9 Computer Science, Technology and Applications

New
Developments
in Evolutionary
-.. Computation

L -+
]

- Research

,'._ Sean Washington
A { \ Editor
A ,\ J \:‘: %

'b'ba_:i& \-. __1‘ "\ - d =

L4







COMPUTER SCIENCE, TECHNOLOGY AND APPLICATIONS

NEW DEVELOPMENTS
IN EVOLUTIONARY
COMPUTATION RESEARCH

No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or
by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no
expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of information
contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in
rendering legal, medical or any other professional services.



COMPUTER SCIENCE, TECHNOLOGY
AND APPLICATIONS

Additional books in this series can be found on Nova’s website
under the Series tab.

Additional e-books in this series can be found on Nova’s website
under the e-books tab.



COMPUTER SCIENCE, TECHNOLOGY AND APPLICATIONS

NEW DEVELOPMENTS
IN EVOLUTIONARY
COMPUTATION RESEARCH

SEAN WASHINGTON
EDITOR

= Nava

““:publishers
New York



Copyright © 2015 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical
photocopying, recording or otherwise without the written permission of the Publisher.

For permission to use material from this book please contact us:
nova.main@novapublishers.com

NOTICE TO THE READER

The Publisher has taken reasonable care in the preparation of this book, but makes no expressed
or implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of
information contained in this book. The Publisher shall not be liable for any special,
consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or
reliance upon, this material. Any parts of this book based on government reports are so indicated
and copyright is claimed for those parts to the extent applicable to compilations of such works.

Independent verification should be sought for any data, advice or recommendations contained in
this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage
to persons or property arising from any methods, products, instructions, ideas or otherwise
contained in this publication.

This publication is designed to provide accurate and authoritative information with regard to the
subject matter covered herein. It is sold with the clear understanding that the Publisher is not
engaged in rendering legal or any other professional services. If legal or any other expert
assistance is required, the services of a competent person should be sought. FROM A
DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE
AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Additional color graphics may be available in the e-book version of this book.
LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

New developments in evolutionary computation research / editor, Sean Washington.
pages cm. -- (Computer science, technology and applications)
Includes index.
ISBN: 978-1-63463-525-7 (eBook)
1. Evolutionary computation. 2. Engineering mathematics. |. Washington, Sean.
TA347.E96N49 2014
006.3'823--dc23
2014042395

Published by Nova Science Publishers, Inc. 1 New York



Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

CONTENTS

Multi-Objective Optimization of Trading Strategies

Using Genetic Algorithms in Unstable Environments

José Matias Pinto, Rui Ferreira Neves
and Nuno Horta

Promoting Better Generalisation in Multi-Layer
Perceptrons Using a Simulated Synaptic
Downscaling Mechanism

A. Brabazon, A. Agapitos and M. O'Neill

Plant Propagation-Inspired Algorithms
A. Brabazon, S. McGarraghy and A. Agapitos

Topographical Clearing Differential Evolution
Applied to Real-World Multimodal Optimization
Problems

Wagner F. Sacco, Ana Carolina Rios-Coelho
and Nélio Henderson

Robotics, Evolution and Interactivity in Sonic Art
Installations
Artemis Moroni and Jénatas Manzolli

vii

73

107

133

159



vi

Contents

Chapter 6

Index

An Analysis of Evolutionary-Based Sampling
Methodologies
Yoel Tenne

183

215



PREFACE

A common approach for solving simulation-driven engineering problems
is by using metamodel-assisted optimization algorithms, namely, in which a
metamodel approximates the computationally expensive simulation and
provides predicted values at a lower computational cost. Such algorithms
typically generate an initial sample of solutions which are then used to train a
preliminary metamodel and to initiate an optimization process. One approach
for generating the initial sample is with the design of experiment methods
which are statistically oriented, while the more recent search-driven sampling
approach invokes a computational intelligence optimizer such as an
evolutionary algorithm, and then uses the vectors it generated as the initial
sample. This book discusses research and new developments on evolutionary
computation.

Time-ordered sequences of data (Time Series data), have arisen across a
broad range of applications in nearly all domains. In Chapter 1, extensive
experiments using real-world data obtained from one of the most dynamic
environments is used — Financial Markets. Additionally, a Multi-Objective
Evolutionary System is used to predict future asset price evolution.

Therefore, in this study, a Genetic Algorithm (GA)-based Multi-Objective
Evolutionary System to optimize a Trading or Investment Strategy (TS) was
developed. The goal was to determine potential buy, sell, or hold conditions in
stock markets while still yielding high returns at a minimal risk. Fair and
established metrics were used (as described in the text) to evaluate both the
returns and the linked risk of the optimized TS. Additionally, these TS are
evaluated in several markets using data from the main stock indexes of the
most developed economies, such as: NASDAQ, S&P 500, FTSE 100, DAX
30, and the NIKKEI 225. The Pareto Fronts obtained with the training data
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during the experiments clearly showed the inherent tradeoff between risk and
return in financial management.

Furthermore, the achieved results clearly outperformed both the B&H and
S&H strategies. Regardless, the experimental results suggest that the positive
connection between the gains for training data and test data, which was usually
implied in the single-objective proposals, may not necessarily hold true in all
circumstances.

Due to the fact that the objective in this kind of problem is to find the best
(optimized) solution to conduct investment in stock markets, this chapter will
begin with a review of the most recent advances in Computational Problem
Solving Techniques, as well as the traditional ones. In this review, the various
existing techniques of Intelligent Computing currently used to solve various
optimization problems are presented. The various existing techniques,
especially in the fields of time series forecast and systems that learn by
example, are briefly reviewed.

A key concern when training a multi-layer perceptron (MLP) is that the
final network should generalise well out-of-sample. A considerable literature
has emerged which examines various aspects of this issue. In Chapter 2 the
author’s draw inspiration from theories of memory consolidation in order to
develop a new methodology for training MLPs in order to promote their
generalisation capabilities. The synaptic homeostasis hypothesis proposes that
a key role of sleep is to downscale synaptic strength to a baseline level that is
energetically sustainable. As a consequence, the hypothesis suggests that sleep
acts not to actively strengthen selected memories but rather to remove
irrelevant memories. In turn, this lessens spurious learning, improves the
signal to noise ratio in maintained memories, and therefore produces better
generalisation capabilities. In this chapter the author’s describe the synaptic
homeostasis hypothesis and draw inspiration from it in order to design a
“wake-sleep' training approach for MLPs. The approach is tested on a number
of datasets.

Plants represent some 99% of the eukaryotic biomass of the planet and
have been highly successful in colonising many habitants with differing
resource potential. The success of plants in "earning a living" suggests that
they have evolved robust resource capture mechanisms and reproductive
strategies. In spite of the preponderance of plant life, surprisingly little
inspiration has been drawn from plant activities for the design of optimisation
algorithms.

In Chapter 3 the author’s focus on one important aspect of plant activities,
namely seed and plant dispersal. Mechanisms for seed and plant dispersal have
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evolved over time in order to create effective ways to disperse seeds into
locations in which they can germinate and become established. These
mechanisms are highly varied, ranging from morphological characteristics of
seeds which can assist their aerial or animal-mediated dispersion, to co-
evolved characteristics which "reward" animals or insects who disperse a
plant’s seeds. At a conceptual level, dispersal can be considered as a “search
process”, wherein the seed or plant is searching for "good” locations and
therefore, inspiration from dispersal activities of plants can plausibly serve as
the design inspiration for optimisation algorithms.

Initially, the author’s provide an overview of relevant background on the
seed dispersal process from drawing on the ecology literature. Then the author
describe a number of existing optimisation algorithms which draw inspiration
from these processes, and finally the author’s outline opportunities for future
research.

Many real-world optimization problems are multimodal, requiring
techniques that overcome local optima, which can be done using niching
methods. In order to do so, in Chapter 4 the author’s describe a niching
method based on the clearing paradigm, Topographical Clearing, which
employs a topographical heuristic introduced in the early nineties, as part of a
global optimization method. This niching method is applied to differential
evolution, but it can be used in other evolutionary or swarm-based methods,
such as the genetic algorithm and particle swarm optimization. The algorithm,
called TopoClearing-DE, is favorably compared against the canonical version
of differential evolution in real-world optimization problems. As the problems
attacked are quite challenging, the results show that Topographical Clearing
can be applied to populational optimization methods in order to solve
problems with multiple solutions.

Focusing on the interactivity that a robotic interface establishes between
the virtual and the real world, some sensory systems and mobile robotic
platforms were developed for the AURAL project, a robotic evolutionary
environment for sound production. From the AURAL perspective, human and
robots are agents of a complex system and the sonification is the emergent
propriety produced by their interaction and behavior. One way to characterize
types of interactions is by looking at ways in which systems can be coupled
together to interact. The representation of the interaction between a person and
a dynamic system as a simple feedback loop faces the role of information
looping through both a person and a system. Two different sonification
paradigms were applied in AURAL environment. In the first case, the
sonification is generated by an evolutionary mapping of the robot trajectories
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into sound events. In the second case, the sound production is the result of a
generative process. As such the sonification here is not seen as an isolated
aspect of AURAL, but as a representation of the synergetic capacity of the
agents to collaborate and produce a complex product. A comparison between
the results obtained with both approaches is presented in Chapter 5. The
structure/novelty tradeoff has been approached.

A common approach for solving simulation-driven engineering problems
is by using metamodel-assisted optimization algorithms, namely, in which a
metamodel approximates the computationally expensive simulation and
provides predicted values at a lower computational cost. Such algorithms
typically generate an initial sample of solutions which are then used to train a
preliminary metamodel and to initiate optimization process. One approach for
generating the initial sample is with the design of experiment methods which
are statistically oriented, while the more recent search-driven sampling
approach invokes a computational intelligence optimizer such as an
evolutionary algorithm, and then uses the vectors it generated as the initial
sample. Since the initial sample can strongly impact the effectiveness of the
optimization process, Chapter 6 presents an extensive comparison and analysis
between the two approaches across a variety of settings. Results show that
evolutionary-based sampling performed well when the size of the initial
sample was large as this enabled a more extended and consequently a more
effective evolutionary search. When the initial sample was small the design of
experiments methods typically performed better since they distributed the
vectors more effectively in the search space.
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Chapter 1

MULTI-OBJECTIVE OPTIMIZATION
OF TRADING STRATEGIES USING GENETIC
ALGORITHMS IN UNSTABLE ENVIRONMENTS

José Matias Pinto”, Rui Ferreira Neves” and Nuno Horta?
Instituto de Telecomunicagdes, Instituto Superior Técnico,
Torre Norte, Lisboa, Portugal

Abstract

Time-ordered sequences of data (Time Series data), have arisen across a
broad range of applications in nearly all domains. In this study, extensive
experiments using real-world data obtained from one of the most dynamic
environments is used — Financial Markets. Additionally, a Multi-Objective
Evolutionary System is used to predict future asset price evolution.

Therefore, in this study, a Genetic Algorithm (GA)-based Multi-Objective
Evolutionary System to optimize a Trading or Investment Strategy (TS) was
developed. The goal was to determine potential buy, sell, or hold conditions in
stock markets while still yielding high returns at a minimal risk. Fair and
established metrics were used (as described in the text) to evaluate both the
returns and the linked risk of the optimized TS. Additionally, these TS are
evaluated in several markets using data from the main stock indexes of the most
developed economies, such as: NASDAQ, S&P 500, FTSE 100, DAX 30, and
the NIKKEI 225. The Pareto Fronts obtained with the training data during the
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experiments clearly showed the inherent tradeoff between risk and return in
financial management.

Furthermore, the achieved results clearly outperformed both the B&H and
S&H strategies. Regardless, the experimental results suggest that the positive
connection between the gains for training data and test data, which was usually
implied in the single-objective proposals, may not necessarily hold true in all
circumstances.

Due to the fact that the objective in this kind of problem is to find the best
(optimized) solution to conduct investment in stock markets, this chapter will begin
with a review of the most recent advances in Computational Problem Solving
Techniques, as well as the traditional ones. In this review, the various existing
techniques of Intelligent Computing currently used to solve various optimization
problems are presented. The various existing techniques, especially in the fields of
time series forecast and systems that learn by example, are briefly reviewed.

Keywords: Multi-Objective Optimization, Stock Market Prediction, Technical
Analysis, Financial Markets, Moving Average, Dynamic Systems

A. Part A. Review of the Main Problem Solving
and Optimization Techniques

In this study, it is advantageous to solve the established problem in a way that
uncovers the best possible solution. Therefore, a review of the main traditional
(historic) and the most recent developments in the field of Computational Problem
Solving Techniques will be helpful.

Therefore, in this section, a review of the main approaches found in traditional
and relatively recent publications concerning combinatorial optimization and
problem-solving techniques are presented, which can be listed as:

e Newton’s Method

e Exhaustive Search

e Random Search

e Quadratic Programming (QP)

o  Expert Systems

o Atrtificial Neuronal Networks (ANN or NN)
e Metaheuristic Methods

o Hill Climber (HC), Simulated Annealing (SA), and Stochastic Hill
Climber (SHC)
o Tabu search (TS)
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Evolutional Computing (EC) / Genetic Algorithms (GA)
Memetic Algorithms / Hybridization

Ant Colony Optimization (ACO)

Particle swarm optimization / Swarm intelligence

O O O O

e Fuzzy Logic

e Agents

e  Support vector machine (SVM)

e  Other: (Classification Systems, Guided Local Search, GRASP)

Metaheuristic methods are computational methods or techniques to optimize
or find an optimal or near-optimal solution to a given problem. This is done by
iteratively improving a candidate solution with regard to a given estimate of the
quality (usually called fitness). Metaheuristic methods make few assumptions or
have absolutely no knowledge about the problem to be optimized and search the
entire space of possible solutions. Many metaheuristic methods are stochastic.
Contrary to the classic optimization methods, it is not required that the
optimization problem is differentiable. Therefore, metaheuristic methods can very
helpful when optimizing problems that are partially irregular, noisy, or dynamic
over time.

A.1. Newton’s Method

Newton’s method was discovered in 1669, but was not published until 1711. In
1690, it was enhanced by Joseph Raphson, giving birth to the Newton-Raphson
method. In optimization, Newton's method is focused on finding fixed points of
differentiable functions, which are the zeros of the derivative function.

This technique requires the problem to be mathematically formulated; after
the problem is formulated, the functions should be derived.

The downside is that many real problems are usually formulated in the form
of a data series, whereas to solve it using this method, a mathematic formulation is
needed.

A.2. Exhaustive Search

The Exhaustive Search method is also a deterministic technique. Exhaustive
Search (also known as the “brute force” method), as the name implies, consists, in
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a combinatorial problem in the complete enumeration of all possible problem
solutions, as well as its corresponding evaluation. This method guarantees that the
best solution is always found. This method is expeditious for small problems, but
for combinatory problems, where the search space is huge, it is impractical.
Therefore, the solution found is deterministic, and is always assured to be the best
one possible.

A.3. Random Search

The Random Search method can be classified as a variation of the Exhaustive
Search method; instead of enumerating all of the solutions, the search space is
randomly sampled by casual solutions that are generated and tested. This method
does not guarantee that the best solution will be found. This method can be used
for small and large problems; however, its accuracy is proportional to the number
of random samples tested.

A.4. Quadratic Programming

Quadratic programming (QP) requires the problem to be mathematically
formulated; after the problem is formulated, the problem is mathematically solved
in a precise way. Hence, this is a particular type of mathematical optimization
problem. The problems solved by QP are problems related to maximizing or
minimizing a quadratic function of several variables subject to linear constraints
on the variables, as expressed in Equation 1.

Equation 1. Quadratic Problem Formulation:

f(X):%XTQXJrCTX 1)

Subject to one or more constraints, in the form:

AX <b (Inequality constraint)
EX=<d (Equality constraint)

where X is the vector of unknown variables to optimize and XT is the vector
transpose of X, while the notation means that every entry of vector A(X) is less
than or equal to the corresponding entry of vector b.
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Several tools are freely available on the Internet that, after the problem is
correctly formulated, can solve the problem and find the optimal exact solution [1].

The main advantage of QP is that when a feasible solution is found; it is
guaranteed that it corresponds to the optimal solution.

The downside is that, typically, in financial computing, the available
information about the problem is usually in the form of time series of data,
whereas to solve the problem using QP, a mathematic formulation is needed.

QP has been extended and used as a standard to compare diverse approaches
to solve financial problems. QP solves Portfolio Optimization Problems in a
proficient and optimal way if all the constraints are linear. However, no
systematic method exists that can solve this kind of problem when the restrictions
are non-linear, such as with asset cardinality, transaction costs, or minimum and
maximum weights, in addition to others that are present in real-world problems.

A.5. Expert Systems

An Expert System is a system that imitates the reasoning of a human specialist.
Expert systems solve complex problems by building chains of reasoning based on
known facts. The thinking process follows the chain of thinking of a trained
professional, which is sometimes more intricate and dissimilar from the typical
thinking of a computer programmer (making an analogy to traditional
programming). Expert systems were quite popular in the 1970s and 1980s and are
considered one of the first successful forms of Al software.

Typically, an Expert System is composed of two parts: the inference engine
and the knowledge database. The engine reasons about the facts in the knowledge
base and obtains conclusions. The knowledge database accumulates rules written
by a programmer, or by an expert, or even those acquired from some other
method. In more recent versions, Expert Systems have been improved with
another component: an interface to communicate or conduct some form
conversation with the users.

The rules accumulated in the knowledge base are expressed in natural
language and represented in the form of: “IF... THEN...” clauses. An instance of
such a rule is Descartes’s famous aphorism: “IF I think, THEN I exist”. This
formulation has the advantage of using current and natural language that makes it
attractive to people not accustomed to computer science (e.g. familiar with classic
program coding). Rules expressing knowledge are exploited by the expert system.
Other alternative formulations for the rules are used by many systems, although
some of them aren’t expressed using everyday language and are only



6 José Matias Pinto, Rui Ferreira Neves and Nuno Horta

comprehensible by experts. Some rules are engine-specific and consequently not
recognized by different systems. The goal of the knowledge base is to collect
knowledge, which is sometimes unconsciously used by the specialists (but
important to the inference process). The system of rules can be extended to allow
probabilistic reasoning, and can therefore accept rules like the following one: “IF
the sky is full with black clouds, THEN there is a strong probability (0.75) that in
the next four hours, it will rain”.

The inference engine produces reasoning or draws conclusions from the rules
stored in the knowledge base. It is usually a computer program that is designed to
accomplish the desired task. The reasoning of the inference engine is based on
logic, namely propositional logic, epistemic logic, fuzzy logic, or other types. An
example of a well-known propositional logic engine is PROLOG; another
powerful expert system is the NEXPERT system, [2] which was made available
by Neuron Data.

As stated above, Expert Systems were popular in the 1970s and 1980s, but
there has been almost no recent activity in this field, so it is difficult to find recent
publications exploring it further.

A.6. Artificial Neuronal Networks

Acrtificial Neuronal Networks (ANN), or simply Neuronal Networks (NN) [3] are
a computational technique developed in the field of Artificial Intelligence that
imitates the workings of the human brain, namely the neuronal cells. In certain
aspects, it is considered more efficient for solving certain kind of problems than
traditional computational techniques.

The essential unit of an NN is the neuron, represented in Figure 1. A neuron
receives one or more inputs from dendrites or synapses, which are represented in
the figure by arrows.

The neuron multiples the inputs by a factor (weight) and sums them to
produce a weighted sum of all the inputs. This result is fed to a non-linear
function, which usually has a sigmoid profile, and the output of the neuron is
established.

For a given neuron, with n input signals, x; through x,, and weights, wg
through wy, the output of the neuron is provided by Equation 2. Usually, the input
Xo is assigned a value of +1, which makes it a biased input with wko = bk; ¢ is the
transfer function (sigmoid).
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Xg = +1

Xn
Figure 1. The Model of an Artificial Neuron.

Equation 2. Output of a Neuron:

y« = (p(iwik *Xi) (2)

In a NN, several neurons are coupled together. The connections between the
neurons are represented by arrows and to each connection, its weight is coupled,
which corresponds to is its influence / linking on the following neuron.

Figure 2 represents a typical NN with 3 layers, more specifically the input
layer, the output layer, and a hidden or intermediary layer. In each layer, the
neurons are represented by circles. Usually, the number of neurons in the input
layer is equal to the number of problem inputs; the number of neurons in the
output layer is equal to the number of problem outputs. The number of neurons in
the intermediate or hidden layer is variable, although this number should be
proportional to the required processing power. Each neuron in the hidden layer is
connected to all the neurons in both the input layer and the output layer.

The NN in Figure 2 is a “feed forward” network, although other different
configurations are possible, namely with back propagation, where the output of a
neuron is connected to itself, or to the input of another neuron in a previous layer.
In this illustration some weight terms are omitted for clarity, this network has 3
inputs, 4 nodes in the hidden layer, and 2 outputs.

NN are essentially useful both when there is no information about the shape
of the output function [f(x)] in advance, it is computationally difficult to uncover
it, and there is a representative sample of inputs and outputs available to use as a
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training set. On the other hand, if additional information on the function f(x) is
known, then other estimation techniques are likely to work better. In brief: NN are
useful for recognizing patterns in complex data.

The most important goal of neuronal networks is to uncover problem
resolutions using the same processes that living organisms use; this method is
founded, essentially, in the trial-and-error method.

Hidden Layer

Input 1

Qutput Layer

Input 2
w's

Input 3

Figure 2. Artificial Neuronal Network With Weight and Bias Terms Labeled.

Its accuracy increases as more data examples are provided. The main benefit
of this approach is that special knowledge about the problem is not necessary to
solve it, as the connections between the pieces of information are discovered and
explored by the neuronal network itself. It is simply necessary to provide the input
data used to train the network.

The main critiques of this approach is that the rules discovered by the NN
cannot be easily described in a way that is easily understandable by humans; the
model cannot be easily translated and analyzed, even by experts, to possibly be
improved.

Several articles have successfully demonstrated good results when applying
ANN to discover technical trading rules, particularly in the case of Fernando
Fernandez-Rodriguez et al. [4] and A. Skabar et al. [5]. In [6], a GA was used to
optimize several parameters of a NN, which generated interesting results.
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In some studies, the neuronal networks were used to pre-process or post-
process data, and were used in combination with other optimization techniques.
Some examples of this combinative approach include William Leigh et al. [7] and
Takashi Kimoto et al. [8]. Other works have showed that GP is superior to ANN,
particularly the study conducted by Hitoshi Iba et al. [9].

A.7. Hill Climber (HC), Simulated Annealing (SA), and Stochastic
Hill Climber (SHC)

A straightforward method for finding the best solution to a problem would be
starting from any point in the search space (random), testing all the points in that
point’s neighborhood, move to the best point, and repeat this process until no
further improvement is possible. This process is called Iterative Improvement or
Hill Climber (HC) and is represented by Figure 3.

This algorithm stops when it finds a local optimum, as it only scans the
neighborhood of the current solution. The performance of the iterative
improvement method is poor. Therefore, alternative techniques have been
developed to avoid algorithms from becoming trapped in local optima; this can be
done by adding mechanisms that allow algorithms to escape from local optima.
This resulted in the emergence of one of the oldest strategies to avoid algorithms
becoming trapped in a local optimum, which is called Simulated Annealing (SA).

The fundamental idea behind SA is to allow movement to solutions of lower
quality than the current solution, which is done stochastically. The probability of
accepting a new solution varies with the relative performance of the new solution,
for example, rp = f(v) — f(u), where f(v) is the evaluation or performance of the
new solution and f(u) is the performance of the current solution.

This probability is usually calculated using a Boltzmann distribution
expression. An example that implements this idea is presented in Equation 3.

Equation 3. SHC Prob. of Accepting a New Solution:

1
P(re) &) 3)
1+eT
In this equation, p(rp) is the probability of accepting a new solution, T is is:
the probability of accepting a new solution, and rp is the Relative Performance.
Figure 4 represents several plots of Equation 3 for several values of T, function of
rp. In this figure, for small values of T, the probability of accepting a new solution
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is almost deterministic with a new solution always being accepted when it is
better than the previous one. Conversely, for higher values of T, the function is
practically flat at around 0.5, with the probability of accepting the new solutions

being almost random.

Generate |nitial
Solution

¥

Lpdate Current
Solution

Improve Current
Solution

Figure 3. Algorithm: Iterative Improvement Algorithm.

Probability of accepting a new solution

— — T=05 ——
0.875 = N I:;
075 L
0625 Ly
05 T=10 —
0.375
025
0.125 =
0 | ]
-10 5 0 5 10

Figure 4. SHC:

o = Relative Performance

Probability of Accepting a New Solution.
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Generate Initial
Solution

¥

Assign T=Ty

v

Pick a Solution
near Curment
Solution At
Randaom

:

Mo Accapt New
Solution With
Probability p(T, rp)

:

Update T

Figure 5. Algorithm: Simulated Annealing.

Figure 5 illustrates how the SA algorithm works; from this illustration, it is
easy to observe that the choice of an appropriate value of T is crucial for the
performance of the algorithm. In the SA method, the value of T is varied, and is
typically set to a high value in the beginning of the process and then decreases
during the progression, but elaborate cooling schemes can incorporate a sporadic
rise in the temperature.
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The introduction of the probability factor makes the process stochastic, but
this allows the process to escape from local optima and instead find near-optimal
solutions.

This also entails that the termination criteria must be more elaborated upon
than simply reaching a local optimum. Possible termination conditions can be the
same as presented in subsection A.9.1. Possible Termination Criterion.

Genarate Initial
Solution

¥

TabuList = Initial
Solution

—

Pick a Solution
near Current
Solution but not in
TabuList

-

Mo Accept New
Solution if better

:

TabuList =
TabuList LI
MewSolution

Figure 6. Algorithm: Taboo Search.
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This process is similar to the annealing process of metals and glass, which
supposes a low-energy configuration when cooled with a suitable cooling
schedule. Concerning the algorithm, it is the result of two joint strategies: random
walk and greedy search. At the beginning of the search process, the probability of
making improvements is low, which favors the exploration of the search space. As
the end of the search approaches, the random component is slowly reduced;
consequently, the search must converge on an optimal point (which can be either
local or global).

A small variation of this algorithm exists, albeit less sophisticated, where the
temperature T is constant for the entire run; this method is called Stochastic Hill
Climber (SHC). As the name implies, it is almost identical to the HC, except for
the introduction of a small unpredictable factor during the climb (that is: the
probability of accepting a new solution).

A.8. Taboo Search (TS)

The simple TS algorithm, depicted in Figure 6, applies the basic HC strategy and
uses short-term memory to avoid repeating points that have been previously
tested, consequently avoiding cycling through solutions. The short-term memory
“tool” is implemented as a taboo list that remembers the most recently visited
solutions and forbids moving to them.

The neighborhood of the current solution is therefore limited to the solutions
that are not in the taboo list. In each iteration, the best solution from the
permissible set is chosen as the new current solution. Furthermore, this solution is
added to the taboo list. If the taboo list is full, then one previous solution must be
removed from the taboo list (usually an older one). The algorithm terminates
when the termination clause is met. It may also terminate if there are no allowed
moves, that is: all the solutions near the current solution are forbidden, as they are
already in the Taboo List.

A.9. Evolutional Computing / Genetic Algorithms

Evolutionary Computation is a field within a broader area called Computational
Intelligence or Artificial Intelligence. Evolutionary Computation is primarily
focused on discovering the best solution for a given problem.

The Evolutionary Algorithm (EA) [10-12] is a subset of the Evolutionary
Computation and is a broad, population-based, metaheuristic optimization
algorithm. All EA have certain facts in common, such as being population-based
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and using some mechanisms inspired from Darwin's theory of evolution, namely,
selection (survival of the fittest) and reproduction (with mutation and
recombination).

Some of the most widely used EA techniques are: Genetic Algorithm (GA),
Genetic Programming (GP), Evolutionary Programming (EP), and Evolutionary
Strategies (ES).

Although some confusion may exist in the scientific community regarding the
accurate meanings of all these terms, some level of common consensus may be
drawn about the following facts (even if diverse interpretations may still be found):

e All are inspired by the laws of Natural Evolution, namely on Darwin's
theory of evolution and relate to evolving a set (population) of potential
problem solutions.

e In GA, the problem solution is encoded in the form of strings of humbers
(traditionally binary, but others can be used — this is problem-dependent).
The use of structures of variable size organized in the list also fit in this
technique, according to Angan Dass et al. [13].

e In GP, the solutions are usually structures in tree form to symbolize
computer programs, and the goal is to solve a computational problem.
John Koza popularized this method with many available papers that
applied these fresh techniques to many research fields [14].

e EP is similar to GP in terms of goals, but the structures denoting the
solution are of a fixed size. Therefore, only the numerical parameters are
permitted to evolve.

e In ES, the solution to the problem is usually encoded in the form of
strings of real numbers, while variable parameters are used to adjust some
control variables.

There are good reasons for the existence of all these related terms, and the
differences between them, as some seem to correspond only to minor or cosmetic
changes, while others really mark the difference and the birth of a new generation
of approaches.

The first instances of what is presently called EA appeared in the early 1960s
and was programmed on computers by biologists who were explicitly seeking to
replicate aspects of natural evolution. In the early 1970s, EA became widely
recognized as an optimization method. In 1975, John Holland’s paper [15] greatly
contributed to the popularity of GA. Another great contribution came in 1990 by
John Koza [14], with his extensive list of papers that explained and applied GP to
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many fields of study. More recently, Kalyanmoy Deb [16-18] has also made
sizeable contributions to the field.

All EA optimization algorithms develop and optimize a possible solution to a
given problem. These algorithms encode the possible problem solution in a data
structure. To extend the analogy of natural evolution, these data structures are
called chromosomes, and each data element is called a gene. The term
“population” is used to label all of the possible problem solutions found up to a
given point. Essentially, a chromosome groups several genes, and a population is
a set of chromosomes.

These EC machine learning techniques are all a repetitive process that begins
with a population of solutions for a given problem. This process uses the same
mechanisms of natural evolution to evolve this population, namely through
selection and reproduction.

Initializing the population, meaning to form the first generation of solutions,
is usually a random generation process. Occasionally, the first set of solutions
may be created using some heuristics in areas where previously existing problem
knowledge is available and where it is relatively easy to generate these solutions.
A good example of this can be found in [13], where the whole process was
accelerated and the exploration of impossible solutions was avoided (according to
what the authors said).

The process of selection evaluates the individuals of the population (problem
solutions) according to their capability to perform or solve the concrete and given
task. The best performing individuals are selected for reproduction, while the
worst ones are left to die or are replaced by new ones; this corresponds, in natural
evolution, to the concept of “survival of the fittest”. After that initial “weeding
out”, the best-selected individuals are then used for reproduction.

In the reproduction process, the individuals used for reproduction are called
fathers and give birth to new offspring. Connecting the analogy to natural
evolution once again, the genes encoded in the selected fathers are used as a
suggestion for the new offspring. There are two main processes in current use for
reproduction: crossover and mutation (although many others are possible).

For the crossover process, a minimum of two ancestors are necessary and the
process gives birth to one or two sons. The crossover exchanges parts of both
parents to produce the offspring. In the mutation process, random changes are
made in the father’s chromosome; this process generates one offspring, and in this
case, only one ancestor is needed. The main aim of the mutation process is to
preserve population variety and escape from local optima. It is important to stress
that both of these methods are methods of changing individuals, so must therefore
alter the individuals.
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This is done to introduce new solutions to the population, hoping that some
may be better than their predecessors (improving, in this way, the fitness of the
next generation).
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Figure 7. Algorithm: Evolutionary Algorithm.

A.9.1. Possible Termination Criterion

This process is repeated until a termination criterion is met, which can be:
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e Assolution is found that satisfies a minimum fitness assessment.

o A fixed number of generations is attained.

e A predetermined budget (computation time/money) is reached.

e ltis detected that subsequent iterations no longer generate better results.
e Some combination of the above.

This iterative method is provided above in Figure 7, although other variations
are possible. However, the process is always alike.

Some of the procedures involved in the process are stochastic processes,
which means that the subsequent state is non-determinist and is controlled by a
random process.

EA are often viewed as function optimizers, although the range of problems
to which genetic algorithms can be applied is fairly extensive.

As amazing and counterintuitive as it may appear [11], it has been proven that
EA are a potent and successful problem-solving approach, which demonstrates the
power and validity of the evolutionary principles. EA has been used in a broad
diversity of fields to evolve solutions to problems of similar or even superior
complexity than those solved by human professionals. Furthermore, the solutions
they find are often more effective than anything a human engineer would create.

Compared to traditional optimization methods, EA are faster and more
adaptable to changes in the environment. This is because any information learned
up to any point about how to solve a problem is enclosed in the population of
solutions that has survived up to that point.

One of the big differences between GA and NN is that the rules obtained by
the GA are more easily understandable by humans.

Some examples of EA applied to financial computing can be found in the
works of Wang et al. [19], Badawy et al. [20], and Fernandez-Blanco et al. [21].
GA can also be used to uncover and optimize new investment strategies as
achieved by Bodas-Sagi et al. in [22], or to optimize asset weight in a portfolio
optimization problem, such as in Gorgulho et al.’s study [23]. Leigh et al. [24]
proposed the use of a GA to preprocess the input data before feeding it to a NN.

EA are usually applied to complex problems where the search space is vast to
perform an exhaustive or other kind of search when there is no alternative
analytical problem solution. Even when the number of alternative solutions can be
considered not high enough to do an exhaustive search, the EA are still helpful, as
they more efficiently explore the search space and come to a solution faster than
an exhaustive search algorithm.
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A.10. Memetic Algorithms (MA) / Hybridization

Memetic Algorithm (MA) [25] is one of the recent emergent areas of research in
EC. The term MA is now widely used in an effort to combine several evolutionary
techniques; the population-based ones, as well as the individual learning or local
improvement techniques for problem solving. Quite often, MA is also referred to,
in the literature, as cultural algorithms, genetic local searches, or hybrid GA.

A meme is a cognitive or behavioral pattern that can be transmitted from one
individual to another. From a simplified point of view, one can interpret memetics
as being another variance of the EA procedures where the concept of a
chromosome is replaced by the concept of meme. The major difference between
memes and chromosomes is that chromosomes can only be transmitted from
parent to son (“vertical transmission™), whereas memes can be passed between
any two individuals ("horizontal transmission"” or "multiple parenting").

MA is often referred to as a hybrid algorithm, as it is a marriage between a
population-based global search algorithm and individual evolutionary strategies in
the form of local refinement.

MA intends to use hybrid metaheuristic techniques for optimization in
continuous and discrete optimization domains. Memetic Computing is proposed
to be where the newest results in Natural Computation, Artificial Intelligence,
Machine Learning, and Operational Research join together in a fresh technique to
go beyond the inherent boundaries of a single subject.

One of the issues in the tuning of an MA strategy is to decide when in the
evolutionary process and which individuals should experience a local
improvement (every generation, every 100 generations, all the generations but
only a small set of chosen individuals, the individuals that have several copies of
themselves in the population, etc.).

In relation to Financial Computing, [26] and [27] presented memetic algorithms
to be used for portfolio selection. Under the point of view that the combination of an
EA with a local search technique is an MA, although not being claimed as such, the
works of Diego J.Bodas-Sagi et al. [28] and P.Fernandez-Blanco et al. [29], can also
be considered to be as such, as they included in their EA, a “local search operator”
to improve the solutions, used “Every 100 generations”.

A.11. Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) or simply Ant System (AS), as it was presented
in its original idea, was a technique for problem solving aimed at finding an
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optimal path through a graph based on the behavior of ants. Later, the original
idea was enhanced to solve a wider class of numerical problems.

Again, this algorithm was inspired by the natural analogy of how ants look for
food: ants initially wander (randomly) for food and when something is found, they
return to the colony carrying it; meanwhile, they leave pheromone trails to mark
their way back. Another ant, looking for food, can get lucky and follow another
ant’s pheromone trails instead of wandering randomly; this also reinforces the
former pheromone trails if it does turn out to lead to food. However, over time,
the pheromone trails will evaporate, consequently reducing its strength of
attraction. With more time and more ants looking for food, the most short and
promising itineraries will be the most widely used, while the pheromone trails of
less promising paths will evaporate without being reinforced. Due to this positive
feedback being given, all ants will rapidly pick the shorter path.

The first algorithm that can be classified in this group was presented by A.
Colorni et al. in [30] and by G. di Caro et al. in [31]. Since then, several different
variants of the same basic principle have been proposed.
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Figure 8 depicts a possible algorithm implementing an AS.

At the beginning, the pheromones of all trajectory points are set to an equal
initial value; next, all the ants start building a solution. Figure 9 presents how each
ant constructs its solution to a certain level of detail. Every ant chooses its next
move based on the pheromones it finds at nearby points; this is done
probabilistically, with a higher probability for the points with higher pheromones,
and those not already in the ant move set (to avoid entering a cycle and repeating
points already visited). When an ant finds a solution, the pheromones in the
solution are updated (incremented) by a certain value.

