(−1)s+1

sΓ(s)
. (19.28)

As already mentioned in Chapter 18 in the general case, there are terms pro-

portional to Γ(s−D/2), s = 1, 2, . . . , in Eq. (19.27). These terms lead to divergent

contributions when D is even; finite quantities are obtained by subtraction of these

divergent (polar) terms. In order to have an uniform renormalization scheme in any

dimension, these subtractions should be done even in the case of odd dimensions,

where no poles of Γ-functions are present. In these cases a finite renormalization is

performed. It is important to note that the first term in the brackets subtracted to

achieve renormalization is independent of L. This makes this subtraction consistent.
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The physical mass and the coupling constant are obtained by using the condi-

tions,

∂2

∂ϕ2
0

U(ϕ0, L)

∣∣∣∣
ϕ0=0

= m2 , (19.29)

∂4

∂ϕ4
0

U(ϕ0, L)

∣∣∣∣
ϕ0=0

= λ , (19.30)

where U is the sum of the tree-level and one-loop contributions to the effective

potential.

19.3 Mass renormalization and transition temperature

Initially, we shall neglect corrections to the coupling constant, that is, we assume

that λ corresponds to the renormalized coupling constant. Then, from Eqs. (19.27)

and (19.29), subtracting the term proportional to Γ(1 − D/2), we get the L-

dependent physical mass

m2(L, T ) = m̄2
0(L, T ) +

24λ

(2π)D/2

∞∑

n=1

( m
nL

)D
2 −1

KD
2 −1(nLm) . (19.31)

The dependence of the critical temperature Tc on L can be determined. If

we start in the ordered phase with a negative squared mass, the model exhibits

spontaneous symmetry breaking, O(N) symmetry to O(N − 1), but for sufficiently

small values of T−1 and L the symmetry is restored and the squared physical mass in

Eq. (19.31) vanishes. This equation is to be interpreted as an L-dependent Dyson-

Schwinger equation, which cannot be solved in a closed form. Limiting ourselves to

the neighborhood of criticality (m2 ≈ 0) and considering L finite and sufficiently

small, we may use the asymptotic formula for small values of the argument of Bessel

functions,

Kν(z) ≈
1

2
Γ(ν)

(z
2

)−ν
(z ∼ 0 ; Re(ν) > 0) . (19.32)

Then Eq. (19.31) reduces to

m2(L, T ) ≈ m̄2
0(L, T ) +

6λ

πD/2LD−2
Γ

(
D

2
− 1

)
ζ(D − 2) (19.33)

where

ζ(z) =

∞∑

n=1

1

nz
(19.34)

is the Riemann zeta function, which is a meromorphic function having only a simple

pole at z = 1.

For D = 3, Eq. (19.33) is not well defined due to the pole of ζ(D− 2). However,

it can be made physically meaningful by the following regularization procedure:

using the Laurent expansion of ζ(z),

ζ(z) =
1

z − 1
+ γ0 − γ1 (z − 1) + · · · , (19.35)
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where γ0 ' 0.577 and γ1 ' 0.0728 (the Euler-Mascheroni and the first Stieltjes

constants, respectively), we define the L-dependent bare mass in such a way that

the pole at D = 3 is suppressed, that is, we take

m̄2
0(L, T ) ≈M − 1

(D − 3)

6λ

πL
, (19.36)

where M is independent of D. To fix M , the simplest choice satisfying Eq (19.9) is

M = m2
0(T ) = α (T − T0) , (19.37)

where T0 is the bulk critical temperature. In this case, taking the limit as D → 3,

the L-dependent renormalized mass term in the vicinity of criticality becomes

m2(L, T ) ≈ α (T − Tc(L)) , (19.38)

where the modified, L-dependent, transition temperature is

Tc(L) = T0 − C1
λ

αL
, (19.39)

with the constant C1 given by

C1 =
6γ0

π
≈ 1.1024 . (19.40)

From this equation, we find that for L smaller than

Lmin = C1
λ

αT0
, (19.41)

Tc(L) becomes negative, meaning that the transition does not occur. In other words,

superconductivity is suppressed in films with thickness smaller than Lmin.

19.3.1 Effect of the coupling-constant correction on Tc(L)

We now consider the effect of the L-correction to the coupling constant on the

critical temperature for films. The renormalized coupling constant will be defined

in terms of the four-point function at zero external momenta which, at leading order

in 1
N , is given by the sum of all chains of one-loop diagrams of the type shown in

Fig. 18.1. This is a geometric series whose sum is given by

Γ
(4)
D (p = 0,m, L) =

u

1 +NuΠ(D,m,L)
, (19.42)

where Π(D,m,L) ≡ Π(p = 0, D,m,L) corresponds to the one-loop subdiagram,

Π(D,m,L) =
1

L

∞∑

n=−∞

∫
dD−1q

(2π)D−1

1

[q2 + ω2
n +m2]

2 . (19.43)

This subdiagram can be calculated with the regularization technique used ear-

lier. However, comparing Eq. (19.43) with Eq. (19.15), Π(D,m,L) is obtained

directly from the s = 2 term in Eq. (19.27) for the one-loop contribution to the
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effective potential. Again, suppressing the term proportional to Γ(2 − D/2), the

renormalized one-loop subdiagram is,

ΠR(D,m,L) =
1

(2π)D/2

∞∑

n=1

[ m
nL

](D−4)/2

KD−4
2

(nLm) . (19.44)

From the properties of Bessel functions, for any dimension D, ΠR(D,m,L) is posi-

tive for all values of D and L. It satisfies the conditions

lim
L→∞

ΠR(D,m,L) = 0 and lim
L→0

ΠR(D,m,L)→∞ . (19.45)

Let us define the L-dependent renormalized coupling constant uR(m,D,L), at

the leading order in 1/N , as

Γ
(4)
D,R(p = 0,m, L) ≡ uR(D,m,L) =

u

1 +NuΠR(D,m,L)
(19.46)

and the renormalized coupling constant in the absence of boundaries as

uR(D,m) = lim
L→∞

Γ
(4)
D,R(p = 0,m, L) . (19.47)

From Eq. (19.46) and Eq. (19.45) we get uR(D,m) = u. In other words, we have

made a choice of the renormalization scheme such that the constant u corresponds

to the renormalized coupling constant in the absence of spatial constraints. From

Eq. (19.46) we define the L-dependent large N renormalized coupling constant

λR(D,m,L) ≡ lim
u→0 ; N→∞

NuR(D,m,L) =
λ

1 + λΠR(D,m,L)
, (19.48)

with λ = Nu.

Considering the L-correction to the coupling constant, the Dyson-Schwinger

equation for the mass Eq (19.31) becomes

m2(L, T ) = m̄2
0(L, T ) +

24λR(D,m,L)

(2π)D/2

×
∞∑

n=1

[ m
nL

]D−2
2

KD−2
2

(nLm) . (19.49)

The set of coupled equations Eqs. (19.44), (19.48) and (19.49), form a complicated

set since on their right hand sides m = m(D,T, L). Nevertheless, limiting our-

selves to the neighborhood of criticality, m2(D,T, L) ≈ 0, we may investigate the

behavior of the system by using in Eqs. (19.44) and (19.49) the asymptotic formula

Eq. (19.32) for small values of the argument of the Bessel function. Making such an

approximation, Eq. (19.49) reduces to Eq. (19.33) with λ replaced by λR(D,m,L).

So it remains to calculate the renormalized coupling constant close to criticality.

Inserting Eq. (19.32) into Eq. (19.44), we obtain

ΠR(D,L) ≈ 1

8πD/2
L4−DΓ

(
D − 4

2

)
ζ(D − 4) , (19.50)
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which shows that the renormalized one-loop subdiagram is independent of the mass

close to criticality. This result leads to the renormalized coupling constant, for

m2 ≈ 0,

λR(D,L) ≈ λ

1 + λC(D)L4−Dζ(D − 4)
, (19.51)

where C(D) = 1
8πD/2 Γ(D−4

2 ). With Γ(−1/2) = −2
√
π and ζ(−1) = −1/12,

λR(D,L) is finite and positive for D = 3.

The mass, close to criticality and for dimension D, thus becomes

m2(L, T ) ≈ m̄2
0(L, T ) +

6λR(D,L)

πD/2LD−2
Γ

(
D

2
− 1

)
ζ(D − 2) , (19.52)

with λR(D,L) given by Eq. (19.51). Although λR(D,L) remains finite as D → 3+,

the mass is singular, due to the pole of ζ(D − 2) and a regularization procedure is

needed. Following the same steps that led from Eq. (19.33) to Eq. (19.38), with λ

replaced by λR(3, L), we obtain the critical temperature as a function of L,

Tc(L) = T0 −
48πC1λ

48παL+ αλL2
. (19.53)

This result may be compared with the critical temperature for a film deduced

from the Ginzburg-Landau model in which the L-correction to the coupling constant

is neglected, obtained from Eq. (19.52) by taking λR = λ. In this lowest level of

approximation, the critical temperature is simply a linear decreasing function of

1/L. In Fig. 19.1, both curves are plotted for comparison.

2 4 6 8 10
l

0.2

0.4

0.6

0.8

1

tc

Fig. 19.1 Reduced transition temperature, tc = Tc/T0, for films as a function of the reduced
thickness, l = L/Lmin (with Lmin = C1λ/(αT0)), fixing λLmin = 100 (solid line). The dashed
line corresponds to tc(l) = 1 − l−1, obtained without considering L-corrections to the coupling
constant in the Ginzburg-Landau model.

We find that the critical temperature, Eq. (19.53), decreases from T0, as L

diminishes reaching zero for a minimal thickness L′min, below which the transition

is suppressed. This minimal thickness is given by

L′min =
24π

λ

[√
1 +

λLmin

12π
− 1

]
, (19.54)
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where Lmin = C1λ/(αT0) is the minimal thickness for the existence of the ordered

phase in the approximation of neglecting L-corrections to the coupling constant,

Eq. (19.41). This minimal thickness, not considering coupling constant corrections,

coincides with the result for the standard, two-component, Ginzburg-Landau model

[304], except for a simple symmetry factor. We also find that the predicted min-

imal film thickness, for the N -component model including the L-correction to the

coupling constant (L′min), is lower than the value Lmin but the general behavior of

both curves tc(l) in Fig. 19.1, is very similar.

It is important to note that the results obtained here might be applicable to

any physical system undergoing a second-order phase transition in a film described

by the Ginzburg-Landau model. For example, the decrease of the transition tem-

perature with the inverse of the film thickness was experimentally observed for

superconductors [305]. In fact, the results presented in this section do not depend

on particular physical systems, appearing only as a topological consequence of the

compactification in one spatial dimension of the Ginzburg-Landau model. This is

in contrast to other calculations that used modifications of the microscopic inter-

actions in bulk superconductors, in order to explain the variations of the critical

temperature with the thickness of the film.

19.4 Critical behavior of type-II superconducting films in a mag-

netic field

Until now, we have considered phase transitions in confined systems not taking into

account the possible existence of an external magnetic field interacting with the

order parameter of a type II superconducting film. In this respect, for the case of

superconductors, we have neglected the minimal coupling with the vector potential

when an external magnetic field is applied and, in its absence, the intrinsic gauge

fluctuations. In this chapter, we investigate how the transition temperature for a

film behaves as a function of its thickness and of the intensity of an applied magnetic

field [306, 307].

19.4.1 Coupling-constant correction in the presence of an external

magnetic field

We shall take the uniform external magnetic field, H = Hê3, normal to the film.

To describe the critical curve of a type-II superconductor close to the upper critical

field, we will neglect gauge fluctuations of the magnetic vector potential [293, 294],

that is, we take ∇×A = H. Therefore, the Hamiltonian density is

H = |(∇− ieA)φ|2 + m̄2
0 |φ|2 + u

(
|φ|2

)2
, (19.55)
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where, as before, φ is an N -component vector and m̄2
0 is the mass parameter which

depends on L, H and T , in such way that

lim
L→∞

lim
H→0

m̄2
0(L,H, T ) = m2

0(T ) ≡ α (T − T0) . (19.56)

Let us initially consider the Hamiltonian density (19.55) referring to a bulk

superconductor. We choose a gauge such that A = (0, xH,0). In this case, the part

of the hamiltonian H =
∫
dDrH quadratic in φ becomes, after an integration by

parts, −
∫
dDr φDφ where the differential operator D is

D = ∇2 − 2iωx∂y − ω2x2 −m2
0, (19.57)

with ω = eH being the cyclotron frequency. Thus the natural basis to expand the

field operators is the set of the normalized eigenfunctions of the operator D, the

Landau basis,

χl,py ,p(r) =
1√
2ll!

(ω
π

) 1
4

eip·zeipyye−ω(x−py/ω)2/2Hl

[√
ω(x− py

ω
)
]
, (19.58)

where Hl are the Hermite polynomials; the corresponding energy eigenvalues are

El(|p|) = |p|2 + (2l+ 1)ω +m2
0 (19.59)

where p and z are (D − 2)-dimensional vectors.

The propagator can be written as [293, 294]

G(r, r′) =

∫
dD−2p

(2π)D−1

∫
dpy

∞∑

l=0

χl,py ,p(r)χ?l,py ,p
(r′)

|p|2 + (2l + 1)ω +m2
0

. (19.60)

To calculate the coupling-constant correction, we have to find the appropriate ex-

pression for the single one-loop subdiagram in Fig. 18.1. This is a complicated

expression that will be treated here within the approximation of neglecting all Lan-

dau levels except the lowest one. Such an approximation is valid when the magnetic

field is high and, so, the Landau levels are well separated. Thus, the use of this

approximation will lead to results that are applicable at low temperatures. Notice

that, this observation is not restricted to the bulk case but it also applies to a film

if the magnetic field is perpendicular to the film plane.

Now, taking into account the prescription given by Eq. (19.12), we obtain the

expression of the single one-loop subdiagram in the form

Π(D,L, ω) =
1

L

∞∑

n=−∞

ω

2π

∫
dD−3k

(2π)D−3

1

[k2 + ω2
n +m2 + ω]2

, (19.61)

k being a (D − 3)-dimensional vector and ωn = 2πn/L.

The sum over n and the integral over k can be treated using the formalism

developed in the preceding sections. Again, using the dimensional regularization



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Phase Transitions in Confined Systems: Application to Superconducting Films 339

formula Eq. (10.12) and the analytic extension for the Epstein-Hurwitz zeta func-

tion, Eq. (19.26), we obtain

Π(D,L, ω) =
ω

2(2π)D/2

[
1

4
Γ

(
3− D

2

)(
m2 + ω

2

)D
2 −3

+

∞∑

n=1

(

√
m2 + ω

nL
)

D
2 −3KD

2 −3(nL
√
m2 + ω)

]
. (19.62)

As before, we suppress the term containing Γ(3− D
2 ) in the above equation, leading

to the renormalized one-loop subdiagram

ΠR(D,L, ω) =
ω

2(2π)D/2

∞∑

n=1

(

√
m2 + ω

nL
)

D
2 −3KD

2 −3(nL
√
m2 + ω). (19.63)

The renormalized zero external momenta four-point function at leading order in

1/N is given by the sum of chains of single one-loop diagrams of the kind shown in

Fig. 19.1. This sum gives for the L and ω-dependent four-point function, with the

lowest Landau level approximation, the expression

Γ
(4)
D,R(0, L, ω) ≡ uR(D,L, ω) =

u

1 +NuΠR(D,L, ω)
. (19.64)

We define the renormalized coupling constant

λR(D,L, ω) ≡ lim
N→∞ , u→0

NuR(D,L, ω)λR(D,L, ω) =
λ

1 + λΠR(D,L, ω)
, (19.65)

where λ = Nu corresponds to the renormalized coupling constant in the absence of

boundaries and of external field.

19.4.2 The gap equation and the critical curve

In order to study the critical behavior of a type-II film of thickness L, in an external

magnetic field perpendicular to it, we have to consider the large N gap equation for

the correlation length, properly adapted to the present situation. In the disordered

phase, ϕ0 = 0, and we have

ξ−2 = m̄2
0 + ω +

24λR
L

∞∑

n=−∞

ω

2π

∫
dD−3k

(2π)
D−3

1

k2 + ω2
n + ξ−2

. (19.66)

It is important to observe that, in the presence of a magnetic field, the correlation

length is related to the renormalized mass by ξ−2 = m2(L, ω) +ω, since the pole of

the propagator occurs at m2(L, ω) = −ω [293, 294]. Notice that λR(D,L, ω), the

renormalized (L, ω)-dependent coupling constant, is itself a function of ξ−2, via the

mass m(L, ω) present in ΠR. Criticality, as usual, is reached by making ξ−2 → 0.

Calculating the sum and the integral in the above expression, in a similar manner

as that used to get Eq. (19.31), Eq. (19.66) becomes

ξ−2 = m̄2
0 + ω +

24ω λR
(2π)D/2

∞∑

n=1

[
ξ−1

nL

]D−4
2

KD−4
2

(nLξ−1) . (19.67)
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Close to criticality, ξ−2 ≈ 0, using (19.32), we obtain

ξ−2 ≈ m̄2
0 + ωc +

3ωcλR(D,L, ωc)

πD/2
Γ(
D

2
− 2)L4−Dζ(D − 4), (19.68)

where

λR(D,L, ωc) ≈
λ

1 + λωcA(D)L6−Dζ(D − 6)
, (19.69)

with A(D) = 1
32πD/2 Γ(D2 − 3). Notice that we have used the subscript c in the

cyclotron frequency (actually, the external field) to indicate that we are in the

region of criticality.

We find immediately that there are no divergences in Eq. (19.68) and (19.69)

as D → 3. Therefore, no renormalization procedure is needed and we are allowed

to make the simplest choice for the mass parameter: m̄2
0 = α(T − T0). In this way,

making D = 3 and ξ−2 = 0 in Eqs. (19.68) and (19.69), we obtain the critical curve

for a film in a perpendicular magnetic field as

α(Tc − T0) + ωc +
1440λωcL

2880π + λωcL3
= 0 , (19.70)

where we have used that Γ(−3/2) = 4
√
π/3 and ζ(−3) = 1/120. Notice that, as

L → ∞, the critical curve given by Eq. (19.70) reduces to α(Tc − T0) + ωc = 0,

reproducing the known result for the upper critical field in bulk superconductors

Hc2 = η−2.

10
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Fig. 19.2 Plot of the surface h = h(l, t), fixing β = 103.
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We can rewrite Eq. (19.70) in a way such that the upper critical field is expressed

as a function of the critical temperature and the film thickness. Using the zero-

temperature Ginzburg-Landau coherence length, η0 = (αT0)
−1/2, we can introduce

the following dimensionless quantities,

h = ωc η
2
0 , t =

Tc
T0

, l =
L

η0
, (19.71)

corresponding respectively to reduced critical field, critical temperature and film

thickness. With these parameters, Eq. (19.70) becomes

h(l, t) =
1

2γl3
{
−1440γl+ γl3(1− t)− 2880π

+
[
(1440γl− γl3(1− t) + 2880π)2 + 11520πγl3(1− t)

]1/2}
,

(19.72)

where γ = λη0. The surface h = h(l, t) is illustrated in Fig. 19.2. We recall

that, since we have used the lowest Landau level approximation in our calculations,

this surface is only meaningful for high values of the external field, that is for low

temperatures and relatively thick films.

0.05 0.1 0.15 0.2
l-1

0.2

0.4

0.6

0.8

1

h0

Fig. 19.3 Zero-temperature reduced critical field as a function of the inverse of the reduced film
thickness, for γ = 103 .

We can see from Fig. 19.2 that each value of l defines a critical line on the h× t
plane, corresponding to a film of thickness L. This set of critical lines also suggests

the existence of a minimal value for the thickness L below which superconductivity

is suppressed. Indeed, this can be seen from the plot of the reduced critical field

at zero temperature, h0, as a function of the inverse of the reduced film thickness,

shown in Fig. 19.3. As before, we emphasize that our results are obtained within

the framework of field theory, emerging from the topological nature of the spatial

compactification, and do not depend on specific characteristics of the material and

of the sample.
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Chapter 20

Second-Order Phase Transition in Wires
and Grains

We now generalize the procedure presented earlier to account for second-order phase

transitions in wires and grains. From a physical point of view superconducting

transitions are considered. The compactification process has to be extended to more

than one spatial dimension. General arguments based on topology to compactify

an arbitrary number of dimensions have been given in Chapter 15. This allows us

to introduce temperature as well as confined spatial dimensions along any direction.

For the sake of generality, we consider initially the D-dimensional Ginzburg-Landau

model with d (≤ D) compactified coordinates. Fixing D = 3, the cases d = 2 and

d = 3 will correspond to wires and grains respectively.

20.1 Compactification of a d-dimensional subspace

For such a general situation, the partition function is given by Eq. (19.4), with

the Hamiltonian density Eq. (19.8), and the generalized Matsubara prescription is

taken as in Eq. (19.7). We consider λ to be the renormalized coupling constant,

i.e., we will work initially in the approximation of neglecting boundary corrections

to the coupling constant, and take m2
0 as the boundary-modified mass parameter

depending on {Li} i = 1, 2, ..., d, in such a way that,

lim
{Li}→∞

m2
0(L1, ..., Ld, T ) = m2

0(T ) ≡ α (T − T0) , (20.1)

with m2
0(T ) being the bulk mass parameter. In this case, the one-loop contribution

to the effective potential, Eq. (19.13), becomes

U1(φ0, b1, ..., bd) = µDb1 · · · bd
∞∑

s=1

(−1)s

2s
[12gφ2

0]
s

×
+∞∑

n1,...,nd=−∞

∫
dD−dq

(b21n
2
1 + · · ·+ b2dn

2
d + c2 + q2)s

,

(20.2)

where we have used the dimensionless quantities given in Eq. (19.14), now with

bi = (Liµ)−1 for i = 1, 2, . . . , d.

343
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Using the dimensional regularization formula, Eq. (10.12) to perform the inte-

gration over the D−d non-compactified momentum variables, the above expression

becomes

U1(φ0, b1, ..., bd) = µDb1 · · · bd
∞∑

s=1

f(D, d, s)

× [12gφ2
0]
sAc

2

d

(
s− D − d

2
; b1, ..., bd

)
, (20.3)

with

f(D, d, s) = π(D−d)/2 (−1)s+1

2sΓ(s)
Γ(s− D − d

2
), (20.4)

and Ac
2

d is the multivariable Epstein-Hurwitz function defined in Eq. (19.19).

The analytical extension of the multivariable Epstein-Hurwitz function can be

carried out by a generalization of the procedure shown in the preceding chapter.

This has been presented in Sec. 18.1; we repeat it here with the present notation.

Using Eq. (19.20), we get,

Ac
2

d (ν; b1, ..., bd) =
1

Γ(ν)

∫ ∞

0

dt tν−1e−c
2t

[
1 + 2

d∑

i=1

T1(t, bi)

+ 4

d∑

i<j=1

T2(t, bi, bj) + · · ·+ 2d Td(t, b1, ..., bd)


 ,

(20.5)

where, the function T1 is given by Eq. (19.22) and

Tj(t, b1, ..., bj) =

j∏

l=1

T1(t, bl) , j = 2, ..., d. (20.6)

Considering the property of Eq. (19.23) for the function T1, the surviving terms in

Eq. (20.5) are those proportional to (b1 · · · bd)−1, and we find

Ac
2

d (ν; b1, ..., bd) =
π

d
2

b1 · · · bd
1

Γ(ν)

∫ ∞

0

dt t(ν−
d
2 )−1e−c

2t

[
1 + 2

d∑

i=1

S(
π2

b2i t
)

+ 4

d∑

i<j=1

S(
π2

b2i t
)S(

π2

b2j t
) + · · ·+ 2d

d∏

i=1

S(
π2

b2i t
)


 , (20.7)

with S(x) given by Eq. (19.24). Using again the representation of Eq. (19.25) for
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the Bessel function Kν , we find

Ac
2

d (ν; b1, ..., bd) =
2ν−

d
2 +1π2ν− d

2

b1 · · · bd Γ(ν)

[
2ν−

d
2−1Γ

(
ν − d

2

)
(2πc)

d−2ν

+ 2

d∑

i=1

∞∑

ni=1

(
ni

2πcbi

)ν− d
2

Kν−d
2

(
2πcni
bi

)
+ · · ·

+ 2d
∞∑

n1,...,nd=1

(
1

2πc

√
n2

1

b21
+ · · ·+ n2

d

b2d

)ν− d
2

× Kν−d
2

(
2πc

√
n2

1

b21
+ · · ·+ n2

d

b2d

)]
. (20.8)

Taking ν = s − (D − d)/2 in this equation and inserting it in Eq. (20.3), we

obtain the one-loop correction to the effective potential in D dimensions with a

compactified d-dimensional subspace. Recovering the dimensional parameters we

get

U1(ϕ0, L1, ..., Ld) =

∞∑

s=1

[
12gϕ2

0

]s
h(D, s)

[
2s−

D
2 −2Γ(s− D

2
)mD−2s

+

d∑

i=1

∞∑

ni=1

(
m

Lini

)D
2 −s

KD
2 −s (mLini)

+2

d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j




D
2 −s

× KD
2 −s

(
m
√
L2
in

2
i + L2

jn
2
j

)
+ · · ·

+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D
2 −s

× KD
2 −s

(
m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d

)]
, (20.9)

with

h(D, s) =
1

2D/2+s−1πD/2
(−1)s+1

sΓ(s)
. (20.10)

Criticality is attained when the physical mass vanishes. The mass is obtained

using the appropriate generalization of the condition Eq. (19.29),

∂2

∂ϕ2
0

U(D, {Lj})
∣∣∣∣
ϕ0=0

= m2({Lj};T ) , (20.11)
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together with Eq. (20.9). Remembering that at the large N limit it is enough to

take the one-loop contribution to the mass, we obtain

m2({Lj};T ) = m2
0(L1, . . . , Ld;T )

+
24λ

(2π)D/2

[
d∑

i=1

∞∑

ni=1

(
m

Lini

)D
2 −1

KD
2 −1 (mLini)

+ 2

d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j




D
2 −1

×KD
2 −1

(
m
√
L2
in

2
i + L2

jn
2
j

)
+ · · ·

+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D
2 −1

× KD
2 −1

(
m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d

)]
. (20.12)

where m = m(L1, . . . , Ld;T ) on the right-hand side. Notice that, in writing

Eq. (20.12), the term proportional to 2−
D
2 −1Γ(1 − D

2 )mD−2, the first term in the

square bracket of Eq. (20.9), is suppressed. This term, which does not depend

on Li, diverges for even D due to the poles of the gamma function; in this case,

this part is subtracted to get a renormalized mass. For odd D, Γ
(
1− D

2

)
is finite

but we still subtract this term, corresponding to a finite renormalization, for the

sake of uniformity; besides, for D ≥ 3, the factor mD−2 does not contribute at

criticality.

The vanishing of Eq. (20.12) defines criticality for the compactified system. It is

to be emphasized that Eq. (20.12) is a self-consistent equation, the modified Dyson-

Schwinger equation for the mass. For d = 1 Eq. (20.12) reduces to Eq. (19.31),

corresponding to the case of a thin film. Taking d = 2 and d = 3, with D = 3,

we describe respectively the critical behavior of samples of materials in the form

of square wires and cubic grains. Equations for the critical temperature are de-

rived as a function of the confining dimensions. We calculate the minimal system

size (cross-section area or volume) below which the phase transition does not take

place.

