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PREFACE 
 

 

A common approach for solving simulation-driven engineering problems 

is by using metamodel-assisted optimization algorithms, namely, in which a 

metamodel approximates the computationally expensive simulation and 

provides predicted values at a lower computational cost. Such algorithms 

typically generate an initial sample of solutions which are then used to train a 

preliminary metamodel and to initiate an optimization process. One approach 

for generating the initial sample is with the design of experiment methods 

which are statistically oriented, while the more recent search-driven sampling 

approach invokes a computational intelligence optimizer such as an 

evolutionary algorithm, and then uses the vectors it generated as the initial 

sample. This book discusses research and new developments on evolutionary 

computation. 

Time-ordered sequences of data (Time Series data), have arisen across a 

broad range of applications in nearly all domains. In Chapter 1, extensive 

experiments using real-world data obtained from one of the most dynamic 

environments is used – Financial Markets. Additionally, a Multi-Objective 

Evolutionary System is used to predict future asset price evolution. 

Therefore, in this study, a Genetic Algorithm (GA)-based Multi-Objective 

Evolutionary System to optimize a Trading or Investment Strategy (TS) was 

developed. The goal was to determine potential buy, sell, or hold conditions in 

stock markets while still yielding high returns at a minimal risk. Fair and 

established metrics were used (as described in the text) to evaluate both the 

returns and the linked risk of the optimized TS. Additionally, these TS are 

evaluated in several markets using data from the main stock indexes of the 

most developed economies, such as: NASDAQ, S&P 500, FTSE 100, DAX 

30, and the NIKKEI 225. The Pareto Fronts obtained with the training data 
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during the experiments clearly showed the inherent tradeoff between risk and 

return in financial management. 

Furthermore, the achieved results clearly outperformed both the B&H and 

S&H strategies. Regardless, the experimental results suggest that the positive 

connection between the gains for training data and test data, which was usually 

implied in the single-objective proposals, may not necessarily hold true in all 

circumstances. 

Due to the fact that the objective in this kind of problem is to find the best 

(optimized) solution to conduct investment in stock markets, this chapter will 

begin with a review of the most recent advances in Computational Problem 

Solving Techniques, as well as the traditional ones. In this review, the various 

existing techniques of Intelligent Computing currently used to solve various 

optimization problems are presented. The various existing techniques, 

especially in the fields of time series forecast and systems that learn by 

example, are briefly reviewed. 

A key concern when training a multi-layer perceptron (MLP) is that the 

final network should generalise well out-of-sample. A considerable literature 

has emerged which examines various aspects of this issue. In Chapter 2 the 

author’s draw inspiration from theories of memory consolidation in order to 

develop a new methodology for training MLPs in order to promote their 

generalisation capabilities. The synaptic homeostasis hypothesis proposes that 

a key role of sleep is to downscale synaptic strength to a baseline level that is 

energetically sustainable. As a consequence, the hypothesis suggests that sleep 

acts not to actively strengthen selected memories but rather to remove 

irrelevant memories. In turn, this lessens spurious learning, improves the 

signal to noise ratio in maintained memories, and therefore produces better 

generalisation capabilities. In this chapter the author’s describe the synaptic 

homeostasis hypothesis and draw inspiration from it in order to design a 

`wake-sleep' training approach for MLPs. The approach is tested on a number 

of datasets. 

Plants represent some 99% of the eukaryotic biomass of the planet and 

have been highly successful in colonising many habitants with differing 

resource potential. The success of plants in "earning a living" suggests that 

they have evolved robust resource capture mechanisms and reproductive 

strategies. In spite of the preponderance of plant life, surprisingly little 

inspiration has been drawn from plant activities for the design of optimisation 

algorithms. 

In Chapter 3 the author’s focus on one important aspect of plant activities, 

namely seed and plant dispersal. Mechanisms for seed and plant dispersal have 
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evolved over time in order to create effective ways to disperse seeds into 

locations in which they can germinate and become established. These 

mechanisms are highly varied, ranging from morphological characteristics of 

seeds which can assist their aerial or animal-mediated dispersion, to co-

evolved characteristics which "reward" animals or insects who disperse a 

plant’s seeds. At a conceptual level, dispersal can be considered as a “search 

process”, wherein the seed or plant is searching for "good" locations and 

therefore, inspiration from dispersal activities of plants can plausibly serve as 

the design inspiration for optimisation algorithms. 

Initially, the author’s provide an overview of relevant background on the 

seed dispersal process from drawing on the ecology literature. Then the author 

describe a number of existing optimisation algorithms which draw inspiration 

from these processes, and finally the author’s outline opportunities for future 

research. 

Many real-world optimization problems are multimodal, requiring 

techniques that overcome local optima, which can be done using niching 

methods. In order to do so, in Chapter 4 the author’s describe a niching 

method based on the clearing paradigm, Topographical Clearing, which 

employs a topographical heuristic introduced in the early nineties, as part of a 

global optimization method. This niching method is applied to differential 

evolution, but it can be used in other evolutionary or swarm-based methods, 

such as the genetic algorithm and particle swarm optimization. The algorithm, 

called TopoClearing-DE, is favorably compared against the canonical version 

of differential evolution in real-world optimization problems. As the problems 

attacked are quite challenging, the results show that Topographical Clearing 

can be applied to populational optimization methods in order to solve 

problems with multiple solutions. 

Focusing on the interactivity that a robotic interface establishes between 

the virtual and the real world, some sensory systems and mobile robotic 

platforms were developed for the AURAL project, a robotic evolutionary 

environment for sound production. From the AURAL perspective, human and 

robots are agents of a complex system and the sonification is the emergent 

propriety produced by their interaction and behavior. One way to characterize 

types of interactions is by looking at ways in which systems can be coupled 

together to interact. The representation of the interaction between a person and 

a dynamic system as a simple feedback loop faces the role of information 

looping through both a person and a system. Two different sonification 

paradigms were applied in AURAL environment. In the first case, the 

sonification is generated by an evolutionary mapping of the robot trajectories 
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into sound events. In the second case, the sound production is the result of a 

generative process. As such the sonification here is not seen as an isolated 

aspect of AURAL, but as a representation of the synergetic capacity of the 

agents to collaborate and produce a complex product. A comparison between 

the results obtained with both approaches is presented in Chapter 5. The 

structure/novelty tradeoff has been approached. 

A common approach for solving simulation-driven engineering problems 

is by using metamodel-assisted optimization algorithms, namely, in which a 

metamodel approximates the computationally expensive simulation and 

provides predicted values at a lower computational cost. Such algorithms 

typically generate an initial sample of solutions which are then used to train a 

preliminary metamodel and to initiate optimization process. One approach for 

generating the initial sample is with the design of experiment methods which 

are statistically oriented, while the more recent search-driven sampling 

approach invokes a computational intelligence optimizer such as an 

evolutionary algorithm, and then uses the vectors it generated as the initial 

sample. Since the initial sample can strongly impact the effectiveness of the 

optimization process, Chapter 6 presents an extensive comparison and analysis 

between the two approaches across a variety of settings. Results show that 

evolutionary-based sampling performed well when the size of the initial 

sample was large as this enabled a more extended and consequently a more 

effective evolutionary search. When the initial sample was small the design of 

experiments methods typically performed better since they distributed the 

vectors more effectively in the search space. 
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Abstract 

Time-ordered sequences of data (Time Series data), have arisen across a 

broad range of applications in nearly all domains. In this study, extensive 

experiments using real-world data obtained from one of the most dynamic 

environments is used – Financial Markets. Additionally, a Multi-Objective 

Evolutionary System is used to predict future asset price evolution. 

Therefore, in this study, a Genetic Algorithm (GA)-based Multi-Objective 

Evolutionary System to optimize a Trading or Investment Strategy (TS) was 

developed. The goal was to determine potential buy, sell, or hold conditions in 

stock markets while still yielding high returns at a minimal risk. Fair and 

established metrics were used (as described in the text) to evaluate both the 

returns and the linked risk of the optimized TS. Additionally, these TS are 

evaluated in several markets using data from the main stock indexes of the most 

developed economies, such as: NASDAQ, S&P 500, FTSE 100, DAX 30, and 

the NIKKEI 225. The Pareto Fronts obtained with the training data during the 
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experiments clearly showed the inherent tradeoff between risk and return in 

financial management. 

Furthermore, the achieved results clearly outperformed both the B&H and 

S&H strategies. Regardless, the experimental results suggest that the positive 

connection between the gains for training data and test data, which was usually 

implied in the single-objective proposals, may not necessarily hold true in all 

circumstances. 

Due to the fact that the objective in this kind of problem is to find the best 

(optimized) solution to conduct investment in stock markets, this chapter will begin 

with a review of the most recent advances in Computational Problem Solving 

Techniques, as well as the traditional ones. In this review, the various existing 

techniques of Intelligent Computing currently used to solve various optimization 

problems are presented. The various existing techniques, especially in the fields of 

time series forecast and systems that learn by example, are briefly reviewed. 

 

Keywords: Multi-Objective Optimization, Stock Market Prediction, Technical 

Analysis, Financial Markets, Moving Average, Dynamic Systems 

A. Part A. Review of the Main Problem Solving  

and Optimization Techniques 

In this study, it is advantageous to solve the established problem in a way that 

uncovers the best possible solution. Therefore, a review of the main traditional 

(historic) and the most recent developments in the field of Computational Problem 

Solving Techniques will be helpful. 

Therefore, in this section, a review of the main approaches found in traditional 

and relatively recent publications concerning combinatorial optimization and 

problem-solving techniques are presented, which can be listed as: 

 

 Newton’s Method 

 Exhaustive Search 

 Random Search 

 Quadratic Programming (QP) 

 Expert Systems 

 Artificial Neuronal Networks (ANN or NN) 

 Metaheuristic Methods 

 

o Hill Climber (HC), Simulated Annealing (SA), and Stochastic Hill 

Climber (SHC) 

o Tabu search (TS) 
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o Evolutional Computing (EC) / Genetic Algorithms (GA) 

o Memetic Algorithms / Hybridization 

o Ant Colony Optimization (ACO) 

o Particle swarm optimization / Swarm intelligence 

 

 Fuzzy Logic 

 Agents 

 Support vector machine (SVM) 

 Other: (Classification Systems, Guided Local Search, GRASP) 

 

Metaheuristic methods are computational methods or techniques to optimize 

or find an optimal or near-optimal solution to a given problem. This is done by 

iteratively improving a candidate solution with regard to a given estimate of the 

quality (usually called fitness). Metaheuristic methods make few assumptions or 

have absolutely no knowledge about the problem to be optimized and search the 

entire space of possible solutions. Many metaheuristic methods are stochastic. 

Contrary to the classic optimization methods, it is not required that the 

optimization problem is differentiable. Therefore, metaheuristic methods can very 

helpful when optimizing problems that are partially irregular, noisy, or dynamic 

over time. 

A.1. Newton’s Method 

Newton’s method was discovered in 1669, but was not published until 1711. In 

1690, it was enhanced by Joseph Raphson, giving birth to the Newton-Raphson 

method. In optimization, Newton's method is focused on finding fixed points of 

differentiable functions, which are the zeros of the derivative function. 

This technique requires the problem to be mathematically formulated; after 

the problem is formulated, the functions should be derived. 

The downside is that many real problems are usually formulated in the form 

of a data series, whereas to solve it using this method, a mathematic formulation is 

needed. 

A.2. Exhaustive Search 

The Exhaustive Search method is also a deterministic technique. Exhaustive 

Search (also known as the ―brute force‖ method), as the name implies, consists, in 
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a combinatorial problem in the complete enumeration of all possible problem 

solutions, as well as its corresponding evaluation. This method guarantees that the 

best solution is always found. This method is expeditious for small problems, but 

for combinatory problems, where the search space is huge, it is impractical. 

Therefore, the solution found is deterministic, and is always assured to be the best 

one possible. 

A.3. Random Search 

The Random Search method can be classified as a variation of the Exhaustive 

Search method; instead of enumerating all of the solutions, the search space is 

randomly sampled by casual solutions that are generated and tested. This method 

does not guarantee that the best solution will be found. This method can be used 

for small and large problems; however, its accuracy is proportional to the number 

of random samples tested. 

A.4. Quadratic Programming 

Quadratic programming (QP) requires the problem to be mathematically 

formulated; after the problem is formulated, the problem is mathematically solved 

in a precise way. Hence, this is a particular type of mathematical optimization 

problem. The problems solved by QP are problems related to maximizing or 

minimizing a quadratic function of several variables subject to linear constraints 

on the variables, as expressed in Equation 1. 

Equation 1. Quadratic Problem Formulation: 

 

  (1) 

 

Subject to one or more constraints, in the form: 

 

 (Inequality constraint) 

 (Equality constraint) 

 

where X is the vector of unknown variables to optimize and XT is the vector 

transpose of X, while the notation means that every entry of vector A(x) is less 

than or equal to the corresponding entry of vector b. 

 TT cQf
2

1
)(

bA 

dE 
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Several tools are freely available on the Internet that, after the problem is 

correctly formulated, can solve the problem and find the optimal exact solution [1]. 

The main advantage of QP is that when a feasible solution is found; it is 

guaranteed that it corresponds to the optimal solution. 

The downside is that, typically, in financial computing, the available 

information about the problem is usually in the form of time series of data, 

whereas to solve the problem using QP, a mathematic formulation is needed. 

QP has been extended and used as a standard to compare diverse approaches 

to solve financial problems. QP solves Portfolio Optimization Problems in a 

proficient and optimal way if all the constraints are linear. However, no 

systematic method exists that can solve this kind of problem when the restrictions 

are non-linear, such as with asset cardinality, transaction costs, or minimum and 

maximum weights, in addition to others that are present in real-world problems. 

A.5. Expert Systems 

An Expert System is a system that imitates the reasoning of a human specialist. 

Expert systems solve complex problems by building chains of reasoning based on 

known facts. The thinking process follows the chain of thinking of a trained 

professional, which is sometimes more intricate and dissimilar from the typical 

thinking of a computer programmer (making an analogy to traditional 

programming). Expert systems were quite popular in the 1970s and 1980s and are 

considered one of the first successful forms of AI software. 

Typically, an Expert System is composed of two parts: the inference engine 

and the knowledge database. The engine reasons about the facts in the knowledge 

base and obtains conclusions. The knowledge database accumulates rules written 

by a programmer, or by an expert, or even those acquired from some other 

method. In more recent versions, Expert Systems have been improved with 

another component: an interface to communicate or conduct some form 

conversation with the users. 

The rules accumulated in the knowledge base are expressed in natural 

language and represented in the form of: ―IF…THEN…‖ clauses. An instance of 

such a rule is Descartes’s famous aphorism: ―IF I think, THEN I exist‖. This 

formulation has the advantage of using current and natural language that makes it 

attractive to people not accustomed to computer science (e.g. familiar with classic 

program coding). Rules expressing knowledge are exploited by the expert system. 

Other alternative formulations for the rules are used by many systems, although 

some of them aren’t expressed using everyday language and are only 
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comprehensible by experts. Some rules are engine-specific and consequently not 

recognized by different systems. The goal of the knowledge base is to collect 

knowledge, which is sometimes unconsciously used by the specialists (but 

important to the inference process). The system of rules can be extended to allow 

probabilistic reasoning, and can therefore accept rules like the following one: ―IF 

the sky is full with black clouds, THEN there is a strong probability (0.75) that in 

the next four hours, it will rain‖. 

The inference engine produces reasoning or draws conclusions from the rules 

stored in the knowledge base. It is usually a computer program that is designed to 

accomplish the desired task. The reasoning of the inference engine is based on 

logic, namely propositional logic, epistemic logic, fuzzy logic, or other types. An 

example of a well-known propositional logic engine is PROLOG; another 

powerful expert system is the NEXPERT system, [2] which was made available 

by Neuron Data. 

As stated above, Expert Systems were popular in the 1970s and 1980s, but 

there has been almost no recent activity in this field, so it is difficult to find recent 

publications exploring it further. 

A.6. Artificial Neuronal Networks 

Artificial Neuronal Networks (ANN), or simply Neuronal Networks (NN) [3] are 

a computational technique developed in the field of Artificial Intelligence that 

imitates the workings of the human brain, namely the neuronal cells. In certain 

aspects, it is considered more efficient for solving certain kind of problems than 

traditional computational techniques. 

The essential unit of an NN is the neuron, represented in Figure 1. A neuron 

receives one or more inputs from dendrites or synapses, which are represented in 

the figure by arrows. 

The neuron multiples the inputs by a factor (weight) and sums them to 

produce a weighted sum of all the inputs. This result is fed to a non-linear 

function, which usually has a sigmoid profile, and the output of the neuron is 

established. 

For a given neuron, with n input signals, x1 through xn, and weights, w0 

through wn, the output of the neuron is provided by Equation 2. Usually, the input 

x0 is assigned a value of +1, which makes it a biased input with w
k

0 = b
k
; φ is the 

transfer function (sigmoid). 
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Figure 1. The Model of an Artificial Neuron. 

Equation 2. Output of a Neuron: 

 

  (2) 

 

In a NN, several neurons are coupled together. The connections between the 

neurons are represented by arrows and to each connection, its weight is coupled, 

which corresponds to is its influence / linking on the following neuron. 

Figure 2 represents a typical NN with 3 layers, more specifically the input 

layer, the output layer, and a hidden or intermediary layer. In each layer, the 

neurons are represented by circles. Usually, the number of neurons in the input 

layer is equal to the number of problem inputs; the number of neurons in the 

output layer is equal to the number of problem outputs. The number of neurons in 

the intermediate or hidden layer is variable, although this number should be 

proportional to the required processing power. Each neuron in the hidden layer is 

connected to all the neurons in both the input layer and the output layer. 

The NN in Figure 2 is a ―feed forward‖ network, although other different 

configurations are possible, namely with back propagation, where the output of a 

neuron is connected to itself, or to the input of another neuron in a previous layer. 

In this illustration some weight terms are omitted for clarity, this network has 3 

inputs, 4 nodes in the hidden layer, and 2 outputs. 

NN are essentially useful both when there is no information about the shape 

of the output function [f(x)] in advance, it is computationally difficult to uncover 

it, and there is a representative sample of inputs and outputs available to use as a 

)*(
0





n

i

i

k

i xwy k 
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training set. On the other hand, if additional information on the function f(x) is 

known, then other estimation techniques are likely to work better. In brief: NN are 

useful for recognizing patterns in complex data. 

The most important goal of neuronal networks is to uncover problem 

resolutions using the same processes that living organisms use; this method is 

founded, essentially, in the trial-and-error method. 

 

 

Figure 2. Artificial Neuronal Network With Weight and Bias Terms Labeled. 

Its accuracy increases as more data examples are provided. The main benefit 

of this approach is that special knowledge about the problem is not necessary to 

solve it, as the connections between the pieces of information are discovered and 

explored by the neuronal network itself. It is simply necessary to provide the input 

data used to train the network. 

The main critiques of this approach is that the rules discovered by the NN 

cannot be easily described in a way that is easily understandable by humans; the 

model cannot be easily translated and analyzed, even by experts, to possibly be 

improved. 

Several articles have successfully demonstrated good results when applying 

ANN to discover technical trading rules, particularly in the case of Fernando 

Fernández-Rodríguez et al. [4] and A. Skabar et al. [5]. In [6], a GA was used to 

optimize several parameters of a NN, which generated interesting results. 
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In some studies, the neuronal networks were used to pre-process or post-

process data, and were used in combination with other optimization techniques. 

Some examples of this combinative approach include William Leigh et al. [7] and 

Takashi Kimoto et al. [8]. Other works have showed that GP is superior to ANN, 

particularly the study conducted by Hitoshi Iba et al. [9]. 

A.7. Hill Climber (HC), Simulated Annealing (SA), and Stochastic 

Hill Climber (SHC) 

A straightforward method for finding the best solution to a problem would be 

starting from any point in the search space (random), testing all the points in that 

point’s neighborhood, move to the best point, and repeat this process until no 

further improvement is possible. This process is called Iterative Improvement or 

Hill Climber (HC) and is represented by Figure 3. 

This algorithm stops when it finds a local optimum, as it only scans the 

neighborhood of the current solution. The performance of the iterative 

improvement method is poor. Therefore, alternative techniques have been 

developed to avoid algorithms from becoming trapped in local optima; this can be 

done by adding mechanisms that allow algorithms to escape from local optima. 

This resulted in the emergence of one of the oldest strategies to avoid algorithms 

becoming trapped in a local optimum, which is called Simulated Annealing (SA). 

The fundamental idea behind SA is to allow movement to solutions of lower 

quality than the current solution, which is done stochastically. The probability of 

accepting a new solution varies with the relative performance of the new solution, 

for example, rp = f(v) – f(u), where f(v) is the evaluation or performance of the 

new solution and f(u) is the performance of the current solution. 

This probability is usually calculated using a Boltzmann distribution 

expression. An example that implements this idea is presented in Equation 3. 

Equation 3. SHC Prob. of Accepting a New Solution: 

 

  (3) 

 

In this equation, p(rp) is the probability of accepting a new solution, T is is: 

the probability of accepting a new solution, and rp is the Relative Performance. 

Figure 4 represents several plots of Equation 3 for several values of T, function of 

rp. In this figure, for small values of T, the probability of accepting a new solution 

)(

1

1
)(

T

rp

e

rpp




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is almost deterministic with a new solution always being accepted when it is 

better than the previous one. Conversely, for higher values of T, the function is 

practically flat at around 0.5, with the probability of accepting the new solutions 

being almost random. 

 

 

Figure 3. Algorithm: Iterative Improvement Algorithm. 

 

Figure 4. SHC: Probability of Accepting a New Solution. 
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Figure 5. Algorithm: Simulated Annealing. 

Figure 5 illustrates how the SA algorithm works; from this illustration, it is 

easy to observe that the choice of an appropriate value of T is crucial for the 

performance of the algorithm. In the SA method, the value of T is varied, and is 

typically set to a high value in the beginning of the process and then decreases 

during the progression, but elaborate cooling schemes can incorporate a sporadic 

rise in the temperature. 
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The introduction of the probability factor makes the process stochastic, but 

this allows the process to escape from local optima and instead find near-optimal 

solutions. 

This also entails that the termination criteria must be more elaborated upon 

than simply reaching a local optimum. Possible termination conditions can be the 

same as presented in subsection A.9.1. Possible Termination Criterion. 

 

 

Figure 6. Algorithm: Taboo Search. 
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This process is similar to the annealing process of metals and glass, which 

supposes a low-energy configuration when cooled with a suitable cooling 

schedule. Concerning the algorithm, it is the result of two joint strategies: random 

walk and greedy search. At the beginning of the search process, the probability of 

making improvements is low, which favors the exploration of the search space. As 

the end of the search approaches, the random component is slowly reduced; 

consequently, the search must converge on an optimal point (which can be either 

local or global). 

A small variation of this algorithm exists, albeit less sophisticated, where the 

temperature T is constant for the entire run; this method is called Stochastic Hill 

Climber (SHC). As the name implies, it is almost identical to the HC, except for 

the introduction of a small unpredictable factor during the climb (that is: the 

probability of accepting a new solution). 

A.8. Taboo Search (TS) 

The simple TS algorithm, depicted in Figure 6, applies the basic HC strategy and 

uses short-term memory to avoid repeating points that have been previously 

tested, consequently avoiding cycling through solutions. The short-term memory 

―tool‖ is implemented as a taboo list that remembers the most recently visited 

solutions and forbids moving to them. 

The neighborhood of the current solution is therefore limited to the solutions 

that are not in the taboo list. In each iteration, the best solution from the 

permissible set is chosen as the new current solution. Furthermore, this solution is 

added to the taboo list. If the taboo list is full, then one previous solution must be 

removed from the taboo list (usually an older one). The algorithm terminates 

when the termination clause is met. It may also terminate if there are no allowed 

moves, that is: all the solutions near the current solution are forbidden, as they are 

already in the Taboo List. 

A.9. Evolutional Computing / Genetic Algorithms 

Evolutionary Computation is a field within a broader area called Computational 

Intelligence or Artificial Intelligence. Evolutionary Computation is primarily 

focused on discovering the best solution for a given problem. 

The Evolutionary Algorithm (EA) [10-12] is a subset of the Evolutionary 

Computation and is a broad, population-based, metaheuristic optimization 

algorithm. All EA have certain facts in common, such as being population-based 
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and using some mechanisms inspired from Darwin's theory of evolution, namely, 

selection (survival of the fittest) and reproduction (with mutation and 

recombination). 

Some of the most widely used EA techniques are: Genetic Algorithm (GA), 

Genetic Programming (GP), Evolutionary Programming (EP), and Evolutionary 

Strategies (ES). 

Although some confusion may exist in the scientific community regarding the 

accurate meanings of all these terms, some level of common consensus may be 

drawn about the following facts (even if diverse interpretations may still be found): 

 

 All are inspired by the laws of Natural Evolution, namely on Darwin's 

theory of evolution and relate to evolving a set (population) of potential 

problem solutions. 

 In GA, the problem solution is encoded in the form of strings of numbers 

(traditionally binary, but others can be used – this is problem-dependent). 

The use of structures of variable size organized in the list also fit in this 

technique, according to Angan Dass et al. [13]. 

 In GP, the solutions are usually structures in tree form to symbolize 

computer programs, and the goal is to solve a computational problem. 

John Koza popularized this method with many available papers that 

applied these fresh techniques to many research fields [14]. 

 EP is similar to GP in terms of goals, but the structures denoting the 

solution are of a fixed size. Therefore, only the numerical parameters are 

permitted to evolve. 

 In ES, the solution to the problem is usually encoded in the form of 

strings of real numbers, while variable parameters are used to adjust some 

control variables. 

 

There are good reasons for the existence of all these related terms, and the 

differences between them, as some seem to correspond only to minor or cosmetic 

changes, while others really mark the difference and the birth of a new generation 

of approaches. 

The first instances of what is presently called EA appeared in the early 1960s 

and was programmed on computers by biologists who were explicitly seeking to 

replicate aspects of natural evolution. In the early 1970s, EA became widely 

recognized as an optimization method. In 1975, John Holland’s paper [15] greatly 

contributed to the popularity of GA. Another great contribution came in 1990 by 

John Koza [14], with his extensive list of papers that explained and applied GP to 
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many fields of study. More recently, Kalyanmoy Deb [16-18] has also made 

sizeable contributions to the field. 

All EA optimization algorithms develop and optimize a possible solution to a 

given problem. These algorithms encode the possible problem solution in a data 

structure. To extend the analogy of natural evolution, these data structures are 

called chromosomes, and each data element is called a gene. The term 

―population‖ is used to label all of the possible problem solutions found up to a 

given point. Essentially, a chromosome groups several genes, and a population is 

a set of chromosomes. 

These EC machine learning techniques are all a repetitive process that begins 

with a population of solutions for a given problem. This process uses the same 

mechanisms of natural evolution to evolve this population, namely through 

selection and reproduction. 

Initializing the population, meaning to form the first generation of solutions, 

is usually a random generation process. Occasionally, the first set of solutions 

may be created using some heuristics in areas where previously existing problem 

knowledge is available and where it is relatively easy to generate these solutions. 

A good example of this can be found in [13], where the whole process was 

accelerated and the exploration of impossible solutions was avoided (according to 

what the authors said). 

The process of selection evaluates the individuals of the population (problem 

solutions) according to their capability to perform or solve the concrete and given 

task. The best performing individuals are selected for reproduction, while the 

worst ones are left to die or are replaced by new ones; this corresponds, in natural 

evolution, to the concept of ―survival of the fittest‖. After that initial ―weeding 

out‖, the best-selected individuals are then used for reproduction. 

In the reproduction process, the individuals used for reproduction are called 

fathers and give birth to new offspring. Connecting the analogy to natural 

evolution once again, the genes encoded in the selected fathers are used as a 

suggestion for the new offspring. There are two main processes in current use for 

reproduction: crossover and mutation (although many others are possible). 

For the crossover process, a minimum of two ancestors are necessary and the 

process gives birth to one or two sons. The crossover exchanges parts of both 

parents to produce the offspring. In the mutation process, random changes are 

made in the father’s chromosome; this process generates one offspring, and in this 

case, only one ancestor is needed. The main aim of the mutation process is to 

preserve population variety and escape from local optima. It is important to stress 

that both of these methods are methods of changing individuals, so must therefore 

alter the individuals. 
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This is done to introduce new solutions to the population, hoping that some 

may be better than their predecessors (improving, in this way, the fitness of the 

next generation). 

 

 

Figure 7. Algorithm: Evolutionary Algorithm. 

A.9.1. Possible Termination Criterion 

This process is repeated until a termination criterion is met, which can be: 
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 A solution is found that satisfies a minimum fitness assessment. 

 A fixed number of generations is attained. 

 A predetermined budget (computation time/money) is reached. 

 It is detected that subsequent iterations no longer generate better results. 

 Some combination of the above. 

 

This iterative method is provided above in Figure 7, although other variations 

are possible. However, the process is always alike. 

Some of the procedures involved in the process are stochastic processes, 

which means that the subsequent state is non-determinist and is controlled by a 

random process. 

EA are often viewed as function optimizers, although the range of problems 

to which genetic algorithms can be applied is fairly extensive. 

As amazing and counterintuitive as it may appear [11], it has been proven that 

EA are a potent and successful problem-solving approach, which demonstrates the 

power and validity of the evolutionary principles. EA has been used in a broad 

diversity of fields to evolve solutions to problems of similar or even superior 

complexity than those solved by human professionals. Furthermore, the solutions 

they find are often more effective than anything a human engineer would create. 

Compared to traditional optimization methods, EA are faster and more 

adaptable to changes in the environment. This is because any information learned 

up to any point about how to solve a problem is enclosed in the population of 

solutions that has survived up to that point. 

One of the big differences between GA and NN is that the rules obtained by 

the GA are more easily understandable by humans. 

Some examples of EA applied to financial computing can be found in the 

works of Wang et al. [19], Badawy et al. [20], and Fernández-Blanco et al. [21]. 

GA can also be used to uncover and optimize new investment strategies as 

achieved by Bodas-Sagi et al. in [22], or to optimize asset weight in a portfolio 

optimization problem, such as in Gorgulho et al.’s study [23]. Leigh et al. [24] 

proposed the use of a GA to preprocess the input data before feeding it to a NN. 

EA are usually applied to complex problems where the search space is vast to 

perform an exhaustive or other kind of search when there is no alternative 

analytical problem solution. Even when the number of alternative solutions can be 

considered not high enough to do an exhaustive search, the EA are still helpful, as 

they more efficiently explore the search space and come to a solution faster than 

an exhaustive search algorithm. 
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A.10. Memetic Algorithms (MA) / Hybridization 

Memetic Algorithm (MA) [25] is one of the recent emergent areas of research in 

EC. The term MA is now widely used in an effort to combine several evolutionary 

techniques; the population-based ones, as well as the individual learning or local 

improvement techniques for problem solving. Quite often, MA is also referred to, 

in the literature, as cultural algorithms, genetic local searches, or hybrid GA. 

A meme is a cognitive or behavioral pattern that can be transmitted from one 

individual to another. From a simplified point of view, one can interpret memetics 

as being another variance of the EA procedures where the concept of a 

chromosome is replaced by the concept of meme. The major difference between 

memes and chromosomes is that chromosomes can only be transmitted from 

parent to son ("vertical transmission"), whereas memes can be passed between 

any two individuals ("horizontal transmission" or "multiple parenting"). 

MA is often referred to as a hybrid algorithm, as it is a marriage between a 

population-based global search algorithm and individual evolutionary strategies in 

the form of local refinement. 

MA intends to use hybrid metaheuristic techniques for optimization in 

continuous and discrete optimization domains. Memetic Computing is proposed 

to be where the newest results in Natural Computation, Artificial Intelligence, 

Machine Learning, and Operational Research join together in a fresh technique to 

go beyond the inherent boundaries of a single subject. 

One of the issues in the tuning of an MA strategy is to decide when in the 

evolutionary process and which individuals should experience a local 

improvement (every generation, every 100 generations, all the generations but 

only a small set of chosen individuals, the individuals that have several copies of 

themselves in the population, etc.). 

In relation to Financial Computing, [26] and [27] presented memetic algorithms 

to be used for portfolio selection. Under the point of view that the combination of an 

EA with a local search technique is an MA, although not being claimed as such, the 

works of Diego J.Bodas-Sagi et al. [28] and P.Fernández-Blanco et al. [29], can also 

be considered to be as such, as they included in their EA, a ―local search operator‖ 

to improve the solutions, used ―Every 100 generations‖. 

A.11. Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) or simply Ant System (AS), as it was presented 

in its original idea, was a technique for problem solving aimed at finding an 
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optimal path through a graph based on the behavior of ants. Later, the original 

idea was enhanced to solve a wider class of numerical problems. 

Again, this algorithm was inspired by the natural analogy of how ants look for 

food: ants initially wander (randomly) for food and when something is found, they 

return to the colony carrying it; meanwhile, they leave pheromone trails to mark 

their way back. Another ant, looking for food, can get lucky and follow another 

ant’s pheromone trails instead of wandering randomly; this also reinforces the 

former pheromone trails if it does turn out to lead to food. However, over time, 

the pheromone trails will evaporate, consequently reducing its strength of 

attraction. With more time and more ants looking for food, the most short and 

promising itineraries will be the most widely used, while the pheromone trails of 

less promising paths will evaporate without being reinforced. Due to this positive 

feedback being given, all ants will rapidly pick the shorter path. 

The first algorithm that can be classified in this group was presented by A. 

Colorni et al. in [30] and by G. di Caro et al. in [31]. Since then, several different 

variants of the same basic principle have been proposed. 

 

 

Figure 8. Algorithm: Ant System. 
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Figure 8 depicts a possible algorithm implementing an AS. 

At the beginning, the pheromones of all trajectory points are set to an equal 

initial value; next, all the ants start building a solution. Figure 9 presents how each 

ant constructs its solution to a certain level of detail. Every ant chooses its next 

move based on the pheromones it finds at nearby points; this is done 

probabilistically, with a higher probability for the points with higher pheromones, 

and those not already in the ant move set (to avoid entering a cycle and repeating 

points already visited). When an ant finds a solution, the pheromones in the 

solution are updated (incremented) by a certain value. 

The AS also borrows some of the techniques used in older algorithms, such as 

SHC and TS, since every ant has a Tabu List of paths, which corresponds to the 

list of all the already visited points; when choosing from the list of available 

points to do the next move, this is done stochastically. 

 

 

Figure 9. Algorithm Detail: Each Ant Constructs a Solution. 
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The algorithm has several parameters to tune, such as the amount of the 

pheromone increase when a path is used, the ratio of the pheromone decrease with 

time, and so forth. When the termination criteria are met, the path with higher η 

(pheromones) is returned, as this should be the most efficient one, since it was the 

most popular among the ants. More information about ACO and AS is available 

in [32, 33]. 

A.12. Particle Swarm Optimization / Swarm Intelligence 

Particle Swarm Optimization (PSO), or simply Swarm Intelligence [34], is similar 

to EA, in the sense that a population of candidate solutions is also developed. In 

PSO, the individuals (or chromosomes) are replaced by the term ―particle‖, 

whereas a population is called a ―Swarm‖. 

The natural analogy with what occurs in nature was taken from the movement 

of groups of animals like swarms of bees, shoals of fish, or flocks of birds. In 

PSO, all the particles explore the search space, moving on it with a specified 

velocity and in a certain direction according to few simple formulae. The particles 

move towards the best known solution and, when a new best solution is found, 

this one becomes the new swarm guide. This process is repeated, hoping that a 

reasonable solution will ultimately be uncovered (but that is not guaranteed). 

