

Overlay
Networks
Toward Information Networking

© 2010 Taylor and Francis Group, LLC

OTHER telecommunications BOOKS FROM AUERBACH

Broadband Mobile Multimedia:
Techniques and Applications
Yan Zhang, Shiwen Mao, Laurence T. Yang,
and Thomas M Chen
ISBN: 978-1-4200-5184-1

Carrier Ethernet: Providing the Need for Speed
Gilbert Held
ISBN: 978-1-4200-6039-3

Cognitive Radio Networks
Yang Xiao and Fei Hu
ISBN: 978-1-4200-6420-9

Contemporary Coding Techniques and
Applications for MobileCommunications
Onur Osman and Osman Nuri Ucan
ISBN: 978-1-4200-5461-3

Converging NGN Wireline and Mobile 3G
Networks with IMS: Converging NGN and
3G Mobile
Rebecca Copeland
ISBN: 978-0-8493-9250-4

Cooperative Wireless Communications
Yan Zhang, Hsiao-Hwa Chen, and Mohsen Guizani
ISBN: 978-1-4200-6469-8

Data Scheduling and Transmission Strategies
in Asymmetric Telecommunication
Environments
Abhishek Roy and Navrati Saxena
ISBN: 978-1-4200-4655-7

Encyclopedia of Wireless and Mobile
Communications
Borko Furht
ISBN: 978-1-4200-4326-6

IMS: A New Model for Blending Applications
Mark Wuthnow, Jerry Shih, and Matthew Stafford
ISBN: 978-1-4200-9285-1

The Internet of Things: From RFID to the
Next-Generation Pervasive Networked
Systems
Lu Yan, Yan Zhang, Laurence T. Yang,
and Huansheng Ning
ISBN: 978-1-4200-5281-7

Introduction to Communications
Technologies: A Guide for Non-Engineers,
Second Edition
Stephan Jones, Ron Kovac, and Frank M. Groom
ISBN: 978-1-4200-4684-7

Long Term Evolution: 3GPP LTE Radio
and Cellular Technology
Borko Furht and Syed A. Ahson
ISBN: 978-1-4200-7210-5

MEMS and Nanotechnology-Based Sensors
and Devices for Communications,
Medical and Aerospace Applications
A. R. Jha
ISBN: 978-0-8493-8069-3

Millimeter Wave Technology in Wireless PAN,
LAN, and MAN
Shao-Qiu Xiao and Ming-Tuo Zhou
ISBN: 978-0-8493-8227-7

Mobile Telemedicine: A Computing and
Networking Perspective
Yang Xiao and Hui Chen
ISBN: 978-1-4200-6046-1

Optical Wireless Communications:
IR for Wireless Connectivity
Roberto Ramirez-Iniguez, Sevia M. Idrus,
and Ziran Sun
ISBN: 978-0-8493-7209-4

Satellite Systems Engineering in an
IPv6 Environment
Daniel Minoli
ISBN: 978-1-4200-7868-8

Security in RFID and Sensor Networks
Yan Zhang and Paris Kitsos
ISBN: 978-1-4200-6839-9

Security of Mobile Communications
Noureddine Boudriga
ISBN: 978-0-8493-7941-3

Unlicensed Mobile Access Technology:
Protocols, Architectures, Security,
Standards and Applications
Yan Zhang, Laurence T. Yang, and Jianhua Ma
ISBN: 978-1-4200-5537-5

Value-Added Services for Next Generation
Networks
Thierry Van de Velde
ISBN: 978-0-8493-7318-3

Vehicular Networks: Techniques, Standards,
and Applications
Hassnaa Moustafa and Yan Zhang
ISBN: 978-1-4200-8571-6

WiMAX Network Planning and Optimization
Yan Zhang
ISBN: 978-1-4200-6662-3

Wireless Quality of Service:
Techniques, Standards, and Applications
Maode Ma and Mieso K. Denko
ISBN: 978-1-4200-5130-8

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

© 2010 Taylor and Francis Group, LLC

Overlay
Networks

Sasu Tarkoma

Toward Information Networking

© 2010 Taylor and Francis Group, LLC

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
Auerbach Publications is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4398-1373-7 (Ebook-PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

© 2010 Taylor and Francis Group, LLC

Contents

Preface . xi
About the Author . xiii

1 Introduction . 1
1.1 Overview . 1
1.2 Overlay Technology . 2
1.3 Applications . 8
1.4 Properties of Data . 8
1.5 Structure of the Book . 10

2 Network Technologies . 13
2.1 Networking . 13
2.2 Firewalls and NATs . 15
2.3 Naming . 17
2.4 Addressing .18
2.5 Routing . 19

2.5.1 Overview . 19
2.5.2 Interdomain .20
2.5.3 Border Gateway Protocol . 21
2.5.4 Current Challenges .21
2.5.5 Compact Routing .22

2.6 Multicast .22
2.6.1 Network-layer Multicast .23
2.6.2 Application-layer Multicast .24
2.6.3 Chaining TCP Connections for Multicast .25

2.7 Network Coordinates . 25
2.7.1 Vivaldi Centralized Algorithm .26
2.7.2 Vivaldi Distributed Algorithm . 26
2.7.3 Applications . 26
2.7.4 Triangle Inequality Violation .27

2.8 Network Metrics . 28
2.8.1 Routing Algorithm Invariants . 28
2.8.2 Convergence . 28
2.8.3 Shortest Path . 28
2.8.4 Routing Table Size and Stretch .29
2.8.5 Forwarding Load .29
2.8.6 Churn .30
2.8.7 Other Metrics . 30

3 Properties of Networks and Data . 33
3.1 Data on the Internet . 33

3.1.1 Video Delivery . 33
3.1.2 P2P Traffic .35

v
© 2010 Taylor and Francis Group, LLC

vi Contents

3.1.3 Trends in Networking . 35
3.2 Zipf’s Law . 36

3.2.1 Overview . 36
3.2.2 Zipf’s Law and the Internet .37
3.2.3 Implications for P2P . 37

3.3 Scale-free Networks . 37
3.4 Robustness .39
3.5 Small Worlds .40

4 Unstructured Overlays .43
4.1 Overview . 43
4.2 Early Systems . 44
4.3 Locating Data . 44
4.4 Napster . 45
4.5 Gnutella . 46

4.5.1 Overview . 46
4.5.2 Searching the Network . 48
4.5.3 Efficient Keyword Lists . 49

4.6 Skype . 50
4.7 BitTorrent . 50

4.7.1 Torrents and Swarms . 53
4.7.2 Networking . 54
4.7.3 Choking Mechanism . 54
4.7.4 Antisnubbing . 55
4.7.5 End Game .55
4.7.6 Trackerless Operation . 55
4.7.7 BitTorrent Vulnerabilities . 56
4.7.8 Service Capacity .56
4.7.9 Fluid Models for Performance Evaluation .57

4.8 Cross-ISP BitTorrent . 58
4.9 Freenet .60

4.9.1 Overview . 60
4.9.2 Bootstrapping . 62
4.9.3 Identifier keys . 62
4.9.4 Key-based Routing . 64
4.9.5 Indirect Files . 65
4.9.6 API . 65
4.9.7 Security . 66

4.10 Comparison .67

5 Foundations of Structured Overlays . 71
5.1 Overview . 71
5.2 Geometries .72

5.2.1 Trees . 73
5.2.2 Hypercubes and Tori . 73
5.2.3 Butterflies . 74
5.2.4 de Bruijn graph .74
5.2.5 Rings .75
5.2.6 XOR Geometry . 76
5.2.7 Summary . 76

5.3 Consistent Hashing . 77

© 2010 Taylor and Francis Group, LLC

Contents vii

5.4 Distributed Data Structures for Clusters . 78
5.4.1 Linear Hashing .78
5.4.2 SDDS Taxonomy . 79
5.4.3 LH* Overview .80
5.4.4 Ninja .82

6 Distributed Hash Tables . 85
6.1 Overview . 85
6.2 APIs . 86
6.3 Plaxton’s Algorithm . 87

6.3.1 Routing . 87
6.3.2 Performance . 88

6.4 Chord .89
6.4.1 Joining the Network . 90
6.4.2 Leaving the Network . 90
6.4.3 Routing . 91
6.4.4 Performance . 92

6.5 Pastry . 92
6.5.1 Joining and Leaving the Network .93
6.5.2 Routing . 93
6.5.3 Performance . 95
6.5.4 Bamboo . 96

6.6 Koorde .96
6.6.1 Routing . 96
6.6.2 Performance . 97

6.7 Tapestry .97
6.7.1 Joining and Leaving the Network .98
6.7.2 Routing . 99
6.7.3 Performance . 100

6.8 Kademlia . 101
6.8.1 Joining and Leaving the Network .101
6.8.2 Routing . 101
6.8.3 Performance . 102

6.9 Content Addressable Network . 103
6.9.1 Joining the Network .103
6.9.2 Leaving the Network .104
6.9.3 Routing . 105
6.9.4 Performance . 105

6.10 Viceroy . 106
6.10.1 Joining the Network .106
6.10.2 Leaving the Network .107
6.10.3 Routing . 107
6.10.4 Performance . 107

6.11 Skip Graph .108
6.12 Comparison . 109

6.12.1 Geometries .110
6.12.2 Routing Function .110
6.12.3 Churn .110
6.12.4 Asymptotic Trade-offs . 110
6.12.5 Network Proximity .112
6.12.6 Adding Hierarchy to DHTs . 112

© 2010 Taylor and Francis Group, LLC

viii Contents

6.12.7 Experimenting with Overlays . 113
6.12.8 Criticism . 114

7 Probabilistic Algorithms .115
7.1 Overview of Bloom Filters .115
7.2 Bloom Filters . 116

7.2.1 False Positive Probability . 118
7.2.2 Operations . 119
7.2.3 d-left Counting Bloom Filter .120
7.2.4 Compressed Bloom Filter .121
7.2.5 Counting Bloom Filters .121
7.2.6 Hierarchical Bloom Filters . 123
7.2.7 Spectral Bloom Filters . 124
7.2.8 Bloomier Filters . 124
7.2.9 Approximate State Machines . 125
7.2.10 Perfect Hashing Scheme . 125
7.2.11 Summary . 125

7.3 Bloom Filters in Distributed Computing . 127
7.3.1 Caching . 127
7.3.2 P2P Networks .128
7.3.3 Packet Routing and Forwarding . 128
7.3.4 Measurement . 129

7.4 Gossip Algorithms . 130
7.4.1 Overview . 130
7.4.2 Design Considerations . 132
7.4.3 Basic Models . 132
7.4.4 Basic Shuffling . 133
7.4.5 Enhanced Shuffling . 135
7.4.6 Flow Control and Fairness .135
7.4.7 Gossip for Structured Overlays . 136

8 Content-based Networking and Publish/Subscribe . 137
8.1 Overview . 137
8.2 DHT-based Data-centric Communications . 138

8.2.1 Scribe . 138
8.2.2 Bayeux .139
8.2.3 SplitStream .139
8.2.4 Overcast . 140
8.2.5 Meghdoot .141
8.2.6 MEDYM . 141
8.2.7 Internet Indirection Infrastructure . 141
8.2.8 Data-oriented Network Architecture .141
8.2.9 Semantic Search . 142
8.2.10 Distributed Segment Tree .142
8.2.11 Semantic Queries .143

8.3 Content-based Routing .144
8.4 Router Configurations .145

8.4.1 Basic Configuration . 145
8.4.2 Structured DHT-based Overlays . 146
8.4.3 Interest Propagation .147

8.5 Siena and Routing Structures . 148

© 2010 Taylor and Francis Group, LLC

Contents ix

8.5.1 Routing Blocks . 148
8.5.2 Definitions . 150
8.5.3 Siena Filters Poset . 150
8.5.4 Advertisements . 152
8.5.5 Poset-derived Forest .152
8.5.6 Filter Merging .154

8.6 Hermes . 156
8.7 Formal Specification of Content-based Routing Systems . 158

8.7.1 Valid Routing Configuration .158
8.7.2 Weakly Valid Routing Configuration .159
8.7.3 Mobility-Safety .159

8.8 Pub/sub Mobility . 160

9 Security .165
9.1 Overview . 165
9.2 Attacks and Threats . 166

9.2.1 Worms . 166
9.2.2 Sybil Attack . 166
9.2.3 Eclipse Attack . 166
9.2.4 File Poisoning . 167
9.2.5 Man-in-the-Middle Attack .168
9.2.6 DoS Attack .168

9.3 Securing Data . 169
9.3.1 Self-Certifying Data . 169
9.3.2 Merkle Trees . 170
9.3.3 Information Dispersal . 171
9.3.4 Secret-sharing Schemes .171
9.3.5 Smartcards for Bootstrapping Trust . 171
9.3.6 Distributed Steganographic File Systems .172
9.3.7 Erasure Coding . 173
9.3.8 Censorship Resistance .173

9.4 Security Issues in P2P Networks .174
9.4.1 Overview . 174
9.4.2 Insider Attacks . 176
9.4.3 Outsider Attacks . 176
9.4.4 SybilGuard .177
9.4.5 Reputation Management with EigenTrust .178

9.5 Anonymous Routing . 180
9.5.1 Mixes . 180
9.5.2 Onion Routing . 181
9.5.3 Tor . 181
9.5.4 P2P Anonymization System . 182
9.5.5 Censorship-resistant Lookup: Achord . 184
9.5.6 Crowds . 184
9.5.7 Hordes .184
9.5.8 Mist .185

9.6 Security Issues in Pub/Sub Networks . 186
9.6.1 Hermes . 186
9.6.2 EventGuard . 187
9.6.3 QUIP . 187

© 2010 Taylor and Francis Group, LLC

x Contents

10 Applications .189
10.1 Amazon Dynamo . 189

10.1.1 Architecture .191
10.1.2 Ring Membership . 193
10.1.3 Partitioning Algorithm . 193
10.1.4 Replication .194
10.1.5 Data Versioning . 194
10.1.6 Vector Clocks . 195
10.1.7 Coping with Failures . 196

10.2 Overlay Video Delivery . 197
10.2.1 Live Streaming . 197
10.2.2 Video-on-Demand . 198

10.3 SIP and P2PSIP . 200
10.4 CDN Solutions .203

10.4.1 Overview . 203
10.4.2 Akamai . 207
10.4.3 Limelight . 208
10.4.4 Coral .208
10.4.5 Comparison .211

11 Conclusions . 213

References .217

Index . 235

© 2010 Taylor and Francis Group, LLC

Preface

Data and media delivery have become hugely popular on the Internet, with well over
1 billion Internet users. Therefore scalable and flexible information dissemination solutions
are needed. Much of the current development pertaining to services and service delivery
happens above the basic network layer and the TCP/IP protocol suite because of the need
to be able to rapidly develop and deploy them.

In recent years, various kinds of overlay networking technologies have emerged as an
active area of research and development. Overlay systems, especially peer-to-peer systems,
are technologies that can solve problems in massive information distribution and processing
tasks. The key aim of many of these technologies is to be able to offer deployable solution
for processing and distributing vast amounts of information, typically petabytes and more,
while at the same time keeping the scaling costs low.

The aim of this book is to present the state of the art in overlay technologies, examine
the key structures and algorithms used in overlay networks, and discuss their applications.
Overlay networks have been a very active area of research and development during the
last 10 years, and a substantial amount of scientific literature has formed around this topic.

This book has been inspired by the teaching notes and articles of the author in content-
based routing. The book is designed not only as a reference for overlay technologies, but also
as a textbook for a course in distributed overlay technologies and information networking
at the graduate level.

xi
© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

About the Author

Sasu Tarkoma received his M.Sc. and Ph.D. degrees in Computer Science from the Uni-
versity of Helsinki, Department of Computer Science. He is currently professor at Helsinki
University of Technology, Department of Computer Science and Engineering. He has been
recently appointed as full professor at University of Helsinki, Department of Computer
Science. He has managed and participated in national and international research projects
at the University of Helsinki, Helsinki University of Technology, and Helsinki Institute for
Information Technology (HIIT). He has worked in the IT industry as a consultant and chief
system architect, and he is principal member of research staff at Nokia Research Center. He
has over 100 publications, and has also contributed to several books on mobile middleware.

Ms. Nelli Tarkoma produced most of the diagrams used in this book.

xiii
© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

1
Introduction

1.1 Overview

In recent years, various kinds of overlay networking technologies have emerged as an
active area of research and development. Overlay systems, especially peer-to-peer (P2P)
systems, are technologies that can solve problems in massive information distribution and
processing tasks. The key aim of many of these technologies is to be able to offer deployable
solution for processing and distributing vast amounts of information, typically petabytes
and more, while at the same time keeping the scaling costs low.

Data and media delivery have become hugely popular on the Internet. Currently there
are over 1.4 billion Internet users, well over 3 billion mobile phones, and 4 billion mobile
subscriptions. By 2000 the Google index reached the 1 billion indexed web resources mark,
and by 2008 it reached the trillion mark.

Multimedia content, especially videos, are paving the way for truly versatile network
services that both compete with and extend existing broadcast-based medias. As a conse-
quence, new kinds of social collaboration and advertisement mechanisms are being intro-
duced both in the fixed Internet and also in the mobile world. This trend is heightened
by the ubiquitous nature of digital cameras. Indeed, this has created a lot of interest in
community-based services, in which users create their own content and make it available
to others.

These developments have had a profound impact on network requirements and perfor-
mance. Video delivery has become one of the recent services on the Web with the advent
of YouTube [67] and other social media Web sites. Moreover, the network impact is height-
ened by various P2P services. Estimates of P2P share of network traffic range from 50% to
70%. Cisco’s latest traffic forecast for 2009–2013 indicates that annual global IP traffic will
reach 667 exabytes in 2013, two-thirds of a zettabyte [79]. An exabyte (EB) is an SI unit of
information, and 1 EB equals 1018 bytes. Exabyte is followed by the zettabyte (1 Z = 1021)
and yottabyte (1 Y = 1024). The traffic is expected to increase some 40% each year. Much
of this increase comes from the delivery of video data in various forms. Video delivery on
the Internet will see a huge increase, and the volume of video delivery in 2013 is expected
to be 700 times the capacity of the US Internet backbone in 2000. The study anticipates that
video traffic will account for 91% of all consumer traffic in 2013.

According to the study, P2P traffic will continue to grow but will become a smaller
component of Internet traffic in terms of its current share. The current P2P systems in 2009
are transferring 3.3 EB data per month. The recent study indicates that the P2P share of
consumer Internet traffic will drop to 20% by 2013, down from the current 50% (at the end
of 2008). Even though the P2P share may drop, most video delivery solutions, accounting
for much of the traffic increase, will utilize overlay technologies, which makes this area
crucial for ensuring efficient and scalable services.

1
© 2010 Taylor and Francis Group, LLC

2 Overlay Networks: Toward Information Networking

A P2P network consists of nodes that cooperate in order to provide services to
each other. A pure P2P network consists of equal peers that are simultaneously
clients and servers. The P2P model differs from the client-server model, where
clients access services provided by logically centralized servers.

To date, P2P delivery has not been successfully combined with browser-based operation
and media sites such as YouTube. Nevertheless, a number of businesses have realized
the importance of scalable data delivery. For example, the game company Blizzard uses
P2P technology to distribute patches for the World of Warcraft game. Given the heavy
use of network, P2P protocols such as BitTorrent offer to reduce network load by peer-
assisted data delivery. This means that peer users cooperate to transfer large files over the
network.

1.2 Overlay Technology

Data structures and algorithms are central for today’s data communications. We may con-
sider circuit switching technology as an example of how information processing algorithms
are vital for products and how innovation changes markets. Early telephone systems were
based on manual circuit switching. Everything was done using human hands. Later systems
used electromechanical devices to connect calls, but they required laborious preconfigu-
ration of telephone numbers and had limited scalability. Modern digital circuit switching
algorithms evolved from these older semiautomatic systems and optimize the number of
connections in a switch. The nonblocking minimal spanning tree algorithm enabled the
optimization of these automatic switches. Any algorithm used to connect millions of calls
must be proven to be correct and efficient. The latest development changes the fundamen-
tals of telephone switching, because information is forwarded as packets on a hop-by-hop
basis and not via preestablished physical circuits. Today, this complex machinery enables
end-to-end connectivity irrespective of time and location.

Data structures are at the heart of the Internet. Network-level routers use efficient algo-
rithms for matching data packets to outgoing interfaces based on prefixes. Internet back-
bone routers have to manage 200,000 routes and more in order to route packets between
systems. The matching algorithms include suffix trees and ternary content addressable memo-
ries (TCAMs) [268], which have to balance between matching efficiency and router memory.
Therefore, just as with telephone switches, optimization plays a major role in the develop-
ment of routers and routing systems.

The current generation of networks is being developed on top of TCP/IPs network-layer
(layer 3 in the open systems interconnection (OSI) stack). These so-called overlay networks
come in various shapes and forms. Overlays make many implementation issues easier,
because network-level routers do not need to be changed. In many ways, overlay networks
represent a fundamental paradigm shift compared to older technologies such as circuit
switching and hierarchical routing.

Overlay networks are useful both in control and content plane scenarios. This division of
traffic into control and content is typical of current telecommunications solutions such as the
session initiation protocol (SIP); however, this division does not exist on the current Internet as
such. As control plane elements, overlays can be used to route control messages and connect
different entities. As content plane elements, they can participate in data forwarding and
dissemination.

© 2010 Taylor and Francis Group, LLC

Introduction 3

An overlay network is a network that is built on top of an existing network. The
overlay therefore relies on the so-called underlay network for basic networking
functions, namely routing and forwarding. Today, most overlay networks are built
in the application layer on top of the TCP/IP networking suite. Overlay technolo-
gies can be used to overcome some of the limitations of the underlay, at the same
time offering new routing and forwarding features without changing the routers.
The nodes in an overlay network are connected via logical links that can span
many physical links. A link between two overlay nodes may take several hops in
the underlying network.

An overlay network therefore consists of a set of distributed nodes, typically client de-
vices or servers, that are deployed on the Internet. The nodes are expected to meet the
following requirements:

1. Support the execution of one or more distributed applications by providing infra-
structure for them.

2. Participate in and support high-level routing and forwarding tasks. The overlay is
expected to provide data-forwarding capabilities that are different from those that
are part of the basic Internet.

3. Deploy across the Internet in such a way that third parties can participate in the
organization and operation of the overlay network.

Figure 1.1 presents a layered view to overlay networks. The view starts from the underlay,
the network that offers the basic primitives of sending and receiving messages (packets).
The two obvious choices today are UDP and TCP as the transport layer protocols. TCP is
favored due to its connection-oriented nature, congestion control, and reliability.

After the underlay layer, we have the custom routing, forwarding, rendezvous, and
discovery functions of the overlay architecture. Routing pertains to the process of building
and maintaining routing tables. Forwarding is the process of sending messages toward their
destination, and rendezvous is a function that is used to resolve issues regarding some
identifier or node—for example, by offering indirection support in the case of mobility.
Discovery is an integral part of this layer and is needed to populate the routing table by
discovering both physically and logically nearby neighbors.

Security and resource management,

reliability, fault tolerance

Services management

Applications, services, tools

Routing, forwarding,
rendezvous, discovery

Network

FIGURE 1.1
Layered view to overlay networks.

© 2010 Taylor and Francis Group, LLC

4 Overlay Networks: Toward Information Networking

The next layer introduces additional functions, such as security and resource manage-
ment, reliability support, and fault tolerance. These are typically built on top of the basic
overlay functions mentioned above. Security pertains to the way node identities are as-
signed and controlled, and messages and packets are secured. Security encompasses mul-
tiple protocol layers and is responsible for ensuring that peers can maintain sufficient level
of trust toward the system. Resource management is about taking content demand and
supply into account and ensuring that certain performance and reliability requirements are
met. For example, relevant issues are data placement and replication rate. Data replication
is also a basic mechanism for ensuring fault-tolerance. If one node fails, another can take
its place and, given that the data was replicated, there is no loss of information.

Above this layer, we have the services management for both monitoring and controlling
service lifecycles. When a service is deployed on top of an overlay, there need to be functions
for administering it and controlling various issues such as administrative boundaries, and
data replication and access control policies.

Finally, in the topmost layer we have the actual applications and services that are executed
on top of the layered overlay architecture. The applications rely on the overlay architecture
for scalable and resilient data discovery and exchange.

An overlay network offers a number of advantages over both centralized solutions
and solutions that introduce changes in routers. These include the following three key
advantages:

Incremental deployment: Overlay networks do not require changes to the existing
routers. This means that an overlay network can be grown node by node, and
with more nodes it is possible to both monitor and control routing paths across the
Internet from one overlay node to another. An overlay network can be built based
on standard network protocols and existing APIs—for example, the Sockets API of
the TCP/IP protocol stack.

Adaptable: The overlay algorithm can utilize a number of metrics when making rout-
ing and forwarding decisions. Thus the overlay can take application-specific con-
cerns into account that are not currently offered by the Internet infrastructure. Key
metrics include latency, bandwidth, and security.

Robust: An overlay network is robust to node and network failures due to its adaptable
nature. With a sufficient number of nodes in the overlay, the network may be able
to offer multiple independent (router-disjoint) paths to the same destination. At
best, overlay networks are able to route around faults.

The designers of an early overlay system called resilient overlay network (RON) [361] used
the idea of alternative paths to improve performance and to route around network faults.
Figure 1.2 illustrates how overlay technology can be used to route around faults. In this
example, there is a problem with the normal path between A and B across the Internet.
Now, the overlay can use a so-called detour path through C to send traffic to B. This will
result in some networking overhead but can be used to maintain communications between
A and B.

Overlay networks face also a number of challenges and limitations. The three central
challenges include the following:

• The real world: In practice, the typical underlay protocol, IP, does not provide uni-
versal end-to-end connectivity due to the ubiquitous nature of firewalls and network
address translation (NAT) devices. This means that special solutions are needed to
overcome reachability issues. In addition, many overlay networks are oblivious to
the current organizational and management structures that exist in applications

© 2010 Taylor and Francis Group, LLC

Introduction 5

A
Normal path

Route around

the problem

Logical links

X

Internet

B

C

FIGURE 1.2
Improving resiliency using overlay techniques.

and also in network designs. For example, most of the overlay solutions presented
in this book do not take Internet topology into account from the viewpoint of the
autonomous systems (ASs) and inter-AS traffic.

• Management and administration: Practical deployment requires that the overlay
network have a management interface. This is relatively easy to realize for a single
administrative domain; however, when there are many parties involved, the man-
agement of the overlay becomes nontrivial. Indeed, at the moment most overlays
involve a single administrative domain.

The administrator of an overlay network is typically removed from the actual
physical devices that participate in the overlay. This requires advanced techniques
for detecting failed nodes or nodes that exhibit suspect behaviors.

• Overhead: An overlay network typically consists of a heterogeneous body of de-
vices across the Internet. It is clear that the overlay network cannot be as efficient
as the dedicated routers in processing packets and messages. Moreover, the over-
lay network may not have adequate information about the Internet topology to
properly optimize routing processes.

Figure 1.3 presents a taxonomy of overlay systems. Overlays can be router-based, or
they can be completely implemented on top of the underlay, typically TCP/IP. Router-
based overlays typically employ IP Multicast [107, 130] and IP Anycast [106] features;
however, given the fact that deployment of the next version of the IP protocol, IPv6 [106],
has not progressed according to most optimistic expectations, these extensions are not

Router-based

(IP multicast)

No router support

Infrastructure-centric

(CDNs)

End-systems onlyEnd-Systems with

infrastructure support

Overlay multicast

FIGURE 1.3
Taxonomy of overlay networks.

© 2010 Taylor and Francis Group, LLC

6 Overlay Networks: Toward Information Networking

globally supported on the Internet. If the routers only provide basic unicast end-to-end
communication, information networking functions need to be provided by the overlay.

Content delivery networks (CDNs) are examples of overlay networks that cache and
store content and allow efficient and less costly ways to distribute data on a massive
scale. CDNs typically do not require changes to end-systems, and they are not P2P
solutions from the viewpoint of the end clients.

The two remaining categories illustrated in Figure 1.3 are end-systems with and without
infrastructure support, respectively. The former combines fixed infrastructure with soft-
ware running in the end-systems in order to realize efficient data distribution. The latter
category does not involve fixed infrastructure, but rather establishes the overlay network
in a decentralized manner.

Overlay networks allow the introduction of more complex networking functionality on
top of the basic IP routing functionality. For example, filter-based routing, onion routing,
distributed hash tables (DHTs), and trigger-based forwarding are examples of new kinds of
communication paradigms. DHTs are a class of decentralized distributed algorithms that
offer a lookup service. DHTs store (key, value) pairs, and they support the lookup of the
value associated with a given key. The keys and values are distributed in the system, and
the DHT system must ensure that the nodes have sufficient information of the global state
to be able to forward and process lookup requests properly.

The DHT algorithm is responsible for distributing the keys and values in such a way that
efficient lookup of the value corresponding to a key becomes possible. Since peer nodes
may come and go, this requires that the algorithm be able to cope with changes in the
distributed system. In addition, the locality of data plays an important part in all overlays,
since they are executed on top of an existing network, typically the Internet. The overlay
should take the network locations of the peers into account when deciding where data is
stored, and where messages are sent, in order to minimize networking overhead.

Figure 1.4 illustrates the key DHT API functions that allow peers to insert, look up,
and remove values associated with a key. Typically, the key is a hash value, so-called flat
label, which realizes essentially a flat namespace that can be used by the DHT algorithm to
optimize processing.

DHTs are a class of decentralized distributed systems. They provide a logically
centralized lookup service similar to hash tables. A DHT stores (key, value) pairs
and allows a client to retrieve a value associated with a given key. The DHT is
typically realized as a structured P2P network in which peers cooperate to provide
the service across the Internet.

Distributed applications

Node Node Node Node

Distributed hash table (DHT)

put(key, value) delete(key, value)valueget(key)

DHT balances keys and data across nodes

DHT API

FIGURE 1.4
DHT API.

© 2010 Taylor and Francis Group, LLC

Introduction 7

There are two main classes of P2P networks, structured and unstructured. In the former
type, the overlay network topology is tightly controlled by the P2P system and content is
distributed in such a way that queries can be made efficiently. Many structured P2P systems
utilize DHT algorithms in order to map object identifiers to distributed nodes. Unstructured
P2P networks do not have such tightly controlled structure, but rather they utilize flooding
and similar opportunistic techniques, such as random walks and expanding-ring time-to-live
(TTL) search, for finding peers that host interesting data. Each peer receiving a query can
then evaluate the query locally using its own content. This allows unstructured P2P systems
to support more complex queries than are typically supported by structured DHT-based
systems.

Unstructured P2P algorithms are called first generation and the structured algorithms are
called second generation. They can also be combined to create hybrid systems. The key-based
structured algorithms have a desirable property: namely, that they can find data locations
within a bounded number of overlay hops [162]. The unstructured broadcasting-based
algorithms, although resilient to network problems, may have large routing costs due to
flooding, or may be unable to find available content [274].

Another approach to P2P systems is to divide them into two classes, pure and hybrid P2P
systems. In the former, each peer is simultanously a client and a server, and the operation
is decentralized. In the latter class, a centralized component is used to support the P2P
network.

Figure 1.5 illustrates the inherent trade-off between completeness and expressiveness of
an overlay system. By completeness we mean the ability of the system to guarantee the
location and retrieval of a piece of data. Expressiveness pertains to the system’s ability
to reason about the data—for example, how complex queries can be used to locate data
elements. DHTs and other structured overlays typically guarantee completeness, whereas
unstructured systems, such as Gnutella and Freenet, do not provide such guarantees. As an
inherent limitation, structured systems support less complex queries, typically the lookup
of keys. Unstructured systems, on the other hand, can support complex query processing.
In this book, we cover both structured and unstructured systems and highlight their key
properties.

Key-

based

routing

Key-based

range

queries

Attribute-

based

queries

Expressiveness

Completeness

No guarantees

Guarantees

Content-

based

routing

DHT

Hybrid

Unstructured

FIGURE 1.5
Balancing completeness and expressiveness in overlays.

© 2010 Taylor and Francis Group, LLC

8 Overlay Networks: Toward Information Networking

1.3 Applications

Many overlay networks have been proposed both in the research community and by Inter-
net and Web companies. Overlay networks can be categorized into the following classes [80]:

• P2P file sharing: For sharing media and data. For example, Napster, Gnutella,
KaZaA.

• CDN: Content caching to reduce delay and cost. For example, Akamai and Lime-
Light.

• Routing and forwarding: Reduce routing delays and cost, resiliency, flexibility. For
example, resilient overlay network (RON), Internet indirection infrastructure (i3).

• Security: To enhance end-user security and offer privacy protection. For exam-
ple, virtual private networks (VPNs), onion routing, anonymous content storage,
censorship resistant overlays.

• Experimental: Offer testing ground for experimenting with new technologies. For
example, PlanetLab.

• Other: Offer enhanced communications. For example, e-mail, VoIP, multicast,
publish/subscribe, delay tolerant operation, etc.