20.2 Critical behavior for wires

Now we focus on two spatial compactified dimensions. From Eq. (20.12), taking

d = 2, we get,
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m2(L1, L2, T ) = m2
0(L1, L2, T ) +

24λ

(2π)D/2

×
[

2∑

i=1

∞∑

ni=1

(
m

niLi
)

D
2 −1KD

2 −1(niLim)

+ 2
∞∑

n1,n2=1

(
m√

L2
1n

2
1 + L2

2n
2
2

)
D
2 −1

× KD
2 −1(m

√
L2

1n
2
1 + L2

2n
2
2)

]
. (20.13)

Near criticality, m2 ≈ 0, taking both L1 and L2 sufficiently small, use of Eq. (19.32)

gives,

m2(L1, L2, T ) ≈ m2
0(L1, L2, T ) +

6λ

πD/2
Γ

(
D

2
− 1

)

×
[(

1

LD−2
1

+
1

LD−2
2

)
ζ(D − 2)

+ 2E2

(
D − 2

2
;L1, L2

)]
, (20.14)

where E2

(
D−2

2 ;L1, L2

)
is the two-variable Epstein zeta function,

E2

(
D − 2

2
;L1, L2

)
=

∞∑

n1, n2=1

[
L2

1n
2
1 + L2

2n
2
2

]−(D−2
2 )

, (20.15)

defined for ReD > 3.

The Riemann zeta function, ζ(D − 2), has an analytical extension to the whole

complex D-plane, having an unique simple pole with a residue 1 at D = 3. Consider

the analytical continuation of the Epstein-Hurwitz zeta function given by [284, 289]
∞∑

n=1

(
n2 + p2

)−ν
= −1

2
p−2ν +

√
π

2p2ν−1Γ(ν)

×
[
Γ

(
ν − 1

2

)
+ 4

∞∑

n=1

(πpn)ν−
1
2Kν− 1

2
(2πpn)

]
.

(20.16)

As explained in Chapter 18, using this relation to perform one of the sums in

Eq. (20.15), the manifest L1 ↔ L2 symmetry is lost in this equation. In order to

preserve this symmetry, the multivariable Epstein-Hurwitz zeta function is redefined

using a symmetrized summation,

Ed (ν;L1, ..., Ld) =
1

d!

∑

σ

∞∑

n1=1

· · ·
∞∑

nd=1

[
σ2

1n
2
1 + · · ·+ σ2

dn
2
d

]−ν
, (20.17)

where σi = σ(Li), with σ running in the set of all permutations of the parameters

L1, ..., Ld, and the summations over n1, ..., nd being taken in the given order. Then
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symmetrized analytic continuations and recurrence relations are obtained. Using

Eq. (20.16) to perform the sum over nd, gives

Ed (ν;L1, ..., Ld) = − 1

2 d

d∑

i=1

Ed−1

(
ν; ..., L̂i, ...

)

+

√
π

2 dΓ(ν)
Γ

(
ν − 1

2

) d∑

i=1

1

Li
Ed−1

(
ν − 1

2
; ..., L̂i, ...

)

+
2
√
π

dΓ(ν)
Wd

(
ν − 1

2
, L1, ..., Ld

)
, (20.18)

where the hat over the parameter Li in the function Ed−1 means that it is excluded

from the set {L1, ..., Ld}; the remaining being the d− 1 parameters of Ed−1, and

Wd (η;L1, ..., Ld) =

d∑

i=1

1

Li

∞∑

n1,...,nd=1


 πni

Li

√
(· · ·+ L̂2

in
2
i + · · · )



η

×Kη

(
2πni
Li

√
(· · ·+ L̂2

in
2
i + · · · )

)
, (20.19)

with (· · ·+ L̂2
in

2
i + · · · ) representing the sum

∑d
j=1 L

2
jn

2
j − L2

in
2
i . In particular, for

d = 2 using E1 (ν;Lj) = L−2ν
j ζ(2ν), we get

E2

(
D − 2

2
;L2

1, L
2
2

)
= −1

4

(
1

LD−2
1

+
1

LD−2
2

)
ζ(D − 2)

+

√
πΓ(D−3

2 )

4Γ(D−2
2 )

(
1

L1L
D−3
2

+
1

LD−3
1 L2

)
ζ(D − 3)

+

√
π

Γ(D−2
2 )

W2

(
D − 3

2
;L1, L2

)
. (20.20)

Then Eq. (20.14) is written as

m2(L1, L2, T ) ≈ m2
0(L1, L2, T ) +

3λ

πD/2

×
[(

1

LD−2
1

+
1

LD−2
2

)
Γ

(
D − 2

2

)
ζ(D − 2)

+
√
π

(
1

L1L
D−3
2

+
1

LD−3
1 L2

)
Γ

(
D − 3

2

)
ζ(D − 3)

+ 2
√
πW2

(
D − 3

2
;L1, L2

)]
. (20.21)

For D = 3, the first and second terms in square brackets in Eq. (20.21) are divergent

due to the ζ- and Γ-functions, respectively. These divergences are dealt with by

using the Laurent expansion of ζ(z), Eq. (19.35), and considering the expansion of

Γ(z) around z = 0,
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Γ(z) =
1

z
− γ0 +

(
γ0 +

π2

6

)
z + · · · , (20.22)

with ζ(0) = − 1
2 and Γ( 1

2 ) =
√
π. The two divergent terms cancel exactly, unlike in

the case of a film. No renormalization is needed. For D = 3, taking the bare mass

given by m2
0(L1, L2, T ) = α (T − T0), the physical mass has the form,

m2(L1, L2, T ) ≈ α (T − Tc(L1, L2)) , (20.23)

with the boundary-dependent critical temperature being

Tc(L1, L2) = T0 −
9λγ

2πα

(
1

L1
+

1

L2

)
− 6λ

πα
W2(0;L1, L2), (20.24)

where

W2(0;L1, L2) =

∞∑

n1,n2=1

{
1

L1
K0

(
2π
L2

L1
n1n2

)
+

1

L2
K0

(
2π
L1

L2
n1n2

)}
. (20.25)

The function W2(0;L1, L2) involves double sums, which are difficult to handle for

L1 6= L2; in particular, it is not possible to take limits such as Li →∞ analytically.

Therefore we restrict ourselves to the case L1 = L2. For a wire with square cross-

section, L1 = L2 = L =
√
A, Eq. (20.24) reduces to

Tc(A) = T0 − C2
λ

α
√
A
, (20.26)

where C2 is a constant given by

C2 =
9γ

π
+

12

π

∞∑

n1,n2=1

K0(2πn1n2) ≈ 1.6571 . (20.27)

The critical temperature of the square wire depends on the bulk critical tem-

perature, on the area of its cross-section and the Ginzburg-Landau parameters α

and λ, characteristics of the material constituting the wire, Since Tc decreases lin-

early with the inverse of the square root of cross-section, this implies that there is

a minimal area for which Tc(Amin) = 0,

Amin =

(
C2

λ

αT0

)2

. (20.28)

For square wires of cross-section areas smaller than this value, superconductivity is

suppressed. On topological grounds, we expect that our results would be indepen-

dent of the cross-section shape of the wire.

20.3 Critical behavior for grains

Now consider the case where all three spatial dimensions are compactified, corre-

sponding to the system confined in a box of sides L1, L2, L3. Taking d = 3 in
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Eq. (20.12) and using Eq. (19.25), for sufficiently small L1, L2, L3, in the neighbor-

hood of criticality, m2 ≈ 0, we obtain

m2(L1, L2, L3, T ) ≈ m2
0(L1, L2, L3, T ) +

6λ

πD/2
Γ

(
D − 2

2

)

×




3∑

i=1

ζ(D − 2)

LD−2
i

+ 2

3∑

i<j=1

E2

(
D − 2

2
;Li, Lj

)

+ 4E3

(
D − 2

2
;L1, L2, L3

)]
, (20.29)

where

E3(ν;L1, L2, L3) =

∞∑

n1,n2,n3=1

[
L2

1n
2
1 + L2

2n
2
2 + L2

3n
2
3

]− ν
(20.30)

and the function E2 is given by Eq. (20.15).

The analytical structure of the function E3

(
D−2

2 ;L1, L2, L3

)
is obtained from

the general symmetrized recurrence relation given by Eqs. (20.17) and (20.18); ex-

plicitly we have,

E3

(
D − 2

2
;L1, L2, L3

)
= −1

6

3∑

i<j=1

E2

(
D − 2

2
;Li, Lj

)
+

√
πΓ(D−3

2 )

6Γ(D−2
2 )

×
3∑

i,j,k=1

(1 + εijk)

2

1

Li
E2

(
D − 2

2
;Lj , Lk

)

+
2
√
π

3Γ(D−2
2 )

W3

(
D − 3

2
;L1, L2, L3

)
, (20.31)

where εijk is the totally antisymmetric symbol and the function W3 is a particular

case of Eq. (20.18). Using Eqs. (20.20) and (20.31), the boundary dependent mass

is written as

m2({Li}, T ) ≈ m2
0(L1, L2, L3, T ) +

6λ

πD/2

×
[

1

3
Γ

(
D − 2

2

) 3∑

i=1

1

LD−2
i

ζ(D − 2) +

√
π

6
ζ(D − 3)

×Γ

(
D − 3

2

) 3∑

i<j=1

(
1

LD−3
i Lj

+
1

LD−3
j Li

)
+

4
√
π

3

×
3∑

i<j=1

W2

(
D − 3

2
;Li, Lj

)
+
π

6
ζ(D − 4)Γ

(
D − 4

2

)
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×
3∑

i,j,k=1

(1 + εijk)

2

1

Li

(
1

LD−4
j Lk

+
1

LD−4
k Lj

)

+
2π

3

3∑

i,j,k=1

(1 + εijk)

2

1

Li
W2

(
D − 4

2
;Lj , Lk

)

+
8
√
π

3
W3

(
D − 3

2
;L1, L2, L3

)]
(20.32)

The first two terms in the square bracket diverge as D → 3 due to the poles of

the ζ and Γ functions. However, as in the case of wires, using Eqs. (19.35) and

(20.22) these divergences cancel exactly. For D = 3, the boundary dependent mass,

Eq. (20.32) becomes

m2({Li}, T ) ≈ m2
0(L1, L2, L3, T ) +

6λ

π

[
γ

2

3∑

i=1

1

Li

+
4

3

3∑

i<j=1

W2(0;Li, Lj) +
π

18

3∑

i,j,k=1

(1 + εijk)

2

Li
LjLk

+
2
√
π

3

3∑

i,j,k=1

(1 + εijk)

2

1

Li
W2

(
−1

2
;Lj , Lk

)

+
8

3
W3(0;L1, L2, L3)

]
. (20.33)

Since no divergences need to be suppressed, we can take the bare mass

given by m2
0(L1, L2, L3, T ) = α(T − T0) and write the physical mass as

m2(L1, L2, L3, T ) ≈ α (T − Tc(L1, L2, L3)). The expression for Tc(L1, L2, L3) is

obtained from Eq. (20.33), but involves multiple sums, which makes almost im-

possible a general analytical study for arbitrary parameters L1, L2, L3. Thus, we

consider the case where L1 = L2 = L3 = L, corresponding to a cubic box of volume

V = L3. Then the boundary dependent critical temperature reduces to

Tc(V ) = T0 − C3
λ

αV 1/3
, (20.34)

where the constant C3 is given by

C3 = 1 +
9γ

π
+

12

π

∞∑

n1,n2=1

e−2πn1n2

n1
+

48

π

∞∑

n1,n2=1

K0(2πn1n2)

+
48

π

∞∑

n1,n2,n3=1

K0

(
2πn1

√
n2

2 + n2
3

)
≈ 2.7657 . (20.35)

Thus, the minimal volume of the cubic grain sustaining the superconducting phase

is

Vmin =

(
C3

λ

αT0

)3

. (20.36)
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20.4 Boundary effects on the coupling constant

In the following, we consider the four-point function at zero external momenta,

which we take as the basic object for our definition of the renormalized coupling

constant. At leading order in 1
N , it is given by the sum of all chains of one-loop

diagrams, which has the formal expression,

Γ
(4)
D (p = 0,m, {Li}) =

u

1 +NuΠ(D,m, {Li})
, (20.37)

where, after making use of the generalized Matsubara prescription (Chapter 15)

and the dimensional regularization formula (Chapter 10), Π(D,m, {Li}) = Π(p =

0, D,m, {Li}) corresponds to the single bubble four-point diagram with compacti-

fication of a d-dimensional subspace.

To proceed we use the renormalization condition given in Eq. (18.21), from which

we deduce formally that the single bubble function Π(D,m, {Li}) is obtained from

the coefficient of the fourth power of the field (s = 2) in Eq. (20.9). Then we can

write Π(D,m, {Li}) in the form

Π(D,m, {Li}) = H(D,m) + ΠR(D,m, {Li}) , (20.38)

where the {Li}-dependent term ΠR(D,m, {Li}) comes from the second term be-

tween brackets in Eq. (20.9),

ΠR(D,m; {Li}) =
1

(2π)D/2

[
d∑

i=1

∞∑

ni=1

(
m

Lini

)D−4
2

KD−4
2

(mLini)

+2

d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j




D−4
2

×KD−4
2

(
m
√
L2
in

2
i + L2

jn
2
j

)
+ · · ·+

+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D−4
2

× KD−4
2

(
m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d

)]
(20.39)

and H(D,m) is a polar term coming from the first term between brackets in

Eq. (20.9),

H(D,m) ∝ Γ

(
2− D

2

)
mD−4 . (20.40)

We see from Eq. (20.40) that for even dimensions D ≥ 4, H(D,m) is divergent,

due to the pole of the Γ-function. Accordingly this term must be subtracted to give

the renormalized single bubble function ΠR(D,m, {Li}). In order to have a coherent

procedure for a generic dimension D, the subtraction of the term H(D,m) should
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be performed even in the case of odd dimensions, where no poles of Γ-functions

are present (finite renormalization). From the properties of Bessel functions, it can

be seen from Eq. (20.39) that for any dimension D, ΠR(D,m, {Li}) satisfies the

conditions

lim
Li→∞

ΠR(D,m, {Li}) = 0 , lim
Li→0

ΠR(D,m, {Li})→∞ . (20.41)

We also conclude that ΠR(D,m, {Li}) is positive for all values of D and {Li}.
Taking inspiration from Eq. (19.42), let us define the {Li}-dependent renormal-

ized coupling constant λR(m,D, {Li}), at the leading order in 1/N , as

NΓ
(4)
D,R(p = 0,m, {Li}) ≡ λR(D,m, {Li}) =

λ

1 + λΠR(D,m, {Li})
, (20.42)

where as before, λ − Nu fixed in the limit N → ∞ u → 0. Let λR(D,m), the

renormalized coupling constant in the absence of constraints be defined by,

λR(D,m)

N
= lim

Li→∞
Γ

(4)
D,R(p = 0,m, {Li}) . (20.43)

From Eqs. (20.43), (20.42) and (20.41) we get simply λR(D,m) = λ. In other

words we have done a choice of renormalization scheme such that the constant λ

introduced in the Hamiltonian corresponds to the renormalized coupling constant in

absence of boundaries. From Eqs. (20.42) and (20.43) we obtain the {Li}-dependent

renormalized coupling constant

λR(D,m, {Li}) =
λ

1 + λΠR(D,m, {Li})
. (20.44)

20.5 Effects of the boundary-corrected coupling constant on the

critical behavior

Criticality is attained from the ordered phase, when the inverse squared correlation

length, ξ−2({Li}, φ0), vanishes in the large N gap equation,

ξ−2({Li}, ϕ0) = m2
0 + 12λR(D, {Li})ϕ2

0 +
24λR(D, {Li})
L1 · · ·Ld

×
∞∑

{nj}=−∞

∫
dD−dq

(2π)D−d
× 1

q2 +
∑d
j=1(

2πnj

Lj
)2 + ξ−2({Li}, ϕ0)

(20.45)

In the ordered-disordered border, ϕ0 vanishes and the inverse correlation length

equals the physical mass. The physical mass is obtained at the one-loop order from

Eqs. (20.9) and (18.20), after performing the change λ → λR(D,m, {Li}) where
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λR(D,m, {Li}) is the renormalized {Li}-dependent coupling constant; we get,

m2(D,T, {Li}) = m2
0({Li}) +

24λR(D,m, {Li})
(2π)D/2

×
[

d∑

i=1

∞∑

ni=1

(
m

Lini

)D
2 −1

KD
2 −1 (mLini)

+ 2

d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j
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2 −1

× KD
2 −1

(
m
√
L2
in

2
i + L2

jn
2
j

)
+ · · ·

+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D
2 −1

× KD
2 −1

(
m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d

)]
.

(20.46)

But λR(D,m, {Li}) is itself a function of m = m(D,T, {Li}), as given by appropri-

ate versions of Eqs. (20.44) and (19.48), i.e.

λR(D,m, {Li})) =
λ

1 + λΠR(D,m(D,T, {Li}), {Li})
, (20.47)

with

ΠR(D,m(D,T, {Li}); {Li}) =
1

(2π)D/2

[
d∑

i=1

∞∑

ni=1

(
m(D,T, {Li})

Lini

)D−4
2

× KD−4
2

(m(D,T, {Li})Lini)

+ 2

d∑

i<j=1

∞∑

ni,nj=1


 m(D,T, {Li})√

L2
in

2
i + L2

jn
2
j




D−4
2

×KD−4
2

(
m(D,T, {Li})

√
L2
in

2
i + L2

jn
2
j

)
+ · · ·+

+ 2d−1
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n1,...,nd=1

(
m(D,T, {Li})√
L2

1n
2
1 + · · ·+ L2

dn
2
d
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2

× KD−4
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(
m(D,T, {Li})

√
L2
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)]
.

(20.48)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Second-Order Phase Transition in Wires and Grains 355

Therefore m(D,T, {Li}) is given by a complicated set of coupled equations,

Eqs. (20.46), (20.47) and (20.48), since λR(D,m, {L}) depends on m(D,T, {Li}).
This set of equations has no analytical solutions, in general. Nevertheless, limiting

ourselves to the neighborhood of criticality, m2(D,T, {Li}) ≈ 0, we may investigate

the behavior of the system by using in Eq. (20.46), Eq. (20.47) and (20.48) the

asymptotic formula for small values of the argument of the Bessel function,

Kν(z) ≈
1

2
Γ(ν)

(z
2

)−ν
(z ∼ 0 ; Re(ν) > 0) . (20.49)

At criticality, using this equation in all the sums of Bessel functions present in

Eqs. (20.48) and (20.46) the terms m(D,T, {Li}) present in the coefficients and the

arguments of the Bessel functions cancel out, giving for m(D,T, {Li}) ≈ 0, mass

independent expressions of the form,

1

2
Γ(
D − s

2
)Ep

(
D − s

2
;L1, ..., Lp

)
(20.50)

where s = 2 and s = 4 for respectively the mass in Eq. (20.46) and the renormal-

ized one-loop bubble function in Eq. (20.48). In both cases, p = 1, 2, . . . , d and

Ep
(
D−s

2 ;L1, ..., Lp
)

is one of the generalized Epstein-Hurwitz zeta functions de-

fined in symmetric form in Eq. (20.17). Notice that, for p = 1, Ep reduces to the

Riemann zeta function.

Inserting the appropriate versions of Eq. (20.50) in Eqs. (20.46) and (20.48), we

obtain expressions for the physical mass and the renormalized coupling constant at

criticality m2(D,T, {Li}) ≈ 0,

m2(D,T, {Li}) ≈ m2
0(L1, ..., Ld) +

24λR(D, {Li})
(2π)D/2

×
[

d∑

i=1

1

2
Γ(
D − 2

2
)E1

(
D − 2

2
;Li

)

+ 2

d∑

i<j=1

1

2
Γ(
D − 2

2
)E2

(
D − 2

2
;Li, Lj

)
+ · · ·

+ 2d−1 1

2
Γ(
D − 2

2
)Ed

(
D − s

2
;L1, ..., Ld

)]
,

(20.51)

and

λR(D, {Li}) ≈
λ

1 + λC(D)FDd({Li})
,

(20.52)

where
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FDd({Li}) =

d∑

i=1

L4−D
i ζ(D − 4) + 2

d∑

i<j=1

E2

(
D − 4

2
;Li, Lj

)

+ · · ·+ 2d−1Ed

(
D − 4

2
;L1, . . . , Ld

)

(20.53)

and C(D) = 1
8πD/2 Γ

(
D−4

2

)
. Replacing Eq. (20.52) in Eq. (20.51) and taking

m2(D,T, {Li}) = 0, gives the critical temperature as a function of the distances

between the boundaries, {Li}. This will be done in the following for D = 3. Then

the physically interesting situations of d = 1 (a film), d = 2 (an infinitely long

wire) and d = 3 (a cubic grain) are considered. For the situation without boundary

corrections to the coupling constant we refer to [100].

20.5.1 Effects of the boundary-corrected coupling constant on the

phase transition for wires

We now focus on the situation where two spatial dimensions are compactified. .

From Eq. (20.51), taking d = 2, we get for m2(D,T, L1, L2) ≈ 0,

m2(D,T, L1, L2) ≈ m2
0(L1, L2)

+
6λR(D,m(D,T, L1, L2)

πD/2
Γ

(
D

2
− 1

)

×
[(

1

LD−2
1

+
1

LD−2
2

)
ζ(D − 2) + 2E2

(
D − 2

2
;L1, L2

)]
,

(20.54)

where E2

(
D−2

2 ;L1, L2

)
is the generalized (twodimensional) Epstein zeta function

obtained from Eq. (20.17),

E2

(
D − 2

2
;L1, L2

)
=

∞∑

n1, n2=1

[
L2

1n
2
1 + L2

2n
2
2

]−(D−2
2 )

, (20.55)

for Re{D} > 3.

In particular, noticing that E1 (ν;Lj) = L−2ν
j ζ(2ν), we find

E2

(
D − 2

2
;L1, L2

)
= −1

4

(
1

LD−2
1

+
1

LD−2
2

)
ζ(D − 2)

+

√
πΓ(D−3

2 )
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(
1

L1L
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+
1
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1 L2

)
ζ(D − 3)

+

√
π

Γ(D−2
2 )

W2

(
D − 3

2
;L1, L2

)
,

(20.56)
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which is a meromorphic function of D, symmetric in the parameters L1 and L2.

The function W2

(
D−3

2 ;L1, L2

)
in Eq. (20.56) is the particular case of Eq. (20.19)

for p = 2.

Using the above expression, Eq. (20.54) can be rewritten as

m2(L1, L2) ≈ m2
0(L1, L2) +

3λR(D,m(D,T, L1, L2)

πD/2

×
[(

1

LD−2
1

+
1

LD−2
2

)
Γ

(
D − 2

2

)
ζ(D − 2)

+
√
π

(
1

L1L
D−3
2

+
1

LD−3
1 L2

)
Γ

(
D − 3

2

)
ζ(D − 3)

+ 2
√
πW2

(
D − 3

2
;L1, L2

)]
.

(20.57)

This equation presents no problems for 3 < D < 4 but, for D = 3, the first and

second terms between brackets of Eq. (20.21) are divergent due to the ζ function

and Γ function, respectively. However, these two divergences cancel out. No reg-

ularization is needed as in the case of films. This can be seen remembering the

property in Eq. (19.35) and using the expansion of Γ(D−3
2 ) around D = 3,

Γ(
D − 3

2
) ≈ 2

D − 3
+ Γ′(1) , (20.58)

Γ′(z) standing for the derivative of the Γ function with respect to z. For z = 1

it coincides with the Euler digamma function ψ(1), which has the particular value

ψ(1) = −γ. The two divergent terms generated by the use of Eqs. (19.35) and

(20.58) cancel exactly between them.

A similar formula can be obtained from Eq. (20.52), leading at criticality to,

λR(D,L1, L2) ≈
λ

1 + λC(D)
[∑2

i=1 L
4−D
i ζ(D − 4) + 2E2

(
D−4

2 ;L1, L2

)]

(20.59)

Then we can replace Eq. (20.59) in (20.57) and take D = 3, in which case the

function W2

(
D−3

2 ;L1, L2

)
, becomes,

W2(0;L1, L2) =
∞∑

n1,n2=1

{
1

L1
K0

(
2π
L2

L1
n1n2

)
+

1

L2
K0

(
2π
L1

L2
n1n2

)}
. (20.60)

The quantity W2(0;L1, L2) involves complicated double sums, very difficult to han-

dle for L1 6= L2, but it has a summable expression for L1 = L2 = L =
√
A, which

leads to Eq. (20.62) below. Next since we have no regularization to perform in this
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case, we can take m2
0 = α(T − T0). After using tabulated values for the special

functions, we get for a wire with a square transversal section, L1 = L2 = L =
√
A,

Twirec (A) = T0 −
48πC2λ

48πα
√
A+ C1αλ(

√
A)2

(20.61)

where

C1 = 1 +
24

π

∞∑

n1,n2=1

n1

n2
K1(2πn1n2), (20.62)

and

C2 =
9γ

π
+

12

π

∞∑

n1,n2=1

K0(2πn1n2) ≈ 1.6571 . (20.63)

As in the preceding subsection, we have from Eq. (20.61) a minimal transversal

section sustaining the transition,

A′min =

[
24π

C1λ

(√
1 +

C1λ(Amin)1/2

12π
− 1

)]2

(20.64)

where Amin is the corresponding quantity with no boundary corrections to the

coupling constant [100].

20.5.2 Effects of the boundary-corrected coupling constant on the

phase transition for grains

We now turn our attention to the case where all three spatial dimensions are com-

pactified, corresponding to the system confined in a box of sides L1, L2, L3. Taking

d = 3 in Eq. (20.51) and using Eq. (20.49), we obtain in the neighborhood of

criticality, m2(D,T, L1, L2, L3) ≈ 0,

m2(D,T, L1, L2, L3) ≈ m2
0(L1, L2, L3)

+
6λR(D,m(D,T, L1, L2, L3)

πD/2
Γ

(
D − 2

2

)

×




3∑

i=1

ζ(D − 2)

LD−2
i

+ 2

3∑

i<j=1

E2

(
D − 2

2
;Li, Lj

)

+4E3

(
D − 2

2
;L1, L2, L3

)]
,

(20.65)

where E3(ν;L1, L2, L3) =
∑∞

n1,n2,n3=1

[
L2

1n
2
1 + L2

2n
2
2 + L2

3n
2
3

]− ν
and the functions

E2 are given by Eq. (20.56).
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The analytical structure of the function E3

(
D−2

2 ;L1, L2, L3

)
can be obtained

from the general symmetrized recurrence relation given by Eqs. (20.17) and (20.18);

explicitly, we have,

E3

(
D − 2

2
;L1, L2, L3

)
= −1

6

3∑

i<j=1

E2

(
D − 2

2
;Li, Lj

)

+

√
πΓ(D−3

2 )

6Γ(D−2
2 )

3∑

i,j,k=1

(1 + εijk)

2

1

Li
E2

(
D − 2

2
;Lj , Lk

)

+
2
√
π

3Γ(D−2
2 )

W3

(
D − 3

2
;L1, L2, L3

)
,

(20.66)

where εijk is the totally antisymmetric symbol and the function W3 is a particular

case of Eq. (20.18). Using Eqs. (20.56) and (20.66), the boundary dependent mass

can be written as

m2(D,T, {Li}) ≈ m2
0(L1, L2, L3) +

6λR(D,m(D,T, L1, L2, L3)

πD/2

×
[

1

3
Γ

(
D − 2

2

) 3∑

i=1

1

LD−2
i

ζ(D − 2)

+

√
π

6
ζ(D − 3)

3∑

i<j=1

(
1

LD−3
i Lj

+
1

LD−3
j Li

)
Γ

(
D − 3

2

)

+
4
√
π

3

3∑

i<j=1

W2

(
D − 3

2
;Li, Lj

)

+
π

6
ζ(D − 4)Γ

(
D − 4

2

) 3∑

i,j,k=1

(1 + εijk)

2

1

Li

(
1

LD−4
j Lk

+
1

LD−4
k Lj

)

+
2π

3

3∑

i,j,k=1

(1 + εijk)

2

1

Li
W2

(
D − 4

2
;Lj , Lk

)

+
8
√
π

3
W3

(
D − 3

2
;L1, L2, L3

)]

(20.67)

The first two terms in the square bracket of Eq. (20.67) diverge as D → 3 due

to the poles of the Γ and ζ functions. However, as it happens in the case of wires,
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it can be shown that these divergences cancel exactly one another. For D = 3, the

boundary dependent mass (20.67) becomes,

m2(D,T, L1, L2, L3) ≈ m2
0(L1, L2, L3) +

6λR(D,m(D,T, L1, L2, L3)

π
γ

2

3∑

i=1

1

Li
+

4

3

3∑

i<j=1

W2(0;Li, Lj)

+
π

18

3∑

i,j,k=1

(1 + εijk)

2

Li
LjLk

+
2
√
π

3

3∑

i,j,k=1

(1 + εijk)

2

1

Li
W2

(
−1

2
;Lj , Lk

)

+
8

3
W3(0;L1, L2, L3)

]
.