The direction of the vector governing the particle movement is towards the 

best known swarm point, but is distorted by some random factors added to it. This 

way, all the particles come close to the best known solution, but in its walk, they 

explore the space around it. 

Figure 10 provides an algorithm implementing PSO: 

PSO is initialized with a set of particles (solutions) being dropped randomly 

in the search space; then, it searches for the optimum point through a series of 

generations. In every iteration, each particle is updated to follow two "best" 

values. One is the best solution (fitness) that it has achieved so far, called pBest. 

The other "best" value that is kept by the algorithm is the best value obtained so 

far by any particle in the population. This best value is a global best and is called 

gBest. After finding the two best values, the particle velocity and position are 

updated according to Equation 4 and Equation 5, below. 

Equation 4. PSO Vel. Update: 

 

  (4) 

 

 

)(  rand()  )( rand()  21 presentgBestcpresentpBestcvv 
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Equation 5. PSO Pos. Update: 

 

  (5) 

 

where v[] is the vector representing the particle velocity, present[] is the current 

particle position. pPest[] and gGest[] are the current Population and Global Best 

found and are maintained as explained before, while rand () is a random number 

between 0 and 1. 

On these same equations, c1 and c2 are parameters, it is usual to set both 

parameters to the value of 2 (although other values are possible). The choice of 

suitable learning factors (parameters c1 and c2) is of crucial importance for PSO 

algorithm performance, primarily to avoid being trapped in a local optima due to 

premature convergence. To avoid having all of the swarm converge to a single 

point, there are implementations where the particles, rather than converging to the 

global optima, converge to its neighborhood’s best known. This entails the 

existence of a communication network within a given topology that the particles 

use to communicate between themselves. 

In recent years, PSO has effectively been used in many research and 

application areas. It has been confirmed that PSO can get better results, faster and 

in an easier way, as compared to other techniques. A good book about this subject 

was written by James Kennedy et al. [35] where more information can be found 

about PSO. 

R. Hassan et al.’s [36] study showed that PSO-based algorithms find solutions 

of matching quality to those solutions ones found by GA-based algorithms; 

however, PSO is computationally more efficient. Margarita et al.’s [37] studies 

distinguished two major explanations for PSO popularity: (1) they are relatively 

easy to implement, and (2) they are very efficient in a variety of applications with 

superior results and low computational effort. 

In terms of financial computing, Matthew Butler et al. [38] used a PSO-based 

approach to tune the parameters of a financial indicator (BB); Antonio C. Briza et 

al. [39] proposed a PSO system to perform MultiObjective Optimization 

(MOPSO) applied to stock trading. 

A.13. Outline of the Metaheuristic Methods 

To conclude this review of Metaheuristics optimization methods, a summary of the 

Metaheuristics optimization methods can be found in [40]. In Figure 11, a diagram 

presenting the diverse classifications of the metaheuristic methods is shown. 

vpresentpresent

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Figure 10. Algorithm: Particle Swarm Optimization. 
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A.14. Fuzzy Logic 

Fuzzy logic is a way of reasoning that presents results in an approximate way, 

rather than a fixed or exact value. It differs from traditional logic, because in 

traditional logic (binary), only two values are possible – true or false. However, in 

Fuzzy logic, the results are expressed in a ―truth value‖ that varies (progressively) 

in the range between 0.0 and 1.0. Thus, this Fuzzy value should be taken as a 

degree of truth. 

 

 

Figure 11. Classification of Metaheuristic Methods. 

Probabilistic Logic and Fuzzy Logic may be confused, as they share some 

similarities (both have truth values varying between 0.0 and 1.0), but are 

conceptually distinct, owing to dissimilar interpretations and mathematical 

handling. In Fuzzy logic, a given result corresponds to a certain "degree of truth", 

while in probabilistic logic, this corresponds to a "probability or likelihood". 
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Because they are different, Fuzzy Logic and Probabilistic Logic are different 

models that can be used to process the same real-world circumstances. 

Therefore, Fuzzy Logic is ideal for processing incomplete data and presenting 

approximate resolutions to problems that are too complex to solve using 

alternative techniques. 

This description establishes Fuzzy logic as an interesting idea to explore in 

the Fields of Financial Computing. 

In Financial Computing, the vagueness is the ruler, so instead of providing an 

absolute answer to the user, like ―Buy‖ or ―Sell‖, it would be more advisable to 

deliver a reply in terms of ―degree of truth‖, such as ―may buy‖, ―may sell‖, or 

―definitely sell‖. 

Even though the use of Fuzzy Logic might be an especially interesting 

approach to be used in Financial Computing, in recent work, essays using this 

technique are very rare. 

A.15. Agents 

The idea of a software agent is a way to describe a software entity that is capable of 

acting with some degree of autonomy to accomplish certain tasks. A software agent 

should be autonomous, which means that agents should be able to do some 

decision-making without human intervention, like task selection and prioritization. 

What distinguishes agents from an arbitrary program is that agents react to the 

environment, have autonomy, are goal-orientated, and are persistent in their goals. 

Therefore, an agent system should exhibit some features of Artificial 

Intelligence (such as learning and thinking) and should be autonomous. 

A system can also be built around multi-agent systems; in this case, we have 

distributed agents that aren’t able to achieve an objective alone, and must 

therefore communicate and collaborate together to reach their goals. 

Figure 12 presents a diagram depicting the main characteristics that an agent 

should have, as well as its classification according to them. 

As in object-oriented programming, an agent is also an abstraction or a 

concept. The concept of an agent provides a powerful way to describe a software 

entity capable of acting with some degree of autonomy to accomplish the tasks for 

which it has been conceived. Contrasting with objects, which are defined in terms 

of methods and attributes, an agent is defined in terms of its behavior. 

In Financial Computing, the idea of software agents has been considered as a 

motivating idea and an interesting abstraction to explore; some examples are the 
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papers of Cyril Schoreels et al. [41] to [44], where the agent is a chromosome 

trained to trade securities using TI’s to make its choices. 

 

 

Figure 12. Classification of Agents. 

The study of H. Subramanian et al. [45] also presented agents that were based 

on a combination of trading rules, trained by GA and GP; then, the agents’ 

proficiency was evaluated by making them compete against other programmed 

agents in the Pen-Lehman Automated Trading Project (PLAT) [46, 47]. 

Additionally, there was also R. Fukumoto et al.’s study [48] that used a GA-based 

Multi-Objective Optimization approach to train intraday-trading agents for two 

objective purposes (profit and variance of the profit); here, the agents were tested 

in the U-Mart [49, 50], an artificial market simulator. 

A.16. Support Vector Machine (SVM) 

The Support Vector Machine (SVM) [51] is a model employed to name a series of 

supervised learning techniques used to recognize patterns and analyze data. 

Methods of classification and regression from statistics are used. The goal of 

SVM is to take a set of input data and predict, for each given input, to which of 

two possible classes the input belongs. Therefore, an SVM system is primarily a 

classifier that categorizes the inputs into two possible outputs. Only two output 

values are possible. Although SVM has its roots in statistics, it is a non-

probabilistic binary linear classifier. 
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In an SVM model, the examples are represented as points in space; these 

points should be mapped so that the examples belonging to the different 

categories should be divided by a clear gap that is as broad as possible. The new 

examples are then mapped into the same space and are predicted to belong to 

either one, or to another category, based on the side of the gap to which they are 

closer. For a two-dimensional problem, Figure 13 depicts how SVM categorizes 

the inputs. 

The goal is to separate and classify the white dots from the black ones. The 

full line represents the line that best divides the space between the dots. This line 

represents the most reasonable choice, as it is the best beeline that corresponds to 

the largest division, or has the bigger border, between the two classes of dots. 

Consequently, the choice for the line that maximizes the distance from it to the 

nearest dots on each side is the preferred choice. This is called the ―maximum-

margin line‖ and the linear classifier it defines is known as the ―maximum margin 

classifier‖. 

The case illustrated in the figure is for a two-dimensional problem, but the 

problem is studied and solved for the generalized case of n dimensions. In this 

case, the line that separates the dots is a hyperplane. 

 

 

Figure 13. Illustration of How SVM Classify Inputs. 

X1

X2
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The example used to illustrate the work was for a case where a linear 

classification was possible, meaning that it was possible to separate the samples 

using a beeline or a hyperplane. Nevertheless, there are situations where this is not 

possible, or if used, the classification would be erroneous for some samples. 

Therefore, a nonlinear transformation can be applied on the dot points, allowing a 

linear classification to work. For the two-dimensional example, the beeline 

separating the dots is replaced by a bent line. 

Initially, SVM was developed to resolve pattern identification problems with 

limited applicability in Financial Computing. However, with the introduction of 

―Vapnik’s ε-insensitive loss function‖ (Vapnik’s ILF) [52], SVM has been 

enhanced to resolve nonlinear regression inference problems and has been used 

with good results in financial times-series prediction [53]. In particular, in [54], 

SVM was applied to perform portfolio optimization, and in [55], it was utilized to 

make stock tendency forecasts. In [56], SVM was compared to GP, which 

demonstrated that GP is superior for Financial Portfolio Optimization. 

A.17. Other: (Classification Systems, Guided Local Search, GRASP) 

In optimization, or in automated problem solving in general, there are many other 

proposed approaches. This is illustrated by tools like ―Scatter Search‖, ―Variable 

Neighbourhood Search‖, ―Guided Local Search‖, or ―GRASP‖. 

Applied to Financial Computing, there are also several other computational 

techniques available, some of which have been applied with good results. 

Examples of these are some existing optimization algorithms, namely 

segmentation or clustering, machine learning, classification [57] (including 

decision trees, K-Nearest Neighbor [57]), and statistical analysis. 

A.18. Conclusion 

In this chapter section, a review of the main advances found in the literature 

concerning combinatorial optimization and problem-solving techniques was 

offered. This section started with a brief review of some traditional techniques, 

and then went on to talk about some of the relatively recent ones. Some of the 

discussed concepts were Newton’s Method, Exhaustive Search, Random Search, 

Quadratic Programming, Expert Systems, and Artificial Neuronal Networks, 

followed by a discussion of some of the Metaheuristic Methods, as well as Fuzzy 

Logic, Agents, and Support vector machines. 
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B. Part B. A Review of Main Multi-Objective Optimization 

Techniques 

In optimization (or, in the general case, in the search for the best possible solution 

to a given problem), it is found that many real-world problems are not limited to a 

single objective. There are many situations where a set of objectives (or trade-

offs) has to be balanced among the multiple and interacting objectives. In 

addition, it is not uncommon to have situations where these objectives are 

conflicting. To deal with this kind of problem, an alternative methodology has 

been developed, called Multi-Objective Optimization [18]. 

B.1. Introduction 

Multi-Objective Optimization is the process of finding a set of solutions that 

optimizes several objectives. The notion of an optimum solution is different in 

Multi-Objective problems from what is usually used in single-objective problems, 

since instead of reaching a single global optimum (or solution), a set of solutions 

or a trade-off is achieved. 

In this kind of problem, it is not always possible to say when one solution is 

better than another. It is possible to say if one solution might be better at one 

specification and if another solution is better at another objective. However, a matter 

arises: How can that be done for many solutions and when there are many 

objectives? To help us in our reasoning, a number of concepts are commonly used: 

 

 One solution dominates another if it is not worse than the second solution 

with respect to all objectives and, at the same time, is better than the 

second solution, at least for one objective. It is important to highlight that 

the domination relation is not a concept of ordering (sorting) and two 

solutions can be mutually non-dominant if neither dominates the other. 

 The set of solutions that are not dominated by any of the other solutions 

is called the Pareto Frontier (other alternative names are sometimes 

found, which have the same meaning, such as Pareto Set or Pareto 

Front). This set of solutions ultimately represents the best set of solutions 

that best addresses all the trade-offs involved in the problem. 

 

Therefore, and in conclusion, in Multi-Objective Optimization problems, the 

optimum solution is the set of all not dominated solutions. A not dominated 

solution is called a Pareto point and the set of all Pareto points is called the Pareto 
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Front (this represents the optimal set of trade-off solutions). Selecting a given 

solution on the Pareto Front always implies that selecting any one of them in 

place of another will sacrifice the quality for at least one objective, while 

improving the quality of at least one other objective. 

Figure 14 represents an example of a Pareto Front in a two-dimensional 

space, for an optimization problem intended to minimize the two cost functions. 

 

 

Figure 14. Example of a Pareto Front for a 2-D Space (2 Objectives). 

The black dot points belong to the Pareto Front and represent the best trade-

offs between the two objectives, while the white dots represent dominated 

solutions (dominated solutions are solutions that are dominated by some Pareto 

point). 

The decision space consists of all possible values that the decision variables 

can have in order to attain the best possible outcome. Therefore, the formulation 

of this type of problem can be formulated as shown in Equation 6 and Equation 7. 

Equation 6. Multi-objective Formulation: 

 

 minimize  (6) 

 

 )(, ,)( ,)(:)( 21 xfxfxfxf k
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Subject to: 

Equation 7. Multi-objective Constraint Formulation: 

 

 .  (7) 

 

where is a vector including the decision variables, f1, f2, …, fk functions map the 

decision space to and represent all the objective functions, while gi and hk also 

map and symbolize the constraint functions of the problem (j = 1, 2, …, m), (k = 

1, 2, …, p). 

In Multi-Objective Optimization, the number of objective functions is equal 

to the number of specifications or goals that must be addressed and optimized in a 

particular problem. 

Almost any of the optimization techniques previously exposed in Part A of 

this chapter can be used to perform Multi-Objective Optimization. The most 

frequently used method to adapt any of these techniques to do Multi-Objective 

Optimization is the use of a weighted combination of the objectives, but other 

variations are possible with the underlying optimization technique. Examples of 

the use of SA techniques to perform Multi-Objective Optimization can be found 

in [59] and [60]. 

Nevertheless, any of the population-based methods seem to be more adequate 

(see: subsection A.13. Outline of the Metaheuristic Methods and Figure 11. 

Classification of Metaheuristic Methods) to perform Multi-Objective 

Optimization [18], because they, in a single iteration, develop a complete set of 

solutions (population). Therefore, in the following subsections, our attention will 

be focused on the Population Based Multi-Objective Optimization methods, 

namely on Multi-Objective Optimization Using Evolutionary Algorithms. 

B.2. Main Multi-Objective Optimization Algorithms Using EA 

In the following subsections, a brief review of the main approaches found in 

relatively recent publications used to deal with Multi-Objective Optimization 

using Evolutionary based Algorithms will be conducted. 

B.2.1. Vector Evaluated Genetic Algorithm (VEGA) 

The VEGA algorithm is clearly an adaptation of a single goal GA to perform Multi-

Objective Optimization. The original proposal appeared in [61] as an extension of a 

simple genetic algorithm to handle multiple objectives in a single run. According to 

mxg j ,  2, 1,j    ,0 )( 


 pxhk ,  2, 1,k   ,0 )( 



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the original description, the whole population is randomly divided in m (m = 

number of objectives) subpopulations and each subpopulation is evaluated and 

probabilistically selected based on one of the optimization objectives. After the 

probabilistic selection, the selected individuals are mixed up and pooled together to 

form the antecessors of the next generation. The process continues with the trivial 

crossover and mutation operations on the population and repeats until the 

termination condition is met. This process is illustrated in Figure 15. 

 

 

Figure 15. Algorithm: Vector Evaluated Genetic Algorithm (VEGA). 
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VEGA tends to converge towards one objective best solution [62] with the 

pool of the final solutions clustering near single-objective best solutions instead of 

spreading along the Pareto frontier. This is quite unsuited for Multi-Objective 

Optimization, as the desire is to get the set of solutions that best balance the trade-

offs between the objectives. 

B.2.2. Multi-Objective Genetic Algorithm (MOGA) 

MOGA uses the concept of ranking and assigns the smallest ranking value to all of 

the non-dominated solutions [63]. The remaining solutions (dominated) are assigned 

rankings based on how many individuals in the population dominate them. 

Consequently, the fitness calculation starts with a value that is an inverse 

function of the Pareto Rank (Fit). In order to distribute the population of solutions 

uniformly along the Pareto frontier, the overall (final, global) fitness (Sharing Fit 

(SF)) value is adjusted by the sum of the "sharing distance" (SD). The sharing 

distance is inversely proportional to the metric distance between individuals in the 

objective domain. 

The overall fitness value is calculated as follows: 

Equation 8. MOGA overall fitness calculation: 

 

  (8) 

 

where SF(i) is the overall fitness value of individual i, Fit(i) is the inverse of the 

Pareto Rank of individual i (typically: i/rank(i)). The overall fitness value 

obtained this way is used in the comparative and probabilistic selection of the 

individuals. The traditional MOGA implementation uses a roulette selection 

method. For each round, this algorithm needs to calculate all the Pareto ranks (for 

all the individuals in the population) and its sharing distance. 

B.2.3. Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

SPEA 2 is an improvement of a previous implementation (SPEA) [64], although 

both implementations exploit two populations. One (P) is the population and the 

other (P’) is the archive. On the first implementation (SPEA), all non-dominated 

individuals in P are copied to the archive (P’); the size of P’ was made variable 

from generation to generation. On the other hand, in SPEA2, the size of P’ was 

fixed and if the set of non-dominated individuals in P exceeds the capacity of P’, 



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then they are truncated. Conversely, if they are less than P’, some dominated 

individuals are added to the archive P’. The above process of truncation and the 

addition of individuals both incorporate a strategy to distribute the solutions along 

the Pareto Front. 

In the first generation, SPEA2 selects all non-dominated individuals for 

reproduction from the Population P. In the subsequent generations, the individuals 

are selected from the combined population P and the archive P’. Furthermore, 

SPEA2 always uses a deterministic selection method. 

If the non-dominated individuals exceed the fixed size of P’, then the excess 

individuals are selected (for exclusion) based on the density estimation (D(i)). 

When the non-dominated individuals are too few in quantity to fill P’, then 

individuals from the next best Pareto Front are selected (for inclusion), this is 

done until the archive is filled. When the last Pareto Front surpasses the capacity 

of P’, the same truncation method is employed. The density estimation of an 

individual (D(i)) is calculated as follows: 

Equation 9. SPEA2 Density estimation: 

 

  (9) 

 

where d(i) is the distance of individual i from the nearest neighbor. 

B.2.4. Non-Dominated Sporting Genetic Algorithm 2 (NSGAII) 

NSGA2 is an improvement of a previous implementation from the same authors, 

Deb. et al. [17], [18] and [16]. The second version of the proposed algorithm also 

uses two populations of the same size: P for the parent population and P’ for the 

offspring population. The two populations are combined and shuffled together 

before the selection process; in the selection process, the algorithm first selects the 

individuals that have a smaller Pareto rank (the non-dominated ones). In the last 

Pareto rank, the remaining individuals (required to fill up the selected population 

of P individuals) are selected based on the calculated Crowding Distance and the 

individuals far away from others are preferred for selection and reproduction.  

The authors proposed the second version of their algorithm due to some 

comments criticizing that it was too complex (in terms of number of 

computations) and slow. In the second version, the authors demonstrated that it 

was competitive with the existing state-of-the-art solutions. 

2)(
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B.3. Conclusion 

In [61], a comparative study of the existing Multi-Objective Optimization 

approaches was made. In this study, a concrete and real application to perform 

Multi-Objective portfolio optimization was used to test and benchmark the 

available approaches. To evaluate the quality of the approaches, metrics like the 

spread of the solutions across the Pareto frontier, the closeness of the solutions 

found (PF known), and the best-known Pareto frontier (PF true) are used. In the 

conclusion, the authors of this paper claim that the SPEA 2 is among the best 

Multi-Objective Evolutionary Algorithms (MOEA). They also conclude that 

SPEA2 is applicable for realistic portfolio optimization with real constraints. 

A complete and comprehensive review of the existing solutions for Portfolio 

Management using Multi-Objective Evolutionary Algorithms can be found in the 

study of K. Metaxiotis [64]. In this same study, some clues are revealed 

concerning why there are a limited number of papers discussing the theme of 

Multi-Objective Portfolio Management. 

C. Part C. A Case Study 

In this part of the chapter, a Genetic Algorithm (GA) based on a Multi-Objective 

Evolutionary System to optimize a Trading or Investment Strategy (TS) is 

developed. Two conflicting objectives are set to be optimized: Maximize the 

Reruns and minimize the risk. However, first, fair and established metrics should 

be set to be used to both evaluate the returns and the linked risk of the optimized 

TS. Then, these TS will be evaluated in several markets using data from the main 

stock indexes of the most developed economies, such as NASDAQ, S&P 500, 

FTSE 100, DAX 30, and the NIKKEI 225. Finally, the results are presented, 

where the Pareto Fronts obtained with the training data during the experiments 

clearly show the inherent trade-off between risk and returns. 

This part will continue with a brief introduction to the problem; then a state of 

the art will be offered. This will be followed by the methodology explanation, and 

then, the results and the conclusions will be presented. 

C.1. Introduction 

In artificial intelligence [65], Genetic Algorithms (GAs) are a family of 

computational techniques that apply the Darwinian theory of evolution to develop 
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and optimize a possible solution to a given problem. These algorithms encode a 

probable problem solution on a data structure and apply selection techniques 

(survival of the fittest) and recombination operators (crossover and mutation) to 

these data structures. These GA machine learning techniques begin with a set of 

potential solutions (population) to the problem and are used to optimize this 

population according to a fitness function that evaluates the solutions according to 

their ability to perform or solve the specified task. Genetic algorithms are often 

viewed as function optimizers, although the variety of problems to which genetic 

algorithms can be applied is fairly wide.  

Besides some unfavorable judgments [66], [67], Technical Indicators (TI) are 

still widely used as tools to perform the technical analysis of financial markets, 

exploiting the existence of trends to establish potential buy, sell, or hold 

conditions. Although S.B. Achelis [68] has made a complete reference that fully 

explains the most important TI's that one can identify and use, this study is still 

very tricky. Aside from that, the main difficulty of TI usage is deciding its suitable 

parameter values. In financial practice, it is not uncommon to see analysts conduct 

extensive manual analysis of historically well-performing indicators, looking for 

hidden interactions among variables that perform well in combination. When a 

person finds one of these interactions, he/she keeps it as a personal secret. 

Thus, evolutionary computation appears to be a highly suitable alternative to 

extend the technical analysis of financial markets to tune the parameters of some 

chosen TI (or set of TI’s), so that the desired goals are achieved to the maximum 

extent possible. In this environment, what the system should do can be viewed as 

some form of predicting future stock prices. Consequently, in this context, 

evolutionary computation emerges as a stochastic search technique able to deal 

with highly complicated and non-linear search spaces. 

In the last decade, several financial crises have occurred that have had 

extensive consequences on the financial assets valorization, which has warned 

investors that risk should also be taken into consideration when making any 

decision. This situation was the principal motivation for this study: tune an 

Investment or Trading Strategy (TS) to be able to achieve the highest returns with 

minimal risk. The simultaneous achievement of both these goals is supposed to 

correspond to obtaining solutions that are more robust. 

The goals of this specific study are to tune a TS that is able to present the 

highest returns as existing single objective based approaches, and concurrently 

reduce risk by using a multi-objective evolutionary optimization approach. 

Consequently, two objectives are set: the maximization of the Return on 

Investment (ROI), and the minimization of the related risk. The proposed 

framework is tested using data from the main stock indexes of the most developed 
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economies, such as NASDAQ, S&P500, FTSE100, DAX30, and the NIKKEI 

225. The results are presented and some possible conclusions are outlined. 

The next section will present the related work on Genetic Algorithms applied 

to Financial Markets. Section 3 explains the system architecture, defining the 

roles of the most relevant modules used to build the proposed framework; the 

chromosome encoding is also outlined. The TI adopted as the core building block 

of the evolved TS used in this work is also presented in this section. Section 4 

presents the results and the most relevant outcomes are highlighted. Finally, the 

conclusions of this study are presented in Section 5. 

C.2. Related Work 

Stock market analysis has been one of the most attractive and active research 

fields where many Machine learning techniques are adopted. Generally speaking, 

one can distinguish two methods for anticipating future stock prices and the time 

to buy or sell; one is Technical Analysis [69] and the other is Fundamental 

Analysis [70]. Fundamental Analysis looks at stock prices using the financial 

statements of each company, economic trends, and so on; it requires a large set of 

financial and accounting data, which is difficult to obtain and is both released with 

some delay and often suffers from low consistency. Technical Analysis 

numerically analyzes the past movement of stock prices, is based on the use of 

technical stock market indicators that work on a series of data, usually stock 

prices or volume [68]. Consequently, this work will be focused on the use of 

Technical Analysis to anticipate future stock price movements. 

One of the earliest proposals where genetic programming was applied to 

generate technical trading rules in the stock market was published by Allen et al. 

in 1995 [71] and in 1999 [72]. Later, many approaches based on evolutionary 

computation were proposed and applied to diverse fields of financial management 

to predict worth trends. Financial market prediction has been the subject of many 

studies, and in recent years, a combination of algorithms and methods has been 

extensively used. Table 1 summarizes some of the relatively recent approaches 

found in the vast available literature. 

In an effort to summarize, in most of the below works, the generated returns 

are exclusively used as the only fitness metric, without accounting for the related 

risk. Some examples are the use of GAs to optimize TI's parameters, such as in 

Fernández-Blanco et al.’s [21] study, or to develop TS based on Tis, such as is 

found in Bodas-Sagi et al. [22], Gorgulho et al. [23], and Yan et al. [80]. 
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According to what was stated for the first time in 1952 by Markowitz [81], 

any TS should have the highest possible profit with the minimal risk. 

Unfortunately, these two metrics are intrinsically conflicting by virtue of the risk-

return tradeoff. Some previous articles proposed the combination of the two 

conflicting objectives into one single metric, particularly the proposals of Bodas-

Sagi et al. [22], which used the Chicago Board Options Exchange (CBOE) 

Volatility Index (VIX) [82] and [83], as a metric for risk. Schoreels et al. [44] 

proposed the use of a Capital Asset Pricing Model (CAPM) [84] system, based on 

Markowitz's [81], portfolio theory to reduce risk through the balanced selection of 

securities. More recently, Pinto et al. [85] proposed and studied several 

alternatives to the classical fitness evaluation functions. 

In terms of real Multi-Objective Optimization, some studies can be found, 

such as the paper of Ghada Hassan et al. [86] where a Multi-Objective system to 

maximize return as the annualized average of the returns, and minimize risk, as 

the standard deviation of the annualized average of the returns, was presented. In 

this same study, Genetic Programming (GP) was used to model equations that 

combine the time-series input data to score a given stock. Additionally, low-

frequency trading was used, as the training data consisted of monthly data. 

Again, in 2009, S.C. Chiam et al. [87] used a Multi-Objective system to 

maximize the total returns and to minimize the risk or the exposure to it. The 

proposed framework is tested using data acquired from only one stock market – 

the Singapore Exchange (Straits Times Index (STI)). Hence, some of the 

conclusions drawn from this study could be attributed to the market used for the 

test (some odd peculiarities exhibited by this market); additionally, the metric 

used to evaluate the return is particularly unusual, therefore making it difficult to 

compare the presented results with the results of other alternative applications. 

The goal of this paper is to tune a TS using a Multi-Objective GA. In doing 

this, solutions that are more robust should be developed, and, consequently, the 

results in the out-of-sample period should be improved, while risk is supposed to 

be simultaneously minimized. 

C.3. Methodology 

The proposed system consists of a Multi-Objective Genetic Algorithm coupled 

with a market return evaluation module that performs the fitness evaluation. The 

fitness evaluation is performed based on the estimation of the two conflicting 

objectives, on the chosen markets, and on the specified time frames. 
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Wuthrich 

et al. 
[73] 1998 

k-NN and 

NN 

Key words 

found on 

financial 

newspapers 

published 

on the Web 

ROI No 

B&H & 

Mutual 

Founds 

News 

DJI, 

Nikkei, 

FTSE, 

HSI, STI 

6 Dec 

1997 

To 

6 Mar- 

1998 

14% to 30 % 20.8% 

Long 

and 

Short 

D. J. 

Bodas-

Sagi,  

et al. 

[22] 2009 EA 
RSI, 

MACD 

ROI, 

#Transac., 

Risk 

Trend 

Risk, 

VIX 

B&H – 

Use of the 

TI alone 

Price 

Dow Jones 

ETFS 

Brent Oil 

2000 to 

2005 

Sliding 

Window 
-- -- 

Garcia  

et al. 
[74] 2010 

GP and 

GA 

(GAP) 

Decision 

Tree, based 

on TI (MA, 

EMA, 

ROC, RSI, 

SO) 

Mean 

Accumulated 

Return 

Sharpe 

ratio 

B&H and 

other 
Price 

S&P500 

index 

1988 to 

2005 

Mean 

Accumulated 

Return of 

37.02% 

-- Long 

Butler  

et al. 
[38] 2010 PSO 

BB, MA, 

EMA 

ROI, Sharp, 

Sortino, 

Accuracy 

Sharp 

Ratio, 

Sortino 

Ratio, 

Accuracy 

B&H and 

BB with 

typical 

parameters 

Price DJI 
1990 to 

2004 

61.5 to 

101.44 

(return in 5 

years) 

-7.7% 

to 

0.28% 

Long 

and 

Short 

Vincent 

Cho 
[75] 2010 

ARIMA, 

NN, 

regression 

Several 
Accuracy 

and ROI 
No Return Several 

HSI, DJI, 

and other 

data 

2003 to 

2007 

Sharp ratio 

from 0.127 to 

3.616 

4.4% 

to 

19.6% 

Long 
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Gorgulho 

et al. 
[76] 2011 GA 

EMA, 

HMA, 

ROC, RSI, 

MACD, 

TSI, OBV 

ROI No 

B&H and 

random 

strategy 

Price 

and 

Volume 

30 stocks 

from the 

DJI 

01/01/03 

to 

31/06/09 

16.68% to 

25.29% 

2.23% 

to 

3.27% 

Long 

and 

Short 

Lei 

Wang  

et al. 

[77] 2011 HLP-NN Unknown 
Prediction 

error 
No 

Prediction 

error 
Price 

Shanghai 

Index 

11-18-

1991 

to 

2-10-2009 

7.16% - 

9.65% 

(Prediction 

error) 

-- Long 

Kyoung-

jae Kim 

et al. 

[78] 2012 

Uses GA 

to 

optimize 

NN 

Selected 

features 

(Several 

TI) 

Prediction 

Accuracy 
No 

Prediction 

Accuracy 
Price 

Korea 

Composite 

Stock 

Price 

Index 

(KOSPI). 

January 

1989 

to 

December 

1998 

50.6% to 

66.1% 

Prediction 

Accuracy 

-- -- 

Canelas 

et al. 
[79] 2013 GA 

Pattern 

discovery 
ROI No 

B&H and 

other 
Price 

99 stocks 

from the 

S&P500 

index 

1998 to 

2004 

36.4 % to 

62.8% 

(Average 

ROI) 

6.00% 

to 

9.57% 

Long 

and 

Short 
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C.3.1. Strategy and Parameters 

The task of specifying buy and sell conditions for long and short positions means 

describing the TS. Putting this together with an optimization engine allows for the 

automatic exploration of trading strategies according to a specified criterion, 

which is evaluated and described by the given fitness functions. 

The TS evolved in this study is based on the use of a TI. The elected TI to be 

used in this study is the Moving Average Crossover (MAC), which in turn is 

based on the use of two Moving Averages (MA) with different periods. One of the 

MA is formed by the shorter of the two periods and is called the "Fast MA‖. The 

other, formed by the one with the longer period, is the "Slow MA". The "Fast 

MA" reflects changes earlier than the "Slow MA". A buying (or sell short) signal 

is generated when the Fast MA crosses over the Slow MA. 

 

 

Figure 16. Illustration of the MAC operation. 

Conversely, a sell (or a buy short) signal is generated when the Fast MA 

crosses under the Slow MA. This process is illustrated in Figure 16. 

After defining the strategy, it is necessary to define the parameters of the 

MAC, which in this case are the type of the MAs and the corresponding period. 

These two parameters represent the variables of the underlying strategy. It is also 

important to stress that, for the type of MA to use, the GA has the freedom to 

choose between a Simple or an Exponential MA. 
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Although it is common to tune the parameters of a single TI and then use it to 

generate buy and sell signals for both long and short positions, in this work, the 

option of using a separate set of parameters for each of the possible actions was 

taken, more specifically, "enter long", "exit long", "enter short", and "exit short" 

were used. 

It is also important to note that some preprocessing of the historical data was 

done. This applies, for instance, to the MA periods, which are calculated at the 

program start, and are limited to the following set of Simple or Exponential 

MA’s: 1
1
, 4, 8, 12, 14, 16, 20, 24, 28, 32, 36, 40, 55, 60, 65, 70, 75, 80, 85, 90, 95, 

100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, and 250 days.
2
 

C.3.2. Genetic Encoding 

The chromosome structure must represent the MAC indicator used; this way, one 

MAC chromosome is represented by two genes: one represents the type and the 

period of the Fast MA and the other does the same for the Slow. These entries are 

natural numbers in the interval of values between 0 and 65, as it encodes, in a 

single entry (integer variable), the type of MA and its period. 

Therefore, there are four possible actions, and a set of MAC parameters is 

used for each of these possible actions, which implies that a total of eight 

parameters or genes must be represented in the chromosome structure. In Table 2, 

the chromosome structure is summarized. 

C.3.3. Fitness Evaluation 

The fitness evaluation process is concerned with simulating the performance of 

each trading agent in the evolving population and calculating the corresponding 

total returns and the related risk. The resultant fitness values of the trading agent 

must be evaluated under some established and fair metric, as will be discussed in 

the following subsections. 

C.3.4. Return Metric 

The profits generated by any given TS can be measured in different ways, as will 

be discussed below. 

                                                        
1
 In reality, the MA of 1 (one) day, is not an MA, but the day security price; this is a trick to allow the 

GA to choose between one of the available MAs or the actual quote. 
2 

This set of periods has been chosen because it covers the most widely used long and short-term MA 

periods found in books and recommended by experts [68]. 
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For instance, the potential profits can be estimated by simply summing the 

area under the total asset graph during the trading period [42]. Alternatively, 

another return metric could be the total final assets; this means the available 

capital, plus the value of all holdings, at the end of the investment period [88] and 

[19]. Unfortunately, both preceding metrics have the obstacle of always being 

attached to the initial cash invested. 

Table 2. Chromosome representation 

Parameters 

Enter long 

position 

Exit long 

position 

Exit short 

position 

Enter short 

position 

Fast 

MA 

Slow 

MA 

Fast 

MA 

Slow 

MA 

Fast 

MA 

Slow 

MA 

Fast 

MA 

Slow 

MA 

Chromosome 0..65 0..65 0..65 0..65 0..65 0..65 0..65 0..65 

 

Therefore, an alternative metric exists that, instead of considering the absolute 

value of the holdings, rather consider its relative value. This metric is a ratio and 

is called the Rate of Return (ROR), also known as the Return on Investment 

(ROI), rate of profit, or sometimes just return. This ratio represents the money 

gained or lost (whether realized or unrealized) on an investment relative to the 

amount of money invested. ROI is usually expressed as a percentage, and for one 

period of time, by definition, is calculated by Error! Reference source not 

found.. In this equation, ―Profit‖ is the amount of money gained or lost and is 

sometimes referred to as interest, gain/loss, or net income/loss; ―Initial 

Investment‖ is the money invested, and may, alternatively, be called the asset or 

capital. 

