
ptg

From the Library of Lee Bogdanoff

ptg

Symptoms Smell

Data

Data Class, p. 110

Same 2-3 items occur together in classes or parameter lists
Data Clump, p. 112

Instance variables named with similar substrings

Open Secret, p. 108

An instance variable has a value only some of the time Temporary Field, p. 114

Inheritance

Subclass is too tied to parent’s data or methods

Class has little code in it Lazy Class, p. 131

Inherited method doesn’t work

Clients refer to subclass but never hold reference to the
parent class

the parent class

Use of subclassing purely to share code Implementation Inheritance, p. 126

Responsibility

Class manipulates another class’ state Feature Envy, p. 136

Class relies too much on how another class works

Chain of calls: a.b().c().d() Message Chain, p. 143

Middle Man, p. 145

Accommodating Change

points in its hierarchy

Each level of hierarchy deals with a different attribute

Same class changes for different reasons Divergent Change, p. 154

another hierarchy Parallel Inheritance Hierarchies, p. 158

Multiple classes must change for a single decision Shotgun Surgery, p. 156

Working with Libraries

Library doesn’t have a feature you need Incomplete Library Module, p. 164

Reinvented Wheel, p. 166

Runaway Dependencies, p. 167

Continued from inside front cover

From the Library of Lee Bogdanoff

ptg

REFACTORING IN RUBY

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

REFACTORING IN RUBY

William C. Wake
Kevin Rutherford

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of Lee Bogdanoff

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data
Wake, William C., 1960-

Refactoring in Ruby / William C. Wake, Kevin Rutherford.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-54504-6 (pbk. : alk. paper)
1. Software refactoring. 2. Ruby (Computer program language) I. Rutherford, Kevin. II. Title.
QA76.76.R42.W345 2009
005.1’17—dc22

2009032115

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-54504-6
ISBN-10: 0-321-54504-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2009

From the Library of Lee Bogdanoff

www.informit.com/aw

ptg

v

For
Angus James Bramwell Rutherford,

a wee gem

In memory
William B. Wake (1938-2007), Dad

and
Steve Metsker (1958-2008), colleague and friend

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

vii

Contents

Foreword xvii
Preface xix
About the Authors xxiii

PART I The Art of Refactoring 1

Chapter 1 A Refactoring Example 3

Sparkline Script 3
Consistency 6
Testability 8
Greedy Methods 8
Greedy Module 9
Comments 10
Whole Objects 11
Feature Envy 12
Uncommunicative Names 14
Derived Values 15
Wabi-Sabi 17
Summing Up 18
What’s Next 18

Chapter 2 The Refactoring Cycle 19

What Is Refactoring? 19
Smells Are Problems 20
The Refactoring Cycle 21
When Are We Done? 21
Test-Driven/Behavior-Driven Development 22

From the Library of Lee Bogdanoff

ptg

viii Contents

Exercise 23
Exercise 2.1: Simple Design 23

What’s Next 23

Chapter 3 Refactoring Step by Step 25

The Refactoring Environment 25
Inside a Refactoring 26
The Generic Refactoring Micro-Process 30
Exercises 33

Exercise 3.1: Small Steps 33
Exercise 3.2: Inverse Refactorings 33

What’s Next 33

Chapter 4 Refactoring Practice 35

Read Other Books 35
Practice Refactoring 35
Exercises to Try 36
Participate in the Community 37
Exercise 38

Exercise 4.1: Get to Know the Refactorings 38
What’s Next 38

PART II Code Smells 39

Chapter 5 Measurable Smells 41

Comments 42
Long Method 44
Large Module 46
Long Parameter List 48
Exercises 49

Exercise 5.1: Comments 49
Exercise 5.2: Long Method 50
Exercise 5.3: Large Class 51
Exercise 5.4: Smells and Refactoring 55
Exercise 5.5: Triggers 55

From the Library of Lee Bogdanoff

ptg

Contents ix

Chapter 6 Names 57

Type Embedded in Name 59
Uncommunicative Name 60
Inconsistent Names 61
Exercises 62

Exercise 6.1: Names 62
Exercise 6.2: Critique the Names 62
Exercise 6.3: Superclasses 63
Exercise 6.4: Method Names 63

Chapter 7 Unnecessary Complexity 65

Dead Code 66
Speculative Generality 68
Greedy Method 70
Procedural Code 72
Dynamic Code Creation 74
Exercises 76

Exercise 7.1: Dead Code (Challenging) 76
Exercise 7.2: Today versus Tomorrow 76
Exercise 7.3: Extraction Trade-Offs 77
Exercise 7.4: Formatting Names 77
Exercise 7.4: Procedural Code 78

Chapter 8 Duplication 79

Derived Value 80
Repeated Value 81
Duplicated Code 83
Alternative Modules with Different Interfaces 85
Exercises 86

Exercise 8.1: Rakefi le 86
Exercise 8.2: Two Libraries (Challenging) 86
Exercise 8.3: Environment Variables 87
Exercise 8.4: Template 88
Exercise 8.5: Duplicate Observed Data (Challenging) 89
Exercise 8.6: Ruby Libraries 90
Exercise 8.7: Points 90
Exercise 8.8: XML Report 91

From the Library of Lee Bogdanoff

ptg

x Contents

Chapter 9 Conditional Logic 93

Nil Check 94
Special Case 96
Complicated Boolean Expression 98
Control Coupling 100
Simulated Polymorphism 101
Exercises 103

Exercise 9.1: Null Object 103
Exercise 9.2: Conditional Expression 103
Exercise 9.3: Case Statement 104
Exercise 9.4: Guard Clauses (Challenging) 104
Exercise 9.5: Factory Method (Challenging) 105

Chapter 10 Data 107

Open Secret 108
Data Class 110
Data Clump 112
Temporary Field 114
Exercises 115

Exercise 10.1: Alternative Representations 115
Exercise 10.2: Primitives and Middle Men 115
Exercise 10.3: Rails Accounts 115
Exercise 10.4: Long Parameter List 118
Exercise 10.5: A Counter-Argument 118
Exercise 10.6: Editor 118
Exercise 10.7: Library Classes 119
Exercise 10.8: Hidden State 119
Exercise 10.9: Proper Names 120
Exercise 10.10: Checkpoints 122

Chapter 11 Inheritance 125

Implementation Inheritance 126
Refused Bequest 128
Inappropriate Intimacy (Subclass Form) 130
Lazy Class 131
Exercises 133

Exercise 11.1: ArrayQueue 133
Exercise 11.2: Relationships 133

From the Library of Lee Bogdanoff

ptg

Contents xi

Exercise 11.3: Read-Only Documents (Challenging) 134
Exercise 11.4: Inheritance Survey (Challenging) 134

Chapter 12 Responsibility 135

Feature Envy 136
Utility Function 138
Global Variable 140
Inappropriate Intimacy (General Form) 141
Message Chain 143
Middle Man 145
Greedy Module 146
Exercises 148

Exercise 12.1: Feature Envy 148
Exercise 12.2: Walking a List 148
Exercise 12.3: Middle Man 149
Exercise 12.4: Cart (Challenging) 150
Exercise 12.5: Utility Functions 151
Exercise 12.6: Attributes 151
Exercise 12.7: Message Chains 152

Chapter 13 Accommodating Change 153

Divergent Change 154
Shotgun Surgery 156
Parallel Inheritance Hierarchies 158
Combinatorial Explosion 159
Exercises 160

Exercise 13.1: CSV Writer 160
Exercise 13.2: Shotgun Surgery 162
Exercise 13.3: Hierarchies in Rails 162
Exercise 13.4: Documents 162

Chapter 14 Libraries 163

Incomplete Library Module 164
Reinvented Wheel 166
Runaway Dependencies 167
Exercises 168

Exercise 14.1: Layers (Challenging) 168
Exercise 14.2: Closed Classes (Challenging) 168
Exercise 14.3: A Missing Function 169

From the Library of Lee Bogdanoff

ptg

xii Contents

PART III Programs to Refactor 171

Chapter 15 A Simple Game 173

Code 173
Refactoring 175

Exercise 15.1: Smells 175
Exercise 15.2: Easy Changes 175
Exercise 15.3: Fuse Loops 176
Exercise 15.4: Result 177
Exercise 15.5: Next 177
Exercise 15.6: Constants 177
Exercise 15.7: Checking for Wins 178
Exercise 15.8: Representations 178
Exercise 15.9: Refactoring 179
Exercise 15.10: Winning Combinations 179
Exercise 15.11: Iterator 179

Development Episodes 180
Exercise 15.12: Scores 180
Exercise 15.13: Comparing Moves 180
Exercise 15.14: Depth 181
Exercise 15.15: Caching 181
Exercise 15.16: Balance 182
Exercise 15.17: New Features 182
Exercise 15.18: Min-Max 182
Exercise 15.19: Do-Over? 182

Chapter 16 Time Recording 183

Exercise 16.1: Rewrite or Refactor? 187
Preparing the Soil 187

Exercise 16.2: Project Kick-Off 187
Exercise 16.3: Test Coverage 188
Exercise 16.4: Application Object 188
Exercise 16.5: Testable Methods 189
Exercise 16.6: Rates of Change 189
Exercise 16.7: Open Secrets 190
Exercise 16.8: Hexagonal Architecture (Challenging) 190

Substitute Algorithm 191
Exercise 16.9: Data Smells 191
Exercise 16.10: Extending the Database 191

From the Library of Lee Bogdanoff

ptg

Contents xiii

Exercise 16.11: Adapter Tests (Challenging) 192
Exercise 16.12: Database Technology 192
Exercise 16.13: Database Tests (Challenging) 193
Exercise 16.14: Database Adapter (Challenging) 193
Exercise 16.15: Integration Test 194
Exercise 16.16: Going Live 194

Optional Extras 194
Exercise 16.17: Active Record (Challenging) 194
Exercise 16.18: Test-Driven Development 195

Chapter 17 Calculator 197

Exercise 17.1: Smells 198
Code 198
Refactoring 209

Exercise 17.2: Clean Up Calculator 210
Exercise 17.3: Staighten Out is_calculated 210
Exercise 17.4: Controller 210
Exercise 17.5: Generic Calculator 211
Exercise 17.6: UI Class 211
Exercise 17.7: Value and Dimension 211
Exercise 17.8: What Else? 211

Thank You 211

PART IV Appendices 213

Appendix A Answers to Selected Questions 215

The Refactoring Cycle 215
Exercise 2.1: Simple Design 215

Refactoring Step by Step 216
Exercise 3.1: Small Steps 216
Exercise 3.2: Inverse Refactorings 216

Refactoring Practice 216
Exercise 4.1: Get to Know the Refactorings 216

Measurable Smells 217
Exercise 5.1: Comments 217
Exercise 5.2: Long Method 217
Exercise 5.3: Large Class 218

From the Library of Lee Bogdanoff

ptg

xiv Contents

Exercise 5.4: Smells and Refactorings 220
Exercise 5.5: Triggers 220

Names 220
Exercise 6.1: Names 220
Exercise 6.2: Critique the Names 221
Exercise 6.3: Superclasses 221
Exercise 6.4: Method Names 221

Unnecessary Complexity 222
Exercise 7.2: Today versus Tomorrow 222
Exercise 7.3: Extraction Trade-Offs 222
Exercise 7.4: Formatting Names 223
Exercise 7.5: Procedural Code 223

Duplication 225
Exercise 8.1: Rakefile 225
Exercise 8.2: Two Libraries 225
Exercise 8.3: Environment Variables 226
Exercise 8.4: Template 227
Exercise 8.5: Duplicate Observed Data 227
Exercise 8.6: Ruby Libraries 228
Exercise 8.7: Points 229
Exercise 8.8: XML Report 229

Conditional Logic 230
Exercise 9.1: Null Object 230
Exercise 9.2: Conditional Expression 230
Exercise 9.3: Case Statement 231
Exercise 9.5: Factory Method 232

Data 233
Exercise 10.1: Alternative Representations 233
Exercise 10.2: Primitives and Middle Men 234
Exercise 10.3: Rails Accounts 234
Exercise 10.4: Long Parameter List 235
Exercise 10.5: A Counter-Argument 235
Exercise 10.6: Editor 235
Exercise 10.7: Library Classes 236
Exercise 10.8: Hidden State 236
Exercise 10.9: Proper Names 236
Exercise 10.10: Checkpoints 237

Inheritance 237
Exercise 11.1: ArrayQueue 237
Exercise 11.2: Relationships 237
Exercise 11.3: Read-Only Documents 237

From the Library of Lee Bogdanoff

ptg

Contents xv

Responsibility 239
Exercise 12.1: Feature Envy 239
Exercise 12.2: Walking a List 239
Exercise 12.3: Middle Man 240
Exercise 12.4: Cart 240
Exercise 12.5: Utility Functions 240
Exercise 12.6: Attributes 241
Exercise 12.7: Message Chains 241

Accommodating Change 241
Exercise 13.1: CSV Writer 241
Exercise 13.3: Hierarchies in Rails 243
Exercise 13.4: Documents 243

Libraries 244
Exercise 14.1: Layers 244
Exercise 14.2: Closed Classes 245
Exercise 14.3: Missing Function 245

A Simple Game 246
Exercise 15.1: Smells 246
Exercise 15.3: Fuse Loops 246
Exercise 15.4: Result 246
Exercise 15.6: Constants 246
Exercise 15.8: Representations 246

Time Recording 247
Exercise 16.1: Rewrite or Refactor? 247
Exercise 16.3: Test Coverage 248
Exercise 16.6: Rates of Change 248
Exercise 16.8: Hexagonal Architecture 248
Exercise 16.9: Data Smells 248
Exercise 16.10: Extending the Database 249
Exercise 16.12: Database Technology 249

Appendix B Ruby Refactoring Tools 251

Code Smell Detectors 251
Environments with Refactoring Support 252

Bibliography 253
Index 255

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

Foreword

I want to give you two reasons to work through this book. The fi rst reason is about right
now, and the second is about forevermore.

The reason you need to work through this book right now is, well, us: You and me
and all the other Ruby programmers out there. While Ruby’s a language that, as the
saying goes, makes simple things simple and hard things possible, and while we Ruby
programmers are intelligent, virtuous, good-looking, kind to animals, and great fun at
parties—we’re still human. As such, what we make is often awkward, even if it’s Ruby
code.

So there’s this vast and ever-growing sea of Ruby programmers out there, writing
awkward Ruby code. I bet you’re working on some of that code now, and I’m sure you’ll
be working on more of it soon. Do you want to be happy doing that? Or sad?

In the past ten years or so, we’ve learned that a wonderful way to be happy working
on code is to refactor it as you go. Refactoring means that you change the code to be
less awkward on the inside without changing what it does. It’s something you can do in
small, safe steps while adding features or fi xing bugs. As you do, the code keeps getting
more pleasant, so your life does too.

Before I give you the second reason to work through the book, I want to share my
deepest fear: that you’ll only read it, not work through it. That would be a horrible
mistake. When I think of you doing that, I imagine all the wonderful tricks in the book
entering your head through your eyes—and then far, far too many of them sliding
right out of your ears, never to be recalled again. What tricks you do remember will be
shuffl ed off to that part of the brain marked “For Rational Use Only,” to be taken out
rarely, on special occasions. Mere reading will not make you an expert.

You see, expert behavior is often a-rational. Experts typically act appropriately with-
out needing to think through a problem. Indeed, experts often have diffi culty explaining
why a particular action was appropriate. That’s because “thinking through a problem”
is expensive, so the brain prefers more effi cient routes to correct behavior. Those routes
are created through repetition—like by doing the exercises in this book. (Gary Klein’s
Sources of Power is a good book about expert behavior, and Read Montague’s Why Choose
This Book? explains why the brain avoids what we think of as problem-solving.)

xvii

From the Library of Lee Bogdanoff

ptg

xviii Foreword

When it comes to the awkwardness this book teaches you how to correct, effi cient
thinking and automatic behavior are important. To get good at this stuff, it’s not enough
to be able to search for awkwardness—it has to leap out at you as you travel the code. In-
deed, I’m happy that Kevin and Bill—like most who write about refactoring—describe
awkwardness as “code smells.” That’s because smell is probably the most powerful, prim-
itive, and least controllable of senses. When you open up a container and the smell of
rotting meat hits your brain, you move. You act. The smell of rotting code should do the
same, but it will only do so after practice blazes well-worn trails through your brain.

So: DO THE EXERCISES.

The reason this book will be valuable to you forevermore is that computers are strik-
ingly unsuited to most problems that need solving. They pigheadedly insist that we
squeeze every last drop of ambiguity out of a world that’s fl ooded with it. That’s a ridicu-
lous … impossible … inhuman demand that we put up with only because computers
are so fast. As a result of this fundamental mismatch—this requirement that we make up
precision—it takes us a long time to craft a program that works well in the world.

The humble and effective way to arrive at such a program is to put a fl edgling ver-
sion out into the world, watch what happens, and then reshape it (the program, not
the world—although people try that too) to make the mismatch less awkward. (And
then do it again, and again.) That’s an intellectual adventure, especially when you spot
concepts implicit in the code that no one’s ever quite recognized before, concepts that
suddenly open up vast new possibilities and require only a few … well, maybe more
than a few … minor … well, maybe not so minor … changes.

Without refactoring, and the style it promotes and supports, the changes the pro-
gram needs will be too daunting too often. With it, you need nevermore look at a pro-
gram with that familiar sense of hopeless dread.

And won’t that be nice?
—Brian Marick

July 4, 2009

From the Library of Lee Bogdanoff

ptg

Preface

I work mostly as an agile/XP/TDD coach, mostly working with teams developing C++
or C# or Java applications, mostly for Microsoft Windows platforms. Early in any en-
gagement I will inevitably recommend that everyone on the team work through William
Wake’s Refactoring Workbook [26], which I consider to be far and away the best book
for any developer who wants to learn to write great code. A short while later in every
engagement—and having a UNIX background myself—I urge everyone on the team
to improve their project automation skills by adopting a scripting language. I always
recommend Ruby because it’s easy to learn and object-oriented, and I generally recom-
mend new teams to read Brian Marick’s Everyday Scripting with Ruby [20] as a starter.

Finally, one day in the summer of 2007, it dawned on me that there was one great
book that I couldn’t recommend, one that would combine those two facets of all of my
projects, but one that hadn’t yet been written—a Refactoring Workbook for Ruby. So I
contacted Bill Wake and suggested we write one, and you’re now reading the result.

Compared with Bill’s original Java Refactoring Workbook, this Ruby edition has a
similar overall structure but is otherwise a substantial rewrite. We have retained the
core smells, added a few more, and reworked them to apply to Ruby’s more dynamic
environment. We have replaced all of the code samples, and replaced or revised all of
the exercises. We have also rewritten much of the introductory material, principally to
refl ect the rise in importance of test-driven development during the last fi ve years.

In short, we have tried to create a stand-alone Ruby refactoring workbook for the
modern developer, and not a Java book with Ruby code samples. I hope we’ve come
reasonably close to that goal.

—Kevin Rutherford
Summer 2009

What Is This Book About?
Refactoring is the art of improving the design of existing code and was introduced to the
world by Martin Fowler in Refactoring [14]. Fowler’s book provides dozens of detailed
mechanical recipes, each of which describes the steps needed to change one (usually small)
aspect of a program’s design without breaking anything or changing any behavior.

xix

From the Library of Lee Bogdanoff

ptg

xx Preface

But to be skilled in refactoring is to be skilled not only in safely and gradually chang-
ing code’s design, but also in fi rst recognizing where code needs improvement. The agile
community has adopted the term code smell to describe the anti-patterns in software
design, the places where refactoring is needed.

The aim of this book, then, is to help you practice recognizing the smells in exist-
ing Ruby code and apply the most important refactoring techniques to eliminate those
smells. It will also help you think about how to design code well and to experience the
joy of writing great code.

To a lesser extent this book is also a reference work, providing a checklist to help
you review for smells in any Ruby code. We have also described the code smells using a
standard format; for each smell we describe

What to Look For: cues that help you spot it•

Why This Is a Problem: the undesirable consequences of having code with this •
smell

When to Leave It: the trade-offs that may reduce the priority of fi xing it•

How It Got This Way: notes on how it happened•

What to Do: refactorings to remove the smell•

What to Look for Next: what you may see when the smell has been removed•

This should help keep the smell pages useful for reference even when you’ve fi n ished
the challenges.

This book does not attempt to catalog or describe the mechanics of refactorings in
Ruby. For a comprehensive step-by-step guide to Ruby refactoring recipes, we recom mend
Refactoring, Ruby Edition, by Jay Fields, Shane Harvie, and Martin Fowler [11], which is
a Ruby reworking of Fowler’s Refactoring. It is also not our intention to de scribe smells in
tests; these are already covered well by Gerard Meszaros in XUnit Test Patterns [22].

Who Is This Book For?
This book is intended for practicing programmers who write and maintain Ruby code
and who want to improve their code’s “habitability.” We have tried to focus primarily
on the universal principles of good design, rather than the details of advanced Ruby-fu.
Nevertheless, we do expect you to be familiar with most aspects of the Ruby language,
the core classes, and the standard libraries. For some exercises you will also need an ex-
isting body of Ruby code on hand; usually this will be from your own projects, but you
could also use open source code in gems or downloaded applications. Familiarity with

From the Library of Lee Bogdanoff

ptg

Preface xxi

refactoring tools or specifi c IDEs is not assumed (but the examples in this book will
provide great help if you wish to practice using such tools).

As mentioned above, it will be helpful to have Fields et al., Refactoring, Ruby Edition
[11], handy as you work through the exercises. In addition to the mechanics of refactor-
ings, we frequently refer to design patterns, particularly those cataloged by Gamma et al.
[16]; you may also fi nd it useful to have available a copy of Russ Olsen’s Design Patterns
in Ruby [24].

What’s in This Book?
This book is organized into three sections.

Part I, “The Art of Refactoring,” provides an overview of the art of refactoring. We
begin with an example; Chapter 1, “A Refactoring Example,” takes a small Ruby script
containing some common smells and refactors it toward a better design. Chapter 2,
“The Refactoring Cycle,” takes a brief look at the process of refactoring—when and how
to refactor with both legacy code and during test-driven development—while Chapter
3, “Refactoring Step by Step,” looks in detail at the tools used and steps taken in a single
refactoring. Finally, Chapter 4, “Refactoring Practice,” suggests some ex ercises that you
can apply in your own work and provides suggestions for further reading.

Part II, “Code Smells,” is the heart of the book, focusing on Ruby code smells. Each
chapter here consists of descriptions of a few major code smells, followed by a number of
exercises for you to work through. The challenges vary; some ask you to analyze code, oth-
ers to assess a situation, others to revise code. Not all challenges are equally easy. The harder
ones are marked “Challenging”; you’ll see that these often have room for variation in their
answers. Some exercises have solutions (or ideas to help you fi nd solutions) in Appendix
A, “Answers to Selected Questions.” Where an exercise relies on Ruby source code you can
download it from www.refactoringinruby.info.

Part III, “Programs to Refactor,” provides a few “large” programs to help you prac-
tice refactoring in a variety of domains.

Part IV, “Appendices,” provides selected answers to exercises and brief descriptions
of currently available Ruby refactoring tools.

How to Use This Book
This is a workbook: Its main purpose is to help you understand the art of refactoring by
practicing, with our guidance. There’s an easy way to do the exercises: Read the exercise,
look up our solution, and nod because it sounds plausible. This may lead you to many
insights. Then there’s a harder but far better way to do the exercises: Read the exercise,

From the Library of Lee Bogdanoff

www.refactoringinruby.info

ptg

xxii Preface

solve the problem, and only then look up our solution. This has a much better chance
of leading you to your own insights. Solving a problem is more challenging than merely
recognizing a solution and is ultimately much more rewarding.

As you work through the problems, you’ll probably fi nd that you disagree with us on
some answers. If so, please participate in the community and discuss your opinions with
others. That will be more fun for all of us than if you just look at our answers and nod.
See Chapter 4, “Refactoring Practice,” to learn how to join the discussion.

We think it’s more fun to work with others (either with a pair-partner or in a small
group), but we recognize this isn’t always possible.

Almost all of the code examples need to be done at a computer. Looking for prob-
lems, and fi guring out how to solve them, is different when you’re looking at a program
in your environment. Hands-on practice will help you learn more, particularly where
you’re asked to modify code. Refactoring is a skill that requires practice.

Good luck!

Acknowledgments
Brian Marick has been a huge supporter of the original Refactoring Workbook project,
and an inspiration with his writing and teaching.

We’d like to thank our core reviewers: Pat Eyler, Micah Martin, Russ Olsen, and
Dean Wampler. Their encouragement and suggestions really helped us along the way.

Our involvement in this writing project has placed demands and strains on our
families, and we both thank them deeply for their endless patience and support.

Kevin thanks the many people who read drafts of various chapters and provided re-
actions and feedback, notably Lindsay McEwan; and many thanks to Ashley Moran for
pushing the development of Reek, and for introducing lambdas into the Robot tests.

Bill thanks his friends Tom Kubit and Kevin Bradtke for being sounding boards on
agile software and other ideas. (Tom gets a double nod for his reviews and discussion of
the earlier book.)

Finally, thanks to Chris Guzikowski, Chris Zahn, Raina Chrobak, Kelli Brooks,
Julie Nahil, and the others at Pearson who have helped us pull this together.

Contact Us
Feel free to contact us:

Kevin: kevin@rutherford-software.com

 http://www.kevinrutherford.co.uk

Bill: william.wake@acm.org

 http://xp123.com

From the Library of Lee Bogdanoff

http://www.kevinrutherford.co.uk
http://xp123.com

ptg

About the Authors

William C. Wake is a senior consultant with Industrial Logic, Inc. From 2007 to early
2009, he managed development at Gene Codes Forensics, Inc., a producer of bioin-
formatics software. From 2001 through 2006, he was an independent consultant fo-
cused on agile software. He’s the author of the Refactoring Workbook (Addison-Wesley,
2004) and coauthor of Design Patterns in Java (Addison-Wesley, 2006). His web site
is www.xp123.com.

Kevin Rutherford, Ph.D., is an independent agile and TDD coach based in the
United Kingdom. He has worked in software development for more than 25 years,
and since 1997 has been coaching organizations to become highly responsive service
providers. He founded the U.K.’s AgileNorth group and is regularly involved on the
agile conference circuit. His working practices focus on use of the Theory of Con-
straints and code quality, and he is the author of the Reek tool for Ruby. His web site
is www.kevinrutherford.co.uk.

xxiii

From the Library of Lee Bogdanoff

www.xp123.com
www.kevinrutherford.co.uk

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

PART I
The Art of
Refactoring

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

3

CHAPTER 1

A Refactoring Example

Rather than start with a lot of explanation, we’ll begin with a quick example of refactoring
to show how you can identify problems in code and systematically clean them up. We’ll
work “at speed” so you can get the feel of a real session. In later chapters, we’ll touch on
theory, provide deeper dives into problems and how you fi x them, and explore moderately
large examples that you can practice on.

Sparkline Script
Let’s take a look at a little Ruby script Kevin wrote a while back. The script generates a
sparkline (a small graph used to display trends, without detail) and does it by generating
an SVG document to describe the graphic. (See Figure 1.1.)

The original script was written quickly to display a single sparkline to demonstrate
the trends that occur when tossing a coin. It was never intended to live beyond that
single use, but then someone asked Kevin to generalize it so that the code could be used
to create other sparklines and other SVG documents. The code needs to become more
reusable and maintainable, which means we’d better get it into shape.

-48

Figure 1.1 A sparkline

From the Library of Lee Bogdanoff

ptg

4 Chapter 1: A Refactoring Example

Here’s the original code:

NUMBER_OF_TOSSES = 1000

BORDER_WIDTH = 50

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

def spark(centre_x, centre_y, value)

 "<rect x=\"#{centre_x-2}\" y=\"#{centre_y-2}\"

 width=\"4\" height=\"4\"

 fill=\"red\" stroke=\"none\" stroke-width=\"0\" />

 <text x=\"#{centre_x+6}\" y=\"#{centre_y+4}\"

 font-family=\"Verdana\" font-size=\"9\"

 fill=\"red\" >#{value}</text>"

end

$tosses = values(NUMBER_OF_TOSSES)

points = []

$tosses.each_index { |i| points << "#{i},#{200-$tosses[i]}" }

data = "<svg xmlns=\"http://www.w3.org/2000/svg\"

 xmlns:xlink=\"http://www.w3.org/1999/xlink\" >

 <!-- x-axis -->

 <line x1=\"0\" y1=\"200\" x2=\"#{NUMBER_OF_TOSSES}\" y2=\"200\"

 stroke=\"#999\" stroke-width=\"1\" />

 <polyline fill=\"none\" stroke=\"#333\" stroke-width=\"1\"

 points = \"#{points.join(' ')}\" />

 #{spark(NUMBER_OF_TOSSES-1, 200-$tosses[-1], $tosses[-1])}

</svg>"

puts "Content-Type: image/svg+xml

Content-Length: #{data.length}

#{data}"

Forty lines of code, and what a mess! Before we dive in and change things, take a
moment to review the script. Which aspects of it strike you as convoluted, or unreadable,
or even unmaintainable? Part II, “Code Smells,” of this book lists over forty common
code problems: Each kind of problem is known as a code smell, and each has very specifi c

5

10

15

20

25

30

35

40

From the Library of Lee Bogdanoff

ptg

Spa rkline Script 5

characteristics, consequences, and remedies. For the purposes of this quick refactoring
demonstration, we’ll use the names of these smells (so that you can cross-reference with
Part II, “Code Smells,” if you wish), but otherwise we just want to get on with fi xing the
code. Here are the more obvious problems we noticed in the code:

Comments:• There’s a comment in the SVG document (line 29). As a comment in
the SVG output that’s not a bad thing, because the SVG is quite opaque. But it also
serves to comment the Ruby script, which suggests that the string is too complex.

Inconsistent Style:• Part of the SVG document is broken out into a separate method
(line 34), whereas most is built inline in the data string.

Long Parameter List:• Strictly speaking, the list of properties of the XML elements
aren’t Ruby parameters. But they are long lists, and we feel sure they will cause
problems later.

Uncommunicative Name:• The code uses data as the name of the SVG document,
i as an iterator index (line 25), a as the name of an array (line 9), and n as the num-
ber of array elements (line 8).

Dead Code:• The constant BORDER_WIDTH (line 2) is unused.

Greedy Method:• toss tosses a coin and also scales it to be –2 or +2.

Derived Value:• Most of the numbers representing SVG coordinates and shape sizes
could probably be derived from the number of tosses and the sparkline’s max and
min values.

Duplicated Code:• The text markers for the start and end tags of XML elements
are repeated throughout the code; the calculation 200-tosses[x] is repeated
(lines 25, 34).

Data Clump:• The SVG components’ parameters include several x-y pairs that rep-
resent points on the display canvas (lines 15, 18, 30). Some have further parameters
that go to make up a rectangle (lines 16, 30). Strictly, these are parameters to SVG
elements, and this is therefore a problem in the defi nition of SVG.

Global Variable:• Why is tosses a global variable at all?

Utility Function:• One might argue that all of the methods here (lines 4, 8, 14) are
Utility Functions.

Greedy Module:• The script isn’t a class, as such, but it does have multiple respon-
sibilities: Some of the script deals with tossing coins, some deals with drawing pic-
tures, and some wraps the SVG document in an HTTP message.

Divergent Change:• The data string (lines 27–35) is probably going to need to be
different for almost every imaginable variation on this script.

From the Library of Lee Bogdanoff

ptg

6 Chapter 1: A Refactoring Example

Reinvented Wheel:• There are already Ruby libraries for manipulating XML ele-
ments, and even for creating SVG documents.

Which should we address fi rst? When faced with a long to-do list of code smells it’s
easy to feel a little intimidated. It’s important to remember at this stage that we can’t fi x
everything in one sitting; we’ll have to proceed in small, safe steps. We also want to avoid
planning too far ahead—the code will change with every step, and right now it would
be a futile waste of energy to attempt to visualize what the code might be like even a few
minutes from now.

So in the next few sections we’re simply going to address the smells that strike us as
“next” on the to-do list, without regard to what “next” might mean, or to what will hap-
pen after that. It is entirely likely that you would address the smells in a different order,
and that’s just fi ne; experience suggests that we’re likely to fi nish up at approximately
the same place later.

First, let’s tidy up a little.

Consistency
We can easily remove the Dead Code and change the Global Variable; at the same
time we’ll create a simple method for each SVG element type we use, and convert those
quoted strings too:

NUMBER_OF_TOSSES = 1000

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

def rect(centre_x, centre_y)

 %Q{<rect x="#{centre_x-2}" y="#{centre_y-2}"

 width="4" height="4"

 fill="red" stroke="none" stroke-width="0" />"}

end

From the Library of Lee Bogdanoff

ptg

Consistency 7

def text(x, y, msg)

 %Q{<text x="#{x}" y="#{y}"

 font-family="Verdana" font-size="9"

 fill="red" >#{msg}</text>"}

end

def line(x1, y1, x2, y2)

 %Q{<line x1="#{x1}" y1="#{y1}" x2="#{x2}" y2="#{y2}"

 stroke="#999" stroke-width="1" />}

end

def polyline(points)

 %Q{<polyline fill="none" stroke="#333" stroke-width="1"

 points = "#{points.join(' ')}" />"}

end

def spark(centre_x, centre_y, value)

 "#{rect(centre_x, centre_y)}

 #{text(centre_x+6, centre_y+4, value)}"

end

tosses = values(NUMBER_OF_TOSSES)

points = []

tosses.each_index { |i| points << "#{i},#{200-tosses[i]}" }

data = %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <!-- x-axis -->

 #{line(0, 200, NUMBER_OF_TOSSES, 200)}

 #{polyline(points)}

 #{spark(NUMBER_OF_TOSSES-1, 200-tosses[-1], tosses[-1])}

</svg>}

puts "Content-Type: image/svg+xml

Content-Length: #{data.length}

#{data}"

The overall Greedy Module is now somewhat more apparent, as we have more
methods dealing with SVG elements now. However, note that each of the methods we
just added is also a Greedy Method, because each knows something about an SVG ele-
ment and something about how we want the sparkline to look. So we’ve traded some
problems for others, and that’s a very subjective process.

From the Library of Lee Bogdanoff

ptg

8 Chapter 1: A Refactoring Example

Tes tability
We changed quite a lot of code there, and each time we extracted a method we re-ran the
script to make sure we hadn’t broken the sparkline. But the HTTP wrapper (lines 52–54)
forces us into a particularly unfriendly test environment. So to improve testability, we’ll
delete that HTTP wrapper and simply replace it with:

 puts data

More on testing as we proceed, but for now that little change makes it easier to run
sparky.rb.

Greedy Methods
Each of the SVG drawing methods we extracted is greedy, because they know about
SVG and sparkline formatting. We want to address that next, because those two kinds
of knowledge are likely to cause change at different rates in the future.

We’ll begin with rect: we passed in two parameters from the caller, but to make this
method fully independent of the sparklines application we need to pass in 5 more:

def rect(centre_x, centre_y, width, height,

 fill, stroke, stroke_width)

 %Q{<rect x="#{centre_x}" y="#{centre_y}"

 width="#{width}" height="#{height}"

 fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}" />}

end

This is ugly, but right now it’s what the code seems to want. We’re trading one smell
for another again here, but little bits of fl exibility and maintainability are created as
by-products.

The caller changes to match:

SQUARE_SIDE = 4

def spark(centre_x, centre_y, value)

 "#{rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, 'red', 'none', 0)}

 #{text(centre_x+6, centre_y+4, value)}"

end

The changes to spark made some Derived Values apparent, so we also took the op-
portunity to fi x that by introducing a constant for the size of the little red square.

From the Library of Lee Bogdanoff

ptg

Greedy Module 9

We can now introduce extra parameters to text, line, and polyline in the same
way:

def text(x, y, msg, font_family, font_size, fill)

 %Q{<text x="#{x}" y="#{y}"

 font-family="#{font_family}" font-size="#{font_size}"

 fill="#{fill}" >#{msg}</text>}

end

def line(x1, y1, x2, y2, stroke, stroke_width)

 %Q{<line x1="#{x1}" y1="#{y1}" x2="#{x2}" y2="#{y2}"

 stroke="#{stroke}" stroke-width="#{stroke_width}" />}

end

def polyline(points, fill, stroke, stroke_width)

 %Q{<polyline fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}"

 points = "#{points.join(' ')}" />}

end

The calling code changes to match, for example:

SQUARE_SIDE = 4

SPARK_COLOR = 'red'

def spark(centre_x, centre_y, value)

 "#{rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 #{text(centre_x+6, centre_y+4, value,

 'Verdana', 9, SPARK_COLOR)}"

end

Note that we have again traded problems. The four drawing methods are no lon-
ger greedy, but now their callers know some SVG magic (color names, font names,
and drawing element dimensions). This kind of trading is a completely natural part of
refactoring, as we create areas of stability within the code. We’ll return to address this
Inappropriate Intimacy (General Form) later.

Greedy Module
That may not be the last we see of Greedy Methods, but code changes in the previous
section have highlighted another of the problems in the original code: There’s now an
even clearer distinction between code that knows how to write an SVG document and
code that knows what a sparkline should look like.

From the Library of Lee Bogdanoff

ptg

10 Chapter 1: A Refactoring Example

To fi x that, we’re going to extract a module for the SVG methods. We’ll put it in a
new source fi le called svg.rb:

module SVG

 def self.rect(centre_x, centre_y, width, height, fill,

 stroke, stroke_width)

 %Q{<rect x="#{centre_x}" y="#{centre_y}"

 width="#{width}" height="#{height}"

 fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}" />}

 end

 # etc...

end

A quick glance at this module shows that the Data Clumps and Long Parameter
Lists we predicted are now a reality. (And in fact, each of these SVG elements can take
more parameters than we have provided here, so the problem is much worse than it
seems.) Note also that we haven’t yet moved all of the XML into the SVG module, but
to do that we’ll have to decide how to deal with nested XML elements. We want to make
the calling script a little clearer before diving into the design of the SVG interface.

Comments
There’s a comment in the SVG document generated by the script:

 <!-- x-axis -->

The comment is there because it’s diffi cult to match the magic SVG words and sym-
bols to the format and structure of a sparkline. We don’t like commenting source code,
but we have no problem creating a self-documenting SVG document, so we’re happy
to keep the comment. The problem is that one comment isn’t enough; the output SVG
needs to have a few more! Worse, the script doesn’t communicate the sparkline’s struc-
ture to us, its readers, and so we could easily break it accidentally in the future. We’ll
fi x both of these issues by extracting a method for each component of the sparkline’s
structure:

def sparkline(points)

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

From the Library of Lee Bogdanoff

ptg

Whole Objects 11

def spark(centre_x, centre_y, value)

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, value,

 'Verdana', 9, SPARK_COLOR)}"

end

def x_axis(points)

 "<!-- x-axis -->

 #{SVG.line(0, 200, points.length, 200, '#999', 1)}"

end

While extracting x_axis we also removed its dependency on the constant NUMBER_
OF_TOSSES. In fact, we now see no reason for the constant to exist; we’ll inline it in the
call to values, and recalculate its value in the call to spark:

tosses = values(1000)

#...

data = %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(points)}

 #{sparkline(points)}

 #{spark(tosses.length-1, 200-tosses[-1], tosses[-1])}

</svg>}

Whole Objects
Leaving aside the horrors of that last string for a moment, look inside it at the call to spark:
We have a Long Parameter List in which every parameter is calculated from tosses.
Let’s use Preserve Whole Object by pushing those calculations into the spark method:

def spark(y_values)

 final_value = y_values[-1]

 centre_x = y_values.length-1

 centre_y = 200 - final_value

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, final_value,

 'Verdana', 9, SPARK_COLOR)}"

end

From the Library of Lee Bogdanoff

ptg

12 Chapter 1: A Refactoring Example

spark’s parameter could represent coin tosses, stock prices, or temperatures, so we
renamed it while we remembered.

Now take another look at x_axis—it only cares how many y-values there are, but it
isn’t interested in the points. We can pass in the y-values instead:

 def x_axis(y_values)

 "<!-- x-axis -->

 #{SVG.line(0, 200, y_values.length, 200, '#999', 1)}"

end

This means that the only code that cares about points is the sparkline method. We
can move the calculation of points into that method:

def sparkline(y_values)

 points = []

 y_values.each_index { |i| points << "#{i},#{200-y_values[i]}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

And so fi nally (and after a little tidying up), the creation of the SVG document looks
like this:

puts %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(tosses)}

 #{sparkline(tosses)}

 #{spark(tosses)}

 </svg>}

Feature Envy
Look again at that sequence of method calls taking tosses as the single parameter.
That chunk of code has more affi nity with the tosses array than it does with the rest
of the script. Same goes for the three methods spark, sparkline, and x_axis—they all
do more with the array of y_values than they do with anything else. There’s a missing
class here, one whose state is the array, and which has methods that know how to draw
the pieces of a sparkline. Instances of this missing class represent sparklines, so fi nding a
name for it is easy. First, we’ll create a simple stub to hold the array:

class Sparkline

 attr_reader :y_values

From the Library of Lee Bogdanoff

ptg

Feature Envy 13

 def initialize(y_values)

 @y_values = y_values

 end

end

Then we’ll update the fi nal puts call to use it:

sp = Sparkline.new(values(1000))

puts %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(sp.y_values)}

 #{sparkline(sp.y_values)}

 #{spark(sp.y_values)}

 </svg>}

Now we’re going to move the three methods (and that huge string) onto the new
class. In real life we would do them one by one, testing as we go; but for the sake of
brevity here let’s cut to the fi nal state of the new class:

class Sparkline

 def initialize(y_values)

 @y_values = y_values

 end

 def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis}

 #{sparkline}

 #{spark}

 </svg>}

 end

private

 def x_axis

 "<!-- x-axis -->

 #{SVG.line(0, 200, y_values.length, 200, '#999', 1)}"

 end

 def sparkline

 points = []

 y_values.each_index { |i| points << "#{i},#{200-y_values[i]}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

 end

 SQUARE_SIDE = 4

 SPARK_COLOR = 'red'

From the Library of Lee Bogdanoff

ptg

14 Chapter 1: A Refactoring Example

 def spark

 final_value = y_values[-1]

 centre_x = y_values.length-1

 centre_y = 200 - final_value

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, final_value,

 'Verdana', 9, SPARK_COLOR)}"

 end

end

Notice that the attr_reader for y_values is no longer necessary, so we deleted it.
The public accessor was needed in the early phases of that refactoring step so that we
could introduce the new class without breaking any other code. But after the methods
had all migrated into the new class, the array is used only internally, and thus can be
hidden.

For completeness, here’s what remains of the original script:

require 'sparkline'

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

puts Sparkline.new(values(1000)).to_svg

Uncommunicative Names
Now the script is so short, the Uncommunicative Names really stand out. Here’s an
alternative version with better names for anything we thought wasn’t communicating
clearly:

 require 'sparkline'

def zero_or_one() rand(2) end

From the Library of Lee Bogdanoff

ptg

Derived Values 15

def one_or_minus_one

 (zero_or_one * 2) - 1

end

def next_value(y_values)

 y_values[-1] + one_or_minus_one

end

def y_values

 result = [0]

 1000.times { result << next_value(result) }

 result

end

puts Sparkline.new(y_values).to_svg

While fi xing the names we discovered a 2 being used to scale the sparkline vertically;
we removed it in the interest of honest statistics. We fi nd defects often during the course
of refactoring. Usually this is because the process of refactoring has revealed something
that previously wasn’t obvious. It’s okay to fi x these defects, provided you consciously
switch hats for a few moments while doing so.

Derived Values
Now it’s time to tackle all those Derived Values we noticed right at the outset. They have
all migrated into Sparkline, which is nicely convenient. I’ll begin with the 200s: The
x-axis is drawn halfway down the canvas, at y-coordinate 200, and so every y_value is
scaled vertically by 200. (Y-coordinates increase down the page; so point (0, 0) is at the
top-left corner and point (0, 200) is 200 drawing units below that.) In fact, 200-y does
two things: It translates the line vertically downward by 200 units and it fl ips the line
over so that positive y-values appear above negative y-values. These are transforms of the
image: Refl ection followed by translation. SVG (currently) has no refl ection transform,
but it does offer translation, and we feel we’ll get simpler Ruby code if we use it. First,
then, we’ll invert the sparkline’s y-values in the constructor:

 def initialize(y_values)

 @height_above_x_axis = y_values.max

 @height_below_x_axis = y_values.min

 @final_value = y_values[-1]

 @y_values = reflect_top_and_bottom(y_values)

end

def reflect_top_and_bottom(y_values)

 y_values.map { |y| -y }

end

From the Library of Lee Bogdanoff

ptg

16 Chapter 1: A Refactoring Example

and change sparkline and spark correspondingly:

def sparkline

 points = []

 y_values.each_index { |i| points << "#{i},#{y_values[i] + 200}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

def spark

 centre_x = y_values.length-1

 centre_y = y_values[-1] + 200

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, @final_value,

 'Verdana', 9, SPARK_COLOR)}"

end

Next, we use an SVG transform to move the whole graphic down the screen by 200
units:

def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,200)">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

And now we can remove those magic 200s from the drawing methods. For example,
x_axis now becomes

def x_axis

 "<!-- x-axis -->

 #{SVG.line(0, 0, y_values.length, 0, '#999', 1)}"

end

We now have more SVG magic—the <g> element—in the code, but also there is less
duplication, and we consider that much more important.

We have now removed all but one of the magic 200s; before going any further, we
want to document its meaning:

From the Library of Lee Bogdanoff

ptg

Wabi-Sabi 17

def to_svg

 height_above_x_axis = 200

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,#{height_above_x_axis})">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

It is now clear that the 200 is simply a guess as to what a reasonable value might be. If
the sparkline’s y-values stray outside of the range –200..200 we’ll fi nd the line disappears
off the edge of the graphic. We spoke to our customer just now, and he agrees that we
should replace the 200 with the maximum y-value:

def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,#{height_above_x_axis})">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

def initialize(y_values)

 @height_above_x_axis = y_values.max

 @final_value = y_values[-1]

 @y_values = reflect_top_and_bottom(y_values)

end

Wabi-Sabi
We’ve made a number of refactoring changes to the code, and in the process its structure
has altered a great deal. Have we fi nished? No, and in a sense we never will. Software
can never be perfect, and there’s usually little point in chasing down that last scintilla of
design perfection. Any code will always be a “work in progress”—the important thing is
to have removed the major problems, and to know what slight odors remain.

The title of this section is also the name of the Japanese artistic style that celebrates the
incomplete, the unfi nished, and the transitory. Try to become used to thinking of your
code as a process and not simply an artifact; aim for better, not best. Read more in Leonard
Koren’s Wabi-Sabi: For Artists, Designers, Poets and Philosophers [19], for example.

From the Library of Lee Bogdanoff

ptg

18 Chapter 1: A Refactoring Example

Summing Up
Here ’s the current state of the main script after the refactorings:

require 'sparkline'

def zero_or_one() rand(2) end

def one_or_minus_one

 (zero_or_one * 2) - 1

end

def next_value(y_values)

 y_values[-1] + one_or_minus_one

end

def y_values

 result = [0]

 1000.times { result << next_value(result) }

 result

end

puts Sparkline.new(y_values).to_svg

(You can get complete copies of the “before” and “after” states of the code from
our download, which you can fi nd online at http://github.com/kevinrutherford/
rrwb-code.)

The code still has some smells: sparkline.rb still knows too much about SVG;
svg.rb still has long parameter lists; and the functionality of the SVG module du-
plicates that of a standard Ruby library. Notice also that the code has expanded from
40 lines to 100, and from one source fi le to three—all without increasing the script’s
functionality.

Overall, though, the code is much more readable and maintainable than it was be-
fore. We have traded size for fl exibility, and in the future it will be much easier to reuse
any of the various parts of this code. This is a reasonable place to stop for now.

What’s Next
No w that we’ve seen a quick example of how refactoring can improve code, we’ll look at
how refactoring fi ts into the development process, and then consider different problems
in code and examples of how to address them.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code
http://github.com/kevinrutherford/rrwb-code

ptg

19

CHAPTER 2

The Refactoring Cycle

In this chapter, we’ll define refactoring and code smells. Then we’ll look at the funda-
mental cycle of how to improve code with refactoring. Rules for simple design will tell
us when we’ve done enough. We’ll close with a look at how refactoring is a key part of
test-driven development.

What Is Refactoring?
Refactoring is the art of safely improving the design of existing code. In Refactoring [14],
Martin Fowler describes it thus:

“Refactoring is the process of changing a software system in such a way that it does not alter the
external behavior of the code yet improves its internal structure.”

This has a few implications:

Refactoring does not include just any changes in a system:• Although refactoring should
always be part of the process used to create new code, it’s not the part that adds
new features. Test-driven development, for example, consists of writing a test, then
writing new code to introduce new features, and, finally, refactoring to improve the
design.

Refactoring is not rewriting from scratch:• Although there are times when it’s better
to start fresh, refactoring changes the balance point, making it possible to improve
code rather than take the risk of rewriting it. Sven Gorts points out (private commu-
nication) that refactoring preserves the knowledge embedded in the existing code.

Refactoring is not just any restructuring intended to improve code:• Refactorings strive
to be safe transformations. Even big refactorings that change large amounts of code

From the Library of Lee Bogdanoff

ptg

20 Chapter 2: The Refactoring Cycle

are divided into smaller, safe refactorings. (In the best case, refactorings are so well
defined that they can be automated.) We won’t regard a change as refactoring if it
leaves the code not working (that is, not passing its tests) for longer than a working
session.

Refactoring supports emergent design:• Refactoring changes the balance point between
up-front design and emergent design. Up-front design is design done in advance
of implementation; emergent design is design intertwined with implementation.
The trade-off between up-front and emergent design hinges on how well we can
anticipate problems or assess them in code, and whether it’s easier to design and then
translate to code or to code and then improve. Refactoring lowers the cost and risk of
the emergent approach. (You might argue about where the line is, but you probably
agree that it shifts.)

Refactorings can be small or large: • Many refactorings are small. Ideally, small refac-
torings are applied “mercilessly” enough that large refactorings are rarely needed.
Even when applying large-scale refactorings, the approach is not no new features for
six months while we refactor, but rather, refactor as we go, and keep the system running
at all times.

Smells Are Problems
Code smells are warning signs about potential problems in code. Not all smells indicate
a problem, but most are worthy of a look and a decision.

Some people dislike the term smell, and prefer to talk about potential problems or
flaws, but we think smell is a good metaphor. Think about what happens when you
open a fridge that has a few things going bad inside. Some smells will be strong, and it
will be obvious what to do about them. Other smells will be subtler; you won’t be sure
if the problem is caused by the leftover peas or last week’s milk. Some food in the fridge
may be bad without having a particularly bad smell. Code smells are a bit like that:
Some are obvious, some aren’t. Some mask other problems. Some go away unexpectedly
when you fix something else.

Smells usually describe localized problems. It would be nice if people could find
problems easily across a whole system. But humans aren’t so good at that job; local
smells work with our tendency to consider only the part we’re looking at right now.

Finally, remember that a smell is an indication of a potential problem, not a guaran-
tee of an actual problem. You will occasionally find false positives—things that smell to
you, but are actually better than the alternatives. But most code has plenty of real smells
that can keep you busy.

From the Library of Lee Bogdanoff

ptg

When Are We Done? 21

The Refactoring Cycle
There’s a basic pattern for refactoring:

The Refactoring Cycle
start with working, tested code
while the design can be simplifi ed:

 choose the worst smell

 select a refactoring that will address the smell

 apply the refactoring

 check that the tests still pass

We try to select refactorings that improve the code in each trip through the cycle.
Because none of the steps change the program’s observable behavior, the program re-
mains in a working state. Thus, the cycle improves code but retains behavior. The tricki-
est part of the whole process is identifying the smell, and that’s why the bulk of this book
emphasizes that topic.

Is this approach to refactoring guaranteed to get to the ideal design for a problem?
Unfortunately, no, as there’s no guarantee that you can reach a global maximum by
looking at local properties. But it’s easier to get design insights that transform a solution
when the code is as clean as possible.

Refactoring is like crossing a stream. One way to cross a stream is to take a running
leap and hope for the best. The refactoring way is to find stepping stones and to cross the
stream by stepping on one stone at a time; that way, you’re less likely to get wet.

When you start refactoring, it’s best to start with the easy stuff (for example, break-
ing up large methods or renaming things for clarity). You’ll find that this lets you see and
fix the remaining problems more easily.

When Are We Done?
How do we know when to stop refactoring and move on to more development? One
approach is to seek the “simplest” design. In Extreme Programming Explained [4] Kent
Beck identified four rules for simple design:

Simple Design:
1. Passes all the tests.

2. Communicates every intention important to the programmers.

3. Has no duplication of code, or of logic, or of knowledge.

4. Contains no unnecessary code.

From the Library of Lee Bogdanoff

ptg

22 Chapter 2: The Refactoring Cycle

If your code violates these rules (which are in priority order), you have a problem
to address. A shorthand name for these rules is OAOO, which stands for once and only
once. The code has to state something once so that it can pass its tests and communicate
the programmer’s understanding and intent. And it should say things only once—that
is, with no duplication.

Another name for the third rule is “Don’t Repeat Yourself,” or the DRY principle
[17]. Most of the smells cataloged in Part II, “Code Smells,” boil down to duplication of
some kind; and spotting it can be quite an art—be wary of hidden duplication, such as
parallel class hierarchies, for example. But duplication is occasionally acceptable, where
its existence helps the code communicate intent; after all, code will be read many more
times than it will be written.

It’s hard to clean up code that hasn’t been kept clean; few teams can afford to lock
the doors for months on a quest for perfection. But we can learn to make our code bet-
ter during development, and we can add a little energy each time we’re working in an
area.

Test-Driven/Behavior-Driven Development
Applying refactorings in the midst of a development episode can lead to confusion,
unsafe transformations, or, in the worst case, broken code. So it’s best to think of
development and refactoring as different: different skills, using different techniques, to be
performed at different times in the overall cycle. Think of development and refactoring
as different hats—you can only wear one of them at any time.

Test-driven development (TDD) and behavior-driven development (BDD) make
the distinction between the two hats very clear. They share the following microprocess:

The TDD/BDD Micro-Process
RED Write a new test/example and see it fail.
GREEN Get all tests passing again quickly, using the most naive approach you can see.
REFACTOR Transition to the simplest design that passes all current tests, by removing any

smells you just introduced.
(repeat) Go around again, aiming to be back here every few minutes or so.

The refactoring step is what makes this process sustainable. Without it the code
would quickly degenerate into the legacy spaghetti you’ve no doubt seen on many a
software development project. Well-factored code is easier to read and more amenable

From the Library of Lee Bogdanoff

ptg

What’s Next 23

to change; so the small investment in frequent refactoring steps is gradually repaid, with
compound interest, as the code grows.

Note that refactoring only occurs on a “green bar”—that is, when all tests are pass-
ing. (The tests act as a regression suite, ensuring that we can’t break any existing behavior
while we’re fixing the design.) Typically only a small amount of code will have been
changed or introduced in going from RED to GREEN. This is the code to be reviewed
for smells, although that review must be done in the context of the whole of the existing
codebase. To help with this part of the process we have included a code review checklist
on the inside covers of this book; we have also developed Reek, a free software tool that
warns about smells in Ruby code (see Appendix B, “Ruby Refactoring Tools,” for details
of this and other related tools).

We both use test-driven development as the core of our development process. Note
that the discipline of refactoring doesn’t require a test-driven approach, but code created
this way will typically have fewer errors and will need less of the big refactoring that
other code requires. In particular, the bigger examples in the last half of this book would
be much smaller and less smelly if they’d been done using test-driven development.

For a deeper introduction to TDD see the books by Dave Astels [1] and Kent Beck
[3]. For more on BDD see David Chelimsky et al.’s The RSpec Book: Behaviour Driven
Development with RSpec, Cucumber, and Friends [8].

Exercise

Exercise 2.1: Simple Design
A. Justify each of Beck’s rules for simple design.

B. Why are these rules in priority order? Can you find an example where commu-
nication overrides avoidance of duplication?

See page 215 for solution ideas.

What’s Next
That was a look at how refactoring fits into the overall process(es) of software develop-
ment. Next we’ll dive deep into what makes a single refactoring work, and the environ-
mental conditions that will help you do it safely.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

25

CHAPTER 3

Refactoring Step by Step

It’s time we looked in detail at the mechanics of refactoring. In this chapter we’ll work
through the steps involved in Hide Delegate; but first we need to review our tools.

The Refactoring Environment
Refactoring can be done on any code at any time, but it’s easier and safer with a support-
ive environment. Be sure to have most of the following tools ready at your side before
you begin refactoring:

Team or Partner: • For nontrivial decisions about code, it’s helpful to have more than
one person considering the problem. A team can often generate ideas better than
one person alone: Different people have different experiences and different exposure
to different parts of the system.

Tests: • Even though refactorings are designed to be safe, it’s possible to make a mistake
while applying them. By having a test suite that is run before and after refactoring,
you help ensure that you change the design of your code, not its effects.

“If you want to refactor, the essential precondition is having solid tests.”

—Martin Fowler, Refactoring [14]

 This is even more true for Ruby than it was when Fowler wrote it about refactoring
in Java. Because in Ruby there’s no compile step: The only way to find out whether
our code still works is to run it.

 What if you don’t have tests? Then add them, at least to the areas affected by the
refactoring. Sometimes this is tricky—you may be unable to test effectively without

From the Library of Lee Bogdanoff

ptg

26 Chapter 3: Refactoring Step by Step

changing the design, and yet it’s unsafe to change the design without tests. (If you
find yourself in this position, you may find the techniques in Michael Feathers’
Working Effectively with Legacy Code [10] helpful.) And note, by the way, that areas
that are tricky to test often indicate other problems in the design.

Testing Framework: • Test::Unit is installed as part of the standard Ruby distribution,
and rspec is available as a gem. It can also be very handy to have autotest run your
tests while you work.

 We have provided tests or rspec examples for most of the code samples used in the
exercises; you’ll find them in the download. Get into the habit of running them as
you review the code in each exercise.

CRC (Class, Responsibilities, Collaborators) Cards or UML Sketches:• Refactoring is de-
sign. Sometimes you may hold a CRC card session or draw Unified Modeling Lan-
guage (UML) sketches to compare alternative strategies, particularly when moving
responsibilities around among classes or modules. (For more detail on the CRC card
approach, see Kent Beck and Ward Cunningham’s article “A Laboratory For Teaching
Object-Oriented Thinking” [5]).

Configuration Management/Version Control:• If you make a mistake while refactoring,
you’d like to have the option to return to the last known good point. Alternatively,
you may want to apply a refactoring, but you may not be sure if the result will be an
improvement; it can be helpful to have the option to try it and then decide whether
to keep the result. Either way, it’s worth getting into the habit of committing your
code frequently (every time the tests all pass), and it’s worth making sure you have a
version control system that lets you do this.

Sophisticated Integrated Development Environment (IDE):• A few Ruby environments
now have growing support for automated refactoring tools (see Appendix B, “Ruby
Refactoring Tools,” for details of some of these). Tools can remove a lot of the error-
prone tedium of refactoring. But most refactorings have no tool support, and even
with automation you still have to decide which refactoring to apply.

Inside a Refactoring
One of the defining aspects of refactoring is the focus on safe transformations. We’ll
walk through a simple refactoring. Along the way we’ll derive some guidelines that will
help us better understand how refactorings work.

Consider the refactoring Hide Delegate. Its goal is to encapsulate the path to an ob-
ject, so that clients are decoupled from the implementation details of how to reach it.

From the Library of Lee Bogdanoff

ptg

Inside a Refactoring 27

Imagine we have

class Rectangle

 attr_reader :top_left, :width, :height

end

class Point

 attr_reader :x, :y

end

Any client code wishing to find the x-coordinate of a rectangle’s left edge will have
code fragments such as rect.top_left.x, and we may decide we want to hide this del-
egation. The Refactoring catalog tells us to take the following steps:

 1. Create a simple delegating method on the server

 2. For each client of the delegate:

(a) Adjust the client to call the server’s new method

(b) Test

 3. If no client needs to access the delegate any longer:

(a) Remove the server’s accessor for the delegate

(b) Test

Refactoring is a step-by-step process. The steps are smaller than you might initially
expect. Most refactorings tend to take from a minute to an hour to apply; the average is
a few minutes. So, if a refactoring takes a few minutes, the steps are even smaller.

The steps themselves are generally not refactorings, because many of them leave
the code in a broken or indeterminate state. Refactorings are behavior-preserving trans-
formations, whereas the steps in any specific refactoring may temporarily break the
code.

Step 1: Create a delegating method
We jump right in and create the method we need:

class Rectangle

 def left_edge

 @top_left.x

 end

end

From the Library of Lee Bogdanoff

ptg

28 Chapter 3: Refactoring Step by Step

Note that the clients of this class are unchanged: No code is calling this new method
yet. (If we were feeling particularly nervous, or if an interruption seemed imminent, we
could run our tests and check in the code at this point.)

Step 2: Adjust every client
One way to find the clients is to temporarily make the delegate private and run your
tests. (If you do this, put it back to public visibility before changing the clients so you
don’t break any clients.)

This is where a good suite of tests can prove invaluable, especially in a large code-
base. In a statically typed language such as Java or C# the compiler can tell you when
there’s a client using the now-private accessor. But in Ruby we are forced to rely on run-
time checks—and the best kind are self-checking automated tests—or on reading the
code. Refactoring tested code is significantly safer and faster than refactoring untested
code, because the tests help us avoid slips.

The test run shows us that the following client code needs to be changed:

class TranslationTest < Test::Unit::TestCase

 def test_translate_should_move_left_edge

 rect = Rectangle.new(Point.new(6.3, 5.0), 2.0, 2.0)

 rect.translate(-3.5, 1.0)

 assert_equal(2.8, rect.top_left.x)

 end

end

We replace the Message Chain with a call to the new delegating method:

def test_translate_should_move_left_edge

 rect = Rectangle.new(Point.new(6.3, 5.0), 2.0, 2.0)

 rect.translate(-3.5, 1.0)

 assert_equal(2.8, rect.left_edge)

end

Step 3: Test after adjusting each call
Even though refactorings have the goal of creating an improved system at the end of the
refactoring, many of them also have safe points along the way (think of bases in baseball
or the children’s game of tag; they may not be the ultimate destination, but at least you
can’t get tagged while you’re on the base).

From the Library of Lee Bogdanoff

ptg

Inside a Refactoring 29

So, although we’ve made only one very simple change, we can stop, run the tests,
and make sure we’re okay so far. At this moment we may have some “old-style” clients
and some “new-style” clients; our design embodies two different approaches in the
midst of refactoring, and the system is not as clean as it will be in the end. Nevertheless,
we have a green bar, we’re safe on a base, and so we could check in right now if neces-
sary, ready to pick up again tomorrow perhaps.

Imagine holding your breath while the system is in an unsafe state and then letting it
go when the tests run correctly. This mild tension and release feels so much better than
the feeling you get where you’re halfway through one thing and you realize you want
to do something else before you finish, and so on, and so on, until you’re juggling five
balls instead of one.

Large refactorings use this idea of bases as well. It’s even more important in large
refactorings. If it will take months to clean out the remnants of some decision, we must
have safe points along the way.

Step 4: Remove the server’s accessor
After we have changed all the relevant clients, we may discover that the accessor is

no longer used. We can shrink the server’s API by removing it:

class Rectangle

 attr_reader :top_left, :width, :height

 def left_edge

 @top_left.x

 end

end

becomes

class Rectangle

 attr_reader :width, :height

 def left_edge

 @top_left.x

 end

end

Step 5: Test again
We’ve reached another base, so we run the tests again and commit the code. At this
point we’ve finished applying Hide Delegate.

From the Library of Lee Bogdanoff

ptg

The Generic Refactoring Micro-Process
A book on refactoring may list 20 or 50 refactorings, however those are just a sample of
the common ones. You often create your own refactorings for a specific situation.

Many refactorings share the same abstract shape, which we can document as a
micro-process:

 1. Check whether the refactoring will run into any problems

 2. Introduce a new code element

 3. For each thing to migrate:

(a) Migrate one client of the old element to use the new one

(b) Test

 4. Delete the old element

 5. Test

This is a safe approach. The unsafe alternative is to change the old mechanism to use
the new one, migrate everything in one bound, and hope for the best.

Large refactorings—those composed of smaller refactorings—use this approach as
well. Indeed, it’s fundamental to large refactorings that they keep the system working
during a migration, as it could take hours, days, or even weeks.

There are a variety of ways for each of those steps (Check, Introduce, For each,
Migrate, Delete, Test) to be realized; we’ve noted some of the possibilities in the follow-
ing sections. These can be assembled to build up many new refactorings.

Check
These actions confirm that something is true.

Prove:• Prove (formally or informally) that the proposed refactoring is safe.

Look:• Look in the code to see if there is anything that would interfere with the
 refactoring to come. For example, you can’t rename f() to g() if g() already exists.

Assert:• Introduce an assertion, code that verifies that some condition is true as you
expect at a particular point. Use assertions in conjunction with tests, but recognize
that they can only verify the cases the tests cover.

30 Chapter 3: Refactoring Step by Step

From the Library of Lee Bogdanoff

ptg

Migrate 31

Introduce
These actions introduce a new element of some sort.

Add a new field, method, or class:• It will initially be unused, but it can be a target for
new usages. For example, you might create a new empty method that will soon get
code moved over from an existing method.

Introduce a new mechanism delegating to the old:• You can migrate things to use the
new method, then inline the old method into the new.

Introduce a new, independent mechanism:• Migrate from the old mechanism to the
new one.

Copy:• Copy code. For example, when you Extract Method, you copy the original
code to the newly created method. We are not advocating copy-and-paste program-
ming; two copies of the code will temporarily exist, but one will have been deleted
by the time we reach the end of this refactoring micro-process.

For each
This action lets you look at all occurrences of something.

Iterate• over all uses of the code you want to change. Depending on the type of
refactoring, this could involve calls, conditional branches, records, tables, methods,
fields, classes, references, and so on.

Migrate
These actions take you from an old way of doing something to the new way.

Move a user of the old mechanism to the new one:• For example, change a reference
from the old to the new.

Replace:• Replace something by its equivalent.

Adjust to a new context:• For example, the code used in Extract Method may need
declarations, parameters, etc. to be modified.

Rename:• Giving a code element a more meaningful or intention-revealing name.

From the Library of Lee Bogdanoff

ptg

32 Chapter 3: Refactoring Step by Step

Swap two independent things:• For example, two statements that have no possible ef-
fect on each other can be swapped. This can be used to harmonize code fragments
that would have the same text if it weren’t for slight differences in the order of state-
ments.

Propagate a constant:• When a “variable” has a constant value, replace the variable
with the constant.

Delete
These actions eliminate elements.

Delete dead code:• Get rid of code that can never be executed.

Delete code with no effects:• For example, eliminate an empty method or class.

Deprecate:• For code that can’t be deleted (because external uses must be accommo-
dated), mark it to discourage new uses.

Test
The Generic Refactoring micro-process has a test run after each turn through the loop,
and once again at the end. In practice, especially if you have comprehensive tests, you
can take some shortcuts. For example, if you’re moving a method you might have 25
references to it in the old place. You could move the first reference, test, move the second
reference, test, and then move ten more before testing again once you’re sure you have
the pattern. Whether you take this shortcut will depend on a combination of factors:
how long your tests take to run, how easily you can undo if you make a mistake, or how
hard it is for you to check in files.

When the tests pass, it’s usually worth checking in your code. Even if you are
only halfway through the steps in one refactoring, creating safe bases as you go can
significantly relieve the pressure to complete the task in one sitting.

It’s important to stress again: Refactoring is only safe in the presence of good tests.
Firstly because there’s no compiler or static type checks to tell you when some subtle,
but unwanted, typing error (pun intended) has occurred. And secondly because refac-
toring tools for Ruby are in their infancy, and even automated refactoring tools aren’t
perfect.

From the Library of Lee Bogdanoff

ptg

What’s Next 33

Exercises

Exercise 3.1: Small Steps
Pick any refactoring from Fields’ Refactoring, Ruby Edition [11] and identify a place
where the approach builds in small steps even though larger steps could work.

 See page 216 for solution ideas.

Exercise 3.2: Inverse Refactorings
When we refactor, we’re trying to respond to the forces affecting code. Sometimes
what was a good change today no longer looks good tomorrow, and we find our-
selves reversing a refactoring.

Following is a list of refactorings. Next to each refactoring, write the name of the
refactoring that undoes its effects.

A. Collapse Hierarchy

B. Extract Method

C. Hide Delegate

D. Inline Temp

E. Parameterize Method

F. Rename Method

 See page 216 for solution ideas.

What’s Next
We’ve discussed the overall process of refactoring and the environment needed to tackle
refactoring safely and productively; we’ve examined in detail the steps that make up a
single refactoring move; and we’ve explored a generic pattern for refactoring. Before we
move into the main body of the book we’ll say a few words about what you can do to
develop your refactoring skills in the longer term.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

35

CHAPTER 4

Refactoring Practice

One of the premises of this book is that refactoring is a skill and benefits from practice.
Look for opportunities to practice and use this skill.

Read Other Books
All the books in the bibliography will repay their study. But if you haven’t yet acquired
Fields et al.’s Refactoring, Ruby Edition [11], you should seriously consider doing so: The
exercises in this book touch on perhaps half of the refactorings cataloged in the Fields
book. Tools are getting better at the mechanics of refactoring support, but it will be a
long time before they effectively cover every aspect of refactoring in the catalog.

Practice Refactoring
Find ways to make refactoring part of your daily life.

Build refactoring into your routine• . Knowing how to refactor isn’t worth much unless
it’s applied. Resolve to make your code “lean and clean.” On an XP team, this is part
of everyday life. But even heavily design-driven approaches expect programmers to
implement the design well.

Build testing into your routine• . There’s an old adage (as so many are), “If it ain’t broke,
don’t fix it.” (How many times has the last “simple change” caused an unexpected
bug?) In programming, the downside of applying this adage is that the code just gets
uglier and uglier.

From the Library of Lee Bogdanoff

ptg

36 Chapter 4: Refactoring Practice

Refactoring is able to go against this rule because of two mechanisms: refactorings
that are systematic and safe, and a supply of tests to verify that the transformations
have been done correctly. Don’t neglect your tests.

Take small steps• . Often, noticing a smell is relatively easy, compared with working
out how to get “there” from “here.” Practice breaking up the larger refactorings
(such as Tease Apart Inheritance) into small, safe steps. Prefer transformations in
which the system moves from good state to good state. When you refactor, prefer
a small steps but safer approach over a fast but not always safe approach. Keep the
refactoring cycle in mind.

Get help from others• . Get other peoples’ opinions about your code, whether through
pair programming, design and code reviews, or simply bugging your neighbor.
Something we had hammered home to us while writing this book is that almost any
code can be improved (and sometimes we get to take advantage of a whole Internet’s
worth of help!).

Add to the refactoring catalog• . As you work on your own code, look out for trans-
formations that aren’t documented anywhere; share and discuss them with your
colleagues.

Exercises to Try
Here are some practice exercises you can try regularly, either alone or as a team dojo.

Scavenger Hunt/Smell of the Week:• Pick a smell, and find and eliminate as many
occurrences of it as you can. Every week, search for a new smell.

Re-Refactor:• Pick a good-sized piece of code (either your own, or one of the larger
examples in the back of this book would work). Each day, start from the initial ver-
sion, and refactor as far as you can in ten minutes. Do you sense the same things
each day? Do you get farther?

Just Refactor:• Pick or develop a project. Spend ten minutes refactoring. (Each day,
start where you left off the day before.)

Inhale/Exhale:• Find code demonstrating some smell. Apply a refactoring that
addresses it. Then apply the refactoring that reverses that one. Repeat this twice more.
This will give you a sense of what it’s like to put in a problem, as well as take it out.

Defactoring/Malfactoring:• “Defactoring” and “malfactoring” are names we use for
malicious refactoring: worsening the design of existing code. Take some code, and

From the Library of Lee Bogdanoff

ptg

Participate in the Community 37

“refactor” it to make it as smelly as possible. (It’s harder than it sounds.) In addi-
tion to providing practice at refactoring, this may also help you realize when you’re
unintentionally malfactoring during development. Be sure to restore the original
after you’ve had your fun.

Follow Your Nose:• Pick a code smell in a good-sized project. Eliminate it, and then
review the changed code looking for other smells (this book’s What to Look for Next
sections will help). For each of the smells you now see, repeat. And so on. After 30
or 45 minutes, review both the resulting code and the journey you traveled. Is there
more to do? Did all of the moves pay off? Did you go around in circles at any point?

Harmonizing:• Many of the code smells described in this book are fundamentally
about some kind of duplication: identical code, similar code, code with similar
structure, code with similar effects. Duplication isn’t always obvious, and sometimes
the code needs to be changed to reveal it. You can often make refactoring moves that
will make latent duplication become explicit. Practice harmonizing things that want
to be similar.

For example, you may see code with the same effect, but using a different algo-
rithm; you can substitute one of the algorithms so you can move to a single copy.
Or suppose you have essentially the same method in two subclasses, except they have
different names. You can rename them to the same name, so that you could pull the
method into the parent. Or perhaps you have two methods that have some parts
that are similar and other parts that are unique; you can tease apart the method so
the similar parts are identical and the unique parts are separate, and then eliminate
the duplication.

Refactoring Kata:• A kata is a martial arts exercise that you repeat every day, for prac-
tice and to help get into the rhythm of the art. (A traditional series might be a
defense against four opponents.) Develop a kata for refactoring: a program where
you’ll apply a fixed series of refactorings. Pick a series of smells and refactorings that
you see or use often—for example, it might include some open secrets, some long
methods, some observed data to duplicate, and some responsibilities to rebalance.
This will give you a chance to hone your editing skills and your understanding of
your environment, as well as practice “smelling” and refactoring.

Participate in the Community
All of the preceding exercises work great on your own code, or on the larger exercises
we’ve provided toward the back of this book. Or you could pick an open source project

From the Library of Lee Bogdanoff

ptg

38 Chapter 4: Refactoring Practice

and practice on that; after you’re done, you may have an improvement you can submit
back to the community!

We’re interested in your experience with these exercises, and with refactoring in gen-
eral, so please feel free to write. The best place to do that is via this book’s mailing list at
http://groups.google.com/group/refactoring-workbook.

Exercise

Exercise 4.1: Get to Know the Refactorings
There is not a one-to-one relationship between refactorings and smells; as you work
through the exercises in this book you’ll run into the same refactorings again and
again. For example, Extract Method is a tool that can fix many problems.

A. For each of the refactorings covered in Fields et al.’s Refactoring, Ruby Edition
[11], list each smell it can help to fix. (Hint: Use the What to Do sections for each
smell catalogued in Part II,“Code Smells,” later in this book.)

B. Which refactorings fix the most smells?

C. Which refactorings aren’t mentioned by any of the smells? Why not?

D. Does this list suggest any other smells we haven’t covered?

See page 216 for solution ideas.

What’s Next
That concludes our brief overview of the art of refactoring. It’s now time to address the
specifics. As we mentioned in Chapter 2, “The Refactoring Cycle,” perhaps the most
difficult part of the refactoring cycle is in recognizing code that needs to be refactored.
Part II, “Code Smells,” looks in detail at all of the common—and some of the not so
common—code smells; by doing the exercises you’ll learn how to recognize and elimi-
nate them. Then Part III, “Programs to Refactor,” provides you with a few complete
applications, each of which is full of the kind of problems you’ll encounter during real-
life development.

From the Library of Lee Bogdanoff

http://groups.google.com/group/refactoring-workbook

ptg

PART II
Code Smells

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

CHAPTER 5

Measurable Smells

The smells in this chapter are similar. They’re dead easy to detect. They’re objec-
tive (after you decide on a way to count and a maximum acceptable score). They’re
odious.

And, they’re common.
You can think of these smells as being caught by a software metric. Each metric

tends to catch different aspects of why code isn’t as good as it could be. Some metrics
measure variants of code length; others try to measure the connections between meth-
ods or objects; others measure a distance from an ideal.

Most metrics seem to correlate with length, so we tend to worry about size first (usu-
ally noticeable as a Large Module or Long Method). But if a metric is easy to compute,
we’ll use it as an indicator that some section of code deserves a closer look.

Metrics are indicators, not absolutes. It’s very easy to get into the trap of making
numbers without addressing the total complexity. So don’t refactor just for a better num-
ber; make sure it really improves your code.

The smells in this chapter are the easiest to identify. They’re not necessarily the easi-
est to fix.

There are other metrics that have been applied to software. Many of them are simply
refinements of code length. Pay attention when things feel like they’re getting too big.

In this chapter we’ll cover the following smells:

Comments• , in which the code includes text to explain what’s happening

Long Method• , in which a method is too long to be manageable

Large Module• , in which a class or module is too large to represent a meaningful
abstraction

Long Parameter List• , in which a method needs too much information in order to
get its job done

41

From the Library of Lee Bogdanoff

ptg

42 Chapter 5: Measurable Smells

Comments
What to Look For

The code contains a comment. (Some IDEs make these more obvious by color-•
coding comments.)

Why This Is a Problem
 Flexibility: Any comment that explains the code must be kept in step if the code is

changed.
Duplication: Most comments can be reflected just as well in the code itself. For

example, the goal of a method can often be communicated as well through its
name as it can through a comment.

Communication: Comments that say something slightly different than the code
create cognitive drag—or even mistrust—and slow the reader down.

When to Leave It
Don’t delete comments that are pulling their own weight—such as rdoc API documen-
tation. Some comments can be particularly helpful—those that tell why something is
done a particular way (or why it wasn’t), or those that cite algorithms that are not obvi-
ous (where a simpler algorithm won’t do).

How It Got This Way
Comments may be present for the best of reasons: The author realizes that something
isn’t as clear as it could be and adds a comment.

What to Do
When a comment explains a code fragment, you can often use • Extract Method to
pull the fragment out into a separate method. The comment will often suggest a
name for the new method.

When a comment explains what a method does (better than the method’s name!), •
use Rename Method using the comment as the basis of the new name.

When a comment explains preconditions, consider using • Introduce Assertion to
replace the comment with code.

From the Library of Lee Bogdanoff

ptg

Comments 43

What to Look for Next
Duplication: Often the code fragments broken out of along method will do similar

things in similar ways; it may be possible to identify some duplication among
them.

 Abstraction: Creating names for code blocks helps to relate the design to the applica-
tion’s domain. Review the names in the area you changed for consistency.

From the Library of Lee Bogdanoff

ptg

44 Chapter 5: Measurable Smells

Long Method
What to Look For

A method has a large number of lines. (We’re immediately suspicious of any method •
with more than fi ve lines.)

Why This Is a Problem
 Flexibility: A Long Method is guaranteed to be a Greedy Method—at least two

responsibilities are coupled together in one place, which in turn leads to
Divergent Change.

 Testability: It can be difficult to isolate individual behaviors of a Long Method for
testing; and if a method does too much it may also be difficult to create fixtures
that contain enough context for the method to work properly.

When to Leave It
It may be that a somewhat longer method is just the best way to express something.
(Like almost all smells, the length is a warning sign, not a guarantee of a problem.)

How It Got This Way
You can think of it as the Columbo syndrome. Columbo was the TV detective who
always had “just one more thing.” A method starts down a path and, rather than break
the flow or identify the helper classes, the author adds one more thing. Code is often eas-
ier to write than it is to read, so there’s a temptation to write fragments that are too big.

What to Do
Use • Extract Method to break up the method into smaller pieces. Look for comments
or white space delineating interesting fragments. You want to extract methods that
are semantically meaningful, not just introduce a function call every seven lines.

You may find other refactorings (those that clean up straight-line code, conditionals, •
and variable usage) helpful before you even begin splitting up the method.

If the method doesn’t separate easily into pieces, consider • Replace Method with
Method Object to turn the method into a separate object.

It’s natural to worry about the performance hit from increasing the number of
method calls, but most of the time this is a non-issue. By getting the code as clean
as possible before worrying about performance, you have the opportunity to gain

From the Library of Lee Bogdanoff

ptg

Long Method 45

big insights that can restructure systems and algorithms in a way that dramatically
increases performance.

What to Look for Next
Duplication: Often the code fragments broken out of a Long Method do similar

things in similar ways; it may be possible to identify some duplication among
them.

Communication: Creating names for code fragments helps to relate the design to the
application’s domain. Review the names in the area you changed for consistency.

 Abstraction: The signatures of the new methods may suggest a missing class, or new
structure may be revealed in the original method.

Flexibility: Review the new methods for Feature Envy; with more small pieces you
now have the opportunity to move code to more “natural” homes.

From the Library of Lee Bogdanoff

ptg

46 Chapter 5: Measurable Smells

Large Module
What to Look For

A class or module has a large number of instance variables, methods, or just lines •
of code.

Why This Is a Problem
 Testability: A Large Module is usually difficult to test, either because it depends on

many other modules or because it is difficult or time-consuming to create
instances in isolation.

 Flexibility: The module represents too many responsibilities folded together— that
is, every Large Module is also a Greedy Module.

How It Got This Way
Large modules get big a little bit at a time. The developer keeps adding just one more
capability to a module until eventually it grows too big. Sometimes the problem is a lack
of insight into the parts that make up the whole module.

What to Do
In general, you’re trying to break up the module. This usually proceeds piecemeal:

Very often a review of the module reveals a composite of other smells, such as • Long
Methods, Data Clumps, and Temporary Fields; fix these smells first.

To break up the module further, use• Extract Class or Extract Module if you can iden-
tify a new piece that has part of this module’s responsibilities.

If you have a large class, you might try • Extract Subclass if you can divide responsibili-
ties between the class and a new subclass.

Sometimes a class is big because it’s a GUI class, and it represents both a display •
component and a model. In this case, you can use Duplicate Observed Data to help
extract a domain class.

What to Look for Next
Duplication: As you peel off each piece of the Large Module you may discover it has

similar responsibilities or interface to an existing module.

From the Library of Lee Bogdanoff

ptg

Large Module 47

Communication: Dividing up confused responsibilities, and giving names to them,
helps the reader relate the code to the real domain. Review the names (see
Chapter 6) used in the slimmer module and everything you extracted.

From the Library of Lee Bogdanoff

ptg

48 Chapter 5: Measurable Smells

Long Parameter List
What to Look For

A method has more than one or two parameters.•

A method yields more than one or two objects to an associated block.•

Why This Is a Problem
• Simplicity: A Long Parameter List often indicates that a method has more than one

responsibility. Sometimes the parameters have no meaningful grouping—they
don’t go together. In such cases it may be that the method, or the objects it
uses, doesn’t represent a meaningful and cohesive abstraction in the problem
domain.

 Flexibility: A Long Parameter List represents a large number of pieces of shared
information between the caller and called code. If either changes, the parameter
list is likely to need changing too.

Communication: A lot of parameters represent a lot to remember—the programmer
has to remember not only what objects to pass, but in which order. More suc-
cinct APIs are easier and quicker to use.