(20.68)

As in the case of films and wires, it is possible to get the boundary dependence

of the renormalized coupling constant. We obtain from Eq. (20.52) that,

λR(D,L1, L2, L3) ≈
λ

1 + λC(D)FD3(L1, L2, L3)
(20.69)

where

FD3(L1, L2, L3) =
3∑

i=1

L4−D
i ζ(D − 4) + 2

3∑

i<j=1

E2

(
D − 4

2
;Li, Lj

)

+22E3

(
D − 4

2
;L1, L2, L3

)
, (20.70)

which is to be replaced in Eq. (20.68). As before, since no divergences need to be

suppressed, we can take the bare mass given by m2
0(L1, L2, L3) = α(T − T0). The

expression of Tc(L1, L2, L3) can be obtained from Eqs. (20.68) and (20.69), but it

is a complicated formula, involving multiple sums, which makes almost impossible

a general analytical study for arbitrary parameters L1, L2, L3; thus, as before, we

restrict ourselves to the situation where L1 = L2 = L3 = L, corresponding to a

cubic box of volume V = L3. In this case, using Eqs. (20.68) and (20.69), the

boundary dependent critical temperature is given by,

Tc(V ) = T0 −
48πC3λ

48πα V 1/3 + C4αλ(V 1/3)2
(20.71)

where
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C4 = 1 +
π

15
+

24

π

∞∑

n1,n2=1

(
n1

n2

)3/2

K3/2(2πn1n2) +
48

π

∞∑

n1,n2=1

n1

n2
K1(2πn1n2)

+
48

π

∞∑

n1,n2,n3=1

√
n2

1 + n2
2

n3
K1

(
2πn3

√
n2

1 + n2
2

)
≈ 1.2246 ,

(20.72)

and

C3 = 1 +
9γ

π
+

12

π

∞∑

n1,n2=1

e−2πn1n2

n1
+

48

π

∞∑

n1,n2=1

K0(2πn1n2)

+
48

π

∞∑

n1,n2,n3=1

K0

(
2πn1

√
n2

2 + n2
3

)
≈ 2.7657

(20.73)

The minimal allowed volume of the grain, in this case, is

V ′min =

[
24π

C4λ

(√
1 +

C4λ(Vmin)1/3

12π
− 1

)]3

, (20.74)

where Vmin corresponds to the minimal volume for the situation where boundary

corrections to the coupling constant are ignored [100].

20.6 Universal behavior of size-effects in second-order phase

transitions

We now gather together the results presented so far. Define the reduced transition

temperature by

tc =
Tc
T0

,

and consider the reduced length, defined in units of Lmin = C1λ/(αT0) (Eq. (19.41),

the minimal thickness for a film, without coupling-constant correction),

l =
L

Lmin
.

Collecting the results of the present and the last chapters, we can write the reduced

transition temperature as a function of the reduced length, in the case where no

correction to the coupling constant is included, for films, square wires and cubic

grains (d = 1, 2, 3, respectively), as

t(d)c (l) = 1− Cd
l
, (20.75)
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with C1 = 1, C2 = C2/C1 ' 1.5032 and C3 = C3/C1 ' 2.5088; that is, for all values

of d, the reduced temperature, tc, scales with the inverse of the reduced length, l−1.

In other words, the overall behavior of the reduced temperature does not depend on

the number of compactified dimensions but only on the dimension of the Euclidian

space, here D = 3.

Considering the coupling-constant correction, the reduced transition tempera-

ture is written as

t(d)c (l) = 1− 48πCd
48πl + Edξl2

, (20.76)

where E1 = 1, E2 = C1 ' 1.1024, E3 = C4 ' 1.2246 and ξ = λLmin. In Fig. 20.1,

we plot the reduced transition temperature as a function of the reduced length for

all cases (films, square wires and cubic grains), fixing ξ = 30.

Summarizing, in this chapter we have generalized the phenomenological ap-

proach to second-order phase transitions in films, discussed in Chapter 19. We have

presented a general formalism which, in the framework of the Ginzburg–Landau

model, is able to describe phase transitions for systems defined in spaces of arbitrary

dimension, some of them being compactified. We have focused on the situations

with D = 3 and d = 2, 3, corresponding to wires and grains, respectively. Such a

generalization is not trivial, since it involves the extension to several dimensions of

the one-dimensional mode-sum regularization procedure. This extension requires, in

particular, the definition of symmetrized multidimensional Epstein–Hurwitz func-

tions with no analog in the one-dimensional case. When combined with the bound-

ary dependent coupling constant, this generates sets of coupled equations for the

renormalized mass, which can be solved only at criticality. In this kind of math-

ematical framework the general formulas are obtained, and then applied to the

0.2 0.4 0.6 0.8 1 1.2
l-1

0.2

0.4

0.6

0.8

1

tc

d=1d=2d=3

Fig. 20.1 Reduced transition temperature as a function of the inverse of the reduced compactifi-
cation length, for films (d = 1), square wires (d = 2) and cubic grains (d = 3). The full and dashed
lines correspond to results with and without correction of the coupling constant, respectively.
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particular of films, wires and grains. This leads to specific forms of the critical tem-

perature as a function of the size of the system. These examples provide a strong

justification for the ideas of compactification enunciated in Chapter 15. In the next

chapter, these ideas will be applied to first-order phase transitions.
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Chapter 21

First-Order Phase Transitions in Confined
Systems

In previous chapters a study of second-order phase transitions in a D-dimensional

system described by the Ginzburg-Landau model in the absence of gauge fluctua-

tions, has been carried out. We have assumed that d of the cartesian coordinates

are compactified and we have found the critical temperature as a function of the size

of compactified dimensions. This model describes first-order phase transitions. We

calculate the transition temperature as a function of the size of compactification,

using methods of quantum field theory. In this chapter we stay in a general frame-

work, the EuclideanD-dimensional λ|ϕ|4+η|ϕ|6 model with d (d ≤ D) compactified

dimensions. We start from the effective potential, which gives the physical mass

through a renormalization relation. This condition, however, reduces considerably

the number of relevant Feynman diagrams contributing to the mass, if we consider

only first-order terms in both coupling constants. In fact, just two diagrams need

to be considered in this approximation: a tadpole graph with the φ4 coupling (1

loop) and a “shoestring” graph with the φ6 coupling (2 loops). No diagram with

both couplings appear. The size-dependence appears as before, from the treatment

of the loop integrals.

21.1 Effective potential with compactification of a d-dimensional

subspace

We consider the model described by the Ginzburg-Landau Hamiltonian density in

a Euclidian D-dimensional space,

H =
1

2
|∂µϕ| |∂µϕ|+

1

2
m2

0 |ϕ|2 −
λ

4!
|ϕ|4 +

η

6!
|ϕ|6 , (21.1)

where λ > 0 and η > 0 are the renormalized quartic and sextic self-coupling con-

stants. Here the sign of quartic term is the opposite to that of the second-order

phase transition. The field, ϕ(x) is a complex field (two components). The bare

mass is given by m2
0 = α(T/T0 − 1), with α > 0 and T0 being a temperature

parameter, which is smaller than the critical temperature for a first-order phase

transition. We consider the system in D dimensions confined to a d-dimensional

365
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subspace, a parallelepiped box with edges L1, . . . Ld. The general ideas presented

in Chapter 15 provide arguments for using this procedure as a consequence of topo-

logical considerations. We use cartesian coordinates r = (x1, ..., xd, z), where z is

a (D − d)-dimensional vector, with corresponding momentum k = (k1, ..., kd,q), q

being a (D − d)-dimensional vector in momentum space. The field ϕ(x1, ..., xd, z)

satisfies periodic boundary conditions ϕ(x1 + L1, . . . xd + Ld) = ϕ(x1, . . . , xd). We

introduce the generalized Matsubara prescription Eq. (19.7) for the Feynman rules.

The effective potential is obtained [308], as an expansion in the number of loops in

Feynman diagrams. Accordingly, to the free propagator and to the no-loop (tree)

diagrams for both couplings, radiative corrections are added, with increasing num-

ber of loops. Thus, at the 1-loop approximation, we get the infinite series of 1-loop

diagrams with all numbers of insertions of the ϕ4 vertex (two external legs in each

vertex), plus the infinite series of 1-loop diagrams with all numbers of insertions

of the ϕ6 vertex (four external legs in each vertex), plus the infinite series of 1-

loop diagrams with all kinds of mixed numbers of insertions of ϕ4 and ϕ6 vertices.

Analogously, there are insertions in diagrams with 2 loops, etc. However, to get

the renormalized mass we restrict ourselves to the lowest order terms in the loop

expansion, as given by Eq. (19.29).

(a) The tadpole contribution to the mass

To 1-loop approximation, the procedure follows along the same lines as in the

previous chapters, starting from the expression for the one-loop contribution to the

effective potential in unbounded space given by Eq. (4.21),

U1(ϕ0) =

∞∑

s=1

(−1)s+1

2s

[
λ|ϕ0|2

2

]s ∫
dDk

(k2 +m2)s
, (21.2)

where m is the physical mass. To deal with dimensionless quantities in the regular-

ization procedures, we introduce parameters c2 = m2/4π2µ2, (Liµ)2 = a−1
i , g1 =

(−λ/4π2µ4−D), |ϕ0/µ
(D−2)/2|2 = |φ0|2, q = k/2πµ, where ϕ0 is the normalized

vacuum expectation value of the field (the classical field) and µ is a mass scale. In

terms of these parameters and performing the Matsubara replacements Eq. (19.7),

the one-loop contribution to the effective potential is written as

U1(φ0, a1, ..., ad) = µD
√
a1 · · · ad

∞∑

s=1

(−1)s+1

2s
gs1|φ0|2s

×
+∞∑

n1,...,nd=−∞

∫
dD−dq

(a1n2
1 + · · ·+ adn2

d + c2 + q2)s
. (21.3)

The parameter s counts the number of vertices on the loop. It is clear that only

the s = 1 term contributes to the renormalization condition, Eq. ( 18.20). It corre-

sponds to the tadpole diagram, Fig. 21.1a. It is also clear that all |φ0|6-vertex and

mixed |φ0|4- and |φ0|6-vertex insertions on the 1-loop diagrams do not contribute
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when one computes the second derivative of similar expressions with respect to the

classical field at zero value: only diagrams with two external legs would survive.

This is impossible for a |φ0|6-vertex insertion at the 1-loop approximation. The first

contribution from the |φ0|6 coupling must come from a higher-order term in the loop

expansion. Two-loop diagrams with two external legs and only |φ0|4 vertices are of

second-order in its coupling constant, as well as all possible diagrams with vertices

of mixed type are neglected. However, the 2-loop shoestring diagram, Fig. 21.1(b),

with only one |φ0|6 vertex and two external legs is a first-order (in η) contribution

to the effective potential, according to our approximation.

(a) Tadpole diagram (b) Shoestring diagram

Fig. 21.1 Contributions to the effective potential.

In short, we consider the physical mass as defined to first-order in both coupling

constants, by the contributions of radiative corrections from only two diagrams: the

tadpole and the shoestring diagram.

The tadpole contribution is

U1(φ0, a1, ..., ad) = µD
√
a1 · · · ad

1

2
g1|φ0|2

×
+∞∑

n1,...,nd=−∞

∫
dD−dq

q2 + a1n2
1 + · · ·+ adn2

d + c2
. (21.4)

The integral over the D − d non-compactified variables is performed using

Eq. (10.12); leading to

U1(φ0, a1, ..., ad) = µD
√
a1 · · · ad

∞∑

s=1

f(D, d)g1|φ0|2Ac
2

d (
2−D + d

2
; a1, ..., ad),

(21.5)

where

f(D, d) = π(D−d)/2 1

2
Γ

(
1− D − d

2

)
(21.6)

and Ac
2

d (ν; a1, ..., ad) are Epstein–Hurwitz zeta functions, valid for Re(ν) > d/2,

defined by

Ac
2

d (ν; a1, ..., ad) =

+∞∑

n1,...,nd=−∞
(a1n

2
1 + · · ·+ adn

2
d + c2)−ν . (21.7)
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As noted in Chapter 19, the multivariable Epstein–Hurwitz function has an analytic

extension to the whole complex ν-plane, given by Eq. (18.16). Thus taking ν =

(2−D+d)/2 in Eq. (20.8), the tadpole part of the effective potential inD dimensions

with a compactified d-dimensional subspace is:

U1(ϕ0, L1, ..., Ld) =
λ|ϕ0|2

2 (2π)
D/2

[
2−D/2−1mD−2Γ

(
2−D

2

)

+

d∑

i=1

∞∑

ni=1

(
m

Lini

)D/2−1

KD/2−1(mLini)

+2

d∑

j<i=1

∞∑

ni,nj=1


 m√

L2
i + L2

j



D/2−1

KD/2−1(m
√
L2
i + L2

j )

+ · · ·+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D/2−1

×KD/2−1(m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d)

]
, (21.8)

where the original variables, ϕ0, λ, and Li are reintroduced.

(b) The shoestring diagram contribution to the effective potential

The 2-loop shoestring diagram contribution to the effective potential in un-

bounded space (Li =∞) is given as [133],

U2(φ0) =
η|φ0|2

16

[∫
dDq

(2π)
D

1

q2 +m2

]2

. (21.9)

After the compactification of d dimensions with lengths Li, i = 1, . . . , d and inte-

gration over the non-compactified variables, U2 becomes

U2(φ0, a1, . . . , ad) =
1

2
g2|φ0|2µ2D−2a1 · · · adπD−d

×
[
Γ

(
2−D + d

2

)

∞∑

n1,...,nd=−∞

1

(a1n2
1 + · · ·+ adn2

d + c2)(2−D+d)/2

]2

,

(21.10)

where φ0 and ai are already defined and the dimensionless quantity g2 = (η/8 ·
16π4µ6−2D) is used. The multiple sum is again the Epstein–Hurwitz zeta function,

Ac
2

d ( 2−D+d
2 ; a1, . . . , ad) given by Eq. (18.7), for ν = (2 − D + d)/2. In terms of

the original variables, ϕ, η, and Li,and using the analytical continuation of the
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Epstein-Hurwitz function, we have

U2(ϕ0, L1, . . . , Ld) =
η|ϕ0|2

4 (2π)D

[
2−1−D/2mD−2Γ

(
2−D

2

)

+

d∑

i=1

∞∑

ni=1

(
m

Lini

)D/2−1

KD/2−1(mLini) + · · ·

+2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D/2−1

KD/2−1(m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d)

]2
. (21.11)

In both Eqs. (21.8) and (21.11), there is a term proportional to Γ
(

2−D
2

)
which

as stated before, is divergent for even dimensions D ≥ 2 and should be subtracted

in order to obtain finite physical parameters. For odd D, the gamma function is

finite, but we also subtract it (corresponding to a finite renormalization) for the

sake of uniformity. After subtraction we get

U
(Ren)
1 (ϕ0, L1, . . . , Ld) =

λ|ϕ0|2

2 (2π)
D/2

[
d∑

i=1

∞∑

ni=1

(
m

Lini

)D/2−1

KD/2−1(mLini)

+2
d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j



D/2−1

×KD/2−1(m
√
L2
in

2
i + L2

jn
2
j ) + · · ·

+2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D/2−1

×KD/2−1(m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d)

]
(21.12)

and

U
(Ren)
2 (ϕ0, L1, . . . , Ld) =

η|ϕ0|2
4 (2π)D

[
d∑

i=1

∞∑

ni=1

(
m

Lini

)D/2−1

KD/2−1(mLini)

+2
d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j



D/2−1

×KD/2−1(m
√
L2
in

2
i + L2

jn
2
j ) + · · ·
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+2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D/2−1

×KD/2−1(m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d)

]2
. (21.13)

Then the physical mass with both contributions is obtained from Eq. (19.29),

using Eqs. (21.12), (21.13) and also taking into account the contribution at the tree

level; it satisfies a generalized Dyson–Schwinger equation depending on the lengths

Li of the confining box:

m2({Li}) = m2
0 −

λ

(2π)
D/2

[
d∑

i=1

∞∑

ni=1

(
m

Lini

)D/2−1

×KD/2−1(mLini)

+ 2
d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j



D/2−1

×KD/2−1(m
√
L2
in

2
i + L2

jn
2
j ) + · · ·

+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·L2

dn
2
d

)D/2−1

×KD/2−1(m
√
L2

1n
2
1 + · · ·L2

dn
2
d)

]

+
η

2(2π)D

[
d∑

i=1

∞∑

ni=1

(
m

Lini

)D/2−1

KD/2−1(mLini)

+ 2

d∑

i<j=1

∞∑

ni,nj=1


 m√

L2
in

2
i + L2

jn
2
j



D/2−1

KD/2−1(m
√
L2
in

2
i + L2

jn
2
j )

+ · · ·+ 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·+ L2

dn
2
d

)D/2−1

×KD/2−1(m
√
L2

1n
2
1 + · · ·+ L2

dn
2
d)

]2
. (21.14)

A first-order transition occurs when all the three minima of the potential

U(ϕ0) =
1

2
m2({Li})|ϕ0|2 −

λ

4
|ϕ0|4 +

η

6
|ϕ0|6, (21.15)

where m({Li}) is the renormalized mass defined above, are simultaneously on the

line U(ϕ0) = 0. This gives the condition

m2({Li}) =
3λ2

16η
. (21.16)
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For D = 3, the Bessel functions have an explicit form, K1/2(z) =
√
πe−z/

√
2z;

replacing this formula in Eq. (21.14), remembering m2
0 = α(T/T0 − 1) and using

the condition Eq. (21.16), we get the critical temperature,

Tc({Li}) = T bulk
c

{
1−

(
1 +

3λ2

16ηα

)−1

×
{

λ

8πα

[
d∑
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1

Li
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d∑

j<i=1

∞∑
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√
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√
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dn
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]
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+ 2

d∑

j<i=1

∞∑
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√
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e−
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3λ2/16η
√
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1n
2
1+···+L2
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2
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√
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1 + · · ·+ L2

dn
2
d

]2






 , (21.17)

where

T bulk
c = T0

(
1 +

3λ2

16ηα

)
(21.18)

is the bulk (Li →∞) critical temperature for the first-order phase transition.

21.2 The film, the wire and the grain

Having developed the general case of a d-dimensional compactified subspace, it is

now easy to obtain the specific formulas for particular values of d. If we choose

d = 1, the compactification of just one dimension, let us say, along the x1-axis,

we are considering that the system is confined between two planes, separated by

a distance L1 = L. Physically, this corresponds to the situation explored in [309],

and the transition occurs at the critical temperature T film
c (L) given by



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

372 Thermal Quantum Field Theory: Algebraic Aspects and Applications

2 4 6 8 10
L

0.2

0.4

0.6

0.8

1

1.2

1.4

TcHLL

Fig. 21.2 Critical temperature for a superconducting film, undergoing a first-order phase-
transition, as function of the thickness.

T film
c (L) = Tc

{
1−

(
1 +

3λ2

16ηα

)−1 [
λ

8παL
ln(1− e−

√
3λ2/16ηL)

− η

64π2αL2

(
ln(1− e−

√
3λ216ηL)

)2
]}

. (21.19)

The behavior of T film
c as a function of L is shown Fig. 21.2.

Let us now take the case d = 2. To simplify matters, we take L1 = L2 = L in

Eq. (21.17) with d = 2, the critical temperature is written in terms of L as

Twire
c (L) = Tc

{
1−

(
1 +

3λ2

16ηα

)−1 [
λ

4παL

×
[
2 ln(1− e−L

√
3λ2/16η) + 2 ln(1− e−L

√
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∞∑
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√
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2
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2

]

− η
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√
3λ2/16η)

+ ln(1− e−L
√

3λ2/16η) + 2
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n1,n2=1

e−L
√

3λ2/16η
√
n2

1+n
2
2

√
n2

1 + n2
2

)2




 .

(21.20)

Finally, we compactify all three dimensions, which leaves us with a system in

the form of a cubic grain. The dependence of the critical temperature on its linear
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dimension L1 = L2 = L3 = L, is given by taking d = 3 in Eq. (21.17):

T grain
c (L) = Tc

{
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16ηα
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 .

(21.21)

It is interesting to compare the above formulas to those for a second-order tran-

sition in either films, wires or grains, obtained by the similar methods from the

λφ4 Ginzburg–Landau model in Chapters 19 and 20. All of them have the same

functional dependence on the linear dimension L. In all cases studied there, it is

found that the boundary-dependent critical temperature decreases linearly with the

inverse of the linear dimension L, according to the results of Chapter 20. It is to

be noted that in order to get the transition temperature for a film, a mass renor-

malization is needed in second-order phase transitions, which is not the case for

first-order ones.

We have discussed here the
(
λ|ϕ|4 + η|ϕ|6

)
D

theory compactified in d ≤ D

Euclidean dimensions, extending for first-order transitions in arbitrary dimension

some results for second-order transitions [309]. The bare mass term has been

parametrized in the form m2
0 = α(T/T0 − 1), with α > 0 and T0 being a pa-

rameter with the dimension of temperature, thus placing the analysis within the

Ginzburg–Landau framework. We have presented a general formalism and we have

focused on the situations with D = 3 and d = 1, 2, 3, corresponding (in the context

of condensed matter systems) to films, wires and grains, respectively, undergoing

phase transitions which may be described by (mean field) Ginzburg–Landau mod-

els. This generalizes to more compactified dimensions previous investigations on

first-order superconducting transitions in films [309].

It should be observed the very different form of Eqs. (21.19), (21.20) and (21.21)

when compared with the corresponding ones for second-order transitions given in the

preceding chapters. In the particular case of a superconducting film, as we have seen

above, the functional form Eq. (21.19) of the dependence of the critical temperature
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Tc(L) on the film thickness L, grows from zero at a non-null minimal allowed value of

L above the bulk transition temperature Tc as the thickness is increased, reaching

a maximum and afterwards starting to decrease, going asymptotically to Tc as

L → ∞. This is in qualitatively good agreement with measurements [310] taken

for a superconducting aluminum film, especially for thin ones. This is a rather

contrasting behavior with that of the critical temperature for materials displaying

a second-order phase transition [311], for which the critical temperature increases

monotonically from zero, again corresponding to a finite minimal film thickness,

going to the bulk transition temperature as L → ∞ . We could say that the form

of the dependence of the critical temperature on the size of the system, is indicative

of the order of the transition. This is particularly striking for films, in which case

experimental data are more easily available.
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Chapter 22

Thermo-Algebras in Phase Space:
Quantum and Classical Systems

We explore in this chapter representations of thermo-algebras in phase space. We

begin by presenting a derivation of the Wigner formalism for non-relativistic and

relativistic fields based on symmetry. The basic result is the formulation of the

quantum theory in phase space having as basic ingredients symmetry groups. The

last part of the chapter is dedicated to study representations for classical systems,

associated for instance with stochastic equations.

22.1 Wigner function for the Schrödinger field

The commutation relations for the thermo Galilei Lie-algebra in Chapter 7 show

that we have different possibilities to define a frame in the Hilbert space HT . An

interesting one is built with the operators P and Q defined by

P = P − 1

2
P̂,

Q = Q− 1

2
Q̂.

Observe that Q and P satisfy the Galilei-boost conditions

U(K̂) Q U−1(K̂) = Q+ vt1, (22.1)

and

U(K̂) P U−1(K̂) = P +mv1, (22.2)

where

U(K̂) = exp(−imvK̂),

with K̂ being the boost operator (see Chapter 7). Therefore, P and Q might be

taken as momentum and position operators, respectively. But despite this fact,

P and Q cannot be considered as observables, for, in this representation, the hat

operators are generators of symmetry, not observables. In addition, these operators

commute with each other, i.e. [P ,Q] = 0. Representative operators for the position

377
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and momentum observables can be given, respectively, by Q and P , which satisfy

the same relations for the Galilei boost as those given by Eqs. (22.1) and (22.2),

while fulfilling the Heisenberg condition, that is

[Qi, Pj ] = iδij .

Since P and Q commute, they can be used in a diagonal representation, so as to

define a quantum phase space. This phase-space frame is then introduced by

P |q, p〉 = p |q, p〉 and Q |q, p〉 = q |q, p〉,
where the kets |q, p〉 are an orthonormal basis in Hα, that is,

〈q, p|q′, p′〉 = δ(q − q′)δ(p− p′) and

∫
|q, p〉〈q, p|dqdp = 1.

In this basis, we write the observables Q and P , and the generators P̂ and Q̂ as

Qj = qj +
i

2

∂

∂pj
, Q̂j = i

∂

∂pj
,

Pj = pj −
i

2

∂

∂qj
, P̂j = −i ∂

∂qj
.

These results show that Hα is a reducible representation space for the observables

Qi and Pi [315–318].

The evolution equation for the states is then given by

i∂tψ(q, p; t) =

∫
〈q, p|Ĥ |q′, p′〉 〈q′, p′|ψ(t)〉dq′dp′, (22.3)

where |ψ(t)〉 is in Hα and ψ(q, p; t) = 〈q, p|ψ(t)〉. Assuming

H(q, p;
∂

∂q
,
∂

∂p
) = δ(q − q′)δ(p− p′)〈q, p|Ĥ |q′, p′〉,

We write

i∂tψ(q, p; t) = H(q, p;
∂

∂q
,
∂

∂p
)ψ(q, p; t).

An observable operator, A, a function of Q and P , is such that

〈q, p|A(Q,P )|q, p〉 = A(q +
i

2

∂

∂p
, p− i

2

∂

∂q
), (22.4)

whose average, 〈A〉, is defined as

〈A〉 = 〈ψ|A|ψ〉

=

∫
dqdpψ∗(q, p; t)A(q +

i

2

∂

∂p
, p− i

2

∂

∂q
)ψ(q, p; t). (22.5)

Considering that Ĥ = H − H̃ , in the phase space we have

Ĥ = 〈q, p|H(Q,P )|q, p〉 − 〈q, p|H̃(Q,P )|q, p〉

= H(q +
i

2

∂

∂p
, p− i

2

∂

∂q
)−H(q − i

2

∂

∂p
, p+

i

2

∂

∂q
), (22.6)
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where H = H(Q,P ) is the Hamiltonian of the system written in terms of the

position and momentum operators, Q and P , respectively. For instance, let us

consider the Hamiltonian

H(Q,P ) =
P 2

2m
+ V (Q).

Then we have

Ĥ = 〈q, p|H(Q,P )|q, p〉 − 〈q, p|H̃(Q,P )|q, p〉

=
1

2m
(p− i

2

∂

∂q
)2 + V (q +

i

2

∂

∂p
)

− 1

2m
(p+

i

2

∂

∂q
)2 − V (q − i

2

∂

∂p
). (22.7)

Using a Taylor series, we write Ĥ as

Ĥ = i{H(q, p), ·}M ,

where {·, ·}M is the Moyal bracket given by

{g, f}M(q, p) = g(q, p)2 sin


1

2



←
∂

∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q




 f(q, p),

and H(q, p) is the Hamiltonian written in terms of the c-number variables q and

p. As discussed in Chapter 2, H(q, p) is associated with a classical Hamiltonian.

We consider such an interpretation only after an analysis of the classical limit of

Ĥ in the phase space representation. This aspect can be made clear if we include

explicitly the Planck’s constant in the definition of Q and P , writing Q = q+i~∂/∂p

and P = p+ i~∂/∂q and taking the formal limit ~→ 0.