Equation 10. ROI Calculation: 

 

  (10) 

 

ROI still has the problem that, for multi-period investments, it is difficult to 

compare it with the results one would get in a single period of time. Therefore, a 
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metric that could be compared with similar alternative investments, like 

investment funds or bank deposits, should be used instead. This way, in this study, 

the Annualized ROI will be used. The Annualized ROI is nothing more than the 

―Geometric Average of the Ratio of the Returns‖, also known as the ―True Time-

Weighted Rate of Return‖. Mathematically, an investment lasting for N periods 

with full reinvestment is computed by Equation 11: 

Equation 11 Anualised ROI calculation: 

 

  (11) 

 

In this equation, N is the number of periods, or more specifically, the number 

of years that the investment lasts. 

C.3.5. Risk Metrics 

Risk is usually seen as the volatility or the uncertainty of the expected returns over 

the investment period. Therefore, the linked risk of any investment technique can 

be estimated in several ways, as will be examined in the following section. 

The most traditional risk metric is inherited from statistics and from the 

Markowitz Mean-Variance Model [81]. It consists of the use of the results 

variance as a metric for the risk. This variance can be calculated using the 

standard deviation or the variance between the returns; in finance, this statistical 

measure of the dispersion of the results is usually called volatility. 

Instead, risk can also be computed as the exposure to it [89]. Specifically, it 

can be measured by the proportion of trading days when a position is maintained 

open on the market, and is, mathematically, the ratio between the time the agent is 

on the market and the total available trading time (Equation 12). Essentially, 

staying in the market longer corresponds to a higher exposure to risk, such as 

market crashes and other disastrous events, while shorter periods in the market 

correspond to lower risk exposure and greater liquidity (as the capital is engaged 

for a smaller time). In Equation 12, ti, exit and ti,entry denote the time at which the 

trading agent enters and exits the market, for each ith trade, and T refers to the 

total length of the trading period. 

Equation 12. Risk Exposure calculation: 

 

  (12) 
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Other alternative metrics have been proposed and used, as, for instance, the 

use of Maximum Drawdown (MDD) as an estimate for risk. The Drawdown (DD) 

[90] calculates the decline from a past historical peak in our variable (the 

evaluation of the total assets) to its current value. The DD can be calculated in 

terms of absolute or relative values. In the next pseudo code, how the DD and the 

corresponding Maximum Drawdown (MDD) are calculated, in terms of relative 

values are presented: 

 

MDD = 0 

peak = -inf 

for i = 1; i < N; ++I do  

if (assets[i] > peak) then 

peak = assets[i] 

DD[i] = 0 

else  

DD[i] = 100.0 * (peak - assets[i]) / peak 

if (DD[i] > MDD) then 

MDD = DD[i] 

End if 

End if 

End for 

 

Additional alternative metrics for risk can be found in the literature, such as 

the use of some risk-adjusted return metrics, like the Sharpe ratio (also known as 

the Sharpe index), Sortino ratio, Sterling ratio (SR), Calmar ratio (CR), or VIX 

[82] and [83]. All previous metrics compute the net profitability after discounting 

the associated risk [91] and [92]. In short, these risk metrics are, in reality, 

alternative methods to combine the two conflicting objectives faced in this kind of 

problems (risk and return) into one single objective (metric). 

C.3.6. Selection of the Risk Metric to Use 

In preparation for this study, some preliminary tests were conducted using several 

combinations of the previously exposed metrics (return and risk); the next 

paragraphs summarize the main conclusions drawn from the tests conducted and 

the results observed. 

In the first stage, the metrics that combine the two conflicting objectives (SR, 

CR, VIX, …) into one single metric have been discarded, since the goal of this 

study is to do Multi-Objective Optimization and the use of a metric that is the 
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aggregation of two conflicting objectives does not make sense. In addition to 

being unhelpful, this could also correspond to benefitting one of the objectives 

while damaging another. 

Some preliminary tests have been conducted using the MDD as a metric for 

risk; however, strange behavior in the results was observed. This strange behavior 

observed in the tests conducted can also be confirmed by the varied results 

obtained in the study of O’Neill [93]. Recall that MDD records the maximum of 

the losses in the trading period. Consequently, this metric is not a good 

representation of the overall performance, since the performance of the TS can be 

good almost all the time, but, if even for a small period of time, some losses are 

incurred, this can result in a big value when this metric is used. Although this 

metric can be a good sentiment, independent, or auxiliary metric to further 

evaluate a strategy, computationally speaking, as a multi-objective goal, it does 

not seem to be a good main risk metric. 

Before conducting any tests using the Volatility to gauge risk (it can be either 

the standard deviation or the variance between the returns), it must be decided 

how the period of study should be subdivided in order to calculate its variance 

(days, weeks, months, years, etc.). At this point, and due to the lack of additional 

information, as this detail is usually omitted from most of the available literature, 

the decision was made to adopt the approach described in Article 46 of reference 

[94]. Consequently, from now on, in this text, when the term ―Variance (of the 

results)‖ is used, it refers to the ―Annually adjusted standard deviation‖ of the 

―actual weekly profits‖ exactly as described in reference [94]. In Equation 13, the 

cited formula is recalled. 

Equation 13. Annually adjusted standard deviation calculation: 

 

  (13) 

 

where, rt symbolizes the actual weekly returns or profits in the period t; T is the 

number of weeks in the trading period, coinciding with the period used for the 

calculation of profits, and <r> is the simple arithmetic mean of the actual profits 

in the trading period. 

By its turn, the actual weekly profits are calculated by Equation 14. 

Equation 14 – Actual Profits calculation: 
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In this equation, Final Assets represents the total value of the holdings at the 

end of the reference period, while Initial Assets stand for the value of the holdings 

at the start of the reference period. 

Therefore, it remains to be decided whether to use the Variance (of the results) 

or the Risk Exposure as the elected risk metric in the remainder of this study. 

Consequently, some preliminary tests were conducted, using the weekly 

variance of the returns and risk exposure, as both exhibited fairly good results 

using the training data. Afterwards, and in order to have a better understanding of 

how these two variables relate together, as well as to determine which one could 

lead to better results, a correlation test between these two apparently uncorrelated 

variables was conducted. 

The method used to make this correlation test was the Monte Carlo method, 

which consisted of generating 15,000 random TS. Subsequently, the performance 

of the randomly generated TS are evaluated according to these two objectives in 

the different markets. With the collected data, graphs like the ones shown in 

Figure 17 were produced. In this figure, so that any correlation between these two 

variables can be visually inspected, the Variance of the results is plotted in the X-

axis and the Risk Exposure is on the Y-axis. The plots shown in Figure 17 were 

built using training data from Nikkei and FTSE indexes, but similar graphs were 

obtained using the other indexes tested in this study. 

The main conclusion from the plots below is that these two apparently 

uncorrelated variables are, in practice, highly linked together. Thus, the choice of 

any of these risk metrics as the one elected to be used in this study should have 

minimal influence on the final results. Therefore, the decision was to select the 

simplest of the formulas, which is risk exposure. Computationally speaking, 

everyone knows that simpler functions and algorithms should be preferred, as they 

consume less computer resources, are faster, and less prone to errors (if coded 

properly). 

Hence, in the remainder of this present work, the exposure to the risk will be 

used as the risk metric, more specifically, the ratio between the number of trading 

days a position is maintained open on the market and the total available trading 

days, and is calculated according with Equation 12. 

C.3.7. Optimization Kernel 

This study is focused on the simultaneous optimization of TS that must achieve 

two objectives: the maximization of a Return Metric and the minimization of a 

Risk Metric. Therefore, in this situation, the proposed framework must consider 

and simultaneously balance the two objectives, as these two objectives interact 
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between them and are conflicting. To deal with this kind of problem, an 

Evolutionary Algorithm-based technique has been developed, called Multi-

Objective Optimization (MOEA) [18]. 

Multi-Objective (MO) optimization is the process of finding a set of solutions 

that optimizes several objectives. 

 

 

Figure 17. Plots showing the correlation between Risk Exposure and Results Variance. 

The notion of an optimum solution is different in MO problems from what is 

usually used in single-objective problems, since in MO optimization, instead of 

getting a single global optimum (or solution), a set of solutions or trade-offs is 

supplied to the user. 

In MO optimization, it is not always possible to say when one solution is 

better than another. It is straightforward to say whether one solution might be 

better at one specification and if another solution is better at another objective. 

However, a matter arises: How does one do that for many solutions? To help in 

the understanding of what follows, some terms of general use in MO optimization 

should be introduced, as follows: 

One solution dominates another if it is not worse than the second in all 

objectives, and, at the same time, is better than the second in at least one 

objective. It is important to note that the domination relation is not a concept of 

ordering (or sorting) and that two solutions can be mutually non-dominating if 

neither dominates the other. This can be mathematically formulated, for an m 

objectives minimization problem, as shown in Equation 15 and Equation 16. In 

the case of Equation 15 and Equation 16 we say that, when both equations are 

satisfied, that solution x  dominates solution y . 

Equation 15. MO Formulation: 

 

  (15) 

 

and: 

( ) ( ), 1, 2,...,i if x f y i m  
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Equation 16. MO Formulation: 

 

  (16) 

 

where the fi functions map the decision space to and represent the objective 

functions that should be minimised. and are vectors representing all decision 

variables. The set of solutions that are not dominated by any of the other solutions 

is called the Pareto Frontier (PF) (or Pareto optimal set or Pareto Front). This set 

of solutions ultimately represent the best set of solutions that address all the trade-

offs considered in the problem. 

Hence, and in contrast to single-objective optimization, the optimal solutions 

to a Multi-Objective Optimization problem exist in the form of a set of solutions 

(PF); this set is the set of all non-dominated solutions that balance all trade-offs. A 

given solution belonging to the PF can only have one of its objective components 

improved by degrading at least one of its other objective components. 

In the concrete case of this study, the decision space consists of all possible 

values that the chromosome parameters can have, in order to find the best possible 

set of trade-offs (Risk and Return) using training data (from the training period). 

Therefore, the formulation can be expressed as shown in Equation 17 and 

Equation 18. 

Equation 17. Problem MO Formulation: 

 

  (17) 

 

Subject to: 

Equation 18. Problem MO Formulation: 

 

  

  (18) 

 

where f1 represents the objective function linked to return, which should be 

maximized, according to Equation 11; f2 does a similar function with respect to 

the objective function coupled with risk, which should be minimized, and is 

calculated as shown in Equation 12. In Equation 17, represents the chromosome 
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parameters as already introduced in Table 2. Finally gi, hk map and symbolize the 

constraint functions of the problem (j = 1, 2, …, m), (k = 1, 2, …, p). Some 

examples of gi and hk functions are: 

 

  (All xi are natural numbers), 

 0 <= xi <= 65 (The interval of values is between 0 and 65), 

 x1 <= x2; and x3 <= x4; and x5 <= x6; and x7 <= x8 (the period of the fast 

MA cannot be greater than the slow). 

 

Additional problem-specific constraints should be considered. For instance, it 

does not make sense to have a strategy that could be simultaneously on the market 

as long and short, and also, one cannot invest more than the available cash, and so 

on, but these kinds of constraints can only be considered when the simulation is 

done by the ―Investment Simulator‖. 

The multi-objective fitness evaluation process is concerned with finding the 

optimal set of trade-offs between the risk metric and the linked return metric for 

each TS in the evolving population of chromosomes during the set trading period. 

During the trading period, the performance of each TS is evaluated by simulating 

its actions of buying or selling the assets; its related score is later calculated. 

The Multi-Objective Genetic Algorithm elected to be used in this study was a 

version of the Non-Dominated Sorting Genetic Algorithm 2 (NSGAII) [17] and 

[18]. NSGAII parameters are as follows: population size is 500, the crossover 

probability is fixed at 0.8, with parents selected by tournament selection. Each run 

on the training data continued for 300 generations and the probability of real 

mutation was set to 0.1. These parameters were selected based on a series of 

preliminary investigations and parameter tuning. The NSGAII algorithm was the 

selected evolutionary algorithm because this MOEA is acknowledged as one of 

the most efficient and most commonly applied algorithms, incorporating several 

prominent characteristics to speed up the search and the solution space 

exploration. 

C.3.8. The Investment Simulator 

The Investment Simulator Module simulates an investment in the user-specified 

index, including long and short positions. This stock market index can be bought 

(―go Long‖), sold and after stay out of the market (―Stay Out‖), or even sold 

without owning any (―go Short‖), hoping to profit from a decline in the price of 

the assets between the sale and the repurchase. 

ix 
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Since daily data was available, training consisted of formulating a TS, giving 

the agent some initial cash to spend, and simulating the agent’s performance every 

day. The resulting total assets are calculated by summing the cash plus the 

evaluation of the assets at the current stock closing price. 

The actions of buying or selling are determined by the strategy encoded in the 

chromosome, when suggested by the indicator to buy or sell, when buying invests 

all of the capital, and when selling releases all the securities owned (full 

reinvestment). Securities that are sold or bought are converted into capital at their 

current closing price. 

At the end of the training period, the total assets that the given TS can achieve 

are evaluated. Transaction costs and dividends were not included in the 

simulation. The environment is also assumed as discrete and deterministic in a 

liquid market. 

C.4. Results 

Since a Multi-Objective Evolutionary Optimization of TS is considered in this 

essay, the maximization of a Return Metric and the minimization of its related 

Risk Metric are the goals. In this kind of problem, the optimal solutions exist in 

the form of a set of trade-offs known as the Pareto-optimal set; any objective 

belonging to a solution of this set cannot be improved without degrading the other 

objective. The problem will be directly modeled as a Multi-Objective 

Optimization problem by simultaneously optimizing returns and risk; an example 

of a possible PF is illustrated in Figure 18. This figure clearly represents the risk-

return tradeoff, the Efficient Frontier, which is always faced in these kinds of 

problems. 

In this figure, each point denotes a Strategy evolved by the GA. The black 

circles and the white crosses represent non-dominated and dominated solutions, 

respectively. The set formed by the former solutions is the Pareto optimal solution 

set because their returns cannot be improved any further without compromising 

risk. In the context of a single-objective optimization, where the return 

maximization is the only goal, the evolutionary process will ultimately drive the 

solutions towards the extreme point B. 

This is not applicable to conservative investors, who may prefer a lower level 

of risk at the cost of lower returns. Point A represents the extreme case of a 

conservative investor with zero returns due to total risk adversity. 
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Figure 18. Risk-Return Tradeoff. 

C.4.1. Training and Testing Data Sets 

Historical daily prices obtained from the finance.yahoo.com database were used. 

The system was tested with the main stock indexes of the most developed 

economies, namely the S&P 500 (USA), FTSE 100 (England), DAX 30 

(Germany), NIKKEI 225 (Japan), and NASDAQ (USA). Data used in the system 

covers the time from January 4, 1999 to December 31, 2009, a period of more 

than 10 years. The period of time chosen for training was from January 3, 2000 to 

December 31, 2007, consisting of eight years of daily data (about 80% of the data 

used). This period was assumed to be sufficient to evolve a competitive 

population, as it exhibited significant movement, including several boom and 

crash periods. For testing, or validation period, two years of data, from January 2, 

2008 to December 31, 2009 (about 20%) were used. Furthermore, it is important 

to note that 250 days of prior historical data is required before training can be 

started, in order to calculate and have valid all moving averages. 

C.4.2. Analysis of the Performance in the Training Period 

Figure 19 presents the PFs evolved for the 5 indexes tested in this study in one of 

the experimental runs performed. Although the various solutions sets vary in 

terms of Pareto dominance and optimality, all clearly illustrate the inherent trade-

off between return and risk. Furthermore, the evolved TS are able to generate high 
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Risk
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returns in open positions in less than 100% of the trading period; for instance, the 

observable annualized ROI of about 10% with a risk exposure of around 0.6. 

In Financial Computing, when analyzing the performance of a given TS, it is 

common to compare it against the ―Buy & Hold‖ (B&H) and ―Sell & Hold‖ (S&H) 

strategies. B&H strategy is a long-term strategy that consists of buying the stocks at 

the beginning of an investment period and holding it for the entire time, regardless 

of any market fluctuations. S&H strategy does the opposite and consists in selling 

assets (without owning them) at the start of an investment period (selling short), and 

repurchasing them at end of the investment period. In the latter case, the profits 

result from a decline in the assets price between the sale and the repurchase. 

When the ROI performance of the evolved TS (see Figure 19) is compared 

against both B&H and S&H approaches (see B&H and S&H annualized ROI 

calculation in Table 3) during the training period, it is easy to conclude that, in 

this context, both B&H and S&H strategies are undoubtedly suboptimal. It is also 

important to remember that B&H and S&H strategies both correspond to a risk 

exposure of 1 (one), since the capital is all time engaged. 

 

 
 

Figure 20 presents an example of the eight-year financial data used to optimize 

the strategy; in the current case, it is the FTSE100 index. The line labeled ―Buy & 

Hold‖ characterizes the performance of the B&H strategy; this same line is 

coincident with the current index evaluation at close price. In this same illustration, 

the performance of the S&H strategy is exposed by the curve tagged ―Sell & Hold‖. 

An example of the trading performance of one of the optimized strategies is also 

shown in this figure by the line labeled ―Trained Chromosome‖. On this same 
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illustration, the X-axis is time, and the Y-axis represents the assets evaluation; the 

values on this axis are normalized so that they all start at 100. 

In order to have better insight into the results, 30 (thirty) experimental runs 

were performed, the results were collected, and then discrete intervals of 0.1 risk 

exposure were considered. With this data, charts similar to the one shown in 

Figure 21 were built. Figure 21 plots an example of the observed distribution of 

the Annualized ROI as a function of the risk exposure; the example shown is for 

the case of the DAX index. This illustration shows the First Quartile of data (Q1), 

the Third Quartile of data (Q3), and the Median, with the whiskers located, 

respectively, at 10% and 90% of the data in the 30 independent runs. Again, in 

this figure, the risk-return trade-off is evident, where the Median of the 

Annualized ROI increases for higher levels of risk exposure. 

 

 

Figure 19. Evolved Pareto Fronts for the 5 Indexes Tested. 

The lack of solutions on the risk exposure range of [0.1, 0.3] can be due to the 

difficulty in optimizing the chosen TI to exploit the price movements in order to 

create strategies in this region. Similar results were observed for the additional 

indexes also being tested. 

C.4.3. Correlation Analysis of Training and Test Performance 

The results presented in the previous subsection showed that it is possible to tune 

a TS to attain attractive returns at various levels of risk exposure. Despite this, the 

effectiveness of any approach will depend on being able to extend these 

interesting returns to unseen data, which is usually recognized as its generalization 

performance. 
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Table 3. Annualized ROI for B&H and S&H strategies in the training period 

 
NIKKEI 

225 

FTSE 

100 
S&P500 DAX30 NASDAQ 

Index Value at Start 19002.86 6662.90 1455.22 6750.76 4131.15 

Index Value at End 15307.78 6456.90 1468.36 8067.32 2652.28 

B&H Absolute Return -3695.08 - 206.00 13.14 1316.56 -1478.87 

B&H ROI [%] -19.44% - 3.09%  0.90%  19.50% - 35.80% 

B&H Annualized ROI 

[%] 
-2.67% -0.39% 0.11% 2.25% -5.39% 

S&H Absolute Return 3695.08  206.00 -13.14 -1316.56 1478.87 

S&H ROI [%]  19.44%  3.09% - 0.90% - 19.50%  35.80% 

S&H Annualized ROI [%] 2.25% 0.38% -0.11% -2.67% 3.90% 

 

 

Figure 20. Example of daily closing prices and the performance of one trained TS, for 

FTSE100 index, in the training period. 
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Figure 21. Annualized ROI when discrete intervals of 0.1 Risk Exposure are considered. 

 

Figure 22. Pareto Fronts for training and test data. 

In order to evaluate the engine generalization performance, the available trading 

data is portioned into two independent sets of data, the training and test data sets, as 

explained in subsection C.4.1. Training and Testing Data Sets. In the training phase 

of the evolutionary process, the fitness of the TS will be trained, tuned, and 

evaluated using only the training data. After having been trained, the developed 

strategies obtained in the final generation will then be applied to the test data set and 

its generalization performance will be evaluated. This is an indicator of the 

framework’s real effectiveness in achieving good results using unseen data. 
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The plot of the risk-return PFs for the training data acquired in one of the 

experimental runs is presented in Figure 22. The marks labeled ―Pop_Train‖ 

represent the performance of the final population evolved after 400 generations, 

while the points tagged ―Pop_Tst‖ represent the results of this same population 

when applied to the test data set. 

Again, in this plot, the risk-return trade-off is clearly evident with training 

data. However, this type of correlation disappears when the same strategy is 

applied to test data. For instance, an annualized ROI of 20% is realizable at a risk 

level of about 0.7 with the training data, while large losses are suffered at the 

same level of risk with the test data. 

The most evident conclusion is that positive returns with the training data do 

not necessarily match positive returns with the test data. The example shown in 

Figure 22 is for the NIKKEI index, but similar plots were observed with the other 

indexes tested. This low relation between training and testing results was also 

observed in previous studies [91] and [87]. 

 

 

Figure 23. Plots showing the correlation between training returns, training risk, test 

returns, and test risk. 

This strongly suggests the need to better understand how the training and 

testing data correlate in order to examine the generalization performance of the 

evolved TS. This suggests the need for a correlation analysis between the four 

variables involved: training ROI, training risk, test ROI, and test risk. 
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To better clarify the results, 30 independent experimental runs were 

performed. With the results observed in these experimental runs, graphs similar to 

the ones shown in Figure 23 were built. In these graphs, the four involved 

variables are plotted and any potential correlations can be visually inspected. 

Once more, the plot of training ROI and training risk accurately shows the 

risk-return trade-off. Although an almost random plot is obtained when the test 

returns against the test risk are plotted; this suggests the existence of a low 

correlation between training ROI and test ROI. 

Contrasting to traditional theories in single-objective approaches, where higher 

training returns are coupled with higher test returns, this relationship is missing 

from these plots. Instead, higher training returns correspond to increased volatility 

in the observed test returns; this is clearly observable in the graphs of Figure 24. 

 

 

Figure 24. Statistical distribution of test returns at discrete intervals of training returns for 

DAX index. 

In Figure 24 are plotted the quartiles of data (Q1-Q3), the median, and also 

the whiskers, located at 10% and 90%, respectively, of the observed results, when 

the training returns are divided into discrete intervals of 5%. In this figure, it is 

observable that the median of the test returns does not increase when the values of 

training returns increase. In its place, there is a visible increase in the variance of 

the results that is denoted by the taller vertical bars (both whiskers and boxes). 

In conclusion, the positive correlation that is typically implicit in 

conventional single-objective approaches, to perform the optimization of TS 

between training and test returns, is not necessarily true for all cases. 
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Similar conclusions can be extracted from the plots in Figure 25 and Figure 

26, where the Median, Q1, Q3, and whiskers of the test returns are plotted. This 

time, the results observed in the 30 independent runs are summarized at discrete 

intervals of 0.1 training risk. 

 

 

Figure 25. Statistical distribution of test returns at discrete intervals of training risk, for 

DAX experiments. 

 

Figure 26. Statistical distribution of test returns at discrete intervals of training risk, for 

NIKKEY experiments. 

Again, the Median of the test returns does not increase when the training risk 

increases. 
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Figure 27. Number of Solutions and Standard Deviation of returns when discrete intervals 

of 0.1 risk exposure are considered, observed with the DAX Index. 

 

Figure 28. Number of Solutions and Standard Deviation of returns when discrete intervals 

of 0.1 risk exposure are considered, observed with the NIKKEI index. 

Although a steady increase is clearly observable in the variance of the test 

returns from the plots (Figure 25, Figure 26, Figure 27, and Figure 28), which 

confirms the claim that higher training returns correspond to increased volatility 

in the test returns results. 

The apparent drop in the results volatility observed in the DAX results, for 

risk levels above 0.8, is statistically irrelevant, as there are few solutions in this 

region (Figure 27). The plots presented were built with the DAX and NIKKEI 
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results, but similar plots were also observed for the remaining indexes also tested 

in this study. 

Conclusion 

This chapter began (Parts A and B) with a quick review of the most important 

existing Computational Problem Solving Techniques. This review was necessary 

speedy, as it is possible to write (and there are available) complete books 

explaining in detail each of them. Therefore, in Part A, the various existing 

techniques in the fields of time series forecast and systems that learn by example 

were briefly reviewed. Part B, was devoted to Multi-Objective Systems. 

This document continued, in Part C, presenting and investigating a multi-

objective evolutionary approach to perform the optimization of a set of TS. In this 

part of this work, fair and established metrics were used to evaluate both returns 

and the related risk. Both metrics were simultaneously optimized and a popular TI 

frequently used by real-world professionals were used as the foundational 

building block of the core strategy. Furthermore, the TS were trained, and 

afterwards tested, using data coming from five main stock indexes, representative 

of the world’s most developed economies. The PFs obtained by the algorithm 

using testing data correctly depicted the intrinsic trade-off between risk and 

return. 

Ideally, a multi-objective evolutionary framework should be able to evolve a 

set of TS with different levels of risk aversion to suit the diverse profiles of 

investors, from the most risky to the most conservative. However, the low 

correlation between training returns and test returns suggest a low potential in the 

framework generalization capability. 

Consequently, the experimental results reveal that the positive connection 

usually assumed between training and testing returns in conventional single-

objective approaches of TS optimization does not necessarily hold true for all 

cases. 

However, some interesting conclusions can be extracted, namely the 

conclusion that higher training returns correspond to increased volatility in the test 

return results. 

The MAs have the disadvantage of being a trend follower indicator, and 

signals we can get from such indicators always come with some delay. Further 

tests should be conducted using other TI; those achieved results should be seen as 

a benchmark to further improvements with the use of other TI, or even the use of 

multi-TI strategies. Additionally, further experiments should be conducted to 
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better clarify the reason for the dramatic difference between the PF achieved with 

training versus testing data. 

Additionally, the reader must also be aware that in single-objective 

approaches, the system automatically picks a solution without showing the user its 

related risk. This chosen solution can be an intermediate solution (maybe a 

solution that balances and finds a reasonable compromise between the two 

conflicting objectives), which, when analyzed in the test period, gives reasonable 

results. This can be an explanation for both the common belief that a positive 

correlation between training returns and test returns exists, and for the reasonable 

results presented in the literature in such a context. Furthermore, in single-

objective approaches, the solution picked and presented to the user is rarely 

evaluated in the test period, according to the two distinct metrics (risk and return); 

consequently, it is difficult to tell where it would lie if plotted in a risk/return 

diagram. 
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Abstract

A key concern when training a multi-layer perceptron (MLP) is that
the final network should generalise well out-of-sample. A considerable
literature has emerged which examines various aspects of this issue. In
this study we draw inspiration from theories of memory consolidation in
order to develop a new methodology for training MLPs in orderto pro-
mote their generalisation capabilities. Thesynaptic homeostasis hypoth-
esis[29, 30] proposes that a key role of sleep is to downscale synaptic
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strength to a baseline level that is energetically sustainable. As a conse-
quence, the hypothesis suggests that sleep acts not to actively strengthen
selected memories but rather to remove irrelevant memories. In turn, this
lessens spurious learning, improves the signal to noise ratio in maintained
memories, and therefore produces better generalisation capabilities. In
this chapter we describe the synaptic homeostasis hypothesis and draw
inspiration from it in order to design a ‘wake-sleep’ training approach for
MLPs. The approach is tested on a number of datasets.

1. Introduction

A key concern when applying powerful machine learning methods such as
MLPs to induce a model from a training dataset, is that the resulting model
should generalise well out of sample. There are several issues that willimpact
on the generalisation capability of a MLP, including the sufficiency of the train-
ing dataset (i.e. does it contain sufficient explanatory inputs in order to allow
construction of a predictive model for the target output), is the training data
sufficiently representative of all out of sample data that could be presented to
the model, is the target function smooth (non-smooth functions will be more
difficult to model), and what choice of error criterion will promote good gener-
alisation?

Another factor which will impact on how well an MLP will generalise is its
internal structure. If too-large a network is employed, it will have many weights
and will be prone to over training, thereby learning any ‘noise’ in the data.
Increasing the number of weights will also add to the computational complexity
of the training process. If too-small a network is used, it will not have sufficient
power to adequately represent the structure in the data.

Of course, the importance of generalisation extends far beyond machine
learning and statistics, and the ability to generalise from past learning to new
situations is a key driver of evolutionary fitness in biological organisms. Hence,
processes of learning, memory formation, and the integration of new experi-
ences into existing memories in animals, are likely to be rich sources of inspi-
ration for the design of algorithms with good generalisation capabilities.

It is widely thought that iterated wake-sleep states play an important role
in memory formation and maintenance in animals. Despite the rich literature
in neural networks concerning generalisation, relatively little attention has been
paid to the possibility of drawing inspiration from iterated wake-sleep states in
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order to design better training algorithms for neural networks.

1.1. Memory

Broadly speaking, learning can be considered as the process of acquiring new
information, with memory referring to the persistence of learning in a state that
can be revealed at a later time [27]. The processes of learning and memory
formation have been widely studied in the literature of both psychology and
neurobiology. In the latter case, the focus of research is on how memoriesare
recorded and maintained in the physical structure of the brain. The basic struc-
tural unit of the brain consist of individual neurons. A critical aspectof learning
and memory is that the connection structure between these neurons is plastic
and is altered via the process of learning. The concept of plasticity was first
suggested over a century ago by William James [7], and thesynaptic plasticity
hypothesislies at the centre of most research on memory storage [20]. This
hypothesis proposes that the strength of synaptic connections between neurons,
which in turn determine the ease with which an action potential in one cell ex-
cites or inhibits its target cell, are not fixed but are modifiable or ‘plastic’.

While there are multiple types of neurons, the canonical model of informa-
tion flow at a neuron (the ‘neuron doctrine’) is that the cell body of a neuron
integrates the electrical signals which enter the cell through nerve fibres called
dendrites. If the total input signal into a neuron in a time period exceeds a
threshold level, the neuron ‘fires’ and sends an output electrical signal along its
axon. In turn, the axon of a neuron is connected to the dendrites of otherneu-
rons. Consequently, the firing of an individual neuron can produce acascade
effect in other neurons.

A neuron typically has a dense web of input dendrites and these connect,
via a synapse, to axon terminals of other neurons at small structures known as
dendritic spines. These spines can grow or shrink and are constantly extending
out of and retracting back into the dendrite. Hence, the precise network of
connections between neurons in a brain is not fixed, but dynamically altersover
time. Indeed, two individual neurons may have multiple and not just a single
connection. As learning takes place, the network of connections adapts and
changes take place at synaptic junctions which can enhance or reduce the ease
with which electrical signals can cross the synaptic gap. Memory is stored in a
network of linked neurons.
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1.1.1. Memory Consolidation

The memory consolidation hypothesiswas first proposed over a century ago
by Müller and Pilzecker [15] and posits that new memories are initially fragile
and are only gradually consolidated into long term memory. As noted by [14],
while storage of new events in memory can occur very quickly (within seconds),
slow consolidation of memories into long term storage (a process which can
take days, weeks, or even longer) may be adaptive as it allows for a dynamic
interplay between current experience and pre-existing memories.

The term memory consolidation is itself variously defined as, ‘a time-
dependent, off-line process that stabilizes memories against interference and
decay, allowing them to persist over time’ [14], a ‘process that transforms new
and initially labile memories encoded in the awake state into more stable rep-
resentations that become integrated into the network of pre-existing long-term
memories’ [3], or as ‘the processes that stabilise the learning-induced changes
in synaptic morphology that represent the biological substrate of memory’ [5].

In discussing memory consolidation, a distinction is drawn between:

1. cellular consolidation, and

2. systems consolidation.

Cellular consolidation arises from a series of biochemical events which take
place in individual synapses, typically within a short time frame (minutes to
hours) after the initial experience. System consolidation refers to eventswhich
take place over a longer time frame and which are thought to maintain the mem-
ory in long term memory storage.

Rudy (2014) [20] provides an excellent review of the current state ofun-
derstanding of how memories are created and maintained. While there is still
considerable debate concerning several aspects of this process, themost widely
accepted view is that memory develops over a number of stages namely, gener-
ation, stabilisation, consolidation and maintenance.

Initially, there are changes in the synaptic strength of the effected neurons,
resulting from a reorganisation of existing proteins in the relevant dendritic
spine and axon terminal. For example, within minutes, the number of glutamate
receptors in the spine is increased thereby facilitating the enhanced transmis-
sion of sodium ions (electrical signal) between the axon terminal and the spine.
To consolidate the synaptic change further, in following hours transcription and
translation processes are activated creating new proteins. These haveseveral
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effects including the enhancement of the degree of bonding between the spine
and axon, and an alteration of the physical geometry of the spine. This further
promotes the transmission of ions between the spine and axon. Typically, this
process lasts for up to 24 hours and helps ensure that the physical changes in
the synapses endure for several days.

While the above explains how synaptic changes initially occur and are sub-
sequently stabilised, it does not explain how strengthened synapses thatsupport
memory outlive the molecules from which they are made. This is known as
the ‘molecular turnover problem’ and is a active area of research inquiry. In
order to maintain a memory, a variety of proteins need to be continually man-
ufactured at the synapse, even in the absence of the original stimulus. Recent
work by [12, 34] suggests that self-sustaining (self-copying) populations of pro-
teins may be the key to maintaining the long-term synaptic changes that underlie
memory.

Obviously, there is little reason to maintain a memory of most of the routine
events which occur during a day, and indeed experience suggests thatwe will
forget much of this detail within several days. It is speculated that memories
are most likely to be maintained for the long term when either the behavioural
experience is considered significant, is repeated, or when the memory is recalled
[5]. As will be discussed later, it is thought that sleep plays an important role in
long term memory consolidation.

1.1.2. Memory Systems

When discussing memory, is important to note that the the brain has multiple
memory systems, depending on the nature of what is being learnt. Perhaps the
best known system is that for declarative memory which includes both episodic
memory (memory for facts and events) and semantic memory (supports memory
for facts and provides an ability to generalise from multiple experiences). This
system relies on an interplay between the neocortex, the hippocampus and its
related cortical structures. Sensory information passes into the neocortex and
in turn is processed and passed via a number of intermediate structures into
the hippocampus. By the time the information passes into the hippocampus
it is already highly processed and amodal (hippocampus neurons do notknow
whether they are receiving auditory, visual or other sensory inputs) [20].

Although it is known that the hippocampus plays a vital role in episodic
memory, there is debate as to how exactly it does this. One theory is the ‘in-
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dexing theory of episodic memory’ [32]. According to this theory, the content
of episodic memories are stored in the neocortex and the hippocampus creates
indices to these memories by binding the inputs it receives from the differentre-
gions of the neocortex into a neural ensemble that represents the conjunction of
their co-occurance [20]. The hippocampus projects back to the neocortex when
the index is activated.