When to Leave It
This is one of those places where a smell doesn’t always equate to a problem. You
might smell a Long Parameter List but decide it’s right for the situation at hand—
for example, to avoid the called method picking up a dependency that you don’t
want it to have. Ensure that your changes don’t upset this balance.

How It Got This Way
You might be trying to minimize coupling between objects. Instead of the called object
being aware of relationships between classes, you let the caller locate everything; then
the method concentrates on what it is being asked to do with the pieces.

The method may have acquired many parameters because the programmer gener-
alized it to deal with multiple variations by creating a general algorithm with a lot of
control parameters.

What to Do
If a parameter’s value can be obtained from another object this one already knows, •
use Replace Parameter with Method.

From the Library of Lee Bogdanoff

ptg

Exercises 49

If the parameters come from a single object, try • Preserve Whole Object.

If the data is not from one logical object, you still might group them via • Introduce
Parameter Object.

What to Look for Next
Duplication: Sometimes a method’s clients all have to jump through the same hoops

in order to call it. Check for Duplicated Code among the callers.
Communication: Parameters add to the cognitive load required to understand a

class’s interface; all of the above refactorings help to hide detail. Review all of
this class’s method signatures looking for Data Clumps and naming patterns.

Size: The amount of code required to call a method can be large when the method
requires a lot of unrelated parameters. Look for signs of Feature Envy and
Open Secret around the objects you are now passing as parameters to the
method.

Exercises

Exercise 5.1: Comments
Consider this code:

class Matcher

 def match(expected, actual, clip_limit, delta)

 # Clip "too-large" values

 actual = actual.map { |val| [val, clip_limit].min }

 # Check for length differences

 return false if actual.length != expected.length

 # Check that each entry is within expected +/- delta

 actual.each_index { |i|

 return false if (expected[i] - actual[i]).abs > delta

 }

 return true

 end

end

A. Use Extract Method to make the comments in match() redundant.

B. Can everything important about the code be communicated using the code alone?
Or do comments have a place?

From the Library of Lee Bogdanoff

ptg

50 Chapter 5: Measurable Smells

C. Find some code you wrote recently. Odds are good that you commented it. Can
you eliminate the need for some of those comments by making the code reflect
your intentions more directly?

 See page 217 for solution ideas.

Exercise 5.2: Long Method
Consider this code:

class Robot

 attr_reader :location, :bin

 def move_to(location)

 @location = location

 end

 def pick

 @bin = @location.take

 end

 def release

 @location.put(@bin)

 @bin = nil

 end

end

class Machine

 attr_reader :name, :bin

 def initialize(name, location)

 @name = name

 @location = location

 end

 def take

 result = @bin

 @bin = nil

 return result

 end

 def put(bin)

 @bin = bin

 end

end

From the Library of Lee Bogdanoff

ptg

Exercises 51

class Report

 def Report.report(out, machines, robot)

 out.print "FACTORY REPORT\n"

 machines.each do |machine|

 out.print "Machine #{machine.name}"
 out.print "bin=#{machine.bin}" if machine.bin != nil

 out.print "\n"

 end

 out.print "\n"

 out.print "Robot"

 if robot.location != nil

 out.print "location=#{robot.location.name}"

 end

 out.print "bin=#{robot.bin}" if robot.bin != nil

 out.print "\n"

 out.print "========\n"

 end

end

(In the code download you can find Rspec examples showing how these classes
interact.)

A. In Report.report, circle four blocks of code to show which functions you might
extract in the process of refactoring this code.

B. Rewrite the report method as four statements, as if you had done Extract Method
for each block.

C. Does it make sense to extract a one-line method?

 See page 217 for solution ideas.

Exercise 5.3: Large Class
Consider the API for the String class in Ruby 1.8.6:

str % arg

str * integer

str + integer

str << fixnum

str << obj

str.concat(fixnum)

str.concat(obj)

5

10

15

From the Library of Lee Bogdanoff

ptg

52 Chapter 5: Measurable Smells

str <=> other_str

str == obj

str =~ obj

str[fixnum]

str[fixnum, fixnum]

str[range]

str[regexp]

str[regexp, fixnum]

str[other_str]

str[fixnum] = fixnum

str[fixnum] = new_str

str[fixnum, fixnum] = new_str

str[range] = aString

str[regexp] = new_str

str[regexp, fixnum] = new_str

str[other_str] = new_str

str.capitalize

str.capitalize!

str.casecmp(other_str)

str.center(integer, padstr)

str.chomp(separator=$/)

str.chomp!(separator=$/)

str.chop

str.chop!

str.concat(fixnum)

str.concat(obj)

str.count([other_str]+)

str.crypt(other_str)

str.delete([other_str]+)

str.delete!([other_str]+>)

str.downcase

str.downcase!

str.dump

str.each(separator=$/) {|substr| block }

str.each_byte {|fixnum| block }

str.each_line(separator=$/) {|substr| block }

str.empty?

str.eql?(other)

str.gsub(pattern, replacement)

str.gsub(pattern) {|match| block }

str.gsub!(pattern, replacement)

str.gsub!(pattern) {|match| block }

str.hash

str.hex

str.include? other_str

str.include? fixnum

From the Library of Lee Bogdanoff

ptg

Exercises 53

str.index(substring [, offset])

str.index(fixnum [, offset])

str.index(regexp [, offset])

str.insert(index, other_str)

str.inspect

str.intern

str.length

str.ljust(integer, padstr=' ')

str.lstrip

str.lstrip!

str.match(pattern)

str.next

str.next!

str.oct

str.replace(other_str)

str.reverse

str.reverse!

str.rindex(substring [, fixnum])

str.rindex(fixnum [, fixnum])

str.rindex(regexp [, fixnum])

str.rjust(integer, padstr=' ')

str.rstrip

str.rstrip!

str.scan(pattern)

str.scan(pattern) {|match, ...| block }

str.slice(fixnum)

str.slice(fixnum, fixnum)

str.slice(range)

str.slice(regexp)

str.slice(regexp, fixnum)

str.slice(other_str)

str.slice(fixnum)

str.slice(fixnum, fixnum)

str.slice(range)

str.slice(regexp)

str.slice(regexp, fixnum)

str.slice(other_str)

str.slice!(fixnum)

str.slice!(fixnum, fixnum)

str.slice!(range)

str.slice!(regexp)

str.slice!(other_str)

str.split(pattern=$;, [limit])

str.squeeze([other_str]*)

str.squeeze!([other_str]*)

str.strip

From the Library of Lee Bogdanoff

ptg

54 Chapter 5: Measurable Smells

str.strip!

str.sub(pattern, replacement)

str.sub(pattern) {|match| block }

str.sub!(pattern, replacement)

str.sub!(pattern) {|match| block }

str.succ

str.succ!

str.sum(n=16)

str.swapcase

str.swapcase!

str.to_f

str.to_i(base=10)

str.to_s

str.to_str

str.to_sym

str.tr(from_str, to_str)

str.tr!(from_str, to_str)

str.tr_s(from_str, to_str)

str.tr_s!(from_str, to_str)

str.unpack(format)

str.upcase

str.upcase!

str.upto(other_str) {|s| block }

A. Why does this class have so many methods?

B. Go through the methods listed and categorize them into fi ve to ten major areas
of responsibility.

C. Many of the methods have aliases (e.g., next and succ, [] and slice). What are
the tradeoffs in having aliases?

D. Most String methods have two versions—for example, str.reverse and str.re-
verse!. (The first form returns a new string; the ! form changes the existing string
in place.) What are the consequences of having the two types of methods?

E. On balance, do you consider the size of class String to be a smell?

F. In Java, class Object has 11 methods, whereas in Ruby and Smalltalk it has many
times this number. Why the difference? Talk to a Java person and consider whether
you think Ruby’s version smells.

 See page 218 for solution ideas.

From the Library of Lee Bogdanoff

ptg

Exercises 55

Exercise 5.4: Smells and Refactorings
Consider these smells:

A. Comments
B. Large Module
C. Long Method
D. Long Parameter List

For each refactoring in the following list, write the letter for the smell(s) it might
help cure:

___ Duplicate Observed Data

___ Extract Class

___ Extract Method

___ Extract Subclass

___ Introduce Assertion

___ Introduce Parameter Object

___ Preserve Whole Object

___ Rename Method

___ Replace Parameter with Method

 See page 220 for solution ideas.

Exercise 5.5: Triggers
Consider the smells described in this chapter.

A. Which of these do you find most often? Which do you create most often?

B. To stop children from sucking their thumbs, some parents put a bad-tasting or
spicy solution on the child’s thumb. This serves as a trigger that reminds the child
not to do that. What triggers can you give yourself to help you recognize when
you’re just beginning to create one of these smells?

 See page 220 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

CHAPTER 6

Names

The creation of a good mental model is one of the key challenges in developing software.
There are several tools people use to help with this:

Project dictionaries•

Domain vocabularies, ontologies, and languages•

XP-style metaphors•

How we name things is important. Good names perform several functions:

They provide a vocabulary for discussing our domain.•

They communicate intent.•

They support subtle expectations about how the system works.•

They support each other in a system of names.•

It’s hard to pick good names, but it’s worth the effort. Ward Cunningham describes
using a thesaurus to get just the right sense.

Some teams have coding standards and naming standards that affect how names are
chosen. You may find these guidelines helpful:

Use verbs for manipulators, and nouns and/or adjectives for accessors.•

Use terms consistently: Have each word mean the same wherever it is used; give •
each concept the same name wherever it occurs; and use different words for differ-
ent things.

Prefer one-word names.•

Value communication most.•
57

From the Library of Lee Bogdanoff

ptg

58 Chapter 6: Names

Don’t worry too much about getting each name right the first time, but do ensure
you change a name immediately when a better alternative suggests itself. Especially with
tool support, it’s not that hard to change a name; it’s always worth investing a little en-
ergy in improving names as you modify code.

In this chapter we’ll cover the following smells:

Type Embedded in Name• , in which names are coupled to types

Uncommunicative Name• , in which a name doesn’t reveal the developer’s intentions

Inconsistent Names• , in which domain vocabulary isn’t standardized

From the Library of Lee Bogdanoff

ptg

Type Embedded in Name 59

Type Embedded in Name
What to Look For

Names that are compound words, consisting of a word plus the type of the •
argument(s)—for example, a method add_course(course).

Hungarian notation, where the type of an object is encoded into the name—•
for example, i_count as an integer variable.

Variable names that reflect their type rather than their purpose or role.•

Why This Is a Problem
Flexibility: The name of a reference has been coupled to the type of the object it

references; if either changes we could introduce some cognitive drag.
Abstraction: Different names for the same thing can hide abstractions.

When to Leave It
This smell is weakest when applied to method names: Sometimes you need to distin-
guish methods from each other according to the types of their parameters or return
values. (An example from core Ruby is the “conversion” methods: to_s, to_a, to_i,
to_f, etc.)

How It Got This Way
The type may originally have been added to help with communication: Hungarian no-
tation is often introduced as part of a coding standard—for example, in a pointer-based
language such as C it is useful to know that **ppc is in fact a character. Some program-
mers or teams use a convention where a prefix indicates that something is a member
variable (_count or m_count). In Ruby, this is redundant—we already use @ to indicate
member variables.

What to Do
Use • Rename Method (or field or constant or parameter) to a name that communi-
cates intent without being so tied to a type.

What to Look for Next
Duplication: Removing the type names may reveal other duplication. Look for

Alternative Modules with Different Interfaces.

From the Library of Lee Bogdanoff

ptg

60 Chapter 6: Names

Uncommunicative Name
What to Look For
A name doesn’t communicate its intent well enough. Examples of this can include:

One- or two-character names•

Names with vowels omitted•

Numbered variables (e.g., • pane1, pane2, and so on)

Odd abbreviations•

Misleading names•

Why This Is a Problem
Communication: Poor names deceive the reader; they make it harder to build a men-

tal picture of what’s going on, and they can be misinterpreted. They also hurt
the flow of reading as the reader must slow down to interpret the names.

Flexibility: Very short names can be difficult to change, even with automated refac-
toring tools.

When to Leave It
Some teams use short names such as i, j, or k for loop indexes or c for characters;
these aren’t too confusing if the scope is limited. Similarly, you may occasionally find
that numbered variables communicate better.

How It Got This Way
When you first implement something, you have to name things somehow. You give the
best name you can think of at the time and move on. Later, you may have an insight
that lets you pick a better name.

What to Do
Use• Rename Method (or field, constant, etc.) to give it a better name.

What to Look for Next
Duplication: Look for places where the same name means different things, or the

same thing has different names.

From the Library of Lee Bogdanoff

ptg

Inconsistent Names 61

Inconsistent Names
What to Look For

One name is used in one place, and a different name is used for the same thing •
somewhere else. For example, in a single application you might see add, store, put,
and place for the same basic method.

Why This Is a Problem
Communication: Multiple names (for no reason) make it hard for the reader.
Duplication: The different names may hide similar methods.

How It Got This Way
Different people may create the classes at different times. (People may forget to explore
the existing classes before adding more.) Occasionally, you’ll find people doing this in-
tentionally (but misguidedly) so they can distinguish the names.

What to Do
Pick the best name, and use Rename Method (or field, constant, etc.) to give the same
name to the same things.

The Eiffel language uses a common pool of words for the names of its library fea-
tures; the Rails framework also uses naming conventions extensively. You can use this
technique as inspiration: Look to existing library names for the vocabulary you use.

What to Look for Next
Duplication: Addressing this smell can make classes become more similar than when

they started. Look for a duplication smell and eliminate it.

From the Library of Lee Bogdanoff

ptg

Exercises

Exercise 6.1: Names
Classify these method names as Type Embedded in Name, Uncommunicative
Name, or OK.

___ add_item(item)

___ do_it

___ get_nodes_array

___ get_data

___ make_it

___ multiply_int_int(int1, int2)

___ process_item

___ sort

___ spin

See page 220 for solution ideas.

Exercise 6.2: Critique the Names

Which name would you expect to use?

A. To empty a window (onscreen)

window.clear

window.wash

window.erase

window.delete_all

B. For a stack

stack.add

stack.insert

stack.push

stack.add_to_front

62 Chapter 6: Names

From the Library of Lee Bogdanoff

ptg

Exercises 63

C. For an editor (to get rid of the selected text)

selection.cut

selection.delete

selection.clear

selection.erase

D. As part of a file comparison program

line1.compare(line2)

line1.eql?(line2)

line1.identical_to(line2)

line1.matches(line2)

 See page 221 for solution ideas.

Exercise 6.3: Superclasses
In each of the following scenarios you have a group of classes, and you want to intro-
duce a superclass for them. What do you call it?

A. Car, Boat, Train

B. LaserPrinter, InkjetPrinter, NetworkPrinter

 See page 221 for solution ideas.

Exercise 6.4: Method Names
A. You have classes Schedule and Course, and a method named schedule.add_

course(course). Later, you introduce a class Syllabus—a collection of Courses
that behaves just like a single Course. So now schedule.add_course(thing) can
add a Syllabus too. Is that a problem?

B. During development, you have classes Graph, Point, and Edge (in the mathemati-
cal sense) and a method graph.add(point). Now you want to be able to add
edges to a graph too. What new method(s) might you introduce to accomplish
that?

 See page 221 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

65

CHAPTER 7

Unnecessary Complexity

Code is sometimes more complicated than it would have to be purely to solve the prob-
lem at hand. There are three main causes for this problem:

Code shows the traces of its history, the leftovers from old ways of doing things; •
the current complexity of the code owes more to the past—and to the journey
travelled—than to the present.

The design has been over-generalized. This is often done in anticipation of future •
requirements, or for premature performance tuning.

The original developers were unfamiliar with Ruby—they didn’t know that there •
was a language feature or a library method that does what they needed.

Remove these problems when you run into them. You’ll often find that this can lead
to further insight and simplification.

In this chapter we’ll cover the following smells:

Dead Code• , in which some code is unused

Speculative Generality• , in which code exists “just in case”

Greedy Method• , in which a method has more than one responsibility

Procedural Code• , in which code proceeds step by step

Dynamic Code Creation• , in which class_eval and friends are used to create code
at run-time

From the Library of Lee Bogdanoff

ptg

66 Chapter 7: Unnecessary Complexity

Dead Code

What to Look For
A variable, parameter, code fragment, method, module, or class is not used any-•
where (perhaps other than in tests).

Why This Is a Problem
Size: Dead Code adds to the application’s size, and thus to the amount of code that

must be understood by developers and maintainers.
Communication: It isn’t always obvious when code is dead, and so the reader may

take it as having a bearing on the behavior of his software. Indeed, Dead Code
that is also incorrect or invalid may lead the developer seriously astray.

Flexibility: All code has dependencies on other code; but Dead Code may create de-
pendencies where otherwise there would be none. These unnecessary couplings
may, in turn, slow the pace of change for the code in these areas.

When to Leave It
If your application is a framework, it may include elements or hooks purely to support
clients’ needs, but which aren’t needed by the framework itself.

How It Got This Way
Requirements have changed, or a new design has been introduced, without adequate
cleanup. Or sometimes complicated logic results in some combinations of conditions
that can’t actually happen; you’ll see this when simplifying conditionals.

What to Do
Delete the unused code and any associated tests.•

The code you just deleted may have been the only client of some other code, so that •
in turn is now dead. Continue checking and deleting until you find no more Dead
Code.

What to Look for Next
Size: There are fewer code elements to be loaded and interpreted, and there is less code

to read and search. You may find you now have a Lazy Class or a Data Class,
for example.

From the Library of Lee Bogdanoff

ptg

Dead Code 67

Communication: Removing unnecessary code elements may free up names from the
application’s domain. These names can now be reused, and it may be possible
to give better names to existing code elements.

• Simplicity: The removal of unused code paths can render algorithms easier to under-
stand and will often clear the way for further refactoring to simplify code that
previously was too complex. Look out for Special Case logic in methods that you
have recently thinned out.

From the Library of Lee Bogdanoff

ptg

68 Chapter 7: Unnecessary Complexity

Speculative Generality

What to Look For
The application’s design includes “hooks” to permit future adaptation or customiza-•
tion, and these hooks are only used in one way—or not at all—right now.

Code is more complicated than it has to be for the currently implemented require-•
ments.

A class has only one subclass, or a method has only one caller, or a module is only •
used in one place.

The names used in part of the application are abstract or overly general.•

Lazy Class and Special Case are often indicators that the application at large may be
suffering from Speculative Generality.

Why This Is a Problem
Communication: Speculative abstractions can make the code harder to understand.
Flexibility: Hooks and special cases can get in the way when you want to change

current behavior. So, they can slow down the pace of development and main-
tenance, even creating “no-go” areas within an application. Dealing with such
code often feels like “walking on eggshells.”

When to Leave It
An application framework may have elements present to support clients’ needs that,
strictly speaking, aren’t needed by the framework itself. Or perhaps some elements are
used by test methods and they’re exposed as probe points to allow a test to have privileged
information about the class. Be careful though—this may indicate that you’re missing
an abstraction that you could test independently.

How It Got This Way
The code may have been built with the expectation that it will become more useful,
but then it never does. When people try to outguess the needs of the code, they often
add things for generality or for completeness that end up never being used. Sometimes
the code has been used before, but is no longer needed because of new or revised
ways of doing things. (Speculative Generality may be Dead Code that was created
on purpose.)

From the Library of Lee Bogdanoff

ptg

Speculative Generality 69

What to Do
For an unnecessary module, use the appropriate• Inline refactoring on each method,
class, and constant in the module.

For an unnecessary class: If parents or children of the class seem like the right place •
for its behavior, fold it into one of them via Collapse Hierarchy. Otherwise, fold its
behavior into its caller via Inline Class.

For an unnecessary method, use• Inline Method or Remove Method.

For an unnecessary instance variable, remove all references to it.•

For an unnecessary parameter, use• Remove Parameter.

What to Look for Next
Communication: The removal of unnecessary code elements may free up names from

the application’s domain; those names can now be reused, so it may now be
possible to give better names to existing code elements.

Flexibility: If you inlined anything, look again at the receiving code: Have you cre-
ated a Long Method or Large Module? Have you created a Greedy Method or
a Greedy Module?

Size: Review the places where you removed code or parameters; look out now for a
Lazy Class or some Dead Code.

From the Library of Lee Bogdanoff

ptg

Greedy Method

What to Look For
A method does more than one job.•

A method has “and” in its name.•

The body of a method includes code at several different levels of abstraction.•

Why This Is a Problem
Communication: A code fragment that has two responsibilities intertwined is harder

to read, and harder to name.
Flexibility: If one of the method’s responsibilities must change, or has a defect, you

often have to work hard to sidestep the method’s other responsibilities—it can
therefore be a challenge to avoid breaking other code.

 Testability: A method that does two things will be harder to test than if the responsi-
bilities were separated.

A method that does two jobs is often said to violate the Single Responsibility Principle
(SRP); see Robert Martin’s Agile Software Development: Principles, Patterns, and Practices
[21] for a broader explanation of the SRP.

How It Got This Way
When new behavior must be added, the quickest thing to do is often to weave it into
existing code.

What to Do
Consider the approaches to dealing with a• Long Method—they will often work here
just as well. Use Extract Method to hide detail behind an intention-revealing name.

If the method makes extensive use of another object, treat and fix the• Feature Envy.

Look at the method’s parameters: Do they come from different “parts” of the appli-•
cation? Are some of them domain related, whereas others are technology related?
Look for ways to extract methods whose parameter lists are more consistent.

What to Look for Next
Communication: If you extracted one or more methods, check the whole system of

names in their receiving class(es) to ensure it is still consistent.

70 Chapter 7: Unnecessary Complexity

From the Library of Lee Bogdanoff

ptg

Greedy Method 71

Duplication: Review any extracted methods for Feature Envy to ensure they have
been sent to the right class. Check also for Duplicated Code to ensure they
really are different from the others in the receiving class(es).

 Testability: Now that you have smaller decoupled methods, check your tests and test
fixtures. You may find that these can be simplified too.

From the Library of Lee Bogdanoff

ptg

72 Chapter 7: Unnecessary Complexity

Procedural Code

What to Look For
An algorithm proceeds step by step, possibly using one or more temporary variables •
to hold intermediate values.

Code iterates over the contents of an • Array or Hash, instead of using an approach
based on each.

A code fragment uses a local variable to cache an intermediate result.•

Why This Is a Problem
Duplication: Every collection in Ruby (and indeed any class that includes the

Enumerable module) already provides methods that iterate over its ele-
ments, so iterating in your own code is almost always a kind of Reinvented
Wheel.

Flexibility: Any method that iterates over a collection and does something with the
elements is arguably a Greedy Method.

• Simplicity: Local variables, especially when used to manage iteration, can add clutter
and obscure a method’s flow. They can also hamper refactorings such as Extract
Method.

Communication: In any language, using the language’s own idioms helps communi-
cate the code’s intent to the widest possible audience. In order to be maximally
communicative, your code should be written using the styles and idioms of
your community. Procedural Code is not idiomatic in Ruby circles.

When to Leave It
Sometimes a code fragment uses a well-named local variable to help explain the steps in
an algorithm or the reason the design is like it is.

How It Got This Way
During test-driven development, a procedural solution is often the quickest next step to
get from a red to a green bar. Or, the original code was written by someone not used to
Ruby’s more functional and object-oriented style.

What to Do
If you’re iterating over a collection,• Replace Loop with Collection Closure Method—for
example, using select, reject, or collect.

From the Library of Lee Bogdanoff

ptg

Procedural Code 73

If you have a temporary variable on which a series of operations is performed, •
Replace Temp with Chain.

What to Look for Next
Communication: If you used Replace Loop with Collection Closure Method you may

have extracted one or more methods to perform parts of the job; make sure
these methods are well named and live on the appropriate class.

Flexibility: If you’ve converted a loop to a chain of method calls, you may have
decoupled portions of the loop from each other. Look out for Feature Envy if
sections of the chain no longer depend on the state of the current object.

From the Library of Lee Bogdanoff

ptg

74 Chapter 7: Unnecessary Complexity

Dynamic Code Creation

What to Look For
Code uses • eval, class_eval, or module_eval to build new code dynamically.

Why This Is a Problem
Dynamic code evaluation is a very powerful mechanism, and with great power comes
great responsibility.

Communication: The names of an application’s classes and methods form the vocab-
ulary that makes the code human-readable. That code becomes harder to read
and understand when the abstractions are fluid or created late.

 Testability: Testing, or test-driving, anything that changes dynamically is an order of
magnitude harder than normal test-driven development.

Flexibility: Dynamic code evaluation is difficult to debug, and often runs more
slowly than the alternatives.

When to Leave It
Sometimes dynamic code evaluation is the only or best way to solve a particular prob-
lem. For example, it may be impossible to determine which methods a class must have
until run-time.

How It Got This Way
It can be difficult to find the right set of abstractions to define a problem, and so it
makes sense to build them dynamically as the need arises.

Other times you might want to use the expressive power of standard Ruby classes
and methods, but you only find out at run-time which ones you’ll need and what they
need to look like.

What to Do
If your code uses the String form of • eval, try to replace it with one of the block
forms, or with calls to define_method; this at least provides some syntax safety.

If you’re using • method_missing, replace it using Replace Dynamic Receptor with
Dynamic Method Definition—for example, convert it to use class_eval.

From the Library of Lee Bogdanoff

ptg

Dynamic Code Creation 75

If it is absolutely necessary to use • eval, but parsing the string is becoming a perfor-
mance bottleneck, use Move Eval from Run-time to Parse-time.

What to Look for Next
Duplication: Moving evaluation from run-time to parse-time could introduce Dupli-

cated Code; decide whether this trade-off is worth the price.
Communication: Look for opportunities to hide dynamic evaluation behind helpful

method names, to make your intentions clear to the reader.

From the Library of Lee Bogdanoff

ptg

76 Chapter 7: Unnecessary Complexity

Exercises

Exercise 7.1: Dead Code (Challenging)
Find an application or project that has undergone changes in requirements or design.
Odds are good that it now contains dead code.

A. Find some dead code by reading through and simulating suspect areas by hand.
How confident are you that this code is indeed redundant?

B. If you don’t have them already, write thorough tests for all clients of this suspect
code. Are you now more confident that the code can be removed?

C. Find an appropriate code coverage tool—such as Rcov (http://rubyforge.
org/projects/rcov/)—and use it to analyze your test run. How confident are
you now that this suspect code is redundant?

D. What does the coverage tool tell you about libraries and gems loaded by your
code? Is that a problem? If yours is a Rails application, did you make use of all of
the scaffolding provided? Is that a problem?

E. Modify the suspect code so that it is obviously broken, perhaps by having it raise
an exception. (If you have heckle available, run it on your test suite.) Do you get
any surprises when you rerun the tests? If not, delete the dead code.

F. Which of the preceding approaches worked best in your application? Which
gave the best return on the effort involved? Repeat the exercise by finding an-
other chunk of dead code, this time focusing on the technique(s) that gave the
most benefit.

Exercise 7.2: Today versus Tomorrow
There are arguments for and against Speculative Generality being a smell. We can
caricature them as follows:

Some agile development methods, notably Extreme Programming, argue that •
Speculative Generality is a smell, and that you aren’t going to need it. That is,
make your code meet today’s requirements, and don’t try to anticipate which way
tomorrow’s requirements will go. (Thus an agile team is more likely to evolve a
framework from an application than to build a framework and use it to create an
application.)

Another approach is to design for flexibility or to design for generality. This means •
that you should fully flesh out your classes based on the expected requirements.

From the Library of Lee Bogdanoff

http://rubyforge.org/projects/rcov/
http://rubyforge.org/projects/rcov/

ptg

Exercises 77

When refactoring code you will often need to decide which approach is better for the
particular case you’re currently dealing with.

A. What are the forces that make it better to design for only today’s requirements
today?

B. What are the forces that make it better to design for tomorrow’s requirements
today?

See page 222 for solution ideas.

Exercise 7.3: Extraction Trade-Offs
Imagine you’ve found a Long Method or a Large Module, and you deal with it by
extracting new methods or classes.

A. These extracted pieces will often have only one client—the original code. Have
you just introduced a case of Speculative Generality? If not, why not?

B. Now jump six months into the future: A newcomer to the team looks at this
refactored code, perhaps in order to change its behavior for a new requirement.
Will the newcomer see Speculative Generality here?

C. What might you do now to help make it clear that Speculative Generality is not
present?

See page 222 for solution ideas.

Exercise 7.4: Formatting Names
Consider the following method:

def display_full_name(out, person)

 out.write(person.first)

 out.write(" ")

 if person.middle != nil

 out.write(person.middle)

 out.write(" ")

 end

 out.write(person.last)

end

From the Library of Lee Bogdanoff

ptg

78 Chapter 7: Unnecessary Complexity

A. What are the clues that this is a Greedy Method?

B. Devise and carry out a sequence of changes that will remove the smell.

See page 223 for solution ideas.

Exercise 7.5: Procedural Code
Consider the following method:

class Cart

 def total_price

 total = 0

 @items.each { |item| total += item.price }

 return total

 end

end

A. Use the inject method to rewrite this code without an explicit iterator.

B. Looking again at the original code, why might total_price be considered a
Greedy Method?

C. Refactor the method a second time, beginning again from the preceding code.
This time around, fix the greediness first, and then fix the Procedural Code.

D. Compare your two refactored versions of the code, looking particularly at com-
munication and flexibility.

See page 223 for solution ideas.

From the Library of Lee Bogdanoff

ptg

79

CHAPTER 8

Duplication

Duplication has been recognized for more than 30 years as the bane of the program-
mer’s lot. How does duplication cause problems?

There is more code to maintain (a conceptual and physical burden).•

Parts that vary are buried inside the parts that stay the same (a perceptual problem— •
it’s hard to see the important stuff).

Code variations often hide deeper similarities—it will be hard to see the deeper solu-•
tion hidden within all the similar code.

There’s a tendency to fix a defect in one place and leave identical defects elsewhere •
unfixed. When you see two variations of something, it’s hard to know which varia-
tion is the right pattern or if there’s a good reason for the differences.

David Parnas introduced the idea of information hiding: A good module has a secret.
By ensuring that a module keeps its secret, we usually reduce duplication. (See “On the
criteria to be used in decomposing systems into modules” [25].)

Duplication is a root problem. Many other smells are special-case examples of du-
plication. Duplication is not always obvious, but it’s critical to address it. Strive to make
your code express each idea “once and only once.” Don’t repeat yourself.

In this chapter we’ll cover the following smells:

Derived Value• , in which a hard-coded value could have been computed instead

Repeated Value• , in which a hard-coded value is repeated

Duplicated Code• , in which code has been copied

Alternative Modules with Different Interfaces• , in which the same problem has
been solved more than once

From the Library of Lee Bogdanoff

ptg

80 Chapter 8: Duplication

Derived Value

What to Look For
The code contains a hard-coded value that could also be obtained by calculating it •
from other values or referencing an appropriate constant.

Why This Is a Problem
Duplication: When a value is computed two different ways, it’s prone to the two

mechanisms diverging.
 Communication: Showing the relationship between values helps to document the

design more clearly.

When to Leave It
Some tests may benefit from having a derived value: It may make the test more readable,
and it may demonstrate an independent computation of the value.

How It Got This Way
Someone needed a value, so they put it in the code. On its own, perhaps it’s not so bad,
but often there are other values derived from or dependent on it. For example, we’ll have
a string defined as “banana” and a length variable of 6. If you change the string, you need
to change the length variable; however, this is not obvious, and so a defect gets in.

What to Do
Use • Replace Value with Expression for the derived value.

What to Look for Next
 Duplication: Cleaning up this duplication may make it easier to see other duplica-

tion. You may see examples of Feature Envy.
 Abstraction: By making explicit the fact that two values depend on each other, you

may identify the need to wrap those values and calculations in a class. You may
see this in the form of an Open Secret.

From the Library of Lee Bogdanoff

ptg

Repeated Value 81

Repeated Value

What to Look For
A hard-coded value—such as a GUI scaling factor or a text string—occurs more •
than once in the code and has the same meaning each time.

Why This Is a Problem
Duplication: Defects can enter if the value is changed in one place but not the

other.
Communication: When a value appears multiple times, it’s not clear whether this is

intentional or coincidental.

When to Leave It
The same value might actually mean different things. For example, two different mod-
ules might use the empty string as a default value. This is a coincidence and not an
example of duplication. Nevertheless, you might improve communication by creating
constants to give domain-related names to these default values.

Tests are often more readable when they simply use the value they want, but again
you may sometimes pull out a symbolic constant if it better communicates your intent.

How It Got This Way
A programmer needs a value and puts it in the code; the value then embodies a require-
ment or a design choice. Later, someone needs the same value, so he either copies the
original or independently makes the same choice.

What to Do
If the value is genuinely a simple constant, use • Replace Magic Number with Symbolic
Constant to give it a meaningful name.

Very often, the value is a clue to the existence of the hard form of • Duplicated Code.
Use Extract Method or Form Template Method on the repeated algorithm. Leave the
value itself inline in the resulting code, unless naming it helps to explain or docu-
ment the algorithm.

If the values are strings (e.g., the text of dialog boxes), you may want to put them in •
some sort of mapping facility or use an internationalization library such as ri18n.

From the Library of Lee Bogdanoff

ptg

82 Chapter 8: Duplication

What To Look for Next
 Duplication: Removing this duplication may make it easier to see other duplication.
 Abstraction: Removing this duplication may reveal the need for a new class respon-

sible for the value.

From the Library of Lee Bogdanoff

ptg

Duplicated Code 83

Duplicated Code

What to Look For
The easy form: Two fragments of code look nearly identical.•

The hard form: Two fragments of code have nearly identical effects (at any concep-•
tual level).

Why This Is a Problem
 Size: The code is bigger than it has to be, with more to understand.
 Flexibility: A design concept expressed more than once interferes with future changes;

the change may have to be done in multiple places.
 Communication: Near-repetition interferes with how easily code is understood. (The

reader must decide whether two things are really expressing one concept, and
whether any differences are significant.)

When to Leave It
Sometimes, what appears to be duplication is in fact coincidental. In such a case, fold-
ing the two places together would confuse the reader and create friction against future
change.

Very rarely, you might decide that the duplication is necessary to help the code com-
municate better, and choose to leave it in place.

How It Got This Way
Some duplication occurs because programmers work independently in different parts
of the system, and they don’t realize that they are creating almost identical code. Some-
times people realize there’s duplication, but they don’t have the time or inclination to
remove it. Other times, duplication will be hidden by other smells; after those smells are
fixed, the duplication becomes more obvious.

Perhaps the most common case occurs when the programmers intentionally dupli-
cate code. They find some code that is “almost” right, so they copy-and-paste it into the
new spot with some slight alterations. This often happens on a red bar during test-driven
development, when it is imperative to get to the green bar as quickly as possible.

From the Library of Lee Bogdanoff

ptg

84 Chapter 8: Duplication

What to Do
If the duplication is within a method or in two different methods in the same class or •
module: Use Extract Method to pull the common part out into a separate method.

If the duplication is within two sibling classes: Use• Extract Method to create a single
method, then Pull Up Method (and Pull Up Instance Variable if needed) to bring the
common parts together. Then you may be able to use Form Template Method to cre-
ate a common algorithm in the parent and unique steps in the children.

If the duplication is in two modules or in two unrelated classes: Either extract the •
common part into a new class or module, or decide that the smell is Feature Envy
so the common code really belongs in only one place.

In any of these cases, you may find that the two places aren’t literally identical but •
that they have the same effect. Then you may do a Substitute Algorithm so that only
one copy is involved.

What to Look for Next
 Abstraction: Look for ways to push related responsibilities together. You may find

new classes waiting to emerge.

From the Library of Lee Bogdanoff

ptg

Alternative Modules with Different Interfaces 85

Alternative Modules with Different Interfaces

What to Look For
Two classes or modules seem to be doing the same thing but are using different •
method names.

Why This Is a Problem
 Flexibility: Maintaining two similar chunks of code can be time-consuming and

costly.
 Communication: Having different names for the same concept makes code harder

to understand.
 Abstraction: Different names interfere with your ability to pull out common code.

When to Leave It
Even with Ruby’s open classes, it’s not always expedient to change interfaces (e.g., if both
are in different libraries that you’d rather not own). Each library may have its own vision
for the same concept, but you may be left with no good way to unify them.

How It Got This Way
People create similar code to handle similar situations, but don’t realize the other code
exists.

What to Do
Harmonize the classes or modules so that you can eliminate one of them.

 1. Use Rename Method to make method names similar.

 2. Use Move Method, Add Parameter, and Parameterize Method to make protocols
(method signatures and approach) similar.

 3. If you have two classes that are similar but not identical, use Extract Superclass after
you have them reasonably well harmonized. For similar modules, extract a shared
module or class that they can both use.

 4. Remove the extra class or module if possible.

What to Look for Next
 Duplication: You may be able to extract common helper or superclasses.

From the Library of Lee Bogdanoff

ptg

86 Chapter 8: Duplication

Exercises

Exercise 8.1: Rakefile
Consider the following fragment of a Rakefile:

require 'rake/contrib/sshpublisher'

file '.published' => ['sparky.html', 'sparky.rb'] do

 Rake::SshFilePublisher.new('www.ruby-refactoring.com',

 '/var/www/tools', '.', 'sparky.html').upload

 Rake::SshFilePublisher.new('www.ruby-refactoring.com',

 '/usr/lib/cgi-bin', '.', 'sparky.rb').upload

 touch '.published'

end

desc "copy all files to the live deploy locations"

task :deploy => '.published'

A. Identify at least three sets of duplicated strings. Which kind of duplication does
each represent?

B. Eliminate each type of duplication in turn.

C. Was some duplication harder to eliminate than others? Starting again from the
original code, try removing the smells in a different order. Does that change
your solution? Does it alter the relative difficulty of each refactoring?

D. This example has no tests; did you make any mistakes while refactoring? What
could you haved one to make the process less error prone?

See page 225 for solution ideas.

Exercise 8.2: Two Libraries (Challenging)
Suppose you’re trying to integrate two modules from two different sources. Each
module has its own logging approach. Their APIs are

System A: Calls to LogFile.log are sprinkled throughout the code.

LogFile.setLog("file.log")

LogFile.log(:info, "some message")

Logfile.log(:error, "another message")

or use :warn or :fatal

From the Library of Lee Bogdanoff

ptg

Exercises 87

System B: Any object that wants to write values to the log fi le will hold an instance
of Log.

LogFacility.setOutput('file2.log')

@logger = LogFacility.makeLog('id')

@logger.informational('yet another message')

all forms take optional exception

@logger.warning('msg', exception)

@logger.fatal('fatal message')

Your long-term goal is to move to the standard Logger facility in Ruby 1.8, but your
environment doesn’t support that yet.

A. What overall approach would you use to harmonize these classes with where
you want to go? (Make sure to address the Ruby 1.8 concern.)

B. Create a simple test for each logger, and implement the logger with the simplest
approach you can.

C. Describe how to harmonize the classes so you can eliminate one of them. (Don’t
worry about the Ruby 1.8 future yet.)

See page 225 for solution ideas.

Exercise 8.3: Environment Variables
module Timer

 def times(env)

 value_s = env['interval']

 if value_s == nil

 raise "interval missing"

 end

 value = Integer(value_s)

 if value <= 0

 raise "interval should be > 0"

 end

 check_interval = value

 value_s = env['duration']

 raise "duration missing" if value_s.nil?

 value = Integer(value_s)

From the Library of Lee Bogdanoff

ptg

88 Chapter 8: Duplication

 if value <= 0

 raise "duration should be > 0"

 end

 if (value % check_interval) != 0

 raise "duration should be multiple of interval"

 end

 monitor_time = value

 value_s = env['departure']

 if value_s.nil?

 raise "departure missing"

 end

 value = Integer(value_s)

 raise "departure should be > 0" if value <= 0

 if (value % check_interval) != 0

 raise "departure should be multiple of interval"

 end

 departure_offset = value

 [check_interval, monitor_time, departure_offset]

 end

end

A. How would you handle the duplication?

 See page 226 for solution ideas.

Exercise 8.4: Template
module Template

 def template(source_template, req_id)

 template = String.new(source_template)

 # Substitute for %CODE%

 template_split_begin = template.index("%CODE%")

 template_split_end = template_split_begin + 6

 template_part_one =

 String.new(template[0..(template_split_begin-1)])

 template_part_two =

 String.new(template[template_split_end..template.length])

 code = String.new(req_id)

 template =

 String.new(template_part_one + code + template_part_two)

From the Library of Lee Bogdanoff

ptg

Exercises 89

 # Substitute for %ALTCODE%

 template_split_begin = template.index("%ALTCODE%")

 template_split_end = template_split_begin + 9

 template_part_one =

 String.new(template[0..(template_split_begin-1)])

 template_part_two =

 String.new(template[template_split_end..template.length])

 altcode = code[0..4] + "-" + code[5..7]

 puts template_part_one + altcode + template_part_two

 end

end

A. What duplication do you see?

B. What would you do to remove the duplication?

C. One piece that repeats is a structure of the form String.new(something). What
does this code do? Is it necessary?

See page 227 for solution ideas.

Exercise 8.5: Duplicate Observed Data (Challenging)
The refactoring Duplicate Observed Data works like this: If you have domain data in a
widget, move the domain data to a new domain class, and set up an observer so that
the widget is notified of any changes to it.
Thus, we started with a situation where data was in one place (the widget). We have

not only duplicated it (holding it in both the widget and the domain object), but
we’ve also added a need for synchronization between two objects.

A. Why is this duplication considered acceptable (even desirable)? (Hint: Your an-
swer should touch on the Observer or Model-View-Controller patterns.)

B. What are the performance implications of this approach?

See page 227 for solution ideas.

From the Library of Lee Bogdanoff

ptg

90 Chapter 8: Duplication

Exercise 8.6: Ruby Libraries
A. The Ruby core and standard libraries have several places where there is duplica-

tion. Describe some examples of this. They might be at a low, medium, or high
level.

B. Why does this duplication exist? Is it worth it?

See page 228 for solution ideas.

Exercise 8.7: Points
Suppose you see these two classes (bird.rb and button.rb):

bird.rb

require 'point.rb'

class Bird

 attr_accessor :location

 def initialize max_x, max_y

 @@max_x = max_x

 @@max_y = max_y

 @location = Point.new 0, 0

 end

 def move_by(point)

 @location.x = (@location.x + point.x) % @@max_x

 @location.y = (@location.y + point.y) % @@max_y

 end

end

#button.rb

require 'point.rb'

class Button

 attr_accessor :name

 attr_accessor :x, :y

 def initialize name, x_limit, y_limit

 @name = name

 @xmax = x_limit

 @ymax = y_limit

From the Library of Lee Bogdanoff

ptg

Exercises 91

 @x = 0

 @y = 0

 end

 def move_to(x, y)

 @x = limit(x, @xmax)

 @y = limit(y, @ymax)

 end

private

 def limit(v, vmax)

 result = v

 while result >= vmax

 result -= vmax

 end

 while result < 0

 result += vmax

 end

 result

 end

end

A. What is the duplication?

B. What could you do to eliminate duplication in these two classes?

C. Sometimes, two versions of duplicated code are similar, but one has fixed a bug
and the other hasn’t. How can refactoring help you in this situation?

 See page 229 for solution ideas.

Exercise 8.8: XML Report
Suppose we’re writing a script to convert a textual report from a mainframe and re-
format it into XML. Some of our current code looks like this:

class ReportRow

 def to_xml

 result = "<row>\n"

 @columns.each do |col|

 result += col.print + "\n"

 end

 return result + "</row>"

 end

end

From the Library of Lee Bogdanoff

ptg

92 Chapter 8: Duplication

class ReportColumn

 def print

 "<column>#{@value.modulo(100)}</column>"

 end

end

A. Identify the duplication. Are there any other smells in this code?

B. Devise at least two different approaches to removing the duplication. What are
the relative pros and cons of each?

C. Try both approaches. Which was more difficult? Does this affect your assessment
of the pros and cons?

See page 229 for solution ideas.

From the Library of Lee Bogdanoff

ptg

93

CHAPTER 9

Conditional Logic

It’s natural that object-oriented programming is focused on objects and their relation-
ships, but the code within an object is important too. Classic books like Jon Bentley’s
Programming Pearls [6] and More Programming Pearls [7] or Brian Kernighan and P. J.
Plauger’s The Elements of Programming Style [18] can help inspire you to write good,
clean code.

Conditional logic is often the trickiest part of such code.

It’s hard to reason about, since we have to consider multiple paths through the •
code.

It’s tempting to add special-case handling rather than develop the general case.•

Conditional logic sometimes is used as a weak substitute for object-oriented •
mechanisms.

In this chapter we’ll cover the following smells:

Nil Check• , in which nil is used to signal something special

Special Case• , in which one scenario is handled differently than the rest

Complicated Boolean Expression• , in which the logic is impenetrable

Control Coupling• , in which the caller decides which path a method should take

Simulated Polymorphism• , in which duck-typing is hand-coded using conditionals

From the Library of Lee Bogdanoff

ptg

94 Chapter 9: Conditional Logic

Nil Check

What to Look For
There are repeated occurrences of • if xxx.nil? or if xxx == nil, especially in guard
clauses at the top of methods and blocks.

Why This Is a Problem
 Duplication: The multiple identical queries are duplication, with all the problems

that brings.
 Flexibility: When nil is a possible value, it implies that every client must be careful

to make this check to avoid a latent bug.

When to Leave It
If the Nil Check occurs in only one place (e.g., in a Factory Method), it is usually not
worth the effort to create a separate Null Object.

Watch out for a case where nil means two or more different things in different con-
texts. (You may be able to support this with different Null Objects.)

How It Got This Way
A developer decided, “We’ll use nil to mean the default.” This may have avoided the
need to initialize certain variables, or it may have been an afterthought for an unex-
pected case. The Nil Check may have been introduced to work around a defect (without
addressing the underlying cause).

What to Do
Try to restrict Nil Checks to interface boundaries. Ensure that only valid objects are
used in the bulk of the system to avoid the need for these checks.

If there’s a reasonable default value, use that.•

You may fi nd the Ruby idiom • variable = value || default useful at the point
where you set the value. (If value is nil, it sets the variable to the default.)

Otherwise,• Introduce Null Object creates a default object that you explicitly use. You
may find method_missing useful in this.

From the Library of Lee Bogdanoff

ptg

Nil Check 95

However, Null Objects need to have safe behavior for the methods they provide.
They often act as identity objects (as 0 does relative to addition). If you can’t define a
safe behavior for each method, you may not be able to use a Null Object.

What to Look for Next
 Duplication: A single “missing object” defect may have spawned identical defensive

code blocks throughout the application; those can be removed.
Size: Removing the now-extraneous Nil Checks will make the code easier to read and

digest.
 Abstraction: It may turn out that all of the code to handle a certain special case can be

brought together into a single Null Object class, which then comes to represent
a genuine behavioral abstraction from the application’s domain.

From the Library of Lee Bogdanoff

ptg

96 Chapter 9: Conditional Logic

Special Case

What to Look For
Complex• if statements.

Guard clauses—checks for particular values before doing work (especially compari-•
sons to constants).

Why This Is a Problem
 Communication: A Special Case increases the amount the reader has to hold in his

head while attempting to understand a code fragment.

When to Leave It
In a recursive algorithm there are always one or more base cases that will stop the recur-
sion; you can’t expect to eliminate these. And sometimes an if or unless clause is just
the simplest way to do something.

How It Got This Way
Sometimes, introducing a Special Case was the easiest way to get to the green bar. Oth-
er times, a guard clause may have been introduced to defend against an unruly caller, or
while simplifying a Complicated Boolean Expression during refactoring.

What to Do
If the conditionals are taking the place of polymorphism,• Replace Conditional with
Polymorphism. You may find things become more clear if you first use Extract Method
on the clauses.

If the • if and else clauses are similar enough, you may be able to rewrite them so
that the same code fragment can generate the proper results for each case; then the
conditional can be eliminated.

If you have a defensive guard clause, try pushing it up into the method’s callers (see•
Control Coupling for detailed mechanics).

What to Look for Next
 Duplication: Removal of a special case may render the code similar to another frag-

ment elsewhere or reveal a common structure that was previously obscured.

From the Library of Lee Bogdanoff

ptg

Special Case 97

Simplicity:• Pushing guard clauses up the call tree often reveals a single cause for
multiple defensive conditional clauses. Catch the Special Case where it arises,
or look for ways to prevent that case completely.

From the Library of Lee Bogdanoff

ptg

98 Chapter 9: Conditional Logic

Complicated Boolean Expression

What to Look For
Code has complex conditions involving • and, or, and not.

Why This Is a Problem
 Communication: Any code that requires the reader to resort to dry runs or drawing

truth tables is going to slow everyone who encounters it.
 Flexibility: A complex Boolean expression can be a “no-go area,” discouraging devel-

opers from changing the code around it.

When to Leave It
You may be able to find other ways to simplify the expressions, or you may find that the
rewritten expression communicates less than original.

How It Got This Way
The code may have been complicated from the beginning, or it may have picked up ad-
ditional conditions along the way. Sometimes code like this has been directly translated
from a textbook calculation or formula.

What to Do
Flip the sense:•

 if !a becomes unless a

 and
 unless !a becomes if a

Apply DeMorgan’s Law:•

 !(a && b) becomes (!a) || (!b)

 and

!(a || b) becomes (!a) && (!b)

 You may find that some variables will communicate better if they change names to
reflect their flipped sense.

From the Library of Lee Bogdanoff

ptg

Complicated Boolean Expression 99

Use• Introduce Explaining Variable to make each clause clearer.

Use guard clauses to peel off certain conditions; the remaining clauses get simpler.•

Decompose Conditional• pulls each part into its own method.

What to Look for Next
 Communication: Improved readability may expose previously undiscovered defects

in the code.
 Flexibility: If you peeled the condition apart to create one or more guard clauses,

check whether you now have a Nil Check or a Special Case.

From the Library of Lee Bogdanoff

ptg

100 Chapter 9: Conditional Logic

Control Coupling

What to Look For
A method or block checks the value of a parameter in order to decide which execu-•
tion path to take.
A method’s name includes a word such as “or.”•

Why This Is a Problem
 Duplication: Control Coupling is a kind of duplication, because the caller already

knows which path should be taken.
 Flexibility: The caller and callee are coupled together—any change to the possible

values of the controlling parameter must be reflected on both sides.
• Simplicity: The called method is probably also a Greedy Method, because it includes

at least two different code paths.

How It Got This Way
Sometimes we want to modify a method’s behavior slightly, but we don’t want to lose
the original behavior, so we add a parameter and use it to vary the method’s course.

What to Do
1. Use Extract Method to strip the controlled method down to the bare skeleton.

2. Then use Inline Method to push the responsibility back up to the caller(s).

3. Repeat all the way up the call stack to the source of the control value.

What to Look for Next
Duplication: If the control parameter was passed by more than one caller, the Inline

Method step (mentioned in the preceding section) will have introduced some
duplication; remove it as you go.

Size: After the dust has settled, check whether any of the Inline Method steps left be-
hind a Lazy Class.

Abstraction: When you’ve found the source(s) of the control variable, you probably
now have a case of Simulated Polymorphism.

From the Library of Lee Bogdanoff

ptg

Simulated Polymorphism 101

Simulated Polymorphism

What to Look For
Code uses a• case statement (especially on a type field).

Code has several• if statements in a row (especially if they’re comparing against the
same value).

Code uses• instance_of?, kind_of?, is_a?, or === to decide what type it’s working
with.

Multiple conditionals in different places test the same value.•

Why This Is a Problem
 Flexibility: When the same value is tested in multiple places throughout an ap-

plication, any change to the set of possible values causes many methods and
classes to change. This is a major cause of both Shotgun Surgery and Divergent
Change, and missing a single case could introduce defects.

Abstraction: Tests for the type of an object may indicate that the abstraction repre-
sented by that type is not completely defined (or understood).

Communication: Conditional code is hard to read and understand, because the read-
er must hold more state in his head.

When to Leave It
Sometimes—particularly at subsystem boundaries—a case statement is the simplest
way to express the logic.

How It Got This Way
This smell is often caused by laziness in introducing new classes. The first time you need
conditional behavior, you might use an if or case statement rather than a new class. It’s
not a big problem at this point because it only occurs once. However, if you then need
another condition based on the same type code, you introduce a second case instead of
fixing the lack of polymorphism.

Sometimes the lack of polymorphism is hidden behind a series of if statements
instead of an explicit case statement, but the root problem is the same.

From the Library of Lee Bogdanoff

ptg

102 Chapter 9: Conditional Logic

What to Do
Don’t simulate polymorphism—use mechanisms built into the programming language.

If a case statement on the same condition occurs in several places, it is often using a •
type code; replace this with the polymorphism built into objects. It takes a series of
refactorings to make this change:

 1. Extract Method. Pull out the code for each branch.

 2. Move Method. Move related code onto the right class.

 3. Replace Type Code with Subclass or Replace Type Code with State/Strategy. Set up
the inheritance structure.

 4. Replace Conditional with Polymorphism. Eliminate the conditionals.

If the conditions occur within a single class, you might be able to replace the condi-•
tional logic via Replace Parameter with Explicit Methods or Introduce Null Object.

What to Look for Next
 Communication: Creating classes to bring together the conditional branches gives

names to these abstractions. Review the names of these and related classes.
 Duplication: These refactorings often bring together branches from different condi-

tionals into a single new class. Review the new class for Duplicated Code and
inconsistency smells among its methods.

From the Library of Lee Bogdanoff

ptg

Exercises 103

Exercises

Exercise 9.1: Null Object
Look again at the code in Exercise 5.2.

A. Some of the Nil Checks are checks for nil strings. One approach would be to
use empty strings instead. What are the downsides of this approach (taking into
account the test code and all the other client classes you don’t see here)?

B. What’s another approach to this problem?

C. Extract a Bin class, and use Introduce Null Object.

 See page 230 for solution ideas.

Exercise 9.2: Conditional Expression
Consider this code fragment:

if !((score > 700) ||

 ((income >= 40000) && (income <= 100000) &&

 authorized && (score > 500)) ||

 (income > 100000))

 reject

else

 accept

end

A. Apply DeMorgan’s Law to simplify this as much as possible.

B. Starting from the original, rewrite the condition by introducing explaining
variables.

C. Starting from the original again, flip the if and else clauses, then break it into
several if clauses. (You’ll call accept() in three different places.)

D. Use Consolidate Conditional Expression by extracting a method to compute the
condition.

E. Which approach was the simplest? The clearest? Can you combine the
techniques?

From the Library of Lee Bogdanoff

ptg

104 Chapter 9: Conditional Logic

F. Describe the conditions in table form. The rows and columns should be based on
three variables: one for the three score ranges, one for the income ranges, and
one for the authorized flag. The cells should say either “accept” or “reject.”

 See page 230 for solution ideas.

Exercise 9.3: Case Statement
Consider this code:

 def print_it(op)

 case op.type

 when '+'

 out = "push"

 when '-'

 out = "pop"

 when '@'

 out = "top"

 else

 out = "unknown"

 end

 puts "operation = #{out}"

 end

 def do_it(op, stack, item)

 case op.type

 when '+'

 stack.push(item)

 when '-'

 stack.pop

 end

 end

A. What would you do?

B. Suggest some places in a typical application where a case statement might not
be a bad smell.

 See page 231 for solution ideas.

Exercise 9.4: Guard Clauses (Challenging)
Find some code you wrote recently in which some methods have defensive guard
clauses.

From the Library of Lee Bogdanoff

ptg

Exercises 105

A. Using the algorithm suggested under Control Coupling, push the guards as far
as possible up the call tree.

B. What happens when you hit an API or callback interface? What forces prevent or
permit you to continue the refactoring?

C. Does your application now have more or fewer conditional checks? Does the
resulting code indicate any missing abstractions?

D. The methods that were originally “guarded” are now unprotected. Are they
(and their enclosing classes) better or worse off for that?

Exercise 9.5: Factory Method (Challenging)
Consider these classes:

Now imagine that we want to hide the choice of driver from the rest of the
application, so we introduce a Factory class that looks something like this:

USE_MEMORY_DRIVER = 1

USE_DEBUG_DRIVER = 2

USE_PRODUCTION_DRIVER = 3

class DriverFactory

 def initialize(type)

 @type = type

 end

 def make_driver

 #...

 end

end

Memory Driver Debug Driver
Production

Driver

<<abstract>>
Driver

From the Library of Lee Bogdanoff

ptg

A. Write code for the factory according to the implied design. Note: One of the
three constants is passed to the DriverFactory’s constructor; this determines
what type of driver will be returned by make_driver.

B. Your code probably includes a case statement or a series of ifs. Is this condi-
tional logic justified? What other smells do you see in this design?

C. Redesign DriverFactory so that the constants and conditionals are no longer
required.

D. Your code no longer mentions the types explicitly. What are some advantages to
that?

E. What are some disadvantages to this new arrangement?

 See page 232 for solution ideas.

106 Chapter 9: Conditional Logic

From the Library of Lee Bogdanoff

ptg

107

CHAPTER 10

Data

Data can be defined as simple facts, divorced from information about what to do with
them. “Data” has a dusty whiff about it, the old-fashioned ring of data processing or data
structures.

Data is often a natural starting point for thinking about things. For example, we
know we have a first name, middle name, and last name, so we create a Person class with
that information. But objects are about data and behavior together—your code will be
more robust if you organize objects by behavior.

Data-oriented objects are an opportunity. The smells in this chapter are often signs
of a missing or inadequately formed class. If the data represents a good clustering, we’ll
usually be able to find behavior that belongs with it in a class.

In this chapter we’ll cover the following smells:

Open Secret• , in which a domain concept’s representation hasn’t been encapsulated

Data Class• , in which a class has little or no behavior

Data Clump• , in which a bunch of values travel around together

Temporary Field• , in which an instance variable has a different lifecycle than its
enclosing class

From the Library of Lee Bogdanoff

ptg

108 Chapter 10: Data

Open Secret
Sometimes, a simple data type (such as a number or string) is used to encode a value that
could be a domain object in its own right. The representation of this value is exposed;
clients have to decode it and enforce any business rules themselves.

(This smell was called Primitive Obsession in Fowler’s Refactoring [1] but Ruby doesn’t
have the concept of primitives in the sense that C++ and Java do. It’s the exposure of
representation that’s important, not the kind of item it’s stored in.)

What to Look For
Several classes or modules pass around a simple value, and they all know how to •
interpret it. (The classic example is a String that “represents” a phone number.)

Several classes or modules know what data is held in each slot of an • Array or Hash.

Why This Is a Problem
 Communication: The value represents a concept, often from the application domain;

but as yet the concept has not been named or provided with clear semantics.
Duplication: A domain concept or design decision has been implemented, but knowl-

edge of its implementation details is spread around the code. This leads to dupli-
cation of knowledge—and often of code—among the clients of this value.

• Simplicity: Shotgun Surgery is almost always caused by an Open Secret—indeed, we
are often alerted to this smell by encountering Shotgun Surgery first.

When to Leave It
Very rarely, you may decide that fixing this smell would create dependency or perfor-
mance problems.

Particularly for a Hash or an Array, you may decide that convenience outweighs any
need to remove this smell.

A Hash may represent a simple map of values; if there’s no interpretation layered over
top of it, there may be less of the smell (but note that you’re still exposing the implemen-
tation and there may still be a missing object).

How It Got This Way
It’s easy to start with a string or numeric type, and later miss an opportunity to intro-
duce a new class.

From the Library of Lee Bogdanoff

ptg

Open Secret 109

What to Do
If you have a primitive whose value is interpreted by several classes, fix it as if it were •
a Data Clump.

If you have an • Array or a Hash whose “layout” is common knowledge, use Replace
Array with Object or Replace Hash with Object.

What to Look for Next
Duplication: The class you just extracted is a Data Class. Look for opportunities to

flesh out its behavior by reviewing its clients for Feature Envy. You will often
find clients performing validation or formatting of the value.

Communication: You have given a name to a domain concept; review the other
names that are used around the new class.

Flexibility: Look for ways to push the construction of your new object backward
in time, so that more parts of your application benefit from the new class’s
semantics and communication capabilities. If the new class is immutable and
has a small set of possible or common values, consider introducing Flyweight
instances.

From the Library of Lee Bogdanoff

ptg

110 Chapter 10: Data

Data Class

What to Look For
A class consists only of trivial reader and writer methods for instance variables, may-•
be with a constructor to initialize them.

Why This Is a Problem
Abstraction: Objects are intended to encapsulate both data and behavior, but a Data

Class only has data. The clients of the class do the “heavy lifting” for the class.
Duplication: Multiple clients often have to do similar work.

When to Leave It
There are times when an attr_accessor is the simplest and best approach. For example,
consider a point with x and y coordinates. The interface probably isn’t going to change,
and people may deal with lots of points. So it makes sense for a Point class to declare
public attr_accessors.

Some persistence mechanisms (e.g., ActiveRecord) rely on reflection to determine
what data should be loaded or stored. Such classes may be constrained by their “data
class” nature. (You can add methods, but the class tends to be centered around its data.)
It is sometimes better to treat these classes as Mementos (see Gamma’s Design Patterns),
and to use another class as a layer above these persistence-only classes; that new class can
benefit from all the changes described here, and it will hide the low-level classes.

How It Got This Way
It’s common for classes to begin like this: You realize that some data is part of an in-
dependent object, so you extract it. In fact, the creation of a Data Class is a good first
step in removing the Open Secret and Data Clump smells. But objects are about the
commonality of behavior, and these objects aren’t developed enough as yet to have much
behavior.

What to Do
1. Use Remove Setting Methods for as many instance variables as you can.

2. Use Encapsulate Collection to remove direct access to any collection-type fields.

From the Library of Lee Bogdanoff

ptg

Data Class 111

3. Look at each client of the object. Almost invariably, you’ll find Feature Envy and
Inappropriate Intimacy (General Form)—clients accessing the fields and manipu-
lating the results when the data class could do it for them. (This is often a source of
duplication, because many callers will tend to do the same things with the data.) Use
Extract Method on the client to pull out the class-related code, then Move Method to
pull it over to the class.

4. After doing this a while, you may find that you have several similar methods on the
class. Use Rename Method, Extract Method, Add Parameter, or Remove Parameter to
harmonize signatures and remove duplication.

5. Most access to the instance variables shouldn’t be needed any more because the
moved methods cover the real use. Use Remove Method to eliminate the readers and
writers.

What to Look for Next
Communication: Review the names used in this class to ensure that the methods you

bring in present a consistent API to the class’s clients.
Duplication: Where you moved methods from clients into this class, check whether

those clients are now Lazy Classes and whether they now contain further
Duplication.

From the Library of Lee Bogdanoff

ptg

112 Chapter 10: Data

Data Clump

What to Look For
The same two or three items frequently appear together in classes and parameter lists.•

A group of instance variable names start or end with similar substrings.•

Why This Is a Problem
Duplication: The recurrence of the items often means there is duplicate code spread

around to handle them.
Abstraction: There may be a missing concept, making the system harder to understand.

When to Leave It
Passing a Whole Object sometimes introduces a dependency you don’t want (as
lower-level classes get exposed to the whole new object instead of just its components).
You may continue to pass in the pieces to prevent this dependency.

Very rarely, there is a measured performance problem solved by passing in the parts
of the object instead of the object itself. Recognize that this is a compromise in the
object model for performance. Such code is worth commenting!

How It Got This Way
The items are typically part of some other entity, but as yet no one has had the insight
to realize that there’s a missing class. Or, sometimes, people know the class is missing but
think it’s too small or unimportant to stand alone.

(Identifying these classes is often a major step toward simplifying a system, and it
often helps you to generalize classes more easily.)

What to Do
If the items are instance variables in a class, use• Extract Class to pull them into a new
class.

If the values are together in method signatures,• use Introduce Parameter Object to
extract the new object.

From the Library of Lee Bogdanoff

ptg

Data Clump 113

What to Look for Next
Communication: Review calls that pass around the items from the new object; look

for opportunities to use Preserve Whole Object.
Duplication: Look at uses of the items; there are often opportunities to use Move

Method, etc., to move those uses into the new object (as you would to address
the Data Class smell).

From the Library of Lee Bogdanoff

ptg

114 Chapter 10: Data

Temporary Field

What to Look For
An instance variable is set only at certain times, and it is nil (or unused) at other times.

Why This Is a Problem
Abstraction: Parts of the object change at different rates, and the class spends effort

coordinating the changes. This suggests there is an implicit concept that can be
brought out (with its own lifetime).

When to Leave It
It may not be worth the trouble of creating a new class if it doesn’t represent a useful
abstraction.

How It Got This Way
This can happen when one part of an object has an algorithm that passes around
information through the instance variables rather than parameters; the instance vari-
ables are valid or used only when the algorithm is active. The fact that the instance
variables are sometimes used and sometimes not suggests that there may be a missing
object whose life cycle differs from that of the object holding them.

What to Do
Use • Extract Class, moving over the fields and any related code.

What to Look for Next
Abstraction: The new class is likely a Data Class.

Duplication: Look for other places that embody the same concept; they may be
creating duplication.

From the Library of Lee Bogdanoff

ptg

Exercises 115

Exercises

Exercise 10.1: Alternative Representations
Imagine that the following domain concepts are classes in some application. For
each, suggest two or three different ways in which its value could be represented in
instance variables:

A. Money

B. Position (in a list)

C. Range

D. Social Security Number (government identification number: “123-45-6789”)

E. Telephone number

F. Street Address (“123 E. Main Street”)

G. ZIP (postal) code

 See page 233 for solution ideas.

Exercise 10.2: Primitives and Middle Men

A. Wrapping a “primitive” object inside a new class can appear to be introducing
a Middle Man. Why (or when) is that not the case?

B. Find some code you wrote recently in which the Open Secret smell is present.
Fix it by wrapping the primitive inside a new class, named for the domain con-
cept it represents. Is this new class a Middle Man? Why or why not?

 See page 234 for solution ideas.

Exercise 10.3: Rails Accounts
We’re in the early stages of developing a Rails app to manage personal checking
accounts using double-entry bookkeeping. Our schema currently shows three models:

class CreateAccounts < ActiveRecord::Migration

 def self.up

From the Library of Lee Bogdanoff

ptg

116 Chapter 10: Data

 create_table "accounts", :force => true do |t|

 t.string "name"

 t.integer "opening_balance"

 t.datetime "created_at"

 t.datetime "updated_at"

 end

 create_table "postings", :force => true do |t|

 t.integer "amount"

 t.integer "account_id"

 t.integer "transaction_id"

 t.datetime "created_at"

 t.datetime "updated_at"

 end

 create_table "transactions", :force => true do |t|

 t.date "occurred_on"

 t.string "payee"

 t.string "reason"

 t.datetime "created_at"

 t.datetime "updated_at"
 end

 end

 def self.down

 drop_table :transactions

 drop_table :postings

 drop_table :accounts

 end

end

A transaction posts a monetary amount to each of a series of accounts, where
Posting is the join object representing the many-many relationship between accounts
and transactions. An account can provide its (current) balance:

class Account < ActiveRecord::Base

 has_many :postings

 has_many :transactions, :through => :postings

 validates_presence_of :name

 validates_uniqueness_of :name

 validates_numericality_of :opening_balance

 def balance

 postings.inject(0) { |sum, i| sum + i.amount }

 end

end

From the Library of Lee Bogdanoff

ptg

Exercises 117

In order to conform to double-entry bookkeeping rules, we also added some custom
validation to check that each transaction posts a set of amounts that sum to zero:

class Transaction < ActiveRecord::Base

 has_many :postings

 has_many :accounts, :through => :postings

 validates_presence_of :payee

 validates_presence_of :reason

 validates_presence_of :occurred_on

 def validate_postings(postings)

 if postings.size < 2

 errors.add_to_base("Provide at least two postings")

 else

 bal = postings.inject(0) do |sum, po|

 sum + po['amount'].to_i

 end

 errors.add_to_base("Sum must be zero") if bal != 0

 end

 end

end

We have a view showing the balance of every account:

<h1>Account Balances</h1>

<table width="100%">
 <tr> <th> Account </th> <th> Balance </th> </tr>
<% for account in @accounts %>

 <tr>
 <td width="60%"><%= link_to account.name, account %></td>
 <td align="right"><%= to_money(account.balance) %></td>

 </tr>

<% end %>

</table>

We also have a view showing a statement for a single account, and another showing
the details of a single transaction. Each of these views displays monetary amounts in
the same way, so to DRY up our app we’ve written a helper method:

module ApplicationHelper
 def to_money(amount)

 '%0.2f' % (amount/100.0)

 end

end

(We didn’t use the standard number_to_currency helper because we don’t want
currency symbols everywhere.)

From the Library of Lee Bogdanoff

ptg

118 Chapter 10: Data

A. What smell do you see, and what action would you take to remove it?

 See page 234 for solution ideas.

Exercise 10.4: Long Parameter List
Consider these methods from RMagick::Draw:

arc(startX, startY, endX, endY, startDegrees, endDegrees)

ellipse(originX, originY, width, height, arcStart, arcEnd)

rectangle(upper_left_x, upper_left_y,

 lower_right_x, lower_right_y)

A. For each declaration above, is there any cluster of parameters you might reason-
ably group into a new object?

B. Why might those signatures have so many parameters?

 See page 235 for solution ideas.

Exercise 10.5: A Counter-Argument
Consider a business application where a user enters a ZIP code (among other things),
and it gets stored in a relational database. Someone argues: “It’s not worth the bother
of turning it into an object: When it gets written, it will just have to be turned into a
primitive again.” Why might it be worth creating the object in spite of the need for
two conversions?

 See page 235 for solution ideas.

Exercise 10.6: Editor
Consider this interface to an editor:

class Editor

 insert(text)

 fetch(number_of_characters_to_fetch) # -> String

 move_to(position)

 5 position # -> Fixnum
 # etc...
end

From the Library of Lee Bogdanoff

ptg

Exercises 119

and this sequence of calls:

editor.insert("ba(nana)")

index_of_opening_parens = 2

editor.move_to(index_of_opening_parens)

assert_equal "(", editor.fetch(1)

editor.move_to(1)

editor.insert("x")

editor.move_to(index_of_opening_parens)

assert_equal ___, editor.fetch(1)

A. Given the interface provided, what string would you expect to appear in place
of the ___ in the fi nal assertion?

B. Based on the variable name index_of_opening_parens, what string would you
prefer to appear? Of what use would this be?

C. The crux of the problem is the use of a Fixnum as a position index. Suggest an
alternative approach.

D. Relate your solution to the Memento design pattern (from Gamma’s Design Pat-
terns [16]).

 See page 235 for solution ideas.

Exercise 10.7: Library Classes
The built-in Thread class has what appears to be public instance variables (abort_
on_exception, priority, etc.). What, if anything, do these reveal about Thread’s
internal design?

 See page 236 for solution ideas.

Exercise 10.8: Hidden State
The standard library classes Set and DateTime are encapsulated such that access to
their state is only through methods.

A. Propose at least two internal representations for each class.

From the Library of Lee Bogdanoff

ptg

120 Chapter 10: Data

B. Ruby provides no way to directly access an instance variable from outside a class.
(You have to define a method if you want to let a client change it.) How does this
promote the ability of a class to be immutable?

C. How does having no direct access to instance variables promote the design of
efficient classes?

 See page 236 for solution ideas.

Exercise 10.9: Proper Names
Consider the following class:

Person = Struct.new('Person', :last, :first, :middle)

Its clients are shown in one file for convenience; imagine them as nontest methods
in separate client classes:

require 'stringio'

require 'test/unit'

require 'person'

class PersonClient < Test::Unit::TestCase

 def client1(out, person)

 out.write(person.first)

 out.write(" ")

 if person.middle != nil

 out.write(person.middle)

 out.write(" ")

 end

 out.write(person.last)

 end

 def client2(person)

 result = person.last + ", " + person.first

 if (person.middle != nil)

 result += " " + person.middle

 end

 return result

 end

 def client3(out, person)

 out.write(person.last)

 out.write(", ")

 out.write(person.first)

From the Library of Lee Bogdanoff

ptg

Exercises 121

 if (person.middle != nil)

 out.write(" ")

 out.write(person.middle)

 end

 end

 def client4(person)

 return person.last + ", " +

 person.first +

 ((person.middle == nil) ? "" : " " + person.middle)

 end

 def test_clients

 bobSmith = Person.new("Smith", "Bob", nil)

 jennyJJones = Person.new("Jones", "Jenny", "J")

 out = StringIO.new

 client1(out, bobSmith)

 assert_equal("Bob Smith", out.string)

 out = StringIO.new

 client1(out, jennyJJones)

 assert_equal("Jenny J Jones", out.string)

 assert_equal("Smith, Bob", client2(bobSmith))

 assert_equal("Jones, Jenny J", client2(jennyJJones))

 out = StringIO.new

 client3(out, bobSmith)

 assert_equal("Smith, Bob", out.string)

 out = StringIO.new

 client3(out, jennyJJones)

 assert_equal("Jones, Jenny J", out.string)

 assert_equal("Smith, Bob", client4(bobSmith))

 assert_equal("Jones, Jenny J", client4(jennyJJones))

 end

end

A. What smell is represented by Person?

B. Using the clients you have, remove the smell.

C. There’s a new requirement to support people with only one name (say, Cher
or Madonna), or someone with several words in their last name (Oscar de los

From the Library of Lee Bogdanoff

ptg

122 Chapter 10: Data

Santos) or multiple last names (Jerry Johnson Smith). Compare the difficulty of
this change before and after your refactoring in the previous part.

 See page 236 for solution ideas.

Exercise 10.10: Checkpoints
We’re developing a very simple transaction mechanism, based on the following
module that allows us to checkpoint any object’s state:

module Checkpoint
 def checkpoint

 @state = var_values

 end

 def var_values

 result = {}

 instance_variables.each do |var|

 result[var] = instance_variable_get var

 end

 result

 end

 def changes

 var_values.reject { |k,v| k == "@state" || @state[k] == v }

 end

end

class Object

 include Checkpoint

end

require 'test/unit'

require 'checkpoint'

class Customer

 attr_reader :first, :last, :ssn

 def initialize(first, last, ssn)

 @first, @last, @ssn = first, last, ssn

 end

From the Library of Lee Bogdanoff

ptg

Exercises 123

 def marries(other)

 @last = other.last

 end

end

class CheckpointTest < Test::Unit::TestCase

 def test_one_variable_changed

 martha = Customer.new "Martha", "Jones", "12-345-6789"

 jack = Customer.new "Jack", "Harkness", "97-865-4321"

 martha.checkpoint

 martha.marries(jack)

 assert_equal({"@last" => "Harkness"}, martha.changes)

 end

end

A. What smell do you see in the Checkpoint module?

B. Redesign the code to remove that smell.

C. Have you improved the code? Was it worth the effort?

 See page 237 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

125

CHAPTER 11

Inheritance

The relationship between a class and its subclass often starts being simple but gets more
complicated over time. A subclass often depends on its parent more intimately than does
a separate class, but it can go too far.

A key challenge is deciding what a class is (behaves like) versus what a class has or
knows. A class structure often starts with inheritance and moves to a more compositional
style over time.

In this chapter we’ll cover the following smells:

Implementation Inheritance• , in which subclassing is used purely to reuse code

Refused Bequest• , in which a subclass isn’t substitutable for its superclass

Inappropriate Intimacy (Subclass Form)• , in which a subclass is tangled up in its
superclass’s implementation details

Lazy Class• , in which a class doesn’t do much

From the Library of Lee Bogdanoff

ptg

126 Chapter 11: Inheritance

Implementation Inheritance

What to Look For

Inheritance between two classes doesn’t represent an• is-a relationship (similarity of
behavior—i.e., substitutability).

Instances of the subclass are never passed as substitutes for instances of the parent.•

A subclass uses or publishes only a subset of the behavior it inherits from its super-•
class. (See also Refused Bequest.)

Why This Is a Problem
Communication: An inheritance relationship is likely to be read as an intention for

the subclass to be substitutable for the parent. If that isn’t the case—if the rela-
tionship exists only to allow the subclass to borrow code—then the design is
being miscommunicated. Readers of this code, and designers of client classes,
may make incorrect decisions by assuming that the inheritance relationship
means more than was intended.

 Abstraction: The public interface of the subclass inappropriately reveals things about
how the class is implemented.

 Flexibility: Inheritance is the strongest kind of relationship between two classes, and
creates a coupling that can restrict change or be difficult to break. Use inheri-
tance sparingly, as Ruby provides more than enough other ways to share object
behavior. Don’t waste your one permitted superclass when you could use a
delegate or a mix-in instead.

When to Leave It
This is not a strong smell, and you may decide that it just isn’t serious enough to fix.

How It Got This Way
Often, creating an inheritance relationship is the quickest way to borrow code from a
class that already exists.

What to Do
If the inherited methods don’t need to be public, use• Replace Inheritance with Del-
egation. If only a subset of the behavior of the parent class is used, consider Extract

From the Library of Lee Bogdanoff

ptg

Implementation Inheritance 127

Class first and have both parent and child classes delegate to the new class, or per-
haps the child class should inherit from the new class.

If (some of) the inherited methods do need to be public on the subclass, use• Extract
Module to make them shareable and then delete the inheritance relationship. Alter-
natively, use Replace Inheritance with Delegation and reimplement the child class to
act as a Middle Man for those methods.

What to Look for Next
Communication: Removing unwanted inherited methods gives the class’s public in-

terface a shake-up. Look through the whole class to check for Inconsistent
Names. Also look through the class or module you extracted, checking for
naming smells (see Chapter 6, “Names,” for a list of these).

• Simplicity: You may find that other implementation decisions depended on, or were
related to, the one you have just fixed. In particular, look through both original
classes for examples of Feature Envy in relation to the extracted class or module.

From the Library of Lee Bogdanoff

ptg

128 Chapter 11: Inheritance

Refused Bequest

What to Look For

Explicit Refusal:• The subclass undefines an inherited method, makes an inherited
method private, or makes it throw an exception when it is called.

Implicit Refusal:• A method inherited from the parent class just doesn’t work for
instances of the subclass.

An inheritance relationship between two classes doesn’t make sense; the subclass just •
isn’t an example of the parent.

Why This Is a Problem
• Simplicity: Rejecting a parent’s method violates the Liskov Substitution Principle

(LSP). The refusal of the subclass to implement an inherited method means
that all of its clients must cope with that refusal in some way.

Duplication: The clients need to know which class they are dealing with, so that they
know whether they can safely invoke the refused method.

 Flexibility: We have pushed one of the subclass’s responsibilities out into other classes,
which will hamper future change.

When to Leave It
If the inherited method was refused in order to prevent a Combinatorial Explosion, you
may decide to live with the smell.

If you leave this smell in place, move to an explicit refusal by having the subclass
raise an exception when a parent method is refused. If you just leave it implicit, you can
get strange behavior that is diffi cult to track down.

How It Got This Way
There may be a conscious decision to let subclasses deny use of some features to prevent
an explosion of types for all feature combinations. More often, it’s just a lazy borrowing
of parts of the parent’s implementation.

What to Do
First, check if this is actually a disguised case of• Implementation Inheritance; if so,
fix that smell first.

From the Library of Lee Bogdanoff

ptg

Refused Bequest 129

If there’s no reason to share a class relationship, then use• Replace Inheritance with
Delegation.

If the parent-child relationship• does make sense, look through their clients to find places
where the refused method is called. If you find conditional logic (e.g., Special Case)
that copes with the refusal, look for ways to implement the refused method by push-
ing the clients’ response into the refusing class. This may involve Move Method and/or
Introduce Null Object. Look through Chapter 9, “Conditional Logic,” for more ideas.

Alternatively, look for ways to reorganize the inheritance relationship. For example •
(see Figure 11.1), you could create a new subclass C via Extract Subclass and use
Push Down Method to move the refused behavior into it. Then change clients of the
refused method to be clients of the new class.

A'

B' C'

A

B

+method

+method-method

Figure 11.1 Rearranging the Hierarchy

What to Look for Next
Communication: Fixing Refused Bequest will improve the way your classes com-

municate your design. Look again at these classes and their clients for Uncom-
municative Names that could now be simplified or cleaned up.

• Simplicity: Reorganizing your classes so that they always respect the Liskov Substi-
tution Principle will likely simplify their clients. (LSP requires that subclass
instances be substitutable.) Look through all uses of the refused method for
Special Cases and other signs of coping with broken polymorphism; you may
now find those clients can be simplified.

Testability: Tests are clients too. Fixing a refused method can reduce the number of cases
you need to test, so check your tests for cases that now collapse or disappear.

From the Library of Lee Bogdanoff

ptg

130 Chapter 11: Inheritance

Inappropriate Intimacy (Subclass Form)

What to Look For

A class makes use of the implementation details of its superclass.•

(There is a related form of inappropriate intimacy between separate classes; see
Inappropriate Intimacy (General Form) in Chapter 12, “Responsibility.”)

Why This Is a Problem
 Flexibility: If implementation details of the superclass change, the consequences

could propagate to the subclass.
• Simplicity: If the semantics or behavior of the superclass change without affecting the

types at the interface, we may introduce subtle defects in its subclasses.

This problem is more serious between unrelated classes than between a parent
and child.

How It Got This Way
It’s natural that a superclass and its subclasses be more coupled together than two strang-
ers. Sometimes it just goes too far.

What to Do
First, check if this is also a case of• Implementation Inheritance; if so, fix that smell
first.

If the parent can define a general algorithm that the children can plug into, then use•
Form Template Method.

If the parent and child need to be even more decoupled, then use• Replace Inheritance
with Delegation.

What to Look for Next
Communication: You may now have created a better abstraction by documenting the

true interface of the superclass. Review the names it uses for consistency.
Duplication: If several subclasses had to perform the same set of actions, moving

them onto the superclass can open up opportunities to simplify the subclasses
too.

From the Library of Lee Bogdanoff

ptg

Lazy Class 131

Lazy Class

What to Look For

A class isn’t doing much—its parents, children, or clients seem to be doing all the •
associated work—and there isn’t enough behavior left in the class to justify its con-
tinued existence.

Lazy Class is a close relative of Dead Code.

Why This Is a Problem
• Simplicity: Every additional class in the application represents something extra to

understand, and extra code to navigate while following a flow.
Communication: A Lazy Class also occupies one of the names in your domain space,

without paying for that usage.

When to Leave It
Sometimes, a Lazy Class is present to communicate intent. You may have to balance
communication versus simplicity in your design; and when communication wins, leave
the Lazy Class in place.

Other times, a class that appears to be lazy exists as part of the scaffolding for a
framework. You could tidy it up, or leave it in place for compatibility.

How It Got This Way
Typically, all the class’s responsibilities were moved to other places in the course of refac-
toring. Sometimes, the class was created in anticipation of some grand design that never
quite materialized. Certain generators for Ruby on Rails create Lazy Classes to serve as
hooks or placeholders for idioms you may or may not use in your application.

What to Do
If parents or children of the class seem like the right place for the class’ behavior, fold •
it into one of them via Collapse Hierarchy.

Otherwise, fold its behavior into its caller via• Inline Class.