As a second step, we associate the state ψ(q, p) with the Wigner function. To

do this, we use the ∗-product

(ψ ? ψ′)(q, p) = ψ(q, p) exp


~

2



←
∂

∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q




ψ′(q, p). (22.8)

The ?-product is associative and satisfies the following derivative rule

Ĥ(ψ ? ψ′)(q, p) = (Ĥψ ? ψ′)(q, p) + (ψ ? Ĥψ′)(q, p). (22.9)

Therefore, introducing the function

f(q, p) = (ψ ? ψ†)(q, p),

and using Eq. (22.9), we find that

∂tf(q, p; t) = {H(q, p) , f(q, p; t)}M . (22.10)
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This is the Liouville-von Neumann equation in phase space as presented in Chap-

ter 2. To avoid confusion with the star product, ?, in this section we denote the

complex conjugate by †. Besides that, we have∫
dqdpψ(q, p) ? ψ†(q, p) =

∫
dqdpψ(q, p)ψ†(q, p)

=

∫
dqdp f(q, p; t) .

The normalization of ψ(q, p) is∫
dqdpψ(q, p) ? ψ†(q, p) = 1.

The average for the observables defined by Eq. (22.5) reduces to

〈A〉 = 〈ψ|A|ψ〉

=

∫
dqdp f(q, p; t)A(q, p). (22.11)

The integration over p (q) leads to a distribution of probability in q (p). Then

the function f(q, p) fulfills all the properties of the Wigner function. As a conse-

quence the function ψ(q, p) can be interpreted as a wave function associated with

the quantum-mechanical Wigner function. It is worth noting that the derivation of

Eq. (22.11) was possible since A(q, p) is assumed to be an observable according to

the thermo-Galilei algebra. However, this is not the case for more general opera-

tors, such as the hat-Hamiltonian. This shows that the formalism with the Wigner

function amplitude is a generalization of the usual one.

Let us briefly investigate two other examples of representations for the phase

space. The first one is defined by the operators Q̃ = Q − Q̂ and P such that

[Q̃, P ] = 0; thus we introduce

P |q, p〉 = p|q, p〉, Q̃|q, p〉 = q|q, p〉 ,

Qj = qj +
i

2
~
∂

∂pj
,

P̃j = pj +
i

2
~
∂

∂qj
.

In this case the ∗-product reduces to

(ψ ? ψ′)(q, p) = ψ(q, p) exp[i
~

2

←
∂

∂q

→
∂

∂p
]ψ′(q, p). (22.12)

As a second example, we consider [Q, P̃ ] = 0, such that P̃ |q, p〉 = p|q, p〉, and

Q |q, p〉 = q |q, p〉 ,

Q̃j = qj −
i

2
~
∂

∂pj
,

Pj = pj −
i

2
~
∂

∂qj
,

resulting in

(ψ ? ψ′)(q, p) = ψ(q, p) exp[i
~

2

←
∂

∂p

→
∂

∂q
]ψ′(q, p). (22.13)
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22.2 Wigner function for the Klein-Gordon field

In this section we analyze the structure of the statistical mechanics and relativistic

kinetic theory for bosons. First we deal with the system in thermal equilibrium.

The basic equation is, as we have demonstrated in Chapter 7,

[�, ρ] = 0. (22.14)

Consider an ensemble of quantum particles specified by the density matrix ρ, such

that the entropy is

S = −kBTrρ ln ρ. (22.15)

In the stationary case the entropy is also an extremum; that is

δS = 0, (22.16)

under the constraints

Trρ = 1, (22.17)

TrρN = 〈N〉, (22.18)

TrρP ν = 〈P ν〉, (22.19)

where 〈N〉, the macroscopic particle number, and 〈P µ〉, the macroscopic four mo-

mentum, are assumed to be constant. Then we obtain (see Chapter 2)

α0 + ανP
ν + αNN − kB − kB ln ρ = 0, (22.20)

where α0, αµ and αN are Lagrange multipliers, introduced to account for the con-

straints given by Eqs. (22.17)–(22.19), respectively. From Eq. (22.20), we get

ρ =
1

Z
exp[

1

kB
(ανP

ν + αNN)], (22.21)

where

Z = exp(1− αo
kB

). (22.22)

The quantity ρ in Eq. (22.21) is a solution of Eq. (22.14) assuming that N and P

commute with each other. Multiplying Eq. (22.20) by ρ, taking the trace and using

Eqs. (22.17)–(22.19) and Eq. (22.22), we derive

kB lnZ + αν〈P ν〉+ αN 〈N〉+ S = 0.

We obtain a physical interpretation of the Lagrange multipliers αν and αN by

taking

αν = −kBβUν , and αN = kBµcβ,

where µc is the chemical potential and Uν is the macroscopic four-velocity field

satisfying the relation UνU
ν = 1. Therefore, ρ in Eq. (22.21) is given as

ρ =
1

Z
exp[−β(UνP

ν − µcN)]. (22.23)
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The partition function, Z, is inferred from the normalization of ρ. Thus, Eq. (22.23)

provides a general form of ρ for steady states. Let us analyze this from another

point of view.

The Liouville-von Neumann equation, Eq. (22.14), is written as

(∂µ
′

∂µ′ − ∂µ∂µ)ρ(x′, x) = 0. (22.24)

Introducing the linear transformation

∂

∂xµ
=

1√
2
(
∂

∂qµ
− pµ) and

∂

∂ x′µ
=

1√
2
(
∂

∂qµ
+ pµ) , (22.25)

Eq. (22.24) becomes

pµ
∂

∂qµ
ρ(q, p) = 0. (22.26)

This equation can be interpreted as the drift term of a collisionless Boltzmann

equation for the one-particle Wigner distribution ρ(q, p). To see that, let us explore

the physical meaning of ρ(q, p). First, note that ρ(q, p ) is a Lorentz scalar. Thus

an invariant solution of Eq. (22.26) is

ρ(q, p) =

∫
d4u δ(u · p) exp[−u · q]g(p, u). (22.27)

The microscopic nature of ρ(q, p ) is specified through the definition

g(p, u) = 〈a†(p− 1

2
u) a(p+

1

2
u)〉

= Tr[ρa†(p− 1

2
u) a(p+

1

2
u)], (22.28)

where a(p) and a†(p) are boson operators, such that the number and momentum

operators are introduced by

N =

∫
d3p

po
a†(p)a(p),

P µ =

∫
d3p

po
pµa†(p)a(p).

Notice that

g(p, u) = 〈a†(p− 1

2
u) a(p+

1

2
u)〉0

= 〈a(p+
1

2
u)a†(p− 1

2
u)〉0 exp(βµc − pνUν),

a result that is derived from the properties of the trace in the equilibrium average

represented by 〈· · ·〉0. With this result, and using Eq. (22.23) in Eq. (22.28) we

obtain

ρ(p) =
1

exp([βpνUν − βµc〈N〉]− 1
,
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which is the Jüttiner distribution [18, 319]. Thus Eq. (22.28) is an appropriate

choice for g(q, p), that provides a physical interpretation of the theory in the case

of bosons.

Including anti-particles, g(q, p) in Eq. (22.27) is written as

g(p, u) = 〈a†(p− 1

2
u) a(p+

1

2
u)〉+ 〈a†(p− 1

2
u) a(p+

1

2
u)〉,

where a(p) and a†(p) are anihilation and creation operators, respectively, for anti-

bosons. The microscopic specification of the operatorsN and P ν , in the momentum

space, is

N =

∫
d3p

p0
[a†(p)a(p) + a†(p)a(p)],

P ν =

∫
d3p

p0
pν [a†(p)a(p) + a†(p)a(p)].

The macroscopic current density, Jν , and the energy-momentum tensor, T µν , are

respectively,

〈Jν〉 =
∫
d3p

1

p0
pµρ(q, p), (22.29)

and

T µν =

∫
d3p

1

p0
pµpνρ(q, p). (22.30)

Therefore, ρ(q, p) is interpreted as a Wigner function density. In other words,

this shows how to use representations of symmetry groups to derive relativistic

statistical mechanics. Due to the symmetry properties, the simplicity is a notewor-

thy fact in this method, of the result that the distribution function ρ(q, p) arises

naturally in a covariant form.

22.3 Wigner function for the Dirac field

In order to derive a Wigner representation for the Dirac field we start with the

density matrix equation for the Dirac field (see Chapter 7)

[σγ · ∂, ρ] = 0

written in the following general form

(σlγlµ
∂

∂xµ
− σrγrµ ∂

∂x′µ
)ρ(x, x′) = 0, (22.31)

where γlµ = γµ⊗ 1, γrµ = 1⊗ γµ with γµ being the Dirac matrices; σl = σ⊗ 1 and

σr = 1 ⊗ σ; with σ an arbitrary Lorentz invariant, satisfying σ2 = 1. The Dirac

matrices, γr,l, fulfill two Clifford algebras,

{γlµ, γlν} = {γrµ, γrν} = 2gµν ; (22.32)

such that [γlµ, γrν ] = 0. Observe that ρ(x, x′) is a 16-component object.
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Multiplying Eq. (22.31) by
(
σl
)−1

, it follows that

Λ(κ)ρ(x, x′) = (γlµ
∂

∂xµ
− κγrµ ∂

∂x′µ
)ρ(x, x′) = 0, (22.33)

where κ = (σl)−1σr. Using Eq. (22.25), the square of Λ(κ) is

Λ2(κ) = Λµν1 (κ)
∂2

∂qµ∂qν
+ Λµν2 (κ)

∂

∂qµ
pν + Λµν3 (κ) pµ

∂

∂qµ
+ Λµν2 (κ)pµpν , (22.34)

where

Λµν1 (κ) =
1

2
(γlµ − κγrµ)(γlν − κγrν),

Λµν2 (κ) =
1

2
(γlµ + κγrµ)(γlν − κγrν),

Λµν3 (κ) =
1

2
(γlµ − κγrµ)(γlν + κγrν),

Λµν4 (κ) =
1

2
(γlµ + κγrµ)(γlν + κγrν).

From these expressions for Λµνi (κ), (i = 1, .., 4), the following operators are

defined

aµ+(κ) =
1√
2
(γlµ + κγrµ) and aµ−(κ) =

1√
2
(γlµ − κγrµ); (22.35)

then Eq. (22.34) is written as

Λ2(κ) = aµ−(κ)aν−(κ)
∂2

∂qµ∂qν
+ aµ+(κ)aν−(κ)

∂

∂qµ
pν

+ aµ−(κ)aν+(κ) pν
∂

∂qµ
+ aµ+(κ)aν+(κ)pµpν .

For a suitable choice of the arbitrary invariant κ, two Grassmann algebras can

be introduced with the operator aµ−(κ) and aµ+(κ). Indeed, if κ anti-commutes

with the matrices γlµ and γrµ, and since κ2 = 1, it leads to

{aµ−, aν−} = {aµ+, aν+} = 0

{aµ+, aν−} = gµν .

Requirement of Lorentz invariance for κ can be achieved if, in Eq. (22.31), we define

σl = γl5 and σr = γr5, where γ5 = iγ0γ1γ2γ3. Using these results, we obtain [18]

Λ2 = aµ+aν−
∂

∂qµ
pν + aµ−aν+ pµ

∂

∂qµ

= pµ
∂

∂qµ
.

Therefore, from Eq. (22.33), we obtain

pµ
∂

∂qµ
ρ(q, p ) = 0. (22.36)

We can use Eq. (22.36) to study the kinetic theory of spin 1/2 particles similar to

the case of the Klein-Gordon field. Then the definition of the energy-momentum

tensor follows the definition given by Eq. (22.30) but including spinorial indices.
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22.4 Representations for classical systems

In this section we study thermo-algebra representations for classical systems with

emphasis in deriving structural elements of the classical kinetic theory from a group

theory point of view. In this sense, classical analogues of elements of thermofield dy-

namics are specified. We first construct a representation using the Poisson brackets

as the Lie product of the Galilei thermo-algebra. Later, we study unitary represen-

tations considering that operators describing classical observables have to commute

with each other, in a thermo-algebra. In this case, the Lie product is the commuta-

tor, and the inner product in the representation space is defined on a set of complex

functions in the phase space. Representations of Lie algebras for classical systems

have been studied in the literature in different ways [320–325]. The first attempt

to study classical systems using unitary representations and field operators defined

in a Fock space is due to Shönberg [326]. This method has been explored a great

deal [327–340]. The physical and the mathematical nature of such a formalism have

also been analyzed with representations of Lie groups [80, 104] and in particular

has been used to study stochastic problems, as in the reaction-diffusion and spin

lattices [341–355]. Here we show the symmetry basis for these methods as a classical

counterpart of TFD.

22.4.1 Thermo-Lie groups for classical systems

Let ` = {ai, |ai�aj = Cijkak} be the Lie algebra associated with the usual dynamical

physical variables, where � denotes the Lie product, and cijk are the structure

constants. In order to construct the thermo-algebra representation we associate

this algebra with an isomorphic hat-algebra denoted by ̂̀= {Âi, |Âi�Âj = CijkÂk },
such that the thermo-algebra, designated by `T , is defined by

Ai�Aj = EijkAk , (22.37)

Ai � Âj = DijkAk, (22.38)

Âi � Âj = CijkÂk. (22.39)

The tilde operators, Ã, that are isomorphic to the non-tilde operator A through

the doubling process, are identified by Ã = A − Â. In general, however, such an

association should not be assumed. Instead, the search for hat operators should be

our primary goal.

The main characteristics of `T are the following (see Chapter 5): (i) As a vector

space, `T is the direct sum of ` and ̂̀. (ii) ` is an ideal of `T . (iii) From the

dynamical standpoint, the elements of the subalgebra ̂̀are interpreted as dynamical

generators of symmetry and elements of ` are the usual dynamical observables.

Both are called dynamical variables. In the Lie algebra approach, infinitesimal

transformations of dynamical variables are induced by the (Lie) product of the
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generators. Then Eq. (22.38) dictates just how the dynamical generators act on the

dynamical variables infinitesimally, as we have stated it in Chapter 5. (iv) The non-

abelian nature of the dynamical observables, related to the measurement processes,

is defined by Eq. (22.37).

We can define the concept of thermo-algebra for classical systems, using the

interpretations of the non-hat operators given in property (iv) to write Eq. (22.37)

as

Ai�Aj ≡ [Ai, Aj ] = 0,

where [A,B] = AB − BA, the commutator, is the Lie product. That is the ob-

servables are abelian. Then we assume that a unitary representation describing a

classical system should be given by

[Ai, Aj ] = 0, (22.40)

[Ai, Âj ] = iCijkAk, (22.41)

[Âi, Âj ] = iCijkÂk. (22.42)

In this case, the hat operators are a faithful representation of the symmetry opera-

tions.

On the other hand, one way to maintain Properties (i) to (iv) for abelian ob-

servables is to define the Lie product as Poisson brackets. Hence we write

{Ai, Aj} = CijkAk, (22.43)

{Ai, Âj} = CijkAk, (22.44)

{Âi, Âj} = CijkÂk. (22.45)

(We are using the same notation for operators and c-number functions in the phase

space since it will not create any confusion.) Introducing the tilde variables in the

phase space as

Ãi = Ai − Âi, (22.46)

the tilde and non-tilde variables satisfy the following relations:

{Ai, Ãj} = 0, (22.47)

{Ai, Aj} = CijkAk, (22.48)

{Ãi, Ãj} = −CijkÃk. (22.49)

Representations of Lie groups through the Poisson brackets are, in general, pro-

jective representations. That is, given a symmetry group characterized by the Lie

algebra ai�aj = CijkAk, realizations in terms of Poisson brackets are given by

{Ai, Aj} = CijkAk + dij ,

where dij are c-numbers [325]. In this case, using the relations {Ai, Aj} = CijkAk+

dij and {Ãi, Ãj} = −CijkÃk − dij , the thermo-algebra is modified to assume the

following relations

{Ai, Aj} = CijkAk + dij , (22.50)

{Ai, Âj} = CijkAk + dij , (22.51)

{Âi, Âj} = CijkÂk . (22.52)
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Note that the hat functions define a subalgebra of `T are still a faithful representa-

tion of the original Lie-symmetry.

The generators of symmetries acting on the dynamical variables are defined by

the following relation

Ā(λ) = e−λ{D̂, . }Ā(λ = 0), (22.53)

where Ā stands for the dynamical variables A, Â or Ã (this notation will be used

throughout); and, D̂ is a general generator defining a one parameter (λ) subgroup.

In particular, if λ is the time parameter, we derive from Eq. (22.53) the equation

of motion

˙̄A = {Ā, Ĥ}. (22.54)

When Ā = A, Eq. (22.54) reduces to Ȧ = {A, Ĥ}, and the usual classical formalism

is obtained, where Ĥ is the Hamiltonian written as a function in phase space.

An explicit form for the Poisson bracket in Eq. (22.54) is

{A,B} =

2∑

a=1

(
∂ A

∂xa

∂B

∂ pa
− ∂A

∂ pa

∂B

∂xa

)
, (22.55)

where x1 = q, x2 = −q̃, p1 = p and p2 = p̃. Then we have a pair of Hamilton

equations,

ẋa = {xa, Ĥ} =
∂Ĥ

∂pa
, (22.56)

ṗa = {pa, Ĥ} = − ∂Ĥ
∂xa

, (22.57)

where a = 1, 2. We have derived two possibilities to study representations in clas-

sical systems. In the following we explore both of these representations.

22.4.2 SU(1, 1) and the thermal classical oscillator

Considering the representation of the thermo-algebra in terms of the Poisson bracket

[104], a realization of the rotation group in this doubled phase space is

{Li, Lj} = εijkLk, (22.58)

such that each component of L is a function of (xr , ps); r, s = 1, 2. The Casimir

invariant is

C2 = L1
2 + L2

2 + L3
2, (22.59)

and we consider a system described by the following hat Hamiltonian (the generator

of time translation)

Ĥ = NC +ML2, (22.60)
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where N and M are constants. Let us introduce the following set of variables

L1 =
i

2
(L− + L+),

L2 =
1

2
(L+ − L−),

with the inverse, L± = ∓(L2± iL1). The algebra with elements L+, L−and L3 is a

representation of su(1, 1) for
1

i
{L±, L3} = ∓L±,

1

i
{L−, L+} = −2L3.

In terms of L+, L−and L3, C is given by C2 = L3
2 − L+L−.

Since we have an su(1, 1) algebra, we can define an algebra for oscillator-like

operators. That is, we define variables a and b, such that

L+ =
1

2
(a2 − b2), (22.61)

L− =
1

2
(a∗2 − b∗2), (22.62)

L3 =
1

2
(aa∗ + bb∗), (22.63)

where a∗ (b∗) is the complex conjugate of a (b). Then the algebra for the variables

a, b and their complex conjugates is given by the relations

{a, a∗} = i, {b, b∗} = i, {a, b} = 0.

Other Poisson brackets are zero.

The basic variables xr , pr of the doubled phase space specified by Eq. (22.55)

are introduced through a transformation defined by

a =

(
1

2Ω

) 1
2

(p1 − iΩx1), (22.64)

b =

(
1

2Ω

) 1
2

(p2 − iΩx2), (22.65)

and the constants: N = 2Ω, M = −iγ and Ω2 = k − (γ/2m)
2
. Then, the

Hamiltonian, Eq. (22.60), is

Ĥ =
1

2
p1p2 +

1

2
Ω2x1x2 +

γ

4
(p2x2 − p1x1). (22.66)

Using this and the Hamilton equations given by Eqs. (22.56) and (22.57), we have

mẍ1 + γẋ1 + kx1 = 0, (22.67)

mẍ2 − γẋ2 + kx2 = 0. (22.68)

These two equations describe a system of two oscillators: one is the usual dissi-

pative harmonic oscillator, Eq. (22.67), and the other, Eq. (22.68), is a growing

energy oscillator to which the energy of the dissipative oscillator flows. Such a clas-

sical system with two degrees of freedom was analysed by Feshbach and Tikochin-

sky [356–359]. In this case, the tilde variable describe the anti-dissipative system.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Thermo-Algebras in Phase Space: Quantum and Classical Systems 389

22.5 Classical unitary representations

Now we turn our attention to the unitary representations of the thermo-algebra

describing classical systems. Following Eqs. (22.40)–(22.42), we write the thermal

Galilei algebra, gT , for a classical system as

[Ji, Jj ] = 0, [Ĵi, Ĵj ] = iεijkĴk,

[Ji, Pj ] = 0, [Ĵi, P̂j ] = iεijkP̂k ,

[Ji,Kj ] = 0, [Ĵi, K̂j ] = iεijkK̂k,

[Ki, H ] = 0, [K̂i, Ĥ] = iP̂i,

[Pi,Kj ] = 0, [P̂i, K̂j ] = 0

[Ĵi, Jj ] = [Ji, Ĵj ] = iεijkJk,

[Ĵi, Pj ] = [Ji, P̂j ] = iεijkPk,

[Ĵi,Kj ] = [Ji, K̂j ] = iεijkKk,

[K̂i, H ] = [Ki, Ĥ ] = iPi,

[P̂i,Kj ] = [Pi, K̂j ] = −iMδij (22.69)

where the generators of the symmetries are P̂ for translations, Ĵ for rotations,

K̂ for the Galilei boost and Ĥ for the time translations. These operators form

a subalgebra of gT , denoted by ĝT , which is manifestly a faithful representation

of the Galilei Lie-algebra. Moreover, there is the subalgebra g of the dynamical

observables (non-hat operators), which is an abelian algebra.

In the set of Eq. (22.69), we have [P̂i, K̂j ] = M̂ = 0 whilst in [P̂i,Kj ] = [Pi, K̂j ] =

−iMδij , M is a constant operator, that is M = m1. In order to define the Galilei

boost for a point mass, m is considered real and positive. Thus let the operator of

position (Q) be defined by

K = mQ− tP. (22.70)

This relation among K, P and Q is similar to that used in quantum mechanics, but

here Q and P commute with one another.

A representation where P and Q are diagonal is specified by:

P |p, q〉 = p|p, q〉, Q|p, q〉 = q|p, q〉,

so that 〈q, p|θ〉 = θ(p, q) is a vector in the representation space, which is a Hilbert

space, H(Γ), on the phase space, Γ, of the (q, p)-points. Then, the other operators
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of gT can be written as

Ji = Li + Si, (22.71)

H =
P 2

2m
+ C1, (22.72)

Ĵi = L̂i + Ŝi, (22.73)

K̂i = im
∂

∂Pi
+ it

∂

∂Qi
, (22.74)

P̂i = −i ∂

∂Qi
, (22.75)

Ĥ = i
∂

∂t
. (22.76)

where

L̂i = iεijk

(
Qk

∂

∂Qj
+ Pk

∂

∂Pj

)
, (22.77)

Li = εijkQjPk, (22.78)

Ŝi are the spin operators (a representation of SO(3) such that Ŝ commutes with

every operator defined on the space (p, q)), and C1 is a c-number. Observe that in

this representation Ĥ is not a c-number in phase space, as it was the case studied

in the previous section.

The operators P and Q can be interpreted as the momentum and position op-

erators, since they satisfy the Galilei boost conditions, namely

〈θ| exp (−ivK̂)Q exp (ivK̂)|φ〉 = 〈θ|Q|φ〉+ vt〈θ|φ〉, (22.79)

and

〈θ| exp (−ivK̂)P exp (ivK̂)|φ〉 = 〈θ|P |φ〉 +mv〈θ|φ〉. (22.80)

where |θ〉 and |φ〉 (∈ H) are arbitrary states of the system. Besides, P̂ is the

generator for spatial translation, since [P̂i, Qj ] = −iδij . Then, L is the angular

momentum, and H is the Hamiltonian.

In the case when Ŝi = Si = 0, gT has two non-null invariants, which have fixed

values within the irreducible representation, given by

C1 =
P 2

2m
−H, (22.81)

C2 =
P̂

m
P − Ĥ. (22.82)

Following the case of the Galilean quantum mechanics, the expectation value of a

dynamical variable Ā in a state |θ〉 is defined by

〈Ā〉 = 〈θ|Ā|θ〉. (22.83)

On the other hand, the temporal evolution of Ā is given by

〈θ0| exp (itĤ)Ā exp((−itĤ)|θ0〉 = 〈θ0|Ā(t)|θ0〉. (22.84)
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Therefore, we have defined a Heisenberg picture for the temporal evolution of the

dynamical variables, and from Eq. (22.84) we obtain

i∂tĀ = [Ā, Ĥ]. (22.85)

Using Eq. (22.82), we have

i∂tĀ = [Ā, P
P̂

m
],

which shows that the value of C2 does not play a special role in this case. That is

Ĥ =
P

m
P̂

In the Schrödinger picture, we derive the following equation for the evolution of

the state

i∂t|θ(t)〉 = Ĥ |θ(t)〉, (22.86)

Using

〈q, p|q′, p′〉 = δ(q − q′)δ(p− p′) and

∫
|q, p〉〈q, p|dqdp = 1,

we write in this phase space basis

i∂tθ(q, p; t) =

∫
〈q, p|Ĥ |q′, p′〉 〈q′, p′|θ(t)〉dq′dp′, (22.87)

where |θ(t)〉 is in H(Γ) and θ(q, p; t) = 〈q, p|θ(t)〉. Assuming

〈q, p|Ĥ |q′, p′〉 = δ(q − q′)δ(p− p′)〈q, p|Ĥ |q, p〉,
we have

i∂tθ(q, p; t) = LΓ(q, p)θ(q, p; t), (22.88)

and

LΓ(q, p) = 〈q, p|Ĥ|q, p〉 = 〈q, p|P
m
P̂ |q, p〉

= −i p
m

∂

∂qi
,

where we have used 〈q, p|Ĥ |q, p〉 given by Eq. (22.82) in the basis |q, p〉.
A formal solution of Eq. (22.88) is

θ(q, p; t) = e−i(t−t0)LΓθ(q, p; t0).

Writing θ(q, p; t) = ψ(t)φ(q, p), we have the eigenvalue equation.

LΓφ(q, p) = νφ(q, p) and ψ(t) = ψ(0)e−iνt.

Notice that Eq. (22.88) is the the usual Liouville equation describing a free particle

in classical mechanics; where LΓ(q, p) is the Liouvillian. However, here, θ(q, p; t) is

a complex function. This fact points the way to find a physical interpretation for

this representation.
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By the definition, to every non-hat operator (say A) there is a hat operator

(say Â). This is a one-to-one mapping, which may be determined using the explicit

representation of the thermo-algebra given by Eqs. (22.70)–(22.76). Then, we define

the one-to-one hat mapping, ∧ : A−→Â, such that Â = i{A, .}; explicitly

Â = i{A, .} = i
∂A

∂q

∂

∂p
− i∂A

∂p

∂

∂q
. (22.89)

We have, hence, the following correspondence for the Lie algebra elements,

P −→ P̂ = i{P, .}, (22.90)

K −→ K̂ = i{K, .}, (22.91)

L −→ L̂ = i{L, .}, (22.92)

H −→ Ĥ = LΓ = i{H, .}, (22.93)

M −→ M̂ = i{M, .} = 0. (22.94)

Therefore, Ĥ = LΓ is the classical Liouvillian operator in the general form,

written in terms of the Poisson bracket, from the observable Hamiltonian. To

complete the physical meaning of the representation, we observe that f(q, p; t) =

|θ(q, p; t)|2 is also a solution Eq. (22.88), i.e.

i∂tf(q, p; t) = LΓ(q, p)f(q, p; t), (22.95)

or

∂tf(q, p; t) = {H, f(q, p; t)},

and the average of an observable, given by Eq. (22.83), reduces to the usual average

in the phase space for the non-hat operators; we have

〈A〉 = 〈θ(t)|A|θ(t)〉 =

∫
dpdqθ∗(q, p; t)A(q, p)θ(q, p; t)

=

∫
dpdq f(q, p; t)A(q, p).