Currently a significant amount of content is being served using decentralized P2P over-
lays. Most of the deployed algorithms are based on unstructured overlays. The unstruc-
tured P2P protocol BitTorrent has become a popular content distribution protocol over the
recent years.

P2P technologies are not commonly used with CDNs; however, they are increasingly
used by end clients. P2P offers end client–assisted data distribution, in which clients acting
as peers upload data. This contrasts with the traditional client-server CDN model, in which
clients do not upload data. The main strength of P2P is in the delivery of massively popular
data items; however, items that fall into the long tail may not be cost-efficient to distribute
using P2P. This can be alleviated by storing data items on client machines using caching,
but this requirement is not favored by many users.

1.4 Properties of Data

In this section, we briefly discuss the properties of data [117, 120, 228]. Data can be charac-
terized in many ways. We consider an example taxonomy in Figure 1.6 that divides data
into two parts: stored data and real-time data.

Stored data consists of bits that are stored on a system on a more permanent basis in such a
way that the data can be made available later. This data can take two forms: it can be mutable
or immutable. Mutable data can be shared and modified by various entities either locally or
in the distributed environment. Mutable data can be made incrementally available, and it
can be created and managed by multiple entities. On the other hand, mutable data is not easy
to cache and it requires complicated security solutions, especially in distributed environ-
ments. Immutable data means that the full data—for example, a picture or a video file—is
available, and it does not change. This data can therefore be cached and verified easily.

Real-time data is generated on the fly and transmitted over the network. The data is pack-
etized, possibly on multiple layers, and it is transferred hop-by-hop on a store-and-forward
basis. This means that, although individual packets of the data are stored in intermediate

© 2010 Taylor and Francis Group, LLC

Introduction 9

Data

Stored data

Mutable data Immutable data

Real-time data

Streaming Signaling

Data sharing Data only

incrementally available

Data only

incrementally available

Secure operation needs

solutions

Not easy to cache

Data incrementally

available

Full data is

available

Easy to cache Cannot be cached Cannot be cached

Easy to varify

FIGURE 1.6
Taxonomy of data.

buffers, the whole data is not stored as such. In addition, with real-time data, the time when
the data is inserted into the network plays a crucial part.

Streaming data is only incrementally available, and only the latest packets of this stream
are important. This means that this kind of data cannot be cached. Another form of real-
time data is signaling. In this case, data also becomes incrementally available and cannot
be cached; however, the data packets are typically very different from streaming.

References play an important part in distributed systems. A reference encapsulates a re-
lationship between itself and a referent defined relative to the state of some physical system.
As examples we may consider memory addresses that point to some specific locations of
physical memory and universal resource locators (URLs) that point to Web resources located
on specific servers, available using a specific protocol such as the hypertext transfer proto-
col (HTTP). If the physical system changes—for example, memory is swapped or a server
is relocated—the referent changes as well. These so-called physical references may become
invalid when the environment changes.

In order to cope with changes in the environment, the common practice is to introduce
a level of indirection into the reference system. For example, the domain name system (DNS)
binds host names to IP addresses, which allows administrators to change IP addresses
without changing host names. The hierarchical and replicated structure of DNS scales well
for its intended purposes, and it is at the core of the Internet.

A data element can be either mutable or immutable. In the former case it can change,
and in the latter case it cannot change. It is obvious that a mutable data element can be
represented by a sequence (or a graph) of immutable data elements. Given that a piece of
data does not change, it can be uniquely and succinctly summarized using a hash function.
We note that hashes only provide probabilistic uniqueness; however, a long enough hash
bitstring results in a vanishingly small probability of collision.

A hash function is a function from a sequence of bytes to a fixed size sequence of bits, a
bitstring. Hash functions can be characterized based on how easy it is to find a collision [227]:

• A hash function is strongly collision resistant if it is not computationally feasible to
find two different input data items which have the same hash.

• A hash function is weakly collision resistant if, for a given data item, it is computa-
tionally not feasible to find another data item that has the same hash.

© 2010 Taylor and Francis Group, LLC

10 Overlay Networks: Toward Information Networking

• A hash function is probabilistically collision resistant if, for a given input data item,
the probability that a randomly chosen data item will have the same hash as the
input data item is extremely small.

Semantic-free references have been proposed to achieve persistence and freedom from
contention in a naming system [20, 339]. The idea is to use a reference namespace devoid of
explicit semantics—for example, based on hashed identifiers. This means that a reference
should not contain information about the organization, administrative domain, or network
provider. Flat semantic-free references contrast with DNS-based URLs because they have
no explicit structure. The semantic-free referencing method uses DHTs to map each object
reference to a machine that contains object metadata. The metadata typically includes the
object’s current network location and other information.

Until recently, there have been no good candidate solutions for resolving semantic-free
names in a scalable fashion in the distributed environment. The traditional solution has
been to use a partitioned set of context-specific name resolvers. The emerging overlay DHT
technology can be used to efficiently store and look up semantic-free references. Indeed,
the so-called self-certified flat labels have gained widespread adoption in recent overlay
systems.

Self-certifying data is data whose integrity can be verified by the client accessing
it [227]. A node inserting a file in the network or sending a packet calculates a
cryptographic hash of the content using a known hash function. This hashing
produces a file key that is included in the data. The node may also sign the hash
value with its private key and include its public key with the data. This additional
process allows other nodes to authenticate the original source of the data. When a
node retrieves the data using the hash of the data as the key, it calculates the same
hash function to verify that the data integrity has not been compromised.

A large part of the research and development on P2P systems has focused on data-
centric operation, which emphasizes the properties of the data instead of the location of
the data. Ideally, the clients of the distributed system are not interested in where a par-
ticular data item is obtained as long as the data is correct. The notion of data-centricity
allows the implementation of various dynamic data discovery, routing, and forwarding
mechanisms [274].

In content-based routing systems, hosts subscribe to content by specifying filters on mes-
sages. In content-based routing, the content of messages defines their ultimate destination in
the distributed system. Information subscribers use an interest registration facility provided
by the network to set up and tear down data delivery paths. Data-centric and content-based
communications are currently being investigated as possible candidates for Internet-wide
communications.

1.5 Structure of the Book

After the introduction chapter that motivates overlay technology and outlines several ap-
plication scenarios, we start with an overview of networking technology in Chapter 2. This
chapter briefly examines the TCP/IP protocol suite and the basics of networking, such as
naming, addressing, routing, and multicast. The chapter forms the basis for the follow-
ing chapters, because typically TCP/IP is the underlay of the overlay networks and thus

© 2010 Taylor and Francis Group, LLC

Introduction 11

understanding its features and properties is vital to the development of efficient overlay
solutions.

We discuss properties of networks in Chapter 3, including the growth of the Internet,
trends in networking, and how data can be modeled. Many of the overlay algorithms are
based on the observation that networks exhibit power law degree distributions. This can
then be used to create better routing algorithms.

In Chapter 4 we examine a number of unstructured P2P overlay networks. Many of
these solutions can be seen to be part of the first generation of P2P and overlay networks;
however, they can be also combined with structured approaches to form hybrid solutions.
We cover protocols such as Gnutella, BitTorrent, and Freenet and present a comparison of
them. This chapter places special emphasis on BitTorrent, because it has become the most
frequently used P2P protocol.

Chapter 5 presents the foundations of structured overlays. We consider various geome-
tries and their properties that have been used to create DHTs. The chapter also presents
consistent hashing, which is the basis for the scalability of many DHTs. After surveying
the foundations and basic cluster-based solutions, we then examine a number of structured
algorithms in Chapter 6. Structured overlay technologies place more assumptions on the
way nodes are organized in the distributed environment. We analyze algorithms such as
the Plaxton’s algorithm, Chord, Pastry, Tapestry, Kademlia, CAN, Viceroy, Skip Graphs,
and others. The algorithms are based on differing structures, such as hypercubes, rings,
tori, butterflies, and skip graphs. The chapter considers also some advanced issues, such
as adding hierarchy to overlays.

Many P2P protocols and overlay networks utilize probabilistic techniques to reduce
processing and networking costs. Chapter 7 presents a number of frequently used and
useful probabilistic techniques. Bloom filters and their variants are of prime importance,
and they are heavily used in various network solutions. The chapter also examines epi-
demic algorithms and gossiping, which are also the foundation of a number of overlay
solutions.

As observed in this chapter, data-centric and content-centric operation offer new possi-
bilities regarding data caching, replication, and location. Recently, content-based routing
has become an active research area. In Chapter 8 we consider content-centric routing and
examine a number of protocols and algorithms. Special emphasis is placed on distributed
publish/subscribe, in which content is targeted to active subscribers.

Given the scalable and flexible distribution solutions enabled by P2P and overlay tech-
nologies, we are faced with the question of security risks. The authenticity of data and
content needs to be ensured. Required levels of anonymity, availability, and access con-
trol also must be taken into account. Chapter 9 examines the security challenges of P2P
and overlay technologies, and then outlines a number of solutions to mitigate the ex-
amined risks. Issues pertaining to identity, trust, reputation, and incentives need to be
analyzed.

Chapter 10 considers applications of overlay technology. Amazon’s Dynamo is consid-
ered as an example of an overlay system used in production environment that combines a
number of advanced distributed computing techniques. We also consider video-on-demand
(VoD) in this chapter. Much of the expected IP traffic increase in the coming years will come
from the delivery of video data in various forms. Video delivery on the Internet will see
a huge increase, and the volume of video delivery in 2013 is expected to be 700 times the
capacity of the US Internet backbone in 2000. The remainder of the chapter examines P2P
SIP for telecommunications signaling, and content distribution technologies.

Finally, we conclude in Chapter 11 and summarize the current state of the art in overlay
technology and the future trends. The chapter outlines the main usage cases for P2P and
overlay technologies for applications and services.

© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

2
Network Technologies

This chapter examines the TCP/IP protocol suite and the basics of networking, such as
naming, addressing, routing, and multicast. The chapter forms the basis for the follow-
ing chapters, because typically TCP/IP is the underlay of the overlay networks and thus
understanding its features and properties is vital for the development of efficient overlay
solutions. The chapter places emphasis on interdomain routing, because it is key for scal-
able and policy-compliant global networking. Overlay solutions should ensure that the
underlay is used in an efficient and policy-compliant manner [203].

2.1 Networking

TCP/IP forms the basis of the current Internet, and it is generally described as having four
abstraction layers—namely, the link layer, network layer, transport layer, and application
layer. This layered view is often compared with the seven-layer OSI reference model. Design
principles, outlined in RFC 1122, have had a major influence on the development of the
current Internet [106]. The two key design principles for the Internet were [81] the end-to-end
principle and the robustness principle.

The end-to-end principle places the maintenance of state and overall intelligence at the
edges and assumes the core Internet retains no state [282]. Today’s real-world needs for
firewalls, network address translation (NAT), and web content caches have essentially made
this principle impossible to follow in practice.

The robustness principle can be summarized as follows: be conservative in what you do, be
liberal in what you accept from others. The principle suggests that Internet software developers
carefully write software that adheres closely to extant RFCs but accept and parse input from
clients that might not be consistent with those RFCs. As stated in RFC 1122, adaptability to
change must be designed into all levels of Internet host software.

The network layer in the TCP/IP model is responsible for realizing internetworking and
uses the IP protocol to deliver data from upper layers between end hosts. The protocol suite
separates host names from topological addresses by using name resolution. The domain
name system (DNS) is responsible for resolving hierarchical host names to topological IP
addresses [231]. This effectively separates naming from addressing, and even though the
naming system, namely DNS, fails, the underlying routing can still function independently.
DNS also allows the definition of organizational boundaries that are independent of the
network topology.

A routing algorithm is responsible for building and maintaining routing tables. A forward-
ing algorithm is responsible for determining the next hop given a destination address. Packet
routing involves use of routing and forwarding algorithms and protocols for deciding where
an incoming packet should be sent. The two main classes are intradomain and interdomain
protocols. Intradomain protocols are applied in an autonomous system (AS)—for example,

13
© 2010 Taylor and Francis Group, LLC

14 Overlay Networks: Toward Information Networking

a metropolitan area network (MAN) or regional network—and interdomain protocols are used
to connect the different AS together to form a global network topology. The typical exam-
ples of the protocols are open shortest path first (OSPF) for intradomain operation and border
gateway protocol (BGP) for interdomain operation.

The communications models offered by the Internet can be categorized into the following
cases. In unicasting, a packet traverses a sequence of links from a source to a destination. The
majority of traffic on the Internet is unicast. In multicasting, a packet selectively traverses
multiple chains of links from typically one source to multiple destinations. In broadcasting,
a packet is sent on multiple links to every device on the network. In practice, broadcast
is applied only within a specific broadcast domain. In anycasting, a suitable chain of links
is selected from a number of possible candidates. Packets are sent to the nearest or best
destination.

Of the above communication models, the currently dominant IP version 4 protocol sup-
ports only unicasting on a global scale. The next version of IP, version 6, offers these other
communication models as well; however, the IPv6 deployment has not progressed accord-
ing to some optimistic expectations, and it remains to be seen when the new protocol is
globally deployed.

The Internet is based on hierarchical routing, in which autonomous areas (AS) are
connected by peering and transit links. Each AS can run its own local routing
algorithm, and BGP is used for interdomain connectivity.

Figure 2.1 illustrates the interoperable nature of the IP protocol. The network layer pro-
vides global addressing and end-to-end reachability, and thus abstracts the applications
from the details of routing and forwarding. The IP protocol supports a number of under-
lying links and physical layer protocols, which makes it the waist of the protocol stack.
Higher-level features diverge from the IP and support different operating environments.
The network layer therefore minimizes the number of service interfaces and maximizes
interoperability.

Divergence

Convergence

Diverse physical layers

Diverse applications

Transport layer (TCP/IP)

FIGURE 2.1
Hourglass model in networking.

© 2010 Taylor and Francis Group, LLC

Network Technologies 15

Middleware provides additional services on top of the networking stack and below the
applications. Most overlay and P2P technologies can be thought to be part of middleware.
As middleware, they utilize the APIs and features of the underlying protocol stack and
network and offer their own APIs for application developers. The motivation for this layer
is that it can abstract many details pertaining to the underlying layers and thus make it
easier to develop and run distributed software.

TCP/IP applications use either a host name or an IP address. The former requires a DNS
lookup to resolve the IP address, whereas the latter is directly routable. Recently there have
been a number of proposals for adding further indirection into the protocol architecture
by means of locator-identity split. In general, the split would allow various identifiers—
for example, cryptographic identifiers [14, 188, 243]—to be mapped to IP addresses. The
motivation for locator-identity split is increased flexibility and de-emphasizing the central
role of IP addresses as end-point identifiers.

2.2 Firewalls and NATs

The present-day Internet has seen ubiquitous deployment of firewalls and network address
translators (NATs). Both are used to control data communications between subnetworks.
Firewalls are hardware or software components that block certain incoming connections.
Their main motivation is to increase security by preventing unauthorized connections to
a device. NAT devices, on the other hand, perform conversion between different address
spaces, typically private and public networks (Fig. 2.2). The motivation for NATs is that they
offer a certain level of security and allow the use of private IP address spaces, thus alleviating
IP address exhaustion concerns and some network management concerns as well.

A NAT involves the translation of an IP address used within one network to a
different IP address known within another network. Typically, a NAT maps its
local private network addresses to one or more global outside IP addresses and
then performs reverse mapping of the global IP addresses on incoming packets
back into private IP addresses.

Private address A

Private address B

NAT with public address

Inside local IP addr.

A

B

Out IP addr.

Public IP

Public IP

Inside port

1000

1001

Out port

2000

2001

FIGURE 2.2
Example of network address translation.

© 2010 Taylor and Francis Group, LLC

16 Overlay Networks: Toward Information Networking

There are a variety of NAT devices and a variety of network topologies utilizing NAT
devices in deployments. NAT devices support private IP addressing domains that are not
globally reachable. Typically, client-initiated connections create soft state in the NAT devices
so that responses to requests can be sent to the hosts in the private domain.

There are four general types of NAT devices, based on how they perform the address
mapping:

• Full cone NAT maps an internal address to an external address in one-to-one fash-
ion, and it is easy to traverse.

• Restricted cone NAT maps internal address (and port) to an external address. Once
the internal client has sent a packet to an external host, the external host can send
packets back from any port.

• Port-restricted cone NAT is similar to the restricted cone NAT, but the external host
can only send from the port to which it received packets from the internal client.

• In symmetric NAT, only an external host that receives packets from the internal
host can send packets back.

The asymmetric addressing and connectivity domains established by NAT devices have
created unique problems for P2P systems, which realize both client and server functionality
at end nodes. NATs may prevent P2P nodes from receiving inbound requests. Although
P2P systems build on the end-to-end communications capability of the Internet, in practice
the assumption that a peer can receive inbound traffic is often not valid.

A number of techniques have been devised for applications to detect the NATs on the
communication path and then configure the communications in such a way that the con-
nection can be established. The communication options depend on the type of NATs.
The worst case happens when there are symmetric NATs present, which map each out-
going connection to a new IP address and port number. This case is solved by using
a special rendezvous server that relays all packets between the communicating end-
points [302].

IETF has developed a number of NAT traversal solutions that include connection estab-
lishment (STUN), relaying (TURN), and combined solutions for SIP (ICE). The solutions are
surveyed and discussed in RFC 5128 [302]. Relaying is the most reliable method of realizing
NAT traversal; however, it is also the least efficient, because the relay server’s processing
power and network capacity is used to relay packets. Another technique is connection re-
versal for direct communication that works if only one of the two peers is behind a NAT
device. UDP and TCP hole punching can be used to punch holes through NAT devices and
establish direct connectivity between peers even when both hosts are behind NATs. Recent
analysis results indicate that UDP hole punching works widely on more than 80% of the
NAT devices. TCP hole punching is not as frequently supported, with approximately 60%
support.

P2P applications may use multiple rendezvous servers for registration, discovery, and
relay functions. As an example, Skype uses a central public server for login and a num-
ber of different public servers to realize end-to-end relay functionality. Recent studies
based on thousands of BitTorrent swarms indicate that roughly half of the peers can be
behind firewalls [232]. We return to the Skype and BitTorrent protocols in more detail in
Chapter 4.

© 2010 Taylor and Francis Group, LLC

Network Technologies 17

2.3 Naming

Names and namespaces are fundamental components of network architectures. In the cur-
rent Internet, the DNS is responsible for managing the hierarchical domain namespace. The
DNS protocol was specified in the early 1980s by the IETF. Much of the flexibility of the
current Internet stems from the scalability of both network-level hierarchical routing and
the higher level naming service. DNS has facilitated the deployment of the World Wide
Web and e-mail.

DNS is a managed distributed overlay that uses a static distribution tree and a hierarchi-
cally organized namespace. The DNS system is a distributed database system implemented
using the client-server model, in which the nameservers are responsible for the sharing,
replicating, and partitioning the domain namespace, and answering client requests. DNS
achieves scalability and resilience by relying extensively on caching and replication. As
a consequence, updates to DNS records typically require some time to become globally
available. Another limitation of DNS is that it does not have built-in security, which makes
it prone to a number of vulnerabilities.

The client-side uses a DNS resolver to look up information from DNS. DNS uses UDP
for typical requests and TCP for larger transfers. The DNS system supports two different
query modes, namely nonrecursive queries and recursive queries. A nonrecursive query
places the control at the requesting client, and typically a single DNS provides only a
partial answer to the query. The client can then expand the partial answer by using other
nameservers that are identified in the partial answer. A recursive query, on the other hand,
places the control of the resolution process at the nameserver, which will then contact other
nameservers to answer the query. This latter mode is not a mandatory feature.

The namespace consists of domain names that are organized in a tree structure. Each
domain name in this tree has zero or more resource records that contain information about
the name. Each domain name is part of a DNS zone and has one or more authoritative DNS
servers. The root level of the hierarchy is served by the root nameservers, which are used
to look up a top-level domain name (TLD).

A DNS zone consists of a set of nodes served by an authoritative nameserver. Adminis-
trative responsibility of a zone can be divided to multiple nameservers. Moreover, a single
nameserver can be responsible for multiple zones. Authority can be delegated for an arbi-
trary part of a zone, typically in the form of subdomains. In the case of delegation, the new
nameserver will become the authoritative nameserver for the delegated namespace.

The Internet Corporation for Assigned Names and Numbers (ICANN) oversees the reg-
istrar companies that maintain top-level domains. The domain names have a hierarchical
structure, and new hierarchy levels can be assigned under the top-level domains. The DNS
domain hierarchy is independent of network topology and network administrative do-
mains. This means that multiple names can be mapped to the same network and same
physical server. A name can also map to different IP addresses based on some policy, which
is useful in realizing load balancing. The separation of naming and addressing thus provides
flexibility by allowing more fine-grained policies to be implemented.

The DNS service has been designed to accept queries pertaining to host names and IP
addresses. A DNS client can perform a lookup to translate a hostname to an IP address,
translate an IP address to a hostname, and obtain published information about a host
(typically MX record for e-mail SMTP server details).

Figure 2.3 illustrates how DNS is used. When a client needs to obtain information about
a hostname, it sends a query to its local DNS server. The local DNS server consults its own

© 2010 Taylor and Francis Group, LLC

18 Overlay Networks: Toward Information Networking

DNS

name

server

DNS client

(resolver)

root

…

fi comuk

tkk

cse

helsinki

Root name server

fi name server

tkk.fi name server

cse.tkk.fi name server

6. Answer

1. Resolve host.cse.tkk.fi using recursive query

2. Query

3. Referral

4. Referral

5. Query

FIGURE 2.3
Overview of the domain name system.

cache if it already has the answer to the query. If the cache does not contain the answer, the
local DNS server forwards the query to other DNS servers. Once the DNS server receives
an answer, it can cache it before sending it to the client.

We can take the lookup for cse.tkk.fi as an example. The local DNS server first queries
one of the public root nameservers to find the machines that are nameservers for the .fi
domain. Then the local DNS server queries the .fi domain nameservers to determine the
nameservers responsible for the tkk.fi domain. Finally, it queries the tkk.fi for the host or
Web server IP address.

There are two main types of DNS activities: lookups and zone transfers. Lookups happen
when a DNS client, or a DNS server acting on behalf of a client, queries a DNS server for
information. Typically lookups involve finding the IP address for a given hostname, the
hostname for a given IP address, the name server responsible for a given domain, or the
mail server for a given host.

Zone transfers happen when a DNS server requests all records pertaining to a part of the
DNS naming hierarchy (the zone) from another DNS server. The requesting DNS server is
called the secondary server and the serving one is the primary server. Zone transfers are
expected to happen only among servers that should be replicated. Since DNS knows the
details of how a network is structured (the names and IP addresses), this information may
need to be protected.

2.4 Addressing

The Internet is based on hierarchical routing, which is reflected in its addressing system. The
network addresses are divided into two parts, namely the network and host parts. The
former defines the part of the network topology responsible for that address space, and

© 2010 Taylor and Francis Group, LLC

Network Technologies 19

the latter part defines the host. IPv4 has 32-bit addresses and the newer IPv6 extends this
to 128 bits, which is expected to be sufficient for current needs. In both IPv4 and IPv6 the
addressing space is divided into variable size prefixes.

Originally, there were three prefix classes of A, B, and C corresponding to 8, 16, and 24 bits
for the network part in an address. The limitation of this model was that each prefix appeared
with host addresses included in global routing tables, resulting in scalability challenges. As a
result of a growth crisis, the classless interdomain routing (CIDR) was designed and deployed.
CIDR supports provider aggregated addresses by allowing variable length network part
in an address. This allows better utilization of the existing address spaces, especially class
B networks and aggregate routing table entries. CIDR has significantly reduced the global
routing tables, and it is used in IPv4 and IPv6 [1].

2.5 Routing

In this section, we briefly outline the basic routing process and then examine interdomain
routing. We briefly present the border gateway protocol (BGP), examine some of the current
challenges for BGP, and finally consider compact routing, which is a family of routing
schemes that aim for scalability.

2.5.1 Overview

Routing in a static network is straightforward, having each router determine directions for
each possible destination. Routing in dynamic networks is more challenging, because the
routing tables change and routing instructions need to be computed at runtime. The key
question is where is the state and how often does it need to be updated?

The common approach is to broadcast routing state to all routers, which is exemplified
in link-state routing protocols that broadcast link-state updates that are used to compute
shortest path distances. To avoid excessive flooding of link-state updates, the common
solution is to divide the network into routing domains and use this hierarchy to limit the
propagation of link-state updates. Areas are extensively used in the OSPF, in which they
are a network-dimensioning instrument. Hierarchies naturally occur in the interdomain
context, in which autonomous systems reflect administrative boundaries.

A routing process is responsible for computing the forwarding table of a node. The routing
process estimates the costs of incident links and communicates with its neighbors via these
links. A routing algorithm is the mechanism that defines what information is exchanged
with neighbors and how the forwarding tables are computed. The central purpose of a
routing algorithm is to maintain a forwarding configuration in which nodes are mutually
reachable by forwarding. It is often also desirable for the paths taken by forwarded packets
to be optimal or near-optimal [197].

The Internet is based on hierarchical routing. The seminal work by Kleinrock and Kamoun
published in 1977 showed how hierarchical clustering can be used to produce scalable
routing tables [187]. The key idea is to cluster nearby nodes together and then combine
clusters into superclusters, and continue this in a bottom-up hierarchical manner. As a
result, unnecessary topological information gets abstracted from the routing tables, and
the network scales well. Hierarchical routing results in routing table sizes on the order of√

n. Hierarchical routing is used today by a variety of protocols in both interdomain (BGP,
CIDR) and intradomain routing (OSPF).

© 2010 Taylor and Francis Group, LLC

20 Overlay Networks: Toward Information Networking

2.5.2 Interdomain

The interdomain structure has resulted from developments in both technology and business
models. It is a mixture of technological advances and business decisions driven by investors
and the stock market. A current trend has been toward massively popular content services
on the Internet. This has created pressure toward better network support of data delivery
and dissemination. The need to be able to deliver vast amounts of data in an efficient
and low-cost manner has given birth to CDNs and various peer-to-peer networks, such as
BitTorrent networks.

CDNs charge for the data delivery service and are typically based on proprietary, closed
solutions. BitTorrent and peer-to-peer networks, however, rely on peer-assisted data ex-
change. The latter rely on low-cost, mostly flat rate, connections between end-users and
their providers. This new network behavior has resulted in various anti-peer-to-peer mea-
sures by Internet providers partly due to the fact that many P2P protocols, such as BitTorrent,
do not take interdomain policies into account and thus are not ISP friendly.

The core Internet architecture was not designed to serve as critical communication in-
frastructure for society. Therefore, the economical and political context must also be ana-
lyzed and understood. The current question is whether viable economic models exist for
Internet service provision. Business modeling is complicated by regulatory background,
which varies by country. Telephone-carrier-based ISPs have been asking regulators for the
ability to charge differentially, based on the application and content of traffic. This kind
of discriminatory pricing may pose fundamental limitations for end users and limit their
freedom.

Figure 2.4 illustrates interdomain routing with a number of autonomous systems. Overlay
networks are implemented on top of the network layer topology as illustrated in the figure.
The current interdomain practice is based on three tiers, namely tiers 1, 2, and 3. Tier-1 is an IP
network that connects to the entire Internet using settlement-free peering. There are a small
number of tier-1 networks that typically seek to protect their tier-1 status. A tier-2 network
is a network that peers with some networks but relies on tier-1 for some connectivity, for
which it pays settlements. A tier-3 network is a network that only purchases transit from
other networks.

A
C

B

A5

B1

A1

A2 A3

A4 B4

B3

C1

C3

C4

C2

B2

AS10

transit

Stub

AS20

Stub

AS30

Stub

AS40

Overlay node

Regular node

FIGURE 2.4
Example of interdomain routing.

© 2010 Taylor and Francis Group, LLC

Network Technologies 21

The three main AS categories are as follows [143]: customer-to-provider (C2P), peer-
to-peer (P2P), and sibling-to-sibling (S2S). In the C2P, a customer AS pays a provider
AS for any traffic sent between the two. In the P2P category, two domains can freely
exchange traffic between themselves and their customers but do not exchange
traffic from or to their providers or other peers. In the S2S category, two domains
are part of the same organization and can freely exchange traffic between their
providers, customers, peers, or other siblings.

Gao’s work formulated the AS relationships inference problem. Gao assumed that every
BGP path must comply with the following hierarchical pattern: an uphill segment of zero or
more C2P or S2S links, followed by zero or one P2P links, followed by a downhill segment of
zero or more P2C or S2S links. Paths with this hierarchical structure are valley-free or valid.
Paths that do not follow this hierarchical structure are called invalid and may result from
BGP misconfiguration or from BGP policies that are more complex and do not distinctly fall
into the C2P/P2P/S2S classification [143]. According to recent measurements, BGP tables
miss up to 86.2% of the true AS adjacencies. The majority of these links are of the P2P type.
This means that peering links are likely to be more dominant than have been previously
reported or conjectured.

2.5.3 Border Gateway Protocol

The border gateway protocol (BGP) is responsible for connecting the different autonomous
systems together, and it is the key protocol for building and maintaining the global routing
table at interdomain routers. The current version of BGP is 4, and it incorporates support
for CIDR and route aggregation to improve scalability (RFC 4271).

BGP is realized as a manually configured overlay network that uses TCP connections
between peers. Routing updates propagate from peer-to-peer, and after receiving updates
a BGP router updates its interdomain routing table based on the new information (the
received path vectors).

BGP keeps a table of IP networks that are reachable either through peering links or transit
links. Each IP address, or prefix, is associated with a vector of AS numbers that indicates
the ASes that need to be traversed to reach the destination prefix. BGP is described as a path
vector protocol, since it is built on this notion of a vector of AS identifiers. Moreover, BGP
does not use intradomain metrics such as latency to make routing decisions; instead it uses
network policies and rule sets to decide what paths are used in routing and forwarding.

2.5.4 Current Challenges

As a central component of the Internet, BGP is at the heart of the network and thus faces
increasing scalability challenges as the global network grows. BGP scalability concerns
stem from the observation that each interdomain router is expected to maintain routing
paths to all valid network prefixes. Currently, there are almost 3 × 105 prefixes [1] in the
global routing table, and this number is expected to grow in the near future because of site
multihoming and provider-independent addressing. In addition to the space requirements,
routing table updates poses several challenges. One is the frequency in which changes are
propagated in the global backbone. Another concern is routing update oscillation that may
result from router misconfiguration.

One way to alleviate BGP scalability concerns is to separate path selection from packet
forwarding. This is exemplified in the NIRA (a new interdomain routing architecture) proposal
that empowers users with the ability to choose a provider and domain level end-to-end

© 2010 Taylor and Francis Group, LLC

22 Overlay Networks: Toward Information Networking

path [354]. The motivation for this is that only users know when a path works or not. This
model creates competition between paths that different ISPs offer, because users can choose
the most suitable paths. In this model, the network comprises three parts for each sender
and receiver—namely, the core region (tier-1), the uphill region that covers all possible
paths from the sender to the core, and the downhill region covering all possible paths from
the core down to the receiver. Each region can have its own routing protocols.

Another recent proposal, the accountable internet protocol (AIP), replaces the subnet prefix
in IP packets with a self-certifying autonomous system identifier and a suffix that is a self-
certifying host identifier [9]. The key idea is to support domain-level routing instead of the
current prefix-based routing. The motivation is that there are fewer autonomous systems
than network prefixes. The proposal also combines domain-level routing with security by
using self-certified identifiers that make it easier to make network entities accountable.
The host identifiers are expected to be unique, which would support host mobility and
multi-homing in a seamless way.

2.5.5 Compact Routing

As mentioned above, BGP faces significant scalability challenges, and recent measurements
indicate that both the size of routing tables and the communication cost are increasing
exponentially [190]. Prefix optimization techniques, such as CIDR, do not appear to be the
most efficient solutions in the long run since they offer only a constant reduction in routing
table sizes and they do not change the scaling behaviour of the network.

Compact routing has been proposed as a candidate solution for decreasing routing table
sizes and improving network scalability. A routing scheme is said to be compact when it
results in logarithmic address and header sizes, sublinear routing table sizes, and a stretch
bounded by a constant. The compact routing schemes can be divided into two categories,
specialized and universal. The former works only on some specific graphs, and the latter
works on all graphs.

It has been shown that the classic link state, distance vector, and path vector routing
algorithms exhibit routing table sizes on the order of n log(n) [144] with stretch-1 (the
worst-case path length versus the shortest path). Moreover, hierarchical routing performs
well only for graphs where large distances between nodes dominate. A universal stretch-1
compact routing algorithm has also �(n log(n)) [144]. One interpretation of this result is
that shortest-path routing is incompressible, and to obtain smaller routing tables the stretch
must be allowed to increase above 1. The Cowen and the Thorup-Zwick are two well-known
nonhierarchical stretch-3 compact routing schemes. These name-dependent schemes utilize
a set of landmarks to constrain updates and keep routing table sizes minimal. A routing
table consists of entries for the shortest paths to all landmarks and nodes in the local
cluster [144].