The AS also borrows some of the techniques used in older algorithms, such as
SHC and TS, since every ant has a Tabu List of paths, which corresponds to the
list of all the already visited points; when choosing from the list of available
points to do the next move, this is done stochastically.
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Figure 9. Algorithm Detail: Each Ant Constructs a Solution.
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The algorithm has several parameters to tune, such as the amount of the
pheromone increase when a path is used, the ratio of the pheromone decrease with
time, and so forth. When the termination criteria are met, the path with higher 1
(pheromones) is returned, as this should be the most efficient one, since it was the
most popular among the ants. More information about ACO and AS is available
in [32, 33].

A.12. Particle Swarm Optimization / Swarm Intelligence

Particle Swarm Optimization (PSO), or simply Swarm Intelligence [34], is similar
to EA, in the sense that a population of candidate solutions is also developed. In
PSO, the individuals (or chromosomes) are replaced by the term “particle”,
whereas a population is called a “Swarm”.

The natural analogy with what occurs in nature was taken from the movement
of groups of animals like swarms of bees, shoals of fish, or flocks of birds. In
PSO, all the particles explore the search space, moving on it with a specified
velocity and in a certain direction according to few simple formulae. The particles
move towards the best known solution and, when a new best solution is found,
this one becomes the new swarm guide. This process is repeated, hoping that a
reasonable solution will ultimately be uncovered (but that is not guaranteed).

The direction of the vector governing the particle movement is towards the
best known swarm point, but is distorted by some random factors added to it. This
way, all the particles come close to the best known solution, but in its walk, they
explore the space around it.

Figure 10 provides an algorithm implementing PSO:

PSO is initialized with a set of particles (solutions) being dropped randomly
in the search space; then, it searches for the optimum point through a series of
generations. In every iteration, each particle is updated to follow two "best"
values. One is the best solution (fitness) that it has achieved so far, called pBest.
The other "best" value that is kept by the algorithm is the best value obtained so
far by any particle in the population. This best value is a global best and is called
gBest. After finding the two best values, the particle velocity and position are
updated according to Equation 4 and Equation 5, below.

Equation 4. PSO Vel. Update:

V=V +c, xrand() x (pBest — present ) +c, x rand() x (gBest — present)  (4)
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Equation 5. PSO Pos. Update:

present = present +Vv (5)

where V[] is the vector representing the particle velocity, present[] is the current
particle position. pPest[] and gGest[] are the current Population and Global Best
found and are maintained as explained before, while rand () is a random number
between 0 and 1.

On these same equations, c1 and c2 are parameters, it is usual to set both
parameters to the value of 2 (although other values are possible). The choice of
suitable learning factors (parameters c1 and c2) is of crucial importance for PSO
algorithm performance, primarily to avoid being trapped in a local optima due to
premature convergence. To avoid having all of the swarm converge to a single
point, there are implementations where the particles, rather than converging to the
global optima, converge to its neighborhood’s best known. This entails the
existence of a communication network within a given topology that the particles
use to communicate between themselves.

In recent years, PSO has effectively been used in many research and
application areas. It has been confirmed that PSO can get better results, faster and
in an easier way, as compared to other techniques. A good book about this subject
was written by James Kennedy et al. [35] where more information can be found
about PSO.

R. Hassan et al.’s [36] study showed that PSO-based algorithms find solutions
of matching quality to those solutions ones found by GA-based algorithms;
however, PSO is computationally more efficient. Margarita et al.’s [37] studies
distinguished two major explanations for PSO popularity: (1) they are relatively
easy to implement, and (2) they are very efficient in a variety of applications with
superior results and low computational effort.

In terms of financial computing, Matthew Butler et al. [38] used a PSO-based
approach to tune the parameters of a financial indicator (BB); Antonio C. Briza et
al. [39] proposed a PSO system to perform MultiObjective Optimization
(MOPSO) applied to stock trading.

A.13. Outline of the Metaheuristic Methods
To conclude this review of Metaheuristics optimization methods, a summary of the

Metaheuristics optimization methods can be found in [40]. In Figure 11, a diagram
presenting the diverse classifications of the metaheuristic methods is shown.
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A.14. Fuzzy Logic

Fuzzy logic is a way of reasoning that presents results in an approximate way,
rather than a fixed or exact value. It differs from traditional logic, because in
traditional logic (binary), only two values are possible — true or false. However, in
Fuzzy logic, the results are expressed in a “truth value” that varies (progressively)
in the range between 0.0 and 1.0. Thus, this Fuzzy value should be taken as a
degree of truth.
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Figure 11. Classification of Metaheuristic Methods.

Probabilistic Logic and Fuzzy Logic may be confused, as they share some
similarities (both have truth values varying between 0.0 and 1.0), but are
conceptually distinct, owing to dissimilar interpretations and mathematical
handling. In Fuzzy logic, a given result corresponds to a certain "degree of truth",
while in probabilistic logic, this corresponds to a “probability or likelihood".
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Because they are different, Fuzzy Logic and Probabilistic Logic are different
models that can be used to process the same real-world circumstances.

Therefore, Fuzzy Logic is ideal for processing incomplete data and presenting
approximate resolutions to problems that are too complex to solve using
alternative techniques.

This description establishes Fuzzy logic as an interesting idea to explore in
the Fields of Financial Computing.

In Financial Computing, the vagueness is the ruler, so instead of providing an
absolute answer to the user, like “Buy” or “Sell”, it would be more advisable to
deliver a reply in terms of “degree of truth”, such as “may buy”, “may sell”, or
“definitely sell”.

Even though the use of Fuzzy Logic might be an especially interesting
approach to be used in Financial Computing, in recent work, essays using this
technique are very rare.

A.15. Agents

The idea of a software agent is a way to describe a software entity that is capable of
acting with some degree of autonomy to accomplish certain tasks. A software agent
should be autonomous, which means that agents should be able to do some
decision-making without human intervention, like task selection and prioritization.

What distinguishes agents from an arbitrary program is that agents react to the
environment, have autonomy, are goal-orientated, and are persistent in their goals.

Therefore, an agent system should exhibit some features of Artificial
Intelligence (such as learning and thinking) and should be autonomous.

A system can also be built around multi-agent systems; in this case, we have
distributed agents that aren’t able to achieve an objective alone, and must
therefore communicate and collaborate together to reach their goals.

Figure 12 presents a diagram depicting the main characteristics that an agent
should have, as well as its classification according to them.

As in object-oriented programming, an agent is also an abstraction or a
concept. The concept of an agent provides a powerful way to describe a software
entity capable of acting with some degree of autonomy to accomplish the tasks for
which it has been conceived. Contrasting with objects, which are defined in terms
of methods and attributes, an agent is defined in terms of its behavior.

In Financial Computing, the idea of software agents has been considered as a
motivating idea and an interesting abstraction to explore; some examples are the
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papers of Cyril Schoreels et al. [41] to [44], where the agent is a chromosome
trained to trade securities using TI’s to make its choices.

Collaboration Learning

Agents

Smart Agents
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Figure 12. Classification of Agents.

The study of H. Subramanian et al. [45] also presented agents that were based
on a combination of trading rules, trained by GA and GP; then, the agents’
proficiency was evaluated by making them compete against other programmed
agents in the Pen-Lehman Automated Trading Project (PLAT) [46, 47].
Additionally, there was also R. Fukumoto et al.’s study [48] that used a GA-based
Multi-Objective Optimization approach to train intraday-trading agents for two
objective purposes (profit and variance of the profit); here, the agents were tested
in the U-Mart [49, 50], an artificial market simulator.

A.16. Support Vector Machine (SVM)

The Support Vector Machine (SVM) [51] is a model employed to name a series of
supervised learning techniques used to recognize patterns and analyze data.
Methods of classification and regression from statistics are used. The goal of
SVM is to take a set of input data and predict, for each given input, to which of
two possible classes the input belongs. Therefore, an SVM system is primarily a
classifier that categorizes the inputs into two possible outputs. Only two output
values are possible. Although SVM has its roots in statistics, it is a non-
probabilistic binary linear classifier.
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In an SVM model, the examples are represented as points in space; these
points should be mapped so that the examples belonging to the different
categories should be divided by a clear gap that is as broad as possible. The new
examples are then mapped into the same space and are predicted to belong to
either one, or to another category, based on the side of the gap to which they are
closer. For a two-dimensional problem, Figure 13 depicts how SVM categorizes
the inputs.

The goal is to separate and classify the white dots from the black ones. The
full line represents the line that best divides the space between the dots. This line
represents the most reasonable choice, as it is the best beeline that corresponds to
the largest division, or has the bigger border, between the two classes of dots.
Consequently, the choice for the line that maximizes the distance from it to the
nearest dots on each side is the preferred choice. This is called the “maximum-
margin line” and the linear classifier it defines is known as the “maximum margin
classifier”.

The case illustrated in the figure is for a two-dimensional problem, but the
problem is studied and solved for the generalized case of n dimensions. In this
case, the line that separates the dots is a hyperplane.

Figure 13. lllustration of How SVM Classify Inputs.
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The example used to illustrate the work was for a case where a linear
classification was possible, meaning that it was possible to separate the samples
using a beeline or a hyperplane. Nevertheless, there are situations where this is not
possible, or if used, the classification would be erroneous for some samples.
Therefore, a nonlinear transformation can be applied on the dot points, allowing a
linear classification to work. For the two-dimensional example, the beeline
separating the dots is replaced by a bent line.

Initially, SVM was developed to resolve pattern identification problems with
limited applicability in Financial Computing. However, with the introduction of
“Vapnik’s e-insensitive loss function” (Vapnik’s ILF) [52], SVM has been
enhanced to resolve nonlinear regression inference problems and has been used
with good results in financial times-series prediction [53]. In particular, in [54],
SVM was applied to perform portfolio optimization, and in [55], it was utilized to
make stock tendency forecasts. In [56], SVM was compared to GP, which
demonstrated that GP is superior for Financial Portfolio Optimization.

A.17. Other: (Classification Systems, Guided Local Search, GRASP)

In optimization, or in automated problem solving in general, there are many other
proposed approaches. This is illustrated by tools like “Scatter Search”, “Variable
Neighbourhood Search”, “Guided Local Search”, or “GRASP”.

Applied to Financial Computing, there are also several other computational
techniques available, some of which have been applied with good results.
Examples of these are some existing optimization algorithms, namely
segmentation or clustering, machine learning, classification [57] (including
decision trees, K-Nearest Neighbor [57]), and statistical analysis.

A.18. Conclusion

In this chapter section, a review of the main advances found in the literature
concerning combinatorial optimization and problem-solving techniques was
offered. This section started with a brief review of some traditional techniques,
and then went on to talk about some of the relatively recent ones. Some of the
discussed concepts were Newton’s Method, Exhaustive Search, Random Search,
Quadratic Programming, Expert Systems, and Artificial Neuronal Networks,
followed by a discussion of some of the Metaheuristic Methods, as well as Fuzzy
Logic, Agents, and Support vector machines.
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B. Part B. A Review of Main Multi-Objective Optimization
Techniques

In optimization (or, in the general case, in the search for the best possible solution
to a given problem), it is found that many real-world problems are not limited to a
single objective. There are many situations where a set of objectives (or trade-
offs) has to be balanced among the multiple and interacting objectives. In
addition, it is not uncommon to have situations where these objectives are
conflicting. To deal with this kind of problem, an alternative methodology has
been developed, called Multi-Objective Optimization [18].

B.1. Introduction

Multi-Objective Optimization is the process of finding a set of solutions that
optimizes several objectives. The notion of an optimum solution is different in
Multi-Objective problems from what is usually used in single-objective problems,
since instead of reaching a single global optimum (or solution), a set of solutions
or a trade-off is achieved.

In this kind of problem, it is not always possible to say when one solution is
better than another. It is possible to say if one solution might be better at one
specification and if another solution is better at another objective. However, a matter
arises: How can that be done for many solutions and when there are many
objectives? To help us in our reasoning, a number of concepts are commonly used:

e  One solution dominates another if it is not worse than the second solution
with respect to all objectives and, at the same time, is better than the
second solution, at least for one objective. It is important to highlight that
the domination relation is not a concept of ordering (sorting) and two
solutions can be mutually non-dominant if neither dominates the other.

e The set of solutions that are not dominated by any of the other solutions
is called the Pareto Frontier (other alternative names are sometimes
found, which have the same meaning, such as Pareto Set or Pareto
Front). This set of solutions ultimately represents the best set of solutions
that best addresses all the trade-offs involved in the problem.

Therefore, and in conclusion, in Multi-Objective Optimization problems, the
optimum solution is the set of all not dominated solutions. A not dominated
solution is called a Pareto point and the set of all Pareto points is called the Pareto
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Front (this represents the optimal set of trade-off solutions). Selecting a given
solution on the Pareto Front always implies that selecting any one of them in
place of another will sacrifice the quality for at least one objective, while
improving the quality of at least one other objective.

Figure 14 represents an example of a Pareto Front in a two-dimensional
space, for an optimization problem intended to minimize the two cost functions.
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Figure 14. Example of a Pareto Front for a 2-D Space (2 Objectives).

The black dot points belong to the Pareto Front and represent the best trade-
offs between the two objectives, while the white dots represent dominated
solutions (dominated solutions are solutions that are dominated by some Pareto
point).

The decision space consists of all possible values that the decision variables
can have in order to attain the best possible outcome. Therefore, the formulation
of this type of problem can be formulated as shown in Equation 6 and Equation 7.

Equation 6. Multi-objective Formulation:

minimize T (x) = |f,(x), £,(3), .., f, (5] ®)
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Subject to:
Equation 7. Multi-objective Constraint Formulation:

9,() <0, j=1,2, ...m h(%)=0, k=1,2, ...,p %)

where is a vector including the decision variables, f1, fo, ..., fk functions map the
decision space to and represent all the objective functions, while g; and hy also
map and symbolize the constraint functions of the problem (j =1, 2, ..., m), (k =
1,2,...,p).

In Multi-Objective Optimization, the number of objective functions is equal
to the number of specifications or goals that must be addressed and optimized in a
particular problem.

Almost any of the optimization techniques previously exposed in Part A of
this chapter can be used to perform Multi-Objective Optimization. The most
frequently used method to adapt any of these techniques to do Multi-Objective
Optimization is the use of a weighted combination of the objectives, but other
variations are possible with the underlying optimization technique. Examples of
the use of SA techniques to perform Multi-Objective Optimization can be found
in [59] and [60].

Nevertheless, any of the population-based methods seem to be more adequate
(see: subsection A.13. Outline of the Metaheuristic Methods and Figure 11.
Classification of Metaheuristic Methods) to perform Multi-Objective
Optimization [18], because they, in a single iteration, develop a complete set of
solutions (population). Therefore, in the following subsections, our attention will
be focused on the Population Based Multi-Objective Optimization methods,
namely on Multi-Objective Optimization Using Evolutionary Algorithms.

B.2. Main Multi-Objective Optimization Algorithms Using EA

In the following subsections, a brief review of the main approaches found in
relatively recent publications used to deal with Multi-Objective Optimization
using Evolutionary based Algorithms will be conducted.

B.2.1. Vector Evaluated Genetic Algorithm (VEGA)

The VEGA algorithm is clearly an adaptation of a single goal GA to perform Multi-
Objective Optimization. The original proposal appeared in [61] as an extension of a
simple genetic algorithm to handle multiple objectives in a single run. According to
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the original description, the whole population is randomly divided in m (m =
number of objectives) subpopulations and each subpopulation is evaluated and
probabilistically selected based on one of the optimization objectives. After the
probabilistic selection, the selected individuals are mixed up and pooled together to
form the antecessors of the next generation. The process continues with the trivial
crossover and mutation operations on the population and repeats until the
termination condition is met. This process is illustrated in Figure 15.

Generations =0

Initialize Population

) 4

Generations < N

m = number of objectives

¥

Generate “SubPop i” (randomly select P/m Individuals from Pop)
Remove “SubPop i” from Pop

Evaluate and Select “SubPop i” using “Objective Goal i’ A\

i=i+1 N

|
v

Pop = Integrate all selected “SubPop i"
Soufle all Pop

Crossover and
T Mutation operations

|
v

Evaluate Pop for all objective goals and
Return Pop and results for all “Objective Goal i’

Generations = Generations + 1 i

v

Figure 15. Algorithm: Vector Evaluated Genetic Algorithm (VEGA).
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VEGA tends to converge towards one objective best solution [62] with the
pool of the final solutions clustering near single-objective best solutions instead of
spreading along the Pareto frontier. This is quite unsuited for Multi-Objective
Optimization, as the desire is to get the set of solutions that best balance the trade-
offs between the objectives.

B.2.2. Multi-Objective Genetic Algorithm (MOGA)

MOGA uses the concept of ranking and assigns the smallest ranking value to all of
the non-dominated solutions [63]. The remaining solutions (dominated) are assigned
rankings based on how many individuals in the population dominate them.

Consequently, the fitness calculation starts with a value that is an inverse
function of the Pareto Rank (Fit). In order to distribute the population of solutions
uniformly along the Pareto frontier, the overall (final, global) fitness (Sharing Fit
(SF)) value is adjusted by the sum of the "sharing distance" (SD). The sharing
distance is inversely proportional to the metric distance between individuals in the
objective domain.

The overall fitness value is calculated as follows:

Equation 8. MOGA overall fitness calculation:

Fit (i)

SF(i) = W)
O=5 5067 ®

where SF(i) is the overall fitness value of individual i, Fit(i) is the inverse of the
Pareto Rank of individual i (typically: i/rank(i)). The overall fitness value
obtained this way is used in the comparative and probabilistic selection of the
individuals. The traditional MOGA implementation uses a roulette selection
method. For each round, this algorithm needs to calculate all the Pareto ranks (for
all the individuals in the population) and its sharing distance.

B.2.3. Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA 2 is an improvement of a previous implementation (SPEA) [64], although
both implementations exploit two populations. One (P) is the population and the

other (P’) is the archive. On the first implementation (SPEA), all non-dominated
individuals in P are copied to the archive (P’); the size of P’ was made variable
from generation to generation. On the other hand, in SPEAZ2, the size of P” was
fixed and if the set of non-dominated individuals in P exceeds the capacity of P’,
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then they are truncated. Conversely, if they are less than P’, some dominated
individuals are added to the archive P’. The above process of truncation and the
addition of individuals both incorporate a strategy to distribute the solutions along
the Pareto Front.

In the first generation, SPEA2 selects all non-dominated individuals for
reproduction from the Population P. In the subsequent generations, the individuals
are selected from the combined population P and the archive P’. Furthermore,
SPEAZ2 always uses a deterministic selection method.

If the non-dominated individuals exceed the fixed size of P’, then the excess
individuals are selected (for exclusion) based on the density estimation (D(i)).
When the non-dominated individuals are too few in quantity to fill P’, then
individuals from the next best Pareto Front are selected (for inclusion), this is
done until the archive is filled. When the last Pareto Front surpasses the capacity
of P’, the same truncation method is employed. The density estimation of an
individual (D(i)) is calculated as follows:

Equation 9. SPEA?2 Density estimation:

. 1
D() = m 9

where d(i) is the distance of individual i from the nearest neighbor.

B.2.4. Non-Dominated Sporting Genetic Algorithm 2 (NSGAII)

NSGA2 is an improvement of a previous implementation from the same authors,
Deb. et al. [17], [18] and [16]. The second version of the proposed algorithm also
uses two populations of the same size: P for the parent population and P’ for the
offspring population. The two populations are combined and shuffled together
before the selection process; in the selection process, the algorithm first selects the
individuals that have a smaller Pareto rank (the non-dominated ones). In the last
Pareto rank, the remaining individuals (required to fill up the selected population
of P individuals) are selected based on the calculated Crowding Distance and the
individuals far away from others are preferred for selection and reproduction.

The authors proposed the second version of their algorithm due to some
comments criticizing that it was too complex (in terms of number of
computations) and slow. In the second version, the authors demonstrated that it
was competitive with the existing state-of-the-art solutions.
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B.3. Conclusion

In [61], a comparative study of the existing Multi-Objective Optimization
approaches was made. In this study, a concrete and real application to perform
Multi-Objective portfolio optimization was used to test and benchmark the
available approaches. To evaluate the quality of the approaches, metrics like the
spread of the solutions across the Pareto frontier, the closeness of the solutions
found (PF known), and the best-known Pareto frontier (PF true) are used. In the
conclusion, the authors of this paper claim that the SPEA 2 is among the best
Multi-Objective Evolutionary Algorithms (MOEA). They also conclude that
SPEAZ2 is applicable for realistic portfolio optimization with real constraints.

A complete and comprehensive review of the existing solutions for Portfolio
Management using Multi-Objective Evolutionary Algorithms can be found in the
study of K. Metaxiotis [64]. In this same study, some clues are revealed
concerning why there are a limited number of papers discussing the theme of
Multi-Objective Portfolio Management.

C. Part C. A Case Study

In this part of the chapter, a Genetic Algorithm (GA) based on a Multi-Objective
Evolutionary System to optimize a Trading or Investment Strategy (TS) is
developed. Two conflicting objectives are set to be optimized: Maximize the
Reruns and minimize the risk. However, first, fair and established metrics should
be set to be used to both evaluate the returns and the linked risk of the optimized
TS. Then, these TS will be evaluated in several markets using data from the main
stock indexes of the most developed economies, such as NASDAQ, S&P 500,
FTSE 100, DAX 30, and the NIKKEI 225. Finally, the results are presented,
where the Pareto Fronts obtained with the training data during the experiments
clearly show the inherent trade-off between risk and returns.

This part will continue with a brief introduction to the problem; then a state of
the art will be offered. This will be followed by the methodology explanation, and
then, the results and the conclusions will be presented.

C.1. Introduction

In artificial intelligence [65], Genetic Algorithms (GAs) are a family of
computational techniques that apply the Darwinian theory of evolution to develop



36 José Matias Pinto, Rui Ferreira Neves and Nuno Horta

and optimize a possible solution to a given problem. These algorithms encode a
probable problem solution on a data structure and apply selection techniques
(survival of the fittest) and recombination operators (crossover and mutation) to
these data structures. These GA machine learning techniques begin with a set of
potential solutions (population) to the problem and are used to optimize this
population according to a fitness function that evaluates the solutions according to
their ability to perform or solve the specified task. Genetic algorithms are often
viewed as function optimizers, although the variety of problems to which genetic
algorithms can be applied is fairly wide.

Besides some unfavorable judgments [66], [67], Technical Indicators (TI) are
still widely used as tools to perform the technical analysis of financial markets,
exploiting the existence of trends to establish potential buy, sell, or hold
conditions. Although S.B. Achelis [68] has made a complete reference that fully
explains the most important Tl's that one can identify and use, this study is still
very tricky. Aside from that, the main difficulty of TI usage is deciding its suitable
parameter values. In financial practice, it is not uncommon to see analysts conduct
extensive manual analysis of historically well-performing indicators, looking for
hidden interactions among variables that perform well in combination. When a
person finds one of these interactions, he/she keeps it as a personal secret.

Thus, evolutionary computation appears to be a highly suitable alternative to
extend the technical analysis of financial markets to tune the parameters of some
chosen TI (or set of TI’s), so that the desired goals are achieved to the maximum
extent possible. In this environment, what the system should do can be viewed as
some form of predicting future stock prices. Consequently, in this context,
evolutionary computation emerges as a stochastic search technique able to deal
with highly complicated and non-linear search spaces.

In the last decade, several financial crises have occurred that have had
extensive consequences on the financial assets valorization, which has warned
investors that risk should also be taken into consideration when making any
decision. This situation was the principal motivation for this study: tune an
Investment or Trading Strategy (TS) to be able to achieve the highest returns with
minimal risk. The simultaneous achievement of both these goals is supposed to
correspond to obtaining solutions that are more robust.

The goals of this specific study are to tune a TS that is able to present the
highest returns as existing single objective based approaches, and concurrently
reduce risk by using a multi-objective evolutionary optimization approach.

Consequently, two objectives are set: the maximization of the Return on
Investment (ROI), and the minimization of the related risk. The proposed
framework is tested using data from the main stock indexes of the most developed
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economies, such as NASDAQ, S&P500, FTSE100, DAX30, and the NIKKEI
225. The results are presented and some possible conclusions are outlined.

The next section will present the related work on Genetic Algorithms applied
to Financial Markets. Section 3 explains the system architecture, defining the
roles of the most relevant modules used to build the proposed framework; the
chromosome encoding is also outlined. The TI adopted as the core building block
of the evolved TS used in this work is also presented in this section. Section 4
presents the results and the most relevant outcomes are highlighted. Finally, the
conclusions of this study are presented in Section 5.

C.2. Related Work

Stock market analysis has been one of the most attractive and active research
fields where many Machine learning techniques are adopted. Generally speaking,
one can distinguish two methods for anticipating future stock prices and the time
to buy or sell; one is Technical Analysis [69] and the other is Fundamental
Analysis [70]. Fundamental Analysis looks at stock prices using the financial
statements of each company, economic trends, and so on; it requires a large set of
financial and accounting data, which is difficult to obtain and is both released with
some delay and often suffers from low consistency. Technical Analysis
numerically analyzes the past movement of stock prices, is based on the use of
technical stock market indicators that work on a series of data, usually stock
prices or volume [68]. Consequently, this work will be focused on the use of
Technical Analysis to anticipate future stock price movements.

One of the earliest proposals where genetic programming was applied to
generate technical trading rules in the stock market was published by Allen et al.
in 1995 [71] and in 1999 [72]. Later, many approaches based on evolutionary
computation were proposed and applied to diverse fields of financial management
to predict worth trends. Financial market prediction has been the subject of many
studies, and in recent years, a combination of algorithms and methods has been
extensively used. Table 1 summarizes some of the relatively recent approaches
found in the vast available literature.

In an effort to summarize, in most of the below works, the generated returns
are exclusively used as the only fitness metric, without accounting for the related
risk. Some examples are the use of GAs to optimize TI's parameters, such as in
Ferndndez-Blanco et al.’s [21] study, or to develop TS based on Tis, such as is
found in Bodas-Sagi et al. [22], Gorgulho et al. [23], and Yan et al. [80].



38 José Matias Pinto, Rui Ferreira Neves and Nuno Horta

According to what was stated for the first time in 1952 by Markowitz [81],
any TS should have the highest possible profit with the minimal risk.
Unfortunately, these two metrics are intrinsically conflicting by virtue of the risk-
return tradeoff. Some previous articles proposed the combination of the two
conflicting objectives into one single metric, particularly the proposals of Bodas-
Sagi et al. [22], which used the Chicago Board Options Exchange (CBOE)
Volatility Index (VIX) [82] and [83], as a metric for risk. Schoreels et al. [44]
proposed the use of a Capital Asset Pricing Model (CAPM) [84] system, based on
Markowitz's [81], portfolio theory to reduce risk through the balanced selection of
securities. More recently, Pinto et al. [85] proposed and studied several
alternatives to the classical fitness evaluation functions.

In terms of real Multi-Objective Optimization, some studies can be found,
such as the paper of Ghada Hassan et al. [86] where a Multi-Objective system to
maximize return as the annualized average of the returns, and minimize risk, as
the standard deviation of the annualized average of the returns, was presented. In
this same study, Genetic Programming (GP) was used to model equations that
combine the time-series input data to score a given stock. Additionally, low-
frequency trading was used, as the training data consisted of monthly data.

Again, in 2009, S.C. Chiam et al. [87] used a Multi-Objective system to
maximize the total returns and to minimize the risk or the exposure to it. The
proposed framework is tested using data acquired from only one stock market —
the Singapore Exchange (Straits Times Index (STI)). Hence, some of the
conclusions drawn from this study could be attributed to the market used for the
test (some odd peculiarities exhibited by this market); additionally, the metric
used to evaluate the return is particularly unusual, therefore making it difficult to
compare the presented results with the results of other alternative applications.

The goal of this paper is to tune a TS using a Multi-Objective GA. In doing
this, solutions that are more robust should be developed, and, consequently, the
results in the out-of-sample period should be improved, while risk is supposed to
be simultaneously minimized.

C.3. Methodology

The proposed system consists of a Multi-Objective Genetic Algorithm coupled
with a market return evaluation module that performs the fitness evaluation. The
fitness evaluation is performed based on the estimation of the two conflicting
objectives, on the chosen markets, and on the specified time frames.
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C.3.1. Strategy and Parameters

The task of specifying buy and sell conditions for long and short positions means
describing the TS. Putting this together with an optimization engine allows for the
automatic exploration of trading strategies according to a specified criterion,
which is evaluated and described by the given fitness functions.

The TS evolved in this study is based on the use of a Tl. The elected TI to be
used in this study is the Moving Average Crossover (MAC), which in turn is
based on the use of two Moving Averages (MA) with different periods. One of the
MA is formed by the shorter of the two periods and is called the "Fast MA”. The
other, formed by the one with the longer period, is the "Slow MA". The "Fast
MA" reflects changes earlier than the "Slow MA". A buying (or sell short) signal
is generated when the Fast MA crosses over the Slow MA.

Sell when 60-
day SMA
crosses under
Buy when &0-
80-day SMA day SMA
Crosses over

80-day SMA

Simple Moving
Average 60 Days

Figure 16. Illustration of the MAC operation.

Conversely, a sell (or a buy short) signal is generated when the Fast MA
crosses under the Slow MA. This process is illustrated in Figure 16.

After defining the strategy, it is necessary to define the parameters of the
MAC, which in this case are the type of the MAs and the corresponding period.
These two parameters represent the variables of the underlying strategy. It is also
important to stress that, for the type of MA to use, the GA has the freedom to
choose between a Simple or an Exponential MA.
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Although it is common to tune the parameters of a single TI and then use it to
generate buy and sell signals for both long and short positions, in this work, the
option of using a separate set of parameters for each of the possible actions was
taken, more specifically, "enter long", "exit long", "enter short", and "exit short"
were used.

It is also important to note that some preprocessing of the historical data was
done. This applies, for instance, to the MA periods, which are calculated at the
program start, and are limited to the following set of Simple or Exponential
MA’s: 1%, 4, 8,12, 14, 16, 20, 24, 28, 32, 36, 40, 55, 60, 65, 70, 75, 80, 85, 90, 95,
100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, and 250 days.*

C.3.2. Genetic Encoding

The chromosome structure must represent the MAC indicator used; this way, one
MAC chromosome is represented by two genes: one represents the type and the
period of the Fast MA and the other does the same for the Slow. These entries are
natural numbers in the interval of values between 0 and 65, as it encodes, in a
single entry (integer variable), the type of MA and its period.

Therefore, there are four possible actions, and a set of MAC parameters is
used for each of these possible actions, which implies that a total of eight
parameters or genes must be represented in the chromosome structure. In Table 2,
the chromosome structure is summarized.

C.3.3. Fitness Evaluation

The fitness evaluation process is concerned with simulating the performance of
each trading agent in the evolving population and calculating the corresponding
total returns and the related risk. The resultant fitness values of the trading agent
must be evaluated under some established and fair metric, as will be discussed in
the following subsections.

C.3.4. Return Metric

The profits generated by any given TS can be measured in different ways, as will
be discussed below.

! In reality, the MA of 1 (one) day, is not an MA, but the day security price; this is a trick to allow the
GA to choose between one of the available MAs or the actual quote.

2 This set of periods has been chosen because it covers the most widely used long and short-term MA
periods found in books and recommended by experts [68].
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For instance, the potential profits can be estimated by simply summing the
area under the total asset graph during the trading period [42]. Alternatively,
another return metric could be the total final assets; this means the available
capital, plus the value of all holdings, at the end of the investment period [88] and
[19]. Unfortunately, both preceding metrics have the obstacle of always being
attached to the initial cash invested.

Table 2. Chromosome representation

Enter long Exit long Exit short Enter short
position position position position
Parameters
Fast Slow Fast Slow Fast Slow Fast Slow

MA MA MA MA MA MA MA MA

Chromosome 0..65 0..65 0..65 0..65 0..65 0..65 0..65 0..65

Therefore, an alternative metric exists that, instead of considering the absolute
value of the holdings, rather consider its relative value. This metric is a ratio and
is called the Rate of Return (ROR), also known as the Return on Investment
(ROI), rate of profit, or sometimes just return. This ratio represents the money
gained or lost (whether realized or unrealized) on an investment relative to the
amount of money invested. ROI is usually expressed as a percentage, and for one
period of time, by definition, is calculated by Error! Reference source not
found.. In this equation, “Profit” is the amount of money gained or lost and is
sometimes referred to as interest, gain/loss, or net income/loss; “Initial
Investment” is the money invested, and may, alternatively, be called the asset or
capital.

Equation 10. ROI Calculation:

_ Profit
Initial Investiment

_ Final Assets — Initial Investiment
Initial Investiment

_ Final Assets
Initial Investiment (10)

ROI still has the problem that, for multi-period investments, it is difficult to
compare it with the results one would get in a single period of time. Therefore, a
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metric that could be compared with similar alternative investments, like
investment funds or bank deposits, should be used instead. This way, in this study,
the Annualized ROI will be used. The Annualized ROI is nothing more than the
“Geometric Average of the Ratio of the Returns”, also known as the “True Time-
Weighted Rate of Return”. Mathematically, an investment lasting for N periods
with full reinvestment is computed by Equation 11:

Equation 11 Anualised ROI calculation:

Anualised (ROI) = N/(ROI +1) -1 (11)

In this equation, N is the number of periods, or more specifically, the number
of years that the investment lasts.

C.3.5. Risk Metrics

Risk is usually seen as the volatility or the uncertainty of the expected returns over
the investment period. Therefore, the linked risk of any investment technique can
be estimated in several ways, as will be examined in the following section.

The most traditional risk metric is inherited from statistics and from the
Markowitz Mean-Variance Model [81]. It consists of the use of the results
variance as a metric for the risk. This variance can be calculated using the
standard deviation or the variance between the returns; in finance, this statistical
measure of the dispersion of the results is usually called volatility.

Instead, risk can also be computed as the exposure to it [89]. Specifically, it
can be measured by the proportion of trading days when a position is maintained
open on the market, and is, mathematically, the ratio between the time the agent is
on the market and the total available trading time (Equation 12). Essentially,
staying in the market longer corresponds to a higher exposure to risk, such as
market crashes and other disastrous events, while shorter periods in the market
correspond to lower risk exposure and greater liquidity (as the capital is engaged
for a smaller time). In Equation 12, tj exit and tj entry denote the time at which the

trading agent enters and exits the market, for each iy, trade, and T refers to the
total length of the trading period.
Equation 12. Risk Exposure calculation:

(12)

i.entry)

Risk Exposure = %Z (t o —t
i=1
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Other alternative metrics have been proposed and used, as, for instance, the
use of Maximum Drawdown (MDD) as an estimate for risk. The Drawdown (DD)
[90] calculates the decline from a past historical peak in our variable (the
evaluation of the total assets) to its current value. The DD can be calculated in
terms of absolute or relative values. In the next pseudo code, how the DD and the
corresponding Maximum Drawdown (MDD) are calculated, in terms of relative
values are presented:

MDD =0

peak = -inf
fori=1;i<N;++ldo
if (assets[i] > peak) then
peak = assets[i]
DDJ[i]=0

else

DDIi] = 100.0 * (peak - assets[i]) / peak
if (DDJi] > MDD) then
MDD = DD[i]

End if

End if

End for

Additional alternative metrics for risk can be found in the literature, such as
the use of some risk-adjusted return metrics, like the Sharpe ratio (also known as
the Sharpe index), Sortino ratio, Sterling ratio (SR), Calmar ratio (CR), or VIX
[82] and [83]. All previous metrics compute the net profitability after discounting
the associated risk [91] and [92]. In short, these risk metrics are, in reality,
alternative methods to combine the two conflicting objectives faced in this kind of
problems (risk and return) into one single objective (metric).

C.3.6. Selection of the Risk Metric to Use

In preparation for this study, some preliminary tests were conducted using several
combinations of the previously exposed metrics (return and risk); the next
paragraphs summarize the main conclusions drawn from the tests conducted and
the results observed.

In the first stage, the metrics that combine the two conflicting objectives (SR,
CR, VIX, ...) into one single metric have been discarded, since the goal of this
study is to do Multi-Objective Optimization and the use of a metric that is the
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aggregation of two conflicting objectives does not make sense. In addition to
being unhelpful, this could also correspond to benefitting one of the objectives
while damaging another.

Some preliminary tests have been conducted using the MDD as a metric for
risk; however, strange behavior in the results was observed. This strange behavior
observed in the tests conducted can also be confirmed by the varied results
obtained in the study of O’Neill [93]. Recall that MDD records the maximum of
the losses in the trading period. Consequently, this metric is not a good
representation of the overall performance, since the performance of the TS can be
good almost all the time, but, if even for a small period of time, some losses are
incurred, this can result in a big value when this metric is used. Although this
metric can be a good sentiment, independent, or auxiliary metric to further
evaluate a strategy, computationally speaking, as a multi-objective goal, it does
not seem to be a good main risk metric.