From the Library of Lee Bogdanoff

ptg

132 Chapter 11: Inheritance

What to Look for Next
Duplication: After the behavior of the Lazy Class has been folded into another class,

look for Duplicated Code and Dead Code within that receiving class.
• Simplicity: The Lazy Class muddied the paths of communication between its own

clients and suppliers. These classes may now be related to each other directly,
so you should examine the amended methods looking for Feature Envy and
Utility Functions.

From the Library of Lee Bogdanoff

ptg

Exercises 133

Exercises

Exercise 11.1: ArrayQueue
Consider this class:

class ArrayQueue < Array

 def add_rear(s)

 self << s

 end

 def remove_front

 self.delete_at(0)

 end

end

and these tests:

require 'array_queue'

require 'test/unit'

class ArrayQueueTest < Test::Unit::TestCase

 def test_queue_invariant

 q = ArrayQueue.new

 q.add_rear("E1")

 q.add_rear("E2")

 assert_equal("E1", q.remove_front)

 assert_equal("E2", q.remove_front)

 assert_equal(0, q.length)

 end

end

A. What smell is in the design of ArrayQueue?

B. Refactor the code to remove the smell.

 See page 237 for solution ideas.

Exercise 11.2: Relationships
For each of these three mechanisms for code reuse in Ruby—inheritance, delegation,
and module inclusion—place a check in the table where each mechanism helps to
support the corresponding quality in our software:

From the Library of Lee Bogdanoff

ptg

134 Chapter 11: Inheritance

Inheritance Delegation Module Inclusion

Flexibility

Communication

Testability

 See page 237 for solution ideas.

Exercise 11.3: Read-Only Documents (Challenging)
Consider the following two classes:

class Document

 attr_reader :numpages

 attr_writer :title, :author

 def delete(pos, length) ...

 def find(regex) ...

 def format(printer) ...

 def insert(pos, text) ...

end

class ReadonlyDocument < Document

 undef :delete, :insert, :title=, :author=

end

A. Suggest at least three ways to address this Refused Bequest.

B. Evaluate your candidate solutions: Which approach feels most natural? Which
offers the most long-term flexibility?

 See page 237 for solution ideas.

Exercise 11.4: Inheritance Survey (Challenging)
A. Look through your code and find every inheritance relationship you defined.

Classify each as Implementation Inheritance, Subclassing, or a mixture of both.

B. Refactor to eliminate every method that doesn’t need to be inherited by a
subclass.

From the Library of Lee Bogdanoff

ptg

135

CHAPTER 12

Responsibility

It’s hard to get the right balance of responsibility between objects. One of the beauties
of refactoring is that it lets us experiment with different ideas in a way that lets us safely
change our minds.

There are tools we can use to help us decide how our objects should work together,
such as design patterns and CRC cards (see “A Laboratory for Teaching Object-Oriented
Thinking” [5]).

Refactorings are often reversible, and they may trade off between two good things.
A good example of this is Message Chain versus Middle Man. Sometimes there’s a way
to improve both smells at the same time, but many times it’s a balancing act between
them.

In this chapter we’ll cover the following smells:

Feature Envy• , in which an object is peppered with requests from another code
fragment

Utility Function• , in which a method belongs somewhere else

Global Variable• , in which a global variable is used

Inappropriate Intimacy (General Form)• , in which a class depends on implementa-
tion details of another class

Message Chain• , in which a method digs into the structure of another group of
objects

Middle Man• , in which an object merely delegates to another

Greedy Module• , in which a class or module has more than one responsibility

From the Library of Lee Bogdanoff

ptg

136 Chapter 12: Responsibility

Feature Envy

What to Look For
A code fragment references another object more often than it references itself.•

Several clients do the same series of manipulations on a particular type of object.•

Why This Is a Problem
Communication: Code that “belongs” on one class but is located in another can be

hard to find and may upset the System of Names in the host class.
Flexibility: A code fragment that is in the wrong class creates couplings that may

not be natural within the application’s domain and a loss of cohesion in the
unwilling host class; Shotgun Surgery and Divergent Change often occur as a
consequence.

Duplication: Existing functionality that is difficult to find is also easy to miss, which
in turn may lead to it being written more than once.

When to Leave It
Sometimes behavior is intentionally put on the “wrong” class. For example, some design
patterns, such as Strategy or Visitor, pull behavior to a separate class so it can be inde-
pendently changed. If you put it back, with Move Method you can end up putting things
together that should change separately.

How It Got This Way
Wherever you have a Data Class you will probably also have Feature Envy, but you can
see it for any class and its clients.

What to Do
 1. If the envious code fragment is not isolated, use Extract Method to pull it into its

own method.

 2. If the envious method makes no references to self or self.class, see Utility
Function.

 3. Look for the class of the object that is referenced most and use Move Method to put
the actions on the correct class.

From the Library of Lee Bogdanoff

ptg

Feature Envy 137

What to Look for Next
Duplication: If you moved code in order to alleviate duplication in a number of cli-

ents, look again at those clients for further opportunities to simplify.
Communication: Review the names in the receiving class for consistency.

From the Library of Lee Bogdanoff

ptg

138 Chapter 12: Responsibility

Utility Function

What to Look For
An instance method has no dependency on the state of the instance.•

Why This Is a Problem
A Utility Function is an extreme kind of Feature Envy, and should be fixed for much
the same reasons:

Abstraction: Utility Functions often indicate that part of the domain has not been
named and expressed as objects.

Flexibility: A method that is in the wrong class creates couplings that may not be natu-
ral within the application’s domain and a loss of cohesion in the unwilling host
class; Shotgun Surgery and Divergent Change often occur as a consequence.

Duplication: Existing functionality that is difficult to find is also easy to miss, which
in turn may lead to it being written more than once.

When to Leave It
A Utility Function is sometimes the most direct way of describing a design. For ex-
ample, a Factory may best be expressed using class methods.

How It Got This Way
Sometimes there just doesn’t seem anywhere suitable to put the new method you’re writ-
ing, so you “temporarily” add it to an existing class, or create a new Utilities class to
hold it. This often arises from thinking of classes as “containers of functions” rather than
as descriptions of the behavior of objects.

Sometimes other refactorings—notably Extract Method—leave behind a stub that
now has nothing to do with the object in which it sits.

What to Do
As a minimum, document the fact that this is a• Utility Function by converting it to
being a class method.

Look at the method’s parameters; if one is used significantly more than the others, •
or if one looks like the “right” home, use Move Method to move the method onto
that parameter’s class.

From the Library of Lee Bogdanoff

ptg

Utility Function 139

If a group of • Utility Functions looks as if they belong together—for example, if
they have one or more common parameters—consider using Extract Class and Move
Method to create a new home for them.

What to Look for Next
Communication: Moving code to where it fits logically within the domain can help

you find it again later.
Duplication: If several clients had to perform the same set of actions, moving them

onto the supplier class can open up opportunities to simplify the clients too.

From the Library of Lee Bogdanoff

ptg

140 Chapter 12: Responsibility

Global Variable

What to Look For
Your code uses a global variable, other than one predefined by Ruby itself.•

Why This Is a Problem
Flexibility: Global variables make it easy for one part of the system to accidentally

depend on another part of the system. The system is more prone to problems
where changing something over here breaks something over there. Further-
more, global variables aren’t thread safe, so they increase the risk of obscure
bugs.

Testability: Global variables can make it hard to set up tests: the context of the test
includes all global state.

When to Leave It
A global variable can be the simplest way to go in simple scripting. But as soon as you
begin to define your own domain classes it’s best to eliminate any Global Variables.

How It Got This Way
The easiest way to establish communication between parts of a program is to introduce
a Global Variable.

What to Do
Use• Add Parameter to give methods access to the value, so that the application ac-
cesses the global variable directly at only the highest level. Then you have a choice:
Move the global to the class where it belongs and hand out the instance of that class,
or create a Registry of some sort and hand out the value from the registry.

What to Look for Next
Abstraction: Look for Data Clumps involving the new parameter. Are there other

global variables, or objects, that travel with this one?
Duplication: As you make the changes to replace the global access by a method

parameter, look out for code fragments that use the parameter in similar ways.
Treat the duplication as you find it.

From the Library of Lee Bogdanoff

ptg

Inappropriate Intimacy (General Form) 141

Inappropriate Intimacy (General Form)

What to Look For
One class uses or changes “internal” (should-be-private) parts of another class.•

One class depends on implementation details of another class.•

Code uses • instance_variables or instance_variable_get to dig inside another
object.

(There is a related form of inappropriate intimacy between subclass and superclass;
see Inappropriate Intimacy (Subclass Form) in Chapter 11, “Inheritance.”)

Why This Is a Problem
Flexibility: If implementation details of the “violated” class change, the consequences

could propagate to the client.
• Simplicity: If the semantics or behavior of the “violated” class change, but don’t affect

the types at the interface, we may introduce subtle defects in its clients.
Abstraction: There may be a missing concept embedded in the interaction between

the existing classes.
Duplication: Several client classes may duplicate code by accessing internals in simi-

lar ways.

When to Leave It
Digging into another object’s state is sometimes the simplest way to get something done.
It is often necessary in order to implement a generic data transfer mechanism—for
example, as part of a persistence scheme or to implement views that can display arbitrary
objects.

How It Got This Way
The two classes probably became intertwined a little at a time. By the time you realize
there’s a problem, they’re tightly coupled.

What to Do
If two independent classes are entangled, use• Move Method and Move Instance Vari-
able to put the right pieces on the right class.

From the Library of Lee Bogdanoff

ptg

142 Chapter 12: Responsibility

If the tangled part seems to be a missing concept or class, use • Extract Class and Hide
Delegate to introduce the new class.

If a client is using Ruby’s metaprogramming tools to dig into an object’s state, con-•
sider using Kent Beck’s Double Dispatch pattern [2] and have the “violated” object
publish information instead.

If a subclass is too coupled to its superclass, see • Inappropriate Intimacy (Subclass
Form) in Chapter 11.

What to Look for Next
Communication: You may now have created a better abstraction by documenting the

true interface of the “violated” class. Review the names it uses, for consistency.
Duplication: If several clients had to perform the same set of actions, moving them

onto the supplier class can open up opportunities to simplify the clients too.

From the Library of Lee Bogdanoff

ptg

Message Chain 143

Message Chain

What to Look For
You see calls of the form • a.b.c.d.

(This may happen directly or through intermediate results.)

Why This Is a Problem
Flexibility: A Message Chain couples the caller to the details of how to reach other

objects. This coupling goes against two maxims of object-oriented program-
ming: the Law of Demeter (see Exercise 12.7) and Tell, Don’t Ask, which says
that instead of asking for objects so you can manipulate them, you should tell
them to do the manipulation for you. (Andrew Hunt and David Thomas’ The
Pragmatic Programmer [17] describes both of these rules in more detail.)

When to Leave It
Sometimes the cleanest way to construct or configure a complex of objects is to use a
Cascade (Beck, Smalltalk Best Practice Patterns [2]) or what Martin Fowler calls a Fluent
Interface [13]. Domain-specific languages (DSLs) often use this approach to provide the
context necessary to enable a simplified syntax; it looks as if the caller is being encour-
aged to build a message chain, but usually the methods all return self. (It’s much more
of a problem when the chain of calls is coupling to several different objects.)

This is a trade-off refactoring. If you apply Hide Delegate too much, you get to the
point where everything’s so busy delegating that nothing seems to be doing any actual
work. Sometimes it’s just easier and less confusing to call a small chain.

How It Got This Way
When you know the relationships among a group of objects, often the fastest way to a
green bar during test-driven development (TDD) is to introduce a Message Chain.

What to Do
If the manipulations actually belong on the target object (the one at the end of the •
chain), use Extract Method and Move Method to put them there.

Part of the chain may belong on some other object; look for • Inappropriate
Intimacy.

From the Library of Lee Bogdanoff

ptg

144 Chapter 12: Responsibility

Use • Hide Delegate to make the caller depend only on the object at the head of the
chain. (So, rather than a.b.c.d, put a d method on the a object. That may require
adding a d method to the b and c objects as well.)

What to Look for Next
 Duplication: If several clients had to perform the same set of actions, moving them

onto the supplier class can let you simplify the clients.

From the Library of Lee Bogdanoff

ptg

Middle Man 145

Middle Man

What to Look For
A class that mostly delegates its work is known as a Middle Man:

Most methods of a class call the same or a similar method on another object:•
def f

 @delegate.f

end

Why This Is a Problem
Size: If the Middle Man really is superfluous, our system has one more class than it

needs.
Communication: Extra code always slows the reader, and it occupies part of the do-

main’s namespace, possibly using names that may be useful elsewhere.

When to Leave It
Some design patterns (e.g., Adapter, Proxy, Decorator) intentionally create delegates, so
Middle Man and Message Chain trade off against each other. Delegates provide a sort
of façade, letting a caller remain unaware of details of messages and structures. Remov-
ing a Middle Man can expose clients to more information than they should know.

How It Got This Way
It could be the result of applying Hide Delegate to a Message Chain; other features may
have moved out since then, leaving you with mostly delegating methods.

What to Do
In general, use • Remove Middle Man by having the client call the delegate directly.

If the delegate is owned by the middle man or is immutable, the middle man has •
behavior to add, and the middle man can be seen as an example of the delegate, you
might use Replace Delegation with Inheritance.

What to Look for Next
Communication: The true relationships between remaining classes may now be easier

to determine without the Middle Man in the way.

From the Library of Lee Bogdanoff

ptg

146 Chapter 12: Responsibility

Greedy Module

What to Look For
A module has more than one responsibility—for example, formatting a report as •
XML and sending it to a SOAP service.

The fixtures for a class’s unit tests are big and clumsy, or are difficult to fabricate.•

A module embodies design decisions that need to change independently or at dif-•
ferent frequencies.

Every Large Module is very likely to also be a Greedy Module: Some clients depend
on some parts, others on different parts. A Temporary Field is also a sure sign.

Why This Is a Problem
Flexibility: One of the benefits of object-oriented design is the ability to localize

change. By separating an application into small, independent pieces, we im-
prove our chances of finding and fixing defects, and of adding new features
without breaking those that work already.

• Simplicity: A module that does too many things, or that embodies too many design
decisions, is more complicated than it needs to be.

A module that does two jobs is often said to violate the Single Responsibility Principle
(SRP); see Robert Martin’s Agile Software Development: Principles, Patterns, and Practices
[21] for a broader explanation of the SRP.

How It Got This Way
When new behavior must be added, sometimes the quickest thing to do is to weave it
into existing code. Often it begins with a Greedy Method, and the longer it continues
the easier it becomes to just add a little more.

What to Do
Consider the approaches to dealing with a• Large Module—they will often work
here just as well.

Look at instance variables and method parameters. If you see a• Data Clump, use
that as the basis for a new class, as described on page 112.

From the Library of Lee Bogdanoff

ptg

Greedy Module 147

If the module both finds an object and does something with it, let the caller find the •
object and pass it in, or let the module return a value that the caller uses.

If a class has business logic tangled up with the mechanics of • method_missing, use
Isolate Dynamic Receptor.

What to Look for Next
Communication: Splitting a module into smaller pieces will improve the way your

code communicates your design: Be sure to choose meaningful names for the
new modules and methods you create here. Look again at the old and new
modules for any Uncommunicative Name that could now be simplified or
cleaned up.

• Simplicity: If you created a new class, look at each method that references it for exam-
ples of Feature Envy: Fixing these will flesh out the new class and may expose
some duplication among its new behaviors.

Testability: Revisit the fixtures for this module’s unit tests. You may be able to sim-
plify them or split some tests so that they become simpler tests of the extracted
code.

From the Library of Lee Bogdanoff

ptg

148 Chapter 12: Responsibility

Exercises

Exercise 12.1: Feature Envy
Look back at Exercise 5.2. In Report.report, notice how the information being print-
ed is obtained by looking “inside” the Robot and the Machines.

A. Fix these two examples of Feature Envy.

B. What new smell(s) were introduced into this code by doing that?

C. Can you fix the new smell? If not, would you prefer to leave the code as it is now,
or as it was to begin with? Explain your answer.

See page 239 for solution ideas.

Exercise 12.2: Walking a List
Consider the following partially developed code:

require 'agency'

require 'theater'

require 'test/unit'

class BookingTest < Test::Unit::TestCase

 def test_two_seats_anywhere

 adelphi = Theater.new('x-xxxx-xxxx')

 assert_equal([1,6], Agency.book(2, adelphi))

 end

end

class Theater

 attr_reader :seats

 def initialize(seats)

 @seats = seats.split(//)

 end

end

class Agency

 def self.book(num_reqd, theater)

 free_seats = []

 theater.seats.each_with_index do |item, index|

 free_seats << index if item == '-'

From the Library of Lee Bogdanoff

ptg

Exercises 149

 end

 return nil if free_seats.empty?

 free_seats[0..num_reqd]

 end

end

A. In what way is Agency inappropriately intimate with Theater?

B. What is the simplest strategy for fixing this smell?

See page 239 for solution ideas.

Exercise 12.3: Middle Man
Consider this class:

require 'forwardable'

class SimpleQueue

 extend Forwardable

 def initialize

 @elements = []

 end

 def_delegator :@elements, :shift, :remove_front

 def_delegator :@elements, :push, :add_rear

 def_delegators :@elements, :clear, :first, :length

end

require 'test/unit'

require 'simple_queue'

class SimpleQueueTest < Test::Unit::TestCase

 def testQ

 q = SimpleQueue.new

 q.add_rear("E1")

 q.add_rear("E2")

 assert_equal "E1", q.remove_front

 assert_equal "E2", q.remove_front

 assert_equal 0, q.length

 end

end

From the Library of Lee Bogdanoff

ptg

150 Chapter 12: Responsibility

A. Use Remove Middle Man so that the queue is no longer a middle man for the
Array. Is this an improvement?

B. Put the middle man back in via Hide Delegate.

See page 240 for solution ideas.

Exercise 12.4: Cart (Challenging)
Consider these classes:

Cart

Item

Purchase

Shipping Option

cost Fixnum
Fixnummax_days

cost Fixnum
Fixnummax_days

cost Fixnum
Fixnummax_days

cost Fixnum
days Fixnum

Here is Cart.cost:

class Cart

 def cost

 total = 0

 @purchases.each do |purch|

 total += purch.item.cost + purch.shipping.cost

 end

 return total

 end

end

A. Write the implied classes (and tests). (The max_days method computes the larg-
est number of days for any ShippingOption in the purchase.)

B. Apply Hide Delegate so Cart accesses only Purchase directly.

From the Library of Lee Bogdanoff

ptg

Exercises 151

C. Hide Delegate causes the middle man class (Purchase) to have a wider inter-
face—that is, it exposes more methods. But applying that refactoring can open
up a way to make the interface narrower. Explain this apparent contradiction.

D. Use this line of reasoning to narrow the Purchase interface.

E. Notice that the generic Integer class is used to represent money. If we want to
change to a Money class, would it be easier to make the change before or after
the delegation changes?

See page 240 for solution ideas.

Exercise 12.5: Utility Functions
A. Look again at the code sample in Exercise 5.1. Matcher.match is a Utility

Function because it doesn’t depend on the state of the Matcher instance. How
would you fix this?

B. Look again at the code sample in Exercise 5.2. Is Report.report a Utility Func-
tion? If so, devise a strategy for fixing it.

See page 240 for solution ideas.

Exercise 12.6: Attributes
Perhaps the easiest way for an object to open itself up to Inappropriate Intimacy
(General Form) is for it to define simple attribute methods via attr, attr_reader,

attr_writer, or attr_accessor.

A. Some argue that every attribute accessor gives rise to the Inappropriate Inti-
macy smell. Do you agree? Justify your answer, giving counterexamples if you
disagree.

B. By their very nature, Structs invite Inappropriate Intimacy. Indeed, it might
be argued that every Struct is an Open Secret. Should Structs therefore be
avoided?

See page 241 for solution ideas.

From the Library of Lee Bogdanoff

ptg

152 Chapter 12: Responsibility

Exercise 12.7: Message Chains
The Law of Demeter states that a method shouldn’t talk to strangers—that is, a
method should only send messages to

instance variables•

self•

its own arguments•

or the objects it creates•

(See Andrew Hunt and David Thomas’ The Pragmatic Programmer [17] for more
details.)
Consider the following code fragments. Imagine they are each sitting in methods

on some object:

• @customers.map { |p| p.surname }.sort.uniq

• @report.machine[2].bin.contents (based on Exercise 5.2)

• @mock.should_receive(:sample).times(2).and_return(12, 19) (based on
FlexMock)

A. Which of them, if any, violate the Law of Demeter?

B. Which of them is an example of a Message Chain?

See page 241 for solution ideas.

From the Library of Lee Bogdanoff

ptg

153

CHAPTER 13

Accommodating Change

Some problems become most apparent when you try to change your code. (Most of the
other smells we’ve discussed can be detected by looking at the code statically.)

Ideally, one changed decision affects one place in the code. When it doesn’t work out
that way, it’s a sign of duplication in the code.

Addressing these smells has a side benefit: Many times it makes the code easier to
test.

In this chapter we’ll cover the following smells:

Divergent Change• , in which a class or module changes too frequently

Shotgun Surgery• , in which a simple change causes change everywhere

Parallel Inheritance Hierarchies• , in which changes to one hierarchy must mirror
changes to another

Combinatorial Explosion• , in which a class hierarchy has too many dimensions

From the Library of Lee Bogdanoff

ptg

154 Chapter 13: Accommodating Change

Divergent Change

What to Look For
You find yourself changing the same module for different reasons.•

(For contrast, see Shotgun Surgery, the next smell we discuss.)

Why This Is a Problem
Flexibility: If a module needs to change for many different reasons, you may quickly

find that two developers need to change it at the same time. So the module
becomes a bottleneck, slowing down progress.

Abstraction: Worse, a module with high “churn” may never stabilize, and so may never
come to reliably represent a useful domain abstraction. In Object-Oriented Soft-
ware Construction [23] Bertrand Meyer recommended that we should strive to be
able to add functionality without modifying existing classes, because their stable,
tested state represents an investment. (Recall that in Chapter 8, “Duplication,”
we talked about Parnas’ dictum that a module should have only one secret.)

How It Got This Way
The module picks up more responsibilities as it evolves, with no one noticing that two
different types of decision are involved.

What to Do
It’s likely that frequent change has introduced conditional logic; look through the •
module for Simulated Polymorphism and break up the code using the refactorings
suggested there.

If the module has too many (i.e., more than one) responsibilities, consider the refac-•
torings we suggest for fixing a Greedy Module. Use Extract Class or Extract Module
to separate the responsibilities.

If several classes share the same decisions or variation points, you may be able to •
consolidate them into new classes (e.g., by Extract Superclass or Extract Subclass) or
extract a common module to serve as a mix-in. In the limit, these extracted classes
or modules can form a layer (e.g., a persistence layer).

From the Library of Lee Bogdanoff

ptg

Divergent Change 155

What to Look for Next
 Communication: One way or another you’ve moved responsibilities out of this mod-

ule. Review all of the modules you touched, looking for Uncommunicative
Names and Inconsistent Names to make sure this new, cleaner design is ex-
pressed clearly.

Flexibility: Your new design will likely be more robust to future changes. Review
any new classes, modules, or methods you just created, looking particularly for
Feature Envy and Middle Man, each of which may indicate your design still
has a way to go before it can stabilize.

From the Library of Lee Bogdanoff

ptg

156 Chapter 13: Accommodating Change

Shotgun Surgery

What to Look For
Making a simple change requires you to change several classes or modules.•

Why This Is a Problem
 Communication: You change a single decision and you have to change several classes,

which probably means that the decision doesn’t have a name, and consequently
the application’s design isn’t being clearly communicated. That will cause cur-
rent and future developers to need to search the code more, which may in turn
lead to defects.

Flexibility: It probably also means that the decision hasn’t been isolated from other
decisions. So some modules may be harder to test than necessary, and some
modules may churn for longer, perhaps never stabilizing.

How It Got This Way
One responsibility is split among several modules. There may be a missing class that
would understand the whole responsibility, or perhaps an Open Secret has never
been encapsulated. Or, this can happen through an overzealous attempt to eliminate
Divergent Change.

What to Do
Identify the class or module that should own the group of changes. It may be an •
existing module, or you may need to use Extract Module to create a new one. If it is
an Open Secret, see the advice specific to that smell.

Use• Move Field and Move Method to put the functionality onto the chosen module.
After the module not chosen is simple enough, you may be able to use Inline Module
to eliminate it.

What to Look for Next
Duplication: If the new module embodies a pattern or a sequence of actions, you

may find that several other modules had to compensate by implementing their
own copies of those steps. Look for Duplicated Code where the new module
could now be used instead.

From the Library of Lee Bogdanoff

ptg

Shotgun Surgery 157

 Communication: The missing decision is now represented by a module: Review its
clients for Feature Envy, and review for Inconsistent Names among the meth-
ods it is acquiring.

Flexibility: Fixing Shotgun Surgery will improve maintainability—because future
changes of this same type will now be more localized. But by carving out this
new module you may leave a hole behind; review all the modules you touched,
looking for a Middle Man, Dead Code, or a Lazy Class.

From the Library of Lee Bogdanoff

ptg

158 Chapter 13: Accommodating Change

Parallel Inheritance Hierarchies

What to Look For
You make a new subclass in one hierarchy and find yourself required to create a •
related subclass in another hierarchy.

You find two hierarchies where the subclasses have the same prefix. (The naming •
reflects the requirement to coordinate hierarchies.)

This is a special case of Shotgun Surgery, discussed earlier.

Why This Is a Problem
Duplication: Every time we need to change the hierarchy—for example, to add an-

other case—we also have to change the other, parallel hierarchy.
 Communication: It’s cumbersome and error prone, and probably doesn’t communi-

cate the intent of the design very well.

How It Got This Way
The hierarchies probably grew in parallel, a class and its pair being needed at the same
time. As usual, it probably wasn’t bad at first, but after two or more pairs get introduced,
it becomes too complicated to change one thing. (Often both classes embody different
aspects of the same decision.)

This smell may happen along the way while improving a particularly tangled
situation.

What to Do
Use• Move Field and Move Method to redistribute the features in such a way that you
can eliminate one of the hierarchies.

What to Look for Next
Duplication: As you merge classes from the two hierarchies, you may find Duplicated

Code now coming together in the same place.
Communication: Hopefully the merged classes now communicate the design more

clearly; look carefully at the names now in use to make sure that is the case.
Size: Having fewer classes means less code to understand. But each class in the merged

hierarchy is now likely to be bigger than it was, so look out for Large Module
and Greedy Module.

From the Library of Lee Bogdanoff

ptg

Combinatorial Explosion 159

Combinatorial Explosion

What to Look For
To introduce a single new concept, you must introduce multiple classes at various •
points of a class hierarchy.

Each layer of a class hierarchy uses a common set of words (e.g., one level adds style •
information, and the next adds mutability).

Why This Is a Problem
Duplication: This is a relative of Parallel Inheritance Hierarchies, in which every-

thing has been folded into one class hierarchy.

How It Got This Way
What should be independent decisions get implemented via a hierarchy.

What to Do
If things aren’t too far gone, you may be able to use• Replace Inheritance with Delega-
tion. (By keeping the same interface for the variants, you can create an example of
the Decorator design pattern.)

If the situation has grown too complex, you’re in big-refactoring territory, and you •
can use Tease Apart Inheritance. (See Fields et al.’s Refactoring, Ruby Edition [11] for
the details.)

What to Look for Next
Duplication: Fixing a Combinatorial Explosion is often a big shake-up for a lot of

classes. As always, check the names you end up with, and check the code in the
(old) hierarchy’s clients for Feature Envy and related smells.

 Size: The classes of the (old) hierarchy are likely to be fewer and smaller now, because
they deal with the design’s complexities in a different way. Look through their
clients for historical compromises such as Nil Checks or Complicated Boolean
Expressions.

From the Library of Lee Bogdanoff

ptg

160 Chapter 13: Accommodating Change

Exercises

Exercise 13.1: CSV Writer
Consider this code to write Comma-Separated Value (CSV) files.

class CsvWriter

 def write(lines)

 lines.each { |line| write_line(line) }

 end

private

 def write_line(fields)

 if (fields.length == 0)

 puts

 else

 write_field(fields[0])

 1.upto(fields.length-1) do |i|

 print ","

 write_field(fields[i])

 end

 puts

 end

 end

 def write_field(field)

 case field

 when /,/ then write_quoted(field)

 when /"/ then write_quoted(field)

 else print(field)

 end

 end

 def write_quoted(field)

 print "\""

 print field.gsub(/\"/, "\"\"")

 print "\""

 end

end

From the Library of Lee Bogdanoff

ptg

Exercises 161

require "csv_writer"

require "test/unit"

class CsvWriterTest < Test::Unit::TestCase

 def test_writer

 writer = CsvWriter.new

 lines = []

 lines << []

 lines << ["only one field"]

 lines << ["two", "fields"]

 lines << ["", "contents", "several words included"]

 lines << [",", "embedded , commas, included", "trailing,"]

 lines << [""", "embedded " quotes", "multiple """ quotes"""]

 lines << ["mixed commas, and "quotes"", "simple field"]

 # Expected:

 # -- (empty line)

 # only one field

 20 # two, fields

 # ,contents,several words included

 # ",","embedded, commas, included","trailing,"

 # """","embedded "" quotes","multiple """""" quotes"""""

 # "mixed commas, and ""quotes""",simple field

 writer.write(lines)

 end

end

A. How is this code an example of Divergent Change? (What decisions does it
embody?)

B. Modify this code to write to an IO object passed in as an argument.

C. Starting again from the original code, modify the functions to return a string
value corresponding to what the functions would have written. (Feel free to
rename your classes and methods to match their new responsibilities.)

D. Which version seems better, and why? Which is easier to test?

E. Compare this class with CSV::Writer from the Standard Library. Which is easier
to use?

 See page 241 for solution ideas.

From the Library of Lee Bogdanoff

ptg

162 Chapter 13: Accommodating Change

Exercise 13.2: Shotgun Surgery
Find examples of Shotgun Surgery in code you have access to. Some frequent can-
didates:

Configuration information•

Logging•

Persistence•

Places where it takes two calls on an object to get something common done, •
and this “two-step” is used in several places

Exercise 13.3: Hierarchies in Rails
The various generators in Rails initially ensure that every controller inherits from
ActionController::Base and every model inherits from ActiveRecord::Base. This
sounds like a parallel inheritance hierarchy; is it?

 See page 243 for solution ideas.

Exercise 13.4: Documents
Consider this class hierarchy:

Document

 AsciiDocument

 ZippedAsciiDocument

 RawAsciiDocument

 BriefAsciiDocument

 HtmlDocument

 RawHtmlDocument

 ZippedHtmlDocument

 MarcDocument

 BriefMarcDocument

 FullMarcDocument

A. What’s the impact of adding a new compression type that all document types
will support?

B. Rearrange the hierarchy so it’s based first on compression (or none), then brief/
full, then document type. Is this an improvement?

C. Describe a different approach, using the Decorator pattern.

 See page 243 for solution ideas.

From the Library of Lee Bogdanoff

ptg

163

CHAPTER 14

Libraries

Any Ruby application will use libraries—be it the core or standard libraries, or third-
party gems downloaded from RubyForge or a similar repository.

Libraries sometimes put us in a dilemma: We want the library to be different, and
yet we don’t want to change it. Even when it’s possible to change a library, that can carry
risk because it could affect other clients, and it could mean we would have to redo our
changes for future versions of the library.

Sometimes, library code is a bit smelly in order that client code doesn’t have to be.
Micah Martin points out that a library that is so factored it has lots of public classes
and no smells can be harder to use; it’s helpful if the library makes a narrow, easy-to-use
interface available.

In this chapter we’ll cover the following smells:

Incomplete Library Module• , in which a library has a vital feature missing

Reinvented Wheel• , in which you’ve written code that already exists elsewhere

Runaway Dependencies• , in which unexpected dependencies emerge when reuse is
attempted

From the Library of Lee Bogdanoff

ptg

164 Chapter 14: Libraries

Incomplete Library Module

What to Look For
You’re using a library module, and there’s a feature you wish were provided, but it’s •
not.

You see client code implementing a feature that could be in the library. (This can be •
visible as duplication in the client code.)

Why This Is a Problem
In a statically typed language such as Java, an incomplete library can be a big problem
because we can’t add methods to a class in a jar file. In Ruby, however, we can add meth-
ods to any class or module at any time. So the main issue here is in finding an appropri-
ate way to manage the extension of the library.

Abstraction: Extending the library by monkey-patching usually leads to other later
problems such as Greedy Module.

Flexibility: Several projects might extend a library in incompatible ways, leading to
subtle duplication and extra work if the library changes.

How It Got This Way
The author of the module didn’t anticipate your need (or declined to support it due to
other trade-offs).

What to Do
Use• Introduce Local Extension: In your own application code add the missing methods
to the module. However, if those new methods don’t naturally form part of the ab-
straction represented by the library, this refactoring will create a Greedy Module.

Alternatively, consider creating an• Adapter or Wrapper to contain your extensions.

If the extension is large, or if it becomes popular, consider using• Extract Module to
create a reusable library extension for use in other applications.

After you’ve reused this extension in a couple of projects, check whether the owner •
of the library would consider incorporating your extension.

What to Look for Next
 Duplication: Look at the other clients of this library, in every project you can

find. Look for similar or overlapping extensions—Alternative Modules with

From the Library of Lee Bogdanoff

ptg

Incomplete Library Module 165

Different Interfaces—and look for compromises that may have been made due
to the missing features.

 Communication: Make sure the names you have chosen for the additional classes
and methods fit well with the System of Names used by the original library. If
the extended library now exhibits Inconsistent Names, you may have a clash
of domain representations between the library and your application. Consider
resolving this by wrapping the library in an Adapter, instead of extending it.

Simplicity: Look at the module you just extended: Is it now Large or Greedy? Perhaps
this larger interface would be better designed by creating a Wrapper or Adapter
for the library, using smaller classes.

From the Library of Lee Bogdanoff

ptg

166 Chapter 14: Libraries

Reinvented Wheel

What to Look For
You’ve coded an algorithm with exactly the same behavior as an existing core Ruby •
or standard library feature.

Why This Is a Problem
Duplication: Your code duplicates existing code. This is a variant of Alternative Mod-

ules with Different Interfaces at the level of an algorithm or a few methods.
Communication: Other developers have to waste time reading your code carefully to

understand its effects.
• Simplicity: It is possible that there are defects in your code that aren’t present in the

library version of the same functionality.

When to Leave It
If the existing library has defects or other shortcomings, you may have no choice but to
reinvent the wheel.

How It Got This Way
The code was written by someone not familiar with Ruby’s libraries. Or the Ruby librar-
ies have evolved since your code was written, and now your version is obsolete.

If the existing library’s API is inconvenient for your application, consider adding a
Wrapper layer to morph the interface into one you can use.

What to Do
Fix this smell in the same way you would fix Alternative Modules with Different Inter-
faces (See Chapter 8, “Duplication”).

What to Look for Next
 Size: Now that you have folded your own algorithm back into the libraries, you may

find that the class it came from is now a Lazy Class—or at least contains some
Dead Code.

 Communication: The library may use a different System of Names than you had, so
check for Inconsistent Names in the area you just changed.

From the Library of Lee Bogdanoff

ptg

Runaway Dependencies 167

Runaway Dependencies

What to Look for
You want to reuse a single class or module, but you have to drag in the whole ap-•
plication or several gems you don’t need or want.

Why This Is a Problem
Flexibility: The “requires” relationship in Ruby is transitive: If A requires B and B

requires C, then A depends on C and needs it in order to load. This could cause
code to be copied and edited, rather than reused as is.

How It Got This Way
It’s usually easy to just instantiate objects where you need them. And that, in turn, means
just adding require statements where you need them. And so the snowball begins.

What to Do
In general, Dependency Inversion is a large refactoring—one that can take several coding
sessions to complete. Assuming there’s just one class you want to reuse:

Sometimes the offending • require calls are not needed, perhaps being a hangover
from earlier refactoring; this Dead Code can simply be deleted.

If your code instantiates third-party objects, use• Parameterize Method to push
the call to new out toward the application’s edges. Then delete the corresponding
require call.

If your class inherits from a third-party class, treat this as if it were a case of• Imple-
mentation Inheritance.

What to Look for Next
Duplication: Gathering together the uses of a third-party module could reveal

Duplicated Code or Feature Envy in its client classes.

From the Library of Lee Bogdanoff

ptg

168 Chapter 14: Libraries

Exercises

Exercise 14.1: Layers (Challenging)
One way to deal with libraries is to put them beneath a layer. This lets you isolate
the bulk of your code from direct dependency on other libraries. Consider these two
alternatives:

A. Redraw this as a UML package diagram showing dependencies.

B. Explain how the bulk of your code does or does not depend on the library code
in each of these situations.

C. What effects does this layering have in terms of:

• Conceptual integrity?

• Portability?

• Performance?

• Testing?

D. What mechanisms do you have available to enforce the layering (that is, what
stops someone from turning the second approach into the first one?)

 See page 244 for solution ideas.

Exercise 14.2: Closed Classes (Challenging)
Some languages provide ways to “close” a class definition; in Java, for example, one
cannot add methods to an existing class, and by making a class final, one can even
prevent it from being subclassed. Ruby, however, allows you to add methods to an
existing class or to change the definition of standard methods. Imagine this in your
own application code:

Bulk of your code Bulk of your code

Your lib.
extensions

Your lib.
extensionsA library you use

A library you use

Layer interface

From the Library of Lee Bogdanoff

ptg

Exercises 169

 class Array

 def length

 37

 end

 end

This language feature gives the Ruby programmer great freedom and makes the
Introduce Local Extension refactoring trivial.

A. What are the possible downsides of Ruby’s open classes, both for library reuse
and for application development?

B. Can you devise any means to discourage the abuse of Ruby’s open classes?

C. Can you devise any means to create closed classes in Ruby?

 See page 245 for solution ideas.

Exercise 14.3: A Missing Function
Consider the Zumbacker Z function, at the core of your application. (In fact, it’s such
a commonly used function in your domain that you’re a little surprised it’s not in the
Ruby core libraries already.) It’s defined:

Z(x) = abs(cos(x) + sin(x) - exp(x))

A. How could you handle the problem of Math being an incomplete library?

 See page 245 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

PART III
Programs to
Refactor

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

173

CHAPTER 15

A Simple Game

This example involves refactoring and test-driven design.1

Suppose we’ve decided to develop an application to play games in the tic-tac-toe family:
squares occupied by different markers. In tic-tac-toe you have a 3 × 3 grid, and you try to
put your mark in three boxes in a row. In Connect Four by Hasbro you have a rectangular
grid and try to get four boxes in a row, but columns have to be filled from bottom to top.
We’ll start with a simplified version of tic-tac-toe and work our way up to the general case.

Code
Here are some tests and the first version of the code:

require 'test/unit'

require 'tic_tac_toe'

class GameTest <Test::Unit::TestCase

 def test_default_move

 game = Game.new("XOX" +

 "OX-" +

 "OXO")

 assert_equal(5, game.move('X'))

 game = Game.new("XOX" +

 "OXO" +

 "OX-")

 assert_equal(8, game.move('O'))

1. The source code for this example is at http://github.com/kevinrutherford/rrwb-code.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code

ptg

174 Chapter 15: A Simple Game

 game = Game.new("---" +

 "---" +

 "---")

 assert_equal(0, game.move('X'))

 game = Game.new("XXX" +

 "XXX" +

 "XXX")

 assert_equal(-1, game.move('X'))

 end

 def test_find_winning_move

 game = Game.new("XO-" +

 "XX-" +

 "OOX")

 assert_equal(5, game.move('X'))

 end

 def test_win_conditions

 game = Game.new("---" +

 "XXX" +

 "---")

 assert_equal('X', game.winner())

 end

end

class Game

 attr_accessor :board

 def initialize(s, position=nil, player=nil)

 @board = s.dup

 @board[position] = player unless position == nil

 end

 def move(player)

 (0..8).each do |i|

 if board[i,1] == '-'

 game = play(i, player)

 return i if game.winner() == player

 end

 end

 (0..8).each { |i| return i if board[i,1] == '-' }

 return -1

 end

From the Library of Lee Bogdanoff

ptg

Refactoring 175

 def play(i, player)

 Game.new(board, i, player)

 end

 def winner

 if board[0,1] != '-' && board[0,1] == board[1,1] &&

 board[1,1] == board[2,1]

 return board[0,1]

 end

 if board[3,1] != '-' && board[3,1] == board[4,1] &&

 board[4,1] == board[5,1]

 return board[3,1]

 end

 if board[6,1] != '-' && board[6,1] == board[7,1] &&

 board[7,1] == board[8,1]

 return board[6,1]

 end

 return '-'

 end

end

Notice that the winner method is simplified: You win by getting three in a row horizon-
tally. Notice also that the heuristics for what to play are primitive: Win if you can, play any-
thing otherwise. We’ll migrate toward something capable of more sophisticated strategies.

Refactoring

Exercise 15.1: Smells
Go through this code and identify smells.

See page 246 for solution ideas.

Exercise 15.2: Easy Changes

It’s not always easy to know what to do with code. Let’s fix some of the easy things
first, one at a time.

• Uncommunicative Name: The method name move isn’t descriptive enough.
Change it to best_move_for.

From the Library of Lee Bogdanoff

ptg

176 Chapter 15: A Simple Game

• Uncommunicative Name: The variable i doesn’t explain much either. Change it
to move.

• Open Secret: The value –1 is a flag value; create a constant NO_MOVE to represent
it.

• Open Secret: The string nature of the board is exposed, and the check for a board
character being a ‘-’ is really a check that the square is unoccupied. Extract a meth-
od to do this, and name it appropriately.

There’s Duplicated Code in best_move_for, because we iterate over the squares on
the board twice—once to find a winning move, and again to find a default move. One
way to handle this would be to extract each pass into a method: As we add more strate-
gies (we have two thus far), we could imagine each strategy getting its own method. An
alternative would be to merge the two loops and handle things in one pass through the
possible moves. We’ll take the latter approach.

Exercise 15.3: Fuse Loops
Fuse Loops is a refactoring that combines two loops into one. It’s a standard optimi-
zation used by compilers, but it’s not in Fowler’s or Fields’ Refactoring catalog. (You
need to be careful about applying this refactoring; it can reduce communication and
encourage violations of the Single Responsibility Principle if applied to adjacent loops
that are only coincidentally related.) As always, the refactoring should be done in
small steps, maintaining safety at all times.

A. First, notice that both loops currently have side effects: We’ll eliminate them by
collecting all the return statements together at the end. For each loop introduce
a temporary variable to cache the loop’s result; be sure not to change it once it
has a value.

B. Move the body of the second loop into the first, and delete the second loop entirely.
(Remember to check that the tests still pass after each change.) If necessary, simplify
the body of the loop so that the can_play? check occurs only once.

C. Put on a development hat for a moment: It’s not necessary to stop when we find
a viable move—that is, there’s no harm in trying each possible move provided we
prefer wins to defaults. So, you can delete any conditional code that prevents a
cached value from being overwritten. Run the tests again and be sure you haven’t
changed anything important. You may have to change the tests. What does this
tell you?

From the Library of Lee Bogdanoff

ptg

Refactoring 177

D. In general, when is it safe to merge two loops?

 See page 246 for solution ideas.

Exercise 15.4: Result
Now we have a single loop, but the condition to decide what to return is still a little
complicated. Your code probably looks something like ours:

return winning_move if winning_move != NO_MOVE

return default_move if default_move != NO_MOVE

return NO_MOVE

How would you simplify this?
 See page 246 for solution ideas.

Exercise 15.5: Next
It’s good practice to pause at regular intervals and review the new state of the code.
What refactorings would you tackle next?

Exercise 15.6: Constants
The 8 in best_move_for is a Derived Value. Name some constants and rewrite the
method.
 See page 246 for solution ideas.

There are still a lot of magic numbers floating around. The winner method is full of
them, for example. We’ll tackle them in stages.

At this point, we’re going to explore two different paths through the space of possible
refactorings for the code. Make sure your current state is backed up—preferably in a ver-
sion control system such as Subversion—because we’ll be coming back to this point later.

From the Library of Lee Bogdanoff

ptg

178 Chapter 15: A Simple Game

Exercise 15.7: Checking for Wins
A. The conditionals in winner have Duplicated Code—each checks whether a partic-

ular row in the grid is filled with identical tokens. Fold these three checks together
into a loop that iterates over the rows.

B. Now switch to a development hat. Currently we’re not yet playing tic-tac-toe because
we’re only allowing horizontal three-in-a-row wins. Extend the winner method to
allow vertical and diagonal wins. (Be sure to add some tests before you begin.)

C. Do you think the refactoring you did in step A (looping over the rows) made step B
(adding more checks) easier or harder? What might you have done differently?

During the course of those last few steps we extracted a few helper methods such
as row:

def row(index)

 [board[index*COLUMNS,1], board[index*COLUMNS+1,1],

 board[index*COLUMNS+2,1]]

end

It took a couple of tries to get the calculations correct, so let’s fix that now.

Exercise 15.8: Representations
The game board is represented as a String, which may or may not be the most natu-
ral choice. It’s certainly an Open Secret.

A. What other parts of your code currently depend on the choice of a String for the
game board? Suggest refactorings you could perform to reduce the spread of that
knowledge.

B. Suggest at least two other ways we might represent the game’s state. Assess their
pros and cons (without changing any code at this stage).

C. Define a method cell(row, col) that returns the token at the given location on
the game board. Replace all direct reads of the string by calls to cell.

D. The only place where a token is actually placed on the board is in the constructor;
and the constructor’s conditional parameters are only fired by the play method.
Rewrite play so that the constructor only takes a single parameter.

 See page 246 for solution ideas.

From the Library of Lee Bogdanoff

ptg

Refactoring 179

Exercise 15.9: Refactoring Order
Now go back to your saved code and do Exercises 15.7 and 15.8 again—but this time
do 15.8 first. Was one order harder than the other? Why is that?

We could pursue improving the representation a lot further—and when you have
completed this chapter you may wish to do just that. But for now, we’ll return to our
vision of developing a general-purpose token-placing game.

Exercise 15.10: Winning Combinations
There’s another hidden constant: the number in a row that it takes to win. (Recall that
we mentioned Connect Four as one of the variations we eventually want to support.)
Suppose we change to a 5 × 5 grid and want four in a row to win. How easy is that
to put into the code?
(You needn’t add this feature; this is more of a thought question.)

Most of the refactorings we’ve applied so far have been obvious improvements. Now
it’s time to grow and improve the program through a combination of refactoring and
new implementation. But it’s not clear what’s best to do next.

You can think of this as subjunctive programming. The subjunctive tense is the one
used to talk about possible worlds (“If I were a rich man...”). Our stance is that we’ll try
some ideas and see where they lead, but if they don’t work out, that’s okay.

Two things make subjunctive programming bearable: a partner, so you can kick
around ideas, and a source control system, so you can back out anything you don’t like.

The general direction is that we want to allow more sophisticated strategies than
“win if you can and play arbitrarily otherwise.” One possible direction here is to create
a Move object and let it evaluate how good the move is.

Exercise 15.11: Iterator
In best_move_for we’re running a loop over the integers representing possible
moves, an Open Secret. Turn this into an iterator over the moves.

A. Extract an each_move method that yields the moves one by one to best_move_
for.

From the Library of Lee Bogdanoff

ptg

180 Chapter 15: A Simple Game

B. Our new iterator delivers all moves, legal or not. Move the can_play? test into
each_move so it only yields legal moves.

C. Introduce a Move struct that holds an integer move, and have each_move return
instances of it.

Currently, we’re just looping through possible moves, trying to select the best one,
following a simple rule: Wins are best, anything else is acceptable. But wins are rare;
we’d like to pick a good intermediate move, as some moves are better than others. We
can think of each move as having a score: how good it is. Just to have something to work
with, we’ll say a win is worth 100 points and any other move is worth 0 points. (We
could also think of wins by the opposing player being worth –100 points, but we won’t
check for those yet.)

Note that we’re out of the domain of refactoring; we’re making a semantic change
to our program. That’s the way development works. Because refactoring makes things
cleaner, we can see better ways to do them.

Development Episodes

Exercise 15.12: Scores

Modify best_move_for to calculate scores for moves and return the move with the
best score. (Hint: Instead of tracking the winning_move and default_move, keep
track of best_score and best_move.)

Notice how a score is associated with a particular move. Perhaps it should be part
of the Move object. Doing this might let us eliminate tracking of the integer score from
the main loop.

Exercise 15.13: Comparing Moves
Move the score calculation:

A. In order to calculate the score, Move objects need to know the game and the player.
Add those to Move.

From the Library of Lee Bogdanoff

ptg

Development Episodes 181

B. Move the calculation of a move’s score onto the Move object.

C. Now best_move_for is calculating the maximum of the scores of the playable
moves, “by hand.” But there’s a method on Enumerable that does just that. Imple-
ment a comparison operator (<=>) for Move.

D. Replace each_move by a method that returns an array of the playable Moves, and
replace the bulk of best_move_for by a call to max.

This is often how it goes. We refactored to create a method that yielded the moves,
and then later we replaced that by a different approach. It doesn’t mean our first try was
bad; we just learned more as the overall shape of the code shifted and simplified.

The program calculates every possible move and response. This is feasible for tic-
tac-toe, and perhaps also would be okay if we were to convert it to Hasbro’s Connect
Four, but certainly not feasible for a game like chess or Go. Eventually, we would have
to develop a new strategy.

One way to handle this is to limit the depth to which we search. Suppose we estab-
lish a depth cutoff value; searches deeper than this will simply return “don’t know.” We
will pass an additional parameter representing the current depth.

Exercise 15.14: Depth
Use Add Parameter to add a depth parameter, and maintain its value properly. After
you have the depth parameter, add an early check that returns when things are too
deep. What move will you return?

Exercise 15.15: Caching
We can think of performance tuning as refactoring for performance: It tries to keep the
program performing the same job, only faster. If we think of the program as exploring
the game tree of possible moves, we might see the same board via different paths.
Could you cache the moves so you could recognize boards you’ve already rated?

From the Library of Lee Bogdanoff

ptg

182 Chapter 15: A Simple Game

Exercise 15.17: New Features
Add some new features, test-first; make sure to refactor along the way.

A. Score a win by the opponent at –100.

B. Extend to m × n tic-tac-toe.

C. Require that a move be at the lowest empty space in a column.

Exercise 15.16: Balance
Do we have the right balance in our objects? Are there any missing objects? Which
should calculate the score, Game or Move? Try shifting it around and see the conse-
quences. Do some of these decisions make caching easier or harder?

Exercise 15.18: Min-Max
A. Add another feature: Use the min-max algorithm, described in any Artificial Intel-

ligence (AI) textbook. Instead of just saying, ”non-wins are all the same,” you say:
“Choose my best move, assuming the opponent makes the move that’s worst for
me.” The opponent uses the same rule. How is this reflected in the code? Is it a
trick to use it?

B. There’s an extension to that approach, called alpha-beta pruning. It says that we
can avoid searching parts of the tree by establishing cutoff values. Find an AI book,
and consider what it would take for you to implement such an approach. Is this a
refactoring, new development, or what?

Exercise 15.19: Do-Over?
This has been an experiment in changing the structure of an application. There are
other paths we could take. In particular, the balance between classes could go down
a different path. The first tests assumed 3 × 3 tic-tac-toe; it would be interesting to
start 1 × 1 and work to m × n that way, letting 3 × 3 be a special case.
Would it be better to start over or work from the current base?

From the Library of Lee Bogdanoff

ptg

183

CHAPTER 16

Time Recording

Imagine your team or department uses a tool to track the hours spent on client projects
so that your company can invoice correctly at the end of each month.1 The tool is a
Ruby script offering a simple command-line interface; it’s used like this (the last argu-
ment is always a project name, and -u selects a user):

$ timelog -h 4.5 project1

$ timelog -u bill -h 6 project2

$ timelog --date 2008-08-26 -h 2 project1

$ timelog project2

jun-08 15.0

jul-08 128.5

aug-08 117.0

Total 260.5

$ timelog -u kevin project1

2008-06 15.0

2008-07 76.0

2008-08 17.5

Total 108.5

$

Here is the script itself:

#! /usr/bin/ruby

#

Usage:

#

timelog [--user USERNAME] [[--date d] [--hours] hrs] project

#

1. The source code for this example is at http://github.com/kevinrutherford/rrwb-code.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code

ptg

184 Chapter 16: Time Recording

require 'ostruct'

require 'optparse'

require 'optparse/date'

def parse_options(argv)

 options = OpenStruct.new

 OptionParser.new do |opts|

 opts.banner = "Usage: #{$0} [options] project_name"

 opts.on("-d", "--date DATE", Date,

 "Specify the date on which hours were worked") do |d|

 options.date = d

 end

 opts.on("-h", "--hours NUM", Float,

 "The number of hours worked") do |hrs|

 options.hours = hrs

 end

 opts.on("-u", "--user USERNAME", String,

 "Log time for a different user") do |user|

 options.user = user

 end

 opts.on_tail("-?", "--help", "Show this message") do

 puts opts

 exit

 end

 end.parse!

 if argv.length < 1

 puts "Usage: #{$0} [options] project_name"

 exit

 end

 if argv.length == 2

 hours = argv.shift

 options.hours = hours.to_f

 end

 if options.hours && options.hours <= 0.0

 raise OptionParser::InvalidArgument, hours

 end

 options.project = argv[0]

 options

end

TIMELOG_FOLDER = ENV['TL_DIR'] || '/var/log/timelog'

TIMELOG_FILE_NAME = 'timelog.txt'

TIMELOG_FILE = TIMELOG_FOLDER + '/' + TIMELOG_FILE_NAME

From the Library of Lee Bogdanoff

ptg

Chapter 16: Time Recording 185

def report(options)

 records = IO.readlines(TIMELOG_FILE)

 records = records.grep(/^#{options.project},/)

 records = records.grep(/,#{options.user},/) if options.user

 months = Hash.new(0.0)

 total = 0.0

 records.each do |record|

 project, user, date, hours = record.split(/,/)

 total += hours.to_f

 y, m, d = date.split(/-/)

 months["#{y}-#{m}"] += hours.to_f

 end

 lines = months.keys.sort.map { |month|

 "%-7s %8.1f" % [month, months[month]]

 }

 lines << "Total %8.1f" % total

 lines.join("\n")

end

def log(options)

 options.user ||= ENV['USERNAME']

 options.date ||= Date.today.to_s

 File.open TIMELOG_FILE, 'a+' do |f|

 f.puts "#{options.project}," "#{options.user}," +

 "#{options.date},#{options.hours}"

 end

end

if __FILE__ == $PROGRAM_NAME

 options = parse_options(ARGV)

 if options.hours.nil?

 puts report(options)

 else

 log(options)

 end

end

 The script also has a few end-to-end tests:

require 'test/unit'

load 'timelog.rb'

class TimelogTest < Test::Unit::TestCase

 def setup

 @varlog_size = File.size(TIMELOG_FILE) if

 File.exist?(TIMELOG_FILE)

 File.delete(TIMELOG_FILE_NAME) if

From the Library of Lee Bogdanoff

ptg

186 Chapter 16: Time Recording

 File.exist?(TIMELOG_FILE_NAME)

 ENV['TL_DIR'] = '.'

 assert_equal('',

 'ruby timelog/timelog.rb -u fred -h 6 proj1')

 assert_equal('',

 'ruby timelog/timelog.rb -u jim -h 7 proj1')

 assert_equal('',

 'ruby timelog/timelog.rb -u alice -h 4.5 proj1')

end

def teardown

 if File.exist?(TIMELOG_FILE)

 assert_equal(@varlog_size, File.size(TIMELOG_FILE),

 "log file #{TIMELOG_FILE} should be unchanged")

 end

 File.delete(TIMELOG_FILE_NAME) if

 File.exist?(TIMELOG_FILE_NAME)

end

def test_project_total

 rpt = 'ruby timelog/timelog.rb proj1'.split("\n")[-1]

 assert_equal(17.5, rpt.split[1].to_f)

end

def test_project_total_for_missing_project

 rpt = 'ruby timelog/timelog.rb proj2'.split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

def test_user_total

 rpt = 'ruby timelog/timelog.rb --user fred proj1'

 rpt = rpt.split("\n")[-1]

 assert_equal(6, rpt.split[1].to_f)

end

def test_user_total_for_missing_user

 rpt = 'ruby timelog/timelog.rb --user harry proj1'

 rpt = rpt.split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

def test_user_total_for_missing_project

 rpt = 'ruby timelog/timelog.rb --user fred proj2'

 rpt = rpt.split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

end

From the Library of Lee Bogdanoff

ptg

Preparing the Soil 187

Notice that the script stores the record of project hours in a flat text file. This design
helped to get the script developed and into use quickly, but it is now becoming a liabil-
ity. For one thing, the script makes no attempt to prevent concurrent writes to the file.
The company already has a MySQL database holding details of all staff and all projects,
so it seems to make sense to store the time logs in there too. A meeting is held to decide
whether to refactor the existing tool or write a replacement from scratch.

Exercise 16.1: Rewrite or Refactor?
Look at the tool’s code. We need to replace it with a version that uses a different per-
sistence mechanism, but which otherwise has the same features.

A. What are the arguments for and against refactoring the existing script?

B. Make a list of the script’s code smells.

 See page 247 for solution ideas.

The decision is made to refactor the existing code, replacing the flat file by a per-
sistence layer sitting on the company’s existing MySQL database. Your mission, should
you choose to accept it, is to carry out that refactoring.

Preparing the Soil
It is a good idea to begin every project on a “green bar,” so that you know you have
working code as your starting point.

Exercise 16.2: Project Kick-Off
A. Take whatever time you need to set up your development project for this exer-

cise and run the tests.

B. Take a moment to develop a strategy for this refactoring task; think about the
steps you might need to take in order to accomplish it safely, without leaving
anything broken.

One approach is to simply replace all of the file manipulation code with SQL queries.
We think that’s a bit risky, so instead we’re going to try to break the problem into smaller

From the Library of Lee Bogdanoff

ptg

188 Chapter 16: Time Recording

pieces in order to avoid that kind of “big bang.” Right now, all of the code is sitting in a
small number of Greedy Methods. So the key to our success is in making some separa-
tion between the three parts of this application: presentation, domain, and persistence.

First, though, we need to make the refactoring process a little more safe.

Exercise 16.3: Test Coverage
A. Review the existing tests and identify areas where coverage is weak. (Concen-

trate on looking at the application as a “black box”; try not to be sidetracked by
the code itself.)

B. Write the missing tests; for consistency, adopt the style and approach of the
existing tests.

See page 248 for solution ideas.

Reviewing the tests, it becomes clear that many of them invoke the whole application
just to test one method. Then there’s that pesky global constant TIMELOG_FILE; it’s already
made testing sufficiently hard that the code uses an environment variable to get around it!
We want to pass the file’s path as a parameter, but there’s currently nothing to pass it to.

Exercise 16.4: Application Object
A. Use Extract Class to create a new class representing the timelog application. Give

the new class a constructor taking the file’s name as a parameter.

B. Move the report and log methods over to the new class.

C. Refactor the tests to use those new methods. Is the environment variable need-
ed now?

D. That last change lost us some test coverage. Is that a problem? What would you
do about it?

From the Library of Lee Bogdanoff

ptg

Preparing the Soil 189

The Duplicated Code in the tests is now some what more apparent; we have a lot
of tests with this general form:

def test_project_total_for_missing_project

 rpt = @recorder.report('proj2', nil).split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

That’s a lot of code just to ask a project for its total hours!

Exercise 16.5: Testable Methods
Remove duplication in the tests by extracting more fine-grained and specific meth-
ods on the application object. (Hint: You will create half a dozen methods such as
total_hours_for(project).)

In the rest of this chapter, we are going to focus on changing the application’s persis-
tence mechanism, and hopefully we’re going to do that without changing its command-
line options (user input) or report formatting (output). However, the code currently makes
that harder than necessary, because most of the application’s behavior is still in Greedy
Methods that deal with both persistence and formatting. In Smalltalk Best Practice Patterns
[2], Kent Beck says, “Don’t put two rates of change together.” His approach to dealing
with the resulting Divergent Change is to break the code into “lots of little pieces.”

Exercise 16.6: Rates of Change
A. Look at the methods that contain code for reading or writing the file. Split each

of these methods apart, so that report formatting is separated from file opera-
tions.

B. Use Extract Class on your application object to wrap the file methods together
with the path to the file.

C. Refactor the application object’s constructor so that its parameter is a whole
TimelogFile instance by pushing the TimelogFile’s construction up into the
tests and the top-level script. This deliberately introduces a little duplication;
what are the mitigating factors in this case?

See page 248 for solution ideas.

From the Library of Lee Bogdanoff

ptg

190 Chapter 16: Time Recording

As so often happens during a large refactoring such as this, the elimination of one
smell can reveal another that was previously hidden. In the code for timelog right now,
the recording and reporting methods communicate with the file methods using strings
containing comma-separated values.

Exercise 16.7: Open Secrets
Fix these Open Secrets by introducing a new class to wrap the CSV strings. Look for
opportunities to move code onto the new class. Can you use the new class to simplify
any of the tests?

In the language of Cockburn’s Hexagonal Architecture [9], the TimelogFile class
you just extracted is an Adapter for the file. Ideally it will be very thin: It should know
nothing about the application, and yet its interface (the set of public method signatures)
should reveal nothing of the underlying technology. This interface is the variation point
we will exploit as we switch to a SQL solution.

Exercise 16.8: Hexagonal Architecture (Challenging)
Draw a UML static model showing your current code in hexagonal architecture form
[9]. Ensure that your model clearly identifies

 The dependencies between the classes (• <<using>> relationships)

The test class(es)•

 The variation point•

 The “middle hexagon” and the adapters•

 See page 248 for solution ideas.

It’s starting to feel like we have the application a little more under control now. Admit-
tedly, many more code smells remain, but we want our next series of steps to be informed
by the problem at hand. It’s time to look at the database.

From the Library of Lee Bogdanoff

ptg

Substitute Algorithm 191

Substitute Algorithm
Figure 16.1 shows a rough outline of the relevant parts of the existing corporate data-
base.

<<table>>
Staff Member

<<table>>
Assignment

Codename: String
Start: date
......

Start: date
End: date

<<table>>
Project

Username: string
Fullname: string

11 0..* 0..*

Figure 16.1 Existing Corporate Projects Database

Exercise 16.9: Data Smells
Refactoring mostly deals with code smells. But there are data smells too; the database
community has notions of what constitutes a good data design.

A. What potential problems do you see in this database structure?

B. What changes to the database might address them? (Don’t make the changes
yet.)

See page 248 for solution ideas.

We’ll bear these data smells in mind as we proceed, because one or two of them could im-
pede our progress. But that’s for the future; right now we need to sketch out a new design.

Exercise 16.10: Extending the Database
Design an extension to this schema to hold time records equivalent to those currently
stored in the file. Try to do it so that the existing tables don’t need to change.

 See page 249 for solution ideas.

From the Library of Lee Bogdanoff

ptg

192 Chapter 16: Time Recording

When we switch the code from file I/O to SQL, we want to do so in the presence of
tests. We have a clear choice between two different approaches at this point: We could
continue with the tests we have, or we could write some unit tests at the level of the
variation point. We’ll do the latter.

Exercise 16.11: Adapter Tests (Challenging)
A. Create a new test suite (call it TimelogFileTests or something similar) by copy-

ing the existing tests. You should now have twice as many passing tests!

B. For each test in the new suite, rewrite it so that it only uses TimelogFile
and Posting. For example, instead of checking for the correct total hours, a
rewritten test would check that the right Posting objects came back from the
TimelogFile.

C. Now also rewrite the test setup so that it only uses TimelogFile and Posting.

D. Review your new test suite. You may find that some tests are now identical, in
which case the duplicates can be deleted. Feel free to add extra tests for any
edge cases you can now see.

It now appears that we have a layer of abstraction that completely hides the applica-
tion’s persistence mechanism. How confident are you that this is indeed true? After all,
the TimelogFile adapter currently has only one use, and the application has only ever
been run with one persistence adapter. The cold truth is that we can never be certain;
at this point, we are completely reliant on the separation of responsibilities we made at
Exercise 16.6. It’s time now to put that design to the test.

We’re going to make a new adapter for the SQL database, by copying the Timelog-
File adapter and then gradually modifying it. This is a big, risky refactoring, so we’ll
take it in small steps.

Exercise 16.12: Database Technology
Our first task is to decide what Ruby gem(s) to use to access the SQL database.

Make a list of gems that might be suitable for the job. Pick one that suits your
needs. If you haven’t done so already, install your chosen gem.

See page 249 for solution ideas.

From the Library of Lee Bogdanoff

ptg

Substitute Algorithm 193

We’ll now proceed with exercises based on the technology choice we just made. (If
you chose differently, feel free to follow along with your chosen tool.)

Exercise 16.13: Database Tests (Challenging)
A. Copy the TimelogFile class and its tests to create new classes with “SQL” or

“Database” in their names. Switch the new tests over to calling the new adapter.
You should now have three suites of passing tests!

B. Augment the new test setup so that it also creates an equivalent fixture in a
database. Drop, create, and populate all of the tables in the setup (so that each
test starts with a new set of tables), and use raw SQL to populate them with the
same data that goes into the file. (Your setup should continue to populate the
file too, so the current tests—which use the file adapter—should still pass.)

C. Add a parameter to the SQL adapter’s constructor and pass in the information
required for connecting to the test database. Ensure that every method in the
new adapter has access to a database connection (even though the code still
uses the file). (Hint: We used MySQL, so we passed a new object containing the
hostname, username, password, and database name; this new object also got a
method that would connect to the specified database.)

We can’t think of any more safety harnesses—it’s time now to code up the new
adapter.

Exercise 16.14: Database Adapter (Challenging)
For each method in the new SQLAdapter class:

A. Use a database tool to work out the precise SQL query needed by the method.
You may find at this point that you need to fix some of the schema smells
identified in Exercise 16.9 earlier; if so, modify the test setup accordingly.

B. Use Substitute Algorithm to replace the existing code with the SQL query.

C. Run the tests after each change.

From the Library of Lee Bogdanoff

ptg

194 Chapter 16: Time Recording

We’re almost done. We have two persistence adapters, each with a set of unit tests.
But right now we have only one set of integration tests.

Exercise 16.15: Integration Tests
Write a suite of tests to prove that the application works with the test database. Did
you get any surprises? If so, could you have prevented them by doing anything dif-
ferently earlier in this chapter?

Now it’s time to make the final leap and switch the application to use the real live
corporate database.

Exercise 16.16: Going Live
A. We are about to switch the script so that it uses the corporate database instead

of the file. What are the risks involved in doing this? Can you think of any ways
to mitigate them?

B. (Optional) Create a new database and populate it with fake “corporate” data. In
your top-level script, create an instance of your database adapter, constructed
to point at the real live corporate database. Pass that object to your application
object’s constructor. Perform whatever safety checks you think are necessary.

Optional Extras
There are many ways to design persistence to a relational database. One of the most
popular uses the Active Record pattern (see Fowler’s Patterns of Enterprise Application
Architecture [12]). Indeed, if you have done any Rails development, you will already
have used the ActiveRecord gem.

Exercise 16.17: Active Record (Challenging)
As an optional exercise, if you’re feeling adventurous, refactor your current design to
use the ActiveRecord gem instead of relying directly on a SQL API. Is it possible to
follow the step-by-step approach we used earlier? What changes are required to the
variation point interface in order to work with ActiveRecord?

From the Library of Lee Bogdanoff

ptg

Optional Extras 195

The code for this chapter was not originally written test-first.

Exercise 16.18: Test-Driven Development (Challenging)
A. Reimplement this application from scratch, test-first; provide both flat file and

SQL versions. Don’t look at the old version while you develop the new one.
What do you see?

B. The experiences of people who do test-driven development indicate that a dif-
ferent design often emerges than the one they expected. Did that happen for
you? Is the code better? Are the tests better? How much did the original design
influence you?

C. Assuming your test-driven code is different from the code you were working
with before, would it be feasible to refactor the old code until it matches the
new code? Are there refactorings not “in the book” that you need to transform
your code? What code smells could guide you so that you would naturally refac-
tor in that direction? Does this teach you anything about refactoring, or about
test-driven development?

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

197

CHAPTER 17

Calculator

In this chapter we’ll look at a small calculator.1 This one has two twists. One is that it’s
based on a stack like an old HP calculator. The second is that it knows units.

The stack approach lets us avoid dealing with the challenges of parsing (and tricky

things like parentheses). It works like this: You can push values, and an operator such

as + pops the top two items off the stack and replaces them with the sum. For example,

3 + 4 5 would be done with “3 PUSH 4 PUSH 5*+” whereas 3 4 + 5 would be

“3 PUSH 4 * PUSH 5 +” and (3 + 4)/ 5 would be “3 PUSH 4 + PUSH 5 *”.

1. The source code for this example is at http://github.com/kevinrutherford/rrwb-code.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code

ptg

198 Chapter 17: Calculator

Units let us manipulate values with meters, kilograms, and seconds. Suppose we
have something traveling 50 meters per second for 7 seconds. If we take 50m/s 7s, we
get 350m. (It would be entered “50 m 1/s PUSH 7s *”.)

Exercise 17.1: Smells
Go through this code and identify smells.

 An answer follows the code.

Code
It’s easiest to understand these classes from the bottom up. First, we’ll look at how units
are managed with the class Dimension. Dimensions represent the MKS (meter/kilogram/
second) values as a hash from the unit name to the exponent. (So m2 is represented as
{'m'= > 2}.) Observe how multiplication, negation (inversion), and division manipulate
the exponents.

class Dimension

attr_reader :dimensions

def initialize unit2int={}

 @dimensions = new_hash(unit2int)

end

def clone

 Dimension.new(new_hash(@dimensions))

end

def ==(other)

 return dimensions == other.dimensions

end

def *(other)

 new_dimensions = new_hash(dimensions)

 other.dimensions.each_pair {

 |key, value|

 sum = dimensions[key] + value

 new_dimensions[key] = sum

 new_dimensions.delete(key) if sum == 0

 }

 Dimension.new new_dimensions

end

From the Library of Lee Bogdanoff

ptg

Code 199

def -@

 new_dimensions = new_hash(dimensions)

 dimensions.each_pair{

 |key, value|

 new_dimensions[key] = -value

 }

 Dimension.new new_dimensions

end

def /(other)

 self * -other

end

def to_s

 return "" if dimensions.size == 0

 positives = ""

 negatives = ""

 dimensions.each{|key, value|

 positives += '*' + format(key, value) if value > 0

 negatives += '*' + format(key, -value) if value < 0

 }

 if (positives.length == 0)

 positives = "1"

 else

 positives = positives[1..-1]

 end

 if (negatives.length > 0)

 negatives = negatives[1..-1]

 end

 return positives if (negatives.length == 0)

 return positives + "/" + negatives

end

def format key, value

 return key if value == 1

 return key + "^" + value.to_s

end

private

def new_hash initial_value

 result = Hash.new{|hash, key| hash[key] = 0 }

 result.merge!(initial_value)

 result

end

end

From the Library of Lee Bogdanoff

ptg

200 Chapter 17: Calculator

Values are a pair, representing the product of an integer and a dimension. They sup-
port the various arithmetic operators, along with an operator that can extend either part
of the pair. (For example, 327 extended with 8 becomes 3278, while m extended with
1/s becomes m/s.)

require 'dimension'

class Value

attr_reader :number, :dimension

def initialize number, dimension

 @number = number

 @dimension = dimension

end

def clone

 Value.new(@number, @dimension.clone)

end

def extend v

 return Value.new(number * 10 + v, dimension) if

 v.kind_of? Integer

 return Value.new(number, dimension * v)

end

def +(other)

 raise "can't mix apples and oranges" if

 dimension != other.dimension

 Value.new(number + other.number, dimension)

end

def -(other)

 raise "can't mix apples and oranges" if

 dimension != other.dimension

 Value.new(number - other.number, dimension)

end

def *(other)

 Value.new(number * other.number,

 dimension * other.dimension)

end

def /(other)

 Value.new(number / other.number,

 dimension / other.dimension)

end

From the Library of Lee Bogdanoff

ptg

Code 201

def ==(other)

 (number == other.number) and (dimension == other.dimension)

end

def dimension

 @dimension

end

def to_s

 suffix = @dimension.to_s

 return @number.to_s if suffix.size == 0

 @number.to_s + '*' + @dimension.to_s

end

end

Now look at Calculator, the core class. It holds the stack, and it knows whether the last
value was pushed or calculated so it can know whether to extend a value or replace it.

require 'value'

class Calculator

attr_accessor :is_calculated

def initialize start

 @default = start #Value.new 0, Dimension.new

 @stack = []

 @is_calculated = true

end

def default

 @default.clone

end

def top

 return default if @stack.size < 1

 @stack[-1]

end

def push value

 @is_calculated = false

 @stack.push value

end

def extend value

 start = @is_calculated ? default : top

 pop

From the Library of Lee Bogdanoff

ptg

202 Chapter 17: Calculator

 push start.extend(value)

end

def pop

 @is_calculated = true

 @stack.pop

end

def plus

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 + v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

end

def minus

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 - v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

end

def times

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 * v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

From the Library of Lee Bogdanoff

ptg

Code 203

 self

end

def divide

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 / v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

 end

def binary_op_old op

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = op.call(v1,v2)

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

end

def swap

a = top

pop

b = top

pop

push a

push b

@is_calculated = true

end

def to_s

 top.to_s

end

end

From the Library of Lee Bogdanoff

ptg

204 Chapter 17: Calculator

Now we’re moving up to the user interface. The Calc_Controller class coordinates
access to the calculator (and gives us a chance to test below the level of UI objects).

require 'calculator'

require 'value'

require 'dimension'

class Calc_Controller

def initialize calculator

 @calculator = calculator

 @calculated = false

end

def digit n

 @calculator.extend(n)

end

def unit arg

 if @calculator.is_calculated

 @calculator.pop

 @calculator.push(Value.new(0, arg))

 else

 value = @calculator.top

 @calculator.pop

 value *= (Value.new 1, arg)

 @calculator.push value

 end

 @calculator.is_calculated = false

end

def push

 @calculator.push(Value.new(0, Dimension.new))

 @calculator.is_calculated = false

end

def pop

 @calculator.pop

end

def cab

 a = @calculator.top

 @calculator.pop

 b = @calculator.top

 @calculator.pop

 c = @calculator.top

 @calculator.pop

From the Library of Lee Bogdanoff

ptg

Code 205

 @calculator.push b

 @calculator.push a

 @calculator.push c

 @calculator.is_calculated = true

end

def swap

 @calculator.swap

end

def plus

 @calculator.plus

end

def subtract

 @calculator.minus

end

def times

 @calculator.times

end

def divide

 @calculator.divide

end

def plus_old

 @calculator.binary_op(lambda{|a,b| a+b})

end

def to_s

 @calculator.to_s

end

end

Finally, we get to the user interface proper, built on Tk. It delegates most of its work
to the controller.

require 'tk'

require 'value'

require 'calculator'

require 'calc_controller'

@my_font = TkFont.new('helvetica 20 bold')

@calculator = Calculator.new(Value.new 0, Dimension.new)

From the Library of Lee Bogdanoff

ptg

206 Chapter 17: Calculator

@controller = Calc_Controller.new @calculator

def push

 @controller.push

 @my_text.value = @controller

end

def pop

@controller.pop

@my_text.value = @controller

end

def cab

@controller.cab

@my_text.value = @controller

end

def swap

@controller.swap

@my_text.value = @controller

end

def plus

@controller.plus

@my_text.value = @controller

end

def minus

@controller.subtract

@my_text.value = @controller

end

def times

@controller.times

@my_text.value = @controller

end

def divide

@controller.divide

@my_text.value = @controller

end

def extend_unit arg

@controller.unit(arg)

@my_text.value = @controller

end

From the Library of Lee Bogdanoff

ptg

Code 207

def extend_number n

@controller.digit(n)

@my_text.value = @controller

end

def plus_old

@calculator.binary_op(lambda{|a,b| a+b})

@my_text.value = @calculator

end

def make_button frame, name, p

TkButton.new(frame, :text=>name,

 :font=>@my_font, :command =>p)

end

def make_digit root, number

make_button(root, number, proc{extend_number number})

end

def make_unit root, unit

make_button(root, unit, proc{extend_unit unit})

end

root = TkRoot.new { title "Calculator" }

output_frame = TkFrame.new(root).pack(

'side'=>'top',

'padx'=>10,

'pady'=>10,

'fill'=>'both')

button_frame = TkFrame.new(root).pack(

'side'=>'bottom',

'padx'=>10,

'pady'=>10)

@my_text = TkVariable.new

@calculated_result = TkEntry.new(output_frame) {

 width 75

 font @my_font

 state 'readonly'

 justify 'right'

 border 5

 }.pack(

 'fill'=>'y',

 'expand'=>'true')

From the Library of Lee Bogdanoff

ptg

208 Chapter 17: Calculator

@calculated_result.textvariable = @my_text

@my_text.value = @calculator

b0 = make_digit(button_frame, 0)

b1 = make_digit(button_frame, 1)

b2 = make_digit(button_frame, 2)

b3 = make_digit(button_frame, 3)

b4 = make_digit(button_frame, 4)

b5 = make_digit(button_frame, 5)

b6 = make_digit(button_frame, 6)

b7 = make_digit(button_frame, 7)

b8 = make_digit(button_frame, 8)

b9 = make_digit(button_frame, 9)

bm = make_unit(button_frame, Dimension.new({'m'=>1}))

b1m = make_unit(button_frame, Dimension.new({'m'=>-1}))

bk = make_unit(button_frame, Dimension.new({'k'=>1}))

b1k = make_unit(button_frame, Dimension.new({'k'=>-1}))

bs = make_unit(button_frame, Dimension.new({'s'=>1}))

b1s = make_unit(button_frame, Dimension.new({'s'=>-1}))

b_plus = make_button(button_frame, '+', proc{plus})

b_minus = make_button(button_frame, '-', proc{minus})

b_times = make_button(button_frame, '*', proc{times})

b_divide = make_button(button_frame, '/', proc{divide})

b_push = make_button(button_frame, 'Push', proc{push})

b_pop = make_button(button_frame, 'Pop', proc{pop})

b_swap = make_button(button_frame, 'Swap', proc{swap})

b_cab = make_button(button_frame, 'CAB', proc{cab})

spaceholder = TkLabel.new(button_frame)

buttons = [

b7, b8, b9, bm, b1m, b_plus, b_push,

b4, b5, b6, bk, b1k, b_minus, b_pop,

b1, b2, b3, bs, b1s, b_times, b_swap,

spaceholder, b0, spaceholder, spaceholder,

 spaceholder, b_divide, b_cab]

items_per_row = 7

buttons.each_index { |i|

buttons[i].grid(

 'column'=>(i%items_per_row),

 'row'=>(i/items_per_row),

 'sticky'=>'news',

From the Library of Lee Bogdanoff

ptg

Refactoring 209

 'padx'=>5,

 'pady'=>5)

}

Tk.mainloop

Refactoring
Here are some of the smells we noticed:

Uncommuni• cative Name: Calc_Controller and Calc_Screen aren’t standard Ruby
class names (which wouldn’t have underscores).

Duplicated Code• : Duplication between digits and units.

Duplicated Code• : Duplication across classes: Calc_Screen, Calc_Controller, and
Calculator all have methods for the various operators.

Duplicated Code• : The button_frame is being passed many times, and it’s the only
value the parameter using it ever uses.

Dead Code• : There is an uncalled method binary_pop_old() in Calculator, and
plus_old() in the main class.

Middle Man• : The arithmetic routines in Calc_Controller are pass-through meth-
ods to Calculator; it’s not clear that the controller is pulling its weight.

Greedy Module• : Some stack methods are in the controller, some in the Calculator.

Inappropriate Intimacy (General Form)• : There’s redundant state in the controller
and the calculator, trying to manage what happens when a value has been typed in
and is due to be extended versus one that is calculated and should just be replaced.

Simulated Polymorphism• : The extend() method checks types to decide how to
operate.

Feature Envy• : The cab() method does all its work with the calculator, so the work
could be moved over there.

Duplicated Code• : All the calculation routines are very similar.

Suspicious Code:• The Calculator class hard-codes the default value, and the opera-
tors assume +-*/ are defined. (Values needn’t be tied to the stack nature.)

Suspicious Code:• It seems suspicious that operators put in a default value (0) when
anything suspicious happens (“5 m PUSH 2 s +” yields 0.) The value class definitely
detects trying to add or subtract things with differing dimensions.

Long Method• : Dimension’s *() method seems longish; to_s() is defi nitely too long.

Duplicated Code• : The way positives and negatives are added is very similar.

Greedy Module• : Value knows its formatting.

From the Library of Lee Bogdanoff

ptg

210 Chapter 17: Calculator

Duplicated Code• : There’s lots of similarity in the way the screen is set up (e.g., the
calls make_digit() and make_unit()).

Where to begin? There’s an art to it (especially with so many choices). We’re rea-
sonably confident that Value and Dimension stand on their own. We want to start at
Calculator, as it’s the heart of the system.

There are three things we want to accomplish first:

Remove the direct dependency on the Value class and the default value. (What if we •
want to operate on integers instead of values? What would change?)

Pull • cab() over to the Calculator class.

Eliminate the duplication in the operators.•

Exercise 17.2: Clean up Calculator
Fix those problems in the Calculator class.

When we did this, we made all the arithmetic operators call a common binary_op
method something like this:

 def plus

 binary_op(lambda{|a,b| a+b})

 end

Exercise 17.3: Straighten out is_calculated

It looks like Calc_Controller and Calculator are fighting over who owns the state
that tracks whether a value is calculated. This is used so we know whether 58 extend-
ed by 3 should be 583 (if it’s in the process of being entered) or just toss the 58 and
put 3 on the stack (if the value on top of the stack was calculated). Figure out which
class should own the state, and get this out of the other’s hands.

(There are arguments for either class owning it, but not both.)

Exercise 17.4: Controller
The controller has two responsibilities: passing through to the calculator options and
handling extension of the digits or the units. Harmonize and unify the two extension
methods.

From the Library of Lee Bogdanoff

ptg

Refactoring 211

Did you notice the extend() method on Value? It’s already prepared to work with
either integers or Dimensions. (It does its work by type-checking. Can you think of a
better approach?)

Exercise 17.5: Generic Calculator
Move the concrete binary operations over to the controller, so the Calculator class
has no dependency on the specific operations, but only knows how to handle the
generic binary case (where the particular operator is passed in). Move the extend()
method over to the controller as well. At this point, Calculator has no dependency on
the particular type. (For a bonus, try making it work with integers rather than Values.
What other impacts are there?)

Exercise 17.6: UI Class
There are several places of duplication in Calc_Screen. Make it so button_frame is
not passed around, since no other frame ever gets a button. Find a way to eliminate
the duplication in all the controller calls. (Is this overkill?)

Exercise 17.7: Value and Dimension
The worst offense here is the formatting method. It’s moderately big, and a bit hard
to understand. More importantly, it ties formatting concerns into a domain-level ob-
ject. (What if we were writing to a widget that could handle real superscripts and
subscripts? This would just be in the way.)