In essence, the theory assumes that events create a memory trace by acti-
vating patterns of neocortical activity, which then project to the hippocampus,
with the relevant synapses in the hippocampus responding to the neocortical
inputs being strengthened via long term potentiation (LTP). Therefore, thehip-
pocampus acts as an index to a ‘memory’ filing cabinet which enables the recall
of memories, even when only a subset of the original neocortical pattern isre-
ceived by the hippocampus. Although this may appear to be an unneccessarily
complex process, it is posited that it may have arisen due to structural limitations
of the neocortex as potential associative connectivity across neocortical regions
is low [20]. It is also speculated that memories in the neocortex may potentially
have more than one index associated with them, if the event is repeated or if the
memory is reactivated (recalled). Hence, the more often an item is experienced
or recalled, the more ‘paths’ to it may be generated in the hippocampus. This is
known as themultiple trace theory[16].

1.2. Sleep and Memory Consolidation

At first glance being asleep would appear to be a potentially dangerous and
costly activity as sleeping animals cannot forage for resources, take care of
young, procreate, and are exposed to predation risk [4, 11]. Despitethese draw-
backs, sleep behaviours are widespread in the animal kingdom and it is evident
that many animals spend a significant portion of their day in sleep or in sleep-
like states. Evolution has even devised some extraordinary adaptations to ac-
commodate sleep [31]. Perhaps the most unusual of these adaptations is exhib-
ited by cetaceans (including whales, dolphins and porpoises) who can engage
in unihemispherical (or ‘half-brain’) sleep, wherein one eye is kept open during
sleep, with the contralateral side of the brain also remaining awake [18]. Other
examples of unihemispheric sleep include some species of birds [19] which can
keep one eye open during sleep, particularly if the predation risk is high.

Given the widespread nature of sleep behaviour, and the lengths to which
evolution has gone in order to conserve sleep in some animals, one could well
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ask what benefit does sleep provide that makes it crucial to living creatures?
Amongst the multiple potential functions of sleep, one of the most heavily

researched is whether sleep plays a role memory formation and maintenance.In
many species, the same regions of the brain that process sensory information are
also important for memory formation. This poses a dilemma, as if these regions
are busy processing sensory information during waking, then it is likely to be
more difficult for processes such as memory consolidation to take place simul-
taneously, in turn leading to a suggestion that sleep may allow these conflicting
activities to co-exist, leading to a claim that memory consolidation occurs pre-
dominately during sleep [1].

In this study we draw inspiration from the synaptic homeostasis hypothesis
which is drawn from the literature on memory consolidation in order to design
a training approach for a MLP which is capable of generalising from noisydata.
Therefore, we simulate a wake-sleep cycle during which the MLP is presented
with new sensory inputs (data) during the wake phase, leading to synaptic po-
tentiation, with synaptic downscaling taking place during a simulated ‘sleep’
phase. Critically and in contrast to prior literature on weight-decay processes
for training of MLPs, the training process takes place over a sequence of simu-
lated wake-sleep phases.

1.3. Structure of Chapter

The remainder of this chapter is organised as follows. Section 2 provides some
background on two theories of memory consolidation during sleep. Section 3
describes the model developed in this study and outlines the experiments un-
dertaken. The results of these are presented and analysed in section 4,with
conclusions and suggestions for future work being presented in section5.

2. Background

In this section we provide some background on memory consolidation during
sleep, and in particular, we describe the synaptic homeostasis hypothesis.We
also overview some previous literature which has applied ideas from the process
of memory consolidation for neural network training.



80 A. Brabazon, A. Agapitos and M. O’Neill

2.1. Sleep States

A common way to characterise sleep state is to examine the electrical activity
of the brain recorded using an electroencephalogram (EEG). In mammals and
birds sleep can be divided into two main phases namely, REM (rapid eye move-
ment) and NREM (non rapid eye movement) sleep. REM sleep is characterised
by high frequency, low amplitude, electrical activity in the brain, and this bears
some similarity to the electrical activity of the brain during wakefulness. In con-
trast, NREM sleep is characterised by the propagation of low frequency (slow),
high amplitude, electrical waves in the brain.

In humans, NREM sleep is divided into three successive stages [21], and the
sleep cycle follows a typical ordering of stage 1 NREM, stage 2 NREM, stage 3
NREM, and finally REM sleep. The entire cycle lasts some 90-100 minutes and
repeats itself several times during the night. As the sleep cycles progress,the
portion of time spent in NREM sleep reduces and the portion of time in each
cycle spent in REM sleep increases. Sleep during stage 3 of NREM sleep is
termed slow wave sleep (SWS), and is characterised by delta wave activity brain
activity, which produces the lowest frequency and highest amplitude patterns of
electrical activity.

2.2. Active System Consolidation Hypothesis

There are currently two hypotheses concerning the mechanisms underlying the
consolidation of memory during sleep. The active system consolidation hy-
pothesis (ASCH) proposes that an active consolidation process resultsfrom the
re-activation of selected memories during sleep [3], and the synaptic homeosta-
sis hypothesis (SHH) assumes that consolidation may also occur during waking
and that the role of sleep is to restore the encoding capabilities of synaptic con-
nections (global synaptic downscaling) [1].

The ASCH arose from the standard model of systems consolidation for
declarative memory [13]. Different regions of brain are responsible for dif-
ferent memories, withdeclarative memory(these memories are accessible to
conscious recollection and include memories for facts and events) relying on
the hippocampus and neocortical regions of the brain, andprocedural mem-
ory (memories for skills that result from repeated practice e.g. riding a bike
or playing a piano) relying on the striatum and cerebellum [3]. The standard
two-stage theory for declarative memory consolidation proposes that there are
two separate memory stores. One allows learning at a fast rate and servesas
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an intermediate buffer to hold information temporarily. The other store learns
at a slower rate and serves as long-term memory. For declarative memory,sen-
sory information in the waking brain flows into the cortex and it is proposed
that events are initially encoded in parallel in neocortical networks and alsoin
transient neuronal assemblies in the hippocampus.

Although the theory did not initially outline a role for explicit recall in
the consolidation of the long term memory, it has been suggested that dur-
ing sleep, a two-way dialogue between the hippocampus and neocortex takes
place in order to effect memory consolidation [3]. The hippocampus can be
considered as a rapidly-encoded, sparse, memory system which allows for the
formation of event memories, whereas the neocortex is a slowly-consolidating,
dense, memory storage system. During NREM sleep, slow (electrical wave)
oscillations, spindles, and ripples coordinate the reactivation and redistribution
of hippocampus-dependent memories to neocortical sites. The newly-acquired
memory traces are reactivated and it is claimed that information flows from the
hippocampus to the cortex, such that connections in the neocortex are strength-
ened, forming more persistent memory representations. In REM sleep, it is
proposed that the information flow reverses (from the neocortex back tothe
hippocampus). This two-way process iterates during the period of sleep [28],
thereby modifying the representations in both stores, and integrating the new
memory into pre-existing memories. This enables the extraction of invariant
features, including the forming of new associations, and eventually insightsinto
hidden rules and patterns [3]. Hence, through the repeated re-activation of the
new memories during sleep, the fast learning store acts as an internal trainer of
the slow learning store to gradually adapt the new memories to the pre-existing
network of long term memories [3].

There is some evidence to support the ASCH, as we know from brain imag-
ing studies that the spatio-temporal patterns of neuronal firing that occurin the
hippocampus, during the exploration of a novel environment or during simple
spatial tasks, are reactivated in the same order during subsequent sleep. How-
ever, we do not have a detailed understanding as to how these reactivations
could stimulate the strengthening of links between neocortical storage sites, and
specifically, how enduring synaptic changes could result in the neocortex [3].
In the standard two-stage theory, the consolidation process that takes place off-
line relies on the re-activation of the neuronal circuits that were implicated in
the initial encoding of the memory, and therefore consolidation involves the
reinforcementof memory representations at the synaptic level. Long-term po-
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tentiation (LTP) (Hebbian learning - the assumption that information is stored
in the brain as changes in synaptic efficiency which occur when neuronsfire
synchronously together) is considered a key mechanism of synaptic consolida-
tion. It is not certain whether memory re-activation during sleep promotes the
redistribution of memories by inducing new LTP (at long-term storage sites) or
whether re-activation merely enhances the maintenance of LTP that was induced
during encoding. An assumption of the traditional two stage model is that LTP
takes place in the long term memory store as a result of selective reactivationof
memories during system consolidation.

Although we await further investigation of sleep dependent learning, recent
work by [35] has indicated that sleep (specifically, NREM sleep) by mice after
a motor learning task promoted new spine formation in the motor cortex of
those mice.

It has been speculated that spindle oscillations which are concentrated in
stage 2 NREM, open molecular gates to plasticity by evoking calcium entry in
neocortical pyramidal neurons, priming the neurons for biochemical events that
could lead to permanent changes in the network. Consolidation could then pro-
ceed by iteratively recalling and storing information in primed neural assemblies
[22]. One interesting feature of reactivations during SWS is that they appear to
be noisier, less accurate, and often happen at a faster firing rate than the related
activity during the initial encoding phases. Plausibly this ‘noisy’ teaching could
result in more robust memory in an analogue to using ‘jitter’ in training MLPs.

2.3. Synaptic Homeostasis Hypothesis

An alternative perspective which has gained a significant following in recent
years is thesynaptic homeostasis hypothesis(SHH) [29, 30, 31]. This hypoth-
esis suggests that the primary memory function of sleep is to produce a global
synaptic downscaling, and that memory consolidation is continuous (i.e. can
occur during waking) and not limited to sleeping states.

The proponents of the SHH do not disagree that memories form as neurons
that get activated together strengthen their links through synaptic potentiation,
nor that brains replay newly-learnt material at night, or that patterns of neu-
ral activity during sleep sometimes resemble those recorded while a subject is
awake. However they question conventional wisdom that brain activity dur-
ing sleep reinforces the synapses involved in storing newly-formed memories,
noting that there is no strong evidence that synapses in replayed circuits get
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strengthened during sleep [31]. Instead they claim that a critical driverof sleep
is a need to restore the brain to a baseline state, byweakeningthe links between
neurons during sleep, in order to preserve the brain’s ability to learn andform
new memories while it is awake. The weakening process is termedsynaptic
downscaling.

Brain tissue is metabolically expensive. In humans, the brain while account-
ing for only about 2% of total body mass, consumes some 20% of energy re-
quirements during quiet waking [24]. Approximately 2/3 of this energy con-
sumption goes to supporting and maintaining synaptic activity. Strong synapses
consume more energy than weak ones and the energy budget available to brain
tissue is not unlimited. During the day, the potentiation of synaptic circuits from
sensory inputs results in an increase in the number and size of synapses,lead-
ing to a higher level of energy requirement [31]. Advocates of the SHH claim
that a generalised depression of synapses during sleep would benefitthe brain
as it would decrease the energy cost of synaptic activity, eliminate weak and
ineffective synapses, and reduce cellular stress [2].

An important part of effective learning is a corresponding ‘forgetting’of ir-
relevant memories. Under the SHH, synaptic potentiation stemming from day-
time learning is down regulated brain-wide during slow wave sleep. Crucially,
it is assumed that this rescaling process preserves relative synaptic weight dif-
ferences, and therefore may lead to forgetting because the downscalingmay
effectively silence, or even remove, spines with synapses that are onlyweakly
potentiated. Down selection under the hypothesis promotes survival of only
the fittest neural circuits, either because they were activated strongly and con-
sistently during wakefulness, or because they were better integrated with pre-
existing memories (for example, a new word in a known language). Synapses
that were only mildly enhanced during wakefulness, or which fit less well with
existing memories would be depressed, and leave no lasting trace in our neural
circuitry.

While there is experimental evidence for several aspects of synaptic down-
scaling [19], including evidence from animal studies that the number and size
of spines and related synapses reduces during sleep [31], there is asyet no
direct evidence for a specific mechanism which selectively weakens activated
synapses during sleep [31]. It is speculated that the slow waves of mammalian
NREM sleep play a role. We know that at sleep onset, levels of SWA are ele-
vated as a result of synaptic strength accrued during learning while awake. This
increase in effective connectivity causes the slow-oscillations of neurons to be
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more synchronous, and thereby levels of SWA to be high [19]. The large-scale
slow oscillations of neuronal networks may produce synaptic downscaling, a
global decrease in synaptic strength, and an increase the signal to noiseratios
for important memories by eliminating synapses below a certain threshold. This
may explain why performance on certain cognitive tasks increases following
sleep [19]. Interestingly, synaptic downscaling is a self-limiting process because
as synapses weaken, neurons oscillate less synchronously and consequently in-
duce less downscaling [19] (p.265). It is also known that the chemistry ofthe
brain changes during sleep and Tononi and Cirelli [31] have speculated that
this could bias neural circuitry so that synapses becomes weakened rather than
strengthened when signals flow across them.

The SHH, with its emphasis on an ‘active decay’ (forgetting) of irrelevant
memories during sleep, provides an interesting alternative to the traditional idea
of sleep-mediated synaptic strengthening of important memories. Most mem-
ories formed during the day are irrelevant and a decay process which ensured
that unwanted and unneeded memories are removed could result in a lessening
of spurious learning and better generalisation capabilities [5].

In this study, we do not claim that the SHH provides a more correct descrip-
tion of memory consolidation during sleep than the ASCH as current empirical
evidence does not conclusively support the SHH. Indeed, it has been noted by
Axmacher et al. [1] and by Diekelmann and Born (2010) [3] that the ASCH
and the SHH are not necessarily mutually exclusive, as a sequential process
could exist with active system consolidation integrating newly encoded mem-
ories with pre-existing long term memories thereby inducing conformational
changes in the neocortex followed by global synaptic downscaling in order to
avoid the saturation of synaptic networks. Rather, we draw inspiration from the
SHH in order to design a training process for MLPs.

2.4. Synaptic Downscaling and Regularisation

The synaptic downscaling concept bears interesting comparison with some clas-
sical approaches to regularisation in the neural network literature. Broadly
speaking, regularisation is any modification to a learning algorithm which aims
to reduce the chance of overfit. Typically, the object is to smooth the response
of the final model. Common methods for regularisation include early stopping,
wherein training is stopped when the error measure on a hold-out validation
sample begins to increase, or the inclusion of a penalty term in the error func-
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tion for model complexity. In applications of the latter in MLPs, the error metric
is usually defined as MSE plus an additional (weighted) term which consists of
the sum of the squares of the weights. This alteration to the error function will
tend to reduce weight sizes in the final network and therefore make the net-
work’s response smoother. In turn this will tend to reduce overfit as over-fitted
mappings require high curvature and hence large weights. The generalform of
the regularised cost function in this case is given by:

Ereg = Emse + αω (1)

whereα is the regularisation parameter which controls the trade-off between
reducing the error and increasing the smoothing. The termω is a penalty func-
tion which captures the complexity of the underlying network. If the penalty is
defined as the sum of the squares of the weights in the MLP, the approach bears
similarity to ridge regression in linear models, and it effectively implements a
form of ‘weight decay’ as in each epoch individual weights decay in proportion
to their previous size, i.e. exponentially, unless the weight is changed in the
learning process [17]. A wide number of variants on this basic approachhave
been examined including,‘weight elimination’ [33], where the decay process is
tuned in order to shrink small weight coefficients more heavily.

Although even basic weight decay approaches can notably improve gener-
alisation capabilities [9], we cannot assume that is is optimal to apply the same
decay constant to all weights in the network, and in particular, we could sup-
pose that different decay constants should be applied to connections between
input and hidden, hidden to hidden, and hidden to output nodes. Nor canwe as-
sume that it is optimal to apply the same decay constant(s) for the entire training
process, and [33] illustrates an approach where the decay constant isiteratively
updated during training.

Apart from reducing the values for weight parameters in a network, another
way to attempt to improve generalisation is to directly restrict or seek to reduce
the structural complexity of the network. This can be done by restricting the
number of hidden layer nodes, or by ‘pruning’ individual node connections in a
network. One approach is to set connections with small weights to zero, thereby
‘tuning off’ or ‘pruning’ that connection. After the relevant weights are deleted,
the (reduced) network is retrained. A significant number of studies applying
network pruning have resulted over the past 25 years following early work by
[25, 26].
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As noted by [10], there is a close link between weight decay and pruning,as
an iterated pruning process effectively reduces to continuous weight-decay dur-
ing training. A downside of these approaches is that the learning processcan be
slow due to the need for repeated re-training and there is an implicit assumption
that deletion of connections with small weight values will not have much effect
on model fit. A better, if often computationally prohibitive, approach would be
to delete weights, whose deletion will have least effect on training error (or to
train the network using all possible subsets of weights [8]). Of course, tode-
termine which weight to delete, the MLP would need to be iteratively retrained
with each weight being removed in turn.

A more computationally feasible approach to pruning was developed by
Lecun et al. (1989) [10], namely the optimal brain damage (OBD) approach.
In OBD the second derivatives of each weight parameter with respect tothe
error function are used in order to determine which weights to remove. As for
other pruning methods, OBD proceeds in an iterative manner. Initially the full
network is trained on the data, a pruning process is then applied, and the new
network is then retrained.

From the above discussion, we can see that weight decay and pruning,both
features of the SHH, are well-developed techniques in the neural network liter-
ature. It is interesting to note that the development of these techniques stemmed
from a statistical rather than a biological perspective. An important aspect of the
memory consolidation process that has not yet been embedded in the regulari-
sation literature is the iterative nature of memory consolidation, with new mem-
ories only being slowly integrated into existing knowledge, with both memories
being altered in this process.

2.5. Neural Network Derived from a Sleep Metaphor

As noted in the introduction to this chapter, relatively little attention has been
paid to the use of ‘sleep’ metaphors for design of neural network algorithms.
Perhaps the best known of these algorithms is the ‘wake-sleep’ algorithm of
Hinton et al. [6] for unsupervised learning which draws on the standardmodel
of systems consolidation for declarative memory. In Hinton’s study, a multilayer
network of simulated stochastic neurons is described, with bottom up recogni-
tion connections during the wake phase being used to produce a representation
of inputs in one or more hidden layers. In the ‘wake’ phase, neurons are driven
by recognition connections, and generative connections are adapted toincrease
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the probability that they would reconstruct the correct activity vector in thelayer
below. In the ‘sleep’ phase, neurons are driven by generative connections, and
recognition connections are adapted to increase the probability that they would
produce the correct activity vector in the layer above. By alternating activity in
two directions, the hidden layer representations are modified until they produce
an optimal representation of the original signal.

3. Model and Experiments

The general model we adopt for our experiments is a feed forward multi-layer
perceptron (MLP). We create training data from four test functions, and for each
input vector in the training set, we inject differing amounts of noise into the
associated function output, thereby producing ‘learning’ problems of varying
difficulty.

The MLP is exposed to a succession of non-overlapping ‘windows’ of train-
ing data during its wake cycles. During exposure to each training vector, a
learning process takes place in which synaptic potentiation via the back propa-
gation training algorithm is simulated. At the end of each data window, a sleep
cycle is simulated during which synaptic downscaling takes place, and this in
turn is followed by another wake cycle in which a new window of training data
is presented to the MLP network. During downscaling each weight is decreased
by a certain percentage.

Once the MLP has been trained, its out of sample performance on clean test
data, generated using the relevant function, is assessed. This allows usto de-
termine how well the MLP has performed in uncovering the correct underlying
function, in spite of being presented with noisy data during training.

The results from the MLP developed using a simulated synaptic downscal-
ing process are benchmarked against those produced by a feed forward MLP
which has been trained in one pass over the training data.

3.1. Datasets

We selected a suite of four synthetic regression problems so that we can reli-
ably generate data with specific amounts of noise. Figures 6, 7, 8 are graphical
representations of the bivariate problemsF1mF3, andF4 respectively. In every
synthetic dataset, we randomly sample 100 training examples of the form(x, y),
where the input vectorx ∈ Rd, and the response variabley ∈ R. The goal is
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to learn a target functionf that maps x to y. The response variable of each ex-
ample is corrupted by random noise drawn according to a Gaussian probability
distribution with certainµ andσ. Thus each training set of examples takes the
form {(xi, zi)}

100
1 , wherez1 = f(xi) + ei. f(xi) is the noise-free value of the

target function andei is a random variable representing the noise. We experi-
ment with a set ofσ values defined as{0.01, 0.1, 1.0, 10.0, 30.0, 50.0}, andµ
set to0.0. The details of the sampling procedure used for generation of training
and test data for different problems are given in Table 1. Note that noiseis only
added to the training data, whereas the data used to assess model generalisation
is not contaminated.

Furthermore, the response value in each input-output pair is normalised
within the [0.0, 1.0] interval prior to training. Normalisation of a noise-
corrupted valueα is performed using(α−min)/(max−min), wheremin and
max are the minimum and maximum values out of 100 training response values
respectively. Figure 5(a) shows the histograms of the normalised response val-
ues for different regression problems. The same normalisation applies to testing
data, however this time each response value is noise-free. Figure 5(b) shows the
histogram of the normalised response values for different problems.

3.2. MLP Design

The regression problemsF1, F2, F3, F4 are of two, five, two and two input
variables respectively. The architecture of a MLP consists of an input layer with
the same number of input nodes as the dimensionality of the input of a problem,
a hidden layer of 10 nodes withtanhactivation functions, and an output layer
of a single node with atanh activation function. Training is performed using
standard back-propagation with a learning rate set to0.005, iterated for2, 000
epochs. We are experimenting with the effect of the number of wake-sleep
cycles during training, and tried the proposed method with 5, 10, 15, and 20
cycles. This effectively means that each set of training examples is divided into
the respective number of non-overlapping subsets.



Table 1. Regression problems with the respective data sampling ranges for training and test datasets.
Notation x=rand(a,b) means that the x variable is sampled uniform randomly from the interval [a, b].

Problem Training data Test data

F1 f(x1, x2) =
e
−(x1−1)2

1.2+(x2−2.5)2
100 points 10,000 points

x1, x2=rand(-3.0, 3.0) x1, x2=rand(-3.0, 3.0)

F2 f(x1, x2, x3, x4, x5) =
10

5+
∑5

i=1(xi−3)2
100 points 10,000 points

x1, x2, x3, x4, x5 x1, x2, x3, x4, x5

=rand(-3.0, 3.0) =rand(-3.0, 3.0)

F3 f(x1, x2) = x1 ∗ x2 + sin((x1 − 1) ∗ (x2 − 1)) 100 points 10,000 points
x1, x2=rand(-3.0, 3.0) x1, x2=rand(-3.0, 3.0)

F4 f(x1, x2) =
(x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10
100 points 10,000 points

x1, x2=rand(-3.0, 3.0) x1, x2=rand(-3.0, 3.0)
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4. Results and Analysis

In the figures discussed in this section, we plot the average Mean Squared Error
(MSE) that accrues from 50 runs of an MLP using different random weight
initialisations as a function of the weight downscaling percentage that takes
place during a sleep phase. For comparison purposes we also plot the average
MSE that is obtained from the baseline MLP algorithm that uses no weight
downscaling. Depending on the level of noise that is injected into each response
variable, we categorise the learning problems into easy (Gaussian noiseσ of
0.01 or 0.1), moderate (σ of 1.0 or 10.0), and hard (σ of 30.0 or 50.0). In
addition, Tables 2, 3, 4, 5 present the standard errors for the out-of-sample MSE
estimates.

Figure 1 presents the results for problemF1. An observation that is con-
sistent across all different setups for the number of wake/sleep cyclesis that
for the easy and moderate problem formulations the proposed method outper-
formed standard MLP. In addition, results suggest no clear trend in the evolution
of the MSE curve as a function of the downscaling percentage, howeverfor the
smaller levels of noise (i.e. 0.01, 0.1) increasing the percentage of downscaling
seems to worsen the generalisation performance.

The results for problemF2 are presented in Figure 2. Here the number of
wake/sleep cycles exert an effect in the out-of-sample performance with their
number set to 15 attaining the best generalisation improvement over standard
MLP for all problem formulations but the one where noiseσ is set to 1.0. Re-
sults also suggest that in the easiest case (i.e. noiseσ of 0.01), the method of
downscaling is difficult to improve performance over standard MLP and in most
cases leads to performance deterioration.

Figure 3 presents the results for problemF3. In this case, contrary to the
results observed in other problems, weight downscaling improves performance
over standard MLP in the least noisy problems, whereas the performancedete-
riorates over that of standard MLP for the noisiest problem formulation. This
increase in performance in the case of noise levels of 0.01 and 0.1 can be at-
tributed to the discrepancy between the distributions of the response valuesbe-
tween training and testing as can been seen in Figure 5(a) for Function 3 under
noise level 0.01 and Figure 5(b) for the same function. This was due to random
sampling for the valuesx1 andx2 that created relatively disjoint sets of exam-
ples to train and test a model. The median of the response values is approx. 0.03
for training, and 0.57 for testing. Out-of-sample performance is therefore im-
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Figure 1. Out-of-sample results for problemF1 with six different noise levels.
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proved by relaxing the fit to the training examples. This incidental result should
be regarded as a valid scenario of training and testing data distribution mis-
match that can occur when dealing with real-world data. It reinforces the view
that in case of overfit models, weight downscaling can improve out-of-sample
performance.

Finally, Figure 4 presents the results for problemF4. We observe that the
use of downscaling substantially improves the out-of-sample performance for
the noisiest problem formulations. This is evident in the case were the number
of wake/sleep cycles was the greatest, i.e., 15 and 20. For the easy and moderate
cases, figures suggest that downscaling has the tendency to worsen performance.
This particular problem also exhibits an interesting trend in the evolution of the
the MSE curve as a function of the downscaling percentage. More specifically,
the out-of-sample error decreases as the downscaling percentage increases for
the noisiest problems, whereas it decreases as a function of increasingpercent-
age of the small and moderate levels of noise in the target.

4.1. Summary of Observations

The observations from the experiments can be summarised as follows:

1. The downscaling mechanism increases the generalisation performance
for most cases of moderate and high levels of noise.

2. No advantage is accruing from the proposed method when used with
small levels of noise in the target function. In most cases, performance
deteriorates.

3. The optimal number of wake/sleep cycles and the level of weight down-
scaling appears to be problem dependent. A principled approach such as
cross-validation should be applied to chose these effectively.

4. Overall, when training and testing over similar input-output distributions,
weight downscaling exerts a negative effect by disrupting the fit of a
model. On the other hand, in the case where there is discrepancy between
training and testing input-output distributions, the downscaling mecha-
nism improves generalisation.
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Figure 2. Out-of-sample results for problemF2 with six different noise levels.
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Figure 3. Out-of-sample results for problemF3 with six different noise levels.
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Figure 4. Out-of-sample results for problemF4 with six different noise levels.



Table 2. Out of sample MSE: mean values and standard errors. Function 1.

Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.060 (0.0005) 0.077 (0.0011) 0.151 (0.0005) 0.195 (0.0012) 0.164 (0.0013) 0.172 (0.0009)
5 wake/sleep cycles

1% 0.063 (0.0007) 0.068 (0.0016) 0.166 (0.0011) 0.194 (0.0028) 0.245 (0.0023) 0.169 (0.0036)
15% 0.062 (0.0005) 0.069 (0.0008) 0.162 (0.0013) 0.158 (0.0018) 0.252 (0.0022) 0.173 (0.0018)
30% 0.067 (0.0003) 0.074 (0.0009) 0.159 (0.0016) 0.158 (0.0009) 0.239 (0.0030) 0.160 (0.0010)

10 wake/sleep cycles
1% 0.061 (0.0027) 0.077 (0.0018) 0.123 (0.0029) 0.128 (0.0029) 0.218 (0.0036) 0.160 (0.0049)
15% 0.084 (0.0038) 0.061 (0.0003) 0.127 (0.0023) 0.122 (0.0008) 0.201 (0.0020) 0.186 (0.0030)
30% 0.105 (0.0015) 0.069 (0.0003) 0.134 (0.0018) 0.135 (0.0012) 0.214 (0.0019) 0.181 (0.0017)

15 wake/sleep cycles
1% 0.056 (0.0021) 0.064 (0.0014) 0.159 (0.0035) 0.121 (0.0032) 0.228 (0.0019) 0.154 (0.0045)
15% 0.078 (0.0032) 0.066 (0.0009) 0.139 (0.0005) 0.111 (0.0009) 0.232 (0.0019) 0.215 (0.0004)
30% 0.099 (0.0004) 0.077 (0.0008) 0.141 (0.0004) 0.111 (0.0004) 0.206 (0.0009) 0.198 (0.0003)

20 wake/sleep cycles
1% 0.052 (0.0015) 0.078 (0.0008) 0.074 (0.0017) 0.182 (0.0044) 0.239 (0.0077) 0.167 (0.0022)
15% 0.074 (0.0004) 0.077 (0.0008) 0.072 (0.0004) 0.195 (0.0016) 0.243 (0.0027) 0.212 (0.0005)
30% 0.086 (0.0004) 0.101 (0.0005) 0.081 (0.0002) 0.188 (0.0005) 0.234 (0.0009) 0.206 (0.0002)



Table 3. Out of sample MSE: mean values and standard errors. Function 2.

Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.034 (0.0007) 0.107 (0.0019) 0.167 (0.0027) 0.174 (0.0057) 0.204 (0.0073) 0.234 (0.0041)
5 wake/sleep cycles

1% 0.188 (0.0053) 0.141 (0.0041) 0.203 (0.0127) 0.202 (0.0117) 0.156 (0.0042) 0.212 (0.0126)
15% 0.087 (0.0040) 0.074 (0.0013) 0.186 (0.0072) 0.169 (0.0074) 0.149 (0.0026) 0.225 (0.0077)
30% 0.031 (0.0009) 0.064 (0.0022) 0.197 (0.0040) 0.149 (0.0036) 0.147 (0.0019) 0.226 (0.0058)

10 wake/sleep cycles
1% 0.124 (0.0086) 0.103 (0.0043) 0.263 (0.0090) 0.375 (0.0141) 0.082 (0.0047) 0.289 (0.0115)
15% 0.025 (0.0008) 0.077 (0.0017) 0.234 (0.0030) 0.238 (0.0037) 0.068 (0.0027) 0.206 (0.0060)
30% 0.035 (0.0007) 0.083 (0.0005) 0.255 (0.0016) 0.169 (0.0014) 0.065 (0.0015) 0.223 (0.0017)

15 wake/sleep cycles
1% 0.048 (0.0033) 0.107 (0.0053) 0.296 (0.0050) 0.175 (0.0087) 0.084 (0.0021) 0.202 (0.0095)
15% 0.038 (0.0012) 0.075 (0.0007) 0.269 (0.0004) 0.066 (0.0012) 0.067 (0.0026) 0.172 (0.0031)
30% 0.043 (0.0007) 0.087 (0.0006) 0.266 (0.0005) 0.086 (0.0005) 0.061 (0.0028) 0.218 (0.0008)

20 wake/sleep cycles
1% 0.037 (0.0009) 0.083 (0.0026) 0.124 (0.0054) 0.149 (0.0062) 0.307 (0.0107) 0.286 (0.0064)
15% 0.042 (0.0004) 0.102 (0.0007) 0.150 (0.0007) 0.108 (0.0005) 0.236 (0.0024) 0.249 (0.0006)
30% 0.054 (0.0002) 0.117 (0.0009) 0.187 (0.0001) 0.122 (0.0003) 0.178 (0.0009) 0.229 (0.0005)



Table 4. Out of sample MSE: mean values and standard errors. Function 3.

Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.203 (0.0002) 0.095 (0.0003) 0.030 (0.0001) 0.037 (0.0001) 0.050 (0.0007) 0.036 (0.0001)
5 wake/sleep cycles

1% 0.203 (0.0010) 0.113 (0.0037) 0.043 (0.0007) 0.043 (0.0005) 0.077 (0.0019) 0.053 (0.0010)
15% 0.182 (0.0026) 0.091 (0.0027) 0.031 (0.0004) 0.038 (0.0002) 0.065 (0.0022) 0.044 (0.0004)
30% 0.175 (0.0034) 0.083 (0.0015) 0.027 (0.0002) 0.035 (0.0002) 0.051 (0.0020) 0.041 (0.0005)

10 wake/sleep cycles
1% 0.197 (0.0013) 0.042 (0.0009) 0.054 (0.0023) 0.034 (0.0008) 0.078 (0.0030) 0.075 (0.0026)
15% 0.183 (0.0019) 0.034 (0.0004) 0.057 (0.0018) 0.030 (0.0001) 0.047 (0.0025) 0.056 (0.0008)
30% 0.176 (0.0025) 0.034 (0.0007) 0.045 (0.0010) 0.030 (0.0002) 0.032 (0.0001) 0.040 (0.0004)

15 wake/sleep cycles
1% 0.197 (0.0021) 0.064 (0.0015) 0.066 (0.0023) 0.038 (0.0013) 0.040 (0.0018) 0.060 (0.0019)
15% 0.188 (0.0032) 0.053 (0.0012) 0.049 (0.0011) 0.031 (0.0001) 0.035 (0.0004) 0.046 (0.0002)
30% 0.164 (0.0028) 0.045 (0.0003) 0.052 (0.0016) 0.032 (0.0001) 0.034 (0.0001) 0.051 (0.0004)

20 wake/sleep cycles
1% 0.219 (0.0035) 0.051 (0.0013) 0.152 (0.0034) 0.063 (0.0022) 0.073 (0.0055) 0.063 (0.0029)
15% 0.228 (0.0006) 0.043 (0.0002) 0.075 (0.0004) 0.031 (0.0001) 0.029 (0.0001) 0.042 (0.0003)
30% 0.208 (0.0004) 0.034 (0.0000) 0.063 (0.0003) 0.030 (0.0000) 0.029 (0.0001) 0.039 (0.0002)
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Figure 5. (a) Histogram of in-sample normalised values of the response variable
for different regression problems of Table 1. (b) Histogram of out-of-sample
normalised values of the response variable for different regression problems of
Table 1.
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Figure 8. Plot of regression problem 4 of Table 1.



Table 5. Out of sample MSE: mean values and standard errors. Function 4.

Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP

n/a 0.002 (0.0000) 0.002 (0.0001) 0.002 (0.0001) 0.027 (0.0001) 0.066 (0.0003) 0.133 (0.0002)
5 wake/sleep cycles

1% 0.005 (0.0001) 0.004 (0.0001) 0.003 (0.0001) 0.037 (0.0011) 0.093 (0.0006) 0.152 (0.0027)
15% 0.013 (0.0001) 0.011 (0.0003) 0.014 (0.0002) 0.044 (0.0009) 0.087 (0.0010) 0.141 (0.0021)
30% 0.028 (0.0005) 0.027 (0.0006) 0.041 (0.0007) 0.065 (0.0018) 0.087 (0.0017) 0.124 (0.0025)

10 wake/sleep cycles
1% 0.007 (0.0005) 0.004 (0.0002) 0.010 (0.0011) 0.065 (0.0028) 0.184 (0.0040) 0.156 (0.0038)
15% 0.014 (0.0004) 0.012 (0.0002) 0.010 (0.0003) 0.066 (0.0018) 0.108 (0.0033) 0.093 (0.0016)
30% 0.024 (0.0003) 0.026 (0.0003) 0.032 (0.0007) 0.095 (0.0018) 0.085 (0.0020) 0.083 (0.0028)

15 wake/sleep cycles
1% 0.012 (0.0008) 0.006 (0.0008) 0.014 (0.0021) 0.070 (0.0026) 0.147 (0.0041) 0.144 (0.0057)
15% 0.015 (0.0003) 0.013 (0.0009) 0.010 (0.0002) 0.104 (0.0019) 0.073 (0.0026) 0.113 (0.0044)
30% 0.021 (0.0001) 0.024 (0.0002) 0.030 (0.0004) 0.122 (0.0012) 0.062 (0.0008) 0.090 (0.0015)

20 wake/sleep cycles
1% 0.008 (0.0003) 0.008 (0.0004) 0.032 (0.0023) 0.061 (0.0027) 0.054 (0.0034) 0.166 (0.0065)
15% 0.015 (0.0003) 0.019 (0.0007) 0.018 (0.0002) 0.082 (0.0013) 0.036 (0.0003) 0.121 (0.0012)
30% 0.022 (0.0001) 0.030 (0.0001) 0.034 (0.0001) 0.098 (0.0008) 0.036 (0.0001) 0.115 (0.0010)
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5. Conclusion

In prediction problems, fitting the training data too closely can be counterpro-
ductive. Reducing the expected loss on the training data beyond some point
causes the population-expected loss to stop decreasing, and often startto in-
crease. Regularisation methods in MLPs, like weight decay, prevent such over-
fitting by constraining the magnitude of the adaptive weights during the learning
phase. In the chapter we showed that simulating a simple weight downscaling
mechanism during a sleep phase can, similarly to weight decay, exert a positive
effect on generalisation in the case of noisy datasets.