Before conducting any tests using the Volatility to gauge risk (it can be either
the standard deviation or the variance between the returns), it must be decided
how the period of study should be subdivided in order to calculate its variance
(days, weeks, months, years, etc.). At this point, and due to the lack of additional
information, as this detail is usually omitted from most of the available literature,
the decision was made to adopt the approach described in Article 46 of reference
[94]. Consequently, from now on, in this text, when the term “Variance (of the
results)” is used, it refers to the “Annually adjusted standard deviation” of the
“actual weekly profits” exactly as described in reference [94]. In Equation 13, the
cited formula is recalled.

Equation 13. Annually adjusted standard deviation calculation:

Ann adj. std. dev. = \/(Tl—l Zt:( I —< r>)2j *52 (13)

t=1

where, r; symbolizes the actual weekly returns or profits in the period t; T is the
number of weeks in the trading period, coinciding with the period used for the
calculation of profits, and <r> is the simple arithmetic mean of the actual profits
in the trading period.

By its turn, the actual weekly profits are calculated by Equation 14.

Equation 14 — Actual Profits calculation:

Actual profits = [w} -1 (14)
Initial Assets
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In this equation, Final Assets represents the total value of the holdings at the
end of the reference period, while Initial Assets stand for the value of the holdings
at the start of the reference period.

Therefore, it remains to be decided whether to use the Variance (of the results)
or the Risk Exposure as the elected risk metric in the remainder of this study.

Consequently, some preliminary tests were conducted, using the weekly
variance of the returns and risk exposure, as both exhibited fairly good results
using the training data. Afterwards, and in order to have a better understanding of
how these two variables relate together, as well as to determine which one could
lead to better results, a correlation test between these two apparently uncorrelated
variables was conducted.

The method used to make this correlation test was the Monte Carlo method,
which consisted of generating 15,000 random TS. Subsequently, the performance
of the randomly generated TS are evaluated according to these two objectives in
the different markets. With the collected data, graphs like the ones shown in
Figure 17 were produced. In this figure, so that any correlation between these two
variables can be visually inspected, the Variance of the results is plotted in the X-
axis and the Risk Exposure is on the Y-axis. The plots shown in Figure 17 were
built using training data from Nikkei and FTSE indexes, but similar graphs were
obtained using the other indexes tested in this study.

The main conclusion from the plots below is that these two apparently
uncorrelated variables are, in practice, highly linked together. Thus, the choice of
any of these risk metrics as the one elected to be used in this study should have
minimal influence on the final results. Therefore, the decision was to select the
simplest of the formulas, which is risk exposure. Computationally speaking,
everyone knows that simpler functions and algorithms should be preferred, as they
consume less computer resources, are faster, and less prone to errors (if coded
properly).

Hence, in the remainder of this present work, the exposure to the risk will be
used as the risk metric, more specifically, the ratio between the number of trading
days a position is maintained open on the market and the total available trading
days, and is calculated according with Equation 12.

C.3.7. Optimization Kernel

This study is focused on the simultaneous optimization of TS that must achieve
two objectives: the maximization of a Return Metric and the minimization of a
Risk Metric. Therefore, in this situation, the proposed framework must consider
and simultaneously balance the two objectives, as these two objectives interact
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between them and are conflicting. To deal with this kind of problem, an
Evolutionary Algorithm-based technique has been developed, called Multi-
Objective Optimization (MOEA) [18].

Multi-Objective (MO) optimization is the process of finding a set of solutions
that optimizes several objectives.

NIKKEI225 FTSE100
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Train Variance

Figure 17. Plots showing the correlation between Risk Exposure and Results Variance.

The notion of an optimum solution is different in MO problems from what is
usually used in single-objective problems, since in MO optimization, instead of
getting a single global optimum (or solution), a set of solutions or trade-offs is
supplied to the user.

In MO optimization, it is not always possible to say when one solution is
better than another. It is straightforward to say whether one solution might be
better at one specification and if another solution is better at another objective.
However, a matter arises: How does one do that for many solutions? To help in
the understanding of what follows, some terms of general use in MO optimization
should be introduced, as follows:

One solution dominates another if it is not worse than the second in all
objectives, and, at the same time, is better than the second in at least one
objective. It is important to note that the domination relation is not a concept of
ordering (or sorting) and that two solutions can be mutually non-dominating if
neither dominates the other. This can be mathematically formulated, for an m
objectives minimization problem, as shown in Equation 15 and Equation 16. In
the case of Equation 15 and Equation 16 we say that, when both equations are

satisfied, that solution X dominates solution y .
Equation 15. MO Formulation:

f,(x)< fi(y),Vi=12,...m (15)

and:
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Equation 16. MO Formulation:
Jdie{l2,..m}: f(x)< f.(b) (16)

where the f; functions map the decision space to and represent the objective
functions that should be minimised. and are vectors representing all decision
variables. The set of solutions that are not dominated by any of the other solutions
is called the Pareto Frontier (PF) (or Pareto optimal set or Pareto Front). This set
of solutions ultimately represent the best set of solutions that address all the trade-
offs considered in the problem.

Hence, and in contrast to single-objective optimization, the optimal solutions
to a Multi-Objective Optimization problem exist in the form of a set of solutions
(PF); this set is the set of all non-dominated solutions that balance all trade-offs. A
given solution belonging to the PF can only have one of its objective components
improved by degrading at least one of its other objective components.

In the concrete case of this study, the decision space consists of all possible
values that the chromosome parameters can have, in order to find the best possible
set of trade-offs (Risk and Return) using training data (from the training period).
Therefore, the formulation can be expressed as shown in Equation 17 and
Equation 18.

Equation 17. Problem MO Formulation:

{maximise f,(x) := Annualised (ROI)

minimise f,(x) := Risk Exposure (17)
Subject to:
Equation 18. Problem MO Formulation:
g;(X)<0, j=1,2,...,m
h (X)=0, k=12, ...,p (18)

where f; represents the objective function linked to return, which should be

maximized, according to Equation 11; f> does a similar function with respect to
the objective function coupled with risk, which should be minimized, and is
calculated as shown in Equation 12. In Equation 17, represents the chromosome
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parameters as already introduced in Table 2. Finally gi, hx map and symbolize the
constraint functions of the problem (j =1, 2, ..., m), (k = 1, 2, ..., p). Some
examples of g; and hy functions are:

e X € (Allxjare natural numbers),

e (<= x;j <=65 (The interval of values is between 0 and 65),
e X1 <= Xp; and X3 <= Xy4; and X5 <= Xg; and x7 <= xg (the period of the fast
MA cannot be greater than the slow).

Additional problem-specific constraints should be considered. For instance, it
does not make sense to have a strategy that could be simultaneously on the market
as long and short, and also, one cannot invest more than the available cash, and so
on, but these kinds of constraints can only be considered when the simulation is
done by the “Investment Simulator”.

The multi-objective fitness evaluation process is concerned with finding the
optimal set of trade-offs between the risk metric and the linked return metric for
each TS in the evolving population of chromosomes during the set trading period.
During the trading period, the performance of each TS is evaluated by simulating
its actions of buying or selling the assets; its related score is later calculated.

The Multi-Objective Genetic Algorithm elected to be used in this study was a
version of the Non-Dominated Sorting Genetic Algorithm 2 (NSGAII) [17] and
[18]. NSGAII parameters are as follows: population size is 500, the crossover
probability is fixed at 0.8, with parents selected by tournament selection. Each run
on the training data continued for 300 generations and the probability of real
mutation was set to 0.1. These parameters were selected based on a series of
preliminary investigations and parameter tuning. The NSGAII algorithm was the
selected evolutionary algorithm because this MOEA is acknowledged as one of
the most efficient and most commonly applied algorithms, incorporating several
prominent characteristics to speed up the search and the solution space
exploration.

C.3.8. The Investment Simulator

The Investment Simulator Module simulates an investment in the user-specified
index, including long and short positions. This stock market index can be bought
(“go Long™), sold and after stay out of the market (“Stay Out”), or even sold
without owning any (“go Short”), hoping to profit from a decline in the price of
the assets between the sale and the repurchase.
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Since daily data was available, training consisted of formulating a TS, giving
the agent some initial cash to spend, and simulating the agent’s performance every
day. The resulting total assets are calculated by summing the cash plus the
evaluation of the assets at the current stock closing price.

The actions of buying or selling are determined by the strategy encoded in the
chromosome, when suggested by the indicator to buy or sell, when buying invests
all of the capital, and when selling releases all the securities owned (full
reinvestment). Securities that are sold or bought are converted into capital at their
current closing price.

At the end of the training period, the total assets that the given TS can achieve
are evaluated. Transaction costs and dividends were not included in the
simulation. The environment is also assumed as discrete and deterministic in a
liquid market.

C.4. Results

Since a Multi-Objective Evolutionary Optimization of TS is considered in this
essay, the maximization of a Return Metric and the minimization of its related
Risk Metric are the goals. In this kind of problem, the optimal solutions exist in
the form of a set of trade-offs known as the Pareto-optimal set; any objective
belonging to a solution of this set cannot be improved without degrading the other
objective. The problem will be directly modeled as a Multi-Objective
Optimization problem by simultaneously optimizing returns and risk; an example
of a possible PF is illustrated in Figure 18. This figure clearly represents the risk-
return tradeoff, the Efficient Frontier, which is always faced in these kinds of
problems.

In this figure, each point denotes a Strategy evolved by the GA. The black
circles and the white crosses represent non-dominated and dominated solutions,
respectively. The set formed by the former solutions is the Pareto optimal solution
set because their returns cannot be improved any further without compromising
risk. In the context of a single-objective optimization, where the return
maximization is the only goal, the evolutionary process will ultimately drive the
solutions towards the extreme point B.

This is not applicable to conservative investors, who may prefer a lower level
of risk at the cost of lower returns. Point A represents the extreme case of a
conservative investor with zero returns due to total risk adversity.
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Figure 18. Risk-Return Tradeoff.

C.4.1. Training and Testing Data Sets

Historical daily prices obtained from the finance.yahoo.com database were used.
The system was tested with the main stock indexes of the most developed
economies, namely the S&P 500 (USA), FTSE 100 (England), DAX 30
(Germany), NIKKEI 225 (Japan), and NASDAQ (USA). Data used in the system
covers the time from January 4, 1999 to December 31, 2009, a period of more
than 10 years. The period of time chosen for training was from January 3, 2000 to
December 31, 2007, consisting of eight years of daily data (about 80% of the data
used). This period was assumed to be sufficient to evolve a competitive
population, as it exhibited significant movement, including several boom and
crash periods. For testing, or validation period, two years of data, from January 2,
2008 to December 31, 2009 (about 20%) were used. Furthermore, it is important
to note that 250 days of prior historical data is required before training can be
started, in order to calculate and have valid all moving averages.

C.4.2. Analysis of the Performance in the Training Period

Figure 19 presents the PFs evolved for the 5 indexes tested in this study in one of
the experimental runs performed. Although the various solutions sets vary in
terms of Pareto dominance and optimality, all clearly illustrate the inherent trade-
off between return and risk. Furthermore, the evolved TS are able to generate high
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returns in open positions in less than 100% of the trading period; for instance, the
observable annualized ROI of about 10% with a risk exposure of around 0.6.

In Financial Computing, when analyzing the performance of a given TS, it is
common to compare it against the “Buy & Hold” (B&H) and “Sell & Hold” (S&H)
strategies. B&H strategy is a long-term strategy that consists of buying the stocks at
the beginning of an investment period and holding it for the entire time, regardless
of any market fluctuations. S&H strategy does the opposite and consists in selling
assets (without owning them) at the start of an investment period (selling short), and
repurchasing them at end of the investment period. In the latter case, the profits
result from a decline in the assets price between the sale and the repurchase.

When the ROI performance of the evolved TS (see Figure 19) is compared
against both B&H and S&H approaches (see B&H and S&H annualized ROI
calculation in Table 3) during the training period, it is easy to conclude that, in
this context, both B&H and S&H strategies are undoubtedly suboptimal. It is also
important to remember that B&H and S&H strategies both correspond to a risk
exposure of 1 (one), since the capital is all time engaged.
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Figure 20 presents an example of the eight-year financial data used to optimize
the strategy; in the current case, it is the FTSE100 index. The line labeled “Buy &
Hold” characterizes the performance of the B&H strategy; this same line is
coincident with the current index evaluation at close price. In this same illustration,
the performance of the S&H strategy is exposed by the curve tagged “Sell & Hold”.
An example of the trading performance of one of the optimized strategies is also
shown in this figure by the line labeled “Trained Chromosome”. On this same
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illustration, the X-axis is time, and the Y-axis represents the assets evaluation; the
values on this axis are normalized so that they all start at 100.

In order to have better insight into the results, 30 (thirty) experimental runs
were performed, the results were collected, and then discrete intervals of 0.1 risk
exposure were considered. With this data, charts similar to the one shown in
Figure 21 were built. Figure 21 plots an example of the observed distribution of
the Annualized ROI as a function of the risk exposure; the example shown is for
the case of the DAX index. This illustration shows the First Quartile of data (Q1),
the Third Quartile of data (Q3), and the Median, with the whiskers located,
respectively, at 10% and 90% of the data in the 30 independent runs. Again, in
this figure, the risk-return trade-off is evident, where the Median of the
Annualized ROI increases for higher levels of risk exposure.
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Figure 19. Evolved Pareto Fronts for the 5 Indexes Tested.

The lack of solutions on the risk exposure range of [0.1, 0.3] can be due to the
difficulty in optimizing the chosen TI to exploit the price movements in order to
create strategies in this region. Similar results were observed for the additional
indexes also being tested.

C.4.3. Correlation Analysis of Training and Test Performance

The results presented in the previous subsection showed that it is possible to tune
a TS to attain attractive returns at various levels of risk exposure. Despite this, the
effectiveness of any approach will depend on being able to extend these
interesting returns to unseen data, which is usually recognized as its generalization
performance.
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Table 3. Annualized ROI for B&H and S&H strategies in the training period

NIKKEI FTSE
o5 100 S&P500 | DAX30 | NASDAQ
Index Value at Start 19002.86 | 6662.90 | 1455.22 | 6750.76 | 4131.15
Index Value at End 15307.78 | 6456.90 | 1468.36 | 8067.32 | 2652.28
B&H Absolute Return -3695.08 | -206.00 | 13.14 1316.56 | -1478.87
B&H ROI [%] -19.44% | -3.09% | 0.90% 19.50% | - 35.80%
EZH Annualized ROI 267% | -0.39% | 0.11% 2.25% -5.39%
S&H Absolute Return 3695.08 206.00 | -13.14 | -131656 | 1478.87
S&H ROI [%] 19.44% 3.09% | -090% | -19.50% | 35.80%
S&H Annualized ROI [%] | 2.25% 038% | -011% | -2.67% 3.90%
FTSE100
350 T : .
FTSE100 Buy & Hold ——
300 + Sell & Hold
Trained Chromosome

250 Y

150 WAM

100 ﬁ i

W et ¥
w
50 T M
0

Jan/00 Jan/01 Jan/02 Jan/03 Jan/04 Jan/05 Jan/06 Jan/07 Jan/08

Figure 20. Example of daily closing prices and the performance of one trained TS, for
FTSE100 index, in the training period.
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Annualised Return with Training Data for DAX index when Discret intervals are considerd
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Figure 21. Annualized ROI when discrete intervals of 0.1 Risk Exposure are considered.
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Figure 22. Pareto Fronts for training and test data.

In order to evaluate the engine generalization performance, the available trading
data is portioned into two independent sets of data, the training and test data sets, as
explained in subsection C.4.1. Training and Testing Data Sets. In the training phase
of the evolutionary process, the fitness of the TS will be trained, tuned, and
evaluated using only the training data. After having been trained, the developed
strategies obtained in the final generation will then be applied to the test data set and
its generalization performance will be evaluated. This is an indicator of the
framework’s real effectiveness in achieving good results using unseen data.
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The plot of the risk-return PFs for the training data acquired in one of the
experimental runs is presented in Figure 22. The marks labeled “Pop_ Train”
represent the performance of the final population evolved after 400 generations,
while the points tagged “Pop_ Tst” represent the results of this same population
when applied to the test data set.

Again, in this plot, the risk-return trade-off is clearly evident with training
data. However, this type of correlation disappears when the same strategy is
applied to test data. For instance, an annualized ROI of 20% is realizable at a risk
level of about 0.7 with the training data, while large losses are suffered at the
same level of risk with the test data.

The most evident conclusion is that positive returns with the training data do
not necessarily match positive returns with the test data. The example shown in
Figure 22 is for the NIKKEI index, but similar plots were observed with the other
indexes tested. This low relation between training and testing results was also
observed in previous studies [91] and [87].
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Figure 23. Plots showing the correlation between training returns, training risk, test
returns, and test risk.

This strongly suggests the need to better understand how the training and
testing data correlate in order to examine the generalization performance of the
evolved TS. This suggests the need for a correlation analysis between the four
variables involved: training ROI, training risk, test ROI, and test risk.
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To better clarify the results, 30 independent experimental runs were
performed. With the results observed in these experimental runs, graphs similar to
the ones shown in Figure 23 were built. In these graphs, the four involved
variables are plotted and any potential correlations can be visually inspected.

Once more, the plot of training ROI and training risk accurately shows the
risk-return trade-off. Although an almost random plot is obtained when the test
returns against the test risk are plotted; this suggests the existence of a low
correlation between training ROI and test ROI.

Contrasting to traditional theories in single-objective approaches, where higher
training returns are coupled with higher test returns, this relationship is missing
from these plots. Instead, higher training returns correspond to increased volatility
in the observed test returns; this is clearly observable in the graphs of Figure 24.

Annualised Return with Test Data for DAX index when Discret intervals of trainig ROI are considerd
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Figure 24. Statistical distribution of test returns at discrete intervals of training returns for
DAX index.

In Figure 24 are plotted the quartiles of data (Q1-Q3), the median, and also
the whiskers, located at 10% and 90%, respectively, of the observed results, when
the training returns are divided into discrete intervals of 5%. In this figure, it is
observable that the median of the test returns does not increase when the values of
training returns increase. In its place, there is a visible increase in the variance of
the results that is denoted by the taller vertical bars (both whiskers and boxes).

In conclusion, the positive correlation that is typically implicit in
conventional single-objective approaches, to perform the optimization of TS
between training and test returns, is not necessarily true for all cases.
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Similar conclusions can be extracted from the plots in Figure 25 and Figure
26, where the Median, Q1, Q3, and whiskers of the test returns are plotted. This
time, the results observed in the 30 independent runs are summarized at discrete
intervals of 0.1 training risk.
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Figure 25. Statistical distribution of test returns at discrete intervals of training risk, for
DAX experiments.
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Figure 26. Statistical distribution of test returns at discrete intervals of training risk, for
NIKKEY experiments.

Again, the Median of the test returns does not increase when the training risk
increases.
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Figure 27. Number of Solutions and Standard Deviation of returns when discrete intervals
of 0.1 risk exposure are considered, observed with the DAX Index.
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Figure 28. Number of Solutions and Standard Deviation of returns when discrete intervals
of 0.1 risk exposure are considered, observed with the NIKKEI index.

Although a steady increase is clearly observable in the variance of the test
returns from the plots (Figure 25, Figure 26, Figure 27, and Figure 28), which
confirms the claim that higher training returns correspond to increased volatility
in the test returns results.

The apparent drop in the results volatility observed in the DAX results, for
risk levels above 0.8, is statistically irrelevant, as there are few solutions in this
region (Figure 27). The plots presented were built with the DAX and NIKKEI
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results, but similar plots were also observed for the remaining indexes also tested
in this study.

Conclusion

This chapter began (Parts A and B) with a quick review of the most important
existing Computational Problem Solving Techniques. This review was necessary
speedy, as it is possible to write (and there are available) complete books
explaining in detail each of them. Therefore, in Part A, the various existing
techniques in the fields of time series forecast and systems that learn by example
were briefly reviewed. Part B, was devoted to Multi-Objective Systems.

This document continued, in Part C, presenting and investigating a multi-
objective evolutionary approach to perform the optimization of a set of TS. In this
part of this work, fair and established metrics were used to evaluate both returns
and the related risk. Both metrics were simultaneously optimized and a popular TI
frequently used by real-world professionals were used as the foundational
building block of the core strategy. Furthermore, the TS were trained, and
afterwards tested, using data coming from five main stock indexes, representative
of the world’s most developed economies. The PFs obtained by the algorithm
using testing data correctly depicted the intrinsic trade-off between risk and
return.

Ideally, a multi-objective evolutionary framework should be able to evolve a
set of TS with different levels of risk aversion to suit the diverse profiles of
investors, from the most risky to the most conservative. However, the low
correlation between training returns and test returns suggest a low potential in the
framework generalization capability.

Consequently, the experimental results reveal that the positive connection
usually assumed between training and testing returns in conventional single-
objective approaches of TS optimization does not necessarily hold true for all
cases.

However, some interesting conclusions can be extracted, namely the
conclusion that higher training returns correspond to increased volatility in the test
return results.

The MAs have the disadvantage of being a trend follower indicator, and
signals we can get from such indicators always come with some delay. Further
tests should be conducted using other TI; those achieved results should be seen as
a benchmark to further improvements with the use of other T, or even the use of
multi-TI strategies. Additionally, further experiments should be conducted to
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better clarify the reason for the dramatic difference between the PF achieved with
training versus testing data.

Additionally, the reader must also be aware that in single-objective
approaches, the system automatically picks a solution without showing the user its
related risk. This chosen solution can be an intermediate solution (maybe a
solution that balances and finds a reasonable compromise between the two
conflicting objectives), which, when analyzed in the test period, gives reasonable
results. This can be an explanation for both the common belief that a positive
correlation between training returns and test returns exists, and for the reasonable
results presented in the literature in such a context. Furthermore, in single-
objective approaches, the solution picked and presented to the user is rarely
evaluated in the test period, according to the two distinct metrics (risk and return);
consequently, it is difficult to tell where it would lie if plotted in a risk/return
diagram.
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Abstract

A key concern when training a multi-layer perceptron (ML®}hat
the final network should generalise well out-of-sample. Asiderable
literature has emerged which examines various aspectssoisgue. In
this study we draw inspiration from theories of memory cdidsdion in
order to develop a new methodology for training MLPs in ortepro-
mote their generalisation capabilities. T&enaptic homeostasis hypoth-
esis[29, 30] proposes that a key role of sleep is to downscaleima
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strength to a baseline level that is energetically sustéénads a conse-
quence, the hypothesis suggests that sleep acts not telgcivengthen
selected memories but rather to remove irrelevant memdndsrn, this

lessens spurious learning, improves the signal to noigeiratnaintained
memories, and therefore produces better generalisatipabddies. In

this chapter we describe the synaptic homeostasis hypstaed draw
inspiration from it in order to design a ‘wake-sleep’ traigiapproach for
MLPs. The approach is tested on a number of datasets.

1. Introduction

A key concern when applying powerful machine learning methods such as
MLPs to induce a model from a training dataset, is that the resulting model
should generalise well out of sample. There are several issues thahpaltt

on the generalisation capability of a MLP, including the sufficiency of therain
ing dataset (i.e. does it contain sufficient explanatory inputs in order ta allo
construction of a predictive model for the target output), is the training data
sufficiently representative of all out of sample data that could be pretén

the model, is the target function smooth (hon-smooth functions will be more
difficult to model), and what choice of error criterion will promote goodeyen
alisation?

Another factor which will impact on how well an MLP will generalise is its
internal structure. If too-large a network is employed, it will have many hisig
and will be prone to over training, thereby learning any ‘noise’ in the data.
Increasing the number of weights will also add to the computational complexity
of the training process. If too-small a network is used, it will not havégeant
power to adequately represent the structure in the data.

Of course, the importance of generalisation extends far beyond machine
learning and statistics, and the ability to generalise from past learning to new
situations is a key driver of evolutionary fithess in biological organismsckle
processes of learning, memory formation, and the integration of newiexper
ences into existing memories in animals, are likely to be rich sources of inspi-
ration for the design of algorithms with good generalisation capabilities.

It is widely thought that iterated wake-sleep states play an important role
in memory formation and maintenance in animals. Despite the rich literature
in neural networks concerning generalisation, relatively little attention &éas b
paid to the possibility of drawing inspiration from iterated wake-sleep states in
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order to design better training algorithms for neural networks.

1.1. Memory

Broadly speaking, learning can be considered as the process odfiagaqew
information, with memory referring to the persistence of learning in a state that
can be revealed at a later time [27]. The processes of learning and memory
formation have been widely studied in the literature of both psychology and
neurobiology. In the latter case, the focus of research is on how menaoees
recorded and maintained in the physical structure of the brain. The ltagie s
tural unit of the brain consist of individual neurons. A critical aspddearning

and memory is that the connection structure between these neurons is plasti
and is altered via the process of learning. The concept of plasticity ves fir
suggested over a century ago by William James [7], andyhaptic plasticity
hypothesidies at the centre of most research on memory storage [20]. This
hypothesis proposes that the strength of synaptic connections betewems,
which in turn determine the ease with which an action potential in one cell ex-
cites or inhibits its target cell, are not fixed but are modifiable or ‘plastic’.

While there are multiple types of neurons, the canonical model of informa-
tion flow at a neuron (the ‘neuron doctrine’) is that the cell body of aroeu
integrates the electrical signals which enter the cell through nerve fialles c
dendrites. If the total input signal into a neuron in a time period exceeds a
threshold level, the neuron ‘fires’ and sends an output electricallsitpray its
axon. In turn, the axon of a neuron is connected to the dendrites of rler
rons. Consequently, the firing of an individual neuron can producasaade
effect in other neurons.

A neuron typically has a dense web of input dendrites and these connect,
via a synapse, to axon terminals of other neurons at small structures lagow
dendritic spines. These spines can grow or shrink and are constargthdeg
out of and retracting back into the dendrite. Hence, the precise network o
connections between neurons in a brain is not fixed, but dynamically aiters
time. Indeed, two individual neurons may have multiple and not just a single
connection. As learning takes place, the network of connections adagts a
changes take place at synaptic junctions which can enhance or reéueasth
with which electrical signals can cross the synaptic gap. Memory is stored in a
network of linked neurons.
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1.1.1. Memory Consolidation

The memory consolidation hypothesisas first proposed over a century ago
by Muller and Pilzecker [15] and posits that new memories are initially fragile
and are only gradually consolidated into long term memory. As noted by [14],
while storage of new events in memory can occur very quickly (within seond
slow consolidation of memories into long term storage (a process which can
take days, weeks, or even longer) may be adaptive as it allows forardgn
interplay between current experience and pre-existing memories.

The term memory consolidation is itself variously defined as, ‘a time-
dependent, off-line process that stabilizes memories against interfeagnkt
decay, allowing them to persist over time’ [14], a ‘process that tramsfarew
and initially labile memories encoded in the awake state into more stable rep-
resentations that become integrated into the network of pre-existing lamg-ter
memories’ [3], or as ‘the processes that stabilise the learning-indueeweh
in synaptic morphology that represent the biological substrate of mentgry’ [

In discussing memory consolidation, a distinction is drawn between:

1. cellular consolidation, and
2. systems consolidation.

Cellular consolidation arises from a series of biochemical events which take
place in individual synapses, typically within a short time frame (minutes to
hours) after the initial experience. System consolidation refers to ewdmts
take place over a longer time frame and which are thought to maintain the mem-
ory in long term memory storage.

Rudy (2014) [20] provides an excellent review of the current statenef
derstanding of how memories are created and maintained. While there is still
considerable debate concerning several aspects of this procesmysheidely
accepted view is that memory develops over a number of stages namely, gene
ation, stabilisation, consolidation and maintenance.

Initially, there are changes in the synaptic strength of the effected nguron
resulting from a reorganisation of existing proteins in the relevant dendritic
spine and axon terminal. For example, within minutes, the number of glutamate
receptors in the spine is increased thereby facilitating the enhanced transmis
sion of sodium ions (electrical signal) between the axon terminal and the. spin
To consolidate the synaptic change further, in following hours transanipiial
translation processes are activated creating new proteins. Thessdwaval
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effects including the enhancement of the degree of bonding betweepittee s
and axon, and an alteration of the physical geometry of the spine. Thiefur
promotes the transmission of ions between the spine and axon. Typically, this
process lasts for up to 24 hours and helps ensure that the physicgjeshia

the synapses endure for several days.

While the above explains how synaptic changes initially occur and are sub-
sequently stabilised, it does not explain how strengthened synapsesppatt
memory outlive the molecules from which they are made. This is known as
the ‘molecular turnover problem’ and is a active area of research ingtnry
order to maintain a memory, a variety of proteins need to be continually man-
ufactured at the synapse, even in the absence of the original stimulaentRe
work by [12, 34] suggests that self-sustaining (self-copying) pajauia of pro-
teins may be the key to maintaining the long-term synaptic changes that underlie
memory.

Obviously, there is little reason to maintain a memory of most of the routine
events which occur during a day, and indeed experience suggesteethvitl
forget much of this detail within several days. It is speculated that memories
are most likely to be maintained for the long term when either the behavioural
experience is considered significant, is repeated, or when the memarglisde
[5]. As will be discussed later, it is thought that sleep plays an importdaimo
long term memory consolidation.

11.2. Memory Systems

When discussing memory, is important to note that the the brain has multiple
memory systems, depending on the nature of what is being learnt. Perbaps th
best known system is that for declarative memory which includes both épisod
memory (memory for facts and events) and semantic memory (supports memory
for facts and provides an ability to generalise from multiple experiencds3. T
system relies on an interplay between the neocortex, the hippocampus and it
related cortical structures. Sensory information passes into the neoaode
in turn is processed and passed via a number of intermediate structures intc
the hippocampus. By the time the information passes into the hippocampus
it is already highly processed and amodal (hippocampus neurons d¢oowt
whether they are receiving auditory, visual or other sensory inp2§) [

Although it is known that the hippocampus plays a vital role in episodic
memory, there is debate as to how exactly it does this. One theory is the ‘in-
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dexing theory of episodic memory’ [32]. According to this theory, the cainte

of episodic memories are stored in the neocortex and the hippocampuscreate
indices to these memories by binding the inputs it receives from the diffierent
gions of the neocortex into a neural ensemble that represents the dorjurfc

their co-occurance [20]. The hippocampus projects back to the rtegaghen

the index is activated.

In essence, the theory assumes that events create a memory trace by act
vating patterns of neocortical activity, which then project to the hippocampu
with the relevant synapses in the hippocampus responding to the nedcortica
inputs being strengthened via long term potentiation (LTP). Therefordyjphe
pocampus acts as an index to a ‘memory’ filing cabinet which enables tHk reca
of memories, even when only a subset of the original neocortical patteen is
ceived by the hippocampus. Although this may appear to be an unnedgessa
complex process, it is posited that it may have arisen due to structural limitations
of the neocortex as potential associative connectivity across ne@toeigons
is low [20]. Itis also speculated that memories in the neocortex may potentially
have more than one index associated with them, if the event is repeated or if the
memory is reactivated (recalled). Hence, the more often an item is expadienc
or recalled, the more ‘paths’ to it may be generated in the hippocampus. This is
known as thamultiple trace theory16].

1.2. Sleep and Memory Consolidation

At first glance being asleep would appear to be a potentially dangerals an
costly activity as sleeping animals cannot forage for resources, takeofa
young, procreate, and are exposed to predation risk [4, 11]. Dekpie draw-
backs, sleep behaviours are widespread in the animal kingdom andidénev
that many animals spend a significant portion of their day in sleep or in sleep-
like states. Evolution has even devised some extraordinary adaptations to ac
commodate sleep [31]. Perhaps the most unusual of these adaptatiohidis ex
ited by cetaceans (including whales, dolphins and porpoises) who ¢cagen
in unihemispherical (or ‘half-brain’) sleep, wherein one eye is kephaguring
sleep, with the contralateral side of the brain also remaining awake [18¢r Oth
examples of unihemispheric sleep include some species of birds [19] wdrich ¢
keep one eye open during sleep, particularly if the predation risk is high.

Given the widespread nature of sleep behaviour, and the lengths to which
evolution has gone in order to conserve sleep in some animals, one could well
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ask what benefit does sleep provide that makes it crucial to living ecesatu

Amongst the multiple potential functions of sleep, one of the most heavily
researched is whether sleep plays a role memory formation and maintehlance.
many species, the same regions of the brain that process sensory indorana
also important for memory formation. This poses a dilemma, as if these regions
are busy processing sensory information during waking, then it is likelyeto b
more difficult for processes such as memory consolidation to take place simul-
taneously, in turn leading to a suggestion that sleep may allow these conflicting
activities to co-exist, leading to a claim that memory consolidation occurs pre-
dominately during sleep [1].

In this study we draw inspiration from the synaptic homeostasis hypothesis
which is drawn from the literature on memory consolidation in order to design
a training approach for a MLP which is capable of generalising from roassy.
Therefore, we simulate a wake-sleep cycle during which the MLP is presen
with new sensory inputs (data) during the wake phase, leading to synaptic p
tentiation, with synaptic downscaling taking place during a simulated ‘sleep’
phase. Critically and in contrast to prior literature on weight-decay pseses
for training of MLPs, the training process takes place over a sequést@a-
lated wake-sleep phases.

1.3. Structureof Chapter

The remainder of this chapter is organised as follows. Section 2 provides so
background on two theories of memory consolidation during sleep. Section 3
describes the model developed in this study and outlines the experiments un-
dertaken. The results of these are presented and analysed in seatiith 4,
conclusions and suggestions for future work being presented in séction

2. Background

In this section we provide some background on memory consolidation during
sleep, and in particular, we describe the synaptic homeostasis hypotiésis.
also overview some previous literature which has applied ideas from thegzo

of memory consolidation for neural network training.
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2.1. Sleep States

A common way to characterise sleep state is to examine the electrical activity
of the brain recorded using an electroencephalogram (EEG). In mamnuhls a
birds sleep can be divided into two main phases namely, REM (rapid eye move-
ment) and NREM (hon rapid eye movement) sleep. REM sleep is characterised
by high frequency, low amplitude, electrical activity in the brain, and thisdbea
some similarity to the electrical activity of the brain during wakefulness. I con
trast, NREM sleep is characterised by the propagation of low frequetay)(

high amplitude, electrical waves in the brain.

In humans, NREM sleep is divided into three successive stages [2ilhan
sleep cycle follows a typical ordering of stage 1 NREM, stage 2 NREMes3ag
NREM, and finally REM sleep. The entire cycle lasts some 90-100 minutes and
repeats itself several times during the night. As the sleep cycles progress,
portion of time spent in NREM sleep reduces and the portion of time in each
cycle spent in REM sleep increases. Sleep during stage 3 of NREM sleep is
termed slow wave sleep (SWS), and is characterised by delta wave aataiity b
activity, which produces the lowest frequency and highest amplitudepsité
electrical activity.

2.2. Active System Consolidation Hypothesis

There are currently two hypotheses concerning the mechanisms undehgin
consolidation of memory during sleep. The active system consolidation hy-
pothesis (ASCH) proposes that an active consolidation process resuaitthe
re-activation of selected memories during sleep [3], and the synaptic lsteneo
sis hypothesis (SHH) assumes that consolidation may also occur durimggwak
and that the role of sleep is to restore the encoding capabilities of synaptic co
nections (global synaptic downscaling) [1].

The ASCH arose from the standard model of systems consolidation for
declarative memory [13]. Different regions of brain are responsibtedif-
ferent memories, witldeclarative memorythese memories are accessible to
conscious recollection and include memories for facts and events) relging o
the hippocampus and neocortical regions of the brain, @odedural mem-
ory (memories for skills that result from repeated practice e.g. riding a bike
or playing a piano) relying on the striatum and cerebellum [3]. The standar
two-stage theory for declarative memory consolidation proposes that éner
two separate memory stores. One allows learning at a fast rate and aerves
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an intermediate buffer to hold information temporarily. The other store learns
at a slower rate and serves as long-term memory. For declarative mesaory,
sory information in the waking brain flows into the cortex and it is proposed
that events are initially encoded in parallel in neocortical networks andralso
transient neuronal assemblies in the hippocampus.

Although the theory did not initially outline a role for explicit recall in
the consolidation of the long term memory, it has been suggested that dur-
ing sleep, a two-way dialogue between the hippocampus and neocortex take
place in order to effect memory consolidation [3]. The hippocampus can be
considered as a rapidly-encoded, sparse, memory system which ablotire f
formation of event memories, whereas the neocortex is a slowly-consofjdatin
dense, memory storage system. During NREM sleep, slow (electrical wave)
oscillations, spindles, and ripples coordinate the reactivation and redtgirib
of hippocampus-dependent memories to neocortical sites. The newly-edtq
memory traces are reactivated and it is claimed that information flows from the
hippocampus to the cortex, such that connections in the neocortex argtistre
ened, forming more persistent memory representations. In REM sleep, it is
proposed that the information flow reverses (from the neocortex batketo
hippocampus). This two-way process iterates during the period of sd&&p [
thereby modifying the representations in both stores, and integrating the new
memory into pre-existing memories. This enables the extraction of invariant
features, including the forming of new associations, and eventually insigbts
hidden rules and patterns [3]. Hence, through the repeated retaxtizd the
new memories during sleep, the fast learning store acts as an internal tfaine
the slow learning store to gradually adapt the new memories to the pre-existing
network of long term memories [3].