2.6 Multicast

Unicast is the dominant communication model for Internet applications. Multicast is the
process of sending data from typically one sender to multiple receivers. This typically
involves the creation of a multicast tree that is either source specific or shared by the
communicating entities.

In general, the creation of an optimal multicast tree is equivalent to the Steiner tree problem
that is known to be NP complete. This problem bears semblance to the minimum spanning
tree problem; however, it considers only how to reach a specific subset of the nodes [348].

© 2010 Taylor and Francis Group, LLC

Network Technologies 23

The multicast function can be implemented in the network level or it can be implemented
in the application layer. Network-level multicast complements unicast as a basic networking
primitive. Application-layer multicast, on the other hand, typically utilizes unicast. In this
section, we first examine IP multicast and then consider overlay multicast techniques.

2.6.1 Network-layer Multicast

Multicast is essentially a one-to-many data delivery mechanism. Network-layer (or IP) mul-
ticast provides the multicast capability in the form of special multicast address ranges that
are used by network routers to connect senders and receivers. Multicast differs significantly
from unicast in that it decouples the senders and receivers. Moreover, since there may be a
number of receivers for a multicast data packet, the network can optimize the transmission
by replicating packets at the last possible moment in the network.

IP multicast is a simple, scalable, and efficient mechanism to realize simple group-
based communication. IP multicast routes IP packets from one sender to multiple
receivers. Participants join and leave the group by sending a packet using the
IGMP (RFC 1112) protocol to a well-known group multicast address.

The key components of IP multicast are

• IP multicast group address
• A multicast distribution tree maintained by routers
• Receiver driven tree creation

In order to receive multicast packets, receivers join a specific IP multicast group. A mul-
ticast distribution tree is constructed and maintained by routers for the group. All packets
sent to the multicast IP address are then delivered by the multicast protocol to all receivers
that have joined the group.

A multicast protocol is responsible for maintaining multicast trees that connect the mem-
bers of multicast groups. There are two main categories of multicast algorithms, namely
source-based trees and shared trees. The former is rooted at the router serving the source
of multicast packets. This means that a tree is needed for each source; however, the trees
can be optimal in terms of some metric. The latter is rooted at a specific router, called a
rendezvous point (RP) or a core, that is responsible for maintaining the tree. In this case, the
source sends data packets to the RP, which then is responsible for disseminating the data
using the tree. The RP can then perform pruning operation to the tree to optimize the traffic.

Internet group management protocol (IGMP) is a protocol designed to allow the manage-
ment of IP multicast groups memberships. IGMP is used by IP hosts and adjacent multi-
cast routers to establish and maintain multicast groups. According to RFC 3171, addresses
224.0.0.0 to 239.255.255.255 are designated as multicast addresses. IGMP is based on UDP
that is the common low-level protocol for multicast addressing. IP multicast, as IP in general,
is not reliable, and messages may be lost or delivered out of sequence.

There are many different IP multicast protocols. The protocol-independent multicast (PIM)
is a frequently used protocol that supports several different operating modes, namely sparse
mode, dense mode, source-specific mode, and bidirectional mode. Several reliable multicast proto-
cols have been developed—for example, the pragmatic general multicast (PGM) that extends
IP multicast with loss detection and retransmission.

IP multicast groups are not very expressive. They partition the IP datagram address-
space, and each datagram belongs at most to one group. Moreover, IP multicast is a best-
effort unreliable service, and for many applications a reliable transport service is needed.

© 2010 Taylor and Francis Group, LLC

24 Overlay Networks: Toward Information Networking

Multicast works well in closed networks; however, in large public networks multicast or
broadcast may not be practical. In these environments universally adopted standards such
as TCP/IP and HTTP may be better choices for all communication [168].

2.6.2 Application-layer Multicast

Given that IPv4 is still the prevailing network layer protocol and that it does not offer a
native multicast mechanism, it is common to implement multicast on top of the TCP/IP
protocol stack in the form of application-layer (or overlay) multicast. IP multicast requires
routers to maintain per-group state or per-source state for each multicast group. A routing
table entry is needed for each unique multicast group address, and the multicast addresses
are not easily aggregated. Moreover, IP multicast still requires additional reliability and
congestion control solutions.

Therefore, there is motivation for developing and deploying overlay multicast solutions.
Indeed, many of the systems discussed later in this book are examples of these. In this
section, we briefly outline the key motivation for application-layer multicast and the dif-
ferences to network-layer multicast.

An application-layer multicast system typically uses unicast communication be-
tween nodes to realize one-to-many communications. Data packets are replicated
by the end hosts. These protocols may not be as efficient as IP multicast, because
data may be sent multiple times over the same link. As an example, in a previous
version of the Gnutella P2P protocol, one link was observed to be utilized six times
for the same data [273]. This means that nodes establish communications either
using UDP or TCP and forward messages using these links. The multicast tree
construction algorithm is typically distributed and can take various metrics into
account.

Figure 2.5 compares IP multicast and overlay multicast in the following categories: de-
ployment, structure, transport, scalability, congestion control, and efficiency [174]. In terms
of deployment, IP multicast requires multicast-capable routers, whereas overlay multicast

TCP or UDPUDPTransport layer protocol

High (depends on solution)LimitedScalability

Various, can utilize unicast (TCP) for

node-to-node reliability

NoCongestion control/recovery

Low (varies), can suffer from high

stretch and unoptimal interdomain

routing

HighEfficiency

BitTorrent variants, Scribe,

SplitStream, OverCast, etc.

Protocol-independent multicast (PIM),

Core-based trees (CBT), etc.

Example protocols

Typically a tree, both interior nodes of

the structure and leaves are hosts

Tree, interior nodes are routers,

leaves are hosts

Multicast structure

Deployed over the InternetMulticast-capable routersDeployment

Overlay MulticastIP Multicast

FIGURE 2.5
Comparison of IP and overlay multicast.

© 2010 Taylor and Francis Group, LLC

Network Technologies 25

is based on hosts and can thus be deployed easily over the Internet. Both approaches are
based on trees, with the difference being that in IP multicast hosts do not participate in
the tree other than as leaves. As mentioned, IP multicast is not widely deployed and hence
its scalability is limited. It is, however, efficient, whereas overlay solutions may not utilize
optimal paths and may incur more overhead.

2.6.3 Chaining TCP Connections for Multicast

Intuition suggests that overlay multicast typically incurs a performance penalty over IP
multicast because of factors such as link stress, stretch factor, and end host packet process-
ing. For example, early versions of the Gnutella P2P protocol used TCP, but later versions
replaced it with UDP for performance reasons. Chains of TCP connections can offer an
opportunity to increase performance compared to direct unicast. This performance im-
provement comes from finding an alternative overlay path whose narrowest hop in the
chain (as perceived by TCP) is wider than the default path used by IP [192].

The expected TCP throughput as a function of the per-hop loss rates and RTTs can be
modeled using the following equation derived in [247]:

T = s

rtt
(√

2p
3 +

(
12

√
3p
8

)
p(1 + 32p2)

) ≈
√

1.5
rtt

√
p

(2.1)

This provides an estimate of the expected throughput T of a TCP connection in bytes/sec
as a function of the packet size s, the measured round-trip time rtt, and the steady state
loss event rate p.

A given hop in a chain of TCP connections either has local network conditions that limit
its rate to a value below that of the upstream connections or is already limited by the rate of
the upstream connections. Following the methodology used in [361], the aggregate RTT is
defined as the sum of rtti along the path and the aggregate loss rate is defined as 1−∑

1 − pi

(assuming uncorrelated losses).

T ≈
√

1.5∑
rtti

√
1 − �(1 − pi)

(2.2)

2.7 Network Coordinates

The latency of network communications is an important metric for choosing routes and
peers on the network. This raises the question of how accurately latency can be predicted
without prior communication. Recent network measurement systems indicate that latency
prediction is feasible based on synthetic network coordinates [91, 101, 320, 349]. A network
coordinate system might be used to select from among a number of replicated servers to
request a file.

Vivaldi is a distributed algorithm that assigns synthetic coordinates to Internet
hosts. It uses the Euclidean distance between the coordinates of two hosts to pre-
dict the network latency between them. In this system, each node computes its
coordinates by simulating its position in a network of physical springs. The sys-
tem does not require fixed infrastructure, and a new host can compute useful
coordinates after obtaining latency information from some other hosts [101].

© 2010 Taylor and Francis Group, LLC

26 Overlay Networks: Toward Information Networking

2.7.1 Vivaldi Centralized Algorithm

When formulated as a centralized algorithm, the input to Vivaldi is a matrix of real network
latencies M, such that Mxy is the latency between x and y. The output is a set of coordinates.
Finding the best coordinates is equivalent to minimizing the error (E) between predicted
distances and the supplied distances. Vivaldi uses a simple squared error function:

E =
∑

x

∑
y

(Mxy − dist(x, y))2, (2.3)

where dist(x, y) is the standard Euclidean distance between coordinates of x and y.
Vivaldi places a spring between each pair of nodes for which it knows the network latency,

with the rest length set to that latency. The length of each spring is the distance between the
current coordinates of the two nodes. The potential energy of a spring is proportional to the
displacement from its rest length squared: this displacement is identical to the prediction
error of the coordinates. Therefore, minimizing the potential energy of the spring system
corresponds to minimizing the prediction error E .

Vivaldi simulates the physical spring system by running the system through a series of
small time steps. At each time step, the force on each node is calculated and the node moves
in the direction of that force. The node moves a distance proportional to the applied force
and the size of the time step.

Each time a node moves it decreases the energy of the system; however, the energy of
the system stored in the springs will typically never reach zero, since network latencies do
not reflect a Euclidean space. Neither the spring relaxation nor some of the other solutions,
such as the simplex algorithm, is guaranteed to find the global minimal solution. Simu-
lating spring relaxation requires much less computation than more general optimization
algorithms.

2.7.2 Vivaldi Distributed Algorithm

In the distributed version of Vivaldi, each node simulates a piece of the overall spring
system. A node maintains an estimate of its own current coordinates, starting at the origin.
Whenever two nodes communicate, the two nodes measure the latency between them and
exchange their current synthetic coordinates. In RPC-based systems, this measurement can
be accomplished by timing the RPC; in a stream-oriented system, the receiver might echo
a timestamp.

Once a measurement is obtained, both nodes adjust their coordinates to reduce the mis-
match between the measured latency and the coordinate distance. A node moves its coor-
dinates toward a point p along the line between it and the other node. The point p is chosen
to be the point that reduces the difference between the predicted and measured latency
between the two nodes to zero. To avoid oscillation, a node moves its coordinates only a
fraction δ toward p.

A node initializes δ to 1.0 when it starts and reduces it each time it updates its coordinates.
Vivaldi starts with a large δ to allow a node to move quickly toward good coordinates and
ends up with a small δ to avoid oscillation. If two nodes have the same coordinates (the
origin, for instance), they each choose a random direction in which to move. Algorithm 2.1
illustrates the update procedure.

2.7.3 Applications

A modified chord DHT (presented in Chapter 5) uses network coordinates to efficiently
build routing tables based on proximity so that lookups are likely to proceed to nearby

© 2010 Taylor and Francis Group, LLC

Network Technologies 27

Algorithm 2.1 Pseudocode for the Vivaldi update procedure

Data: sc is the other host’s coordinates, sl is the one-way latency to that host, the initial
value of δ is 1.0.

Function: update(sc , sl)
/* Unit vector toward other host */
Vector dir = sc − myc

dir = dir / length(dir)
/* Distance from springs rest position */
d = dist(sc , myc) − sl

/* Displacement from rest position */
Vector x = dir ∗ d
/* Reduce δ at each sample */
δ− = 0.025
/* Stop at 0.05 */
δ = max(0.05, δ)
x = x ∗ δ

/* Apply the force */
myc = myc + x

nodes. A node receives a list of candidate nodes and selects the one that is closest in
coordinate space as its routing table entry; coordinates allow the node to make this decision
without probing each candidate.

The modified chord utilizes coordinates when performing an iterative lookup. When
a node n1 initiates a lookup and routes it through some node n2, n2 chooses a next hop
that is close to n1 based on Vivaldi coordinates. In an iterative lookup, n1 sends an RPC to
each intermediate node in the route, so proximity to n1 is more important than proximity
to n2.

2.7.4 Triangle Inequality Violation

For a network coordinate system to work, it needs to properly reflect the latencies between
network hosts. When neighbour or peer selection is based on brute-force network measure-
ments, the quality of the selection cannot be affected by triangle inequality violations (TIV);
however, when the number of nodes grows, performing these brute-force measurements
may not be feasible. Then it is preferable to use a delay measurement system such as net-
work coordinates discussed above. The potential challenge in using these systems is the
assumption on the delay space that the triangle equality holds [340].

Any three nodes on the Internet A, B, and C form a triangle ABC . Edge AC is
considered to cause a triangle inequality violation if d(A, B) + d(B, C) < d(A, C),
where d(X, Y) is the measured delay between X and Y. The triangulation ratio of
the violation caused by AC in triangle ABC is defined as d(A, C) = (d(A, B) +
d(B, C)).

It has been demonstrated that TIVs can cause significant errors in latency estimation
based on network coordinate systems. As a potential remedy, a TIV alert mechanism has
been proposed that identifies edges with severe TIVs [340].

© 2010 Taylor and Francis Group, LLC

28 Overlay Networks: Toward Information Networking

2.8 Network Metrics

In this section, we examine metrics that characterize various properties of networks. Our
focus is, in particular, on metrics that are useful in the design and deployment of overlay
networks. We have already touched this issue when discussing routing. First, we briefly
consider routing algorithm invariants, which are crucial for ensuring that the algorithms
perform according to the specifications. These invariants and properties do not assess how
well the paths perform that a routing algorithm maintains in a routing table. Therefore a
number of metrics are needed to understand the quality of the paths, the state of the routers
and nodes, and the properties of the network. We elaborate on the following metrics: shortest
path, routing table size, path stretch, forwarding load, churn, and several other metrics.

2.8.1 Routing Algorithm Invariants

The correctness and performance of a routing algorithm can be analyzed using a number of
metrics. Typically it is expected that a routing algorithm satisfies certain invariant properties
that must be satisfied at all times. The two key properties are safety and liveness. The former
states that undesired effects do not occur; in other words, the algorithm works correctly. The
latter states that the algorithm continues to work correctly—for example, it avoids deadlocks
and loops. These properties can typically be proven for a given routing algorithm under
certain assumptions.

Safety and liveness can also be specified in terms of soundness and completeness [197] for
a routing configuration. A configuration is sound if it includes paths for all node pairs that
are reachable (have a path) after the network becomes quiet. A degenerate form of this
configuration is one in which all nodes are unreachable. Completeness is used to ensure
that all paths in the network are included in the configuration. Together these properties
say that all nodes are reachable through the routing and forwarding system; however, they
do not determine how optimal the paths are. Therefore, additional metrics are needed to
assess the quality of the paths.

2.8.2 Convergence

Soundness and completeness (or safety and liveness) do not consider how quickly the
routing algorithm works or converges when the network changes. They only ensure that
from the viewpoint of the system invariants, the operation is correct. Indeed, convergence
cost and time is an important metric for different kinds of routing systems, including overlay
algorithms.

The dynamics of peers joining and leaving an overlay system is called churn, and it is an
inherent property of P2P systems. Peer participation is highly dynamic. Typically, a large
part of the active peers are stable and the remaining peers change quickly [312]. This means
that P2P overlay networks must be designed in such a way that they tolerate high levels of
churn. Indeed, many of the algorithms presented in Chapter 6 tolerate churn.

2.8.3 Shortest Path

The goal of a routing algorithm is to find the shortest paths between two destinations,
A and B, that are reachable through the network. In order to do this, we need to have a
metric for calculating these shortest paths and then create routing tables that reflect the
paths according to distance. OSPF is an example of an intradomain protocol that com-
putes shortest paths using link state routing. On the other hand, BGP is an example of a

© 2010 Taylor and Francis Group, LLC

Network Technologies 29

policy-based routing that calculates shortest paths based on policies and AS hops instead
of, say, delay.

In general, the shortest path length between two nodes Aand B is the minimum number
of edges needed to traverse to reach A from B. The average path length is the average of
the shortest path lengths between any two nodes. The average path length is a metric of
the number of hops to reach a node from a given source.

2.8.4 Routing Table Size and Stretch

We can observe two conflicting goals in the design of routing algorithms, namely that the
network paths used by a given router should be as short as possible and, at the same time,
the routing table should be as small as possible. The two key metrics are the optimality of
the paths and the size of the routing tables.

The efficiency of a routing algorithm is measured in terms of its stretch factor—
that is, the maximum ratio between the length (or delay) of a route computed by
the algorithm and that of a shortest path (or delay) connecting the same pair of
nodes [251].

Stretch signifies the degree of achieved performance in terms of the optimal choice. For
overlay systems, there is an inherent overhead compared to IP routing with the benefit of
deployability and scalability. The treatment for overlay multicast is a bit more challenging.
Typically, the benchmark IP multicast tree would be assumed to consist of the optimal
unicast paths.

We can extend the notion of a stretch to a multicast overlay tree as follows.

Stretch for a multicast overlay tree is the ratio of the number of network-layer hops
(or delay) in the path from the sender to a receiver in the multicast overlay tree,
and the number of hops (or delay) required by the shortest unicast path between
these two nodes, averaged over all trees and paths.

In addition to stretch, we have the routing table size as the other important metric. The
routing table should hold only a fraction of nodes in the network, and the routing algorithm
should not require global information about the nodes. For overlay networks, the aim is
to support routing tables that have sublinear sizes to the number of nodes in the network
(and the number of items in the network). The routing table data structure should also be
efficiently realized using hardware and software.

These two metrics are in conflict, and a routing algorithm needs to balance between the
size of the routing table and the optimality of the paths.

2.8.5 Forwarding Load

Another important metric is the forwarding load placed on routers in terms of packets,
connections, and messages. For an IP router, forwarding load is measured in terms of
incoming packets and the incurring per-packet delay. IP routers use hardware or software
routing tables to look up destination interfaces for a packet given the packet’s destination
prefix. If a router cannot handle all incoming packets, its queues will become full and it
will start to drop packets. This congestion is then handled at the edge of the network,
following the end-to-end principle, and congestion avoidance is implemented in transport
layer protocols, exemplified by the TCP congestion control algorithm.

© 2010 Taylor and Francis Group, LLC

30 Overlay Networks: Toward Information Networking

Router forwarding load therefore is handled mostly at the edge for TCP/IP; however,
overlay nodes are typically end hosts themselves, which makes stress an issue that has to
be taken into consideration when designing an overlay algorithm. For an overlay node, for-
warding load can be viewed to be the amount of traffic the node is processing at a particular
time or time interval. This traffic has many components, namely control traffic pertaining to
how the overlay network is structured (neighbors, super nodes, etc.) and the actual content.

In a multicast system, forwarding load can be expressed in terms of the branching fac-
tor (or replication factor) of each node. For overlay multicast systems, the load incurred
from multicast forwarding compared to network level forwarding can be defined to be the
number of identical packets sent by a node. For network layer multicast there is no redun-
dant packet replication; however, an overlay multicast scheme may result in a number of
unnecessary packet replications (called false positives).

2.8.6 Churn

Churn is a metric that is especially pertinent for P2P overlay systems. Churn pertains to the
rate of arrivals and departures in the system. Typically, a large part of the active peers are
stable and the remaining peers come and go. P2P overlay networks must be designed in
such a way that they tolerate high levels of churn. Recent analysis of churn indicates that,
overall, its characteristics are remarkably similar across different systems [271, 312].

Churn is an inherent property of P2P systems and describes the dynamics of peer
arrival and departure. High churn means that the system is highly dynamic, with
peers coming and going.

Two metrics have been commonly used for churn in file-sharing systems, namely a node’s
session time and lifetime. The session time is the duration between the node joining the
network and then subsequently leaving it. The lifetime is the time between when the node
first entered the network and then left the network permanently. These two metrics are
depicted by Figure 2.6. The availability of a node can be defined to be the sum of a node’s
session times divided by its lifetime. In one study, it has been argued that the session times
of nodes in a DHT are more relevant than their lifetimes [271].

2.8.7 Other Metrics

Other important metrics that characterize a network include:

• Network diameter, which is the average minimum distance between any pair of
nodes.

• Node degree, which is the number of links that the node has to other nodes in an
undirected graph. This degree distribution is connected with the robustness of the
network to node failures.

Time

Join

Lifetime

Leave Join Leave

FIGURE 2.6
Session time in Churn.

© 2010 Taylor and Francis Group, LLC

Network Technologies 31

• Locality-awareness and the properties of data, which are important for data lookup
overlays and CDNs.

• Policy compliancy, which is important for routing that takes place across organi-
zation boundaries. BGP is the classic example of a policy-based routing protocol.

© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

3
Properties of Networks and Data

This chapter examines the salient properties of networks and data communicated over
the networks. We start with a characterization of data on the current Internet and discuss
the growth rate of the global network. Both geographical and logical distribution of data
are crucial when creating overlay networks over the Internet that ensure efficient data
availability. We discuss the role of power-laws and small-worlds in networking.

In order to engineer efficient overlay systems, a lot of information is needed pertaining
to the underlying network, the nodes and their characteristics, and the properties of the
data that they subscribe, publish, and seek. This calls for various models, including mod-
els of the actual traffic distributions on the Internet (including their spatial and temporal
characteristics), models of host connectivity, models of the dynamics of churn, and so on.
In this chapter, we outline some of the fundamental characteristics of overlay networks.

3.1 Data on the Internet

We are currently in the era of the exabyte in terms of annual IP traffic [78] and
entering the era of the zettabyte (1021 bytes). Cisco’s latest traffic forecast for 2009–
2013 indicates that annual global IP traffic will reach 667 exabytes in 2013 [79]. The
traffic is expected to increase some 40% each annum. Much of this increase comes
from the delivery of video data in various forms.

Figure 3.1 presents Cisco’s forecast estimates for monthly global IP traffic until 2011. Ac-
cording to these estimates, the Internet is growing fast. We can compare this estimate with
the situation in 2005 when the global traffic was a bit over 2000 petabytes per month. The
forecast predicts approximately eightfold increase in monthly traffic volume.

Figure 3.2 compares monthly traffic estimates for a number of content providers. The
growth of data-intensive services is evident in the amount of traffic transmitted per month.
We observe that Google and YouTube have by far the greatest bandwidth requirements.
The estimates for US traffic for these two services in mid-2007 far surpassed the US Internet
backbone at year end in 1998; in fact the traffic was over seven times larger. This gives an
idea of the radical growth of the Internet in the last 10 years.

3.1.1 Video Delivery

Video delivery on the Internet is anticipated to see a huge increase, and the volume of video
delivery is expected to be 700 times the capacity of the US Internet backbone in 2000. Cisco’s
study anticipates that video traffic will account for 91% of all consumer traffic in 2013.

33
© 2010 Taylor and Francis Group, LLC

34 Overlay Networks: Toward Information Networking

Cisco’s Global IP Traffic Forecast 2005–2011

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

P
et

ab
yt

es
/M

o
n

th

2005 2006 2007 2008 2009 2010 2011

FIGURE 3.1
Cisco’s global IP traffic forecast estimates 2005–2011.

The increasing video-related traffic creates a number of challenges for network engi-
neering. Video files are typically large, and with the advent of high-definition content they
will be even larger. This means that even a small adoption of a video delivery technology
can result in significant shifts in traffic patterns. This unpredictability of traffic patterns
makes network provisioning more difficult and may result in decreased quality of service
for customers [145].

Flash crowds contribute to the unpredictability of the network. A flash crowd happens
when a certain video or Web site becomes, typically unexpectedly, massively popular [119].
Flash crowds can be alleviated by using content replication and caching schemes. Another
frequently used technique by Web sites is to detect unexpected demand for content and
simplify the Web content to make it smaller.

Video delivery poses new challenges and opportunities for Internet service providers.
Video consumes bandwidth, and with the emergence of flat rates consumers do not pay
per megabyte. Moreover, the content may come from anywhere on the Internet, which may
result in increased interdomain traffic charges for the ISP. This means that service revenue
is no longer related to the connectivity revenue.

196BBC (UK) April 2007

353Yahoo (UK) April 2007

1129Time Warner (US) May 2007

1854ABC, NBC, ESPN, Disney (US) May 2007

2361Yahoo (US) May 2007

3500iTunes audio and video downloads (2006)

3709Google (UK) April 2007

4148MySpace (US) May 2007

6000US Internet backbone at year end 1998

10956Google and YouTube (US) May 2007

45750Google and YouTube (worldwide mid-2007 Cisco estimate)

Terabytes per month

FIGURE 3.2
Monthly traffic estimates for content services.

© 2010 Taylor and Francis Group, LLC

Properties of Networks and Data 35

3.1.2 P2P Traffic

According to the study, peer-to-peer traffic will continue to grow but become a smaller
component of Internet traffic in terms of its current share. The current P2P systems in 2009
are transferring 3.3 exabytes of data per month. The recent study indicates that the P2P
share of consumer Internet traffic will drop to 20% by 2013, down from the current 50% (at
the end of 2008). Even though the P2P share may diminish, most video delivery solutions,
accounting for much of the traffic increase, will utilize overlay technologies, which makes
this area crucial for ensuring efficient and scalable services.

3.1.3 Trends in Networking

Figure 3.3 presents a number of significant trends in IP networking and outlines their
challenges and potential solutions. Current trends include P2P, Internet broadcast, both
Internet and commercial video-on-demand (VoD), and high-definition content.

P2P presents a number of challenges for IP networks because it increases traffic and
utilizes upstream for data exchange. This changes the customary usage of the network in
which downstream dominates the traffic model. Therefore, IP networks need to be provi-
sioned in such a way that possible upstream bottlenecks are eliminated. Caching can be
seen as a potential solution to P2P traffic. Indeed, many current P2P protocols are able
to take network proximity into account so that data can be obtained from a nearby P2P
node.

Internet broadcast pertains to the dissemination of large media files or streams. Flash
crowds are challenging because they make it difficult to provision the network in such a
way that it can handle the expected demand for the content. This can be alleviated by using
P2P content distribution technologies and multicast technologies. Since there is no global IP
multicast support available, network layer multicast needs to be used in specific networks,
such as metropolitan area networks or wireless access networks.

Internet VoD is becoming increasingly popular, and thus the growth of the traffic is a
challenge for the network. This mostly affects the metropolitan area networks and the
core networks. The solutions include CDNs and increasing the network capacity. Data
compression can also be used to reduce the size of the media files. VoD can be cached,
which makes it easy to cache. Commercial VoD is typically delivered in the metropolitan

P2P cachingGrowth in traffic, upstream

bottlenecks

P2P

P2P content distribution,

multicast technologies

Flash crowdsInternet Broadcast

CDNs, increasing network

capacity, compression

Access network IPTV

bottleneck, growth in VoD traffic

volume in the metropolitan area

network

High-definition content

CDNs, increasing network

capacity, compression

Growth in traffic in the

metropolitan area network

Commercial Video-on-Demand

Content Delivery Networks

(CDNs), increasing network

capacity, compression

Growth in traffic, especially

metropolitan area and core

Internet Video-on-Demand

SolutionsChallengesTrend

FIGURE 3.3
Trends, challenges, and potential solutions for IP traffic.

© 2010 Taylor and Francis Group, LLC

36 Overlay Networks: Toward Information Networking

area network, which needs to be provisioned accordingly. The core network is not burdened
much by commercial VoD, because the content can be replicated to relevant MAN networks.

High-definition content also poses challenges, because due to higher quality the amount
of data that needs to be transferred grows radically. Access networks are constrained by
their IP television (IPTV) solution. CDNs and increasing the network capacity as well as
compression are potential remedies.

3.2 Zipf’s Law

A power-law implies that small occurrences are extremely common, whereas large
instances are extremely rare. This regularity or law is also referred to as Zipf or
Pareto. Zipf’s law is interesting for networked systems, because it has been shown
that many different activities follow this law—for example, query distributions
and Web site popularity. The linguist George Zipf first proposed the law in 1935
in the context of word frequencies in languages. For Web sites, the Zipf law means
that large sites get disproportionately more traffic than smaller sites.

In this section, we give an overview of the Zipf distribution and two related distributions,
namely Pareto and power-law distributions. Then we briefly discuss the implications for
the Internet and P2P.

3.2.1 Overview

The Zipf distribution is concerned with the ranking of objects based on their popularity.
The ranking is done by assigning the most popular object the rank of one, the second most
popular object a rank of two, and so on. Zipf’s law states that if objects are ranked according
to the frequency of occurrence, the frequency of occurrence F is related to the rank of the
object R according to the relation

F ∼ R−β , (3.1)
where the constant is close to one.

The simplest verification of the applicability of Zipf’s law is to plot the rank-ordered
list of objects versus the frequency of the object on a log-log scale. On a log-log scale,
the observance of a straight line is indicative of the applicability of Zipf’s law. The Zipf
distribution and power-law distributions are directly related, and they are different ways
of looking at the same phenomena [5]. Zipf is used to model the rank distributions and
power-law for frequency distributions.

The Zipf distribution is related to the Pareto distribution. Pareto was interested in the
distribution of income, with the question of how many people have an income greater than
x. Pareto’s law is defined in terms of the cumulative distribution function (CDF). The Pareto
distribution gives the probability that a person’s income is greater than or equal to x:

P[X > x] ∼ x−k . (3.2)

A power-law distribution in its typical usage tells the number of people whose income
is exactly x rather than how many people had an income greater than x. It is the probability
distribution function (PDF) associated with the CDF given by Pareto’s law

P[X = x] ∼ x−(k+1)m (3.3)

where k is the Pareto distribution shape parameter.

© 2010 Taylor and Francis Group, LLC

Properties of Networks and Data 37

3.2.2 Zipf’s Law and the Internet

The ubiquitous nature of the Zipf distribution on the Internet can be explained using a
growth model that is based on preferential attachment. We return to this topic in the section
on scale-free networks. One key observation is that the multiplicative stochastic growth
process results in a lognormal distribution in the number of pages of a Web site. When
exponential growth of the Web is taken into account, the result is a power-law distribution
(exponentially weighted mixture of lognormal distributions) [6].

Zipf’s law has been used to model Web links and media file references. It therefore has
profound implications for content delivery on the Internet. Efficient caching relies heavily
on Zipf’s law to replicate a small number of immensely popular files near the users. The
distribution of the number of connections a host has to other hosts on the Internet has been
shown to follow the Zipf distribution.

Given that video delivery is becoming increasingly popular, we can ask whether or not the
Zipf distribution can be used to also model video delivery on the Internet. Sripanidkulchai
et al. analyzed a workload of live media streams collected from a large CDN in 2004.
They observe that on-demand streaming media popularity follows a two-sided Zipf dis-
tribution [301]. This distribution has a shallowed exponent for the high-degree nodes
and a steeper exponent for the lower-degree nodes. They also observed exponentially
distributed client arrival times within small time windows and heavy-tailed session
durations.

3.2.3 Implications for P2P

The most straightforward approach to locate data in a P2P network is to flood queries
(broadcast). Without a central server, all nodes flood queries to other peers, and as a con-
sequence the network may become congested. Given the observation that Web resource
and on-demand media distributions follow a one-sided or two-sided Zipf distribution, an
interesting question is whether the P2P network (or any network in general) can take this
data distribution into account in order to be more efficient. Indeed, recent results indicate
that two-tier P2P systems such as Gnutella and Freenet, and structured overlays (DHTs),
perform significantly better than simple flooding.

One defining difference in P2P file sharing and Web traffic is that most files that are shared
in P2P networks are immutable, whereas Web pages are often updated and therefore mu-
table. Caching works much better for immutable resources than mutable ones, because
immutable resources do not require a mechanism for coordinating updates (although ver-
sioning may be needed). Experimental results with the P2P system KaZaA indicate that
clients typically fetch a file only once from the P2P network, whereas Web pages are more
frequently requested by browsers. As a consequence, the KaZaA file popularity distribution
differs from the typical Zipf distribution for Web resources [153].

3.3 Scale-free Networks

The way network nodes are connected, both the physical links as well as logical links, is
vitally important in order to understand many properties such as scalability, performance,
and resilience. The nature of both physical Internet connections and logical connections
bears crucial importance to realistic topology generation and network simulation. In order
to build good overlay designs, the underlying network must be understood and taken into
account. This means that issues pertaining to network economics also need to be considered.

© 2010 Taylor and Francis Group, LLC

38 Overlay Networks: Toward Information Networking

Random network Hierarchical networkScale-free network

FIGURE 3.4
Three different types of networks.

Figure 3.4 illustrates different kinds of network types, namely random graphs, scale-free
networks, and hierarchical networks. We briefly discuss these three types of networks.
In many real systems it has to be assumed that clusters combine in an iterative manner,
generating a hierarchical network.

The Erdös-Rényi model of a random network starts with N nodes and connects
each pair of nodes with probability p. The node degrees follow a Poisson distribu-
tion, and the tail of the degree distribution decreases exponentially. This indicates
that most nodes have approximately the same number of links and that nodes that
deviate from the average are very rare. The mean path length is proportional to
the logarithm of the network size, log N, which is indicative of the small-world
property.