Controlling the parameters defined as thedownscaling percentageand the
number of wake/sleep cyclesregulates the degree to which the expected loss on
the training data is minimised. Each of the two parameters controls the degree-
of-fit and thus values for each of these parameters interact. Decreasing the value
of downscaling percentage, increases the best value for the wake/sleep cycles.
Ideally, one should estimate optimal values for both by minimising a model
selection criterion jointly with respect to the values of the two parameters. There
are also computational considerations; increasing the value of sleep/wakecycles
produces a proportionate increase in the computation. Its value should be made
as large as is computationally feasible. The value of downscaling percentage
should then be adjusted using cross-validation.

A final observation concerns the nature of the learning process as realised
via a number of sleep/wake cycles. Unlike fitting the weights of the network
during a number of epochs with a fixed learning rate, the sleep/wake approach
insteadlearns more slowly. In general, it has been repeatedly advocated in the
statistical machine learning literature that learning methods that learn slowly
tend to generalise well.
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Abstract

Plants represent some 99% of the eukaryotic biomass of the planet and
have been highly successful in colonising many habitants with differing
resource potential. The success of plants in ”earning a living” suggests
that they have evolved robust resource capture mechanisms and repro-
ductive strategies. In spite of the preponderance of plant life, surprisingly
little inspiration has been drawn from plant activities forthe design of
optimisation algorithms.

In this chapter we focus on one important aspect of plant activities,
namely seed and plant dispersal. Mechanisms for seed and plant dispersal
have evolved over time in order to create effective ways to disperse seeds
into locations in which they can germinate and become established. These
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mechanisms are highly varied, ranging from morphological characteris-
tics of seeds which can assist their aerial or animal-mediated dispersion,
to co-evolved characteristics which ”reward” animals or insects who dis-
perse a plant’s seeds. At a conceptual level, dispersal can be considered
as a ”search process”, wherein the seed or plant is searchingfor ”good”
locations and therefore, inspiration from dispersal activities of plants can
plausibly serve as the design inspiration for optimisationalgorithms.

Initially, we provide an overview of relevant background onthe seed
dispersal process from drawing on the ecology literature. Then we de-
scribe a number of existing optimisation algorithms which draw inspira-
tion from these processes, and finally we outline opportunities for future
research.

1. Introduction

The key imperative of a plant’s life is to maximise its number of viable offspring
[11]. Many species of plants reproduce by producing seeds and thendispersing
these in the landscape. The seeds are in essence embryonic plants, enclosed in a
protective coat, usually with some stored food in order to provide energy for the
germination process. The technical term for the dispersed unit is adiasporeand
this may consist of a seed, spore or fruit containing seeds, plus any additional
tissue which assists in dispersal. In this paper we employ the term seed in a
board sense to encompass all of these cases.

If the seeds find a suitable location, they germinate and in turn reproduce
themselves. Hence, the process of seed dispersal plays a critical role inensuring
the long-term success of a plant species and is the predominant processby which
plants can ‘move around’ a landscape [18].

1.1. Dispersal Mechanisms

Plants make use use of multiple dispersal mechanisms, including:

1. wind dispersal,

2. animal dispersal,

3. water dispersal, and

4. ballistic dispersal.
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Hence, dispersal mechanisms can be classed as abiotic (wind, water or gravity)
or biotic (insect or animal dispersal). Many plants use more than one dispersal
mechanism and dispersal can take place in stages. For example, wind dispersed
seeds can subsequently be redispersed by ants or seed hoarding rodents.

Morphological adaptations in plants and seeds have arisen over time in or-
der to increase the efficiency of seed dispersal. In the case of wind dispersal,
seeds which have characteristics such as small size, wings, hairs etc. fall more
slowly, essentially by lowering their wing loading (ratio of mass to surface area),
and this promotes wider seed dispersal. Species with these adaptations are very
common, comprising some 10-30% of all plants, and up to 70% of the flora in
temperate plant communities [18]. Wind dispersed plants are common in dry
habitants such as deserts [9]. An interesting example of this is provided by tum-
ble weeds where the plant shoot dies and detaches from the root system.The
seeds attached to the upper part of the plant are then dispersed as it is blown
around the landscape. Some curious adaptations have emerged in order topro-
mote the effectiveness of wind dispersal mechanisms whereby a plant manipu-
lates its environment in order to ‘generate’ a local wind current in order toassist
dispersal. One example is provided by the spores of ascomycete fungi where
by synchronising the ejection of thousands of spores, the fungi createa flow
of air that carries their spores further than they would otherwise disperse [37].
Another example is provided by oyster and shiitake mushrooms which release
water vapour before releasing their spores which in turn cools the surrounding
air creating convection currents thereby helping to disperse their spores[36].

Some curious adaptations have emerged in order to promote the effective-
ness of wind dispersal mechanisms whereby a plant manipulates its environment
in order to ‘generate’ a local wind current in order to assist dispersal.One ex-
ample is provided by the spores of ascomycete fungi where by synchronising
the ejection of thousands of spores, the fungi create a flow of air that carries
their spores further than they would otherwise disperse [37]. Another exam-
ple is provided by oyster and shiitake mushrooms which release water vapour
before releasing their spores which in turn cools the surrounding air creating
convection currents thereby helping to disperse their spores [36].

Adaptations for animal dispersal include the offering of ‘rewards’ fordis-
persion, such as fleshy, nutritious, fruits which attract the attention of frugi-
vores (fruit eaters) who consume the fruit. The seeds contained in the fruit pass
through the digestive tract of the animal and are eventually excreted backinto
the environment. This means of seed dispersal is common with some 50-75%
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of tree species in tropical forests producing fleshy fruits adapted for animal con-
sumption [9]. A similar figure is quoted by [30] who notes that 75% of tropical
tree species display adaptations for biotic seed dispersal. Other (non-reward)
adaptations for animal dispersal include clinging structures such as hooks or
resin whereby seeds stick to fur or feathers of animals and are accordingly dis-
persed as the animal moves around the environment (this mechanism led to the
discovery of Velcro in 1948, inspired by the observation of seed burrssticking
to the hair of a dog [20]). Many types of animals are seed dispersers including
various species of mammals, birds, bees, fish and reptiles [10, 30]. One exam-
ple of such dispersal is provided by ants. It is estimated that more than 10,000
plant species have evolved mechanisms to assist dispersal of their seedsby ants
[31]. Typically the ants are attracted using by an elaiosomes, or fleshy structure,
attached to the seed which is rich in lipids and proteins. The elaiosome and
attached seed is taken to the nest to feed larvae and the seed is then discarded
and later germinates. Animals and insects can also play a role as secondary
dispersers. For example, ants and dung beetles can transport seeds which have
fallen from plants.

Apart from wind and animal dispersal, seeds can also be dispersed by water,
for example via buoyant coconuts. Some plant species have evolved ballistic
fruits that open explosively and can toss seeds several metres from theparent
plant. In this chapter we employ the term seed in a board sense to encompass
all of these cases.

1.2. Why Do Plants Disperse Their Seeds?

An obvious question given the wide range of strategies adopted by plants to
disperse their seeds is what evolutionary advantages accrue to plants from their
investment in dispersal structures? Such investments only make sense if dispers-
ing seeds leads to a higher rate of seed survival and a higher rate of subsequent
establishment. Three hypotheses are usually proposed to support the adaptive
nature of seed dispersal [9], namely the:

1. escape hypothesis, the

2. colonisation hypothesis, and the

3. directed-dispersal hypothesis.
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The core of theescape hypothesisis the claim that seeds which are dispersed
further from their parent have higher rates of survival and reproductive success.
In other words, if seeds were only dispersed in close proximity to their parent,
their rates of mortality would be higher, due to density-dependent mortality
factors such as insect / rodent predators which would be attracted to clusters of
‘target plants’, susceptibility to pathogen attack, and resource competition from
other seedlings. Another factor which could promote dispersal is ‘shadeescape’
as a non-dispersed seed would end up competing directly with their parent for
light and other resources. In a study of 34 tree species, [1] found that seeds
from species requiring light-gaps for early seedling survival had slower rates of
descent, enhancing their chances of escape from the light shadow of their parent.

The colonisation hypothesisnotes that habitats and environments change
over time, and a currently resource poor environment may subsequently
become more abundant. Hence, seeds which reach this environment, perhaps
remaining dormant initially, will be well-placed to germinate and colonise
the area if conditions later improve. This hypothesis underscores the factthat
seed dispersal can be temporal as well as spatial, as some seeds can remain
in a dormant condition for considerable periods awaiting better conditions.
Dormancy capability is valuable, as it can notably increase the reproductive
success of the parent plant [33].

Thedirected dispersal hypothesis[9] argues that plants can adapt their di-
aspores and / or their morphology in order to enhance their chances of dispers-
ing seeds into locations which provide good conditions for seed establishment
and growth. For example, plants can adapt their morphology in order to utilise
differing seed dispersing agents. Non-random dispersal into resource rich envi-
ronmental patches presents an obvious evolutionary advantage advantage over
random seed dispersal methods [26, 32].

1.3. Design Trade-Offs

Plants can exert some control over their seed dispersal patterns as morphological
factors such as plant height, fruit / seed size and design, and ease ofabscission
(release of fruit/seed) are all adaptable over time.

Taking plant height, a taller plant can produce a wider seed shadow via wind
dispersal than a low-sized plant. Of course, a greater degree of tissueinvestment
is required to grow a taller plant, leaving less energy for seed production,po-
tentially creating a design trade-off.
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In the case of seed design, plants can select different levels of investment
in their seeds, with some plants adopting a ‘low investment’ model, where the
plant invests little in individual seeds but produces a large number of them, with
other plant species adopting a ‘high investment’ model, producing fewer, larger,
seeds. A larger seed can contain greater energy reserves thereby enhancing
the probability of germination but larger seeds are usually harder to disperse
than smaller ones, requiring larger animals, stronger winds or more powerful
propulsion mechanisms [34]. Hence, larger seed size will impact on the design
of the plant’s dispersal mechanisms.

The level of investment in fruit production (for fruiting plants) can also be
adapted as production of richer, more attractive, fruits will enhance bioticseed
dispersal but at the expense of leaving less energy for other plant requirements.

In essence, when ‘selecting’ a dispersal mechanism, two costs are being
balanced, the cost of seed mortality (arising when seeds produced by a plant
fail to subsequently germinate), and the allocation costs (i.e., the costs of that
dispersal mechanism. In summary, plants can employ a wide variety of seed
dispersal techniques, each requiring different levels of resource investment, and
each requiring differing plant morphologies which embed specific trade-offs.

1.4. Structure of Paper

The remainder of this chapter is organised as follows. Section 2 provides some
background on aspects of the seed dispersal process Section 3 outlines a num-
ber of optimisation algorithms whose design has drawn inspiration from the
plant propagation process. Conclusions and opportunities for future work are
discussed in Section 5

2. Background

As the seed dispersal pattern of plants is important both for individual and
species-level survival, a significant research effort has been expended in order
to gain insight into the dispersal patterns for various plant species. Levey et al
(2008) [13] notes that the ‘Holy grail of seed dispersal is to accuratelypredict
the probability distribution of seed density from a particular configuration of
parents and then relate those distributions to seedling demography’ (p. 604).

The spatial distribution of seed dispersal from an individual plant, or cluster
of plants, is known as aseed shadow. More formally, these seed shadows can
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be represented by a probability distribution, relating the probability that an
individual seed is dispersed a given distance from its maternal plant. Spatial
dispersal patterns can be considered either in one dimensional terms, focussing
on dispersal distance, or in two dimensions by also considering the direction-
ality of dispersion. Both dispersal distance and direction for an individual
plant will be impacted by the nature of the plant’s dispersal mechanism and by
location-specific factors.

Ballists and ant-dispersed seeds tend to travel the shortest distances (upto
a few metres typically), with wind-dispersal and animal dispersal producing
greater dispersal distances in terms of both mode and maxima. Directional dis-
persal can be influenced by several factors, the most obvious of which is prevail-
ing wind direction in the case of wind-dispersed seeds [34]. The directionality
of animal dispersed seeds will be influenced by the topology of the local envi-
ronment as this will impact on animal movement patterns.

A practical issue that arises in attempting to capture empirical data on seed
dispersal is that long-range dispersal events tend to be under-reported as it be-
comes difficult to accurately attribute seeds to specific parent plants as seeds
disperse over increasing distances. For example, extreme distance dispersal
events, such as may occur when seeds get stuck to the feathers or feetof birds
are unlikely to be captured in empirical studies. The problem of capturing good
data on long-dispersal events is noted by many studies, with [5] pithily stating
that ‘for [dispersal] distances exceeding a few hundred metres we essentially
know nothing’. However, there have been some attempts to construct general
frameworks of long-distance dispersal [7] in order to facilitate the construction
and testing of the biogeographical consequences of long-distance dispersal. Un-
derstanding long-distance dispersal of seeds is of critical importance in gaining
insight into the spread of plant populations (including invasive species),and in
explaining the diversity and dynamics of ecological communities [4].

Another perspective on seed dispersion is that it can be considered astaking
place across time as well as spatially [7]. An obvious example is the case of
long-distance dispersal whereby a seed or spore may be dispersed byrafting on
ocean flotsam, and take many days to reach its final destination. More generally,
seed germination and spore revival may be long delayed awaiting suitable en-
vironmental conditions and thus we can distinguish between seeds germinating
from a seed bank(seeds dispersed in the past which have lain in the soil) and
seed rain(recently deposited new seeds arising from current dispersal).
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2.1. Modelling Seed Dispersal

Two main approaches have been taken to modelling of seed dispersal patterns, a
conceptual approach which attempt to build a model from the underlying phys-
ical mechanisms of dispersal, and an empirical approach which seeks to reverse
fit a mathematical model to real-world data.

In seeking to build a model of seed dispersal, [13] notes that an important
distinction must be made between cases where the seeds are dispersedabiot-
ically, for example by wind, and cases where seeds are dispersedbiotically,
for example, by animals or insects. In the former case, the focus is on pa-
rameterising a mechanistic seed dispersal model, accounting for plant height,
characteristics of the seed structure, wind conditions etc. In the latter case, the
situation is more complex, and it is necessary to consider factors governingani-
mal movement, animal physiology, and animal behaviour. Initially thought to be
infrequent, reports of such directed dispersal by animals are increasing, as more
detailed studies of the food caching behaviours of animals are undertaken[35].

2.1.1. Modelling Wind Dispersal

The earliest studies which attempted to construct a model of wind borne disper-
sal of seeds used a ballistic formulation, considering seeds to be non-powered
projectiles [8]:

x =
Hu

F
(1)

wherex is the predicted horizontal distance from maternal parent to the de-
position site,H is seed release height above the ground,F is a constant de-
scent velocity, andu is the horizontal wind velocity averaged betweenH and
the ground. The basic ballistic model assumes that the dispersed seed reaches
terminal velocity (the falling velocity of a seed in still air) immediately after
release, and that horizontal wind velocity is constant during the descentphase.

Although this model is a simplification of reality, it highlights that there
will be a variation in the deposition distance depending on the wind speeds
in the downwind, crosswind and vertical directions, the terminal velocity of the
seed, and its release height. For example, a low terminal velocity, such as would
arise with a lightweight or an aerodynamic seed structure, will enhance dispersal
distance as there is more chance of an uplift eddy with consequent horizontal
displacement during the lengthier ‘descent’ process. The model also illustrates
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that the detachment mechanism from a plant is important as this determines the
minimum level of wind speed which will act on the seed when it is detached
from the plant.

A shortcoming of these models is that they produce seed dispersal estimates
which have far lower maximum dispersal distances than are seen in the real
world. A more realistic model can be obtained if variable windspeeds are in-
corporated, with turbulent fluctuations in the vertical velocity component. Sim-
ulations using these models produces dispersal distributions which are more
realistic, producing maximum seed dispersal distances that are two to three or-
ders of magnitude bigger than those produced by simple ballistic models. These
distributions can be approximated by a power law dispersal kernel [18].

At a macro level, it may be possible to model long distance wind disper-
sal as storms, trade winds and high-altitude jet streams are at least partly pre-
dictable on longer time scales in terms of direction, time of year, and typical
wind speeds [7].

2.1.2. Modelling Animal Dispersal

As animals are important seed dispersal vectors, knowledge of animal move-
ment patterns and animal physiology could contribute to our understanding of
seed dispersal distribution. Recent years have seen the development of the new
multi-disciplinary field ofmovement ecology[29]. This field is concerned with
empirical and theoretical study into the movement of animals, plants or microor-
ganisms. Areas of interest include movement phenomena surrounding foraging
and seasonal migration.

The simplest models of animal foraging movement ignore cognition and
sensory inputs, corresponding to a case where resources are randomly dispersed
and cognition and sensory capabilities are either non-existent or alternatively,
too limited to effectively aid the search process. In this case, foraging move-
ment can be modelled as being a random walk. The best-known random walk
models assume Brownian motion and it was long thought that this could be used
to approximate the diffusion of biological organisms. In turn, due to the Central
Limit Theorem whereby the distribution of the sum of i.i.d. random variables
with finite variance converges to a Gaussian, this would produce a normal dis-
tribution for multi-step foraging expeditions [29].

However, the assumption of Brownian motion ignores important aspects of
real-world foraging including the ‘directional persistence’ typically exhibited
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by organisms. Animals rarely undertake 180 degree turns and revisit a just-
sampled site. Animals also do not blindly move around the environment but
rather stop when a resource is found, nor do they tend to persist in searching a
‘patch’ in the environment which has been unfruitful in the recent past.

Movements of animals might therefore be expected to display ‘fat tails’ hav-
ing a greater number of very short and very long ‘jumps’ than would be ex-
pected under a Brownian motion assumption. When tested using empirical data
from foraging organisms, the results indicate that, particularly in cases where re-
sources are sparsely and randomly distributed, the foraging movements ofmany
organisms are described as a Lévy flight, giving rise to theLévy flight foraging
hypothesis[28]. A Lévy flight is a random walk in which the step-lengths (jump
sizes) have a power law distribution.

We may also consider a slightly move complex foraging model where re-
sources are randomly distributed in the environment and the forager is allowed
to have sensory perception, such as the ability to ‘see’ or ‘smell’ food resources
and move accordingly. In this case, the animal behaves as follows [27]:

i. if there is a resource located within a direct vision distancerv then the
searcher detects it with certain probability and moves on a straight line to
the detected resource;

ii. if there is no detected resource within distancerv then the searcher
chooses a direction at random and a distancelj from a probability dis-
tribution and moves incrementally to the new point constantly looking for
resources within a distancerv along the way;

iii. if it does not detect any resources, it stops after traversing distancelj
and chooses a new direction and distancelj+1, otherwise it moves to the
resource;

where the probability distribution for move distances is a Lévy distribution, as
follows:

P (lj) ∼ l−µ
j (2)

Analysis in [27] suggests that in the absence of a priori knowledge of thedistri-
bution of food resources, the optimal strategy for a forager is to chooseµ ≈ 2.
The study notes that several empirical studies of foraging behaviour across a
range of organisms (micro organisms, insects, birds, mammals) have been found
to follow a Lévy distribution of flight lengths or times withµ ≈ 2.
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Although the above analysis ignores a number of important issues concern-
ing real-world foraging movement such as personal and social learning, envi-
ronments in which resources are patchy, and local environment topology,it pro-
vides some support for a claim that the foraging movement patterns of animals
will produce a leptokurtic pattern of seed dispersal.

An additional physiological factor in animal-mediated dispersal is the length
of time the seed is carried by the animal before dispersal. Some animals such as
birds will typically excrete ingested seeds within a few hours of consumption,
in other cases, the digestion passage time may be considerably longer, 3-17
days in the case of some species of tortoises [10]. Seed morality may also vary
depending on the animal that ingests them, although in the case of tortoises,
less than 5% of seeds were found to be damaged whilst in transit through the
digestive tract [10].

Animal-mediated seed dispersal is a complex animal-plant interaction
which can take multiple forms, including cases where seeds commence ger-
mination whilst in the digestive tract of an animal. Other examples include the
caching of seeds by animals in areas suitable for seed establishment and sur-
vival. Initially, thought to be infrequent, reports of such directed dispersal by
animals are increasing, as more detailed studies of the food caching behaviours
of animals are undertaken [35]. Examples include cases where animals cache
seeds in areas of suitable soil conditions for seed growth, and caching of seeds at
an optimal depth for their survival. Such synergistic interactions are plausible,
as an ecology in which both plants and animals thrive is beneficial to both.

The social environment of animals also impacts on seed dispersal. Some
mammals and birds live in groups, and hence defecate collectively at their feed-
ing and resting sites. In turn, this will result in more localised dispersal of seeds
than would occur if the seed consumers were solitary.

Due to the number of relevant factors, and our imperfect understandingof
animal behaviours, is clear that developing a comprehensive model of animal
movements, which could then feed into a model of animal-mediated seed dis-
persal, is a non-trivial task. However, we can expect to see continuedattempts
to develop such models as the field of movement ecology develops.
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2.2. Modelling

2.2.1. Empirical Modelling

An alternative approach to the modelling of seed dispersal patterns is to concen-
trate on empirical data rather than attempting to construct an explanatory model
using underlying physical mechanisms. Empirical examination of the relation-
ship between the number of seeds dispersed and distance from parent plant,
indicates a leptokurtic distribution, displaying a higher peak and a heavier tail
than a Gaussian distribution, with seed numbers decreasing monotonically with
distance from the parent plant [9, 19, 34]. In attempting to reverse engineer a
seed distribution function from observed seed count data, the aim is to uncover
a probability density functionp(x) which gives the probability that a dispersed
seed arrives at a distancex away from the source plant. This defines a disper-
sal kernel which maps seed density to distance (one dimensional case), or seed
density by unit area to distance (two dimensional case) [18]. Typical kernels
seen in the literature are Gaussian, negative exponential, and the inversepower
function. A negative exponential model will have the general form [3]:

SD = a1 · exp(−b1 ·D) (3)

whereSD is the density of seeds at distanceD from the source anda1 andb1
are constants indicating the density of seeds falling at the source and the slope
of the decline in seed density with distance. In contrast, an inverse power model
produces longer, fatter, tails:

SD = a2 · (D)−b2 (4)

Based on sample of 73 herbaceous species and 75 tree/shrub samples [33] in-
dicates that a negative exponential distribution provides a reasonable fitto the
data, noting that the fit was better for the part of the curve around the mode
with the tail area being less well-explained by this distribution. The study also
noted that many empirical investigations stop collecting data on seed dispersal
long before the end of the right tail and hence, their results need to be read with
caution.

Differing studies have examined the seed dispersal patterns of numerous
plant species and these have have produced varying suggestions as towhether
a negative exponential or an inverse power model (negative power distribution)
produces a better fit to the collected data [26] . The relative scarcity of data
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on long-range dispersal of seeds can make it difficult to distinguish between
alternative model specifications.

In an attempt to better explain the tail of dispersal curves, some authors
including [3] have suggested the use of a mixed model formulation with two
kernel components: with a fat-tailed kernel for long distance dispersal, and
negative-exponential component for short-distance dispersal:

SD = a3 · exp(−b3 ·D) + (c3 ·D)−p3 (5)

As distance from the parent plant increases, the first component goes tozero
and the second component then estimates the tail.

One interesting question is whether the ‘typical’ tail shape of the dispersal
curve is qualitatively impacted by the mode of dispersal, in other words, do cer-
tain dispersal mechanisms produce a significantly different tail to the dispersal
curve? Based on a study employing 68 different datasets, [34] indicatesthat
there is no clear link between tail shape and dispersal mode, suggesting that
there is relatively little selection pressure for tail behaviour.

A further complicating factor is that the seeds of most plants are dispersed
by multiple mechanisms. Hence, their seed shadows are comprised of a mixture
of dispersal models [17], hence, the calibration of a seed distribution pattern
to a single model is likely to be errorful. An additional feature is that disper-
sal agents may engage in secondary dispersal, i.e., from initial dispersalsites,
thereby increasing the seed shadow.

2.3. Plant-inspired Algorithms

Until recently, little attention was paid to the potential utility of plant metaphors
for the design of computational algorithms. The last few years have seen in-
creased interest in this area, with the development of a number of plant-inspired
algorithms. Broadly speaking, these fall into three categories, namely algo-
rithms inspired by:

i. plant propagation behaviour,

ii. light-foraging behaviour (branching algorithms), and

iii. purported swarm behaviour of plant root networks.

In this paper we restrict attention to the first of these.
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3. Plant Propagation Algorithms

Plants have a repertoire of processes by which they propagate themselves in-
cluding seed dispersal and root propagation. Effective propagationplays an
important role in ensuring the survival of plant species, and in turn this depends
on the ability of the plant to propagate itself into resource-rich areas. Hence,this
process can metaphorically provide inspiration for the design of robust optimi-
sation algorithms and also for the design of engineering systems [20].

Three algorithms which have been inspired by these processes, theInvasive
Weed Algorithm[15], thePaddy Field Algorithm[21] and theStrawberry Plant
Algorithm[24] are discussed below.

3.1. Invasive Weed Optimisation Algorithm

The invasive weed optimisation algorithm(IWO) (pseudocode provided in Al-
gorithm 2), based on the colonisation behaviour of weeds, was proposed by
Mehrabian and Lucas in 2006 [15]. The inspiration for the algorithm arose
from the observation that weeds, or more generally, any plant, can effectively
colonise a territory unless their growth is carefully controlled. Two aspectsof
this colonising behaviour are that weeds thrive in fertile soil and reproduce more
effectively than their peers in less-fertile soil, and the dispersal of seeds during
plant reproduction is stochastic.

Algorithm 1: Invasive Weed Algorithm [15]

Generatepinitial seeds and disperse them randomly in the search space;
Determine the best solution in the current colony and store this location;
repeat

Each plant in the population produces a quantity of seeds depending on thequality
of its location;
Disperse these new seeds spatially in the search space giving rise to new plants;
If maximum number of plants (pmax > pinitial) has been exceeded, reduce the
population size topmax by eliminating the weakest (least fit) plants. This simulates
competition for resources;
Assess the fitness of new plant locations and, if necessary, update the best location
found so far;

until until terminating condition;
Output the best location found;
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Algorithm 2: Invasive Weed Algorithm

Generatepinitial seeds and disperse them randomly in the search space;
Determine the best solution in the current colony and store this location;
repeat

Each plant in the population produces a quantity of seeds depending on thequality
of its location;
Disperse these new seeds spatially in the search space giving rise to new plants;
If maximum number of plantspmax > pinitial has been exceeded, reduce the
population size topmax by eliminating the weakest (least fit) plants. This simulates
competition for resources;
Assess the fitness of new plant locations and, if necessary, update the best location
found so far;

until terminating condition;
Output the best location found;

The three key components of the algorithm are seeding (reproduction), seed
dispersal and competition between plants. Mehrabian and Lucas operationalised
these mechanisms in the following way in the IWO algorithm.

3.1.1. Seed Production

Each plant produces multiple seeds, based on its fitness relative to that of the
other plants in the current colony of weeds. A linear scaling system is used
whereby all plants are guaranteed to produce a minimum number of seeds
(minseeds), and no plant can produce more than a maximum number of seeds
(maxseeds). The number of seeds produced by an individual plant is calculated
using the following:

s(x) =
f(x)− fmin

fmax − fmin

∗ (smax − smin) + smin (6)

wherefmax andfmin are the maximum and minimum fitnesses in the current
population andf(x) is the fitness of the plantx.

3.1.2. Seed Dispersal

While the IWO algorithm employs the notions of fitness and reproduction, un-
like the GA, the IWO does not use genetic operators in the creation of popu-
lational diversity. Exploration of the search space is obtained via a simulated



122 A. Brabazon, S. McGarraghy and A. Agapitos

seed dispersal mechanism. The seeds associated with each plant are dispersed
by generating a random displacement vector and applying this to the location
of their parent plant. The displacement vector hasn elements corresponding
to then dimensions of the search space, and is obtained by generatingn nor-
mally distributed random numbers, with a mean of zero and a standard deviation
calculated using the following:

σiter =

(

itermax − iter

itermax

)n

(σmax − σmin) + σmin (7)

whereiter is the current algorithm iteration number,itermax is the maximum
number of iterations,σmax andσmin are maximum and minimum allowable
values for the standard deviation,n is a non-linear modulation index, andσiter
is the standard deviation used in the current iteration in calculating the seed
displacements.

The effect of this formulation is to encourage random seed dispersal around
the location of the parent plant, with decreasing variance over time. This results
in greater seed dispersal in earlier iterations of the algorithm, promoting explo-
ration of the search space. Later, the balance is tilted towards exploitation asthe
value ofσiter is reduced. The incorporation of the non-linear modulation index
in (7) also tilts the balance from exploration to exploitation as the algorithm
runs.

Depending on the scaling of the search space, the same value ofσiter could
be applied when randomly drawing each element of the displacement vector.
Alternatively, differing values ofσinitial andσfinal could be set for each di-
mension if required.

3.1.3. Competition for Resources

Competition between plants is simulated by placing a population size limit on
the colony (pmax). The plant colony starts with a population of sizepinitial.
The population increases as new plants grow in subsequent generations. Once
thepmax population limit is reached, parent plants compete with their children
for survival. The parent and child plants are ranked by fitness, with only pmax

plants surviving into the next generation. This mechanism ensures that thebest
solution found to date cannot be lost between iterations (elitism).
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3.1.4. Performance of the Algorithm

The IWO is a conceptually simple, numerical, non-gradient based, optimisation
algorithm. As yet due to its novelty, there has been limited investigation of its
effectiveness, scalability and efficiency. Mehrabian and Lucas [15]report GA
and PSO competitive results from the IWO algorithm with settings of 10-20
weeds, maximum and minimum numbers of seeds per plant of 2 and 0 respec-
tively, and a non-linear modulation index value of 3. Competitive results for the
IWO algorithm are also reported by [2, 16] and [38].

The algorithm requires that several problem-specific parameters are set by
the modeller including, the maximum and minimum number of seeds that a
plant can produce, the values forσmax, σmin anditermax, and the initial and the
maximum population size. However, the determination of good values for these
parameters is not necessarily a trivial task, particularly in poorly understood
problem environments.

Recent work has extended the application of IWO into clustering where each
individual seed consists of a string of up ton real-valued vectors of dimension
d, corresponding to then cluster centre coordinates (ind dimensional space)
[14]. Apart from the IWO algorithm, a number of other algorithms which draw
inspiration from seed-dispersal behaviour have been proposed, including the
Paddy Field Algorithm[21].

3.2. Paddy Field Algorithm

Thepaddy field algorithmwas first proposed by Premaratne, Samarabandu and
Sidu (2009) [21]. This algorithm draws inspiration from aspects of the plant
reproduction cycle, concentrating on the processes of pollination and seed dis-
persal.

Let the vectorx = (x1, x2, . . . , xn) correspond to a location in ann dimen-
sional space andy = f(x) is the ‘fitness’ or ‘quality’ of that location. Each seed
i therefore, has a corresponding locationxi and a corresponding fitness. The
paddy field algorithm manipulates a population of these ‘seeds’ in an attempt
to find a good solution to the optimisation problem of interest. The algorithm
consists of five stages, sowing, selection, seeding, pollination, and dispersion
[21]. Each of these are described below.
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3.2.1. Sowing

An initial population of (p) seeds are (sown) at random locations in the search
space.

3.2.2. Selection

The seeds are assumed to grow into plants, and each of these plants has an
associated fitness value (y) determined by the output of the underlying objective
function when evaluated at the plant’s location. The plants are ranked by fitness,
and the bestn plants are then selected to produce seeds.

3.2.3. Seeding

Each plant produces a number of seeds in proportion to its fitness. The fittest
plant producessmax seeds and the other plants produces varying amounts of
seeds, calculated using:

s = smax
y − yt

ymax − yt

The termymax is the fitness of the best plant in the current population, andyt is
the fitness of the lowest ranked plant selected in the previous step. Although the
algorithm describes this step as ‘seeding’, it can more correctly be considered
as the process of growth of flower structures in order to enable pollination.

3.2.4. Pollination

Only a portion of the seeds become viable and to determine this portion, a sim-
ulated pollination process is applied whereby the probability that a seed is pol-
linated depends on the local density of plants around the seed’s parent plant.
The higher the density, the greater the chance of pollination. A hypersphere of
radiusa is defined, and two plants are considered to be neighbours if the dis-
tance between them is less thana. The pollination factorUj of plant j (with
0 ≤ Uj ≤ 1) is then calculated using:

Uj = exp(vj/vmax − 1)

wherevj is the number of neighbours of the plantj andvmax is the number of
neighbours of the plant with the largest number of neighbours in the population.
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3.2.5. Dispersion

The pollinated seeds are then dispersed from the location of their parent plant
such that the location of the new plant (grown from the dispersed seed) isde-
termined usingN(xj , σ) wherexj is the location of the parent plant andσ is a
user-selected parameter.

The above five steps are iterated until a termination condition is reached.
In summary, the fittest plants give rise to the greatest number of seeds, and
search is intensified around the better regions of the landscape uncovered thus
far. Variants on the PFA include [12].

Algorithm 3: Paddy Field Algorithm [21]

Generate an initial population ofp plants each located randomly in the search space;
Choose value formaxiter andn (see below);
Set generation counteriter = 1;
repeat

Calculate fitness of each plant (yi) and store in vectorN
(Ni = fitness(yi : i = 1, . . . , p));
SortN : (Ni : i = 1, . . . , p) into descending order (assuming the objective is to
maximise fitness);
for i = 1 : n (top n plants)do

Generate seeds for each selected plant;
Implement pollination step;
Disperse pollinated seeds;

end
Replace old population with new plants;
iter = iter+1;

until iter = maxiter;
Output the best location found;

3.3. Strawberry Plant Algorithm

Although many plants propagate using seeds, some employ a system of ‘run-
ners’, or horizontal stems which grow outwards from the base of the plant. At
variable distances from the parent plant, if suitable soil conditions are found,
new roots will grow from the runner and in turn produce an offspring clone of
the parent plant. An example of this behaviour is provided by modern straw-
berry plants which can propagate via seeds and by runners. This has inspired
the development of an optimisation algorithm based on this phenomenon [24].
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The algorithm is based on the following ideas:

• healthy plants in good resource locations generate more runners,

• plants in good resource locations tend to send short runners in order to
exploit local resources,

• plants in poorer resource locations tend to send longer runners to search
for better conditions, and

• as the generation of longer runners requires more resource investment,
plants generating these will create relatively few of them.