There is some evidence to support the ASCH, as we know from brain imag-
ing studies that the spatio-temporal patterns of neuronal firing that otte
hippocampus, during the exploration of a novel environment or during simple
spatial tasks, are reactivated in the same order during subsequgnt idlme-
ever, we do not have a detailed understanding as to how these reantvatio
could stimulate the strengthening of links between neocortical storage sites, a
specifically, how enduring synaptic changes could result in the nead@ie
In the standard two-stage theory, the consolidation process that takesoffla
line relies on the re-activation of the neuronal circuits that were implicated in
the initial encoding of the memory, and therefore consolidation involves the
reinforcemenbf memory representations at the synaptic level. Long-term po-
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tentiation (LTP) (Hebbian learning - the assumption that information is stored
in the brain as changes in synaptic efficiency which occur when nefirens
synchronously together) is considered a key mechanism of synapsolata:

tion. It is not certain whether memory re-activation during sleep promotes the
redistribution of memories by inducing new LTP (at long-term storage sites) o
whether re-activation merely enhances the maintenance of LTP that wasthd
during encoding. An assumption of the traditional two stage model is that LTP
takes place in the long term memory store as a result of selective reactightion
memories during system consolidation.

Although we await further investigation of sleep dependent learningntec
work by [35] has indicated that sleep (specifically, NREM sleep) by mitar af
a motor learning task promoted new spine formation in the motor cortex of
those mice.

It has been speculated that spindle oscillations which are concentrated in
stage 2 NREM, open molecular gates to plasticity by evoking calcium entry in
neocortical pyramidal neurons, priming the neurons for biochemicalgweat
could lead to permanent changes in the network. Consolidation could then pro
ceed by iteratively recalling and storing information in primed neural assesnblie
[22]. One interesting feature of reactivations during SWS is that thegapp
be noisier, less accurate, and often happen at a faster firing rate éhgglated
activity during the initial encoding phases. Plausibly this ‘noisy’ teachingdto
result in more robust memory in an analogue to using ‘jitter’ in training MLPs.

2.3. Synaptic Homeostasis Hypothesis

An alternative perspective which has gained a significant following ierec
years is thesynaptic homeostasis hypotheg#1H) [29, 30, 31]. This hypoth-

esis suggests that the primary memory function of sleep is to produce a global
synaptic downscaling, and that memory consolidation is continuous (i.e. can
occur during waking) and not limited to sleeping states.

The proponents of the SHH do not disagree that memories form as seuron
that get activated together strengthen their links through synaptic potemtiatio
nor that brains replay newly-learnt material at night, or that patternsof n
ral activity during sleep sometimes resemble those recorded while a subject is
awake. However they question conventional wisdom that brain activity du
ing sleep reinforces the synapses involved in storing newly-formed mesmorie
noting that there is no strong evidence that synapses in replayed ciretiits g
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strengthened during sleep [31]. Instead they claim that a critical dsfveeep
is a need to restore the brain to a baseline stateydakeninghe links between
neurons during sleep, in order to preserve the brain’s ability to learricand
new memories while it is awake. The weakening process is tesyedptic
downscaling

Brain tissue is metabolically expensive. In humans, the brain while account-
ing for only about 2% of total body mass, consumes some 20% of energy re
quirements during quiet waking [24]. Approximately 2/3 of this energy con-
sumption goes to supporting and maintaining synaptic activity. Strong sys\apse
consume more energy than weak ones and the energy budget availat@ato b
tissue is not unlimited. During the day, the potentiation of synaptic circuits from
sensory inputs results in an increase in the number and size of synigasks,
ing to a higher level of energy requirement [31]. Advocates of the Skdiinc
that a generalised depression of synapses during sleep would hibeddiain
as it would decrease the energy cost of synaptic activity, eliminate weahk an
ineffective synapses, and reduce cellular stress [2].

An important part of effective learning is a corresponding ‘forgettiofgt-
relevant memories. Under the SHH, synaptic potentiation stemming from day-
time learning is down regulated brain-wide during slow wave sleep. Crucially,
it is assumed that this rescaling process preserves relative synaptht wigig
ferences, and therefore may lead to forgetting because the downsgaing
effectively silence, or even remove, spines with synapses that arevealily
potentiated. Down selection under the hypothesis promotes survivallpf on
the fittest neural circuits, either because they were activated strongjlgcem
sistently during wakefulness, or because they were better integrated neith p
existing memories (for example, a new word in a known language). Symapse
that were only mildly enhanced during wakefulness, or which fit less wighl w
existing memories would be depressed, and leave no lasting trace in oal neur
circuitry.

While there is experimental evidence for several aspects of synaptic-dow
scaling [19], including evidence from animal studies that the number and siz
of spines and related synapses reduces during sleep [31], thereyét ne
direct evidence for a specific mechanism which selectively weakens i
synapses during sleep [31]. It is speculated that the slow waves of mammalia
NREM sleep play a role. We know that at sleep onset, levels of SWA are ele-
vated as a result of synaptic strength accrued during learning whilecavirhis
increase in effective connectivity causes the slow-oscillations of neumhbe
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more synchronous, and thereby levels of SWA to be high [19]. The-sogke
slow oscillations of neuronal networks may produce synaptic downscaling
global decrease in synaptic strength, and an increase the signal taatise
for important memories by eliminating synapses below a certain threshold. This
may explain why performance on certain cognitive tasks increases fofjowin
sleep [19]. Interestingly, synaptic downscaling is a self-limiting procesausze

as synapses weaken, neurons oscillate less synchronously aedweenty in-
duce less downscaling [19] (p.265). It is also known that the chemisttlyeof
brain changes during sleep and Tononi and Cirelli [31] have speduthsg
this could bias neural circuitry so that synapses becomes weakenedthreath
strengthened when signals flow across them.

The SHH, with its emphasis on an ‘active decay’ (forgetting) of irrelevant
memories during sleep, provides an interesting alternative to the traditiomal ide
of sleep-mediated synaptic strengthening of important memories. Most mem-
ories formed during the day are irrelevant and a decay process winsches
that unwanted and unneeded memories are removed could result in arlgssen
of spurious learning and better generalisation capabilities [5].

In this study, we do not claim that the SHH provides a more correct descrip-
tion of memory consolidation during sleep than the ASCH as current empirical
evidence does not conclusively support the SHH. Indeed, it hasrmed by
Axmacher et al. [1] and by Diekelmann and Born (2010) [3] that the ASCH
and the SHH are not necessarily mutually exclusive, as a sequentiasproc
could exist with active system consolidation integrating newly encoded mem-
ories with pre-existing long term memories thereby inducing conformational
changes in the neocortex followed by global synaptic downscaling irr tode
avoid the saturation of synaptic networks. Rather, we draw inspiratiomtihe
SHH in order to design a training process for MLPs.

2.4. Synaptic Downscaling and Regularisation

The synaptic downscaling concept bears interesting comparison with $asne ¢
sical approaches to regularisation in the neural network literature. dBroa
speaking, regularisation is any modification to a learning algorithm which aims
to reduce the chance of overfit. Typically, the object is to smooth the respon
of the final model. Common methods for regularisation include early stopping,
wherein training is stopped when the error measure on a hold-out validation
sample begins to increase, or the inclusion of a penalty term in the error func
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tion for model complexity. In applications of the latter in MLPs, the error metric
is usually defined as MSE plus an additional (weighted) term which congists o
the sum of the squares of the weights. This alteration to the error function will
tend to reduce weight sizes in the final network and therefore make the net-
work’s response smoother. In turn this will tend to reduce overfit asfited
mappings require high curvature and hence large weights. The gémenabf

the regularised cost function in this case is given by:

Ereg = Limse + QW (1)

where« is the regularisation parameter which controls the trade-off between
reducing the error and increasing the smoothing. The teima penalty func-

tion which captures the complexity of the underlying network. If the penalty is
defined as the sum of the squares of the weights in the MLP, the appreach b
similarity to ridge regression in linear models, and it effectively implements a
form of ‘weight decay’ as in each epoch individual weights decay apprtion

to their previous size, i.e. exponentially, unless the weight is changed in the
learning process [17]. A wide number of variants on this basic apprioach
been examined including,‘weight elimination’ [33], where the decay pises
tuned in order to shrink small weight coefficients more heavily.

Although even basic weight decay approaches can notably improve-gene
alisation capabilities [9], we cannot assume that is is optimal to apply the same
decay constant to all weights in the network, and in particular, we could sup
pose that different decay constants should be applied to connectitvwmselpe
input and hidden, hidden to hidden, and hidden to output nodes. Naveas-
sume that it is optimal to apply the same decay constant(s) for the entire training
process, and [33] illustrates an approach where the decay constanaisely
updated during training.

Apart from reducing the values for weight parameters in a networkhano
way to attempt to improve generalisation is to directly restrict or seek to reduce
the structural complexity of the network. This can be done by restricting the
number of hidden layer nodes, or by ‘pruning’ individual node catioes in a
network. One approach is to set connections with small weights to zerebgher
‘tuning off’ or ‘pruning’ that connection. After the relevant weightg aleleted,
the (reduced) network is retrained. A significant number of studies mgply
network pruning have resulted over the past 25 years following eanty
[25, 26].
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As noted by [10], there is a close link between weight decay and pruaing,
an iterated pruning process effectively reduces to continuous wedglatyaur-
ing training. A downside of these approaches is that the learning proaedse
slow due to the need for repeated re-training and there is an implicit assumption
that deletion of connections with small weight values will not have muchteffec
on model fit. A better, if often computationally prohibitive, approach would be
to delete weights, whose deletion will have least effect on training errdo(o
train the network using all possible subsets of weights [8]). Of courseeto
termine which weight to delete, the MLP would need to be iteratively retrained
with each weight being removed in turn.

A more computationally feasible approach to pruning was developed by
Lecun et al. (1989) [10], namely the optimal brain damage (OBD) aphroac
In OBD the second derivatives of each weight parameter with respeheto
error function are used in order to determine which weights to remove. rAs fo
other pruning methods, OBD proceeds in an iterative manner. Initially the full
network is trained on the data, a pruning process is then applied, andwhe ne
network is then retrained.

From the above discussion, we can see that weight decay and priathg,
features of the SHH, are well-developed techniques in the neural neliesy
ature. Itis interesting to note that the development of these techniques stemme
from a statistical rather than a biological perspective. An important aspte
memory consolidation process that has not yet been embedded in theiregula
sation literature is the iterative nature of memory consolidation, with new mem-
ories only being slowly integrated into existing knowledge, with both memories
being altered in this process.

2.5. Neural Network Derived from a Sleep M etaphor

As noted in the introduction to this chapter, relatively little attention has been
paid to the use of ‘sleep’ metaphors for design of neural network algasith
Perhaps the best known of these algorithms is the ‘wake-sleep’ algorithm o
Hinton et al. [6] for unsupervised learning which draws on the standadil

of systems consolidation for declarative memory. In Hinton’s study, a multilaye
network of simulated stochastic neurons is described, with bottom up riecogn
tion connections during the wake phase being used to produce a rmeptese

of inputs in one or more hidden layers. In the ‘wake’ phase, neurandraren

by recognition connections, and generative connections are adapieidase
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the probability that they would reconstruct the correct activity vector ifetper
below. In the ‘sleep’ phase, neurons are driven by generativeemions, and
recognition connections are adapted to increase the probability that theg wo
produce the correct activity vector in the layer above. By alternatingigcitn
two directions, the hidden layer representations are modified until theygeod
an optimal representation of the original signal.

3. Model and Experiments

The general model we adopt for our experiments is a feed forward myéti-la
perceptron (MLP). We create training data from four test functions faneach
input vector in the training set, we inject differing amounts of noise into the
associated function output, thereby producing ‘learning’ problems fing
difficulty.

The MLP is exposed to a succession of non-overlapping ‘windowsaai-r
ing data during its wake cycles. During exposure to each training vector, a
learning process takes place in which synaptic potentiation via the bac&-prop
gation training algorithm is simulated. At the end of each data window, a sleep
cycle is simulated during which synaptic downscaling takes place, and this in
turn is followed by another wake cycle in which a new window of training data
is presented to the MLP network. During downscaling each weight is aeede
by a certain percentage.

Once the MLP has been trained, its out of sample performance on clean tes
data, generated using the relevant function, is assessed. This alldwsles
termine how well the MLP has performed in uncovering the correct uniderly
function, in spite of being presented with noisy data during training.

The results from the MLP developed using a simulated synaptic downscal-
ing process are benchmarked against those produced by a feeatdavii.P
which has been trained in one pass over the training data.

3.1. Datasets

We selected a suite of four synthetic regression problems so that welean re
ably generate data with specific amounts of noise. Figures 6, 7, 8 atd@acghp
representations of the bivariate problemsn F3, andF respectively. In every
synthetic dataset, we randomly sample 100 training examples of the form
where the input vectar € R¢, and the response variabjec R. The goal is
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to learn a target functiorf that maps x to y. The response variable of each ex-
ample is corrupted by random noise drawn according to a Gaussiarbfityba
distribution with certain: ando. Thus each training set of examples takes the
form {(z;, ) 119, wherez; = f(z;) + e;. f(x;) is the noise-free value of the
target function ana; is a random variable representing the noise. We experi-
ment with a set ofr values defined a§0.01, 0.1, 1.0, 10.0, 30.0, 50.0}, and

set t00.0. The details of the sampling procedure used for generation of training
and test data for different problems are given in Table 1. Note that isotsdy
added to the training data, whereas the data used to assess model gd¢ioeralisa
is not contaminated.

Furthermore, the response value in each input-output pair is normalised
within the [0.0, 1.0] interval prior to training. Normalisation of a noise-
corrupted valuex is performed usinga — min) /(max —min), wheremin and
max are the minimum and maximum values out of 100 training response values
respectively. Figure 5(a) shows the histograms of the normalised respait
ues for different regression problems. The same normalisation applietitgte
data, however this time each response value is noise-free. Figurénb{g the
histogram of the normalised response values for different problems.

3.2. MLP Design

The regression problems;, F5, F3, Fy are of two, five, two and two input
variables respectively. The architecture of a MLP consists of an inpeit {gith

the same number of input nodes as the dimensionality of the input of a problem,
a hidden layer of 10 nodes witAnh activation functions, and an output layer

of a single node with @aanh activation function. Training is performed using
standard back-propagation with a learning rate sét@05, iterated for2, 000
epochs. We are experimenting with the effect of the number of wake-sleep
cycles during training, and tried the proposed method with 5, 10, 15, and 20
cycles. This effectively means that each set of training examples is diinttz

the respective number of non-overlapping subsets.



Table 1. Regression problemswith the respective data sampling ranges for training and test datasets.
Notation x=rand(a,b) meansthat the x variableis sampled uniform randomly from theinterval [a, b].

Problem Training data Test data
—(z1-1)2 . .
Fi flzy, @) = m 100 points 10,000 points
x1,z2=rand(-3.0, 3.0) z1,zz=rand(-3.0, 3.0)
Fy  f(z1,72,23,74,25) = m 100 points 10,000 points
T1, T2, T3, T4, T5 T1, %2, T3, T4, T5
=rand(-3.0, 3.0) =rand(-3.0, 3.0)
F3  f(z1,z2) =21 *x2 + sin((x1 — 1) % (xz2 — 1)) 100 points 10,000 points
x1,xo=rand(-3.0, 3.0) z1,z2=rand(-3.0, 3.0)
1 =344 (20 —3)3 — (20 —3 . .
Fi  f(zi,22) =& )(:2(3)4110 (z2-3) 100 points 10,000 points

z1,x2=rand(-3.0, 3.0) z1,z2=rand(-3.0, 3.0)
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4. Resultsand Analysis

In the figures discussed in this section, we plot the average Mean Sdtisios
(MSE) that accrues from 50 runs of an MLP using different randoangyiat
initialisations as a function of the weight downscaling percentage that takes
place during a sleep phase. For comparison purposes we also ploethgav
MSE that is obtained from the baseline MLP algorithm that uses no weight
downscaling. Depending on the level of noise that is injected into eaconssp
variable, we categorise the learning problems into easy (Gaussianmoise
0.01 or 0.1), moderates(of 1.0 or 10.0), and hards(of 30.0 or 50.0). In
addition, Tables 2, 3, 4, 5 present the standard errors for the aarople MSE
estimates.

Figure 1 presents the results for probldm An observation that is con-
sistent across all different setups for the number of wake/sleep dgctbat
for the easy and moderate problem formulations the proposed method-outper
formed standard MLP. In addition, results suggest no clear trend in thatien
of the MSE curve as a function of the downscaling percentage, hovi@vitre
smaller levels of noise (i.e. 0.01, 0.1) increasing the percentage of dakvigsc
seems to worsen the generalisation performance.

The results for probleni, are presented in Figure 2. Here the number of
wake/sleep cycles exert an effect in the out-of-sample performance with th
number set to 15 attaining the best generalisation improvement over standarc
MLP for all problem formulations but the one where noisés set to 1.0. Re-
sults also suggest that in the easiest case (i.e. woifed.01), the method of
downscaling is difficult to improve performance over standard MLP and st mo
cases leads to performance deterioration.

Figure 3 presents the results for problém In this case, contrary to the
results observed in other problems, weight downscaling improves peafme
over standard MLP in the least noisy problems, whereas the perforrdatee
riorates over that of standard MLP for the noisiest problem formulatidris T
increase in performance in the case of noise levels of 0.01 and 0.1 cdan be a
tributed to the discrepancy between the distributions of the response balues
tween training and testing as can been seen in Figure 5(a) for FunctiaeB un
noise level 0.01 and Figure 5(b) for the same function. This was due domnan
sampling for the values; andzx, that created relatively disjoint sets of exam-
ples to train and test a model. The median of the response values is app@x. 0
for training, and 0.57 for testing. Out-of-sample performance is thezefor
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proved by relaxing the fit to the training examples. This incidental resuligdhou
be regarded as a valid scenario of training and testing data distribution mis-
match that can occur when dealing with real-world data. It reinforcesiéve v
that in case of overfit models, weight downscaling can improve outiopka
performance.

Finally, Figure 4 presents the results for probléin We observe that the
use of downscaling substantially improves the out-of-sample performance f
the noisiest problem formulations. This is evident in the case were the number
of wake/sleep cycles was the greatest, i.e., 15 and 20. For the easy asitaod
cases, figures suggest that downscaling has the tendency to wersamance.

This particular problem also exhibits an interesting trend in the evolution of the
the MSE curve as a function of the downscaling percentage. More sadigifi

the out-of-sample error decreases as the downscaling percentages@scfer

the noisiest problems, whereas it decreases as a function of incrpasogt-

age of the small and moderate levels of noise in the target.

4.1. Summary of Observations

The observations from the experiments can be summarised as follows:

1. The downscaling mechanism increases the generalisation performance
for most cases of moderate and high levels of noise.

2. No advantage is accruing from the proposed method when used with
small levels of noise in the target function. In most cases, performance
deteriorates.

3. The optimal number of wake/sleep cycles and the level of weight down-
scaling appears to be problem dependent. A principled approach such a
cross-validation should be applied to chose these effectively.

4. Overall, when training and testing over similar input-output distributions,
weight downscaling exerts a negative effect by disrupting the fit of a
model. On the other hand, in the case where there is discrepancy betweer
training and testing input-output distributions, the downscaling mecha-
nism improves generalisation.
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Table 2. Out of sample M SE: mean values and standard errors. Function 1.

Down  Noise0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.060 (0.0005) 0.077 (0.0011) 0.151(0.0005) 0.19%@@p 0.164 (0.0013) 0.172 (0.0009)
5 wake/sleep cycles

1% 0.063 (0.0007) 0.068 (0.0016) 0.166 (0.0011) 0.194 @BPO 0.245(0.0023) 0.169 (0.0036)

15% 0.062 (0.0005) 0.069 (0.0008) 0.162(0.0013) 0.158@®@P 0.252(0.0022) 0.173 (0.0018)

30% 0.067 (0.0003) 0.074 (0.0009) 0.159(0.0016) 0.158@P 0.239 (0.0030) 0.160 (0.0010)
10 wake/sleep cycles

1% 0.061 (0.0027) 0.077 (0.0018) 0.123(0.0029) 0.128 @PO 0.218 (0.0036)  0.160 (0.0049)

15% 0.084 (0.0038) 0.061(0.0003) 0.127 (0.0023) 0.12D@8BP 0.201 (0.0020) 0.186 (0.0030)

30% 0.105 (0.0015) 0.069 (0.0003) 0.134(0.0018) 0.13®@RP 0.214(0.0019) 0.181 (0.0017)
15 wake/sleep cycles

1% 0.056 (0.0021) 0.064 (0.0014) 0.159 (0.0035) 0.121 @2PO 0.228 (0.0019) 0.154 (0.0045)

15% 0.078 (0.0032)  0.066 (0.0009) 0.139 (0.0005) 0.110@@P 0.232(0.0019) 0.215 (0.0004)

30% 0.099 (0.0004) 0.077 (0.0008) 0.141 (0.0004) 0.110@P 0.206 (0.0009) 0.198 (0.0003)
20 wake/sleep cycles

1% 0.052 (0.0015) 0.078(0.0008) 0.074(0.0017) 0.182 @PO 0.239 (0.0077) 0.167 (0.0022)

15% 0.074 (0.0004) 0.077 (0.0008) 0.072(0.0004) 0.199(®BYP 0.243(0.0027) 0.212 (0.0005)

30% 0.086 (0.0004) 0.101(0.0005) 0.081(0.0002) 0.18%@EP 0.234(0.0009) 0.206 (0.0002)




Table 3. Out of sample M SE: mean values and standard errors. Function 2.

Down  Noise0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.034 (0.0007) 0.107 (0.0019) 0.167 (0.0027) 0.17H8YP 0.204(0.0073) 0.234 (0.0041)
5 wake/sleep cycles

1% 0.188 (0.0053) 0.141(0.0041) 0.203(0.0127) 0.202 @¥P1 0.156 (0.0042) 0.212 (0.0126)

15% 0.087 (0.0040) 0.074 (0.0013) 0.186 (0.0072) 0.16D@P 0.149(0.0026) 0.225 (0.0077)

30% 0.031(0.0009) 0.064 (0.0022) 0.197 (0.0040) 0.149EBY 0.147 (0.0019) 0.226 (0.0058)
10 wake/sleep cycles

1% 0.124 (0.0086) 0.103 (0.0043) 0.263 (0.0090) 0.375@Lp1 0.082 (0.0047) 0.289 (0.0115)

15% 0.025 (0.0008) 0.077 (0.0017) 0.234(0.0030) 0.23®E¥YP 0.068 (0.0027) 0.206 (0.0060)

30% 0.035 (0.0007) 0.083 (0.0005) 0.255(0.0016) 0.169ELY 0.065 (0.0015) 0.223(0.0017)
15 wake/sleep cycles

1% 0.048 (0.0033) 0.107 (0.0053) 0.296 (0.0050) 0.175 @¥PO 0.084 (0.0021) 0.202 (0.0095)

15% 0.038 (0.0012) 0.075(0.0007) 0.269 (0.0004) 0.06&@@p 0.067 (0.0026) 0.172 (0.0031)

30% 0.043 (0.0007) 0.087 (0.0006) 0.266 (0.0005) 0.08®@EP 0.061 (0.0028) 0.218 (0.0008)
20 wake/sleep cycles

1% 0.037 (0.0009) 0.083(0.0026) 0.124 (0.0054) 0.149 @2PO 0.307 (0.0107) 0.286 (0.0064)

15% 0.042 (0.0004) 0.102 (0.0007) 0.150 (0.0007) 0.108@BYP 0.236 (0.0024)  0.249 (0.0006)

30% 0.054 (0.0002) 0.117 (0.0009) 0.187 (0.0001) 0.122D@BP 0.178(0.0009) 0.229 (0.0005)




Table 4. Out of sample M SE: mean values and standard errors. Function 3.

Down  Noise0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.203 (0.0002)  0.095 (0.0003) 0.030(0.0001) 0.030@P 0.050(0.0007) 0.036 (0.0001)
5 wake/sleep cycles

1% 0.203 (0.0010) 0.113(0.0037) 0.043(0.0007) 0.043 @®PO 0.077 (0.0019) 0.053 (0.0010)

15% 0.182 (0.0026) 0.091 (0.0027) 0.031 (0.0004) 0.03®@2P 0.065(0.0022) 0.044 (0.0004)

30% 0.175(0.0034) 0.083(0.0015) 0.027 (0.0002) 0.03@E2P 0.051 (0.0020) 0.041 (0.0005)
10 wake/sleep cycles

1% 0.197 (0.0013)  0.042 (0.0009) 0.054 (0.0023) 0.034 BPO 0.078 (0.0030) 0.075 (0.0026)

15% 0.183(0.0019) 0.034 (0.0004) 0.057 (0.0018) 0.03®M@LY 0.047 (0.0025) 0.056 (0.0008)

30% 0.176 (0.0025) 0.034 (0.0007) 0.045(0.0010) 0.03ME2P 0.032(0.0001) 0.040 (0.0004)
15 wake/sleep cycles

1% 0.197 (0.0021) 0.064 (0.0015) 0.066 (0.0023) 0.038 (BPO 0.040 (0.0018) 0.060 (0.0019)

15% 0.188 (0.0032) 0.053(0.0012) 0.049 (0.0011) 0.03L@@P 0.035(0.0004) 0.046 (0.0002)

30% 0.164 (0.0028)  0.045(0.0003) 0.052 (0.0016) 0.03D@P 0.034(0.0001) 0.051 (0.0004)
20 wake/sleep cycles

1% 0.219 (0.0035) 0.051(0.0013) 0.152(0.0034) 0.063 @PO 0.073 (0.0055) 0.063 (0.0029)

15% 0.228 (0.0006) 0.043 (0.0002) 0.075(0.0004) 0.03DELY 0.029 (0.0001) 0.042 (0.0003)

30% 0.208 (0.0004) 0.034 (0.0000) 0.063 (0.0003) 0.03@EDP 0.029 (0.0001) 0.039 (0.0002)
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Function 1

Figure 6. Plot of regression problem 1 of Table 1.

Function 3
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Figure 7. Plot of regression problem 3 of Table 1.

Function 4

f(x1,x2)

Figure 8. Plot of regression problem 4 of Table 1.



Table 5. Out of sample M SE: mean values and standard errors. Function 4.

Down  Noise0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.002 (0.0000) 0.002 (0.0001) 0.002 (0.0001) 0.020@P 0.066 (0.0003) 0.133(0.0002)
5 wake/sleep cycles

1% 0.005 (0.0001) 0.004 (0.0001) 0.003(0.0001) 0.037 @@PO 0.093 (0.0006) 0.152 (0.0027)

15% 0.013 (0.0001) 0.011(0.0003) 0.014(0.0002) 0.04H@@P 0.087 (0.0010) 0.141 (0.0021)

30% 0.028 (0.0005) 0.027 (0.0006) 0.041 (0.0007) 0.06%(BY 0.087 (0.0017) 0.124 (0.0025)
10 wake/sleep cycles

1% 0.007 (0.0005) 0.004 (0.0002) 0.010(0.0011) 0.065 @BPO 0.184 (0.0040) 0.156 (0.0038)

15% 0.014 (0.0004) 0.012(0.0002) 0.010(0.0003) 0.068@®BP 0.108 (0.0033) 0.093 (0.0016)

30% 0.024 (0.0003) 0.026 (0.0003) 0.032 (0.0007) 0.09%@BY 0.085 (0.0020) 0.083 (0.0028)
15 wake/sleep cycles

1% 0.012 (0.0008) 0.006 (0.0008) 0.014 (0.0021) 0.070 @BPO 0.147 (0.0041) 0.144 (0.0057)

15% 0.015 (0.0003) 0.013(0.0009) 0.010(0.0002) 0.10H(®@p 0.073(0.0026) 0.113 (0.0044)

30% 0.021 (0.0001) 0.024 (0.0002) 0.030 (0.0004) 0.12D@@P 0.062(0.0008) 0.090 (0.0015)
20 wake/sleep cycles

1% 0.008 (0.0003) 0.008 (0.0004) 0.032(0.0023) 0.061 @PO 0.054 (0.0034) 0.166 (0.0065)

15% 0.015 (0.0003) 0.019 (0.0007) 0.018 (0.0002) 0.08D(BY 0.036 (0.0003) 0.121 (0.0012)

30% 0.022 (0.0001) 0.030(0.0001) 0.034(0.0001) 0.098@BP 0.036(0.0001) 0.115 (0.0010)
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5. Conclusion

In prediction problems, fitting the training data too closely can be counterpro-
ductive. Reducing the expected loss on the training data beyond some point
causes the population-expected loss to stop decreasing, and ofteto start
crease. Regularisation methods in MLPs, like weight decay, prevemiosec-
fitting by constraining the magnitude of the adaptive weights during the learning
phase. In the chapter we showed that simulating a simple weight downscaling
mechanism during a sleep phase can, similarly to weight decay, exeritiggpos
effect on generalisation in the case of noisy datasets.

Controlling the parameters defined as tmvnscaling percentagand the
number of wake/sleep cyclegulates the degree to which the expected loss on
the training data is minimised. Each of the two parameters controls the degree-
of-fit and thus values for each of these parameters interact. Deqyehsinalue
of downscaling percentage, increases the best value for the waketyides.
Ideally, one should estimate optimal values for both by minimising a model
selection criterion jointly with respect to the values of the two parameterseTher
are also computational considerations; increasing the value of sleepycikes
produces a proportionate increase in the computation. Its value shoulddee ma
as large as is computationally feasible. The value of downscaling pereentag
should then be adjusted using cross-validation.

A final observation concerns the nature of the learning process liserba
via a number of sleep/wake cycles. Unlike fitting the weights of the network
during a number of epochs with a fixed learning rate, the sleep/wakeagbpro
insteadlearns more slowlyIn general, it has been repeatedly advocated in the
statistical machine learning literature that learning methods that learn slowly
tend to generalise well.
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Chapter 3

PLANT PROPAGATION-INSPIRED
ALGORITHMS
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Abstract

Plants represent some 99% of the eukaryotic biomass oféinephnd
have been highly successful in colonising many habitants differing
resource potential. The success of plants in "earning adivsuggests
that they have evolved robust resource capture mechanisthsepro-
ductive strategies. In spite of the preponderance of pifatdurprisingly
little inspiration has been drawn from plant activities tbe design of
optimisation algorithms.

In this chapter we focus on one important aspect of planvities,
namely seed and plant dispersal. Mechanisms for seed amictigpersal
have evolved over time in order to create effective ways spelise seeds
into locations in which they can germinate and become dstedul. These
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mechanisms are highly varied, ranging from morphologitalracteris-
tics of seeds which can assist their aerial or animal-medidispersion,
to co-evolved characteristics which "reward” animals areicts who dis-
perse a plant’'s seeds. At a conceptual level, dispersal eaotsidered
as a "search process”, wherein the seed or plant is searfiririgood”
locations and therefore, inspiration from dispersal d@diy of plants can
plausibly serve as the design inspiration for optimisatitgorithms.

Initially, we provide an overview of relevant backgroundtbe seed
dispersal process from drawing on the ecology literatureenTwe de-
scribe a number of existing optimisation algorithms whicavd inspira-
tion from these processes, and finally we outline opporitesior future
research.

1. Introduction

The key imperative of a plant’s life is to maximise its number of viable offspring
[11]. Many species of plants reproduce by producing seeds andlibgersing
these in the landscape. The seeds are in essence embryonic planteeirch
protective coat, usually with some stored food in order to provide energié
germination process. The technical term for the dispersed undigsporeand
this may consist of a seed, spore or fruit containing seeds, plus aitjoadt
tissue which assists in dispersal. In this paper we employ the term seed in a
board sense to encompass all of these cases.

If the seeds find a suitable location, they germinate and in turn reproduce
themselves. Hence, the process of seed dispersal plays a critical eoleuinng
the long-term success of a plant species and is the predominant pogeesish
plants can ‘move around’ a landscape [18].

1.1. Dispersal Mechanisms

Plants make use use of multiple dispersal mechanisms, including:

1. wind dispersal,

2. animal dispersal,

3. water dispersal, and
4.

ballistic dispersal.
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Hence, dispersal mechanisms can be classed as abiotic (wind, watavity)gr
or biotic (insect or animal dispersal). Many plants use more than one gi&@per
mechanism and dispersal can take place in stages. For example, windeispe
seeds can subsequently be redispersed by ants or seed hoardintg.rod

Morphological adaptations in plants and seeds have arisen over time in or-
der to increase the efficiency of seed dispersal. In the case of windrsiiEp
seeds which have characteristics such as small size, wings, hairslietcoria
slowly, essentially by lowering their wing loading (ratio of mass to surfacg)are
and this promotes wider seed dispersal. Species with these adaptatioasyare v
common, comprising some 10-30% of all plants, and up to 70% of the flora in
temperate plant communities [18]. Wind dispersed plants are common in dry
habitants such as deserts [9]. An interesting example of this is providedrby tu
ble weeds where the plant shoot dies and detaches from the root syltem.
seeds attached to the upper part of the plant are then dispersed as wrs blo
around the landscape. Some curious adaptations have emerged in gmaer to
mote the effectiveness of wind dispersal mechanisms whereby a plantunanip
lates its environment in order to ‘generate’ a local wind current in ordas$ost
dispersal. One example is provided by the spores of ascomycete fusge wh
by synchronising the ejection of thousands of spores, the fungi cactbev
of air that carries their spores further than they would otherwise disav3.
Another example is provided by oyster and shiitake mushrooms which release
water vapour before releasing their spores which in turn cools theusding
air creating convection currents thereby helping to disperse their si3éijes

Some curious adaptations have emerged in order to promote the effective-
ness of wind dispersal mechanisms whereby a plant manipulates its environme
in order to ‘generate’ a local wind current in order to assist dispef3aé ex-
ample is provided by the spores of ascomycete fungi where by syrisimgpn
the ejection of thousands of spores, the fungi create a flow of air tha¢sa
their spores further than they would otherwise disperse [37]. Anotkene
ple is provided by oyster and shiitake mushrooms which release waterrvapou
before releasing their spores which in turn cools the surrounding aitilcge
convection currents thereby helping to disperse their spores [36].

Adaptations for animal dispersal include the offering of ‘rewards’dis
persion, such as fleshy, nutritious, fruits which attract the attention gf-fru
vores (fruit eaters) who consume the fruit. The seeds contained inuibpdiss
through the digestive tract of the animal and are eventually excreteditack
the environment. This means of seed dispersal is common with some 50-75%
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of tree species in tropical forests producing fleshy fruits adaptedforad con-
sumption [9]. A similar figure is quoted by [30] who notes that 75% of tropical
tree species display adaptations for biotic seed dispersal. Other (wardje
adaptations for animal dispersal include clinging structures such as lowok
resin whereby seeds stick to fur or feathers of animals and are acglyrdis-
persed as the animal moves around the environment (this mechanism led to the
discovery of Velcro in 1948, inspired by the observation of seed lticking
to the hair of a dog [20]). Many types of animals are seed disperserslinglu
various species of mammals, birds, bees, fish and reptiles [10, 30]. Xxane e
ple of such dispersal is provided by ants. It is estimated that more than010,00
plant species have evolved mechanisms to assist dispersal of theibyesus
[31]. Typically the ants are attracted using by an elaiosomes, or flesttyistey
attached to the seed which is rich in lipids and proteins. The elaiosome and
attached seed is taken to the nest to feed larvae and the seed is therediscard
and later germinates. Animals and insects can also play a role as secondan
dispersers. For example, ants and dung beetles can transport $eedhave
fallen from plants.

Apart from wind and animal dispersal, seeds can also be disperseatéy w
for example via buoyant coconuts. Some plant species have evolvedidallis
fruits that open explosively and can toss seeds several metres fropariet
plant. In this chapter we employ the term seed in a board sense to encompas
all of these cases.

1.2. Why Do Plants Disperse Their Seeds?

An obvious question given the wide range of strategies adopted by plants to
disperse their seeds is what evolutionary advantages accrue to ptantthéir
investment in dispersal structures? Such investments only make senseii§disp
ing seeds leads to a higher rate of seed survival and a higher ratbssftgient
establishment. Three hypotheses are usually proposed to supporafiteed
nature of seed dispersal [9], namely the:

1. escape hypothesis, the
2. colonisation hypothesis, and the

3. directed-dispersal hypothesis.
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The core of theescape hypothesis the claim that seeds which are dispersed
further from their parent have higher rates of survival and repetide success.