Recently it has been shown that many different self-organizing networks are scale-free.
One of the distinguishing features of scale-free networks is preferential attachment. This
results in large and busy hubs that route traffic and keep the diameter of the network
small through multiple connections between different hubs. The hubs are useful in keeping
the network connected and the diameter small; however, they are also a potential weak
point of the network because of their central role in maintaining connectivity. Scale-free
networks are characterized by a power-law degree distribution. Figure 3.5 gives an example
of power-law distribution. In a power-law distribution, there are a few hubs that have many
connections.

Number of links (k)

N
u

m
b

er
 o

f
n

o
d

es
 w

it
h

 k
 l

in
k

s

Many nodes with

a small number

of links

A small number

of hubs with

many links

FIGURE 3.5
Power-law distribution.

© 2010 Taylor and Francis Group, LLC

Properties of Networks and Data 39

Three central network characteristics have been described for scale-free networks based
on analysis of complex networks:

1. Short average path length
2. High level of clustering
3. Power-law and exponential degree distribution (contrasting the Poisson degree

distribution of the classic Erdös-Rényi model)

The Barabási-Albert model supports incremental network growth of the scale-
free topology. The model is based on three mechanisms that drive the evolution
of graph structures, namely incremental growth, preferential connectivity, and
rewiring.

A scale-free network can be grown by adding vertices to the graph one at a time and
joining them to a fixed number m of earlier vertices. Each earlier vertex is chosen with
probability proportional to its degree. It has been shown that the resulting graph has di-
ameter log n for m = 1 and log n/ log log n for m = 2 [34].

The World Wide Web graph (web pages are vertices, and hyperlinks are edges) and
the bandwidth capacity of optical fibre connections between major US metropolitan areas
have been demonstrated to exhibit scale-free properties. There are a few Web sites with
a high number of links, which helps to further promote the popularity of the sites. It
has been shown that the Internet follows power-law distributions both at the router level
and AS level [126]. This means that the physical fabric of the Internet and the business
interconnection of networks both can be considered to be scale-free networks. However,
not all networks are scale-free and, for example, the Italian telephone system for out-going
landline calls is more similar to exponential distribution than a power-law one.

Compact routing is a research area that investigates the limits of routing scalability [93, 190].
This research shows that shortest-path routing cannot guarantee routing table sizes that on
all network topologies grow slower than linearly as functions of the network size. There
exist static compact routing schemes designed for grids, trees, and Internet-like topologies
that offer routing table sizes that scale logarithmically with the network size. Recent research
indicates that logarithmic scaling on Internet-like topologies is fundamentally impossible
in the presence of topology dynamics or topology-independent addressing.

3.4 Robustness

Given a certain expected network structure, a very interesting question is how easy it
is to disrupt the network and partition it into disjoint parts. Cohen et al. [85] have shown
analytically that networks in which the vertex connectivity follows a power-law distribution
with an index of at most (α < 3) are very robust in the face of random node breakdowns. A
connected cluster of peers that spans the entire network can survive even in the presence of
a large percentage p of random peer breakdowns. The following bound has been derived
for p [284]:

p ≤ 1 +
(

1 − mα−2 K 3−α α − 2
3 − α

)−1

, (3.4)

where m is the minimum node degree and K is the maximum node degree.
The Internet node connectivity has been shown to follow a power-law distribution with

α = 2.5 [85]. Similar investigation has been made for the Gnutella P2P network resulting

© 2010 Taylor and Francis Group, LLC

40 Overlay Networks: Toward Information Networking

0

20

40

60

80

100

10 20 30 40 50 60 70 80

P
er

ce
n

ta
g

e
o

f
h

o
st

s
w

it
h

 r
an

d
o

m
 b

re
ak

d
o

w
n

s

Maximum node degree of power-law distribution

Fraction of hosts with random breakdowns

a = 2.5

a = 2.3

FIGURE 3.6
Resiliency of power-law networks.

in the observation that α = 2.3 for Gnutella [284]. Figure 3.6 shows the above equation as
a function of the maximum degree where the power-law parameter α was set to 2.3 and
2.5, respectively. Both the Internet and Gnutella present a highly robust topology. They are
able to tolerate random node breakdowns.

For a maximum and fairly typical node degree of 20, the Gnutella overlay is partitioned
into disjoint parts only when more than 60% of the nodes are down. Robustness is a highly
desirable property in a network. The above equation is useful in understanding the ro-
bustness of power-law networks; however, it assumes that the node failures are random.
Although a power-law network tolerates random node failures well, it is still vulnerable to
selective attacks against nodes. Indeed, an orchestrated attack against hubs in the network
may be very effective in partitioning the network.

3.5 Small Worlds

Small-world networks are characterized by a graph degree power-law distribu-
tion. Most nodes have relatively few local connections to other nodes, but a sig-
nificant small number of nodes have large wide-ranging sets of connections. The
small-world topology enables efficient short paths because the well-connected
nodes provide shortcuts across the network.

The notion of the small-world phenomenon can be traced back to the famous experiment by
Stanley Milgram in the 1960s to assess people’s social networks. His conclusions included
that people were proficient at finding routes to other people even across continents.

In 1998 a certain category of random networks were identified to be small-world net-
works by Duncan Watts and Steven Strogatz [346]. This classification was based on two

© 2010 Taylor and Francis Group, LLC

Properties of Networks and Data 41

independent structural features: the clustering coefficient and the average distance be-
tween two nodes (average shortest path). Random graphs built using the classic Erdös-
Rényi model feature small average shortest path with a small clustering coefficient. The
small-world networks were observed to have this first property but to exhibit much larger
clustering coefficient than would be expected.

Jon Kleinberg developed a mathematical model in 2000 for routing in small-world net-
works [186]. He investigated routing on lattices and showed that routing efficiency depends
on a balance between the number of shortcut edges of different lengths with the coordinates
in the lattice. More specifically, a d-dimensional lattice was used, with long-range links cho-
sen at random according to the d-harmonic distribution. In this model, the probability of
a random shortcut being a distance x away from the source is proportional to 1/x in one
dimension, proportional to 1/x2 in two dimensions, and so on [346].

In a specific configuration in which the frequency of edges of different lengths decreases
inverse proportionally to the length, simple greedy routing will find routes using only
local information in O(log2 n) hops on average, where n is the size of the graph [283]. More
recent research shows that Kleinberg’s analysis is tight and the algorithm achieves �(log2 n)
delivery time. The expected diameter of the graph has also been shown to be �(log n), a
log n factor smaller than originally anticipated [222].

The small-world result is significant for overlay P2P networks since it allows retention
of a small routing table with only a few distant contacts and still routes efficiently with
only local information [220]. This result has been used in a number of P2P systems, notably
Freenet [359] discussed in Chapter 4. Given the assumption that a network exhibits small-
network properties, it should be possible to recover an embedded Kleinberg small-world
network. This can be done by randomly selecting pairs of nodes to be included in a routing
table and then potentially swapping them while minimizing the distances between a given
node and its neighbors.

The Gnutella network has been observed to exhibit the clustering and short path lengths
of a small world network. Its overlay dynamics lead to a biased connectivity among peers
where each peer is more likely connected to peers with higher uptime [313]. Moreover,
the Gnutella session lifetime has been observed to follow a power-law distribution with
exponential cut-off. The session lifetime distribution of Gnutella might be an invariant
characteristic independent of the protocol changes during the period 2002–2005 [163].

© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

4
Unstructured Overlays

In this chapter, we examine a number of unstructured P2P overlay networks. Many of
these solutions can be seen to be part of the first generation of P2P and overlay networks;
however, they also can be combined with structured approaches to form hybrid solutions.
We cover protocols such as Gnutella, BitTorrent, and Freenet and present a comparison of
them. This chapter places special emphasis on BitTorrent, because it has become the most
frequently used P2P protocol.

4.1 Overview

Overlay networks come in many shapes and forms. In general, there are two main classes of
overlay and P2P networks: structured and unstructured. This chapter focuses on unstruc-
tured networks, in which there is no tight topology control by the algorithm. As mentioned
in Chapter 1, unstructured P2P algorithms have been called first generation and the struc-
tured algorithms have been called second generation, respectively. They can also be combined
to create hybrid systems [11, 213].

Unstructured networks are typically based on random graphs following flat or
hierarchical organization. Unstructured networks utilize flooding and similar
opportunistic techniques, such as random walks [146, 225], expanding-ring Time-
to-Live (TTL) search, in order to locate peers that have interesting data items.

Many unstructured P2P systems are based on keyword-based searching of interesting
data items in the network. Keyword-based systems maintain an inverted list for each key-
word that includes the identifiers for matching documents and the frequency of the key-
word in each document. The P2P algorithm then distributes these lists. Search for multiple
keywords involves intersection of the corresponding lists. The cost of maintaining and
distributing keyword-based indexes can be alleviated by using more advanced data struc-
tures for list representation, such as probabilistic filters discussed in Chapter 7. Indeed, later
versions of the P2P Gnutella protocol use Bloom filters for compact index representation.

Unstructured networks are contrasted by structured overlay networks, investigated in
Chapter 5, which have stricter requirements on the topology and can facilitate more co-
ordinated search efforts [313]. One benefit of unstructured networks stems from their op-
portunistic nature and that the topology makes little assumptions regarding the queries.
Indeed, unstructured networks can support different kinds of query languages, whereas
structured overlay networks typically require additional query-processing layers on top of
the basic overlay.

43
© 2010 Taylor and Francis Group, LLC

44 Overlay Networks: Toward Information Networking

4.2 Early Systems

The history of P2P systems is rooted in various client-server-based systems that introduced
server-to-server communications in varying degrees. Internet was designed to support
peer-to-peer systems, such as the file transfer protocol (FTP), Telnet, domain name system
(DNS), and unix-to-unix copy protocol (UUCP). The Internet architecture’s emphasis on plac-
ing intelligence in the end hosts rather than the core routing infrastructure proved to be a
fertile ground for developing different end-to-end interactions between hosts.

As a classical example, we can take the Usenet news systems, in which news servers
exchange news articles in order to propagate them. Usenet is a client-server network from
the viewpoint of the clients; however, it exhibits P2P communication from the viewpoint
of servers. We can view the e-mail system and simple mail transfer protocol (SMTP) [261]
from a similar angle. In SMTP, the relaying network of mail agents can be seen to be a P2P
network. The Web introduces the capability for P2P, since any node can be a Web client or a
Web server. These examples can be seen as unstructured overlays since they do not impose
strict requirements on the connections between peers.

4.3 Locating Data

A significant feature of P2P systems is how they locate the desired data items in the dis-
tributed environment. The four common techniques are

• Central index: This model was used by Napster. When a node joins, it sends a list
of locally available files to the index server. The index server then performs queries
on behalf of the clients. When a query has matching files, the peer that sent the
query receives a list of the peers that have the actual data file. Although the central
index provides guarantees for completeness and can be used to ensure global end-
to-end reachability, it is the weakest point in the system from the viewpoint of
security. In addition, the central nature necessitates that an organization manage
and maintain it.

• Flooding: In this model, there is no central index, but each peer maintains an index
of files it is sharing with other peers. A query is then propagated in the network
by peers, and peers that have matching data items send the result set directly to
the node that initiated the query. This method avoids the single point of failure of
Napster; however, it introduces significant overhead into the network due to the
flooding technique.

Flooding-based search techniques are typically effective in locating highly pop-
ular data items. They are also robust in high churn environments, in which peers
join and leave the system. These techniques are not very good in locating rare data
items. Moreover, in unstructured P2P systems, the peer load in many cases grows
linearly or super-linearly with the total number of queries and system size.

• Heuristic key-based routing: Given the inherent performance and security issues
in the basic flooding model, a number of heuristic key-based routing techniques
have been developed. Freenet is a classic example of a P2P system using the key-
based routing model. In the model, each file is associated with a key, and files
with similar keys are clustered together. The motivation is that queries can then
be forwarded to a cluster instead of flooding the network. The limitation of this

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 45

heuristic approach is that the network does not guarantee that all matching data
items are found.

• Structured models: As mentioned above, centralized, flooding, and heuristic key-
based models have certain limitations. In order to overcome these limitations, many
different structured P2P models have been proposed. The aim of these models is
to be able to offer the efficiency and completeness of search results of Napster with
the decentralization of Gnutella and Freenet. A large part of structured overlays
has focused on DHTs, which are examined in Chapter 5. Although many DHTs
can offer decentralized and scalable exact-match search, more complex query pro-
cessing requires further solutions and is currently an active topic of research and
development.

Users of P2P file sharing networks, such as Gnutella, face the question of whether
or not to share resources to other peers in the community. They face essentially a
social dilemma of balancing between common good and selfish goals. The selfish
behavior often encountered in P2P networks in which peers only download files
and do not make resources available on the network is called free-riding. Free-
riding occurs because the peers have no incentives for uploading files. Free-riding
becomes a major problem when significant numbers of peers consume network
resources while not contributing to the network. In the context of P2P this is often
referred to as tragedy of the digital commons [52, 167].

4.4 Napster

The era of mainstream P2P file sharing can be seen to have started from Napster, which
was launched in 1999. Although relying on direct file exchanges between peers, Napster
employed a centralized file index hosted by the Napster service [285]. In this model, each
peer provides a file list to the centralized file search service that maintains the file index.

Figure 4.1 outlines the key components of Napster. The centralized directory maintains
the file lists of the peers. Peers query the directory server in order to find other peers that
host files that match the query (step 1 in the figure). Once there is a match for a peer’s query,
the server forwards the address of the peer that stores the data item that matched the query
(step 2). Finally, the peer that issued the matching query can directly contact the peer that
has the data (step 3).

The motivation for this model is that the transfer of the file lists does not require much
bandwidth, allows easy management, and ensures that the index is complete (i.e., has all
the files available in the system). On the other hand, this model has a single point of failure.
The service becomes unavailable if the index is not working properly. Although Napster
popularized P2P file sharing, it also created a number of issues pertaining to copyright
issues, and the digital music sharing capability was ultimately closed due to a lawsuit filed
by the Recording Industry Association of America (RIAA).

In addition to the many legal questions arising from P2P file sharing, the observation
that centralized components create challenges for the growth of the P2P network has led
to many advances in P2P networking. Gnutella [272] goes beyond Napster in that it is
entirely decentralized, thus avoiding the limitation of the centralized index. Gnutella and
many similar networks utilize the flooding model in which a file query is broadcast on
the network and peers propagate the query. Each peer examines an incoming query and
evaluates the query against a list of local files. Although this model results in a decentralized

© 2010 Taylor and Francis Group, LLC

46 Overlay Networks: Toward Information Networking

Centralized

directory server

Peers

Alice

Bob

1

1

1

12

3

FIGURE 4.1
Overview of Napster.

system and a file index that is distributed over the peers, flooding has a lot of overhead in
terms of network bandwidth and message processing, and it may take some time to find
relevant files as the query is propagated in the network.

The realization that flooding is not efficient has led to a number of variants of the basic
Gnutella protocol and, more recently, to a number of more sophisticated structured algo-
rithms that impose constraints on the way peers are organized into the P2P network in
order to optimize processing and find data more efficiently.

4.5 Gnutella

Gnutella is a classic example of a decentralized unstructured P2P network that relies on
flooding to be able to find peers that have desired data items [70, 272].

Gnutella is a decentralized P2P network that distributes both the search and down-
load capabilities. The protocol uses flooding to find peers with matching data items
and then uses direct file exchanges between peers. The protocol performance has
been improved by introducing structure using hubs, called ultra nodes, and by
employing proxy-based firewall traversal.

In this section, we discuss the classic version of the protocol and some later improve-
ments. The Gnutella protocol is currently being developed by the Gnutella Developers
Forum. There are a number of extensions available for the base protocol that include query
routing enhancements, UDP-based querying and file transfers, XML metadata, parallel
downloading, etc.

4.5.1 Overview

Figure 4.2 presents an overview of the classic Gnutella protocol. The two important parts
of the protocol are

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 47

Gnutella: Protocol

• Query message sent

 over existing TCP

 connections

• Peers forward

 Query message

• QueryHit sent over

 reverse path

Query

QueryHit

Query

Query

QueryHit

Q
uer

y

Query

Q
uer

yH
it

File transfer:

HTTP

Scalability:

limited scope

flooding

FIGURE 4.2
Overview of Gnutella.

• Search, which is about locating the peers that have desired data items.
• Download, which is the process of transferring the actual data items from the peers.

The bootstrapping of the P2P network by obtaining a set of known peers is not part of
the Gnutella protocol. Typically, a set of predefined bootstrapping points are used. Once an
address of at least one known peer has been obtained, the Gnutella client can try to connect
to the P2P network using TCP/IP.

Searching is performed using the Query messages that are forwarded by the peers. Flood-
ing is used to distribute queries over the overlay with a limited scope. Each peer maintains
its own index of local data items. When a peer receives a query, it sends a list of data items
that match the query to the peer that originally sent the query. The peer hosting the data
sends the QueryHit message back to the origin peer using the reverse path. The peers then
negotiate the file transfer and use HTTP to transfer the file.

The classic Gnutella protocol uses the following five message types:

• Ping. This message is used to discover peers on the network. A new peer sends a
broadcast Ping message to announce its availability. The Ping message results in a
corresponding Pong message that contains information about the peer that received
the Ping message, such as network information and number of data items.

• Pong. The Pong message is sent as a reply to the Ping message.
• Query. The Query message is used to search for a data item (file). This message con-

tains a search string. Each peer that receives the Query message checks the search
string against its local database of file names. The Query message is propagated in
the P2P network until the hop count reaches its maximum value.

• QueryHit. QueryHit is a reply to the Query message and contains information
needed for downloading the file. The file transfer is first negotiated and then per-
formed directly by the peers.

• Push. This message is a download request that is used by peers behind firewalls to
trigger push-based file transfer.

© 2010 Taylor and Francis Group, LLC

48 Overlay Networks: Toward Information Networking

A

B D

C

F

GE

H

Perfect mapping for message from A.

Link D–E is traversed only once.

Inefficient mapping that results in link

D–E being traversed six times

A

B D

C

F

GE

H

FIGURE 4.3
Example of efficient and inefficient routing tables in Gnutella.

4.5.2 Searching the Network

In an early version of Gnutella (version 0.4), the number of actively connected nodes of a
peer was relatively small, say five. When issuing a query, the peer would send the query
message to each of these actively connected nodes, and they would then propagate the
query. This was repeated until a predetermined number of hops, maximum of seven, was
reached (the TTL).

Flooding works reasonably well for small- to medium-sized networks. The cost of search-
ing in a Gnutella-style network using flooding increases super-linearly to the number of
nodes in the system. Searching is roughly of exponential complexity, because td hops are
involved where t is the time to live and d is the number of peers per node.

Figure 4.3 illustrates efficient and inefficient routing tables in terms of network proximity.
In this example, a message will traverse the link D-E six times in an inefficient configuration.
This illustrates the need to take network proximity into account [272].

More recent versions of Gnutella incorporate more structure in order to make the net-
work more efficient and take locality better into account. Since version 0.6, Gnutella has
been a composite network consisting of leaf nodes and ultra nodes. The leaf nodes have
a small number of connections to ultra nodes, typically three. The ultra nodes are hubs of
connectivity, each being connected to more than 32 other ultra nodes. Figure 4.4 illustrates
this two-tier Gnutella architecture.

When a node with enough processing power joins the network, it becomes an ultra
peer and establishes connections with other ultra nodes. This network between the ul-
tra nodes is flat and unstructured. Then the ultra node must establish a minimum num-
ber of connections with client nodes in order to continue acting as an ultra node. These
changes attempt to make the Gnutella network reflect the power-law distributions found
in many natural systems. The maximum hop count was lowered to four to reflect this new
structure.

In Gnutella terminology, the leaf nodes and ultra nodes use the query routing protocol to
update routing tables, called query routing table (QRT). The QRT consists of a table of hashed
keywords that is sent by a leaf node to its ultra nodes. Ultra nodes merge the available QRT
structures that they have received from the leaf nodes and exchange these merged tables
with their neighboring ultra nodes.

Query routing is performed by hashing the search words and then testing whether or
not the resulting hash value is present in the QRT of the present node. Ultra nodes perform
this query test before forwarding a query to a leaf node or to a neighboring ultra node. The
query ends when enough sources have been found (250 results).

If a match is found on a leaf node, this node contacts the peer that originated the query.
The classic Gnutella protocol used reverse path routing to send a message back to this origin

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 49

Ultra node

Ultra node

Ultra node

Ultra node layer

Flooding

(Bloom filters)

Leaf

Leaf Leaf
LeafData transfer

FIGURE 4.4
Two-tier Gnutella.

peer. Later incarnations of the protocol use UDP to directly contact the origin peer. As a
result of this change, the Gnutella network is not burdened with this traffic.

When a file download is started, the peer that has the data and the origin peer negotiate
the file transfer. If there is no firewall or NAT between the communications, the origin peer
can contact the peer that has the data. Otherwise, the origin peer sends a special message
called push request to the peer having the data. This message will trigger the other peer to
initiate the connection and to push the file to the origin of the query. The historical Gnutella
protocol used the same route for both queries and push messages; however, this was found
to be unreliable due to the dynamic nature of the P2P network. As a solution, special entities
called push proxies were introduced. Push proxies are announced in the search results, and
they are commonly the ultra nodes of the leaf node in question. A push proxy sends a push
request on behalf of a peer. The push proxies alleviate traffic concerns pertaining to push
messages, and they offer more reliability, since ultra nodes are assumed to be more stable
than leaf nodes.

When the Gnutella software instance is closed by a user, the software saves the list of
leaf nodes and ultra nodes that it was actively connected to, as well as the peer addresses
obtained from pong packets. This information is used to bootstrap the next Gnutella session.

A random walk scheme has been proposed as a replacement for the flooding algorithm.
In this approach, each node chooses a random neighbor and sends the request only to this
node. The random walk scheme was combined with proactive data replication, and they
were found to improve the system performance [214] significantly.

4.5.3 Efficient Keyword Lists

The exchange of keyword lists and other metadata between peers is crucial for P2P net-
works. Ideally, the state should be such that it allows for accurate matching of queries and
takes sublinear space (or near constant space). Gnutella minimizes the state needed for
keywords by hashing them.

The later versions of the Gnutella protocol uses Bloom filters [32] to represent the key-
word lists in an efficient manner. A Bloom filter is a probabilistic representation of a set
that allows constant time membership tests. We return to Bloom filters and their variants in
Chapter 7. Although Bloom filters require much less space than an ordinary keyword list,

© 2010 Taylor and Francis Group, LLC

50 Overlay Networks: Toward Information Networking

• Skype is P2P

• Proprietary application-layer

 protocol

• Hierarchical overlay with super

 nodes

• Index maps usernames to IP

 addresses; distributed over

 super nodes

• Peers with connectivity issues

 use NAT traversal or

 communicate via super node

 relays

Skype

login server

Skype clients (SC)

Skype

super node

Skype Skype

FIGURE 4.5
Overview of Skype.

the price for the compactness is in terms of false positives. A false positive in this context
means that the filter reports an unnecessary keyword match. The false positive probability
can be tuned to a suitable level. In Gnutella, each leaf node sends its keyword Bloom filter
to an ultra node, which can then produce a summary of all the filters from its leaves and
then send this to its neighboring ultra nodes.

4.6 Skype

In addition to Napster, Skype1 is another example of a proprietary P2P network for voice
calls over the Internet. Skype has over 40 million active users, which makes it one of the most
popular P2P networks in the world. P2P technology is used to make the system cost efficient
and scalable. Skype allows people to call each other over the network using voice over IP
free of charge and charges for calls to landlines and mobile phones. The system is based on
the closed source Skype protocol. The user directory is decentralized and distributed among
the nodes of the network; however, user authentication is done using a centralized server.
The authentication servers are used to join the Skype network and obtain a list of so-called
super nodes that are used to route calls. This cache of super nodes is periodically updated.

Figure 4.5 gives an overview of the Skype system. Some Skype peers that are publicly
addressable, meaning that they are not behind NATs and firewalls, are super nodes that are
used as rendezvous points for other users who are behind firewalls. Skype tries to utilize
direct connections between clients by using STUN and TURN, but if this is not possible, it
may need to use the super nodes for communication. Each Skype client maintains a host
cache of known super nodes. The super nodes are used for locating other users and call
routing. Unlike traditional landline calls, Skype encrypts all communications with a 128-bit
cipher (AES) and uses RSA to transmit session keys.

4.7 BitTorrent

BitTorrent is currently the de facto P2P file-sharing protocol for distributing large amounts
of data [103]. The protocol is very popular, and, according to some estimates, it accounts for

1 www.skype.com

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 51

roughly 35% of all Internet traffic. The protocol was designed by Bram Cohen and released
in 2001. The protocol specification is maintained by his company, BitTorrent, Inc.2

BitTorrent is based on the notion of a torrent, which is a smallish file that contains
metadata about a host, the tracker, that coordinates the file distribution and files that
are shared. A peer that wishes to make data available must first find a tracker for
the data, create a torrent, and then distribute the torrent file. Other peers can then
use information contained in the torrent file to assist each other in downloading the
file. The download is coordinated by the tracker, which is also the original source
of the data (the seed). In BitTorrent terminology, peers that provide a complete file
with all of its pieces are called seeders.

The efficiency and scalability of the BitTorrent protocol results from the simple require-
ment that each peer participating in the network share the data it has downloaded to others.
This means that even a seed with slow network connection can distribute data in a scalable
fashion, given that there are enough faster peers. After a peer has downloaded a file, it may
choose to keep it available for others. In this case, the peer becomes a new seed for the file
and thus improves the availability of the file. As more peers join the group of peers, called
a swarm, the probability of finding a peer with the file or parts of it increases.

The simple nature of BitTorrent has resulted in numerous protocol implementations,
and it is also easily deployable on the Internet due to its reliance on TCP. BitTorrent is
very attractive for Internet hosting scenarios because it can help to reduce networking and
hardware costs. A BitTorrent file download differs from an HTTP request in three basic
ways:

• BitTorrent uses multiple parallel connections to improve download rates, whereas
Web browsers typically use a single TCP socket to transfer HTTP requests and
responses.

• BitTorrent is peer-assisted, whereas HTTP request is strictly client-server.
• BitTorrent uses the random or rarest-first mechanisms to ensure data availability,

whereas HTTP is incremental.

BitTorrent offers better resistance to flash crowds than a standard Web server be-
cause peers assist each other in downloading files. A flash crowd happens when
a Web resource becomes overwhelmingly popular—for example, when the link is
propagated in an epidemic fashion by other sites and media.

BitTorrent attempts to solve the broadcasting problem, which has the goal of disseminating
M messages in a population of N nodes in the shortest time. In an environment in which
the nodes have bidirectional communications and the same bandwidth, the lower bound
on download time (rounds) is given by M + log2 N, and the unit is the time it takes for two
nodes to exchange a message [239]. This problem can be solved optimally with a centralized
scheduler; however, BitTorrent lacks this centralized component, and, furthermore, it does
not have a completely connected graph. BitTorrent therefore has a heuristic approach to
solving this problem that works very well in practice.

Figure 4.6 illustrates the BitTorrent protocol. The tracker identifies the swarm and helps
the peers to trade the pieces. The tracker is a Web server accepting HTTP or HTTPS GET

2 Specifications can be found at http://bittorrent.org/

© 2010 Taylor and Francis Group, LLC

52 Overlay Networks: Toward Information Networking

70% 100% 20% 60%100% 23%

Seed Seed

Swarm

40%

FIGURE 4.6
Overview of BitTorrent.

requests for information about a particular torrent. The tracker maintains state about the
status of a torrent (for example, the peers and information about the pieces they have). The
tracker also keeps overall statistics about the torrent.

Initially, the tracker identifies the initial seeds. When peers complete download and
continue to share the file, they become peers as well. The file is downloaded in pieces, and,
using the SHA-1 hash values for the pieces, a BitTorrent client can incrementally check the
integrity of each downloaded piece. If a piece fails the authenticity test, it is dropped. In
BitTorrent terminology, a piece refers to a part of the downloaded data that can be verified
by a SHA-1 hash. A block is a part of data that a client may request from a peer. Each piece
is made from two or more blocks.

Figure 4.7 presents the interactions in the BitTorrent protocol. In the first step, the seeder
uploads a torrent file to a torrent server. As mentioned, this file contains information about
the data, including the pieces and their hashes. The torrent file also identifies the tracker
that coordinates the cooperative file sharing. The server makes the torrent available through
various search techniques. In the second step, the seeder provides the torrent to the tracker,
which then refers initial requests for pieces to the original seeder. In the third step, clients
search for files and find the torrent file using the torrent server. The clients can then contact

Torrent

server

Search

engine
Tracker

Seeder
Torrent

file

Peer

1. Upload torrent file

2. Provide first seed

3. Post search request and

retrieve link to torrent file

4. Contact tracker
List of peers

Torrent file points

to tracker

5. Contact seeder for pieces

Peer

6. Trade pieces with peers

FIGURE 4.7
Key interactions in BitTorrent.

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 53

the tracker and participate in the P2P network (step 4). The initial seeder provides pieces
that are not yet in wide circulation in the network (step 5). Eventually, the new client (and
peer) will start to share pieces with other peers (step 6).

The two important characteristics of the BitTorrent protocol are peer selection and piece
selection. The former is about selecting peers who are willing to share files back to the current
peer. The latter is about supporting high piece diversity.

Tit for Tat in Peer Selection Based on Download Speed This mechanism prefers peers
who share files with the current peer based on the speed with which they are willing to
share. The mechanism uses a choking/unchoking mechanism to control peer selection. The
goal is to foster reciprocation and mitigate free riders.

In game theory, tit for tat is an effective strategy for the iterated prisoner’s dilemma.
A player following this strategy will initially cooperate, then respond in kind to
an opponent’s previous move. This means that if the opponent was cooperative,
then the player is cooperative. Otherwise, the player is not [16, 17]. The BitTorrent
algorithm uses tit-for-tat strategy for peer selection.

In BitTorrent terminology, peer A is interested in peer B when B has pieces that A does
not have. A is not interested in B’s pieces if it already has them. Peer A is choked by peer
B when B has decided not to send data to A. Peer A becomes unchoked by peer B when B
is ready to send data to A. This does not necessarily mean that peer B is uploading data to
A, but rather that B is willing to upload A if A issues a request.

The BitTorrent reference client software uses a mechanism called optimistic unchoking, in
which the client uses a part of its available bandwidth for sending data to random peers.
The motivation for this mechanism is to avoid a bootstrapping problem with the tit for tat
selection process and ensure that new peers can join the swarm.

Local Rarest First for Piece Selection Pieces are prioritized by their rarity in the local
setting in order to enable high piece diversity. This is known as the local rarest-first al-
gorithm because it bases the selection on the information available locally at each peer.
Peers independently maintain a list of the pieces each of their remote peers has and build
a rarest-pieces set containing the indices of the pieces with the least number of copies. This
set is updated every time a remote peer announces that it acquired a new piece and is used
by the local peer to select the next piece to download.

This policy is used except for the first four pieces, which are chosen using a random-
first policy. This difference stems from the fact that when a new BitTorrent client joins the
swarm, it does not have any pieces. Therefore it makes sense to randomly choose a piece
from peers that unchoke it. The main goal in this phase is to simply obtain pieces so that
trading can start. Since rare pieces are by definition less frequent than random pieces, the
random selection is reasonable.

4.7.1 Torrents and Swarms

All users in a particular swarm are interested in obtaining the same file or set of files. In order
to connect to a swarm, peers download the torrent file from the content provider. This is
typically done using HTTP GET request. Peers communicate with the tracker when joining
or leaving the swarm. They also communicate periodically as the download progresses,
in the typical case every 15 minutes. The tracker is responsible for maintaining a list of
currently active peers.

© 2010 Taylor and Francis Group, LLC

54 Overlay Networks: Toward Information Networking

The metadata included in the torrent specifies the name and size of the file or files. Each
file is divided into equal-sized pieces. These pieces are identified in the torrent file using
SHA-1 hash fingerprints of the pieces. The piece sizes vary from 64 KB to 4 MB, the typical
size being 256 KB. The SHA-1 hash fingerprints are used to check data integrity.

Typically the suffix .torrent is used to identify torrent files. These files are generally pub-
lished on Web sites and registered with a known tracker. A torrent file can be expected to
contain the following information:

• URL of the tracker
• File information (names, lengths, piece length)
• SHA-1 hash code for each piece

4.7.2 Networking

Assuming that the last-hop network connections are the limiting links, each peer provides
an equal share of its available upload capacity to its active peer set. This sharing rate is
determined by the upload capacity of a peer and the size of its active set. The official
BitTorrent reference implementation sets the active set proportional to the square root of
the upload capacity; however, this is set to a constant value in some other implementations.

The control traffic required for data exchange is small. Each peer transmits messages
indicating the pieces they currently have and messages signaling their interest in the pieces
of other peers.

BitTorrent utilizes multiple TCP connections in the data transmission. In order to mini-
mize adverse effects due to competition between multiple TCP flows, the BitTorrent client
uses at most five simultaneous TCP connections for uploading blocks. The download pro-
cess can utilize more connections.