Exercise 17.8: What Else?
What else can you do? It’s often the case that applying the obvious refactorings re-
veals other more subtle opportunities.

Thank You
We hope that this and the other exercises have helped give you good practice at identi-
fying code smells and applying refactorings that clean them up. We encourage you to
participate in the community and keep learning. Good luck.

—Kevin and Bill

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

PART IV
Appendices

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

215

APPENDIX A

Answers to Selected
Questions

We’ve included answers to some of the problems here. Where we’ve omitted answers, it’s
usually because we’ve asked you to work in your own code or because we want you to
consider an issue on your own.

The Refactoring Cycle

Exercise 2.1: Simple Design
 A. (a) Passes all tests. “If it doesn’t have to work, I can give it to you right now.”

 (b) Communicates. This makes an appeal to our intuition about future readers of
our code (including ourselves).

 (c) No duplication. Duplicate code is asking for trouble; it’s too vulnerable to
changes in one place but not the other.

 (d) Fewest classes and methods. All things being equal, we prefer smaller code.

 B. The bottom line is that there’s an appeal to the reader’s ability to understand; we’ll
tolerate duplication to achieve better understanding.

Test code will sometimes have duplication, for communication reasons. For exam-
ple, it may be easier to repeat an expected value rather than assign it to a variable
and use the variable. That way, when you read the code, you know exactly what it
was looking for, and you don’t have to review code to find the variable and make
sure nothing else changed it along the way.

From the Library of Lee Bogdanoff

ptg

216 Appendix A: Answers to Selected Questions

Refactoring Step by Step

Exercise 3.1: Small Steps
Most refactorings reflect this attitude (safety even in mid-refactoring). You can some-
times take a shortcut and bunch together a series of very similar steps—for example,
when you have to change all of the callers during Remove Parameter.

Exercise 3.2: Inverse Refactorings
A. Collapse Hierarchy is inverted by Extract Subclass.

B. Extract Method is inverted by Inline Method.

C. Hide Delegate is inverted by Remove Middle Man.

D. Inline Temp is inverted by Introduce Explaining Variable.

E. Parameterize Method is inverted by Replace Parameter with Explicit Methods.

F. Rename Method is inverted by Rename Method.

Refactoring Practice

Exercise 4.1: Get to Know the Refactorings
 A. The full cross-reference list will be large and somewhat subjective—we’ve omitted

it for the sake of brevity.

 B. Our impression is that Move Method, Extract Class, Move Field, and Extract Method
are involved in fixing the most smells.

 C. Quite a few refactorings aren’t mentioned by any of the smells. Some are code ma-
nipulation, where the refactoring provides a safe way to move between two valid
alternatives. Others are a bit specialized (especially the “big” refactorings). Others
are used as steps in applying another refactoring; the smell for the other refactor-
ing triggers this one.

 D. Everybody’s list will be different. We considered these additional smells:

Intertwined Model and UI: Duplicate Observed Data, Separate Domain from
Presentation

Unclear Communication: Remove Assignment to Parameter, Replace Error Code
with Exception, Replace Exception with Test, Replace Magic Number with
Symbolic Constant, Split Temporary Variable

From the Library of Lee Bogdanoff

ptg

Measurable Smells 217

Conditional Logic: Consolidate Conditional Expression, Consolidate Duplicate Con-
ditional Expression, Introduce Null Object, Replace Error Code with Excep-
tion, Replace Exception with Test, Replace Nested Conditional with Guard
Clause, Replace Conditional with Polymorphism

Measurable Smells

Exercise 5.1: Comments
 A. One approach might be something along the lines of this:

class Matcher

 def clip(array, limit)

 array.map { |val| [val, limit].min }

 end

 def similar_values?(actual, expected, delta)

 ! actual.zip(expected).detect { |m| (m[0] - m[1]).abs > delta }

 end

 def match(expected, actual, clip_limit, delta)

 actual = clip(actual, clip_limit)

 actual.length == expected.length and

similar_values?(actual, expected, delta)

 end

end

But there are other smells in this code; see Exercise 12.5 if you went further with
your refactoring.

 B. Code can usually communicate the how of something fairly well; it’s not always
able to communicate the why and it’s almost impossible to communicate the why
not.

When code becomes published for others to use, it is often important to include
rdoc comments to document the API.

Exercise 5.2: Long Method
 A. We identified the following blocks:

Printing the header (line 3)•

Printing the state of the machines (lines 4–9)•

Printing the state of the robot (lines 10–15)•

Printing the footer (line 16)•

From the Library of Lee Bogdanoff

ptg

218 Appendix A: Answers to Selected Questions

 B. You’ll have something like this:
def Report.report(out, machines, robot)

 reportHeader(out)

 reportMachines(out, machines)

 reportRobot(out, robot)

 reportFooter(out)

end

We wouldn’t stop here, but this would be a good first step. (We could either move
toward a Report class or toward putting report methods on the Machine and Robot
classes.)

 C. It does make sense to extract a one-line method if it communicates better.

Exercise 5.3: Large Class
 A. As with any useful class, some of String’s methods are inherited from Object,

whereas others are mixed in from the Enumerable and Comparable modules.

But in a pure object-oriented language such as Ruby, there’s another way in which
classes acquire methods: by fixing the Feature Envy and Utility Function smells.
For example, in a procedural language, to_i might be a library function taking
a single String parameter; here, it is moved onto the parameter’s class—String in
this case. And because there’s only one kind of string in Ruby, the String class has
acquired methods from all of the contexts in which it is used by the other core and
standard library classes.

 B. A String object is both a sequence of bytes and a piece of meaningful text. In ad-
dition to the mix-in methods, we found the following groups of methods in class
String (yours may well vary):

String as a first-class object: inspect, to_s, etc.
String as a sequence of bytes: [], ==, reverse, etc.
String as a data container: crypt, unpack, etc.
Text formatting: center, ljust, strip, etc.
Text processing: capitalize, downcase, tr, etc.
Pattern matching: index, split, sub, etc.
String as a value: next, to_i, upto, etc.
String as a symbol name: intern, to_sym, etc.

 C. On the one hand, aliases increase the size of the class’s API, which can make it
seem more daunting to search and understand. On the other hand, aliases improve
the language’s expressiveness and readability, and at the same time they lower the
entry barrier for programmers coming to Ruby from other environments.

From the Library of Lee Bogdanoff

ptg

Measurable Smells 219

 D. Strictly speaking, the non-! version of the method is redundant—for example, we
could create a reversed copy of a String using

reversed_copy = String.new(original).reverse!

However, this is such a common operation that a method has been provided in
order to avoid duplication.

Note also that the non-! version is “safe”—it doesn’t modify its receiver. So by
using a naming convention that makes it somewhat more natural to call the safe
version of the method, Ruby helps us avoid the introduction of insidious defects.

 E. On balance, we don’t consider the size of the String API to be a smell. It’s a spe-
cial case: String lies at the heart of Ruby’s power and expressiveness, and that’s a
tradeoff we’re happy to make.

It might be argued that String could be subclassed, so that methods for specific
purposes were only made available after conversion to a different object (pack and
unpack are obvious candidates here). But for most uses, Ruby’s efficacy as a scripting
language would be compromised by breaking up String.

As a final point, we tend to consider this smell as applying to the “units” from which
the run-time classes are specified. For example, if a small class includes a large mod-
ule, the specification of the class is still small. Thus, the Large Module smell is mostly
about the flexibility of the code as written.

 F. The principal reason for the difference is that Java relies on static typing. In Ruby
and Smalltalk, any message can be sent to any object, whereas Java attempts to
prevent illegal messages at compile time. In Java, one cannot treat just any object
as an array, but in Smalltalk any object can receive at:. The set of interrelated
interfaces required in order for Java’s Object class to support many of the methods
available in Ruby or Smalltalk is hard to imagine, and may not even be achievable
without the introduction of multiple inheritance.

The other main reason is that Java has language entities that are not objects, such
as ints and arrays. Many functions that manipulate these entities have no obvious
home, and therefore live as Utility Functions in various libraries. Whereas in Ruby
and Smalltalk, the same concepts are implemented as proper objects, so those util-
ity functions can be methods. Inevitably, some of them will migrate up the class
hierarchy and become methods available to every object.

The other impact of having primitives such as int in a language is that the lan-
guage itself must then support for loops and the like. In Ruby and Smalltalk,
these procedural constructs can be replaced by methods on Fixnum, for example.
Again, over time some of these methods will migrate up the class hierarchy.

From the Library of Lee Bogdanoff

ptg

220 Appendix A: Answers to Selected Questions

Exercise 5.4: Smells and Refactorings
 A. Comments

 B. Large Module

 C. Long Method

 D. Long Parameter List

B - Duplicate Observed Data

B - Extract Class

A or C - Extract Method

B - Extract Subclass

A - Introduce Assertion

D - Introduce Parameter Object

D - Preserve Whole Object

A - Rename Method

D - Replace Parameter with Method

Exercise 5.5: Triggers
 A. Everybody’s list will be different. Long Method and Comments are the two we

see most. Of those, Long Method is probably the one we inflict on ourselves the
most.

 B. For these “measurable” smells, you can give yourself a cutoff number that tells
you to review what you’re doing. For example, we check twice if a method exceeds
about five lines, and we question any comments in the body of a method. Define
your own triggers, and consider writing automated self-checking tests that check
them; the Reek tool listed in Appendix B, “Ruby Refactoring Tools,” comes with
a Rake task and Rspec helpers to make this easier.

Names

Exercise 6.1: Names
add_item(item) - Type Embedded in Name
do_it - Okay for a very generic operation but borders on Uncommunicative Name
get_nodes_array - Type Embedded in Name
get_data - Uncommunicative Name (perhaps)

From the Library of Lee Bogdanoff

ptg

Names 221

make_it - Uncommunicative Name (perhaps)
multiply_int_int(int1, int2) - Type Embedded in Name
process_item - Type Embedded in Name and probably Uncommunicative Name
sort - Okay
spin - Okay (depending on the domain)

Exercise 6.2: Critique the Names
If there’s an area of personal taste, it’s probably in names. Your answer may well differ
from this.

 A. clear or erase both sound okay (depending on whatever the library or other code
uses); delete_all seems clunky; wash might be okay for a pane-of-glass simula-
tion, but seems strained for this purpose.

 B. push is traditional; add is probably okay if that’s what everything else in the col-
lection library is using; insert is misleading, because stacks don’t put items in the
middle; add_to_front is odd as well (we think of queues having fronts but stacks
having tops).

 C. cut implies that the text is saved somewhere for pasting; delete is probably
best; clear and erase may be okay but sound like they might apply to the whole
document.

 D. compare, identical_to, and matches are all missing a “?” at the end of their names.
Although not mandatory, standards such as that help the reader navigate and un-
derstand code more quickly.

identical_to is reasonable; matches could work, but carries a little baggage sug-
gesting it might be a pattern match; compare doesn’t tell us what type of result to
expect, or which way the answer will come out. eql? opens up a whole different
can of worms, implying definitions for ==, !=, hash, and so on.

Exercise 6.3: Superclasses
Here are our suggestions; you may have found others:

 A. Vehicle

 B. Printer

Exercise 6.4: Method Names
 A. The name add_course now seems inappropriate. You should rename the method

to better reflect what it now does—or simplify the name to just add.

From the Library of Lee Bogdanoff

ptg

222 Appendix A: Answers to Selected Questions

 B. Depending on the relationship between Graph and Point, you might try any of
these:

• graph.link(p1, p2)

• point.link_to(other_point)

Unnecessary Complexity

Exercise 7.2: Today versus Tomorrow
 A. Forces that make it better to design for only today’s requirements today:

It’s cheaper for now to do only today’s design.•

 We are not committed to requirements evolving in a particular direction (so we •
don’t have to backtrack).

We are not required to maintain tomorrow’s code today.•

Code is easier to understand when it does as little as it needs to.•

 B. Forces that make it better to design for tomorrow’s requirements today:

 It may be easier to fully flesh out the class while it’s still fresh in our mind •
today.

 Developing for tomorrow’s needs may help us understand today’s needs better.•

It all comes down to a bet: On average, will it be cheaper to do only today’s
design and deal with tomorrow when it comes, or do the generalized designs pay
for themselves by being right often enough?

Gordon Bell, one of the great hardware designers, said, “The cheapest, fastest,
and most reliable components of a computer system are those that aren’t there.”
(Quoted in Jon Bentley’s More Programming Pearls [7].)

Exercise 7.3: Extraction Trade-Offs
 A. In general, we believe that smaller pieces are better. Indeed, the fact that our code

is composed of small, loosely coupled pieces is what keeps down its long-term cost
of ownership. We have responded to the needs of today’s code, and one beneficial
side-effect is that we have a more flexible design for the future. This is therefore
not Speculative Generality.

 B. If the reverse process of inlining the pieces would create Long Methods or Large
Modules again, the current (refactored) state of the code is preferable.

 C. Be sure to use names that are pertinent to the task at hand, and not too general or
abstract.

From the Library of Lee Bogdanoff

ptg

Unnecessary Complexity 223

Exercise 7.4: Formatting Names
 A. Symptoms of Greedy Method:

(a) The method’s name hints that it may be calculating and outputting the person’s
name.

(b) The method’s parameters are completely unrelated to each other—out is re-
lated to the run-time environment, whereas person is from the application’s
domain.

(c) The method is a Utility Function—it needs those disparate parameters to
provide all of its working context.

 B. Begin by untangling the two parameters. In this case, construct the full name and
then write it out in one go:
def display_full_name(out, person)

 full_name = person.first + ' '

 if person.middle != nil

 full_name += person.middle + ' '

 end

 full_name += person.last

 out.write(full_name)

end

We now have a clear case of Feature Envy, so use Extract Method and Move Method
to push the envious code onto Person:
def display_full_name(out, person)

 out.write(person.full_name)

end

Finally, we might question the need for this method at all.

Exercise 7.5: Procedural Code
 A. Your solution should be similar to this:

class Cart

 def total_price

 @items.inject(0) { |sum, item| sum + item.price }

 end

end

 B. The original version of cart collects the total prices of the items and adds them
together to compute their total.

 C. Here’s our solution (yours may differ slightly). First, we gather the prices:

From the Library of Lee Bogdanoff

ptg

224 Appendix A: Answers to Selected Questions

class Cart

 def total_price

 prices = @items.collect { |item| item.price }

 total = 0

 prices.each { |price| total += price }

 return total

 end

end

Next, we borrow a neat hack from the Ruby Extensions project allowing us to
convert any symbol into a Proc:
class Symbol

 def to_proc

 proc { |obj, *args| obj.send(self, *args) }

 end

end

(to_proc is so generally useful that it may even be part of the standard Ruby distri-
bution by the time you read this.) The fact that Ruby calls to_proc on any object
passed with a '&' marker allows us to simplify the collection of the item prices:
class Cart

 def total_price

 prices = @items.collect(&:price)

 total = 0

 prices.each { |price| total += price }

 return total

 end

end

Now we can use Array’s new reduce method (since Ruby version 1.8.7) to sum
the prices:
class Cart

 def total_price

 @items.collect(&:price).reduce(:+)

 end

end

 D. Although this second version involved the use of a helper method, we find it easier
to work with than either the original or the first refactored version—mostly be-
cause we have decoupled the collection of prices from the summing.

From the Library of Lee Bogdanoff

ptg

Duplication 225

Duplication

Exercise 8.1: Rakefile
 A. The file contains these groups of duplicated Strings:

The names of the files to be published•

The names of the target host and source directory•

The name of the touch file•

Each of these is a Repeated Value.

 B. For the touch file we created a constant; for the host name we used Extract Method
on the publishing step; and for the filenames we created a hash relating each file to
its destination and looped over it to create a task for each:
require 'rake/contrib/sshpublisher'

PUBLISHED_MARKER = '.published'

PUBLICATIONS = {

 'sparky.html' => '/var/www/tools',

 'sparky.rb' => '/usr/lib/cgi-bin'

}

def publish(file, remote_dir)

 Rake::SshFilePublisher.new('www.ruby-refactoring.com',

 remote_dir, '.', file).upload

end

PUBLICATIONS.each do |src, dest|

 file PUBLISHED_MARKER => src do

 publish(src, dest)

 end

end

desc "copy all files to the live deploy locations"

task :publish => PUBLISHED_MARKER do

 touch PUBLISHED_MARKER

end

Exercise 8.2: Two Libraries
 A. One strategy:

 Define a new logger whose interface is compatible with the Ruby 1.8 logger. •
It could be a simplified “layer” interface or a class with a compatible interface
(that in the future would be a subclass of the Ruby 1.8 Logger), or it might be
a straightforward implementation of the new class.

From the Library of Lee Bogdanoff

ptg

226 Appendix A: Answers to Selected Questions

Make the old loggers call the new logger.•

 Modify Log and its callers to become like the new logger, so you can delete the •
Log class.

 Modify Logger to become like the new logger, so you can delete the Logger •
too.

There will be a temptation to do this relatively slowly, to use the new logger for
new and changed code. Note that this adds to our conceptual burden. You might
be able to use automated support to make it easier.

Exercise 8.3: Environment Variables
 A. Use Extract Method to pull out a method that looks up the environment variable,

converts it to an integer, and validates it as positive. (Do this in steps: first, second,
and third copies.)

You might decide that it’s okay to set monitor_time and departure_offset even if
the exception will be thrown. This reduces the need for temporary variables.

You might then extract a separate method to enforce the modulo restriction.

The end result might look like this:

module Timer

 def integer(env, key)

 value = env[key]

 raise "#{key} missing" if value.nil?

 result = Integer(value)

 raise "#{key} should be > 0" unless result > 0

 result

 end

 def multiple(env, key, interval)

 result = integer(env, key)

 raise "#{key} should be multiple of interval" \

 unless result % interval == 0

 result

 end

 def times(env)

 check_interval = integer(env, 'interval')

 monitor_time = multiple(env, 'duration', check_interval)

 departure_offset = multiple(env, 'departure', check_interval)

 [check_interval, monitor_time, departure_offset]

 end

end

From the Library of Lee Bogdanoff

ptg

Duplication 227

Micah Martin points out that this exposes two methods we’d rather were private
(integer and multiple), and passes env and check_interval multiple times; he
suggests extracting a class to encapsulate this.

Exercise 8.4: Template
 A. Duplication:

 The whole thing is two nearly identical copies, one for• %CODE% and one for
%ALTCODE%. Note that one case writes to a string and the other to an output
stream.

 The numeric literal 6 is a• Derived Value based on the string literal %CODE%; like-
wise %ALTCODE% and 9.

 The construction of the resulting final string for each part is similar: appending •
a prefix, body, and suffix.

 The whole process of substituting a substring is a• Reinvented Wheel, because
the String method sub already does the job.

 B. Remove duplication:

 Use • Extract Method to separate the template substitutions from the printing.
Self-checking tests can now be written.

Use • Substitute Algorithm to call String’s sub method instead.

 C. The String.new calls are redundant.

Your resulting code should look something like this:
def template(source, req_id)

 altcode = req_id[0..4] + "-" + req_id[5..7]

 return source.sub(/%CODE%/, req_id).sub(/%ALTCODE%/, altcode)

end

Exercise 8.5: Duplicate Observed Data
 A. The duplication is often not as dramatic as it first appears. Often, the domain

object has its own representation, and the widget ends up holding a string or other
display representation. The advantages of this arrangement are

 The user interface is usually one of the most volatile parts of a program, whereas •
the domain classes tend to be modified less often (during development).

 Putting the domain information in the widget ties them together. A domain •
class should be able to change its value independently of whether the value is
displayed on the screen. (See the Observer pattern.)

From the Library of Lee Bogdanoff

ptg

228 Appendix A: Answers to Selected Questions

 Mixing domain and screen classes makes the domain depend on its presenta-•
tion; this is backward. It’s better to have them separate so the domain classes can
be used with an entirely different presentation.

 B. The performance can go either way. When they’re in one object, the domain class
updates its value using widget methods. This is typically slower as it must take into
account buffering, screen updating, and so on.

On the other hand, the synchronization can become relatively costly. On some
occasions, you have to find a way to make this notification cheaper. Sometimes, a
domain class can avoid notifi ying a widget about events that don’t affect it.

Exercise 8.6: Ruby Libraries
 A. Examples:

 There are dozens of graphics libraries, each offering a binding to a different •
underlying graphics engine.

 There are numerous ways of working with HTTP, both in the standard distri-•
bution and in the Ruby Application Archive (http://raa.ruby-lang.org/). Simi-
larly for CGI.

The Logger and log4r libraries.•

 Many core and standard modules and classes offer aliases for certain methods—•
for example, Enumerable offers both map and collect—the same method with
two different names.

 B. Reasons for the duplication:

 The most common reason seems to be that old chestnut—historical reasons. •
Ruby’s developers are understandably reluctant to change published interfaces
that many people depend on. Instead of changing things, they add more, even
if it overlaps in intent or code.

 In something as big as Ruby’s libraries, there are many people working on them, •
and they don’t always coordinate well enough to realize that they’ve duplicated
work.

 Synonyms provide compatibility with similar functionality in other languages. •
It’s cheap to offer a synonym for a method, so it can be tempting to help devel-
opers transition to Ruby by providing them with familiar APIs.

 The Ruby libraries are open source, and some early libraries are no longer main-•
tained by their original creators. Later, when someone finds a defect or a short-
fall in one of those libraries, it can seem easier and quicker to simply start over
and create a new library.

From the Library of Lee Bogdanoff

http://raa.ruby-lang.org/

ptg

Duplication 229

Exercise 8.7: Points
 A. Both are using points that wrap around the maxX and maxY values.

 B. Use Substitute Algorithm to make both classes calculate wrapping the same way.
Then use Extract Class to pull out a WrappingPoint class.

 C. The search for duplication can help you identify these situations. You can create a
test that reveals the defect in the bad code. While you fix it, you can drive toward
similarity to the good code and then use the refactorings that address duplication
to clean up the duplication.

Exercise 8.8: XML Report
 A. Both methods return a string of the form <tag>value</tag>. In addition, we have

Inconsistent Names for the conversion methods, and inconsistencies in the styles
for string manipulation and returning a value.

 B. First, harmonize the inconsistencies just noted; then extract a value method on
each class to harmonize the middle part of each calculation. (At this point, you
need to decide what to do with the newlines; we decided to adopt the convention
that they were part of the value.) From here, you can go a few ways:

• Using Form Template Method, create a common ReportNode superclass and
make ReportRow and ReportColumn subclasses of it. Extract tagname methods
to return row and column, respectively. The two to_xml methods are now identi-
cal, so you can use Push Up Method to move them into ReportNode.

 Create a helper class NodeFormatter, with a method• to_xml(tagname, value).
Update the two to_xml methods so that they each call this method.

 Use• Form Template Method as above, but put the template to_xml method in a
NodeFormatter mix-in module.

Inheritance is a more rigid relationship between classes than is delegation. The
decision to use the helper class is somewhat hidden inside the clients’ methods, so
changing that decision will not have ripple effects onto the clients of ReportRow
and ReportColumn. Creation of the superclass or the mix-in fixes the interface of
both original classes and may make it harder to change them independently.

However, the helper class has no state—in fact, to_xml could be written as a class
method. This fact would cause us to choose the superclass approach, which is
more “object oriented.”

From the Library of Lee Bogdanoff

ptg

230 Appendix A: Answers to Selected Questions

Conditional Logic
Exercise 9.1: Null Object

 A. An empty string may not be the right choice for a default value in every context.

 B. It’s possible that extracting a new class for Bin might give you the needed
flexibility.

 C. After extracting the Bin class, we defined a Null Object by introducing a Singleton
and a “singleton method”:
NO_BIN = Bin.new("")

def NO_BIN.report(out) end

Exercise 9.2: Conditional Expression
 A. Your solution should look something like this:

if (score <= 700) &&

 ((income < 40000) || (income > 100000) ||

 !authorized || (score <= 500)) &&

 (income <= 100000)

 reject

else

 accept

end

 B. Your solution should look something like this:
has_high_score = score > 700

has_low_score = score <= 500

has_high_income = income > 100000

has_mid_income = income >= 40000 && !has_high_income

if !(has_high_score ||

 (has_mid_income && authorized && !has_low_score) ||

 has_high_income)

 reject

else

 accept

end

 C. Your solution should look something like this:
if score > 700

 accept

elsif (income >= 40000) && (income <= 100000) &&

 authorized && (score > 500)

 accept

elsif income > 100000

 accept

From the Library of Lee Bogdanoff

ptg

Conditional Logic 231

else

 reject

end

 D. Your solution should look something like this:
def acceptable(score, income, authorized)

 return true if score > 700 || income > 100000

 return false if score <= 500 || income < 40000

 return authorized

end

if acceptable(income, score, authorized)

 accept

else

 reject

end

 E. Possibly the most readable solution would be D-with-B, using variables or con-
stants within acceptable to give names to the various ranges. Unit tests of this
algorithm could also contribute to readability.

 F. This table is a literal derivation from the code:

High Income Medium Income Low Income
Auth=Y Auth=N Auth=Y Auth=N Auth=Y Auth=N

High Score Accept Accept Accept Accept Accept Accept

Mid Score Accept Accept Accept Reject Reject Reject

Low Score Accept Accept Reject Reject Accept Reject

Or, alternatively:

High Income Medium Income Low Income
High Score Accept Accept Accept

Mid Score Accept Accept iff Authorized Reject

Low Score Accept Reject Reject

Exercise 9.3: Case Statement
 A. If this were all there were to it, you might not bother eliminating the switch. But

it would already be very natural to have print and do methods on operations, to
let us eliminate the type field.

 B. Here are some possibilities; you may have others:

 If a case is doing something simple, in one place, you may not feel the need to •
introduce separate classes.

From the Library of Lee Bogdanoff

ptg

232 Appendix A: Answers to Selected Questions

 Case statements are especially common in places that interface with non-object-•
oriented parts of the system. Michael Feathers says, “I’m okay with switches if
they convert data into objects.” If you model your application using Alistair
Cockburn’s Hexagonal Architecture [9], you’ll find this is most often true within
the Adapters.

 A single • case statement is sometimes used in a Factory or Abstract Factory. (For
more information, see Gamma et al.’s Design Patterns [16].)

 Sometimes a • case statement is used in several related places to control a state
machine. It may make sense as is, but refactoring to the State pattern (see Design
Patterns [16]) is often more appropriate.

Exercise 9.5: Factory Method
 A. Your solution will look something like this:

def make_driver

 case @type

 when USE_MEMORY_DRIVER

 return MemoryDriver.new

 when USE_DEBUG_DRIVER

 return DebugDriver.new

 when USE_PRODUCTION_DRIVER

 return ProductionDriver.new

 end

end

 B. This design contains some duplication, because the values in the enumerated list
must be kept in step with the subclasses of Driver—in a sense the constants are
Derived Values. If there were only two subclasses of Driver we’d likely say it’s ac-
ceptable, but three or more and we’re getting nervous.

Also, the constructor parameter type—and hence also the instance variable
@type—is an example of Control Coupling.

 C. We could use the actual subclasses of Driver instead of explicit constants. The
code might look something like this:
class DriverFactory

 def initialize(klass)

 unless Class === klass && Driver > klass

 raise(ArgumentError, "must be a subclass of Driver")

 end

 @klass = klass

 end

 def make_driver

From the Library of Lee Bogdanoff

ptg

Data 233

 @klass.new

 end

end

 D. Some advantages to using the driver classes as constants:

 The code is simpler (no conditional logic, a single place where each class is •
instantiated).

The code has fewer direct dependencies (doesn’t name the actual driver classes).•

 The delivered code can be smaller (it’s no longer necessary to deliver the debug-•
ging driver class if nothing depends on it directly).

 New driver classes could be installed without having to edit the factory.•

 E. Some disadvantages to this new arrangement:

 The configuration is trickier; an incorrect name or a bad RUBYLIB or $: can •
leave the system unable to run.

Data

Exercise 10.1: Alternative Representations
Here are some implementations we came up with; you may have others:

 A. Money (based on U.S. currency, where 100 cents = 1 dollar, and a cent [a penny]
is the smallest coin):

Integer count of cents.•

A Float.•

 You may have to track fractions of pennies. (Some money is managed in terms •
of 1/10 cent.)

String.•

 B. Position (in a list):

Integer.•

 If there’s only one position of interest, you might manage• the list (as seen from
outside) via two lists, one containing what comes before the position and the
second containing what comes after the position.

The item at that position.•

 C. Range:

First and last index.•

First index and length.•

From the Library of Lee Bogdanoff

ptg

234 Appendix A: Answers to Selected Questions

 D. Social Security Number (government identification number: “123-45-6789”):

String.•

Integer.•

Three integers.•

 E. Telephone number:

String.•

Integer.•

Two numbers: area code and local number.•

Three numbers: area code, exchange, and last 4 digits.•

This only considers U.S. phone numbers; it will be more complicated if you add
international phone number support. You also may have to support extensions.

 F. Street Address (“123 E. Main Street”):

String.•

Multiple fields.•

Physical coordinates.•

Standardized address (standard abbreviations).•

Index in a standard list of addresses.•

 G. ZIP (postal) code:

String.•

Integer.•

Two integers (U.S. post codes now use “ZIP+4” or “12345-6789”).•

Index in a standard list of codes.•

Exercise 10.2: Primitives and Middle Men
 A. Wrapping the primitive is a two-stage process: First, create the new class and name

it for the missing domain concept; and second, look for examples of Feature Envy
and pull methods onto the new class. This second step adds behavior to the new
object and thereby prevents it being a simple Middle Man.

Exercise 10.3: Rails Accounts
 A. Almost every class, module, and view in our application knows that we are using

an integer to represent money. This is an Open Secret, and it’s beginning to get in
the way.

From the Library of Lee Bogdanoff

ptg

Data 235

We could fix this by introducing a Money class. For example, the to_money helper
method would become to_s on Money.

Alternatively, we could use the existing Money plug-in for Rails.

Exercise 10.4: Long Parameter List
 A. Many of the parameters go together in pairs to make Points. The pairs

[startDegrees, endDegrees] and [arcStart, arcEnd] look like Ranges. And the
first four parameters to each method define Rectangles.

 B. In some ways, it’s a reflection of an attempt to make a class more generic—pass in
everything it could work with. Things like graphics tend to want to be “stateless,”
and using lots of parameters can help them do that.

It could also reflect an attempt to remain faithful to the underlying library. When
users are familiar with one set of parameters, any change can present a barrier to
adoption of the new library. In such cases, it seems reasonable to provide a “faith-
ful” API, perhaps with an optional “cleaned-up” wrapper API sitting on top.

Exercise 10.5: A Counter-Argument
It depends on what’s happening between the screen and the database. If it’s truly a form-
filling application, to get this field from the screen into that field on the database, we
might not use an object-oriented approach. But as more functions are added that con-
cern ZIP codes (validation, computing shipping distances, mapping routes, etc.), we’d
expect more benefit from the object-oriented approach.

Exercise 10.6: Editor
 A. “a”

 B. “(”. That is, we might like positions that remember where they are, even if text is
inserted in front of them. For example, an editor for programmers might track the
position of each method definition.

 C. Instead of handing out “dead” integers, hand out Position objects, but let the edi-
tor own them. When text changes, the editor updates the Positions. The holders
of the objects aren’t aware of that; they just know that they can get one, or hand it
back to move to a prior position.

 D. Memento uses an “opaque” object: In this case, the editor may know what’s inside
but clients definitely don’t. The client can’t manipulate the Memento directly, but
must hand it back to the main object to use it.

From the Library of Lee Bogdanoff

ptg

236 Appendix A: Answers to Selected Questions

Exercise 10.7: Library Classes
abort_on_exception and priority are methods that simulate instance variables, and
consequently they reveal nothing about Thread’s implementation. (It is possible, though,
that presenting control variables at the class interface could encourage violations of the
Law of Demeter.)

Exercise 10.8: Hidden State
 A. The objects in a Set could be held in a Hash, or directly in some form of balanced

tree. The state of an immutable DateTime could be stored as a set of values (year,
month, day, etc.), or as an integer count (seconds or microseconds since some
event), or it could even be stored as text.

 B. Because clients have no direct access to the fields, they can’t change an instance
behind that object’s “back” (without going through its methods).

 C. By completely hiding the internal organization of the object’s state, we are free to
experiment with data structures and algorithms until we find the best solutions for
our application’s needs.

Exercise 10.9: Proper Names
 A. Person is a Data Class.

 B. Client 1 produces a string in first-name-first format; clients 2, 3, and 4 produce
a last-name-first string. Put methods on Person for these two variants. The attr_
accessors can then be removed to make the instance variables fully private.
class Person

 def initialize(last, first, middle)

 @last = last

 @first = first

 @middle = middle

 end

 def full_name

 midpart = @middle.nil? ? '' : @middle + ' '

 "#{@first} #{midpart}#{@last}"

 end

 def citation_name

 midpart = @middle.nil? ? '' : ' ' + @middle

 "#{@last}, #{@first}#{midpart}"

 end

end

 C. It will be easier to handle these changes once the duplication is consolidated.

From the Library of Lee Bogdanoff

ptg

Inheritance 237

Exercise 10.10: Checkpoints
 A. @state is a Temporary Field.

 B. One approach is to create a new class Checkpoint to wrap the hash of values. Have
var_values return a Checkpoint object, and then move the changes method onto
that object. You may want to rename some methods too.

 C. The original smell wasn’t particularly bad; but the redesign does seem to be a bet-
ter approach.

Inheritance

Exercise 11.1: ArrayQueue
 A. This is a case of Implementation Inheritance. In a queue, items are added to the

back and later processed by removing them from the front. But by offering the
entire public interface of class Array, ArrayQueue allows its clients to insert and
remove items anywhere in the list. The class invariant of ArrayQueue cannot be
enforced.

Note that some clients of ArrayQueue may need to iterate over the queue’s
items— for example, to format them for display. In this case, it would appear
that ArrayQueue needs to inherit some of the features of Array; but in fact these
could be acquired by implementing an each method and then including the
Enumerable module as a mix-in.

 B. Use Replace Inheritance with Delegation—see Exercise 12.3 for one possible solution.

Exercise 11.2: Relationships
Our answer looks like this:

Inheritance Delegation Module Inclusion

Flexibility –

Communicaion –

Testability –

Exercise 11.3: Read-Only Documents
 A. Here are some possible solutions (you may have found others):

(a) Use Replace Inheritance with Delegation, so that ReadonlyDocument becomes an
Adapter for Document:

From the Library of Lee Bogdanoff

ptg

238 Appendix A: Answers to Selected Questions

class ReadonlyDocument

 extend Forwardable

 def initialize(doc); @doc = doc; end

 def_delegators :@doc, :find, :author, :numpages, :title

end

(b) Invert the inheritance relationship, so that only the subclass publishes the
methods that can modify the object:
class ReadonlyDocument

private

 attr_writer :title, :author

 def delete(pos, length) ...

 def insert(pos, text) ...

public

 attr_reader :numpages

 def find(regex) ...

end

class Document < ReadonlyDocument

 public :delete, :insert, :title=, :author=

end

(c) Use Extract Module to create a shared namespace for all of the paraphernalia
of an editable document:
module EditableDocument

 attr_reader :numpages

 attr_writer :title, :author

 def delete(pos, length) ...

 def insert(pos, text) ...

 def find(regex) ...

end

class ReadonlyDocument

 include EditableDocument

 private :delete, :insert, :title=, :author=

end

class Document

 include EditableDocument

end

 B. In terms of communication, approach (c) is unnatural: An “editable document”
seems to be a reasonable domain abstraction, and so is much better represent-
ed as a class rather than a module. Similarly, the inverted hierarchy of approach
(b) requires some explanation—perhaps in the form of Comments—in order to
be readily understandable.

From the Library of Lee Bogdanoff

ptg

Responsibility 239

In terms of usability, each of these designs has the same drawback: Clients of Read-
onlyDocument receive an exception if they try to invoke any of the refused meth-
ods. Even if we implement those methods so that they gracefully do nothing, the
LSP would still be violated (inserting text wouldn’t change the document’s length,
for example). On balance, we have a slight preference for approach (a)—although
in this case we might choose not to fix the Refused Bequest at all.

Finally, if the clients of these classes are close to the user interface, we do have an
additional option: Instead of calling the refused methods directly, we could ask the
document—whichever type it is—to post all its available Command objects on
the user interface. Thus, an editable Document would post objects that could call
insert and so forth, whereas a ReadonlyDocument would omit them. The end user
could thus never invoke a code path that would call a refused method.

Responsibility

Exercise 12.1: Feature Envy
 A. Give Machine and Robot their own report methods.

 B. Now both Machine and Robot know a little bit about the format of the report; if
that format ever changes we’ll have a case of Shotgun Surgery. Another way to look
at it is to say that Machine and Robot are now both somewhat Greedy Modules.

 C. We can’t think of a good way to remove all the smells here. On balance, we would
leave the Feature Envy in place:

 We think of the • Report as a View of the domain objects: One way or another it
needs to know about their relationships and their state, because that’s its job.

 The details of the• Report are likely to change more frequently than those of
Machine andRobot, which represent objects in the application’s real world. We prefer
to keep different rates of change—and different reasons for change—separate.

Exercise 12.2: Walking a List
 A. Agency knows that Theater has split the occupancy string into an array of markers,

and it also knows the values of those markers. Knowledge of these implementation
decisions has been duplicated, creating unnecessary coupling in the design.

 B. Use Extract Method to isolate the calculation of free_seats, then use Move Method
to push that code into Theater.

From the Library of Lee Bogdanoff

ptg

240 Appendix A: Answers to Selected Questions

Exercise 12.3: Middle Man
 A. Removing the Middle Man is probably not an improvement. The SimpleQueue

class provided two benefits: First, the class name and the method names commu-
nicate intent, and thereby help to document any application using them. And sec-
ond, a SimpleQueue cannot be confused with an Array, because it doesn’t support
the same methods. SimpleQueue is thus an Adapter (see Gamma’s Design Patterns
[16]) that serves to decouple parts of the design from each other, which in turn
helps to limit the effects of change.

Exercise 12.4: Cart
 B. Add cost and days methods to Purchase.

 C. Cart no longer needs access to item and shipping on Purchase. So hiding the
delegate widens the interface as we create methods for related objects, but it may
let us narrow the interface as the client doesn’t need to navigate any more.

 D. Remove the attr_reader declarations for item and shipping.

 E. In this case, the order we change these probably doesn’t make a whole lot of
difference.

Exercise 12.5: Utility Functions
 A. For Exercise 5.1, we would probably extend Array with clip and delta? methods:

class Array

 def clip(limit)

 map { |val| [val, limit].min }

 end

 def delta?(expected, delta)

 !self.zip(expected).detect { |m|

 (m[0] - m[1]).abs > delta

 }

 end

end

Then we can move some of the code out of Matcher, thus:
class Matcher

 def self.match(expected, actual, clip_limit, delta)

 actual.length == expected.length and

 actual.clip(clip_limit).delta?(expected, delta)

 end

end

From the Library of Lee Bogdanoff

ptg

Accommodating Change 241

To complete the fix, we might consider moving the match method onto Array too,
although it doesn’t sit well as a function of general arrays. So, depending on other
factors in this part of the application, we might be tempted to introduce a new
class for actual.

 B. In a larger application, we might decide that there’s a missing Warehouse class to
hold the line and the Robot; it would then be sensible for report to be an instance
method on the Warehouse.

Exercise 12.6: Attributes
 A. Here are some counterexamples we found; you may have others:

 Some mechanisms—• ActiveRecord, for example—use reflection to enable them
to manipulate objects irrespective of their class.

 When you’re trying to get a hairy piece of legacy code under test, often a good •
starting point is to expose an instance variable to act as a “probe” point (Michael
Feathers, Working Effectively with Legacy Code [10]).

 B. Structs are a nice convenience when you need to create a class in a hurry, and they
clearly document the fact that you decided not to give the class any behavior at
this time. But unless the conditions above apply, we soon look for ways to replace
the Struct by a Class and add methods to it.

Exercise 12.7: Message Chains
 A. Each of these code fragments violates the Law of Demeter, because they each call

a method on an object that was returned from another call.

 B. Only the second fragment is a Message Chain. In the first, a new array is created by
each method, so there is no sense of navigating from object to object. In the third
example, we have a Cascade or DSL, and most of the messages return self.

Accommodating Change

Exercise 13.1: CSV Writer
 A. One decision is where to write; the other decision is how to write.

 B. Simply adding an io argument to every method in CsvWriter creates a lot of
duplicated parameter lists. This could be relieved by passing the IO object to
CsvWriter’s constructor.

From the Library of Lee Bogdanoff

ptg

242 Appendix A: Answers to Selected Questions

 C. Here’s our solution:
 class CsvFormatter

 def format(lines)

 lines.collect { |line| write_line(line) }.join("\n")

 end

 private

 def write_line(fields)

 fields.collect { |field| write_field(field) }.join(",")

 end

 def write_field(field)

 case field

 when /,/ then quote_and_escape(field)

 when /"/ then quote_and_escape(field)

 else field

 end

 end

 def quote_and_escape(field)

 "\"#{field.gsub(/\"/, "\"\"")}\""

 end

 end

 require 'csv_formatter'

 require 'test/unit'

 class CsvFormatterTest < Test::Unit::TestCase

 def setup

 @csv = CsvFormatter.new

 end

 def test_no_lines

 assert_equal("", @csv.format([]))

 end

 def test_no_quotes_or_commas

 assert_equal("", @csv.format([[]]))

 assert_equal("only one field",

@csv.format([["only one field"]]))

 assert_equal("two,fields",

@csv.format([["two", "fields"]]))

 assert_equal(",contents,several words included",

@csv.format([["", "contents", "several words included"]]))

From the Library of Lee Bogdanoff

ptg

Accommodating Change 243

 assert_equal("two\nlines",

@csv.format([["two"], ["lines"]]))

 end

 def test_commas_and_quotes

 assert_equal('",","embedded , commas","trailing,"',

@csv.format([[',', 'embedded , commas', 'trailing,']]))

 assert_equal('"""","multiple """""" quotes"""""',

@csv.format([['"', 'multiple """ quotes""']]))

 assert_equal('"commas, and ""quotes""",simple',

@csv.format([['commas, and "quotes"', 'simple']]))

 end

 end

 D. Call the original “Version A,” the IO one “Version B,” and the string one “Ver-
sion C.” Version B can be tested by passing in a StringIO object (see Ruby’s stan-
dard library). Version C offers more flexibility because of the central role played
by Strings throughout Ruby’s design. Version C can simulate Version B through
simple idioms such as:
 $stdout << CsvFormatter.new.write(lines)

Conversely, Version B can simulate Version C:
 strio = StringIO.new

 CsvWriter.new.write(lines, strio)

 s = strio.string

Thus, Version B is more cumbersome in all but a very few applications.

Exercise 13.3: Hierarchies in Rails
We don’t see a smell here: Models and views/controllers will experience different pres-
sures for change during the application’s development. The one-to-one correspondence
between controllers and models is a convention established by the generators to help
you get a Rails application up and running quickly. Later, as the views evolve, it is likely
that the controllers and models will drift apart.

Exercise 13.4: Documents
 A. It affects places all over the class hierarchy.

 B. Whether it is an improvement depends on how it will be used. We don’t have
enough information to judge at this stage.

 C. The brief/full and compression/none distinctions will become the wrapping types.

From the Library of Lee Bogdanoff

ptg

244 Appendix A: Answers to Selected Questions

Libraries

Exercise 14.1: Layers
 A. UML package diagram:

Bulk Bulk

Lip

Lip

Ext

Ext

Layer

 B. In the first case, the bulk of your code depends directly on the library.

In the second case, it depends directly on the layer, and only indirectly on the li-
brary. However, design choices in the layer may still mean that your code depends
subtly on the library—in terms of the use of primitive types, for example. Look
out for examples of Open Secrets among the various modules involved.

 C. Conceptual integrity: It depends. A good layer interface can improve the way we
think about things.

Portability: Better; changes may be concentrated in the layer.

Performance: It can go either way. There’s a small cost to going through the layer,
but the layer may be able to cache data or otherwise speed up performance.

Testing: It may be easier to test in the layer, especially if the layer’s interface is nar-
rower. It may make it easier to swap in a test implementation as well.

 D. Ruby doesn’t have language mechanisms to enforce it. You might have external
mechanisms (e.g., a tool that checks references to the layered packages.)

From the Library of Lee Bogdanoff

ptg

Libraries 245

Exercise 14.2: Closed Classes
 A. The ability to redefine the methods of any class means that developers could alter

their standard meanings. Worse, existing tested production code could be sub-
verted by a few careless keystrokes.

Agile development approaches rely on the premise that many aspects of an appli-
cation will quickly stabilize, even when the requirements themselves are fluid. Part
of the speed of these approaches comes from being able to rely on the correctness
of increasingly large core parts of the application. But if just one developer on
the team has the habit of customizing core classes to enforce local convention or
personal whim, the cost-of-change curve will shoot back up and the productivity
gains will be lost.

(We have seen this effect fi rsthand in C++ code, where an overloaded + opera-
tor did something very unexpected when applied to a Matrix; the resulting code
looked straightforward, but wasted huge amounts of time until the “surprise” was
uncovered.)

 B. One approach is local coding standards and conventions, such as Don’t redefine
methods of core classes.

 C. Calling freeze on any object prevents its instance variables from being changed;
and applying it to a Class thus prevents changes to its methods:
class Foo

 # method definitions etc...

 freeze

end

However, a frozen class can still be subclassed, and the subclass is not frozen. The
Ruby community is enjoying the challenge of searching for a bulletproof solution
to this problem, thus far without success. It is likely that convention, coupled with
trust and common sense, is the only practical way to deal with Ruby’s largesse.

Exercise 14.3: Missing Function
 A. In Ruby, you can simply extend the Math module with the missing method:
 module Math

 def Math.zum(x)

 (Math.cos(x) + Math.sin(x) - Math.exp(x)).abs

 end

 end

From the Library of Lee Bogdanoff

ptg

246 Appendix A: Answers to Selected Questions

A Simple Game

Exercise 15.1: Smells
Open Secret• : The Board is represented as a String; it could be a new class.

Open Secret• : It might make sense to have a Player class.

Open Secret• : There are lots of magic numbers.

Complicated Boolean Expression• : There are several complicated “if ” statements.

Duplicated Code• : There’s a lot of duplication—note the winner calculation in
particular.

Exercise 15.3: Fuse Loops
 D. These considerations apply when merging loops:

It’s easiest if both loops have the same range.•

 It’s important that the • i th entry of the second loop not depend on anything past
the i th entry in the first loop.

Exercise 15.4: Result
The second conditional is redundant, because we return NO_MOVE even when default_

move has that value. We can simplify to

return winning_move if winning_move != NO_MOVE

return default_move

Exercise 15.6: Constants
We chose

ROWS = 3

COLUMNS = 3

Exercise 15.8: Representations
 A. We found at least these dependencies on the String representation:

 Everywhere in• Game, references to cells on the board use the [] operator to ex-
tract a one-character substring.

 Every (original) method in both• Game and the tests knows that a single integer
can be used to index the cells of the board.

 The loop in• best_move_for assumes that the cells can be accessed in sequence.

From the Library of Lee Bogdanoff

ptg

Time Recording 247

 B. These are some possibilities (you may have found others):

A simple Array of one-character Strings•

An Array of rows, each of which is an Array of one-character Strings•

A simple Array of Cells•

A nine-digit number (base 3 or base 10)•

In code this small, the key feature is not the representation, but rather the methods
that encapsulate it.

Time Recording

Exercise 16.1: Rewrite or Refactor?
 A. Every situation is different. Here are some of the arguments in favor of refactoring:

 It may be necessary to offer users a gradual transition during development.•

 It may be possible to retain the investment in difficult algorithms.•

 Some aspects of the user interface design may have been dictated by the tools •
used, and may be difficult to replicate using other libraries.

And here are some arguments in favor of a rewrite from scratch:

The existing code may be too hard to work with.•

A fresh start may lead to a simpler solution.•

A fresh start means that everyone’s issues can be addressed at one go.•

You may have discovered others.

 B. Reek (version 1.0.0) reports the following:
 "timelog.rb" -- 17 warnings:

 [Duplication] parse_options calls argv.length multiple times

 [Duplication] parse_options calls options.hours multiple times

 [Duplication] report calls hours.to_f multiple times

 [Duplication] report calls options.user multiple times

 [Feature Envy] log refers to options more than self

 [Feature Envy] report refers to options more than self

 [Feature Envy] report refers to records more than self

 [Long Method] parse_options has approx 18 statements

 [Long Method] report has approx 13 statements

 [Nested Iterators] parse_options/block/block is nested

 [Uncommunicative Name] log/block has the variable name 'f'

 [Uncommunicative Name] parse_options/block/block has the variable name 'd

 [Uncommunicative Name] report/block has the variable name 'd'

 [Uncommunicative Name] report/block has the variable name 'm'

From the Library of Lee Bogdanoff

ptg

248 Appendix A: Answers to Selected Questions

 [Uncommunicative Name] report/block has the variable name 'y'

 [Utility Function] log doesn't depend on instance state

 [Utility Function] report doesn't depend on instance state

Clearly, report is also a Greedy method.

Exercise 16.3: Test Coverage
There is no coverage of the full content of a report, and there are no explicit tests to
check what happens when time is recorded. Tests for error conditions—a malformed
date, for example—are also missing.

Exercise 16.6: Rates of Change
After this refactoring, we have a new class with the following signature:

class Logfile

 all_project_records(projectname) # -> Array of CSV strings

 all_user_records(projectname, username) # -> Array of CSV strings

 save(csv_string)

end

The string representing the path to the file is a primitive, whereas the TimelogFile
instance provides a layer of abstraction. In a sense, there is now less duplication, due to that
weakened coupling between the application, the script, and the tests.

Exercise 16.8: Hexagonal Architecture
Figure A.1 shows one possible model. Note that the exact details are much less impor-
tant than conveying the overall structure in the most minimal terms.

Exercise 16.9: Data Smells
 A. The main potential problem is that there’s no indication of what the keys are in

each table. A good rule in table design is: Each row depends on the key, the whole
key, and nothing but the key.

 B. We might specify keys as follows:

For StaffMembers: Use the• username or add a separate ID.

For Projects: Use the• codename or add a separate ID.

For Assignments: Add an ID column.•

From the Library of Lee Bogdanoff

ptg

Time Recording 249

Exercise 16.10: Extending the Database
Figure A.2 shows one simple extension to the database.

Exercise 16.12: Database Technology
There is a good in-depth discussion of the leading candidates in Hal Fulton’s The Ruby
Way [15]: SQLite, MySQL, PostgreSQL, Oracle, ActiveRecord.

As is often the case with technology choices, ours was made purely on the basis
of what we were actively using on other projects at the time. Any other choice would

User

<<adapter>>
timelog script

<<adapter>>
TimelogFile

<<application>>
Timelog

Posting

tests

Tester

Figure A.1 The Logfile Adapter and Variation Point

From the Library of Lee Bogdanoff

ptg

250 Appendix A: Answers to Selected Questions

be just as valid. And although many readers will be familiar with Rails, we did decide
against using the Rails ActiveRecord gem, simply because this book is intended to cover
Ruby in general.

So we picked MySQL. For our development environment (Ubuntu), we needed to
install MySQL, followed by the libmysql-ruby package, and then run some tests. You
may need to carry out different steps in your environment, and there’s plenty of help on
the Web if you need it.

Figure A.2 Extending the Corporate Projects Database

<<table>>
Staff Member

<<table>>
Assignment

<<table>>
Postings

Date: date
Minutes: int

Codename: String
Start: date
...

Start: date
End: date

<<table>>
Project

Username: string
Full name: string

...

11 0..* 0..*

1

0..*

From the Library of Lee Bogdanoff

ptg

251

APPENDIX B

Ruby Refactoring Tools

A number of refactoring tools for Ruby are now available, many in the alpha or beta
stages of development. This appendix lists those we know about at the time of going
to press.

Code Smell Detectors
flay Finds code fragments with identical or similar structure:

http://ruby.sadi.st/Flay.html

flog Computes ABC code complexity metrics for Ruby code:
http://ruby.sadi.st/Flog.html

heckle A mutation tester; changes your code and re-runs your tests to check for
coverage: http://rubyforge.org/projects/seattlerb/

Reek Our very own open source tool identifies smells in your Ruby code:
http://wiki.github.com/kevinrutherford/reek

Roodi Checks Ruby code against style guidelines:
http://rubyforge.org/projects/roodi

Simian Simon Harris of RedHill has created a Rails plug-in that allows you to run
Simian—the code duplication finder—from the rakefile:
http://www.redhillonrails.org/simian.html

From the Library of Lee Bogdanoff

http://www.redhillonrails.org/simian.html
http://ruby.sadi.st/Flay.html
http://ruby.sadi.st/Flog.html
http://rubyforge.org/projects/seattlerb/
http://wiki.github.com/kevinrutherford/reek
http://rubyforge.org/projects/roodi

ptg

252 Appendix B: Ruby Refactoring Tools

Environments with Refactoring Support
Aptana A complete IDE, built from Eclipse with the RADRails plug-in; offers

excellent refactoring support: http://aptana.com/

NetBeans Sun’s rival to Eclipse; the Ruby module provides first-class refactoring
tools: http://www.netbeans.org/features/ruby/index.html

RubyMine JetBrains’s Ruby and Rails IDE is built on the IntelliJ platform and in-
cludes refactoring support: http://www.jetbrains.com/ruby/index.html

From the Library of Lee Bogdanoff

http://www.netbeans.org/features/ruby/index.html
http://www.jetbrains.com/ruby/index.html
http://aptana.com/

ptg

253

Bibliography

[1] Dave Astels. Test-Driven Development: A Practical Guide. Prentice Hall, 2003.

[2] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1996.

[3] Kent Beck. Test-Driven Development: By Example. Addison-Wesley, 2003.

[4] Kent Beck. Extreme Programming Explained: Embrace Change, Second Edition.
Addison-Wesley, 2004.

[5] Kent Beck and Ward Cunningham. “A Laboratory for Teaching Object-Orient-
ed Thinking.” In OOPSLA ’89 Conference Proceedings, New Orleans, Louisiana,
1989.

[6] Jon Bentley. Programming Pearls. Addison-Wesley, 1986.

[7] Jon Bentley. More Programming Pearls. Addison-Wesley, 1988.

[8] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesoy, Bryan Helmkamp,
and Dan North. The RSpec Book: Behaviour Driven Development with RSpec,
Cucumber, and Friends. The Pragmatic Bookshelf, 2009.

[9] Mlistair Cockburn. Hexagonal architecture. http://c2.com/cgi/wiki?Hexagonal
Architecture, 2004.

[10] Michael Feathers. Working Effectively with Legacy Code. Prentice Hall, 2004.

[11] Jay Fields, Shane Harvie, and Martin Fowler. Refactoring, Ruby Edition. Addison-
Wesley, 2009.

[12] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[13] Martin Fowler. Fluent interface. http://www.martinfowler.com/bliki/Fluent
Interface.html, 2005.

[14] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 2000.

From the Library of Lee Bogdanoff

http://www.martinfowler.com/bliki/FluentInterface.html
http://www.martinfowler.com/bliki/FluentInterface.html
http://c2.com/cgi/wiki?HexagonalArchitecture
http://c2.com/cgi/wiki?HexagonalArchitecture

ptg

254 Bibliography

[15] Hal Fulton. The Ruby Way, Second Edition. Addison-Wesley, 2006.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, 1995.

[17] Andrew Hunt and David Thomas. The Pragmatic Programmer. Addison-Wesley,
2000.

[18] Brian W. Kernighan and P. J. Plauger. The Elements of Programming Style. Comput-
ing McGraw-Hill, 1988.

[19] Leonard Koren. Wabi-Sabi: For Artists, Designers, Poets and Philosophers. Stone
Bridge Press, 2003.

[20] Brian Marick. Everyday Scripting with Ruby: For Teams, Testers, and You. Pragmatic
Bookshelf, 2007.

[21] Robert C. Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, 2002.

[22] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley,
2007.

[23] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[24] Russ Olsen. Design Patterns in Ruby. Addison-Wesley, 2007.

[25] David Parnas. “On the Criteria to Be Used in Decomposing Systems into Modules.”
Communications of the ACM, 15(2), 1972.

[26] William C. Wake. Refactoring Workbook. Addison-Wesley, 2003.

From the Library of Lee Bogdanoff

ptg

255

!, 54, 219, 221
&, 224
*(), 198, 200, 209
===, 101
?, 221
[] operator, 4, 54, 246
@ symbol, 59
%ALTCODE%, 89, 227
%CODE%, 88, 227
@delegate.f, 145
@state, 122, 237

A
accept(), 103
Accessor, 29
ActionController::Base, 162
ActiveRecord, 194, 249–250
ActiveRecord::Base, 116–117, 162, 194
ActiveRecord::Migration, 115
Adapter, 164–165, 190, 192–194, 232, 237,

240, 249
Add Parameter, 85, 140
Adjectives, 57
Agile Software Development (Martin), 70, 146
Aliases, 54, 218, 228
Alpha-beta pruning, 182
Alternative Modules with Different Interfaces,

85
Alternative Representations, 115, 233–234

and, 98
And, in method names, 70
Aptana, 252
Array, 72, 108
ArrayQueue, 133, 237
Assertions, 30, 42, 55, 220
Astels, Dave, 23
at:, 219
attr, 151
attr_accessor, 110, 151, 236
Attributes, 151, 241
attr_reader, 14, 151, 240
attr_writer, 151
autotest, 26

B
BDD (behavior-driven development),

22–23
Beck, Kent, 21, 23, 26, 142, 189
Behavior-preserving transformations, 27
Bell, Gordon, 222
Bentley, Jon, 93, 222
best_move_for, 175–177, 179
binary_op, 203, 210
button_frame, 207–209, 211

C
cab(), 204, 209–210
Caching, 181

Index

Footnote references are indicated with “n,” followed by the footnote number.

From the Library of Lee Bogdanoff

ptg

256 Index

Calculator program
button_frame, 207–209, 211
cab(), 204, 209–210
Calc_Controller class, 204
extend(), 201, 204, 209, 211
refactoring, 209–210
source code, 197 n1
stack, 197, 201–203, 209, 221
units, 198, 200–201
user interface, 205–206

Cart, 150–151, 240
Cascade, 143, 241
Case Statement, 104, 106, 231–232
case statement, 101, 232
Change-related code smells

Combinatorial Explosion, 159
Divergent Change, 5, 154–155, 161, 189
Parallel Inheritance Hierarchies, 158
Shotgun Surgery, 156–157, 162

Check (refactoring micro-process step), 30
Checkpoints, 122–123, 237
Chelimsky, David, 23
Class invariant, 237
class_eval, 74–75
Closed Classes, 168–169, 245
Cockburn, Alistair, 190, 232
Code coverage tool, 76
Code downloads, 18
Code reuse, 18, 133–134, 167
Code review checklist, 23
Code rewriting, 19
Code smells

change-related, 153–162
complexity, 65–78
conditional logic, 93–106
data, 107–123
duplication, 79–92
inheritance, 125–134
libraries, 163–169
measurable, 41–55
name-related, 57–63
as problem indicators, 20

responsibility, 135–152
software, 23, 251–252

Code test suite, 25
Coin-toss code, 4–7
Collapse hierachy, 33, 216
collect, 72
Combinatorial Explosion, 159
Comma-separated value (CSV). See CSV

Writer
Comments, 5, 10–11, 42–43, 49–50, 55, 217
Comparable module, 218
Compile step (of other languages), 25, 28
Complexity code smells

Dead Code, 5–6, 66–67, 76, 209
Dynamic Code Creation, 74–75
Greedy Method, 5, 7–9, 70–72, 78, 189, 223
Procedural Code, 72–73, 78, 223–224
Speculative Generality, 68–69, 76–77, 222

Complicated Boolean Expression, 98–99, 246
Compound words, 59
Conditional Expression, 103–104, 230
Conditional logic code smells

Complicated Boolean Expression, 98–99, 246
Control Coupling, 100, 105, 232
Nil Check, 94–95
Simulated Polymorphism, 101–102, 209
Special Case, 96–97

Confi guration management, 26
Consistency, 6–7
Consolidate Conditional Expression, 103
Constants, 11, 32, 81, 177, 232–233, 246
Control Coupling, 100, 105, 232
Controller, 204–205, 210–211
Copying code, 31
Counter-Argument, 118, 235
CRC (class, responsibilities, collaborators)

cards, 26, 135
CSV strings, 190
CSV Writer, 160–161, 241–243
CSV::Writer, 161
Cunningham, Ward, 26, 57
Currency, 115, 151, 233–235

From the Library of Lee Bogdanoff

ptg

Index 257

Cutoff values, 182
Cycle of refactoring, 19–23

D
Data Class, 110–111, 234, 236
Data Clump, 5, 10, 112–113
Data code smells

Data Class, 110–111, 234, 236
Data Clump, 5, 10, 112–113
Open Secret, 108–109, 115, 176, 190,

233–235
Temporary Field, 114, 146, 237

Data smells, 191, 248
Database, 186–187, 192–194, 249–250
Dead Code, 5–6, 66–67, 76, 209
Dead integers, 119, 235
Decorator design pattern, 159, 162
Defactoring practice exercise, 36–37
Default value, 81, 94, 209–210, 230
Defensive guard clause, 96, 104
Delegates and delegation

Hide Delegate, 26–29, 33, 143–144,
150–151, 216

Middle Man, 115, 145, 149–151, 209, 234,
240

Remove Middle Man, 145, 150, 216
Replace Delegation with Inheritance, 145,

237
Replace Inheritance with Delegation,

126–127
Delete (refactoring micro-process step), 32
DeMorgan’s law, 98, 103
Dependency Inversion, 167
Deprecating code, 32
Depth parameter, 181
Derived Value, 5, 15–16, 80, 227
Design patterns, 135, 145, 159, 162
Design Patterns (Gamma et al.), 232, 240
Design perfection, 17, 22
Design rules, 21–22
Design simplicity, 21, 23, 215
Development and refactoring, 22–23

Dictionaries, 57
Dimension class, 198, 209–211
Divergent Change, 5, 154–155, 161, 189
Document compression, 162
Documents, 162, 243
Domain class, 46, 89, 140, 227–228
Double Dispatch, 142
DriverFactory, 105–106, 232
DRY (Don’t Repeat Yourself) principle, 22,

117
DSL (domain-specifi c languages), 143, 241
Duplicate Observed Data, 46, 55, 89,

227–228
Duplicated Code, 5, 83–84, 91, 209–210,

215
Duplication and code smells, 22, 37
Dynamic Code Creation, 74–75

E
each, 72
each_move method, 179–180
Editor, 118–119, 235
Eiffel language, 61
Elements of Programming Style, The (Kernighan

and Plauger), 93
else, 103
Emergent design, 20
Encapsulate Collection, 110
Enumerable, 72, 181, 218, 228, 237
Environment variables, 87–88, 226–227
eval, 74–75
Explicit methods, 102, 216
Explicit refusal, 128–129
extend(), 201, 204, 209, 211
Extract Class, 46, 55, 188, 189, 216, 220, 229
Extract Method, 31, 33, 38, 49, 55, 216, 220
Extract Module, 46, 238
Extract Subclass, 46, 55, 216, 220
Extract Superclass, 85, 154
Extraction, 77, 222
Extreme Programming Explained, Second

Edition (Beck), 21

From the Library of Lee Bogdanoff

ptg

258 Index

F
Factory Method, 105–106, 232–233
Feathers, Michael, 26, 232, 241
Feature Envy, 12–14, 136–137, 148, 209, 239
Fields, Jay, 33, 35, 38, 158
Flag value, 176
fl ay (refactoring tool), 251
FlexMock, 152
fl og (refactoring tool), 251
Fluent Interface, 143
Flyweight, 109
For each (refactoring micro-process step), 31
for loops, 219
Form Template Method, 84
Formatting names, 77–78, 223
Formatting text, 218
Fowler, Martin, 19, 25, 108, 143, 194
freeze, 245
Fulton, Hal, 249
Fuse Loops, 176–177, 246

G
<g>, 16–17
Game program

code, 173–175
development episodes, 180–182
refactoring, 175–180, 246–247
source code, 173 n1

Gamma, Erich, 232, 240
Gems, 26, 76, 163, 167, 192
Generic refactoring micro-process, 30–32
Global Variable, 5–6, 140
Google group mailing list, 38
Gorts, Sven, 19
Greedy Method, 5, 7–9, 70–72, 78, 189, 223
Greedy Module, 5, 7, 9–10, 146–147, 209
Green bar, 22–23
Guard Clauses, 96, 104–105

H
Harmonizing practice exercise, 37
Hash, 72, 108–109, 225, 236–237

heckle (refactoring tool), 76, 251
Helper class, 44, 229
Helper methods, 117, 178, 224, 235
Hexagonal architecture, 190, 232, 248
Hidden State, 119–120, 236
Hide Delegate, 26–29, 33, 143–144, 150–151,

216
Hierarchies in Rails, 162, 243
Hooks, 66, 68, 131
HTTP wrapper, 7–8
Hungarian notation, 59
Hunt, Andrew, 143, 152

I
if, 103, 174–175, 246
if xxx == nil, 94
if xxx.nil?, 94
Implementation Inheritance, 126–127, 134,

237
Implicit refusal, 128–129
Inappropriate Intimacy (General Form),

141–142, 151, 209
Inappropriate Intimacy (Subclass Form), 130
Incomplete Library Module, 164–165
Inconsistent Names, 61, 229
Information hiding, 79
Inhale/exhale practice exercise, 36
Inheritance, 134, 229
Inheritance code smells

Implementation Inheritance, 126–127, 134,
237

Inappropriate Intimacy (Subclass Form),
130

Lazy Class, 131–132
Refused Bequest, 128–129, 134, 237–239

Inheritance Survey, 134
Inject method, 78, 223
Inline Class, 69
Inline refactoring, 69
Inline Temp, 33, 216
Instance method, 138
Instance variables, 46, 114, 119–120, 141, 152

From the Library of Lee Bogdanoff

ptg

Index 259

instance_of?, 101
instance_variables, 141
instance_variables_get, 141
int, 219
Integrated Development Environment (IDE),

26, 252
Integration tests, 194
Internationalization library, 18, 61, 76, 81
Introduce (refactoring micro-process step), 31
Introduce Assertion, 42, 55, 220
Introduce Explaining Variable, 98, 103, 216
Introduce Local Extension, 164, 169
Introduce Null Object, 94, 103
Introduce Parameter Object, 49, 55, 220
Inverse refactorings, 33, 216
IO, 161, 241
is_a?, 101
is_calculated, 201–205, 210
Iterate, 31
Iterations, 72, 78
Iterator, 179–180
Iterator index, 5

J
Jar fi le, 164
Java, 28, 54, 219
JetBrains, 252

K
Kata refactoring practice exercise, 37
Kernighan, Brian, 93
kind_of?, 101
Koren, Leonard, 17

L
Large Class, 46, 51–54, 218
Large Module, 46–47, 55, 77, 220
Law of Demeter, 143, 152, 236, 241
Layers, 168, 244
Lazy Class, 131–132
Legacy code, 26, 241
Libraries, 6, 76, 81, 86–87, 90, 225–226, 228

Library Classes, 119, 236
Library code smells

Incomplete Library Module, 164–165
Reinvented Wheel, 6, 166
Runaway Dependencies, 167

line, 9
Liskov Substitution Principle (LSP), 128–129,

239
Local extension, 164, 169
Logfi le Adapter and Variation Point, 249
LogFile.log, 86–87
Logger, 225–226
Long Method, 44–45, 50–51, 55, 77,

217–218, 222
Long Parameter List, 5, 10–11, 48–49, 55,

118, 220, 235
Loops, 72–73, 176–177, 246

M
Magic numbers, 81, 175, 177, 246
Mailing list for this book, 38
make_digit(), 207–208, 210
make_driver, 105–106
make_unit(), 207–208, 210
Malfactoring practice exercise, 36–37
Martin, Micah, 227
Martin, Robert, 70, 146
match(), 49, 240
Matcher, 49, 151, 217, 240
Math module, 169, 245
maxX, 229
maxY, 229
Measurable code smells

Comments, 42–43, 49–50, 55, 217
Large Module, 46–47, 55, 77
Long Method, 44–45, 50–51, 55, 77,

217–218, 222
Long Parameter List, 5, 10–11, 48–49, 55,

118, 220, 235
Member variable, 59
Memento, 110, 119, 235
Message Chain, 143–144, 152, 241

From the Library of Lee Bogdanoff

ptg

260 Index

Method aliases, 54, 218, 228
Method length, 44–45, 50–51, 55, 77,

217–218, 222
Method names, 59, 63, 221–222
Method object, 44
method_missing, 74, 94, 147
Meyer, Bertrand, 154
Middle Man, 115, 145, 149–151, 209, 216,

234, 240
Migrate (refactoring micro-process step),

31–32
Min-max algorithm, 182
Missing Function, 169, 245
Module inclusion, 134
Module size, 46–47, 77, 220
module_eval, 74–75
Money, 115, 151, 233–235
More Programming Pearls (Bentley), 93, 222
move, 175
Move Method, 85
MySQL, 187, 193, 249–250

N
Name formatting, 77–78, 223
Name-related code smells

Inconsistent Names, 61, 229
Type Embedded in Name, 59, 62,

220–221
Uncommunicative Name, 5, 14–15, 60, 62,

175–176, 209, 220–221
Naming conventions and standards, 57–61
Nested iterators, 247
NetBeans, 252
new, 167
Newlines, 229
nil, 94, 103
Nil Check, 94–95, 103
NodeFormatter, 229
not, 98
Nouns, 57
Null Object, 94–95, 103, 230
Numbered variables, 60

O
OAOO (once and only once), 22
Object-Oriented Software Construction (Meyer),

154
Open classes, 85, 168–169
Open Secret, 108–109, 115, 176, 190,

233–235
Open source practice projects, 37–38
or, 98, 100
Oracle, 249

P
Parallel Inheritance Hierarchies, 158
Parameter lists, 11, 48–49. See also Long

Parameter List
Parameter object, 49, 55, 220
Parameterize Method, 33, 85, 167, 216
Parnas, David, 79
Pattern matching, 218
Patterns of Enterprise Application Architecture

(Fowler), 194
Perfection, 17, 22, 32
Persistence mechanisms, 110, 189, 194
Plauger, P. J., 93
play method, 178
Points, 90–91, 229
points, 12
polyline, 9–10, 12–13
Polymorphism, 96, 101–102, 209
Position objects, 119
PostgreSQL, 249
Practice skills, 35–38
Pragmatic Programmer, The (Hunt and

Thomas), 143, 152
Preserve Whole Object, 11–12, 49, 55, 220
Primitive objects, 115, 219, 234
Primitive Obsession, 108
Probe points, 68, 241
Proc:, 224
Procedural Code, 72–73, 78, 223–224
Programming Pearls (Bentley), 93
Proper Names, 120–122, 236

From the Library of Lee Bogdanoff

ptg

Index 261

Pull Up Method, 84
Push Down Method, 129
Push Up Method, 229
puts, 13

R
Rails accounts, 115–118, 234–235
Rails hierarchies, 162, 243
Rails money plug-in, 235
Rake, 220
Rakefi le, 86, 225, 251
Rates of change, 189, 248
Rcov (code coverage tool), 76
rdoc API documentation, 42, 217
Re-refactoring practice exercise, 36
Read-Only Documents, 134, 237–239
rect, 8, 27
Red bar, 22–23
reduce method, 224
Reek software, 23, 247, 251
Refactoring, Ruby Edition, (Fields et al.), 33, 35,

38, 159
Refactoring (Fowler et al.), 19
Refl ection transform, 15–16
Refused Bequest, 128–129, 134, 237–239
Regression suite, 23
Reinvented Wheel, 6, 166
reject, 72
Relationships, 133–134, 237–239
Remove Middle Man, 145, 150, 216
Remove Parameter, 69
Remove Setting Methods, 69
Rename Method, 33, 55, 59–60, 85,

216, 220
Repeated Value, 81–82, 225
Replace Array with Object, 109
Replace Delegation with Inheritance, 145
Replace Hash with Object, 109
Replace Inheritance with Delegation, 126–127,

129, 159, 237
Replace Loop with Collection Closure

Method, 72–73

Replace Magic Number with Symbolic
Constant, 81

Replace Method with Method Object, 44
Replace Parameter with Explicit Methods, 102,

216
Replace Parameter with Method, 48, 55, 220
Replace Temp with Chain, 73
Replace Value with Expression, 80
ReportColumn, 91, 229
ReportNode, 229
Report.report, 51, 148, 151, 218
ReportRow, 91, 229
require statements, 167
Responsibility code smells

Feature Envy, 12–14
Global Variable, 5–6, 140
Greedy Module, 5, 7, 9–10, 146–147, 209
Inappropriate Intimacy (General Form),

141–142, 151, 209
Message Chain, 143–144, 152, 241
Middle Man, 115, 145, 149–150, 209, 234,

240
Utility Function, 5, 138–139, 151, 240–241

return statements, 176
reversed_copy, 219
ri18n internationalization library, 81
Roodi, 251
row, 178
rspec, 23, 26
RSpec Book (Chelimsky et al.) 23
Rspec examples, 51, 220
Ruby Application Archive, 228
Ruby Extensions, 224
Ruby Way, The (Fulton), 249
RubyForge, 76, 163, 251
RubyMine, 252
Run-time checks, 28
Runaway Dependencies, 167

S
Safe points, 28–29
Scavenger hunt practice exercise, 36

From the Library of Lee Bogdanoff

ptg

262 Index

Secret. See Open Secret
select, 72
self, 136, 152
self.class, 136
Short names, 60
Shotgun Surgery, 156–157, 162
Simian, 251
Simplicity in design, 21, 23, 215
Simulated Polymorphism, 101–102, 209
Single Responsibility Principle (SRP), 70, 146,

176
Small steps, 33, 36, 216
Smalltalk, 54, 143, 189, 219
Smalltalk Best Practice Patterns (Beck), 143,

189
Smell of the Week practice exercise, 36
Social Security number, 115, 234
Software, 23, 26, 251–252
Software metric, 41
Software perfection, 17
Sparkline script

code smells, 5–6
Comments, 10–11
consistency, 6–7
Derived Values, 15–17
Greedy Methods, 8–9
Greedy Module, 9–10
HTTP wrapper, 7–8
methods, 4, 7–8, 11–13
Preserve Whole Object, 11–12
puts, 4, 8, 13–15
sparky.rb, 8, 86, 225
testing, 8, 13
transforms, 15–16

Special Case, 96–97
Speculative Generality, 68–69, 76–77, 222
SQL, 190, 192–195, 249–250
SQLite, 249
Stack, 197, 201, 209, 221
Street address, 115, 234
String class API, 51–54, 218
String methods, 54, 227

Strings, 81, 178
Structs, 151, 241
sub, 227
Subjunctive programming, 179
Substitute Algorithm, 84, 191–194, 227,

229
Substring, 227, 246
Subversion (version control), 177
Superclasses, 63, 85, 154, 221
Sustainable process, 22–23
SVG, 8–10, 15–16
svg.rb, 10, 18
Synonyms, 228
System of Names, 136, 165

T
tagname, 229
TDD (test-driven development), 19, 22–23,

195
TDD/BDD microprocess, 22
Team/partner assistance, 25, 36, 37–38, 179
Tease Apart Inheritance, 159
Telephone number, 115, 234
Tell, Don’t Ask, 143
Template exercise, 88–89
Temporary Field, 114, 146, 237
Test coverage, 188, 248
Test (refactoring micro-process step), 32
Test suite, 25, 28
Testing, 26, 28–30
Test::Unit, 26, 28
text, 9
Text formatting, 218
Text processing, 218
Thomas, David, 143, 152
Time recording program

ActiveRecord, 194, 249–250
CSV strings, 190, 248
hexagonal architecture, 190, 248
persistence, 189, 194
rates of change, 189, 248
script, 183–187

From the Library of Lee Bogdanoff

ptg

Index 263

source code, 183 n1
substitute algorithm, 191–194,

248–249
test-driven development, 195
TimelogFile, 189–190, 192–193,

248–249
Tk, 205
to_f, 59
to_i, 59, 218
Tools for refactoring, 25–26, 229
to_proc, 224
to_s, 59, 199, 203, 205, 209, 218, 235
to_xml, 91, 229
Transforms (SVG), 15–16
Triggers, 55, 220
Type-checking, 211
Type Embedded in Name, 59, 62,

220–221

U
UI class, 211
UML model, 190
UML sketches, 26
Uncommunicative Name, 5, 14–15, 60, 62,

175–176, 209, 220–221
Underscores, 209
unless, 96
Up-front design, 20
URLs

calculator program code, 197 n1
code downloads, 18
game program code, 173 n1
mailing list for this book, 38
Rcov, 76
refactoring tools, 251–252

Ruby Application Archive, 228
time program code, 183 n1

Utility Function, 5, 138–139, 151, 240–241

V
variable = value || default, 94
Variables, 98–99, 103
Variation point, 154, 190, 192, 194, 249
Verbs, 57
Version control, 26, 177
Vocabulary, 57–58, 61

W
Wabi-Sabi, 17
Wabi-Sabi (Koren), 17
Walking a List, 148–149, 239
Whole objects, 11–12, 112
Winner method, 175, 178
Working Effectively with Legacy Code (Feathers),

26, 241
Wrapper, 164–166, 243
WrappingPoint class, 229

X
x_axis, 11–12, 16
XML, 6, 10
XML report, 91–92, 229

Y
y_values, 12, 15

Z
ZIP code, 115, 118, 234–235
Zipped documents, 162
Zumbacker Z function, 169, 245

From the Library of Lee Bogdanoff

ptg

Your purchase of Refactoring in Ruby includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with more
than 5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: GWKFREH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

SFOE_Wake_7x9.125.indd 1 9/1/09 2:33 PM

From the Library of Lee Bogdanoff

www.informit.com/safarifree

ptg

Symptoms Smell

Duplication

Methods and/or classes have similar behavior but
different names

Alternative Modules with
Different Interfaces, p. 85

Similar code
Duplicated Code, p. 83

Code with similar effects

Names

Two different names for the same thing Inconsistent Names, p. 61

Name is compound word, including a type name

Type Embedded in Name, p. 59

Variable named after type rather than intent

One- or two-character name

Uncommunicative Name, p. 60

Name without vowels

Numbered variables

Odd abbreviations

Code within a Method

Comments

&&, ||, !