The algorithm therefore seeks to balance exploration with exploitation, with
increasing local exploration over time as plants concentrate in the locations with
best conditions for growth. Salhi and Fraga [24] report competitive results from
this algorithm when applied to a number of real-valued benchmark optimisation
problems. Algorithm 4 presents an adapted version of the algorithm based
on [24].

4. Applications

Despite the relative recency of the introduction of plant propagation-inspired
algorithms, there have been a number of applications to a range of diverse
real-world problems, showing promise compared to existing approaches. We
mention a selection of applications here: these applications range from recom-
mender systems [38] to engineering problems [39, 40]. [39] apply the Invasive
Weed Optimisation algorithm to the problem of optimising radio antenna struc-
tures. They find that the Invasive Weed Optimisation is competitive with the Par-
ticle Swarm Optimisation (PSO) algorithm, in accuracy, speed of convergence
and simplicity. [41] apply a modified (discrete) invasive weed optimization al-
gorithm to optimize DNA encoding sequences. Experimental results show that
the proposed method is effective and convenient for the design and selection of
effective DNA sequences in silico for controllable DNA computing.

[42] use a discrete invasive weed optimization (DIWO) algorithm for coop-
erative multiple task assignment of unmanned aerial vehicles (UAVs) and com-
pare the solutions with those of genetic algorithms (GAs). Their results show
that DIWO has better performance than GAs in both optimality of the solutions
and computation time.
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Algorithm 4: Strawberry Propagation Algorithm (adapted from [24])

Generate an initial population ofm plantspi : i = 1, . . . ,m each located randomly in
the search space;
Choose values formaxgen andy (see below);
Set generation countergen = 1;
repeat

Calculate fitness of each plant and store in vectorN
(Ni = fitness(pi : i = 1, . . . ,m));
SortN : (Ni : i = 1, . . . ,m) into descending order (assuming the objective is to
maximise fitness);
for i = 1 : (m/10) (top 10% of plants)do

Generate(y/i) short runners for each plant (y is a user-defined parameter
which defines the intensity of local search around each of the fitter plants);
if any of the new locations has higher fitness than that of the parent plantthen

move the parent plant to the new location with the highest fitness
(ri → pi);

else
Discard the new locations and the parent plant stays at its current location;

end
end
for i = (m/10) + 1 : m (indices for remaining plants)do

Generate one long runner for each plant not in the top 10% and select the
location of the end-pointri for that runner randomly in the search space;
if the new location has higher fitness than that of the parent plantthen

move the parent plant to the new location (ri → pi);
else

Discard the new location and the parent plant stays at its current location;
end

end
until gen = maxgen;
Output the best location found;

[40] examine the performance of their extended Strawberry PropagationAl-
gorithm on a range of constrained engineering optimisation problems on con-
tinuous domains, including design of welded beam, pressure vessel, spring and
speed reducer. Their results are that the Strawberry Propagation Algorithm
found either near best known solutions or optimal ones to all problems. They
compare the Strawberry Propagation Algorithm results to results obtained with
other approaches such as GAs, Fogel’s Evolutionary Programming, PSO, varia-
tions of the Harmony Search Algorithm and Integer Programming, and find that
the Strawberry Propagation Algorithm is superior in the majority of cases.
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5. Conclusion

At a conceptual level, plant dispersal can be considered as a searchprocess,
wherein the seed or plant is searching for good locations and therefore, inspi-
ration from dispersal activities of plants can plausibly serve as the designin-
spiration for optimisation algorithms. In this chapter we focussed on different
processes of plant dispersal, and described a number of existing optimisation
algorithms which draw inspiration from these. These were theinvasive weed
optimisationalgorithm, thepaddy fieldalgorithm, and thestrawberry plantal-
gorithm.

In this work, we have noted and justified an array of plant behaviours which
are exhibited in the natural world. With some exceptions, little inspiration has
been taken from these mechanisms, as yet, for the design of computational al-
gorithms. Most of the algorithms developed thus far are relatively recent in
design and further work is required in order to assess their utility and to assess
more fully whether they represent truly novel problem-solving mechanisms or
whether they are qualitatively similar to existing natural computing algorithms.
Work to date appears to indicate that they are at least competitive on the prob-
lems to which they have been applied. However, there is clearly rich potential
for future work.

We wish to stimulate interest in this exciting, and under-explored area of
natural computing. Of great importance here are the investigation of additional
strategies for overcoming local optimality in complex solution spaces, and per-
forming a robust search of a solution space. Additional research should study
the degree to which neighbourhoods are exploited under different parameter
settings governing the operation of each algorithm.
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Abstract

Many real-world optimization problems are multimodal, requiring
techniques that overcome local optima, which can be done using niching
methods. In order to do so, we describe a niching method basedon the
clearing paradigm, Topographical Clearing, which employsa topographi-
cal heuristic introduced in the early nineties, as part of a global optimiza-
tion method. This niching method is applied to differentialevolution, but
it can be used in other evolutionary or swarm-based methods,such as the
genetic algorithm and particle swarm optimization. The algorithm, called
TopoClearing-DE, is favorably compared against the canonical version of
differential evolution in real-world optimization problems. As the prob-
lems attacked are quite challenging, the results show that Topographical
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Clearing can be applied to populational optimization methods in order to
solve problems with multiple solutions.

Keywords: Niching Methods, Clearing, Topographical Heuristic, Differential
Evolution, Multimodal Problems

1. Introduction

Some optimization problems in engineering are highly multimodal, remaining
a great challenge for most methods, as they have large search spaces with mul-
tiple local and even global optima. In this chapter, we address four challenging
real-world problems taken from the literature, three continuous and an NP-hard
combinatorial optimization problem [19].

In these multimodal problems, the search space should be thoroughly ex-
plored so that the optimization algorithm does not converge to a local optimum.
To overcome this difficulty, many solutions have been proposed. Let’s mention,
for example, some techniques that were applied to nuclear-engineering prob-
lems: a parallel genetic algorithm [31], a niching method [24] applied to genetic
algorithms [45], a hybrid algorithm that alternates exploration and exploitation
of the search space [41], and a new mutation scheme [43] applied to differential
evolution (DE) [49].

Niching methods are techniques designed to maintain populational diversity
in evolutionary or swarm-based methods, so that multiple optima are determined
in multimodal problems. These optima may consist in more than one global
optimum and some local minima, or in a single global optimum and many global
minima. Most niching methods are based on one of the following schemes:

1. Fitness sharing [15], which modifies the search landscape by reducing the
payoff in densely populated regions [46].

2. Crowding [11], where a new individual replaces its most similar element
in the population.

3. Clearing [32], where the best members of the population, the so-called
dominants, receive the entire payoff.

The three main niching methods have been applied to the differential evolu-
tion algorithm, which we use in this work. See, for example, [51, 61, 34]. For a
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brief survey, see [10]. For a more detailed exposition, the reader should refer to
Rönkkönen’s thesis [38].

Sareni and Kr̈ahenb̈uhl [46] tested these three niching schemes applied to
the genetic algorithm, concluding that clearing is the best, provided that the
niching radiusσ that delimits each dominant’s territory is correctly estimated.
This is the drawback of this method, especially in real-world problems, where
the search space is generally unknown beforehand.

In order to overcome this limitation, Sacco et al. [45] proposed a variant
of clearing where the individuals are clustered using Fuzzy Clustering Means
(FCM) [7] and each cluster has a dominant individual. However, FCM requires
the number of clusters as input and is rather complicated.

With the same motivation, Qu et al. [34] proposed an ensemble of clearing
differential evolution algorithms, where the initial population is divided into
three equal subpopulationsP1, P2, andP3, which receive radiiσP1 = 0.005 ×
SR, σP2 = 0.01 × SR, andσP3 = 0.05 × SR, whereSR is the problem’s
search range. These subpopulations exchange information during the selection
phase. This scheme increases clearing’s efficiency, but is still dependent ofσ.

In this chapter, we employ a method which was recently introduced by
Sacco et al. [44]. It is based on the clearing paradigm which is simpler than
the schemes introduced in [45] and [34]. It uses a clustering heuristic based on
the topographical information on the objective function, which was part ofan
optimization algorithm proposed by Törn and Viitanen [54], the Topographical
Algorithm (TA). In this method, we employ the topographical heuristic with
the purpose of determining the dominant individual in a neighborhood. Origi-
nally, Törn and Viitanen [54] used this mechanism to determine minima from
a set of sampled points, so that they were initial solutions for a local optimiza-
tion algorithm. We apply this clearing variant, called topographical clearing, to
differential evolution, which outperformed the more popular genetic algorithm
and particle swarm optimization in extensive experiments [60]. However, this
method can be applied to any evolutionary or swarm-based technique.

The remainder of this chapter is described as follows. The description of
DE is presented in Section 2. The novel niching method is decribed in Section
3, as well as its application to DE. The computational experiments and their
discussions are in Section 4. Finally, the conclusions are made in Section 5.
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2. The Differential Evolution Algorithm

In this section, we describe the canonical version of differential evolution, as
introduced by Storn and Price [49]. DE is applied to the minimization of an
objective functionf(x), wherex is a continuous variable vector with domain
[low,up] ⊂ ℜn.

Let’s describe DE in a pseudo-code style, so that the novice can easily grasp
its concept. The algorithm is outlined in Fig. 1 and its operators are described
in Figs. 2, 3, 4, and 5.

Input parameters, which remain constant along the optimization process, are
population sizeNP and, to be explained below, crossover rateCR and scaling
factor F . First of all, an initial random population is generated by function
“initialize”, as described in Fig. 2. Note that each initial solution or individual
must meet the boundary constraints. After that, inside a loop, the evolutive
process starts until a stopping criterion is satisfied.

The first operation inside the loop is mutation, described by funtion “mu-
tate”, Fig. 3. In mutation, a trial solution is generated for each individuali as
follows:

x̂i = xp(1) + F (xp(2) − xp(3)), (1)

wherep(1), p(2), andp(3) are random indexes mutually different from each
other and different from indexi, andF is a scaling factor in the range[0, 2].
The solution correspondent to the first random index,xp(1), is known as the
base vector. This vector is altered by the addition of the weighted difference of
the two other solutions with indexesp(2) andp(3). The operation is repeated
as long as trial solution̂xi is outside the domain.

After mutation, population goes through crossover, as in Fig. 4. In this oper-
ation, componentj of offspringyi is found from its parentsxi andx̂i according
to the rule

yji =

{

x̂ji , if Rj ≤ CR or j = Ii
xji , otherwise

, (2)

where Ii is a random integer in range[0, n], Rj is a random in[0, 1], and
crossover rateCR, also in[0, 1], controls the fraction of parameter values that
are copied from the trial solution̂xi. Note that alternativej = Ii assures that at
least one component will receive a mutated value.
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Finally, there is the selection process, Fig. 5, which defines the population
of next generation as follows:

xNIter+1
i =

{

yNIter
i , if f(yNIter

i ) ≤ f(xNIter
i )

xNIter
i , otherwise

. (3)

The trial solution will only replace its counterpart in the current population
if it’s equal or better than the latter. As pointed out in [21], in DE’s selection
scheme, a trial vector is not compared against all the individuals in the current
population, but only against its counterpart.

Note that it’s in function “select” (Fig. 5), that the best solution found so far
and its fitness value are stored.

As termination criterion, one may use the number of generations (NIter in
our pseudocode), the number of objective-function evaluations, or, asin [20],
|fmax − fmin| < ε, wherefmax and fmin are the maximum and minimum
function values within a generation.

3. Topographical Clearing

3.1. Clearing

As mentioned in the Introduction, in clearing the best members of the popu-
lation, the so-called dominants, receive the entire payoff. This procedure is
applied after evaluating the fitness of the individuals and before applying the
selection operator [32]. The clearing radiusσ defines a range inside all but the
κ individuals having the best fitnesses are cleared [38], i.e., have their objective
function values zeroed for a maximization problem or receive a large valuefor a
minimization problem. The population members distant more than from a dom-
inant individual are not affected. Figure 6, based on [32], shows the function
that performs the original clearing method. FunctionSortFitness(P)sorts the
populationP in decreasing order of fitness, so that the first elements of the list
are the dominants, if it is a maximization problem, or in increasing order, for
minimization problems.

3.2. The Topographical Algorithm

Between the early seventies and mid-nineties, a global optimization paradigm
based on clustering was studied by some researchers, mainly in Europe. The



138 Wagner F. Sacco, Ana Carolina Rios-Coelho and Nélio Henderson

seminal article by Becker and Lago [6] was followed by, among others, Törn
[58], Timmer [52], T̈orn and Viitanen [54, 55], and Ali and Storey [2]. Ali
[1], and Levi and Haas [23] present fine reviews on the clustering methods.
According to T̈orn andŽilinskas [57], the motivation for exploring clustering
methods in based on the following:

1. It is possible to obtain a sample of points in the search space consisting
of concentration of points in the neighborhood of local minimizers of the
objective functionf .

2. The points in the sample can be clustered giving clusters identifying the
neighborhoods of local minimizers and thus permitting local optimization
methods to be applied.

The original TA is non-iterative and based on the exploration of the search
space [2]. It consists of three steps [55]:

1. A uniform random sampling ofN points in the search space.

2. The construction of the topograph, which is a graph with directed arcs
connecting the accepted sampled points on ak-nearest neighbors basis,
where the direction of the arc is towards a point with a larger function
value. The minima of the graph are the points better than their neighbors,
i.e., the nodes with no incoming arcs.

3. The topograph minima are starting points for a local optimization algo-
rithm. The best point obtained from all the executions using each mini-
mum as the initial solution is the result of the algorithm.

Originally, Törn and Viitanen [54, 55] obtained the initial solutions from
step 1 sampling points in a unit hypercube, untilN points with their nearest
neighbors farther than a threshold distanceδ were obtained. Then, these points
were denormalized. But these authors add that any other method that produces
a very uniform covering can be used. In fact, they used the more efficient quasi-
random sampling in an iterative version of TA [56]. In their tests, Törn and
Viitanen [55] used mostlyN = 100 orN = 200.

Step 2, the construction of the topograph, is the heart of the method. First
of all, a N × N symmetric distance matrix is computed. Following that, a
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N × k matrix calledkNN -matrix is constructed containing, for each point, the
indexes of itsk-nearest neighbors sorted by distance. Next, this matrix, which
is an undirected topograph, is transformed into a directed topograph indicating
if the reference is to a point with larger or smaller objective function value by
giving the reference a plus or minus sign, respectively [1]. The signs represent
the directed arcs in the graph, a positive sign representing the “arrow head” of
the arc, and the negative sign the “start” of the arc [55]. Finally, the pointsthat
correspond to rows with only positive signs are the topograph minima.

Let us illustrate how the topographical heuristic works by a simple illustra-
tive example, adapted from [1]. Suppose we want to minimize the function

f(x, y) = x2 + y2, (4)

and that six points were sampled and their function values calculated:f(P1) =
f(2, 5) = 29, f(P2) = f(1, 2) = 5, f(P3) = f(3, 4) = 25, f(P4) = f(0, 1) =
1, f(P5) = f(5, 0) = 25, andf(P6) = f(4, 2) = 20.

First, the symmetric squared distance matrixD is constructed, where, for
example, the elementd1,3 corresponds to the distance betweenP1 andP3:

D =

















0 10 2 20 34 13
10 0 8 2 20 9
2 8 0 18 20 5
20 2 18 0 26 17
34 20 20 26 0 5
13 9 5 17 5 0

















. (5)

Following that, thekNN -matrix is formed by each pointsk-nearest neigh-
bors. Usingk = 3, the nearest neighbors ofP1 (the first row ofD) are the points
with indexes 3, 2, and 6, respectively. These elements will constitute the first
row of the matrix. The process goes on until the following matrix is obtained:

kNN =

















3 2 6
4 3 6
1 6 2
2 6 3
6 2 3
3 5 2

















. (6)

This matrix represents an undirected graph. Computationally, it is obtained
sorting each row ofD and taking the firstk elements’ indexes. The elements of
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the main diagonal ofD receive a very large value (e.g.,108) before sorting, so
that they are not included in thekNN -matrix.

Now, the elements ofkNN will receive a plus or minus sign according to
their functional values in relation to the value of the point represented by therow
index. The second row, for example, corresponds toP2, whose function value
is equal to 5, which is more thanf(P4) = 1 (P4 is elementknn21), but less
thanf(P3) = 25 andf(P1) = 29 (elementsknn22 andknn23, respectively).
Therefore,knn21 will receive a minus sign and the other two elements a plus
sign. The signed matrix becomes

kNN =

















−3 −2 −6
−4 +3 +6
+1 −6 −2
+2 +6 +3
−6 −2 +3
−3 +5 −2

















. (7)

As the only point that corresponds to a row with only positive signs is
P4 = (0, 1), this will be the starting point for a local optimization algorithm.
When implementing the topographical heuristic, the signs can be attributed in
the process of construction ofkNN.

In step 3, T̈orn and Viitanen [55] say that any local optimization method
can be used. They employed a gradient-based algorithm, as their tests were
performed on algebraic test functions.

3.3. The Novel Niching Method

As mentioned in section 1, the new method based on the clearing paradigm is
much simpler than those available in the literature. The topographical heuris-
tic is applied to the population and the topograph minima are determined and
flagged (function topograph in Figure 7). These minima receive the value
flagi = 1, and the others remain withflagi = 0 that was previously assigned
for all the individuals. Then, clearing (functiontopoclearingin the same fig-
ure) is applied as follows: the non-flagged individuals are cleared, receiving a
large function value (as we are working with minimization problems), while
the topograph minima are not punished, maintaining their original values. This
scheme is described by Figure 8. Note that our new method does not require
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parametersσ andκ, neither the sorting of individuals by fitness value, which is
a computationally expensive procedure.

Finally, the selection is performed, as in Figure 9. The decision on whether
to replace or not the current solution by the new one is made based on the cleared
fitness values.

4. Numerical Comparisons

4.1. The Practical Problems

4.1.1. Chemical Equilibrium Problem

This nonlinear system, introduced by Meintjes and Morgan [28], has been
widely employed in the literature, see [17, 25, 59, 16, 39], among others.

It concerns the combustion of propane (C3H8) in air (O2 and N2) to form
ten products. This chemical reaction generates a system of ten equations inten
unknowns, which can be reduced to a system of five equations in five unknowns
[28]. We solve this system formulating it as an optimization problem. To see
how this formulation is made, the interested reader should see Appendix A.

The system is given by






























f1 = x1x2 + x1 − 3x5
f2 = 2x1x2 + x1 + x2x

2
3 + R8x2 − Rx5 + 2R10x

2
2 + R7x2x3 + R9x2x4

f3 = 2x2x
2
3 + 2R5x

2
3 − 8x5 + R6x3 + R7x2x3

f4 = R9x2x4 + 2x24 − 4Rx5
f5 = x1(x2 + 1) + R10x

2
2 + x2x

2
3 + R8x2 + R5x

2
3 + x24 − 1 + R6x3

+R7x2x3 + R9x2x4
(8)

where






































R = 10
R5 = 0.193

R6 = 0.002597/
√
40

R7 = 0.003448/
√
40

R8 = 0.00001799/40

R9 = 0.0002155/
√
40

R10 = 0.00003846/40

Variablesxi are surrogates for atomic combinations, which means that only
positive values make physical sense. Among the four real solutions reported by
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Meintjes and Morgan [28], only one has all-positive components(3.114102 ×
10−3, 3.459792× 101, 6.504177× 10−2, 8.593780× 10−1, 3.695185× 10−2)
[28]. Hence, if the search domain is taken from the positive side, as we did
using the interval[0, 100]5, this will be the only solution.

4.1.2. Catalytic Reactor Model

Generally, parameter estimation problems are solved using least-squares, as-
suming that the variables are not subject to measurement error. In this problem,
however, it is assumed that there are measurement errors in all variables. In or-
der to solve it,it is necessary to use the error-in-variables approach [53]. Using
this model, the objective-function has the form [14]:

min
θ,x̃i

m
∑

i=1

n
∑

j=1

(x̃ij − xij)
2

σ2
j

(9)

subject to
f(θ, x̃i) = 0, i = 1, . . . ,m. (10)

In the equations above,xi = (xi1, . . . , xin)
T represents measurements of

the variables fromi = 1, . . . ,m experiments,̃xi = (x̃i1, . . . , x̃in)
T are the

unknown actual values, andσj is the standard deviation associated with the
measurement of variablej [14]. Therefore, the error-in-variables approach in-
volves not only the parametersθ, but also the true values̃xi, increasing the
dimensionality of the optimization problem.

This parameter estimation problem was introduced in [37], to model gas-
phase catalytic hydrogeneation of phenol on a palladium catalyst in pseudo-
differential reactor [53]. Variablesx1, x2 andx3 represent the partial pressures
of phenol and hydrogen, and the initial reaction rate [53]. The model is de-
scribed by the following equation [53]:

x3 =
θ1θ

2
2θ3x1x

2
2

(1 + θ1x1 + θ2x2)3
, (11)

whereθ1, θ2, andθ3 are the parameters to be estimated. Standard deviations
of 0.0075, 0.0075 and 2.5 are specified forx1, x2 andx3, respectively [53].
Table B.1 (Appendix B) presents the data and the fitted values. The optimal pa-
rameters of this59-variable problem are equal toθ1 = 7.39696 atm−1, θ2 =
0.63782 atm−1, and θ3 = 1769.71 mol/kg h, corresponding to an objective
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value of30.3072 [14]. For variables̃xi, we use the same same search region
as in [14]:[x1i − 3σ1, x1i + 3σ1] and[x2i − 3σ2, x2i + 3σ2], for i = 1, . . . , 28.
For the parameters to be estimated, we adopt a wider range than these authors,
θ1, θ2 ∈ [0, 10] andθ3 ∈ [1000, 2000]. We must add that this problem has many
local optima [14].

4.1.3. Turbine Balancing Problem

This is a combinatorial optimization problem [30]. The turbine balancing prob-
lem is very relevant, being a real challenge for optimization methods, as it is NP-
hard [33]. It was originally proposed by [29] as a combinatorial optimization
problem, being also formulated as a quadratic assigment problem [22]. Since
then, it has been attacked by other researchers, using both formulationsand
different kinds of turbines [48, 4, 33, 8].

In this work, we solve the case presented in [29]. The problem consists in
balancing the runners of a Francis hydraulic turbine. Ref. [48] givesa precise
description of the problem to be solved:

A hydraulic turbine runner consists essentially of a cylinder with
blades attached to its circumference. The turbine rotates as water
flows across the blades. During the manufacturing process the indi-
vidual blades must be welded into place, equally spaced around the
cylinder. The problem encountered during this phase is the static
balancing of the completed runner. Because of the complexity of
the manufacturing process, the final weights of the blades may dif-
fer substantially. The result is an unbalanced runner. Since the
runner can rotate at very high revolutions during use, it is crucial
that the unbalance be as small as possible, otherwise the bearings
on which the runners rotate will wear out very quickly.

We must add that, according to [29], the variations in final weight mentioned
above can be as great as±5%.

Let us formulate the problem, following [29]. The runner is modeled as
n equally-spaced weights on a circle of zero mass and radiusr equal to the
common distance from the blade centers-of-mass to the runner axis. The blade
positions are labeled counterclockwise, starting at position1 = (r, 0) in anx−y
coordinate system, receiving indexesk = 1, 2, . . . , n. LetPt be a configuration
of blades wherePt(j) = k assigns bladek to positionj. First, we define the
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following variables:
Mk = mass of bladek;
Mk

j = mass of bladek when in positionj;
θj = (2π/n)(j − 1) = angle between positionj and position1, j = 1, . . . , n;
M = total mass of blades=

∑n
k=1M

k.
Then, each permutationPt determines a center of mass(x̄, ȳ) given by:

x̄(Pt) =
1

M

n
∑

j=1

Mk
j r cos θj , (12)

ȳ(Pt) =
1

M

n
∑

j=1

Mk
j r sin θj , (13)

Finally, Eq. (12) and Eq. (14) define deviation̄D,

D̄(Pt) =
√

[x̄(Pt)]2 + [ȳ(Pt)]2], (14)

which is the objective function to be minimized.D̄(Pt) = 0means that a perfect
static balance has been reached [29].

As suggested by [29], we scale the problem makingr = 1. We usen = 14
blades, as a typical runner has between 14 and 18 blades [29], and thisvalue
of n is one of the most difficult to optimize [22]. Regarding the values ofMk,
we follow [22], generatingn numbers according to a normal distribution with a
mean of100 and a standard deviation of5/3, so that mostMks fall within±5%
of the mean. We generated these numbers using a Gaussian Random Number
Generator available at the Random.org website [35].

4.1.4. Nuclear Reactor Core Design Optimization Problem

This is a highly multimodal problem [45], which has been attacked with
many methods (see, for example, [12, 13, 44, 43]). Consider a cylindrical 3-
enrichment-zone nuclear reactor, with a typical cell composed by moderator
(light water), cladding and fuel. The design parameters that may be variedin
the optimization process, as well as their variation ranges, are shown in Table 1.
The materials are represented by discrete variables.

The objective of the optimization problem is to minimize the average flux
or power peaking factor,fp, of the proposed reactor, allowing the reactor to be
sub-critical or super-critical (keff = 1.0 ± 1%), for a given average fluxφ0.
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Table 1. Parameters range

Parameter Symbol Range

Fuel Radius (cm) Rf 0.508 to 1.270

Cladding Thickness (cm) ∆c 0.025 to 0.254

Moderator Thickness (cm) ∆m 0.025 to 0.762

Enrichment of Zone 1 (%) E1 2.0 to 5.0

Enrichment of Zone 2 (%) E2 2.0 to 5.0

Enrichment of Zone 3 (%) E3 2.0 to 5.0

Fuel Material Mf {U-Metal or UO2}

Cladding Material Mc {Zircaloy-2, Aluminum or Stainless Steel-304}

LetD = {Rf , ∆c, Re, E1, E2, E3} be the vector of design variables. Then, the
optimization problem can be written as follows:

Minimize fp(D) s.t.

φ(D) = φ0; (15)

0.99 ≤ keff (D) ≤ 1.01; (16)
dkeff
dVm

> 0; (17)

Dl
i ≤ Di ≤ Du

i , i = 1, 2, . . . , 6; (18)

Mf = {U-Metal or UO2}; (19)

Mc = {Zircaloy-2, Al or SS-304}, (20)

whereVm is the moderator volume, and the superscriptsl andu indicate re-
spectively the lower and upper bounds (of the feasible range) for each design
variable.

4.2. Implementation and Setup

Our tests were performed on an IntelR© Core
TM

i7 PC with 12 Gb RAM running
Ubuntu 14.04 LTS. TopoClearing-DE was implemented in C++ and compiled
with GNU g++ version 4.8.2. For the stochastic part of this algorithm, we used
the pseudorandom number generating algorithm developed by Matsumoto and
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Nishimura [26], the Mersenne Twister, which is available for download at one
of its creator’s website [27].

For the nuclear core optimization problem, our source code was connceted
to the HAMMER reactor physics code [50], which calculates the objective func-
tion value for each solution proposed by the optimization algorithm.

Regarding the turbine balancing problem, as DE was conceived as a con-
tinuous optimization algorithm [49], first, we need to adapt it for combinatorial
optimization. In order to do so, we employ a representation technique named
random keys [5]. This mechanism, originally designed for the genetic algo-
rithm, allows us to treat discrete problems as if they were continuous. The
solution is translated into a discrete sequence only in the moment of the objec-
tive function evaluation. Let us show how it works with a simplified example: a
six-city TSP. DE works with six continuous variables, all in the range[0, 1]. Let
us suppose we have a solutionS1, given by

S1 = (0.18, 0.73, 0.42, 0.87, 0.01, 0.23). (21)

Each one of these variables receive an integer index, in subscripts, corre-
sponding to their order of appearance:

S1 = (0.181, 0.732, 0.423, 0.874, 0.015, 0.236). (22)

Then, these real numbers (the so-called random keys) are sorted:

S1sorted = (0.015, 0.181, 0.236, 0.423, 0.732, 0.874). (23)

The subscripts represent a valid sequenceT1:

T1 = (5, 1, 6, 3, 2, 4). (24)

Note that, even in an extreme case with repeated real numbers, a valid se-
quence is produced:

S2 = (0.93, 0.27, 0.93, 0.45, 0.11, 0.93), (25)

S2 = (0.931, 0.272, 0.933, 0.454, 0.115, 0.936), (26)

S2sorted = (0.115, 0.272, 0.454, 0.931, 0.933, 0.936), (27)

T2 = (5, 2, 4, 1, 3, 6). (28)
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We used the following parameters in our tests: population sizeNP = 100
and500, crossover rateCR = 0.9, and scaling factorF = 0.5, which are values
that have been widely employed in the literature [60, 3, 39], among others. The
same one–hundred random seeds (one per execution) were used forcanonical
DE and its variant. For the topographical heuristic inside the niching method,
we usedk = 10 as T̈orn and Viitanen [54, 55], and also testedk = 20.

Regarding the nuclear For the nuclear reactor core design, the algorithms
were set up to stop at 100,000 objective function evaluations, so that the results
were obtained with the same maximum computational effort as previous results
[41, 40, 42, 44, 43].

As the other optimization problems attacked in this work have known global
minima, DE was run using the same termination criterion as in [47, 17, 9, 18,
36], which is ideal for an algorithm’s performance assessment:

|f(x∗)− f(x)| ≤ ε1|f(x
∗)|+ ε2, (29)

wheref(x∗) is the global optimum,f(x) is the current best, coefficientε1 =
10−4 corresponds to the relative error andε2 = 10−6 corresponds to the abso-
lute error [47].

For these problems, we set a maximum number of generations equal to
100, 000 for all population sizes as a stopping criterion, in case the condition
given by Eq. (29) is not achieved.

4.3. Computational Results

4.3.1. Chemical Equilibrium Problem

Table 2 compares the results obtained by TopoClearing-DE withk = 10 and
k = 20 against those achieved by the conventional DE. The population size is
denoted by PS. We performed one-hundred executions of each algorithm with
the same independent random seeds for all of them, so that the experimentsare
unbiased. SR is the success rate for each algorithm and/or setup. Regarding the
number of fitness evaluations (NFE), we display the minimum, maximum, and
average NFEs taking into account only the successful runs.

Note that TopoClearing-DE obtains a success rate of100/100 even for a
population of one-hundred individuals. The topographical heuristic withk = 20
requires more function evaluations than withk = 10.
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Table 2. Results for the chemical equilibrium problem

DE TopoClearing-DE,k = 10 TopoClearing-DE,k = 20
PS 100 500 100 500 100 500

SR 2/100 100/100 100/100 100/100 100/100 100/100
Min. 15,197 396,801 778,501 3,136,575 1,497,250 5,612,756

NFE Max. 81,186 514,717 1,049,478 3,567,895 2,036,221 6,844,980
Avg. 48,191 455,152 910,942 3,352,001 1,669,972 6,132,049

The only drawback of the method described in this chapter is the higher
computational cost, but this can be explained due to a certain tendency of the
canonical DE to converge prematurely to local optima [10].

4.3.2. Catalytic Reactor Model

Table 3 displays the results for the catalytic reactor model.

Table 3. Results for the catalytic reactor model

DE TopoClearing-DE,k = 10 TopoClearing-DE,k = 20
PS 100 500 100 500 100 500

SR 7/100 100/100 100/100 100/100 100/100 100/100
Min. 3,867,260 509,125 766,005 10,000,000 1,418,602 10,000,000

NFE Max. 9,725,345 631,204 1,257,134 12,273,204 2,741,02323,504,887
Avg. 7,886,874 579,446 1,043,178 11,514,262 2,060,437 21,917,686

Once more, only TopoClearing-DE achieves100% success with a small
population.

4.3.3. Turbine Balancing Problem

Table 4 compares the results obtained by TopoClearing-DE withk = 10 and
k = 20 against those achieved by the conventional DE.

Table 4. Results for the turbine balancing problem

DE TopoClearing-DE,k = 10 TopoClearing-DE,k = 20
PS 100 500 100 500 100 500

SR 10/100 85/100 29/100 86/100 31/100 90/100
Min. 87,310 78,140 27,692 222,135 102,613 147,673

NFE Max. 8,280,554 46,394,433 9,904,947 49,093,657 9,268,706 48,357,305
Avg. 3,296,290 14,107,599 4,315,295 17,610,059 4,137,40018,601,053

Note that TopoClearing DE with both values ofk outperformed the canon-
ical DE for all population sizes, with a slightly better performance fork = 20.
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Also note that the results obtained with one-hundred individuals show that To-
pographical Clearing generated a high diversity even with a small population
for such a complex problem.

4.3.4. Nuclear Reactor Core Design Optimization Problem

Table 5 shows the results obtained by ten independent executions of eachvariant
in terms of fitness (i.e., objective-function value in evolutionary computation
terminology) and NFEs to reach the optimum.

Table 5. Results for the nuclear core design problem

DE TopoClearing-DE,k = 10 TopoClearing-DE,k = 20
Experiment Fitness NFE Fitness NFE Fitness NFE

#1 1.2765 67,967 1.2765 48,094 1.2766 32,619
#2 1.2767 24,832 1.2765 99,375 1.2765 44,119
#3 1.2765 46,173 1.2763 58,372 1.2763 39,562
#4 1.2763 49,570 1.2763 40,603 1.2765 76,368
#5 1.2765 77,814 1.2766 41,591 1.2763 82,141
#6 1.2767 22,468 1.2766 34,185 1.2765 50,525
#7 1.2767 28,716 1.2765 71,802 1.2763 42,476
#8 1.2766 28,410 1.2765 42,306 1.2765 64,447
#9 1.2767 25,012 1.2766 29,601 1.2764 99,607
#10 1.2767 25,271 1.2765 58,720 1.2766 33,268
Average 1.2766 39,623.3 1.2765 52,464.9 1.2765 56,513.2

Comparing the results, we can see that TopoClearing DE outperformed
canonical DE, particularly withk = 20, where the best value of1.2763 was
reached3/10 times. As in the previous problem and for the same reason, DE
with the niching method requires more objective-function evaluations.

5. Conclusion

In this chapter, we present a niching method to overcome local optima of mul-
timodal optimization problems, which are quite common in the real world [24].
This method is applied to challenging real-world optimization problems.

The results obtained here demonstrate the potential of topographical clear-
ing, which is easy to implement and can be used in other evolutionary or swarm-
based optimization methods besides differential evolution. Last but least, it does
not require the burden of estimating the radius (a very difficult task, especially
for practical problems).