During the initial startup phase, the BitTorrent protocol creates new socket connections
to peers until the number of connected peers has reached some preset maximum (typically
40). The protocol also accepts incoming connection requests from other peers until another
maximum threshold value is reached (typically 80). The client software asks the tracker
for a new list of peers periodically, say every 5 hours, or if the number of peer connections
reaches a minimum value. After a connection is established, the peers exchange information
to determine if the connection can be used to exchange data (interested) or, in the case that
blocks cannot be exchanged, it is choked. For a client to be able to download data from a
peer, the client needs to be interested and not choked by the peer.

4.7.3 Choking Mechanism

Choking pertains to connection management, and it is used to pause communications with
peers. A choking algorithm should meet several requirements. It should be able to work
well with the transport-layer protocol, namely TCP. In addition, it should avoid oscillations
in connection management. BitTorrent uses a download rate–based tit-for-tat strategy to
determine which peers to include in the current active set. Each round, a peer sends data
to unchoked peers from which it downloaded most data in the recent past. This strategy
aims to provide positive incentives for contributing to the system and inhibit free-riding.

Each BitTorrent peer always unchokes a fixed number of other peers (four is the default).
TCP’s built-in congestion control is used to saturate upload capacity. Therefore, current
download rate determines which peers are unchoked. The reference implementation uses
a moving 20-second average to calculate the download rate.

In order to allow new nodes to enter the P2P system, BitTorrent uses what is called
optimistic unchoking, in which a small number of randomly chosen peers are unchoked.

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 55

Peers that do not upload data quickly enough gain reciprocation and are removed from
the active tit-for-tat round and are returned to the choked status. To prevent oscillations
between choked and unchoked peer states, BitTorrent peers recalculate the status every
10 seconds. This 10-second period is long enough for TCP to run the slow start algorithm
and get flows to their full capacity.

The greedy approach of uploading to peers that provide the best download rate is limited
by not being able to discover if some of the unused connections are faster than the currently
used ones. To address this limitation, BitTorrent has a single optimistic unchoke active that
is unchoked irrespective of the download rate. This optimistic unchoking is evaluated every
30 seconds.

Peers reciprocate uploading to peers that upload to them. The goal is to have several
connections transferring files simultaneously in both directions and use trial and error to
find unused capacity in the network.

The two key rules for the choking algorithm are

• A peer uploads to peers from which it is downloading with the fastest rate. This is
reevaluated periodically (typically every 10 s).

• A peer optimistically unchokes peers. This is changed periodically (typically 30 s).

4.7.4 Antisnubbing

From time to time, a BitTorrent peer becomes choked by all peers from which it was receiving
pieces. This means that the peer either has poor download capacity due to its limited upload
capacity or it does not have the requested pieces. This situation is typically resolved by an
eventual optimistic unchoke that finds a better peer than any of the current ones.

To work around this problem, if over a minute has passed for a particular peer connection
without any download activity, the BitTorrent protocol assumes that the connection to the
peer is snubbed and any upload activity is ceased, except in the case of an optimistic unchoke.
Moreover, a BitTorrent client may optimistically unchoke more than one client when it is
snubbed from all its peers.

4.7.5 End Game

The final stages of a file download require more examination. In BitTorrent swarms, it may
happen that a client has to wait for the last few pieces to be downloaded before the down-
load is complete. In order to complete the download in a swift manner, the protocol sends
requests for all of its missing pieces to all of its peers. To avoid unnecessary transmissions
of the pieces, the client keeps the other peers informed about its current download situa-
tion and sends cancel when a new piece is obtained. The BitTorrent specification does not
explicitly define when the so-called end mode should be started. Some clients enter this end
game mode when they have requested all pieces.

4.7.6 Trackerless Operation

BitTorrent can also be used in a trackerless setting, in which every peer implements the
tracker functionality. This kind of decentralized behavior is achieved by utilizing a struc-
tured distributed as table (DHT) algorithm. A DHT algorithm known as the mainline DHT
is used by many BitTorrent clients. This DHT algorithm is based on the Kademlia system
discussed in Chapter 5 and uses UDP for communications.

BitTorrent clients include a DHT node, which is used to contact other nodes in the DHT
to get the location of peers to download from using the BitTorrent protocol.

© 2010 Taylor and Francis Group, LLC

56 Overlay Networks: Toward Information Networking

4.7.7 BitTorrent Vulnerabilities

So far we have not considered security of the BitTorrent protocol. In principle, most P2P
networks do not provide guarantees on reliability and trustworthiness of the service. The
huge popularity of BitTorrent makes it a possible instrument for all kinds of attacks against
services and motivates the examination of the possible security threats and solutions. We
briefly outline the key issues and return to them later in Chapter 9.

As the size of a swarm grows, so does the probability that it contains malicious peers.
Distributed denial of service (DDoS) is a common form of attack that is launched against
services, its aim being to overwhelm the network and server with a flood of packets. We
observe that the BitTorrent protocol does not address these attacks.

There are also some exploits specifically targeted at BitTorrent that aim to increase the
download performance of rogue peers. Rogue peers can download pieces only from seeds,
which have negative consequences for the performance of the swarm since the upload
capacity of the seed is used. Moreover, rogue peers can attempt to influence the number
of optimistic unchokes by maintaining larger peer lists, which effectively increases the
probability that their connection will be unchoked.

Another well-known vulnerability of the protocol pertains to free riding—in other words,
selfish peers who do not contribute to the swarm. The current understanding is that Bit-
Torrent’s rate-based incentive mechanisms are relatively robust against rogue peers; how-
ever, the mechanisms can also promote free riding because there is no built-in system
for rewarding good peers and punishing rogue free-riding peers. Indeed, many research
proposals have focused on introducing reputation management to BitTorrent or similar
protocols.

Another concern is that BitTorrent’s incentive mechanism is based on the upload rates
of peers (the download rates observed by the current peer), which can result in unfairness
pertaining to the number of blocks traded by the peers. This opens up the possibility for
rogue peers to obtain more bandwidth for themselves. Fairness scores have been proposed
as a potential solution. These scores can be used to first detect unfairness and then to
compensate to ensure fairness.

The BitTyrant is a BitTorrent client designed with fairness in mind. This protocol rewards
those users whose upload allocations are fair [52]. The peer selection has been modified
to rank all peers by their receive/sent ratios, and the selection refers those peers with
high ratios.

BitTorrent’s popularity has resulted in some ISPs considering this type of traffic harmful
and has led them to throttle BitTorrent flows in order to free more network capacity for other
applications. This development has resulted in a number of technologies for both detecting
BitTorrent and P2P flows and obscuring them from being detected. Solutions such as the
protocol header encrypt (PHE) and message stream encryption/protocol encryption (MSE/PE) are
features of some BitTorrent implementations that masquerade the protocol traffic to make
it more difficult to detect.

4.7.8 Service Capacity

Estimating the service capacity of a P2P network is important for practical deployments.
Service capacity pertains to the determination of the number of initial seeds and peers
and network configuration necessary for the required performance level. The aim is to
avoid underprovisioning and overprovisioning the system. Flash crowds are one of the
key challenges for estimating service capacity. The system should be able to handle the
flash crowd effect, in which the service sees a dramatic spike in the arrival rate of
requests.

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 57

To consider a simple example, a host has a popular file and many peers are requesting it
simultaneously. In BitTorrent, this initial seed can be overwhelmed by the requests; however,
when the file exchange progresses, other peers will become seeds and the level of traffic
experienced by the initial seed levels off. When the number of seeds is large enough to
satisfy all the requests in the system, the system enters a steady state [353].

We observe that the cooperative nature of many P2P systems, including BitTorrent, can
significantly alleviate bandwidth demands and processing requirements and thus increase
service capacity of a service provider. The so-called self scaling is a desirable feature for a
distributed system.

The two interesting components of service capacity are the transient and steady state. In
the former, the capacity estimation pertains to the build-up phase—for example, determi-
nation of the duration from initial conditions to a steady state. This phase includes flash
crowds, in which the traffic grows rapidly. The transient state is server constrained. In the
steady state, the system is demand, constrained, and we are interested in estimating the
average metrics—for example, average throughput and delay.

The service capacity for the two components depends on a number of issues:

• Peer selection: The peer selection is an important part of the BitTorrent protocol
(along with piece selection). Peer selection is about selecting peers who are willing
to share files back to the current peer. A peer-selection mechanism may take into
account various issues, such as load balancing, network topology, throughput, and
fairness.

• Data management: A file may be divided into a number of parts. This facilitates
concurrent downloads. The granularity of this partitioning (piece size) and distri-
bution of the parts are crucial in determining system efficiency.

• Access and scheduling policy: The number of simultaneous downloads and up-
loads can be monitored and controlled. This control is part of the access and schedul-
ing policy. This policy can be used to differentiate between peers.

• Traffic: The traffic patterns resulting from requests for files and pieces and the cor-
responding responses. Peer life cycle and dynamics also affect the traffic patterns.

The above issues are not independent of each other, but rather they interact in many
ways. A peer-selection algorithm may prioritize peers who give back to the community
by uploading pieces. This kind of altruistic behavior can then result in improved service
capacity because, due to the upload behavior, there will be more seeds for the files.

Experimental results indicate that seed provisioning in BitTorrent is crucial to the choking
algorithm’s effectiveness. The seed should be at least as fast as the fastest downloaders in
order to support a robust torrent during the startup phase [195].

4.7.9 Fluid Models for Performance Evaluation

BitTorrent performance has been analyzed in the literature using analytical mod-
els, including stochastic and fluid models, extensive simulation experiments, ex-
periments on distributed testbeds (PlanetLab), and by obtaining traces from real
clients. Both analytical and empirical evaluation and estimation are needed to di-
mension deployments to meet the service capacity demands. Fluid models can
be used to estimate analytically the protocol performance and understand the
time-evolution of the system by using differential equations.

© 2010 Taylor and Francis Group, LLC

58 Overlay Networks: Toward Information Networking

A variety of different arrival processes for new peers have been considered in the literature.
The three key scenarios are as follows:

• The steady flow scenario used above assumes that new peers appear with a constant
rate [224, 263, 352].

• The flash crowd scenario considers the case where a (large) number of peers appear
at the same time [238], after which no new peers arrive.

• In a third scenario, the arrival rate is high in the beginning but smoothly attenuates
as time passes [154, 315].

In this section, we consider a simple fluid model devised by Qiu and Srikant to study
the performance of BitTorrent-like file-sharing systems [263] under a steady flow arrival
scenario (the first scenario). This model consists of equations that correlate the average
number of seeds, the average number of downloaders, and the average downloading time
with the downloader arrival/leaving rate, the seed-leaving rate, and the per-node upload-
ing bandwidth. Although the model includes a number of key parameters, it does not
take into account such issues as the number of peering neighbors and the seeds uploading
capability.

The Qiu and Srikant model describes the time-evolution of the system by differential
equations. The work complements earlier studies, especially the Markovian model by Yang
and de Veciana [352]. While Yang and de Veciana only use their model for numerical studies,
the fluid model can be used for stability and steady-state analysis. Yang and de Veciana
implicitly assume that the system is upload-constrained (i.e., c � μ); however, Qiu and
Srikant allow any positive values of c and μ. They also have an additional parameter θ

modeling the rate at which downloaders abort the file transfer.
The key parameters of the models are the arrival rate of new peers, λ, the efficiency of

P2P file sharing, η, and the departure rate of seeds, γ , which is a measure of selfishness of
the peers. The efficiency parameter η combines the effect of the piece selection policy, the
number of downloading connections, and the number of pieces.

Qiu and Srikant conclude that η ≈ 1 whenever the number of pieces is sufficiently high.
Both models also assume a homogeneous peer population with joint download and upload
rates, c and μ, respectively.

Assuming that θ = 0, the fluid model by Qiu and Srikant [263] can be represented as
follows:

x′(t) = λ − min{cx(t), μ(ηx(t) + y(t))},
y′(t) = min{cx(t), μ(ηx(t) + y(t))} − γ y(t).

(4.1)

The two state variables are the number of downloaders, x(t), and the number of seeds,
y(t). The global stability of the fluid model is examined in [262] and extension of the Qiu
Srikant model to heterogeneous are considered in [210, 356].

4.8 Cross-ISP BitTorrent

The BitTorrent protocol is oblivious of the underlying network topology. On one hand this
simplifies the protocol design and makes all peers equal on the overlay network in terms
of peer selection. On the other hand, it does not take the underlying network topology into
account and, more importantly, the underlying dominant economical models for internet-
working. Indeed, this unawareness of the underlay has resulted in many ISPs throttling or
limiting BitTorrent traffic in their networks.

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 59

Uniform Random Neighbor Selection Biased Neighbor Selection

FIGURE 4.8
Biased neighbor selection.

Since BitTorrent is a very popular protocol and performs relatively well, there is a mo-
tivation to develop small changes to the protocol to make it better aware of the under-
lay. The question here is whether these changes affect the performance of the protocol.
Recent research results indicate that, with small changes to the protocol, unnecessary in-
terdomain traffic can be reduced significantly without affecting the performance of the
protocol [29, 75].

A technique called biased neighbor selection has been proposed for reducing cross-ISP
traffic [75]. In this mechanism, a BitTorrent peer chooses most of its neighbors from the
local ISP and only a few peers from other ISPs. Essentially, the peer selection is biased
toward local peers. This is illustrated in Figure 4.8.

A parameter k represents the number of external peers from other ISPs. The tracker is
modified to select 35 − k internal peers and k external peers that are returned to the client
requesting a peer list for a torrent. If there are less than 35 − k internal peers, the client is
notified by the tracker to try again later.

The biased-neighbor selection technique works well with the rarest-first replication algo-
rithm of BitTorrent; however, other piece-selection algorithms, such as random selection,
may not lead to optimal performance.

The tracker can use Internet topology maps or IP to autonomous system (AS)
mappings to identify ISP boundaries. ISPs wishing to preserve traffic locality can
also publish their IP address ranges to trackers.

Biased neighbor selection can be introduced by ISPs in a transparent fashion by using
so-called traffic-shaping devices at the edges of their networks. These devices are located at
the edge, and they can perform deep packet inspection to identify P2P traffic and possibly
manipulate this traffic. Since BitTorrent is based on HTTP, it is relatively easy to detect
the protocol. This means that HTTP proxies can be used as traffic-shaping devices in the
BitTorrent case.

The devices could track peers inside an ISP and modify responses from the tracker when
needed, in the typical case replacing outside peers with internal peers. When it is necessary
to change a peer’s neighbors, the device sends a TCP RESET packet on the connection
between the internal and external nodes. This makes the internal peer contact the tracker
for new neighbors.

An alternative biased peer-selection strategy has been proposed that relies on indepen-
dent observations against well-known beacon sites. This approach does not require any
explicit topology information or additional infrastructure. The key insight in this approach
is that the information necessary for peer selection is already being collected by CDNs,
which use dynamic DNS redirection to forward clients to low-latency servers. The assump-
tion is that if two clients are sent to a similar set of servers, they are likely to be close to these

© 2010 Taylor and Francis Group, LLC

60 Overlay Networks: Toward Information Networking

servers and to each other. Extensive real-life measurements with BitTorrent indicate that
this biased peer-selection algorithm can significantly reduce cross-ISP traffic. The results
show that over 33% of the time the algorithm selects peers along paths that are within a
single AS. The results also indicate that this selection results in more high-quality paths
between the peers and thus better transfer rates [75].

4.9 Freenet

The unstructured P2P systems presented so far in this chapter do not offer good security
and privacy features. Many of these shortcomings are addressed in the Freenet file-sharing
system [82, 83].3 This system emphasizes anonymity in file sharing and protects both au-
thors and readers. The system works in a somewhat different way than Gnutella because
it allows users to publish content to the P2P networks and then disconnect from the net-
work. The published content will remain in the network and be accessible for users until
it is eventually removed if there is not enough interest in the data. The Freenet network is
responsible for keeping the data available and distributing data in a secure and anonymous
way.

The developers of the Freenet network argue that true anonymity is necessary for freedom
of speech. The argument is that the beneficial uses of the technology outweigh the possible
negative uses. The central aim is to remove the possibility of censorship on any data. To
this end, the system is built in such a way that there are no central servers and the system is
not administrated by any single individual or organization. Data is stored in an encrypted
format and replicated across the Freenet nodes. In order to achieve anonymity, a file is split
into pieces and the pieces are then encrypted and distributed. Therefore it is very difficult
for a single Freenet node to inspect the contents it is hosting. It is also very difficult to
determine which hosts are providing certain files on the network.

4.9.1 Overview

The Freenet network is a decentralized loosely structured overlay network similar to
Gnutella. The system is a self-organizing P2P network and creates a collaborative virtual
file system by pooling unused disk space. Prominent features of the system include em-
phasis on security, publisher anonymity, and deniability. Moreover, the system also focuses
on data replication for availability and performance.

In order to implement a distributed secure file storage and exchange service, each node
in the network maintains a local data store. This store is made available to the network for
reading and writing. In addition, each node maintains a dynamic routing table to be able
to process requests for certain files. In order to obtain a file, a user sends a request message
that includes a key for the desired file. This request also includes a timeout value, called
hops-to-live, that is very similar to the TTL used in the Gnutella protocol. The motivation
for the timeout is to detect and prevent routing loops.

The Freenet network consists of three crucial parts:

• Bootstrapping, which pertains to how a new node enters the network.
• File identifier keys, which are needed to be able to find files in the network. The keys

can be derived using three different ways and each of them have their implications
for the system and security.

• Key-based routing, which is the process of finding a node that hosts the desired file.

3 http://freenetproject.org/

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 61

Freenet uses a variation of the MIX-net scheme that requires messages to travel through
node-to-node chains. Each link in the chain is individually encrypted. Each node knows
only about its immediate neighbors.

MIX routes and forwards messages from several senders to several receivers in
such a way that no relation between any particular sender and any particular
receiver can be discerned by an external observer [69]. The classic application of
MIX has been untraceable digital pseudonyms. Other application cases are syn-
chronous and asynchronous communication systems, as well as electronic voting
systems. Most applications use a cascade of MIXes, forming so-called MIX-net.
MIX-nets obfuscate the relation between the senders and receivers. Each message
typically goes through several MIX-stages before the ultimate destination. Onion
routing (for example, Tor, presented in Chapter 9) is based on this idea.

Freenet is built around three different types of information: keys, addresses of other
Freenet nodes, and the data corresponding to those keys. Freenet uses unique binary keys
to identify files. If a node receives a request for a key it has, it can send a response and
the file data back to the requestor. Upon receiving a request for an unknown key, a Freenet
node forwards the request to another node that has keys closer to the requested key. Results
for successful and failed requests are backtracked on the reverse path of the request mes-
sage. When a file cannot be located, the so-called upstream nodes can then try alternative
downstream nodes in order to locate the content. This routing behavior has been called
steepest-ascent hill climbing search with backtracking.

Freenet has the following central messages:

• Data insert: This message allows a node to insert new data into the network. The
message includes a key and the data file.

• Data request: A node request for a certain file. The request contains the key of the
file.

• Reply: The reply is sent by the node that has the requested file. The actual file is
included in the reply message.

• Data failed: This operation denotes a failure to locate a file. The message will contain
the location of the node where the failure occurs and the reason.

As a result of the backtracking and trying to find alternative paths to the file, the routing
accuracy and performance may improve over time. The algorithm results in the clustering
of similar keys to the same nodes. The backtracking part of the algorithm allows the nodes
to become better informed on when the keys nodes are hosting. Moreover, as a result of
a successful file request, the requesting node will have a copy of the file. The expectation
is that a node will most likely download files with similar keys, thus contributing to the
scalability of the system.

Figure 4.9 illustrates a typical request sequence in Freenet. In the first step, the node A
sends a request for a certain file. The node needs to know the key of the file. There are three
basic key types, which are based on the idea of hashed identifiers. In all of the cases, the
node A needs to obtain some information about the file, such as a short descriptive text or
a public key, in order to be able to create the request.

In the following steps the request is propagated in the network, from first B to C . Node
C does not know any other nodes and responds to B that the request has failed. Only after
this failure B contacts E . E receives the request and forwards it to F . At this point, F does
not know any other nodes and responds with a failure, which prompts E to contact D,

© 2010 Taylor and Francis Group, LLC

62 Overlay Networks: Toward Information Networking

A

D

E

C

B

F

1

2

3

4

6

59

7

810
11

12
Object request

Reply

Failed request

FIGURE 4.9
Overview of Freenet.

which has the requested file. The file is then sent back to A via E and B. A can then decrypt
the file. At each step the validity of the file is checked by intermediate nodes, and they may
cache the file.

4.9.2 Bootstrapping

Each Freenet node is connected to a set of neighbor nodes and is able to send and receive
messages with them. In a similar manner to the Gnutella protocol, the way nodes discover
the entry point into the network is not part of the protocol. Typically, this is done using
out-of-band lists of peers.

The 0.7 version of the protocol supports two operating modes, the opennet and darknet.
The former allows connections between arbitrary Freenet nodes, whereas the latter limits
communications to known peers. Darknet is therefore more secure against attacks but
requires laborious manual configuration. The darknet mode is built on the assumption that
the user can identify trusted peers.

After a node has a peer address, it can build a secure channel over TCP/IP to that peer
and start the Freenet handshake. The 0.7 version of the protocol switched to UDP to make
the protocol more compatible with firewalls, as UDP allows easy hole punching. Upon
receiving a handshake message, if the peer is active it can send a handshake reply back to
confirm that it accepted the connection request. A connection is then active between the
peers, which typically lasts for a few hours.

A node new in the Freenet network needs to have a public-private key pair and obtain a
location identifier for itself. The node location is a number between 0 and 1, and it is derived
through an announcement process. The process starts when a new node is announced in
the network. The announcement message contains the public key and an address to an
existing node obtained by out-of-band means. This announcement message is propagated
by Freenet nodes. The message is propagated by randomly selecting a destination in the
current node’s routing table. The message has a TTL value, which determines when the mes-
sage propagation is stopped. When the message propagation stops, the nodes in the chain
collectively assign a new location ID for the new node. A cryptographic protocol for shared
random number generation is used to prevent any participant from affecting the result. The
procedure assigns the new node some subspace of the keyspace.

4.9.3 Identifier keys

The Freenet uses semantic-free references to make the keys independent of the proper-
ties of the files. This is achieved by using hash-based keys. Thus the key namespace is

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 63

flat and devoid of semantics. Hashing also ensures uniform distribution of keys over the
namespace.

Freenet supports three basic types of keys, the simplest of which is based on applying
a hash function on a descriptive text string that is included with each file stored in the
network by its creator. The content hash key (CHK) is the most important of the keys, and all
files over 1 KB in size are divided into one or more 32 KB CHKs. The filename of a CHK is
determined by its contents; it is therefore data-centric. The signed subspace key (SSK) is the
other important type of key. SSKs feature both a public key and a human-readable filename.
Essentially they are a form of self-certifying labels. The SSKs are used to represent Freenet
Web sites, called freesite.

All the mentioned key types use symmetric encryption for the file and separate the en-
cryption key from the actual data. The motivation for using encryption keys is that a Freenet
user can deny any knowledge of having the file in their cache. The users do not know the
file descriptions and decryption keys and thus cannot inspect the file contents.

A CHK is a SHA-256 hash of an encrypted resource, which makes it easy for a client
to check that a downloaded resource is correct by simply hashing it, thus computing a
digest, and then comparing the digest with the CHK. The CHK key is unique and provides
resistance to data tampering. If a malicious node alters data, the CHK key of the data will
change. As an important observation, the same data will result in the same CHK.

The SSK keys are based on public-key cryptography. The DSA algorithm is used to
generate key pairs for data publishers and sign resources associated with the keys. The
signature and the data can then be verified by downloaders. This means that they can
authenticate the data. SSKs support a pseudonymous identity on the Freenet that can be
authenticated. SSKs have been partly superseded by the updatable subspace keys (USKs),
which extend SSKs to allow for links that point to the most up-to-date version of
a site.

The following steps illustrate how SSKs are used in Freenet:

1. The publisher generates a cryptographic keypair: a private key for signing files and
a public key for verifying the signature.

2. The publisher generates a single symmetric key that is used to encrypt and subse-
quently decrypt the file.

3. The file is encrypted with the symmetric key and signed with the private key. The
resulting signature, including the public key signature, is stored with the file, and
the file is then published on Freenet. We note that neither the symmetric nor the
private key are included in the file. The Freenet nodes will not have any knowledge
regarding the contents of the file; however, they can verify the data matches with
the signed digest.

4. The SSK consists of a hash of the public key and the symmetric key. The hash of the
public key is used to locate the data on the Freenet network. The symmetric key is
used to decrypt the file once it has been downloaded.

Keyword signed keys (KSK) is a variant of the SKS and is the most basic and insecure
method of generating keys in Freenet. It simply consists of a human readable name (for
example, KSK@test.com). In this approach, the key pair is generated in a standard way from
the descriptive human-readable string. The downloader needs to know the string in order
to be able to find the data and subsequently decrypt it. The approach is more lightweight
than the KSK; however, it is also less secure and does not support a pseudonymous identity
system. The limitation of these keys is that they are subject to spamming.

© 2010 Taylor and Francis Group, LLC

64 Overlay Networks: Toward Information Networking

The following steps illustrate how KSKs are used in Freenet:

1. A deterministic algorithm is used to generate a cryptographic public/private key-
pair and a symmetric key based on the file description. The same description will
result in the same keys irrespective of the node performing the computation.

2. The public key is stored with the data and will be used to verify the authenticity
of the data.

3. The file is encrypted using the symmetric encryption key.
4. The private key is used to sign the file.
5. In order to retrieve the file, a user needs to know the file description. This descrip-

tion can then be used to generate the decryption key.

The following table outlines the different applications of the above Freenet key types:

• CHKs are useful for single nonmutable files—for example, audio and video files.
• SSKs are intended for sites with mutable data. A typical usage case involves a Web

site that has components that change over time—for example, a news section. In this
case it is important to be able to authenticate the contents of the site so that malicious
entities cannot change the contents. This is ensured using public-key cryptography.

• USKs are used for creating a link to the most current version of an SSK site. They
are essentially wrappers around SSKs.

• KSKs are used for human-understandable links that do not require trust in the
creator. These keys are vulnerable to spamming.

The SSK defines a personal namespace that anyone can read but only its owner can
write to the space. Adding or modifying a file in SSK-defined namespace therefore requires
the private key in order to generate a signature. SSKs define a pseudonym-based identity
system. This approach can be used to send out newsletters, Web sites, and also for e-mail.

4.9.4 Key-based Routing

The system utilizes a key-based routing protocol that bears semblance to the distributed
hash tables that are examined in Chapter 5. In key-based routing algorithms, files (and pos-
sibly other data) are identified using, typically probabilistically, unique keys. The routing
tables that peers maintain are built in such a way that nodes can forward queries based on
the keys their neighbors advertise.

There are significant differences between Freenet protocol versions. Before version 0.7,
the system used a heuristic algorithm where nodes did not have fixed locations and routing
was based on finding the closest node that advertised a given key. Upon successful request,
new shortcut connections were sometimes created between the requesting node and the
responder, and old connections were discarded.

When the 0.7 version was developed, Oskar Sandberg’s research on routing in small-
world networks indicated that the process of creating shortcuts, called path folding, is critical
for scalability and efficiency. The insight was that a very simple routing algorithm could be
sufficient if it uses path folding [283]. The limitation of the path folding technique in which
nodes opportunistically try to find new connections is that an attacker can find Freenet
nodes and connect to them. This is addressed in the Freenet version 0.7, which supports
the two modes, namely Opennet and Darknet.

The new algorithm introduced the notion of node location, which is a number between
0 and 1. This location metric is used to cluster nodes. The system works as follows. When a
client issues a request for a file, the node first checks if the file is locally available in the data

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 65

store. If the file is not found, the file key is turned into a number in a similar fashion. The
request is then routed to the node that has the numerically closest location value to the key.
This routing process is repeated until a preset number of hops is reached. If the desired file
is found during the routing process, the file is cached on each node along the path (given
that there is room). This kind of approach works well with popular data; the more a file is
requested by clients, the more it will be cached by intermediate nodes.

The above process is also used to insert a document into the Freenet network. The data
is routed according to the key until the hop count is exceeded, and, if an existing document
with the same key is not found, the new data is optionally stored on each node. It may
happen that there is an older version of the data already in the network; if this is detected,
the older data is returned to the node that sent the insertion message and it is said that the
insert collides.

The Freenet routing algorithm relies on the properties of a small-world network for
efficiency and scalability. Given that the network has the small-world properties and that
the nodes constantly attempt to minimize their distance to their neighbors using path
folding (also called location swapping), the Freenet network should find data in an efficient
manner. The expectation is that with these assumptions data would be found on the order of
O(log(n)2) hops. Recent results indicate that this requires routing table sizes of �(log(n)2)
entries [359]. In practice, the network may not be as efficient, and it does not guarantee that
the data will be found.

The routing and location algorithm results in four key properties:

• Over time nodes tend to specialize in requesting for similar keys as they receive
search requests from other nodes for similar keys.

• As the consequence of the above, nodes tend to store similar keys over time. This
stems from the caching of requested files.

• Keys are semantic-free and the similarity of keys does not result in similarity of the
files.

• Higher-level routing is independent of the underlying network topology.

4.9.5 Indirect Files

In a typical usage, the SSK keys are used in an indirect fashion by storing files that contain
pointers to CHKs instead of the actual data content. These files are called indirect files, and
they combine the human readability and publisher authentication aspects of SSKs with
the efficient verification of CHKs. Indirect files support mutable data while preserving the
integrity of the references.

In order to update an indirect file, the publisher first creates a new version of the file. This
file will receive a new CHK due to the changed contents. The publisher can then update the
SSK to point to this new version. This new file therefore replaces the old in the SSK. This
technique works also for one-to-many references, and thus it is useful in splitting large files
into multiple pieces.

Figure 4.10 illustrates the use of indirect files. The diagram illustrates a regular file with
key “B622A17E28.” The publisher first inserted the file and then a set of indirect files. The
indirect files are named after the search keywords for the actual data. The indirect files are
distributed across the network and do not contain the actual data, but rather a reference
pointing to the data.

4.9.6 API

The Freenet system has been designed with modularity in mind. The core application is
responsible for connecting to the network and acting as a proxy. The proxy provides an

© 2010 Taylor and Francis Group, LLC

66 Overlay Networks: Toward Information Networking

Aperturei

Filmi

Node

Film

Exposurei

Lensei

Node

i

B622A17E28

Aperturei

Node

Lensei

FIGURE 4.10
Indirect files in Freenet.

open application interface (API) to applications.4 The API can be used by applications to
implement different kinds of services, such as Web sites, file sharing, instant messaging,
and message boards. The API implementation is text-based and it is interfaced with a TCP
connection, typically by local applications.

The API supports the following key functions:

• Data insertion to the network.
• Data retrieval from the network.
• Querying the status of the network.
• Managing the other Freenet nodes that are connected to the local node.

4.9.7 Security

As mentioned previously, meeting various security challenges and concerns has been the
motivation for the Freenet system. The system emphasizes anonymity and privacy of its
users. Privacy is realized using a variation of Chaums mix-net scheme for anonymous
communication. Messages travel through the network through node-to-node chains. Each
link is individually encrypted. Each node in this chain knows only about its immediate
neighbors; the endpoints are decoupled from each other. This approach protects both the
publishers and the consumers. It is very difficult for an adversary to destroy a file because
it is distributed across the network.

The current Freenet implementation uses a number of security solutions to improve
security—for example, an outer symmetric encryption layer in communications and 256-bit
Rijndael for symmetric encryption. There are also some active open security issues, such
as vulnerability to file request correlation attacks and the security of the swapping algo-
rithm. The implemented location swapping is not secure and an attacker can attempt to
damage the network by using bogus swap requests. In addition, a large part of the network
topology is exposed through location swapping. The swap requests are routed randomly
for 6 hops, and thus intermediate nodes can see information pertaining to the source and
responder.

4 http://wiki.freenetproject.org/FreenetFCPSpec2Point0

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 67

4.10 Comparison

This chapter presented a number of well-known unstructured P2P algorithms that ad-
dressed decentralized and efficient data sharing over the Internet. Unstructured P2P algo-
rithms can be seen as part of the first-generation P2P overlay systems, and the structured
systems examined in Chapter 5 are examples of second-generation algorithms.

We observed that in many cases it is beneficial to incorporate some structure in a basic
unstructured P2P overlay. For example, the later versions of the Gnutella protocol utilize
ultra nodes that better leverage the power-law nature of the network. This ultra node variant
of the basic Gnutella algorithm is expected to perform much better in terms of networking
costs and hops needed to find resources. In a similar fashion, the original Freenet flooding-
based routing algorithm was extended to support path folding, which in essence creates
shortcuts across the network [283].