Parameter value controls branching within a method Control Coupling, p. 100

Large number of lines in method Long Method, p. 44

Large number of parameters to method Long Parameter List, p. 48

Method has more than one responsibility Greedy Method, p. 70

Constant embedded in code Derived Value, p. 80

Comparison against nil or call to nil? Nil Check, p. 94

if
Special Case, p. 96

If-check before body of code

case keyword used

Simulated Polymorphism, p. 101Several if

Use of instance_of?, kind_of?, is_a?, or ===

Class or Module

Large number of instance variables in class or module

Large Module, p. 46Large number of methods in class or module

Large number of lines in class or module

Class or module does more than one thing Greedy Module, p. 146

Complexity

never referenced
Dead Code, p. 66, or

Speculative Generality, p. 68

Code more general/complicated than it needs to be Speculative Generality, p. 68

Continues on inside back cover

From the Library of Lee Bogdanoff

	Contents
	Foreword
	Preface
	About the Authors
	PART I: The Art of Refactoring
	Chapter 1 A Refactoring Example
	Sparkline Script
	Consistency
	Testability
	Greedy Methods
	Greedy Module
	Comments
	Whole Objects
	Feature Envy
	Uncommunicative Names
	Derived Values
	Wabi-Sabi
	Summing Up
	What’s Next

	Chapter 2 The Refactoring Cycle
	What Is Refactoring?
	Smells Are Problems
	The Refactoring Cycle
	When Are We Done?
	Test-Driven/Behavior-Driven Development
	Exercise
	What’s Next

	Chapter 3 Refactoring Step by Step
	The Refactoring Environment
	Inside a Refactoring
	The Generic Refactoring Micro-Process
	Exercises
	What’s Next

	Chapter 4 Refactoring Practice
	Read Other Books
	Practice Refactoring
	Exercises to Try
	Participate in the Community
	Exercise
	What’s Next

	PART II: Code Smells
	Chapter 5 Measurable Smells
	Comments
	Long Method
	Large Module
	Long Parameter List
	Exercises

	Chapter 6 Names
	Type Embedded in Name
	Uncommunicative Name
	Inconsistent Names
	Exercises

	Chapter 7 Unnecessary Complexity
	Dead Code
	Speculative Generality
	Greedy Method
	Procedural Code
	Dynamic Code Creation
	Exercises

	Chapter 8 Duplication
	Derived Value
	Repeated Value
	Duplicated Code
	Alternative Modules with Different Interfaces
	Exercises

	Chapter 9 Conditional Logic
	Nil Check
	Special Case
	Complicated Boolean Expression
	Control Coupling
	Simulated Polymorphism
	Exercises

	Chapter 10 Data
	Open Secret
	Data Class
	Data Clump
	Temporary Field
	Exercises

	Chapter 11 Inheritance
	Implementation Inheritance
	Refused Bequest
	Inappropriate Intimacy (Subclass Form)
	Lazy Class
	Exercises

	Chapter 12 Responsibility
	Feature Envy
	Utility Function
	Global Variable
	Inappropriate Intimacy (General Form)
	Message Chain
	Middle Man
	Greedy Module
	Exercises

	Chapter 13 Accommodating Change
	Divergent Change
	Shotgun Surgery
	Parallel Inheritance Hierarchies
	Combinatorial Explosion
	Exercises

	Chapter 14 Libraries
	Incomplete Library Module
	Reinvented Wheel
	Runaway Dependencies
	Exercises

	PART III: Programs to Refactor
	Chapter 15 A Simple Game
	Code
	Refactoring
	Development Episodes

	Chapter 16 Time Recording
	Preparing the Soil
	Substitute Algorithm
	Optional Extras

	Chapter 17 Calculator
	Code
	Refactoring
	Thank You

	PART IV: Appendices
	Appendix A: Answers to Selected Questions
	The Refactoring Cycle
	Refactoring Step by Step
	Refactoring Practice
	Measurable Smells
	Names
	Unnecessary Complexity
	Duplication
	Conditional Logic
	Data
	Inheritance
	Responsibility
	Accommodating Change
	Libraries
	A Simple Game
	Time Recording

	Appendix B: Ruby Refactoring Tools
	Code Smell Detectors
	Environments with Refactoring Support

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

ptg

From the Library of Lee Bogdanoff

ptg

Symptoms Smell

Data

Data Class, p. 110

Same 2-3 items occur together in classes or parameter lists
Data Clump, p. 112

Instance variables named with similar substrings

Open Secret, p. 108

An instance variable has a value only some of the time Temporary Field, p. 114

Inheritance

Subclass is too tied to parent’s data or methods

Class has little code in it Lazy Class, p. 131

Inherited method doesn’t work

Clients refer to subclass but never hold reference to the
parent class

the parent class

Use of subclassing purely to share code Implementation Inheritance, p. 126

Responsibility

Class manipulates another class’ state Feature Envy, p. 136

Class relies too much on how another class works

Chain of calls: a.b().c().d() Message Chain, p. 143

Middle Man, p. 145

Accommodating Change

points in its hierarchy

Each level of hierarchy deals with a different attribute

Same class changes for different reasons Divergent Change, p. 154

another hierarchy Parallel Inheritance Hierarchies, p. 158

Multiple classes must change for a single decision Shotgun Surgery, p. 156

Working with Libraries

Library doesn’t have a feature you need Incomplete Library Module, p. 164

Reinvented Wheel, p. 166

Runaway Dependencies, p. 167

Continued from inside front cover

From the Library of Lee Bogdanoff

ptg

REFACTORING IN RUBY

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

REFACTORING IN RUBY

William C. Wake
Kevin Rutherford

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of Lee Bogdanoff

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data
Wake, William C., 1960-

Refactoring in Ruby / William C. Wake, Kevin Rutherford.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-54504-6 (pbk. : alk. paper)
1. Software refactoring. 2. Ruby (Computer program language) I. Rutherford, Kevin. II. Title.
QA76.76.R42.W345 2009
005.1’17—dc22

2009032115

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-54504-6
ISBN-10: 0-321-54504-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2009

From the Library of Lee Bogdanoff

www.informit.com/aw

ptg

v

For
Angus James Bramwell Rutherford,

a wee gem

In memory
William B. Wake (1938-2007), Dad

and
Steve Metsker (1958-2008), colleague and friend

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

vii

Contents

Foreword xvii
Preface xix
About the Authors xxiii

PART I The Art of Refactoring 1

Chapter 1 A Refactoring Example 3

Sparkline Script 3
Consistency 6
Testability 8
Greedy Methods 8
Greedy Module 9
Comments 10
Whole Objects 11
Feature Envy 12
Uncommunicative Names 14
Derived Values 15
Wabi-Sabi 17
Summing Up 18
What’s Next 18

Chapter 2 The Refactoring Cycle 19

What Is Refactoring? 19
Smells Are Problems 20
The Refactoring Cycle 21
When Are We Done? 21
Test-Driven/Behavior-Driven Development 22

From the Library of Lee Bogdanoff

ptg

viii Contents

Exercise 23
Exercise 2.1: Simple Design 23

What’s Next 23

Chapter 3 Refactoring Step by Step 25

The Refactoring Environment 25
Inside a Refactoring 26
The Generic Refactoring Micro-Process 30
Exercises 33

Exercise 3.1: Small Steps 33
Exercise 3.2: Inverse Refactorings 33

What’s Next 33

Chapter 4 Refactoring Practice 35

Read Other Books 35
Practice Refactoring 35
Exercises to Try 36
Participate in the Community 37
Exercise 38

Exercise 4.1: Get to Know the Refactorings 38
What’s Next 38

PART II Code Smells 39

Chapter 5 Measurable Smells 41

Comments 42
Long Method 44
Large Module 46
Long Parameter List 48
Exercises 49

Exercise 5.1: Comments 49
Exercise 5.2: Long Method 50
Exercise 5.3: Large Class 51
Exercise 5.4: Smells and Refactoring 55
Exercise 5.5: Triggers 55

From the Library of Lee Bogdanoff

ptg

Contents ix

Chapter 6 Names 57

Type Embedded in Name 59
Uncommunicative Name 60
Inconsistent Names 61
Exercises 62

Exercise 6.1: Names 62
Exercise 6.2: Critique the Names 62
Exercise 6.3: Superclasses 63
Exercise 6.4: Method Names 63

Chapter 7 Unnecessary Complexity 65

Dead Code 66
Speculative Generality 68
Greedy Method 70
Procedural Code 72
Dynamic Code Creation 74
Exercises 76

Exercise 7.1: Dead Code (Challenging) 76
Exercise 7.2: Today versus Tomorrow 76
Exercise 7.3: Extraction Trade-Offs 77
Exercise 7.4: Formatting Names 77
Exercise 7.4: Procedural Code 78

Chapter 8 Duplication 79

Derived Value 80
Repeated Value 81
Duplicated Code 83
Alternative Modules with Different Interfaces 85
Exercises 86

Exercise 8.1: Rakefi le 86
Exercise 8.2: Two Libraries (Challenging) 86
Exercise 8.3: Environment Variables 87
Exercise 8.4: Template 88
Exercise 8.5: Duplicate Observed Data (Challenging) 89
Exercise 8.6: Ruby Libraries 90
Exercise 8.7: Points 90
Exercise 8.8: XML Report 91

From the Library of Lee Bogdanoff

ptg

x Contents

Chapter 9 Conditional Logic 93

Nil Check 94
Special Case 96
Complicated Boolean Expression 98
Control Coupling 100
Simulated Polymorphism 101
Exercises 103

Exercise 9.1: Null Object 103
Exercise 9.2: Conditional Expression 103
Exercise 9.3: Case Statement 104
Exercise 9.4: Guard Clauses (Challenging) 104
Exercise 9.5: Factory Method (Challenging) 105

Chapter 10 Data 107

Open Secret 108
Data Class 110
Data Clump 112
Temporary Field 114
Exercises 115

Exercise 10.1: Alternative Representations 115
Exercise 10.2: Primitives and Middle Men 115
Exercise 10.3: Rails Accounts 115
Exercise 10.4: Long Parameter List 118
Exercise 10.5: A Counter-Argument 118
Exercise 10.6: Editor 118
Exercise 10.7: Library Classes 119
Exercise 10.8: Hidden State 119
Exercise 10.9: Proper Names 120
Exercise 10.10: Checkpoints 122

Chapter 11 Inheritance 125

Implementation Inheritance 126
Refused Bequest 128
Inappropriate Intimacy (Subclass Form) 130
Lazy Class 131
Exercises 133

Exercise 11.1: ArrayQueue 133
Exercise 11.2: Relationships 133

From the Library of Lee Bogdanoff

ptg

Contents xi

Exercise 11.3: Read-Only Documents (Challenging) 134
Exercise 11.4: Inheritance Survey (Challenging) 134

Chapter 12 Responsibility 135

Feature Envy 136
Utility Function 138
Global Variable 140
Inappropriate Intimacy (General Form) 141
Message Chain 143
Middle Man 145
Greedy Module 146
Exercises 148

Exercise 12.1: Feature Envy 148
Exercise 12.2: Walking a List 148
Exercise 12.3: Middle Man 149
Exercise 12.4: Cart (Challenging) 150
Exercise 12.5: Utility Functions 151
Exercise 12.6: Attributes 151
Exercise 12.7: Message Chains 152

Chapter 13 Accommodating Change 153

Divergent Change 154
Shotgun Surgery 156
Parallel Inheritance Hierarchies 158
Combinatorial Explosion 159
Exercises 160

Exercise 13.1: CSV Writer 160
Exercise 13.2: Shotgun Surgery 162
Exercise 13.3: Hierarchies in Rails 162
Exercise 13.4: Documents 162

Chapter 14 Libraries 163

Incomplete Library Module 164
Reinvented Wheel 166
Runaway Dependencies 167
Exercises 168

Exercise 14.1: Layers (Challenging) 168
Exercise 14.2: Closed Classes (Challenging) 168
Exercise 14.3: A Missing Function 169

From the Library of Lee Bogdanoff

ptg

xii Contents

PART III Programs to Refactor 171

Chapter 15 A Simple Game 173

Code 173
Refactoring 175

Exercise 15.1: Smells 175
Exercise 15.2: Easy Changes 175
Exercise 15.3: Fuse Loops 176
Exercise 15.4: Result 177
Exercise 15.5: Next 177
Exercise 15.6: Constants 177
Exercise 15.7: Checking for Wins 178
Exercise 15.8: Representations 178
Exercise 15.9: Refactoring 179
Exercise 15.10: Winning Combinations 179
Exercise 15.11: Iterator 179

Development Episodes 180
Exercise 15.12: Scores 180
Exercise 15.13: Comparing Moves 180
Exercise 15.14: Depth 181
Exercise 15.15: Caching 181
Exercise 15.16: Balance 182
Exercise 15.17: New Features 182
Exercise 15.18: Min-Max 182
Exercise 15.19: Do-Over? 182

Chapter 16 Time Recording 183

Exercise 16.1: Rewrite or Refactor? 187
Preparing the Soil 187

Exercise 16.2: Project Kick-Off 187
Exercise 16.3: Test Coverage 188
Exercise 16.4: Application Object 188
Exercise 16.5: Testable Methods 189
Exercise 16.6: Rates of Change 189
Exercise 16.7: Open Secrets 190
Exercise 16.8: Hexagonal Architecture (Challenging) 190

Substitute Algorithm 191
Exercise 16.9: Data Smells 191
Exercise 16.10: Extending the Database 191

From the Library of Lee Bogdanoff

ptg

Contents xiii

Exercise 16.11: Adapter Tests (Challenging) 192
Exercise 16.12: Database Technology 192
Exercise 16.13: Database Tests (Challenging) 193
Exercise 16.14: Database Adapter (Challenging) 193
Exercise 16.15: Integration Test 194
Exercise 16.16: Going Live 194

Optional Extras 194
Exercise 16.17: Active Record (Challenging) 194
Exercise 16.18: Test-Driven Development 195

Chapter 17 Calculator 197

Exercise 17.1: Smells 198
Code 198
Refactoring 209

Exercise 17.2: Clean Up Calculator 210
Exercise 17.3: Staighten Out is_calculated 210
Exercise 17.4: Controller 210
Exercise 17.5: Generic Calculator 211
Exercise 17.6: UI Class 211
Exercise 17.7: Value and Dimension 211
Exercise 17.8: What Else? 211

Thank You 211

PART IV Appendices 213

Appendix A Answers to Selected Questions 215

The Refactoring Cycle 215
Exercise 2.1: Simple Design 215

Refactoring Step by Step 216
Exercise 3.1: Small Steps 216
Exercise 3.2: Inverse Refactorings 216

Refactoring Practice 216
Exercise 4.1: Get to Know the Refactorings 216

Measurable Smells 217
Exercise 5.1: Comments 217
Exercise 5.2: Long Method 217
Exercise 5.3: Large Class 218

From the Library of Lee Bogdanoff

ptg

xiv Contents

Exercise 5.4: Smells and Refactorings 220
Exercise 5.5: Triggers 220

Names 220
Exercise 6.1: Names 220
Exercise 6.2: Critique the Names 221
Exercise 6.3: Superclasses 221
Exercise 6.4: Method Names 221

Unnecessary Complexity 222
Exercise 7.2: Today versus Tomorrow 222
Exercise 7.3: Extraction Trade-Offs 222
Exercise 7.4: Formatting Names 223
Exercise 7.5: Procedural Code 223

Duplication 225
Exercise 8.1: Rakefile 225
Exercise 8.2: Two Libraries 225
Exercise 8.3: Environment Variables 226
Exercise 8.4: Template 227
Exercise 8.5: Duplicate Observed Data 227
Exercise 8.6: Ruby Libraries 228
Exercise 8.7: Points 229
Exercise 8.8: XML Report 229

Conditional Logic 230
Exercise 9.1: Null Object 230
Exercise 9.2: Conditional Expression 230
Exercise 9.3: Case Statement 231
Exercise 9.5: Factory Method 232

Data 233
Exercise 10.1: Alternative Representations 233
Exercise 10.2: Primitives and Middle Men 234
Exercise 10.3: Rails Accounts 234
Exercise 10.4: Long Parameter List 235
Exercise 10.5: A Counter-Argument 235
Exercise 10.6: Editor 235
Exercise 10.7: Library Classes 236
Exercise 10.8: Hidden State 236
Exercise 10.9: Proper Names 236
Exercise 10.10: Checkpoints 237

Inheritance 237
Exercise 11.1: ArrayQueue 237
Exercise 11.2: Relationships 237
Exercise 11.3: Read-Only Documents 237

From the Library of Lee Bogdanoff

ptg

Contents xv

Responsibility 239
Exercise 12.1: Feature Envy 239
Exercise 12.2: Walking a List 239
Exercise 12.3: Middle Man 240
Exercise 12.4: Cart 240
Exercise 12.5: Utility Functions 240
Exercise 12.6: Attributes 241
Exercise 12.7: Message Chains 241

Accommodating Change 241
Exercise 13.1: CSV Writer 241
Exercise 13.3: Hierarchies in Rails 243
Exercise 13.4: Documents 243

Libraries 244
Exercise 14.1: Layers 244
Exercise 14.2: Closed Classes 245
Exercise 14.3: Missing Function 245

A Simple Game 246
Exercise 15.1: Smells 246
Exercise 15.3: Fuse Loops 246
Exercise 15.4: Result 246
Exercise 15.6: Constants 246
Exercise 15.8: Representations 246

Time Recording 247
Exercise 16.1: Rewrite or Refactor? 247
Exercise 16.3: Test Coverage 248
Exercise 16.6: Rates of Change 248
Exercise 16.8: Hexagonal Architecture 248
Exercise 16.9: Data Smells 248
Exercise 16.10: Extending the Database 249
Exercise 16.12: Database Technology 249

Appendix B Ruby Refactoring Tools 251

Code Smell Detectors 251
Environments with Refactoring Support 252

Bibliography 253
Index 255

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

Foreword

I want to give you two reasons to work through this book. The fi rst reason is about right
now, and the second is about forevermore.

The reason you need to work through this book right now is, well, us: You and me
and all the other Ruby programmers out there. While Ruby’s a language that, as the
saying goes, makes simple things simple and hard things possible, and while we Ruby
programmers are intelligent, virtuous, good-looking, kind to animals, and great fun at
parties—we’re still human. As such, what we make is often awkward, even if it’s Ruby
code.

So there’s this vast and ever-growing sea of Ruby programmers out there, writing
awkward Ruby code. I bet you’re working on some of that code now, and I’m sure you’ll
be working on more of it soon. Do you want to be happy doing that? Or sad?

In the past ten years or so, we’ve learned that a wonderful way to be happy working
on code is to refactor it as you go. Refactoring means that you change the code to be
less awkward on the inside without changing what it does. It’s something you can do in
small, safe steps while adding features or fi xing bugs. As you do, the code keeps getting
more pleasant, so your life does too.

Before I give you the second reason to work through the book, I want to share my
deepest fear: that you’ll only read it, not work through it. That would be a horrible
mistake. When I think of you doing that, I imagine all the wonderful tricks in the book
entering your head through your eyes—and then far, far too many of them sliding
right out of your ears, never to be recalled again. What tricks you do remember will be
shuffl ed off to that part of the brain marked “For Rational Use Only,” to be taken out
rarely, on special occasions. Mere reading will not make you an expert.

You see, expert behavior is often a-rational. Experts typically act appropriately with-
out needing to think through a problem. Indeed, experts often have diffi culty explaining
why a particular action was appropriate. That’s because “thinking through a problem”
is expensive, so the brain prefers more effi cient routes to correct behavior. Those routes
are created through repetition—like by doing the exercises in this book. (Gary Klein’s
Sources of Power is a good book about expert behavior, and Read Montague’s Why Choose
This Book? explains why the brain avoids what we think of as problem-solving.)

xvii

From the Library of Lee Bogdanoff

ptg

xviii Foreword

When it comes to the awkwardness this book teaches you how to correct, effi cient
thinking and automatic behavior are important. To get good at this stuff, it’s not enough
to be able to search for awkwardness—it has to leap out at you as you travel the code. In-
deed, I’m happy that Kevin and Bill—like most who write about refactoring—describe
awkwardness as “code smells.” That’s because smell is probably the most powerful, prim-
itive, and least controllable of senses. When you open up a container and the smell of
rotting meat hits your brain, you move. You act. The smell of rotting code should do the
same, but it will only do so after practice blazes well-worn trails through your brain.

So: DO THE EXERCISES.

The reason this book will be valuable to you forevermore is that computers are strik-
ingly unsuited to most problems that need solving. They pigheadedly insist that we
squeeze every last drop of ambiguity out of a world that’s fl ooded with it. That’s a ridicu-
lous … impossible … inhuman demand that we put up with only because computers
are so fast. As a result of this fundamental mismatch—this requirement that we make up
precision—it takes us a long time to craft a program that works well in the world.

The humble and effective way to arrive at such a program is to put a fl edgling ver-
sion out into the world, watch what happens, and then reshape it (the program, not
the world—although people try that too) to make the mismatch less awkward. (And
then do it again, and again.) That’s an intellectual adventure, especially when you spot
concepts implicit in the code that no one’s ever quite recognized before, concepts that
suddenly open up vast new possibilities and require only a few … well, maybe more
than a few … minor … well, maybe not so minor … changes.

Without refactoring, and the style it promotes and supports, the changes the pro-
gram needs will be too daunting too often. With it, you need nevermore look at a pro-
gram with that familiar sense of hopeless dread.

And won’t that be nice?
—Brian Marick

July 4, 2009

From the Library of Lee Bogdanoff

ptg

Preface

I work mostly as an agile/XP/TDD coach, mostly working with teams developing C++
or C# or Java applications, mostly for Microsoft Windows platforms. Early in any en-
gagement I will inevitably recommend that everyone on the team work through William
Wake’s Refactoring Workbook [26], which I consider to be far and away the best book
for any developer who wants to learn to write great code. A short while later in every
engagement—and having a UNIX background myself—I urge everyone on the team
to improve their project automation skills by adopting a scripting language. I always
recommend Ruby because it’s easy to learn and object-oriented, and I generally recom-
mend new teams to read Brian Marick’s Everyday Scripting with Ruby [20] as a starter.

Finally, one day in the summer of 2007, it dawned on me that there was one great
book that I couldn’t recommend, one that would combine those two facets of all of my
projects, but one that hadn’t yet been written—a Refactoring Workbook for Ruby. So I
contacted Bill Wake and suggested we write one, and you’re now reading the result.

Compared with Bill’s original Java Refactoring Workbook, this Ruby edition has a
similar overall structure but is otherwise a substantial rewrite. We have retained the
core smells, added a few more, and reworked them to apply to Ruby’s more dynamic
environment. We have replaced all of the code samples, and replaced or revised all of
the exercises. We have also rewritten much of the introductory material, principally to
refl ect the rise in importance of test-driven development during the last fi ve years.

In short, we have tried to create a stand-alone Ruby refactoring workbook for the
modern developer, and not a Java book with Ruby code samples. I hope we’ve come
reasonably close to that goal.

—Kevin Rutherford
Summer 2009

What Is This Book About?
Refactoring is the art of improving the design of existing code and was introduced to the
world by Martin Fowler in Refactoring [14]. Fowler’s book provides dozens of detailed
mechanical recipes, each of which describes the steps needed to change one (usually small)
aspect of a program’s design without breaking anything or changing any behavior.

xix

From the Library of Lee Bogdanoff

ptg

xx Preface

But to be skilled in refactoring is to be skilled not only in safely and gradually chang-
ing code’s design, but also in fi rst recognizing where code needs improvement. The agile
community has adopted the term code smell to describe the anti-patterns in software
design, the places where refactoring is needed.

The aim of this book, then, is to help you practice recognizing the smells in exist-
ing Ruby code and apply the most important refactoring techniques to eliminate those
smells. It will also help you think about how to design code well and to experience the
joy of writing great code.

To a lesser extent this book is also a reference work, providing a checklist to help
you review for smells in any Ruby code. We have also described the code smells using a
standard format; for each smell we describe

What to Look For: cues that help you spot it•

Why This Is a Problem: the undesirable consequences of having code with this •
smell

When to Leave It: the trade-offs that may reduce the priority of fi xing it•

How It Got This Way: notes on how it happened•

What to Do: refactorings to remove the smell•

What to Look for Next: what you may see when the smell has been removed•

This should help keep the smell pages useful for reference even when you’ve fi n ished
the challenges.

This book does not attempt to catalog or describe the mechanics of refactorings in
Ruby. For a comprehensive step-by-step guide to Ruby refactoring recipes, we recom mend
Refactoring, Ruby Edition, by Jay Fields, Shane Harvie, and Martin Fowler [11], which is
a Ruby reworking of Fowler’s Refactoring. It is also not our intention to de scribe smells in
tests; these are already covered well by Gerard Meszaros in XUnit Test Patterns [22].

Who Is This Book For?
This book is intended for practicing programmers who write and maintain Ruby code
and who want to improve their code’s “habitability.” We have tried to focus primarily
on the universal principles of good design, rather than the details of advanced Ruby-fu.
Nevertheless, we do expect you to be familiar with most aspects of the Ruby language,
the core classes, and the standard libraries. For some exercises you will also need an ex-
isting body of Ruby code on hand; usually this will be from your own projects, but you
could also use open source code in gems or downloaded applications. Familiarity with

From the Library of Lee Bogdanoff

ptg

Preface xxi

refactoring tools or specifi c IDEs is not assumed (but the examples in this book will
provide great help if you wish to practice using such tools).

As mentioned above, it will be helpful to have Fields et al., Refactoring, Ruby Edition
[11], handy as you work through the exercises. In addition to the mechanics of refactor-
ings, we frequently refer to design patterns, particularly those cataloged by Gamma et al.
[16]; you may also fi nd it useful to have available a copy of Russ Olsen’s Design Patterns
in Ruby [24].

What’s in This Book?
This book is organized into three sections.

Part I, “The Art of Refactoring,” provides an overview of the art of refactoring. We
begin with an example; Chapter 1, “A Refactoring Example,” takes a small Ruby script
containing some common smells and refactors it toward a better design. Chapter 2,
“The Refactoring Cycle,” takes a brief look at the process of refactoring—when and how
to refactor with both legacy code and during test-driven development—while Chapter
3, “Refactoring Step by Step,” looks in detail at the tools used and steps taken in a single
refactoring. Finally, Chapter 4, “Refactoring Practice,” suggests some ex ercises that you
can apply in your own work and provides suggestions for further reading.

Part II, “Code Smells,” is the heart of the book, focusing on Ruby code smells. Each
chapter here consists of descriptions of a few major code smells, followed by a number of
exercises for you to work through. The challenges vary; some ask you to analyze code, oth-
ers to assess a situation, others to revise code. Not all challenges are equally easy. The harder
ones are marked “Challenging”; you’ll see that these often have room for variation in their
answers. Some exercises have solutions (or ideas to help you fi nd solutions) in Appendix
A, “Answers to Selected Questions.” Where an exercise relies on Ruby source code you can
download it from www.refactoringinruby.info.

Part III, “Programs to Refactor,” provides a few “large” programs to help you prac-
tice refactoring in a variety of domains.

Part IV, “Appendices,” provides selected answers to exercises and brief descriptions
of currently available Ruby refactoring tools.

How to Use This Book
This is a workbook: Its main purpose is to help you understand the art of refactoring by
practicing, with our guidance. There’s an easy way to do the exercises: Read the exercise,
look up our solution, and nod because it sounds plausible. This may lead you to many
insights. Then there’s a harder but far better way to do the exercises: Read the exercise,

From the Library of Lee Bogdanoff

www.refactoringinruby.info

ptg

xxii Preface

solve the problem, and only then look up our solution. This has a much better chance
of leading you to your own insights. Solving a problem is more challenging than merely
recognizing a solution and is ultimately much more rewarding.

As you work through the problems, you’ll probably fi nd that you disagree with us on
some answers. If so, please participate in the community and discuss your opinions with
others. That will be more fun for all of us than if you just look at our answers and nod.
See Chapter 4, “Refactoring Practice,” to learn how to join the discussion.

We think it’s more fun to work with others (either with a pair-partner or in a small
group), but we recognize this isn’t always possible.

Almost all of the code examples need to be done at a computer. Looking for prob-
lems, and fi guring out how to solve them, is different when you’re looking at a program
in your environment. Hands-on practice will help you learn more, particularly where
you’re asked to modify code. Refactoring is a skill that requires practice.

Good luck!

Acknowledgments
Brian Marick has been a huge supporter of the original Refactoring Workbook project,
and an inspiration with his writing and teaching.

We’d like to thank our core reviewers: Pat Eyler, Micah Martin, Russ Olsen, and
Dean Wampler. Their encouragement and suggestions really helped us along the way.

Our involvement in this writing project has placed demands and strains on our
families, and we both thank them deeply for their endless patience and support.

Kevin thanks the many people who read drafts of various chapters and provided re-
actions and feedback, notably Lindsay McEwan; and many thanks to Ashley Moran for
pushing the development of Reek, and for introducing lambdas into the Robot tests.

Bill thanks his friends Tom Kubit and Kevin Bradtke for being sounding boards on
agile software and other ideas. (Tom gets a double nod for his reviews and discussion of
the earlier book.)

Finally, thanks to Chris Guzikowski, Chris Zahn, Raina Chrobak, Kelli Brooks,
Julie Nahil, and the others at Pearson who have helped us pull this together.

Contact Us
Feel free to contact us:

Kevin: kevin@rutherford-software.com

 http://www.kevinrutherford.co.uk

Bill: william.wake@acm.org

 http://xp123.com

From the Library of Lee Bogdanoff

http://www.kevinrutherford.co.uk

http://xp123.com

ptg

About the Authors

William C. Wake is a senior consultant with Industrial Logic, Inc. From 2007 to early
2009, he managed development at Gene Codes Forensics, Inc., a producer of bioin-
formatics software. From 2001 through 2006, he was an independent consultant fo-
cused on agile software. He’s the author of the Refactoring Workbook (Addison-Wesley,
2004) and coauthor of Design Patterns in Java (Addison-Wesley, 2006). His web site
is www.xp123.com.

Kevin Rutherford, Ph.D., is an independent agile and TDD coach based in the
United Kingdom. He has worked in software development for more than 25 years,
and since 1997 has been coaching organizations to become highly responsive service
providers. He founded the U.K.’s AgileNorth group and is regularly involved on the
agile conference circuit. His working practices focus on use of the Theory of Con-
straints and code quality, and he is the author of the Reek tool for Ruby. His web site
is www.kevinrutherford.co.uk.

xxiii

From the Library of Lee Bogdanoff

www.xp123.com

www.kevinrutherford.co.uk

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

PART I
The Art of
Refactoring

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

3

CHAPTER 1

A Refactoring Example

Rather than start with a lot of explanation, we’ll begin with a quick example of refactoring
to show how you can identify problems in code and systematically clean them up. We’ll
work “at speed” so you can get the feel of a real session. In later chapters, we’ll touch on
theory, provide deeper dives into problems and how you fi x them, and explore moderately
large examples that you can practice on.

Sparkline Script
Let’s take a look at a little Ruby script Kevin wrote a while back. The script generates a
sparkline (a small graph used to display trends, without detail) and does it by generating
an SVG document to describe the graphic. (See Figure 1.1.)

The original script was written quickly to display a single sparkline to demonstrate
the trends that occur when tossing a coin. It was never intended to live beyond that
single use, but then someone asked Kevin to generalize it so that the code could be used
to create other sparklines and other SVG documents. The code needs to become more
reusable and maintainable, which means we’d better get it into shape.

-48

Figure 1.1 A sparkline

From the Library of Lee Bogdanoff

ptg

4 Chapter 1: A Refactoring Example

Here’s the original code:

NUMBER_OF_TOSSES = 1000

BORDER_WIDTH = 50

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

def spark(centre_x, centre_y, value)

 "<rect x=\"#{centre_x-2}\" y=\"#{centre_y-2}\"

 width=\"4\" height=\"4\"

 fill=\"red\" stroke=\"none\" stroke-width=\"0\" />

 <text x=\"#{centre_x+6}\" y=\"#{centre_y+4}\"

 font-family=\"Verdana\" font-size=\"9\"

 fill=\"red\" >#{value}</text>"

end

$tosses = values(NUMBER_OF_TOSSES)

points = []

$tosses.each_index { |i| points << "#{i},#{200-$tosses[i]}" }

data = "<svg xmlns=\"http://www.w3.org/2000/svg\"

 xmlns:xlink=\"http://www.w3.org/1999/xlink\" >

 <!-- x-axis -->

 <line x1=\"0\" y1=\"200\" x2=\"#{NUMBER_OF_TOSSES}\" y2=\"200\"

 stroke=\"#999\" stroke-width=\"1\" />

 <polyline fill=\"none\" stroke=\"#333\" stroke-width=\"1\"

 points = \"#{points.join(' ')}\" />

 #{spark(NUMBER_OF_TOSSES-1, 200-$tosses[-1], $tosses[-1])}

</svg>"

puts "Content-Type: image/svg+xml

Content-Length: #{data.length}

#{data}"

Forty lines of code, and what a mess! Before we dive in and change things, take a
moment to review the script. Which aspects of it strike you as convoluted, or unreadable,
or even unmaintainable? Part II, “Code Smells,” of this book lists over forty common
code problems: Each kind of problem is known as a code smell, and each has very specifi c

5

10

15

20

25

30

35

40

From the Library of Lee Bogdanoff

ptg

Spa rkline Script 5

characteristics, consequences, and remedies. For the purposes of this quick refactoring
demonstration, we’ll use the names of these smells (so that you can cross-reference with
Part II, “Code Smells,” if you wish), but otherwise we just want to get on with fi xing the
code. Here are the more obvious problems we noticed in the code:

Comments:• There’s a comment in the SVG document (line 29). As a comment in
the SVG output that’s not a bad thing, because the SVG is quite opaque. But it also
serves to comment the Ruby script, which suggests that the string is too complex.

Inconsistent Style:• Part of the SVG document is broken out into a separate method
(line 34), whereas most is built inline in the data string.

Long Parameter List:• Strictly speaking, the list of properties of the XML elements
aren’t Ruby parameters. But they are long lists, and we feel sure they will cause
problems later.

Uncommunicative Name:• The code uses data as the name of the SVG document,
i as an iterator index (line 25), a as the name of an array (line 9), and n as the num-
ber of array elements (line 8).

Dead Code:• The constant BORDER_WIDTH (line 2) is unused.

Greedy Method:• toss tosses a coin and also scales it to be –2 or +2.

Derived Value:• Most of the numbers representing SVG coordinates and shape sizes
could probably be derived from the number of tosses and the sparkline’s max and
min values.

Duplicated Code:• The text markers for the start and end tags of XML elements
are repeated throughout the code; the calculation 200-tosses[x] is repeated
(lines 25, 34).

Data Clump:• The SVG components’ parameters include several x-y pairs that rep-
resent points on the display canvas (lines 15, 18, 30). Some have further parameters
that go to make up a rectangle (lines 16, 30). Strictly, these are parameters to SVG
elements, and this is therefore a problem in the defi nition of SVG.

Global Variable:• Why is tosses a global variable at all?

Utility Function:• One might argue that all of the methods here (lines 4, 8, 14) are
Utility Functions.

Greedy Module:• The script isn’t a class, as such, but it does have multiple respon-
sibilities: Some of the script deals with tossing coins, some deals with drawing pic-
tures, and some wraps the SVG document in an HTTP message.

Divergent Change:• The data string (lines 27–35) is probably going to need to be
different for almost every imaginable variation on this script.

From the Library of Lee Bogdanoff

ptg

6 Chapter 1: A Refactoring Example

Reinvented Wheel:• There are already Ruby libraries for manipulating XML ele-
ments, and even for creating SVG documents.

Which should we address fi rst? When faced with a long to-do list of code smells it’s
easy to feel a little intimidated. It’s important to remember at this stage that we can’t fi x
everything in one sitting; we’ll have to proceed in small, safe steps. We also want to avoid
planning too far ahead—the code will change with every step, and right now it would
be a futile waste of energy to attempt to visualize what the code might be like even a few
minutes from now.

So in the next few sections we’re simply going to address the smells that strike us as
“next” on the to-do list, without regard to what “next” might mean, or to what will hap-
pen after that. It is entirely likely that you would address the smells in a different order,
and that’s just fi ne; experience suggests that we’re likely to fi nish up at approximately
the same place later.

First, let’s tidy up a little.

Consistency
We can easily remove the Dead Code and change the Global Variable; at the same
time we’ll create a simple method for each SVG element type we use, and convert those
quoted strings too:

NUMBER_OF_TOSSES = 1000

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

def rect(centre_x, centre_y)

 %Q{<rect x="#{centre_x-2}" y="#{centre_y-2}"

 width="4" height="4"

 fill="red" stroke="none" stroke-width="0" />"}

end

From the Library of Lee Bogdanoff

ptg

Consistency 7

def text(x, y, msg)

 %Q{<text x="#{x}" y="#{y}"

 font-family="Verdana" font-size="9"

 fill="red" >#{msg}</text>"}

end

def line(x1, y1, x2, y2)

 %Q{<line x1="#{x1}" y1="#{y1}" x2="#{x2}" y2="#{y2}"

 stroke="#999" stroke-width="1" />}

end

def polyline(points)

 %Q{<polyline fill="none" stroke="#333" stroke-width="1"

 points = "#{points.join(' ')}" />"}

end

def spark(centre_x, centre_y, value)

 "#{rect(centre_x, centre_y)}

 #{text(centre_x+6, centre_y+4, value)}"

end

tosses = values(NUMBER_OF_TOSSES)

points = []

tosses.each_index { |i| points << "#{i},#{200-tosses[i]}" }

data = %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <!-- x-axis -->

 #{line(0, 200, NUMBER_OF_TOSSES, 200)}

 #{polyline(points)}

 #{spark(NUMBER_OF_TOSSES-1, 200-tosses[-1], tosses[-1])}

</svg>}

puts "Content-Type: image/svg+xml

Content-Length: #{data.length}

#{data}"

The overall Greedy Module is now somewhat more apparent, as we have more
methods dealing with SVG elements now. However, note that each of the methods we
just added is also a Greedy Method, because each knows something about an SVG ele-
ment and something about how we want the sparkline to look. So we’ve traded some
problems for others, and that’s a very subjective process.

From the Library of Lee Bogdanoff

ptg

8 Chapter 1: A Refactoring Example

Tes tability
We changed quite a lot of code there, and each time we extracted a method we re-ran the
script to make sure we hadn’t broken the sparkline. But the HTTP wrapper (lines 52–54)
forces us into a particularly unfriendly test environment. So to improve testability, we’ll
delete that HTTP wrapper and simply replace it with:

 puts data

More on testing as we proceed, but for now that little change makes it easier to run
sparky.rb.

Greedy Methods
Each of the SVG drawing methods we extracted is greedy, because they know about
SVG and sparkline formatting. We want to address that next, because those two kinds
of knowledge are likely to cause change at different rates in the future.

We’ll begin with rect: we passed in two parameters from the caller, but to make this
method fully independent of the sparklines application we need to pass in 5 more:

def rect(centre_x, centre_y, width, height,

 fill, stroke, stroke_width)

 %Q{<rect x="#{centre_x}" y="#{centre_y}"

 width="#{width}" height="#{height}"

 fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}" />}

end

This is ugly, but right now it’s what the code seems to want. We’re trading one smell
for another again here, but little bits of fl exibility and maintainability are created as
by-products.

The caller changes to match:

SQUARE_SIDE = 4

def spark(centre_x, centre_y, value)

 "#{rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, 'red', 'none', 0)}

 #{text(centre_x+6, centre_y+4, value)}"

end

The changes to spark made some Derived Values apparent, so we also took the op-
portunity to fi x that by introducing a constant for the size of the little red square.

From the Library of Lee Bogdanoff

ptg

Greedy Module 9

We can now introduce extra parameters to text, line, and polyline in the same
way:

def text(x, y, msg, font_family, font_size, fill)

 %Q{<text x="#{x}" y="#{y}"

 font-family="#{font_family}" font-size="#{font_size}"

 fill="#{fill}" >#{msg}</text>}

end

def line(x1, y1, x2, y2, stroke, stroke_width)

 %Q{<line x1="#{x1}" y1="#{y1}" x2="#{x2}" y2="#{y2}"

 stroke="#{stroke}" stroke-width="#{stroke_width}" />}

end

def polyline(points, fill, stroke, stroke_width)

 %Q{<polyline fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}"

 points = "#{points.join(' ')}" />}

end

The calling code changes to match, for example:

SQUARE_SIDE = 4

SPARK_COLOR = 'red'

def spark(centre_x, centre_y, value)

 "#{rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 #{text(centre_x+6, centre_y+4, value,

 'Verdana', 9, SPARK_COLOR)}"

end

Note that we have again traded problems. The four drawing methods are no lon-
ger greedy, but now their callers know some SVG magic (color names, font names,
and drawing element dimensions). This kind of trading is a completely natural part of
refactoring, as we create areas of stability within the code. We’ll return to address this
Inappropriate Intimacy (General Form) later.

Greedy Module
That may not be the last we see of Greedy Methods, but code changes in the previous
section have highlighted another of the problems in the original code: There’s now an
even clearer distinction between code that knows how to write an SVG document and
code that knows what a sparkline should look like.

From the Library of Lee Bogdanoff

ptg

10 Chapter 1: A Refactoring Example

To fi x that, we’re going to extract a module for the SVG methods. We’ll put it in a
new source fi le called svg.rb:

module SVG

 def self.rect(centre_x, centre_y, width, height, fill,

 stroke, stroke_width)

 %Q{<rect x="#{centre_x}" y="#{centre_y}"

 width="#{width}" height="#{height}"

 fill="#{fill}" stroke="#{stroke}"

 stroke-width="#{stroke_width}" />}

 end

 # etc...

end

A quick glance at this module shows that the Data Clumps and Long Parameter
Lists we predicted are now a reality. (And in fact, each of these SVG elements can take
more parameters than we have provided here, so the problem is much worse than it
seems.) Note also that we haven’t yet moved all of the XML into the SVG module, but
to do that we’ll have to decide how to deal with nested XML elements. We want to make
the calling script a little clearer before diving into the design of the SVG interface.

Comments
There’s a comment in the SVG document generated by the script:

 <!-- x-axis -->

The comment is there because it’s diffi cult to match the magic SVG words and sym-
bols to the format and structure of a sparkline. We don’t like commenting source code,
but we have no problem creating a self-documenting SVG document, so we’re happy
to keep the comment. The problem is that one comment isn’t enough; the output SVG
needs to have a few more! Worse, the script doesn’t communicate the sparkline’s struc-
ture to us, its readers, and so we could easily break it accidentally in the future. We’ll
fi x both of these issues by extracting a method for each component of the sparkline’s
structure:

def sparkline(points)

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

From the Library of Lee Bogdanoff

ptg

Whole Objects 11

def spark(centre_x, centre_y, value)

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, value,

 'Verdana', 9, SPARK_COLOR)}"

end

def x_axis(points)

 "<!-- x-axis -->

 #{SVG.line(0, 200, points.length, 200, '#999', 1)}"

end

While extracting x_axis we also removed its dependency on the constant NUMBER_
OF_TOSSES. In fact, we now see no reason for the constant to exist; we’ll inline it in the
call to values, and recalculate its value in the call to spark:

tosses = values(1000)

#...

data = %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(points)}

 #{sparkline(points)}

 #{spark(tosses.length-1, 200-tosses[-1], tosses[-1])}

</svg>}

Whole Objects
Leaving aside the horrors of that last string for a moment, look inside it at the call to spark:
We have a Long Parameter List in which every parameter is calculated from tosses.
Let’s use Preserve Whole Object by pushing those calculations into the spark method:

def spark(y_values)

 final_value = y_values[-1]

 centre_x = y_values.length-1

 centre_y = 200 - final_value

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, final_value,

 'Verdana', 9, SPARK_COLOR)}"

end

From the Library of Lee Bogdanoff

ptg

12 Chapter 1: A Refactoring Example

spark’s parameter could represent coin tosses, stock prices, or temperatures, so we
renamed it while we remembered.

Now take another look at x_axis—it only cares how many y-values there are, but it
isn’t interested in the points. We can pass in the y-values instead:

 def x_axis(y_values)

 "<!-- x-axis -->

 #{SVG.line(0, 200, y_values.length, 200, '#999', 1)}"

end

This means that the only code that cares about points is the sparkline method. We
can move the calculation of points into that method:

def sparkline(y_values)

 points = []

 y_values.each_index { |i| points << "#{i},#{200-y_values[i]}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

And so fi nally (and after a little tidying up), the creation of the SVG document looks
like this:

puts %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(tosses)}

 #{sparkline(tosses)}

 #{spark(tosses)}

 </svg>}

Feature Envy
Look again at that sequence of method calls taking tosses as the single parameter.
That chunk of code has more affi nity with the tosses array than it does with the rest
of the script. Same goes for the three methods spark, sparkline, and x_axis—they all
do more with the array of y_values than they do with anything else. There’s a missing
class here, one whose state is the array, and which has methods that know how to draw
the pieces of a sparkline. Instances of this missing class represent sparklines, so fi nding a
name for it is easy. First, we’ll create a simple stub to hold the array:

class Sparkline

 attr_reader :y_values

From the Library of Lee Bogdanoff

ptg

Feature Envy 13

 def initialize(y_values)

 @y_values = y_values

 end

end

Then we’ll update the fi nal puts call to use it:

sp = Sparkline.new(values(1000))

puts %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis(sp.y_values)}

 #{sparkline(sp.y_values)}

 #{spark(sp.y_values)}

 </svg>}

Now we’re going to move the three methods (and that huge string) onto the new
class. In real life we would do them one by one, testing as we go; but for the sake of
brevity here let’s cut to the fi nal state of the new class:

class Sparkline

 def initialize(y_values)

 @y_values = y_values

 end

 def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 #{x_axis}

 #{sparkline}

 #{spark}

 </svg>}

 end

private

 def x_axis

 "<!-- x-axis -->

 #{SVG.line(0, 200, y_values.length, 200, '#999', 1)}"

 end

 def sparkline

 points = []

 y_values.each_index { |i| points << "#{i},#{200-y_values[i]}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

 end

 SQUARE_SIDE = 4

 SPARK_COLOR = 'red'

From the Library of Lee Bogdanoff

ptg

14 Chapter 1: A Refactoring Example

 def spark

 final_value = y_values[-1]

 centre_x = y_values.length-1

 centre_y = 200 - final_value

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, final_value,

 'Verdana', 9, SPARK_COLOR)}"

 end

end

Notice that the attr_reader for y_values is no longer necessary, so we deleted it.
The public accessor was needed in the early phases of that refactoring step so that we
could introduce the new class without breaking any other code. But after the methods
had all migrated into the new class, the array is used only internally, and thus can be
hidden.

For completeness, here’s what remains of the original script:

require 'sparkline'

def toss

 2 * (rand(2)*2 - 1)

end

def values(n)

 a = [0]

 n.times { a << (toss + a[-1]) }

 a

end

puts Sparkline.new(values(1000)).to_svg

Uncommunicative Names
Now the script is so short, the Uncommunicative Names really stand out. Here’s an
alternative version with better names for anything we thought wasn’t communicating
clearly:

 require 'sparkline'

def zero_or_one() rand(2) end

From the Library of Lee Bogdanoff

ptg

Derived Values 15

def one_or_minus_one

 (zero_or_one * 2) - 1

end

def next_value(y_values)

 y_values[-1] + one_or_minus_one

end

def y_values

 result = [0]

 1000.times { result << next_value(result) }

 result

end

puts Sparkline.new(y_values).to_svg

While fi xing the names we discovered a 2 being used to scale the sparkline vertically;
we removed it in the interest of honest statistics. We fi nd defects often during the course
of refactoring. Usually this is because the process of refactoring has revealed something
that previously wasn’t obvious. It’s okay to fi x these defects, provided you consciously
switch hats for a few moments while doing so.

Derived Values
Now it’s time to tackle all those Derived Values we noticed right at the outset. They have
all migrated into Sparkline, which is nicely convenient. I’ll begin with the 200s: The
x-axis is drawn halfway down the canvas, at y-coordinate 200, and so every y_value is
scaled vertically by 200. (Y-coordinates increase down the page; so point (0, 0) is at the
top-left corner and point (0, 200) is 200 drawing units below that.) In fact, 200-y does
two things: It translates the line vertically downward by 200 units and it fl ips the line
over so that positive y-values appear above negative y-values. These are transforms of the
image: Refl ection followed by translation. SVG (currently) has no refl ection transform,
but it does offer translation, and we feel we’ll get simpler Ruby code if we use it. First,
then, we’ll invert the sparkline’s y-values in the constructor:

 def initialize(y_values)

 @height_above_x_axis = y_values.max

 @height_below_x_axis = y_values.min

 @final_value = y_values[-1]

 @y_values = reflect_top_and_bottom(y_values)

end

def reflect_top_and_bottom(y_values)

 y_values.map { |y| -y }

end

From the Library of Lee Bogdanoff

ptg

16 Chapter 1: A Refactoring Example

and change sparkline and spark correspondingly:

def sparkline

 points = []

 y_values.each_index { |i| points << "#{i},#{y_values[i] + 200}" }

 "<!-- sparkline -->

 #{SVG.polyline(points, 'none', '#333', 1)}"

end

def spark

 centre_x = y_values.length-1

 centre_y = y_values[-1] + 200

 "<!-- spark -->

 #{SVG.rect(centre_x-(SQUARE_SIDE/2), centre_y-(SQUARE_SIDE/2),

 SQUARE_SIDE, SQUARE_SIDE, SPARK_COLOR, 'none', 0)}

 <!-- final value -->

 #{SVG.text(centre_x+6, centre_y+4, @final_value,

 'Verdana', 9, SPARK_COLOR)}"

end

Next, we use an SVG transform to move the whole graphic down the screen by 200
units:

def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,200)">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

And now we can remove those magic 200s from the drawing methods. For example,
x_axis now becomes

def x_axis

 "<!-- x-axis -->

 #{SVG.line(0, 0, y_values.length, 0, '#999', 1)}"

end

We now have more SVG magic—the <g> element—in the code, but also there is less
duplication, and we consider that much more important.

We have now removed all but one of the magic 200s; before going any further, we
want to document its meaning:

From the Library of Lee Bogdanoff

ptg

Wabi-Sabi 17

def to_svg

 height_above_x_axis = 200

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,#{height_above_x_axis})">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

It is now clear that the 200 is simply a guess as to what a reasonable value might be. If
the sparkline’s y-values stray outside of the range –200..200 we’ll fi nd the line disappears
off the edge of the graphic. We spoke to our customer just now, and he agrees that we
should replace the 200 with the maximum y-value:

def to_svg

 %Q{<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <g transform="translate(0,#{height_above_x_axis})">

 #{x_axis}

 #{sparkline}

 #{spark}

 </g>

 </svg>}

end

def initialize(y_values)

 @height_above_x_axis = y_values.max

 @final_value = y_values[-1]

 @y_values = reflect_top_and_bottom(y_values)

end

Wabi-Sabi
We’ve made a number of refactoring changes to the code, and in the process its structure
has altered a great deal. Have we fi nished? No, and in a sense we never will. Software
can never be perfect, and there’s usually little point in chasing down that last scintilla of
design perfection. Any code will always be a “work in progress”—the important thing is
to have removed the major problems, and to know what slight odors remain.

The title of this section is also the name of the Japanese artistic style that celebrates the
incomplete, the unfi nished, and the transitory. Try to become used to thinking of your
code as a process and not simply an artifact; aim for better, not best. Read more in Leonard
Koren’s Wabi-Sabi: For Artists, Designers, Poets and Philosophers [19], for example.

From the Library of Lee Bogdanoff

ptg

18 Chapter 1: A Refactoring Example

Summing Up
Here ’s the current state of the main script after the refactorings:

require 'sparkline'

def zero_or_one() rand(2) end

def one_or_minus_one

 (zero_or_one * 2) - 1

end

def next_value(y_values)

 y_values[-1] + one_or_minus_one

end

def y_values

 result = [0]

 1000.times { result << next_value(result) }

 result

end

puts Sparkline.new(y_values).to_svg

(You can get complete copies of the “before” and “after” states of the code from
our download, which you can fi nd online at http://github.com/kevinrutherford/
rrwb-code.)

The code still has some smells: sparkline.rb still knows too much about SVG;
svg.rb still has long parameter lists; and the functionality of the SVG module du-
plicates that of a standard Ruby library. Notice also that the code has expanded from
40 lines to 100, and from one source fi le to three—all without increasing the script’s
functionality.

Overall, though, the code is much more readable and maintainable than it was be-
fore. We have traded size for fl exibility, and in the future it will be much easier to reuse
any of the various parts of this code. This is a reasonable place to stop for now.

What’s Next
No w that we’ve seen a quick example of how refactoring can improve code, we’ll look at
how refactoring fi ts into the development process, and then consider different problems
in code and examples of how to address them.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code

http://github.com/kevinrutherford/rrwb-code

ptg

19

CHAPTER 2

The Refactoring Cycle

In this chapter, we’ll define refactoring and code smells. Then we’ll look at the funda-
mental cycle of how to improve code with refactoring. Rules for simple design will tell
us when we’ve done enough. We’ll close with a look at how refactoring is a key part of
test-driven development.

What Is Refactoring?
Refactoring is the art of safely improving the design of existing code. In Refactoring [14],
Martin Fowler describes it thus:

“Refactoring is the process of changing a software system in such a way that it does not alter the
external behavior of the code yet improves its internal structure.”

This has a few implications:

Refactoring does not include just any changes in a system:• Although refactoring should
always be part of the process used to create new code, it’s not the part that adds
new features. Test-driven development, for example, consists of writing a test, then
writing new code to introduce new features, and, finally, refactoring to improve the
design.

Refactoring is not rewriting from scratch:• Although there are times when it’s better
to start fresh, refactoring changes the balance point, making it possible to improve
code rather than take the risk of rewriting it. Sven Gorts points out (private commu-
nication) that refactoring preserves the knowledge embedded in the existing code.

Refactoring is not just any restructuring intended to improve code:• Refactorings strive
to be safe transformations. Even big refactorings that change large amounts of code

From the Library of Lee Bogdanoff

ptg

20 Chapter 2: The Refactoring Cycle

are divided into smaller, safe refactorings. (In the best case, refactorings are so well
defined that they can be automated.) We won’t regard a change as refactoring if it
leaves the code not working (that is, not passing its tests) for longer than a working
session.

Refactoring supports emergent design:• Refactoring changes the balance point between
up-front design and emergent design. Up-front design is design done in advance
of implementation; emergent design is design intertwined with implementation.
The trade-off between up-front and emergent design hinges on how well we can
anticipate problems or assess them in code, and whether it’s easier to design and then
translate to code or to code and then improve. Refactoring lowers the cost and risk of
the emergent approach. (You might argue about where the line is, but you probably
agree that it shifts.)

Refactorings can be small or large: • Many refactorings are small. Ideally, small refac-
torings are applied “mercilessly” enough that large refactorings are rarely needed.
Even when applying large-scale refactorings, the approach is not no new features for
six months while we refactor, but rather, refactor as we go, and keep the system running
at all times.

Smells Are Problems
Code smells are warning signs about potential problems in code. Not all smells indicate
a problem, but most are worthy of a look and a decision.

Some people dislike the term smell, and prefer to talk about potential problems or
flaws, but we think smell is a good metaphor. Think about what happens when you
open a fridge that has a few things going bad inside. Some smells will be strong, and it
will be obvious what to do about them. Other smells will be subtler; you won’t be sure
if the problem is caused by the leftover peas or last week’s milk. Some food in the fridge
may be bad without having a particularly bad smell. Code smells are a bit like that:
Some are obvious, some aren’t. Some mask other problems. Some go away unexpectedly
when you fix something else.

Smells usually describe localized problems. It would be nice if people could find
problems easily across a whole system. But humans aren’t so good at that job; local
smells work with our tendency to consider only the part we’re looking at right now.

Finally, remember that a smell is an indication of a potential problem, not a guaran-
tee of an actual problem. You will occasionally find false positives—things that smell to
you, but are actually better than the alternatives. But most code has plenty of real smells
that can keep you busy.

From the Library of Lee Bogdanoff

ptg

When Are We Done? 21

The Refactoring Cycle
There’s a basic pattern for refactoring:

The Refactoring Cycle
start with working, tested code
while the design can be simplifi ed:

 choose the worst smell

 select a refactoring that will address the smell

 apply the refactoring

 check that the tests still pass

We try to select refactorings that improve the code in each trip through the cycle.
Because none of the steps change the program’s observable behavior, the program re-
mains in a working state. Thus, the cycle improves code but retains behavior. The tricki-
est part of the whole process is identifying the smell, and that’s why the bulk of this book
emphasizes that topic.

Is this approach to refactoring guaranteed to get to the ideal design for a problem?
Unfortunately, no, as there’s no guarantee that you can reach a global maximum by
looking at local properties. But it’s easier to get design insights that transform a solution
when the code is as clean as possible.

Refactoring is like crossing a stream. One way to cross a stream is to take a running
leap and hope for the best. The refactoring way is to find stepping stones and to cross the
stream by stepping on one stone at a time; that way, you’re less likely to get wet.

When you start refactoring, it’s best to start with the easy stuff (for example, break-
ing up large methods or renaming things for clarity). You’ll find that this lets you see and
fix the remaining problems more easily.

When Are We Done?
How do we know when to stop refactoring and move on to more development? One
approach is to seek the “simplest” design. In Extreme Programming Explained [4] Kent
Beck identified four rules for simple design:

Simple Design:
1. Passes all the tests.

2. Communicates every intention important to the programmers.

3. Has no duplication of code, or of logic, or of knowledge.

4. Contains no unnecessary code.

From the Library of Lee Bogdanoff

ptg

22 Chapter 2: The Refactoring Cycle

If your code violates these rules (which are in priority order), you have a problem
to address. A shorthand name for these rules is OAOO, which stands for once and only
once. The code has to state something once so that it can pass its tests and communicate
the programmer’s understanding and intent. And it should say things only once—that
is, with no duplication.

Another name for the third rule is “Don’t Repeat Yourself,” or the DRY principle
[17]. Most of the smells cataloged in Part II, “Code Smells,” boil down to duplication of
some kind; and spotting it can be quite an art—be wary of hidden duplication, such as
parallel class hierarchies, for example. But duplication is occasionally acceptable, where
its existence helps the code communicate intent; after all, code will be read many more
times than it will be written.

It’s hard to clean up code that hasn’t been kept clean; few teams can afford to lock
the doors for months on a quest for perfection. But we can learn to make our code bet-
ter during development, and we can add a little energy each time we’re working in an
area.

Test-Driven/Behavior-Driven Development
Applying refactorings in the midst of a development episode can lead to confusion,
unsafe transformations, or, in the worst case, broken code. So it’s best to think of
development and refactoring as different: different skills, using different techniques, to be
performed at different times in the overall cycle. Think of development and refactoring
as different hats—you can only wear one of them at any time.

Test-driven development (TDD) and behavior-driven development (BDD) make
the distinction between the two hats very clear. They share the following microprocess:

The TDD/BDD Micro-Process
RED Write a new test/example and see it fail.
GREEN Get all tests passing again quickly, using the most naive approach you can see.
REFACTOR Transition to the simplest design that passes all current tests, by removing any

smells you just introduced.
(repeat) Go around again, aiming to be back here every few minutes or so.

The refactoring step is what makes this process sustainable. Without it the code
would quickly degenerate into the legacy spaghetti you’ve no doubt seen on many a
software development project. Well-factored code is easier to read and more amenable

From the Library of Lee Bogdanoff

ptg

What’s Next 23

to change; so the small investment in frequent refactoring steps is gradually repaid, with
compound interest, as the code grows.

Note that refactoring only occurs on a “green bar”—that is, when all tests are pass-
ing. (The tests act as a regression suite, ensuring that we can’t break any existing behavior
while we’re fixing the design.) Typically only a small amount of code will have been
changed or introduced in going from RED to GREEN. This is the code to be reviewed
for smells, although that review must be done in the context of the whole of the existing
codebase. To help with this part of the process we have included a code review checklist
on the inside covers of this book; we have also developed Reek, a free software tool that
warns about smells in Ruby code (see Appendix B, “Ruby Refactoring Tools,” for details
of this and other related tools).

We both use test-driven development as the core of our development process. Note
that the discipline of refactoring doesn’t require a test-driven approach, but code created
this way will typically have fewer errors and will need less of the big refactoring that
other code requires. In particular, the bigger examples in the last half of this book would
be much smaller and less smelly if they’d been done using test-driven development.

For a deeper introduction to TDD see the books by Dave Astels [1] and Kent Beck
[3]. For more on BDD see David Chelimsky et al.’s The RSpec Book: Behaviour Driven
Development with RSpec, Cucumber, and Friends [8].

Exercise

Exercise 2.1: Simple Design
A. Justify each of Beck’s rules for simple design.

B. Why are these rules in priority order? Can you find an example where commu-
nication overrides avoidance of duplication?

See page 215 for solution ideas.

What’s Next
That was a look at how refactoring fits into the overall process(es) of software develop-
ment. Next we’ll dive deep into what makes a single refactoring work, and the environ-
mental conditions that will help you do it safely.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

25

CHAPTER 3

Refactoring Step by Step

It’s time we looked in detail at the mechanics of refactoring. In this chapter we’ll work
through the steps involved in Hide Delegate; but first we need to review our tools.

The Refactoring Environment
Refactoring can be done on any code at any time, but it’s easier and safer with a support-
ive environment. Be sure to have most of the following tools ready at your side before
you begin refactoring:

Team or Partner: • For nontrivial decisions about code, it’s helpful to have more than
one person considering the problem. A team can often generate ideas better than
one person alone: Different people have different experiences and different exposure
to different parts of the system.

Tests: • Even though refactorings are designed to be safe, it’s possible to make a mistake
while applying them. By having a test suite that is run before and after refactoring,
you help ensure that you change the design of your code, not its effects.

“If you want to refactor, the essential precondition is having solid tests.”

—Martin Fowler, Refactoring [14]

 This is even more true for Ruby than it was when Fowler wrote it about refactoring
in Java. Because in Ruby there’s no compile step: The only way to find out whether
our code still works is to run it.

 What if you don’t have tests? Then add them, at least to the areas affected by the
refactoring. Sometimes this is tricky—you may be unable to test effectively without

From the Library of Lee Bogdanoff

ptg

26 Chapter 3: Refactoring Step by Step

changing the design, and yet it’s unsafe to change the design without tests. (If you
find yourself in this position, you may find the techniques in Michael Feathers’
Working Effectively with Legacy Code [10] helpful.) And note, by the way, that areas
that are tricky to test often indicate other problems in the design.

Testing Framework: • Test::Unit is installed as part of the standard Ruby distribution,
and rspec is available as a gem. It can also be very handy to have autotest run your
tests while you work.

 We have provided tests or rspec examples for most of the code samples used in the
exercises; you’ll find them in the download. Get into the habit of running them as
you review the code in each exercise.

CRC (Class, Responsibilities, Collaborators) Cards or UML Sketches:• Refactoring is de-
sign. Sometimes you may hold a CRC card session or draw Unified Modeling Lan-
guage (UML) sketches to compare alternative strategies, particularly when moving
responsibilities around among classes or modules. (For more detail on the CRC card
approach, see Kent Beck and Ward Cunningham’s article “A Laboratory For Teaching
Object-Oriented Thinking” [5]).

Configuration Management/Version Control:• If you make a mistake while refactoring,
you’d like to have the option to return to the last known good point. Alternatively,
you may want to apply a refactoring, but you may not be sure if the result will be an
improvement; it can be helpful to have the option to try it and then decide whether
to keep the result. Either way, it’s worth getting into the habit of committing your
code frequently (every time the tests all pass), and it’s worth making sure you have a
version control system that lets you do this.

Sophisticated Integrated Development Environment (IDE):• A few Ruby environments
now have growing support for automated refactoring tools (see Appendix B, “Ruby
Refactoring Tools,” for details of some of these). Tools can remove a lot of the error-
prone tedium of refactoring. But most refactorings have no tool support, and even
with automation you still have to decide which refactoring to apply.

Inside a Refactoring
One of the defining aspects of refactoring is the focus on safe transformations. We’ll
walk through a simple refactoring. Along the way we’ll derive some guidelines that will
help us better understand how refactorings work.

Consider the refactoring Hide Delegate. Its goal is to encapsulate the path to an ob-
ject, so that clients are decoupled from the implementation details of how to reach it.

From the Library of Lee Bogdanoff

ptg

Inside a Refactoring 27

Imagine we have

class Rectangle

 attr_reader :top_left, :width, :height

end

class Point

 attr_reader :x, :y

end

Any client code wishing to find the x-coordinate of a rectangle’s left edge will have
code fragments such as rect.top_left.x, and we may decide we want to hide this del-
egation. The Refactoring catalog tells us to take the following steps:

 1. Create a simple delegating method on the server

 2. For each client of the delegate:

(a) Adjust the client to call the server’s new method

(b) Test

 3. If no client needs to access the delegate any longer:

(a) Remove the server’s accessor for the delegate

(b) Test

Refactoring is a step-by-step process. The steps are smaller than you might initially
expect. Most refactorings tend to take from a minute to an hour to apply; the average is
a few minutes. So, if a refactoring takes a few minutes, the steps are even smaller.

The steps themselves are generally not refactorings, because many of them leave
the code in a broken or indeterminate state. Refactorings are behavior-preserving trans-
formations, whereas the steps in any specific refactoring may temporarily break the
code.

Step 1: Create a delegating method
We jump right in and create the method we need:

class Rectangle

 def left_edge

 @top_left.x

 end

end

From the Library of Lee Bogdanoff

ptg

28 Chapter 3: Refactoring Step by Step

Note that the clients of this class are unchanged: No code is calling this new method
yet. (If we were feeling particularly nervous, or if an interruption seemed imminent, we
could run our tests and check in the code at this point.)

Step 2: Adjust every client
One way to find the clients is to temporarily make the delegate private and run your
tests. (If you do this, put it back to public visibility before changing the clients so you
don’t break any clients.)

This is where a good suite of tests can prove invaluable, especially in a large code-
base. In a statically typed language such as Java or C# the compiler can tell you when
there’s a client using the now-private accessor. But in Ruby we are forced to rely on run-
time checks—and the best kind are self-checking automated tests—or on reading the
code. Refactoring tested code is significantly safer and faster than refactoring untested
code, because the tests help us avoid slips.

The test run shows us that the following client code needs to be changed:

class TranslationTest < Test::Unit::TestCase

 def test_translate_should_move_left_edge

 rect = Rectangle.new(Point.new(6.3, 5.0), 2.0, 2.0)

 rect.translate(-3.5, 1.0)

 assert_equal(2.8, rect.top_left.x)

 end

end

We replace the Message Chain with a call to the new delegating method:

def test_translate_should_move_left_edge

 rect = Rectangle.new(Point.new(6.3, 5.0), 2.0, 2.0)

 rect.translate(-3.5, 1.0)

 assert_equal(2.8, rect.left_edge)

end

Step 3: Test after adjusting each call
Even though refactorings have the goal of creating an improved system at the end of the
refactoring, many of them also have safe points along the way (think of bases in baseball
or the children’s game of tag; they may not be the ultimate destination, but at least you
can’t get tagged while you’re on the base).

From the Library of Lee Bogdanoff

ptg

Inside a Refactoring 29

So, although we’ve made only one very simple change, we can stop, run the tests,
and make sure we’re okay so far. At this moment we may have some “old-style” clients
and some “new-style” clients; our design embodies two different approaches in the
midst of refactoring, and the system is not as clean as it will be in the end. Nevertheless,
we have a green bar, we’re safe on a base, and so we could check in right now if neces-
sary, ready to pick up again tomorrow perhaps.

Imagine holding your breath while the system is in an unsafe state and then letting it
go when the tests run correctly. This mild tension and release feels so much better than
the feeling you get where you’re halfway through one thing and you realize you want
to do something else before you finish, and so on, and so on, until you’re juggling five
balls instead of one.

Large refactorings use this idea of bases as well. It’s even more important in large
refactorings. If it will take months to clean out the remnants of some decision, we must
have safe points along the way.

Step 4: Remove the server’s accessor
After we have changed all the relevant clients, we may discover that the accessor is

no longer used. We can shrink the server’s API by removing it:

class Rectangle

 attr_reader :top_left, :width, :height

 def left_edge

 @top_left.x

 end

end

becomes

class Rectangle

 attr_reader :width, :height

 def left_edge

 @top_left.x

 end

end

Step 5: Test again
We’ve reached another base, so we run the tests again and commit the code. At this
point we’ve finished applying Hide Delegate.

From the Library of Lee Bogdanoff

ptg

The Generic Refactoring Micro-Process
A book on refactoring may list 20 or 50 refactorings, however those are just a sample of
the common ones. You often create your own refactorings for a specific situation.

Many refactorings share the same abstract shape, which we can document as a
micro-process:

 1. Check whether the refactoring will run into any problems

 2. Introduce a new code element

 3. For each thing to migrate:

(a) Migrate one client of the old element to use the new one

(b) Test

 4. Delete the old element

 5. Test

This is a safe approach. The unsafe alternative is to change the old mechanism to use
the new one, migrate everything in one bound, and hope for the best.

Large refactorings—those composed of smaller refactorings—use this approach as
well. Indeed, it’s fundamental to large refactorings that they keep the system working
during a migration, as it could take hours, days, or even weeks.

There are a variety of ways for each of those steps (Check, Introduce, For each,
Migrate, Delete, Test) to be realized; we’ve noted some of the possibilities in the follow-
ing sections. These can be assembled to build up many new refactorings.

Check
These actions confirm that something is true.

Prove:• Prove (formally or informally) that the proposed refactoring is safe.

Look:• Look in the code to see if there is anything that would interfere with the
 refactoring to come. For example, you can’t rename f() to g() if g() already exists.

Assert:• Introduce an assertion, code that verifies that some condition is true as you
expect at a particular point. Use assertions in conjunction with tests, but recognize
that they can only verify the cases the tests cover.

30 Chapter 3: Refactoring Step by Step

From the Library of Lee Bogdanoff

ptg

Migrate 31

Introduce
These actions introduce a new element of some sort.

Add a new field, method, or class:• It will initially be unused, but it can be a target for
new usages. For example, you might create a new empty method that will soon get
code moved over from an existing method.

Introduce a new mechanism delegating to the old:• You can migrate things to use the
new method, then inline the old method into the new.

Introduce a new, independent mechanism:• Migrate from the old mechanism to the
new one.

Copy:• Copy code. For example, when you Extract Method, you copy the original
code to the newly created method. We are not advocating copy-and-paste program-
ming; two copies of the code will temporarily exist, but one will have been deleted
by the time we reach the end of this refactoring micro-process.

For each
This action lets you look at all occurrences of something.

Iterate• over all uses of the code you want to change. Depending on the type of
refactoring, this could involve calls, conditional branches, records, tables, methods,
fields, classes, references, and so on.

Migrate
These actions take you from an old way of doing something to the new way.

Move a user of the old mechanism to the new one:• For example, change a reference
from the old to the new.

Replace:• Replace something by its equivalent.

Adjust to a new context:• For example, the code used in Extract Method may need
declarations, parameters, etc. to be modified.

Rename:• Giving a code element a more meaningful or intention-revealing name.

From the Library of Lee Bogdanoff

ptg

32 Chapter 3: Refactoring Step by Step

Swap two independent things:• For example, two statements that have no possible ef-
fect on each other can be swapped. This can be used to harmonize code fragments
that would have the same text if it weren’t for slight differences in the order of state-
ments.

Propagate a constant:• When a “variable” has a constant value, replace the variable
with the constant.

Delete
These actions eliminate elements.

Delete dead code:• Get rid of code that can never be executed.

Delete code with no effects:• For example, eliminate an empty method or class.

Deprecate:• For code that can’t be deleted (because external uses must be accommo-
dated), mark it to discourage new uses.

Test
The Generic Refactoring micro-process has a test run after each turn through the loop,
and once again at the end. In practice, especially if you have comprehensive tests, you
can take some shortcuts. For example, if you’re moving a method you might have 25
references to it in the old place. You could move the first reference, test, move the second
reference, test, and then move ten more before testing again once you’re sure you have
the pattern. Whether you take this shortcut will depend on a combination of factors:
how long your tests take to run, how easily you can undo if you make a mistake, or how
hard it is for you to check in files.

When the tests pass, it’s usually worth checking in your code. Even if you are
only halfway through the steps in one refactoring, creating safe bases as you go can
significantly relieve the pressure to complete the task in one sitting.

It’s important to stress again: Refactoring is only safe in the presence of good tests.
Firstly because there’s no compiler or static type checks to tell you when some subtle,
but unwanted, typing error (pun intended) has occurred. And secondly because refac-
toring tools for Ruby are in their infancy, and even automated refactoring tools aren’t
perfect.

From the Library of Lee Bogdanoff

ptg

What’s Next 33

Exercises

Exercise 3.1: Small Steps
Pick any refactoring from Fields’ Refactoring, Ruby Edition [11] and identify a place
where the approach builds in small steps even though larger steps could work.

 See page 216 for solution ideas.

Exercise 3.2: Inverse Refactorings
When we refactor, we’re trying to respond to the forces affecting code. Sometimes
what was a good change today no longer looks good tomorrow, and we find our-
selves reversing a refactoring.

Following is a list of refactorings. Next to each refactoring, write the name of the
refactoring that undoes its effects.

A. Collapse Hierarchy

B. Extract Method

C. Hide Delegate

D. Inline Temp

E. Parameterize Method

F. Rename Method

 See page 216 for solution ideas.

What’s Next
We’ve discussed the overall process of refactoring and the environment needed to tackle
refactoring safely and productively; we’ve examined in detail the steps that make up a
single refactoring move; and we’ve explored a generic pattern for refactoring. Before we
move into the main body of the book we’ll say a few words about what you can do to
develop your refactoring skills in the longer term.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

35

CHAPTER 4

Refactoring Practice

One of the premises of this book is that refactoring is a skill and benefits from practice.
Look for opportunities to practice and use this skill.

Read Other Books
All the books in the bibliography will repay their study. But if you haven’t yet acquired
Fields et al.’s Refactoring, Ruby Edition [11], you should seriously consider doing so: The
exercises in this book touch on perhaps half of the refactorings cataloged in the Fields
book. Tools are getting better at the mechanics of refactoring support, but it will be a
long time before they effectively cover every aspect of refactoring in the catalog.

Practice Refactoring
Find ways to make refactoring part of your daily life.

Build refactoring into your routine• . Knowing how to refactor isn’t worth much unless
it’s applied. Resolve to make your code “lean and clean.” On an XP team, this is part
of everyday life. But even heavily design-driven approaches expect programmers to
implement the design well.

Build testing into your routine• . There’s an old adage (as so many are), “If it ain’t broke,
don’t fix it.” (How many times has the last “simple change” caused an unexpected
bug?) In programming, the downside of applying this adage is that the code just gets
uglier and uglier.

From the Library of Lee Bogdanoff

ptg

36 Chapter 4: Refactoring Practice

Refactoring is able to go against this rule because of two mechanisms: refactorings
that are systematic and safe, and a supply of tests to verify that the transformations
have been done correctly. Don’t neglect your tests.

Take small steps• . Often, noticing a smell is relatively easy, compared with working
out how to get “there” from “here.” Practice breaking up the larger refactorings
(such as Tease Apart Inheritance) into small, safe steps. Prefer transformations in
which the system moves from good state to good state. When you refactor, prefer
a small steps but safer approach over a fast but not always safe approach. Keep the
refactoring cycle in mind.

Get help from others• . Get other peoples’ opinions about your code, whether through
pair programming, design and code reviews, or simply bugging your neighbor.
Something we had hammered home to us while writing this book is that almost any
code can be improved (and sometimes we get to take advantage of a whole Internet’s
worth of help!).

Add to the refactoring catalog• . As you work on your own code, look out for trans-
formations that aren’t documented anywhere; share and discuss them with your
colleagues.

Exercises to Try
Here are some practice exercises you can try regularly, either alone or as a team dojo.

Scavenger Hunt/Smell of the Week:• Pick a smell, and find and eliminate as many
occurrences of it as you can. Every week, search for a new smell.

Re-Refactor:• Pick a good-sized piece of code (either your own, or one of the larger
examples in the back of this book would work). Each day, start from the initial ver-
sion, and refactor as far as you can in ten minutes. Do you sense the same things
each day? Do you get farther?

Just Refactor:• Pick or develop a project. Spend ten minutes refactoring. (Each day,
start where you left off the day before.)

Inhale/Exhale:• Find code demonstrating some smell. Apply a refactoring that
addresses it. Then apply the refactoring that reverses that one. Repeat this twice more.
This will give you a sense of what it’s like to put in a problem, as well as take it out.

Defactoring/Malfactoring:• “Defactoring” and “malfactoring” are names we use for
malicious refactoring: worsening the design of existing code. Take some code, and

From the Library of Lee Bogdanoff

ptg

Participate in the Community 37

“refactor” it to make it as smelly as possible. (It’s harder than it sounds.) In addi-
tion to providing practice at refactoring, this may also help you realize when you’re
unintentionally malfactoring during development. Be sure to restore the original
after you’ve had your fun.

Follow Your Nose:• Pick a code smell in a good-sized project. Eliminate it, and then
review the changed code looking for other smells (this book’s What to Look for Next
sections will help). For each of the smells you now see, repeat. And so on. After 30
or 45 minutes, review both the resulting code and the journey you traveled. Is there
more to do? Did all of the moves pay off? Did you go around in circles at any point?

Harmonizing:• Many of the code smells described in this book are fundamentally
about some kind of duplication: identical code, similar code, code with similar
structure, code with similar effects. Duplication isn’t always obvious, and sometimes
the code needs to be changed to reveal it. You can often make refactoring moves that
will make latent duplication become explicit. Practice harmonizing things that want
to be similar.

For example, you may see code with the same effect, but using a different algo-
rithm; you can substitute one of the algorithms so you can move to a single copy.
Or suppose you have essentially the same method in two subclasses, except they have
different names. You can rename them to the same name, so that you could pull the
method into the parent. Or perhaps you have two methods that have some parts
that are similar and other parts that are unique; you can tease apart the method so
the similar parts are identical and the unique parts are separate, and then eliminate
the duplication.

Refactoring Kata:• A kata is a martial arts exercise that you repeat every day, for prac-
tice and to help get into the rhythm of the art. (A traditional series might be a
defense against four opponents.) Develop a kata for refactoring: a program where
you’ll apply a fixed series of refactorings. Pick a series of smells and refactorings that
you see or use often—for example, it might include some open secrets, some long
methods, some observed data to duplicate, and some responsibilities to rebalance.
This will give you a chance to hone your editing skills and your understanding of
your environment, as well as practice “smelling” and refactoring.

Participate in the Community
All of the preceding exercises work great on your own code, or on the larger exercises
we’ve provided toward the back of this book. Or you could pick an open source project

From the Library of Lee Bogdanoff

ptg

38 Chapter 4: Refactoring Practice

and practice on that; after you’re done, you may have an improvement you can submit
back to the community!

We’re interested in your experience with these exercises, and with refactoring in gen-
eral, so please feel free to write. The best place to do that is via this book’s mailing list at
http://groups.google.com/group/refactoring-workbook.

Exercise

Exercise 4.1: Get to Know the Refactorings
There is not a one-to-one relationship between refactorings and smells; as you work
through the exercises in this book you’ll run into the same refactorings again and
again. For example, Extract Method is a tool that can fix many problems.

A. For each of the refactorings covered in Fields et al.’s Refactoring, Ruby Edition
[11], list each smell it can help to fix. (Hint: Use the What to Do sections for each
smell catalogued in Part II,“Code Smells,” later in this book.)

B. Which refactorings fix the most smells?

C. Which refactorings aren’t mentioned by any of the smells? Why not?

D. Does this list suggest any other smells we haven’t covered?

See page 216 for solution ideas.

What’s Next
That concludes our brief overview of the art of refactoring. It’s now time to address the
specifics. As we mentioned in Chapter 2, “The Refactoring Cycle,” perhaps the most
difficult part of the refactoring cycle is in recognizing code that needs to be refactored.
Part II, “Code Smells,” looks in detail at all of the common—and some of the not so
common—code smells; by doing the exercises you’ll learn how to recognize and elimi-
nate them. Then Part III, “Programs to Refactor,” provides you with a few complete
applications, each of which is full of the kind of problems you’ll encounter during real-
life development.

From the Library of Lee Bogdanoff

http://groups.google.com/group/refactoring-workbook

ptg

PART II
Code Smells

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

CHAPTER 5

Measurable Smells

The smells in this chapter are similar. They’re dead easy to detect. They’re objec-
tive (after you decide on a way to count and a maximum acceptable score). They’re
odious.

And, they’re common.
You can think of these smells as being caught by a software metric. Each metric

tends to catch different aspects of why code isn’t as good as it could be. Some metrics
measure variants of code length; others try to measure the connections between meth-
ods or objects; others measure a distance from an ideal.

Most metrics seem to correlate with length, so we tend to worry about size first (usu-
ally noticeable as a Large Module or Long Method). But if a metric is easy to compute,
we’ll use it as an indicator that some section of code deserves a closer look.

Metrics are indicators, not absolutes. It’s very easy to get into the trap of making
numbers without addressing the total complexity. So don’t refactor just for a better num-
ber; make sure it really improves your code.

The smells in this chapter are the easiest to identify. They’re not necessarily the easi-
est to fix.

There are other metrics that have been applied to software. Many of them are simply
refinements of code length. Pay attention when things feel like they’re getting too big.

In this chapter we’ll cover the following smells:

Comments• , in which the code includes text to explain what’s happening

Long Method• , in which a method is too long to be manageable

Large Module• , in which a class or module is too large to represent a meaningful
abstraction

Long Parameter List• , in which a method needs too much information in order to
get its job done

41

From the Library of Lee Bogdanoff

ptg

42 Chapter 5: Measurable Smells

Comments
What to Look For

The code contains a comment. (Some IDEs make these more obvious by color-•
coding comments.)

Why This Is a Problem
 Flexibility: Any comment that explains the code must be kept in step if the code is

changed.
Duplication: Most comments can be reflected just as well in the code itself. For

example, the goal of a method can often be communicated as well through its
name as it can through a comment.

Communication: Comments that say something slightly different than the code
create cognitive drag—or even mistrust—and slow the reader down.

When to Leave It
Don’t delete comments that are pulling their own weight—such as rdoc API documen-
tation. Some comments can be particularly helpful—those that tell why something is
done a particular way (or why it wasn’t), or those that cite algorithms that are not obvi-
ous (where a simpler algorithm won’t do).

How It Got This Way
Comments may be present for the best of reasons: The author realizes that something
isn’t as clear as it could be and adds a comment.

What to Do
When a comment explains a code fragment, you can often use • Extract Method to
pull the fragment out into a separate method. The comment will often suggest a
name for the new method.

When a comment explains what a method does (better than the method’s name!), •
use Rename Method using the comment as the basis of the new name.

When a comment explains preconditions, consider using • Introduce Assertion to
replace the comment with code.

From the Library of Lee Bogdanoff

ptg

Comments 43

What to Look for Next
Duplication: Often the code fragments broken out of along method will do similar

things in similar ways; it may be possible to identify some duplication among
them.

 Abstraction: Creating names for code blocks helps to relate the design to the applica-
tion’s domain. Review the names in the area you changed for consistency.

From the Library of Lee Bogdanoff

ptg

44 Chapter 5: Measurable Smells

Long Method
What to Look For

A method has a large number of lines. (We’re immediately suspicious of any method •
with more than fi ve lines.)

Why This Is a Problem
 Flexibility: A Long Method is guaranteed to be a Greedy Method—at least two

responsibilities are coupled together in one place, which in turn leads to
Divergent Change.

 Testability: It can be difficult to isolate individual behaviors of a Long Method for
testing; and if a method does too much it may also be difficult to create fixtures
that contain enough context for the method to work properly.

When to Leave It
It may be that a somewhat longer method is just the best way to express something.
(Like almost all smells, the length is a warning sign, not a guarantee of a problem.)

How It Got This Way
You can think of it as the Columbo syndrome. Columbo was the TV detective who
always had “just one more thing.” A method starts down a path and, rather than break
the flow or identify the helper classes, the author adds one more thing. Code is often eas-
ier to write than it is to read, so there’s a temptation to write fragments that are too big.

What to Do
Use • Extract Method to break up the method into smaller pieces. Look for comments
or white space delineating interesting fragments. You want to extract methods that
are semantically meaningful, not just introduce a function call every seven lines.

You may find other refactorings (those that clean up straight-line code, conditionals, •
and variable usage) helpful before you even begin splitting up the method.

If the method doesn’t separate easily into pieces, consider • Replace Method with
Method Object to turn the method into a separate object.

It’s natural to worry about the performance hit from increasing the number of
method calls, but most of the time this is a non-issue. By getting the code as clean
as possible before worrying about performance, you have the opportunity to gain

From the Library of Lee Bogdanoff

ptg

Long Method 45

big insights that can restructure systems and algorithms in a way that dramatically
increases performance.

What to Look for Next
Duplication: Often the code fragments broken out of a Long Method do similar

things in similar ways; it may be possible to identify some duplication among
them.

Communication: Creating names for code fragments helps to relate the design to the
application’s domain. Review the names in the area you changed for consistency.

 Abstraction: The signatures of the new methods may suggest a missing class, or new
structure may be revealed in the original method.

Flexibility: Review the new methods for Feature Envy; with more small pieces you
now have the opportunity to move code to more “natural” homes.

From the Library of Lee Bogdanoff

ptg

46 Chapter 5: Measurable Smells

Large Module
What to Look For

A class or module has a large number of instance variables, methods, or just lines •
of code.

Why This Is a Problem
 Testability: A Large Module is usually difficult to test, either because it depends on

many other modules or because it is difficult or time-consuming to create
instances in isolation.

 Flexibility: The module represents too many responsibilities folded together— that
is, every Large Module is also a Greedy Module.

How It Got This Way
Large modules get big a little bit at a time. The developer keeps adding just one more
capability to a module until eventually it grows too big. Sometimes the problem is a lack
of insight into the parts that make up the whole module.

What to Do
In general, you’re trying to break up the module. This usually proceeds piecemeal:

Very often a review of the module reveals a composite of other smells, such as • Long
Methods, Data Clumps, and Temporary Fields; fix these smells first.

To break up the module further, use• Extract Class or Extract Module if you can iden-
tify a new piece that has part of this module’s responsibilities.

If you have a large class, you might try • Extract Subclass if you can divide responsibili-
ties between the class and a new subclass.

Sometimes a class is big because it’s a GUI class, and it represents both a display •
component and a model. In this case, you can use Duplicate Observed Data to help
extract a domain class.

What to Look for Next
Duplication: As you peel off each piece of the Large Module you may discover it has

similar responsibilities or interface to an existing module.

From the Library of Lee Bogdanoff

ptg

Large Module 47

Communication: Dividing up confused responsibilities, and giving names to them,
helps the reader relate the code to the real domain. Review the names (see
Chapter 6) used in the slimmer module and everything you extracted.

From the Library of Lee Bogdanoff

ptg

48 Chapter 5: Measurable Smells

Long Parameter List
What to Look For

A method has more than one or two parameters.•

A method yields more than one or two objects to an associated block.•

Why This Is a Problem
• Simplicity: A Long Parameter List often indicates that a method has more than one

responsibility. Sometimes the parameters have no meaningful grouping—they
don’t go together. In such cases it may be that the method, or the objects it
uses, doesn’t represent a meaningful and cohesive abstraction in the problem
domain.

 Flexibility: A Long Parameter List represents a large number of pieces of shared
information between the caller and called code. If either changes, the parameter
list is likely to need changing too.

Communication: A lot of parameters represent a lot to remember—the programmer
has to remember not only what objects to pass, but in which order. More suc-
cinct APIs are easier and quicker to use.