In other words, if seeds were only dispersed in close proximity to theinpare
their rates of mortality would be higher, due to density-dependent mortality
factors such as insect / rodent predators which would be attractedsterswf
‘target plants’, susceptibility to pathogen attack, and resource competition f
other seedlings. Another factor which could promote dispersal is ‘sbechpe’

as a non-dispersed seed would end up competing directly with their parent f
light and other resources. In a study of 34 tree species, [1] foundséeals
from species requiring light-gaps for early seedling survival hadeloates of
descent, enhancing their chances of escape from the light shadosirgfahent.

The colonisation hypothesisotes that habitats and environments change
over time, and a currently resource poor environment may subsequently
become more abundant. Hence, seeds which reach this environmeumpgerh
remaining dormant initially, will be well-placed to germinate and colonise
the area if conditions later improve. This hypothesis underscores thehdct
seed dispersal can be temporal as well as spatial, as some seeds dan rema
in a dormant condition for considerable periods awaiting better conditions.
Dormancy capability is valuable, as it can notably increase the reproductiv
success of the parent plant [33].

Thedirected dispersal hypothedi8] argues that plants can adapt their di-
aspores and / or their morphology in order to enhance their chancéspefst
ing seeds into locations which provide good conditions for seed establishmen
and growth. For example, plants can adapt their morphology in order to utilise
differing seed dispersing agents. Non-random dispersal into resoich envi-
ronmental patches presents an obvious evolutionary advantage ayvana
random seed dispersal methods [26, 32].

1.3. Design Trade-Offs

Plants can exert some control over their seed dispersal patterns dsotogipal
factors such as plant height, fruit / seed size and design, and eabsaigsion
(release of fruit/seed) are all adaptable over time.

Taking plant height, a taller plant can produce a wider seed shadow wi win
dispersal than a low-sized plant. Of course, a greater degree ofitisggément
is required to grow a taller plant, leaving less energy for seed produgi@n,
tentially creating a design trade-off.
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In the case of seed design, plants can select different levels of invgstme
in their seeds, with some plants adopting a ‘low investment’ model, where the
plant invests little in individual seeds but produces a large number of thim, w
other plant species adopting a ‘high investment’ model, producing fewgerla
seeds. A larger seed can contain greater energy reserves thafedncmg
the probability of germination but larger seeds are usually harder to desper
than smaller ones, requiring larger animals, stronger winds or more pdwerf
propulsion mechanisms [34]. Hence, larger seed size will impact on tigndes
of the plant’s dispersal mechanisms.

The level of investment in fruit production (for fruiting plants) can also be
adapted as production of richer, more attractive, fruits will enhance lse&d
dispersal but at the expense of leaving less energy for other ptauiteenents.

In essence, when ‘selecting’ a dispersal mechanism, two costs are being
balanced, the cost of seed mortality (arising when seeds produced lapta p
fail to subsequently germinate), and the allocation costs (i.e., the costs of that
dispersal mechanism. In summary, plants can employ a wide variety of seed
dispersal techniques, each requiring different levels of resouvestiment, and
each requiring differing plant morphologies which embed specific tréfde-o

1.4. Structure of Paper

The remainder of this chapter is organised as follows. Section 2 provides so
background on aspects of the seed dispersal process Section 3attinen-

ber of optimisation algorithms whose design has drawn inspiration from the
plant propagation process. Conclusions and opportunities for futarke ave
discussed in Section 5

2. Background

As the seed dispersal pattern of plants is important both for individual and

species-level survival, a significant research effort has bepanebed in order

to gain insight into the dispersal patterns for various plant species.y les\a

(2008) [13] notes that the ‘Holy grail of seed dispersal is to accurabedgict

the probability distribution of seed density from a particular configuration of

parents and then relate those distributions to seedling demography’ (p. 604
The spatial distribution of seed dispersal from an individual plant, otedus

of plants, is known as aeed shadowMore formally, these seed shadows can
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be represented by a probability distribution, relating the probability that an
individual seed is dispersed a given distance from its maternal plantiaSpa
dispersal patterns can be considered either in one dimensional terossifag

on dispersal distance, or in two dimensions by also considering the direction
ality of dispersion. Both dispersal distance and direction for an individua
plant will be impacted by the nature of the plant’s dispersal mechanism and by
location-specific factors.

Ballists and ant-dispersed seeds tend to travel the shortest distandes (up
a few metres typically), with wind-dispersal and animal dispersal producin
greater dispersal distances in terms of both mode and maxima. Directional dis-
persal can be influenced by several factors, the most obvious ofivgicevail-
ing wind direction in the case of wind-dispersed seeds [34]. The dirediipn
of animal dispersed seeds will be influenced by the topology of the logal en
ronment as this will impact on animal movement patterns.

A practical issue that arises in attempting to capture empirical data on seed
dispersal is that long-range dispersal events tend to be undetge@s it be-
comes difficult to accurately attribute seeds to specific parent plants ds see
disperse over increasing distances. For example, extreme distancesalispe
events, such as may occur when seeds get stuck to the feathers afrlieds
are unlikely to be captured in empirical studies. The problem of capturiad go
data on long-dispersal events is noted by many studies, with [5] pithily stating
that ‘for [dispersal] distances exceeding a few hundred metres vemtily
know nothing’. However, there have been some attempts to construatagene
frameworks of long-distance dispersal [7] in order to facilitate the coottm
and testing of the biogeographical consequences of long-distaneggitgdJn-
derstanding long-distance dispersal of seeds is of critical importan@nimg
insight into the spread of plant populations (including invasive speaesl)jn
explaining the diversity and dynamics of ecological communities [4].

Another perspective on seed dispersion is that it can be considetadras
place across time as well as spatially [7]. An obvious example is the case of
long-distance dispersal whereby a seed or spore may be dispersstifoy on
ocean flotsam, and take many days to reach its final destination. Moratigner
seed germination and spore revival may be long delayed awaiting suitable en
vironmental conditions and thus we can distinguish between seeds germinating
from aseed banKseeds dispersed in the past which have lain in the soil) and
seed rain(recently deposited new seeds arising from current dispersal).
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2.1. Modelling Seed Disper sal

Two main approaches have been taken to modelling of seed dispersatpadter
conceptual approach which attempt to build a model from the underlyingr phy
ical mechanisms of dispersal, and an empirical approach which seekeisae
fit a mathematical model to real-world data.

In seeking to build a model of seed dispersal, [13] notes that an important
distinction must be made between cases where the seeds are disg@cted
ically, for example by wind, and cases where seeds are dispbistcally,
for example, by animals or insects. In the former case, the focus is on pa-
rameterising a mechanistic seed dispersal model, accounting for plant,heigh
characteristics of the seed structure, wind conditions etc. In the lattertbase
situation is more complex, and it is necessary to consider factors govemming
mal movement, animal physiology, and animal behaviour. Initially thought to be
infrequent, reports of such directed dispersal by animals are incgeasimore
detailed studies of the food caching behaviours of animals are unde{&Hen

2.1.1. Modeling Wind Dispersal

The earliest studies which attempted to construct a model of wind bornea-dispe
sal of seeds used a ballistic formulation, considering seeds to be nargubw
projectiles [8]:

_ Hu

=7 (1)

wherez is the predicted horizontal distance from maternal parent to the de-
position site,H is seed release height above the grouRds a constant de-
scent velocity, and. is the horizontal wind velocity averaged betwelnand
the ground. The basic ballistic model assumes that the dispersed seleglsreac
terminal velocity (the falling velocity of a seed in still air) immediately after
release, and that horizontal wind velocity is constant during the deghase.
Although this model is a simplification of reality, it highlights that there
will be a variation in the deposition distance depending on the wind speeds
in the downwind, crosswind and vertical directions, the terminal velocityef th
seed, and its release height. For example, a low terminal velocity, suchués wo
arise with a lightweight or an aerodynamic seed structure, will enhanoerdidp
distance as there is more chance of an uplift eddy with consequent tiatizo
displacement during the lengthier ‘descent’ process. The model also ilesstra
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that the detachment mechanism from a plant is important as this determines the
minimum level of wind speed which will act on the seed when it is detached
from the plant.

A shortcoming of these models is that they produce seed dispersal estimate:
which have far lower maximum dispersal distances than are seen in the real
world. A more realistic model can be obtained if variable windspeeds are in-
corporated, with turbulent fluctuations in the vertical velocity component. Sim-
ulations using these models produces dispersal distributions which are more
realistic, producing maximum seed dispersal distances that are two to three o
ders of magnitude bigger than those produced by simple ballistic models. These
distributions can be approximated by a power law dispersal kernel [18].

At a macro level, it may be possible to model long distance wind disper-
sal as storms, trade winds and high-altitude jet streams are at least partly pr
dictable on longer time scales in terms of direction, time of year, and typical
wind speeds [7].

2.1.2. Modédling Animal Dispersal

As animals are important seed dispersal vectors, knowledge of animal move
ment patterns and animal physiology could contribute to our understantling o
seed dispersal distribution. Recent years have seen the develogrttenhew
multi-disciplinary field ofmovement ecolod®9]. This field is concerned with
empirical and theoretical study into the movement of animals, plants or microor-
ganisms. Areas of interest include movement phenomena surroundaugrgr
and seasonal migration.

The simplest models of animal foraging movement ignore cognition and
sensory inputs, corresponding to a case where resources aoenigrttispersed
and cognition and sensory capabilities are either non-existent or alteigati
too limited to effectively aid the search process. In this case, foraging-move
ment can be modelled as being a random walk. The best-known random walk
models assume Brownian motion and it was long thought that this could be used
to approximate the diffusion of biological organisms. In turn, due to the @lentr
Limit Theorem whereby the distribution of the sum of i.i.d. random variables
with finite variance converges to a Gaussian, this would produce a noisaal d
tribution for multi-step foraging expeditions [29].

However, the assumption of Brownian motion ignores important aspects of
real-world foraging including the ‘directional persistence’ typically exieith
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by organisms. Animals rarely undertake 180 degree turns and revisit-a jus
sampled site. Animals also do not blindly move around the environment but
rather stop when a resource is found, nor do they tend to persist chggaa
‘patch’ in the environment which has been unfruitful in the recent past.

Movements of animals might therefore be expected to display ‘fat tails’ hav-
ing a greater number of very short and very long ‘jumps’ than would be ex
pected under a Brownian motion assumption. When tested using empirical data
from foraging organisms, the results indicate that, particularly in case®wée
sources are sparsely and randomly distributed, the foraging movememéspf
organisms are described as @y flight, giving rise to thd_évy flight foraging
hypothesi$28]. A Lévy flightis a random walk in which the step-lengths (jump
sizes) have a power law distribution.

We may also consider a slightly move complex foraging model where re-
sources are randomly distributed in the environment and the forager isdllow
to have sensory perception, such as the ability to ‘see’ or ‘smell’ foazlress
and move accordingly. In this case, the animal behaves as follows [27]:

i. if there is a resource located within a direct vision distanc¢hen the
searcher detects it with certain probability and moves on a straight line to
the detected resource;

ii. if there is no detected resource within distangethen the searcher
chooses a direction at random and a distaideom a probability dis-
tribution and moves incrementally to the new point constantly looking for
resources within a distaneg along the way;

iii. if it does not detect any resources, it stops after traversing distgnce
and chooses a new direction and distahge, otherwise it moves to the
resource;

where the probability distribution for move distances isévy distribution, as
follows:
P(ly) ~ 1" (2)

Analysis in [27] suggests that in the absence of a priori knowledge afigiie-
bution of food resources, the optimal strategy for a forager is to choaese.
The study notes that several empirical studies of foraging behavioossaea
range of organisms (micro organisms, insects, birds, mammals) have lbeen fo
to follow a Lévy distribution of flight lengths or times witf ~ 2.
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Although the above analysis ignores a number of important issues cencern
ing real-world foraging movement such as personal and social learaiwi
ronments in which resources are patchy, and local environment topdlpoy;
vides some support for a claim that the foraging movement patterns of animals
will produce a leptokurtic pattern of seed dispersal.

An additional physiological factor in animal-mediated dispersal is the length
of time the seed is carried by the animal before dispersal. Some animals such a
birds will typically excrete ingested seeds within a few hours of consumption,
in other cases, the digestion passage time may be considerably longer, 3-1°
days in the case of some species of tortoises [10]. Seed morality may afso var
depending on the animal that ingests them, although in the case of tortoises.
less than 5% of seeds were found to be damaged whilst in transit through the
digestive tract [10].

Animal-mediated seed dispersal is a complex animal-plant interaction
which can take multiple forms, including cases where seeds commence ger-
mination whilst in the digestive tract of an animal. Other examples include the
caching of seeds by animals in areas suitable for seed establishmentrand su
vival. Initially, thought to be infrequent, reports of such directed disglelby
animals are increasing, as more detailed studies of the food caching hesavio
of animals are undertaken [35]. Examples include cases where animhs cac
seeds in areas of suitable soil conditions for seed growth, and cadtsegds at
an optimal depth for their survival. Such synergistic interactions are iplaus
as an ecology in which both plants and animals thrive is beneficial to both.

The social environment of animals also impacts on seed dispersal. Some
mammals and birds live in groups, and hence defecate collectively at tadir fe
ing and resting sites. In turn, this will result in more localised dispersalaxdfse
than would occur if the seed consumers were solitary.

Due to the number of relevant factors, and our imperfect understanfling
animal behaviours, is clear that developing a comprehensive modelmélan
movements, which could then feed into a model of animal-mediated seed dis-
persal, is a non-trivial task. However, we can expect to see contamitethpts
to develop such models as the field of movement ecology develops.
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2.2. Modelling
2.2.1. Empirical Modelling

An alternative approach to the modelling of seed dispersal patterns isdercon
trate on empirical data rather than attempting to construct an explanatory model
using underlying physical mechanisms. Empirical examination of the relation-
ship between the number of seeds dispersed and distance from plamnt p
indicates a leptokurtic distribution, displaying a higher peak and a heavier tail
than a Gaussian distribution, with seed numbers decreasing monotonically with
distance from the parent plant [9, 19, 34]. In attempting to reverse eegm
seed distribution function from observed seed count data, the aim is tvemc

a probability density functiop(z) which gives the probability that a dispersed
seed arrives at a distangeaway from the source plant. This defines a disper-
sal kernel which maps seed density to distance (one dimensional casegd
density by unit area to distance (two dimensional case) [18]. Typicaleker
seen in the literature are Gaussian, negative exponential, and the ipearse
function. A negative exponential model will have the general form [3]:

Sp = ay - exp(—by - D) 3)

whereSp is the density of seeds at distanbefrom the source and; andb,

are constants indicating the density of seeds falling at the source and ple slo
of the decline in seed density with distance. In contrast, an inverse pove mo
produces longer, fatter, tails:

Sp =ay - (D)™ 4)

Based on sample of 73 herbaceous species and 75 tree/shrub sar@ples [3
dicates that a negative exponential distribution provides a reasonatulele
data, noting that the fit was better for the part of the curve around the mode
with the tail area being less well-explained by this distribution. The study also
noted that many empirical investigations stop collecting data on seed dispersal
long before the end of the right tail and hence, their results need to tevitta
caution.

Differing studies have examined the seed dispersal patterns of numerous
plant species and these have have produced varying suggestionslasther
a negative exponential or an inverse power model (negative powigbdign)
produces a better fit to the collected data [26] . The relative scarcitytaf da
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on long-range dispersal of seeds can make it difficult to distinguish leetwe
alternative model specifications.

In an attempt to better explain the tail of dispersal curves, some authors
including [3] have suggested the use of a mixed model formulation with two
kernel components: with a fat-tailed kernel for long distance dispersdl, a
negative-exponential component for short-distance dispersal:

Sp = asz-exp(—=bs- D)+ (c3-D)™P (5)

As distance from the parent plant increases, the first component gaesato
and the second component then estimates the tail.

One interesting question is whether the ‘typical’ tail shape of the dispersal
curve is qualitatively impacted by the mode of dispersal, in other words,rdo ce
tain dispersal mechanisms produce a significantly different tail to the deslper
curve? Based on a study employing 68 different datasets, [34] inditses
there is no clear link between tail shape and dispersal mode, suggesting tha
there is relatively little selection pressure for tail behaviour.

A further complicating factor is that the seeds of most plants are dispersed
by multiple mechanisms. Hence, their seed shadows are comprised of a mixture
of dispersal models [17], hence, the calibration of a seed distributionrpatte
to a single model is likely to be errorful. An additional feature is that disper-
sal agents may engage in secondary dispersal, i.e., from initial disgéesal
thereby increasing the seed shadow.

2.3. Plant-inspired Algorithms

Until recently, little attention was paid to the potential utility of plant metaphors
for the design of computational algorithms. The last few years have seen in
creased interest in this area, with the development of a number of plaireithsp
algorithms. Broadly speaking, these fall into three categories, hamely algo-
rithms inspired by:

i. plant propagation behaviour,
ii. light-foraging behaviour (branching algorithms), and
iii. purported swarm behaviour of plant root networks.

In this paper we restrict attention to the first of these.
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3. Plant Propagation Algorithms

Plants have a repertoire of processes by which they propagate themiselve
cluding seed dispersal and root propagation. Effective propagptays an
important role in ensuring the survival of plant species, and in turn thiers
on the ability of the plant to propagate itself into resource-rich areas. gl
process can metaphorically provide inspiration for the design of rolptishie
sation algorithms and also for the design of engineering systems [20].

Three algorithms which have been inspired by these processésy#sive
Weed Algorithnj15], thePaddy Field Algorithnj21] and theStrawberry Plant
Algorithm[24] are discussed below.

3.1. Invasive Weed Optimisation Algorithm

Theinvasive weed optimisation algorithtWWO) (pseudocode provided in Al-
gorithm 2), based on the colonisation behaviour of weeds, was probnse
Mehrabian and Lucas in 2006 [15]. The inspiration for the algorithmearos
from the observation that weeds, or more generally, any plant, cactieéy
colonise a territory unless their growth is carefully controlled. Two aspsfcts
this colonising behaviour are that weeds thrive in fertile soil and rep®cwre
effectively than their peers in less-fertile soil, and the dispersal ofssgedng
plant reproduction is stochastic.

Algorithm 1: Invasive Weed Algorithm [15]

Generate;,i+io: Seeds and disperse them randomly in the search space;
Determine the best solution in the current colony and store this location;

repeat

Each plant in the population produces a quantity of seeds depending quatlity
of its location;

Disperse these new seeds spatially in the search space giving rise ttangsy p
If maximum number of plant$t... > pinitiar) has been exceeded, reduce the
population size t@,.. by eliminating the weakest (least fit) plants. This simulatgs
competition for resources;

Assess the fitness of new plant locations and, if necessary, updatesthedation
found so far;

until until terminating condition

Output the best location found,;
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Algorithm 2: Invasive Weed Algorithm

Generateiniial Seeds and disperse them randomly in the search space;
Determine the best solution in the current colony and store this location;

repeat

Each plant in the population produces a quantity of seeds depending quatlity
of its location;

Disperse these new seeds spatially in the search space giving rise ttangsy p
If maximum number of plantgsm.x > piniiat has been exceeded, reduce the
population size tpmax by eliminating the weakest (least fit) plants. This simulates
competition for resources;

Assess the fitness of new plant locations and, if necessary, updatestiedation
found so far;

until terminating condition

Output the best location found;

The three key components of the algorithm are seeding (reproducteet, s
dispersal and competition between plants. Mehrabian and Lucas opatiagoin
these mechanisms in the following way in the IWO algorithm.

3.1.1. Seed Production

Each plant produces multiple seeds, based on its fitness relative to that of th

other plants in the current colony of weeds. A linear scaling system is used

whereby all plants are guaranteed to produce a minimum number of seeds
(mingeeqs), and no plant can produce more than a maximum number of seeds
(mazseeqs). The number of seeds produced by an individual plant is calculated

using the following:

8(1‘) — f(ff) - fmin

fmax - fmin
where fiax and fni, are the maximum and minimum fitnesses in the current
population andf () is the fitness of the plant.

* (Smax - Smin) + Smin (6)

3.1.2. Seed Dispersal

While the IWO algorithm employs the notions of fithess and reproduction, un-
like the GA, the IWO does not use genetic operators in the creation of popu-
lational diversity. Exploration of the search space is obtained via a simulated
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seed dispersal mechanism. The seeds associated with each plant arsedisp

by generating a random displacement vector and applying this to the location
of their parent plant. The displacement vector haslements corresponding

to then dimensions of the search space, and is obtained by generating

mally distributed random numbers, with a mean of zero and a standard deviation
calculated using the following:

. . n

Oiter = <W> (Umaw - Umin) + Omin (7)
termar

whereiter is the current algorithm iteration numbeéter,, .. is the maximum

number of iterationsg,,,.; ando,,;, are maximum and minimum allowable

values for the standard deviationjs a non-linear modulation index, aag.,

is the standard deviation used in the current iteration in calculating the seed

displacements.

The effect of this formulation is to encourage random seed dispemat@r
the location of the parent plant, with decreasing variance over time. Thikges
in greater seed dispersal in earlier iterations of the algorithm, promoting-explo
ration of the search space. Later, the balance is tilted towards exploitatioa as
value ofo ;. is reduced. The incorporation of the non-linear modulation index
in (7) also tilts the balance from exploration to exploitation as the algorithm
runs.

Depending on the scaling of the search space, the same vaiyg,.afould
be applied when randomly drawing each element of the displacement vector.
Alternatively, differing values ob;,,;1i,; @ando e could be set for each di-
mension if required.

3.1.3. Competition for Resources

Competition between plants is simulated by placing a population size limit on
the colony f,..:). The plant colony starts with a population of Sizg ;.

The population increases as new plants grow in subsequent gener@ioces

the pqz population limit is reached, parent plants compete with their children
for survival. The parent and child plants are ranked by fithess, with @,
plants surviving into the next generation. This mechanism ensures thagtshe
solution found to date cannot be lost between iterations (elitism).
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3.1.4. Performance of the Algorithm

The IWO is a conceptually simple, numerical, non-gradient based, optimisation
algorithm. As yet due to its novelty, there has been limited investigation of its
effectiveness, scalability and efficiency. Mehrabian and Lucasrgfigrt GA

and PSO competitive results from the IWO algorithm with settings of 10-20
weeds, maximum and minimum numbers of seeds per plant of 2 and 0 respec-
tively, and a non-linear modulation index value of 3. Competitive results &r th
IWO algorithm are also reported by [2, 16] and [38].

The algorithm requires that several problem-specific parameterstag se
the modeller including, the maximum and minimum number of seeds that a
plant can produce, the values tof,..., omin anditer,,,..., and the initial and the
maximum population size. However, the determination of good values for these
parameters is not necessarily a trivial task, particularly in poorly utmizsts
problem environments.

Recent work has extended the application of IWO into clustering whehe eac
individual seed consists of a string of uprtaeal-valued vectors of dimension
d, corresponding to the cluster centre coordinates (ihdimensional space)
[14]. Apart from the IWO algorithm, a number of other algorithms which draw
inspiration from seed-dispersal behaviour have been proposdddimg the
Paddy Field Algorithnf21].

3.2. Paddy Field Algorithm

Thepaddy field algorithnwas first proposed by Premaratne, Samarabandu and
Sidu (2009) [21]. This algorithm draws inspiration from aspects of thatpla
reproduction cycle, concentrating on the processes of pollination auddse-
persal.

Let the vectorr = (x1,x9, . .., z,) correspond to a location in andimen-
sional space ang = f(x) is the ‘fithness’ or ‘quality’ of that location. Each seed
i therefore, has a corresponding locationand a corresponding fithess. The
paddy field algorithm manipulates a population of these ‘seeds’ in an attempt
to find a good solution to the optimisation problem of interest. The algorithm
consists of five stages, sowing, selection, seeding, pollination, andslimpe
[21]. Each of these are described below.
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3.2.1. Sowing

An initial population of p) seeds are (sown) at random locations in the search
space.

3.2.2. Sdection

The seeds are assumed to grow into plants, and each of these plants has ¢
associated fitness valug) determined by the output of the underlying objective
function when evaluated at the plant’s location. The plants are rankethbgdi

and the best plants are then selected to produce seeds.

3.23. Seeding

Each plant produces a number of seeds in proportion to its fitness. Tise fitte
plant produces,,., seeds and the other plants produces varying amounts of
seeds, calculated using:

Y—Ye
Ymax — Yt
The termy,.... is the fitness of the best plant in the current population zarisi
the fitness of the lowest ranked plant selected in the previous step. Althioeig
algorithm describes this step as ‘seeding’, it can more correctly be esadid
as the process of growth of flower structures in order to enable pollination

S = Smax

3.2.4. Pollination

Only a portion of the seeds become viable and to determine this portion, a sim-
ulated pollination process is applied whereby the probability that a seed is pol-
linated depends on the local density of plants around the seed’s péaant p
The higher the density, the greater the chance of pollination. A hypeesphe
radiusa is defined, and two plants are considered to be neighbours if the dis-
tance between them is less than The pollination factoU; of plant j (with

0 < U; < 1)is then calculated using:

U; = exp(v;/Umax — 1)

wherew; is the number of neighbours of the plgnandvp,.x is the number of
neighbours of the plant with the largest number of neighbours in the pogrula
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3.25. Dispersion

The pollinated seeds are then dispersed from the location of their pdaant p
such that the location of the new plant (grown from the dispersed sedd} is
termined usingV (z;, c) wherez; is the location of the parent plant ands a
user-selected parameter.

The above five steps are iterated until a termination condition is reached.
In summary, the fittest plants give rise to the greatest number of seeds, anc
search is intensified around the better regions of the landscape ueddhes
far. Variants on the PFA include [12].

Algorithm 3. Paddy Field Algorithm [21]

Generate an initial population pfplants each located randomly in the search space;
Choose value fomaziter andn (see below);
Set generation countéter = 1;
repeat
Calculate fitness of each plant) and store in vectoNV
(N; = fitness(yi :i=1,...,p));
SortN : (N; : ¢ =1,...,p) into descending order (assuming the objective is to
maximise fitness);
for : = 1 : n (top n plants)do
Generate seeds for each selected plant;
Implement pollination step;
Disperse pollinated seeds;
end
Replace old population with new plants;
iter = iter+1;
until iter = maxiter;
Output the best location found,;

3.3. Strawberry Plant Algorithm

Although many plants propagate using seeds, some employ a system of ‘run-
ners’, or horizontal stems which grow outwards from the base of the. phdn
variable distances from the parent plant, if suitable soil conditions amedfou
new roots will grow from the runner and in turn produce an offspringelof

the parent plant. An example of this behaviour is provided by modern straw-
berry plants which can propagate via seeds and by runners. Thisdpa®ed

the development of an optimisation algorithm based on this phenomenon [24].
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The algorithm is based on the following ideas:

e healthy plants in good resource locations generate more runners,

e plants in good resource locations tend to send short runners in order to
exploit local resources,

e plants in poorer resource locations tend to send longer runners tdsearc
for better conditions, and

e as the generation of longer runners requires more resource investment,
plants generating these will create relatively few of them.

The algorithm therefore seeks to balance exploration with exploitation, with
increasing local exploration over time as plants concentrate in the locations with
best conditions for growth. Salhi and Fraga [24] report competitigalte from

this algorithm when applied to a number of real-valued benchmark optimisation
problems. Algorithm 4 presents an adapted version of the algorithm based
on [24].

4. Applications

Despite the relative recency of the introduction of plant propagatioriretsp
algorithms, there have been a number of applications to a range of diverse
real-world problems, showing promise compared to existing approaches. W
mention a selection of applications here: these applications range from-reco
mender systems [38] to engineering problems [39, 40]. [39] apply tlesive
Weed Optimisation algorithm to the problem of optimising radio antenna struc-
tures. They find that the Invasive Weed Optimisation is competitive with the Par-
ticle Swarm Optimisation (PSO) algorithm, in accuracy, speed of conveggenc
and simplicity. [41] apply a modified (discrete) invasive weed optimization al-
gorithm to optimize DNA encoding sequences. Experimental results show that
the proposed method is effective and convenient for the design arudicelef
effective DNA sequences in silico for controllable DNA computing.

[42] use a discrete invasive weed optimization (DIWO) algorithm for coop-
erative multiple task assignment of unmanned aerial vehicles (UAVs) and co
pare the solutions with those of genetic algorithms (GAs). Their results show
that DIWO has better performance than GAs in both optimality of the solutions
and computation time.



Plant Propagation-Inspired Algorithms 127

Algorithm 4. Strawberry Propagation Algorithm (adapted from [24])

Generate an initial population ef plantsp; : i = 1,...,m each located randomly in
the search space;
Choose values fanazgen andy (see below);
Set generation countgen = 1;
repeat
Calculate fitness of each plant and store in veéfor
(N; = fitness(p; :i=1,...,m));
SortN : (N; : ¢ =1,...,m) into descending order (assuming the objective is to
maximise fitness);
for i = 1: (m/10) (top 10% of plantsgo
Generatdy/4) short runners for each planj {s a user-defined parameter
which defines the intensity of local search around each of the fitter plants)
if any of the new locations has higher fitness than that of the parent gilant
move the parent plant to the new location with the highest fitness
(ri = pa);

else

\ Discard the new locations and the parent plant stays at its current Igcation
end
end
for ¢ = (m/10) 4+ 1 : m (indices for remaining plantsgjo
Generate one long runner for each plant not in the top 10% and select the
location of the end-point; for that runner randomly in the search space;
if the new location has higher fitness than that of the parent pilzert

\ move the parent plant to the new location & p;);
else

\ Discard the new location and the parent plant stays at its current location;
end

end
until gen = mazxgen,;
Output the best location found;

[40] examine the performance of their extended Strawberry Propagftion
gorithm on a range of constrained engineering optimisation problems on con-
tinuous domains, including design of welded beam, pressure vessey apdn
speed reducer. Their results are that the Strawberry PropagatiomitAigo
found either near best known solutions or optimal ones to all problemsy The
compare the Strawberry Propagation Algorithm results to results obtained with
other approaches such as GAs, Fogel's Evolutionary Programming \RE&
tions of the Harmony Search Algorithm and Integer Programming, and find tha
the Strawberry Propagation Algorithm is superior in the majority of cases.
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5. Conclusion

At a conceptual level, plant dispersal can be considered as a aa@dss,
wherein the seed or plant is searching for good locations and theréefeps-
ration from dispersal activities of plants can plausibly serve as the dasign
spiration for optimisation algorithms. In this chapter we focussed on differen
processes of plant dispersal, and described a number of existing ofithmisa
algorithms which draw inspiration from these. These wereittkasive weed
optimisationalgorithm, thepaddy fieldalgorithm, and thetrawberry plantal-
gorithm.

In this work, we have noted and justified an array of plant behaviourshwh
are exhibited in the natural world. With some exceptions, little inspiration has
been taken from these mechanisms, as yet, for the design of computational a
gorithms. Most of the algorithms developed thus far are relatively recent in
design and further work is required in order to assess their utility and éssiss
more fully whether they represent truly novel problem-solving mechanisms o
whether they are qualitatively similar to existing natural computing algorithms.
Work to date appears to indicate that they are at least competitive on the prob
lems to which they have been applied. However, there is clearly rich potential
for future work.

We wish to stimulate interest in this exciting, and under-explored area of
natural computing. Of great importance here are the investigation of addition
strategies for overcoming local optimality in complex solution spaces, and per-
forming a robust search of a solution space. Additional researcidsbtudy
the degree to which neighbourhoods are exploited under differeatreder
settings governing the operation of each algorithm.
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Abstract

Many real-world optimization problems are multimodal, u&ng
techniques that overcome local optima, which can be domgusching
methods. In order to do so, we describe a niching method hasdide
clearing paradigm, Topographical Clearing, which empByspographi-
cal heuristic introduced in the early nineties, as part dbaal optimiza-
tion method. This niching method is applied to differenéablution, but
it can be used in other evolutionary or swarm-based mettsod$, as the
genetic algorithm and particle swarm optimization. Theathm, called
TopoClearing-DE, is favorably compared against the caraniersion of
differential evolution in real-world optimization prolstes. As the prob-
lems attacked are quite challenging, the results show tabdraphical
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Clearing can be applied to populational optimization mdthim order to
solve problems with multiple solutions.

Keywords: Niching Methods, Clearing, Topographical Heuristic, Differential
Evolution, Multimodal Problems

1. Introduction

Some optimization problems in engineering are highly multimodal, remaining
a great challenge for most methods, as they have large search sjpidcesiiv
tiple local and even global optima. In this chapter, we address four chaien
real-world problems taken from the literature, three continuous and amalkdP-
combinatorial optimization problem [19].

In these multimodal problems, the search space should be thoroughly ex-
plored so that the optimization algorithm does not converge to a local optimum.
To overcome this difficulty, many solutions have been proposed. Let's nmentio
for example, some techniques that were applied to nuclear-engineedhg pr
lems: a parallel genetic algorithm [31], a niching method [24] applied to genetic
algorithms [45], a hybrid algorithm that alternates exploration and exploitation
of the search space [41], and a hew mutation scheme [43] applied teediffdr
evolution (DE) [49].

Niching methods are techniques designed to maintain populational diversity
in evolutionary or swarm-based methods, so that multiple optima are determined
in multimodal problems. These optima may consist in more than one global
optimum and some local minima, or in a single global optimum and many global
minima. Most niching methods are based on one of the following schemes:

1. Fitness sharing [15], which modifies the search landscape by redhein
payoff in densely populated regions [46].

2. Crowding [11], where a new individual replaces its most similar element
in the population.

3. Clearing [32], where the best members of the population, the so-called
dominants, receive the entire payoff.

The three main niching methods have been applied to the differential evolu-
tion algorithm, which we use in this work. See, for example, [51, 61, 34]aFo
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brief survey, see [10]. For a more detailed exposition, the readetdshefar to
Ronkkdnen’s thesis [38].

Sareni and Kahenliihl [46] tested these three niching schemes applied to
the genetic algorithm, concluding that clearing is the best, provided that the
niching radiuss that delimits each dominant’s territory is correctly estimated.
This is the drawback of this method, especially in real-world problems, where
the search space is generally unknown beforehand.

In order to overcome this limitation, Sacco et al. [45] proposed a variant
of clearing where the individuals are clustered using Fuzzy ClusterirgnMe
(FCM) [7] and each cluster has a dominant individual. However, FGiires
the number of clusters as input and is rather complicated.

With the same motivation, Qu et al. [34] proposed an ensemble of clearing
differential evolution algorithms, where the initial population is divided into
three equal subpopulatiody, P», and P3, which receive radivp, = 0.005 x
SR, op, = 0.01 x SR, andop, = 0.05 x SR, whereSR is the problem’s
search range. These subpopulations exchange information duringlélotian
phase. This scheme increases clearing’s efficiency, but is still depeofb.

In this chapter, we employ a method which was recently introduced by
Sacco et al. [44]. It is based on the clearing paradigm which is simpler than
the schemes introduced in [45] and [34]. It uses a clustering heuristedban
the topographical information on the objective function, which was paatnof
optimization algorithm proposed bydfh and Viitanen [54], the Topographical
Algorithm (TA). In this method, we employ the topographical heuristic with
the purpose of determining the dominant individual in a neighborhood.i-Orig
nally, Torn and Viitanen [54] used this mechanism to determine minima from
a set of sampled points, so that they were initial solutions for a local optimiza-
tion algorithm. We apply this clearing variant, called topographical clearing, to
differential evolution, which outperformed the more popular genetic alguorith
and particle swarm optimization in extensive experiments [60]. However, this
method can be applied to any evolutionary or swarm-based technique.

The remainder of this chapter is described as follows. The description of
DE is presented in Section 2. The novel niching method is decribed in Section
3, as well as its application to DE. The computational experiments and their
discussions are in Section 4. Finally, the conclusions are made in Section 5.



136 Wagner F. Sacco, Ana Carolina Rios-Coelho aatidNHenderson

2. The Differential Evolution Algorithm

In this section, we describe the canonical version of differential evolpas
introduced by Storn and Price [49]. DE is applied to the minimization of an
objective functionf(x), wherex is a continuous variable vector with domain
[low, up] C R".

Let's describe DE in a pseudo-code style, so that the novice can eassly gr
its concept. The algorithm is outlined in Fig. 1 and its operators are described
in Figs. 2, 3,4, and 5.

Input parameters, which remain constant along the optimization process, ar
population sizeV P and, to be explained below, crossover ratgB and scaling
factor F'. First of all, an initial random population is generated by function
“initialize”, as described in Fig. 2. Note that each initial solution or individual
must meet the boundary constraints. After that, inside a loop, the evolutive
process starts until a stopping criterion is satisfied.