These newer versions of Gnutella and Freenet can be said to be hybrid P2P systems in
the sense that they combine features from structured systems and utilize a loosely built
structure (for example, ultra nodes and path folding) in order to make the network more
efficient and scalable [11, 213]. These systems are not fully structured, because they do not
enforce strict rules for the placement of keys and data on nodes. Fully structured systems can
ensure that a data item can be found in bounded steps, typically logarithmic to the number
of nodes. Structured and hybrid systems do not in general provide such guarantees. Hybrid
systems based on high-capacity superpeers can be used to provide many of the advantages
of a centralized system while still retaining good scalability [242].

Figure 4.11 presents a comparison of the unstructured P2P algorithms presented in this
chapter. The algorithms are compared based on their properties—namely, decentraliza-
tion, foundation for the distributed operation, routing function, routing performance, rout-
ing state, and reliability. In terms of decentralization, the discovery part of BitTorrent is
centralized with the tracker coordinating the file exchange process. This system does not
maintain multihop routing tables as such, but instead relies on the tracker for exchang-
ing peer information. Since this protocol is centralized, data (identified by the torrent
file) can be located. BitTorrent has several mechanisms for ensuring reasonable fairness
in the system. The two key mechanisms are the peer-selection and the piece-selection algo-
rithms. BitTorrent is reliable given that the initial seed and tracker are available. The two
main challenges for BitTorrent are free riding (fairness) and taking ISP considerations into
account.

The two other key unstructured protocols discussed in this chapter were the Gnutella
and Freenet protocols. Interestingly, the early versions of these protocols were unstructured
in the strict sense, and the later versions have been modified to incorporate some structure.
Therefore, the later versions do not suffer from the scalability problems introduced by the
flooding mechanism in the same way the earlier versions did. Both Gnutella and Freenet
do not guarantee that a file is found, and in this way they differ from BitTorrent, which,
due to its centralized nature, can guarantee that all pieces can be found.

A number of extensions and modifications have been proposed in the literature for mak-
ing unstructured P2P systems more scalable. Example solutions include replacing flooding
with random walks and adding replication support. More sophisticated broadcast policies
can also be used to enhance system performance. Yang and Garcia-Molina have proposed
using broadcasting policies that rely on past history to select the neighbors to which a query
should be forwarded. Local indices are another technique that can be used, which main-
tains an index of the data stored by nodes within some radius from the current node [351].
The index can then be used to forward data to nodes that are likely to be in the direction

© 2010 Taylor and Francis Group, LLC

68 Overlay Networks: Toward Information Networking

Performance

degrades when

the number

of peers grows

Constant

Search until Time-

To-Live expires,

no guarantee to

locate data

Flooding

mechanism

Flooding

mechanism

Flat topology

(random graph),

equal peers

Gnutella v0.4

Performance degrades

when the number of

peers grows

Constant

Search until Time-To-

Live expires, second

tier improves efficiency,

no guarantee to locate

data

Selective flooding

mechanism

Selective flooding

using the super nodes.

Random graph with

two tiers. Two kinds of

nodes, regular and ultra

nodes. Ultra nodes are

connectivity hubs.

Gnutella v0.7

Tracker keeps track of

the peers and pieces

Constant, choking may

occur

Guarantee to locate

data, good performance

for popular data

Tracker

Tracker

Centralized model

BitTorrent

Search based on Hop-To-

Live, no guarantee to locate

data. With small world

property O(log(n)2), hops

are required, where n is the

number of nodes.

Routing performance

With small world property

O(log(n)2)

Routing state

No central point of failureReliability

Clustering using node

location and file identifier.

Searches from peer to peer

using text string. Path

folding optimization

Routing function

Keywords and text strings

are used to identify data

objects. Assumes small

world structure for

efficiency

Foundation

Similar to DHTs, two modes

(darknet and opennet),

two tiers

Decentralization

Freenet v0.7

FIGURE 4.11
Comparison of unstructured P2P algorithms.

where desired content is stored. Simulation studies indicate that the use of the local indices
can improve the performance compared to flooding by one to two orders of magnitude
[88, 162].

Chawathe et al. [70] have proposed the Gia system, which addresses Gnutella’s scalability
issues. This proposal combines a number of optimization techniques—namely, topology
adaptation that identifies high-capacity nodes and maintains a short distance to them,
active flow control that voids hotspots, and a search protocol based on random walks. The
simulation results of the system indicate that overall system capacity can be increased by
three to five orders of magnitude.

The connectivity properties and reliability of unstructured P2P networks have been an
active research topic. Gnutella has been shown to be a highly robust overlay in the face of
random breakdowns. For a realistic maximum node degree of 20, the overlay is partitioned
into fragments when more than 60% of the nodes fail. Here the nature of the node failures
is of course a decisive factor—are they random or part of a coordinated attack against the
overlay [284]? Gnutella exhibits the properties of a power-law network, in which most
nodes have few links and only a few nodes are highly connected. This means that many
of the less connected nodes can be removed without affecting connectivity of the network
graph. On the other hand, if a highly connected node is removed, the network may become
partitioned. Indeed, power-law networks are vulnerable to attacks against the busy hubs,
but they are robust against random node attacks.

© 2010 Taylor and Francis Group, LLC

Unstructured Overlays 69

Putting the above observations together, we can summarize that unstructured P2P net-
works have favorable properties for a class of applications. The applications need to be
willing to accept best-effort content discovery and exchange and to host replicated con-
tent and then share the content with other peers. The peers may come and go, and the
system state is transient (minimal assumptions on how long each peer participates in the
network). The dominant operation in this class of applications is keyword-based searching
for content.

© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

5
Foundations of Structured Overlays

This chapter examines the foundations of structured overlay technologies that place more
assumptions on the way nodes are organized in the distributed environment. We examine
different geometries for the basis of distributed hash tables (presented in the next chapter)
and analyze early solutions such as consistent hashing and linear hashing for distributed
files (LH*).

5.1 Overview

The two usage environments for overlays are clusters and wide-area environments. These
two environments are radically different. Clusters can be assumed to be under a single
administrative domain, which is secure, predictable, and engineered to avoid network
partitions. Clusters have low-latency and high-throughput connections.

Wide-area environments such as the Internet are unreliable and subject to connectivity
problems, bandwidth and delay limitations, and network partitions. Moreover, there are
multiple administrative domains, and the operating environment is inherently insecure.

In both clusters and wide-area environments, structured overlays characteristically em-
phasize the following properties:

• Decentralization. The nodes collectively form the system without central coordi-
nation.

• Scalability. The system should perform efficiently, even with millions of nodes.
• Fault tolerance. The system should be reliable, even with nodes continuously join-

ing, leaving, and failing.

Structured overlays are typically based on the notion of a semantic-free index [88, 162,
339]. They utilize hashing extensively to map data to servers. This mapping can be done
directly to a set of servers, as in the case of the cluster-based techniques used in LH* and
Ninja, or the mapping can be done hop-by-hop by comparing addresses derived using
hashing or other randomization techniques. The cluster-based techniques typically can
guarantee a very small number of hops to reach a given destination. The decentralized
DHTs discussed in the next chapter, on the other hand, balance hop count with the size of
the routing tables, network diameter, and the ability to cope with changes.

Characteristically, hashing-based techniques such as the ones discussed in this and the
next chapter do not understand the semantics of the data [156, 275]. This is an obvious lim-
itation of structured approaches compared to unstructured ones. In unstructured systems,
the peers can support complex query processing, which is more difficult with semantic-free
indexing.

71
© 2010 Taylor and Francis Group, LLC

72 Overlay Networks: Toward Information Networking

With semantic-free indexing in structured overlays, data objects are given unique iden-
tifiers called keys that are chosen from the same identifier space. Keys are mapped by the
overlay network protocol to a node in the overlay network. The overlay network needs to
then support scalable storage and retrieval (key, value) pairs.

In order to realize the insertion, lookup, and removal of (key, value) pairs, each peer
maintains a routing table that consists of its neighboring peers (their node identifiers and
IP addresses). Lookup queries are then routed across the overlay network using the in-
formation contained in the routing tables. Typically, each routing step takes the query or
message closer to the destination.

We distinguish between a routing algorithm and the routing geometry. The algorithm pertains
to the exact details of routing table construction and message forwarding. Geometry pertains
to the way in which neighbors and routes are chosen. Geometry is the foundation for routing
algorithms [152]. We start this chapter by examining various geometries for structured
overlay networks. The key observation is that the geometry plays a fundamental part in
the construction of decentralized overlays.

After examining the geometries, we consider some of the fundamentals of overlays
and DHTs, namely consistent hashing and cluster-based approaches to distributed data
structures.

Consistent hashing was first introduced in 1997 as a solution for distributing requests
to a dynamic set of Web servers [179]. In this solution, incoming messages with keys were
mapped to Web servers that can handle the request. Consistent hashing has had dramatic
impact on overlay algorithms. Indeed, most algorithms presented in this and the following
chapter are based on this technique. DHTs utilize consistent hashing to partition an identifier
space over a distributed set of nodes. The key goal is to keep the number of elements that
need to be moved at minimum.

The Ninja system was designed to support robust distributed Internet services. One key
component of the system was a cluster of servers for scalable service construction [26, 149].
A distributed data structure (DDS) is a self-managing storage layer that runs on a cluster.
The aim of the DDS is to support high throughput, high concurrency, availability, and
incremental scalability, and to offer strict consistency guarantees for the data.

The concept of a scalable distributed data structure (SDDS) was presented in 1993 [206, 208].
It was designed for cluster-based scalable file access. Part of the SDDS nodes are clients and
part are servers storing data in buckets and addressed only by the clients.

5.2 Geometries

Parallel interconnection networks have been the subject of extensive research over the past
decades. This work has resulted in a collection of topologies over static graphs. The main
application area of the interconnection networks has been the development of efficient
hardware systems, typically switches. Many of these interconnection geometries are now
being considered for overlay networks as well. The new challenges include dynamic and
random geometries [219].

The five frequently used overlay topologies are trees, tori (k-ary n-cubes), butterflies (k-ary
n-flies), de Bruijn graphs, rings, and the XOR geometry. In this section, we briefly outline
these topologies. They are revisited when presenting the DHT algorithms in the next chap-
ter. We refer to some of the DHT algorithms here and provide sufficient detail to highlight
how the geometries relate to the structural properties of the DHTs. The differences between
some of the geometries are subtle. For example, it can be seen that the static DHT topology

© 2010 Taylor and Francis Group, LLC

Foundations of Structured Overlays 73

emulated by the DHT algorithms of pastry and tapestry are Plaxton trees; however, the
dynamic algorithms can be seen as approximation of hypercubes.

The two important characteristics for the geometries are the network degree and net-
work diameter. High network degree implies that joining, departing, and failing may affect
more nodes. The geometries can be grouped based on the network degree into two types:
constant-degree geometries and nonconstant degree geometries. In the former, the average
degree is constant irrespective of the size of the network. The latter type involves average
node degrees that grow typically logarithmically with the network size. The geometries in
this section can be classified into these two types. Trees, hypercubes, rings, and the XOR
geometry are examples of nonconstant degree geometries. Tori, butterflies, and de Bruijn
graphs are examples of constant degree geometries [264].

5.2.1 Trees

The tree’s hierarchical organization makes it a suitable choice for efficient routing. One of
the first DHT algorithms, the Plaxton’s algorithm, is based on this geometry [257]. In a
tree geometry, node identifiers represent the leaf nodes in a binary tree of depth log n. The
distance between any two nodes is the height of their smallest common subtree.

For scalable networking, each node maintains a routing table with log n neighbors. In
this table, the ith neighbor is at distance i from the current node. Greedy routing can then
be used to forward a message to its destination on the network, given the target identifier.
More specifically, the routing table is constructed in such a way that a node’s neighbors
have a common identifier prefix with the node, and this prefix differs in the next bit. The
table can then be used to forward messages toward their destinations by fixing the highest
order bit on which the current node differs from the destination.

5.2.2 Hypercubes and Tori

The d-dimensional 2-ary hypercube H(d) is an undirected graph G = (V, E) with node set
V = [2]d and edge set E that contains all edges {u, v}, satisfying the property that u and v
differ in by exactly 1 bit. Figure 5.1 illustrates an example hypercube.

In general, an arbitrary k-ary n-cube can be constructed by adding dimensions in an
iterative fashion. A hypercube of dimension 0 is a single point. A k-ary 1-cube is a k-node
ring. Connecting k of these 1-cubes in a cycle adds a dimension, forming a k-ary 2-cube.
In general, a hypercube of dimension k is constructed by connecting the corresponding
vertices of hypercubes of dimension k-1. A hypercube corresponds to a collapsed butterfly
where each column maps to a single vertex with 2 log(n) incident edges.

010 011

000 001

110 111

100 101

FIGURE 5.1
A hypercube.

© 2010 Taylor and Francis Group, LLC

74 Overlay Networks: Toward Information Networking

The distance between two nodes in the hypercube geometry is the number of bits by which
their identifier differs. Hypercube-based routing works in a similar manner to the above
tree-geometry-based routing. At each step a greedy forwarding mechanism corrects (or
fixes) 1 bit to reduce the distance between the current message address and the destination.
The main difference between hypercube routing and tree routing is that the former allows
bits to be fixed in any order, whereas the latter requires that the bits are corrected in a strict
order.

Hypercubes are related to tori. In one dimension a line bends into a circle (a ring), resulting
in a 1-torus. In two dimensions, a rectangle wraps into the two-dimensional torus, 2-torus.
In a similar fashion, an n dimensional hypercube can be transformed into an n-torus by
connecting the opposite faces together. The content addressable network (CAN) presented in
the next chapter is an example of a DHT based on a d-dimensional torus.

5.2.3 Butterflies

A k-ary n-fly network consists of kn source nodes, n stages of kn−1 switches, and kn desti-
nation nodes. The network is unidirectional and the degree of each switching node is 2k.
The diameter of the network is logarithmic to the number of source nodes. At each level l,
a switching node is connected to the identically numbered element at level l + 1 and to a
switching node whose number differs from the current node only at the lth most significant
bit.

The butterfly contains a binary tree with root in the first level of the butterfly network,
and leaves are the nodes in the last level. Figure 5.2 presents a butterfly network with eight
source nodes and highlights the binary tree rooted at one of the source nodes.

The main drawback of this structure is that there is only one path from a source to a
destination; in other words, there is no path diversity. In addition, butterfly networks do
not have as good locality properties as tori. A wrapped butterfly of dimension k can be
obtained from a butterfly of dimension k by merging the first and last levels.

5.2.4 de Bruijn graph

An n-dimensional de Bruijn graph of k symbols is a directed graph representing overlaps
between sequences of symbols. It has kn vertices that represent all possible sequences of

FIGURE 5.2
Examples of a butterfly network with a binary tree highlighted.

© 2010 Taylor and Francis Group, LLC

Foundations of Structured Overlays 75

000 001

100

011

100

101

110

111

FIGURE 5.3
Examples of a de Bruijn graph (d = 3).

length n of the given symbols. The resulting directed graph has a fixed out-degree of the
size of the alphabet, k, and diameter defined by n. In an n-dimensional de Bruijn graph with
two symbols, there are 2n nodes, each of which has a unique n-bit identifier (Figure 5.3).
The node with identifier i is connected to nodes 2i mod 2n and 2i + 1 mod 2n. A routing
algorithm can route to any destination in n hops by successively shifting in the bits of the
destination identifier.

Routing a message from node m to node k is accomplished by taking the number m and
shifting in the bits of k one at a time until the number has been replaced by k. Each shift
corresponds to a routing hop to the next intermediate address. The hop is valid because each
node’s neighbors are the two possible outcomes of shifting a 0 or 1 onto its own address.
This geometry has been used in several DHTs (for example, Koorde, presented in the next
chapter, and D2B [134]).

5.2.5 Rings

Rings are a popular geometry for DHTs due to their simplicity. In a ring geometry, nodes
are placed on a one-dimensional cyclic identifier space. The distance from an identifier A to
B is defined as the clockwise numeric distance from A to B on the circle. Rings are related
with tori and hypercubes, and the 1-dimensional torus is a ring. Moreover, a k-ary 1-cube
is a k-node ring. The chord DHT is a classic example of an overlay based on this geometry.
Figure 5.4 presents an example a ring geometry. Clockwise direction is highlighted. Each
node has a predecessor and a successor on the ring, as well as an additional routing table
for pointers to increasingly far away nodes on the ring.

Efficient routing on a ring is based on a cyclic identifier space of 2n − 1 identifiers. If
each node maintains log n neighbors, routing on a ring can be achieved in O(log n) hops
irrespective of how a node chooses its ith neighbor from the range [(a + 2i), (a + 2i+1)].
Chord selects the exact node closest to a +2i on the circle; however, other selection strategies
result also in similar performance.

When a message is routed on a ring, the next node after the first hop has approximately
(log n)−1 possible next hops. This results in a total of approximately (log n)! possible routes
for a typical path.

© 2010 Taylor and Francis Group, LLC

76 Overlay Networks: Toward Information Networking

FIGURE 5.4
Example of an identifier ring.

5.2.6 XOR Geometry

The Kademlia P2P system defines a routing metric in which the distance between two
nodes is the numeric value of the exclusive OR (XOR) of their identifiers [226]. We call this
geometry based on the XOR metric the XOR geometry.

Kademlia routing tables are built by each node picking log n neighbors, where the ith
neighbor is any node within an XOR distance of [2i , 2i+1]. The resulting routing tables
correspond to the ones generated by the Plaxton’s algorithm when there are no failures.
With failures, the XOR geometry is more flexible and allows a node to choose which high-
order bit to fix in order to make progress toward the destination.

More specifically, assuming two 160-bit identifiers, x and y, Kademlia defines the distance
between them as their bitwise exclusive or (XOR, denoted by ⊕) taken as an integer,

d(x, y) = x ⊕ y. (5.1)

It follows that d(x, x) = 0, d(x, y) > 0 if x
= y, and ∀x, y : d(x, y) = d(y, x). XOR also
satisfies the triangle property: d(x, y) + d(y, z) ≥ d(x, z). The triangle property follows
from the fact that d(x, z) = d(x, y) ⊕ d(y, z) and ∀a ≥ 0, b ≥ 0 : a + b ≥ a ⊕ b.

In a similar manner to Chord’s clockwise circle metric, XOR is unidirectional. For any
given point x and distance � > 0, there is exactly one point y such that d(x, y) = �.
Unidirectionality ensures that all lookups for the same key converge along the same path,
regardless of the originating node. Thus, caching (key, value) pairs along the lookup path
can be used to alleviate traffic hot spots. Unlike Chord, but in a similar fashion to pastry,
the XOR topology is also symmetric (d(x, y) = d(y, x) for all x and y).

5.2.7 Summary

Gummadi et al. compared the different geometries, including the tree, hypercube, butter-
fly, ring, and XOR geometries [152]. Loguinov et al. complemented this list with de Bruijn
graphs. The conclusions of these comparisons include that the ring, XOR, and de Bruijn
geometries are more flexible than the others and permit the choice of neighbors and al-
ternative routes. The ring and XOR geometries were also found to be the most flexible in
terms of choosing neighbors and routes. Only de Bruijn graphs allow alternate paths that
are independent of each other.

A cost-based model has been proposed for comparing different routing geometries. This
model focuses on estimating the resources that each node contributes to the overlay net-
work. The key motivation for such a model is to understand the potential disincentives for

© 2010 Taylor and Francis Group, LLC

Foundations of Structured Overlays 77

nodes to collaborate in realizing the overlay. The crucial issue is how much nodes value the
resources they use to forward traffic on behalf of other nodes. This model indicates that the
social optimum may significantly deviate from a Nash equilibrium when nodes value their
routing resources [76]. DHT topologies have also been investigated in the framework of
Cayley graphs, which are one of the most important group-theoretic models for the design
of parallel interconnection networks [264]. This model can provide a unifying framework
for many of the geometries.

5.3 Consistent Hashing

In most traditional hash tables, a change in the number of array elements causes
nearly all keys to be remapped. They are therefore useful for balancing load to a
fixed collection of servers but not suitable for dynamic server collections. Consistent
hashing [179] is a technique that provides hash table functionality in such a way that
the addition or removal of an element does not significantly change the mapping
of keys to elements. The technique requires only K/n keys to be remapped on
average, where K is the number of keys and n is the number of nodes.

Consistent hashing was first introduced in 1997 to cope with the dynamic load with a
supply of Web servers [179]. In this solution, incoming messages with keys were mapped
to Web servers that can handle the request. This mapping was done using the consistent
hashing technique. This allows the addition and removal of servers at runtime, with K/n
elements being moved for each change. This technique can also be used to cope with partial
system failures in large Web applications. As mentioned in the overview section, consistent
hashing has had dramatic impact on overlay algorithms.

The technique defines a view to be a set of caches, and they are assumed to be inconsistent.
Each client is aware of a constant fraction of the available views. The three important
properties in consistent hashing are the smoothness, spread, and load properties:

• Smoothness: When a cache is added or removed, the expected fraction of objects
that must be moved to a new cache is the minimum needed to maintain a balanced
load across the caches.

• Spread: Over all the client views, the total number of different caches to which a
object is assigned is small.

• Load: The total number of caches responsible for a particular object is limited.

A view is a subset of the buckets (cache servers). Consistent hashing uses a ranged hash
function to specify an assignment of items to buckets for every possible view. A ranged hash
family is said to be balanced if given a particular view, a set of elements, and a randomly
chosen function from the hash family, with high probability the fraction of items mapped to
each bucket is O(1/|V|), where V is the view. A balanced ranged hash function distributes
load evenly across the buckets.

Monotonicity is another important property for the hash function. This property says that
some items can be moved to a new bucket from old buckets, but not between old buckets.
Monotonicity therefore contains the essence of consistency—that elements should only be
moved to preserve an even distribution. The third key property is spread, which is about
ensuring that at least a constant fraction of the buckets are visible to clients.

© 2010 Taylor and Francis Group, LLC

78 Overlay Networks: Toward Information Networking

Consistent hashing involves the construction of a ranged hash family with the desired
properties. The idea is to map buckets and items to the unit interval and map a data item
to the closest bucket. One point is not sufficient to characterize a bucket due to the required
properties. A bucket is replicated κ log(C) times, where C is the number of distinct buckets
and κ is a constant. When a new bucket is added, only those items are moved that are
closest to one of its points.

A balanced binary search tree can be used to store the correspondence between segments
of the unit interval and buckets. If there are C buckets, then there will be O(κC log C)
intervals and the tree will have depth O(log C). A single hash computation takes O(log C)
time. The time for addition or removal of a bucket is O(log2 C), since we insert or delete
κ log(C) points for each bucket. The hashing time can be improved to O(1) by dividing the
interval into segments and keeping a separate tree for each segment [179].

Consistent hashing allows buckets to be added in any order, whereas Litwin’s linear
hashing (LH*) scheme requires buckets to be added one at a time in sequence. Consistent
hashing has been extensively applied for DHTs, and a number of improvements have been
developed—for example, for address space balancing and load balancing arbitrary item dis-
tributions across nodes [180]. Extended consistent hashing is a technique that randomizes
queries over the spread of caches to reduce the load variance [196].

5.4 Distributed Data Structures for Clusters

The concept of a scalable distributed data structure (SDDS) was presented in 1993 [206, 208]. It
was designed for cluster-based scalable file access. Part of the SDDS nodes are clients and
part are servers storing data in buckets and addressed only by the clients. In this section,
we first outline linear hashing, which is the basis for LH*, consider the taxonomy of SDDS
structures, and then examine the LH* system in more detail. Finally, we consider the Ninja
system and its approach to a cluster-based distributed data structure.

5.4.1 Linear Hashing

A hash table is a data structure that associates keys with values and supports constant time
lookups on average. Linear hashing is a dynamic hash table algorithm proposed by Witold
Litwin in 1980 [205] for extensible RAM memory or disk files. This algorithm allows for
the expansion of the hash table one slot at a time. The key idea is to spread the cost of the
table expansion across insertion operations. Thus the algorithm is suitable for dynamic and
interactive applications.

In linear hashing, files are organized into buckets stored either in RAM or on disk. An
LH file is a set of buckets. The buckets are addressed using hash functions and they are
bounded by a size of a power of two. The algorithm uses a split variable i to control the
expansion of the structure. The system has initially m buckets. The address function used
by LH is as follows:

addr (l, k) ← h(k) mod 2lm, (5.2)

where h is a hash function, k is the key, and l is the level (or split round).
Lookups using LH use this address function addr(l,k) if it is greater than or equal to

the split variable i . If this is not the case, addr(l+1,k) is used instead. The expansion of
the structure involves rehashing the entries pointed to by the split variable i to the new
location indicated by addr(l+1,k). The split variable therefore indicates which bucket to split
next. After expansion, the split variable is incremented by one, and if it reaches 2l , then l

© 2010 Taylor and Francis Group, LLC

Foundations of Structured Overlays 79

is incremented by one and the split variable is reset. At any time, two hash functions are
used, defined by parameter pairs (l, k) and (l + 1, k). There are a total of 2lm + i buckets.

5.4.2 SDDS Taxonomy

The first SDDS was the well-known LH* algorithm that has several variants and
implementations today. A notable property of LH* and some of its variants is that a
key search needs at most two forwarding messages (hops) to find the correct server
independent of the file size. This kind of approach lends itself well to applications
that require processing of large files.

Figure 5.5 presents a taxonomy of SDDS algorithms that have been proposed in literature.
Many different classifications of the structures can be presented, based on various prop-
erties. This taxonomy classifies the structures into hash-based and tree-based. Hash-based
structures are further classified into one-dimensional and multi-dimensional. The LH* is
the classical example of a one-dimensional SDDS. Basic LH* has been extended for high
availability (LH*g , LH*lh [181]), security (LH*s [204]), and most recently for peer-to-peer
(LH*RS

P2P).
LH*g [337] extends the LH* data structure with high availability by grouping records into

primary files. The records in primary files are stored at different buckets (servers). A group
is a logical structure of up to k records, where k is a file parameter. Every group contains a
parity record allowing for the reconstruction of an unavailable element. The basic scheme

LH*sa

SDDS (1993)

Data structures

Classic data

structures

Tree-based

m-d tree
1-d tree

RP*, …
k-RP*, …LH*, DDH,

DHTs (Chord, …)

Hash-based

High availability

1-dimensional d-dimensional

DHTs

(CAN, …)

LH*RS

LH*s

k-Availability

Security

LH*m LH*g

LH*RS
p2p

FIGURE 5.5
Taxonomy of scalable distributed data structures.

© 2010 Taylor and Francis Group, LLC

80 Overlay Networks: Toward Information Networking

may be generalized to support the unavailability of any number of sites, at the expense of
storage and messaging. LH*g file takes about 1/k times larger space.

LH*RS
P2P is an SDDS design intended for P2P applications. This LH* variant stores and

processes data on SDDS peer nodes. Each node is both an SDDS client and potentially
an SDDS server. Key-based queries require at most one forwarding message. The parity
management uses a Reed Salomon erasure correction scheme to deal with churn [209].

Range partitioning (RP*) [207] preserves the key order in a similar fashion as a B-tree [90].
A RP* file is partitioned into buckets so that each bucket contains a maximum of b records,
with the keys within some interval]λ, �] called the bucket range. The parameter λ is the
minimal key and � is the maximal key of the bucket. A record r with key c is in bucket
with the range]λ, A] only if c ∈]λ, �]. A split partitions a full bucket as in a B-tree. The
ranges resulting from any number of splits partition the key space and the file into a set
of intervals]λi , �i], where i designates the ith file bucket. For any key c, there is only one
bucket in the RP* file that may contain it.

An RP* file is designed to support range queries [207]. A range query requests all records
within some range [λR, �R]. The application submits a query to the SDDS client at its node.
The client then receives data from the buckets that have matching items. Results are sent
by each bucket i that satisfies [λi , �i] ∩ [λR, �R]
= 0.

5.4.3 LH* Overview

LH* generalizes linear hashing to decentralized distributed operation [206, 208]. The system
supports constant time insertion and lookup of data objects in a cluster. Data items are
hashed into buckets, with each bucket residing on a server. New servers are incorporated
into the system using a split operation when a bucket overflows. A split controller manages
the split operation. When a split is performed, a new server is added to the system from
a supply of servers and the hashing parameters are adjusted accordingly. In a distributed
environment, the clients have a view to these system parameters, which in some cases may
be out of date. This requires autocorrection and synchronization mechanisms [206].

LH* was designed with the following constraints in mind:

• A file expands to new servers gracefully. Expansion is only used when existing
servers are efficiently loaded.

• There is no master server that performs data (bucket) address computations.
• The file access and maintenance primitives (lookup, insertion, split, remove, . . .)

do not require atomic updates to multiple clients.

LH* is based on a supply of servers and supports incremental scalability for data through
its linear hashing technique. The following properties are supported by the technique:

• A file can grow to a size bounded by the number of servers and their capacity, with
the load factor approximately constant, typically between 65% to 95%, depending
on parameters.

• An insertion usually requires one message, three in the worst case.
• A retrieval of an object given its identifier usually requires two messages, four in

the worst case.
• A parallel operation on a file of M buckets costs at most 2M + 1 messages, and

between 1 and O(log M) rounds of messages.

Figure 5.6 presents an overview of the LH* system. The central components are the
following: a supply of servers and m clients. Each server hosts a bucket containing the data

© 2010 Taylor and Francis Group, LLC

Foundations of Structured Overlays 81

Client 1

n´=5

i´=6

Client 2

n´=0

i´=2

srvr 0

10

srvr 1

10

……… …

Client m

n´=31

i´=9

srvr 80

9

srvr 512

10

srvr 583

10

srvr 591

10

n=80

FIGURE 5.6
Overview of LH*.

items, and the clients maintain views to the global system state. n is the split pointer and i
is the level. In this example, the file has expanded so that i = 9 and n = 80.

The clients are not required to have a consistent view of i and n. Every address calculation
(hashing to find the correct server) starts with a client address calculation. In the figure,
Client 1 believes that i ′ = 6 and n′ = 5 and that the file has only 69 buckets. This results
in a key that may not be the correct one. Thus there is a possibility for an addressing error.
The LH* system solves this by also using server address calculation, in which a server can
forward an incorrectly routed message. In this case the server also sends an adjustment
message to the client so that the client can update its view of the two parameters.

An LH* file expands as an LH file, through the linear change of the pointer and splitting
of each bucket n. The values of n and i can be maintained at a site that becomes the split
coordinator (SC). The splitting can be uncontrolled or it can be controlled. In the former, it is
performed for all collisions and in the latter it is performed for some but not all collisions.

Server n (with bucket level l) that receives the message to split:

• Creates bucket n + 2l with level l + 1
• Splits bucket n applying the hash function for level l +1 (roughly half of the objects

are sent to bucket n + 2l)
• Updates l ← l + 1
• Commits the split to the coordinator

Figure 5.7 illustrates the (uncontrolled) split operation. After an insert operation, the
bucket c overflows and the split coordinator starts the split process. The coordinator contacts
the node identifier by the split pointer n (with bucket level l). The server n creates a new
bucket n + 2l with level l + 1, splits bucket n (part of the objects are transferred to bucket
n + 2l), updates l ← j + 1, and commits the split to the coordinator.

Splitting enables the system to maintain high utilization of buckets and servers. The
limitation of the algorithm is that it requires global knowledge of the system, and that
the clients know the addresses of the servers. As a reverse operation to the split, LH* also
supports the merging of buckets.

The coordinator in LH* can be seen as a superpeer in P2P terminology. On the other hand,
the LH* client is not a peer as such, since it is not involved in storing the file. The system
can be extended to P2P environments as exemplified in the LH*RS

P2P system.
LH* can also be realized without a coordinator. In this case the insert and search costs

are the same as for the basic mechanism (with a coordinator). The splitting cost decreases
on the average but becomes more variable. This variability is due to cascading splits that
are needed to prevent file overload.

© 2010 Taylor and Francis Group, LLC

82 Overlay Networks: Toward Information Networking

Split

coord

Bucket

c
Bucket

n
Bucket

n+2l

Insert

1. O
verflow

2. Split
4. Splitdone

3. Init

Tuples

FIGURE 5.7
Splitting buckets.

5.4.4 Ninja

The Ninja system was designed to support robust distributed Internet services and to al-
low heterogeneous devices to access them. One key component of the system is a cluster
of servers for scalable service construction [26, 149, 150]. A distributed data structure (DDS)
is a self-managing storage layer that runs on a cluster. The aim of the DDS is to support
high throughput, high concurrency, availability, and incremental scalability, and to offer
strict consistency guarantees for the data. The DDS is used using a small set of API func-
tions that abstract the cluster details from the developers. A key design goal was to make
the DDS appear as a conventional data structure, such as a hash table or a tree, to the
developers.

The API provides services with put(), get(), remove(), destroy() operations on hash tables.
Behind the API the DDS needs to implement the mechanisms to access, partition, replicate,
scale, and recover data. A distributed hash table was implemented as an example of the
DDS concept in Ninja. All operations inside the distributed hash table are atomic, meaning
that a given operation is either performed fully or not at all. In order to ensure reliability,
elements are replicated within the DDS across multiple nodes called bricks. A two-phase
commit algorithm is used to keep the replicas coherent. A brick consists of a buffer cache, a
lock manager, a persistent chained hash table implementation, and an RPC communications
facility.