When to Leave It
This is one of those places where a smell doesn’t always equate to a problem. You
might smell a Long Parameter List but decide it’s right for the situation at hand—
for example, to avoid the called method picking up a dependency that you don’t
want it to have. Ensure that your changes don’t upset this balance.

How It Got This Way
You might be trying to minimize coupling between objects. Instead of the called object
being aware of relationships between classes, you let the caller locate everything; then
the method concentrates on what it is being asked to do with the pieces.

The method may have acquired many parameters because the programmer gener-
alized it to deal with multiple variations by creating a general algorithm with a lot of
control parameters.

What to Do
If a parameter’s value can be obtained from another object this one already knows, •
use Replace Parameter with Method.

From the Library of Lee Bogdanoff

ptg

Exercises 49

If the parameters come from a single object, try • Preserve Whole Object.

If the data is not from one logical object, you still might group them via • Introduce
Parameter Object.

What to Look for Next
Duplication: Sometimes a method’s clients all have to jump through the same hoops

in order to call it. Check for Duplicated Code among the callers.
Communication: Parameters add to the cognitive load required to understand a

class’s interface; all of the above refactorings help to hide detail. Review all of
this class’s method signatures looking for Data Clumps and naming patterns.

Size: The amount of code required to call a method can be large when the method
requires a lot of unrelated parameters. Look for signs of Feature Envy and
Open Secret around the objects you are now passing as parameters to the
method.

Exercises

Exercise 5.1: Comments
Consider this code:

class Matcher

 def match(expected, actual, clip_limit, delta)

 # Clip "too-large" values

 actual = actual.map { |val| [val, clip_limit].min }

 # Check for length differences

 return false if actual.length != expected.length

 # Check that each entry is within expected +/- delta

 actual.each_index { |i|

 return false if (expected[i] - actual[i]).abs > delta

 }

 return true

 end

end

A. Use Extract Method to make the comments in match() redundant.

B. Can everything important about the code be communicated using the code alone?
Or do comments have a place?

From the Library of Lee Bogdanoff

ptg

50 Chapter 5: Measurable Smells

C. Find some code you wrote recently. Odds are good that you commented it. Can
you eliminate the need for some of those comments by making the code reflect
your intentions more directly?

 See page 217 for solution ideas.

Exercise 5.2: Long Method
Consider this code:

class Robot

 attr_reader :location, :bin

 def move_to(location)

 @location = location

 end

 def pick

 @bin = @location.take

 end

 def release

 @location.put(@bin)

 @bin = nil

 end

end

class Machine

 attr_reader :name, :bin

 def initialize(name, location)

 @name = name

 @location = location

 end

 def take

 result = @bin

 @bin = nil

 return result

 end

 def put(bin)

 @bin = bin

 end

end

From the Library of Lee Bogdanoff

ptg

Exercises 51

class Report

 def Report.report(out, machines, robot)

 out.print "FACTORY REPORT\n"

 machines.each do |machine|

 out.print "Machine #{machine.name}"
 out.print "bin=#{machine.bin}" if machine.bin != nil

 out.print "\n"

 end

 out.print "\n"

 out.print "Robot"

 if robot.location != nil

 out.print "location=#{robot.location.name}"

 end

 out.print "bin=#{robot.bin}" if robot.bin != nil

 out.print "\n"

 out.print "========\n"

 end

end

(In the code download you can find Rspec examples showing how these classes
interact.)

A. In Report.report, circle four blocks of code to show which functions you might
extract in the process of refactoring this code.

B. Rewrite the report method as four statements, as if you had done Extract Method
for each block.

C. Does it make sense to extract a one-line method?

 See page 217 for solution ideas.

Exercise 5.3: Large Class
Consider the API for the String class in Ruby 1.8.6:

str % arg

str * integer

str + integer

str << fixnum

str << obj

str.concat(fixnum)

str.concat(obj)

5

10

15

From the Library of Lee Bogdanoff

ptg

52 Chapter 5: Measurable Smells

str <=> other_str

str == obj

str =~ obj

str[fixnum]

str[fixnum, fixnum]

str[range]

str[regexp]

str[regexp, fixnum]

str[other_str]

str[fixnum] = fixnum

str[fixnum] = new_str

str[fixnum, fixnum] = new_str

str[range] = aString

str[regexp] = new_str

str[regexp, fixnum] = new_str

str[other_str] = new_str

str.capitalize

str.capitalize!

str.casecmp(other_str)

str.center(integer, padstr)

str.chomp(separator=$/)

str.chomp!(separator=$/)

str.chop

str.chop!

str.concat(fixnum)

str.concat(obj)

str.count([other_str]+)

str.crypt(other_str)

str.delete([other_str]+)

str.delete!([other_str]+>)

str.downcase

str.downcase!

str.dump

str.each(separator=$/) {|substr| block }

str.each_byte {|fixnum| block }

str.each_line(separator=$/) {|substr| block }

str.empty?

str.eql?(other)

str.gsub(pattern, replacement)

str.gsub(pattern) {|match| block }

str.gsub!(pattern, replacement)

str.gsub!(pattern) {|match| block }

str.hash

str.hex

str.include? other_str

str.include? fixnum

From the Library of Lee Bogdanoff

ptg

Exercises 53

str.index(substring [, offset])

str.index(fixnum [, offset])

str.index(regexp [, offset])

str.insert(index, other_str)

str.inspect

str.intern

str.length

str.ljust(integer, padstr=' ')

str.lstrip

str.lstrip!

str.match(pattern)

str.next

str.next!

str.oct

str.replace(other_str)

str.reverse

str.reverse!

str.rindex(substring [, fixnum])

str.rindex(fixnum [, fixnum])

str.rindex(regexp [, fixnum])

str.rjust(integer, padstr=' ')

str.rstrip

str.rstrip!

str.scan(pattern)

str.scan(pattern) {|match, ...| block }

str.slice(fixnum)

str.slice(fixnum, fixnum)

str.slice(range)

str.slice(regexp)

str.slice(regexp, fixnum)

str.slice(other_str)

str.slice(fixnum)

str.slice(fixnum, fixnum)

str.slice(range)

str.slice(regexp)

str.slice(regexp, fixnum)

str.slice(other_str)

str.slice!(fixnum)

str.slice!(fixnum, fixnum)

str.slice!(range)

str.slice!(regexp)

str.slice!(other_str)

str.split(pattern=$;, [limit])

str.squeeze([other_str]*)

str.squeeze!([other_str]*)

str.strip

From the Library of Lee Bogdanoff

ptg

54 Chapter 5: Measurable Smells

str.strip!

str.sub(pattern, replacement)

str.sub(pattern) {|match| block }

str.sub!(pattern, replacement)

str.sub!(pattern) {|match| block }

str.succ

str.succ!

str.sum(n=16)

str.swapcase

str.swapcase!

str.to_f

str.to_i(base=10)

str.to_s

str.to_str

str.to_sym

str.tr(from_str, to_str)

str.tr!(from_str, to_str)

str.tr_s(from_str, to_str)

str.tr_s!(from_str, to_str)

str.unpack(format)

str.upcase

str.upcase!

str.upto(other_str) {|s| block }

A. Why does this class have so many methods?

B. Go through the methods listed and categorize them into fi ve to ten major areas
of responsibility.

C. Many of the methods have aliases (e.g., next and succ, [] and slice). What are
the tradeoffs in having aliases?

D. Most String methods have two versions—for example, str.reverse and str.re-
verse!. (The first form returns a new string; the ! form changes the existing string
in place.) What are the consequences of having the two types of methods?

E. On balance, do you consider the size of class String to be a smell?

F. In Java, class Object has 11 methods, whereas in Ruby and Smalltalk it has many
times this number. Why the difference? Talk to a Java person and consider whether
you think Ruby’s version smells.

 See page 218 for solution ideas.

From the Library of Lee Bogdanoff

ptg

Exercises 55

Exercise 5.4: Smells and Refactorings
Consider these smells:

A. Comments
B. Large Module
C. Long Method
D. Long Parameter List

For each refactoring in the following list, write the letter for the smell(s) it might
help cure:

___ Duplicate Observed Data

___ Extract Class

___ Extract Method

___ Extract Subclass

___ Introduce Assertion

___ Introduce Parameter Object

___ Preserve Whole Object

___ Rename Method

___ Replace Parameter with Method

 See page 220 for solution ideas.

Exercise 5.5: Triggers
Consider the smells described in this chapter.

A. Which of these do you find most often? Which do you create most often?

B. To stop children from sucking their thumbs, some parents put a bad-tasting or
spicy solution on the child’s thumb. This serves as a trigger that reminds the child
not to do that. What triggers can you give yourself to help you recognize when
you’re just beginning to create one of these smells?

 See page 220 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

CHAPTER 6

Names

The creation of a good mental model is one of the key challenges in developing software.
There are several tools people use to help with this:

Project dictionaries•

Domain vocabularies, ontologies, and languages•

XP-style metaphors•

How we name things is important. Good names perform several functions:

They provide a vocabulary for discussing our domain.•

They communicate intent.•

They support subtle expectations about how the system works.•

They support each other in a system of names.•

It’s hard to pick good names, but it’s worth the effort. Ward Cunningham describes
using a thesaurus to get just the right sense.

Some teams have coding standards and naming standards that affect how names are
chosen. You may find these guidelines helpful:

Use verbs for manipulators, and nouns and/or adjectives for accessors.•

Use terms consistently: Have each word mean the same wherever it is used; give •
each concept the same name wherever it occurs; and use different words for differ-
ent things.

Prefer one-word names.•

Value communication most.•
57

From the Library of Lee Bogdanoff

ptg

58 Chapter 6: Names

Don’t worry too much about getting each name right the first time, but do ensure
you change a name immediately when a better alternative suggests itself. Especially with
tool support, it’s not that hard to change a name; it’s always worth investing a little en-
ergy in improving names as you modify code.

In this chapter we’ll cover the following smells:

Type Embedded in Name• , in which names are coupled to types

Uncommunicative Name• , in which a name doesn’t reveal the developer’s intentions

Inconsistent Names• , in which domain vocabulary isn’t standardized

From the Library of Lee Bogdanoff

ptg

Type Embedded in Name 59

Type Embedded in Name
What to Look For

Names that are compound words, consisting of a word plus the type of the •
argument(s)—for example, a method add_course(course).

Hungarian notation, where the type of an object is encoded into the name—•
for example, i_count as an integer variable.

Variable names that reflect their type rather than their purpose or role.•

Why This Is a Problem
Flexibility: The name of a reference has been coupled to the type of the object it

references; if either changes we could introduce some cognitive drag.
Abstraction: Different names for the same thing can hide abstractions.

When to Leave It
This smell is weakest when applied to method names: Sometimes you need to distin-
guish methods from each other according to the types of their parameters or return
values. (An example from core Ruby is the “conversion” methods: to_s, to_a, to_i,
to_f, etc.)

How It Got This Way
The type may originally have been added to help with communication: Hungarian no-
tation is often introduced as part of a coding standard—for example, in a pointer-based
language such as C it is useful to know that **ppc is in fact a character. Some program-
mers or teams use a convention where a prefix indicates that something is a member
variable (_count or m_count). In Ruby, this is redundant—we already use @ to indicate
member variables.

What to Do
Use • Rename Method (or field or constant or parameter) to a name that communi-
cates intent without being so tied to a type.

What to Look for Next
Duplication: Removing the type names may reveal other duplication. Look for

Alternative Modules with Different Interfaces.

From the Library of Lee Bogdanoff

ptg

60 Chapter 6: Names

Uncommunicative Name
What to Look For
A name doesn’t communicate its intent well enough. Examples of this can include:

One- or two-character names•

Names with vowels omitted•

Numbered variables (e.g., • pane1, pane2, and so on)

Odd abbreviations•

Misleading names•

Why This Is a Problem
Communication: Poor names deceive the reader; they make it harder to build a men-

tal picture of what’s going on, and they can be misinterpreted. They also hurt
the flow of reading as the reader must slow down to interpret the names.

Flexibility: Very short names can be difficult to change, even with automated refac-
toring tools.

When to Leave It
Some teams use short names such as i, j, or k for loop indexes or c for characters;
these aren’t too confusing if the scope is limited. Similarly, you may occasionally find
that numbered variables communicate better.

How It Got This Way
When you first implement something, you have to name things somehow. You give the
best name you can think of at the time and move on. Later, you may have an insight
that lets you pick a better name.

What to Do
Use• Rename Method (or field, constant, etc.) to give it a better name.

What to Look for Next
Duplication: Look for places where the same name means different things, or the

same thing has different names.

From the Library of Lee Bogdanoff

ptg

Inconsistent Names 61

Inconsistent Names
What to Look For

One name is used in one place, and a different name is used for the same thing •
somewhere else. For example, in a single application you might see add, store, put,
and place for the same basic method.

Why This Is a Problem
Communication: Multiple names (for no reason) make it hard for the reader.
Duplication: The different names may hide similar methods.

How It Got This Way
Different people may create the classes at different times. (People may forget to explore
the existing classes before adding more.) Occasionally, you’ll find people doing this in-
tentionally (but misguidedly) so they can distinguish the names.

What to Do
Pick the best name, and use Rename Method (or field, constant, etc.) to give the same
name to the same things.

The Eiffel language uses a common pool of words for the names of its library fea-
tures; the Rails framework also uses naming conventions extensively. You can use this
technique as inspiration: Look to existing library names for the vocabulary you use.

What to Look for Next
Duplication: Addressing this smell can make classes become more similar than when

they started. Look for a duplication smell and eliminate it.

From the Library of Lee Bogdanoff

ptg

Exercises

Exercise 6.1: Names
Classify these method names as Type Embedded in Name, Uncommunicative
Name, or OK.

___ add_item(item)

___ do_it

___ get_nodes_array

___ get_data

___ make_it

___ multiply_int_int(int1, int2)

___ process_item

___ sort

___ spin

See page 220 for solution ideas.

Exercise 6.2: Critique the Names

Which name would you expect to use?

A. To empty a window (onscreen)

window.clear

window.wash

window.erase

window.delete_all

B. For a stack

stack.add

stack.insert

stack.push

stack.add_to_front

62 Chapter 6: Names

From the Library of Lee Bogdanoff

ptg

Exercises 63

C. For an editor (to get rid of the selected text)

selection.cut

selection.delete

selection.clear

selection.erase

D. As part of a file comparison program

line1.compare(line2)

line1.eql?(line2)

line1.identical_to(line2)

line1.matches(line2)

 See page 221 for solution ideas.

Exercise 6.3: Superclasses
In each of the following scenarios you have a group of classes, and you want to intro-
duce a superclass for them. What do you call it?

A. Car, Boat, Train

B. LaserPrinter, InkjetPrinter, NetworkPrinter

 See page 221 for solution ideas.

Exercise 6.4: Method Names
A. You have classes Schedule and Course, and a method named schedule.add_

course(course). Later, you introduce a class Syllabus—a collection of Courses
that behaves just like a single Course. So now schedule.add_course(thing) can
add a Syllabus too. Is that a problem?

B. During development, you have classes Graph, Point, and Edge (in the mathemati-
cal sense) and a method graph.add(point). Now you want to be able to add
edges to a graph too. What new method(s) might you introduce to accomplish
that?

 See page 221 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

65

CHAPTER 7

Unnecessary Complexity

Code is sometimes more complicated than it would have to be purely to solve the prob-
lem at hand. There are three main causes for this problem:

Code shows the traces of its history, the leftovers from old ways of doing things; •
the current complexity of the code owes more to the past—and to the journey
travelled—than to the present.

The design has been over-generalized. This is often done in anticipation of future •
requirements, or for premature performance tuning.

The original developers were unfamiliar with Ruby—they didn’t know that there •
was a language feature or a library method that does what they needed.

Remove these problems when you run into them. You’ll often find that this can lead
to further insight and simplification.

In this chapter we’ll cover the following smells:

Dead Code• , in which some code is unused

Speculative Generality• , in which code exists “just in case”

Greedy Method• , in which a method has more than one responsibility

Procedural Code• , in which code proceeds step by step

Dynamic Code Creation• , in which class_eval and friends are used to create code
at run-time

From the Library of Lee Bogdanoff

ptg

66 Chapter 7: Unnecessary Complexity

Dead Code

What to Look For
A variable, parameter, code fragment, method, module, or class is not used any-•
where (perhaps other than in tests).

Why This Is a Problem
Size: Dead Code adds to the application’s size, and thus to the amount of code that

must be understood by developers and maintainers.
Communication: It isn’t always obvious when code is dead, and so the reader may

take it as having a bearing on the behavior of his software. Indeed, Dead Code
that is also incorrect or invalid may lead the developer seriously astray.

Flexibility: All code has dependencies on other code; but Dead Code may create de-
pendencies where otherwise there would be none. These unnecessary couplings
may, in turn, slow the pace of change for the code in these areas.

When to Leave It
If your application is a framework, it may include elements or hooks purely to support
clients’ needs, but which aren’t needed by the framework itself.

How It Got This Way
Requirements have changed, or a new design has been introduced, without adequate
cleanup. Or sometimes complicated logic results in some combinations of conditions
that can’t actually happen; you’ll see this when simplifying conditionals.

What to Do
Delete the unused code and any associated tests.•

The code you just deleted may have been the only client of some other code, so that •
in turn is now dead. Continue checking and deleting until you find no more Dead
Code.

What to Look for Next
Size: There are fewer code elements to be loaded and interpreted, and there is less code

to read and search. You may find you now have a Lazy Class or a Data Class,
for example.

From the Library of Lee Bogdanoff

ptg

Dead Code 67

Communication: Removing unnecessary code elements may free up names from the
application’s domain. These names can now be reused, and it may be possible
to give better names to existing code elements.

• Simplicity: The removal of unused code paths can render algorithms easier to under-
stand and will often clear the way for further refactoring to simplify code that
previously was too complex. Look out for Special Case logic in methods that you
have recently thinned out.

From the Library of Lee Bogdanoff

ptg

68 Chapter 7: Unnecessary Complexity

Speculative Generality

What to Look For
The application’s design includes “hooks” to permit future adaptation or customiza-•
tion, and these hooks are only used in one way—or not at all—right now.

Code is more complicated than it has to be for the currently implemented require-•
ments.

A class has only one subclass, or a method has only one caller, or a module is only •
used in one place.

The names used in part of the application are abstract or overly general.•

Lazy Class and Special Case are often indicators that the application at large may be
suffering from Speculative Generality.

Why This Is a Problem
Communication: Speculative abstractions can make the code harder to understand.
Flexibility: Hooks and special cases can get in the way when you want to change

current behavior. So, they can slow down the pace of development and main-
tenance, even creating “no-go” areas within an application. Dealing with such
code often feels like “walking on eggshells.”

When to Leave It
An application framework may have elements present to support clients’ needs that,
strictly speaking, aren’t needed by the framework itself. Or perhaps some elements are
used by test methods and they’re exposed as probe points to allow a test to have privileged
information about the class. Be careful though—this may indicate that you’re missing
an abstraction that you could test independently.

How It Got This Way
The code may have been built with the expectation that it will become more useful,
but then it never does. When people try to outguess the needs of the code, they often
add things for generality or for completeness that end up never being used. Sometimes
the code has been used before, but is no longer needed because of new or revised
ways of doing things. (Speculative Generality may be Dead Code that was created
on purpose.)

From the Library of Lee Bogdanoff

ptg

Speculative Generality 69

What to Do
For an unnecessary module, use the appropriate• Inline refactoring on each method,
class, and constant in the module.

For an unnecessary class: If parents or children of the class seem like the right place •
for its behavior, fold it into one of them via Collapse Hierarchy. Otherwise, fold its
behavior into its caller via Inline Class.

For an unnecessary method, use• Inline Method or Remove Method.

For an unnecessary instance variable, remove all references to it.•

For an unnecessary parameter, use• Remove Parameter.

What to Look for Next
Communication: The removal of unnecessary code elements may free up names from

the application’s domain; those names can now be reused, so it may now be
possible to give better names to existing code elements.

Flexibility: If you inlined anything, look again at the receiving code: Have you cre-
ated a Long Method or Large Module? Have you created a Greedy Method or
a Greedy Module?

Size: Review the places where you removed code or parameters; look out now for a
Lazy Class or some Dead Code.

From the Library of Lee Bogdanoff

ptg

Greedy Method

What to Look For
A method does more than one job.•

A method has “and” in its name.•

The body of a method includes code at several different levels of abstraction.•

Why This Is a Problem
Communication: A code fragment that has two responsibilities intertwined is harder

to read, and harder to name.
Flexibility: If one of the method’s responsibilities must change, or has a defect, you

often have to work hard to sidestep the method’s other responsibilities—it can
therefore be a challenge to avoid breaking other code.

 Testability: A method that does two things will be harder to test than if the responsi-
bilities were separated.

A method that does two jobs is often said to violate the Single Responsibility Principle
(SRP); see Robert Martin’s Agile Software Development: Principles, Patterns, and Practices
[21] for a broader explanation of the SRP.

How It Got This Way
When new behavior must be added, the quickest thing to do is often to weave it into
existing code.

What to Do
Consider the approaches to dealing with a• Long Method—they will often work here
just as well. Use Extract Method to hide detail behind an intention-revealing name.

If the method makes extensive use of another object, treat and fix the• Feature Envy.

Look at the method’s parameters: Do they come from different “parts” of the appli-•
cation? Are some of them domain related, whereas others are technology related?
Look for ways to extract methods whose parameter lists are more consistent.

What to Look for Next
Communication: If you extracted one or more methods, check the whole system of

names in their receiving class(es) to ensure it is still consistent.

70 Chapter 7: Unnecessary Complexity

From the Library of Lee Bogdanoff

ptg

Greedy Method 71

Duplication: Review any extracted methods for Feature Envy to ensure they have
been sent to the right class. Check also for Duplicated Code to ensure they
really are different from the others in the receiving class(es).

 Testability: Now that you have smaller decoupled methods, check your tests and test
fixtures. You may find that these can be simplified too.

From the Library of Lee Bogdanoff

ptg

72 Chapter 7: Unnecessary Complexity

Procedural Code

What to Look For
An algorithm proceeds step by step, possibly using one or more temporary variables •
to hold intermediate values.

Code iterates over the contents of an • Array or Hash, instead of using an approach
based on each.

A code fragment uses a local variable to cache an intermediate result.•

Why This Is a Problem
Duplication: Every collection in Ruby (and indeed any class that includes the

Enumerable module) already provides methods that iterate over its ele-
ments, so iterating in your own code is almost always a kind of Reinvented
Wheel.

Flexibility: Any method that iterates over a collection and does something with the
elements is arguably a Greedy Method.

• Simplicity: Local variables, especially when used to manage iteration, can add clutter
and obscure a method’s flow. They can also hamper refactorings such as Extract
Method.

Communication: In any language, using the language’s own idioms helps communi-
cate the code’s intent to the widest possible audience. In order to be maximally
communicative, your code should be written using the styles and idioms of
your community. Procedural Code is not idiomatic in Ruby circles.

When to Leave It
Sometimes a code fragment uses a well-named local variable to help explain the steps in
an algorithm or the reason the design is like it is.

How It Got This Way
During test-driven development, a procedural solution is often the quickest next step to
get from a red to a green bar. Or, the original code was written by someone not used to
Ruby’s more functional and object-oriented style.

What to Do
If you’re iterating over a collection,• Replace Loop with Collection Closure Method—for
example, using select, reject, or collect.

From the Library of Lee Bogdanoff

ptg

Procedural Code 73

If you have a temporary variable on which a series of operations is performed, •
Replace Temp with Chain.

What to Look for Next
Communication: If you used Replace Loop with Collection Closure Method you may

have extracted one or more methods to perform parts of the job; make sure
these methods are well named and live on the appropriate class.

Flexibility: If you’ve converted a loop to a chain of method calls, you may have
decoupled portions of the loop from each other. Look out for Feature Envy if
sections of the chain no longer depend on the state of the current object.

From the Library of Lee Bogdanoff

ptg

74 Chapter 7: Unnecessary Complexity

Dynamic Code Creation

What to Look For
Code uses • eval, class_eval, or module_eval to build new code dynamically.

Why This Is a Problem
Dynamic code evaluation is a very powerful mechanism, and with great power comes
great responsibility.

Communication: The names of an application’s classes and methods form the vocab-
ulary that makes the code human-readable. That code becomes harder to read
and understand when the abstractions are fluid or created late.

 Testability: Testing, or test-driving, anything that changes dynamically is an order of
magnitude harder than normal test-driven development.

Flexibility: Dynamic code evaluation is difficult to debug, and often runs more
slowly than the alternatives.

When to Leave It
Sometimes dynamic code evaluation is the only or best way to solve a particular prob-
lem. For example, it may be impossible to determine which methods a class must have
until run-time.

How It Got This Way
It can be difficult to find the right set of abstractions to define a problem, and so it
makes sense to build them dynamically as the need arises.

Other times you might want to use the expressive power of standard Ruby classes
and methods, but you only find out at run-time which ones you’ll need and what they
need to look like.

What to Do
If your code uses the String form of • eval, try to replace it with one of the block
forms, or with calls to define_method; this at least provides some syntax safety.

If you’re using • method_missing, replace it using Replace Dynamic Receptor with
Dynamic Method Definition—for example, convert it to use class_eval.

From the Library of Lee Bogdanoff

ptg

Dynamic Code Creation 75

If it is absolutely necessary to use • eval, but parsing the string is becoming a perfor-
mance bottleneck, use Move Eval from Run-time to Parse-time.

What to Look for Next
Duplication: Moving evaluation from run-time to parse-time could introduce Dupli-

cated Code; decide whether this trade-off is worth the price.
Communication: Look for opportunities to hide dynamic evaluation behind helpful

method names, to make your intentions clear to the reader.

From the Library of Lee Bogdanoff

ptg

76 Chapter 7: Unnecessary Complexity

Exercises

Exercise 7.1: Dead Code (Challenging)
Find an application or project that has undergone changes in requirements or design.
Odds are good that it now contains dead code.

A. Find some dead code by reading through and simulating suspect areas by hand.
How confident are you that this code is indeed redundant?

B. If you don’t have them already, write thorough tests for all clients of this suspect
code. Are you now more confident that the code can be removed?

C. Find an appropriate code coverage tool—such as Rcov (http://rubyforge.
org/projects/rcov/)—and use it to analyze your test run. How confident are
you now that this suspect code is redundant?

D. What does the coverage tool tell you about libraries and gems loaded by your
code? Is that a problem? If yours is a Rails application, did you make use of all of
the scaffolding provided? Is that a problem?

E. Modify the suspect code so that it is obviously broken, perhaps by having it raise
an exception. (If you have heckle available, run it on your test suite.) Do you get
any surprises when you rerun the tests? If not, delete the dead code.

F. Which of the preceding approaches worked best in your application? Which
gave the best return on the effort involved? Repeat the exercise by finding an-
other chunk of dead code, this time focusing on the technique(s) that gave the
most benefit.

Exercise 7.2: Today versus Tomorrow
There are arguments for and against Speculative Generality being a smell. We can
caricature them as follows:

Some agile development methods, notably Extreme Programming, argue that •
Speculative Generality is a smell, and that you aren’t going to need it. That is,
make your code meet today’s requirements, and don’t try to anticipate which way
tomorrow’s requirements will go. (Thus an agile team is more likely to evolve a
framework from an application than to build a framework and use it to create an
application.)

Another approach is to design for flexibility or to design for generality. This means •
that you should fully flesh out your classes based on the expected requirements.

From the Library of Lee Bogdanoff

http://rubyforge.org/projects/rcov/

http://rubyforge.org/projects/rcov/

ptg

Exercises 77

When refactoring code you will often need to decide which approach is better for the
particular case you’re currently dealing with.

A. What are the forces that make it better to design for only today’s requirements
today?

B. What are the forces that make it better to design for tomorrow’s requirements
today?

See page 222 for solution ideas.

Exercise 7.3: Extraction Trade-Offs
Imagine you’ve found a Long Method or a Large Module, and you deal with it by
extracting new methods or classes.

A. These extracted pieces will often have only one client—the original code. Have
you just introduced a case of Speculative Generality? If not, why not?

B. Now jump six months into the future: A newcomer to the team looks at this
refactored code, perhaps in order to change its behavior for a new requirement.
Will the newcomer see Speculative Generality here?

C. What might you do now to help make it clear that Speculative Generality is not
present?

See page 222 for solution ideas.

Exercise 7.4: Formatting Names
Consider the following method:

def display_full_name(out, person)

 out.write(person.first)

 out.write(" ")

 if person.middle != nil

 out.write(person.middle)

 out.write(" ")

 end

 out.write(person.last)

end

From the Library of Lee Bogdanoff

ptg

78 Chapter 7: Unnecessary Complexity

A. What are the clues that this is a Greedy Method?

B. Devise and carry out a sequence of changes that will remove the smell.

See page 223 for solution ideas.

Exercise 7.5: Procedural Code
Consider the following method:

class Cart

 def total_price

 total = 0

 @items.each { |item| total += item.price }

 return total

 end

end

A. Use the inject method to rewrite this code without an explicit iterator.

B. Looking again at the original code, why might total_price be considered a
Greedy Method?

C. Refactor the method a second time, beginning again from the preceding code.
This time around, fix the greediness first, and then fix the Procedural Code.

D. Compare your two refactored versions of the code, looking particularly at com-
munication and flexibility.

See page 223 for solution ideas.

From the Library of Lee Bogdanoff

ptg

79

CHAPTER 8

Duplication

Duplication has been recognized for more than 30 years as the bane of the program-
mer’s lot. How does duplication cause problems?

There is more code to maintain (a conceptual and physical burden).•

Parts that vary are buried inside the parts that stay the same (a perceptual problem— •
it’s hard to see the important stuff).

Code variations often hide deeper similarities—it will be hard to see the deeper solu-•
tion hidden within all the similar code.

There’s a tendency to fix a defect in one place and leave identical defects elsewhere •
unfixed. When you see two variations of something, it’s hard to know which varia-
tion is the right pattern or if there’s a good reason for the differences.

David Parnas introduced the idea of information hiding: A good module has a secret.
By ensuring that a module keeps its secret, we usually reduce duplication. (See “On the
criteria to be used in decomposing systems into modules” [25].)

Duplication is a root problem. Many other smells are special-case examples of du-
plication. Duplication is not always obvious, but it’s critical to address it. Strive to make
your code express each idea “once and only once.” Don’t repeat yourself.

In this chapter we’ll cover the following smells:

Derived Value• , in which a hard-coded value could have been computed instead

Repeated Value• , in which a hard-coded value is repeated

Duplicated Code• , in which code has been copied

Alternative Modules with Different Interfaces• , in which the same problem has
been solved more than once

From the Library of Lee Bogdanoff

ptg

80 Chapter 8: Duplication

Derived Value

What to Look For
The code contains a hard-coded value that could also be obtained by calculating it •
from other values or referencing an appropriate constant.

Why This Is a Problem
Duplication: When a value is computed two different ways, it’s prone to the two

mechanisms diverging.
 Communication: Showing the relationship between values helps to document the

design more clearly.

When to Leave It
Some tests may benefit from having a derived value: It may make the test more readable,
and it may demonstrate an independent computation of the value.

How It Got This Way
Someone needed a value, so they put it in the code. On its own, perhaps it’s not so bad,
but often there are other values derived from or dependent on it. For example, we’ll have
a string defined as “banana” and a length variable of 6. If you change the string, you need
to change the length variable; however, this is not obvious, and so a defect gets in.

What to Do
Use • Replace Value with Expression for the derived value.

What to Look for Next
 Duplication: Cleaning up this duplication may make it easier to see other duplica-

tion. You may see examples of Feature Envy.
 Abstraction: By making explicit the fact that two values depend on each other, you

may identify the need to wrap those values and calculations in a class. You may
see this in the form of an Open Secret.

From the Library of Lee Bogdanoff

ptg

Repeated Value 81

Repeated Value

What to Look For
A hard-coded value—such as a GUI scaling factor or a text string—occurs more •
than once in the code and has the same meaning each time.

Why This Is a Problem
Duplication: Defects can enter if the value is changed in one place but not the

other.
Communication: When a value appears multiple times, it’s not clear whether this is

intentional or coincidental.

When to Leave It
The same value might actually mean different things. For example, two different mod-
ules might use the empty string as a default value. This is a coincidence and not an
example of duplication. Nevertheless, you might improve communication by creating
constants to give domain-related names to these default values.

Tests are often more readable when they simply use the value they want, but again
you may sometimes pull out a symbolic constant if it better communicates your intent.

How It Got This Way
A programmer needs a value and puts it in the code; the value then embodies a require-
ment or a design choice. Later, someone needs the same value, so he either copies the
original or independently makes the same choice.

What to Do
If the value is genuinely a simple constant, use • Replace Magic Number with Symbolic
Constant to give it a meaningful name.

Very often, the value is a clue to the existence of the hard form of • Duplicated Code.
Use Extract Method or Form Template Method on the repeated algorithm. Leave the
value itself inline in the resulting code, unless naming it helps to explain or docu-
ment the algorithm.

If the values are strings (e.g., the text of dialog boxes), you may want to put them in •
some sort of mapping facility or use an internationalization library such as ri18n.

From the Library of Lee Bogdanoff

ptg

82 Chapter 8: Duplication

What To Look for Next
 Duplication: Removing this duplication may make it easier to see other duplication.
 Abstraction: Removing this duplication may reveal the need for a new class respon-

sible for the value.

From the Library of Lee Bogdanoff

ptg

Duplicated Code 83

Duplicated Code

What to Look For
The easy form: Two fragments of code look nearly identical.•

The hard form: Two fragments of code have nearly identical effects (at any concep-•
tual level).

Why This Is a Problem
 Size: The code is bigger than it has to be, with more to understand.
 Flexibility: A design concept expressed more than once interferes with future changes;

the change may have to be done in multiple places.
 Communication: Near-repetition interferes with how easily code is understood. (The

reader must decide whether two things are really expressing one concept, and
whether any differences are significant.)

When to Leave It
Sometimes, what appears to be duplication is in fact coincidental. In such a case, fold-
ing the two places together would confuse the reader and create friction against future
change.

Very rarely, you might decide that the duplication is necessary to help the code com-
municate better, and choose to leave it in place.

How It Got This Way
Some duplication occurs because programmers work independently in different parts
of the system, and they don’t realize that they are creating almost identical code. Some-
times people realize there’s duplication, but they don’t have the time or inclination to
remove it. Other times, duplication will be hidden by other smells; after those smells are
fixed, the duplication becomes more obvious.

Perhaps the most common case occurs when the programmers intentionally dupli-
cate code. They find some code that is “almost” right, so they copy-and-paste it into the
new spot with some slight alterations. This often happens on a red bar during test-driven
development, when it is imperative to get to the green bar as quickly as possible.

From the Library of Lee Bogdanoff

ptg

84 Chapter 8: Duplication

What to Do
If the duplication is within a method or in two different methods in the same class or •
module: Use Extract Method to pull the common part out into a separate method.

If the duplication is within two sibling classes: Use• Extract Method to create a single
method, then Pull Up Method (and Pull Up Instance Variable if needed) to bring the
common parts together. Then you may be able to use Form Template Method to cre-
ate a common algorithm in the parent and unique steps in the children.

If the duplication is in two modules or in two unrelated classes: Either extract the •
common part into a new class or module, or decide that the smell is Feature Envy
so the common code really belongs in only one place.

In any of these cases, you may find that the two places aren’t literally identical but •
that they have the same effect. Then you may do a Substitute Algorithm so that only
one copy is involved.

What to Look for Next
 Abstraction: Look for ways to push related responsibilities together. You may find

new classes waiting to emerge.

From the Library of Lee Bogdanoff

ptg

Alternative Modules with Different Interfaces 85

Alternative Modules with Different Interfaces

What to Look For
Two classes or modules seem to be doing the same thing but are using different •
method names.

Why This Is a Problem
 Flexibility: Maintaining two similar chunks of code can be time-consuming and

costly.
 Communication: Having different names for the same concept makes code harder

to understand.
 Abstraction: Different names interfere with your ability to pull out common code.

When to Leave It
Even with Ruby’s open classes, it’s not always expedient to change interfaces (e.g., if both
are in different libraries that you’d rather not own). Each library may have its own vision
for the same concept, but you may be left with no good way to unify them.

How It Got This Way
People create similar code to handle similar situations, but don’t realize the other code
exists.

What to Do
Harmonize the classes or modules so that you can eliminate one of them.

 1. Use Rename Method to make method names similar.

 2. Use Move Method, Add Parameter, and Parameterize Method to make protocols
(method signatures and approach) similar.

 3. If you have two classes that are similar but not identical, use Extract Superclass after
you have them reasonably well harmonized. For similar modules, extract a shared
module or class that they can both use.

 4. Remove the extra class or module if possible.

What to Look for Next
 Duplication: You may be able to extract common helper or superclasses.

From the Library of Lee Bogdanoff

ptg

86 Chapter 8: Duplication

Exercises

Exercise 8.1: Rakefile
Consider the following fragment of a Rakefile:

require 'rake/contrib/sshpublisher'

file '.published' => ['sparky.html', 'sparky.rb'] do

 Rake::SshFilePublisher.new('www.ruby-refactoring.com',

 '/var/www/tools', '.', 'sparky.html').upload

 Rake::SshFilePublisher.new('www.ruby-refactoring.com',

 '/usr/lib/cgi-bin', '.', 'sparky.rb').upload

 touch '.published'

end

desc "copy all files to the live deploy locations"

task :deploy => '.published'

A. Identify at least three sets of duplicated strings. Which kind of duplication does
each represent?

B. Eliminate each type of duplication in turn.

C. Was some duplication harder to eliminate than others? Starting again from the
original code, try removing the smells in a different order. Does that change
your solution? Does it alter the relative difficulty of each refactoring?

D. This example has no tests; did you make any mistakes while refactoring? What
could you haved one to make the process less error prone?

See page 225 for solution ideas.

Exercise 8.2: Two Libraries (Challenging)
Suppose you’re trying to integrate two modules from two different sources. Each
module has its own logging approach. Their APIs are

System A: Calls to LogFile.log are sprinkled throughout the code.

LogFile.setLog("file.log")

LogFile.log(:info, "some message")

Logfile.log(:error, "another message")

or use :warn or :fatal

From the Library of Lee Bogdanoff

ptg

Exercises 87

System B: Any object that wants to write values to the log fi le will hold an instance
of Log.

LogFacility.setOutput('file2.log')

@logger = LogFacility.makeLog('id')

@logger.informational('yet another message')

all forms take optional exception

@logger.warning('msg', exception)

@logger.fatal('fatal message')

Your long-term goal is to move to the standard Logger facility in Ruby 1.8, but your
environment doesn’t support that yet.

A. What overall approach would you use to harmonize these classes with where
you want to go? (Make sure to address the Ruby 1.8 concern.)

B. Create a simple test for each logger, and implement the logger with the simplest
approach you can.

C. Describe how to harmonize the classes so you can eliminate one of them. (Don’t
worry about the Ruby 1.8 future yet.)

See page 225 for solution ideas.

Exercise 8.3: Environment Variables
module Timer

 def times(env)

 value_s = env['interval']

 if value_s == nil

 raise "interval missing"

 end

 value = Integer(value_s)

 if value <= 0

 raise "interval should be > 0"

 end

 check_interval = value

 value_s = env['duration']

 raise "duration missing" if value_s.nil?

 value = Integer(value_s)

From the Library of Lee Bogdanoff

ptg

88 Chapter 8: Duplication

 if value <= 0

 raise "duration should be > 0"

 end

 if (value % check_interval) != 0

 raise "duration should be multiple of interval"

 end

 monitor_time = value

 value_s = env['departure']

 if value_s.nil?

 raise "departure missing"

 end

 value = Integer(value_s)

 raise "departure should be > 0" if value <= 0

 if (value % check_interval) != 0

 raise "departure should be multiple of interval"

 end

 departure_offset = value

 [check_interval, monitor_time, departure_offset]

 end

end

A. How would you handle the duplication?

 See page 226 for solution ideas.

Exercise 8.4: Template
module Template

 def template(source_template, req_id)

 template = String.new(source_template)

 # Substitute for %CODE%

 template_split_begin = template.index("%CODE%")

 template_split_end = template_split_begin + 6

 template_part_one =

 String.new(template[0..(template_split_begin-1)])

 template_part_two =

 String.new(template[template_split_end..template.length])

 code = String.new(req_id)

 template =

 String.new(template_part_one + code + template_part_two)

From the Library of Lee Bogdanoff

ptg

Exercises 89

 # Substitute for %ALTCODE%

 template_split_begin = template.index("%ALTCODE%")

 template_split_end = template_split_begin + 9

 template_part_one =

 String.new(template[0..(template_split_begin-1)])

 template_part_two =

 String.new(template[template_split_end..template.length])

 altcode = code[0..4] + "-" + code[5..7]

 puts template_part_one + altcode + template_part_two

 end

end

A. What duplication do you see?

B. What would you do to remove the duplication?

C. One piece that repeats is a structure of the form String.new(something). What
does this code do? Is it necessary?

See page 227 for solution ideas.

Exercise 8.5: Duplicate Observed Data (Challenging)
The refactoring Duplicate Observed Data works like this: If you have domain data in a
widget, move the domain data to a new domain class, and set up an observer so that
the widget is notified of any changes to it.
Thus, we started with a situation where data was in one place (the widget). We have

not only duplicated it (holding it in both the widget and the domain object), but
we’ve also added a need for synchronization between two objects.

A. Why is this duplication considered acceptable (even desirable)? (Hint: Your an-
swer should touch on the Observer or Model-View-Controller patterns.)

B. What are the performance implications of this approach?

See page 227 for solution ideas.

From the Library of Lee Bogdanoff

ptg

90 Chapter 8: Duplication

Exercise 8.6: Ruby Libraries
A. The Ruby core and standard libraries have several places where there is duplica-

tion. Describe some examples of this. They might be at a low, medium, or high
level.

B. Why does this duplication exist? Is it worth it?

See page 228 for solution ideas.

Exercise 8.7: Points
Suppose you see these two classes (bird.rb and button.rb):

bird.rb

require 'point.rb'

class Bird

 attr_accessor :location

 def initialize max_x, max_y

 @@max_x = max_x

 @@max_y = max_y

 @location = Point.new 0, 0

 end

 def move_by(point)

 @location.x = (@location.x + point.x) % @@max_x

 @location.y = (@location.y + point.y) % @@max_y

 end

end

#button.rb

require 'point.rb'

class Button

 attr_accessor :name

 attr_accessor :x, :y

 def initialize name, x_limit, y_limit

 @name = name

 @xmax = x_limit

 @ymax = y_limit

From the Library of Lee Bogdanoff

ptg

Exercises 91

 @x = 0

 @y = 0

 end

 def move_to(x, y)

 @x = limit(x, @xmax)

 @y = limit(y, @ymax)

 end

private

 def limit(v, vmax)

 result = v

 while result >= vmax

 result -= vmax

 end

 while result < 0

 result += vmax

 end

 result

 end

end

A. What is the duplication?

B. What could you do to eliminate duplication in these two classes?

C. Sometimes, two versions of duplicated code are similar, but one has fixed a bug
and the other hasn’t. How can refactoring help you in this situation?

 See page 229 for solution ideas.

Exercise 8.8: XML Report
Suppose we’re writing a script to convert a textual report from a mainframe and re-
format it into XML. Some of our current code looks like this:

class ReportRow

 def to_xml

 result = "<row>\n"

 @columns.each do |col|

 result += col.print + "\n"

 end

 return result + "</row>"

 end

end

From the Library of Lee Bogdanoff

ptg

92 Chapter 8: Duplication

class ReportColumn

 def print

 "<column>#{@value.modulo(100)}</column>"

 end

end

A. Identify the duplication. Are there any other smells in this code?

B. Devise at least two different approaches to removing the duplication. What are
the relative pros and cons of each?

C. Try both approaches. Which was more difficult? Does this affect your assessment
of the pros and cons?

See page 229 for solution ideas.

From the Library of Lee Bogdanoff

ptg

93

CHAPTER 9

Conditional Logic

It’s natural that object-oriented programming is focused on objects and their relation-
ships, but the code within an object is important too. Classic books like Jon Bentley’s
Programming Pearls [6] and More Programming Pearls [7] or Brian Kernighan and P. J.
Plauger’s The Elements of Programming Style [18] can help inspire you to write good,
clean code.

Conditional logic is often the trickiest part of such code.

It’s hard to reason about, since we have to consider multiple paths through the •
code.

It’s tempting to add special-case handling rather than develop the general case.•

Conditional logic sometimes is used as a weak substitute for object-oriented •
mechanisms.

In this chapter we’ll cover the following smells:

Nil Check• , in which nil is used to signal something special

Special Case• , in which one scenario is handled differently than the rest

Complicated Boolean Expression• , in which the logic is impenetrable

Control Coupling• , in which the caller decides which path a method should take

Simulated Polymorphism• , in which duck-typing is hand-coded using conditionals

From the Library of Lee Bogdanoff

ptg

94 Chapter 9: Conditional Logic

Nil Check

What to Look For
There are repeated occurrences of • if xxx.nil? or if xxx == nil, especially in guard
clauses at the top of methods and blocks.

Why This Is a Problem
 Duplication: The multiple identical queries are duplication, with all the problems

that brings.
 Flexibility: When nil is a possible value, it implies that every client must be careful

to make this check to avoid a latent bug.

When to Leave It
If the Nil Check occurs in only one place (e.g., in a Factory Method), it is usually not
worth the effort to create a separate Null Object.

Watch out for a case where nil means two or more different things in different con-
texts. (You may be able to support this with different Null Objects.)

How It Got This Way
A developer decided, “We’ll use nil to mean the default.” This may have avoided the
need to initialize certain variables, or it may have been an afterthought for an unex-
pected case. The Nil Check may have been introduced to work around a defect (without
addressing the underlying cause).

What to Do
Try to restrict Nil Checks to interface boundaries. Ensure that only valid objects are
used in the bulk of the system to avoid the need for these checks.

If there’s a reasonable default value, use that.•

You may fi nd the Ruby idiom • variable = value || default useful at the point
where you set the value. (If value is nil, it sets the variable to the default.)

Otherwise,• Introduce Null Object creates a default object that you explicitly use. You
may find method_missing useful in this.

From the Library of Lee Bogdanoff

ptg

Nil Check 95

However, Null Objects need to have safe behavior for the methods they provide.
They often act as identity objects (as 0 does relative to addition). If you can’t define a
safe behavior for each method, you may not be able to use a Null Object.

What to Look for Next
 Duplication: A single “missing object” defect may have spawned identical defensive

code blocks throughout the application; those can be removed.
Size: Removing the now-extraneous Nil Checks will make the code easier to read and

digest.
 Abstraction: It may turn out that all of the code to handle a certain special case can be

brought together into a single Null Object class, which then comes to represent
a genuine behavioral abstraction from the application’s domain.

From the Library of Lee Bogdanoff

ptg

96 Chapter 9: Conditional Logic

Special Case

What to Look For
Complex• if statements.

Guard clauses—checks for particular values before doing work (especially compari-•
sons to constants).

Why This Is a Problem
 Communication: A Special Case increases the amount the reader has to hold in his

head while attempting to understand a code fragment.

When to Leave It
In a recursive algorithm there are always one or more base cases that will stop the recur-
sion; you can’t expect to eliminate these. And sometimes an if or unless clause is just
the simplest way to do something.

How It Got This Way
Sometimes, introducing a Special Case was the easiest way to get to the green bar. Oth-
er times, a guard clause may have been introduced to defend against an unruly caller, or
while simplifying a Complicated Boolean Expression during refactoring.

What to Do
If the conditionals are taking the place of polymorphism,• Replace Conditional with
Polymorphism. You may find things become more clear if you first use Extract Method
on the clauses.

If the • if and else clauses are similar enough, you may be able to rewrite them so
that the same code fragment can generate the proper results for each case; then the
conditional can be eliminated.

If you have a defensive guard clause, try pushing it up into the method’s callers (see•
Control Coupling for detailed mechanics).

What to Look for Next
 Duplication: Removal of a special case may render the code similar to another frag-

ment elsewhere or reveal a common structure that was previously obscured.

From the Library of Lee Bogdanoff

ptg

Special Case 97

Simplicity:• Pushing guard clauses up the call tree often reveals a single cause for
multiple defensive conditional clauses. Catch the Special Case where it arises,
or look for ways to prevent that case completely.

From the Library of Lee Bogdanoff

ptg

98 Chapter 9: Conditional Logic

Complicated Boolean Expression

What to Look For
Code has complex conditions involving • and, or, and not.

Why This Is a Problem
 Communication: Any code that requires the reader to resort to dry runs or drawing

truth tables is going to slow everyone who encounters it.
 Flexibility: A complex Boolean expression can be a “no-go area,” discouraging devel-

opers from changing the code around it.

When to Leave It
You may be able to find other ways to simplify the expressions, or you may find that the
rewritten expression communicates less than original.

How It Got This Way
The code may have been complicated from the beginning, or it may have picked up ad-
ditional conditions along the way. Sometimes code like this has been directly translated
from a textbook calculation or formula.

What to Do
Flip the sense:•

 if !a becomes unless a

 and
 unless !a becomes if a

Apply DeMorgan’s Law:•

 !(a && b) becomes (!a) || (!b)

 and

!(a || b) becomes (!a) && (!b)

 You may find that some variables will communicate better if they change names to
reflect their flipped sense.

From the Library of Lee Bogdanoff

ptg

Complicated Boolean Expression 99

Use• Introduce Explaining Variable to make each clause clearer.

Use guard clauses to peel off certain conditions; the remaining clauses get simpler.•

Decompose Conditional• pulls each part into its own method.

What to Look for Next
 Communication: Improved readability may expose previously undiscovered defects

in the code.
 Flexibility: If you peeled the condition apart to create one or more guard clauses,

check whether you now have a Nil Check or a Special Case.

From the Library of Lee Bogdanoff

ptg

100 Chapter 9: Conditional Logic

Control Coupling

What to Look For
A method or block checks the value of a parameter in order to decide which execu-•
tion path to take.
A method’s name includes a word such as “or.”•

Why This Is a Problem
 Duplication: Control Coupling is a kind of duplication, because the caller already

knows which path should be taken.
 Flexibility: The caller and callee are coupled together—any change to the possible

values of the controlling parameter must be reflected on both sides.
• Simplicity: The called method is probably also a Greedy Method, because it includes

at least two different code paths.

How It Got This Way
Sometimes we want to modify a method’s behavior slightly, but we don’t want to lose
the original behavior, so we add a parameter and use it to vary the method’s course.

What to Do
1. Use Extract Method to strip the controlled method down to the bare skeleton.

2. Then use Inline Method to push the responsibility back up to the caller(s).

3. Repeat all the way up the call stack to the source of the control value.

What to Look for Next
Duplication: If the control parameter was passed by more than one caller, the Inline

Method step (mentioned in the preceding section) will have introduced some
duplication; remove it as you go.

Size: After the dust has settled, check whether any of the Inline Method steps left be-
hind a Lazy Class.

Abstraction: When you’ve found the source(s) of the control variable, you probably
now have a case of Simulated Polymorphism.

From the Library of Lee Bogdanoff

ptg

Simulated Polymorphism 101

Simulated Polymorphism

What to Look For
Code uses a• case statement (especially on a type field).

Code has several• if statements in a row (especially if they’re comparing against the
same value).

Code uses• instance_of?, kind_of?, is_a?, or === to decide what type it’s working
with.

Multiple conditionals in different places test the same value.•

Why This Is a Problem
 Flexibility: When the same value is tested in multiple places throughout an ap-

plication, any change to the set of possible values causes many methods and
classes to change. This is a major cause of both Shotgun Surgery and Divergent
Change, and missing a single case could introduce defects.

Abstraction: Tests for the type of an object may indicate that the abstraction repre-
sented by that type is not completely defined (or understood).

Communication: Conditional code is hard to read and understand, because the read-
er must hold more state in his head.

When to Leave It
Sometimes—particularly at subsystem boundaries—a case statement is the simplest
way to express the logic.

How It Got This Way
This smell is often caused by laziness in introducing new classes. The first time you need
conditional behavior, you might use an if or case statement rather than a new class. It’s
not a big problem at this point because it only occurs once. However, if you then need
another condition based on the same type code, you introduce a second case instead of
fixing the lack of polymorphism.

Sometimes the lack of polymorphism is hidden behind a series of if statements
instead of an explicit case statement, but the root problem is the same.

From the Library of Lee Bogdanoff

ptg

102 Chapter 9: Conditional Logic

What to Do
Don’t simulate polymorphism—use mechanisms built into the programming language.

If a case statement on the same condition occurs in several places, it is often using a •
type code; replace this with the polymorphism built into objects. It takes a series of
refactorings to make this change:

 1. Extract Method. Pull out the code for each branch.

 2. Move Method. Move related code onto the right class.

 3. Replace Type Code with Subclass or Replace Type Code with State/Strategy. Set up
the inheritance structure.

 4. Replace Conditional with Polymorphism. Eliminate the conditionals.

If the conditions occur within a single class, you might be able to replace the condi-•
tional logic via Replace Parameter with Explicit Methods or Introduce Null Object.

What to Look for Next
 Communication: Creating classes to bring together the conditional branches gives

names to these abstractions. Review the names of these and related classes.
 Duplication: These refactorings often bring together branches from different condi-

tionals into a single new class. Review the new class for Duplicated Code and
inconsistency smells among its methods.

From the Library of Lee Bogdanoff

ptg

Exercises 103

Exercises

Exercise 9.1: Null Object
Look again at the code in Exercise 5.2.

A. Some of the Nil Checks are checks for nil strings. One approach would be to
use empty strings instead. What are the downsides of this approach (taking into
account the test code and all the other client classes you don’t see here)?

B. What’s another approach to this problem?

C. Extract a Bin class, and use Introduce Null Object.

 See page 230 for solution ideas.

Exercise 9.2: Conditional Expression
Consider this code fragment:

if !((score > 700) ||

 ((income >= 40000) && (income <= 100000) &&

 authorized && (score > 500)) ||

 (income > 100000))

 reject

else

 accept

end

A. Apply DeMorgan’s Law to simplify this as much as possible.

B. Starting from the original, rewrite the condition by introducing explaining
variables.

C. Starting from the original again, flip the if and else clauses, then break it into
several if clauses. (You’ll call accept() in three different places.)

D. Use Consolidate Conditional Expression by extracting a method to compute the
condition.

E. Which approach was the simplest? The clearest? Can you combine the
techniques?

From the Library of Lee Bogdanoff

ptg

104 Chapter 9: Conditional Logic

F. Describe the conditions in table form. The rows and columns should be based on
three variables: one for the three score ranges, one for the income ranges, and
one for the authorized flag. The cells should say either “accept” or “reject.”

 See page 230 for solution ideas.

Exercise 9.3: Case Statement
Consider this code:

 def print_it(op)

 case op.type

 when '+'

 out = "push"

 when '-'

 out = "pop"

 when '@'

 out = "top"

 else

 out = "unknown"

 end

 puts "operation = #{out}"

 end

 def do_it(op, stack, item)

 case op.type

 when '+'

 stack.push(item)

 when '-'

 stack.pop

 end

 end

A. What would you do?

B. Suggest some places in a typical application where a case statement might not
be a bad smell.

 See page 231 for solution ideas.

Exercise 9.4: Guard Clauses (Challenging)
Find some code you wrote recently in which some methods have defensive guard
clauses.

From the Library of Lee Bogdanoff

ptg

Exercises 105

A. Using the algorithm suggested under Control Coupling, push the guards as far
as possible up the call tree.

B. What happens when you hit an API or callback interface? What forces prevent or
permit you to continue the refactoring?

C. Does your application now have more or fewer conditional checks? Does the
resulting code indicate any missing abstractions?

D. The methods that were originally “guarded” are now unprotected. Are they
(and their enclosing classes) better or worse off for that?

Exercise 9.5: Factory Method (Challenging)
Consider these classes:

Now imagine that we want to hide the choice of driver from the rest of the
application, so we introduce a Factory class that looks something like this:

USE_MEMORY_DRIVER = 1

USE_DEBUG_DRIVER = 2

USE_PRODUCTION_DRIVER = 3

class DriverFactory

 def initialize(type)

 @type = type

 end

 def make_driver

 #...

 end

end

Memory Driver Debug Driver
Production

Driver

<<abstract>>
Driver

From the Library of Lee Bogdanoff

ptg

A. Write code for the factory according to the implied design. Note: One of the
three constants is passed to the DriverFactory’s constructor; this determines
what type of driver will be returned by make_driver.

B. Your code probably includes a case statement or a series of ifs. Is this condi-
tional logic justified? What other smells do you see in this design?

C. Redesign DriverFactory so that the constants and conditionals are no longer
required.

D. Your code no longer mentions the types explicitly. What are some advantages to
that?

E. What are some disadvantages to this new arrangement?

 See page 232 for solution ideas.

106 Chapter 9: Conditional Logic

From the Library of Lee Bogdanoff

ptg

107

CHAPTER 10

Data

Data can be defined as simple facts, divorced from information about what to do with
them. “Data” has a dusty whiff about it, the old-fashioned ring of data processing or data
structures.

Data is often a natural starting point for thinking about things. For example, we
know we have a first name, middle name, and last name, so we create a Person class with
that information. But objects are about data and behavior together—your code will be
more robust if you organize objects by behavior.

Data-oriented objects are an opportunity. The smells in this chapter are often signs
of a missing or inadequately formed class. If the data represents a good clustering, we’ll
usually be able to find behavior that belongs with it in a class.

In this chapter we’ll cover the following smells:

Open Secret• , in which a domain concept’s representation hasn’t been encapsulated

Data Class• , in which a class has little or no behavior

Data Clump• , in which a bunch of values travel around together

Temporary Field• , in which an instance variable has a different lifecycle than its
enclosing class

From the Library of Lee Bogdanoff

ptg

108 Chapter 10: Data

Open Secret
Sometimes, a simple data type (such as a number or string) is used to encode a value that
could be a domain object in its own right. The representation of this value is exposed;
clients have to decode it and enforce any business rules themselves.

(This smell was called Primitive Obsession in Fowler’s Refactoring [1] but Ruby doesn’t
have the concept of primitives in the sense that C++ and Java do. It’s the exposure of
representation that’s important, not the kind of item it’s stored in.)

What to Look For
Several classes or modules pass around a simple value, and they all know how to •
interpret it. (The classic example is a String that “represents” a phone number.)

Several classes or modules know what data is held in each slot of an • Array or Hash.

Why This Is a Problem
 Communication: The value represents a concept, often from the application domain;

but as yet the concept has not been named or provided with clear semantics.
Duplication: A domain concept or design decision has been implemented, but knowl-

edge of its implementation details is spread around the code. This leads to dupli-
cation of knowledge—and often of code—among the clients of this value.

• Simplicity: Shotgun Surgery is almost always caused by an Open Secret—indeed, we
are often alerted to this smell by encountering Shotgun Surgery first.

When to Leave It
Very rarely, you may decide that fixing this smell would create dependency or perfor-
mance problems.

Particularly for a Hash or an Array, you may decide that convenience outweighs any
need to remove this smell.

A Hash may represent a simple map of values; if there’s no interpretation layered over
top of it, there may be less of the smell (but note that you’re still exposing the implemen-
tation and there may still be a missing object).

How It Got This Way
It’s easy to start with a string or numeric type, and later miss an opportunity to intro-
duce a new class.

From the Library of Lee Bogdanoff

ptg

Open Secret 109

What to Do
If you have a primitive whose value is interpreted by several classes, fix it as if it were •
a Data Clump.

If you have an • Array or a Hash whose “layout” is common knowledge, use Replace
Array with Object or Replace Hash with Object.

What to Look for Next
Duplication: The class you just extracted is a Data Class. Look for opportunities to

flesh out its behavior by reviewing its clients for Feature Envy. You will often
find clients performing validation or formatting of the value.

Communication: You have given a name to a domain concept; review the other
names that are used around the new class.

Flexibility: Look for ways to push the construction of your new object backward
in time, so that more parts of your application benefit from the new class’s
semantics and communication capabilities. If the new class is immutable and
has a small set of possible or common values, consider introducing Flyweight
instances.

From the Library of Lee Bogdanoff

ptg

110 Chapter 10: Data

Data Class

What to Look For
A class consists only of trivial reader and writer methods for instance variables, may-•
be with a constructor to initialize them.

Why This Is a Problem
Abstraction: Objects are intended to encapsulate both data and behavior, but a Data

Class only has data. The clients of the class do the “heavy lifting” for the class.
Duplication: Multiple clients often have to do similar work.

When to Leave It
There are times when an attr_accessor is the simplest and best approach. For example,
consider a point with x and y coordinates. The interface probably isn’t going to change,
and people may deal with lots of points. So it makes sense for a Point class to declare
public attr_accessors.

Some persistence mechanisms (e.g., ActiveRecord) rely on reflection to determine
what data should be loaded or stored. Such classes may be constrained by their “data
class” nature. (You can add methods, but the class tends to be centered around its data.)
It is sometimes better to treat these classes as Mementos (see Gamma’s Design Patterns),
and to use another class as a layer above these persistence-only classes; that new class can
benefit from all the changes described here, and it will hide the low-level classes.

How It Got This Way
It’s common for classes to begin like this: You realize that some data is part of an in-
dependent object, so you extract it. In fact, the creation of a Data Class is a good first
step in removing the Open Secret and Data Clump smells. But objects are about the
commonality of behavior, and these objects aren’t developed enough as yet to have much
behavior.

What to Do
1. Use Remove Setting Methods for as many instance variables as you can.

2. Use Encapsulate Collection to remove direct access to any collection-type fields.

From the Library of Lee Bogdanoff

ptg

Data Class 111

3. Look at each client of the object. Almost invariably, you’ll find Feature Envy and
Inappropriate Intimacy (General Form)—clients accessing the fields and manipu-
lating the results when the data class could do it for them. (This is often a source of
duplication, because many callers will tend to do the same things with the data.) Use
Extract Method on the client to pull out the class-related code, then Move Method to
pull it over to the class.

4. After doing this a while, you may find that you have several similar methods on the
class. Use Rename Method, Extract Method, Add Parameter, or Remove Parameter to
harmonize signatures and remove duplication.

5. Most access to the instance variables shouldn’t be needed any more because the
moved methods cover the real use. Use Remove Method to eliminate the readers and
writers.

What to Look for Next
Communication: Review the names used in this class to ensure that the methods you

bring in present a consistent API to the class’s clients.
Duplication: Where you moved methods from clients into this class, check whether

those clients are now Lazy Classes and whether they now contain further
Duplication.

From the Library of Lee Bogdanoff

ptg

112 Chapter 10: Data

Data Clump

What to Look For
The same two or three items frequently appear together in classes and parameter lists.•

A group of instance variable names start or end with similar substrings.•

Why This Is a Problem
Duplication: The recurrence of the items often means there is duplicate code spread

around to handle them.
Abstraction: There may be a missing concept, making the system harder to understand.

When to Leave It
Passing a Whole Object sometimes introduces a dependency you don’t want (as
lower-level classes get exposed to the whole new object instead of just its components).
You may continue to pass in the pieces to prevent this dependency.

Very rarely, there is a measured performance problem solved by passing in the parts
of the object instead of the object itself. Recognize that this is a compromise in the
object model for performance. Such code is worth commenting!

How It Got This Way
The items are typically part of some other entity, but as yet no one has had the insight
to realize that there’s a missing class. Or, sometimes, people know the class is missing but
think it’s too small or unimportant to stand alone.

(Identifying these classes is often a major step toward simplifying a system, and it
often helps you to generalize classes more easily.)

What to Do
If the items are instance variables in a class, use• Extract Class to pull them into a new
class.

If the values are together in method signatures,• use Introduce Parameter Object to
extract the new object.

From the Library of Lee Bogdanoff

ptg

Data Clump 113

What to Look for Next
Communication: Review calls that pass around the items from the new object; look

for opportunities to use Preserve Whole Object.
Duplication: Look at uses of the items; there are often opportunities to use Move

Method, etc., to move those uses into the new object (as you would to address
the Data Class smell).

From the Library of Lee Bogdanoff

ptg

114 Chapter 10: Data

Temporary Field

What to Look For
An instance variable is set only at certain times, and it is nil (or unused) at other times.

Why This Is a Problem
Abstraction: Parts of the object change at different rates, and the class spends effort

coordinating the changes. This suggests there is an implicit concept that can be
brought out (with its own lifetime).

When to Leave It
It may not be worth the trouble of creating a new class if it doesn’t represent a useful
abstraction.

How It Got This Way
This can happen when one part of an object has an algorithm that passes around
information through the instance variables rather than parameters; the instance vari-
ables are valid or used only when the algorithm is active. The fact that the instance
variables are sometimes used and sometimes not suggests that there may be a missing
object whose life cycle differs from that of the object holding them.

What to Do
Use • Extract Class, moving over the fields and any related code.

What to Look for Next
Abstraction: The new class is likely a Data Class.

Duplication: Look for other places that embody the same concept; they may be
creating duplication.

From the Library of Lee Bogdanoff

ptg

Exercises 115

Exercises

Exercise 10.1: Alternative Representations
Imagine that the following domain concepts are classes in some application. For
each, suggest two or three different ways in which its value could be represented in
instance variables:

A. Money

B. Position (in a list)

C. Range

D. Social Security Number (government identification number: “123-45-6789”)

E. Telephone number

F. Street Address (“123 E. Main Street”)

G. ZIP (postal) code

 See page 233 for solution ideas.

Exercise 10.2: Primitives and Middle Men

A. Wrapping a “primitive” object inside a new class can appear to be introducing
a Middle Man. Why (or when) is that not the case?

B. Find some code you wrote recently in which the Open Secret smell is present.
Fix it by wrapping the primitive inside a new class, named for the domain con-
cept it represents. Is this new class a Middle Man? Why or why not?

 See page 234 for solution ideas.

Exercise 10.3: Rails Accounts
We’re in the early stages of developing a Rails app to manage personal checking
accounts using double-entry bookkeeping. Our schema currently shows three models:

class CreateAccounts < ActiveRecord::Migration

 def self.up

From the Library of Lee Bogdanoff

ptg

116 Chapter 10: Data

 create_table "accounts", :force => true do |t|

 t.string "name"

 t.integer "opening_balance"

 t.datetime "created_at"

 t.datetime "updated_at"

 end

 create_table "postings", :force => true do |t|

 t.integer "amount"

 t.integer "account_id"

 t.integer "transaction_id"

 t.datetime "created_at"

 t.datetime "updated_at"

 end

 create_table "transactions", :force => true do |t|

 t.date "occurred_on"

 t.string "payee"

 t.string "reason"

 t.datetime "created_at"

 t.datetime "updated_at"
 end

 end

 def self.down

 drop_table :transactions

 drop_table :postings

 drop_table :accounts

 end

end

A transaction posts a monetary amount to each of a series of accounts, where
Posting is the join object representing the many-many relationship between accounts
and transactions. An account can provide its (current) balance:

class Account < ActiveRecord::Base

 has_many :postings

 has_many :transactions, :through => :postings

 validates_presence_of :name

 validates_uniqueness_of :name

 validates_numericality_of :opening_balance

 def balance

 postings.inject(0) { |sum, i| sum + i.amount }

 end

end

From the Library of Lee Bogdanoff

ptg

Exercises 117

In order to conform to double-entry bookkeeping rules, we also added some custom
validation to check that each transaction posts a set of amounts that sum to zero:

class Transaction < ActiveRecord::Base

 has_many :postings

 has_many :accounts, :through => :postings

 validates_presence_of :payee

 validates_presence_of :reason

 validates_presence_of :occurred_on

 def validate_postings(postings)

 if postings.size < 2

 errors.add_to_base("Provide at least two postings")

 else

 bal = postings.inject(0) do |sum, po|

 sum + po['amount'].to_i

 end

 errors.add_to_base("Sum must be zero") if bal != 0

 end

 end

end

We have a view showing the balance of every account:

<h1>Account Balances</h1>

<table width="100%">
 <tr> <th> Account </th> <th> Balance </th> </tr>
<% for account in @accounts %>

 <tr>
 <td width="60%"><%= link_to account.name, account %></td>
 <td align="right"><%= to_money(account.balance) %></td>

 </tr>

<% end %>

</table>

We also have a view showing a statement for a single account, and another showing
the details of a single transaction. Each of these views displays monetary amounts in
the same way, so to DRY up our app we’ve written a helper method:

module ApplicationHelper
 def to_money(amount)

 '%0.2f' % (amount/100.0)

 end

end

(We didn’t use the standard number_to_currency helper because we don’t want
currency symbols everywhere.)

From the Library of Lee Bogdanoff

ptg

118 Chapter 10: Data

A. What smell do you see, and what action would you take to remove it?

 See page 234 for solution ideas.

Exercise 10.4: Long Parameter List
Consider these methods from RMagick::Draw:

arc(startX, startY, endX, endY, startDegrees, endDegrees)

ellipse(originX, originY, width, height, arcStart, arcEnd)

rectangle(upper_left_x, upper_left_y,

 lower_right_x, lower_right_y)

A. For each declaration above, is there any cluster of parameters you might reason-
ably group into a new object?

B. Why might those signatures have so many parameters?

 See page 235 for solution ideas.

Exercise 10.5: A Counter-Argument
Consider a business application where a user enters a ZIP code (among other things),
and it gets stored in a relational database. Someone argues: “It’s not worth the bother
of turning it into an object: When it gets written, it will just have to be turned into a
primitive again.” Why might it be worth creating the object in spite of the need for
two conversions?

 See page 235 for solution ideas.

Exercise 10.6: Editor
Consider this interface to an editor:

class Editor

 insert(text)

 fetch(number_of_characters_to_fetch) # -> String

 move_to(position)

 5 position # -> Fixnum
 # etc...
end

From the Library of Lee Bogdanoff

ptg

Exercises 119

and this sequence of calls:

editor.insert("ba(nana)")

index_of_opening_parens = 2

editor.move_to(index_of_opening_parens)

assert_equal "(", editor.fetch(1)

editor.move_to(1)

editor.insert("x")

editor.move_to(index_of_opening_parens)

assert_equal ___, editor.fetch(1)

A. Given the interface provided, what string would you expect to appear in place
of the ___ in the fi nal assertion?

B. Based on the variable name index_of_opening_parens, what string would you
prefer to appear? Of what use would this be?

C. The crux of the problem is the use of a Fixnum as a position index. Suggest an
alternative approach.

D. Relate your solution to the Memento design pattern (from Gamma’s Design Pat-
terns [16]).

 See page 235 for solution ideas.

Exercise 10.7: Library Classes
The built-in Thread class has what appears to be public instance variables (abort_
on_exception, priority, etc.). What, if anything, do these reveal about Thread’s
internal design?

 See page 236 for solution ideas.

Exercise 10.8: Hidden State
The standard library classes Set and DateTime are encapsulated such that access to
their state is only through methods.

A. Propose at least two internal representations for each class.

From the Library of Lee Bogdanoff

ptg

120 Chapter 10: Data

B. Ruby provides no way to directly access an instance variable from outside a class.
(You have to define a method if you want to let a client change it.) How does this
promote the ability of a class to be immutable?

C. How does having no direct access to instance variables promote the design of
efficient classes?

 See page 236 for solution ideas.

Exercise 10.9: Proper Names
Consider the following class:

Person = Struct.new('Person', :last, :first, :middle)

Its clients are shown in one file for convenience; imagine them as nontest methods
in separate client classes:

require 'stringio'

require 'test/unit'

require 'person'

class PersonClient < Test::Unit::TestCase

 def client1(out, person)

 out.write(person.first)

 out.write(" ")

 if person.middle != nil

 out.write(person.middle)

 out.write(" ")

 end

 out.write(person.last)

 end

 def client2(person)

 result = person.last + ", " + person.first

 if (person.middle != nil)

 result += " " + person.middle

 end

 return result

 end

 def client3(out, person)

 out.write(person.last)

 out.write(", ")

 out.write(person.first)

From the Library of Lee Bogdanoff

ptg

Exercises 121

 if (person.middle != nil)

 out.write(" ")

 out.write(person.middle)

 end

 end

 def client4(person)

 return person.last + ", " +

 person.first +

 ((person.middle == nil) ? "" : " " + person.middle)

 end

 def test_clients

 bobSmith = Person.new("Smith", "Bob", nil)

 jennyJJones = Person.new("Jones", "Jenny", "J")

 out = StringIO.new

 client1(out, bobSmith)

 assert_equal("Bob Smith", out.string)

 out = StringIO.new

 client1(out, jennyJJones)

 assert_equal("Jenny J Jones", out.string)

 assert_equal("Smith, Bob", client2(bobSmith))

 assert_equal("Jones, Jenny J", client2(jennyJJones))

 out = StringIO.new

 client3(out, bobSmith)

 assert_equal("Smith, Bob", out.string)

 out = StringIO.new

 client3(out, jennyJJones)

 assert_equal("Jones, Jenny J", out.string)

 assert_equal("Smith, Bob", client4(bobSmith))

 assert_equal("Jones, Jenny J", client4(jennyJJones))

 end

end

A. What smell is represented by Person?

B. Using the clients you have, remove the smell.

C. There’s a new requirement to support people with only one name (say, Cher
or Madonna), or someone with several words in their last name (Oscar de los

From the Library of Lee Bogdanoff

ptg

122 Chapter 10: Data

Santos) or multiple last names (Jerry Johnson Smith). Compare the difficulty of
this change before and after your refactoring in the previous part.

 See page 236 for solution ideas.

Exercise 10.10: Checkpoints
We’re developing a very simple transaction mechanism, based on the following
module that allows us to checkpoint any object’s state:

module Checkpoint
 def checkpoint

 @state = var_values

 end

 def var_values

 result = {}

 instance_variables.each do |var|

 result[var] = instance_variable_get var

 end

 result

 end

 def changes

 var_values.reject { |k,v| k == "@state" || @state[k] == v }

 end

end

class Object

 include Checkpoint

end

require 'test/unit'

require 'checkpoint'

class Customer

 attr_reader :first, :last, :ssn

 def initialize(first, last, ssn)

 @first, @last, @ssn = first, last, ssn

 end

From the Library of Lee Bogdanoff

ptg

Exercises 123

 def marries(other)

 @last = other.last

 end

end

class CheckpointTest < Test::Unit::TestCase

 def test_one_variable_changed

 martha = Customer.new "Martha", "Jones", "12-345-6789"

 jack = Customer.new "Jack", "Harkness", "97-865-4321"

 martha.checkpoint

 martha.marries(jack)

 assert_equal({"@last" => "Harkness"}, martha.changes)

 end

end

A. What smell do you see in the Checkpoint module?

B. Redesign the code to remove that smell.

C. Have you improved the code? Was it worth the effort?

 See page 237 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

125

CHAPTER 11

Inheritance

The relationship between a class and its subclass often starts being simple but gets more
complicated over time. A subclass often depends on its parent more intimately than does
a separate class, but it can go too far.

A key challenge is deciding what a class is (behaves like) versus what a class has or
knows. A class structure often starts with inheritance and moves to a more compositional
style over time.

In this chapter we’ll cover the following smells:

Implementation Inheritance• , in which subclassing is used purely to reuse code

Refused Bequest• , in which a subclass isn’t substitutable for its superclass

Inappropriate Intimacy (Subclass Form)• , in which a subclass is tangled up in its
superclass’s implementation details

Lazy Class• , in which a class doesn’t do much

From the Library of Lee Bogdanoff

ptg

126 Chapter 11: Inheritance

Implementation Inheritance

What to Look For

Inheritance between two classes doesn’t represent an• is-a relationship (similarity of
behavior—i.e., substitutability).

Instances of the subclass are never passed as substitutes for instances of the parent.•

A subclass uses or publishes only a subset of the behavior it inherits from its super-•
class. (See also Refused Bequest.)

Why This Is a Problem
Communication: An inheritance relationship is likely to be read as an intention for

the subclass to be substitutable for the parent. If that isn’t the case—if the rela-
tionship exists only to allow the subclass to borrow code—then the design is
being miscommunicated. Readers of this code, and designers of client classes,
may make incorrect decisions by assuming that the inheritance relationship
means more than was intended.

 Abstraction: The public interface of the subclass inappropriately reveals things about
how the class is implemented.

 Flexibility: Inheritance is the strongest kind of relationship between two classes, and
creates a coupling that can restrict change or be difficult to break. Use inheri-
tance sparingly, as Ruby provides more than enough other ways to share object
behavior. Don’t waste your one permitted superclass when you could use a
delegate or a mix-in instead.

When to Leave It
This is not a strong smell, and you may decide that it just isn’t serious enough to fix.

How It Got This Way
Often, creating an inheritance relationship is the quickest way to borrow code from a
class that already exists.

What to Do
If the inherited methods don’t need to be public, use• Replace Inheritance with Del-
egation. If only a subset of the behavior of the parent class is used, consider Extract

From the Library of Lee Bogdanoff

ptg

Implementation Inheritance 127

Class first and have both parent and child classes delegate to the new class, or per-
haps the child class should inherit from the new class.

If (some of) the inherited methods do need to be public on the subclass, use• Extract
Module to make them shareable and then delete the inheritance relationship. Alter-
natively, use Replace Inheritance with Delegation and reimplement the child class to
act as a Middle Man for those methods.

What to Look for Next
Communication: Removing unwanted inherited methods gives the class’s public in-

terface a shake-up. Look through the whole class to check for Inconsistent
Names. Also look through the class or module you extracted, checking for
naming smells (see Chapter 6, “Names,” for a list of these).

• Simplicity: You may find that other implementation decisions depended on, or were
related to, the one you have just fixed. In particular, look through both original
classes for examples of Feature Envy in relation to the extracted class or module.

From the Library of Lee Bogdanoff

ptg

128 Chapter 11: Inheritance

Refused Bequest

What to Look For

Explicit Refusal:• The subclass undefines an inherited method, makes an inherited
method private, or makes it throw an exception when it is called.

Implicit Refusal:• A method inherited from the parent class just doesn’t work for
instances of the subclass.

An inheritance relationship between two classes doesn’t make sense; the subclass just •
isn’t an example of the parent.

Why This Is a Problem
• Simplicity: Rejecting a parent’s method violates the Liskov Substitution Principle

(LSP). The refusal of the subclass to implement an inherited method means
that all of its clients must cope with that refusal in some way.

Duplication: The clients need to know which class they are dealing with, so that they
know whether they can safely invoke the refused method.

 Flexibility: We have pushed one of the subclass’s responsibilities out into other classes,
which will hamper future change.

When to Leave It
If the inherited method was refused in order to prevent a Combinatorial Explosion, you
may decide to live with the smell.

If you leave this smell in place, move to an explicit refusal by having the subclass
raise an exception when a parent method is refused. If you just leave it implicit, you can
get strange behavior that is diffi cult to track down.

How It Got This Way
There may be a conscious decision to let subclasses deny use of some features to prevent
an explosion of types for all feature combinations. More often, it’s just a lazy borrowing
of parts of the parent’s implementation.

What to Do
First, check if this is actually a disguised case of• Implementation Inheritance; if so,
fix that smell first.

From the Library of Lee Bogdanoff

ptg

Refused Bequest 129

If there’s no reason to share a class relationship, then use• Replace Inheritance with
Delegation.

If the parent-child relationship• does make sense, look through their clients to find places
where the refused method is called. If you find conditional logic (e.g., Special Case)
that copes with the refusal, look for ways to implement the refused method by push-
ing the clients’ response into the refusing class. This may involve Move Method and/or
Introduce Null Object. Look through Chapter 9, “Conditional Logic,” for more ideas.

Alternatively, look for ways to reorganize the inheritance relationship. For example •
(see Figure 11.1), you could create a new subclass C via Extract Subclass and use
Push Down Method to move the refused behavior into it. Then change clients of the
refused method to be clients of the new class.

A'

B' C'

A

B

+method

+method-method

Figure 11.1 Rearranging the Hierarchy

What to Look for Next
Communication: Fixing Refused Bequest will improve the way your classes com-

municate your design. Look again at these classes and their clients for Uncom-
municative Names that could now be simplified or cleaned up.

• Simplicity: Reorganizing your classes so that they always respect the Liskov Substi-
tution Principle will likely simplify their clients. (LSP requires that subclass
instances be substitutable.) Look through all uses of the refused method for
Special Cases and other signs of coping with broken polymorphism; you may
now find those clients can be simplified.

Testability: Tests are clients too. Fixing a refused method can reduce the number of cases
you need to test, so check your tests for cases that now collapse or disappear.

From the Library of Lee Bogdanoff

ptg

130 Chapter 11: Inheritance

Inappropriate Intimacy (Subclass Form)

What to Look For

A class makes use of the implementation details of its superclass.•

(There is a related form of inappropriate intimacy between separate classes; see
Inappropriate Intimacy (General Form) in Chapter 12, “Responsibility.”)

Why This Is a Problem
 Flexibility: If implementation details of the superclass change, the consequences

could propagate to the subclass.
• Simplicity: If the semantics or behavior of the superclass change without affecting the

types at the interface, we may introduce subtle defects in its subclasses.

This problem is more serious between unrelated classes than between a parent
and child.

How It Got This Way
It’s natural that a superclass and its subclasses be more coupled together than two strang-
ers. Sometimes it just goes too far.

What to Do
First, check if this is also a case of• Implementation Inheritance; if so, fix that smell
first.

If the parent can define a general algorithm that the children can plug into, then use•
Form Template Method.

If the parent and child need to be even more decoupled, then use• Replace Inheritance
with Delegation.

What to Look for Next
Communication: You may now have created a better abstraction by documenting the

true interface of the superclass. Review the names it uses for consistency.
Duplication: If several subclasses had to perform the same set of actions, moving

them onto the superclass can open up opportunities to simplify the subclasses
too.

From the Library of Lee Bogdanoff

ptg

Lazy Class 131

Lazy Class

What to Look For

A class isn’t doing much—its parents, children, or clients seem to be doing all the •
associated work—and there isn’t enough behavior left in the class to justify its con-
tinued existence.

Lazy Class is a close relative of Dead Code.

Why This Is a Problem
• Simplicity: Every additional class in the application represents something extra to

understand, and extra code to navigate while following a flow.
Communication: A Lazy Class also occupies one of the names in your domain space,

without paying for that usage.

When to Leave It
Sometimes, a Lazy Class is present to communicate intent. You may have to balance
communication versus simplicity in your design; and when communication wins, leave
the Lazy Class in place.

Other times, a class that appears to be lazy exists as part of the scaffolding for a
framework. You could tidy it up, or leave it in place for compatibility.

How It Got This Way
Typically, all the class’s responsibilities were moved to other places in the course of refac-
toring. Sometimes, the class was created in anticipation of some grand design that never
quite materialized. Certain generators for Ruby on Rails create Lazy Classes to serve as
hooks or placeholders for idioms you may or may not use in your application.

What to Do
If parents or children of the class seem like the right place for the class’ behavior, fold •
it into one of them via Collapse Hierarchy.

Otherwise, fold its behavior into its caller via• Inline Class.