150 Wagner F. Sacco, Ana Carolina Rios-Coelho and Nélio Henderson

Acknowledgments

W.F.S. and N.H. gratefully acknowledge the financial support provided by
CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e Tecnoĺogico, Min-
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Appendix A. Nonlinear Systems Formulated
as Optimization Problems

Let us consider the problem of computing solutions of nonlinear systems with
simple bound constraints. We can express this problem as



















f1(x) = 0
f2(x) = 0

...
fN (x) = 0

s.t.x ∈ [a,b] ⊆ R
n, (A.1)

wherex = (x1, . . . , xN )T ∈ R
n, fi : Rn → R and[a,b] ≡ [a1, b1]× [a2, b2]×

. . . × [aN , bN ], with ai < bi, for all i = 1, . . . , N . Note that vectorsa =
(a1, a2, . . . , aN ) andb = (b1, b2, . . . , bN ) are specified as the lower and upper
bounds of the variables, and set[a,b] is a box inRn, where there exist one or
more roots of the nonlinear system. Let us suppose that functionfi : R

n → R,
for any i = 1, . . . , N , can be nondifferentiable or even discontinuous, but it
must be bounded in[a,b]. If F = (f1(x), . . . , fN (x))T , the problem described
by Eq. (A.1) can be reformulated as the following optimization problem:

Min f(x) s.t.x ∈ [a,b] ⊆ R
n (A.2)

In Eq. (A.2),f : [a,b] ⊂ R
n → R is a nonnegative and possibly multimodal

merit function, given by

f(x) = F T (x)F (x), (A.3)

Since the system represented by Eq. (A.1) has solution(s) in[a,b], then, in terms
of results, to solve this system is equivalent to find the global minimum(a) of
the optimization problem given by Eq. (A.2).
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Appendix B. Data and Fitted Variables for the Catalytic
Reactor Model

Table B.1. Data and fitted values for the Catalytic Reactor Model [37]

x1 x2 x3

Data Fitted Data Fitted Data Fitted
0.015 0.018 0.235 0.236 6.25 2.54
0.030 0.031 0.220 0.220 4.90 3.11
0.045 0.045 0.205 0.205 2.90 3.21
0.100 0.100 0.150 0.150 1.75 1.94
0.180 0.180 0.070 0.070 0.30 0.35
0.015 0.023 0.485 0.486 12.30 8.88
0.030 0.034 0.470 0.471 14.00 10.83
0.045 0.038 0.455 0.453 5.00 10.77
0.045 0.047 0.455 0.456 14.20 11.82
0.100 0.100 0.400 0.400 10.81 10.73
0.143 0.143 0.357 0.357 7.81 8.12
0.167 0.167 0.333 0.333 6.41 6.72
0.250 0.250 0.250 0.250 3.90 3.06
0.333 0.333 0.167 0.167 3.60 1.09
0.030 0.023 0.720 0.720 13.00 14.74
0.045 0.044 0.705 0.705 20.00 20.72
0.100 0.100 0.650 0.649 19.81 22.45
0.180 0.180 0.570 0.570 15.10 15.88
0.240 0.241 0.510 0.510 8.90 11.10
0.300 0.300 0.450 0.450 7.50 7.51
0.360 0.360 0.390 0.389 2.00 4.85
0.026 0.015 0.974 0.974 13.00 14.56
0.050 0.048 0.950 0.950 30.00 30.67
0.100 0.100 0.900 0.901 37.50 34.89
0.250 0.248 0.750 0.752 25.00 20.52
0.150 0.150 0.850 0.850 31.50 30.98
0.333 0.334 0.667 0.666 10.00 13.34
0.500 0.500 0.500 0.500 4.00 5.26
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Abstract 

Focusing on the interactivity that a robotic interface establishes between the 
virtual and the real world, some sensory systems and mobile robotic platforms 
were developed for the AURAL project, a robotic evolutionary environment for 
sound production. From the AURAL perspective, human and robots are agents of 
a complex system and the sonification is the emergent propriety produced by 
their interaction and behavior. One way to characterize types of interactions is by 
looking at ways in which systems can be coupled together to interact. The 
representation of the interaction between a person and a dynamic system as a 
simple feedback loop faces the role of information looping through both a person 
and a system. Two different sonification paradigms were applied in AURAL 
environment. In the first case, the sonification is generated by an evolutionary 
mapping of the robot trajectories into sound events. In the second case, the sound 
production is the result of a generative process. As such the sonification here is 
not seen as an isolated aspect of AURAL, but as a representation of the 
synergetic capacity of the agents to collaborate and produce a complex product. 
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A comparison between the results obtained with both approaches is presented. 
The structure/novelty tradeoff has been approached. 

Introduction 

New ground is currently being broken in the areas of robotics, musical 
composition and interactive narratives. With the advent of new interactive and 
sensing technologies, computer-based music systems have evolved from 
sequencers to algorithmic composers and complex interactive systems that sense 
their environment and can automatically generate music. Consequently, the 
frontiers between composers, computers and autonomous creative systems have 
become more and more blurred, while the concepts of musical composition and 
creativity are being put into a new perspective. The use of synthetic interactive 
music systems allows for the direct exploration of a sentient approach to music 
composition. Venturing into the controlling of motion and sound, as well as 
robotics, the transformation of everyday items, the mixing of realities to straddle 
the physical and virtual words, other kinds of exploration are being investigated 
taking into account the principles of emergence, embodiment and feedback. 
Mixed reality systems are being integrated with nowadays activities in areas such 
robotics, game technologies and artistic installation. 

Concerning to computer-aided composition, based on a rich history of classical 
music theory and teaching, one of the first goals was to help the composer during 
the creative process. Probably the most widespread computer-aided composition 
paradigm is still that of a music sequencer. This model is somehow a continuation 
of the traditional composition based on the writing of musical scores. Within the 
sequencer paradigm, the user/composer creates an entire piece by entering notes, 
durations or audio samples on an electronic score. Due to its digital nature, this 
score can later be subjected to various digital manipulations. Within this paradigm, 
the computer is “passive”, the human being is in control of the entire compositional 
processes and uses the computer as a tool to lay down ideas and speedup specific 
tasks (copying, pasting or transposing parts). 

In contrast with the standard sequencer approach, computer-based algorithmic 
composition relies on mathematical formalisms that allow the computer to 
automatically generate musical material, usually without external output. The 
composer does not specify directly all the parameters of the musical material, but 
a set of simple rules or input parameters, which will be taken into account by the 
algorithm to generate musical material. In the latter paradigm, the computer 
carries out most of the detailed work and the composer controls a limited set of 
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initial global parameters. Different approaches to algorithmic composition 
inspired by technical advances have been proposed and tested; the main ones are 
statistical methods, rule-based methods, neural networks and genetic algorithms 
(Papadopoulos and Wiggins, 1999; Nierhaus, 2009). With the advent of new 
programming languages, communication standards and sensing technologies, it 
has now become possible to design complex real-time music systems that can 
foster rich interactions between humans and machines (Rowe, 1993; Winkler, 
2001; Zicarelli, 2002; Wright, 2005; Puckette, 1996). Interaction is understood 
here as “reciprocal action or influence” as defined in the Oxford New Dictionary 
of American English (Jewell et al., 2001). Nowadays, one may build sensate 
composition systems able to analyze external sensor inputs in real-time and use 
this information as an ingredient of the composition (Le Groux, 2011). These 
kinds of interactive systems are in accordance with the philosophy that a theory of 
mind, including one of creativity and aesthetics, will be critically dependent on its 
accomplishment as a real-world artifact because only in this way may such a 
theory of an open and interactive system as the mind be fully validated (Verschure 
and Manzolli, 2013; Boden, 1991). 

The AURAL system, described in this chapter, was created by focusing on 
the interactivity that a robotic interface establishes between the virtual and the real 
world. An interactive evolutionary graphical interface applied to sound 
production, an omnidirectional vision system and mobile robots are integrated in 
an arena constructed so as to allow interactive control of real time sonification and 
robotic navigation. A similar architecture, with an artificial vision system and 
mobile robots, but with a different sonification paradigm based on generative 
systems is applied in AURAL2. In both versions, humans and robots are agents of 
a complex system and the sonification is the emergent propriety that is produced 
by their interaction and behavior. This exploration is also related with the concept 
of self-organization in complex systems. 

This chapter is organized in the following way. Section 1 describes the 
evolutionary compositional interface of the AURAL environment, its 
components, features and AURAL as an art installation. Section 2 describes 
AURAL2 and its generative process. Section 3 presents the automation and 
interactivity, the parts of an art system, comparing them with dynamic systems 
under the general systems theory. Section 4 compares both AURAL and AURAL2 
environments, concerning to the characteristics of the sound results. Finally, the 
conclusions are presented. 
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1. JaVOX, an Evolutionary Composition System 

In the AURAL environment, the behavior of mobile robots in an arena is applied as 
a compositional strategy and the sonification is generated by means of a mapping of 
the trajectories of the robots into sound events (Moroni & Manzolli, 2010). Starting 
with VOX POPULI (Moroni et al., 2000), an evolutionary composition system, 
another environment, JaVOX, evolved. Like its predecessor VOX POPULI, JaVOX 
is based on three musical aspects: melody, harmony and voice range. The 
specifications of these criteria define the fitness of a group to the applied selection 
function. This function returns the “better individual”, or “better chord”, according 
to the measured aspects. The selected group is treated as a set of MIDI notes and 
played. The system allows the user to modify the fitness function by using four 
controls, one for the melodic criterion; another for the duration of the genetic cycle 
and music rhythm; a third one for the set of octave range to be considered, and the 
last one for the time segment for each selected orchestra. All these controls are 
available for real time performance allowing the user to play and interact with the 
musical evolution, but the controls may also be automatically modified during a 
performance, depending on the behavior of the robots. 

1.1. Population as MIDI Data 

For our purposes, an auditory event may be described using four parameters: 
pitch, timbre, loudness and duration. Pitch can be defined as the auditory 
propriety of a note that is conditioned by its frequency relative to the other notes. 
The range of musical pitch has been defined as the range within which the interval 
of an octave can be perceived. This has been found to correspond roughly to the 
range of the piano. From this continuum of frequencies, a set of discrete 
frequencies is selected so that the frequencies bear a definite interval relationship 
to one another. So, pitch in the musical sense corresponds to a frequency that is 
selected from a predefined repertoire. In this scheme, two discrete frequencies are 
chosen in the interval of an octave such that the ratio between any two adjacent 

frequencies is . This interval ratio in music terminology is termed a semitone 
in a temperament system or chromatic scale. Loudness is that aspect of an 
auditory event related to its intensity. Duration is characterized by the period of 
time in which the event is perceivable. Timbre is a complex feature of the sound 
domain, but in this chapter it is taken as being the individuality of sound acquired 
by the addition of harmonics to the fundamental pitch. Here it is specifically 

212
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defined as the characteristic of a given musical instrument and the mode of 
playing it. 

Using the foregoing notions, we define here a melody as a fixed temporal 
ordering of auditory events. So, a melody in conventional occidental notation 
resembles a system of cartesian coordinates. The pitch and duration are carefully 
marked; timbre is decided by the instrument for which it is written and loudness is 
crudely marked (Vidyamurthy, 1992). However, this is a very subjective issue; the 
judgment of harmony does not seem to have a natural basis, but seems to be a 
common response people acquired in a certain cultural context. Therefore, 
opinions on the subject may vary widely depending on social and cultural 
backgrounds. 

1.2. The Evolutionary Sound Process 

In JaVOX, we used the MIDI protocol to code a musical genotype. In this 
evolutionary sound system, the individuals of the population are defined as a set 
of four notes. These notes are randomly generated in the interval [0, 127] where 
every value represents a MIDI event. In each generation, 30 individuals are 
created.  

Two cycles are integrated in the evolutionary sound process. The 
reproduction cycle is the evolving process that generates a set of four notes using 
genetic operators and selecting individuals. In the MIDI cycle the interface looks 
for notes to be played. When a set is selected, the program places it in a critical 
area which is continually verified by the MIDI interface. These notes are played 
until the next set is selected. Figure 1 depicts the reproduction cycle and the MIDI 
cycle.  

The musical fitness for each pitch set, described in (Moroni et al., 2002) is a 
conjunction of three partial fitness functions: melody, harmony and vocal range, 
each returning a numerical value.  

 
Musical Fitness = Melodic Fitness + Harmonic Fitness + Vocal Range Fitness  
 
An analogy may be made of each individual with a chord of four voices (or a 

chord played by four instruments). The chord with the highest fitness is selected 
and played as a new MIDI event. At each generation of the process a new sonority 
is created by applying the fitness criteria regarding the melodic line (mel), voice 
range (oct), duration of the evolutionary cycle (bio) and music meter (rhy). Based 
on the order of musical interval consonance, the notion of approximating a 
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sequence of notes to its harmonically compatible note, or a tonal center (mel), is 
used. The selected notes are sent to the MIDI board and can be heard as sound 
events in real time. The duration of the evolutionary cycle (bio) and music meter 
(rhy) is taken into account. This sequence produces a sound resembling a chord 
cadence or fast block counterpoints.  

 

 

Figure 1. The reproduction cycle and the MIDI cycle in the evolutionary process for sound 
production. 

1.3. The Structure/Novelty Tradeoff 

An issue of central importance in the construction of any evolutionary system is 
the structure/novelty tradeoff. When filling the void using chaotic materials 
necessary for invention, the more such materials are introduced, the more the 
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structure and knowledge will be added to the system and structure will be present 
in the system’s output behavior. That is, more highly structured systems can 
produce more highly constrained output. Some of these concepts were firstly 
stated by one of the pioneers of cybernetics, Ashby (1956). By applying these 
ideas to algorithmic composition systems means that more knowledge and 
structure allows the creation of new pieces that are more tightly matched to the 
desired musical genre. However, the flipside of more structure is less new 
material. The highly constrained output will be less likely to stray beyond a 
genre’s limitations or it may be surprising. Thus, the highly structured 
composition system will be less general, able to reach less ‘music space’ with its 
output (Todd & Werner, 1999). 

In the AURAL, this tradeoff is treated by creating an interplay between 
sound, real-world artifacts, user and behavioral information, through the 
interaction among the evolutionary sound process, the artificial vision system and 
the mobile robots. The sound interface has a Graphic Area, the heart of the 
system, wherein the user may draw curves to be sent as trajectories to the robots. 
This area is associated with a conceptual sound space with two axis, the “red” 
one, or melodic, and the “blue” one, or rhythmic. The paths travelled by the robots 
in the arena are observed by the artificial vision system and sent, as sequences of 
points, to the sonification module. The red curves, sent as trajectories to the robots 
and the blue curves associated with the paths travelled guide the evolutionary 
sound process across different regions in the sound space.  

Figure 2 shows JaVOX interface on the left and the curves from which the 
parameters are extracted for fitness evaluation. In the Graphic Area, three curves 
are shown: a) the trajectory the user draws, b) the path followed by a master robot 
and c) the path followed by another robot. Curves a) and b) are shown in detail on 
the right.  

The fitness criteria, based on the ordering of musical interval of consonances 
(see previous section), introduces in the process some structure and knowledge in 
the process. At the same time, depending on the distance between the couple of 
robots (until four), the performance controls are activated. The Performance 
Control area offers other possibilities to control the sound production. For each of 
the four MIDI voices there are three controls: solo, sequence and block. They 
work as delay lines in which MIDI notes from previous generations are played 
again as solo, melodic patterns or chords. The relative position of the robots is 
used to select the solo, the sequence or block mode for each voice in real time. 
Table 1 shows the five simple rules associating the distance between the robots 
and the processes (the solo, sequence and block) of the Performance Control. 
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Table 1. Rules relating the distance between the robots and performance 
controls 

Rule Distance (m) Solo Sequence Block 
1 >0.5 X   
2 0.4 < D < 0.5  X  
3 0.2 < D < 0.4  X X 
4 D < 0.2   X 

 
Other interface features enable the user to modify the number of notes of the 

Performance Control, as well as the rhythm, the pitch and the orchestra controls 
affecting the musical performance. The user interaction may be interpreted as 
attempts to improve the outcome by opening the possibility of the system to learn 
with it. It shows how robots physically fulfill the arena with a textural 
representation of the generated music. If the “solo” is activated, the resultant 
music structure will consist of independent voice lines. If the “sequence” is 
activated, the resultant music structure will consist of pitch pattern sequences. If 
the “block” is activated, the resultant music structure will consist of chord 
structures. In short, Table 1 expresses relationships between the motion behavior 
of robots and the music structures making the emerging composition depend on 
real world constraints.  

During an AURAL performance, all the interactive paths can be recorded. It 
is possible to register all the automatic and interactive events, as well as the audio 
and MIDI files generated in real time. Some of them were used as a basic material 
for generating instrumental compositions. A piece titled “Robotic Variations” for 
piano, marimba and electronics (computer and robots) was made up of the 
obtained music structures. A dancer, three musicians (marimba, piano and 
computer) and four robots (see description below) performed the musical piece of 
the robot evolution at the AURAL installation.  

1.4. AURAL as an Art Installation 

AURAL was presented in an art gallery (Figure 3) where the visitors could 
appreciate the sound output and the interaction among the robots, as a kind of 
choreography. The visitors drew curves in the JaVOX interface, which were 
transmitted as trajectories to a master robot, the Nomad. While the robots (until 4) 
moved in the arena, virtually traveling along the conceptual sound space, people 
changed the orchestra, rhythm and pitch controls by investigating the sound 
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possibilities. Both a process of man-machine interaction and parallel exploration 
occurred. 

 

  

 

Figure 3. The first picture, on the left, shows AURAL installation at UNICAMP art 
gallery. The OmniEye, the artificial vision system, can be seen hanging on the ceiling. In 
the other pictures another setup of the AURAL at FILE festival, an international festival on 
electronic language, is depicted. 
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On the last day of the exhibition, a dancer, three musicians and the AURAL 
system itself, with four robots, performed an interactive concert called Robotic 
Variations. The same trajectories used to generate the material for the 
composition were used in the performance. An interactive scenery displayed real 
time processed images on the walls. The dancer was invited to interact with the 
robots in the arena, in a live performance. For the visual tracking, a strong color 
panel was fixed on the top of each robot. 

 

  

 

Figure 4. On the left, the dancer, the robots and the interactive scenery. On the right, the 
robots and the musicians. The third picture shows the dancer, the robots and the musicians 
during the rehearsals of the art performance. 

Choreography was designed so that the robot with a red panel left the room 
and was replaced by the dancer using a red hat. Her position was tracked by the 
visual system through the red hat and interfered in the performance of the sound, 
incurring in another human-machine interaction cycle. Figure 4 shows some 
pictures of the musicians and of the dancer taken during the rehearsals of the 
performance. AURAL performance videos can be seen at (Moroni, 2012). 
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2. Generative Sonification 

A similar architecture, with an artificial vision system and mobile robots, but with 
a different sonification paradigm, was applied in AURAL2, a different version of 
the sound installation. If in the previous version the sound production is the result 
of an evolutionary process, in this second version the result is of a generative 
process interplaying with the human and real-world artifacts. The generative 
systems have many similarities with systems found in various areas of science; 
they may provide order and disorder, as well as a varying degree of complexity, 
making behavioral prediction difficult. However, such systems still contain a 
definite relation between cause and effect. The artist (or creator) generally 
provides basic rules, and then defines a process, random or semi-random, to work 
on these elements. The results continue to happen within the limits of the domain 
of the rules, but also may be subjected to subtle changes or even surprises. This 
paradigm of interaction between visitors and sound expression was also 
performed with the Roboser system in the “Ada: intelligent space” installation 
(Wasserman at al., 2003). Differently from ADA the visitors interaction is based 
on an individual basis while in ADA it was constructed as a collective behavior.  

In the AURAL2, sound fragments are inserted into a database, the memory of 
the system. The database is made up of four matrices, each one containing sound 
samples of different types: synthetic, game, environment and everyday sound 
fragments. Each cell in the matrix is associated with a cell in a virtual grid, 
projected on a winding format platform, or stage (3m x 3m wide, 0.3m high), 
depicted in Figure 5.  

A hole inside the platform creates tracks that may be travelled on by only one 
robot or two robots. The robots have a border sensor, they stop when they detect 
the border. In the other regions of the platform, three or four robots can move 
around. This design cases conflicts among the robots when they try to escape from 
confined areas. The robots are tracked by a vision system which evaluates the 
position (x, y) of the robots on the stage; associates a cell in the matrix with that 
position and plays the sound fragment associated with it. The movement of the 
robots through the different regions of the stage triggers the sound of the 
associated cells, (re)creating soundscapes in the installation environment. 

On a TV, the virtual grid is shown in several angles, as well as the cells 
activated by the robots (Figure 6). The visitors may interact with the system by 
talking, singing or screaming at a microphone, starting the intervention process: 
sound fragments are extracted from the interventions of the visitors and randomly 
inserted into the environment matrix; there is a possibility of the segments to be 
triggered and played again by the movement of the robots. A spectral analysis is 
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Figure 6. Above, AURAL2 installation: the winding formatted stage, the robots and the 
television showing the active cells. On the bottom, a person interacting at the microphone.  

3. Automation x Interactivity 

One may see as an interesting aspect of the AURAL environments the possibility 
of different setups to explore distinct levels of interaction among humans and 
machines. One way of characterizing the types of interactions is by looking at 
ways in which systems can be coupled together to interact. Cornock and Edmonds 
(1973) early identified the ‘art system’ as consisting of the artist, the participants, 
the artwork, the environment in which these elements are placed, and the dynamic 
processes or interactions that result from the process (Candy & Edmonds, 2012).  

Canonical models of computer-human interaction are based on an archetypal 
structure: the feedback loop. Representing interaction between a person and a 
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dynamic system as a simple feedback loop is a good first approximation, it 
forefronts the role of information looping through both the person and the system 
(Dubberly et al. 2009). Within dynamic systems, there is a distinction between 
those that only react, a linear or open-loop system, and those that interact, or 
closed-loop systems. Some closed-loop systems have a novel propriety—they can 
be self-regulating. But not all closed-loop systems are self-regulating. For 
example, the natural cycle of water is a loop. Rain falls from the atmosphere and 
is absorbed into the ground or runs into the sea. Water on the ground or in the sea 
evaporates into the atmosphere. But nowhere within the cycle is there a goal.  

A self-regulating system has a goal. The goal defines a relationship between 
the system and its environment, which the system seeks to attain and maintain. 
This relationship is what the system regulates, what it seeks to keep constant in 
the face of external forces. A simple self-regulating system (one with only a single 
loop) cannot adjust its own goal; its goal can be adjusted only by something 
outside the system. Such single-loop systems are called “first order.” 

Learning systems nest a first self-regulating system inside a second self-
regulating system. The second system measures the effect of the first system on 
the environment and adjusts the first system’s goal according to how well its own 
second-order goal is being met. The second system sets the goal of the first, based 
on external action. We may call this learning—modification of goals based on the 
effect of actions. Learning systems are also called second-order systems. 

Some learning systems nest multiple self-regulating systems at the first level. 
In pursuing its own goal, the second-order system may choose which first-order 
systems to activate. As the second-order system pursues its goal and tests options, 
it learns how its actions affect the environment.  

A second-order system may in turn be nested within another self-regulating 
system. This process may continue for additional levels. For convenience, the 
term “second-order system” sometimes refers to any higher-order system, 
regardless of the number of levels, because from the perspective of the higher 
system, the lower systems are treated as if they were simply first-order systems.  

3.1. Feedback Loops in the AURAL 

When, in the AURAL, the user supplies parameters for fitness evaluation by 
drawing a curve (red) from which the coordinates of the points are taken as 
parameters, the curve – a linear system - provides input for a learning system, the 
evolutionary process. Medium solutions are expected in this case, since the fitness 
function changes quickly. The blue curve - output - supplies the bio parameter for 
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hat is seen by the system as another robot, but with a different behavior. As an 
autonomous agent the dancer avoids collisions, while the robots handle collisions, 
they drive away from the obstacle.  

When solo control is enabled, the sound events are sent directly to the MIDI 
board from the JaVOX evolutionary process, supplying a single sequence of MIDI 
events at every step of the genetic cycle. Therefore, the sound result depends only 
on the interaction between the red curve and the blue curve. In the second 
performance control (sequence), MIDI notes (voices) are played in quick event 
sequences. In this way the melodic character of the music is emphasized, 
generating a sound texture having a horizontal character. The third control (block) 
sends events to the MIDI board as quickly as possible, almost simultaneously, 
generating a superposition of notes or blocks. In this case the emphasis is in the 
verticality of the sound events, generating cluster textures.  

The number of notes n cyclically sent to the MIDI board is described by a 
slider within the performance control of JaVOX. The notes are stored in a buffer 
memory containing the last n notes selected by the evolutionary cycle. This 
strategy introduces sound information of second order and brings about emergent 
and unexpected output, using data stored in the recent memory of the system. 

Several cases occur in this interaction. Just to mention some of them, each 
agent, robot or dancer, can be considered a self-regulating system. The OmniEye 
observes their movement, evaluates the distance between the pairs of the agents 
and assigns the performance modes. As a system, the OmniEye measures the 
effect of the first system – the autonomous agents – and its output – the 
performance controls - becomes input for another system, the MIDI cycle. Again, 
in this case we have conversing systems. To achieve its goal, the MIDI cycle uses 
the notes stored in the buffer memory, which are the output of the evolutionary 
cycle, a learning system. The number of notes (n) is set by the user, characterizing 
a regulating system, where the output of one linear system provides the input to 
another.  

3.2. Interactivity in AURAL2 

In the AURAL2, sound fragments are triggered depending on the position of the 
robots on the stage. Like in the AURAL, each robot can be considered a self-
regulating system. The vision system, videoGrid, tracks the movement of the 
robots on the stage, evaluates its position and assigns a sound fragment to be 
played. The sonifying process is activated, and may be considered a first order 
system. But, most important about AURAL2, is that it is an open system. AURAL2 
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music that would be generated, but they had to be able to adapt the performance. 
At the same time, the dancer, tracked by her red hat, was interacting with the 
robots, all interfering in the music that was being generated.  

In each performance, the place of the robots, navigating in the arena in their 
autonomous mode, could be different; the dancer had to adapt herself to them. 
Important to remember is that all the process was triggered by a curve drawn by a 
human. The curve, as well as all the MIDI events generated in a test run, were 
recorded.  

The sound material was adapted for human performance. The same curve was 
used in the rehearsals and in the final performance, with the musicians, the dancer 
and the robots. The dancer and the robots interfered in the sonification process, 
accomplished by the musicians, incurring in multiple feedback cycles. 

Concerning to the structure/novelty tradeoff, the challenge faced by the 
designers of evolutionary composition systems is how to bring more structure and 
knowledge into the compositional loop, while trying to the user out of it. In this 
sense, JaVOX control interface offers some possibilities for the user. If simulated 
evolution techniques allow to obtain novelty, often complex novelty, the curves 
drawn in the interface permits to direct the novelty by guiding the evolutionary 
cycle through the desired regions of the conceptual sound space. The other 
controls: rhythm, pitch, performance and orchestra still allow to modify the 
sonority of the system in real time. The user/composer still is in the loop, but just 
directing the compositional loop.  

On the other hand, in the AURAL2 the structure is only suggested by the type 
of the sound samples (synthetic, game, environment and everyday sound fragments) 
stored in the database. The microphone acts as an invitation to the visitors for 
interaction. During the exhibition the people initially tried the installation by talking 
at the microphone. When the visitors heard segments of their speech mixed with 
other sounds, people started to explore the system by talking, singing, or even 
screaming, sometimes incurring in visual effects in the virtual grid displayed on the 
TV, by changing the color of the cells or the position of the grid. Filtered images of 
the robots and of the people were also displayed on the TV. When people become 
aware of the images, they started to move in front of the camera. The behavior of 
the people changed while they tried the environment.  

More structure and knowledge built into the system means more reasonably 
structured musical output, but also more predictable output, which can be relaxed 
by introducing processes such as those linking the interaction of the robots with 
the performance controls. Less structure and knowledge in the system, like in 
AURAL2, means more novel, unexpected output, but also more unstructured 
musical chaff. Producing computational models of such high-level behaviors, 
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embedded in robotic platforms, calls for novel research at the frontier between 
robotics, music and multimodal systems. 

From the AURAL and AURAL2 perspectives, humans and robots are agents 
of a complex system and the sonification is the emergent propriety that is 
produced by their interaction and behavior. As such the sonic result is not seen as 
an isolated aspect of these two systems but a representation of the synergetic 
capabilities of the agents to collaborate and produce a complex musical narrative. 
By interacting with the environment, which provides feedback via sensors, the 
systems generate different sonic structures. Evidences from situated robotics and 
neuroscience point to the fact that it is important to take into consideration the 
principles of parallelism, emergence, embodiment and feedback to foster the 
expressivity and creativity into machines (Verschure and Manzolli, 2013). 
Through the interaction between the real and then virtual worlds AURAL brings 
about emergent musical narratives critically dependent on their accomplishment 
as real-world artifacts, supplying a solution to be verified for the theory of an 
open and interactive system as the mind. 

Conclusion 

Through the interaction between the real and virtual worlds, AURAL produces 
emergent musical narratives, the so emanating composition depends on real world 
constraints. This kind of interactive system is based on the approach of the theory 
of mind including its creativity and aesthetics and it will be critically dependent 
on its accomplishments of real-world artifacts because only in this way may this 
theory of an open and interactive system be fully validated, since the 
computational power of a machine can be used to infer the implications of a 
program where the unassisted human mind is unable to do. 

Researchers and developers remain optimistic about breaking down the barriers 
between humans and digital devices so that they can communicate more easily. 
Work that focuses attention on the physicality is especially important in an age 
when the interplay between real and virtual worlds is becoming so important. In 
time, sensing, computing and communication functions will become invisible and 
integrated into everyday objects and spaces. It remains unclear how far such 
developments can go. Meanwhile, artists and composers are enthusiastic about 
creating unprecedented interactive works that engage persons in innovative ways. 
The increasing presence of computing power in their artworks and compositions 
will continue to bring up questions about the extent to which artists might be 
involved in designing the intelligence, form and interactivity of works in the future.  
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Chapter 6

AN ANALYSIS OF EVOLUTIONARY -BASED

SAMPLING M ETHODOLOGIES

Yoel Tenne∗

Department of Mechanical and Mechatronic Engineering,
Ariel University, Israel

Abstract

A common approach for solving simulation-driven engineering prob-
lems is by using metamodel-assisted optimization algorithms, namely, in
which a metamodel approximates the computationally expensive simula-
tion and provides predicted values at a lower computationalcost. Such al-
gorithms typically generate an initial sample of solutionswhich are then
used to train a preliminary metamodel and to initiate optimization pro-
cess. One approach for generating the initial sample is withthe design
of experiment methods which are statistically oriented, while the more
recent search-driven sampling approach invokes a computational intelli-
gence optimizer such as an evolutionary algorithm, and thenuses the vec-
tors it generated as the initial sample. Since the initial sample can strongly
impact the effectiveness of the optimization process, thisstudy presents
an extensive comparison and analysis between the two approaches across
a variety of settings. Results show that evolutionary-based sampling per-
formed well when the size of the initial sample was large as this enabled
a more extended and consequently a more effective evolutionary search.

∗E-mail address: y.tenne@ariel.ac.il
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When the initial sample was small the design of experiments methods typ-
ically performed better since they distributed the vectorsmore effectively
in the search space.

PACS: 05.45-a, 52.35.Mw, 96.50.Fm

Keywords: evolutionary algorithms, sampling methods, expensive optimiza-
tion problems, metamodelling

1. Introduction

These days computer simulations are used in engineering as a substitute for
real-world experiments, with the goal of making the design process more ef-
ficient. These simulations, which must be properly validated with laboratory
experiments, transform the design process into an optimization problem having
three distinct features (Tenne and Goh, 2010):

• The simulation acts as the objective function since it assigns candidate
designs their corresponding objective values. However, the simulation is
often a legacy code or a commercial software whose inner workings are
inaccessible to the user, and is therefore viewed as ablack-box function,
namely, which lacks an analytic expression. This precludes the of opti-
mization methods which require an analytic function.

• Each simulation run requires extensive computer resources, and this
severely restricts the overall number of candidate designs which can be
evaluated during the design process.

• Both the real-world physics being modelled, and the numerical simula-
tion process, may result in an objective function having a complicated
nonconvex landscape which exacerbates the optimization difficulty.

These scenarios are commonly referred to in the literature asexpensive black-
box optimization problems, and a variety of algorithms have been proposed to
address them (Tenne and Goh, 2010; Forrester and Keane, 2008; Queipo et al.,
2005).

A common methodology which is applied to such scenarios is that of
metamodel-assisted optimization, namely, in which a metamodel approximates
the true expensive function (the simulation), and provides the optimizer with
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predicted objective values at a lower computational cost. Such algorithms typ-
ically begin by generating an initial sample of vectors which represent candi-
date solutions, and these are then used to train a preliminary metamodel and to
initiate the main optimization search. This implies that the initial sample can
strongly impact the overall search effectiveness and motivates a closeranalysis
of this relation.

A common approach for generating the initial sample is by the design of
experiments (DOE) methods, which are statistically-oriented and aim to gen-
erate a sample which is optimal in some sense. A more recent approach is
that of search-based sampling (SBS) in which a direct search optimizer is in-
voked for a short duration and the vectors it evaluated then serve as theinitial
sample. In the literature, existing studies in the domain of metamodel-assisted
optimization have focused mainly on DOE methods, for example, as discussed
by Queipo et al. (2005); Chen et al. (2006); Sóbester et al. (2005);Forrester and
Keane (2008); Wang and Shan (2007). Therefore, the focus and main contri-
bution of this study is to: a) compare the DOE and the search-driven sampling
(SDS) approaches in metamodel-assisted optimization, and b) analyse the im-
pact of these sampling methods on the overall search effectiveness instead of
the metamodel accuracy. An extensive set of numerical experiments is used to
formulate guidelines as to how best apply such sampling methods.

The remainder of this chapter is organized as follows: Section 2 provides
pertinent background information, Section 3 describes in detail the numerical
experiments performed, and Section 4 provides an extensive performance anal-
ysis. Lastly, Section 5 concludes this chapter.

2. Background

This section provides background information on relevant optimization and
sampling methods.

2.1. Expensive Optimization Problems and Computational
Intelligence Algorithms

Computationally-expensive simulation-driven optimization problems are com-
mon across engineering and science domains, and Figure 1 shows their layout,
where the simulation is treated as a black-box function. In this setup, candidate
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Optimizer Simulation

Candidate solution

Objective value

‘Black-box’ function

Figure 1. The layout of a computationally expensive simulation-driven opti-
mization problem.

designs are parameterized as vectors of design variables and are provided as
inputs to the simulation.

Meta-models (also termedresponse surfaceor asurrogate model) are often
used to circumvent the high evaluation cost. They provide predicted objective
values at a much lower computational cost when compared to the simulation
code. Metamodels are typically interpolants which have been trained by us-
ing evaluated vectors, and examples include artificial neural networks, Krig-
ing, polynomials, and radial basis functions (RBF) (Forrester and Keane, 2008;
Queipo et al., 2005). Metamodel-assisted algorithm typically begin by sampling
a set of vectors and using them to train a preliminary metamodel. An optimiza-
tion search is then performed in which the optimum of the metamodel is sought,
and vectors generated during this search are evaluated with the true expensive
function and are used to update the metamodel. This process then repeats un-
til a maximum number of analysis have been performed. Algorithm 1 gives a
pseudocode of a baseline metamodel-assisted optimization algorithm.

After training a metamodel, two main classes of optimization algorithms
can be used to search for an optimizer:

• Gradient-based optimizers: These optimizers typically operate on a single
candidate solution which is refined at each iteration based on the local
gradient. The resultant search is typically localized.