Figure 5.8 presents an overview of the Ninja DDS. The bricks are located in a storage
area network (SAN) and hosted by a number of servers. The SAN is a low-latency and high
throughput network. Each brick is a single-node, durable part of the distributed hash table.
The bricks are replicated across the servers. There are many clients that use the DSS API to
access the data stored by the bricks.

The hash key space is split into equally sized partitions, bricks, and each partition is repli-
cated to multiple nodes for reliability. A metadata map is used to find a key’s partition. This
is implemented using a trie data structure. A second map, the replica group membership
map, is used to find a list of bricks that are currently active replicas in the partition’s replica
group. The two maps are maintained on each server in the system and updated in a lazy
fashion when they are used to perform operations. The DDS library includes hashes of the
maps in requests, and the bricks can detect if their maps are out of date and then request
new ones.

When a read operation is issued on a key, the matching brick is found and the data is
returned to the client. Due to replication, there can be many possible bricks matching the
key, and any of them can be used. Writing data to a key involves updating all replicas.
Consistency is guaranteed using optimistic two-phase commit.

The DDS library acts as the two-phase commit coordinator for state-changing operations.
In the first phase, agreement from all replicas is obtained. In the second phase, the agreed

© 2010 Taylor and Francis Group, LLC

Foundations of Structured Overlays 83

Client Client Client Client

Service

DSS lib

Service

DSS lib

Storage

“brick”

Storage

“brick”

Storage

“brick”

Storage

“brick”

Storage

“brick”

Storage

“brick”

SAN

Service interacts

with DSS lib

Hash table API

Redundant, low-

latency, high-

throughput

network

Brick = single-

node, durable

hash table,

replicated

FIGURE 5.8
Overview of the Ninja DDS.

state is finalized and committed. A timeout will cause the protocol to abort. Replicas use
short in-memory logs of recent-state changes for coping with interrupted updates. If a
replica times out, it will contact all its peer replicas to find out if a commit has been made.
If so, it will commit as well.

© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

6
Distributed Hash Tables

In this chapter, we consider well-known distributed hash tables (DHT) solutions, such as
the Plaxton’s algorithm, Chord, Pastry, Tapestry, Koorde, Kademlia, CAN, Viceroy, and
others. The algorithms are based on differing geometries, such as hypercubes, rings, tori,
butterflies. We compare the systems and their salient features.

6.1 Overview

DHTs are based on consistent hashing examined in the previous chapter and they aim
to support information lookup in decentralized Internet-wide environments. The early
canonical DHT is the Plaxton’s algorithm. After this the first four DHTs—namely CAN,
Chord, Pastry, and Tapestry—were introduced approximately at the same time in 2001.
DHTs have been an active topic both in academia and in the industry. Key examples of
deployed DHT algorithms are the Kademlia used in BitTorrent, Amazon’s Dynamo, the
Coral Content Distribution Network, and PlanetLab. We will return to applications later in
the book in Chapter 10.

In theory, DHT-based systems can guarantee that any data object can be located
using O(log N) overlay hops on average, where N is the number of nodes in
the system. The underlying network path between two peers can be significantly
different from the path used by the DHT-based overlay network. The lookup
latency in DHT-based P2P overlay networks can be high.

We briefly consider the four canonical DHTs before examining the protocols in more de-
tail. In Chord, the participating nodes have unique identifiers and form a one-dimensional
ring. Each node maintains a pointer to its successor and predecessor node (determined
by their identifiers). As an optimization they maintain additional pointers (called fingers)
to other nodes in the network. A message is forwarded greedily toward a closer node in
the finger table with the highest identifier value less than or equal to the identifier of the
destination node.

Pastry and Tapestry are designed after the Plaxton’s algorithm and thus they are tree-
based solutions. In a similar fashion to Chord, a message is routed to a node that is closer to
the destination (by one more digit). Pastry uses prefix routing, whereas Tapestry is based
on suffix routing.

CAN differs from the other mentioned DHTs in that it is based on a d-dimensional
Cartesian coordinate space and each node has an associated zone. Each node knows its
neighbors in the logical topology. Messages sent to a coordinate are delivered to the node
that is responsible for the zone that contains the coordinate. Each node forwards the message
to the neighbor that is closest to the destination.

85
© 2010 Taylor and Francis Group, LLC

86 Overlay Networks: Toward Information Networking

An ideal DHT algorithm would meet the following requirements:

• Easy deployment over the Internet
• Scalability to millions of nodes and billions of data elements
• Availability for the data items so that faults can be tolerated
• Adaptation to changes in the network, including network partitions and churn
• Awareness of the underlying network architecture so that unnecessary communi-

cation is avoided
• Security, so that data confidentiality, authenticity, and integrity can be established

and malicious nodes cannot overwhelm the overlay network

It is not easy to meet these requirements simultaneously. In this chapter, we survey
the basic DHT solutions for achieving decentralized operation and scalability. Some DHT
designs aim to be secure against malicious participants and to allow participants to remain
anonymous. We return to security issues in Chapter 9.

6.2 APIs

The typical application programming interface (API) of a DHT is very simple, with only a
small set of functions. We can take the cluster-based Ninja DDS API as an example of a
distributed data structure API that aims to abstract the cluster details from the application
software developers. A key design goal was to make the API appear as a conventional data
structure, such as a hash table or a tree, to the developers. A similar goal was in LH*, which
aimed to abstract the notion of a distributed file from its clients.

This same design goal is visible in later decentralized DHT systems, such as those exam-
ined in this chapter. These structured P2P systems have a common element called key-based
routing service (KBR) [102]. This service offers efficient routing to identifiers (keys) derived
from a large identifier space. The KBR abstraction is envisaged to be layered so that more
complex key-based operations can be built on the basic primitives, such as the DHT API.
KBR abstractions include DHTs, group anycast and multicast, and decentralized object
location and routing [102].

KBR can be seen to be the common element in structured DHTs, and it implies that each
overlay node maintains a routing table based on neighbors’ identifiers and can route a
message toward a destination identifier. As mentioned in the previous chapter, the two key
parts are the routing algorithm and the geometry.

A DHT KBR is expected to provide the following operations for applications:

• join(q): current peer contacts peer q to join the system.
• leave(): current peer leaves the system.
• lookup(key): current peer searches for the peer responsible for the given

key.

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 87

6.3 Plaxton’s Algorithm

The Plaxton’s algorithm realizes an overlay network for locating named objects and routing
messages to these objects [257]. The algorithm was proposed by Plaxton, Rajaraman, and
Richa in 1997 to improve Web caching performance. The algorithm guarantees a delivery
time within a small factor of the optimal delivery time. The algorithm requires global
knowledge and does not support additions and removals of nodes, and it is therefore a
precursor to the DHT algorithms such as Chord, Pastry, and Tapestry that tolerate churn.

Plaxton’s algorithm provides three operations, namely read, insert, and delete. The read
operation requests an object, the insert operation creates a copy of an object that is placed
in the overlay, and the delete operation removes the given object. The Plaxton overlay can
be seen as a set of embedded trees in the network, one rooted in every node, where the
destination is the root.

Objects and nodes have semantic-free identifiers that are independent of semantic prop-
erties. The identifiers are fixed-length sequences represented by a common base (for exam-
ple, 40 hex digits = 160 bits). A hashing algorithm, such as SHA-1, is used to achieve even
distribution of the identifiers in the identifier space.

In Plaxton’s algorithm, every node is assigned a unique n bit label. This n bit label
is divided into l digits, with each digit having b bits, where b is the base of the
addressing scheme. The routing algorithm is based on the tree geometry examined
in the previous chapter and involves fixing the destination identifier from left to
right digit by digit [257].

A server informs the network that it has an object available by routing a message to the
root node of the object. This root node is uniquely defined for every object. The publisher
sends a message to this root that is processed by all the nodes on the path from the publisher
to the root. These intermediate nodes store a pointer to the server where the object can be
found.

During a read operation, a client sends a message to an object. This message is initially
routed through the root of the object. If the intermediate nodes have a mapping entry for
the object, they redirect the read message to the server that is responsible for the object.
Otherwise the message is routed to the root that is guaranteed to find an entry for the
object location. Plaxton’s algorithm uses a globally consistent deterministic algorithm for
choosing a root node for an object.

6.3.1 Routing

The algorithm models the network as a fully connected graph with n nodes that share a set
of m = poly(n) objects. Every node is identified by a logb n bitstring. In order to minimize
communications cost in routing, a symmetric cost function is assumed for transferring
a word from one node to another. This cost function is assumed to satisfy the triangle
inequality. In order to prove correctness, the cost function was restricted to a certain family
of functions that assume density bounds defined by the two constants δ, �. For every node,
the ratio of neighbors within a given radius r and 2r varies at most between these constants.
More formally, let M be a ball around node u with radius r , then

min δ|M(u, r)|, n ≤ |M(u, 2r)| ≤ �|M(u, r)|. (6.1)

© 2010 Taylor and Francis Group, LLC

88 Overlay Networks: Toward Information Networking

8

7

6

5

4

3

2

1

Entries

Levels

4321
Primary

neighbor

XXX7XX72X7427642

XXX6XX62X6426642

XXX5XX52X5425642

XXX4XX42X4424642

XXX3XX32X3423642

XXX2XX22X2422642

XXX1XX12X1421642

XXX0XX02X0420642

Table size: base* address length

In this example octal base (8)

and 4-digit addresses

Routing table of node 3642

Wildcards are marked with X

Primary neighbor is one digit away

Example lookup

Node 3642 receives message for 2342

• The common prefix is XX42

• Two shared digits, consult second column

• Send to node with one digit closer

• Fourth line with X342

FIGURE 6.1
Plaxton’s routing table.

Each node has a local routing table that allows it to incrementally route messages to the
destination identifier digit by digit. A node N has a routing table with multiple levels, and
level j represents a matching suffix up to the j th digit in the identifier. The number of
entries in each level is the size of the identifier base. The ith entry at level j is the identifier
and location of the closest node which ends in a shared prefix “i” with suffix(N, j − 1).
Figure 6.1 gives an overview of the routing table for octal addressing and illustrates the
message-forwarding process.

Plaxton’s algorithm provides basic fault handling. Due to the suffix-matching mecha-
nism, a message can be routed around failed nodes by choosing a similar suffix that still
takes the message closer to the destination. The algorithm achieves scalability by keeping
only a fraction of the routing state at each node. The digit-based routing allows for reduction
of the number of candidates at each routing step by a factor of b.

6.3.2 Performance

With consistent routing tables, Plaxton’s algorithm guarantees that any existing unique
node in the system will be found within at most logb N logical hops, where N is the size of
the identifier namespace and b is the base. Since a node assumes that the preceding digits all
match, at each level only small constant entries are maintained, resulting in a total routing
table size of b logb N. It has been proven that the total network distance traveled by messages
during both read and write operations is proportional to the underlying network distance.

The algorithm was designed for Web caching environments, which are typically admin-
istratively configured and involve stable hosts. As a consequence, the algorithm is not well
suited for P2P environments without modifications. The Plaxton’s algorithm does not pro-
vide a fully decentralized solution for peer discovery, because global knowledge of the
topology is needed.

The Plaxton’s algorithm has been found to have the following key limitations:

• Requirement for global knowledge
• Root nodes are possible points of failure
• Lack of ability to adapt to dynamic query patterns

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 89

6.4 Chord

The Chord protocol is a decentralized distributed hashtable algorithm for connecting the
peers of a P2P network together [308, 309]. Chord is based on consistent hashing and
consistently maps a key onto a node. Both keys and nodes are assigned an m-bit identifier.
This identifier is a hash of the node’s IP address. A key’s identifier is a hash of the key.

Figure 6.2 illustrates the Chord ring. Each node has a predecessor and a successor on
the ring. In addition, each node maintains the finger table to be able to reach nodes further
away in the ring in clockwise direction.

The Chord protocol is based on a logical ring with positions numbered 0 to 2m −1.
Key k is assigned to node successor(k), which is the node whose identifier is equal
to or follows the identifier of k. If there are N nodes and K keys, then each node
is responsible for roughly K/N keys.

The following theorem proved for consistent hashing [179] forms the foundation for the
Chord algorithm.

THEOREM 6.1
For any set of N nodes and K keys, with high probability:

• Each node is responsible for at most (1 + ε)K/N keys.

• When an (N + 1)st node joins or leaves the network, responsibility for O(K/N) keys are
relocated.

The analysis for consistent hashing shows that ε can be reduced to an arbitrarily small con-
stant by having each node host �(log N) virtual nodes that each have their own identifier.
Chord is based on these virtual nodes and assumes that each real node runs v virtual nodes.
The analysis pertaining to the Chord algorithm applies to one of these virtual machines.

Chord is a popular DHT and has been used to implement a number of applications,
including the following [309]:

• Cooperative mirroring: In this application, Chord is used to implement a load-
balancing mechanism for distributed data across peers.

• Time-shared storage: In this application, the overlay is used for offline storage of
data.

• Distributed indices: Retrieval of files over the network within a searchable database.

0
1

2

3

4

5

6

7

6

1
Successor(1) = 1

Successor(2) = 3

2

Successor(6) = 0

FIGURE 6.2
Overview of Chord.

© 2010 Taylor and Francis Group, LLC

90 Overlay Networks: Toward Information Networking

• Large-scale combinatorial searches: In this application, keys are candidate solutions
to a problem. The Chord mapping from the key to a node determines the node that
is responsible for evaluating the candidate solution.

• Forwarding infrastructure: In this application, messages are routed and forwarded
across the overlay [158, 307].

6.4.1 Joining the Network

When a new node joins the Chord network, it needs to determine its position in the Chord
ring. The process starts by the new node finding a successor on the ring (based on its iden-
tifier). The three following definitions form the basic ingredients of the Chord routing [308,
309]:

• finger[k]: first node on circle that succeeds n + 2k−1 mod 2m, 1 ≤ k ≤ m

• successor: the next node on the identifier circle (finger[1].node)
• predecessor: the previous node on the identifier circle

Chord routing is based on two system invariants:

• Each node’s successor is correctly maintained.
• For every key k, node successor(k) is responsible for k. A node stores the keys

between its predecessor and itself. The (key, value) is stored on the successor node
of key.

When a node n joins or leaves the network, responsibility for O(K/N) keys takes place.
To maintain a consistent mapping, when node n joins the network, some keys assigned to
n’s successor will be moved to n. Similarly, when n leaves the network, all keys assigned to
n are reassigned to its successor.

Since the successor is known, a linear search over the network can be performed for a
particular key. This linear searching is not very efficient and can be optimized by creating
a routing table called the finger table. This table contains up to m entries. The ith entry of
node n will contain the address of successor (n + 2i). Figure 6.3 presents an example of a
Chord routing table.

6.4.2 Leaving the Network

A node leaving the Chord network may transfer the keys it holds to its successor before it
leaves. The leaving node can also inform the successor and predecessor that it is leaving,
allowing the system to reconfigure. The leaving node’s predecessor will remove the node
from its successor list and add the last node in the node’s successor list to its own list. The
current node’s successor is updated in a similar fashion.

Failures and nodes leaving the system may disrupt the operation of the Chord ring.
Correctness of the protocol requires that each node know its successor (invariant property).
To mitigate problems with nodes leaving, Chord maintains a list of the first r successors.
This successor list allows recovery when failure occurs. The probability that all r successors
fail simultaneously is very small, and the system can be made more robust by increasing r .
When a node leaves the system voluntarily, it will transfer its keys and notify the predecessor
and successor of the leave.

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 91

N1

N8

N14

N21

N32

N38

N42

N51

N56

2m–1 0

+1

+2

+4

+8

+16

+32

Finger Real nodeMaps to

1,2,3

4

5

6

x+1, x+2, x+4

x+8

x+16

x+32

N14

N21

N32

N42

m = 6

for j = 1,...,m the

fingers of p+2j–1

Predecessor node

FIGURE 6.3
Example of a Chord routing table.

6.4.3 Routing

Algorithm 6.1 presents the algorithm for Chord lookup for a given key x. If x is between
n and its successor, the function is finished and the successor is returned. Otherwise, n
consults its finger table for the node n′ that has the identifier that immediately precedes x.
The find_successor is then invoked at n′.

Algorithm 6.2 presents the pseudocode for finding the closest preceding node using the
Algorithm 6.1. This pseudocode illustrates how the finger entries are positioned at powers
of two around the Chord circle. Each node can forward a query at least halfway along
the remaining distance between the node and the destination. It has been proved that
the number of nodes that must be contacted to find a successor in an N-node network is
O(log N) [309].

Chord uses a stabilization protocol to ensure that the successor of each node is up to date
and that the invariants are maintained. The protocol requires that when a node starts it
first locate its successor by running the join algorithm. Then the node runs the stabilization
protocol periodically. This protocol requests the successor s to report its predecessor p to the

Algorithm 6.1 Pseudocode for Chord lookup function

Data: x is the target identifier and n is the current node.
Function: n.find_successor(x)
/* Request node n to find the successor of x */

n.find_successor(x)
if (x ∈ (n, successor) then∣∣ return successor
else

n′ = closest_preceding_node(x)
return n′.find_successor(x)

end

© 2010 Taylor and Francis Group, LLC

92 Overlay Networks: Toward Information Networking

Algorithm 6.2 Pseudocode for finding closest preceding node

Data: x is the target identifier and n is the current node.
Function: n.closest_preceding_node(x)
/*Search the local table for the highest predecessor of x */

for i = m downto 1 do
if (finger[i] ∈ (n, x)) then∣∣ return finger[i]
end

end
return n

current node. This allows the current node to update its successor if p has just joined as the
predecessor of s. The successor s can also update its predecessor if needed. When all nodes
periodically run this stabilization protocol, they will eventually adjust their successor and
predecessor and the finger tables as well.

6.4.4 Performance

In a steady state, every node that participates in Chord holds information about O(log N)
other nodes and can resolve lookups via O(log N) messages. As nodes join and leave the
system, Chord can with high probability maintain lookups with no more than O(log2 N)
messages. A number of improvements have been developed for Chord—for example, for
address space balancing and load balancing arbitrary item distributions across nodes [180].

6.5 Pastry

Pastry is a scalable, self-organizing, structured peer-to-peer overlay network [277]. Pastry
is similar to Chord, CAN, and Tapestry. In this system, nodes and objects are assigned
random identifiers from a large identifier space. Node identifiers (nodeIds) and keys are
128 bits long and can be seen as a sequence of digits in base 2b , where b is a configuration
parameter (typically 3 or 4).

Pastry builds on consistent hashing and the Plaxton’s algorithm. It provides an object
location and routing scheme and routes messages to nodes. It is a prefix-based routing sys-
tem, in contrast to suffix-based routing systems such as Plaxton and Tapestry, that supports
proximity and network locality awareness. At each routing hop, a message is forwarded to
a numerically closer node. As with many other similar algorithms, Pastry uses an expected
average of log(N) hops until a message reaches its destination.

Similar to the Plaxton’s algorithm, Pastry routes a message to the node with the nodeId
that is numerically closest to the given key. This node is called the key’s root. Pastry
nodes use three key functions internally to join the network and to route messages to
nodes:

• nodeId = pastryInit(Credentials): This function joins the current node to an existing
Pastry network or starts a new network. The function returns a nodeId for the
current node. The credentials argument can be used by the current node to provide
authentication information to the network.

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 93

• route(msg,key): This function routes a message (msg) to the node with nodeId nu-
merically closest to the given key.

• send(msg,IP-addr): This function sends a message to the node with the specific IP
address if that node is available.

The Pastry system provides three key API calls for applications. Applications can use
these function to implement additional features.

• deliver(msg,key): This up-call is called by the Pastry when a message is received by
the current node and the current node’s nodeId is numerically the closest to the
destination key of the message. This up-call is also used when a message has been
explicitly sent to the current node’s IP address.

• forward(msg,key,nextId): This function is called by the Pastry before a message is
forwarded to the node that has the identifier nextId. The application may inspect
the message and modify its contents. The application can also stop the forwarding
of the message by setting nextId to NULL.

• newLeafs(leafSet). This function is called by the Pastry when there is a change in the
leaf set (set of neighboring nodes). Applications can use this function to react to
changes in their neighbor sets.

6.5.1 Joining and Leaving the Network

When a new node joins the network and needs to build its routing tables, this information
is used to select nodes that are close to the new node. The leaf set contains nodes which are
numerically close to the local node (both higher and lower). It is used as the first option
if the destination node identifier is within the leaf range (numerically close to the current
node); otherwise the prefix-based routing scheme is used.

A joining node needs to initialize its routing table and then inform other nodes that it has
joined the network. The assignment of node identifiers is application-specific—typically
it is computed using SHA-1 on the IP address or a public key. The joining node asks an
existing node to route a special join message with the key equal to its new identifier. The
message is routed to the existing node that is closest to the new node. Intermediate nodes
receive this request, and they send their routing tables to the new node. The new node can
then start to populate its routing table.

A Pastry node may fail or depart without prior warning. The Pastry network can handle
such cases. A Pastry node fails when its immediate neighbors cannot communicate with it.
A failed node needs to be replaced in the routing tables. This is accomplished by connecting
the active node with the largest index on the side of the failed node. This node’s routing
table will have some nonoverlapping entries that are candidates to replace the failed node.
One of them is selected as the replacement.

6.5.2 Routing

In order to route messages, each node maintains a routing table and a leaf set. A node’s
routing table has about l = �log2b N� rows and 2b columns. The entries in row r of the
routing table refer to nodes whose nodeIds share the first r digits with the local node’s
nodeId. The (r + 1)th nodeId digit of a node in column c of row r equals c. The column in
row r corresponding to the value of the (r + 1)th digit of the local node’s nodeId remains
empty. At each routing step, a node normally forwards the message to a node whose nodeId
shares with the key a prefix that is at least one digit longer than the prefix that the key shares
with the present node’s id. If no such node is known, the message is forwarded to a node

© 2010 Taylor and Francis Group, LLC

94 Overlay Networks: Toward Information Networking

Routing table of a Pastry node with nodeId

65a1x, b = 4. Digits are in base 16,

X represents an arbitrary suffix.

The IP address associated with each entry

is not shown.

6

5

a

f

X

6

5

a

e

X

6

5

a

d

X

6

5

a

c

X

6

5

a

b

X

6

5

a

a

X

6

5

a

9

X

6

5

a

8

X

6

5

a

7

X

6

5

a

6

X

6

5

a

5

X

6

5

a

4

X

6

5

a

3

X

6

5

a

2

X

6

5

a

0

X

6

5

f

X

6

5

e

X

6

5

d

X

6

5

c

X

6

5

b

X

6

5

9

X

6

5

8

X

6

5

7

X

6

5

6

X

6

5

5

X

6

5

4

X

6

5

3

X

6

5

2

X

6

5

1

X

6

5

0

X

6

f

X

6

e

X

6

d

X

6

c

X

6

b

X

6

a

X

6

9

X

6

8

X

6

7

X

6

6

X

6

4

X

6

3

X

6

2

X

6

1

X

6

0

X

f

X

e

X

d

X

c

X

b

X

a

X

9

X

8

X

7

X

5

X

4

X

3

X

2

X

1

X

0

X

FIGURE 6.4
Example of a Pastry routing table.

whose nodeId shares a prefix with the key, as long as the current node’s nodeId exists but
is numerically closer.

Each Pastry node maintains a set of neighboring nodes in the nodeId space (called the
leaf set), both to ensure reliable message delivery and to store replicas of objects for fault
tolerance. The expected number of routing hops is less than log2b N. The Pastry overlay
construction observes proximity in the underlying Internet. Each routing table entry is
chosen to refer to a node with low network delay among all nodes with an appropriate
nodeId prefix. As a result, one can show that Pastry routes have a low delay penalty:
the average delay of Pastry messages is less than twice the IP delay between source and
destination.

Figure 6.4 illustrates a Pastry routing table with a node that has the identifier 65a1x,
b = 4, and l = 4. The numbers are in base 16. In the addresses, “X” represents an arbitrary
suffix. Each entry has an associated IP address that is not shown. Empty columns indicate
digits corresponding to the present nodes’ nodeId.

Figure 6.5 illustrates the prefix-based routing [65]. Node 65a1fc routes a message to des-
tination d46a1c. The message is routed to the nearest node in the identifier circle that is
responsible for the address space of the destination.

Algorithm 6.3 presents pseudocode for the Pastry routing process. This algorithm is
executed when a message with key D arrives at a node with nodeId A.

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 95

65a1fc

d13da3

d4213f

d462ba
d467c4

d471f1

d46a1c

Route(d46a1c)

• Prefix-based

• Route to node with shared prefix

 (with the key) of ID at least one

 digit more than this node

FIGURE 6.5
Example of Pastry prefix routing.

6.5.3 Performance

Pastry requires log(N) hops until a message reaches its destination. With concurrent node
failures, eventual delivery is guaranteed unless l/2 or more nodes with adjacent nodeIds fail
simultaneously (l is an even integer parameter with typical value 16). The tables required
in each Pastry node have (2b − 1) × �log2b N� + l entries. After a node failure or the arrival

Algorithm 6.3 Pseudocode for Pastry routing algorithm

Data: M is the neighborhood set, D is the destination address, A is the current node,L is
the leaf set, Li denotes the ith closest node identifier in the leaf set, and Rl,i is the
entry in the routing table R at column i , 0 ≤ i ≤ 2b and row l, 0 ≤ l ≤ �128/b�

if L−�|L|/2� ≤ D ≤ L�|L|/2� then
/*D is within range of the leaf set or is the current node */
forward to an element Li of the leaf set with GUID closest to D or the current node

else
/* Use the routing table */
Let l = shl(D, A)
/* l is the longest common prefix of D and A */

if Rl,i
= null then
forward to Rl,i

/* forward to a node with a longer common prefix */
else

/*There is no entry in the routing table */

forward to any node T in L ∪ R ∪ M that has a common prefix of length l but is
numerically closer

end
end

© 2010 Taylor and Francis Group, LLC

96 Overlay Networks: Toward Information Networking

of a new node, the invariants in all affected routing tables can be restored by exchanging
O(log2b N) messages.

The Pastry proximity metric is a scalar value that reflects the distance between any
pair of nodes, such as the round-trip time. It is assumed that a function exists that
allows each Pastry node to determine the distance between itself and a node with
a given IP address.

The short routes property concerns the total distance, in terms of the proximity metric,
that messages travel along Pastry routes. Recall that each entry in the node routing tables is
chosen to refer to the nearest node according to the proximity metric with the appropriate
nodeId prefix. As a result, in each step a message is routed to the nearest node with a longer
prefix match. Simulations performed on several network topology models show that the
average distance traveled by a message is between 1.59 and 2.2 times the distance between
the source and destination in the underlying Internet.

Pastry has the local route convergence property: the routes of messages sent to the same key
from nearby nodes in the underlying Internet tend to converge at a nearby intermediate
node.

6.5.4 Bamboo

The Pastry’s geometry and routing algorithm are used in another DHT algorithm called
the Bamboo [271]. The main difference between the Pastry and Bamboo is that the latter
improves routing table management to better handle churn. Resilience is increased by
keeping more nodes in the leaf sets. Given that the routing table is incomplete, leaf sets can
be used to allow progress in routing with the price of potentially longer paths. It has been
shown by Gummadi et al. that, with a leaf set of 16 nodes, a random 30% link failure can
be tolerated in a network of 65,536 nodes and still ensure that a path is found between two
nodes [152].

6.6 Koorde

Koorde is a DHT based on Chord and the de Bruijn graphs. While inheriting the simplicity
of Chord, Koorde introduces flexibility in balancing between optimal routing table size
and average hop count in routing. Koorde embeds a deBruijn graph on the identifier circle
for forwarding lookup requests. A node and a key have identifiers that are uniformly
distributed in a 2b identifier space. A key k is stored at its successor, the first node n that
follows k on the identifier circle, whereas node 2b − 1 is followed by node 0. The successor
of key k is identified as successor(k).

6.6.1 Routing

Each node that joins the system m maintains knowledge about two other nodes: the node
that succeeds it on the ring (its successor) and the first node, d, that precedes 2m (m’s first
de Bruijn node). Since the de Bruijn nodes follow each other directly on the ring, there is
no reason to keep a variable for the second de Bruijn node (2m + 1); it is likely that d is also
the predecessor for 2m + 1.

A node has two outgoing edges: node m has an edge to node 2m mod 2b and an edge to
node 2m + 1 mod 2b . In other words, a node m points at the nodes identified by shifting a

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 97

Algorithm 6.4 Pseudocode for Koorde lookup function

Data: d contains the predecessor of 2m. Successor contains the successor of m. k is the
key, i is the imaginary de Bruijn node.

Function: m.KoordeLookup(k,kshi f t ,i)
if k ∈ (m, successor] then
| return successor
end
else if i ∈ (m, successor] then
| d.KoordeLookup(k, kshi f t << 1, i ◦ topBit(kshi f t))
end
return successor.KordeLookup(k,kshi f t ,i)

new low-order bit into m and dropping the high-order bit. We represent these nodes using
concatenation mod 2b , writing m ◦ 0 = 2m + mod 2b and m ◦ 1 = 2m + 1 mod 2b .

As already mentioned in this chapter, routing a message from node m to node k in de
Bruijn graph is accomplished by taking the number m and shifting in the bits of k one at a
time until the number has been replaced by k. Each shift corresponds to a routing hop to
the next intermediate address.

Algorithm 6.4 shows Koorde routing as an extension of the de Bruijn routing. Koorde
passes the current imaginary node i as an argument to the routing function. In a single rout-
ing step, Koorde simulates the hop from imaginary node i to imaginary node i ◦ topBit(k),
shifting in k. Koorde does so by hopping to m.d, which will have value near 2m and hope-
fully be equal to predecessor(i ◦ topBit(k)). If so, Koorde iterates the next routing step. If at
every hop, d is indeed the predecessor of i ◦ topBit(k), then Koorde contacts b nodes, where
b is the number of bits in identifiers, because the algorithm shifts i left 1 bit at each hop.

Koorde’s de Bruijn pointer is merely an important performance optimization; a query
can always reach its destination slowly by following successors. Because of this property,
Koorde can use Chord’s join algorithm. Similarly, to keep the ring connected in the presence
of nodes that leave, Koorde can use Chord’s successor list and stabilization algorithm.

6.6.2 Performance

The optimal bound for a DHT is O(log n) hops using constant degree. The lower bound
with a degree of O(log n) is O((log n)/ log log n) hops. Koorde meets these bounds, such as
O(log n) hops per lookup request with two neighbors per node (where n is the number of
nodes in the DHT) and O(log n/ log log n) hops per lookup request with O(logn) neighbors
per node [176].

6.7 Tapestry

Tapestry is a DHT system designed for best-effort routing to distributed objects in an effi-
cient fashion. Tapestry is based on the Plaxton’s algorithm and extends it with support for
more reliability and churn. Figure 6.6 illustrates the Tapestry overlay network [362, 363].

In a similar fashion to Plaxton and Scribe, each routing table is organized in routing levels
and each entry points to a set of nodes closest in network distance to a node that matches
the suffix. In addition, a node also keeps back-pointers to each node referring to it. While
Plaxton’s algorithm keeps a mapping (pointer) to the closest copy of an object, Tapestry

© 2010 Taylor and Francis Group, LLC

98 Overlay Networks: Toward Information Networking

67493

98747

64567

…

…

…

…

64267

45567

34567

XXXX7

XXX67
XX567

X4567

34567

Incremental suffix routing from 67493 to 34567

FIGURE 6.6
Example of a Tapestry network.

keeps pointers to all copies. This allows the definition of application-specific selectors about
what object should be chosen (or what path).

Each node is assigned a unique node identifier uniformly distributed in the identifier
space. The SHA-1 hash algorithm is used to create a 160-bit identifier space. Each identifier
is represented using a 40-digit hexadecimal key. The assumption is that node identifiers
and similarly constructed application identifiers are roughly evenly distributed over the
identifier space. Typically, each node stores multiple application identifiers.

The Tapestry API includes the following functions:

• PublishObject, which is used to make an object (with a unique identifier) available
• UnPublishObject, which is used to remove an object from the network
• RouteToObject, which routes the given message to the destination object (exact

match)
• RouteToNode, which routes a message to a node (closest match)

Tapestry provides an overlay routing network that aims to be stable under a variety of
network conditions. Therefore, the system is an infrastructure for distributed applications
and services. A number of prototype applications and services have been developed on top
of Tapestry, including the following:

• OceanStore: Distributed storage utility on PlanetLab [191]
• Bayeux: Self organizing multicasting application
• Mnemosyne: A P2P steganographic file system [159]
• Spamwatch: Decentralized spam filter

6.7.1 Joining and Leaving the Network

The joining process is similar to the systems already covered. First, a new node needs to
find an existing overlay node and an identifier for itself. Then the new node’s routing table

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 99

is constructed. After the new node has a routing table, it needs to inform other nodes of its
presence so that they can route to it. The dynamic insertion of nodes therefore requires a
moderate amount of processing. Node removal, however, is straightforward and easy.