The first operation inside the loop is mutation, described by funtion “mu-
tate”, Fig. 3. In mutation, a trial solution is generated for each individwze
follows:

X; = Xp(1) + F(Xp(2) — %p(3)) 1)

wherep(1), p(2), andp(3) are random indexes mutually different from each
other and different from index, and F’ is a scaling factor in the rande, 2|.
The solution correspondent to the first random indeyy), is known as the
base vector. This vector is altered by the addition of the weighted differeihc
the two other solutions with indexgg2) andp(3). The operation is repeated
as long as trial solutio; is outside the domain.

After mutation, population goes through crossover, as in Fig. 4. In this ope
ation, component of offspringy; is found from its parents; andx; according
to the rule

2
2!, otherwise ’ 2)

; @/, fRI<CRorj=1I,

y’i = 3
77

where I; is a random integer in rang@®,n], R’ is a random in[0, 1], and

crossover rat€'R, also in[0, 1], controls the fraction of parameter values that

are copied from the trial solutiok;. Note that alternativg = I; assures that at

least one component will receive a mutated value.
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Finally, there is the selection process, Fig. 5, which defines the population
of next generation as follows:

XNIteT—I—l — leIter’ if f(y@NIter) < f(xg\flter>
: xVlter  otherwise

3)

The trial solution will only replace its counterpart in the current population
if it's equal or better than the latter. As pointed out in [21], in DE’s selection
scheme, a trial vector is not compared against all the individuals in thertgurr
population, but only against its counterpart.

Note that it's in function “select” (Fig. 5), that the best solution found so fa
and its fitness value are stored.

As termination criterion, one may use the number of generatiydgd in
our pseudocode), the number of objective-function evaluations, an, [29],
| frnaz — fmin| < €, Where fiq. and f.;,, are the maximum and minimum
function values within a generation.

3. Topographical Clearing

3.1. Clearing

As mentioned in the Introduction, in clearing the best members of the popu-
lation, the so-called dominants, receive the entire payoff. This proeedur
applied after evaluating the fitness of the individuals and before applysg th
selection operator [32]. The clearing radiuslefines a range inside all but the

x individuals having the best fithesses are cleared [38], i.e., have theoatwb
function values zeroed for a maximization problem or receive a large f@liae
minimization problem. The population members distant more than from a dom-
inant individual are not affected. Figure 6, based on [32], showduhction

that performs the original clearing method. Funct®ortFitness(P)sorts the
populationP in decreasing order of fithess, so that the first elements of the list
are the dominants, if it is @ maximization problem, or in increasing order, for
minimization problems.

3.2. The Topographical Algorithm

Between the early seventies and mid-nineties, a global optimization paradigm
based on clustering was studied by some researchers, mainly in Eurbpe. T
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seminal article by Becker and Lago [6] was followed by, among othdsa T
[58], Timmer [52], Torn and Viitanen [54, 55], and Ali and Storey [2]. Ali
[1], and Levi and Haas [23] present fine reviews on the clustering adsth
According to Torn andZilinskas [57], the motivation for exploring clustering
methods in based on the following:

1. It is possible to obtain a sample of points in the search space consisting
of concentration of points in the neighborhood of local minimizers of the
objective functionf.

2. The points in the sample can be clustered giving clusters identifying the
neighborhoods of local minimizers and thus permitting local optimization
methods to be applied.

The original TA is non-iterative and based on the exploration of the Bearc
space [2]. It consists of three steps [55]:

1. A uniform random sampling oV points in the search space.

2. The construction of the topograph, which is a graph with directed arcs
connecting the accepted sampled points dnrearest neighbors basis,
where the direction of the arc is towards a point with a larger function
value. The minima of the graph are the points better than their neighbors,
i.e., the nodes with no incoming arcs.

3. The topograph minima are starting points for a local optimization algo-
rithm. The best point obtained from all the executions using each mini-
mum as the initial solution is the result of the algorithm.

Originally, Torn and Viitanen [54, 55] obtained the initial solutions from
step 1 sampling points in a unit hypercube, uf¥ilpoints with their nearest
neighbors farther than a threshold distanagere obtained. Then, these points
were denormalized. But these authors add that any other method thatesod
a very uniform covering can be used. In fact, they used the more effopiesi-
random sampling in an iterative version of TA [56]. In their testgrirand
Viitanen [55] used mostiyw = 100 or N = 200.

Step 2, the construction of the topograph, is the heart of the method. First
of all, a N x N symmetric distance matrix is computed. Following that, a
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N x k matrix calledk N N-matrix is constructed containing, for each point, the
indexes of itsk-nearest neighbors sorted by distance. Next, this matrix, which
is an undirected topograph, is transformed into a directed topographtindica
if the reference is to a point with larger or smaller objective function value by
giving the reference a plus or minus sign, respectively [1]. The sigmesent
the directed arcs in the graph, a positive sign representing the “arradV bé
the arc, and the negative sign the “start” of the arc [55]. Finally, the pthats
correspond to rows with only positive signs are the topograph minima.

Let us illustrate how the topographical heuristic works by a simple illustra-
tive example, adapted from [1]. Suppose we want to minimize the function

flz,y) = a® + 42, 4)
and that six points were sampled and their function values calcul#téd) =
f(2,5) =29, f(») = f(1,2) =5, () = f(3,4) = 25, f(Px) = f(0,1) =
1, f(Ps) = f(5,0) =25,andf(Fs) = f(4,2) = 20.

First, the symmetric squared distance maidixs constructed, where, for
example, the elemen; 3 corresponds to the distance betwdgrand Ps:

[0 10 2 20 34 13]
10 0 8 2 20 9
2 8 0 18 20 5
D= 20 2 18 0 26 17|(° ©)
34 20 20 26 0 5

113 9 5 17 5 0]

Following that, thek N N-matrix is formed by each pointsnearest neigh-
bors. Using: = 3, the nearest neighbors &% (the first row ofD) are the points
with indexes 3, 2, and 6, respectively. These elements will constitute the firs
row of the matrix. The process goes on until the following matrix is obtained:

326
436
16 2

KNN= |, (& (6)
6 2 3
3 5 2]

This matrix represents an undirected graph. Computationally, it is obtained
sorting each row oD and taking the first elements’ indexes. The elements of
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the main diagonal oD receive a very large value (e.d()®) before sorting, so
that they are not included in theV N-matrix.

Now, the elements dkINN will receive a plus or minus sign according to
their functional values in relation to the value of the point represented bgthe
index. The second row, for example, correspond®sowhose function value
is equal to 5, which is more thaf\ Py) = 1 (P, is elementknns;), but less
than f(Ps;) = 25 and f(P;) = 29 (elementsknnsyy andknnseg, respectively).
Therefore,knno; will receive a minus sign and the other two elements a plus
sign. The signed matrix becomes

(-3 —2 —6]
—4 43 +6
+1 -6 —2
kNN = +2 +6 +3|° (7)
-6 -2 +3
-3 +5 —2]

As the only point that corresponds to a row with only positive signs is
P, = (0,1), this will be the starting point for a local optimization algorithm.
When implementing the topographical heuristic, the signs can be attributed in
the process of construction RININ.

In step 3, Drn and Viitanen [55] say that any local optimization method
can be used. They employed a gradient-based algorithm, as their tests were
performed on algebraic test functions.

3.3. The Novel Niching Method

As mentioned in section 1, the new method based on the clearing paradigm is
much simpler than those available in the literature. The topographical heuris-
tic is applied to the population and the topograph minima are determined and
flagged (function topograph in Figure 7). These minima receive the value
flag; = 1, and the others remain witflag; = 0 that was previously assigned

for all the individuals. Then, clearing (functidopoclearingin the same fig-

ure) is applied as follows: the non-flagged individuals are clearedjviag a

large function value (as we are working with minimization problems), while
the topograph minima are not punished, maintaining their original values. This
scheme is described by Figure 8. Note that our new method does noterequir
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parameters andx, neither the sorting of individuals by fitness value, which is
a computationally expensive procedure.

Finally, the selection is performed, as in Figure 9. The decision on whether
to replace or not the current solution by the new one is made based ondhexicle
fithess values.

4. Numerical Comparisons

4.1. The Practical Problems
4.1.1. Chemical Equilibrium Problem

This nonlinear system, introduced by Meintjes and Morgan [28], has been
widely employed in the literature, see [17, 25, 59, 16, 39], among others.
It concerns the combustion of propane;kg) in air (O, and N,) to form
ten products. This chemical reaction generates a system of ten equatiens in
unknowns, which can be reduced to a system of five equations in fiveoumis
[28]. We solve this system formulating it as an optimization problem. To see
how this formulation is made, the interested reader should see Appendix A.
The system is given by

( f1 =122 + 21 — 325
fo=2x120 + 21 + .TQ(L'% + Rgrs — Rxs + 2R10.%'% + Ryzoxs + Roxoxy
f3 = 2zox% + 2Rs23 — 825 + Rezs + Rrzazs
f1=Rozozy + 21‘?1 — 4Rzx5
f5 = z1(z2 + 1) + Rioz3 + 2223 + Rezo + Rsz} + 23 — 1 4 Rezs
+R7xow3 + Roxoxy

(8)

where

R=10

Rs = 0.193

R¢ = 0.002597/1/40

Ry = 0.003448/1/40

Rs = 0.00001799/40

Ry = 0.0002155/+/40
[ Rio = 0.00003846/40

Variablesz; are surrogates for atomic combinations, which means that only
positive values make physical sense. Among the four real solutiongeezy




142 Wagner F. Sacco, Ana Carolina Rios-Coelho aatidNHenderson

Meintjes and Morgan [28], only one has all-positive componéhtsl 4102 x

1073, 3.459792 x 10%,6.504177 x 1072,8.593780 x 1071, 3.695185 x 10~2)

[28]. Hence, if the search domain is taken from the positive side, as we did
using the intervalo, 100]°, this will be the only solution.

4.1.2. Catalytic Reactor Model

Generally, parameter estimation problems are solved using least-squares, a
suming that the variables are not subject to measurement error. In thismrob
however, it is assumed that there are measurement errors in all variabtes

der to solve it,it is necessary to use the error-in-variables approaghlsig

this model, the objective-function has the form [14]:

me>n (T4 — 145)>
miny ) (©)
» L X (o
i=1 j=1 J
subject to
f0,%,)=0, i=1,...,m. (20)
In the equations aboves; = (z;1,...,z:,)7 represents measurements of
the variables from = 1,...,m experimentsx; = (%;,...,%,)" are the

unknown actual values, ang; is the standard deviation associated with the
measurement of variablg[14]. Therefore, the error-in-variables approach in-
volves not only the parametefs but also the true values;, increasing the
dimensionality of the optimization problem.

This parameter estimation problem was introduced in [37], to model gas-
phase catalytic hydrogeneation of phenol on a palladium catalyst in @seud
differential reactor [53]. Variables;, 2 andxs represent the partial pressures
of phenol and hydrogen, and the initial reaction rate [53]. The modegdis d
scribed by the following equation [53]:

919%93%11’%
(14 60121 + O229)3’

wherefy, 65, andfs are the parameters to be estimated. Standard deviations
of 0.0075,0.0075 and 2.5 are specified for;, z2 and x3, respectively [53].
Table B.1 (Appendix B) presents the data and the fitted values. The optimal pa
rameters of thigs9-variable problem are equal th = 7.39696 atni *, 0y =
0.63782 atm!, andf3 = 1769.71 mol/kg h, corresponding to an objective

T3 = (11)
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value 0f30.3072 [14]. For variablest;, we use the same same search region
asin[14]: [IEM —301,x1; + 30’1] and[ﬂjgi — 309, x2; + 30’2], fori=1,...,28.

For the parameters to be estimated, we adopt a wider range than thess,author
61,60, € [0,10] andfds € [1000,2000]. We must add that this problem has many
local optima [14].

4.1.3. Turbine Balancing Problem

This is a combinatorial optimization problem [30]. The turbine balancing prob-
lem is very relevant, being a real challenge for optimization methods, as itis NP
hard [33]. It was originally proposed by [29] as a combinatorial optimizatio
problem, being also formulated as a quadratic assigment problem [22]e Sinc
then, it has been attacked by other researchers, using both formulatidns
different kinds of turbines [48, 4, 33, 8].

In this work, we solve the case presented in [29]. The problem consists in
balancing the runners of a Francis hydraulic turbine. Ref. [48] givprecise
description of the problem to be solved:

A hydraulic turbine runner consists essentially of a cylinder with
blades attached to its circumference. The turbine rotates as water
flows across the blades. During the manufacturing process the indi-
vidual blades must be welded into place, equally spaced around the
cylinder. The problem encountered during this phase is the static
balancing of the completed runner. Because of the complexity of
the manufacturing process, the final weights of the blades may dif-
fer substantially. The result is an unbalanced runner. Since the
runner can rotate at very high revolutions during use, it is crucial
that the unbalance be as small as possible, otherwise the bearings
on which the runners rotate will wear out very quickly.

We must add that, according to [29], the variations in final weight mentioned
above can be as great #5%.

Let us formulate the problem, following [29]. The runner is modeled as
n equally-spaced weights on a circle of zero mass and radegual to the
common distance from the blade centers-of-mass to the runner axis. Tee bla
positions are labeled counterclockwise, starting at positien(r, 0) in anx —y
coordinate system, receiving indexes- 1,2, ..., n. Let P, be a configuration
of blades where?,(j) = k assigns bladé to positionj. First, we define the
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following variables:
MP* = mass of bladé;
Mf = mass of bladé& when in positiory;
0; = (2m/n)(j — 1) = angle between positiohand positiorl, j = 1,...,n;
M = total mass of blades: >_7_, M*.
Then, each permutatiof, determines a center of maSsg y) given by:

1 n
z(P) = i Z Mfr cos 0, (12)
j=1
1 o ,
y(P) = i Z Mjkr sin 6, (13)
j=1

Finally, Eqg. (12) and Eq. (14) define deviatidh

D(P) = 2(P)2 + [5(P)]2], (14)

which is the objective function to be minimizef)( ;) = 0 means that a perfect
static balance has been reached [29].

As suggested by [29], we scale the problem making 1. We usen = 14
blades, as a typical runner has between 14 and 18 blades [29], andltes
of n is one of the most difficult to optimize [22]. Regarding the valued/Gf,
we follow [22], generating: numbers according to a normal distribution with a
mean ofl00 and a standard deviation &f3, so that mosf\/;s fall within £5%
of the mean. We generated these numbers using a Gaussian Random Numbe
Generator available at the Random.org website [35].

4.1.4. Nuclear Reactor Core Design Optimization Problem

This is a highly multimodal problem [45], which has been attacked with
many methods (see, for example, [12, 13, 44, 43]). Consider a cylaldic
enrichment-zone nuclear reactor, with a typical cell composed by moderator
(light water), cladding and fuel. The design parameters that may be varied
the optimization process, as well as their variation ranges, are shownlaIlab
The materials are represented by discrete variables.

The objective of the optimization problem is to minimize the average flux
or power peaking factorf,, of the proposed reactor, allowing the reactor to be
sub-critical or super-criticalktsr = 1.0 = 1%), for a given average flux,.
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Table 1. Parameters range

Parameter Symbol Range

Fuel Radius (cm) Ry 0.508 t0 1.270

Cladding Thickness (cm) A, 0.025t0 0.254

Moderator Thickness (cm) A, 0.025t00.762

Enrichment of Zone 1 (%) E; 2.0t05.0

Enrichment of Zone 2 (%) F, 2.0t05.0

Enrichment of Zone 3 (%) Ej3 2.0t05.0

Fuel Material My {U-Metal or UG}

Cladding Material M, {Zircaloy-2, Aluminum or Stainless Steel-3p4

LetD = {R¢, A, R, E1, E2, Es} be the vector of design variables. Then, the
optimization problem can be written as follows:

Minimize f,(D) s.t.

¢(D) = ¢>o, (15)

0.99 < kegr(D) <1 (16)

C;’fvm > 0; (17)

D! <D, <D i=1,2...,6; (18)
My = {U-Metal or UQ;}; (19)

M, = {Zircaloy-2, Al or SS-304, (20)

whereV,, is the moderator volume, and the superscripgésd v indicate re-
spectively the lower and upper bounds (of the feasible range) fdr éesign
variable.

4.2. Implementation and Setup

Our tests were performed on an Ir@[:orewI i7 PC with 12 Gb RAM running

Ubuntu 14.04 LTS. TopoClearing-DE was implemented in C++ and compiled
with GNU g++ version 4.8.2. For the stochastic part of this algorithm, we used
the pseudorandom number generating algorithm developed by Matsunibto an
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Nishimura [26], the Mersenne Twister, which is available for downloachat o
of its creator’s website [27].

For the nuclear core optimization problem, our source code was connceted
to the HAMMER reactor physics code [50], which calculates the objeatine-f
tion value for each solution proposed by the optimization algorithm.

Regarding the turbine balancing problem, as DE was conceived as a con-
tinuous optimization algorithm [49], first, we need to adapt it for combinatorial
optimization. In order to do so, we employ a representation technique named
random keys [5]. This mechanism, originally designed for the genetic algo-
rithm, allows us to treat discrete problems as if they were continuous. The
solution is translated into a discrete sequence only in the moment of the objec-
tive function evaluation. Let us show how it works with a simplified example: a
six-city TSP. DE works with six continuous variables, all in the rajige]. Let
us suppose we have a solutiSp, given by

S; = (0.18,0.73,0.42,0.87,0.01, 0.23). (21)

Each one of these variables receive an integer index, in subscripts; co
sponding to their order of appearance:

S; = (0.181,0.732,0.423,0.874,0.015, 0.23¢). (22)
Then, these real numbers (the so-called random keys) are sorted:
Si g = (0.015,0.181,0.236,0.423,0.732,0.87,). (23)
The subscripts represent a valid sequehige
T; = (5,1,6,3,2,4). (24)

Note that, even in an extreme case with repeated real numbers, a valid se-
guence is produced:

S, = (0.93,0.27,0.93,0.45,0.11,0.93), (25)
So = (0.931,0.272,0.933,0.454,0.115,0.93¢), (26)
Socones = (0.115,0.272,0.454,0.931, 0.933,0.936), (27)

Ty = (5,2,4,1,3,6). (28)
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We used the following parameters in our tests: population Size= 100
and500, crossover rat€’ R = 0.9, and scaling factoF' = 0.5, which are values
that have been widely employed in the literature [60, 3, 39], among othkes. T
same one—hundred random seeds (one per execution) were usashdoical
DE and its variant. For the topographical heuristic inside the niching method,
we usedk = 10 as Torn and Viitanen [54, 55], and also tested- 20.

Regarding the nuclear For the nuclear reactor core design, the algorithms
were set up to stop at 100,000 objective function evaluations, so thagstks
were obtained with the same maximum computational effort as previous results
[41, 40, 42, 44, 43].

As the other optimization problems attacked in this work have known global
minima, DE was run using the same termination criterion as in [47, 17, 9, 18,
36], which is ideal for an algorithm’s performance assessment:

[f(x*) = FO)| < eal fF(XT)] + e, (29)

where f(x*) is the global optimumy(x) is the current best, coefficienf =
10~ corresponds to the relative error and= 10~° corresponds to the abso-
lute error [47].

For these problems, we set a maximum number of generations equal to
100, 000 for all population sizes as a stopping criterion, in case the condition
given by Eq. (29) is not achieved.

4.3. Computational Results
4.3.1. Chemical Equilibrium Problem

Table 2 compares the results obtained by TopoClearing-DE Avith 10 and
k = 20 against those achieved by the conventional DE. The population size is
denoted by PS. We performed one-hundred executions of each ahgavith
the same independent random seeds for all of them, so that the experarents
unbiased. SR is the success rate for each algorithm and/or setupdiRgdhe
number of fithness evaluations (NFE), we display the minimum, maximum, and
average NFEs taking into account only the successful runs.

Note that TopoClearing-DE obtains a success rat&00f 100 even for a
population of one-hundred individuals. The topographical heuristicmith20
requires more function evaluations than witk= 10.



148 Wagner F. Sacco, Ana Carolina Rios-Coelho aatidNHenderson

Table 2. Results for the chemical equilibrium problem

DE TopoClearing-DEEL = 10 TopoClearing-DEE = 20

SR 2/100 100/100 1007100 100/100 100/100 100/100
Min. 15,197 396,801 778,501 3,136,575 1,497,250 5,612,756

NFE Max. 81,186 514,717 1,049,478 3,567,895 2,036,221 46080
Avg. 48,191 455,152 910,942 3,352,001 1,669,972 6,132,049

The only drawback of the method described in this chapter is the higher
computational cost, but this can be explained due to a certain tendency of the
canonical DE to converge prematurely to local optima [10].

4.3.2. Catalytic Reactor Model

Table 3 displays the results for the catalytic reactor model.

Table 3. Results for the catalytic reactor model

DE TopoClearing-DEE = 10 TopoClearing-DEE = 20

SR 71100 T100/I00 1007100 100/100 100/100 100/100
Min. 3,867,260 509,125 766,005 10,000,000 1,418,602 100000
NFE Max. 9,725,345 631,204 1,257,134 12,273,204 2,741,023,504,887
Avg. 7,886,874 579,446 1,043,178 11,514,262 2,060,437 9171686

Once more, only TopoClearing-DE achievE#®0% success with a small
population.

4.3.3. Turbine Balancing Problem

Table 4 compares the results obtained by TopoClearing-DE avith 10 and
k = 20 against those achieved by the conventional DE.

Table 4. Results for the turbine balancing problem

DE opoClearing-DEE = 10 TopoClearing-DEk = 20
SR 10/I00  85/I00  29/100  86/I00 31/I00  90/I00

Min. 87,310 78,140 27,692 222,135 102,613 147,673
NFE Max. 8,280,554 46,394,433 9,904,947 49,093,657 97P68, 48,357,305
Avg. 3,296,290 14,107,599 4,315,295 17,610,059 4,137,408,601,053

Note that TopoClearing DE with both valuesiobutperformed the canon-
ical DE for all population sizes, with a slightly better performanceifet 20.
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Also note that the results obtained with one-hundred individuals show that To
pographical Clearing generated a high diversity even with a small populatio
for such a complex problem.

4.3.4. Nuclear Reactor Core Design Optimization Problem

Table 5 shows the results obtained by ten independent executions ofagitt
in terms of fitness (i.e., objective-function value in evolutionary computation
terminology) and NFEs to reach the optimum.

Table 5. Results for the nuclear core design problem

DE TopoClearing-DEE = 10 TopoClearing-DEE = 20
Experiment  Fitness NFE Fitness NFE Fitness NFE
#1 12765 67,967 1.2765 48,094 1.2766 32,619
#2 1.2767 24,832 1.2765 99,375 1.2765 44,119
#3 1.2765 46,173 1.2763 58,372 1.2763 39,562
#4 1.2763 49,570 1.2763 40,603 1.2765 76,368
#5 1.2765 77,814 1.2766 41,591 1.2763 82,141
#6 1.2767 22,468 1.2766 34,185 1.2765 50,525
#7 1.2767 28,716 1.2765 71,802 1.2763 42,476
#8 1.2766 28,410 1.2765 42,306 1.2765 64,447
#9 1.2767 25,012 1.2766 29,601 1.2764 99,607
#10 1.2767 25,271 1.2765 58,720 1.2766 33,268
Average 1.2766 39,623.3 1.2765 52,464.9 1.2765 56,513.2

Comparing the results, we can see that TopoClearing DE outperformed
canonical DE, particularly witlk = 20, where the best value df2763 was
reached3/10 times. As in the previous problem and for the same reason, DE
with the niching method requires more objective-function evaluations.

5. Conclusion

In this chapter, we present a niching method to overcome local optima of mul-
timodal optimization problems, which are quite common in the real world [24].
This method is applied to challenging real-world optimization problems.

The results obtained here demonstrate the potential of topographical clear
ing, which is easy to implement and can be used in other evolutionary or swarm-
based optimization methods besides differential evolution. Last but leasgst d
not require the burden of estimating the radius (a very difficult task céape
for practical problems).
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Appendix A. Nonlinear Systems Formulated
as Optimization Problems

Let us consider the problem of computing solutions of nonlinear systems with
simple bound constraints. We can express this problem as

fi(x) =0
fa(x) =0
2(%) st.x € [a,b] CR", (A1)
fN(X) =0
wherex = (z1,...,2x)T € R, f; : R" — Rand[a,b] = [a1, b1] X [ag, ba] x
. X [an,bn], with a; < b;, forall: = 1,...,N. Note that vectora =
(a1,az,...,an)andb = (by,be,...,by) are specified as the lower and upper

bounds of the variables, and gatb] is a box inR"™, where there exist one or
more roots of the nonlinear system. Let us suppose that fungtioR™ — R,
foranyi = 1,..., N, can be nondifferentiable or even discontinuous, but it
must be bounded ifa, b]. If F = (f1(x),..., fn(x))T, the problem described
by Eq. (A.1) can be reformulated as the following optimization problem:

Min f(x) s.t.x € [a,b] CR" (A.2)

In Eq. (A.2), f : [a,b] C R™ — R is a nonnegative and possibly multimodal
merit function, given by

f(x) = FT(x)F(x), (A.3)

Since the system represented by Eq. (A.1) has solutionfg) 15}, then, in terms
of results, to solve this system is equivalent to find the global minimum(a) of
the optimization problem given by Eq. (A.2).
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Appendix B. Data and Fitted Variables for the Catalytic
Reactor Model

Table B.1. Data and fitted values for the Catalytic Reactor Model [3]

X1 o T3
ata itte ata itte ata itted
0.015 0.018 0.235 0.236 6.25 2.54
0.030 0.031 0.220 0.220 4.90 3.11
0.045 0.045 0.205 0.205 2.90 3.21
0.100 0.100 0.150 0.150 1.75 1.94
0.180 0.180 0.070 0.070 0.30 0.35
0.015 0.023 0.485 0.486 12.30 8.88
0.030 0.034 0.470 0.471 14.00 10.83
0.045 0.038 0.455 0.453 5.00 10.77
0.045 0.047 0.455 0.456 14.20 11.82
0.100 0.100 0.400 0.400 10.81 10.73
0.143 0.143 0.357 0.357 7.81 8.12
0.167 0.167 0.333 0.333 6.41 6.72
0.250 0.250 0.250 0.250 3.90 3.06
0.333 0.333 0.167 0.167 3.60 1.09
0.030 0.023 0.720 0.720 13.00 14.74
0.045 0.044 0.705 0.705 20.00 20.72
0.100 0.100 0.650 0.649 19.81 22.45
0.180 0.180 0.570 0.570 15.10 15.88
0.240 0.241 0.510 0.510 8.90 11.10
0.300 0.300 0.450 0.450 7.50 7.51
0.360 0.360 0.390 0.389 2.00 4.85
0.026 0.015 0.974 0.974 13.00 14.56
0.050 0.048 0.950 0.950 30.00 30.67
0.100 0.100 0.900 0.901 37.50 34.89
0.250 0.248 0.750 0.752 25.00 20.52
0.150 0.150 0.850 0.850 31.50 30.98
0.333 0.334 0.667 0.666 10.00 13.34
0.500 0.500 0.500 0.500 4.00 5.26
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Chapter 5

ROBOTICS, EVOLUTIONAND INTERACTIVITY
IN SONIC ART INSTALLATIONS

Artemis Moroni®™* and Jénatas Manzolli®
'Robotics and Computer Vision Division/
Center for Information Technology Renato Archer — DRV C/CTI
%I nterdisciplinary Nucleus for Sound Studies;
Music Department / University of Campinas— NICS; IA/UNICAMP

Abstract

Focusing on the interactivity that a robotic interface establishes between the
virtual and the real world, some sensory systems and mobile robotic platforms
were developed for the AURAL project, a robotic evolutionary environment for
sound production. From the AURAL perspective, human and robots are agents of
a complex system and the sonification is the emergent propriety produced by
their interaction and behavior. One way to characterize types of interactions is by
looking at ways in which systems can be coupled together to interact. The
representation of the interaction between a person and a dynamic system as a
simple feedback loop faces the role of information looping through both a person
and a system. Two different sonification paradigms were applied in AURAL
environment. In the first case, the sonification is generated by an evolutionary
mapping of the robot trajectories into sound events. In the second case, the sound
production is the result of a generative process. As such the sonification here is
not seen as an isolated aspect of AURAL, but as a representation of the
synergetic capacity of the agents to collaborate and produce a complex product.

" E-mail address: Artemis.Moroni@cti.gov.br
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A comparison between the results obtained with both approaches is presented.
The structure/novelty tradeoff has been approached.

I ntroduction

New ground is currently being broken in the areas of robotics, musical
composition and interactive narratives. With the advent of new interactive and
sensing technologies, computer-based music systems have evolved from
seguencers to algorithmic composers and complex interactive systems that sense
thelr environment and can automatically generate music. Consequently, the
frontiers between composers, computers and autonomous creative systems have
become more and more blurred, while the concepts of musical composition and
creativity are being put into a new perspective. The use of synthetic interactive
music systems allows for the direct exploration of a sentient approach to music
composition. Venturing into the controlling of motion and sound, as well as
robotics, the transformation of everyday items, the mixing of redlities to straddle
the physical and virtual words, other kinds of exploration are being investigated
taking into account the principles of emergence, embodiment and feedback.
Mixed reality systems are being integrated with nowadays activities in areas such
robotics, game technol ogies and artistic installation.

Concerning to computer-aided composition, based on arich history of classica
music theory and teaching, one of the first goals was to help the composer during
the creative process. Probably the most widespread computer-aided composition
paradigm is still that of a music sequencer. This model is somehow a continuation
of the traditional composition based on the writing of musical scores. Within the
sequencer paradigm, the user/composer creates an entire piece by entering notes,
durations or audio samples on an electronic score. Due to its digital nature, this
score can later be subjected to various digital manipulations. Within this paradigm,
the computer is “passive’, the human being isin control of the entire compositional
processes and uses the computer as a tool to lay down ideas and speedup specific
tasks (copying, pasting or transposing parts).

In contrast with the standard sequencer approach, computer-based algorithmic
composition relies on mathematical formalisms that allow the computer to
automatically generate musical material, usually without external output. The
composer does not specify directly all the parameters of the musical material, but
a set of simple rules or input parameters, which will be taken into account by the
algorithm to generate musical material. In the latter paradigm, the computer
carries out most of the detailed work and the composer controls a limited set of
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initial global parameters. Different approaches to algorithmic composition
inspired by technical advances have been proposed and tested; the main ones are
statistical methods, rule-based methods, neural networks and genetic algorithms
(Papadopoulos and Wiggins, 1999; Nierhaus, 2009). With the advent of new
programming languages, communication standards and sensing technologies, it
has now become possible to design complex real-time music systems that can
foster rich interactions between humans and machines (Rowe, 1993; Winkler,
2001; Zicarelli, 2002; Wright, 2005; Puckette, 1996). Interaction is understood
here as “reciprocal action or influence” as defined in the Oxford New Dictionary
of American English (Jewell et al., 2001). Nowadays, one may build sensate
composition systems able to analyze externa sensor inputs in rea-time and use
this information as an ingredient of the composition (Le Groux, 2011). These
kinds of interactive systems are in accordance with the philosophy that a theory of
mind, including one of creativity and aesthetics, will be critically dependent on its
accomplishment as a rea-world artifact because only in this way may such a
theory of an open and interactive system as the mind be fully validated (Verschure
and Manzolli, 2013; Boden, 1991).

The AURAL system, described in this chapter, was created by focusing on
the interactivity that a robotic interface establishes between the virtual and the rea
world. An interactive evolutionary graphical interface applied to sound
production, an omnidirectional vision system and mobile robots are integrated in
an arena constructed so asto alow interactive control of real time sonification and
robotic navigation. A similar architecture, with an artificial vision system and
mobile robots, but with a different sonification paradigm based on generative
systemsis applied in AURAL,. In both versions, humans and robots are agents of
a complex system and the sonification is the emergent propriety that is produced
by their interaction and behavior. This exploration is also related with the concept
of self-organization in complex systems.

This chapter is organized in the following way. Section 1 describes the
evolutionary compositional interface of the AURAL environment, its
components, features and AURAL as an art installation. Section 2 describes
AURAL,; and its generative process. Section 3 presents the automation and
interactivity, the parts of an art system, comparing them with dynamic systems
under the general systems theory. Section 4 compares both AURAL and AURAL ;
environments, concerning to the characteristics of the sound results. Finaly, the
conclusions are presented.
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1. JaVOX, an Evolutionary Composition System

In the AURAL environment, the behavior of mobile robots in an arenais applied as
acompositional strategy and the sonification is generated by means of a mapping of
the trgjectories of the robots into sound events (Moroni & Manzolli, 2010). Starting
with VOX POPULI (Moroni et al., 2000), an evolutionary composition system,
another environment, JaVOX, evolved. Like its predecessor VOX POPULI, JavOX
is based on three musica aspects. melody, harmony and voice range. The
specifications of these criteria define the fitness of a group to the applied selection
function. This function returns the “better individua”, or “better chord”, according
to the measured aspects. The selected group is treated as a set of MIDI notes and
played. The system allows the user to modify the fitness function by using four
controls, one for the melodic criterion; another for the duration of the genetic cycle
and music rhythm; a third one for the set of octave range to be considered, and the
last one for the time segment for each selected orchestra. All these controls are
available for real time performance alowing the user to play and interact with the
musical evolution, but the controls may also be automatically modified during a
performance, depending on the behavior of the robots.

1.1. Population asMIDI Data

For our purposes, an auditory event may be described using four parameters:
pitch, timbre, loudness and duration. Pitch can be defined as the auditory
propriety of a note that is conditioned by its frequency relative to the other notes.
The range of musical pitch has been defined as the range within which the interval
of an octave can be perceived. This has been found to correspond roughly to the
range of the piano. From this continuum of frequencies, a set of discrete
frequencies is selected so that the frequencies bear a definite interval relationship
to one another. So, pitch in the musical sense corresponds to a frequency that is
selected from a predefined repertoire. In this scheme, two discrete frequencies are
chosen in the interval of an octave such that the ratio between any two adjacent

frequenciesis % Thisinterval ratio in music terminology is termed a semitone
in a temperament system or chromatic scale. Loudness is that aspect of an
auditory event related to its intensity. Duration is characterized by the period of
time in which the event is perceivable. Timbre is a complex feature of the sound
domain, but in this chapter it is taken as being the individuality of sound acquired
by the addition of harmonics to the fundamental pitch. Here it is specifically
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defined as the characteristic of a given musical instrument and the mode of
playing it.

Using the foregoing notions, we define here a melody as a fixed temporal
ordering of auditory events. So, a melody in conventional occidental notation
resembles a system of cartesian coordinates. The pitch and duration are carefully
marked; timbre is decided by the instrument for which it is written and loudnessis
crudely marked (Vidyamurthy, 1992). However, thisis a very subjective issue; the
judgment of harmony does not seem to have a natural basis, but seems to be a
common response people acquired in a certain cultural context. Therefore,
opinions on the subject may vary widely depending on social and cultural
backgrounds.

1.2. The Evolutionary Sound Process

In JaVOX, we used the MIDI protocol to code a musical genotype. In this
evolutionary sound system, the individuals of the population are defined as a set
of four notes. These notes are randomly generated in the interval [0, 127] where
every value represents a MIDI event. In each generation, 30 individuals are
created.

Two cycles are integrated in the evolutionary sound process. The
reproduction cycle is the evolving process that generates a set of four notes using
genetic operators and selecting individuas. In the MIDI cycle the interface looks
for notes to be played. When a set is selected, the program places it in a critical
area which is continually verified by the MIDI interface. These notes are played
until the next set is selected. Figure 1 depicts the reproduction cycle and the MIDI
cycle.

The musical fitness for each pitch set, described in (Moroni et d., 2002) is a
conjunction of three partial fitness functions: melody, harmony and vocal range,
each returning anumerical value.

Musical Fitness = Melodic Fitness + Harmonic Fitness + Voca Range Fitness

An analogy may be made of each individual with a chord of four voices (or a
chord played by four instruments). The chord with the highest fitness is selected
and played as anew MIDI event. At each generation of the process a new sonority
is created by applying the fitness criteria regarding the melodic line (mel), voice
range (oct), duration of the evolutionary cycle (bio) and music meter (rhy). Based
on the order of musical interval consonance, the notion of approximating a
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sequence of notes to its harmonically compatible note, or a tona center (mel), is
used. The selected notes are sent to the MIDI board and can be heard as sound
events in real time. The duration of the evolutionary cycle (bio) and music meter
(rhy) is taken into account. This sequence produces a sound resembling a chord
cadence or fast block counterpoints.

Reproduction Cycle ;

Cluster Population
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Figure 1. The reproduction cycle and the MIDI cyclein the evolutionary process for sound
production.