For normalized functions, we have

〈θ(t)|A|θ(t)〉 =

∫
dpdqθ∗(q, p; t)θ(q, p; t)

=

∫
dpdq f(q, p; t) = 1.

Then the complex functions are interpreted as amplitudes of probability in the

phase space, associated with a probability density given by f(q, p; t) = |θ(q, p; t)|2.
The conservation of probability is expressed by the same equation. This formalism

was first proposed by Schönberg [326], as a generalization of the Liouville theorem.

From, gT , given by Eqs. (22.40)–(22.42), we observe that the hat mapping (∧)
satisfies the following properties [104]:
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p.1 (linearity): (A1 + aA2)
∧ = Â1 + aÂ2.

p.2 (derivation): (
∏n
i=1 Ai)

∧
=
∑n

i=1 (A1 · · ·Ai−1ÂiAi+1 · · ·An).

Proposition 1: Given C ∈ g (the abelian algebra of the observables) and

{C,A} = 0, for every A ∈ g, then C and Ĉ are two Casimir invariants of gT .

Since we know the invariants of the Galilei group, considering Proposition 1, we

write the Casimir invariants of gT in the general case when S 6= 0. These invariants

are C1 and C2, given by Eqs. (22.81) and (22.82), respectively, and

C3 = (J − L)2, (22.96)

C4 =
[
(J − L)2

]∧
. (22.97)

Both C4 = Ĉ3 and C2 = Ĉ1 have a fixed value in an irreducible representation. But

in accordance with the properties of the hat mapping C2 and C4 are null constants.

With the properties p.1 and p.2, and the Proposition 1, we verify that we cannot

find a physical representation for gT for the case of M = 0. Therefore, we do not

have classical particles of zero mass in this representation.

Similar to the quantum TFD, we can introduce in this classical formalism an ar-

bitrary parameter ξ , by generalizing the average of observables given in Eq. (22.83)

to

〈Ā〉 = 〈f ξ|Ā|f1−ξ〉

=

∫
dpdqf ξ(q, p)A(q, p)f1−ξ(q, p). (22.98)

Then, Eq. (22.83) is obtained when ξ = 1
2 . As is the case in TFD, however, there

are other possibilities for ξ. For instance, if ξ = 0 and using the basis of states such

that operators P and P̂ are diagonal, we obtain the formalism called dynamics of

correlations. In fact, if P and P̂ are c-number operators, then P |p, k〉 = p|p, k〉,
P̂ |p, k〉 = k|p, k〉, so that 〈p, k|f〉 = fk(p). As a consequence

fk(p) =

∫
dp′dq〈p, k|p′, q〉〈f(p′, q)

=

∫
dqeikpf(q, p) (22.99)

The fk(p)-functions are the correlation patterns in the dynamics of correlations

[331]. As a particular case, the average, Eq. (22.98), for the thermal equilibrium,

〈Ā〉 = 〈f ξ|Ā|f1−ξ〉 =
∫
dpdq e−ξ

β
2HĀ e(1−ξ)

β
2H ,

is still a case similar to that in TFD. Another aspect to be noticed is that, when

extended to many classical particles, the Schönberg-Liouville wave equation, given

by Eq. (22.88), can be considered as a field equation defined in a Fock space. We

study this representation of gT later. First, we discuss a simple example.
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22.6 Liouville equation for the oscillator

Let us analyze here some similarities between TFD and the unitary representations

of gT , that we have studied. The dynamics of a system is generated by hat operators,

which are in correspondence with the original dynamical variables via the Poisson

brackets:

Quantum TFD Liouvillian Systems

Â = A− Ã, Â = i{A, } = i

(
∂A

∂q

∂

∂p
− ∂A

∂p

∂

∂q

)
.

This relationship among classical operators and quantum operators is not transpar-

ent. We would like to see if there are additional connections. In order to do this,

the p-variable is considered in its Fourier representation, such that

p→ i∂q̃, and ∂p → iq̃.

p̂ = im∂q does not change. In particular, the generator of rotations is given by

L̂ = iεijk(qk∂qj + pk∂pj )→ iεijk(qk∂qj − q̃j∂q̃k
) = iεijk(qk∂qj + q̃k∂q̃j ).

Assuming that H = T + V , we get

Ĥ = −i(p∂q − ∂qV ∂p)→ (∂q∂q̃ − ∂qV q̃).
For a harmonic oscillator, Ĥ = −i(p∂q − q∂p) resembles the quantum angular mo-

mentum operator Lz, which can be considered as Lz = a†a − ã†ã, where a and ã

are two independent annihilation operators. Indeed, consider a rotation of the form
(
q

q̃

)
=

(
u v

−v u

)(
X

X̃

)
,

(
X

X̃

)
=

(
u −v
v u

)(
q

q̃

)
,

with u2 = v2 = 1/2, p̂ −→ imu(∂X + ∂X̃). For a system of harmonic oscillators we

have

Ĥ =
1

2

∑

i

[
−∂2

Xi
+X2

i + ∂2
X̃i
− X̃2

i

]
(22.100)

= H(X)− H̃(X̃), (22.101)

which is remarkably similar to the one in the TFD formalism. A more general

system would then become

Ĥ =
∑

i

[
−1

2
(∂2
Xi
− ∂2

X̃i
) +

1√
2
(Xi − X̃i)Vi(X + X̃)

]
,

where Vi ≡ ∂qiV . Even for such a general system the time generator for the distri-

bution function is anti-tilde invariant in the TFD sense.

To see more connections with TFD, consider the following transformation

a =
1√
2
(X + ∂X ), a† =

1√
2
(X − ∂X).
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The original Hamiltonian becomes

H =
1

2
[p2 + q2] =

1

2
[q2 − ∂2

q̃ ] =
1

4
[(X + X̃)2 − (∂X − ∂X̃)2] (22.102)

= g1 + g3, (22.103)

where g1 and g3 are two of the three generators defined in TFD as g1 = aã+ a†ã†,
g2 = i(aã− ã†a†), and g3 = a†a+ ã†ã+ 1. They commute with the time generator

Ĥ . If a state |0〉 satisfies the static Schönberg-Liouville equation, so does eαH |0〉
where α is an arbitrary c-number, since [H, Ĥ ] = 0. In fact, f(H)|0〉 is also a valid

solution in the classical case, where f(H) is an arbitrary function of H . Henceforth,

we have the following correspondence between the Liouville system and TFD:

Liouvillian System Thermofield Dynamics

Ĥ = i{H, .} −→ Ĥ = H − H̃,
H −→ G Transformation Generators,

|θ〉 |0〉.
The last correspondence is the same for quantum systems as well.

The vacuum state of the quantum system is written as

ψ0 = e−
1
2 (X2 + X̃2) = e−

1
2 (x2 + y2) =

∫
dpeipye−H(x, p)

where H(x, p) = 1
2 (x2 +p2). This solution corresponds to a classical system in ther-

mal equilibrium at β = 1. The obvious solution of the classical Liouville equation

is

eαHψ0 =

∫
dpeipye−(1 + α) 1

2 (x2 + p2).

The following two generators

aã± a†ã† −→
{
q2 + p2 + ∂2

q + ∂2
p

q∂q + p∂p
,

however, do not generate any new class of solutions. The obvious solution is ob-

tained by the use of polar coordinates p = r cos θ, q = r sin θ, L̂ → ∂θ. A time

invariant solution must be of the form f(r2) = f(p2 + x2) which is independent of

θ.

In TFD, the canonical transformations are, as a matter of fact, a restricted class

of transformations. If we write

e−G
(
a

ã†

)
eG =

(
B11 B12

B21 B22

)(
a

ã†

)
,

then we have the constraint that B12B21 = 〈0|a†a|0〉 be positive. A closer examina-

tion reveals that the solution eαHψ0 with real α is actually forbidden in the quantum

case. However there is no such constraint in the classical system. Therefore any

solution f(x2 + p2) is a valid solution in the classical case.
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22.7 Non-relativistic symmetries in the Schönberg-Fock space

A unitary representation for gT is derived here using the Fock space (F) defined by

the tensor product of H(Γ); that is

F(Γ) = ⊕mH(Γ)⊗m, m = 0, 1, 2..., .

The elements of gT are assumed to be defined in the Schönberg-Fock space, F(Γ).

Let ψ(q, p) and ψ†(q, p) be the basic field operators satisfying the commutation

relations at equal times

[ψ(q, p; t), ψ†(q′, p′; t)]± = δ(q − q′)δ(p− p′),
[ψ(q, p; t), ψ(q′, p′; t)]± = [ψ†(q, p; t), ψ†(q′, p′; t)]± = 0,

where − (+) in the brackets defines the classical bosons (fermions). For simplicity,

we use in this section the notation: τ = (p, q), ψ(τ) = ψ(q, p) and δ(τ − τ ′) =

δ(q − q′)δ(p− p′). We also assume that the particle spin is Si = 0.

In the space F(Γ) there is a vacuum state, |0〉, such that ψ(τ)|0〉 = 0, 〈0|0〉 = 1,

and ψ†(τi)|0〉 = |χi〉. A general vector in F(Γ) is defined by

|χ(t)〉 = θ(t)0|0〉+
∞∑

i=1

1√
n!

∫
θ(τ1, τ2, · · · τn; t)|χn〉dnτ , (22.104)

where dnτ = dτ1dτ2 · · · dτn,

|χn〉 = ψ†(τ1)ψ
†(τ2) · · ·ψ†(τn)|0〉,

and θ(τ1, τ2, · · · τn; t) are symmetric or anti-symmetric functions in the Hilbert space

H(Γ), such that

θ(τ1, τ2, · · · τn; t) =
1√
n!
〈χn|χ〉 =

1√
n!
〈0|

n∏

i=1

ψ(τi)|χ〉.

In addition

〈χ|χ′〉 = θ∗0θ
′
0 +

∞∑

i=1

∫
θ∗(τ1, τ2, · · · τn; t) θ′(τ1, τ2, · · · τn; t)dnτ .

Therefore, for each operator Ā(τ1, τ2, · · · τn) defined on H, and depending sym-

metrically on the variables τ1, τ2, · · · τn, we introduce a corresponding operator act-

ing on F(Γ)

Ā =
1

n!

∫
ψ†(τ1) · · ·ψ†(τn) Ā(τ1, τ2, · · · τn) ψ(τn) · · ·ψ(τ1)d

nτ . (22.105)

A representation for gT is obtained with this type of operator when n = 1. Using

Eqs. (22.70)-(22.76) and n = 1 in Eq. (22.105), the non-null commutation relations

for the thermal Galilei group are now written as
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[Ĵi, Ĵj ] = iεijkĴk, [Ĵi,Jj ] = [Ji, Ĵj ] = iεijkJk,
[Ĵi, P̂j ] = iεijkP̂k, [Ĵi,Pj ] = [Ji, P̂j ] = iεijkPk,
[Ĵi, K̂j ] = iεijkK̂k, [Ĵi,Kj ] = [Ji, K̂j ] = iεijkKk,
[K̂i, Ĥ] = iP̂i, [K̂i,H] = [Ki, Ĥ] = iPi,
[P̂i,Kj ] = [Pi, K̂j ] = −iNmδij ,

where N , the number operator, is defined by

N =

∫
N (τ)dτ =

∫
ψ†(τ)ψ(τ)dτ, (22.106)

such that

N|χn〉 = n|χn〉. (22.107)

A dynamical variable Ā has its average in a state |χ〉 defined by

〈Ā〉 = 〈χ|Ā|χ〉. (22.108)

On the other hand, the temporal evolution of Ā is given by

〈χ0| exp (itĤ)Ā exp(−itĤ)|χ0〉 = 〈χ0|Ā(t)|χ0〉. (22.109)

Thus, we have defined a Heisenberg picture for the temporal evolution of the dy-

namical variables, and from Eq. (22.109) we obtain

i∂tĀ = [Ā, Ĥ]. (22.110)

In the Schrödinger picture, the equation for the evolution of the state is

i∂t|χ(t)〉 = Ĥ|χ(t)〉, (22.111)

which leads to

i∂tθ(τ1, τ2, · · · τn; t) = LΓ(τ1, τ2, · · · τn) θ(τ1, τ2, · · · τn; t), (22.112)

where

LΓ(τ1, τ2, · · · τn) = Ĥ

is the Liouvillian for n particles. Therefore, Eq. (22.112) is the Schönberg-Liouville

equation describing n classical bosons. To get a physically consistent interpretation

of the theory, we define f(τ1, τ2, · · · τn; t) = |θ(τ1, τ2, · · · τn; t)|2 as the n-particle dis-

tribution function in Γ. The field operators ψ(τ ; t), in the Heisenberg representation,

satisfies the equation of motion

i∂tψ(τ ; t) = LΓ(τ) ψ(τ ; t)(τ ; t).

We can define a general vector in F(Γ) by

|χξ(t)〉 = θξ(t)0|0〉+
∞∑

i=1

1√
n!

∫
θξ(τ1, τ2, · · · τn; t)|χn〉dnτ , (22.113)
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such that

θξ(τ1, τ2, · · · τn; t) =
1√
n!
〈χn|χξ〉 =

1√
n!
〈0|

n∏

i=1

ψ(τi)|χξ〉,

and

〈χ(1−ξ)|χ′ξ〉 = θ
(1−ξ)∗
0 θ′ξ0 +

∞∑

i=1

∫
θ(1−ξ)∗(τ1, τ2, · · · τn; t) θ′ξ(τ1, τ2, · · · τn; t)dnτ .

The average of an observable A is

〈A〉ξ = 〈χ1−ξ|A|χ′ξ〉.

For the case of ξ = 1, we can take θ(τ1, τ2, · · · τn; t) as real, so that the substitution

θ(τ1, τ2, · · · τn; t)→ f(τ1, τ2, · · · τn; t)

is allowed. In this case, we use the Schönberg-Fock space describing classical parti-

cles fulfilling the Boltzmann statistics. Then the state is described by a probability

density, not an amplitude. This aspect opens the possibility to use quantum field

theory tools to treat a broad class of stochastic problems. This was explored by Doi

to deal with reaction-diffusion processes [341]. In this realm, the creation and an-

nihilation field operators describe, for instance, the reagents in a chemical reaction.

For this purpose, different methods have been developed, exploring functional meth-

ods [342–345], which have been extended and applied to different systems [346–354].

Some formal aspects about this method have been addressed by Grassberger and

Scheunert [348] and Andersen [349]. One of the difficulties to improve this kind of

theory is that, the Fock space and concepts such as indistinguishability of particles

have been paradigmatical ingredients of quantum theories. However, as we have

observed, the Fock space is taken as a representation vector space of kinematical

groups describing classical systems. In this sense there is no ~ in the method, result-

ing in full consistency with classical and stochastic physics and no ambiguity with

quantum theory. The basic result here is that this kind of theory can be studied

with the support of symmetry.

22.8 Classical relativistic representation

Considering a classical theory, the thermo-Poincaré-Lie algebra, pT , is

[M̂µν , M̂σρ] = i(gµσM̂ρν + gρνM̂σµ + gµρM̂νσ + gσνM̂µρ),

[M̂µν , P̂ρ] = i(gµρP̂ν − gνρP̂µ),
[M̂µν ,Mσρ] = i(gµσMρν + gρνMσµ + gµρMνσ + gσνMµρ),

[M̂µν , Pσ ] = [Mµν , P̂σ ] = i(gµσPν − gνσPµ).
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The commutations relations among non-hat operators are zero, since we have (clas-

sical) abelian observables. Three invariants are immediately identified as

I1 = P µPµ, (22.114)

I2 = P̂ µP̂µ (22.115)

I3 = P µP̂µ. (22.116)

Since the non-hat operators form an invariant abelian algebra, we can take such

operators and the invariants I1, I2, I3 to build a Hilbert space basis. In order to do

so, first we notice that

e−αµP̂
µ

Pσe
αν P̂

ν

= Pσ , (22.117)

e−αµP̂
µ

Mσρe
αν P̂

ν

= Mσρ + ασPρ − αρPσ , (22.118)

e−εµνM̂
µν

Pσe
εµνM̂

µν

= Pσ + i(εσνP
ν − ενσP ν). (22.119)

Therefore, we find Pσ and Mσρ as natural candidates for describing linear and

angular momentum, respectively. On the other hand, P̂ µ and M̂µν can be taken as

the generators of translations and rotations, respectively. That this interpretation

is consistent can be verified, for instance, from Eq. (22.119) which establishes that

under rotations the linear momentum transforms as a 4-vector. This interpretative

aspect is a direct consequence of the fact that the algebra of non-hat operators is an

invariant subalgebra of pT . Now we assume the existence of a Hilbert space H(Γ)

on which the elements of pT are defined and introduce a non-hat operator, say Qµ
, through the condition

e−αµP̂
µ

Qσe
αν P̂

ν

= Qσ + iα,

where α is a constant. Then the operator Qµ describes generalized coordinates.

Therefore, a phase space frame for the Hilbert space H(Γ) can be introduced since

[P,Q] = 0. Let us define |q, p〉 ∈ H(Γ) such that

P |q, p〉 = p|q, p〉, Q|q, p〉 = q|q, p〉,

with q and p being real 4-vectors, and 〈q, p|φ〉 = φ(q, p) being an L2 (Lebesgue)-type

function, that is
∫
|φ(q, p)|2dq dp < ∞. This last condition is used to impose the

normalization condition. In this way, we obtain a unitary representation for pT as

Mµν = PµQν − PνQµ, (22.120)

M̂µν = PµQ̂ν − PνQ̂µ +QνP̂µ −QµP̂ν , (22.121)

where

P̂µ = −i ∂
∂qµ

, Q̂µ = i
∂

∂pµ
, Pµ = 1·pµ, and Qµ = 1·qµ. (22.122)

A general association between a hat and a non-hat operator, consistent with

Eqs. (22.120)-(22.122), is thus introduced. Consider an arbitrary function of the
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phase space, say A(q, p), then we have two mappings, (i) c: A(q, p)→ A = 1·A(q, p),

giving rise to c-number operators, and (ii) ∧ : A(q, p)→ Â, such that, now we have,

Â = (p̂ A(q, p))q̂ + α(q̂A(q, p))p̂+ βq̂(p̂A(q, p)),

where α and β are constants. Taking α = 1 and β = 0, the association is such that

A→ Â = i{A(q, p), ·} , where { · , · } is the Poisson bracket. In this case, we have

(γA+B)∧ = γ(Â+ B̂), (AB)∧ = AB̂ + B̂A, (γ)∧ = 0, (22.123)

where γ is a constant. This result is useful to derive another set of Casimir invariants

of pT . Defining wu = 1
2εµνσρM

νσP ρ, the Pauli-Lubanski vector, we find the

following invariants W = wµwu and Ŵ = 2wµŵu. Hence, we write Eq. (22.120) and

(22.121) respectively as: Mµν → Jµν = Mµν + Sµν and M̂µν → Ĵµν = M̂µν + Ŝµν ,

where the variable Sµν and Ŝµν are related to the spinor index of the representation,

which is taken to be zero here (scalar representations).

We assume that the average of an one-body diagonal operator is given by

〈A〉 = 〈φ|A|φ〉

=

∫
dqdpdq′dp′〈φ|q, p〉〈q, p|A|q′, p′〉〈q′, p′|φ〉

=

∫
dqdpdq′dp′φ∗(q, p)A(q, p, q′, p′)δ4(q − q′)δ4(p− p′)φ(q′, p′)

=

∫
dqdpφ∗(q, p)A(q, p)φ(q, p),

where the notation A stands for either a c-number operator, A, or a hat operator,

Â. If A = A, then the average of A reduces to 〈A〉 =
∫
dqdpf(q, p)A(q, p) where

f(q, p) = |φ(q, p)|2.
Let us now write down an equation of motion for φ(q, p). The invariant I3, given

in Eq. (22.116), has a fixed value in this phase space representation. Considering

then I3 = 0, from Eq. (22.122) we write

pµ
∂

∂qµ
φ(q, p) = 0, (22.124)

which is a collisionless transport equation, also furnished by the positive-defined

real quantity f(q, p). Then we can interpret φ(q, p) as a probability amplitude in

phase space and f(q, p) as a classical probability density.

For the completion of physical interpretation of this formalism, as well as for

practical purposes, let us define the tensor

T
µν

(q) =
1

2(2π)3

∫
d3p

p0
φ∗(q, p)P

µ
P
ν
φ(q, p).

Taking in particular P = P, we get the usual definition of the energy-momentum

tensor

T
µν → T µν(q) =

1

2(2π)3

∫
d3p

p0
pµpνf(q, p),
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where T 00(q) is the average value of the energy per particle, T 0i(q) is the average

value of the energy flow, T i0(q) is the macroscopic momentum flow and T ij(q) is

the pressure tensor. This result shows the compatibility of our approach with the

usual kinetic theory [360, 319].

22.9 Boltzmann equation and non-relativistic limit

In order to derive a collision term in Eq. (22.124), we use the notion of propaga-

tor in the Hilbert phase space H(Γ). Consider the (pointwise) collision between

two particles (1) and (2) with initial (i) and final (f) momenta specified, respec-

tively, by pµi1, p
µ
i2, p

µ
f1, and pµf2. Define now an amplitude of transition at a point

q, say W (q, pf1, pf2, pi1pi2) is the propagator of the system, from a initial state

|q, pi1; q, pi2〉 to a final state |q, pf1; q, pf2〉, that is

W (q, pf1, pf2|pi1, pi2) = 〈q, pf1; q, pf2|q, pi1; q, pi2〉.
Then the amplitude of transition for any point q of space-time is

W (pf1, pf2|pi1, pi2) =

∫
d4q 〈q, pf1; q, pf2|q, pi1; q, pi2〉,

such that we can write

〈q, pi1; q, pi2| =
∫
d4pf1d

4pf2W (pi1, pi2|pf1, pf2)〈q, pf1; q, pf2|,

and so we have

〈q, pi1; q, pi2|φ12〉 =
∫
d4pf1d

4pf2W (pi1, pi2|pf1, pf2)〈q, pf1; q, pf2|φ12〉.

Using the indistinguishability of particles, an intrinsic ingredient in our for-

malism since we are considering amplitudes, and the Hartree approximation

〈q, pf1; q, pf2|φ12〉 = φ(q, pf1)φ(q, pf2), we can compute the change in the prob-

ability amplitude, say Ψ+(q, pi1), due to particles leaving the collision at q with

momentum pi1, that is

Ψ+(q, pi1) =
1

2

∫
d4pi2d

4pf1d
4pf2W (pf1, pf2|pi1, pi2)φ(q, pf1)φ(q, pf2).

The same reasoning is used to compute the effect of particles leaving the collision

at q with momentum other than pi1, that is

Ψ−(q, pi1) =
1

2

∫
d4pi2d

4pf1d
4pf2W (pi1, pi2|pf1, pf2)φ(q, pf1)φ(q, pf2).

Therefore, we obtain the following transport equation

pµ∂µφ(q, p) = C(q, p), (22.125)

where

C(q, p) = Ψ+(q, p)−Ψ−(q, p)

=
1

2

∫
d4pi2d

4pf1d
4pf2[W (pf1, pf2|p, pi2)φ(q, pf1)φ(q, pf2)

−W (p, pi2|pf1, pf2)φ(q, pf1)φ(q, pf2)].
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As a consequence, we have derived a relativistic Boltzmann equation, but for

probability amplitudes in phase space [361]. An alternative way is to derive the

Boltzmann equation for the density, f(q, p). This is accomplished by the fol-

lowing substitutions in Eq. (22.125): φ(q, p) → f(q, p) and W (pf1, pf2|p, pi2) →
|W (pf1, pf2|p, pi2)|2, such that now Ψ+(q, pi1) (Ψ−(q, pi1)) is increasing (decreasing)

in the probability density due to particles leaving a collision at q with momentum

(other than) pi1.

Let us analyze the non-relativistic limit of this approach. Considering

Eqs. (22.120) and (22.121), we have that the components of the Lorentz boost

generators are written as

L̂0m =
K̂m

c
= i(

H

c2
∂

∂pm
− pm

∂

∂H
+ t

∂

∂qm
− qm
c2

∂

∂t
),

Therefore, proceeding to the contraction, considering formally c→∞, we have

K̂m = i(m
∂

∂pm
+ t

∂

∂qm
),

where K̂m is the generator of usual Galilean boost transformation. On the other

hand, for the energy we have

lim
c→∞

H

c2
= lim
c→∞

1

c

√
m2c2 + pjpj=̃m, j = 1, 2, 3.

The remaining components of the total angular momentum operator reduce as well

to the Galilean counterpart. Besides, with the above representation for the total

energy operator, in the non-relativistic limit the generator of time translation P̂0

becomes Ĥ = i∂t. Such operators are just the ones previously employed in this

chapter. Observe also that we can introduce a Fock space representation via H(Γ)⊗
H(Γ)⊗ · · · ⊗ H(Γ) such that the amplitude φ(q, p) can be taken as field operators

in phase space.



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Chapter 23

Real-Time Method for Nonequilibrium
Quantum Mechanics

Most natural phenomena, widely scoping from quark-gluon plasma in particle

physics to biology and to cosmology, proceed via nonequilibrium (far from equi-

librium) processes, though our understanding is still limited to physics of equilib-

rium. In spite of complicacy and model-dependence of nonequilibrium processes,

most systems eventually settle down to equilibrium states that are characterized by

a few variables. Statistical mechanics and thermodynamics describe the states of

systems in equilibrium remarkably successfully. At a more sophisticated level, the

processes not far from equilibrium belong to an area pretty well understood, where

the linear-response theory and the dissipation-fluctuation theorem hold good and

are useful tools to understand the processes towards equilibrium states.

Nonequilibrium phenomena are believed to involve two facets: kinematics and

dynamics. Kinematics concerns about the states of a system and dynamics cares

about how the system evolves from an initial state to a final one via various possible

intermediate states. For instance, quark-gluon plasma, is a typical nonequilibrium

physics, where the initial state of heavy ions with extremely high velocities and

the final product of hadrons and mesons from quark pairs and gluons are pretty

well understood. However, the intermediate states from the hadronic states to the

quark-gluon plasma are not understood yet, except for some characteristic features.

Another arena where nonequilibrium physics would play an important role is

the phase transition itself. Symmetry breaking has been a central concept in our

understanding of phase transitions from condensed matter to particle physics. The

electroweak (EW) phase transition and the QCD phase transition that would have

occurred in the early universe relies on the spontaneous symmetry-breaking with the

Higgs boson. The formation of topological defects also depends on phase transitions.

Though we understand what would happen after the phase transition, that is, what

the final state would look like, we do not have yet a complete comprehension of

the transition process. In particular, the critical phenomena at the onset of phase

transitions, in which the correlation length extends infinitely and thermal relaxation

slows down infinitely, prevents one from directly applying the physics of equilibrium.

Further, another puzzling issue is the last stage of thermalization toward the final

state of equilibrium.

403
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An aspect common to nonequilibrium phenomena is that they proceed dynami-

cally in time. One conservative approach to nonequilibrium physics is to adopt the

contemporary laws for the dynamics. Quantum theory has proved to be the most

precise law of nature, at the subatomic particle scale and the atomic scale. From

this view point, quantum field theory may be employed to describe nonequilibrium

processes involving phase transitions unless an entirely new physics is required.

This stratagem has been used in phase transitions in the past half a century. It is

surprising that the progress in understanding phase transitions has been at a crawl

in comparison to their universality and utmost importance.

In order to treat nonequilibrium problems like phase transitions, the closed-time

path method [67] is one of the options. The development of TFD [67, 70, 51] as

an operator formalism with real-time was motivated to consider such problems. In

general it has not met with much success, since it is not easy to find a point providing

an anchor to the physical development. Unlike the case of of systems in equilibrium,

that have to be normalized to a distribution function, the nonequilibrium problems

do not provide any such point.