From the Library of Lee Bogdanoff

ptg

132 Chapter 11: Inheritance

What to Look for Next
Duplication: After the behavior of the Lazy Class has been folded into another class,

look for Duplicated Code and Dead Code within that receiving class.
• Simplicity: The Lazy Class muddied the paths of communication between its own

clients and suppliers. These classes may now be related to each other directly,
so you should examine the amended methods looking for Feature Envy and
Utility Functions.

From the Library of Lee Bogdanoff

ptg

Exercises 133

Exercises

Exercise 11.1: ArrayQueue
Consider this class:

class ArrayQueue < Array

 def add_rear(s)

 self << s

 end

 def remove_front

 self.delete_at(0)

 end

end

and these tests:

require 'array_queue'

require 'test/unit'

class ArrayQueueTest < Test::Unit::TestCase

 def test_queue_invariant

 q = ArrayQueue.new

 q.add_rear("E1")

 q.add_rear("E2")

 assert_equal("E1", q.remove_front)

 assert_equal("E2", q.remove_front)

 assert_equal(0, q.length)

 end

end

A. What smell is in the design of ArrayQueue?

B. Refactor the code to remove the smell.

 See page 237 for solution ideas.

Exercise 11.2: Relationships
For each of these three mechanisms for code reuse in Ruby—inheritance, delegation,
and module inclusion—place a check in the table where each mechanism helps to
support the corresponding quality in our software:

From the Library of Lee Bogdanoff

ptg

134 Chapter 11: Inheritance

Inheritance Delegation Module Inclusion

Flexibility

Communication

Testability

 See page 237 for solution ideas.

Exercise 11.3: Read-Only Documents (Challenging)
Consider the following two classes:

class Document

 attr_reader :numpages

 attr_writer :title, :author

 def delete(pos, length) ...

 def find(regex) ...

 def format(printer) ...

 def insert(pos, text) ...

end

class ReadonlyDocument < Document

 undef :delete, :insert, :title=, :author=

end

A. Suggest at least three ways to address this Refused Bequest.

B. Evaluate your candidate solutions: Which approach feels most natural? Which
offers the most long-term flexibility?

 See page 237 for solution ideas.

Exercise 11.4: Inheritance Survey (Challenging)
A. Look through your code and find every inheritance relationship you defined.

Classify each as Implementation Inheritance, Subclassing, or a mixture of both.

B. Refactor to eliminate every method that doesn’t need to be inherited by a
subclass.

From the Library of Lee Bogdanoff

ptg

135

CHAPTER 12

Responsibility

It’s hard to get the right balance of responsibility between objects. One of the beauties
of refactoring is that it lets us experiment with different ideas in a way that lets us safely
change our minds.

There are tools we can use to help us decide how our objects should work together,
such as design patterns and CRC cards (see “A Laboratory for Teaching Object-Oriented
Thinking” [5]).

Refactorings are often reversible, and they may trade off between two good things.
A good example of this is Message Chain versus Middle Man. Sometimes there’s a way
to improve both smells at the same time, but many times it’s a balancing act between
them.

In this chapter we’ll cover the following smells:

Feature Envy• , in which an object is peppered with requests from another code
fragment

Utility Function• , in which a method belongs somewhere else

Global Variable• , in which a global variable is used

Inappropriate Intimacy (General Form)• , in which a class depends on implementa-
tion details of another class

Message Chain• , in which a method digs into the structure of another group of
objects

Middle Man• , in which an object merely delegates to another

Greedy Module• , in which a class or module has more than one responsibility

From the Library of Lee Bogdanoff

ptg

136 Chapter 12: Responsibility

Feature Envy

What to Look For
A code fragment references another object more often than it references itself.•

Several clients do the same series of manipulations on a particular type of object.•

Why This Is a Problem
Communication: Code that “belongs” on one class but is located in another can be

hard to find and may upset the System of Names in the host class.
Flexibility: A code fragment that is in the wrong class creates couplings that may

not be natural within the application’s domain and a loss of cohesion in the
unwilling host class; Shotgun Surgery and Divergent Change often occur as a
consequence.

Duplication: Existing functionality that is difficult to find is also easy to miss, which
in turn may lead to it being written more than once.

When to Leave It
Sometimes behavior is intentionally put on the “wrong” class. For example, some design
patterns, such as Strategy or Visitor, pull behavior to a separate class so it can be inde-
pendently changed. If you put it back, with Move Method you can end up putting things
together that should change separately.

How It Got This Way
Wherever you have a Data Class you will probably also have Feature Envy, but you can
see it for any class and its clients.

What to Do
 1. If the envious code fragment is not isolated, use Extract Method to pull it into its

own method.

 2. If the envious method makes no references to self or self.class, see Utility
Function.

 3. Look for the class of the object that is referenced most and use Move Method to put
the actions on the correct class.

From the Library of Lee Bogdanoff

ptg

Feature Envy 137

What to Look for Next
Duplication: If you moved code in order to alleviate duplication in a number of cli-

ents, look again at those clients for further opportunities to simplify.
Communication: Review the names in the receiving class for consistency.

From the Library of Lee Bogdanoff

ptg

138 Chapter 12: Responsibility

Utility Function

What to Look For
An instance method has no dependency on the state of the instance.•

Why This Is a Problem
A Utility Function is an extreme kind of Feature Envy, and should be fixed for much
the same reasons:

Abstraction: Utility Functions often indicate that part of the domain has not been
named and expressed as objects.

Flexibility: A method that is in the wrong class creates couplings that may not be natu-
ral within the application’s domain and a loss of cohesion in the unwilling host
class; Shotgun Surgery and Divergent Change often occur as a consequence.

Duplication: Existing functionality that is difficult to find is also easy to miss, which
in turn may lead to it being written more than once.

When to Leave It
A Utility Function is sometimes the most direct way of describing a design. For ex-
ample, a Factory may best be expressed using class methods.

How It Got This Way
Sometimes there just doesn’t seem anywhere suitable to put the new method you’re writ-
ing, so you “temporarily” add it to an existing class, or create a new Utilities class to
hold it. This often arises from thinking of classes as “containers of functions” rather than
as descriptions of the behavior of objects.

Sometimes other refactorings—notably Extract Method—leave behind a stub that
now has nothing to do with the object in which it sits.

What to Do
As a minimum, document the fact that this is a• Utility Function by converting it to
being a class method.

Look at the method’s parameters; if one is used significantly more than the others, •
or if one looks like the “right” home, use Move Method to move the method onto
that parameter’s class.

From the Library of Lee Bogdanoff

ptg

Utility Function 139

If a group of • Utility Functions looks as if they belong together—for example, if
they have one or more common parameters—consider using Extract Class and Move
Method to create a new home for them.

What to Look for Next
Communication: Moving code to where it fits logically within the domain can help

you find it again later.
Duplication: If several clients had to perform the same set of actions, moving them

onto the supplier class can open up opportunities to simplify the clients too.

From the Library of Lee Bogdanoff

ptg

140 Chapter 12: Responsibility

Global Variable

What to Look For
Your code uses a global variable, other than one predefined by Ruby itself.•

Why This Is a Problem
Flexibility: Global variables make it easy for one part of the system to accidentally

depend on another part of the system. The system is more prone to problems
where changing something over here breaks something over there. Further-
more, global variables aren’t thread safe, so they increase the risk of obscure
bugs.

Testability: Global variables can make it hard to set up tests: the context of the test
includes all global state.

When to Leave It
A global variable can be the simplest way to go in simple scripting. But as soon as you
begin to define your own domain classes it’s best to eliminate any Global Variables.

How It Got This Way
The easiest way to establish communication between parts of a program is to introduce
a Global Variable.

What to Do
Use• Add Parameter to give methods access to the value, so that the application ac-
cesses the global variable directly at only the highest level. Then you have a choice:
Move the global to the class where it belongs and hand out the instance of that class,
or create a Registry of some sort and hand out the value from the registry.

What to Look for Next
Abstraction: Look for Data Clumps involving the new parameter. Are there other

global variables, or objects, that travel with this one?
Duplication: As you make the changes to replace the global access by a method

parameter, look out for code fragments that use the parameter in similar ways.
Treat the duplication as you find it.

From the Library of Lee Bogdanoff

ptg

Inappropriate Intimacy (General Form) 141

Inappropriate Intimacy (General Form)

What to Look For
One class uses or changes “internal” (should-be-private) parts of another class.•

One class depends on implementation details of another class.•

Code uses • instance_variables or instance_variable_get to dig inside another
object.

(There is a related form of inappropriate intimacy between subclass and superclass;
see Inappropriate Intimacy (Subclass Form) in Chapter 11, “Inheritance.”)

Why This Is a Problem
Flexibility: If implementation details of the “violated” class change, the consequences

could propagate to the client.
• Simplicity: If the semantics or behavior of the “violated” class change, but don’t affect

the types at the interface, we may introduce subtle defects in its clients.
Abstraction: There may be a missing concept embedded in the interaction between

the existing classes.
Duplication: Several client classes may duplicate code by accessing internals in simi-

lar ways.

When to Leave It
Digging into another object’s state is sometimes the simplest way to get something done.
It is often necessary in order to implement a generic data transfer mechanism—for
example, as part of a persistence scheme or to implement views that can display arbitrary
objects.

How It Got This Way
The two classes probably became intertwined a little at a time. By the time you realize
there’s a problem, they’re tightly coupled.

What to Do
If two independent classes are entangled, use• Move Method and Move Instance Vari-
able to put the right pieces on the right class.

From the Library of Lee Bogdanoff

ptg

142 Chapter 12: Responsibility

If the tangled part seems to be a missing concept or class, use • Extract Class and Hide
Delegate to introduce the new class.

If a client is using Ruby’s metaprogramming tools to dig into an object’s state, con-•
sider using Kent Beck’s Double Dispatch pattern [2] and have the “violated” object
publish information instead.

If a subclass is too coupled to its superclass, see • Inappropriate Intimacy (Subclass
Form) in Chapter 11.

What to Look for Next
Communication: You may now have created a better abstraction by documenting the

true interface of the “violated” class. Review the names it uses, for consistency.
Duplication: If several clients had to perform the same set of actions, moving them

onto the supplier class can open up opportunities to simplify the clients too.

From the Library of Lee Bogdanoff

ptg

Message Chain 143

Message Chain

What to Look For
You see calls of the form • a.b.c.d.

(This may happen directly or through intermediate results.)

Why This Is a Problem
Flexibility: A Message Chain couples the caller to the details of how to reach other

objects. This coupling goes against two maxims of object-oriented program-
ming: the Law of Demeter (see Exercise 12.7) and Tell, Don’t Ask, which says
that instead of asking for objects so you can manipulate them, you should tell
them to do the manipulation for you. (Andrew Hunt and David Thomas’ The
Pragmatic Programmer [17] describes both of these rules in more detail.)

When to Leave It
Sometimes the cleanest way to construct or configure a complex of objects is to use a
Cascade (Beck, Smalltalk Best Practice Patterns [2]) or what Martin Fowler calls a Fluent
Interface [13]. Domain-specific languages (DSLs) often use this approach to provide the
context necessary to enable a simplified syntax; it looks as if the caller is being encour-
aged to build a message chain, but usually the methods all return self. (It’s much more
of a problem when the chain of calls is coupling to several different objects.)

This is a trade-off refactoring. If you apply Hide Delegate too much, you get to the
point where everything’s so busy delegating that nothing seems to be doing any actual
work. Sometimes it’s just easier and less confusing to call a small chain.

How It Got This Way
When you know the relationships among a group of objects, often the fastest way to a
green bar during test-driven development (TDD) is to introduce a Message Chain.

What to Do
If the manipulations actually belong on the target object (the one at the end of the •
chain), use Extract Method and Move Method to put them there.

Part of the chain may belong on some other object; look for • Inappropriate
Intimacy.

From the Library of Lee Bogdanoff

ptg

144 Chapter 12: Responsibility

Use • Hide Delegate to make the caller depend only on the object at the head of the
chain. (So, rather than a.b.c.d, put a d method on the a object. That may require
adding a d method to the b and c objects as well.)

What to Look for Next
 Duplication: If several clients had to perform the same set of actions, moving them

onto the supplier class can let you simplify the clients.

From the Library of Lee Bogdanoff

ptg

Middle Man 145

Middle Man

What to Look For
A class that mostly delegates its work is known as a Middle Man:

Most methods of a class call the same or a similar method on another object:•
def f

 @delegate.f

end

Why This Is a Problem
Size: If the Middle Man really is superfluous, our system has one more class than it

needs.
Communication: Extra code always slows the reader, and it occupies part of the do-

main’s namespace, possibly using names that may be useful elsewhere.

When to Leave It
Some design patterns (e.g., Adapter, Proxy, Decorator) intentionally create delegates, so
Middle Man and Message Chain trade off against each other. Delegates provide a sort
of façade, letting a caller remain unaware of details of messages and structures. Remov-
ing a Middle Man can expose clients to more information than they should know.

How It Got This Way
It could be the result of applying Hide Delegate to a Message Chain; other features may
have moved out since then, leaving you with mostly delegating methods.

What to Do
In general, use • Remove Middle Man by having the client call the delegate directly.

If the delegate is owned by the middle man or is immutable, the middle man has •
behavior to add, and the middle man can be seen as an example of the delegate, you
might use Replace Delegation with Inheritance.

What to Look for Next
Communication: The true relationships between remaining classes may now be easier

to determine without the Middle Man in the way.

From the Library of Lee Bogdanoff

ptg

146 Chapter 12: Responsibility

Greedy Module

What to Look For
A module has more than one responsibility—for example, formatting a report as •
XML and sending it to a SOAP service.

The fixtures for a class’s unit tests are big and clumsy, or are difficult to fabricate.•

A module embodies design decisions that need to change independently or at dif-•
ferent frequencies.

Every Large Module is very likely to also be a Greedy Module: Some clients depend
on some parts, others on different parts. A Temporary Field is also a sure sign.

Why This Is a Problem
Flexibility: One of the benefits of object-oriented design is the ability to localize

change. By separating an application into small, independent pieces, we im-
prove our chances of finding and fixing defects, and of adding new features
without breaking those that work already.

• Simplicity: A module that does too many things, or that embodies too many design
decisions, is more complicated than it needs to be.

A module that does two jobs is often said to violate the Single Responsibility Principle
(SRP); see Robert Martin’s Agile Software Development: Principles, Patterns, and Practices
[21] for a broader explanation of the SRP.

How It Got This Way
When new behavior must be added, sometimes the quickest thing to do is to weave it
into existing code. Often it begins with a Greedy Method, and the longer it continues
the easier it becomes to just add a little more.

What to Do
Consider the approaches to dealing with a• Large Module—they will often work
here just as well.

Look at instance variables and method parameters. If you see a• Data Clump, use
that as the basis for a new class, as described on page 112.

From the Library of Lee Bogdanoff

ptg

Greedy Module 147

If the module both finds an object and does something with it, let the caller find the •
object and pass it in, or let the module return a value that the caller uses.

If a class has business logic tangled up with the mechanics of • method_missing, use
Isolate Dynamic Receptor.

What to Look for Next
Communication: Splitting a module into smaller pieces will improve the way your

code communicates your design: Be sure to choose meaningful names for the
new modules and methods you create here. Look again at the old and new
modules for any Uncommunicative Name that could now be simplified or
cleaned up.

• Simplicity: If you created a new class, look at each method that references it for exam-
ples of Feature Envy: Fixing these will flesh out the new class and may expose
some duplication among its new behaviors.

Testability: Revisit the fixtures for this module’s unit tests. You may be able to sim-
plify them or split some tests so that they become simpler tests of the extracted
code.

From the Library of Lee Bogdanoff

ptg

148 Chapter 12: Responsibility

Exercises

Exercise 12.1: Feature Envy
Look back at Exercise 5.2. In Report.report, notice how the information being print-
ed is obtained by looking “inside” the Robot and the Machines.

A. Fix these two examples of Feature Envy.

B. What new smell(s) were introduced into this code by doing that?

C. Can you fix the new smell? If not, would you prefer to leave the code as it is now,
or as it was to begin with? Explain your answer.

See page 239 for solution ideas.

Exercise 12.2: Walking a List
Consider the following partially developed code:

require 'agency'

require 'theater'

require 'test/unit'

class BookingTest < Test::Unit::TestCase

 def test_two_seats_anywhere

 adelphi = Theater.new('x-xxxx-xxxx')

 assert_equal([1,6], Agency.book(2, adelphi))

 end

end

class Theater

 attr_reader :seats

 def initialize(seats)

 @seats = seats.split(//)

 end

end

class Agency

 def self.book(num_reqd, theater)

 free_seats = []

 theater.seats.each_with_index do |item, index|

 free_seats << index if item == '-'

From the Library of Lee Bogdanoff

ptg

Exercises 149

 end

 return nil if free_seats.empty?

 free_seats[0..num_reqd]

 end

end

A. In what way is Agency inappropriately intimate with Theater?

B. What is the simplest strategy for fixing this smell?

See page 239 for solution ideas.

Exercise 12.3: Middle Man
Consider this class:

require 'forwardable'

class SimpleQueue

 extend Forwardable

 def initialize

 @elements = []

 end

 def_delegator :@elements, :shift, :remove_front

 def_delegator :@elements, :push, :add_rear

 def_delegators :@elements, :clear, :first, :length

end

require 'test/unit'

require 'simple_queue'

class SimpleQueueTest < Test::Unit::TestCase

 def testQ

 q = SimpleQueue.new

 q.add_rear("E1")

 q.add_rear("E2")

 assert_equal "E1", q.remove_front

 assert_equal "E2", q.remove_front

 assert_equal 0, q.length

 end

end

From the Library of Lee Bogdanoff

ptg

150 Chapter 12: Responsibility

A. Use Remove Middle Man so that the queue is no longer a middle man for the
Array. Is this an improvement?

B. Put the middle man back in via Hide Delegate.

See page 240 for solution ideas.

Exercise 12.4: Cart (Challenging)
Consider these classes:

Cart

Item

Purchase

Shipping Option

cost Fixnum
Fixnummax_days

cost Fixnum
Fixnummax_days

cost Fixnum
Fixnummax_days

cost Fixnum
days Fixnum

Here is Cart.cost:

class Cart

 def cost

 total = 0

 @purchases.each do |purch|

 total += purch.item.cost + purch.shipping.cost

 end

 return total

 end

end

A. Write the implied classes (and tests). (The max_days method computes the larg-
est number of days for any ShippingOption in the purchase.)

B. Apply Hide Delegate so Cart accesses only Purchase directly.

From the Library of Lee Bogdanoff

ptg

Exercises 151

C. Hide Delegate causes the middle man class (Purchase) to have a wider inter-
face—that is, it exposes more methods. But applying that refactoring can open
up a way to make the interface narrower. Explain this apparent contradiction.

D. Use this line of reasoning to narrow the Purchase interface.

E. Notice that the generic Integer class is used to represent money. If we want to
change to a Money class, would it be easier to make the change before or after
the delegation changes?

See page 240 for solution ideas.

Exercise 12.5: Utility Functions
A. Look again at the code sample in Exercise 5.1. Matcher.match is a Utility

Function because it doesn’t depend on the state of the Matcher instance. How
would you fix this?

B. Look again at the code sample in Exercise 5.2. Is Report.report a Utility Func-
tion? If so, devise a strategy for fixing it.

See page 240 for solution ideas.

Exercise 12.6: Attributes
Perhaps the easiest way for an object to open itself up to Inappropriate Intimacy
(General Form) is for it to define simple attribute methods via attr, attr_reader,

attr_writer, or attr_accessor.

A. Some argue that every attribute accessor gives rise to the Inappropriate Inti-
macy smell. Do you agree? Justify your answer, giving counterexamples if you
disagree.

B. By their very nature, Structs invite Inappropriate Intimacy. Indeed, it might
be argued that every Struct is an Open Secret. Should Structs therefore be
avoided?

See page 241 for solution ideas.

From the Library of Lee Bogdanoff

ptg

152 Chapter 12: Responsibility

Exercise 12.7: Message Chains
The Law of Demeter states that a method shouldn’t talk to strangers—that is, a
method should only send messages to

instance variables•

self•

its own arguments•

or the objects it creates•

(See Andrew Hunt and David Thomas’ The Pragmatic Programmer [17] for more
details.)
Consider the following code fragments. Imagine they are each sitting in methods

on some object:

• @customers.map { |p| p.surname }.sort.uniq

• @report.machine[2].bin.contents (based on Exercise 5.2)

• @mock.should_receive(:sample).times(2).and_return(12, 19) (based on
FlexMock)

A. Which of them, if any, violate the Law of Demeter?

B. Which of them is an example of a Message Chain?

See page 241 for solution ideas.

From the Library of Lee Bogdanoff

ptg

153

CHAPTER 13

Accommodating Change

Some problems become most apparent when you try to change your code. (Most of the
other smells we’ve discussed can be detected by looking at the code statically.)

Ideally, one changed decision affects one place in the code. When it doesn’t work out
that way, it’s a sign of duplication in the code.

Addressing these smells has a side benefit: Many times it makes the code easier to
test.

In this chapter we’ll cover the following smells:

Divergent Change• , in which a class or module changes too frequently

Shotgun Surgery• , in which a simple change causes change everywhere

Parallel Inheritance Hierarchies• , in which changes to one hierarchy must mirror
changes to another

Combinatorial Explosion• , in which a class hierarchy has too many dimensions

From the Library of Lee Bogdanoff

ptg

154 Chapter 13: Accommodating Change

Divergent Change

What to Look For
You find yourself changing the same module for different reasons.•

(For contrast, see Shotgun Surgery, the next smell we discuss.)

Why This Is a Problem
Flexibility: If a module needs to change for many different reasons, you may quickly

find that two developers need to change it at the same time. So the module
becomes a bottleneck, slowing down progress.

Abstraction: Worse, a module with high “churn” may never stabilize, and so may never
come to reliably represent a useful domain abstraction. In Object-Oriented Soft-
ware Construction [23] Bertrand Meyer recommended that we should strive to be
able to add functionality without modifying existing classes, because their stable,
tested state represents an investment. (Recall that in Chapter 8, “Duplication,”
we talked about Parnas’ dictum that a module should have only one secret.)

How It Got This Way
The module picks up more responsibilities as it evolves, with no one noticing that two
different types of decision are involved.

What to Do
It’s likely that frequent change has introduced conditional logic; look through the •
module for Simulated Polymorphism and break up the code using the refactorings
suggested there.

If the module has too many (i.e., more than one) responsibilities, consider the refac-•
torings we suggest for fixing a Greedy Module. Use Extract Class or Extract Module
to separate the responsibilities.

If several classes share the same decisions or variation points, you may be able to •
consolidate them into new classes (e.g., by Extract Superclass or Extract Subclass) or
extract a common module to serve as a mix-in. In the limit, these extracted classes
or modules can form a layer (e.g., a persistence layer).

From the Library of Lee Bogdanoff

ptg

Divergent Change 155

What to Look for Next
 Communication: One way or another you’ve moved responsibilities out of this mod-

ule. Review all of the modules you touched, looking for Uncommunicative
Names and Inconsistent Names to make sure this new, cleaner design is ex-
pressed clearly.

Flexibility: Your new design will likely be more robust to future changes. Review
any new classes, modules, or methods you just created, looking particularly for
Feature Envy and Middle Man, each of which may indicate your design still
has a way to go before it can stabilize.

From the Library of Lee Bogdanoff

ptg

156 Chapter 13: Accommodating Change

Shotgun Surgery

What to Look For
Making a simple change requires you to change several classes or modules.•

Why This Is a Problem
 Communication: You change a single decision and you have to change several classes,

which probably means that the decision doesn’t have a name, and consequently
the application’s design isn’t being clearly communicated. That will cause cur-
rent and future developers to need to search the code more, which may in turn
lead to defects.

Flexibility: It probably also means that the decision hasn’t been isolated from other
decisions. So some modules may be harder to test than necessary, and some
modules may churn for longer, perhaps never stabilizing.

How It Got This Way
One responsibility is split among several modules. There may be a missing class that
would understand the whole responsibility, or perhaps an Open Secret has never
been encapsulated. Or, this can happen through an overzealous attempt to eliminate
Divergent Change.

What to Do
Identify the class or module that should own the group of changes. It may be an •
existing module, or you may need to use Extract Module to create a new one. If it is
an Open Secret, see the advice specific to that smell.

Use• Move Field and Move Method to put the functionality onto the chosen module.
After the module not chosen is simple enough, you may be able to use Inline Module
to eliminate it.

What to Look for Next
Duplication: If the new module embodies a pattern or a sequence of actions, you

may find that several other modules had to compensate by implementing their
own copies of those steps. Look for Duplicated Code where the new module
could now be used instead.

From the Library of Lee Bogdanoff

ptg

Shotgun Surgery 157

 Communication: The missing decision is now represented by a module: Review its
clients for Feature Envy, and review for Inconsistent Names among the meth-
ods it is acquiring.

Flexibility: Fixing Shotgun Surgery will improve maintainability—because future
changes of this same type will now be more localized. But by carving out this
new module you may leave a hole behind; review all the modules you touched,
looking for a Middle Man, Dead Code, or a Lazy Class.

From the Library of Lee Bogdanoff

ptg

158 Chapter 13: Accommodating Change

Parallel Inheritance Hierarchies

What to Look For
You make a new subclass in one hierarchy and find yourself required to create a •
related subclass in another hierarchy.

You find two hierarchies where the subclasses have the same prefix. (The naming •
reflects the requirement to coordinate hierarchies.)

This is a special case of Shotgun Surgery, discussed earlier.

Why This Is a Problem
Duplication: Every time we need to change the hierarchy—for example, to add an-

other case—we also have to change the other, parallel hierarchy.
 Communication: It’s cumbersome and error prone, and probably doesn’t communi-

cate the intent of the design very well.

How It Got This Way
The hierarchies probably grew in parallel, a class and its pair being needed at the same
time. As usual, it probably wasn’t bad at first, but after two or more pairs get introduced,
it becomes too complicated to change one thing. (Often both classes embody different
aspects of the same decision.)

This smell may happen along the way while improving a particularly tangled
situation.

What to Do
Use• Move Field and Move Method to redistribute the features in such a way that you
can eliminate one of the hierarchies.

What to Look for Next
Duplication: As you merge classes from the two hierarchies, you may find Duplicated

Code now coming together in the same place.
Communication: Hopefully the merged classes now communicate the design more

clearly; look carefully at the names now in use to make sure that is the case.
Size: Having fewer classes means less code to understand. But each class in the merged

hierarchy is now likely to be bigger than it was, so look out for Large Module
and Greedy Module.

From the Library of Lee Bogdanoff

ptg

Combinatorial Explosion 159

Combinatorial Explosion

What to Look For
To introduce a single new concept, you must introduce multiple classes at various •
points of a class hierarchy.

Each layer of a class hierarchy uses a common set of words (e.g., one level adds style •
information, and the next adds mutability).

Why This Is a Problem
Duplication: This is a relative of Parallel Inheritance Hierarchies, in which every-

thing has been folded into one class hierarchy.

How It Got This Way
What should be independent decisions get implemented via a hierarchy.

What to Do
If things aren’t too far gone, you may be able to use• Replace Inheritance with Delega-
tion. (By keeping the same interface for the variants, you can create an example of
the Decorator design pattern.)

If the situation has grown too complex, you’re in big-refactoring territory, and you •
can use Tease Apart Inheritance. (See Fields et al.’s Refactoring, Ruby Edition [11] for
the details.)

What to Look for Next
Duplication: Fixing a Combinatorial Explosion is often a big shake-up for a lot of

classes. As always, check the names you end up with, and check the code in the
(old) hierarchy’s clients for Feature Envy and related smells.

 Size: The classes of the (old) hierarchy are likely to be fewer and smaller now, because
they deal with the design’s complexities in a different way. Look through their
clients for historical compromises such as Nil Checks or Complicated Boolean
Expressions.

From the Library of Lee Bogdanoff

ptg

160 Chapter 13: Accommodating Change

Exercises

Exercise 13.1: CSV Writer
Consider this code to write Comma-Separated Value (CSV) files.

class CsvWriter

 def write(lines)

 lines.each { |line| write_line(line) }

 end

private

 def write_line(fields)

 if (fields.length == 0)

 puts

 else

 write_field(fields[0])

 1.upto(fields.length-1) do |i|

 print ","

 write_field(fields[i])

 end

 puts

 end

 end

 def write_field(field)

 case field

 when /,/ then write_quoted(field)

 when /"/ then write_quoted(field)

 else print(field)

 end

 end

 def write_quoted(field)

 print "\""

 print field.gsub(/\"/, "\"\"")

 print "\""

 end

end

From the Library of Lee Bogdanoff

ptg

Exercises 161

require "csv_writer"

require "test/unit"

class CsvWriterTest < Test::Unit::TestCase

 def test_writer

 writer = CsvWriter.new

 lines = []

 lines << []

 lines << ["only one field"]

 lines << ["two", "fields"]

 lines << ["", "contents", "several words included"]

 lines << [",", "embedded , commas, included", "trailing,"]

 lines << [""", "embedded " quotes", "multiple """ quotes"""]

 lines << ["mixed commas, and "quotes"", "simple field"]

 # Expected:

 # -- (empty line)

 # only one field

 20 # two, fields

 # ,contents,several words included

 # ",","embedded, commas, included","trailing,"

 # """","embedded "" quotes","multiple """""" quotes"""""

 # "mixed commas, and ""quotes""",simple field

 writer.write(lines)

 end

end

A. How is this code an example of Divergent Change? (What decisions does it
embody?)

B. Modify this code to write to an IO object passed in as an argument.

C. Starting again from the original code, modify the functions to return a string
value corresponding to what the functions would have written. (Feel free to
rename your classes and methods to match their new responsibilities.)

D. Which version seems better, and why? Which is easier to test?

E. Compare this class with CSV::Writer from the Standard Library. Which is easier
to use?

 See page 241 for solution ideas.

From the Library of Lee Bogdanoff

ptg

162 Chapter 13: Accommodating Change

Exercise 13.2: Shotgun Surgery
Find examples of Shotgun Surgery in code you have access to. Some frequent can-
didates:

Configuration information•

Logging•

Persistence•

Places where it takes two calls on an object to get something common done, •
and this “two-step” is used in several places

Exercise 13.3: Hierarchies in Rails
The various generators in Rails initially ensure that every controller inherits from
ActionController::Base and every model inherits from ActiveRecord::Base. This
sounds like a parallel inheritance hierarchy; is it?

 See page 243 for solution ideas.

Exercise 13.4: Documents
Consider this class hierarchy:

Document

 AsciiDocument

 ZippedAsciiDocument

 RawAsciiDocument

 BriefAsciiDocument

 HtmlDocument

 RawHtmlDocument

 ZippedHtmlDocument

 MarcDocument

 BriefMarcDocument

 FullMarcDocument

A. What’s the impact of adding a new compression type that all document types
will support?

B. Rearrange the hierarchy so it’s based first on compression (or none), then brief/
full, then document type. Is this an improvement?

C. Describe a different approach, using the Decorator pattern.

 See page 243 for solution ideas.

From the Library of Lee Bogdanoff

ptg

163

CHAPTER 14

Libraries

Any Ruby application will use libraries—be it the core or standard libraries, or third-
party gems downloaded from RubyForge or a similar repository.

Libraries sometimes put us in a dilemma: We want the library to be different, and
yet we don’t want to change it. Even when it’s possible to change a library, that can carry
risk because it could affect other clients, and it could mean we would have to redo our
changes for future versions of the library.

Sometimes, library code is a bit smelly in order that client code doesn’t have to be.
Micah Martin points out that a library that is so factored it has lots of public classes
and no smells can be harder to use; it’s helpful if the library makes a narrow, easy-to-use
interface available.

In this chapter we’ll cover the following smells:

Incomplete Library Module• , in which a library has a vital feature missing

Reinvented Wheel• , in which you’ve written code that already exists elsewhere

Runaway Dependencies• , in which unexpected dependencies emerge when reuse is
attempted

From the Library of Lee Bogdanoff

ptg

164 Chapter 14: Libraries

Incomplete Library Module

What to Look For
You’re using a library module, and there’s a feature you wish were provided, but it’s •
not.

You see client code implementing a feature that could be in the library. (This can be •
visible as duplication in the client code.)

Why This Is a Problem
In a statically typed language such as Java, an incomplete library can be a big problem
because we can’t add methods to a class in a jar file. In Ruby, however, we can add meth-
ods to any class or module at any time. So the main issue here is in finding an appropri-
ate way to manage the extension of the library.

Abstraction: Extending the library by monkey-patching usually leads to other later
problems such as Greedy Module.

Flexibility: Several projects might extend a library in incompatible ways, leading to
subtle duplication and extra work if the library changes.

How It Got This Way
The author of the module didn’t anticipate your need (or declined to support it due to
other trade-offs).

What to Do
Use• Introduce Local Extension: In your own application code add the missing methods
to the module. However, if those new methods don’t naturally form part of the ab-
straction represented by the library, this refactoring will create a Greedy Module.

Alternatively, consider creating an• Adapter or Wrapper to contain your extensions.

If the extension is large, or if it becomes popular, consider using• Extract Module to
create a reusable library extension for use in other applications.

After you’ve reused this extension in a couple of projects, check whether the owner •
of the library would consider incorporating your extension.

What to Look for Next
 Duplication: Look at the other clients of this library, in every project you can

find. Look for similar or overlapping extensions—Alternative Modules with

From the Library of Lee Bogdanoff

ptg

Incomplete Library Module 165

Different Interfaces—and look for compromises that may have been made due
to the missing features.

 Communication: Make sure the names you have chosen for the additional classes
and methods fit well with the System of Names used by the original library. If
the extended library now exhibits Inconsistent Names, you may have a clash
of domain representations between the library and your application. Consider
resolving this by wrapping the library in an Adapter, instead of extending it.

Simplicity: Look at the module you just extended: Is it now Large or Greedy? Perhaps
this larger interface would be better designed by creating a Wrapper or Adapter
for the library, using smaller classes.

From the Library of Lee Bogdanoff

ptg

166 Chapter 14: Libraries

Reinvented Wheel

What to Look For
You’ve coded an algorithm with exactly the same behavior as an existing core Ruby •
or standard library feature.

Why This Is a Problem
Duplication: Your code duplicates existing code. This is a variant of Alternative Mod-

ules with Different Interfaces at the level of an algorithm or a few methods.
Communication: Other developers have to waste time reading your code carefully to

understand its effects.
• Simplicity: It is possible that there are defects in your code that aren’t present in the

library version of the same functionality.

When to Leave It
If the existing library has defects or other shortcomings, you may have no choice but to
reinvent the wheel.

How It Got This Way
The code was written by someone not familiar with Ruby’s libraries. Or the Ruby librar-
ies have evolved since your code was written, and now your version is obsolete.

If the existing library’s API is inconvenient for your application, consider adding a
Wrapper layer to morph the interface into one you can use.

What to Do
Fix this smell in the same way you would fix Alternative Modules with Different Inter-
faces (See Chapter 8, “Duplication”).

What to Look for Next
 Size: Now that you have folded your own algorithm back into the libraries, you may

find that the class it came from is now a Lazy Class—or at least contains some
Dead Code.

 Communication: The library may use a different System of Names than you had, so
check for Inconsistent Names in the area you just changed.

From the Library of Lee Bogdanoff

ptg

Runaway Dependencies 167

Runaway Dependencies

What to Look for
You want to reuse a single class or module, but you have to drag in the whole ap-•
plication or several gems you don’t need or want.

Why This Is a Problem
Flexibility: The “requires” relationship in Ruby is transitive: If A requires B and B

requires C, then A depends on C and needs it in order to load. This could cause
code to be copied and edited, rather than reused as is.

How It Got This Way
It’s usually easy to just instantiate objects where you need them. And that, in turn, means
just adding require statements where you need them. And so the snowball begins.

What to Do
In general, Dependency Inversion is a large refactoring—one that can take several coding
sessions to complete. Assuming there’s just one class you want to reuse:

Sometimes the offending • require calls are not needed, perhaps being a hangover
from earlier refactoring; this Dead Code can simply be deleted.

If your code instantiates third-party objects, use• Parameterize Method to push
the call to new out toward the application’s edges. Then delete the corresponding
require call.

If your class inherits from a third-party class, treat this as if it were a case of• Imple-
mentation Inheritance.

What to Look for Next
Duplication: Gathering together the uses of a third-party module could reveal

Duplicated Code or Feature Envy in its client classes.

From the Library of Lee Bogdanoff

ptg

168 Chapter 14: Libraries

Exercises

Exercise 14.1: Layers (Challenging)
One way to deal with libraries is to put them beneath a layer. This lets you isolate
the bulk of your code from direct dependency on other libraries. Consider these two
alternatives:

A. Redraw this as a UML package diagram showing dependencies.

B. Explain how the bulk of your code does or does not depend on the library code
in each of these situations.

C. What effects does this layering have in terms of:

• Conceptual integrity?

• Portability?

• Performance?

• Testing?

D. What mechanisms do you have available to enforce the layering (that is, what
stops someone from turning the second approach into the first one?)

 See page 244 for solution ideas.

Exercise 14.2: Closed Classes (Challenging)
Some languages provide ways to “close” a class definition; in Java, for example, one
cannot add methods to an existing class, and by making a class final, one can even
prevent it from being subclassed. Ruby, however, allows you to add methods to an
existing class or to change the definition of standard methods. Imagine this in your
own application code:

Bulk of your code Bulk of your code

Your lib.
extensions

Your lib.
extensionsA library you use

A library you use

Layer interface

From the Library of Lee Bogdanoff

ptg

Exercises 169

 class Array

 def length

 37

 end

 end

This language feature gives the Ruby programmer great freedom and makes the
Introduce Local Extension refactoring trivial.

A. What are the possible downsides of Ruby’s open classes, both for library reuse
and for application development?

B. Can you devise any means to discourage the abuse of Ruby’s open classes?

C. Can you devise any means to create closed classes in Ruby?

 See page 245 for solution ideas.

Exercise 14.3: A Missing Function
Consider the Zumbacker Z function, at the core of your application. (In fact, it’s such
a commonly used function in your domain that you’re a little surprised it’s not in the
Ruby core libraries already.) It’s defined:

Z(x) = abs(cos(x) + sin(x) - exp(x))

A. How could you handle the problem of Math being an incomplete library?

 See page 245 for solution ideas.

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

PART III
Programs to
Refactor

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

173

CHAPTER 15

A Simple Game

This example involves refactoring and test-driven design.1

Suppose we’ve decided to develop an application to play games in the tic-tac-toe family:
squares occupied by different markers. In tic-tac-toe you have a 3 × 3 grid, and you try to
put your mark in three boxes in a row. In Connect Four by Hasbro you have a rectangular
grid and try to get four boxes in a row, but columns have to be filled from bottom to top.
We’ll start with a simplified version of tic-tac-toe and work our way up to the general case.

Code
Here are some tests and the first version of the code:

require 'test/unit'

require 'tic_tac_toe'

class GameTest <Test::Unit::TestCase

 def test_default_move

 game = Game.new("XOX" +

 "OX-" +

 "OXO")

 assert_equal(5, game.move('X'))

 game = Game.new("XOX" +

 "OXO" +

 "OX-")

 assert_equal(8, game.move('O'))

1. The source code for this example is at http://github.com/kevinrutherford/rrwb-code.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code

ptg

174 Chapter 15: A Simple Game

 game = Game.new("---" +

 "---" +

 "---")

 assert_equal(0, game.move('X'))

 game = Game.new("XXX" +

 "XXX" +

 "XXX")

 assert_equal(-1, game.move('X'))

 end

 def test_find_winning_move

 game = Game.new("XO-" +

 "XX-" +

 "OOX")

 assert_equal(5, game.move('X'))

 end

 def test_win_conditions

 game = Game.new("---" +

 "XXX" +

 "---")

 assert_equal('X', game.winner())

 end

end

class Game

 attr_accessor :board

 def initialize(s, position=nil, player=nil)

 @board = s.dup

 @board[position] = player unless position == nil

 end

 def move(player)

 (0..8).each do |i|

 if board[i,1] == '-'

 game = play(i, player)

 return i if game.winner() == player

 end

 end

 (0..8).each { |i| return i if board[i,1] == '-' }

 return -1

 end

From the Library of Lee Bogdanoff

ptg

Refactoring 175

 def play(i, player)

 Game.new(board, i, player)

 end

 def winner

 if board[0,1] != '-' && board[0,1] == board[1,1] &&

 board[1,1] == board[2,1]

 return board[0,1]

 end

 if board[3,1] != '-' && board[3,1] == board[4,1] &&

 board[4,1] == board[5,1]

 return board[3,1]

 end

 if board[6,1] != '-' && board[6,1] == board[7,1] &&

 board[7,1] == board[8,1]

 return board[6,1]

 end

 return '-'

 end

end

Notice that the winner method is simplified: You win by getting three in a row horizon-
tally. Notice also that the heuristics for what to play are primitive: Win if you can, play any-
thing otherwise. We’ll migrate toward something capable of more sophisticated strategies.

Refactoring

Exercise 15.1: Smells
Go through this code and identify smells.

See page 246 for solution ideas.

Exercise 15.2: Easy Changes

It’s not always easy to know what to do with code. Let’s fix some of the easy things
first, one at a time.

• Uncommunicative Name: The method name move isn’t descriptive enough.
Change it to best_move_for.

From the Library of Lee Bogdanoff

ptg

176 Chapter 15: A Simple Game

• Uncommunicative Name: The variable i doesn’t explain much either. Change it
to move.

• Open Secret: The value –1 is a flag value; create a constant NO_MOVE to represent
it.

• Open Secret: The string nature of the board is exposed, and the check for a board
character being a ‘-’ is really a check that the square is unoccupied. Extract a meth-
od to do this, and name it appropriately.

There’s Duplicated Code in best_move_for, because we iterate over the squares on
the board twice—once to find a winning move, and again to find a default move. One
way to handle this would be to extract each pass into a method: As we add more strate-
gies (we have two thus far), we could imagine each strategy getting its own method. An
alternative would be to merge the two loops and handle things in one pass through the
possible moves. We’ll take the latter approach.

Exercise 15.3: Fuse Loops
Fuse Loops is a refactoring that combines two loops into one. It’s a standard optimi-
zation used by compilers, but it’s not in Fowler’s or Fields’ Refactoring catalog. (You
need to be careful about applying this refactoring; it can reduce communication and
encourage violations of the Single Responsibility Principle if applied to adjacent loops
that are only coincidentally related.) As always, the refactoring should be done in
small steps, maintaining safety at all times.

A. First, notice that both loops currently have side effects: We’ll eliminate them by
collecting all the return statements together at the end. For each loop introduce
a temporary variable to cache the loop’s result; be sure not to change it once it
has a value.

B. Move the body of the second loop into the first, and delete the second loop entirely.
(Remember to check that the tests still pass after each change.) If necessary, simplify
the body of the loop so that the can_play? check occurs only once.

C. Put on a development hat for a moment: It’s not necessary to stop when we find
a viable move—that is, there’s no harm in trying each possible move provided we
prefer wins to defaults. So, you can delete any conditional code that prevents a
cached value from being overwritten. Run the tests again and be sure you haven’t
changed anything important. You may have to change the tests. What does this
tell you?

From the Library of Lee Bogdanoff

ptg

Refactoring 177

D. In general, when is it safe to merge two loops?

 See page 246 for solution ideas.

Exercise 15.4: Result
Now we have a single loop, but the condition to decide what to return is still a little
complicated. Your code probably looks something like ours:

return winning_move if winning_move != NO_MOVE

return default_move if default_move != NO_MOVE

return NO_MOVE

How would you simplify this?
 See page 246 for solution ideas.

Exercise 15.5: Next
It’s good practice to pause at regular intervals and review the new state of the code.
What refactorings would you tackle next?

Exercise 15.6: Constants
The 8 in best_move_for is a Derived Value. Name some constants and rewrite the
method.
 See page 246 for solution ideas.

There are still a lot of magic numbers floating around. The winner method is full of
them, for example. We’ll tackle them in stages.

At this point, we’re going to explore two different paths through the space of possible
refactorings for the code. Make sure your current state is backed up—preferably in a ver-
sion control system such as Subversion—because we’ll be coming back to this point later.

From the Library of Lee Bogdanoff

ptg

178 Chapter 15: A Simple Game

Exercise 15.7: Checking for Wins
A. The conditionals in winner have Duplicated Code—each checks whether a partic-

ular row in the grid is filled with identical tokens. Fold these three checks together
into a loop that iterates over the rows.

B. Now switch to a development hat. Currently we’re not yet playing tic-tac-toe because
we’re only allowing horizontal three-in-a-row wins. Extend the winner method to
allow vertical and diagonal wins. (Be sure to add some tests before you begin.)

C. Do you think the refactoring you did in step A (looping over the rows) made step B
(adding more checks) easier or harder? What might you have done differently?

During the course of those last few steps we extracted a few helper methods such
as row:

def row(index)

 [board[index*COLUMNS,1], board[index*COLUMNS+1,1],

 board[index*COLUMNS+2,1]]

end

It took a couple of tries to get the calculations correct, so let’s fix that now.

Exercise 15.8: Representations
The game board is represented as a String, which may or may not be the most natu-
ral choice. It’s certainly an Open Secret.

A. What other parts of your code currently depend on the choice of a String for the
game board? Suggest refactorings you could perform to reduce the spread of that
knowledge.

B. Suggest at least two other ways we might represent the game’s state. Assess their
pros and cons (without changing any code at this stage).

C. Define a method cell(row, col) that returns the token at the given location on
the game board. Replace all direct reads of the string by calls to cell.

D. The only place where a token is actually placed on the board is in the constructor;
and the constructor’s conditional parameters are only fired by the play method.
Rewrite play so that the constructor only takes a single parameter.

 See page 246 for solution ideas.

From the Library of Lee Bogdanoff

ptg

Refactoring 179

Exercise 15.9: Refactoring Order
Now go back to your saved code and do Exercises 15.7 and 15.8 again—but this time
do 15.8 first. Was one order harder than the other? Why is that?

We could pursue improving the representation a lot further—and when you have
completed this chapter you may wish to do just that. But for now, we’ll return to our
vision of developing a general-purpose token-placing game.

Exercise 15.10: Winning Combinations
There’s another hidden constant: the number in a row that it takes to win. (Recall that
we mentioned Connect Four as one of the variations we eventually want to support.)
Suppose we change to a 5 × 5 grid and want four in a row to win. How easy is that
to put into the code?
(You needn’t add this feature; this is more of a thought question.)

Most of the refactorings we’ve applied so far have been obvious improvements. Now
it’s time to grow and improve the program through a combination of refactoring and
new implementation. But it’s not clear what’s best to do next.

You can think of this as subjunctive programming. The subjunctive tense is the one
used to talk about possible worlds (“If I were a rich man...”). Our stance is that we’ll try
some ideas and see where they lead, but if they don’t work out, that’s okay.

Two things make subjunctive programming bearable: a partner, so you can kick
around ideas, and a source control system, so you can back out anything you don’t like.

The general direction is that we want to allow more sophisticated strategies than
“win if you can and play arbitrarily otherwise.” One possible direction here is to create
a Move object and let it evaluate how good the move is.

Exercise 15.11: Iterator
In best_move_for we’re running a loop over the integers representing possible
moves, an Open Secret. Turn this into an iterator over the moves.

A. Extract an each_move method that yields the moves one by one to best_move_
for.

From the Library of Lee Bogdanoff

ptg

180 Chapter 15: A Simple Game

B. Our new iterator delivers all moves, legal or not. Move the can_play? test into
each_move so it only yields legal moves.

C. Introduce a Move struct that holds an integer move, and have each_move return
instances of it.

Currently, we’re just looping through possible moves, trying to select the best one,
following a simple rule: Wins are best, anything else is acceptable. But wins are rare;
we’d like to pick a good intermediate move, as some moves are better than others. We
can think of each move as having a score: how good it is. Just to have something to work
with, we’ll say a win is worth 100 points and any other move is worth 0 points. (We
could also think of wins by the opposing player being worth –100 points, but we won’t
check for those yet.)

Note that we’re out of the domain of refactoring; we’re making a semantic change
to our program. That’s the way development works. Because refactoring makes things
cleaner, we can see better ways to do them.

Development Episodes

Exercise 15.12: Scores

Modify best_move_for to calculate scores for moves and return the move with the
best score. (Hint: Instead of tracking the winning_move and default_move, keep
track of best_score and best_move.)

Notice how a score is associated with a particular move. Perhaps it should be part
of the Move object. Doing this might let us eliminate tracking of the integer score from
the main loop.

Exercise 15.13: Comparing Moves
Move the score calculation:

A. In order to calculate the score, Move objects need to know the game and the player.
Add those to Move.

From the Library of Lee Bogdanoff

ptg

Development Episodes 181

B. Move the calculation of a move’s score onto the Move object.

C. Now best_move_for is calculating the maximum of the scores of the playable
moves, “by hand.” But there’s a method on Enumerable that does just that. Imple-
ment a comparison operator (<=>) for Move.

D. Replace each_move by a method that returns an array of the playable Moves, and
replace the bulk of best_move_for by a call to max.

This is often how it goes. We refactored to create a method that yielded the moves,
and then later we replaced that by a different approach. It doesn’t mean our first try was
bad; we just learned more as the overall shape of the code shifted and simplified.

The program calculates every possible move and response. This is feasible for tic-
tac-toe, and perhaps also would be okay if we were to convert it to Hasbro’s Connect
Four, but certainly not feasible for a game like chess or Go. Eventually, we would have
to develop a new strategy.

One way to handle this is to limit the depth to which we search. Suppose we estab-
lish a depth cutoff value; searches deeper than this will simply return “don’t know.” We
will pass an additional parameter representing the current depth.

Exercise 15.14: Depth
Use Add Parameter to add a depth parameter, and maintain its value properly. After
you have the depth parameter, add an early check that returns when things are too
deep. What move will you return?

Exercise 15.15: Caching
We can think of performance tuning as refactoring for performance: It tries to keep the
program performing the same job, only faster. If we think of the program as exploring
the game tree of possible moves, we might see the same board via different paths.
Could you cache the moves so you could recognize boards you’ve already rated?

From the Library of Lee Bogdanoff

ptg

182 Chapter 15: A Simple Game

Exercise 15.17: New Features
Add some new features, test-first; make sure to refactor along the way.

A. Score a win by the opponent at –100.

B. Extend to m × n tic-tac-toe.

C. Require that a move be at the lowest empty space in a column.

Exercise 15.16: Balance
Do we have the right balance in our objects? Are there any missing objects? Which
should calculate the score, Game or Move? Try shifting it around and see the conse-
quences. Do some of these decisions make caching easier or harder?

Exercise 15.18: Min-Max
A. Add another feature: Use the min-max algorithm, described in any Artificial Intel-

ligence (AI) textbook. Instead of just saying, ”non-wins are all the same,” you say:
“Choose my best move, assuming the opponent makes the move that’s worst for
me.” The opponent uses the same rule. How is this reflected in the code? Is it a
trick to use it?

B. There’s an extension to that approach, called alpha-beta pruning. It says that we
can avoid searching parts of the tree by establishing cutoff values. Find an AI book,
and consider what it would take for you to implement such an approach. Is this a
refactoring, new development, or what?

Exercise 15.19: Do-Over?
This has been an experiment in changing the structure of an application. There are
other paths we could take. In particular, the balance between classes could go down
a different path. The first tests assumed 3 × 3 tic-tac-toe; it would be interesting to
start 1 × 1 and work to m × n that way, letting 3 × 3 be a special case.
Would it be better to start over or work from the current base?

From the Library of Lee Bogdanoff

ptg

183

CHAPTER 16

Time Recording

Imagine your team or department uses a tool to track the hours spent on client projects
so that your company can invoice correctly at the end of each month.1 The tool is a
Ruby script offering a simple command-line interface; it’s used like this (the last argu-
ment is always a project name, and -u selects a user):

$ timelog -h 4.5 project1

$ timelog -u bill -h 6 project2

$ timelog --date 2008-08-26 -h 2 project1

$ timelog project2

jun-08 15.0

jul-08 128.5

aug-08 117.0

Total 260.5

$ timelog -u kevin project1

2008-06 15.0

2008-07 76.0

2008-08 17.5

Total 108.5

$

Here is the script itself:

#! /usr/bin/ruby

#

Usage:

#

timelog [--user USERNAME] [[--date d] [--hours] hrs] project

#

1. The source code for this example is at http://github.com/kevinrutherford/rrwb-code.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code

ptg

184 Chapter 16: Time Recording

require 'ostruct'

require 'optparse'

require 'optparse/date'

def parse_options(argv)

 options = OpenStruct.new

 OptionParser.new do |opts|

 opts.banner = "Usage: #{$0} [options] project_name"

 opts.on("-d", "--date DATE", Date,

 "Specify the date on which hours were worked") do |d|

 options.date = d

 end

 opts.on("-h", "--hours NUM", Float,

 "The number of hours worked") do |hrs|

 options.hours = hrs

 end

 opts.on("-u", "--user USERNAME", String,

 "Log time for a different user") do |user|

 options.user = user

 end

 opts.on_tail("-?", "--help", "Show this message") do

 puts opts

 exit

 end

 end.parse!

 if argv.length < 1

 puts "Usage: #{$0} [options] project_name"

 exit

 end

 if argv.length == 2

 hours = argv.shift

 options.hours = hours.to_f

 end

 if options.hours && options.hours <= 0.0

 raise OptionParser::InvalidArgument, hours

 end

 options.project = argv[0]

 options

end

TIMELOG_FOLDER = ENV['TL_DIR'] || '/var/log/timelog'

TIMELOG_FILE_NAME = 'timelog.txt'

TIMELOG_FILE = TIMELOG_FOLDER + '/' + TIMELOG_FILE_NAME

From the Library of Lee Bogdanoff

ptg

Chapter 16: Time Recording 185

def report(options)

 records = IO.readlines(TIMELOG_FILE)

 records = records.grep(/^#{options.project},/)

 records = records.grep(/,#{options.user},/) if options.user

 months = Hash.new(0.0)

 total = 0.0

 records.each do |record|

 project, user, date, hours = record.split(/,/)

 total += hours.to_f

 y, m, d = date.split(/-/)

 months["#{y}-#{m}"] += hours.to_f

 end

 lines = months.keys.sort.map { |month|

 "%-7s %8.1f" % [month, months[month]]

 }

 lines << "Total %8.1f" % total

 lines.join("\n")

end

def log(options)

 options.user ||= ENV['USERNAME']

 options.date ||= Date.today.to_s

 File.open TIMELOG_FILE, 'a+' do |f|

 f.puts "#{options.project}," "#{options.user}," +

 "#{options.date},#{options.hours}"

 end

end

if __FILE__ == $PROGRAM_NAME

 options = parse_options(ARGV)

 if options.hours.nil?

 puts report(options)

 else

 log(options)

 end

end

 The script also has a few end-to-end tests:

require 'test/unit'

load 'timelog.rb'

class TimelogTest < Test::Unit::TestCase

 def setup

 @varlog_size = File.size(TIMELOG_FILE) if

 File.exist?(TIMELOG_FILE)

 File.delete(TIMELOG_FILE_NAME) if

From the Library of Lee Bogdanoff

ptg

186 Chapter 16: Time Recording

 File.exist?(TIMELOG_FILE_NAME)

 ENV['TL_DIR'] = '.'

 assert_equal('',

 'ruby timelog/timelog.rb -u fred -h 6 proj1')

 assert_equal('',

 'ruby timelog/timelog.rb -u jim -h 7 proj1')

 assert_equal('',

 'ruby timelog/timelog.rb -u alice -h 4.5 proj1')

end

def teardown

 if File.exist?(TIMELOG_FILE)

 assert_equal(@varlog_size, File.size(TIMELOG_FILE),

 "log file #{TIMELOG_FILE} should be unchanged")

 end

 File.delete(TIMELOG_FILE_NAME) if

 File.exist?(TIMELOG_FILE_NAME)

end

def test_project_total

 rpt = 'ruby timelog/timelog.rb proj1'.split("\n")[-1]

 assert_equal(17.5, rpt.split[1].to_f)

end

def test_project_total_for_missing_project

 rpt = 'ruby timelog/timelog.rb proj2'.split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

def test_user_total

 rpt = 'ruby timelog/timelog.rb --user fred proj1'

 rpt = rpt.split("\n")[-1]

 assert_equal(6, rpt.split[1].to_f)

end

def test_user_total_for_missing_user

 rpt = 'ruby timelog/timelog.rb --user harry proj1'

 rpt = rpt.split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

def test_user_total_for_missing_project

 rpt = 'ruby timelog/timelog.rb --user fred proj2'

 rpt = rpt.split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

end

From the Library of Lee Bogdanoff

ptg

Preparing the Soil 187

Notice that the script stores the record of project hours in a flat text file. This design
helped to get the script developed and into use quickly, but it is now becoming a liabil-
ity. For one thing, the script makes no attempt to prevent concurrent writes to the file.
The company already has a MySQL database holding details of all staff and all projects,
so it seems to make sense to store the time logs in there too. A meeting is held to decide
whether to refactor the existing tool or write a replacement from scratch.

Exercise 16.1: Rewrite or Refactor?
Look at the tool’s code. We need to replace it with a version that uses a different per-
sistence mechanism, but which otherwise has the same features.

A. What are the arguments for and against refactoring the existing script?

B. Make a list of the script’s code smells.

 See page 247 for solution ideas.

The decision is made to refactor the existing code, replacing the flat file by a per-
sistence layer sitting on the company’s existing MySQL database. Your mission, should
you choose to accept it, is to carry out that refactoring.

Preparing the Soil
It is a good idea to begin every project on a “green bar,” so that you know you have
working code as your starting point.

Exercise 16.2: Project Kick-Off
A. Take whatever time you need to set up your development project for this exer-

cise and run the tests.

B. Take a moment to develop a strategy for this refactoring task; think about the
steps you might need to take in order to accomplish it safely, without leaving
anything broken.

One approach is to simply replace all of the file manipulation code with SQL queries.
We think that’s a bit risky, so instead we’re going to try to break the problem into smaller

From the Library of Lee Bogdanoff

ptg

188 Chapter 16: Time Recording

pieces in order to avoid that kind of “big bang.” Right now, all of the code is sitting in a
small number of Greedy Methods. So the key to our success is in making some separa-
tion between the three parts of this application: presentation, domain, and persistence.

First, though, we need to make the refactoring process a little more safe.

Exercise 16.3: Test Coverage
A. Review the existing tests and identify areas where coverage is weak. (Concen-

trate on looking at the application as a “black box”; try not to be sidetracked by
the code itself.)

B. Write the missing tests; for consistency, adopt the style and approach of the
existing tests.

See page 248 for solution ideas.

Reviewing the tests, it becomes clear that many of them invoke the whole application
just to test one method. Then there’s that pesky global constant TIMELOG_FILE; it’s already
made testing sufficiently hard that the code uses an environment variable to get around it!
We want to pass the file’s path as a parameter, but there’s currently nothing to pass it to.

Exercise 16.4: Application Object
A. Use Extract Class to create a new class representing the timelog application. Give

the new class a constructor taking the file’s name as a parameter.

B. Move the report and log methods over to the new class.

C. Refactor the tests to use those new methods. Is the environment variable need-
ed now?

D. That last change lost us some test coverage. Is that a problem? What would you
do about it?

From the Library of Lee Bogdanoff

ptg

Preparing the Soil 189

The Duplicated Code in the tests is now some what more apparent; we have a lot
of tests with this general form:

def test_project_total_for_missing_project

 rpt = @recorder.report('proj2', nil).split("\n")[-1]

 assert_equal(0, rpt.split[1].to_f)

end

That’s a lot of code just to ask a project for its total hours!

Exercise 16.5: Testable Methods
Remove duplication in the tests by extracting more fine-grained and specific meth-
ods on the application object. (Hint: You will create half a dozen methods such as
total_hours_for(project).)

In the rest of this chapter, we are going to focus on changing the application’s persis-
tence mechanism, and hopefully we’re going to do that without changing its command-
line options (user input) or report formatting (output). However, the code currently makes
that harder than necessary, because most of the application’s behavior is still in Greedy
Methods that deal with both persistence and formatting. In Smalltalk Best Practice Patterns
[2], Kent Beck says, “Don’t put two rates of change together.” His approach to dealing
with the resulting Divergent Change is to break the code into “lots of little pieces.”

Exercise 16.6: Rates of Change
A. Look at the methods that contain code for reading or writing the file. Split each

of these methods apart, so that report formatting is separated from file opera-
tions.

B. Use Extract Class on your application object to wrap the file methods together
with the path to the file.

C. Refactor the application object’s constructor so that its parameter is a whole
TimelogFile instance by pushing the TimelogFile’s construction up into the
tests and the top-level script. This deliberately introduces a little duplication;
what are the mitigating factors in this case?

See page 248 for solution ideas.

From the Library of Lee Bogdanoff

ptg

190 Chapter 16: Time Recording

As so often happens during a large refactoring such as this, the elimination of one
smell can reveal another that was previously hidden. In the code for timelog right now,
the recording and reporting methods communicate with the file methods using strings
containing comma-separated values.

Exercise 16.7: Open Secrets
Fix these Open Secrets by introducing a new class to wrap the CSV strings. Look for
opportunities to move code onto the new class. Can you use the new class to simplify
any of the tests?

In the language of Cockburn’s Hexagonal Architecture [9], the TimelogFile class
you just extracted is an Adapter for the file. Ideally it will be very thin: It should know
nothing about the application, and yet its interface (the set of public method signatures)
should reveal nothing of the underlying technology. This interface is the variation point
we will exploit as we switch to a SQL solution.

Exercise 16.8: Hexagonal Architecture (Challenging)
Draw a UML static model showing your current code in hexagonal architecture form
[9]. Ensure that your model clearly identifies

 The dependencies between the classes (• <<using>> relationships)

The test class(es)•

 The variation point•

 The “middle hexagon” and the adapters•

 See page 248 for solution ideas.

It’s starting to feel like we have the application a little more under control now. Admit-
tedly, many more code smells remain, but we want our next series of steps to be informed
by the problem at hand. It’s time to look at the database.

From the Library of Lee Bogdanoff

ptg

Substitute Algorithm 191

Substitute Algorithm
Figure 16.1 shows a rough outline of the relevant parts of the existing corporate data-
base.

<<table>>
Staff Member

<<table>>
Assignment

Codename: String
Start: date
......

Start: date
End: date

<<table>>
Project

Username: string
Fullname: string

11 0..* 0..*

Figure 16.1 Existing Corporate Projects Database

Exercise 16.9: Data Smells
Refactoring mostly deals with code smells. But there are data smells too; the database
community has notions of what constitutes a good data design.

A. What potential problems do you see in this database structure?

B. What changes to the database might address them? (Don’t make the changes
yet.)

See page 248 for solution ideas.

We’ll bear these data smells in mind as we proceed, because one or two of them could im-
pede our progress. But that’s for the future; right now we need to sketch out a new design.

Exercise 16.10: Extending the Database
Design an extension to this schema to hold time records equivalent to those currently
stored in the file. Try to do it so that the existing tables don’t need to change.

 See page 249 for solution ideas.

From the Library of Lee Bogdanoff

ptg

192 Chapter 16: Time Recording

When we switch the code from file I/O to SQL, we want to do so in the presence of
tests. We have a clear choice between two different approaches at this point: We could
continue with the tests we have, or we could write some unit tests at the level of the
variation point. We’ll do the latter.

Exercise 16.11: Adapter Tests (Challenging)
A. Create a new test suite (call it TimelogFileTests or something similar) by copy-

ing the existing tests. You should now have twice as many passing tests!

B. For each test in the new suite, rewrite it so that it only uses TimelogFile
and Posting. For example, instead of checking for the correct total hours, a
rewritten test would check that the right Posting objects came back from the
TimelogFile.

C. Now also rewrite the test setup so that it only uses TimelogFile and Posting.

D. Review your new test suite. You may find that some tests are now identical, in
which case the duplicates can be deleted. Feel free to add extra tests for any
edge cases you can now see.

It now appears that we have a layer of abstraction that completely hides the applica-
tion’s persistence mechanism. How confident are you that this is indeed true? After all,
the TimelogFile adapter currently has only one use, and the application has only ever
been run with one persistence adapter. The cold truth is that we can never be certain;
at this point, we are completely reliant on the separation of responsibilities we made at
Exercise 16.6. It’s time now to put that design to the test.

We’re going to make a new adapter for the SQL database, by copying the Timelog-
File adapter and then gradually modifying it. This is a big, risky refactoring, so we’ll
take it in small steps.

Exercise 16.12: Database Technology
Our first task is to decide what Ruby gem(s) to use to access the SQL database.

Make a list of gems that might be suitable for the job. Pick one that suits your
needs. If you haven’t done so already, install your chosen gem.

See page 249 for solution ideas.

From the Library of Lee Bogdanoff

ptg

Substitute Algorithm 193

We’ll now proceed with exercises based on the technology choice we just made. (If
you chose differently, feel free to follow along with your chosen tool.)

Exercise 16.13: Database Tests (Challenging)
A. Copy the TimelogFile class and its tests to create new classes with “SQL” or

“Database” in their names. Switch the new tests over to calling the new adapter.
You should now have three suites of passing tests!

B. Augment the new test setup so that it also creates an equivalent fixture in a
database. Drop, create, and populate all of the tables in the setup (so that each
test starts with a new set of tables), and use raw SQL to populate them with the
same data that goes into the file. (Your setup should continue to populate the
file too, so the current tests—which use the file adapter—should still pass.)

C. Add a parameter to the SQL adapter’s constructor and pass in the information
required for connecting to the test database. Ensure that every method in the
new adapter has access to a database connection (even though the code still
uses the file). (Hint: We used MySQL, so we passed a new object containing the
hostname, username, password, and database name; this new object also got a
method that would connect to the specified database.)

We can’t think of any more safety harnesses—it’s time now to code up the new
adapter.

Exercise 16.14: Database Adapter (Challenging)
For each method in the new SQLAdapter class:

A. Use a database tool to work out the precise SQL query needed by the method.
You may find at this point that you need to fix some of the schema smells
identified in Exercise 16.9 earlier; if so, modify the test setup accordingly.

B. Use Substitute Algorithm to replace the existing code with the SQL query.

C. Run the tests after each change.

From the Library of Lee Bogdanoff

ptg

194 Chapter 16: Time Recording

We’re almost done. We have two persistence adapters, each with a set of unit tests.
But right now we have only one set of integration tests.

Exercise 16.15: Integration Tests
Write a suite of tests to prove that the application works with the test database. Did
you get any surprises? If so, could you have prevented them by doing anything dif-
ferently earlier in this chapter?

Now it’s time to make the final leap and switch the application to use the real live
corporate database.

Exercise 16.16: Going Live
A. We are about to switch the script so that it uses the corporate database instead

of the file. What are the risks involved in doing this? Can you think of any ways
to mitigate them?

B. (Optional) Create a new database and populate it with fake “corporate” data. In
your top-level script, create an instance of your database adapter, constructed
to point at the real live corporate database. Pass that object to your application
object’s constructor. Perform whatever safety checks you think are necessary.

Optional Extras
There are many ways to design persistence to a relational database. One of the most
popular uses the Active Record pattern (see Fowler’s Patterns of Enterprise Application
Architecture [12]). Indeed, if you have done any Rails development, you will already
have used the ActiveRecord gem.

Exercise 16.17: Active Record (Challenging)
As an optional exercise, if you’re feeling adventurous, refactor your current design to
use the ActiveRecord gem instead of relying directly on a SQL API. Is it possible to
follow the step-by-step approach we used earlier? What changes are required to the
variation point interface in order to work with ActiveRecord?

From the Library of Lee Bogdanoff

ptg

Optional Extras 195

The code for this chapter was not originally written test-first.

Exercise 16.18: Test-Driven Development (Challenging)
A. Reimplement this application from scratch, test-first; provide both flat file and

SQL versions. Don’t look at the old version while you develop the new one.
What do you see?

B. The experiences of people who do test-driven development indicate that a dif-
ferent design often emerges than the one they expected. Did that happen for
you? Is the code better? Are the tests better? How much did the original design
influence you?

C. Assuming your test-driven code is different from the code you were working
with before, would it be feasible to refactor the old code until it matches the
new code? Are there refactorings not “in the book” that you need to transform
your code? What code smells could guide you so that you would naturally refac-
tor in that direction? Does this teach you anything about refactoring, or about
test-driven development?

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

197

CHAPTER 17

Calculator

In this chapter we’ll look at a small calculator.1 This one has two twists. One is that it’s
based on a stack like an old HP calculator. The second is that it knows units.

The stack approach lets us avoid dealing with the challenges of parsing (and tricky

things like parentheses). It works like this: You can push values, and an operator such

as + pops the top two items off the stack and replaces them with the sum. For example,

3 + 4 5 would be done with “3 PUSH 4 PUSH 5*+” whereas 3 4 + 5 would be

“3 PUSH 4 * PUSH 5 +” and (3 + 4)/ 5 would be “3 PUSH 4 + PUSH 5 *”.

1. The source code for this example is at http://github.com/kevinrutherford/rrwb-code.

From the Library of Lee Bogdanoff

http://github.com/kevinrutherford/rrwb-code

ptg

198 Chapter 17: Calculator

Units let us manipulate values with meters, kilograms, and seconds. Suppose we
have something traveling 50 meters per second for 7 seconds. If we take 50m/s 7s, we
get 350m. (It would be entered “50 m 1/s PUSH 7s *”.)

Exercise 17.1: Smells
Go through this code and identify smells.

 An answer follows the code.

Code
It’s easiest to understand these classes from the bottom up. First, we’ll look at how units
are managed with the class Dimension. Dimensions represent the MKS (meter/kilogram/
second) values as a hash from the unit name to the exponent. (So m2 is represented as
{'m'= > 2}.) Observe how multiplication, negation (inversion), and division manipulate
the exponents.

class Dimension

attr_reader :dimensions

def initialize unit2int={}

 @dimensions = new_hash(unit2int)

end

def clone

 Dimension.new(new_hash(@dimensions))

end

def ==(other)

 return dimensions == other.dimensions

end

def *(other)

 new_dimensions = new_hash(dimensions)

 other.dimensions.each_pair {

 |key, value|

 sum = dimensions[key] + value

 new_dimensions[key] = sum

 new_dimensions.delete(key) if sum == 0

 }

 Dimension.new new_dimensions

end

From the Library of Lee Bogdanoff

ptg

Code 199

def -@

 new_dimensions = new_hash(dimensions)

 dimensions.each_pair{

 |key, value|

 new_dimensions[key] = -value

 }

 Dimension.new new_dimensions

end

def /(other)

 self * -other

end

def to_s

 return "" if dimensions.size == 0

 positives = ""

 negatives = ""

 dimensions.each{|key, value|

 positives += '*' + format(key, value) if value > 0

 negatives += '*' + format(key, -value) if value < 0

 }

 if (positives.length == 0)

 positives = "1"

 else

 positives = positives[1..-1]

 end

 if (negatives.length > 0)

 negatives = negatives[1..-1]

 end

 return positives if (negatives.length == 0)

 return positives + "/" + negatives

end

def format key, value

 return key if value == 1

 return key + "^" + value.to_s

end

private

def new_hash initial_value

 result = Hash.new{|hash, key| hash[key] = 0 }

 result.merge!(initial_value)

 result

end

end

From the Library of Lee Bogdanoff

ptg

200 Chapter 17: Calculator

Values are a pair, representing the product of an integer and a dimension. They sup-
port the various arithmetic operators, along with an operator that can extend either part
of the pair. (For example, 327 extended with 8 becomes 3278, while m extended with
1/s becomes m/s.)

require 'dimension'

class Value

attr_reader :number, :dimension

def initialize number, dimension

 @number = number

 @dimension = dimension

end

def clone

 Value.new(@number, @dimension.clone)

end

def extend v

 return Value.new(number * 10 + v, dimension) if

 v.kind_of? Integer

 return Value.new(number, dimension * v)

end

def +(other)

 raise "can't mix apples and oranges" if

 dimension != other.dimension

 Value.new(number + other.number, dimension)

end

def -(other)

 raise "can't mix apples and oranges" if

 dimension != other.dimension

 Value.new(number - other.number, dimension)

end

def *(other)

 Value.new(number * other.number,

 dimension * other.dimension)

end

def /(other)

 Value.new(number / other.number,

 dimension / other.dimension)

end

From the Library of Lee Bogdanoff

ptg

Code 201

def ==(other)

 (number == other.number) and (dimension == other.dimension)

end

def dimension

 @dimension

end

def to_s

 suffix = @dimension.to_s

 return @number.to_s if suffix.size == 0

 @number.to_s + '*' + @dimension.to_s

end

end

Now look at Calculator, the core class. It holds the stack, and it knows whether the last
value was pushed or calculated so it can know whether to extend a value or replace it.

require 'value'

class Calculator

attr_accessor :is_calculated

def initialize start

 @default = start #Value.new 0, Dimension.new

 @stack = []

 @is_calculated = true

end

def default

 @default.clone

end

def top

 return default if @stack.size < 1

 @stack[-1]

end

def push value

 @is_calculated = false

 @stack.push value

end

def extend value

 start = @is_calculated ? default : top

 pop

From the Library of Lee Bogdanoff

ptg

202 Chapter 17: Calculator

 push start.extend(value)

end

def pop

 @is_calculated = true

 @stack.pop

end

def plus

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 + v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

end

def minus

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 - v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

end

def times

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 * v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

From the Library of Lee Bogdanoff

ptg

Code 203

 self

end

def divide

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = v1 / v2

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

 end

def binary_op_old op

 v2 = @stack.pop

 v1 = @stack.pop

 begin

 result = op.call(v1,v2)

 rescue

 result = default

 end

 @stack.push(result)

 @is_calculated = true

 self

end

def swap

a = top

pop

b = top

pop

push a

push b

@is_calculated = true

end

def to_s

 top.to_s

end

end

From the Library of Lee Bogdanoff

ptg

204 Chapter 17: Calculator

Now we’re moving up to the user interface. The Calc_Controller class coordinates
access to the calculator (and gives us a chance to test below the level of UI objects).

require 'calculator'

require 'value'

require 'dimension'

class Calc_Controller

def initialize calculator

 @calculator = calculator

 @calculated = false

end

def digit n

 @calculator.extend(n)

end

def unit arg

 if @calculator.is_calculated

 @calculator.pop

 @calculator.push(Value.new(0, arg))

 else

 value = @calculator.top

 @calculator.pop

 value *= (Value.new 1, arg)

 @calculator.push value

 end

 @calculator.is_calculated = false

end

def push

 @calculator.push(Value.new(0, Dimension.new))

 @calculator.is_calculated = false

end

def pop

 @calculator.pop

end

def cab

 a = @calculator.top

 @calculator.pop

 b = @calculator.top

 @calculator.pop

 c = @calculator.top

 @calculator.pop

From the Library of Lee Bogdanoff

ptg

Code 205

 @calculator.push b

 @calculator.push a

 @calculator.push c

 @calculator.is_calculated = true

end

def swap

 @calculator.swap

end

def plus

 @calculator.plus

end

def subtract

 @calculator.minus

end

def times

 @calculator.times

end

def divide

 @calculator.divide

end

def plus_old

 @calculator.binary_op(lambda{|a,b| a+b})

end

def to_s

 @calculator.to_s

end

end

Finally, we get to the user interface proper, built on Tk. It delegates most of its work
to the controller.

require 'tk'

require 'value'

require 'calculator'

require 'calc_controller'

@my_font = TkFont.new('helvetica 20 bold')

@calculator = Calculator.new(Value.new 0, Dimension.new)

From the Library of Lee Bogdanoff

ptg

206 Chapter 17: Calculator

@controller = Calc_Controller.new @calculator

def push

 @controller.push

 @my_text.value = @controller

end

def pop

@controller.pop

@my_text.value = @controller

end

def cab

@controller.cab

@my_text.value = @controller

end

def swap

@controller.swap

@my_text.value = @controller

end

def plus

@controller.plus

@my_text.value = @controller

end

def minus

@controller.subtract

@my_text.value = @controller

end

def times

@controller.times

@my_text.value = @controller

end

def divide

@controller.divide

@my_text.value = @controller

end

def extend_unit arg

@controller.unit(arg)

@my_text.value = @controller

end

From the Library of Lee Bogdanoff

ptg

Code 207

def extend_number n

@controller.digit(n)

@my_text.value = @controller

end

def plus_old

@calculator.binary_op(lambda{|a,b| a+b})

@my_text.value = @calculator

end

def make_button frame, name, p

TkButton.new(frame, :text=>name,

 :font=>@my_font, :command =>p)

end

def make_digit root, number

make_button(root, number, proc{extend_number number})

end

def make_unit root, unit

make_button(root, unit, proc{extend_unit unit})

end

root = TkRoot.new { title "Calculator" }

output_frame = TkFrame.new(root).pack(

'side'=>'top',

'padx'=>10,

'pady'=>10,

'fill'=>'both')

button_frame = TkFrame.new(root).pack(

'side'=>'bottom',

'padx'=>10,

'pady'=>10)

@my_text = TkVariable.new

@calculated_result = TkEntry.new(output_frame) {

 width 75

 font @my_font

 state 'readonly'

 justify 'right'

 border 5

 }.pack(

 'fill'=>'y',

 'expand'=>'true')

From the Library of Lee Bogdanoff

ptg

208 Chapter 17: Calculator

@calculated_result.textvariable = @my_text

@my_text.value = @calculator

b0 = make_digit(button_frame, 0)

b1 = make_digit(button_frame, 1)

b2 = make_digit(button_frame, 2)

b3 = make_digit(button_frame, 3)

b4 = make_digit(button_frame, 4)

b5 = make_digit(button_frame, 5)

b6 = make_digit(button_frame, 6)

b7 = make_digit(button_frame, 7)

b8 = make_digit(button_frame, 8)

b9 = make_digit(button_frame, 9)

bm = make_unit(button_frame, Dimension.new({'m'=>1}))

b1m = make_unit(button_frame, Dimension.new({'m'=>-1}))

bk = make_unit(button_frame, Dimension.new({'k'=>1}))

b1k = make_unit(button_frame, Dimension.new({'k'=>-1}))

bs = make_unit(button_frame, Dimension.new({'s'=>1}))

b1s = make_unit(button_frame, Dimension.new({'s'=>-1}))

b_plus = make_button(button_frame, '+', proc{plus})

b_minus = make_button(button_frame, '-', proc{minus})

b_times = make_button(button_frame, '*', proc{times})

b_divide = make_button(button_frame, '/', proc{divide})

b_push = make_button(button_frame, 'Push', proc{push})

b_pop = make_button(button_frame, 'Pop', proc{pop})

b_swap = make_button(button_frame, 'Swap', proc{swap})

b_cab = make_button(button_frame, 'CAB', proc{cab})

spaceholder = TkLabel.new(button_frame)

buttons = [

b7, b8, b9, bm, b1m, b_plus, b_push,

b4, b5, b6, bk, b1k, b_minus, b_pop,

b1, b2, b3, bs, b1s, b_times, b_swap,

spaceholder, b0, spaceholder, spaceholder,

 spaceholder, b_divide, b_cab]

items_per_row = 7

buttons.each_index { |i|

buttons[i].grid(

 'column'=>(i%items_per_row),

 'row'=>(i/items_per_row),

 'sticky'=>'news',

From the Library of Lee Bogdanoff

ptg

Refactoring 209

 'padx'=>5,

 'pady'=>5)

}

Tk.mainloop

Refactoring
Here are some of the smells we noticed:

Uncommuni• cative Name: Calc_Controller and Calc_Screen aren’t standard Ruby
class names (which wouldn’t have underscores).

Duplicated Code• : Duplication between digits and units.

Duplicated Code• : Duplication across classes: Calc_Screen, Calc_Controller, and
Calculator all have methods for the various operators.

Duplicated Code• : The button_frame is being passed many times, and it’s the only
value the parameter using it ever uses.

Dead Code• : There is an uncalled method binary_pop_old() in Calculator, and
plus_old() in the main class.

Middle Man• : The arithmetic routines in Calc_Controller are pass-through meth-
ods to Calculator; it’s not clear that the controller is pulling its weight.

Greedy Module• : Some stack methods are in the controller, some in the Calculator.

Inappropriate Intimacy (General Form)• : There’s redundant state in the controller
and the calculator, trying to manage what happens when a value has been typed in
and is due to be extended versus one that is calculated and should just be replaced.

Simulated Polymorphism• : The extend() method checks types to decide how to
operate.

Feature Envy• : The cab() method does all its work with the calculator, so the work
could be moved over there.

Duplicated Code• : All the calculation routines are very similar.

Suspicious Code:• The Calculator class hard-codes the default value, and the opera-
tors assume +-*/ are defined. (Values needn’t be tied to the stack nature.)

Suspicious Code:• It seems suspicious that operators put in a default value (0) when
anything suspicious happens (“5 m PUSH 2 s +” yields 0.) The value class definitely
detects trying to add or subtract things with differing dimensions.

Long Method• : Dimension’s *() method seems longish; to_s() is defi nitely too long.

Duplicated Code• : The way positives and negatives are added is very similar.

Greedy Module• : Value knows its formatting.

From the Library of Lee Bogdanoff

ptg

210 Chapter 17: Calculator

Duplicated Code• : There’s lots of similarity in the way the screen is set up (e.g., the
calls make_digit() and make_unit()).

Where to begin? There’s an art to it (especially with so many choices). We’re rea-
sonably confident that Value and Dimension stand on their own. We want to start at
Calculator, as it’s the heart of the system.

There are three things we want to accomplish first:

Remove the direct dependency on the Value class and the default value. (What if we •
want to operate on integers instead of values? What would change?)

Pull • cab() over to the Calculator class.

Eliminate the duplication in the operators.•

Exercise 17.2: Clean up Calculator
Fix those problems in the Calculator class.

When we did this, we made all the arithmetic operators call a common binary_op
method something like this:

 def plus

 binary_op(lambda{|a,b| a+b})

 end

Exercise 17.3: Straighten out is_calculated

It looks like Calc_Controller and Calculator are fighting over who owns the state
that tracks whether a value is calculated. This is used so we know whether 58 extend-
ed by 3 should be 583 (if it’s in the process of being entered) or just toss the 58 and
put 3 on the stack (if the value on top of the stack was calculated). Figure out which
class should own the state, and get this out of the other’s hands.

(There are arguments for either class owning it, but not both.)

Exercise 17.4: Controller
The controller has two responsibilities: passing through to the calculator options and
handling extension of the digits or the units. Harmonize and unify the two extension
methods.

From the Library of Lee Bogdanoff

ptg

Refactoring 211

Did you notice the extend() method on Value? It’s already prepared to work with
either integers or Dimensions. (It does its work by type-checking. Can you think of a
better approach?)

Exercise 17.5: Generic Calculator
Move the concrete binary operations over to the controller, so the Calculator class
has no dependency on the specific operations, but only knows how to handle the
generic binary case (where the particular operator is passed in). Move the extend()
method over to the controller as well. At this point, Calculator has no dependency on
the particular type. (For a bonus, try making it work with integers rather than Values.
What other impacts are there?)