1.3. The Structure/Novelty Tradeoff

An issue of central importance in the construction of any evolutionary system is
the structure/novelty tradeoff. When filling the void using chaotic materials
necessary for invention, the more such materials are introduced, the more the
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structure and knowledge will be added to the system and structure will be present
in the system’s output behavior. That is, more highly structured systems can
produce more highly constrained output. Some of these concepts were firstly
stated by one of the pioneers of cybernetics, Ashby (1956). By applying these
ideas to agorithmic composition systems means that more knowledge and
structure alows the creation of new pieces that are more tightly matched to the
desired musical genre. However, the flipside of more structure is less new
material. The highly constrained output will be less likely to stray beyond a
genre's limitations or it may be surprising. Thus, the highly structured
composition system will be less general, able to reach less ‘music space’ with its
output (Todd & Werner, 1999).

In the AURAL, this tradeoff is treated by creating an interplay between
sound, real-world artifacts, user and behavioral information, through the
interaction among the evolutionary sound process, the artificial vision system and
the mobile robots. The sound interface has a Graphic Area, the heart of the
system, wherein the user may draw curves to be sent as trgjectories to the robots.
This area is associated with a conceptual sound space with two axis, the “red”
one, or melodic, and the “blue”’ one, or rhythmic. The paths travelled by the robots
in the arena are observed by the artificial vision system and sent, as sequences of
points, to the sonification module. The red curves, sent as trgjectories to the robots
and the blue curves associated with the paths travelled guide the evolutionary
sound process across different regions in the sound space.

Figure 2 shows JavOX interface on the left and the curves from which the
parameters are extracted for fitness evaluation. In the Graphic Area, three curves
are shown: a) the trgjectory the user draws, b) the path followed by a master robot
and c) the path followed by another robot. Curves a) and b) are shown in detail on
theright.

The fitness criteria, based on the ordering of musical interval of consonances
(see previous section), introduces in the process some structure and knowledge in
the process. At the same time, depending on the distance between the couple of
robots (until four), the performance controls are activated. The Performance
Control area offers other possibilities to control the sound production. For each of
the four MIDI voices there are three controls. solo, sequence and block. They
work as delay lines in which MIDI notes from previous generations are played
again as solo, melodic patterns or chords. The relative position of the robots is
used to select the solo, the sequence or block mode for each voice in rea time.
Table 1 shows the five simple rules associating the distance between the robots
and the processes (the solo, sequence and block) of the Performance Control.
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Figure 2. On the left (a), the JaVOX interface shows the different control areas. the
Parameter Control; the Graphic Area and the Performance Control. The other graphics
show the details of the curves in the Graphic Area. In the top (b) are the parameters
extracted from the trgjectory that was sent to a master robot. In the bottom (c) is the path
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Table 1. Rulesrelating the distance between the robots and performance

controls
Rule Distance (m) Solo Sequence Block
1 >0.5 X
2 04<D<05 X
3 02<D<04 X X
4 D<0.2 X

Other interface features enable the user to modify the number of notes of the
Performance Control, as well as the rhythm, the pitch and the orchestra controls
affecting the musical performance. The user interaction may be interpreted as
attempts to improve the outcome by opening the possibility of the system to learn
with it. It shows how robots physically fulfill the arena with a textural
representation of the generated music. If the “solo” is activated, the resultant
music structure will consist of independent voice lines. If the “sequence’ is
activated, the resultant music structure will consist of pitch pattern sequences. If
the “block” is activated, the resultant music structure will consist of chord
structures. In short, Table 1 expresses relationships between the motion behavior
of robots and the music structures making the emerging composition depend on
real world constraints.

During an AURAL performance, all the interactive paths can be recorded. It
is possible to register al the automatic and interactive events, as well as the audio
and MIDI files generated in real time. Some of them were used as a basic material
for generating instrumental compositions. A piece titled “Robotic Variations’ for
piano, marimba and electronics (computer and robots) was made up of the
obtained music structures. A dancer, three musicians (marimba, piano and
computer) and four robots (see description below) performed the musical piece of
the robot evolution at the AURAL installation.

1.4. AURAL asan Art Installation

AURAL was presented in an art galery (Figure 3) where the visitors could
appreciate the sound output and the interaction among the robots, as a kind of
choreography. The visitors drew curves in the JAVOX interface, which were
transmitted as trgjectories to a master robot, the Nomad. While the robots (until 4)
moved in the arena, virtually traveling along the conceptual sound space, people
changed the orchestra, rhythm and pitch controls by investigating the sound
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possibilities. Both a process of man-machine interaction and parallel exploration
occurred.

Figure 3. The first picture, on the left, shows AURAL ingtalation at UNICAMP art
galery. The OmniEye, the artificial vision system, can be seen hanging on the ceiling. In
the other pictures another setup of the AURAL at FILE festival, an international festival on

electronic language, is depicted.



Robotics, Evolution and Interactivity in Sonic Art Installations 169

On the last day of the exhibition, a dancer, three musicians and the AURAL
system itself, with four robots, performed an interactive concert called Robotic
Variations. The same trgectories used to generate the materia for the
composition were used in the performance. An interactive scenery displayed real
time processed images on the walls. The dancer was invited to interact with the
robots in the arena, in a live performance. For the visual tracking, a strong color
panel was fixed on the top of each rabot.

Figure 4. On the left, the dancer, the robots and the interactive scenery. On the right, the
robots and the musicians. The third picture shows the dancer, the robots and the musicians
during the rehearsals of the art performance.

Choreography was designed so that the robot with a red panel left the room
and was replaced by the dancer using a red hat. Her position was tracked by the
visual system through the red hat and interfered in the performance of the sound,
incurring in another human-machine interaction cycle. Figure 4 shows some
pictures of the musicians and of the dancer taken during the rehearsals of the
performance. AURAL performance videos can be seen at (Moroni, 2012).
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2. Generative Sonification

A similar architecture, with an artificial vision system and mobile robots, but with
a different sonification paradigm, was applied in AURAL,, a different version of
the sound installation. If in the previous version the sound production is the result
of an evolutionary process, in this second version the result is of a generative
process interplaying with the human and real-world artifacts. The generative
systems have many similarities with systems found in various areas of science;
they may provide order and disorder, as well as a varying degree of complexity,
making behavioral prediction difficult. However, such systems still contain a
definite relation between cause and effect. The artist (or creator) generaly
provides basic rules, and then defines a process, random or semi-random, to work
on these elements. The results continue to happen within the limits of the domain
of the rules, but also may be subjected to subtle changes or even surprises. This
paradigm of interaction between visitors and sound expression was aso
performed with the Roboser system in the “Ada: intelligent space” installation
(Wasserman at al., 2003). Differently from ADA the visitors interaction is based
on an individual basiswhilein ADA it was constructed as a collective behavior.

In the AURAL,, sound fragments are inserted into a database, the memory of
the system. The database is made up of four matrices, each one containing sound
samples of different types. synthetic, game, environment and everyday sound
fragments. Each cell in the matrix is associated with a cell in a virtual grid,
projected on a winding format platform, or stage (3m x 3m wide, 0.3m high),
depicted in Figure 5.

A hole inside the platform creates tracks that may be travelled on by only one
robot or two robots. The robots have a border sensor, they stop when they detect
the border. In the other regions of the platform, three or four robots can move
around. This design cases conflicts among the robots when they try to escape from
confined areas. The robots are tracked by a vision system which evaluates the
position (x, y) of the robots on the stage; associates a cell in the matrix with that
position and plays the sound fragment associated with it. The movement of the
robots through the different regions of the stage triggers the sound of the
associated cells, (re)creating soundscapes in the installation environment.

On a TV, the virtual grid is shown in severa angles, as well as the cells
activated by the robots (Figure 6). The visitors may interact with the system by
talking, singing or screaming at a microphone, starting the intervention process:
sound fragments are extracted from the interventions of the visitors and randomly
inserted into the environment matrix; there is a possibility of the segments to be
triggered and played again by the movement of the robots. A spectral analysis is
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applied on the fragment that caused the intervention (Manzolli, 2011), and two
visual effects may be perceived by the visitors. When there is more energy in the
upper partias of the sound fragment, the following actions take place: the color of
the cell associated with that fragment is changed to red on the TV, otherwise to
blue. A rotation is applied on the grid. Finaly, the sound fragment is inserted into
the sound data base, i. e., the memory of the system, superposing a previous one,
enhancing a recycling acoustic process. If no intervention occurs after a time
interval (10 minutes), a sound matrix is randomly selected to supply the sound
fragments and the intervention process is automatically performed by the system,
which records a sound fragment from the environment and proceeds with the
analysis.

sound database

Figure 5. A virtual grid associates different sound databases with the platform: synthetic
sounds, game sounds, everyday sounds and environment sounds. The movement of each
robot - its location, is monitored by the vision system - triggers the sound associated with
that place in the grid.
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Figure 6. Above, AURAL, ingtallation: the winding formatted stage, the robots and the
television showing the active cells. On the bottom, a person interacting at the microphone.

3. Automation x Interactivity

One may see as an interesting aspect of the AURAL environments the possibility
of different setups to explore distinct levels of interaction among humans and
machines. One way of characterizing the types of interactions is by looking at
ways in which systems can be coupled together to interact. Cornock and Edmonds
(1973) early identified the ‘art system’ as consisting of the artist, the participants,
the artwork, the environment in which these elements are placed, and the dynamic
processes or interactions that result from the process (Candy & Edmonds, 2012).
Canonical models of computer-human interaction are based on an archetypal
structure: the feedback loop. Representing interaction between a person and a
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dynamic system as a simple feedback loop is a good first approximation, it
forefronts the role of information looping through both the person and the system
(Dubberly et a. 2009). Within dynamic systems, there is a distinction between
those that only react, a linear or open-loop system, and those that interact, or
closed-loop systems. Some closed-loop systems have a novel propriety—they can
be sdf-regulating. But not all closed-loop systems are self-regulating. For
example, the natural cycle of water is aloop. Rain fals from the atmosphere and
is absorbed into the ground or runs into the sea. Water on the ground or in the sea
evaporates into the atmosphere. But nowhere within the cycleisthere agoal.

A self-regulating system has a goal. The goal defines a relationship between
the system and its environment, which the system seeks to attain and maintain.
This relationship is what the system regulates, what it seeks to keep constant in
the face of external forces. A simple self-regulating system (one with only asingle
loop) cannot adjust its own goal; its goal can be adjusted only by something
outside the system. Such single-loop systems are called “first order.”

Learning systems nest a first self-regulating system inside a second self-
regulating system. The second system measures the effect of the first system on
the environment and adjusts the first system’s goal according to how well its own
second-order goal is being met. The second system sets the goal of the first, based
on external action. We may call this learning—modification of goals based on the
effect of actions. Learning systems are also called second-order systems.

Some learning systems nest multiple self-regulating systems at the first level.
In pursuing its own goal, the second-order system may choose which first-order
systems to activate. As the second-order system pursues its goal and tests options,
it learns how its actions affect the environment.

A second-order system may in turn be nested within another self-regulating
system. This process may continue for additional levels. For convenience, the
term “second-order system” sometimes refers to any higher-order system,
regardless of the number of levels, because from the perspective of the higher
system, the lower systems are treated as if they were smply first-order systems.

3.1. Feedback Loopsin the AURAL

When, in the AURAL, the user supplies parameters for fitness evaluation by
drawing a curve (red) from which the coordinates of the points are taken as
parameters, the curve — alinear system - provides input for alearning system, the
evolutionary process. Medium solutions are expected in this case, since the fithess
function changes quickly. The blue curve - output - supplies the bio parameter for
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the reproduction cycle and the rhy parameter for the MIDI cycle (Figure 1). In the
first case, the process is areinforcing system. In this kind of system, the output of
one self-regulating system is input for another. Reinforcing systems share similar
goas. Redundancy is an important strategy in some cases. When the goals
compete, we have competing systems.

The second case (the blue curve - output - supplies the rhy parameter for the
MIDI cycle) is a balancing system: the output of one self-regulating system is
input for another. Once the better individual of the population is selected
(reproduction cycle) and placed in a critical area to be played (MIDI cycle) the
process is a conversing system, when the output of a learning system becomes
input for another.
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Figure 7. Flow of interaction in AURAL: on the left, above, the user/composer draws a
curve and sends it as atrgjectory to a master robot. The position of the robot (X, y) supplies
parameters for the evolutionary process. The distance between the robots/dancer is
evaluated by the vision system and performance modes are assigned and processed by the
MIDI cycle. The musicians accompany the system in a performance.

Furthermore, depending on the distance between the pairs of robots,
performance controls are activated (Figure 7). Moreover, the dancer using a red
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hat is seen by the system as another robot, but with a different behavior. As an
autonomous agent the dancer avoids collisions, while the robots handle collisions,
they drive away from the obstacle.

When solo control is enabled, the sound events are sent directly to the MIDI
board from the JavOX evolutionary process, supplying a single sequence of MIDI
events at every step of the genetic cycle. Therefore, the sound result depends only
on the interaction between the red curve and the blue curve. In the second
performance control (sequence), MIDI notes (voices) are played in quick event
sequences. In this way the melodic character of the music is emphasized,
generating a sound texture having a horizontal character. The third control (block)
sends events to the MIDI board as quickly as possible, aimost simultaneously,
generating a superposition of notes or blocks. In this case the emphasis is in the
verticality of the sound events, generating cluster textures.

The number of notes n cyclically sent to the MIDI board is described by a
dlider within the performance control of JaVOX. The notes are stored in a buffer
memory containing the last n notes selected by the evolutionary cycle. This
strategy introduces sound information of second order and brings about emergent
and unexpected output, using data stored in the recent memory of the system.

Several cases occur in this interaction. Just to mention some of them, each
agent, robot or dancer, can be considered a self-regulating system. The OmniEye
observes their movement, evaluates the distance between the pairs of the agents
and assigns the performance modes. As a system, the OmniEye measures the
effect of the first system — the autonomous agents — and its output — the
performance controls - becomes input for another system, the MIDI cycle. Again,
in this case we have conversing systems. To achieve its goal, the MIDI cycle uses
the notes stored in the buffer memory, which are the output of the evolutionary
cycle, alearning system. The number of notes (n) is set by the user, characterizing
a regulating system, where the output of one linear system provides the input to
another.

3.2. Interactivity in AURAL »

In the AURAL,, sound fragments are triggered depending on the position of the
robots on the stage. Like in the AURAL, each robot can be considered a self-
regulating system. The vision system, videoGrid, tracks the movement of the
robots on the stage, evaluates its position and assigns a sound fragment to be
played. The sonifying process is activated, and may be considered a first order
system. But, most important about AURAL,, isthat it isan open system. AURAL »
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is sensitive to both sounds of the environment and the interactions of the visitors
at the microphone, storing sound fragments in the database when the result of the
spectral analysis surpass a threshold. In this case, arotation is applied on the grid
which is presented on the TV monitor and the color of the cells change.

open system
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Figure 8. In AURAL,, sound fragments are played depending on the position of the robots.
User intervention at a microphone causes the storing of fragments in the sound database.
These fragments may return modified to the environment and then return to the database.

The videoGrid acts as a regulating system. The sound fragments can be
played again and, modified, they return to the sound database, in a continuous
acoustic recycling process, once the cells where they are stored in the virtual grid
are activated by the movement of the robots (Figure 8). In AURAL, the
sonification is not the result of the complexity of the underlying system, but due
to the complexity of the environment (Simon, 1981; Brooks, 1990).

4. Interactivity, Evolution and Structure

Several interactive processes were observed in the AURAL environments. In the
interactive concert Robotic Variations, for example, the musicians played a
music for which the movement of the robots on the arena was used as a
composition strategy. A trajectory was sent to Nomad, the master robot, that
tried to follow it, while other robots navigated in the arena in a pre-programmed
autonomous mode. The same trajectory used to generate the material for the
composition was used in the performance, but because of the evolutionary
sonification process, even if the parameters of control are alike in every
execution, the result is different in every run. The musicians knew the type of
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music that would be generated, but they had to be able to adapt the performance.
At the same time, the dancer, tracked by her red hat, was interacting with the
robots, all interfering in the music that was being generated.

In each performance, the place of the robots, navigating in the arena in their
autonomous mode, could be different; the dancer had to adapt herself to them.
Important to remember is that all the process was triggered by a curve drawn by a
human. The curve, as well as all the MIDI events generated in a test run, were
recorded.

The sound material was adapted for human performance. The same curve was
used in the rehearsals and in the final performance, with the musicians, the dancer
and the robots. The dancer and the robots interfered in the sonification process,
accomplished by the musicians, incurring in multiple feedback cycles.

Concerning to the structure/novelty tradeoff, the challenge faced by the
designers of evolutionary composition systems is how to bring more structure and
knowledge into the compositional loop, while trying to the user out of it. In this
sense, JaVOX control interface offers some possibilities for the user. If ssimulated
evolution techniques alow to obtain novelty, often complex novelty, the curves
drawn in the interface permits to direct the novelty by guiding the evolutionary
cycle through the desired regions of the conceptual sound space. The other
controls. rhythm, pitch, performance and orchestra still alow to modify the
sonority of the system in real time. The user/composer still isin the loop, but just
directing the compositional loop.

On the other hand, in the AURAL; the structure is only suggested by the type
of the sound samples (synthetic, game, environment and everyday sound fragments)
stored in the database. The microphone acts as an invitation to the visitors for
interaction. During the exhibition the people initialy tried the installation by talking
at the microphone. When the visitors heard segments of their speech mixed with
other sounds, people started to explore the system by taking, singing, or even
screaming, sometimes incurring in visua effects in the virtua grid displayed on the
TV, by changing the color of the cells or the position of the grid. Filtered images of
the robots and of the people were also displayed on the TV. When people become
aware of the images, they started to move in front of the camera. The behavior of
the people changed while they tried the environment.

More structure and knowledge built into the system means more reasonably
structured musical output, but also more predictable output, which can be relaxed
by introducing processes such as those linking the interaction of the robots with
the performance controls. Less structure and knowledge in the system, like in
AURAL,, means more novel, unexpected output, but also more unstructured
musical chaff. Producing computational models of such high-level behaviors,
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embedded in robotic platforms, calls for novel research at the frontier between
robotics, music and multimodal systems.

From the AURAL and AURAL, perspectives, humans and robots are agents
of a complex system and the sonification is the emergent propriety that is
produced by their interaction and behavior. As such the sonic result is not seen as
an isolated aspect of these two systems but a representation of the synergetic
capabilities of the agents to collaborate and produce a complex musical narrative.
By interacting with the environment, which provides feedback via sensors, the
systems generate different sonic structures. Evidences from situated robotics and
neuroscience point to the fact that it is important to take into consideration the
principles of parallelism, emergence, embodiment and feedback to foster the
expressivity and creativity into machines (Verschure and Manzolli, 2013).
Through the interaction between the real and then virtual worlds AURAL brings
about emergent musical narratives critically dependent on their accomplishment
as real-world artifacts, supplying a solution to be verified for the theory of an
open and interactive system as the mind.

Conclusion

Through the interaction between the real and virtual worlds, AURAL produces
emergent musical narratives, the so emanating composition depends on real world
congtraints. This kind of interactive system is based on the approach of the theory
of mind including its creativity and aesthetics and it will be critically dependent
on its accomplishments of real-world artifacts because only in this way may this
theory of an open and interactive system be fully validated, since the
computational power of a machine can be used to infer the implications of a
program where the unassisted human mind is unable to do.

Researchers and developers remain optimistic about breaking down the barriers
between humans and digital devices so that they can communicate more easily.
Work that focuses attention on the physicality is especially important in an age
when the interplay between real and virtual worlds is becoming so important. In
time, sensing, computing and communication functions will become invisible and
integrated into everyday objects and spaces. It remains unclear how far such
developments can go. Meanwhile, artists and composers are enthusiastic about
creating unprecedented interactive works that engage persons in innovative ways.
The increasing presence of computing power in their artworks and compositions
will continue to bring up questions about the extent to which artists might be
involved in designing the intelligence, form and interactivity of worksin the future.



Robotics, Evolution and Interactivity in Sonic Art Installations 179

Acknowledgments

We wish to thank the students Thiago Spina, Eddy Nakamura, Felipe Augusto,
Helen Fornazier and Gustavo Solaira, who worked with Pioneer, Nomad, Roomba
and iCreate robots. We aso thank the students Lucas Soares, Igor Dias, Igor
Martins and Flavio Kodama who worked in the development of OmniEye and
JavOX, and Marcelo Salvatori, Rafael Guimardes Ramos, Felipe Shida and
Daniel Kantor, who worked in AURAL,. We wish to thank Mariana Shellard for
the video production. We thank the musicians Cesar Traldi, Chiquinho Costa,
Adriano Monteiro and the dancer Tatiana Benone, who played in the performance
at Unicamp/IA Art Gallery. We thank Adriana Giarola Kayama for her narration
of AURAL videos. We thank the researchers Josué Ramos, Sidney Cunha and
Hélio Azevedo for their valuable contributions. We aso thank to the technical
support of Douglas Figueiredo. We thank the Scientific Initiation Program of the
National Research Council (PIBIC/CNPq), the Center for Technology
Information Renato Archer and the Interdisciplinary Nucleus for Sound Studies of
the State University of Campinas (NICS/JUNICAMP) for making this research
possible. This research work was part of the AURAL project, supported by the
Foundation for the Research in S0 Paulo State (FAPESP) process 05/56186-9.
Manzolli is supported by the Brazilian Agency CNPg.

Refer ences

Ashby, W. R., 1956. An Introduction to Cybernetics, Chapman & Hall, London.

Boden, M., 1991. Computer models of mind, Cambridge University Press.

Brooks, R., 1990. Elephants don't play chess. Robotics and autonomous systems 6
(1-2), 3-15.

Candy, L., Edmonds, E. Interaction in Art and Technology.
http://crossings.tcd.ie/issues/2.1/Candy/

Cornock, S. and Edmonds, E., 1973. The Creative Process where the Artist is
Amplified or Superseded by the Computer. Leonardo 6, 11-16.
Dubberly, H., Haue, U., Pangaro, P., 2009. What is interaction? Are there
different types? http://www.dubberly.com/articles/what-is-interaction.html
Jewell, E., Abate, F., McKean, E., 2001. The New Oxford American Dictionary.
Oxford University Press.

Le Groux, S., 2011. Situated, perceptual, emotive and cognitive music systems. a
psychologically grounded approach to interactive music composition, Dr.
Thesis, Vershure, P. (advisor), Universitat Pompeu Fabra.



180 Artemis Moroni and Jonatas Manzolli

Manzolli, J., 2011. pd descriptor: Spectral analysis on sound fragment. Internal
Report, NICS/Unicamp.

Moroni, A. 2012. AURAL: A Robotic Evolutionary Environment for Sound
Production. https://sites.google.com/site/aural roboti csonification/

Moroni, A., Manzalli, J., 2010. From Evolutionary Composition to Roboatic
Sonification. In: EvoApplications 2010, Istambul. Applications of
Evolutionary Computation. Berlin: Springer.

Moroni, A., Manzolli, J.,, Von Zuben, F. J.,, Gudwin, R., 2000. VoxPopuli: An
Interactive Evolutionary System for Algorithmic Music Composition.
Leonardo Music Journal 10, pp. 49-54.

Moroni, A., Manzolli, J,, Von Zuben, F. J, Gudwin, R. 2002. Evolutionary
Computation for Music Evolution. In: Bentley, P., Corne, D. Creative
Evolutionary Systems, Morgan Kaufmann, San Francisco, pp. 205-221.

Nierhaus, G., 2009. Algorithmic composition: paradigms of automated music
generation. Springer Verlag Wien.

Papadopoulos, G., Wiggins, G., 1999. Al methods for algorithmic composition: A
survey, a critical view and future prospects. In: AISB Symposium on Musical
Creativity, 124, 110-117.

Puckette, M., 1996. Pure data: another integrated computer music environment.
In: Proceedings of the 2nd Intercollege Computer Music Concerts.
Tachikawa, Japan. 236.

Rowe, R., 1993. Interactive music systems. machine listening and composing.
MIT Press, Cambridge, MA, USA.

Simon, H., 1981. The science of the artificial. Cambridge, USA, MA.

Todd, P. M., Werner, G. M., 1999. Frankensteinian Methods for Evolutionary
Music Composition. In: Griffith, N. & Todd, P. M. (eds.) Musical Networks:
Parallel Distributed Perception and Performance, 313-340, Cambridge: The
MIT Press.

Verschure, P. F. M. J., Manzolli, J., 2013. Computational Modeling of Mind and
Music. In Language, Music, and the Brain. Sriingmann Forum Reports, MIT
Press, Vol. 10.

Vidyamurthy, G. and Chakrapani, J., 1992. Cognition of Tonal Centres. A Fuzzy
Approach, Computer Music Journal, 16:2.

Wassermann, K. C., Eng, K., Verschure, P. F. M. J.,, Manzolli, J.,, 2003. Live
Soundscape Composition Based on Synthetic Emotions. |EEE Multimedia,
82-90.



Robotics, Evolution and Interactivity in Sonic Art Installations 181

Winkler, T., 2001. Composing interactive music: techniques and ideas using Max.
The MIT Press.

Wright, M., 2005. Open sound control: an enabling technology for musical
networking. Org. Sound 10 (3), 193-200.

Zicarelli, D., 2002. How | learned to love a program that does nothing. Computer
Music Journal (26), 44-51.






In: New Developments in Evolutionary ... ISBN: 978-1-63463-493-9
Editor: Sean Washington, pp. 183-21&) 2015 Nova Science Publishers, Inc.

Chapter 6

AN ANALYSIS OF EVOLUTIONARY -BASED
SAMPLING METHODOLOGIES

Yoel Tenne*
Department of Mechanical and Mechatronic Engineering,
Ariel University, Israel

Abstract

A common approach for solving simulation-driven enginegiprob-
lems is by using metamodel-assisted optimization algmstmamely, in
which a metamodel approximates the computationally expessmula-
tion and provides predicted values at a lower computaticost. Such al-
gorithms typically generate an initial sample of solutievtsich are then
used to train a preliminary metamodel and to initiate optation pro-
cess. One approach for generating the initial sample is thighdesign
of experiment methods which are statistically orientedilevthe more
recent search-driven sampling approach invokes a conigughintelli-
gence optimizer such as an evolutionary algorithm, andtises the vec-
tors it generated as the initial sample. Since the initialga can strongly
impact the effectiveness of the optimization process, shisly presents
an extensive comparison and analysis between the two agm@®across
a variety of settings. Results show that evolutionary-ta&senpling per-
formed well when the size of the initial sample was large &se¢habled
a more extended and consequently a more effective evoarjiasearch.

*E-mail address: y.tenne@ariel.ac.il
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When the initial sample was small the design of experimenthoais typ-
ically performed better since they distributed the vectoose effectively
in the search space.

PACS: 05.45-a, 52.35.Mw, 96.50.Fm

Keywords: evolutionary algorithms, sampling methods, expensive optimiza-
tion problems, metamodelling

1. Introduction

These days computer simulations are used in engineering as a substitute fo
real-world experiments, with the goal of making the design process more ef-
ficient. These simulations, which must be properly validated with laboratory

experiments, transform the design process into an optimization problernghavin

three distinct features (Tenne and Goh, 2010):

e The simulation acts as the objective function since it assigns candidate
designs their corresponding objective values. However, the simulation is
often a legacy code or a commercial software whose inner workings are
inaccessible to the user, and is therefore viewed laek-box function
namely, which lacks an analytic expression. This precludes the of opti-
mization methods which require an analytic function.

e Each simulation run requires extensive computer resources, and this
severely restricts the overall number of candidate designs which can be
evaluated during the design process.

e Both the real-world physics being modelled, and the numerical simula-
tion process, may result in an objective function having a complicated
nonconvex landscape which exacerbates the optimization difficulty.

These scenarios are commonly referred to in the literatuexaensive black-
box optimization problemsand a variety of algorithms have been proposed to
address them (Tenne and Goh, 2010; Forrester and Keane, 20602t al.,
2005).

A common methodology which is applied to such scenarios is that of
metamodel-assisted optimization, namely, in which a metamodel approximates
the true expensive function (the simulation), and provides the optimizer with
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predicted objective values at a lower computational cost. Such algorithms typ
ically begin by generating an initial sample of vectors which representi-cand
date solutions, and these are then used to train a preliminary metamodel and t
initiate the main optimization search. This implies that the initial sample can
strongly impact the overall search effectiveness and motivates a eloabysis

of this relation.

A common approach for generating the initial sample is by the design of
experiments (DOE) methods, which are statistically-oriented and aim to gen-
erate a sample which is optimal in some sense. A more recent approach is
that of search-based sampling (SBS) in which a direct search optimizer is in
voked for a short duration and the vectors it evaluated then serve &tttk
sample. In the literature, existing studies in the domain of metamodel-assisted
optimization have focused mainly on DOE methods, for example, as discussed
by Queipo et al. (2005); Chen et al. (2006); Sébester et al. (2605)ester and
Keane (2008); Wang and Shan (2007). Therefore, the focus amdaoatri-
bution of this study is to: a) compare the DOE and the search-driven sampling
(SDS) approaches in metamodel-assisted optimization, and b) analyse the im
pact of these sampling methods on the overall search effectivenesadiruste
the metamodel accuracy. An extensive set of numerical experimentsdisaise
formulate guidelines as to how best apply such sampling methods.

The remainder of this chapter is organized as follows: Section 2 provides
pertinent background information, Section 3 describes in detail the nwaheric
experiments performed, and Section 4 provides an extensive perfoeraaal-
ysis. Lastly, Section 5 concludes this chapter.

2. Background

This section provides background information on relevant optimization and
sampling methods.

2.1. Expensive Optimization Problems and Computational
Intelligence Algorithms

Computationally-expensive simulation-driven optimization problems are com-
mon across engineering and science domains, and Figure 1 shows thatr lay
where the simulation is treated as a black-box function. In this setup, cémdida
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) “Black-box’ function

Objective value

Figure 1. The layout of a computationally expensive simulation-driven opti-
mization problem.

designs are parameterized as vectors of design variables and aidefdrag
inputs to the simulation.

Meta-models (also terme@sponse surfaaa a surrogate modghre often
used to circumvent the high evaluation cost. They provide predicted olgjecti
values at a much lower computational cost when compared to the simulation
code. Metamodels are typically interpolants which have been trained by us-
ing evaluated vectors, and examples include artificial neural netwonkg; K
ing, polynomials, and radial basis functions (RBF) (Forrester and é&K2008;
Queipo et al., 2005). Metamodel-assisted algorithm typically begin by sampling
a set of vectors and using them to train a preliminary metamodel. An optimiza-
tion search is then performed in which the optimum of the metamodel is sought,
and vectors generated during this search are evaluated with the trugsiepe
function and are used to update the metamodel. This process then repeats ur
til a maximum number of analysis have been performed. Algorithm 1 gives a
pseudocode of a baseline metamodel-assisted optimization algorithm.

After training a metamodel, two main classes of optimization algorithms
can be used to search for an optimizer:

e Gradient-based optimizers: These optimizers typically operate on a single
candidate solution which is refined at each iteration based on the local
gradient. The resultant search is typically localized.

e Direct search optimizers: Such optimizers typically employ a number of
candidate solutions concurrently, and manipulate them based only on the
observed function values (gradients are not utilized). The resultardtse
tends to be more explorative when compared to gradient-based methods.
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Algorithm 1: A baseline metamodel-assisted optimization algorithm

/* Initial sanpling step */
Generate an initial sample of vectors;
Evaluate the vectors with the true expensive function and store them in
memory;
/+* Main optimzation |oop * [
while maximum number of analyses not reachied
Train a metamodel by using the vectors stored in memory;
Search for an optimum of the metamodel, based on an infill sampling
criterion;
Evaluate with the true expensive function one or more of the vectors
generated during the search, and add them to the memory storage;

Since black-box functions often have a complicated nonconvex lanelscap
gradient-based optimizers can converge to a poor local optimum. This has mo-
tivated the use of direct-search optimizers in such problems since their explo
rative search behaviour often allows to them to locate a better final solution
(Zahara and Kao, 2009; Babu and Rakesh, 2006). One such optimizieh
has been widely used in literature and which is also employed in this study, is
the evolutionary algorithm(EA), which uses the following nature-inspired op-
erators (de Jong, 2006): $election the vectors (typically those with a better
objective value) are selected parentsii) recombinationthe parents vectors
are combined to yiel@ffspring iii) mutation some offspring vectors are per-
turbed. The offspring population is then evaluated, and the members with the
best objective values serve as the next generation population. Ttesprthen
repeats until a termination criterion is met, for example, if the maximum num-
ber of generations has been reached. Through these naturedngpértors
the EA population explores the function landscape and is able to locate good
solutions even in challenging scenarios such as with nonconvex or feredif
tiable functions. Algorithm 5 gives a pseudocode of a baseline EA.

2.2. Sampling Methods

Sampling methods were originally aimed to assist in designing real-world lab-
oratory experiments, and hence denotedesign of experiment®OE) meth-
ods. The main assumptions under which they were developed were thatehe tr
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Algorithm 2: A baseline evolutionary algorithm (EA)

Initialize and evaluate a population of candidate solutions;

[+ main | oop * |
repeat

Select a group of candidate solutions and designate thgraragts
Recombine the parents to creatféspring

Mutate some of the offspring;

Evaluate the offspring;

Select the candidate solutions which will comprise the population of
the next generation;

until convergence or maximum search duration

objective function is a low-order polynomial, and that the objective valeewb
observed in the experiment always contain some random noise. In #iésgs

the classical DOE methods were developed to minimize the noise impact and
to improve the accuracy of estimating the polynomial coefficients. Examples
of such methods include factorial designs (Fisher, 1926; Finney,)18dbtral
composite designs (Box and Wilson, 1951), and the response surféuaedole

ogy (RSM) designs (Myers and Montgomery, 1995).

The above assumptions were invalid for computer experiments since now
the observed function values were deterministic, namely, free of noise, Als
the true objective function was no longer restricted to be a low order polyno
mial, and more general approximations were being considered such gs RBF
Kriging, and artificial neural networks (ANN). These issues haweetrihe de-
velopment of modern DOE methods whose goal is to cover the searchispace
some optimal way, which consequently should improve the prediction agcurac
of the resultant metamodel. Examples of such methods include Monte Carlo
sampling (Metropolis and Ulam, 1949), Latin hypercube (LH) designs (d4cK
et al., 1979), orthogonal arrays (Owen, 1992), and maximin and minimax de
signs (Johnson et al., 1990), to name a few.

A recent and drastically different approach is that of search-agaenpling
(SDS). Here an optimizer is invoked for a short duration and during itstrun
calls the objective function directly (no metamodels are involved in this phase).
After this short run has been completed, the vectors evaluated thenaserve
the initial sample. Since the gradient of the black-box function is not known,
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SDS setups have useddi@rect searchoptimizer, namely, which relies on the
observed function values only (Jin et al., 2005; Quttineh and Holmstrém®) 200
Such optimizers typically operate on a set of vectors instead of a singlaahe,
manipulate them based on the observed function values. In particular, EAs
which are known for their robustness and effectiveness, have ussshas the
direct search in the SDS approach, and examples include Biliche ed@b) (2
and Liang et al. (2000). To conclude this section, Table 1 compares the main
aspects of the DOE and SDS approaches.

Table 1. Features of DOE and SDS sampling methods

DOE SDS
Procedure Sampling vectors from a Invoking an optimizer which
statistical distribution directly evaluates the expensive

function, and using the evaluated
vectors as the initial sample

Sequence of sample  Entire sample a-priori Incrementally during the search

generation

Parallel evaluation Entire sample a-priori Only the set of vectors available
at each iteration

Objective function No Yes

affects sampling

Sample is space-filling  Yes Partially

A metamodel is involvedNo No!

in the procedure

(': As an exception, Laurenceau and Sagaut (2008); Quttineh and tidtms
(2009) used a Kriging metamodel.

3. Numerical Experiments: Design
and Implementation
This section describes the numerical experiments which were used totevalua

the impact that different methods for generating the initial sample have on the
search effectiveness.
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3.1. Design of the Numerical Experiments

Each experiment consisted of a pre-optimization stage in which the initial sam-
ple was generated by one sampling method, followed by a full optimization
search which was performed by a representative optimizer (which isilbedc
in Section 3.4).

The experiments were formulated based ondbsigned experimerfimme-
work of Myers and Montgomery (1995) such that they included two compo-
nents:

e Factors The main variables whose effect is being analyzed. In this study
the sampling method type was defined as the factor. The different meth-
ods are described in Section 3.2.

e Control variables These are settings of the experiments which are kept
fixed while across different factor values. In this study, four contami-
ables were defined: a) the size of the initial sample, b) the optimization
budget, c) the function type, and d) the function dimension, which are de-
scribed in Section 3.3. Also following the designed experiments frame-
work, a 2' factorial design of experiments was employed in which each
control variable (except fdunction typé was given representative “low”
and “high” settings, and which resulted in eight settings combinations, as
described in Table 2. Together with the six test functions employed, this
resulted in 48 differenbptimization scenarig:hramely, unique combina-
tions of control variables settings.

Each sampling method was employed in all 48 optimization scenarios, and
to support a valid statistical analysis in each scenario 30 runs werdedyeith
each sampling method. In summary, the layout of the numerical experiments
was:

Step 1) Generate an initial sample by either:

e Latin hypercube sampling (LHS).
e Monte Carlo sampling.
e EA-based search-driven sampling.