In this chapter, we shall introduce another real-time formalism for quantum

mechanical models for phase transitions. The quantum law is prescribed by the

Schrödinger equation [363, 364, 63, 365, 366], but the density operator obeys the

Liouville-von Neumann equation. Some time back, it was found that for an os-

cillator with time-dependent mass or frequency, the so-called invariant operator

satisfying the Liouville-von Neumann equation may also be used to find the ex-

act quantum states of the time-dependent Schrödinger equation [367]. This ob-

servation led us to the Liouville-von Neumann method for nonequilibrium quan-

tum fields, where the Liouville-von Neumann equation is to be combined with

the (functional) Schrödinger equation, so both the density operator and quan-

tum states are found exactly from the knowledge of the invariant operators

[368, 65, 66, 369].

23.1 Schrödinger, Heisenberg and Liouville pictures

A simple nonequilibrium process is prescribed by a time-dependent Hamiltonian, for

which time enters explicitly through coupling constants or physical constants such as

mass and frequency, etc. For a system interacting with a thermal bath, interactions

may have both local and nonlocal effects on the system itself and may lead to a time-

dependent Hamiltonian, when the system is separately handled and the nonlocal

effects from the thermal bath are neglected. Let us denote the Hamiltonian by H(t).

Then, it describes a nonequilibrium process because it is not static and e−βH(t) is

not truly a density operator from the LvN equation.

As far as the time-dependent Hamiltonian is concerned, all the information

about the nonequilibrium evolution is carried by the evolution operator (in unit of
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~ = 1)

i
∂

∂t
U(t) = H(t)U(t). (23.1)

The evolution operator has a formal expression

U(t) = T exp
(
−i
∫ t

H(t′)dt′
)
, (23.2)

where T denotes the standard time-ordered integration, and in the static case,

it takes the familiar form, U(t) = e−iHt. In the Schrödinger picture, the time-

dependent state is given by

|Ψ(t)〉 = U(t)|Ψ〉S, (23.3)

for any initial state |Ψ〉S.

On the other hand, in the Heisenberg picture, the time-dependent operator

defined as

OH(t) = U †(t)OSU(t), (23.4)

obeys the Heisenberg equation

i
∂

∂t
OH(t) + [HH(t), OH(t)] = 0. (23.5)

Here, HH(t) = U †(t)H(t)U(t) is the Heisenberg operator of the Hamiltonian. In

the Heisenberg picture, the expectation value with respect to a pure or mixed state

ρS takes the form

〈O〉 = Tr(ρSOH(t)) = Tr(ρ(t)OS), (23.6)

where ρ(t) is the density operator

ρ(t) = U(t)ρSU
†(t). (23.7)

However, as the task of evaluating the evolution operator Eq. (23.2) is not trivial,

we have to rely on some analytical scheme such as the perturbation theory. Here,

we shall follow the Liouville-von Neumann method, which is based on an invariant

operator,

OL(t) = U(t)OSU
†(t). (23.8)

Note that the invariant operator evolves backward in the same way as the density

operator Eq. (23.7) in contrast to the Heisenberg operator. Indeed, the invariant

operator satisfies the Liouville-von Neumann equation

i
∂

∂t
OL(t) + [OL(t), H(t)] = 0. (23.9)

Another reason to use the invariant operator is that any eigenstate of the invariant

operator,

OL(t)|λ, t〉 = λ|λ, t〉, (23.10)
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having a constant eigenvalue λ, yields an exact quantum state [367]

|Ψλ(t)〉 = Cei
∫
dt〈λ,t|(i ∂

∂t−H(t))|λ,t〉|λ, t〉, (23.11)

where C is a constant. From now on we shall work in the Liouville picture and omit

the subscript L.

The most advantageous point of the Liouville picture [368] [66] is that the

Liouville-von Neumann equation itself can provide all the quantum and statistical

information of nonequilibrium systems. For a time-dependent system, the invari-

ant operator OL(t), whose eigenstates are exact states, may also be used for the

density operator ρ(t) = e−βOL(t), thus unifying quantum statistical mechanics with

quantum theory. The Liouville-von Neumann method treats the time-dependent,

nonequilibrium system exactly in the same way as the time-independent, equilib-

rium one and is applied to nonequilibrium fermion systems [65].

23.2 Linear model for phase transition

Quantum mechanics is a (1+0)-dimensional field theory. As a quantum mechanical

model for the second-order phase transition, let us consider the time-dependent

harmonic oscillator [368]

H(t) =
1

2
p2 +

1

2
m2(t)q2, (23.12)

where m2(t) has the asymptotically positive value m2
i far before and the asymp-

totically negative value −m2
f far after the quench. The oscillator executes a stable

motion about q = 0 before the quench but rolls down from q = 0 after the quench

because it is an unstable equilibrium.

In the Liouville picture, we find a pair of time-dependent annihilation and cre-

ation operators defined as [66, 368, 370]

a(t) = i[ϕ∗(t)p− ϕ̇∗(t)q], a†(t) = −i[ϕ(t)p− ϕ̇(t)q], (23.13)

where p and q are Schrödinger operators. These operators satisfy the Liouville-von

Neumann equation when ϕ satisfies the classical equation,

ϕ̈(t) +m2(t)ϕ = 0. (23.14)

Further, the Wronskian condition

ϕ̇∗(t)ϕ(t) − ϕ∗(t)ϕ̇(t) = i, (23.15)

makes the equal-time commutator hold,

[a(t), a†(t)] = 1. (23.16)

Far before the phase transition, the complex solution to Eq. (23.14) satisfying

Eq. (23.15) is given by

ϕi(t) =
e−imit

√
2mi

. (23.17)
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According to Eq. (23.13), the Fock space is now constructed from the annihilation

and creation operators

a(t) =
eimit

√
2mi

(
ip+miq

)
= eimitaS,

a†(t) =
e−imit

√
2mi

(
−ip+miq

)
= e−imita†S. (23.18)

Note that the Liouville-von Neumann operators a(t) and a†(t) have the opposite

phase factors of the Heisenberg operators aH(t) = e−imitaS and a†H(t) = eimita†S.

Though the Hamiltonian has the standard representation in all the three pictures

Hi = mi

(
a†(t)a(t) +

1

2

)
= mi

(
a†SaS +

1

2

)
= mi

(
a†H(t)aH(t) +

1

2

)
, (23.19)

the phase factors, which follow from Eq. (23.8), are necessary for a(t) and a†(t)
to satisfy the Liouville-von Neumann equation (23.9) and, similarly, for aH(t) and

a†H(t) to satisfy the Heisenberg equation (23.5). The vacuum minimizes both the

uncertainty relation ∆q∆p = 1/2 and the energy 〈H〉 = mi/2.

On the other hand, at later times far after the quench, the solution to Eq.

(23.14) is given by

ϕf (t) =
1

2
√

2

[(
C1 − iC2

)
emf t +

(
C1 + iC2

)
e−mf t

]
, (23.20)

where Cj , j = 1, 2 depend on the intermediate process toward the final state. The

kinetic and potential energies contribute equally to the vacuum and thermal expec-

tation values so that 〈Hf 〉 = 0. The uncertainty

(∆q)(∆p) =
1

2

[
mfC

2
1 cosh2(mf t) +mfC

2
1 sinh2(mf t)

]
, (23.21)

exponentially grows, suggesting the classicality of the phase transition out of equi-

librium [364]. However, the phase transition depends on the whole process, how it

evolves out of equilibrium from the initial equilibrium state.

To show the process dependence of the phase transition, we consider an exactly

solvable model, describing a finite smooth quench [368],

m2(t) = m2
1 −m2

0 tanh
( t
τ

)
. (23.22)

The mass hasm2
i = m2

0+m2
1 at earlier times (t = −∞) and has −m2

f = −m2
0+m2

1 <

0 at later times (t =∞). τ measures the quench rate, i.e. the rate of change of the

mass. The instantaneous quench corresponds to the (τ = 0)-limit. The solution to

Eq. (23.14) is found to be

ϕ(t) =
e−mit

√
2mi

F
(
−τ

2
(imi −mf ),−

τ

2
(imi +mf ); 1− iτmi;−e2t/τ

)
, (23.23)
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where F is the hypergeometric function. At earlier times this solution has the

correct asymptotic form Eq. (23.17). On the other hand, at later times ϕ(t) has the

asymptotic form

ϕf (t) =

[
1√
2mi

(−1)Γ(1− imiτ)Γ(mf τ)
τ
2 (imi −mf )Γ2(− τ2 (imi −mf )

]
emf t

+

[
1√
2mi

(−1)Γ(1− imiτ)Γ(mf τ)
τ
2 (imi +mf )Γ2(− τ2 (imi +mf )

]
e−mf t. (23.24)

Thus, the coefficients C1, C2 of Eq. (23.20) depend on the mass parameters mi,mf

and the quench rate τ . In other words, the final asymptotic state of nonequilibrium

evolution depends on the intermediate processes.

23.3 Nonlinear model for phase transition

We consider the nonlinear model for phase transition [368, 66]

H =
1

2
p2 ± m2

2
q2 +

λ

4!
q4. (23.25)

The model with the upper (positive) sign has the global minimum at q = 0, while the

model with the lower (negative) sign has the global minimum at q = ±
√

6m/
√
λ,

now with q = 0 being a local maximum, and exhibits a symmetry-breaking of

the phase transition. Even for such a simple nonlinear model, there is no known

method yet for exact quantum states except for perturbative methods. Further,

the instability of a localized quantum state near q = 0 for the symmetry-breaking

model causes another problem of the convergence of perturbation series.

As we do not know the Hilbert space for a nonlinear system, our stratagem here

is first to find a suitable Fock space of all multiparticle or number states and then to

represent an exact state of the nonlinear model (23.25) in the Fock space. Thus, this

method is a time-dependent perturbation theory in the Fock space. To guarantee

the stability of the perturbation method, we shall not truncate the Hamiltonian by

the quadratic term only but include part of the nonlinear effects at the lowest order.

As far as a nonlinear effect at the lowest order is concerned, the idea is similar to

the Gaussian approximation method for static systems [371–374].

In the oscillator representation, the position and momentum operators are given

by

q = ϕ(t)a(t) + ϕ∗(t)a†(t),

p = ϕ̇(t)a(t) + ϕ̇∗(t)a†(t). (23.26)

The normal-ordering of operators, where all annihilation operators stand to the right

of all creation operators, is particularly useful for evaluating expectation values

with respect to the vacuum. The normal-ordering of operators appearing in the

Hamiltonian is such that q2 = : q2 : +〈q2〉 and q4 = : q4 : + 6 : q2 : q2 + 3〈q2〉2,
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where : : denotes the normal ordering and 〈 〉 is the expectation value with respect

to the vacuum. The normal-ordered monomial of the position takes the form

: qn : =

n∑

k=0

n!

k!(n− k)! ϕ
∗(n−k)ϕka†(n−k)ak, (23.27)

and a similar expression holds for the momentum. So the Hamiltonian H can be

divided into two parts:

H = H0 + λHP, (23.28)

where

H0 =
1

2
: p2 : ±m

2

2
: q2 : +

λ

4
〈q2〉 : q2 : +E0, (23.29)

HP =
1

4!
: q4 : . (23.30)

Here, the c-term from the normal ordering is the energy expectation E0

E0 =
1

2
〈p2〉 ± m2

2
〈q2〉+ λ

8
〈q2〉2

=
1

2
ϕ̇∗ϕ̇± m2

2
ϕ∗ϕ+

λ

8
(ϕ∗ϕ)2. (23.31)

Up to c-number terms, H0 and HP are equivalent to those of the Hartree method

H0 =
1

2
p2 ± m2

2
q2 +

λ

4
〈q2〉q2,

HP =
1

4!
q4 − 1

4
〈q2〉q2. (23.32)

At this stage, the Gaussian vacuum is not necessarily the energy-minimizing state

since ϕ is not fixed yet except for Eq. (23.15). The minimization of the energy with

respect to ϕ or ϕ∗ leads to

ϕ̈(t) + (±m2 +
λ

2
ϕ∗ϕ)ϕ(t) = 0. (23.33)

In fact, Eq. (23.33) makes a(t) and a†(t) the invariant operators for the Liouville-

von Neumann equation. The coherent state, a state more general than the Gaussian

vacuum, will be considered now.

23.3.1 Correlation functions in coherent state

The coherent state shifts the center of the vacuum to a classical trajectory. As the

time-dependent annihilation and creation operators a(t) and a†(t) construct the

Fock space of the system, they can be used to define the coherent state and other

states. Following the definition of [375], the coherent state is an eigenstate of a(t),

a(t)|α, t〉 = α|α, t〉, (23.34)
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with a complex eigenvalue α. It is a displaced state of the vacuum ,

|α, t〉 = D†(α)|0, t〉 = e−α
∗α/2

∞∑

n=0

αn√
n!
|n, t〉, (23.35)

for the displacement operator

D(α) = e−αa
†(t)+α∗a(t). (23.36)

The position expectation value,

q̄ ≡ 〈α, t|q|α, t〉 = αϕ(t) + α∗ϕ∗(t), (23.37)

is real and satisfies the same equation as ϕ, while the momentum expectation value,

p̄ ≡ 〈α, t|p|α, t〉 = αϕ̇(t) + α∗ϕ̇∗(t), (23.38)

satisfies the classical relation p̄ = ˙̄q. From the subtracted 2-point correlators

gqq(t) = 〈α, t|q2|α, t〉 − q̄2 = ϕ∗(t)ϕ(t),

gpp(t) = 〈α, t|p2|α, t〉 − p̄2 = ϕ̇∗(t)ϕ̇(t),

gqp(t) = 〈α, t|qp|α, t〉 − q̄p̄ = ϕ̇∗(t)ϕ(t),

gpq(t) = g∗qp(t) = ϕ∗(t)ϕ̇(t), (23.39)

we obtain the evolution equations

ġqq(t) = gqp(t) + gpq(t),

ġpp = −(±m2 +
λ

2
gqq)(gqp + gpq),

ġqp = gpp − (±m2 +
λ

2
gqq)gqq . (23.40)

In contrast with the first order linear differential equations for a harmonic oscil-

lator, the subtracted 2-point correlators for the nonlinear model satisfy nonlinear

differential equations.

The wave function for the coherent state is the Gaussian vacuum whose center

moves around (q̄, p̄). In fact, the coherent state expectation of the full Hamiltonian

Heff =
1

2
p̄2 ± m2

2
q̄2 +

λ

4!
q̄4 +

1

2
gpp +

1

2
gqq(±m2 +

λ

2
q̄2) +

3λ

4!
g2
qq , (23.41)

is a function of (q̄, p̄), (ϕ, pϕ = ϕ̇∗) and (ϕ∗, pϕ∗ = ϕ̇). The variation of the effective

Hamiltonian with respect to ϕ leads to

ϕ̈(t) + (±m2 +
λ

2
q̄2 +

λ

2
gqq)ϕ(t) = 0, (23.42)

and, similarly,

¨̄q + (±m2 +
λ

6
q̄2 +

λ

2
gqq)q̄ = 0. (23.43)

Note that when ϕ satisfies Eq. (23.42), a(t) and a† are the invariant operators for

the Hamiltonian

H̄0 =
1

2
p2 ± m2

2
q2 +

λ

4
(q̄2 + 〈q2〉)q2. (23.44)
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This Hamiltonian is nothing but that of the Hartree method, where the position

and momentum are divided into classical part and quantum part, q = q̄ + qf and

p = p̄+ pf , and only quadratic terms of qf and qf are kept. The subtracted 2-point

correlators now follow the evolution equations

ġqq = gqp + gpq,

ġpp = −(±m2 +
λ

2
q̄2 +

λ

2
gqq)(gqp + gpq),

ġqp = gpp − (±m2 +
λ

2
q̄2 +

λ

2
gqq)gqq . (23.45)

23.3.2 Correlation functions in thermal state

The nonlinear model with the unbroken symmetry in a thermal equilibrium may be

described approximately by the coherent-thermal state

ρCT =
1

ZT
exp[−β(Ωa†(t)a(t) + δa†(t) + δ∗a(t) + ε0)], (23.46)

where Ω is determined by the gap equation, Ω2 = m2 + λ/(4Ω), and ε0 = Ω/2 +

|δ|2/Ω. As a(t) and a†(t) satisfy the Liouville-von Neumann equation for H0, this

operator is the density operator for H0. Using the unitary transformation by the

displacement operator, we get

D(α)a(t)D†(α) = a(t) + α, D(α)a†(t)D†(α) = a†(t) + α∗, (23.47)

for α = −δ/Ω, the coherent-thermal density transforms to a thermal one

D(α)ρCTD
†(α) =

1

ZT
exp[−βΩ(a†(t)a(t) +

1

2
)] = ρT. (23.48)

The correlators are given by

〈q2〉CT ≡ Tr(ρCTq
2) = q̄2 + coth

(βΩ

2

)
ϕ∗(t)ϕ(t),

〈p2〉CT ≡ Tr(ρCTp
2) = p̄2 + coth

(βΩ

2

)
ϕ̇∗(t)ϕ̇(t), (23.49)

where q̄ and p̄ are given in Eqs. (23.37) and (23.38), and ϕ satisfies Eq. (23.42).

The corresponding thermal 2-point correlators are then given by

gTqq(t) = 〈q2〉CT − q̄2 = coth(
βΩ

2
)ϕ∗(t)ϕ(t),

gTpp(t) = 〈p̂2〉CT − p̄2 = coth(
βΩ

2
)ϕ̇∗(t)ϕ̇(t),

gTqp(t) = 〈qp〉CT − q̄p̄ = coth(
βΩ

2
)ϕ̇∗(t)ϕ(t),

gTpq(t) = g∗Tqp(t) = coth(
βΩ

2
)ϕ∗(t)ϕ̇(t), (23.50)
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from which we obtain the evolution equations for the thermal 2-point correlators

ġTqq(t) = gTqp(t) + gTpq(t),

ġTpp(t) = −(±m2 +
λ

2
ϕ∗ϕ)(gTqp + gTpq),

ġTqp(t) = gTpp − (±m2 +
λ

2
ϕ∗ϕ)gTqq . (23.51)

In the T = 0 limit, Eqs. (23.50) and (23.51) reduce to the evolution equations

(23.42) and (23.45).

23.4 Beyond the Hartree approximation for nonlinear model

The most advantageous point of the Liouville-von Neumann method for the non-

linear model is that the Fock space for H0 enables us to find the exact state by

including the perturbation HP. Thus, the Liouville-von Neumann method can go

beyond the Gaussian approximation [66]. Since it includes λ〈q2〉q2 in H0, the Fock

space itself is the Hartree approximation and, for a static system, is equivalent to

the Gaussian effective potential method [371–374]. In this section, we follow Ref.

[66].

The Fock space will be constructed by the time-dependent annihilation and

creation operators, the invariant operators for H0, such that

i
∂a

∂t
+ [a,H0] = 0, i

∂a†

∂t
+ [a†, H0] = 0, (23.52)

where ϕ in Eq. (23.13) satisfies the mean field equation

ϕ̈(t) + (±m2 +
λ

2
ϕ∗ϕ)ϕ(t) = 0. (23.53)

Note that the mean field equation above can also be obtained by minimizing E0 in

Eq. (23.31). The time-dependent Gaussian vacuum is annihilated by a(t)

a(t)|0, t〉(0) = 0, (23.54)

and the number states are obtained by applying a†(t)

|n, t〉(0) =
a†n(t)√
n!
|0, t〉(0). (23.55)

In fact, each number state is the solution of the time-dependent Schrödinger equa-

tion for H0

i
∂

∂t
|n, t〉(0) = H0(t)|n, t〉(0). (23.56)

Then, the number states constitute a Fock space of orthonormal basis

(0)〈n, t|m, t〉(0) = δnm. (23.57)



December 4, 2008 11:32 World Scientific Book - 9.75in x 6.5in thermal

Real-Time Method for Nonequilibrium Quantum Mechanics 413

23.4.1 Beyond the Hartree approximation

To go beyond the Hartree approximation, the perturbation

HP =
1

4!

(
ϕ∗4a†4 + 4ϕ∗3ϕa†3a+ 6ϕ∗2ϕ2a†2a2 + 4ϕ∗ϕ3a†a3 + ϕ4a4

)
(23.58)

has to be included in the solution. As the Fock space for H0 is now known, we may

follow the time-dependent perturbation theory by expanding the exact state as

|n, t〉 =
∞∑

l=0

∞∑

m=0

λlC(l)
n;m(t)|m, t〉(0). (23.59)

Here, the lowest order coefficient is

C(0)
n;m = δn,m. (23.60)

The time-dependent Schrödinger equation for the full Hamiltonian in Eq. (23.25),

is equivalent to the set of equations,

∞∑

l=0

∞∑

m=0

iλlĊ(l)
n;m(t)|m, t〉0 =

∞∑

l=0

∞∑

m=0

λl+1C(l)
n;m(t)HP|m, t〉(0), (23.61)

leading to a hierarchy of differential equations

Ċ(l)
n;m(t) = −i

∞∑

j=0

C
(l−1)
n;j (t)(0)〈m, t|HP(t)|j, t〉(0). (23.62)

The hierarchy of coefficients may be found in a compact form in the represen-

tation of a†(t) and a(t). By summing over l

Cn;m(t) =

∞∑

l=0

λlC(l)
n;m(t), (23.63)

Eq. (23.59) may be written by introducing an operator, Û1 as

|n, t〉 =
∞∑

m=0

Cn;m(t)|m, t〉(0) ≡ UI[a
†(t), a(t); t, λ]|n, t〉(0). (23.64)

Then, the Schrödinger equation for the full Hamiltonian Eq. (23.25) leads to

(
i
∂

∂t
UI(t, λ) + [UI(t, λ), H0]− λHP

)
|n, t〉(0) = 0. (23.65)

Note that the operator UI is a functional of a(t), a†(t) and depends on t explic-

itly. However, as a(t), a†(t) already satisfy Eq. (23.52), for which linearity holds,

the time-dependence of UI through a(t), a†(t) will be automatically satisfied. So

Eq. (23.65) explicitly depends on time itself and becomes an interaction picture-like

equation

i
∂

∂t
UI(t, λ) = λHPUI(t, λ). (23.66)
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The formal solution is given by

UI(t, λ) = T exp
(
−iλ

∫
HPdt

)
. (23.67)

Here, T denotes a time-ordering for the integral and a†(t) and a(t) are fixed for

each time.

The improved vacuum can be found up to any desired order either by solving

Eq. (23.62) or by acting with the operator in Eq. (23.67) on the Gaussian vacuum.

For instance, the improved vacuum to order λ2 is given by

|0, t〉(2) = |0, t〉(0) + λ
∑

m=0

C
(1)
0;m(t)|m, t〉(0) + λ2

∑

m=0

C
(2)
0;m(t)|m, t〉(0), (23.68)

where the only nonvanishing coefficients are

C
(1)
0;4 (t) = −i 1√

4!

∫ t

ϕ∗4(t′), (23.69)

and

C
(2)
0;8 (t) = (−i)2

√
70

4!

∫ t

ϕ∗4(t′)

∫ t′

ϕ∗4(t′′),

C
(2)
0;6 (t) = (−i)2

√
5

3

∫ t

ϕ∗3(t′)ϕ(t′)

∫ t′

ϕ∗4(t′′),

C
(2)
0;4 (t) = (−i)2 3√

4!

∫ t

ϕ∗2(t′)ϕ2(t′)

∫ t′

ϕ∗4(t′′),

C
(2)
0;2 (t) = (−i)2 1

3
√

2

∫ t

ϕ∗(t′)ϕ3(t′)

∫ t′

ϕ∗4(t′′),

C
(2)
0;0 (t) = (−i)2 1

4!

∫ t

ϕ4(t′)

∫ t′

ϕ∗4(t′′). (23.70)

The non-Gaussian nature of the vacuum state (23.68) can be exploited by calculat-

ing the kurtosis (higher moments). The two-point and four-point correlators with

respect to the Gaussian vacuum state are

(0)〈0, t|q2|n, t〉(0) = ϕ∗ϕ,

(0)〈0, t|q4|0, t〉(0) = 3(ϕ∗ϕ)2, (23.71)

whereas those with respect to the improved vacuum state given by Eq. (23.68) are

(2)〈0, t|q2|0, t〉(2) = ϕ∗ϕ+ λ2[
√

2(C
(2)
0;2ϕ

2 + C
(2)∗
0;2 ϕ∗2)

+(C
(2)∗
0;0 + C

(2)
0;0 + 9C

(1)∗
0;4 C

(1)
0;4 )ϕ∗ϕ] +O(λ3), (23.72)

(2)〈0, t|q4|0, t〉(2) = 3(ϕ∗ϕ)2 +
√

4!λ(C
(1)
0;4ϕ

4 + C
(1)∗
0;4 ϕ∗4)

+λ2[
√

4!(C
(2)
0;4ϕ

4 + C
(2)∗
0;4 ϕ∗4)

+6
√

2(C
(2)
0;2 (ϕ∗ϕ)ϕ2 + C

(2)∗
0;2 (ϕ∗ϕ)ϕ∗2)

+(123C
(1)∗
0;4 C

(1)
0;4 + 3C

(2)∗
0;0 + 3C

(2)
0;0 )(ϕ∗ϕ)2] +O(λ3). (23.73)
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23.4.2 Stability of the Liouville-von Neumann method

The stability of a series solution is an important issue in the time-dependent per-

turbation theory, since there usually occur secular terms in coefficient that grow in

time. These secular terms should be removed systematically to insure the physically

meaningful solution.

To compare the Liouville-von Neumann method with the standard perturbation

theory, let us first consider the well-known nonlinear model with unbroken symmetry

(m2 in Eq. (23.25)). In that case, the mean field equation (23.53) has the solution

ϕ(t) =
1√
2Ω

e−iΩt, Ω2 = m2 +
λ

4Ω
. (23.74)

The improved vacuum, corrected to O(λ2),

|0, t〉(2) = exp
(
−i(Ω

2
− λ

32Ω2
)t
)

×
[
(1 + i

λ2

29 · 3Ω5
t)|0〉(0) +

λ2

27 · 3
√

2Ω6
|2〉(0) − (

λ

25
√

6Ω3
−
√

3λ2

29
√

2Ω6
)|4〉(0)

+
λ2

27 · 32Ω6
|6〉(0) +

√
70λ2

212 · 3Ω6
|8〉(0)

]
+O(λ3),

now has a secular term in the coefficient of |0〉(0). This term, C
(2)
0;0 , originates from

the four quanta creation and the subsequent annihilation. This is a consequence of

the time-dependent perturbation theory in the time-dependent basis. In fact, the

secular terms of |0, t〉(0), which are the first two terms of exp[iλ2/(29 ·3Ω5)t], correct

the energy up to O(λ2),

E(2) =
Ω

2
− λ

32Ω2
− λ2

29 · 3Ω5
+O(λ3). (23.75)

The higher order terms arising from the creation of even number of quanta and

its subsequent annihilation of equal quanta or vise versa also contain secular terms

proportional to powers of t depending on the number of such processes. All these

terms will provide the correct energy to the Schrödinger equation.

The origin of secular terms may be understood directly from the formal solution

given by Eq. (23.67),

UI(t, λ) = exp
(
−iλ

∫ t

HP(t′) + (−iλ)2[
∫ t

dt′H(t′),

∫ t′

dt′′HP(t′′)] +O(λ3)
)
.