Exercise 17.6: UI Class
There are several places of duplication in Calc_Screen. Make it so button_frame is
not passed around, since no other frame ever gets a button. Find a way to eliminate
the duplication in all the controller calls. (Is this overkill?)

Exercise 17.7: Value and Dimension
The worst offense here is the formatting method. It’s moderately big, and a bit hard
to understand. More importantly, it ties formatting concerns into a domain-level ob-
ject. (What if we were writing to a widget that could handle real superscripts and
subscripts? This would just be in the way.)

Exercise 17.8: What Else?
What else can you do? It’s often the case that applying the obvious refactorings re-
veals other more subtle opportunities.

Thank You
We hope that this and the other exercises have helped give you good practice at identi-
fying code smells and applying refactorings that clean them up. We encourage you to
participate in the community and keep learning. Good luck.

—Kevin and Bill

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

PART IV
Appendices

From the Library of Lee Bogdanoff

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

ptg

215

APPENDIX A

Answers to Selected
Questions

We’ve included answers to some of the problems here. Where we’ve omitted answers, it’s
usually because we’ve asked you to work in your own code or because we want you to
consider an issue on your own.

The Refactoring Cycle

Exercise 2.1: Simple Design
 A. (a) Passes all tests. “If it doesn’t have to work, I can give it to you right now.”

 (b) Communicates. This makes an appeal to our intuition about future readers of
our code (including ourselves).

 (c) No duplication. Duplicate code is asking for trouble; it’s too vulnerable to
changes in one place but not the other.

 (d) Fewest classes and methods. All things being equal, we prefer smaller code.

 B. The bottom line is that there’s an appeal to the reader’s ability to understand; we’ll
tolerate duplication to achieve better understanding.

Test code will sometimes have duplication, for communication reasons. For exam-
ple, it may be easier to repeat an expected value rather than assign it to a variable
and use the variable. That way, when you read the code, you know exactly what it
was looking for, and you don’t have to review code to find the variable and make
sure nothing else changed it along the way.

From the Library of Lee Bogdanoff

ptg

216 Appendix A: Answers to Selected Questions

Refactoring Step by Step

Exercise 3.1: Small Steps
Most refactorings reflect this attitude (safety even in mid-refactoring). You can some-
times take a shortcut and bunch together a series of very similar steps—for example,
when you have to change all of the callers during Remove Parameter.

Exercise 3.2: Inverse Refactorings
A. Collapse Hierarchy is inverted by Extract Subclass.

B. Extract Method is inverted by Inline Method.

C. Hide Delegate is inverted by Remove Middle Man.

D. Inline Temp is inverted by Introduce Explaining Variable.

E. Parameterize Method is inverted by Replace Parameter with Explicit Methods.

F. Rename Method is inverted by Rename Method.

Refactoring Practice

Exercise 4.1: Get to Know the Refactorings
 A. The full cross-reference list will be large and somewhat subjective—we’ve omitted

it for the sake of brevity.

 B. Our impression is that Move Method, Extract Class, Move Field, and Extract Method
are involved in fixing the most smells.

 C. Quite a few refactorings aren’t mentioned by any of the smells. Some are code ma-
nipulation, where the refactoring provides a safe way to move between two valid
alternatives. Others are a bit specialized (especially the “big” refactorings). Others
are used as steps in applying another refactoring; the smell for the other refactor-
ing triggers this one.

 D. Everybody’s list will be different. We considered these additional smells:

Intertwined Model and UI: Duplicate Observed Data, Separate Domain from
Presentation

Unclear Communication: Remove Assignment to Parameter, Replace Error Code
with Exception, Replace Exception with Test, Replace Magic Number with
Symbolic Constant, Split Temporary Variable

From the Library of Lee Bogdanoff

ptg

Measurable Smells 217

Conditional Logic: Consolidate Conditional Expression, Consolidate Duplicate Con-
ditional Expression, Introduce Null Object, Replace Error Code with Excep-
tion, Replace Exception with Test, Replace Nested Conditional with Guard
Clause, Replace Conditional with Polymorphism

Measurable Smells

Exercise 5.1: Comments
 A. One approach might be something along the lines of this:

class Matcher

 def clip(array, limit)

 array.map { |val| [val, limit].min }

 end

 def similar_values?(actual, expected, delta)

 ! actual.zip(expected).detect { |m| (m[0] - m[1]).abs > delta }

 end

 def match(expected, actual, clip_limit, delta)

 actual = clip(actual, clip_limit)

 actual.length == expected.length and

similar_values?(actual, expected, delta)

 end

end

But there are other smells in this code; see Exercise 12.5 if you went further with
your refactoring.

 B. Code can usually communicate the how of something fairly well; it’s not always
able to communicate the why and it’s almost impossible to communicate the why
not.

When code becomes published for others to use, it is often important to include
rdoc comments to document the API.

Exercise 5.2: Long Method
 A. We identified the following blocks:

Printing the header (line 3)•

Printing the state of the machines (lines 4–9)•

Printing the state of the robot (lines 10–15)•

Printing the footer (line 16)•

From the Library of Lee Bogdanoff

ptg

218 Appendix A: Answers to Selected Questions

 B. You’ll have something like this:
def Report.report(out, machines, robot)

 reportHeader(out)

 reportMachines(out, machines)

 reportRobot(out, robot)

 reportFooter(out)

end

We wouldn’t stop here, but this would be a good first step. (We could either move
toward a Report class or toward putting report methods on the Machine and Robot
classes.)

 C. It does make sense to extract a one-line method if it communicates better.

Exercise 5.3: Large Class
 A. As with any useful class, some of String’s methods are inherited from Object,

whereas others are mixed in from the Enumerable and Comparable modules.

But in a pure object-oriented language such as Ruby, there’s another way in which
classes acquire methods: by fixing the Feature Envy and Utility Function smells.
For example, in a procedural language, to_i might be a library function taking
a single String parameter; here, it is moved onto the parameter’s class—String in
this case. And because there’s only one kind of string in Ruby, the String class has
acquired methods from all of the contexts in which it is used by the other core and
standard library classes.

 B. A String object is both a sequence of bytes and a piece of meaningful text. In ad-
dition to the mix-in methods, we found the following groups of methods in class
String (yours may well vary):

String as a first-class object: inspect, to_s, etc.
String as a sequence of bytes: [], ==, reverse, etc.
String as a data container: crypt, unpack, etc.
Text formatting: center, ljust, strip, etc.
Text processing: capitalize, downcase, tr, etc.
Pattern matching: index, split, sub, etc.
String as a value: next, to_i, upto, etc.
String as a symbol name: intern, to_sym, etc.

 C. On the one hand, aliases increase the size of the class’s API, which can make it
seem more daunting to search and understand. On the other hand, aliases improve
the language’s expressiveness and readability, and at the same time they lower the
entry barrier for programmers coming to Ruby from other environments.

From the Library of Lee Bogdanoff

ptg

Measurable Smells 219

 D. Strictly speaking, the non-! version of the method is redundant—for example, we
could create a reversed copy of a String using

reversed_copy = String.new(original).reverse!

However, this is such a common operation that a method has been provided in
order to avoid duplication.

Note also that the non-! version is “safe”—it doesn’t modify its receiver. So by
using a naming convention that makes it somewhat more natural to call the safe
version of the method, Ruby helps us avoid the introduction of insidious defects.

 E. On balance, we don’t consider the size of the String API to be a smell. It’s a spe-
cial case: String lies at the heart of Ruby’s power and expressiveness, and that’s a
tradeoff we’re happy to make.

It might be argued that String could be subclassed, so that methods for specific
purposes were only made available after conversion to a different object (pack and
unpack are obvious candidates here). But for most uses, Ruby’s efficacy as a scripting
language would be compromised by breaking up String.

As a final point, we tend to consider this smell as applying to the “units” from which
the run-time classes are specified. For example, if a small class includes a large mod-
ule, the specification of the class is still small. Thus, the Large Module smell is mostly
about the flexibility of the code as written.

 F. The principal reason for the difference is that Java relies on static typing. In Ruby
and Smalltalk, any message can be sent to any object, whereas Java attempts to
prevent illegal messages at compile time. In Java, one cannot treat just any object
as an array, but in Smalltalk any object can receive at:. The set of interrelated
interfaces required in order for Java’s Object class to support many of the methods
available in Ruby or Smalltalk is hard to imagine, and may not even be achievable
without the introduction of multiple inheritance.

The other main reason is that Java has language entities that are not objects, such
as ints and arrays. Many functions that manipulate these entities have no obvious
home, and therefore live as Utility Functions in various libraries. Whereas in Ruby
and Smalltalk, the same concepts are implemented as proper objects, so those util-
ity functions can be methods. Inevitably, some of them will migrate up the class
hierarchy and become methods available to every object.

The other impact of having primitives such as int in a language is that the lan-
guage itself must then support for loops and the like. In Ruby and Smalltalk,
these procedural constructs can be replaced by methods on Fixnum, for example.
Again, over time some of these methods will migrate up the class hierarchy.

From the Library of Lee Bogdanoff

ptg

220 Appendix A: Answers to Selected Questions

Exercise 5.4: Smells and Refactorings
 A. Comments

 B. Large Module

 C. Long Method

 D. Long Parameter List

B - Duplicate Observed Data

B - Extract Class

A or C - Extract Method

B - Extract Subclass

A - Introduce Assertion

D - Introduce Parameter Object

D - Preserve Whole Object

A - Rename Method

D - Replace Parameter with Method

Exercise 5.5: Triggers
 A. Everybody’s list will be different. Long Method and Comments are the two we

see most. Of those, Long Method is probably the one we inflict on ourselves the
most.

 B. For these “measurable” smells, you can give yourself a cutoff number that tells
you to review what you’re doing. For example, we check twice if a method exceeds
about five lines, and we question any comments in the body of a method. Define
your own triggers, and consider writing automated self-checking tests that check
them; the Reek tool listed in Appendix B, “Ruby Refactoring Tools,” comes with
a Rake task and Rspec helpers to make this easier.

Names

Exercise 6.1: Names
add_item(item) - Type Embedded in Name
do_it - Okay for a very generic operation but borders on Uncommunicative Name
get_nodes_array - Type Embedded in Name
get_data - Uncommunicative Name (perhaps)

From the Library of Lee Bogdanoff

ptg

Names 221

make_it - Uncommunicative Name (perhaps)
multiply_int_int(int1, int2) - Type Embedded in Name
process_item - Type Embedded in Name and probably Uncommunicative Name
sort - Okay
spin - Okay (depending on the domain)

Exercise 6.2: Critique the Names
If there’s an area of personal taste, it’s probably in names. Your answer may well differ
from this.

 A. clear or erase both sound okay (depending on whatever the library or other code
uses); delete_all seems clunky; wash might be okay for a pane-of-glass simula-
tion, but seems strained for this purpose.

 B. push is traditional; add is probably okay if that’s what everything else in the col-
lection library is using; insert is misleading, because stacks don’t put items in the
middle; add_to_front is odd as well (we think of queues having fronts but stacks
having tops).

 C. cut implies that the text is saved somewhere for pasting; delete is probably
best; clear and erase may be okay but sound like they might apply to the whole
document.

 D. compare, identical_to, and matches are all missing a “?” at the end of their names.
Although not mandatory, standards such as that help the reader navigate and un-
derstand code more quickly.

identical_to is reasonable; matches could work, but carries a little baggage sug-
gesting it might be a pattern match; compare doesn’t tell us what type of result to
expect, or which way the answer will come out. eql? opens up a whole different
can of worms, implying definitions for ==, !=, hash, and so on.

Exercise 6.3: Superclasses
Here are our suggestions; you may have found others:

 A. Vehicle

 B. Printer

Exercise 6.4: Method Names
 A. The name add_course now seems inappropriate. You should rename the method

to better reflect what it now does—or simplify the name to just add.

From the Library of Lee Bogdanoff

ptg

222 Appendix A: Answers to Selected Questions

 B. Depending on the relationship between Graph and Point, you might try any of
these:

• graph.link(p1, p2)

• point.link_to(other_point)

Unnecessary Complexity

Exercise 7.2: Today versus Tomorrow
 A. Forces that make it better to design for only today’s requirements today:

It’s cheaper for now to do only today’s design.•

 We are not committed to requirements evolving in a particular direction (so we •
don’t have to backtrack).

We are not required to maintain tomorrow’s code today.•

Code is easier to understand when it does as little as it needs to.•

 B. Forces that make it better to design for tomorrow’s requirements today:

 It may be easier to fully flesh out the class while it’s still fresh in our mind •
today.

 Developing for tomorrow’s needs may help us understand today’s needs better.•

It all comes down to a bet: On average, will it be cheaper to do only today’s
design and deal with tomorrow when it comes, or do the generalized designs pay
for themselves by being right often enough?

Gordon Bell, one of the great hardware designers, said, “The cheapest, fastest,
and most reliable components of a computer system are those that aren’t there.”
(Quoted in Jon Bentley’s More Programming Pearls [7].)

Exercise 7.3: Extraction Trade-Offs
 A. In general, we believe that smaller pieces are better. Indeed, the fact that our code

is composed of small, loosely coupled pieces is what keeps down its long-term cost
of ownership. We have responded to the needs of today’s code, and one beneficial
side-effect is that we have a more flexible design for the future. This is therefore
not Speculative Generality.

 B. If the reverse process of inlining the pieces would create Long Methods or Large
Modules again, the current (refactored) state of the code is preferable.

 C. Be sure to use names that are pertinent to the task at hand, and not too general or
abstract.

From the Library of Lee Bogdanoff

ptg

Unnecessary Complexity 223

Exercise 7.4: Formatting Names
 A. Symptoms of Greedy Method:

(a) The method’s name hints that it may be calculating and outputting the person’s
name.

(b) The method’s parameters are completely unrelated to each other—out is re-
lated to the run-time environment, whereas person is from the application’s
domain.

(c) The method is a Utility Function—it needs those disparate parameters to
provide all of its working context.

 B. Begin by untangling the two parameters. In this case, construct the full name and
then write it out in one go:
def display_full_name(out, person)

 full_name = person.first + ' '

 if person.middle != nil

 full_name += person.middle + ' '

 end

 full_name += person.last

 out.write(full_name)

end

We now have a clear case of Feature Envy, so use Extract Method and Move Method
to push the envious code onto Person:
def display_full_name(out, person)

 out.write(person.full_name)

end

Finally, we might question the need for this method at all.

Exercise 7.5: Procedural Code
 A. Your solution should be similar to this:

class Cart

 def total_price

 @items.inject(0) { |sum, item| sum + item.price }

 end

end

 B. The original version of cart collects the total prices of the items and adds them
together to compute their total.

 C. Here’s our solution (yours may differ slightly). First, we gather the prices:

From the Library of Lee Bogdanoff

ptg

224 Appendix A: Answers to Selected Questions

class Cart

 def total_price

 prices = @items.collect { |item| item.price }

 total = 0

 prices.each { |price| total += price }

 return total

 end

end

Next, we borrow a neat hack from the Ruby Extensions project allowing us to
convert any symbol into a Proc:
class Symbol

 def to_proc

 proc { |obj, *args| obj.send(self, *args) }

 end

end

(to_proc is so generally useful that it may even be part of the standard Ruby distri-
bution by the time you read this.) The fact that Ruby calls to_proc on any object
passed with a '&' marker allows us to simplify the collection of the item prices:
class Cart

 def total_price

 prices = @items.collect(&:price)

 total = 0

 prices.each { |price| total += price }

 return total

 end

end

Now we can use Array’s new reduce method (since Ruby version 1.8.7) to sum
the prices:
class Cart

 def total_price

 @items.collect(&:price).reduce(:+)

 end

end

 D. Although this second version involved the use of a helper method, we find it easier
to work with than either the original or the first refactored version—mostly be-
cause we have decoupled the collection of prices from the summing.

From the Library of Lee Bogdanoff

ptg

Duplication 225

Duplication

Exercise 8.1: Rakefile
 A. The file contains these groups of duplicated Strings:

The names of the files to be published•

The names of the target host and source directory•

The name of the touch file•

Each of these is a Repeated Value.

 B. For the touch file we created a constant; for the host name we used Extract Method
on the publishing step; and for the filenames we created a hash relating each file to
its destination and looped over it to create a task for each:
require 'rake/contrib/sshpublisher'

PUBLISHED_MARKER = '.published'

PUBLICATIONS = {

 'sparky.html' => '/var/www/tools',

 'sparky.rb' => '/usr/lib/cgi-bin'

}

def publish(file, remote_dir)

 Rake::SshFilePublisher.new('www.ruby-refactoring.com',

 remote_dir, '.', file).upload

end

PUBLICATIONS.each do |src, dest|

 file PUBLISHED_MARKER => src do

 publish(src, dest)

 end

end

desc "copy all files to the live deploy locations"

task :publish => PUBLISHED_MARKER do

 touch PUBLISHED_MARKER

end

Exercise 8.2: Two Libraries
 A. One strategy:

 Define a new logger whose interface is compatible with the Ruby 1.8 logger. •
It could be a simplified “layer” interface or a class with a compatible interface
(that in the future would be a subclass of the Ruby 1.8 Logger), or it might be
a straightforward implementation of the new class.

From the Library of Lee Bogdanoff

ptg

226 Appendix A: Answers to Selected Questions

Make the old loggers call the new logger.•

 Modify Log and its callers to become like the new logger, so you can delete the •
Log class.

 Modify Logger to become like the new logger, so you can delete the Logger •
too.

There will be a temptation to do this relatively slowly, to use the new logger for
new and changed code. Note that this adds to our conceptual burden. You might
be able to use automated support to make it easier.

Exercise 8.3: Environment Variables
 A. Use Extract Method to pull out a method that looks up the environment variable,

converts it to an integer, and validates it as positive. (Do this in steps: first, second,
and third copies.)

You might decide that it’s okay to set monitor_time and departure_offset even if
the exception will be thrown. This reduces the need for temporary variables.

You might then extract a separate method to enforce the modulo restriction.

The end result might look like this:

module Timer

 def integer(env, key)

 value = env[key]

 raise "#{key} missing" if value.nil?

 result = Integer(value)

 raise "#{key} should be > 0" unless result > 0

 result

 end

 def multiple(env, key, interval)

 result = integer(env, key)

 raise "#{key} should be multiple of interval" \

 unless result % interval == 0

 result

 end

 def times(env)

 check_interval = integer(env, 'interval')

 monitor_time = multiple(env, 'duration', check_interval)

 departure_offset = multiple(env, 'departure', check_interval)

 [check_interval, monitor_time, departure_offset]

 end

end

From the Library of Lee Bogdanoff

ptg

Duplication 227

Micah Martin points out that this exposes two methods we’d rather were private
(integer and multiple), and passes env and check_interval multiple times; he
suggests extracting a class to encapsulate this.

Exercise 8.4: Template
 A. Duplication:

 The whole thing is two nearly identical copies, one for• %CODE% and one for
%ALTCODE%. Note that one case writes to a string and the other to an output
stream.

 The numeric literal 6 is a• Derived Value based on the string literal %CODE%; like-
wise %ALTCODE% and 9.

 The construction of the resulting final string for each part is similar: appending •
a prefix, body, and suffix.

 The whole process of substituting a substring is a• Reinvented Wheel, because
the String method sub already does the job.

 B. Remove duplication:

 Use • Extract Method to separate the template substitutions from the printing.
Self-checking tests can now be written.

Use • Substitute Algorithm to call String’s sub method instead.

 C. The String.new calls are redundant.

Your resulting code should look something like this:
def template(source, req_id)

 altcode = req_id[0..4] + "-" + req_id[5..7]

 return source.sub(/%CODE%/, req_id).sub(/%ALTCODE%/, altcode)

end

Exercise 8.5: Duplicate Observed Data
 A. The duplication is often not as dramatic as it first appears. Often, the domain

object has its own representation, and the widget ends up holding a string or other
display representation. The advantages of this arrangement are

 The user interface is usually one of the most volatile parts of a program, whereas •
the domain classes tend to be modified less often (during development).

 Putting the domain information in the widget ties them together. A domain •
class should be able to change its value independently of whether the value is
displayed on the screen. (See the Observer pattern.)

From the Library of Lee Bogdanoff

ptg

228 Appendix A: Answers to Selected Questions

 Mixing domain and screen classes makes the domain depend on its presenta-•
tion; this is backward. It’s better to have them separate so the domain classes can
be used with an entirely different presentation.

 B. The performance can go either way. When they’re in one object, the domain class
updates its value using widget methods. This is typically slower as it must take into
account buffering, screen updating, and so on.

On the other hand, the synchronization can become relatively costly. On some
occasions, you have to find a way to make this notification cheaper. Sometimes, a
domain class can avoid notifi ying a widget about events that don’t affect it.

Exercise 8.6: Ruby Libraries
 A. Examples:

 There are dozens of graphics libraries, each offering a binding to a different •
underlying graphics engine.

 There are numerous ways of working with HTTP, both in the standard distri-•
bution and in the Ruby Application Archive (http://raa.ruby-lang.org/). Simi-
larly for CGI.

The Logger and log4r libraries.•

 Many core and standard modules and classes offer aliases for certain methods—•
for example, Enumerable offers both map and collect—the same method with
two different names.

 B. Reasons for the duplication:

 The most common reason seems to be that old chestnut—historical reasons. •
Ruby’s developers are understandably reluctant to change published interfaces
that many people depend on. Instead of changing things, they add more, even
if it overlaps in intent or code.

 In something as big as Ruby’s libraries, there are many people working on them, •
and they don’t always coordinate well enough to realize that they’ve duplicated
work.

 Synonyms provide compatibility with similar functionality in other languages. •
It’s cheap to offer a synonym for a method, so it can be tempting to help devel-
opers transition to Ruby by providing them with familiar APIs.

 The Ruby libraries are open source, and some early libraries are no longer main-•
tained by their original creators. Later, when someone finds a defect or a short-
fall in one of those libraries, it can seem easier and quicker to simply start over
and create a new library.

From the Library of Lee Bogdanoff

http://raa.ruby-lang.org/

ptg

Duplication 229

Exercise 8.7: Points
 A. Both are using points that wrap around the maxX and maxY values.

 B. Use Substitute Algorithm to make both classes calculate wrapping the same way.
Then use Extract Class to pull out a WrappingPoint class.

 C. The search for duplication can help you identify these situations. You can create a
test that reveals the defect in the bad code. While you fix it, you can drive toward
similarity to the good code and then use the refactorings that address duplication
to clean up the duplication.

Exercise 8.8: XML Report
 A. Both methods return a string of the form <tag>value</tag>. In addition, we have

Inconsistent Names for the conversion methods, and inconsistencies in the styles
for string manipulation and returning a value.

 B. First, harmonize the inconsistencies just noted; then extract a value method on
each class to harmonize the middle part of each calculation. (At this point, you
need to decide what to do with the newlines; we decided to adopt the convention
that they were part of the value.) From here, you can go a few ways:

• Using Form Template Method, create a common ReportNode superclass and
make ReportRow and ReportColumn subclasses of it. Extract tagname methods
to return row and column, respectively. The two to_xml methods are now identi-
cal, so you can use Push Up Method to move them into ReportNode.

 Create a helper class NodeFormatter, with a method• to_xml(tagname, value).
Update the two to_xml methods so that they each call this method.

 Use• Form Template Method as above, but put the template to_xml method in a
NodeFormatter mix-in module.

Inheritance is a more rigid relationship between classes than is delegation. The
decision to use the helper class is somewhat hidden inside the clients’ methods, so
changing that decision will not have ripple effects onto the clients of ReportRow
and ReportColumn. Creation of the superclass or the mix-in fixes the interface of
both original classes and may make it harder to change them independently.

However, the helper class has no state—in fact, to_xml could be written as a class
method. This fact would cause us to choose the superclass approach, which is
more “object oriented.”

From the Library of Lee Bogdanoff

ptg

230 Appendix A: Answers to Selected Questions

Conditional Logic
Exercise 9.1: Null Object

 A. An empty string may not be the right choice for a default value in every context.

 B. It’s possible that extracting a new class for Bin might give you the needed
flexibility.

 C. After extracting the Bin class, we defined a Null Object by introducing a Singleton
and a “singleton method”:
NO_BIN = Bin.new("")

def NO_BIN.report(out) end

Exercise 9.2: Conditional Expression
 A. Your solution should look something like this:

if (score <= 700) &&

 ((income < 40000) || (income > 100000) ||

 !authorized || (score <= 500)) &&

 (income <= 100000)

 reject

else

 accept

end

 B. Your solution should look something like this:
has_high_score = score > 700

has_low_score = score <= 500

has_high_income = income > 100000

has_mid_income = income >= 40000 && !has_high_income

if !(has_high_score ||

 (has_mid_income && authorized && !has_low_score) ||

 has_high_income)

 reject

else

 accept

end

 C. Your solution should look something like this:
if score > 700

 accept

elsif (income >= 40000) && (income <= 100000) &&

 authorized && (score > 500)

 accept

elsif income > 100000

 accept

From the Library of Lee Bogdanoff

ptg

Conditional Logic 231

else

 reject

end

 D. Your solution should look something like this:
def acceptable(score, income, authorized)

 return true if score > 700 || income > 100000

 return false if score <= 500 || income < 40000

 return authorized

end

if acceptable(income, score, authorized)

 accept

else

 reject

end

 E. Possibly the most readable solution would be D-with-B, using variables or con-
stants within acceptable to give names to the various ranges. Unit tests of this
algorithm could also contribute to readability.

 F. This table is a literal derivation from the code:

High Income Medium Income Low Income
Auth=Y Auth=N Auth=Y Auth=N Auth=Y Auth=N

High Score Accept Accept Accept Accept Accept Accept

Mid Score Accept Accept Accept Reject Reject Reject

Low Score Accept Accept Reject Reject Accept Reject

Or, alternatively:

High Income Medium Income Low Income
High Score Accept Accept Accept

Mid Score Accept Accept iff Authorized Reject

Low Score Accept Reject Reject

Exercise 9.3: Case Statement
 A. If this were all there were to it, you might not bother eliminating the switch. But

it would already be very natural to have print and do methods on operations, to
let us eliminate the type field.

 B. Here are some possibilities; you may have others:

 If a case is doing something simple, in one place, you may not feel the need to •
introduce separate classes.

From the Library of Lee Bogdanoff

ptg

232 Appendix A: Answers to Selected Questions

 Case statements are especially common in places that interface with non-object-•
oriented parts of the system. Michael Feathers says, “I’m okay with switches if
they convert data into objects.” If you model your application using Alistair
Cockburn’s Hexagonal Architecture [9], you’ll find this is most often true within
the Adapters.

 A single • case statement is sometimes used in a Factory or Abstract Factory. (For
more information, see Gamma et al.’s Design Patterns [16].)

 Sometimes a • case statement is used in several related places to control a state
machine. It may make sense as is, but refactoring to the State pattern (see Design
Patterns [16]) is often more appropriate.

Exercise 9.5: Factory Method
 A. Your solution will look something like this:

def make_driver

 case @type

 when USE_MEMORY_DRIVER

 return MemoryDriver.new

 when USE_DEBUG_DRIVER

 return DebugDriver.new

 when USE_PRODUCTION_DRIVER

 return ProductionDriver.new

 end

end

 B. This design contains some duplication, because the values in the enumerated list
must be kept in step with the subclasses of Driver—in a sense the constants are
Derived Values. If there were only two subclasses of Driver we’d likely say it’s ac-
ceptable, but three or more and we’re getting nervous.

Also, the constructor parameter type—and hence also the instance variable
@type—is an example of Control Coupling.

 C. We could use the actual subclasses of Driver instead of explicit constants. The
code might look something like this:
class DriverFactory

 def initialize(klass)

 unless Class === klass && Driver > klass

 raise(ArgumentError, "must be a subclass of Driver")

 end

 @klass = klass

 end

 def make_driver

From the Library of Lee Bogdanoff

ptg

Data 233

 @klass.new

 end

end

 D. Some advantages to using the driver classes as constants:

 The code is simpler (no conditional logic, a single place where each class is •
instantiated).

The code has fewer direct dependencies (doesn’t name the actual driver classes).•

 The delivered code can be smaller (it’s no longer necessary to deliver the debug-•
ging driver class if nothing depends on it directly).

 New driver classes could be installed without having to edit the factory.•

 E. Some disadvantages to this new arrangement:

 The configuration is trickier; an incorrect name or a bad RUBYLIB or $: can •
leave the system unable to run.

Data

Exercise 10.1: Alternative Representations
Here are some implementations we came up with; you may have others:

 A. Money (based on U.S. currency, where 100 cents = 1 dollar, and a cent [a penny]
is the smallest coin):

Integer count of cents.•

A Float.•

 You may have to track fractions of pennies. (Some money is managed in terms •
of 1/10 cent.)

String.•

 B. Position (in a list):

Integer.•

 If there’s only one position of interest, you might manage• the list (as seen from
outside) via two lists, one containing what comes before the position and the
second containing what comes after the position.

The item at that position.•

 C. Range:

First and last index.•

First index and length.•

From the Library of Lee Bogdanoff

ptg

234 Appendix A: Answers to Selected Questions

 D. Social Security Number (government identification number: “123-45-6789”):

String.•

Integer.•

Three integers.•

 E. Telephone number:

String.•

Integer.•

Two numbers: area code and local number.•

Three numbers: area code, exchange, and last 4 digits.•

This only considers U.S. phone numbers; it will be more complicated if you add
international phone number support. You also may have to support extensions.

 F. Street Address (“123 E. Main Street”):

String.•

Multiple fields.•

Physical coordinates.•

Standardized address (standard abbreviations).•

Index in a standard list of addresses.•

 G. ZIP (postal) code:

String.•

Integer.•

Two integers (U.S. post codes now use “ZIP+4” or “12345-6789”).•

Index in a standard list of codes.•

Exercise 10.2: Primitives and Middle Men
 A. Wrapping the primitive is a two-stage process: First, create the new class and name

it for the missing domain concept; and second, look for examples of Feature Envy
and pull methods onto the new class. This second step adds behavior to the new
object and thereby prevents it being a simple Middle Man.

Exercise 10.3: Rails Accounts
 A. Almost every class, module, and view in our application knows that we are using

an integer to represent money. This is an Open Secret, and it’s beginning to get in
the way.

From the Library of Lee Bogdanoff

ptg

Data 235

We could fix this by introducing a Money class. For example, the to_money helper
method would become to_s on Money.

Alternatively, we could use the existing Money plug-in for Rails.

Exercise 10.4: Long Parameter List
 A. Many of the parameters go together in pairs to make Points. The pairs

[startDegrees, endDegrees] and [arcStart, arcEnd] look like Ranges. And the
first four parameters to each method define Rectangles.

 B. In some ways, it’s a reflection of an attempt to make a class more generic—pass in
everything it could work with. Things like graphics tend to want to be “stateless,”
and using lots of parameters can help them do that.

It could also reflect an attempt to remain faithful to the underlying library. When
users are familiar with one set of parameters, any change can present a barrier to
adoption of the new library. In such cases, it seems reasonable to provide a “faith-
ful” API, perhaps with an optional “cleaned-up” wrapper API sitting on top.

Exercise 10.5: A Counter-Argument
It depends on what’s happening between the screen and the database. If it’s truly a form-
filling application, to get this field from the screen into that field on the database, we
might not use an object-oriented approach. But as more functions are added that con-
cern ZIP codes (validation, computing shipping distances, mapping routes, etc.), we’d
expect more benefit from the object-oriented approach.

Exercise 10.6: Editor
 A. “a”

 B. “(”. That is, we might like positions that remember where they are, even if text is
inserted in front of them. For example, an editor for programmers might track the
position of each method definition.

 C. Instead of handing out “dead” integers, hand out Position objects, but let the edi-
tor own them. When text changes, the editor updates the Positions. The holders
of the objects aren’t aware of that; they just know that they can get one, or hand it
back to move to a prior position.

 D. Memento uses an “opaque” object: In this case, the editor may know what’s inside
but clients definitely don’t. The client can’t manipulate the Memento directly, but
must hand it back to the main object to use it.

From the Library of Lee Bogdanoff

ptg

236 Appendix A: Answers to Selected Questions

Exercise 10.7: Library Classes
abort_on_exception and priority are methods that simulate instance variables, and
consequently they reveal nothing about Thread’s implementation. (It is possible, though,
that presenting control variables at the class interface could encourage violations of the
Law of Demeter.)

Exercise 10.8: Hidden State
 A. The objects in a Set could be held in a Hash, or directly in some form of balanced

tree. The state of an immutable DateTime could be stored as a set of values (year,
month, day, etc.), or as an integer count (seconds or microseconds since some
event), or it could even be stored as text.

 B. Because clients have no direct access to the fields, they can’t change an instance
behind that object’s “back” (without going through its methods).

 C. By completely hiding the internal organization of the object’s state, we are free to
experiment with data structures and algorithms until we find the best solutions for
our application’s needs.

Exercise 10.9: Proper Names
 A. Person is a Data Class.

 B. Client 1 produces a string in first-name-first format; clients 2, 3, and 4 produce
a last-name-first string. Put methods on Person for these two variants. The attr_
accessors can then be removed to make the instance variables fully private.
class Person

 def initialize(last, first, middle)

 @last = last

 @first = first

 @middle = middle

 end

 def full_name

 midpart = @middle.nil? ? '' : @middle + ' '

 "#{@first} #{midpart}#{@last}"

 end

 def citation_name

 midpart = @middle.nil? ? '' : ' ' + @middle

 "#{@last}, #{@first}#{midpart}"

 end

end

 C. It will be easier to handle these changes once the duplication is consolidated.

From the Library of Lee Bogdanoff

ptg

Inheritance 237

Exercise 10.10: Checkpoints
 A. @state is a Temporary Field.

 B. One approach is to create a new class Checkpoint to wrap the hash of values. Have
var_values return a Checkpoint object, and then move the changes method onto
that object. You may want to rename some methods too.

 C. The original smell wasn’t particularly bad; but the redesign does seem to be a bet-
ter approach.

Inheritance

Exercise 11.1: ArrayQueue
 A. This is a case of Implementation Inheritance. In a queue, items are added to the

back and later processed by removing them from the front. But by offering the
entire public interface of class Array, ArrayQueue allows its clients to insert and
remove items anywhere in the list. The class invariant of ArrayQueue cannot be
enforced.

Note that some clients of ArrayQueue may need to iterate over the queue’s
items— for example, to format them for display. In this case, it would appear
that ArrayQueue needs to inherit some of the features of Array; but in fact these
could be acquired by implementing an each method and then including the
Enumerable module as a mix-in.

 B. Use Replace Inheritance with Delegation—see Exercise 12.3 for one possible solution.

Exercise 11.2: Relationships
Our answer looks like this:

Inheritance Delegation Module Inclusion

Flexibility –

Communicaion –

Testability –

Exercise 11.3: Read-Only Documents
 A. Here are some possible solutions (you may have found others):

(a) Use Replace Inheritance with Delegation, so that ReadonlyDocument becomes an
Adapter for Document:

From the Library of Lee Bogdanoff

ptg

238 Appendix A: Answers to Selected Questions

class ReadonlyDocument

 extend Forwardable

 def initialize(doc); @doc = doc; end

 def_delegators :@doc, :find, :author, :numpages, :title

end

(b) Invert the inheritance relationship, so that only the subclass publishes the
methods that can modify the object:
class ReadonlyDocument

private

 attr_writer :title, :author

 def delete(pos, length) ...

 def insert(pos, text) ...

public

 attr_reader :numpages

 def find(regex) ...

end

class Document < ReadonlyDocument

 public :delete, :insert, :title=, :author=

end

(c) Use Extract Module to create a shared namespace for all of the paraphernalia
of an editable document:
module EditableDocument

 attr_reader :numpages

 attr_writer :title, :author

 def delete(pos, length) ...

 def insert(pos, text) ...

 def find(regex) ...

end

class ReadonlyDocument

 include EditableDocument

 private :delete, :insert, :title=, :author=

end

class Document

 include EditableDocument

end

 B. In terms of communication, approach (c) is unnatural: An “editable document”
seems to be a reasonable domain abstraction, and so is much better represent-
ed as a class rather than a module. Similarly, the inverted hierarchy of approach
(b) requires some explanation—perhaps in the form of Comments—in order to
be readily understandable.

From the Library of Lee Bogdanoff

ptg

Responsibility 239

In terms of usability, each of these designs has the same drawback: Clients of Read-
onlyDocument receive an exception if they try to invoke any of the refused meth-
ods. Even if we implement those methods so that they gracefully do nothing, the
LSP would still be violated (inserting text wouldn’t change the document’s length,
for example). On balance, we have a slight preference for approach (a)—although
in this case we might choose not to fix the Refused Bequest at all.

Finally, if the clients of these classes are close to the user interface, we do have an
additional option: Instead of calling the refused methods directly, we could ask the
document—whichever type it is—to post all its available Command objects on
the user interface. Thus, an editable Document would post objects that could call
insert and so forth, whereas a ReadonlyDocument would omit them. The end user
could thus never invoke a code path that would call a refused method.

Responsibility

Exercise 12.1: Feature Envy
 A. Give Machine and Robot their own report methods.

 B. Now both Machine and Robot know a little bit about the format of the report; if
that format ever changes we’ll have a case of Shotgun Surgery. Another way to look
at it is to say that Machine and Robot are now both somewhat Greedy Modules.

 C. We can’t think of a good way to remove all the smells here. On balance, we would
leave the Feature Envy in place:

 We think of the • Report as a View of the domain objects: One way or another it
needs to know about their relationships and their state, because that’s its job.

 The details of the• Report are likely to change more frequently than those of
Machine andRobot, which represent objects in the application’s real world. We prefer
to keep different rates of change—and different reasons for change—separate.

Exercise 12.2: Walking a List
 A. Agency knows that Theater has split the occupancy string into an array of markers,

and it also knows the values of those markers. Knowledge of these implementation
decisions has been duplicated, creating unnecessary coupling in the design.

 B. Use Extract Method to isolate the calculation of free_seats, then use Move Method
to push that code into Theater.

From the Library of Lee Bogdanoff

ptg

240 Appendix A: Answers to Selected Questions

Exercise 12.3: Middle Man
 A. Removing the Middle Man is probably not an improvement. The SimpleQueue

class provided two benefits: First, the class name and the method names commu-
nicate intent, and thereby help to document any application using them. And sec-
ond, a SimpleQueue cannot be confused with an Array, because it doesn’t support
the same methods. SimpleQueue is thus an Adapter (see Gamma’s Design Patterns
[16]) that serves to decouple parts of the design from each other, which in turn
helps to limit the effects of change.

Exercise 12.4: Cart
 B. Add cost and days methods to Purchase.

 C. Cart no longer needs access to item and shipping on Purchase. So hiding the
delegate widens the interface as we create methods for related objects, but it may
let us narrow the interface as the client doesn’t need to navigate any more.

 D. Remove the attr_reader declarations for item and shipping.

 E. In this case, the order we change these probably doesn’t make a whole lot of
difference.

Exercise 12.5: Utility Functions
 A. For Exercise 5.1, we would probably extend Array with clip and delta? methods:

class Array

 def clip(limit)

 map { |val| [val, limit].min }

 end

 def delta?(expected, delta)

 !self.zip(expected).detect { |m|

 (m[0] - m[1]).abs > delta

 }

 end

end

Then we can move some of the code out of Matcher, thus:
class Matcher

 def self.match(expected, actual, clip_limit, delta)

 actual.length == expected.length and

 actual.clip(clip_limit).delta?(expected, delta)

 end

end

From the Library of Lee Bogdanoff

ptg

Accommodating Change 241

To complete the fix, we might consider moving the match method onto Array too,
although it doesn’t sit well as a function of general arrays. So, depending on other
factors in this part of the application, we might be tempted to introduce a new
class for actual.

 B. In a larger application, we might decide that there’s a missing Warehouse class to
hold the line and the Robot; it would then be sensible for report to be an instance
method on the Warehouse.

Exercise 12.6: Attributes
 A. Here are some counterexamples we found; you may have others:

 Some mechanisms—• ActiveRecord, for example—use reflection to enable them
to manipulate objects irrespective of their class.

 When you’re trying to get a hairy piece of legacy code under test, often a good •
starting point is to expose an instance variable to act as a “probe” point (Michael
Feathers, Working Effectively with Legacy Code [10]).

 B. Structs are a nice convenience when you need to create a class in a hurry, and they
clearly document the fact that you decided not to give the class any behavior at
this time. But unless the conditions above apply, we soon look for ways to replace
the Struct by a Class and add methods to it.

Exercise 12.7: Message Chains
 A. Each of these code fragments violates the Law of Demeter, because they each call

a method on an object that was returned from another call.

 B. Only the second fragment is a Message Chain. In the first, a new array is created by
each method, so there is no sense of navigating from object to object. In the third
example, we have a Cascade or DSL, and most of the messages return self.

Accommodating Change

Exercise 13.1: CSV Writer
 A. One decision is where to write; the other decision is how to write.

 B. Simply adding an io argument to every method in CsvWriter creates a lot of
duplicated parameter lists. This could be relieved by passing the IO object to
CsvWriter’s constructor.

From the Library of Lee Bogdanoff

ptg

242 Appendix A: Answers to Selected Questions

 C. Here’s our solution:
 class CsvFormatter

 def format(lines)

 lines.collect { |line| write_line(line) }.join("\n")

 end

 private

 def write_line(fields)

 fields.collect { |field| write_field(field) }.join(",")

 end

 def write_field(field)

 case field

 when /,/ then quote_and_escape(field)

 when /"/ then quote_and_escape(field)

 else field

 end

 end

 def quote_and_escape(field)

 "\"#{field.gsub(/\"/, "\"\"")}\""

 end

 end

 require 'csv_formatter'

 require 'test/unit'

 class CsvFormatterTest < Test::Unit::TestCase

 def setup

 @csv = CsvFormatter.new

 end

 def test_no_lines

 assert_equal("", @csv.format([]))

 end

 def test_no_quotes_or_commas

 assert_equal("", @csv.format([[]]))

 assert_equal("only one field",

@csv.format([["only one field"]]))

 assert_equal("two,fields",

@csv.format([["two", "fields"]]))

 assert_equal(",contents,several words included",

@csv.format([["", "contents", "several words included"]]))

From the Library of Lee Bogdanoff

ptg

Accommodating Change 243

 assert_equal("two\nlines",

@csv.format([["two"], ["lines"]]))

 end

 def test_commas_and_quotes

 assert_equal('",","embedded , commas","trailing,"',

@csv.format([[',', 'embedded , commas', 'trailing,']]))

 assert_equal('"""","multiple """""" quotes"""""',

@csv.format([['"', 'multiple """ quotes""']]))

 assert_equal('"commas, and ""quotes""",simple',

@csv.format([['commas, and "quotes"', 'simple']]))

 end

 end

 D. Call the original “Version A,” the IO one “Version B,” and the string one “Ver-
sion C.” Version B can be tested by passing in a StringIO object (see Ruby’s stan-
dard library). Version C offers more flexibility because of the central role played
by Strings throughout Ruby’s design. Version C can simulate Version B through
simple idioms such as:
 $stdout << CsvFormatter.new.write(lines)

Conversely, Version B can simulate Version C:
 strio = StringIO.new

 CsvWriter.new.write(lines, strio)

 s = strio.string

Thus, Version B is more cumbersome in all but a very few applications.

Exercise 13.3: Hierarchies in Rails
We don’t see a smell here: Models and views/controllers will experience different pres-
sures for change during the application’s development. The one-to-one correspondence
between controllers and models is a convention established by the generators to help
you get a Rails application up and running quickly. Later, as the views evolve, it is likely
that the controllers and models will drift apart.

Exercise 13.4: Documents
 A. It affects places all over the class hierarchy.

 B. Whether it is an improvement depends on how it will be used. We don’t have
enough information to judge at this stage.

 C. The brief/full and compression/none distinctions will become the wrapping types.

From the Library of Lee Bogdanoff

ptg

244 Appendix A: Answers to Selected Questions

Libraries

Exercise 14.1: Layers
 A. UML package diagram:

Bulk Bulk

Lip

Lip

Ext

Ext

Layer

 B. In the first case, the bulk of your code depends directly on the library.

In the second case, it depends directly on the layer, and only indirectly on the li-
brary. However, design choices in the layer may still mean that your code depends
subtly on the library—in terms of the use of primitive types, for example. Look
out for examples of Open Secrets among the various modules involved.

 C. Conceptual integrity: It depends. A good layer interface can improve the way we
think about things.

Portability: Better; changes may be concentrated in the layer.

Performance: It can go either way. There’s a small cost to going through the layer,
but the layer may be able to cache data or otherwise speed up performance.

Testing: It may be easier to test in the layer, especially if the layer’s interface is nar-
rower. It may make it easier to swap in a test implementation as well.

 D. Ruby doesn’t have language mechanisms to enforce it. You might have external
mechanisms (e.g., a tool that checks references to the layered packages.)

From the Library of Lee Bogdanoff

ptg

Libraries 245

Exercise 14.2: Closed Classes
 A. The ability to redefine the methods of any class means that developers could alter

their standard meanings. Worse, existing tested production code could be sub-
verted by a few careless keystrokes.

Agile development approaches rely on the premise that many aspects of an appli-
cation will quickly stabilize, even when the requirements themselves are fluid. Part
of the speed of these approaches comes from being able to rely on the correctness
of increasingly large core parts of the application. But if just one developer on
the team has the habit of customizing core classes to enforce local convention or
personal whim, the cost-of-change curve will shoot back up and the productivity
gains will be lost.

(We have seen this effect fi rsthand in C++ code, where an overloaded + opera-
tor did something very unexpected when applied to a Matrix; the resulting code
looked straightforward, but wasted huge amounts of time until the “surprise” was
uncovered.)

 B. One approach is local coding standards and conventions, such as Don’t redefine
methods of core classes.

 C. Calling freeze on any object prevents its instance variables from being changed;
and applying it to a Class thus prevents changes to its methods:
class Foo

 # method definitions etc...

 freeze

end

However, a frozen class can still be subclassed, and the subclass is not frozen. The
Ruby community is enjoying the challenge of searching for a bulletproof solution
to this problem, thus far without success. It is likely that convention, coupled with
trust and common sense, is the only practical way to deal with Ruby’s largesse.

Exercise 14.3: Missing Function
 A. In Ruby, you can simply extend the Math module with the missing method:
 module Math

 def Math.zum(x)

 (Math.cos(x) + Math.sin(x) - Math.exp(x)).abs

 end

 end

From the Library of Lee Bogdanoff

ptg

246 Appendix A: Answers to Selected Questions

A Simple Game

Exercise 15.1: Smells
Open Secret• : The Board is represented as a String; it could be a new class.

Open Secret• : It might make sense to have a Player class.

Open Secret• : There are lots of magic numbers.

Complicated Boolean Expression• : There are several complicated “if ” statements.

Duplicated Code• : There’s a lot of duplication—note the winner calculation in
particular.

Exercise 15.3: Fuse Loops
 D. These considerations apply when merging loops:

It’s easiest if both loops have the same range.•

 It’s important that the • i th entry of the second loop not depend on anything past
the i th entry in the first loop.

Exercise 15.4: Result
The second conditional is redundant, because we return NO_MOVE even when default_

move has that value. We can simplify to

return winning_move if winning_move != NO_MOVE

return default_move

Exercise 15.6: Constants
We chose

ROWS = 3

COLUMNS = 3

Exercise 15.8: Representations
 A. We found at least these dependencies on the String representation:

 Everywhere in• Game, references to cells on the board use the [] operator to ex-
tract a one-character substring.

 Every (original) method in both• Game and the tests knows that a single integer
can be used to index the cells of the board.

 The loop in• best_move_for assumes that the cells can be accessed in sequence.

From the Library of Lee Bogdanoff

ptg

Time Recording 247

 B. These are some possibilities (you may have found others):

A simple Array of one-character Strings•

An Array of rows, each of which is an Array of one-character Strings•

A simple Array of Cells•

A nine-digit number (base 3 or base 10)•

In code this small, the key feature is not the representation, but rather the methods
that encapsulate it.

Time Recording

Exercise 16.1: Rewrite or Refactor?
 A. Every situation is different. Here are some of the arguments in favor of refactoring:

 It may be necessary to offer users a gradual transition during development.•

 It may be possible to retain the investment in difficult algorithms.•

 Some aspects of the user interface design may have been dictated by the tools •
used, and may be difficult to replicate using other libraries.

And here are some arguments in favor of a rewrite from scratch:

The existing code may be too hard to work with.•

A fresh start may lead to a simpler solution.•

A fresh start means that everyone’s issues can be addressed at one go.•

You may have discovered others.

 B. Reek (version 1.0.0) reports the following:
 "timelog.rb" -- 17 warnings:

 [Duplication] parse_options calls argv.length multiple times

 [Duplication] parse_options calls options.hours multiple times

 [Duplication] report calls hours.to_f multiple times

 [Duplication] report calls options.user multiple times

 [Feature Envy] log refers to options more than self

 [Feature Envy] report refers to options more than self

 [Feature Envy] report refers to records more than self

 [Long Method] parse_options has approx 18 statements

 [Long Method] report has approx 13 statements

 [Nested Iterators] parse_options/block/block is nested

 [Uncommunicative Name] log/block has the variable name 'f'

 [Uncommunicative Name] parse_options/block/block has the variable name 'd

 [Uncommunicative Name] report/block has the variable name 'd'

 [Uncommunicative Name] report/block has the variable name 'm'

From the Library of Lee Bogdanoff

ptg

248 Appendix A: Answers to Selected Questions

 [Uncommunicative Name] report/block has the variable name 'y'

 [Utility Function] log doesn't depend on instance state

 [Utility Function] report doesn't depend on instance state

Clearly, report is also a Greedy method.

Exercise 16.3: Test Coverage
There is no coverage of the full content of a report, and there are no explicit tests to
check what happens when time is recorded. Tests for error conditions—a malformed
date, for example—are also missing.

Exercise 16.6: Rates of Change
After this refactoring, we have a new class with the following signature:

class Logfile

 all_project_records(projectname) # -> Array of CSV strings

 all_user_records(projectname, username) # -> Array of CSV strings

 save(csv_string)

end

The string representing the path to the file is a primitive, whereas the TimelogFile
instance provides a layer of abstraction. In a sense, there is now less duplication, due to that
weakened coupling between the application, the script, and the tests.

Exercise 16.8: Hexagonal Architecture
Figure A.1 shows one possible model. Note that the exact details are much less impor-
tant than conveying the overall structure in the most minimal terms.

Exercise 16.9: Data Smells
 A. The main potential problem is that there’s no indication of what the keys are in

each table. A good rule in table design is: Each row depends on the key, the whole
key, and nothing but the key.

 B. We might specify keys as follows:

For StaffMembers: Use the• username or add a separate ID.

For Projects: Use the• codename or add a separate ID.

For Assignments: Add an ID column.•

From the Library of Lee Bogdanoff

ptg

Time Recording 249

Exercise 16.10: Extending the Database
Figure A.2 shows one simple extension to the database.

Exercise 16.12: Database Technology
There is a good in-depth discussion of the leading candidates in Hal Fulton’s The Ruby
Way [15]: SQLite, MySQL, PostgreSQL, Oracle, ActiveRecord.

As is often the case with technology choices, ours was made purely on the basis
of what we were actively using on other projects at the time. Any other choice would

User

<<adapter>>
timelog script

<<adapter>>
TimelogFile

<<application>>
Timelog

Posting

tests

Tester

Figure A.1 The Logfile Adapter and Variation Point

From the Library of Lee Bogdanoff

ptg

250 Appendix A: Answers to Selected Questions

be just as valid. And although many readers will be familiar with Rails, we did decide
against using the Rails ActiveRecord gem, simply because this book is intended to cover
Ruby in general.

So we picked MySQL. For our development environment (Ubuntu), we needed to
install MySQL, followed by the libmysql-ruby package, and then run some tests. You
may need to carry out different steps in your environment, and there’s plenty of help on
the Web if you need it.

Figure A.2 Extending the Corporate Projects Database

<<table>>
Staff Member

<<table>>
Assignment

<<table>>
Postings

Date: date
Minutes: int

Codename: String
Start: date
...

Start: date
End: date

<<table>>
Project

Username: string
Full name: string

...

11 0..* 0..*

1

0..*

From the Library of Lee Bogdanoff

ptg

251

APPENDIX B

Ruby Refactoring Tools

A number of refactoring tools for Ruby are now available, many in the alpha or beta
stages of development. This appendix lists those we know about at the time of going
to press.

Code Smell Detectors
flay Finds code fragments with identical or similar structure:

http://ruby.sadi.st/Flay.html

flog Computes ABC code complexity metrics for Ruby code:
http://ruby.sadi.st/Flog.html

heckle A mutation tester; changes your code and re-runs your tests to check for
coverage: http://rubyforge.org/projects/seattlerb/

Reek Our very own open source tool identifies smells in your Ruby code:
http://wiki.github.com/kevinrutherford/reek

Roodi Checks Ruby code against style guidelines:
http://rubyforge.org/projects/roodi

Simian Simon Harris of RedHill has created a Rails plug-in that allows you to run
Simian—the code duplication finder—from the rakefile:
http://www.redhillonrails.org/simian.html

From the Library of Lee Bogdanoff

http://www.redhillonrails.org/simian.html

http://ruby.sadi.st/Flay.html

http://ruby.sadi.st/Flog.html

http://rubyforge.org/projects/seattlerb/

http://wiki.github.com/kevinrutherford/reek

http://rubyforge.org/projects/roodi

ptg

252 Appendix B: Ruby Refactoring Tools

Environments with Refactoring Support
Aptana A complete IDE, built from Eclipse with the RADRails plug-in; offers

excellent refactoring support: http://aptana.com/

NetBeans Sun’s rival to Eclipse; the Ruby module provides first-class refactoring
tools: http://www.netbeans.org/features/ruby/index.html

RubyMine JetBrains’s Ruby and Rails IDE is built on the IntelliJ platform and in-
cludes refactoring support: http://www.jetbrains.com/ruby/index.html

From the Library of Lee Bogdanoff

http://www.netbeans.org/features/ruby/index.html

http://www.jetbrains.com/ruby/index.html

http://aptana.com/

ptg

253

Bibliography

[1] Dave Astels. Test-Driven Development: A Practical Guide. Prentice Hall, 2003.

[2] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1996.

[3] Kent Beck. Test-Driven Development: By Example. Addison-Wesley, 2003.

[4] Kent Beck. Extreme Programming Explained: Embrace Change, Second Edition.
Addison-Wesley, 2004.

[5] Kent Beck and Ward Cunningham. “A Laboratory for Teaching Object-Orient-
ed Thinking.” In OOPSLA ’89 Conference Proceedings, New Orleans, Louisiana,
1989.

[6] Jon Bentley. Programming Pearls. Addison-Wesley, 1986.

[7] Jon Bentley. More Programming Pearls. Addison-Wesley, 1988.

[8] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesoy, Bryan Helmkamp,
and Dan North. The RSpec Book: Behaviour Driven Development with RSpec,
Cucumber, and Friends. The Pragmatic Bookshelf, 2009.

[9] Mlistair Cockburn. Hexagonal architecture. http://c2.com/cgi/wiki?Hexagonal
Architecture, 2004.

[10] Michael Feathers. Working Effectively with Legacy Code. Prentice Hall, 2004.

[11] Jay Fields, Shane Harvie, and Martin Fowler. Refactoring, Ruby Edition. Addison-
Wesley, 2009.

[12] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[13] Martin Fowler. Fluent interface. http://www.martinfowler.com/bliki/Fluent
Interface.html, 2005.

[14] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 2000.

From the Library of Lee Bogdanoff

http://www.martinfowler.com/bliki/FluentInterface.html

http://www.martinfowler.com/bliki/FluentInterface.html

http://c2.com/cgi/wiki?HexagonalArchitecture

http://c2.com/cgi/wiki?HexagonalArchitecture

ptg

254 Bibliography

[15] Hal Fulton. The Ruby Way, Second Edition. Addison-Wesley, 2006.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, 1995.

[17] Andrew Hunt and David Thomas. The Pragmatic Programmer. Addison-Wesley,
2000.

[18] Brian W. Kernighan and P. J. Plauger. The Elements of Programming Style. Comput-
ing McGraw-Hill, 1988.

[19] Leonard Koren. Wabi-Sabi: For Artists, Designers, Poets and Philosophers. Stone
Bridge Press, 2003.

[20] Brian Marick. Everyday Scripting with Ruby: For Teams, Testers, and You. Pragmatic
Bookshelf, 2007.

[21] Robert C. Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, 2002.

[22] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley,
2007.

[23] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[24] Russ Olsen. Design Patterns in Ruby. Addison-Wesley, 2007.

[25] David Parnas. “On the Criteria to Be Used in Decomposing Systems into Modules.”
Communications of the ACM, 15(2), 1972.

[26] William C. Wake. Refactoring Workbook. Addison-Wesley, 2003.

From the Library of Lee Bogdanoff

ptg

255

!, 54, 219, 221
&, 224
*(), 198, 200, 209
===, 101
?, 221
[] operator, 4, 54, 246
@ symbol, 59
%ALTCODE%, 89, 227
%CODE%, 88, 227
@delegate.f, 145
@state, 122, 237

A
accept(), 103
Accessor, 29
ActionController::Base, 162
ActiveRecord, 194, 249–250
ActiveRecord::Base, 116–117, 162, 194
ActiveRecord::Migration, 115
Adapter, 164–165, 190, 192–194, 232, 237,

240, 249
Add Parameter, 85, 140
Adjectives, 57
Agile Software Development (Martin), 70, 146
Aliases, 54, 218, 228
Alpha-beta pruning, 182
Alternative Modules with Different Interfaces,

85
Alternative Representations, 115, 233–234

and, 98
And, in method names, 70
Aptana, 252
Array, 72, 108
ArrayQueue, 133, 237
Assertions, 30, 42, 55, 220
Astels, Dave, 23
at:, 219
attr, 151
attr_accessor, 110, 151, 236
Attributes, 151, 241
attr_reader, 14, 151, 240
attr_writer, 151
autotest, 26

B
BDD (behavior-driven development),

22–23
Beck, Kent, 21, 23, 26, 142, 189
Behavior-preserving transformations, 27
Bell, Gordon, 222
Bentley, Jon, 93, 222
best_move_for, 175–177, 179
binary_op, 203, 210
button_frame, 207–209, 211

C
cab(), 204, 209–210
Caching, 181

Index

Footnote references are indicated with “n,” followed by the footnote number.

From the Library of Lee Bogdanoff

ptg

256 Index

Calculator program
button_frame, 207–209, 211
cab(), 204, 209–210
Calc_Controller class, 204
extend(), 201, 204, 209, 211
refactoring, 209–210
source code, 197 n1
stack, 197, 201–203, 209, 221
units, 198, 200–201
user interface, 205–206

Cart, 150–151, 240
Cascade, 143, 241
Case Statement, 104, 106, 231–232
case statement, 101, 232
Change-related code smells

Combinatorial Explosion, 159
Divergent Change, 5, 154–155, 161, 189
Parallel Inheritance Hierarchies, 158
Shotgun Surgery, 156–157, 162

Check (refactoring micro-process step), 30
Checkpoints, 122–123, 237
Chelimsky, David, 23
Class invariant, 237
class_eval, 74–75
Closed Classes, 168–169, 245
Cockburn, Alistair, 190, 232
Code coverage tool, 76
Code downloads, 18
Code reuse, 18, 133–134, 167
Code review checklist, 23
Code rewriting, 19
Code smells

change-related, 153–162
complexity, 65–78
conditional logic, 93–106
data, 107–123
duplication, 79–92
inheritance, 125–134
libraries, 163–169
measurable, 41–55
name-related, 57–63
as problem indicators, 20

responsibility, 135–152
software, 23, 251–252

Code test suite, 25
Coin-toss code, 4–7
Collapse hierachy, 33, 216
collect, 72
Combinatorial Explosion, 159
Comma-separated value (CSV). See CSV

Writer
Comments, 5, 10–11, 42–43, 49–50, 55, 217
Comparable module, 218
Compile step (of other languages), 25, 28
Complexity code smells

Dead Code, 5–6, 66–67, 76, 209
Dynamic Code Creation, 74–75
Greedy Method, 5, 7–9, 70–72, 78, 189, 223
Procedural Code, 72–73, 78, 223–224
Speculative Generality, 68–69, 76–77, 222

Complicated Boolean Expression, 98–99, 246
Compound words, 59
Conditional Expression, 103–104, 230
Conditional logic code smells

Complicated Boolean Expression, 98–99, 246
Control Coupling, 100, 105, 232
Nil Check, 94–95
Simulated Polymorphism, 101–102, 209
Special Case, 96–97

Confi guration management, 26
Consistency, 6–7
Consolidate Conditional Expression, 103
Constants, 11, 32, 81, 177, 232–233, 246
Control Coupling, 100, 105, 232
Controller, 204–205, 210–211
Copying code, 31
Counter-Argument, 118, 235
CRC (class, responsibilities, collaborators)

cards, 26, 135
CSV strings, 190
CSV Writer, 160–161, 241–243
CSV::Writer, 161
Cunningham, Ward, 26, 57
Currency, 115, 151, 233–235

From the Library of Lee Bogdanoff

ptg

Index 257

Cutoff values, 182
Cycle of refactoring, 19–23

D
Data Class, 110–111, 234, 236
Data Clump, 5, 10, 112–113
Data code smells

Data Class, 110–111, 234, 236
Data Clump, 5, 10, 112–113
Open Secret, 108–109, 115, 176, 190,

233–235
Temporary Field, 114, 146, 237

Data smells, 191, 248
Database, 186–187, 192–194, 249–250
Dead Code, 5–6, 66–67, 76, 209
Dead integers, 119, 235
Decorator design pattern, 159, 162
Defactoring practice exercise, 36–37
Default value, 81, 94, 209–210, 230
Defensive guard clause, 96, 104
Delegates and delegation

Hide Delegate, 26–29, 33, 143–144,
150–151, 216

Middle Man, 115, 145, 149–151, 209, 234,
240

Remove Middle Man, 145, 150, 216
Replace Delegation with Inheritance, 145,

237
Replace Inheritance with Delegation,

126–127
Delete (refactoring micro-process step), 32
DeMorgan’s law, 98, 103
Dependency Inversion, 167
Deprecating code, 32
Depth parameter, 181
Derived Value, 5, 15–16, 80, 227
Design patterns, 135, 145, 159, 162
Design Patterns (Gamma et al.), 232, 240
Design perfection, 17, 22
Design rules, 21–22
Design simplicity, 21, 23, 215
Development and refactoring, 22–23

Dictionaries, 57
Dimension class, 198, 209–211
Divergent Change, 5, 154–155, 161, 189
Document compression, 162
Documents, 162, 243
Domain class, 46, 89, 140, 227–228
Double Dispatch, 142
DriverFactory, 105–106, 232
DRY (Don’t Repeat Yourself) principle, 22,

117
DSL (domain-specifi c languages), 143, 241
Duplicate Observed Data, 46, 55, 89,

227–228
Duplicated Code, 5, 83–84, 91, 209–210,

215
Duplication and code smells, 22, 37
Dynamic Code Creation, 74–75

E
each, 72
each_move method, 179–180
Editor, 118–119, 235
Eiffel language, 61
Elements of Programming Style, The (Kernighan

and Plauger), 93
else, 103
Emergent design, 20
Encapsulate Collection, 110
Enumerable, 72, 181, 218, 228, 237
Environment variables, 87–88, 226–227
eval, 74–75
Explicit methods, 102, 216
Explicit refusal, 128–129
extend(), 201, 204, 209, 211
Extract Class, 46, 55, 188, 189, 216, 220, 229
Extract Method, 31, 33, 38, 49, 55, 216, 220
Extract Module, 46, 238
Extract Subclass, 46, 55, 216, 220
Extract Superclass, 85, 154
Extraction, 77, 222
Extreme Programming Explained, Second

Edition (Beck), 21

From the Library of Lee Bogdanoff

ptg

258 Index

F
Factory Method, 105–106, 232–233
Feathers, Michael, 26, 232, 241
Feature Envy, 12–14, 136–137, 148, 209, 239
Fields, Jay, 33, 35, 38, 158
Flag value, 176
fl ay (refactoring tool), 251
FlexMock, 152
fl og (refactoring tool), 251
Fluent Interface, 143
Flyweight, 109
For each (refactoring micro-process step), 31
for loops, 219
Form Template Method, 84
Formatting names, 77–78, 223
Formatting text, 218
Fowler, Martin, 19, 25, 108, 143, 194
freeze, 245
Fulton, Hal, 249
Fuse Loops, 176–177, 246

G
<g>, 16–17
Game program

code, 173–175
development episodes, 180–182
refactoring, 175–180, 246–247
source code, 173 n1

Gamma, Erich, 232, 240
Gems, 26, 76, 163, 167, 192
Generic refactoring micro-process, 30–32
Global Variable, 5–6, 140
Google group mailing list, 38
Gorts, Sven, 19
Greedy Method, 5, 7–9, 70–72, 78, 189, 223
Greedy Module, 5, 7, 9–10, 146–147, 209
Green bar, 22–23
Guard Clauses, 96, 104–105

H
Harmonizing practice exercise, 37
Hash, 72, 108–109, 225, 236–237

heckle (refactoring tool), 76, 251
Helper class, 44, 229
Helper methods, 117, 178, 224, 235
Hexagonal architecture, 190, 232, 248
Hidden State, 119–120, 236
Hide Delegate, 26–29, 33, 143–144, 150–151,

216
Hierarchies in Rails, 162, 243
Hooks, 66, 68, 131
HTTP wrapper, 7–8
Hungarian notation, 59
Hunt, Andrew, 143, 152

I
if, 103, 174–175, 246
if xxx == nil, 94
if xxx.nil?, 94
Implementation Inheritance, 126–127, 134,

237
Implicit refusal, 128–129
Inappropriate Intimacy (General Form),

141–142, 151, 209
Inappropriate Intimacy (Subclass Form), 130
Incomplete Library Module, 164–165
Inconsistent Names, 61, 229
Information hiding, 79
Inhale/exhale practice exercise, 36
Inheritance, 134, 229
Inheritance code smells

Implementation Inheritance, 126–127, 134,
237

Inappropriate Intimacy (Subclass Form),
130

Lazy Class, 131–132
Refused Bequest, 128–129, 134, 237–239

Inheritance Survey, 134
Inject method, 78, 223
Inline Class, 69
Inline refactoring, 69
Inline Temp, 33, 216
Instance method, 138
Instance variables, 46, 114, 119–120, 141, 152

From the Library of Lee Bogdanoff

ptg

Index 259

instance_of?, 101
instance_variables, 141
instance_variables_get, 141
int, 219
Integrated Development Environment (IDE),

26, 252
Integration tests, 194
Internationalization library, 18, 61, 76, 81
Introduce (refactoring micro-process step), 31
Introduce Assertion, 42, 55, 220
Introduce Explaining Variable, 98, 103, 216
Introduce Local Extension, 164, 169
Introduce Null Object, 94, 103
Introduce Parameter Object, 49, 55, 220
Inverse refactorings, 33, 216
IO, 161, 241
is_a?, 101
is_calculated, 201–205, 210
Iterate, 31
Iterations, 72, 78
Iterator, 179–180
Iterator index, 5

J
Jar fi le, 164
Java, 28, 54, 219
JetBrains, 252

K
Kata refactoring practice exercise, 37
Kernighan, Brian, 93
kind_of?, 101
Koren, Leonard, 17

L
Large Class, 46, 51–54, 218
Large Module, 46–47, 55, 77, 220
Law of Demeter, 143, 152, 236, 241
Layers, 168, 244
Lazy Class, 131–132
Legacy code, 26, 241
Libraries, 6, 76, 81, 86–87, 90, 225–226, 228

Library Classes, 119, 236
Library code smells

Incomplete Library Module, 164–165
Reinvented Wheel, 6, 166
Runaway Dependencies, 167

line, 9
Liskov Substitution Principle (LSP), 128–129,

239
Local extension, 164, 169
Logfi le Adapter and Variation Point, 249
LogFile.log, 86–87
Logger, 225–226
Long Method, 44–45, 50–51, 55, 77,

217–218, 222
Long Parameter List, 5, 10–11, 48–49, 55,

118, 220, 235
Loops, 72–73, 176–177, 246

M
Magic numbers, 81, 175, 177, 246
Mailing list for this book, 38
make_digit(), 207–208, 210
make_driver, 105–106
make_unit(), 207–208, 210
Malfactoring practice exercise, 36–37
Martin, Micah, 227
Martin, Robert, 70, 146
match(), 49, 240
Matcher, 49, 151, 217, 240
Math module, 169, 245
maxX, 229
maxY, 229
Measurable code smells

Comments, 42–43, 49–50, 55, 217
Large Module, 46–47, 55, 77
Long Method, 44–45, 50–51, 55, 77,

217–218, 222
Long Parameter List, 5, 10–11, 48–49, 55,

118, 220, 235
Member variable, 59
Memento, 110, 119, 235
Message Chain, 143–144, 152, 241

From the Library of Lee Bogdanoff

ptg

260 Index

Method aliases, 54, 218, 228
Method length, 44–45, 50–51, 55, 77,

217–218, 222
Method names, 59, 63, 221–222
Method object, 44
method_missing, 74, 94, 147
Meyer, Bertrand, 154
Middle Man, 115, 145, 149–151, 209, 216,

234, 240
Migrate (refactoring micro-process step),

31–32
Min-max algorithm, 182
Missing Function, 169, 245
Module inclusion, 134
Module size, 46–47, 77, 220
module_eval, 74–75
Money, 115, 151, 233–235
More Programming Pearls (Bentley), 93, 222
move, 175
Move Method, 85
MySQL, 187, 193, 249–250

N
Name formatting, 77–78, 223
Name-related code smells

Inconsistent Names, 61, 229
Type Embedded in Name, 59, 62,

220–221
Uncommunicative Name, 5, 14–15, 60, 62,

175–176, 209, 220–221
Naming conventions and standards, 57–61
Nested iterators, 247
NetBeans, 252
new, 167
Newlines, 229
nil, 94, 103
Nil Check, 94–95, 103
NodeFormatter, 229
not, 98
Nouns, 57
Null Object, 94–95, 103, 230
Numbered variables, 60

O
OAOO (once and only once), 22
Object-Oriented Software Construction (Meyer),

154
Open classes, 85, 168–169
Open Secret, 108–109, 115, 176, 190,

233–235
Open source practice projects, 37–38
or, 98, 100
Oracle, 249

P
Parallel Inheritance Hierarchies, 158
Parameter lists, 11, 48–49. See also Long

Parameter List
Parameter object, 49, 55, 220
Parameterize Method, 33, 85, 167, 216
Parnas, David, 79
Pattern matching, 218
Patterns of Enterprise Application Architecture

(Fowler), 194
Perfection, 17, 22, 32
Persistence mechanisms, 110, 189, 194
Plauger, P. J., 93
play method, 178
Points, 90–91, 229
points, 12
polyline, 9–10, 12–13
Polymorphism, 96, 101–102, 209
Position objects, 119
PostgreSQL, 249
Practice skills, 35–38
Pragmatic Programmer, The (Hunt and

Thomas), 143, 152
Preserve Whole Object, 11–12, 49, 55, 220
Primitive objects, 115, 219, 234
Primitive Obsession, 108
Probe points, 68, 241
Proc:, 224
Procedural Code, 72–73, 78, 223–224
Programming Pearls (Bentley), 93
Proper Names, 120–122, 236

From the Library of Lee Bogdanoff

ptg

Index 261

Pull Up Method, 84
Push Down Method, 129
Push Up Method, 229
puts, 13

R
Rails accounts, 115–118, 234–235
Rails hierarchies, 162, 243
Rails money plug-in, 235
Rake, 220
Rakefi le, 86, 225, 251
Rates of change, 189, 248
Rcov (code coverage tool), 76
rdoc API documentation, 42, 217
Re-refactoring practice exercise, 36
Read-Only Documents, 134, 237–239
rect, 8, 27
Red bar, 22–23
reduce method, 224
Reek software, 23, 247, 251
Refactoring, Ruby Edition, (Fields et al.), 33, 35,

38, 159
Refactoring (Fowler et al.), 19
Refl ection transform, 15–16
Refused Bequest, 128–129, 134, 237–239
Regression suite, 23
Reinvented Wheel, 6, 166
reject, 72
Relationships, 133–134, 237–239
Remove Middle Man, 145, 150, 216
Remove Parameter, 69
Remove Setting Methods, 69
Rename Method, 33, 55, 59–60, 85,

216, 220
Repeated Value, 81–82, 225
Replace Array with Object, 109
Replace Delegation with Inheritance, 145
Replace Hash with Object, 109
Replace Inheritance with Delegation, 126–127,

129, 159, 237
Replace Loop with Collection Closure

Method, 72–73

Replace Magic Number with Symbolic
Constant, 81

Replace Method with Method Object, 44
Replace Parameter with Explicit Methods, 102,

216
Replace Parameter with Method, 48, 55, 220
Replace Temp with Chain, 73
Replace Value with Expression, 80
ReportColumn, 91, 229
ReportNode, 229
Report.report, 51, 148, 151, 218
ReportRow, 91, 229
require statements, 167
Responsibility code smells

Feature Envy, 12–14
Global Variable, 5–6, 140
Greedy Module, 5, 7, 9–10, 146–147, 209
Inappropriate Intimacy (General Form),

141–142, 151, 209
Message Chain, 143–144, 152, 241
Middle Man, 115, 145, 149–150, 209, 234,

240
Utility Function, 5, 138–139, 151, 240–241

return statements, 176
reversed_copy, 219
ri18n internationalization library, 81
Roodi, 251
row, 178
rspec, 23, 26
RSpec Book (Chelimsky et al.) 23
Rspec examples, 51, 220
Ruby Application Archive, 228
Ruby Extensions, 224
Ruby Way, The (Fulton), 249
RubyForge, 76, 163, 251
RubyMine, 252
Run-time checks, 28
Runaway Dependencies, 167

S
Safe points, 28–29
Scavenger hunt practice exercise, 36

From the Library of Lee Bogdanoff

ptg

262 Index

Secret. See Open Secret
select, 72
self, 136, 152
self.class, 136
Short names, 60
Shotgun Surgery, 156–157, 162
Simian, 251
Simplicity in design, 21, 23, 215
Simulated Polymorphism, 101–102, 209
Single Responsibility Principle (SRP), 70, 146,

176
Small steps, 33, 36, 216
Smalltalk, 54, 143, 189, 219
Smalltalk Best Practice Patterns (Beck), 143,

189
Smell of the Week practice exercise, 36
Social Security number, 115, 234
Software, 23, 26, 251–252
Software metric, 41
Software perfection, 17
Sparkline script

code smells, 5–6
Comments, 10–11
consistency, 6–7
Derived Values, 15–17
Greedy Methods, 8–9
Greedy Module, 9–10
HTTP wrapper, 7–8
methods, 4, 7–8, 11–13
Preserve Whole Object, 11–12
puts, 4, 8, 13–15
sparky.rb, 8, 86, 225
testing, 8, 13
transforms, 15–16

Special Case, 96–97
Speculative Generality, 68–69, 76–77, 222
SQL, 190, 192–195, 249–250
SQLite, 249
Stack, 197, 201, 209, 221
Street address, 115, 234
String class API, 51–54, 218
String methods, 54, 227

Strings, 81, 178
Structs, 151, 241
sub, 227
Subjunctive programming, 179
Substitute Algorithm, 84, 191–194, 227,

229
Substring, 227, 246
Subversion (version control), 177
Superclasses, 63, 85, 154, 221
Sustainable process, 22–23
SVG, 8–10, 15–16
svg.rb, 10, 18
Synonyms, 228
System of Names, 136, 165

T
tagname, 229
TDD (test-driven development), 19, 22–23,

195
TDD/BDD microprocess, 22
Team/partner assistance, 25, 36, 37–38, 179
Tease Apart Inheritance, 159
Telephone number, 115, 234
Tell, Don’t Ask, 143
Template exercise, 88–89
Temporary Field, 114, 146, 237
Test coverage, 188, 248
Test (refactoring micro-process step), 32
Test suite, 25, 28
Testing, 26, 28–30
Test::Unit, 26, 28
text, 9
Text formatting, 218
Text processing, 218
Thomas, David, 143, 152
Time recording program

ActiveRecord, 194, 249–250
CSV strings, 190, 248
hexagonal architecture, 190, 248
persistence, 189, 194
rates of change, 189, 248
script, 183–187

From the Library of Lee Bogdanoff

ptg

Index 263

source code, 183 n1
substitute algorithm, 191–194,

248–249
test-driven development, 195
TimelogFile, 189–190, 192–193,

248–249
Tk, 205
to_f, 59
to_i, 59, 218
Tools for refactoring, 25–26, 229
to_proc, 224
to_s, 59, 199, 203, 205, 209, 218, 235
to_xml, 91, 229
Transforms (SVG), 15–16
Triggers, 55, 220
Type-checking, 211
Type Embedded in Name, 59, 62,

220–221

U
UI class, 211
UML model, 190
UML sketches, 26
Uncommunicative Name, 5, 14–15, 60, 62,

175–176, 209, 220–221
Underscores, 209
unless, 96
Up-front design, 20
URLs

calculator program code, 197 n1
code downloads, 18
game program code, 173 n1
mailing list for this book, 38
Rcov, 76
refactoring tools, 251–252

Ruby Application Archive, 228
time program code, 183 n1

Utility Function, 5, 138–139, 151, 240–241

V
variable = value || default, 94
Variables, 98–99, 103
Variation point, 154, 190, 192, 194, 249
Verbs, 57
Version control, 26, 177
Vocabulary, 57–58, 61

W
Wabi-Sabi, 17
Wabi-Sabi (Koren), 17
Walking a List, 148–149, 239
Whole objects, 11–12, 112
Winner method, 175, 178
Working Effectively with Legacy Code (Feathers),

26, 241
Wrapper, 164–166, 243
WrappingPoint class, 229

X
x_axis, 11–12, 16
XML, 6, 10
XML report, 91–92, 229

Y
y_values, 12, 15

Z
ZIP code, 115, 118, 234–235
Zipped documents, 162
Zumbacker Z function, 169, 245

From the Library of Lee Bogdanoff

ptg

Your purchase of Refactoring in Ruby includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with more
than 5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: GWKFREH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

SFOE_Wake_7x9.125.indd 1 9/1/09 2:33 PM

From the Library of Lee Bogdanoff

www.informit.com/safarifree

ptg

Symptoms Smell

Duplication

Methods and/or classes have similar behavior but
different names

Alternative Modules with
Different Interfaces, p. 85

Similar code
Duplicated Code, p. 83

Code with similar effects

Names

Two different names for the same thing Inconsistent Names, p. 61

Name is compound word, including a type name

Type Embedded in Name, p. 59

Variable named after type rather than intent

One- or two-character name

Uncommunicative Name, p. 60

Name without vowels

Numbered variables

Odd abbreviations

Code within a Method

Comments

&&, ||, !

Parameter value controls branching within a method Control Coupling, p. 100

Large number of lines in method Long Method, p. 44

Large number of parameters to method Long Parameter List, p. 48

Method has more than one responsibility Greedy Method, p. 70

Constant embedded in code Derived Value, p. 80

Comparison against nil or call to nil? Nil Check, p. 94

if
Special Case, p. 96

If-check before body of code

case keyword used

Simulated Polymorphism, p. 101Several if

Use of instance_of?, kind_of?, is_a?, or ===

Class or Module

Large number of instance variables in class or module

Large Module, p. 46Large number of methods in class or module

Large number of lines in class or module

Class or module does more than one thing Greedy Module, p. 146

Complexity

never referenced
Dead Code, p. 66, or

Speculative Generality, p. 68

Code more general/complicated than it needs to be Speculative Generality, p. 68

Continues on inside back cover

From the Library of Lee Bogdanoff

		Contents

		Foreword

		Preface

		About the Authors

		PART I: The Art of Refactoring

		Chapter 1 A Refactoring Example

		Sparkline Script

		Consistency

		Testability

		Greedy Methods

		Greedy Module

		Comments

		Whole Objects

		Feature Envy

		Uncommunicative Names

		Derived Values

		Wabi-Sabi

		Summing Up

		What’s Next

		Chapter 2 The Refactoring Cycle

		What Is Refactoring?

		Smells Are Problems

		The Refactoring Cycle

		When Are We Done?

		Test-Driven/Behavior-Driven Development

		Exercise

		What’s Next

		Chapter 3 Refactoring Step by Step

		The Refactoring Environment

		Inside a Refactoring

		The Generic Refactoring Micro-Process

		Exercises

		What’s Next

		Chapter 4 Refactoring Practice

		Read Other Books

		Practice Refactoring

		Exercises to Try

		Participate in the Community

		Exercise

		What’s Next

		PART II: Code Smells

		Chapter 5 Measurable Smells

		Comments

		Long Method

		Large Module

		Long Parameter List

		Exercises

		Chapter 6 Names

		Type Embedded in Name

		Uncommunicative Name

		Inconsistent Names

		Exercises

		Chapter 7 Unnecessary Complexity

		Dead Code

		Speculative Generality

		Greedy Method

		Procedural Code

		Dynamic Code Creation

		Exercises

		Chapter 8 Duplication

		Derived Value

		Repeated Value

		Duplicated Code

		Alternative Modules with Different Interfaces

		Exercises

		Chapter 9 Conditional Logic

		Nil Check

		Special Case

		Complicated Boolean Expression

		Control Coupling

		Simulated Polymorphism

		Exercises

		Chapter 10 Data

		Open Secret

		Data Class

		Data Clump

		Temporary Field

		Exercises

		Chapter 11 Inheritance

		Implementation Inheritance

		Refused Bequest

		Inappropriate Intimacy (Subclass Form)

		Lazy Class

		Exercises

		Chapter 12 Responsibility

		Feature Envy

		Utility Function

		Global Variable

		Inappropriate Intimacy (General Form)

		Message Chain

		Middle Man

		Greedy Module

		Exercises

		Chapter 13 Accommodating Change

		Divergent Change

		Shotgun Surgery

		Parallel Inheritance Hierarchies

		Combinatorial Explosion

		Exercises

		Chapter 14 Libraries

		Incomplete Library Module

		Reinvented Wheel

		Runaway Dependencies

		Exercises

		PART III: Programs to Refactor

		Chapter 15 A Simple Game

		Code

		Refactoring

		Development Episodes

		Chapter 16 Time Recording

		Preparing the Soil

		Substitute Algorithm

		Optional Extras

		Chapter 17 Calculator

		Code

		Refactoring

		Thank You

		PART IV: Appendices

		Appendix A: Answers to Selected Questions

		The Refactoring Cycle

		Refactoring Step by Step

		Refactoring Practice

		Measurable Smells

		Names

		Unnecessary Complexity

		Duplication

		Conditional Logic

		Data

		Inheritance

		Responsibility

		Accommodating Change

		Libraries

		A Simple Game

		Time Recording

		Appendix B: Ruby Refactoring Tools

		Code Smell Detectors

		Environments with Refactoring Support

		Bibliography

		Index

		A

		B

		C

		D

		E

		F

		G

		H

		I

		J

		K

		L

		M

		N

		O

		P

		R

		S

		T

		U

		V

		W

		X

		Y

		Z