No metamodel was used in this step.

Step 2) Perform a full optimization search with a metamodel-assisted algorithm
(the same optimization algorithm was used in all tests).
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Table 2. Formulation of the numerical experiments

Component type Component name Assigned settings
Factor Sampling method LHS, Monte Carlo sampling, micro-EA
SDS

Optimization budget 200, 2000 evaluations of the true function

Size of initial sample  10%, 25% of the optimization budget
Ackley, Griewank, Rastrigin, Rosen-
Function type brock,
Schwefel 2.13, Weierstrass

Control variable

Function dimension 10, 50

This setup results in 48 optimization scenarios: 2 sizes of the initial sam@eptimization
budgetsx 6 objective functions< 2 function dimensions.

3.2. Sampling Methods

Three methods for generating the initial sample were employed, as follows:

e Latin hypercube (LH) sampling: A DOE method which ensures that the
resultant sample is space-fillirndcovers the full range of the design
variables (McKay et al., 1979). Briefly, for a samplekafectors the range
of each variable is split intk equal intervals, and one point is sampled at
random in each interval. Next, a sample point is selected at random and
without replacement for each variable, and these samples are combined
to produce a vector. This procedure is repeated fones to generate the
complete sample. The method has been widely employed in literature, in
problems ranging from the allocation of water resources (Mugunthan and
Shoemaker, 2006) to the design of electronic circuits (You et al., 2009).

e Monte Carlo sampling: A DOE method, also termethdom sampling
which generates each sample vector individually and without considering
previously sampled vectors, which can result in some vectors being ad-
jacent. Vectors are typically drawn from the uniform multivariate distri-
bution. The method has been widely employed in literature, in problems
ranging from the design of a satellite boom (El-Betalgy and Keane, 2001)
to the design of an electric motor (Neri et al., 2008).

e Micro-EA SDS: In this approach an EA is invoked for a short duration,
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and the vectors it evaluated then serve as the initial sample. The small
size of the initial sample in expensive optimization problems implies that
the population must be small, as otherwise the allotted function evalu-
ations would rapidly be exhausted and the EA would terminate prema-
turely. Therefore, studies have used what is termed in the literature as a
micro-EA(Krishnakumar, 1989), namely, an EA with a small population.
For example, Liang et al. (2000) used a ‘(1+1) EA’ in which a single par-
ent generated a single offspring and the better out of the two progresse
to the next generation. As another example, Bliche et al. (2005) used a
covariance matrix adaptation evolutionary strategy (CMA-ES) optimizer
in which 2 parents generated 10 offspring.

Following the literature, the numerical experiments included a micro-EA
which employed a population of five members (Senecal, 2000). The
micro-EA operates as described in Algorithm 5, and Table 5 gives its
internal parameter settings.

Table 3. Internal parameters of the micro-EA used for generatimg the

initial sample
Population size 5
Selection Stochastic universal selection (SUS)
Recombination Intermediate,= 0.7
Mutation Breeder Genetic Algorithm (BGA) mutation (Chip-

perfield et al., 1994)p =0.1

Elitism 10%

p: The probability of applying the operator

3.3.

Optimization Scenarios

As described in Section 3.1, 48 different optimization scenarios were, used
which correspond to different combinations of control variables settagyol-
lows:

i)

Optimization budget: Affects the duration of the optimization search and
the size of the initial sample. The experiments included a low setting of
200 function evaluations and a high setting of 2000 function evaluations.
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i) Relative size of the initial sample: Affects the trade-off between the size of
the initial sample and the duration of the main optimization search which
succeeds it. The experiments included a low setting of 10% of the opti-
mization budget and a high setting of 25%.

iii) Objective function type Affects the optimization difficulty due to the
function features (nonconvexity, nondifferentiability). The experiments
cluded the test functions set (Suganthan et al., 2005): Ackley, Griewan
Rastrigin, Rosenbrock, Schwefel 2.13, and Weierstrass, whosiésdeta
given in Table 4. A bias term (Suganthan et al., 2005) was not used in this
study.

iv) Function dimension Affects the optimization difficulty (‘curse of dimen-
sionality’). The experiments included a low setting of dimension 10 and a
high setting of dimension 50.

3.4. Optimization Algorithm

As mentioned in Section 3.1, in each numerical experiment after generating the
initial sample an optimization search was performed. The latter achieved by a
metamodel-assisted EA based on the representative algorithm of Ratlg.(1999

In this algorithm the vectors evaluated so far are used to train a Kriging
metamodel, which is described later in this section. The real-coded EA of Chip-
perfield et al. (1994) is then invoked to search for an optimum of the metdmode
where the EA is run for 10 generations. The EA follows the description @ Se
tion 3.2 and its internal parameter settings are given in Table 5. To further
improve the effectiveness of the EA search, during the optimization séarch
employed a large population size. After the EA search has been completed, th
ten best population members are evaluated with the true objective function and
are added to the memory storage. Another iteration is then performed, until the
number of analyses, namely, calls to the true objective function, reaahpseth
scribed limit. To complete the description, Algorithm 3 gives the pseudocode
of the algorithm.

In this study the Kriging metamodel was employed (Forrester and Keane,
2008; Queipo et al., 2005). It takes a statistical approach to interpolagion b
combining two components: a ‘drift’ function, which is a global coarse ap-
proximation of the true function, and a local correction based on thelatior
between the interpolation vectors. Given a set of evaluated veotorsRY
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Table 4. Test functions

Function Definition,f (x) = Domain Plot of bivariate case

Ackley —20exp(—0.2y/ 3%, x2/d)— [-32,32)d

exp(y{_, cog2mx;)/d) +20+e

Griewank y9_,{x?/4000} —9_;{cos(xs/vi)}+1  [~100,100]
Rastrigin Y9, {x?—10cog2mx;) + 10} [-5,5]d
Rosenbrock 3971 {100(x2 —x541)% + (x; — 1)} [~10,10]@
Schwefel 2.13 39, {59_, [(as sin(a;) +bs jcoga;))— [—7t, md

(a1,3sin(x;) + by j cogx;))] }2

Weierstrass ~ 39_,{52%,0.55 cos(2m3(x; +0.5)) } — [-0.5,0.5]d
d3£%,0.5% cog(m3¥)
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Algorithm 3: The optimization algorithm used in the main search
while maximum number of analyses not reached
Train a metamodel with the vectors which have been evaluated with
the true function;
Search for an optimum of the metamodel by using a real-coded EA,;
Evaluate with the true function the ten best vectors from the resultant
EA population;

Return the best solution found;

Table 5. Internal parameters of the EA used in the main search

Population size 100

Generations 10

Selection Stochastic universal selection (SUS)

Recombination operator  Intermediape= 0.7

Mutation operator Breeder Genetic Algorithm (BGA) mutation (Chipperfield
etal, 1994)p=0.1

Elitism 10%

p: The probability of applying the operator

i =1...n, the Kriging metamodel is trained such that it exactly interpolates the
observed values, that isy(x;) = f(x), wherem(x) and f (x) are the metamodel
and true objective function, respectively. Using a constant drifttfanajives

the Kriging metamodel

m(x) = B +K(X), ey

with the drift functionf and local correctionx (X). The latter is defined by a
stationary Gaussian process with mean zero and covariance

COV[K (X)K(Y)} = 020(6 s X, y) ) 2)

wherec(0,x,Y) is a user-prescribed correlation function. A common choice
for the latter is the Gaussian correlation function (Forrester and Ke@08),2

defined as ]

C(e 7X7Y) = 'rlexp(_e (Xl —Yi)z) ) (3)

and combining it with the constant drift function transforms the metamodel from
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(1) into the following form
m(x) = B+r()"R(f - 1B). (4)

Here,ﬁ is the estimated drift coefficienR is the symmetric matrix of correla-
tions between all interpolation vectork,is the vector of objective values, and
1 is a vector with all elements equal torf. is the correlation vector between a
new vectorx and the sample vectors, namely,

I"T

=[c(0,X, X1),...,c(0,X, Xn)]. (5)
The estimated drift coeﬁicierﬁ and varianc&? , which are required in Equa-
tion 4, are obtained as follows

— (IR 1) 1R, (6a)
52— % [(t-13)R(f-15)] . (6b)

Fully defining the metamodel requires the correlation parameéersvhich
are commonly taken as the maximizers of the metamodel likelihood. This is
achieved by minimizing the expression (Sacks et al., 1989)

w(6) = |RI""G? (7)

which is a function only of the correlation paramet@rand the sample data. In
this study a single correlation parameter was used, as is commonly done in the
literature to simplify the parameter tuning (Martin and Simpson, 2005).

To demonstrate the effectiveness of the metamodel-assisted algorithm em:-
ployed, it was applied to the six test functions mentioned in Section 3.1, with a
budget of 2000 function evaluations and a LHS initial sample with a size of 200
vectors. Ten repetitions were performed per function. Table 6 givessiwtant
test statistics from which it follows that the algorithm typically identified a good
final solution, given the limited optimization budget and the highly nonconvex
objective functions involved. The final solutions obtained with the Rosmkbr
and Schwefel 2.13 were typically higher, but in these objective functioas
function value increases sharply when moving away from the global optimum,
and therefore even final solutions which were adjacent to the true ghpiial
mum corresponded to a high objective values. To further demonstratethe b
haviour of the algorithm employed, Figure 2 gives three representdtie, p
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each corresponding to a single run with the Ackley (10D), Rastrigin (580J
Schwefel 3.12 (50D) functions, respectively. The plots show the distdn
norm) between the best solution found to the true global optimum. It follows
that in all cases the algorithm approached the true global optimum, which indi-
cates that it effectively coped with the issue of metamodel inaccuracyallve

the results above show that the algorithm employed was suitable to be used ar
optimizer in the numerical experiments.

30 [ I I ]
Ackley-10D
20 *
10 [ *
| | —
20 Rastrigin-50D
15 *

[
Schwefel 3.12-50D |

12

i

8 L | | | [
500 1000 1500 2000
Function evaluations

Figure 2. The distance between the best solution found during the saadch
the true global optimization. Each plot corresponds to one test run frechtas
generate Table 6.
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Table 6. Test statistics for the metamodel-assisted framework gotoyed

10D 50D
Mean 4.091e+00 8. 575e+00
SD 2.118e-01 2.363e-01
Ackley Median 4.109e+00 8. 510e+00
Min(best) 3.701e+00 8. 307e+00
Max(worst) 4. 345e+00 8.914e+00
Mean 7.491e-01 1.551e+00
SD 1. 049e-01 4.434e-02
Griewank  Median 8.087e-01 1. 552e+00
Min(best) 5. 641e-01 1. 485e+00
Max(worst) 8. 360e-01 1. 600e+00
Mean 2.378e+01 3.461e+02
SD 4. 380e+00 1. 590e+01
Rastrigin ~ Median 2.408e+01 3. 432e+02
Min(best) 1.827e+01 3.289e+02
Max(worst) 2.932e+01 3. 682e+02
Mean 3. 560e+01 4.439e+03
SD 6. 746e+00 6. 635e+02
Rosenbrock Median 3. 618e+01 4.259e+03
Min(best) 2.532e+01 3. 805e+03
Max(worst) 4.734e+01 5. 566e+03
Mean 2.450e+03 3.118e+06
SD 9. 369e+02 3. 254e+05
Schwefel 2.1Bledian 2.594e+03 3. 146e+06
Min(best) 1.176e+03 2.491e+06
Max(worst) 4.061e+03 3. 565e+06
Mean 2. 648e+00 2. 774e+01
SD 3.352e-01 7.148e-01
Weierstrass Median 2.729e+00 2.799e+01
Min(best) 1. 986e+00 2. 654e+01
Max(worst) 2.952e+00 2.861e+01

In all cases, at the global optimum the value of the true objective function is



Table 7. Test statistics for the numerical experiments

Ackley-10D
Mean

SD

Median
Min(best)
Max(worst)
Ackley-50D
Mean

SD

Median
Min(best)
Max(worst)
Griewank-10D
Mean

SD

Median
Min(best)
Max(worst)
Griewank-50D
Mean

SD

Median
Min(best)
Max(worst)
Rastrigin-10D
Mean

SD

Median
Min(best)
Max(worst)
Rastrigin-50D
Mean

SD

Median
Min(best)
Max(worst)

Optimization budget=200 evaluations

Optimization budget=2000 evaluations

Sample size=10%

Sample size=25%

Sample size=10%

Sample size=25%

LHS SDS MCs LHS SDS MCS LHS SDS MCs LHS SDS MCS
5.071e+00 5.036e+00 5.740e+00 4.911e+00 5.034e+00 6.751e+00 4.014e+00 3.825e+00 3.902e+00 3.903e+00 3.95%+00 3.932e+00
7.940e-01  6.907e-01 1.170e+00 7.868e-01  7.415e-01  2.039%e+00 2.81%e-01 3.572e-01 3.689%e-01 3.50le-01 3.579%-01 2.613e-01
4.999%e+00  5.059e+00 5.389e+00 4.852e+00 4.979%e+00 6.357e+00 4.050e+00 3.806e+00 4.024e+00 3.907e+00 4.006e+00 3.961e+00
3.714e+00 3.716e+00  3.534e+00 3.545e+00 4.117e+00 4.272e+00 3.486e+00 3.095e+00 2.745e+00 2.941e+00 2.444e+00 3.265e+00
7.396e+00  6.816e+00 9.866e+00 6.739e+00  7.584e+00 1.343e+01 4.585e+00 4.499e+00 4.429e+00 4.482e+00 4.456e+00  4.343e+00
9.439e+00 9.313e+00 9.529%¢+00 9.281e+00 9.402e+00 9.610e+00 8.629¢+00 8.624e+00 8.681e+00 8.743e+00 8.624e+00 8.711e+00
3.072e-01  2.714e-01  3.778e-01 3.432e-01 3.508e-01  6.233e-01 2.709e-01 2.434e-01 2.278e-01 2.278e-01 2.816e-01 2.363e-01
9.466e+00  9.358e+00  9.484e+00 9.268e+00 9.292e+00 9.616e+00 8.625e+00 8.618e+00 8.698e+00 8.765e+00 8.699e+00 8.746e+00
8.873e+00 8.887e+00 8.432e+00 8.647e+00 8.740e+00 8.174e+00 7.854e+00 8.152e+00 8.138e+00 8.150e+00 7.793e+00 8.029e+00
1.007e+01  9.766e+00 1.024e+01 9.934e+00 1.002e+01 1.070e+01 9.042e+00 9.161e+00 8.971e+00 9.057e+00  9.045e+00 9.129e+00
9.593e-01  9.329e-01 9.550e-01 9.472e-01 9.287e-01 1.015e+00 7.309%e-01 7.057e-01 7.323e-01 7.305e-01 7.722e-01  7.455e-01
7.098e-02 8.261e-02 1.715e-01 5.68le-02 8.293e-02 9.314e-02 9.894e-02 1.219%-01 1.065e-01 8.088e-02 9.177e-02 8.08le-02
9.73%e-01  9.454e-01  9.731le-01 9.656e-01 9.613e-01 1.015e+00 7.580e-01  7.287e-01 7.484e-01 7.233e-01 7.935e-01 7.602e-01
7.738e-01  7.564e-01  4.846e-01 7.892e-01  7.035e-01  7.562e-01 4.826e-01 3.167e-01 4.284e-01 5.822e-01 5.517e-01 5.777e-01
1.105e+00 1.039%e+00 1.643e+00 1.019e+00 1.032e+00 1.324e+00 8.903e-01 8.910e-01 8.946e-01 8.845e-01 9.155e-01 9.11le-01
1.707e+00 1.701e+00 1.768e+00 1.670e+00 1.728e+00 1.811e+00 1.577e+00 1.56%e+00 1.562e+00 1.568e+00 1.573e+00 1.554e+00
7.716e-02  9.085e-02 1.231e-01 8.741e-02 7.512e-02 1.357e-01 4.306e-02 4.219e-02 5.766e-02 5.007e-02 4.900e-02 6.140e-02
1.696e+00 1.721e+00 1.774e+00 1.657e+00 1.719e+00 1.816e+00 1.579e+00 1.567e+00 1.567e+00 1.561e+00 1.565e+00 1.559e+00
1.531e+00  1.543e+00 1.517e+00 1.507e+00 1.612e+00 1.561e+00 1.493e+00 1.494e+00 1.433e+00 1.482e+00 1.474e+00 1.400e+00
1.877e+00  1.898e+00 2.123e+00 1.892e+00 1.903e+00 2.142e+00 1.670e+00 1.691e+00 1.687e+00 1.680e+00 1.695e+00 1.644e+00
4.362e+01 4.392e+01  4.446e+01 4.633e+01 4.413e+01 4.768e+01 2.261le+01 2.262e+01 2.362e+01  2.441et01  2.436e+01 2.345e+01
7.226e+00 8.564e+00 8.538e+00 8.702e+00 7.127e+00 1.018e+01 3.920e+00 5.430e+00 6.220e+00 5.694e+00 4.737e+00 3.921e+00
4.410e+01  4.598e+01  4.319e+01 4.648e+01  4.375e+01  4.680e+01 2.254e+01  2.429%e+01 2.484e+01 2.571e+01  2.499%e+01  2.323e+01
2.347e+01  2.650e+01  2.693e+01 2.407e+01 2.527e+01  3.174e+01 1.367e+01 1.258e+01  7.150e+00 1.293e+01 1.525e+01 1.432e+01
5.758e+01  6.095e+01  6.050e+01 6.333e+01  5.490e+01  7.303e+01 2.957e+01 3.058e+01  3.247e+01 3.421e+01 3.207e+01  3.150e+01
3.872e+02 3.914e+02  3.933e+02 3.943e+02 3.857e+02 3.897e+02 3.467e+02 3.475e+02 3.423e+02 3.516e+02 3.526e+02 3.496e+02
1.896e+01  2.365e+01  1.873e+01 2.478e+01 1.971e+01  1.975e+01 1.877e+01 1.625e+01  1.588e+01 1.688e+01 1.497e+01 1.314e+01
3.865e+02  3.958e+02  3.91le+02 4.012e+02 3.873e+02 3.911e+02 3.477e+02 3.502e+02 3.416e+02 3.580e+02 3.532e+02 3.531le+02
3.457e+02  3.299%e+02  3.460e+02 3.407e+02  3.406e+02 3.588e+02 3.031e+02 2.992e+02 3.131et02 2.978e+02 3.035e+02  3.218e+02
4.218e+02  4.414e+02  4.259e+02 4.373e+02  4.172e+02  4.403e+02 3.726e+02 3.713e+02 3.697e+02 3.734e+02 3.764e+02 3.677e+02
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Ackley-10D
Mean

SD

Median
Min(best)
Max(worst)
Ackley-50D
Mean

SD

Median
Min(best)
Max(worst)
Griewank-10D
Mean

SD

Median
Min(best)
Max(worst)
Griewank-50D
Mean

SD

Median
Min(best)
Max(worst)
Rastrigin-10D
Mean

SD

Median
Min(best)
Max(worst)
Rastrigin-50D
Mean

SD

Median
Min(best)
Max(worst)

Optimization budget=200 evaluations

Optimization budget=2000 evaluations

Sample size=10%

Sample size=25%

Sample size=10%

Sample size=25%

LHS SDS MCS LHS SDS MCS LHS SDS MCS LHS SDS MCS
5.071e+00 5.036e+00 5.740e+00 4.911e+00 5.034e+00 6.751e+00 4.014e+00 3.825e+00 3.902e+00 3.903e+00 3.95%e+00  3.932e+00
7.940e-01  6.907e-01  1.170e+00 7.868e-01  7.415e-01  2.039e+00 2.819%e-01 3.572e-01 3.689%e-01 3.50le-01 3.579%e-01 2.613e-01
4.999e+00  5.059e+00  5.38%+00 4.852e+00 4.979e+00 6.357e+00 4.050e+00 3.806e+00 4.024e+00 3.907e+00 4.006e+00 3.961e+00
3.714e+00 3.716e+00 3.534e+00 3.545e+00 4.117e+00 4.272e+00 3.486e+00 3.095e+00 2.745e+00 2.941e+00 2.444e+00 3.265e+00
7.396e+00  6.816e+00 9.866e+00 6.739e+00  7.584e+00  1.343e+01 4.585e+00 4.499e+00  4.429e+00 4.482e+00 4.456e+00 4.343e+00
9.439e+00 9.313e+00 9.529%+00 9.281e+00 9.402e+00 9.610e+00 8.62%9e+00 8.624e+00 8.68let00 8.743e+00 8.624e+00 8.711e+00
3.072e-01  2.714e-01  3.778e-01 3.432e-01 3.508e-01  6.233e-01 2.709e-01 2.434e-01 2.278e-01 2.278e-01 2.816e-01 2.363e-01
9.466e+00  9.358e+00  9.484e+00 9.268e+00  9.292e+00 9.616e+00 8.625e+00 8.618e+t00 8.698e+00 8.765e+00 8.699e+00 8.746e+00
8.873e+00 8.887e+00 8.432e+00 8.647e+00 8.740e+00 8.174e+00 7.854e+00 8.152e+00 8.138e+00 8.150e+00 7.793e+00 8.029e+00
1.007e+01 9.766e+00 1.024e+01 9.934e+00 1.002e+01 1.070e+01 9.042e+00 9.161e+00 8.971e+00 9.057e+00  9.045e+00  9.129e+00
9.593e-01  9.329e-01 9.550e-01 9.472e-01 9.287e-01 1.015e+00 7.309e-01 7.057e-01 7.323e-01 7.305e-01 7.722e-01  7.455e-01
7.098e-02 8.26le-02 1.715e-01 5.68le-02 8.293e-02 9.314e-02 9.89%4e-02 1.21%e-01 1.065e-01 8.088e-02 9.177e-02 8.08le-02
9.739%-01  9.454e-01  9.731e-01 9.656e-01 9.613e-01 1.015e+00 7.580e-01  7.287e-01  7.484e-01  7.233e-01  7.935e-01 7.602e-01
7.738e-01  7.564e-01  4.846e-01 7.892e-01 7.035e-01  7.562e-01 4.826e-01 3.167e-01 4.284e-01 5.822e-01 5.517e-01 5.777e-01
1.105e+00  1.039e+00 1.643e+00 1.019e+00 1.032e+00 1.324e+00 8.903e-01 8.910e-01  8.946e-01 8.845e-01  9.155e-01 9.111e-01
1.707e+00 1.701e+00 1.768e+00 1.670e+00 1.728e+00 1.811e+00 1.577e+00 1.56%9e+00 1.562e+00 1.568e+00 1.573e+00 1.554e+00
7.716e-02  9.085e-02 1.231e-01 8.741e-02  7.512e-02 1.357e-01 4.306e-02 4.21%9e-02 5.766e-02 5.007e-02 4.900e-02 6.140e-02
1.696e+00 1.721e+00 1.774e+00 1.657e+00 1.719e+00 1.816e+00 1.579e+00 1.567e+00 1.567e+00 1.561e+00 1.565e+00 1.559e+00
1.531e+00  1.543e+00 1.517e+00 1.507e+00 1.612e+00 1.561e+00 1.493e+00 1.494e+00 1.433e+00 1.482e+00 1.474e+00 1.400e+00
1.877e+00 1.898e+00 2.123e+00 1.892e+00 1.903e+00 2.142e+00 1.670e+00 1.691e+00 1.687e+00 1.680e+00 1.695e+00 1.644e+00
4.362e+01 4.392e+01  4.446e+01 4.633e+01 4.413e+01 4.768e+01 2.261le+01 2.262e+01 2.362e+01 2.441e+01 2.436e+01 2.345e+01
7.226e+00 8.564e+00  8.538e+00 8.702e+00 7.127e+00 1.018e+01 3.920e+00 5.430e+00 6.220e+00 5.694e+00 4.737e+00 3.921e+00
4.410e+01  4.598e+01  4.31%e+01 4.648e+01  4.375e+01  4.680e+01 2.254e+01  2.42%e+01  2.484e+01  2.571le+01  2.499%e+01  2.323e+01
2.347e+01  2.650et01  2.693e+01 2.407e+01  2.527e+01  3.174e+01 1.367e+01 1.258e+01  7.150e+00 1.293e+01  1.525e+01 1.432e+01
5.758e+01  6.095e+01  6.050e+01 6.333e+01  5.490e+01  7.303e+01 2.957e+01  3.058e+01  3.247e+01  3.421e+01  3.207e+01  3.150e+01
3.872e+02 3.914e+02 3.933e+02 3.943e+02 3.857e+02 3.897e+02 3.467e+02 3.475e+02 3.423e+02 3.516e+02 3.526e+02 3.496e+02
1.896e+01  2.365e+01 1.873e+01 2.478e+01 1.971e+01 1.975e+01 1.877e+01 1.625e+01 1.588e+01 1.688e+01  1.497e+01 1.314e+01
3.865e+02  3.958e+02  3.911e+02 4.012e+02 3.873e+02 3.911e+02 3.477e+02  3.502e+02 3.416e+02 3.580e+02 3.532e+02 3.531e+02
3.457e+02  3.299%e+02  3.460e+02 3.407e+02 3.406e+02  3.588e+02 3.03le+02 2.992e+02 3.131e+02 2.978e+02 3.035e+02  3.218e+02
4.218e+02  4.414e+02  4.25%e+02 4.373e+02  4.172e+02 4.403e+02 3.726e+02  3.713e+02 3.697e+02 3.734e+02 3.764e+02 3.677e+02
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4. Results and Discussion

This section provides the results and discussion of the numerical exp&imen
performed, first where mathematical test functions were used, and e w
an engineering simulation code served as the expensive objective functio

4.1. Experiments Involving Mathematical Test Functions

As mentioned in Section 3, 48 optimization scenarios were considered and 30
runs were performed with each method in turn, where each run consfsaed o
initial sampling stage followed by a full optimization search. In the following
analysis, the effectiveness of the sampling methods was compared Inathed o
final result obtained in the optimization search, which follows the approfch o
other studies such as Toal et al. (2008). Table 6 gives the resultastags-
tics of mean, standard deviation (SD), median, minimum (best), and maximum
(worst) function value. In each scenario, the best mean statistic is emgthasiz

To identify significant trends in the results, the following analysis was used:

e Step 1: In each optimization scenario the three sampling methods were
assigned scores, as follows:

— The three methods were ranked based on their corresponding mean
statistic, where the method yielding the best (lowest) mean statistic
was assigned a score of two, the second best a score of one, and the
worst a score of zero.

— Independently of the latter scores, and for each method in turn,
its corresponding results were compared to those of the other two
methods, to determine if its results achievedtatistically signif-
icant advantage based on the nonparametric Mann—Whitney test
(Sheskin, 2007, p.423—-434). Differences between the test results
were deemed as statistically significant at the 0.05 significance level.
Each method was assigned a score which is the number of compar-
isons in which its corresponding test results achieved a statistically
significant advantage, namely, either two, one, or zero.

Using these two statistics allowed to identify trends of different magni-
tudes in the data. Table 8 gives the resultant scores for the three sampling
methods.
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Table 8. Scores of the three sampling methods in each scenario

(a) Scores based on the mean statistic

Optimization budget=200 evaluations Optimization budget=2000 evaluations

Function Sample size=10% Sample size=25% Sample size=10% Samp@ize=
LHS SDS MCS LHS SDS MCS LHS SDS MCS LHS SDS MCS

Ackley-10D 1 2 0 2 1 0 0 2 1 2 0 1
Ackley-50D 1 2 0 2 1 0 1 2 0 0 2 1
Griewank-10D 0 2 1 1 2 0 1 2 0 2 0 1
Griewank-50D 1 2 0 2 1 0 0 1 2 1 0 2
Rastrigin-10D 2 1 0 1 2 0 2 1 0 0 1 2
Rastrigin-50D 2 1 0 0 2 1 1 0 2 1 0 2
Rosenbrock-10D 1 2 0 2 1 0 0 1 2 0 2 1
Rosenbrock-50D 1 2 0 2 1 0 2 1 0 0 2 1
Schwefel-10D 2 0 1 0 2 1 2 1 0 0 2 1
Schwefel-50D 2 1 0 2 1 0 2 0 1 1 2 0
Weierstrass-10D 1 2 0 2 1 0 0 1 2 0 1 2
Weierstrass-50D 1 2 0 2 1 0 1 0 2 0 1 2

(b) Scores based on statistical significance tests

Optimization budget=200 evaluations Optimization budget=2000 evaluations

Function Sample size=10% Sample size=25% Sample size=10% Sampl@Size=
LHS SDS MCS LHS SDS MCS LHS SDS MCS LHS SDS MCS

Ackley-10D 1 1 0 1 1 0 0 1 0 0 0 0
Ackley-50D 0 1 0 1 1 0 0 0 0 0 1 0
Griewank-10D 0 0 0 1 1 0 0 0 0 1 0 0
Griewank-50D 1 1 0 2 1 0 0 0 0 0 0 0
Rastrigin-10D 0 0 0 0 0 0 0 0 0 0 0 0
Rastrigin-50D 0 0 0 0 1 0 0 0 0 0 0 0
Rosenbrock-10D 0 0 0 1 1 0 0 0 0 0 2 0
Rosenbrock-50D 0 0 0 1 1 0 0 0 0 0 0 0
Schwefel-10D 0 0 0 0 0 0 0 0 0 0 0 0
Schwefel-50D 0 0 0 1 0 0 0 0 0 0 1 0
Weierstrass-10D 0 2 0 1 1 0 0 0 0 0 0 0
Weierstrass-50D 1 1 0 1 1 0 0 0 0 0 0 0
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e Step 2: The individual scores were aggregated to yéeltulative score
which highlight the effect of the different control variables on the itasu
The exception is th&inction typecontrol variable (Table 2) since in prac-
tise the features of a black-box function are not known prior to the opti-
mization search. Therefore, the impact of the other three control vagiable
(initial sample sizefunction dimensionand optimization budgétwere
calculated across the full set of test functions, and not on a petidunc
basis.

For the analysis, cumulative scores were calculated based on three, anc
based on each control variable individually. For each sampling method,
its cumulative score for a given combination of control variables settings
was calculated by aggregating its individual scores from the optimiza-
tion scenarios across all test functions in which the control variables had
the settings in question. Cumulative scores were calculated separately
based on the mean statistic scores and the statistical significance scores
and they indicate which sampling method was most beneficial at a given
combination of control variables settings.

Figure 3 and 4 show plots of the resultant cumulative scores, where in the
x-axis label, the control variables are abbreviatedlgr optimization budget,
d for function dimension, and for sample size. In the following analysis, the
term performanceaelates to the cumulative score a sampling method as com-
pared to the other methods:

e Cumulative scores based on three control variables (Figure 3): The mea
statistic analysis shows that the micro-EA SDS performed well in sce-
narios with a large optimization budget. LHS and Monte Carlo sampling
performed similarly across the different scenarios.

The statistical significance analysis shows that micro-EA SDS did not
outperform the DOE methods in any scenario. Similarly to the mean
statistic analysis, the performance of LHS and Monte Carlo sampling was
comparable.

e Analysis based on a single control variable (Figure 4):

— Function dimension: The mean statistic analysis shows that all three
methods performed consistently, namely, were similarly affected
by the increase in function dimension. The statistically significant
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analysis shows that the performance of LHS slightly improved with
function dimension.

— Sample size: The mean statistic analysis shows that the performance
of micro-EA SDS improved with the sample size, which is attributed
to the extended micro-EA search. However, both LHS and Monte
Carlo sampling outperformed the micro-EA SDS across the two set-
tings.
The statistical significance analysis shows that the performance of
LHS and Monte Carlo sampling improved with the sample size.

— Optimization budget. The mean statistic analysis shows that the
performance of micro-EA SDS significantly improved with the op-
timization budget size. Monte Carlo sampling performed consis-
tently, while the performance of LHS degraded.

The statistical significance analysis shows trends similar to those
above.

LHSEMcs BSDS

Mean statistic comparisons Statistical signifcance comparisons
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Figure 3. Cumulative scores based on three control variables.

In summary, the above analysis shows that the performance of the micro-
EA SDS method was strongly affected by the size of the initial sample. As
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Figure 4. Cumulative scores based on a single control variable.
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the sample size increased so did the relative performance of the micro-BA SD
method, as this enabled a more extended and hence more effective micro-EA
search. In scenarios with a small sample size the DOE methods performed
better since they were able to distribute the small number of sample vectors
more effectively in the search space when compared to micro-EA SDShwhic
turn yielded a more accurate metamodel and improved the optimization search .

4.2. Experiments Involving a Computer Simulation
as the Objective Function

To augment the preceding analysis an additional set of experiments aere p
formed, but which involved a computer simulation as the objective function.
The optimization problem which was being solved was that of airfoil shape op
timization which is formulated as follows. During flight, an aircraft generates
lift, namely, the force which counters the aircraft weight and keeps itraiebo
anddrag which is an aerodynamic friction force obstructing the aircraft's move-
ment. Both the lift and drag are strongly determined by the wing cross-section
namely, theairfoil. The optimization goal is then to find an airfoil shape which
maximizes the lift and minimizes the drag.

In practise, the design requirements for airfoils are specified in terms of the
nondimensional lift and drag coefficients,andcy , respectively, defined as

L

C=+—— (8a)
3pV3S
D
Cd = %T\/ZS (8b)

wherelL andD are the lift and drag forces, respectivgdyis the air densityy
is aircraft speed, anglis a reference area, such as the wing area. Also important
is theangle of attacAOA), which is the angle between the aircraft velocity
and the airfoilchord line defined as the straight line joining the leading and
trailing edges of the airfoil. Figure 5 gives a schematic layout of the airfoil
problem.

Candidate airfoils were represented with the Hicks-Henne parameterization
(Hicks and Henne, 1978) where an airfoil profile is defined by

h
y:ber.Ziaibi(X)’ (9)
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02 T Baseline airfoil: NACA0012
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Figure 5. A schematic layout of the airfoil problem.

whereyy, is a baseline airfoil profile, which in this study was taken as the
NACAO0012 symmetric airfoilly; are basis functions (Wu et al., 2003) defined

as
log(0.5) 4
bi(x) = [sin (nx'°9<i/<h+l>> )] (10),

anda; € [—0.01,0.01] are coefficients, namely, the problem’s design variables.
Figure 5 summarizes the nomenclature of the physical quantities and airfoil
parameterization involved.

The lift and drag coefficients of candidate airfoils were obtained using
XFoil, a computational aerodynamics simulation for analysis of airfoils operat-
ing in the subsonic regime (Drela and Youngren, 2001). Each airfdilatran
required up to 30 seconds on a desktop computer. To ensure striictegaity,
between 0.2 to 0.8 of the chord line the airfoil thickna3$iad to be equal to or
larger than a critical valug = 0.1 . The flight conditions were set as a cruise al-
titude of 30 kft, a cruise speed of Mach 0.7, namely, 70% of the speedintiso
and an AOA of 2. The objective function employed was

fe—2ip (11
Cd

wherep is a penalty for violation of the thickness constraint, such that
t* | ¢ .
"‘ ift < t*
={t |cg

p (11b)

0 otherwise

Figure 6 shows the plots for the cumulative scores by a single control vari-
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able, and it follows that the results are overall consistent with those in Sec-
tion 4.1, namely:

e The micro-EA SDS method did not achieve a statistically significant ad-
vantage in any scenario.

e The mean statistic analysis shows that the performance of micro-EA SDS
improved with sample size.

e The three methods were similarly affected by the increase in function
dimension.

It follows that these trends are consistent with those of Section 4.1, whaok-th
fore validates the overall analysis presented.

5. Conclusion

Metamodels-assisted algorithms are often applied to optimization problems in-
volving an expensive black-box function, namely, where a computatioagily
pensive simulation acts as the objective function. Such algorithms typically
begin by generating an initial sample of vectors, and use them to initiate the
main optimization search. The sample can be generated by a design of ex-
periments (DOE) method which is statistically-based, or by the more recent
approach of search-driven sampling (SDS) which uses a directseptimiza-

tion algorithm. In particular, a micro-EA can be used for a short duratiber, a
which the vectors it evaluated serve as the initial sample. In this study an exten
sive comparison was performed between two DOE methods (Latin hymercub
design, Monte Carlo sampling) and an SDS approach which uses a micro-EA
The three methods were compared based on their impact on the seaozh effe
tiveness, and this was achieved by numerical experiments based bothlen ma
ematical test functions and simulation-driven problem . The main conclusion
from the results is that the micro-EA SDS method was effective when the initial
sample was large, since then the larger number of function evaluationgetioca
to the initial sample allowed for a more effective micro-EA search. In other se
tings, the DOE methods were more effective as they were able to distribute the
small number of sample vectors more effectively in the search space which in
turn yielded a more accurate metamodel.
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Figure 6. Cumulative scores in the airfoil problem, based on a single ¢ontro
variable.
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