• Direct search optimizers: Such optimizers typically employ a number of
candidate solutions concurrently, and manipulate them based only on the
observed function values (gradients are not utilized). The resultant search
tends to be more explorative when compared to gradient-based methods.
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Algorithm 1: A baseline metamodel-assisted optimization algorithm

/* Initial sampling step */
Generate an initial sample of vectors;
Evaluate the vectors with the true expensive function and store them in
memory;
/* Main optimization loop */
while maximum number of analyses not reacheddo

Train a metamodel by using the vectors stored in memory;
Search for an optimum of the metamodel, based on an infill sampling
criterion;
Evaluate with the true expensive function one or more of the vectors
generated during the search, and add them to the memory storage;

Since black-box functions often have a complicated nonconvex landscape,
gradient-based optimizers can converge to a poor local optimum. This has mo-
tivated the use of direct-search optimizers in such problems since their explo-
rative search behaviour often allows to them to locate a better final solution
(Zahara and Kao, 2009; Babu and Rakesh, 2006). One such optimizer, which
has been widely used in literature and which is also employed in this study, is
theevolutionary algorithm(EA), which uses the following nature-inspired op-
erators (de Jong, 2006): i)selection: the vectors (typically those with a better
objective value) are selected asparents, ii) recombination: the parents vectors
are combined to yieldoffspring, iii) mutation: some offspring vectors are per-
turbed. The offspring population is then evaluated, and the members with the
best objective values serve as the next generation population. The process then
repeats until a termination criterion is met, for example, if the maximum num-
ber of generations has been reached. Through these nature-inspired operators
the EA population explores the function landscape and is able to locate good
solutions even in challenging scenarios such as with nonconvex or nondifferen-
tiable functions. Algorithm 5 gives a pseudocode of a baseline EA.

2.2. Sampling Methods

Sampling methods were originally aimed to assist in designing real-world lab-
oratory experiments, and hence denoted asdesign of experiments(DOE) meth-
ods. The main assumptions under which they were developed were that the true
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Algorithm 2: A baseline evolutionary algorithm (EA)

Initialize and evaluate a population of candidate solutions;
/* main loop */
repeat

Select a group of candidate solutions and designate them asparents;
Recombine the parents to createoffspring;
Mutate some of the offspring;
Evaluate the offspring;
Select the candidate solutions which will comprise the population of
the next generation;

until convergence or maximum search duration;

objective function is a low-order polynomial, and that the objective values being
observed in the experiment always contain some random noise. In these settings
the classical DOE methods were developed to minimize the noise impact and
to improve the accuracy of estimating the polynomial coefficients. Examples
of such methods include factorial designs (Fisher, 1926; Finney, 1945), central
composite designs (Box and Wilson, 1951), and the response surface methodol-
ogy (RSM) designs (Myers and Montgomery, 1995).

The above assumptions were invalid for computer experiments since now
the observed function values were deterministic, namely, free of noise. Also,
the true objective function was no longer restricted to be a low order polyno-
mial, and more general approximations were being considered such as RBF,
Kriging, and artificial neural networks (ANN). These issues have driven the de-
velopment of modern DOE methods whose goal is to cover the search spacein
some optimal way, which consequently should improve the prediction accuracy
of the resultant metamodel. Examples of such methods include Monte Carlo
sampling (Metropolis and Ulam, 1949), Latin hypercube (LH) designs (McKay
et al., 1979), orthogonal arrays (Owen, 1992), and maximin and minimax de-
signs (Johnson et al., 1990), to name a few.

A recent and drastically different approach is that of search-driven sampling
(SDS). Here an optimizer is invoked for a short duration and during its runit
calls the objective function directly (no metamodels are involved in this phase).
After this short run has been completed, the vectors evaluated then serveas
the initial sample. Since the gradient of the black-box function is not known,
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SDS setups have used adirect searchoptimizer, namely, which relies on the
observed function values only (Jin et al., 2005; Quttineh and Holmström, 2009).
Such optimizers typically operate on a set of vectors instead of a single one,and
manipulate them based on the observed function values. In particular, EAs,
which are known for their robustness and effectiveness, have beenused as the
direct search in the SDS approach, and examples include Büche et al. (2005)
and Liang et al. (2000). To conclude this section, Table 1 compares the main
aspects of the DOE and SDS approaches.

Table 1. Features of DOE and SDS sampling methods

DOE SDS

Procedure Sampling vectors from a
statistical distribution

Invoking an optimizer which
directly evaluates the expensive
function, and using the evaluated
vectors as the initial sample

Sequence of sample
generation

Entire sample a-priori Incrementally during the search

Parallel evaluation Entire sample a-priori Only the set of vectors available
at each iteration

Objective function
affects sampling

No Yes

Sample is space-filling Yes Partially

A metamodel is involved
in the procedure

No No[1]

[1] : As an exception, Laurenceau and Sagaut (2008); Quttineh and Holmström
(2009) used a Kriging metamodel.

3. Numerical Experiments: Design
and Implementation

This section describes the numerical experiments which were used to evaluate
the impact that different methods for generating the initial sample have on the
search effectiveness.
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3.1. Design of the Numerical Experiments

Each experiment consisted of a pre-optimization stage in which the initial sam-
ple was generated by one sampling method, followed by a full optimization
search which was performed by a representative optimizer (which is described
in Section 3.4).

The experiments were formulated based on thedesigned experimentsframe-
work of Myers and Montgomery (1995) such that they included two compo-
nents:

• Factors: The main variables whose effect is being analyzed. In this study
the sampling method type was defined as the factor. The different meth-
ods are described in Section 3.2.

• Control variables: These are settings of the experiments which are kept
fixed while across different factor values. In this study, four controlvari-
ables were defined: a) the size of the initial sample, b) the optimization
budget, c) the function type, and d) the function dimension, which are de-
scribed in Section 3.3. Also following the designed experiments frame-
work, a 2n factorial design of experiments was employed in which each
control variable (except forfunction type) was given representative “low”
and “high” settings, and which resulted in eight settings combinations, as
described in Table 2. Together with the six test functions employed, this
resulted in 48 differentoptimization scenarios, namely, unique combina-
tions of control variables settings.

Each sampling method was employed in all 48 optimization scenarios, and
to support a valid statistical analysis in each scenario 30 runs were repeated with
each sampling method. In summary, the layout of the numerical experiments
was:

Step 1) Generate an initial sample by either:

• Latin hypercube sampling (LHS).

• Monte Carlo sampling.

• EA-based search-driven sampling.

No metamodel was used in this step.

Step 2) Perform a full optimization search with a metamodel-assisted algorithm
(the same optimization algorithm was used in all tests).
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Table 2. Formulation of the numerical experiments

Component type Component name Assigned settings

Factor Sampling method LHS, Monte Carlo sampling, micro-EA
SDS

Control variable

Optimization budget 200, 2000 evaluations of the true function

Size of initial sample 10%, 25% of the optimization budget

Function type
Ackley, Griewank, Rastrigin, Rosen-
brock,
Schwefel 2.13, Weierstrass

Function dimension 10, 50

This setup results in 48 optimization scenarios: 2 sizes of the initial sample× 2 optimization
budgets× 6 objective functions× 2 function dimensions.

3.2. Sampling Methods

Three methods for generating the initial sample were employed, as follows:

• Latin hypercube (LH) sampling: A DOE method which ensures that the
resultant sample is space-fillingandcovers the full range of the design
variables (McKay et al., 1979). Briefly, for a sample ofk vectors the range
of each variable is split intok equal intervals, and one point is sampled at
random in each interval. Next, a sample point is selected at random and
without replacement for each variable, and these samples are combined
to produce a vector. This procedure is repeated fork times to generate the
complete sample. The method has been widely employed in literature, in
problems ranging from the allocation of water resources (Mugunthan and
Shoemaker, 2006) to the design of electronic circuits (You et al., 2009).

• Monte Carlo sampling: A DOE method, also termedrandom sampling,
which generates each sample vector individually and without considering
previously sampled vectors, which can result in some vectors being ad-
jacent. Vectors are typically drawn from the uniform multivariate distri-
bution. The method has been widely employed in literature, in problems
ranging from the design of a satellite boom (El-Betalgy and Keane, 2001)
to the design of an electric motor (Neri et al., 2008).

• Micro-EA SDS: In this approach an EA is invoked for a short duration,
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and the vectors it evaluated then serve as the initial sample. The small
size of the initial sample in expensive optimization problems implies that
the population must be small, as otherwise the allotted function evalu-
ations would rapidly be exhausted and the EA would terminate prema-
turely. Therefore, studies have used what is termed in the literature as a
micro-EA (Krishnakumar, 1989), namely, an EA with a small population.
For example, Liang et al. (2000) used a ‘(1+1) EA’ in which a single par-
ent generated a single offspring and the better out of the two progressed
to the next generation. As another example, Büche et al. (2005) used a
covariance matrix adaptation evolutionary strategy (CMA-ES) optimizer
in which 2 parents generated 10 offspring.

Following the literature, the numerical experiments included a micro-EA
which employed a population of five members (Senecal, 2000). The
micro-EA operates as described in Algorithm 5, and Table 5 gives its
internal parameter settings.

Table 3. Internal parameters of the micro-EA used for generating the
initial sample

Population size 5
Selection Stochastic universal selection (SUS)
Recombination Intermediate,p= 0.7
Mutation Breeder Genetic Algorithm (BGA) mutation (Chip-

perfield et al., 1994),p= 0.1
Elitism 10%

p: The probability of applying the operator

3.3. Optimization Scenarios

As described in Section 3.1, 48 different optimization scenarios were used,
which correspond to different combinations of control variables settings, as fol-
lows:

i) Optimization budget: Affects the duration of the optimization search and
the size of the initial sample. The experiments included a low setting of
200 function evaluations and a high setting of 2000 function evaluations.
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ii) Relative size of the initial sample: Affects the trade-off between the size of
the initial sample and the duration of the main optimization search which
succeeds it. The experiments included a low setting of 10% of the opti-
mization budget and a high setting of 25%.

iii) Objective function type: Affects the optimization difficulty due to the
function features (nonconvexity, nondifferentiability). The experimentsin-
cluded the test functions set (Suganthan et al., 2005): Ackley, Griewank,
Rastrigin, Rosenbrock, Schwefel 2.13, and Weierstrass, whose details are
given in Table 4. A bias term (Suganthan et al., 2005) was not used in this
study.

iv) Function dimension: Affects the optimization difficulty (‘curse of dimen-
sionality’). The experiments included a low setting of dimension 10 and a
high setting of dimension 50.

3.4. Optimization Algorithm

As mentioned in Section 3.1, in each numerical experiment after generating the
initial sample an optimization search was performed. The latter achieved by a
metamodel-assisted EA based on the representative algorithm of Ratle (1999).

In this algorithm the vectors evaluated so far are used to train a Kriging
metamodel, which is described later in this section. The real-coded EA of Chip-
perfield et al. (1994) is then invoked to search for an optimum of the metamodel,
where the EA is run for 10 generations. The EA follows the description in Sec-
tion 3.2 and its internal parameter settings are given in Table 5. To further
improve the effectiveness of the EA search, during the optimization searchit
employed a large population size. After the EA search has been completed, the
ten best population members are evaluated with the true objective function and
are added to the memory storage. Another iteration is then performed, until the
number of analyses, namely, calls to the true objective function, reaches the pre-
scribed limit. To complete the description, Algorithm 3 gives the pseudocode
of the algorithm.

In this study the Kriging metamodel was employed (Forrester and Keane,
2008; Queipo et al., 2005). It takes a statistical approach to interpolation by
combining two components: a ‘drift’ function, which is a global coarse ap-
proximation of the true function, and a local correction based on the correlation
between the interpolation vectors. Given a set of evaluated vectors,xxxi ∈ R

d ,
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Table 4. Test functions
Function Definition,f (xxx) = Domain Plot of bivariate case
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Algorithm 3: The optimization algorithm used in the main search

while maximum number of analyses not reacheddo
Train a metamodel with the vectors which have been evaluated with
the true function;
Search for an optimum of the metamodel by using a real-coded EA;
Evaluate with the true function the ten best vectors from the resultant
EA population;

Return the best solution found;

Table 5. Internal parameters of the EA used in the main search

Population size 100
Generations 10
Selection Stochastic universal selection (SUS)
Recombination operator Intermediate,p= 0.7
Mutation operator Breeder Genetic Algorithm (BGA) mutation (Chipperfield

et al., 1994),p= 0.1
Elitism 10%

p: The probability of applying the operator

i = 1. . .n , the Kriging metamodel is trained such that it exactly interpolates the
observed values, that is,m(xxxi) = f (xxxi) , wherem(xxx) and f (xxx) are the metamodel
and true objective function, respectively. Using a constant drift function gives
the Kriging metamodel

m(xxx) = β +κ(xxx) , (1)

with the drift functionβ and local correctionκ(xxx) . The latter is defined by a
stationary Gaussian process with mean zero and covariance

Cov[κ(xxx)κ(yyy)] = σ2c(θ ,xxx,yyy) , (2)

wherec(θ ,xxx,yyy) is a user-prescribed correlation function. A common choice
for the latter is the Gaussian correlation function (Forrester and Keane, 2008),
defined as

c(θ ,xxx,yyy) =
d

∏
i=1

exp
(

−θ (xi −yi)
2) , (3)

and combining it with the constant drift function transforms the metamodel from
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(1) into the following form

m(xxx) = β̂ + rrr(xxx)TRRR−1( fff −111β̂ ) . (4)

Here,β̂ is the estimated drift coefficient,RRR is the symmetric matrix of correla-
tions between all interpolation vectors,fff is the vector of objective values, and
111 is a vector with all elements equal to 1.rrrT is the correlation vector between a
new vectorxxx and the sample vectors, namely,

rrrT = [c(θ ,xxx, xxx1), . . . ,c(θ ,xxx, xxxn)] . (5)

The estimated drift coefficient̂β and variancêσ2 , which are required in Equa-
tion 4, are obtained as follows

β̂ =
(

111TRRR−1111
)−1

111TRRR−1 fff , (6a)

σ̂2 =
1
n

[

( fff −111β̂ )TRRR−1( fff −111β̂ )
]

. (6b)

Fully defining the metamodel requires the correlation parametersθθθ , which
are commonly taken as the maximizers of the metamodel likelihood. This is
achieved by minimizing the expression (Sacks et al., 1989)

ψ(θθθ) = |RRR|1/nσ̂2 (7)

which is a function only of the correlation parametersθθθ and the sample data. In
this study a single correlation parameter was used, as is commonly done in the
literature to simplify the parameter tuning (Martin and Simpson, 2005).

To demonstrate the effectiveness of the metamodel-assisted algorithm em-
ployed, it was applied to the six test functions mentioned in Section 3.1, with a
budget of 2000 function evaluations and a LHS initial sample with a size of 200
vectors. Ten repetitions were performed per function. Table 6 gives theresultant
test statistics from which it follows that the algorithm typically identified a good
final solution, given the limited optimization budget and the highly nonconvex
objective functions involved. The final solutions obtained with the Rosenbrock
and Schwefel 2.13 were typically higher, but in these objective functionsthe
function value increases sharply when moving away from the global optimum,
and therefore even final solutions which were adjacent to the true globalopti-
mum corresponded to a high objective values. To further demonstrate the be-
haviour of the algorithm employed, Figure 2 gives three representative plots,
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each corresponding to a single run with the Ackley (10D), Rastrigin (50D), and
Schwefel 3.12 (50D) functions, respectively. The plots show the distance (l2
norm) between the best solution found to the true global optimum. It follows
that in all cases the algorithm approached the true global optimum, which indi-
cates that it effectively coped with the issue of metamodel inaccuracy. Overall,
the results above show that the algorithm employed was suitable to be used an
optimizer in the numerical experiments.

10

20

30
Ackley-10D

10

15

20 Rastrigin-50D

500 1000 1500 2000

8

10

12 Schwefel 3.12-50D

Function evaluations

Figure 2. The distance between the best solution found during the searchand
the true global optimization. Each plot corresponds to one test run from used to
generate Table 6.
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Table 6. Test statistics for the metamodel-assisted framework employed

10D 50D

Ackley

Mean 4.091e+00 8.575e+00
SD 2.118e-01 2.363e-01
Median 4.109e+00 8.510e+00
Min(best) 3.701e+00 8.307e+00
Max(worst) 4.345e+00 8.914e+00

Griewank

Mean 7.491e-01 1.551e+00
SD 1.049e-01 4.434e-02
Median 8.087e-01 1.552e+00
Min(best) 5.641e-01 1.485e+00
Max(worst) 8.360e-01 1.600e+00

Rastrigin

Mean 2.378e+01 3.461e+02
SD 4.380e+00 1.590e+01
Median 2.408e+01 3.432e+02
Min(best) 1.827e+01 3.289e+02
Max(worst) 2.932e+01 3.682e+02

Rosenbrock

Mean 3.560e+01 4.439e+03
SD 6.746e+00 6.635e+02
Median 3.618e+01 4.259e+03
Min(best) 2.532e+01 3.805e+03
Max(worst) 4.734e+01 5.566e+03

Schwefel 2.13

Mean 2.450e+03 3.118e+06
SD 9.369e+02 3.254e+05
Median 2.594e+03 3.146e+06
Min(best) 1.176e+03 2.491e+06
Max(worst) 4.061e+03 3.565e+06

Weierstrass

Mean 2.648e+00 2.774e+01
SD 3.352e-01 7.148e-01
Median 2.729e+00 2.799e+01
Min(best) 1.986e+00 2.654e+01
Max(worst) 2.952e+00 2.861e+01

In all cases, at the global optimum the value of the true objective function is0.



Table 7. Test statistics for the numerical experiments

Optimization budget=200 evaluations Optimization budget=2000 evaluations

Sample size=10% Sample size=25% Sample size=10% Sample size=25%

LHS SDS MCS LHS SDS MCS LHS SDS MCS LHS SDS MCS

Ackley-10D

Mean 5.071e+00 5.036e+00 5.740e+00 4.911e+00 5.034e+00 6.751e+00 4.014e+00 3.825e+00 3.902e+00 3.903e+00 3.959e+00 3.932e+00

SD 7.940e-01 6.907e-01 1.170e+00 7.868e-01 7.415e-01 2.039e+00 2.819e-01 3.572e-01 3.689e-01 3.501e-01 3.579e-01 2.613e-01

Median 4.999e+00 5.059e+00 5.389e+00 4.852e+00 4.979e+00 6.357e+00 4.050e+00 3.806e+00 4.024e+00 3.907e+00 4.006e+00 3.961e+00

Min(best) 3.714e+00 3.716e+00 3.534e+00 3.545e+00 4.117e+00 4.272e+00 3.486e+00 3.095e+00 2.745e+00 2.941e+00 2.444e+00 3.265e+00

Max(worst) 7.396e+00 6.816e+00 9.866e+00 6.739e+00 7.584e+00 1.343e+01 4.585e+00 4.499e+00 4.429e+00 4.482e+00 4.456e+00 4.343e+00

Ackley-50D

Mean 9.439e+00 9.313e+00 9.529e+00 9.281e+00 9.402e+00 9.610e+00 8.629e+00 8.624e+00 8.681e+00 8.743e+00 8.624e+00 8.711e+00

SD 3.072e-01 2.714e-01 3.778e-01 3.432e-01 3.508e-01 6.233e-01 2.709e-01 2.434e-01 2.278e-01 2.278e-01 2.816e-01 2.363e-01

Median 9.466e+00 9.358e+00 9.484e+00 9.268e+00 9.292e+00 9.616e+00 8.625e+00 8.618e+00 8.698e+00 8.765e+00 8.699e+00 8.746e+00

Min(best) 8.873e+00 8.887e+00 8.432e+00 8.647e+00 8.740e+00 8.174e+00 7.854e+00 8.152e+00 8.138e+00 8.150e+00 7.793e+00 8.029e+00

Max(worst) 1.007e+01 9.766e+00 1.024e+01 9.934e+00 1.002e+01 1.070e+01 9.042e+00 9.161e+00 8.971e+00 9.057e+00 9.045e+00 9.129e+00

Griewank-10D

Mean 9.593e-01 9.329e-01 9.550e-01 9.472e-01 9.287e-01 1.015e+00 7.309e-01 7.057e-01 7.323e-01 7.305e-01 7.722e-01 7.455e-01

SD 7.098e-02 8.261e-02 1.715e-01 5.681e-02 8.293e-02 9.314e-02 9.894e-02 1.219e-01 1.065e-01 8.088e-02 9.177e-02 8.081e-02

Median 9.739e-01 9.454e-01 9.731e-01 9.656e-01 9.613e-01 1.015e+00 7.580e-01 7.287e-01 7.484e-01 7.233e-01 7.935e-01 7.602e-01

Min(best) 7.738e-01 7.564e-01 4.846e-01 7.892e-01 7.035e-01 7.562e-01 4.826e-01 3.167e-01 4.284e-01 5.822e-01 5.517e-01 5.777e-01

Max(worst) 1.105e+00 1.039e+00 1.643e+00 1.019e+00 1.032e+00 1.324e+00 8.903e-01 8.910e-01 8.946e-01 8.845e-01 9.155e-01 9.111e-01

Griewank-50D

Mean 1.707e+00 1.701e+00 1.768e+00 1.670e+00 1.728e+00 1.811e+00 1.577e+00 1.569e+00 1.562e+00 1.568e+00 1.573e+00 1.554e+00

SD 7.716e-02 9.085e-02 1.231e-01 8.741e-02 7.512e-02 1.357e-01 4.306e-02 4.219e-02 5.766e-02 5.007e-02 4.900e-02 6.140e-02

Median 1.696e+00 1.721e+00 1.774e+00 1.657e+00 1.719e+00 1.816e+00 1.579e+00 1.567e+00 1.567e+00 1.561e+00 1.565e+00 1.559e+00

Min(best) 1.531e+00 1.543e+00 1.517e+00 1.507e+00 1.612e+00 1.561e+00 1.493e+00 1.494e+00 1.433e+00 1.482e+00 1.474e+00 1.400e+00

Max(worst) 1.877e+00 1.898e+00 2.123e+00 1.892e+00 1.903e+00 2.142e+00 1.670e+00 1.691e+00 1.687e+00 1.680e+00 1.695e+00 1.644e+00

Rastrigin-10D

Mean 4.362e+01 4.392e+01 4.446e+01 4.633e+01 4.413e+01 4.768e+01 2.261e+01 2.262e+01 2.362e+01 2.441e+01 2.436e+01 2.345e+01

SD 7.226e+00 8.564e+00 8.538e+00 8.702e+00 7.127e+00 1.018e+01 3.920e+00 5.430e+00 6.220e+00 5.694e+00 4.737e+00 3.921e+00

Median 4.410e+01 4.598e+01 4.319e+01 4.648e+01 4.375e+01 4.680e+01 2.254e+01 2.429e+01 2.484e+01 2.571e+01 2.499e+01 2.323e+01

Min(best) 2.347e+01 2.650e+01 2.693e+01 2.407e+01 2.527e+01 3.174e+01 1.367e+01 1.258e+01 7.150e+00 1.293e+01 1.525e+01 1.432e+01

Max(worst) 5.758e+01 6.095e+01 6.050e+01 6.333e+01 5.490e+01 7.303e+01 2.957e+01 3.058e+01 3.247e+01 3.421e+01 3.207e+01 3.150e+01

Rastrigin-50D

Mean 3.872e+02 3.914e+02 3.933e+02 3.943e+02 3.857e+02 3.897e+02 3.467e+02 3.475e+02 3.423e+02 3.516e+02 3.526e+02 3.496e+02

SD 1.896e+01 2.365e+01 1.873e+01 2.478e+01 1.971e+01 1.975e+01 1.877e+01 1.625e+01 1.588e+01 1.688e+01 1.497e+01 1.314e+01

Median 3.865e+02 3.958e+02 3.911e+02 4.012e+02 3.873e+02 3.911e+02 3.477e+02 3.502e+02 3.416e+02 3.580e+02 3.532e+02 3.531e+02

Min(best) 3.457e+02 3.299e+02 3.460e+02 3.407e+02 3.406e+02 3.588e+02 3.031e+02 2.992e+02 3.131e+02 2.978e+02 3.035e+02 3.218e+02

Max(worst) 4.218e+02 4.414e+02 4.259e+02 4.373e+02 4.172e+02 4.403e+02 3.726e+02 3.713e+02 3.697e+02 3.734e+02 3.764e+02 3.677e+02



Table 7. Test statistics for the numerical experiments (cont.)
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4. Results and Discussion

This section provides the results and discussion of the numerical experiments
performed, first where mathematical test functions were used, and then where
an engineering simulation code served as the expensive objective function.

4.1. Experiments Involving Mathematical Test Functions

As mentioned in Section 3, 48 optimization scenarios were considered and 30
runs were performed with each method in turn, where each run consisted of an
initial sampling stage followed by a full optimization search. In the following
analysis, the effectiveness of the sampling methods was compared based on the
final result obtained in the optimization search, which follows the approach of
other studies such as Toal et al. (2008). Table 6 gives the resultant test statis-
tics of mean, standard deviation (SD), median, minimum (best), and maximum
(worst) function value. In each scenario, the best mean statistic is emphasized.

To identify significant trends in the results, the following analysis was used:

• Step 1: In each optimization scenario the three sampling methods were
assigned scores, as follows:

– The three methods were ranked based on their corresponding mean
statistic, where the method yielding the best (lowest) mean statistic
was assigned a score of two, the second best a score of one, and the
worst a score of zero.

– Independently of the latter scores, and for each method in turn,
its corresponding results were compared to those of the other two
methods, to determine if its results achieved astatistically signif-
icant advantage based on the nonparametric Mann–Whitney test
(Sheskin, 2007, p.423–434). Differences between the test results
were deemed as statistically significant at the 0.05 significance level.
Each method was assigned a score which is the number of compar-
isons in which its corresponding test results achieved a statistically
significant advantage, namely, either two, one, or zero.

Using these two statistics allowed to identify trends of different magni-
tudes in the data. Table 8 gives the resultant scores for the three sampling
methods.
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Table 8. Scores of the three sampling methods in each scenario

(a) Scores based on the mean statistic

Optimization budget=200 evaluations Optimization budget=2000 evaluations

Function Sample size=10% Sample size=25% Sample size=10% Sample size=25%

LHS SDS MCS LHS SDS MCS LHS SDS MCS LHS SDS MCS

Ackley-10D 1 2 0 2 1 0 0 2 1 2 0 1
Ackley-50D 1 2 0 2 1 0 1 2 0 0 2 1
Griewank-10D 0 2 1 1 2 0 1 2 0 2 0 1
Griewank-50D 1 2 0 2 1 0 0 1 2 1 0 2
Rastrigin-10D 2 1 0 1 2 0 2 1 0 0 1 2
Rastrigin-50D 2 1 0 0 2 1 1 0 2 1 0 2
Rosenbrock-10D 1 2 0 2 1 0 0 1 2 0 2 1
Rosenbrock-50D 1 2 0 2 1 0 2 1 0 0 2 1
Schwefel-10D 2 0 1 0 2 1 2 1 0 0 2 1
Schwefel-50D 2 1 0 2 1 0 2 0 1 1 2 0
Weierstrass-10D 1 2 0 2 1 0 0 1 2 0 1 2
Weierstrass-50D 1 2 0 2 1 0 1 0 2 0 1 2

(b) Scores based on statistical significance tests

Optimization budget=200 evaluations Optimization budget=2000 evaluations

Function Sample size=10% Sample size=25% Sample size=10% Sample size=25%

LHS SDS MCS LHS SDS MCS LHS SDS MCS LHS SDS MCS

Ackley-10D 1 1 0 1 1 0 0 1 0 0 0 0
Ackley-50D 0 1 0 1 1 0 0 0 0 0 1 0
Griewank-10D 0 0 0 1 1 0 0 0 0 1 0 0
Griewank-50D 1 1 0 2 1 0 0 0 0 0 0 0
Rastrigin-10D 0 0 0 0 0 0 0 0 0 0 0 0
Rastrigin-50D 0 0 0 0 1 0 0 0 0 0 0 0
Rosenbrock-10D 0 0 0 1 1 0 0 0 0 0 2 0
Rosenbrock-50D 0 0 0 1 1 0 0 0 0 0 0 0
Schwefel-10D 0 0 0 0 0 0 0 0 0 0 0 0
Schwefel-50D 0 0 0 1 0 0 0 0 0 0 1 0
Weierstrass-10D 0 2 0 1 1 0 0 0 0 0 0 0
Weierstrass-50D 1 1 0 1 1 0 0 0 0 0 0 0
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• Step 2: The individual scores were aggregated to yieldcumulative scores
which highlight the effect of the different control variables on the results.
The exception is thefunction typecontrol variable (Table 2) since in prac-
tise the features of a black-box function are not known prior to the opti-
mization search. Therefore, the impact of the other three control variables
(initial sample size, function dimension, andoptimization budget) were
calculated across the full set of test functions, and not on a per-function
basis.

For the analysis, cumulative scores were calculated based on three, and
based on each control variable individually. For each sampling method,
its cumulative score for a given combination of control variables settings
was calculated by aggregating its individual scores from the optimiza-
tion scenarios across all test functions in which the control variables had
the settings in question. Cumulative scores were calculated separately
based on the mean statistic scores and the statistical significance scores,
and they indicate which sampling method was most beneficial at a given
combination of control variables settings.

Figure 3 and 4 show plots of the resultant cumulative scores, where in the
x-axis label, the control variables are abbreviated byb for optimization budget,
d for function dimension, ands for sample size. In the following analysis, the
term performancerelates to the cumulative score a sampling method as com-
pared to the other methods:

• Cumulative scores based on three control variables (Figure 3): The mean
statistic analysis shows that the micro-EA SDS performed well in sce-
narios with a large optimization budget. LHS and Monte Carlo sampling
performed similarly across the different scenarios.

The statistical significance analysis shows that micro-EA SDS did not
outperform the DOE methods in any scenario. Similarly to the mean
statistic analysis, the performance of LHS and Monte Carlo sampling was
comparable.

• Analysis based on a single control variable (Figure 4):

– Function dimension: The mean statistic analysis shows that all three
methods performed consistently, namely, were similarly affected
by the increase in function dimension. The statistically significant
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analysis shows that the performance of LHS slightly improved with
function dimension.

– Sample size: The mean statistic analysis shows that the performance
of micro-EA SDS improved with the sample size, which is attributed
to the extended micro-EA search. However, both LHS and Monte
Carlo sampling outperformed the micro-EA SDS across the two set-
tings.
The statistical significance analysis shows that the performance of
LHS and Monte Carlo sampling improved with the sample size.

– Optimization budget: The mean statistic analysis shows that the
performance of micro-EA SDS significantly improved with the op-
timization budget size. Monte Carlo sampling performed consis-
tently, while the performance of LHS degraded.
The statistical significance analysis shows trends similar to those
above.
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Figure 3. Cumulative scores based on three control variables.

In summary, the above analysis shows that the performance of the micro-
EA SDS method was strongly affected by the size of the initial sample. As
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Figure 4. Cumulative scores based on a single control variable.
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the sample size increased so did the relative performance of the micro-EA SDS
method, as this enabled a more extended and hence more effective micro-EA
search. In scenarios with a small sample size the DOE methods performed
better since they were able to distribute the small number of sample vectors
more effectively in the search space when compared to micro-EA SDS, which in
turn yielded a more accurate metamodel and improved the optimization search .

4.2. Experiments Involving a Computer Simulation
as the Objective Function

To augment the preceding analysis an additional set of experiments were per-
formed, but which involved a computer simulation as the objective function.
The optimization problem which was being solved was that of airfoil shape op-
timization which is formulated as follows. During flight, an aircraft generates
lift , namely, the force which counters the aircraft weight and keeps it airborne,
anddrag, which is an aerodynamic friction force obstructing the aircraft’s move-
ment. Both the lift and drag are strongly determined by the wing cross-section,
namely, theairfoil. The optimization goal is then to find an airfoil shape which
maximizes the lift and minimizes the drag.

In practise, the design requirements for airfoils are specified in terms of the
nondimensional lift and drag coefficients,cl andcd , respectively, defined as

cl =
L

1
2ρV2S

(8a)

cd =
D

1
2ρV2S

(8b)

whereL andD are the lift and drag forces, respectively,ρ is the air density,V
is aircraft speed, andSis a reference area, such as the wing area. Also important
is theangle of attack(AOA), which is the angle between the aircraft velocity
and the airfoilchord line, defined as the straight line joining the leading and
trailing edges of the airfoil. Figure 5 gives a schematic layout of the airfoil
problem.

Candidate airfoils were represented with the Hicks-Henne parameterization
(Hicks and Henne, 1978) where an airfoil profile is defined by

y= yb+
h

∑
i=1

αibi(x) , (9)
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Angle of attack (AOA)

x

position alongairfoil chord

z

Chord line

Velocity
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Figure 5. A schematic layout of the airfoil problem.

where yb is a baseline airfoil profile, which in this study was taken as the
NACA0012 symmetric airfoil,bi are basis functions (Wu et al., 2003) defined
as

bi(x) =

[

sin

(

πx
log(0.5)

log(i/(h+1))

)]4

(10) ,

andαi ∈ [−0.01,0.01] are coefficients, namely, the problem’s design variables.
Figure 5 summarizes the nomenclature of the physical quantities and airfoil
parameterization involved.

The lift and drag coefficients of candidate airfoils were obtained using
XFoil, a computational aerodynamics simulation for analysis of airfoils operat-
ing in the subsonic regime (Drela and Youngren, 2001). Each airfoil evaluation
required up to 30 seconds on a desktop computer. To ensure structuralintegrity,
between 0.2 to 0.8 of the chord line the airfoil thickness (t) had to be equal to or
larger than a critical valuet⋆ = 0.1 . The flight conditions were set as a cruise al-
titude of 30 kft, a cruise speed of Mach 0.7, namely, 70% of the speed of sound,
and an AOA of 2◦. The objective function employed was

f =−
cl

cd
+ p (11a)

wherep is a penalty for violation of the thickness constraint, such that

p=







t⋆

t
·

∣

∣

∣

∣

cl

cd

∣

∣

∣

∣

if t < t⋆

0 otherwise
(11b)

Figure 6 shows the plots for the cumulative scores by a single control vari-
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able, and it follows that the results are overall consistent with those in Sec-
tion 4.1, namely:

• The micro-EA SDS method did not achieve a statistically significant ad-
vantage in any scenario.

• The mean statistic analysis shows that the performance of micro-EA SDS
improved with sample size.

• The three methods were similarly affected by the increase in function
dimension.

It follows that these trends are consistent with those of Section 4.1, which there-
fore validates the overall analysis presented.

5. Conclusion

Metamodels-assisted algorithms are often applied to optimization problems in-
volving an expensive black-box function, namely, where a computationallyex-
pensive simulation acts as the objective function. Such algorithms typically
begin by generating an initial sample of vectors, and use them to initiate the
main optimization search. The sample can be generated by a design of ex-
periments (DOE) method which is statistically-based, or by the more recent
approach of search-driven sampling (SDS) which uses a direct search optimiza-
tion algorithm. In particular, a micro-EA can be used for a short duration, after
which the vectors it evaluated serve as the initial sample. In this study an exten-
sive comparison was performed between two DOE methods (Latin hypercube
design, Monte Carlo sampling) and an SDS approach which uses a micro-EA.
The three methods were compared based on their impact on the search effec-
tiveness, and this was achieved by numerical experiments based both on math-
ematical test functions and simulation-driven problem . The main conclusion
from the results is that the micro-EA SDS method was effective when the initial
sample was large, since then the larger number of function evaluations allocated
to the initial sample allowed for a more effective micro-EA search. In other set-
tings, the DOE methods were more effective as they were able to distribute the
small number of sample vectors more effectively in the search space which in
turn yielded a more accurate metamodel.
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Figure 6. Cumulative scores in the airfoil problem, based on a single control
variable.
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