(23.76)

The term for creation and annihilation of equal number of quanta arises from the

commutator

exp
(
− λ2

(4!)2

∫ t

dt′ϕ4(t′)

∫ t′

dt′′ϕ∗4(t′′)[a4, a†4]
)
→ exp

(
i

λ2

29 · 3Ω5
t
)
. (23.77)

Now the time-dependent vacuum state to O(λ2) does not involve any secular term

as shown

|0, t〉(2) = eiE(2)t
[
|0〉(0) + e−i

λ2

29·3Ω5 t
( λ2

27 · 3
√

2Ω6
|2〉(0) − (

λ

25
√

6Ω3
−
√

3λ2

29
√

2Ω6
)|4〉(0)

+
λ2

27 · 32Ω6
|6〉(0) +

√
70λ2

212 · 3Ω6
|8〉(0)

)]
+O(λ3). (23.78)
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The Liouville-von Neumann method not only perturbatively improves the state

but also systematically removes the secular terms of time-dependent perturbation

theory. The idea of removing the higher order secular terms by absorbing them into

the improved energy is equivalent to removing the secular terms by renormalizing

the energy in the multiple-scale perturbation theory [376]. The Liouville-von Neu-

mann approach proves accurate since the lowest order vacuum state is a Gaussian

state that extremizes the Hamiltonian and the corrected vacuum state is expanded

in the Fock basis [377]. In Ref. [369], the secular terms are eliminated by using

multiple-scale perturbation theory.

The Hartree approximation cannot be applied to phase transitions when the

dynamical instability grows sufficiently after the quench. After the phase transition,

the symmetry is broken, and thus the mean field equation for Eq. (23.25)

ϕ̈+ (−m2 +
λ

2
ϕ∗ϕ)ϕ = 0 (23.79)

has the solution that exponentially grows as ϕ ≈ emt/
√

2m so that it does not

take long for (λϕ∗ϕ/2) to get larger than m2. After this moment of time, the

perturbation HP that exponentially grows as powers of ϕ and ϕ∗ should be treated

on an equal footing as H0 in finding the state for the phase transition.

23.5 TFD for time-dependent boson system

We close this chapter by discussing briefly a possibility to construct a time-

dependent TFD from the Liouville-von Neumann approach. We start once again

with the Hamiltonian

H(t) = ~

[
ω0(t)a

†a+
1

2
ω+(t)a†2 +

1

2
ω∗+a

2
]
, (23.80)

where a and a† are the Schrödinger (time-independent) annihilation and creation

operators, and ω0 is real and ω+ is complex. We may find the time-dependent

annihilation operator, an invariant operator, of the form

a(t) = f (−)(t)a+ f (+)(t)a† (23.81)

and its Hermitian conjugate a†(t), and impose the Liouville-von Neumann equations

i~
∂a(t)

∂t
+ [a(t), H(t)]− = 0,

i~
∂a†(t)

∂t
+ [a†(t), H(t)]− = 0. (23.82)

The time-dependent creation operator a†(t) is another invariant operator. The

pair {a(t), a†(t)} form a complete set. Therefore any invariant operator can be

constructed out of them. Observe that this provides equations for f (−) and f (+).

Using the tilde conjugation rules, the tilde Hamiltonian reads

H̃(t) = ~

[
ω0(t)ã

†ã+
1

2
ω∗+(t)ã†2 +

1

2
ω+ã

2
]
. (23.83)
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Let us introduce the time-dependent annihilation operator for the tilde operators

as

ã(t) = f (−)∗(t)ã+ f (+)∗(t)ã†. (23.84)

The operators ã(t) and its Hermitian conjugate ã†(t) satisfy the equations

i~
∂ã(t)

∂t
+ [ã(t),−H̃(t)]− = 0,

i~
∂ã†(t)

∂t
+ [ã†(t),−H̃(t)]− = 0. (23.85)

The equal-time commutator also holds

[ã(t), ã†(t)]− = 1. (23.86)

The number states

Ñ(t)|ñ, t〉 = ã†(t)ã(t)|ñ, t〉 = ñ|ñ, t〉 (23.87)

are the exact quantum states for the Hamiltonian, Eq. (23.83).

The generator of time translations is

Ĥ(t) = H(t)− H̃(t), (23.88)

where the operators of the boson and their tilde operators commute with each other,

that is,

[ã, a]− = [ã, a†]− = [ã†, a]− = [ã†, a]− = 0, (23.89)

and

[ã(t), a(t)]− = [ã(t), a†(t)]− = [ã†(t), a(t)]− = [ã†(t), a(t)]− = 0. (23.90)

The boson operators a(t), a†(t), ã(t) and ã†(t) are the invariant operators satisfying

the Liouville-von Neumann equations for the hat Hamiltonian, Eq. (23.88). A basis

element in the doubled Hilbert space is

|n, m̃, t〉 = |n, t〉 ⊗ |m̃, t〉 = a†n(t)√
n!

ã†m(t)√
m!
|0, 0̃, t〉. (23.91)

The density operators are

ρ(t) =
1

Z
e−β~ωa†(t)a(t), (23.92)

ρ̃(t) =
1

Z
e+β~ωã†(t)ã(t), (23.93)

which obviously satisfy the Liouville-von Neumann equation. Here β and ω are

constants that may be fixed by the initial temperature and frequency. The density

operator in the doubled Hilbert space is given by

ρ̂(t) = ρ(t)⊗ ρ̃(t) =
1

Z2
e−β~ω(a†(t)a(t)−ã†(t)ã(t)). (23.94)
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The thermal expectation value of an observable A takes the form

〈A〉 = Tr[ρ(t)A] = 〈0(β), t|A|0(β), t〉, (23.95)

where the thermal vacuum state is given by

|0(β), t〉 =
1

Z1/2

∑

n

e−β~ωn/2 1

n!
a†n(t)ã†ñ(t)|0, 0̃, t〉

=
√

1− e−β~ωee
−β~ω/2a†(t)ã†(t)|0, t〉, (23.96)

with |0, t〉 = |0, 0̃, t〉. The thermal state is an exact eigenstate of the Schrödinger

equation for the total system, Eq. (23.88). The thermal state is also written as a

time-dependent two-mode squeezed state of the vacuum state

|0(β), t〉 = e−iG(t)|0, t〉, (23.97)

where

G(t) = −iθ(β)[ã(t)a(t)− a†(t)ã†(t)]. (23.98)

As the density operator involves a constant β, we find the time- and temperature-

dependent annihilation and creation operators through the Bogoliubov transforma-

tion

a(β, t) = cosh θ(β)a(t) − sinh θ(β)ã†(t),

ã(β, t) = cosh θ(β)ã(t)− sinh θ(β)a†(t). (23.99)

The inverse transformation of these relations are

a(t) = cosh θ(β)a(β, t) + sinh θ(β)ã†(β, t),

ã(t) = cosh θ(β)ã(β, t) + sinh θ(β)a†(β, t). (23.100)

We obtain similar equations for a†(β, t), ã†(β, t), a†(t) and ã†(t) by using the Her-

mitian conjugate of these equations. As θ(β) is a constant, a(β, t), ã(β, t) are also

invariant operators. Then the thermal state is the time- and temperature-dependent

vacuum

a(β, t)|0(β), t〉 = ã(β, t)|0(β), t〉 = 0. (23.101)

The thermal state |0(β), t〉, as an eigenstate of the invariant operators a(β, t) and

ã(β, t), is an exact eigenstate of the total system. At each moment, the boson still

keeps the same boson distribution since the expectation value of the time-dependent

number operator yields

〈0(β), t|a†(t)a(t)|0(β), t〉 = sinh2 θ(β) =
1

eβ~ω − 1
. (23.102)

Using the Bogoliubov transformations from {a(t), a†(t)} to {a(β, t), a†(β, t)}, we

find

〈F (a(t), a†(t))〉T = 〈0(β), t|F (cosh θ(β)a(β, t) + sinh θ(β)ã†(β, t),

cosh θ(β)a†(β, t) + sinh θ(β)ã(β, t))|0(β), t〉. (23.103)
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This provides the basic rule for calculating matrix element of any operator in TFD.

For instance, using the position representation

q =
√

~ cosh θ(β)[v(t)a(β, t) + v∗(t)a†(β, t)]

+
√

~ sinh θ(β)[v∗(t)ã(β, t) + v(t)ã†(β, t)], (23.104)

we obtain

〈0(β), t|q2n|0(β), t〉 = ~n
n∑

k=0

(
2n

2k

)
〈0, t| cosh2k θ(β)[v(t)a(β, t) + v∗(t)a†(β, t)]2k

× sinh2n−2k θ(β)[v∗(t)ã(β, t) + v(t)ã†(β, t)]2n−2k |0, t〉.
(23.105)

After normal ordering, it results in

〈q2n〉T = 〈0(β), t|q2n|0(β), t〉

=
(2n)!

2nn!
[~v∗(t)v(t)]n(1 + 2 sinh2 θ(β))n. (23.106)

Consider a time-dependent interaction from initial ωi’s at t = ti to final ones,

ωf ’s at tf . That is, all ω’s change from ωi’s to ωf ’s. From the constants ωf ’s, we

find a Bogoliubov transformation of the form

ai = µaf + νa†f ,

a†i = µ∗a†f + ν∗af , (23.107)

where {ai, a†i} for ωi’s and {af , a†f} for ωf ’s. Here µ and ν, which should be deter-

mined by f (±), carry all the information about the history of interaction and may

take the form

µ = µ(ti, tf ;ωi, ωf ), ν = ν(ti, tf ;ωi, ωf ), (23.108)

and satisfy

µ∗µ− ν∗ν = 1. (23.109)

If the boson is initially in thermal equilibrium with the inverse temperature β and

has the boson distribution n̄i = 1/(eβ~ω − 1), then the final state is such that

〈0(β), tf |a†iai|0(β), tf 〉 = ν∗ν +
1 + 2ν∗ν

eβ~ω − 1
. (23.110)

The first term originates from the particle production by vacuum fluctuations [378],

〈0, tf |a†iai|0, tf 〉 = ν∗ν, and the second term is a purely thermal result, having an

overall amplification factor, (1+2ν∗ν), to the boson distribution. Thus the evolution

of the time-dependent system leads to a distribution quite different from the boson

distribution function. The extension to fermion can be performed accordingly [64].
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Chapter 24

Dressed and Bare State Approaches
to the Thermalization Process

A thermalization process occurs in some cases for a system of material particles

coupled to an environment, in the sense that as it evolves after an infinitely long

time, the matter particles loose the memory of their initial states. This study is,

in general, not easy from a theoretical point of view, due to the complex nonlinear

character of the interactions between the matter particles and the environment. To

get over these difficulties, linearized models have been adopted. An account on

the subject of the evolution of quantum systems on general grounds can be found

in [379–384]. Besides, the main analytical method used to treat these systems at zero

or finite temperature is, except for a few special cases, perturbation theory. In this

framework, the perturbative approach is carried out by means of the introduction

of bare, non-interacting objects (fields, to which are associated bare quanta), the

interaction being introduced order by order in powers of the coupling constant.

In spite of remarkable achievements of perturbative methods, there are situa-

tions where they cannot be employed, or are of little use. These cases have led

to attempts to improve non-perturbative analytical methods, in particular, where

strong effective couplings are involved. Among these trials there are methods that

perform resummations of perturbative series, even if they are divergent, which

amounts in some cases to extending the weak-coupling regime to a strong-coupling

domain [145–149, 144]. In chapter 10 we have described one of these methods, the

Borel resummation of perturbative series.

In this chapter we follow a different non-perturbative approach: we investi-

gate a simplified linear version of a particle–field or particle–environment system,

where the particle, taken in the harmonic approximation, is coupled to the reser-

voir, modelled by independent harmonic oscillators. We will employ, in particular,

dressed states and renormalized coordinates. Using this method non-perturbative

treatments can be considered for both weak and strong couplings. A linear model

permits a better understanding of the need for non-perturbative analytical treat-

ments of coupled systems, which is the basic problem underlying the idea of a

dressed quantum mechanical system. Of course, the use of such an approach to

a realistic nonlinear system is an extremely hard task, while the linear model pro-

vides a good compromise between physical reality and mathematical reliability. The

421
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whole system is supposed to reside inside a spherical cavity of radius R in thermal

equilibrium at temperature T = β−1. In other words, we consider the spatially

regularized theory (finite R) at finite temperature. The free space case is obtained

by suppressing the regulator, (R → ∞). For a detailed comparison between this

procedure and the one considering an a priori unbounded space, see [387].

24.1 The model

Let us start by considering a particle approximated by a harmonic oscillator, having

bare frequency ω0, linearly coupled to a set of N other harmonic oscillators, with

frequencies ωk, k = 1, 2, . . . , N . The Hamiltonian for such a system is written in

the form,

H =
1

2

[
p2
0 + ω2

0q
2
0 +

N∑

k=1

(
p2
k + ω2

kq
2
k

)
]
− q0

N∑

k=1

ckqk, (24.1)

leading to the following equations of motion,

q̈0 + ω2
0q0 =

N∑

i=1

ciqi(t) (24.2)

q̈i + ω2
i qi = ciq0(t). (24.3)

In the limit N →∞, we recover our case of the particle coupled to the environment,

after redefining divergent quantities, in a manner analogous to mass renormalization

in field theories. A Hamiltonian of the type Eq. (24.1) has been largely used in the

literature, in particular to study the quantum Brownian motion with the path-

integral formalism [379, 380]. It has also been employed to investigate the linear

coupling of a particle to the scalar potential [387–391].

The Hamiltonian is transformed to principal axis by means of a point transfor-

mation,

qµ =

N∑

r=0

trµQr , pµ =

N∑

r=0

trµPr ;

µ = (0, {k}), k = 1, 2, ..., N ; r = 0, ...N, (24.4)

performed by an orthonormal matrix T = (trµ). The subscripts µ = 0 and µ = k

refer respectively to the particle and the harmonic modes of the reservoir and r

refers to the normal modes. In terms of normal momenta and coordinates, the

transformed Hamiltonian reads

H =
1

2

N∑

r=0

(P 2
r + Ω2

rQ
2
r), (24.5)

where the Ωr’s are the normal frequencies corresponding to the collective stable

oscillation modes of the coupled system. Using the coordinate transformation in
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the equations of motion and explicitly making use of the normalization

N∑

µ=0

(trµ)
2 = 1,

we get

trk =
ck

ω2
k − Ω2

r

tr0 , tr0 =

[
1 +

N∑

k=1

c2k
(ω2
k − Ω2

r)
2

]− 1
2

, (24.6)

with the condition

ω2
0 − Ω2

r =

N∑

k=1

c2k
ω2
k − Ω2

r

. (24.7)

We take ck = η(ωk)
u, where η is a constant independent of k. In this case

the environment is classified according to u > 1, u = 1, or u < 1, respectively as

supraohmic, ohmic or subohmic. This terminology has been used in studies of the

quantum Brownian motion and of dissipative systems [380–384]. For a subohmic

environment the sum in Eq. (24.7) is convergent in the limit N → ∞ and the

frequency ω0 is well defined. For ohmic and supraohmic environments, this sum

diverges forN →∞. This makes the equation meaningless, unless a renormalization

procedure is implemented. From now on we restrict ourselves to an ohmic system.

In this case, Eq. (24.7) is written in the form

ω2
0 − δω2 − Ω2

r = η2Ω2
r

N∑

k=1

1

ω2
k − Ω2

r

, (24.8)

where we have defined the counterterm

δω2 = Nη2. (24.9)

There areN+1 solutions of Ωr, corresponding to the N+1 normal collective modes.

Let us for a moment suppress the index r of Ω2
r. If ω2

0 > δω2, all possible solutions

for Ω2 are positive, physically meaning that the system oscillates harmonically in

all its modes. If ω2
0 < δω2, then a single negative solution exists. In order to prove

this let us define the function

I(Ω2) = ω2
0 − δω2 − Ω2 − η2Ω2

N∑

k=1

1

ω2
k − Ω2

, (24.10)

so that Eq. (24.8) becomes I
(
Ω2
)

= 0. We find that

I(Ω2)→∞ as Ω2 → −∞ and I(0) = ω2
0 − δω2 < 0,

in the interval (−∞, 0]. As I
(
Ω2
)

is a monotonically decreasing function in this

interval, we conclude that I
(
Ω2
)

= 0 has a single negative solution in this case.

This means that there is a mode whose amplitude grows or decays exponentially,

so that no stationary configuration is allowed. Nevertheless, it should be remarked
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that in a different context, it is precisely this runaway solution that is related to

the existence of a bound state in the Lee–Friedrichs model [392]. This solution is

considered in the framework of a model to describe qualitatively the existence of

bound states in particle physics.

Considering the situation where all normal modes are harmonic, which corre-

sponds to the first case above, ω2
0 > δω2, we define the renormalized frequency

ω̄2 = ω2
0 − δω2 = lim

N→∞
(ω2

0 −Nη2), (24.11)

Then Eq. (24.8) in the limit N →∞ becomes,

ω̄2 − Ω2 = η2
∞∑

k=1

Ω2

ω2
k − Ω2

. (24.12)

In this limit, the above procedure is exactly the analog of the mass renormalization

in quantum field theory: the addition of a counterterm −δω2q20 allows one to com-

pensate the infinite component in ω2
0 in such a way as to leave a finite, physically

meaningful renormalized frequency ω̄. This simple renormalization scheme has been

introduced earlier [394]. Unless explicitly stated, the limit N → ∞ is understood

in the following.

Let us define a constant g, with dimension of frequency, by

g =
η2

2∆ω
, (24.13)

where ∆ω = πc/R. The environment frequencies ωk are given by,

ωk = k
πc

R
, k = 1, 2, . . . , (24.14)

where R is the radius of the cavity that contains the whole system. Then, using

the identity
∞∑

k=1

1

k2 − u2
=

1

2

[
1

u2
− π

u
cot (πu)

]
, (24.15)

Eq. (24.12) is written in a closed form,

cot

(
RΩ

c

)
=

Ω

πg
+

c

RΩ

(
1− Rω̄2

πgc

)
. (24.16)

The solutions of the above equation with respect to Ω give the spectrum of eigen-

frequencies Ωr corresponding to the collective normal modes.

In terms of the physically meaningful quantities Ωr and ω̄, the transformation

matrix elements turning the particle-field system to the principal axis are obtained.

They are

tr0 =
ηΩr√

(Ω2
r − ω̄2)2 + η2

2 (3Ω2
r − ω̄2) + π2g2Ω2

r

,

trk =
ηωk

ω2
k − Ω2

r

tr0. (24.17)

These matrix elements play a central role in quantities describing the system.
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24.2 The thermalization process in bare coordinates

We now consider the thermalization problem using bare coordinates . For the model

described by Eq. (24.1), this problem was addressed in an alternative way in [393]

with the canonical Liouville-von Neumann formalism. We consider the initial state

described by the density operator,

ρ(t = 0) = ρ0 ⊗ ρβ , (24.18)

where ρ0 is the density operator of the particle, that in principle can be in a pure or

in a mixed state and ρβ is the density operator of the thermal bath, at a temperature

β−1, that is,

ρβ = Z−1
β exp

[
−β

∞∑

k=1

ωk

(
a†kak +

1

2

)]
, (24.19)

with Zβ =
∏N
k=1 z

k
β being the partition function of the reservoir, and

zkβ = Trk

[
e−βωk(a†kak+1/2)

]
=

1

2 sinh
(
βkωk

2

) . (24.20)

Creation and annihilation operators are given by

aµ =

√
ω̄µ
2
qµ +

i√
2ω̄µ

pµ (24.21)

a†µ =

√
ω̄µ
2
qµ −

i√
2ω̄µ

pµ , (24.22)

where ω̄µ = (ω̄, ωk). The thermalization problem is addressed by investigating the

time evolution of the state ρ(t).

The thermalization problem concerns the time evolution of the initial state to

thermal equilibrium. The subsystem corresponding to the particle oscillator is de-

scribed by an arbitrary density operator ρ0. As we will show, the expectation value

of the number operator corresponding to particles will evolve in time to a value that

is independent of the initial density operator ρ0, the dependence will be exclusively

on the mixed density operator corresponding to the thermal bath.

Our aim is to obtain expressions for the time evolution of the expectation values

for the occupation number and in particular for the one corresponding to particles.

We will solve the problem in the framework of the Heisenberg picture. It is to be

understood that when a quantity appears without the time argument it means that

such quantity is evaluated at t = 0. The Heisenberg equation of motion for the

annihilation operator aµ(t) is given by

∂

∂t
aµ(t) = i

[
Ĥ, aµ(t)

]
. (24.23)
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Due to the linear character of our problem, this equation is solved by writing aµ(t)

as

aµ(t) =

∞∑

ν=0

(
Ḃµν(t)q̂ν +Bµν(t)p̂ν

)
, (24.24)

where all the time dependence is in the c-number functions Bµν(t). Then,

Eq. (24.23) reduces to the following coupled equations for Bµν(t):

B̈µ0(t) + ω̄2Bµ0(t)−
∞∑

k=1

ηωkBµk(t) = 0, (24.25)

B̈µk(t) + ω2
kBµk(t)−Bµ0(t)

∞∑

k=1

ηωk = 0. (24.26)

These equations are formally identical to the classical equations of motion,

Eqs. (24.2) and (24.3), for bare coordinates qµ. Then we decouple Eqs. (24.25) and

(24.26) with the same matrix, {trµ}, that diagonalizes the Hamiltonian Eq. (24.1).

In an analogous manner, we write Bµν(t) as

Bµν(t) =

∞∑

r=0

trνC
r
µ(t), (24.27)

such that from Eqs. (24.25) and (24.26), we obtain the following equations for the

normal-axis functions Crµ(t),

C̈rµ(t) + Ω2
rC

r
µ(t) = 0, (24.28)

which gives the solution

Crµ(t) = arµe
iΩrt + brµe

−iΩrt.

Then substituting this expression into Eq. (24.27) we find

Bµν(t) =

∞∑

r=0

trν
(
arµe

iΩrt + brµe
−iΩrt

)
. (24.29)

The time independent coefficients arµ, b
r
µ are determined by the initial conditions

at t = 0 for Bµν(t) and Ḃµν(t). From Eqs. (24.21) and (24.24) we find that these

initial conditions are given by

Bµν =
iδµν√
2ω̄µ

,

Ḃµν =

√
ω̄µ
2
δµν . (24.30)

Using these equations, we obtain for arµ and brµ,

arµ =
itrµ√
8ω̄µ

(
1− ω̄µ

Ωr

)
, (24.31)

brµ =
itrµ√
8ω̄µ

(
1 +

ωµ
Ωr

)
. (24.32)
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We write aµ(t) and a†µ(t) in terms of aµ and a†µ using Eqs. (24.21), (24.22) and

(24.24),

aµ(t) =

∞∑

ν=0

(
αµν(t)âν + βµν(t)â

†
ν

)
, (24.33)

a†µ(t) =

∞∑

ν=0

(
β∗µν(t)âν + α∗µν(t)â

†
ν

)
, (24.34)

where αµν(t) and βµν(t) are the Bogoliubov coefficients given by,

αµν(t) =
1√
2ων

Ḃµν(t)− i
√
ων
2
Bµν(t) (24.35)

and

βµν(t) =
1√
2ων

Ḃµν(t) + i

√
ων
2
Bµν(t) . (24.36)

Using the definition of Bµν(t) we get

αµν(t) =

∞∑

r=0

√
ων
ωµ

trµt
r
ν

4Ωr

{
Ωr
ων

[
(ωµ − Ωr)e

iΩrt + (ωµ + Ωr)e
−iΩrt

]

+
[
(Ωr − ωµ)eiΩrt + (Ωr + ωµ)e

−iΩrt
]}
, (24.37)

and

βµν(t) =

∞∑

r=0

√
ων
ωµ

trµt
r
ν

4Ωr

{
Ωr
ων

[
(ωµ − Ωr)e

iΩrt + (ωµ + Ωr)e
−iΩrt

]

−
[
(Ωr − ωµ)eiΩrt + (Ωr + ωµ)e

−iΩrt
]}

. (24.38)

Now we study the time evolution of nµ(t), the expectation value of the number

operator Nµ(t) = a†µ(t)aµ(t), that is,

nµ(t) = Tr
[
a†µ(t)aµ(t)ρ0 ⊗ ρβ

]
. (24.39)

Using the basis |n0, n1, n2, · · ·, nN 〉 we obtain,

nµ(t) =
∞∑

ν=0

[
|αµν(t)|2 + |βµν(t)|2

]
nν +

∞∑

ν=0

|βµν(t)|2 , (24.40)

where

n0 =

∞∑

n=0

n〈n|ρ0|n〉 (24.41)

is the expectation value of the number operator corresponding to the particle and

the set {nk} stands for the thermal expectation values corresponding to thermal

bath oscillators, given by the Bose-Einstein distribution,

nk =
1

eβωk − 1
. (24.42)
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In Eq. (24.40) there appears a term that does not depend on the temperature

of the thermal bath . This term has its origin in the instability of the initial bare

vacuum state, |0, 0, · · ·, 0〉. To see this, we compute the expectation value of the time

dependent number operator Nµ(t) = a†µ(t)aµ(t) in this vacuum state. Thus all the

terms containing operators different from the identity give a zero contribution. The

only term, that gives a non-zero contribution, arises from the normal ordering and

is just the last one in Eq. (24.40). This term leads to the creation of excited states

(particles, in a field theoretical language) from the initial unstable bare vacuum

state.

We are interested in evaluating the expectation value of the number operator

corresponding to particles. Thus taking µ = 0 in Eq. (24.40) and using Eq. (24.42),

we obtain

n0(t) =
[
|α00(t)|2 + |β00(t)|2

]
n0 +

∞∑

k=1

[
|α0k(t)|2 + |β0k(t)|2

] 1

eβωk − 1

+|β00(t)|2 +
∞∑

k=1

|β0k(t)|2 , (24.43)

where the coefficients of this expression are [393],

α00(t) =
e−πgt/2

16ω̄κ

[
(2ω̄ + 2κ− iπg)2 e−iκt − (2ω̄ − 2κ− iπg)2 eiκt

]
, (24.44)

β00(t) =
πge−πgt/2

8ω̄κ

[
(πg + 2iκ) e−iκt − (πg − 2iκ) eiκt

]
, (24.45)

α0k(t) =

√
ωk
2ω̄

(ω̄ + ωk)
√
g∆ω e−iωkt

(ω2
k − ω̄2 + iπgωk)

+

√
ωk
ω̄

√
2g∆ω

4κ

×e−πgt/2
[

(2κ+ 2ω̄ − iπg)
(2κ− 2ωk − iπg)

e−iκt +
(2ω̄ − 2κ− iπg)
(2κ+ 2ωk + iπg)

eiκt
]

(24.46)

and

β0k(t) =

√
ωk
2ω̄

(ωk − ω̄)
√
g∆ω eiωkt

(ω2
k − ω̄2 − iπgωk)

−
√
ωk
ω̄

√
2g∆ω

4κ

×e−πgt/2
[

(2ω̄ + 2κ− iπg)
(2κ+ 2ωk − iπg)

e−iκt +
(2ω̄ − 2κ− iπg)
(2κ− 2ωk + iπg)

eiκt
]
,(24.47)

such that

κ =
√
ω̄2 − π2g2/4. (24.48)

The parameter κ measures the strenght of the interaction: if κ2 >> 0, i.e

g << 2ω̄/π, we are in the weak coupling regime. On the contrary if κ2 << 0,

i.e. g >> 2ω̄/π, the system is in the strong coupling regime. Here we will restrict

ourselves to the weak coupling regime. This case includes the important class of

electromagnetic interactions, g = αω̄, with α being the fine structure constant

α = 1/137 [388].
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In the continuum limit ∆ω → 0, sums over k become integrations over a con-

tinuous variable ω and we obtain for n0(t),

n0(t) =
e−πgt

ω̄2κ2

[
ω̄4 +

π2g2

8

(
2ω̄2 − π2g2

)
cos(2κt)− π3g3κ

4
sin(2κt)

]
n0

+
π2g2e−πgt

16ω̄2κ2

[
2ω̄2 +

(
2ω̄2 − π2g2

)
cos(2κt)− 2πgκ sin(2κt)

]

+
g

ω̄

∫ ∞

0

dω

[
F (ω, ω̄, g, t)

(eβω − 1)
+G(ω, ω̄, g, t)

]
, (24.49)

where

F (ω, ω̄, g, t) =
ω(ω2 + ω̄2)

[(ω2 − ω̄2)2 + π2g2ω2]

{
1 +

e−πgt

4κ2
[4ω̄2 − π2g2 cos(2κt)

−2πgκ
(ω2 − ω̄2)

(ω2 + ω̄2)
sin(2κt)]− e−πgt/2

κ
[2κ cos(ωt) cos(κt)

+
4ωω̄2

(ω2 + ω̄2)
sin(ωt) sin(κt) −πg (ω2 − ω̄2)

(ω2 + ω̄2)
cos(ωt) sin(κt)]

}

(24.50)

and

G(ω, ω̄, g, t) =
ω(ω − ω̄)2

[(ω2 − ω̄2)2 + π2g2ω2]

{
1 +

e−πgt

4κ2

[
4ω̄2 +

2π2g2ω̄ω

(ω − ω̄)2

−π2g2 (ω2 + ω̄2)

(ω − ω̄)2
cos(2κt)− 2πgκ

(ω + ω̄)

(ω − ω̄)
sin(2κt)

]

−e
−πgt/2

κ
[2κ cos(ωt) cos(κt)− 2ω̄ sin(ωt) sin(κt)

−πg (ω + ω̄)

(ω − ω̄)
cos(ωt) sin(κt)]

}
. (24.51)

It is to be noted that the second and the third lines in Eq. (24.49) are indepen-

dent of the initial distributions. Also the integral on G(ω, ω̄, g, t) in the third line

of Eq. (24.49) is logarithmically divergent. We can understand the origin of this

divergence in the following way: suppose that initially, in the absence of the linear

interaction, we prepare the system in its ground state, that is, at t = 0 we have

|0, 0, · · ·, 0〉. Then, we can compute, in the Heisenberg picture, the time evolution

for the expectation value of the number operator corresponding to the particle, that

is 〈0, 0, · · ·, 0|â†0(t)â0(t)|0, 0, · · ·, 0〉, takes the value,

〈0, 0, · · ·, 0|â†0(t)â0(t)|0, 0, · · ·, 0〉 = |β00(t)|2 +

∞∑

k=1

|β0k(t)|2 , (24.52)

which in the continuum limit gives the second line of Eq. (24.49). Then, the origin

of the divergence appearing in Eq. (24.49) is interpreted as the excitations pro-

duced from the unstable bare (vacuum) ground state, as a response to the linear

interaction.
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Fig. 24.1 Time behavior for n̄0(t) given by Eq. (24.53) for (t > 1), n0 = 1, ω̄ = 1, β = 2 and
g = 0.1.

As we are interested in the thermal behavior of n0(t) only, the second line and

the term G(ω, ω̄, g, t) in the third line of Eq. (24.49) can be neglected. This is a

renormalization procedure. Thus we write the following renormalized expectation

value for the particle number operator,

n̄0(t) = K(ω̄, g, t)n0 +
g

ω̄

∫ ∞

0

dω
F (ω, ω̄, g, t)

(eβω − 1)
(24.53)

where

K(ω̄, g, t) =
e−πgt

ω̄2κ2

[
ω̄4 +

π2g2

8

(
2ω̄2 − π2g2

)
cos(2κt)− π3g3κ

4
sin(2κt)

]
. (24.54)

In the limit t → ∞, n̄0(t) has a well-defined value, that is, the system reaches

a final equilibrium state. Also, since K(ω̄, g, t → ∞) → 0, this final equilibrium

state is independent of n0. The equilibrium expectation value of the number oper-

ator corresponding to the particle is independent of its initial value, and the only

dependence is on the initial distribution of the thermal bath, that is, the particle

thermalizes with the environment. Before the interaction enters into play for t < 0,

n(t < 0) = n0, then we have that K(ω, ω̄, g, t < 0) = 1. Taking t = 0 in Eq. (24.54)

we obtain K(ω, ω̄, g, t = 0) = ω̄2/κ2+π2g2(2ω̄2−π2g2)/(8ω̄2κ2). Thus K(ω, ω̄, g, t)

is a discontinuous function of t; the discontinuity appearing just at t = 0. From the

physical standpoint this discontinuity can be viewed as a response to the sudden

onset of the interaction between particles and the environment.
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Although the integral in Eq. (24.53) cannot be computed analytically, we can

perform numerical calculations. We display in Fig. 1.1 the time behavior for n0 = 1,

ω̄ = 1, β = 2 and g = 0.1; (t > 1). In the next section we develop an alternative

approach based on the notion of dressed particles. We will find that, in this new

realm, no renormalization is needed.

24.3 Dressed coordinates and dressed states

Let us start with the eigenstates of our system, |n0, n1, n2...〉, represented by the

normalized eigenfunctions in terms of the normal coordinates {Qr},

φn0n1n2...(Q, t) =
∏

s

[√
2ns

ns!
Hns

(√
Ωs
~
Qs

)]
Γ0e
−i
∑

s nsΩst, (24.55)

where Hns stands for the ns-th Hermite polynomial and Γ0 is the normalized vac-

uum eigenfunction,

Γ0 = N e− 1
2

∑∞
r=0 Ω2

rQ
2
r . (24.56)

We introduce dressed or renormalized coordinates q′0 and {q′i} for, respectively,

the dressed particle and the dressed field, defined by,
√
ω̄µq

′
µ =

∑

r

trµ
√

ΩrQr, (24.57)

valid for arbitrary R and ω̄µ = {ω̄, ωi}. In terms of dressed coordinates, we define

for a fixed instant, t = 0, dressed states , |κ0, κ1, κ2...〉 by means of the complete

orthonormal set of functions

ψκ0κ1...(q
′) =

∏

µ

[√
2κµ

κµ!
Hκµ

(√
ω̄µ
~
q′µ

)]
Γ0, (24.58)

where q′µ = {q′0, q′i}, ω̄µ = {ω̄, ωi}. Notice that the ground state Γ0 in the above

equation is the same as in Eq.(24.55). The invariance of the ground state is due to

our definition of dressed coordinates given by Eq. (24.57). Each function ψκ0κ1...(q
′)

describes a state in which the dressed oscillator q′µ is in its κµ-th excited state.

It is worthwhile to note that our renormalized coordinates are new objects, differ-

ent from both the bare coordinates, q, and the normal coordinates Q. In particular,

the renormalized coordinates and dressed states, although both are collective ob-

jects, should not be confused with the normal coordinates Q, and the eigenstates

Eq. (24.55). While the eigenstates φ are stable, the dressed states ψ are all unstable,

except for the ground state obtained by setting {κµ = 0} in Eq. (24.58). The idea is

that dressed states are physically meaningful states. This can be seen as an analog

of the wave function renormalization in quantum field theory, which justifies the

denomination of renormalized to the new coordinates q′. Thus, the dressed state

given by Eq. (24.58) describes the particle in its κ0-th excited level and each mode
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k of the cavity in the κk − th excited level. It should be noticed that the introduc-

tion of the renormalized coordinates guarantees the stability of the dressed vacuum

state , since by definition it is identical to the ground state of the system. The fact

that the definition given by Eq. (24.57) assures this requirement can be easily seen

by replacing Eq. (24.57) in Eq. (24.58). We obtain Γ0(q
′) ∝ Γ0(Q), which shows

that the dressed vacuum state given by Eq. (24.58) is the same ground state of the

interacting Hamiltonian given by Eq. (24.5).

The necessity of introducing renormalized coordinates can be understood by

considering what would happen if we write Eq. (24.58) in terms of the bare co-

ordinates qµ. In the absence of interaction, the bare states are stable since they

are eigenfuntions of the free Hamiltonian. But when we consider the interaction

they all become unstable. The excited states are unstable, since we know this from

experiment. On the other hand, we also know from experiment that the particle

in its ground state is stable, in contradiction with what our simplified model for

the system describes in terms of the bare coordinates. So, if we wish to have a

nonperturbative approach in terms of our simplified model something should be

modified in order to remedy this problem. The solution is just the introduction of

the renormalized coordinates q′µ as the physically meaningful ones.

In terms of bare coordinates, the dressed coordinates are expressed as

q′µ =
∑

ν

αµνqν , (24.59)

where

αµν =
1√
ω̄µ

∑

r

trµt
r
ν

√
Ωr. (24.60)

If we consider an arbitrarily large cavity (R →∞), the dressed coordinates reduce

to

q′0 = A00(ω̄, g)q0, (24.61)

q′i = qi, (24.62)

with A00(ω̄, g) given by,

A00(ω̄, g) =
1√
ω̄

∫ ∞

0

2gΩ2
√

ΩdΩ

(Ω2 − ω̄2)2 + π2g2Ω2
. (24.63)

In other words, in the limit R → ∞, the particle is still dressed by the field, while

for the field there remain bare modes.

Let us consider a particular dressed state |Γµ1 (0)〉, represented by the wave-

function ψ00···1(µ)0···(q
′). It describes the configuration in which only the dressed

oscillator q′µ is in the first excited level. Then the following expression for its time

evolution is valid [387]:

|Γµ1 (t)〉 =
∑

ν

fµν(t) |Γν1(0)〉

fµν(t) =
∑

s

tsµt
s
νe
−iΩst. (24.64)
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Moreover we find that
∑

ν

|fµν(t)|2 = 1 . (24.65)

Then the coefficients fµν(t) are simply interpreted as probability amplitudes.

In approaching the thermalization process in this framework, we have to write

the initial physical state in terms of dressed coordinates, or equivalently in terms of

dressed annihilation and creation operators a′µ and a′†µ instead of aµ and a†µ. This

means that the initial dressed density operator corresponding to the thermal bath

is given by

ρβ = Z−1
β exp

[
−β

∞∑

k=1

ωk

(
a′†k a

′
k +

1

2

)]
, (24.66)

where we define

a′µ =

√
ω̄µ
2
q′µ +

i√
2ω̄µ

p′µ (24.67)

a′†µ =

√
ω̄µ
2
q′µ −

i√
2ω̄µ

p′µ . (24.68)

Now we analyze the time evolution of dressed coordinates.

24.4 Thermal behavior for a cavity of arbitrary size with dressed

coordinates

The solution for the time-dependent annihilation and creation dressed operators

follows similar steps as for bare operators. The time evolution of the annihilation

operator is given by,

d

dt
a′µ(t) = i

[
Ĥ, a′µ(t)

]
(24.69)

and a similar equation for a′†µ (t). We solve this equation with the initial condition

at t = 0,

a′µ(0) =

√
ωµ
2
q′µ +

i√
2ωµ

p′µ , (24.70)

which, in terms of bare coordinates, becomes

a′µ(0) =

N∑

r,ν=0

(√
Ωr
2
trµt

r
ν q̂ν +

itrµt
r
ν√

2Ωr
p̂ν

)
. (24.71)

We assume a solution for a′µ(t) of the type

a′µ(t) =

∞∑

ν=0

(
Ḃ′µν(t)q̂ν +B′µν(t)p̂ν

)
. (24.72)
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Using Eq.(24.1) we find

B′µν(t) =

∞∑

r=0

trν
(
a′rµ e

iΩrt + b′rµ e
−iΩrt

)
. (24.73)

In the present case the time independent coefficients are different from those in the

bare coordinate approach, Eq. (24.29). The initial conditions for B ′µν(t) and Ḃ′µν(t)
are obtained by setting t = 0 in Eq. (24.72) and comparing with Eq. (24.71); Then

B′µν(0) = i
∞∑

r=0

trµt
r
ν√

2Ωr
, (24.74)

Ḃ′µν(0) =

∞∑

r=0

√
Ωr
2
trµt

r
ν . (24.75)

Using these initial conditions and the orthonormality of the matrix {trµ} we obtain

a′rµ = 0, b′rµ = itrµ/
√

2Ωr. Replacing these values for a′rµ and b′rµ in Eq. (24.73) we

get

B′µν(t) = i

∞∑

r=0

trµt
r
ν√

2Ωr
e−iΩrt . (24.76)

We have

a′µ(t) =

N∑

r,ν=0

trµt
r
ν

(√
Ωr
2
q̂ν +

i√
2Ωr

p̂ν

)
e−iΩrt

=

N∑

r,ν=0

trµt
r
ν

(√
ων
2
q̂′ν +

i√
2ων

p̂′ν

)
e−iΩrt =

∞∑

ν=0

fµν(t)â
′
ν , (24.77)

where

fµν(t) =
∞∑

r=0

trµt
r
νe
−iΩrt . (24.78)

For the occupation number n′µ(t) = 〈a′†µ (t)a′µ(t)〉 we get

n′µ(t) = Tr
(
a′†µ (t)a′µ(t)ρ

′
0 ⊗ ρ′β

)
. (24.79)

where ρ′0 is the density operator for the dressed particle and ρ′β is the density

operator for the thermal bath, which coincides with the corresponding operator for

the bare thermal bath if the system is in free space (in the sense of an arbitrarily

large cavity)[387, 388].

To evaluate n′µ(t) we choose the basis |n0, n1, · · ·, nN 〉 =
∏∞
µ=0 |nµ〉, where |nµ〉

are eigenvectors of the number operators a′†µ a
′
µ. From Eq. (24.77) we get

a′†µ (t)a′µ(t) =

∞∑

ν,ρ=0

f∗µρ(t)fµν(t)â
′†
ρ â
′
ν

=

∞∑

ν=0

|fµν(t)|2â′†ν â′ν +
∑

ν 6=ρ
f∗µρ(t)fµν(t)â

′†
ν â
′
ρ . (24.80)
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Then we obtain

n′µ(t) = |fµ0(t)|2n′0 +
∞∑

k=1

|fµk(t)|2n′k , (24.81)

where n′0 and n′k are the expectation values of the initial number operators, respec-

tively, for the dressed particle and dressed bath modes. We assume that, dressed

field modes obey a Bose-Einstein distribution. This can be justified by remember-

ing that in the free space limit, R → ∞, dressed field modes are identical to the

bare ones, according to Eqs. (24.61) and (24.62). Now, no term independent of

the temperature appears in the thermal bath. This should be expected since the

dressed vacuum is stable, particle production from the vacuum is not possible. Set-

ting µ = 0 in Eq. (24.81) we obtain the time evolution for the occupation number

of the particle,

n′0(t) = |f00(t)|2n′0 +
∞∑

k=1

|f0k(t)|2n′k . (24.82)

24.5 The limit of arbitrarily large cavity: unbounded space

In a large cavity (free space) we must compute the quantities f00(t) and f0k(t) in

the continuum limit to study the time evolution of the occupation number for the

particle.Remember that in Eqs. (24.17), ωk = kπc/R, k = 1, 2, ... and η =
√

2g∆ω,

with ∆ω = (ωi+1−ωi) = πc/R. When R→∞, we have ∆ω → 0 and ∆Ω→ 0 and

then, the sum in Eq. (24.78) becomes an integral. To calculate quantities fµν(t) we

first note that, in the continuum limit, Eq. (24.17) becomes

tr0 → tΩ0
√

∆Ω ≡ lim
∆Ω→0

Ω
√

2g∆Ω√
(Ω2 − ω̄2)2 + π2g2Ω2

, (24.83)

trk →
ω
√

2g∆ω

ω2 − Ω2
tΩ0
√

∆Ω. (24.84)

In the following, we suppress the labels in the frequencies, since they are continuous

quantities.

We start by defining a function W (z),

W (z) = z2 − ω̄2 +

∞∑

k=1

η2z2

ω2
k − z2

. (24.85)

We find that the Ω’s are the roots of W (z). Using η2 = 2g∆ω, we have in the

continuum limit,

W (z) = z2 − ω̄2 + 2gz2

∫ ∞

0

dω

ω2 − z2
. (24.86)

For complex values of z the above integral is well defined and is evaluated by using

Cauchy theorem, to be

W (z) =

{
z2 + igπz − ω̄2, Im(z) > 0

z2 − igπz − ω̄2, Im < 0 .
(24.87)
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We now compute f00(t) =
∑∞

r=0(t
r
0)

2e−iΩrt which, in the continuum limit, is

given by

f00(t) =

∫ ∞

0

(tΩ0 )2e−iΩt dΩ . (24.88)

We find that,

(tΩ0 )2 =
1

W (Ω)
, (24.89)

and since the Ω’s are the roots of W (z), we write Eq. (24.88) as

f00(t) =
1

iπ

∮

C

dze−izt

W (z)
, (24.90)

where C is a counterclockwise contour in the z-plane that encircles the real positive

roots of W (z). Choosing a contour infinitesimally close to the positive real axis,

that is z = α − iε below it and z = α + iε above it with α > 0 and ε → 0+, we

obtain

f00(t) =
1

iπ

∫ ∞

0

dααe−iαt
[

1

W (α− iε) −
1

W (α+ iε)

]
. (24.91)

In the limit ε→ 0+, Eq. (24.87) gives W (α± iε) = α2 − ω̄2 ± igπα which leads to

f00(t) = C1(t; ω̄, g) + iS1(t; ω̄, g), (24.92)

where

C1(t; ω̄, g) = 2g

∫ ∞

0

dα
α2 cos(αt)

(α2 − ω̄2)2 + π2g2α2
, (24.93)

S1(t; ω̄, g) = −2g

∫ ∞

0

dα
α2 sin(αt)

(α2 − ω̄2)2 + π2g2α2
. (24.94)

Notice that C1(t = 0; ω̄, g) = 1 and S1(t = 0; ω̄, g) = 0, so that f00(t = 0) = 1

as expected from the orthonormality of the matrix (trµ). The real part of f00(t) is

calculated using the residue theorem. For κ2 = ω̄2 − π2g2/4 > 0, which includes

the weak coupling regime, one finds

C1(t; ω̄, g) = e−πgt/2
[
cos(κt)− πg

2κ
sin(κt)

]
(κ2 > 0). (24.95)

Although S1(t; ω̄, g) cannot be analytically evaluated for all t, however for long

times, i.e. t� 1/ω̄, we have

S1(t; ω̄, g) ≈
4g

ω̄4t3
(t� 1

ω̄
). (24.96)

Thus, we get for large t

|f00(t)|2 ≈ e−πgt
[
cos(κt)− πg

2κ
sin(κt)

]2
+

16g2

ω̄8t6
. (24.97)

Next we compute the quantity f0k(t) =
∑∞

r=0 t
r
0t
r
ke
−iΩrt in the continuum limit.

It is

f0ω(t) = ηω

∫ ∞

0

(tΩ0 )2e−iΩtdΩ

(ω2 − Ω2)
=
ηω

iπ

∮

C

ze−izt

(ω2 − z2)W (z)
, (24.98)
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where η =
√

2g∆ω. Taking the same contour as that used to calculate f00(t), we

obtain

f0ω(t) = −ηω
iπ

∫ ∞

0

dα

[
αe−iαt

W (α− iε)[(α− iε)2 − ω2]
− αe−iαt

W (α+ iε)[(α+ iε)2 − ω2]

]
.

(24.99)

Thus, taking ε→ 0+, f0ω(t) is written as

f0ω(t) = ω
√

∆ω [C2(ω, t; ω̄, g) + iS2(ω, t; ω̄, g)] , (24.100)

where

C2(ω, t; ω̄, g) = (2g)
3
2

∫ ∞

0

dα
α2 cos(αt)

(ω2 − α2) [(α2 − ω̄2)2 + π2g2α2]
, (24.101)

S2(ω, t; ω̄, g) = −(2g)
3
2

∫ ∞

0

dα
α2 sin(αt)

(ω2 − α2) [(α2 − ω̄2)2 + π2g2α2]
. (24.102)

Notice that the integrals defining the functions C2 and S2 are actually Cauchy

principal values.

The function C2 is calculated analytically using Cauchy theorem; we find

C2(ω, t; ω̄, g) =
√

2g

[
e−πgt/2

{
ω2 − ω̄2

(ω2 − ω̄2)2 + π2g2ω2
cosκt

−πg
2κ

ω2 + ω̄2

(ω2 − ω̄2)2 + π2g2ω2
sinκt

}

+
πgω

(ω2 − ω̄2)2 + π2g2ω2
sinωt

]
. (24.103)

The function S2 cannot be evaluated analytically for all t, it has to be calculated

numerically. For long times, we have

S2(t; ω̄, g) ≈
4
√

2g
√
g

ω2ω̄4t3
(t� 1

ω̄
). (24.104)

In the continuum limit, we get the average of the particle occupation number,

n′0(t) =
[
C2

1 (t; ω̄, g) + S2
1(t; ω̄, g)

]
N ′0

+

∫ ∞

0

dω ω2
[
C2

2 (ω, t; ω̄, g) + S2
2(ω, t; ω̄, g)

]
N ′(ω), (24.105)

where n′(ω) = 1/(eβω − 1) is the density of occupation of the environment modes,

the functions C1 and C2 are given by Eqs. (24.95) and (24.103) while the functions

S1 and S2 are given by the integrals Eqs. (24.94) and (24.102), respectively. In

Fig. 24.2 we display the behavior of n′0(t) in time for n0 = 1, ω̄ = 1, β = 2 and

g = 0.1.

In summary, we have considered a linearized version of a particle-environment

system and we have carried out a nonperturbative treatment of the thermalization

process [395]. We have adopted a physicist’s point of view, in the sense that we

have renounced an approach very close to the real behavior of a nonlinear system,
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Fig. 24.2 Time behavior for n′

0(t) given by Eq. (24.105), for (t > 1), n0 = 1, ω̄ = 1, β = 2 and
g = 0.1.

to study instead a linear model. As a counterpart, an exact solution has been pos-

sible. We have presented an ohmic quantum system consisting of a particle, in the

larger sense of a material body, an atom or a Brownian particle coupled to an en-

vironment modelled by non-interacting oscillators. We have used the formalism of

dressed states to perform a non-perturbative study of the time evolution of the sys-

tem, contained in a cavity or in free space. Distinctly to what happens in the bare

coordinate approach, in the dressed coordinate approach no renormalization proce-

dure is needed. Our renormalized coordinates contain in them the renormalization

aspects.

For weak (electromagnetic-type) coupling, this formalism could be used to study

situations in plasma physics; in this case we would take the cavity radius R, as the

average dimension of a tokomak device. The precise formulation of this problem

could be the subject of further research work. For microscopic values of R, since the

model also applies for strong coupling, the system can be seen as a simplified linear

model for confined quarks and gluons inside a hadron. In this case all coordinates

would be effectively dressed, in the sense that they are all collective, both field modes

and the particle could not be separated in this language. Of course the normal

coordinates are also collective, but they correspond to stable eigenstates, no change

in time exists for them. If we ascribe physical meaning to our dressed coordinates

and states, matter and gauge quanta inside hadrons, could not be individualized

as quarks and gluons, instead we would have a kind of quarkgluon magma. Since
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quarks and gluons are permanently confined, we could think that, in the context

of our model, quarks and gluons should not really exist, they would be actually an

artifact of perturbation theory. As far as the thermalization process is concerned

from a formal viewpoint, both bare and dressed approaches are in agreement with

what we expect for this process. Both curves in Fig. 24.1 and Fig. 24.2 approach

steadily to an asymptotic value of the bare and dressed ocupation numbers of the

particle. For long times, all the information about the particle occupation numbers

depends only on the environment.
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Epilogue

This book was planned to be a monograph that would bring the central ideas of

symmetry in connection with thermal field theories and its applications to phys-

ical systems. We have accomplished this goal by putting forward the notion of

thermo-algebra, that has its origin in the representations of Lie groups associated

with kinematical symmetry based on a physical distinction among observables and

generators of symmetry describing thermal systems. This procedure provides a

clear idea about the connection among theories, such as the imaginary time ap-

proach of Matsubara, the analytical formalism in the complex plane of Schwinger

and Keldysh, and the real time finite temperature (TFD) method due to Taka-

hashi and Umezawa. The latter two methods require a duplication of the Hilbert

space, either through a specific contour in the complex plane or as a fundamental

ansatz. However, the representations of the Lie groups provide the proper connec-

tion between the three diverse approaches to the finite temperature quantum field

theory.

An analysis of the Green function by Kubo, Martin and Schwinger had estab-

lished a periodicity (anti-periodicity) condition for the case of bosons (fermions).

This may be viewed as a statement on the compactified status for the time variable

that is considered as the temperature in the Matsubara method. The notion of

thermo-algebra suggested a generalization of this idea to space coordinates, thus

leading to a description of quantum fields in compactified space and time. The rep-

resentations of Lie groups lead directly to the Liouville-von Neumann equation for

different fields and to the duplication of the Hilbert space. Since the temperature

effects are introduced by a Bogoliubov transformation, this leads us immediately to

generalize the Bogoliubov transformation to compactifying both time and space co-

ordinates. Such an extension of these notions have physical implications. We have

shown applications of the generalized Bogoliubov transformation to the Casimir

effect, that is often considered for some compactified geometry since the effect

decreases rapidly for large separations between the boundaries. This generalized

notion is used to treat systems in a (S1)d × RD−d topology. Further applications

are in superconductivity in confined space regions.

441
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There are domains not covered due to lack of space. After all we cannot pretend

to cover completely such a large and growing field. In particular, several of these

subjects are treated extensively in excellent books by Umezawa [72], Umezawa,

Matsumoto and Tachiki [73], Kapusta [50], Le Bellac [51] and Das [52], among

others. Only a brief space is devoted to considering problems in open systems,

i.e. systems in nonequilibrium state. It is suggested that a combination of the

Schrödinger approach and TFD may provide a viable alternative to studying open

systems. Details of this need to be pursued. Other topics have not found a great

deal of attention by us. Let us comment on some of these.

Phase transitions. Approaches to phase transition and beyond are not fully

covered. Instead, we choose to examine the subject of phase transitions in confined

systems, since it is a theme not yet very well explored. There are dynamical aspects

that remain elusive to detailed analysis. This is true for systems in the laboratory

as well as to the early evolution of the universe which cooled down very rapidly,

such that the quark-gluon plasma reached a point to make a transition to hadrons.

The quark-gluon plasma is believed to be formed in heavy ion collisions. However,

the whole question of its formation and the hadronization is not yet really under-

stood. This requires a full theory that will allow a microscopic understanding of

the dynamical processes that are responsible for their behavior.

Galilean physics. The role of temperature in Galilean theories is not fully un-

derstood if dynamical processes have to be taken into account. For instance, how do

condensed systems become liquid and vice versa? No doubt there are many books

that deal with this topic, but no consistent dynamical theory for these transitions

exists. Nuclear physics, as another example, is likely a system with Galilean sym-

metry. The presence and behavior of collective states, a consequence of spontaneous

symmetry breaking as a function of temperature, would be an important feature in

trying to understand the properties of excited nuclei and reaction processes. Can we

find the answers within representations of the Galilei group? If so, a theory based

on Galilean covariance [396, 397] at finite temperature might be needed to study

these properties in detail. In classical contexts, as in stochastic lattices, there have

been in the literature numerous methods enunciated in this book. In many cases,

however, some developments have been carried in an ad hoc fashion. Hopefully, the

present approach, addressing these problems from a symmetry point of view, would

stimulate more coordinated activity in various different fields, providing a unifying

feature that would give a sound basis for many of them.

Quantum optics. We have touched on the various possible states that may be

useful to developments in quantum optics. However, the use in, for example, cryp-

tography, encryption and teleportation have not been considered. Developments

along these directions may provide further impetus to new ideas and notions in

this fertile area of research, to treat the temperature effect, a central aspect in the

experimental context.
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Symmetry restoration at high temperature. It is believed that spon-

taneous symmetry breaking at low temperatures is restored as the temperature is

raised to a critical point and beyond. At present, it is not known in detail how

this happens and what is the behavior of systems as this is occurring, mainly in

nonequilibrium situations. We have considered the problem, in part, by choosing to

examine systems in compactified spaces that are not currently analyzed carefully.

We are rather hopeful that the ideas based on symmetry presented in this book

would find a wider class of applications. We could envisage considering confined

systems, where other type of topological confinement, other than the ones studied

here, would be described by Bogoliubov transformations.
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Subtraction scheme, 314
Symmetrized summation, 347
Symmetry

Galilei, 121
Lie, 121
Poincaré, 121
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