6.7.2 Routing

Each identifier (object) is mapped to an active node called the root. A server S publishes
that it has an object O by routing a message to the root of O using the overlay system in
similar fashion to the Plaxton’s algorithm, using incremental suffix routing. The original
Plaxton scheme used the greatest number trailing bit positions to map an object to a node.
In a distributed system there may be potentially many candidate nodes. Plaxton solved this
using global ordering of nodes. Tapestry solves this by using a technique called surrogate
routing. Surrogate routing tentatively assumes that an object’s identifier is also the nodes
identifier and routes a message using a deterministic selection toward that destination. The
destination then becomes a surrogate root for the object.

When a query is sent to the identifier, it is routed toward the O’s root. If a location
mapping is encountered on the way at intermediate overlay nodes, the query is redirected
to the server S. Tapestry allows overlay nodes to maintain multiple pointers per object,
whereas Plaxton’s algorithm only uses one. Applications can define the selection operator,
and each object may include an optional application-specific metric. Objects can also have
multiple roots, which helps to improve reliability.

Tapestry’s routing table is very similar to Plaxton’s, with additional information pertain-
ing to the objects and back pointers. Each node maintains a list of back pointers, which point
to nodes where it is referred to as a neighbor. These are used in dynamic node insertion algo-
rithms to generate the routing tables for new nodes. Dynamic algorithms are employed for
node insertion, populating routing tables, and notifying neighbors of new node insertions.

Figure 6.7 illustrates the Tapestry routing table at a node. Each neighbor map has multiple
levels, where each level contains links to nodes matching up to a certain digit position in

8

7

6

5

4

3

2

1

Entries

Levels

4321
Primary

neighbor

XXX7XX72X7427642

XXX6XX62X6426642

XXX5XX52X5425642

XXX4XX42X4424642

XXX3XX32X3423642

XXX2XX22X2422642

XXX1XX12X1421642

XXX0XX02X0420642

Back pointers

Tapestry Routing Table

Object location pointers

Hotspot monitor

Object store

Each entry can have

multiple pointers for the

same object.

Objects can have

multiple roots using salt

value in hashing.

FIGURE 6.7
Example of a Tapestry routing table.

© 2010 Taylor and Francis Group, LLC

100 Overlay Networks: Toward Information Networking

Algorithm 6.5 Pseudocode for Tapestry nextHop routing algorithm

Data: n is the previous hop number, G is the destination GUID, β is the base of the GUIDs
(width of the routing table), Ri, j is the routing table, in which the ith entry in the
j th level is the ID and location of the closest node that begins with prefix(N, j − 1)+i .
MaxHop(R) is the height of R.

Function: nextHop returns the next hop or self if local node is the root
if n = MaxHoP(R) then

/*Destination reached */
return self

else
d = Gn /*d is the nth digit of G */

e = Rn,d /*e is the dth entry of the nth row of R */

while e = nil do
/*Incremental suffix routing */

d = (d + 1) mod β

e = Rn,d ;
end
if e = self then∣∣ return NextHop(n + 1,G)
else
| return e

end
end

the ID. The primary ith entry in the j th level is the identifier and location of the closest node
that ends with “i” + suffix(N, j − 1). This means that level 1 has links to nodes that have
nothing in common, level 2 has the first digit in common, and so on. The key difference to
a routing table in the Plaxton overlay is that there can be multiple pointers per object and
many roots per object. Tapestry also features algorithms for detecting hotspots and offers
hints where additional replicas of objects need to be placed to alleviate load concerns.

Algorithm 6.5 presents the Tapestry’s nextHop algorithm, which implements the incre-
mental suffix routing using the routing table.

Tapestry provides fault tolerance by assigning multiple roots to each object. This is real-
ized by adding a salt value to each object identifier to find alternate root identifiers. This
effectively results in multiple identifiers for the same object. Soft-state lease is kept for each
mapping entry in a routing table, and they are periodically refreshed and updated.

The Plaxton overlay assumes a static node population. Tapestry extends its design to
adapt to the transient populations of P2P networks and provide adaptability, fault tolerance,
and various optimizations. This soft state, using the announce/listen approach, is used to
recover from failures in routing. In addition, the neighbor map is extended to maintain two
backup neighbors in addition to the primary neighbor.

6.7.3 Performance

Experiments indicate that Tapestry efficiency increases with network size so that multiple
applications sharing the same overlay network improves efficiency. Routing in Tapestry
requires approximately logb N hops in a network of size N and identifiers of base b (hex-
based digits have b=16). If an exact identifier cannot be found, the routing table will route

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 101

to the closest matching node. For fault tolerance, nodes keep c secondary links such that
the routing table has size c × b × logB N.

6.8 Kademlia

Kademlia is a scalable decentralized P2P system based on the XOR geometry (and metric)
presented in Chapter 5 [182, 226, 311]. The algorithm is used by the BitTorrent DHT MainLine
implementation, and therefore it is widely deployed. Kademlia is also used in kad, which is
part of the eDonkey P2P file-sharing system that hosts several million simultaneous users.
Relying on the XOR geometry makes Kademlia unique compared to other proposals built
using rings, tori, butterflies, and similar geometries.

XOR was chosen as the geometry and metric for Kademlia because it has some useful
properties in common with geometric distance:

• The XOR distance between a node and itself is zero.
• XOR is symmetric, and the distance from A to B and from B to A are equal.
• XOR satisfies the triangle inequality property.

Since XOR is symmetric, Kademlia peers can receive lookup queries from exactly the
same distribution of nodes that are contained in their routing tables. Systems that do not
have this symmetricity, such as Chord, do not learn useful routing information from queries
being propagated [226].

The Kademlia algorithm is based on the determination of the distance between
two nodes. This distance is calculated as the exclusive or of the two input node
identifiers. The result is taken as an integer number. This same scheme is used for
calculating the distance between a node identifier and a key [226].

6.8.1 Joining and Leaving the Network

A node joining the Kademlia network undergoes a bootstrap process. The node needs
to know the IP address and port of another node. If the bootstrapping node has not yet
participated in the network, it computes a random and non-used identifier, which is used
until the node leaves the network.

The initiating node maintains a shortlist of k closest nodes. These are probed to determine
if they are active. The replies of the probes are used to improve the shortlist. Closer nodes
replace more distant nodes in the shortlist. This iteration continues until k nodes have been
successfully probed and these subsequent probes do not reveal improvements.

This process of locating k closest nodes to some node identifier is called a node lookup, and
it is used in most operations offered by Kademlia. The procedure can be implemented either
using recursively or iteratively. The current Kademlia implementation uses the iterative
process where the control of the lookup is with the initiating node.

Leaving the network is straightforward and consistency is achieved by using leases.

6.8.2 Routing

In Kademlia, a node’s neighbors are called contacts. They are stored in buckets, each of
which holds a maximum of k contacts. These k contacts are used to improve redundancy.

© 2010 Taylor and Francis Group, LLC

102 Overlay Networks: Toward Information Networking

1

1

1 0

0

0

0

0

00 11

1

1

Every hop brings us in a smaller subtree around

the target and can forward requests to any

node in the appropriate subtree.

FIGURE 6.8
Kademlia XOR tree.

The routing table can be viewed as a binary tree in which each node in the tree is a k-bucket.
Figure 6.8 presents an example XOR tree.

The buckets are organized by the distance between the current node and the contacts
in the bucket. For the distance d(n, c) between a node and its contact c in bucket j , where
0 ≤ j < k, the system has the invariant

2 j ≤ d(n, c) < 2 j+1. (6.2)

Every k bucket corresponds to a specific distance from the node. Nodes that are in the
nth bucket must have a differing nth bit from the node’s identifier. With an identifier of 128
bits, every node in the network will classify other nodes in one of 128 different distances.

Initially Kademlia nodes have only one k bucket. When the k bucket becomes full, it can
be split. The split occurs if the range of nodes in the k bucket spans the nodes’ own identifier.

When a node receives an update from another node, it updates the corresponding bucket.
If the contact already exists, it is moved to the end of the bucket. Otherwise, if the bucket
is not full, the new contact is added at the end.

Kademlia’s routing table results in the same routing entries as for tree geometries when
failures do not occur, such as Plaxton’s algorithm. When failures occur, Kademlia can route
around failures due to its geometry. Even though a message cannot be forwarded toward
the destination with the highest differing bit fixed, it can make progress in the XOR distance
toward the destination by fixing a lower-order bit.

Kademlia supports multiple paths between a source and a destination. These paths,
however, may not have equal lengths. The XOR distance is separate from the network
proximity. The geometry, however, has some flexibility in terms of what bits to fix and can
thus be combined with network proximity awareness.

Figure 6.9 illustrates the lookup process. The first step is to inspect the client’s routing
table for the target identifier. A route is guaranteed when the high-order b bits match. The
route points to another peer that is contacted in the next step. This peer is guaranteed to
have a route when the first 2b bits match. This process continues until the closest peer to
the identifier is found.

6.8.3 Performance

The key properties of Kademlia are prefix-based routing using the XOR-metric, redundancy
in routing tables (k-buckets), parallel routing, and iterative routing [311].

The routing tables of all Kademlia nodes can be seen to collectively maintain one large
binary tree. Each peer maintains a fraction O(log(n)/n) of this tree. During a lookup,

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 103

1 0

0… 001… 11

Simple lookup

FIGURE 6.9
Kademlia lookup.

each routing step takes the message closer to the destination requiring at most O(log n)
steps.

6.9 Content Addressable Network

The content addressable network (CAN) is a DHT algorithm based on virtual multi-
dimensional Cartesian coordinate space [267]. In a similar fashion to other DHT
algorithms, CAN is designed to be scalable, self-organizing, and fault tolerant. The
algorithm is based on a d-dimensional torus that realizes a virtual logical address-
ing space independent of the physical network location. The coordinate space is
dynamically partitioned into zones in such a way that each node is responsible
for at least one distinct zone.

Each CAN node maintains a routing table that contains the IP address and virtual coordinate
zone of its neighbors. Routing and forwarding using CAN is straightforward. A CAN node
routes a message toward the message destination by choosing the closest neighbor to this
point in the coordinate space. This involves first resolving the neighboring zone closest
to the destination and then resolving the IP address of the neighbor responsible for that
zone.

6.9.1 Joining the Network

In order for a new node to join the CAN network, the new node must first find a node that is
already part of the network, identify a zone that can be split, and then update routing tables
of neighbors to reflect the split introduced by the new node. In the seminal CAN article, the
bootstrapping mechanism is not defined [267]. One possible scheme is to use a DNS lookup
to find the IP address of a bootstrap node (essentially a rendezvous point). Bootstrapping
nodes may be used to inform the new node of IP addresses of nodes currently in the CAN
network.

© 2010 Taylor and Francis Group, LLC

104 Overlay Networks: Toward Information Networking

Peer X’s coordinate neighbor set = {A B D Z}

New Peer Z’s coordinate neighbor set = {A C D X}

A

B X Z C

D

E

FIGURE 6.10
Content addressable network.

After obtaining the IP address of an existing node, the new node can attempt to find a
zone for itself. To find a zone, the new node selects a random point in the coordinate space
and sends a join request with this point as the destination. The CAN overlay will route
the message toward the destination using its routing tables. The message will eventually
arrive at a node that is responsible for the zone to which the point belongs. This node may
then choose to split the zone in half and give the second half to the new node. If the node
responsible for the zone does not give up the zone, the new node needs to pick a new
random point. After the zone split, the neighboring nodes are updated to reflect the two
new zones and their IP addresses.

Figure 6.10 presents an example CAN network with a node X and its neighbors high-
lighted. The peer X initially had the neighbor set { A, B, C , D }. When a new peer Z is
introduced, it will split X’s coordinate space into two parts and Z will replace C as X’s
neighbor. The neighbor set of Z is { A, C , D, X }.

6.9.2 Leaving the Network

Node departures are handled in a fashion similar to joins. A node that is departing must
give up its zone, and the CAN algorithm needs to merge this zone with an existing zone. The
routing tables need to be updated then to reflect this change in zones. A node’s departure can
be detected using heartbeat messages that are periodically broadcast between neighbors.
A node may also proactively indicate that it is leaving the network.

After a departing node has been identified, the next step for the CAN system is to
merge the zone with an existing zone or take over the zone. The zone is tested for merge-
ability with existing zones. If a valid zone candidate is found among the neighbors, the
zones are merged. If a merging candidate cannot be found, the neighboring node with
the smallest zone will take over the departing node’s zone. After the process, the neigh-
boring nodes’ routing tables are updated to reflect the change in the zone responsibility.
The nodes may periodically attempt to merge additionally controlled zones with their
neighbors.

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 105

Algorithm 6.6 Pythagorean-based CAN algorithm

Data: c is current node, P is the target point.
Function: RouteCAN(c,P) returns the owner p of point P
if P ∈ c then

/* P is in c’s neighbors n */
p ← n

else
/*P is not in origo node c’s zone */
p ← c /* current node is set to p */
whileP
= p do

/* Until an owner is found for P */
d ← √

((Px − nx)2 + (Py − ny)2

Neighbor n with shortest distance d is the next hop node
p ← n

end
end
Point P is in the current node p’s zone
return p

6.9.3 Routing

A number of CAN routing algorithms have been proposed. These algorithms differ in how
the routing decision is made. The routing algorithms can be partitioned as follows [260]:

• Pythagorean-based algorithm.
• Greedy forwarding along the x and y axes.
• Greedy forwarding with shortcut nodes.
• Inclination angle–based algorithms.
• Binary-based routing.

Recent results indicate that greedy forwarding algorithms perform better in a CAN net-
work than the Pythagorean- and inclination angle–based algorithms [260]. For simplicity,
we examine the Pythagorean-based algorithm (presented in Algorithm 6.6), which uti-
lizes the Pythagorean theorem and calculates the shortest distance (hypotenuse) to the
destination.

6.9.4 Performance

For a d-dimensional coordinate space partitioned into n zones, the average routing path
length is O(d × N1/d) hops and each node needs to maintain 2d neighbors. This means
that for a d-dimensional space the number of nodes can grow without increasing per node
state. Another beneficial feature of CAN is that there are many paths between two points
in the space, and thus the system may be able to route around faults. A logarithmic CAN
is a system with d = log n. In this case, CAN exhibits similar properties as Chord and
Tapestry—for example, O(log n) diameter and degree at each node.

CAN supports proximity routing that does not require changes to routing table construc-
tion and maintenance. Network proximity is taken into account by measuring the round-
trip time (RTT) between neighbors and forwarding messages to neighbors. This mechanism

© 2010 Taylor and Francis Group, LLC

106 Overlay Networks: Toward Information Networking

involves a trade-off between the number of hops in the path against the network distance
traversed at each hop.

6.10 Viceroy

The Viceroy is a decentralized overlay algorithm that is designed to handle the discov-
ery and location of data. The algorithm employs consistent hashing in a similar way to
Chord; however, it uses a constant degree connection graph to achieve logarithmic diame-
ter approximation to a butterfly network [217]. Figure 6.11 illustrates the butterfly network
nature of Viceroy, which uses links between successors and predecessors on the ring for
short distances. The basic idea of using shortcuts stems from Kleinberg’s work on small
worlds [186]. Barrière et al. [23] extended Kleinberg’s work for rings instead of grids.

The key point in Viceroy is the emphasis on constant degrees. The primary mo-
tivation was to develop an algorithm that has constant linkage cost, logarithmic
path length, and best achievable congestion under the constraints. It generally has
constant degree such as CAN. Its degree is smaller than in Chord, Tapestry, and
Pastry. Viceroy assumes a global ordering on all the nodes in the system, which
may make practical deployments in decentralized environments challenging.

Routing on Viceroy networks uses links between successors and predecessors on the ring
for short distances. Ring construction is augmented with a constant number of long-range
contacts chosen in such a way that a localized routing strategy produces short paths.

6.10.1 Joining the Network

Algorithm 6.7 introduces a new node into the Viceroy network. When a peer joins the
network, it takes a random but permanent identity and selects its level within the network.
Each peer needs to keep some state regarding the network—namely, the ring pointers

A

B
0 1

Level 1

Level 2

Level 3

FIGURE 6.11
Request routing in Viceroy.

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 107

Algorithm 6.7 Viceroy join algorithm

Function: joinViceroy() joins a new node to the Viceroy network

1. Select identity s.
2. Each server picks its identifier independently and uniformly from [0, 1) and this

identifier does not change while it is being used in the system.
3. Use lookup function to find succ(s).
4. Update predecessor and successor of s and include s to the ring by inserting it into

pred(s):successor and succ(s):predecessor.
5. Transfer all key-value pairs to s from the successor that are between s:predecessor

and s.
6. Each node picks a level at random in such a way that when n servers are used, one

of log n levels is chosen with nearly equal probability.
7. For a level l node, two edges are added connecting it to nodes at the level l + 1.

• A down-right edge is added to a long-range contact at level l +1 at a distance
of approximately 1/2l .

• A down-left edge is added at a close distance on the ring to level l + 1.
• Furthermore, an up edge to a close-by node at level l − 1 is included if l > 1.

8. Finally, level-ring links (nextonlevel, prevonlevel) are added to the next and previous
nodes of the same level l.

(predecessor, successor), the level ring pointers (nextonlevel, prevonlevel), and butterfly points
(down-left, down-right, up). This adds up to seven links, which is the constant degree of the
network.

6.10.2 Leaving the Network

When a peer departs, it passes its key pairs to a successor, and notifies other peers to find
a replacement peer. Viceroy explicitly assumes that peers do not fail. It assumed that join
and leave operations do not overlap in order to avoid the complication of concurrency
mechanisms. In practice, both failures and concurrency support are required.

6.10.3 Routing

Algorithm 6.8 accepts the destination x and the current node y as input and finds the
destination in the Viceroy network. The algorithm has three distinct stages.

Figure 6.11 presents an overview of a Viceroy network [213]. The figure illustrates a
lookup from A to B using the dashed arrows. First, on the left side of the diagram, the
lookup proceeds up from level 3 to level 1. The request is then forwarded to down-right to
level 2. Finally, the request is forwarded to the destination at level 3 using the down-right
link. The dark rectangles indicate nodes that process the request, and the nodes are also
shown on the identifier space at the top of the diagram.

6.10.4 Performance

Viceroy and the work that motivated it can be said to be based on randomized rout-
ing topologies and to leverage the small-world phenomenon. This contrasts with the

© 2010 Taylor and Francis Group, LLC

108 Overlay Networks: Toward Information Networking

Algorithm 6.8 Viceroy lookup algorithm

Function: lookupViceroy(x,y) finds the destination x from the current node y

1. First stage: The lookup starts with a climb using up connections to a level-1 node.
2. Second stage: Routing proceeds down the levels of the tree using the down links.

• Moving from level l to level l + 1, the algorithm follows the down-left link if
x is smaller than 1/2l .

• Otherwise the down-right link is selected.
• This continues until a node is reached with no down links, which is expected

to be near the target.
3. Third stage: A vicinity search is conducted using the ring and level-ring links until

the destination x is reached.

deterministic nature of Chord, Tapestry, Pastry, and CAN, which utilize the properties
of the key identifier space to achieve scalability. Viceroy uses seven links and achieves
O(log n) average latency. Kleinberg’s proposal uses two links and achieves O(log n)2 aver-
age latency. Finally, the Symphony P2P system achieves O((log n)2/k) average latency with
k + 1 links.

6.11 Skip Graph

The final DHT algorithm to be discussed in this chapter is the skip graph. A skip graph is a
probabilistic structure based on the skip list data structure [13, 160]. The skip list has simple
and easy insert and delete operations that do not require tree rearrangements. Thus the
operations are fast. The skip list is a set of layered ordered linked lists. All nodes are part
of the bottom layer 0 list. Part of the nodes take part in layer 1 with some fixed probability.
For each layer there is a probability for a node to be part of that layer. As a result, the
upper layers of a skip list are sparse. This means that a lookup can quickly go through
the list by traversing the sparse upper layer until it is close to the target. The downside of
this approach is that the sparse upper layer nodes are potential hotspots and single points
of failure. Skip graphs address this limitation and introduce multiple lists at each level to
improve redundancy. Every node participates in one of the lists at each level. On average,
O(log n) levels are needed in the structure, where n is the number of nodes.

The skip graph is a distributed version of the skip list, and its performance is comparable
to the DHTs presented in this chapter. Each node in a skip graph has average of log n
neighbors. The main benefit of the structure comes from its ability to support prefix and
proximity search operations. DHTs guarantee that data can be located, but they do not
typically guarantee where the data will be located. Skip graphs are able to support location-
sensitive name searches because they use ordered lists [160].

In order to find a numeric object identifier, a skip graph–based search algorithm might
search the lowest layer for the first digit and higher layers for the following digits. The
ordered nature allows skip graphs to also support range searches. The algorithm can take
network proximity into account so as to keep the search within an administrative boundary
as far as possible. Although the structure has favorable properties (namely, support for
range queries and flexibility in data placement), skip graph nodes require more links than

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 109

DHTs and thus result in increased maintenance traffic. The insert operation for a skip
graph takes O(log n) time and messages. The search operation also takes O(log n) time and
messages [13].

6.12 Comparison

Figure 6.12 summarizes the salient features of the DHT algorithms presented in this chap-
ter. The algorithms are compared in terms of the following six features: foundation, rout-
ing function, system parameters, routing performance, routing state, and how join/leaves
(churn) is handled.

System parameters differ as well based on the underlying foundation. The key parameter
is the number of nodes N in the system. CAN has an additional dimension parameter d,
Chord and Koorde use base 2, and some systems, such as Kademlia, Pastry, and Tapestry,
have a base B. In general, the system achieves logarithmic routing performance, with the
exception of CAN, which has a higher routing performance but constant routing state.

In this chapter, we observed that Pastry and Tapestry are based on the Plaxton’s algo-
rithm [257]. This algorithm was proposed in 1997 to improve web caching performance.
The Plaxton’s algorithm uses suffix routing to obtain delivery time within a small factor
of the optimal delivery time. This algorithm is not suitable for decentralized and dynamic
environments because it requires global knowledge and does not support additions and
removals of nodes.

log N

From
constant to
log N

Between
O(log log N)
and O(log N),
depending on
state

Number of

peers N

Matching key

and nodeID

de Bruijn

graph

Koorde

log N

Constant

O(log N)

Number of

peers N

Routing using

levels of tree,

vicinity

search

Butterfly

network

Viceroy

logB N +
small
constant

BlogB N + B

O(logB N) +
small
constant

Number of

peers N,

base of peer

identifier B

Matching

key and

nodeID

XOR metric

Kademlia

logB N

logB N

O(logB N)

Number of

peers N,

base of peer

identifier B

Suffix

matching

Plaxton-style

mesh (hyper-

cube)

Tapestry

logB N(log N)22dJoins/leaves

2BlogB Nlog N2dRouting state

O(logB N)O(log N)O(dN1/d)Routing

performance

Number of

peers N,

base of peer

identifier B

Number of

peers N

Number of peers

N, number of

dimensions d

System

parameters

Matching key

and prefix in

nodeID

Matching

key and

nodeID

Maps (key, value)

pairs to

coordinate space

Routing

function

Plaxton-style

mesh (hyper-

cube)

Circular

space

(hyper-

cube)

Multi-dimensional

space

(dimensional

torus)

Foundation

PastryChordCAN

FIGURE 6.12
Comparison of DHT algorithms.

© 2010 Taylor and Francis Group, LLC

110 Overlay Networks: Toward Information Networking

6.12.1 Geometries

We observe that the foundations differ across the algorithms but result in similar scalability
properties. The foundations were considered earlier in the previous chapter, and for the
considered systems the foundations are tori, ring, XOR metric, de Bruijn graph, hypercube,
and butterfly network. The conclusions of several comparisons of the geometries are that
the ring, XOR, and de Bruijn geometries are more flexible than the others and permit the
choice of neighbors and alternative routes [152].

6.12.2 Routing Function

The routing function then utilizes the properties of the foundation in order to maintain
routing tables and forward messages toward their destination. The routing function differs
based on the algorithm and typically maps a key (that defines the destination) to a neighbor
closer in the routing space.

The routing tables of DHTs can vary from size O(1) to O(n). The algorithms need to
balance between maintenance cost and lookup cost. From the viewpoint of routing state,
Chord, Pastry, and Tapestry offer logarithmic routing table sizes, whereas Koorde and
Viceroy support constant or near-constant sizes. Churn and dynamic peers can also be
supported with logarithmic cost in some of the systems, such as Koorde, Pastry, Tapestry,
and Viceroy. Recent analysis indicates that large routing tables actually lead to both low
traffic and low lookup hops. These good design points translate into one-hop routing for
systems of medium size and two-hop routing for large systems [317].

The basic Plaxton scheme was the starting point for many DHT algorithms; however,
it suffers from several limitations. The Plaxton scheme uses only one root node that is a
single point of failure. Moreover, it does not allow nodes to be inserted and removed and
assumes a total ordering of nodes. Both Tapestry and Pastry address these limitations.
Tapestry uses surrogate routing to be able to incrementally choose root nodes. Tapestry
addresses congestion by placing replicas close to nodes that generate high request loads.
Tapestry allows nodes to select from a set of replicas, whereas the Plaxton scheme knows
only the nearest replicas. Routing faults and node failures are detected by Tapestry using
TCP timeouts and UDP heartbeats. Zhuang et al. have investigated a number of keep-alive
algorithms for DHT failure detection [366].

6.12.3 Churn

Li et al. provide a comparison of different DHTs under churn [202]. They examine the
fundamental design choices of systems, including Tapestry, Chord, and Kademlia. The
insights based on this work include the following:

• Larger routing tables are more cost-effective than more frequent periodic stabiliza-
tion.

• Knowledge about new nodes during lookups may allow elimination of the need
for stabilization.

• Parallel lookups result in reduced latency due to timeouts, which provide infor-
mation about the network conditions.

6.12.4 Asymptotic Trade-offs

Figure 6.13 illustrates the asymptotic trade-off curve between the routing table size and the
network diameter [350]. We observe that there is a clear relation between these two metrics.

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 111

O(1) O(log n) O(n1/d) O(n)

Worst-case distance

R
o

u
ti

n
g

 t
ab

le
 s

iz
e

0

<= d

log n

n 1

2

3

4

FIGURE 6.13
Asymptotic trade-off curve between routing table size and network diameter.

The extreme cases are illustrated in the figure at the edges of the graph (1 and 4), in which
nodes either maintain full state resulting in diameter of 1, or they do not maintain any state,
resulting in a system-wide broadcast with diameter n. Consistent hashing is an example
of a technique that can achieve O(1) lookup cost with O(n) state. These two approaches
are not desirable in practice. The former results in a full centralized directory that needs
to be maintained, and the latter results in flooding that burdens the network and has long
delays.

The intermediate cases are interesting. A large number of the presented overlay algo-
rithms, such as Chord, Pastry, Tapestry, fall into the middle portion of the graph, with
logarithmic diameter and routing table size (2). With constant routing performance, CAN
requires somewhat larger routing table sizes (3).

Analysis of the trade-offs between the two metrics indicates that the routing table size
of �(log n) is a threshold point that separates two distinct state-efficiency regions. One can
observe that this point is in the middle of the symbolic asymptotic curve. If the routing
table size is asymptotically smaller or equal, the requirement for congestion-free opera-
tion prevents it from achieving the smaller asymptotic diameter. When the routing table
size is larger, the requirement for congestion-free operation does not limit the system
anymore.

A number of O(1) lookup-cost DHT algorithms, also called one-hop DHTs, have been
proposed (for example, Beehive [266] and Kelips [157]). The aim of these DHTs is to use more
state and thus allow constant-time or near constant-time lookups. Beehive is a proactive
replication scheme that runs on top of an O(log n) DHT algorithm. The system achieves
O(1) for queries following the power-law distribution. The system is motivated by the
observations that DNS and Web requests follow power-law distributions. A fast random
sampling technique has also been proposed for DHT systems that uses geometric routing.
This scheme achieves an average lookup latency comparable to the average unicast latency,
given that the graph follows a power-law latency expansion [358].

© 2010 Taylor and Francis Group, LLC

112 Overlay Networks: Toward Information Networking

6.12.5 Network Proximity

Support for network proximity is one key feature of overlay algorithms. The three basic
models for proximity awareness in DHTs are [63]

• Geographic layout: Node identifiers are created in such a way that nodes that are
close in the network topology are close in the nodeId space.

• Proximity routing: The routing tables do not take network proximity into account;
however, the routing algorithm can choose a node from the routing table that
is closest in terms of network proximity. At each hop, the chosen node strikes a
balance between taking the message closer to the destination identifier and using
the nearest neighbor.

• Proximity neighbor selection: In this model, the routing table construction takes
network proximity into account. Routing table entries are chosen in such a way
that at least some of them are close in the network topology to the current node.

The basic Chord and CAN protocols do not support network proximity; however, ge-
ographic layout and proximity routing have been proposed for CAN. CAN follows the
network proximity routing model and allows geographically nearby nodes to be close in
the identifier space as well. This poses some challenges when the network evolves differ-
ently in different places. Proximity neighbor selection is used with prefix- and suffix-based
algorithms such as Pastry and Tapestry, and it has been found to be highly effective com-
pared to the other models [63].

Proximity neighbor selection was found to yield significantly better paths than proximity
routing. Moreover, the effectiveness of the proximity methods does not depend on the rout-
ing geometry. Kademlia’s XOR routing [182] and Chord’s ring geometry support proximity
neighbor selection better than hypercube, which supports only proximity routing [152].

6.12.6 Adding Hierarchy to DHTs

Most DHTs that have been proposed are flat and nonhierarchical structures. They thus
contrast with the traditional distributed systems, which have employed hierarchy to achieve
scalability. A hierarchical DHT can be constructed that retains the homogeneity of load and
functionality of the flat DHTs. A generic construction called Canon has been shown to offer
the same routing state and routing hops trade-off found in the flat DHT designs [141].
The benefits of this approach include fault isolation, adaptation to the underlying physical
network and its organizational boundaries, and hierarchical storage of content and access
control.

The system is based on multiple domains, each running its own flat DHT algorithm.
These DHTs can then be merged to form a structure that spans the multiple domains in a
hierarchical fashion. Connectivity between domains is achieved by creating links between
the domains. The challenge is to create the links in such a way that the routing state and
average hop count are comparable to a single large DHT. The Canon design can be ap-
plied for many different flat DHT structures and different routing geometries. It has been
demonstrated using DHTs such as Chord, CAN, and Kademlia.

We briefly examine how the Canon approach can be applied to the Chord DHT. Each
node in this hierarchical variant of Chord, called Crescendo, is assigned a unique identifier
from the circular identifier space. The link structure is recursive in nature, and each set of
nodes in a leaf domain forms a Chord ring. At each internal domain, the Crescendo ring
is formed by merging all the children Crescendo rings into a single Crescendo ring. This
construction is repeated recursively at higher levels of the hierarchy. This process results in
a global DHT that contains all the domains and nodes in the system [141].

© 2010 Taylor and Francis Group, LLC

Distributed Hash Tables 113

0

5

10

12

Ring A

3

8

13

2

Ring B

3

8

13

2

0

5

10

12

Merged ring

FIGURE 6.14
Merging Chord rings.

Figure 6.14 illustrates the merging of two Chord rings, A and B, into a Crescendo ring.
Each of the rings has four nodes that have unique identifiers in the range [0, 16]. This
example focuses on the edges created by two nodes, node 0 in ring A and node 8 in ring
B. Based on the Chord algorithm, node 0 establishes its links in ring A by finding, for each
0 ≤ k < 4, the closest node that is at least distance 2k . Thus the node has links to nodes 5
and to 10. In a similar fashion, node 8 in ring B has links to nodes 13 and 2.

In the ring merging operation, the nodes keep their original links. In addition, each node
m in one ring creates a link to a node m′ in the other ring if and only if

• m′ is the closest node that is at least distance 2k away for some 0 ≤ k ≤ N,
• m′ is closer to m than any node in the ring of m.

Based on these conditions, in the example node 0 links to node 2 in the other ring. Node
8 in ring B links to node 10 in ring A. Some nodes may not create additional links. This
approach of merging two rings generalizes to the merging of any number of rings. The
algorithm for link creation is applied bottom-up on the hierarchy by merging sibling rings
to construct a level higher and larger ring.

Routing in Crescendo is identical to routing in the Chord DHT, namely greedy clockwise
routing. When there are multiple levels of hierarchy, greedy clockwise routing takes the
message to the closest predecessor p of the destination at each level. This node p is then
responsible for taking the message to the next higher Crescendo ring.

6.12.7 Experimenting with Overlays

Overlay algorithms are typically evaluated using experimental measurements (traces) from
real-life systems, simulations, and analytical models. The distributed PlanetLab testbed is
frequently used to experiment with various overlay algorithms. All PlanetLab machines
run a common software package that includes bootstrapping and management modules.
PlanetLab supports distributed virtualization through a technique called slicing. Users can
request PlanetLab slices in which they can run experiments and services. Thee services
include file sharing and network-embedded storage, routing and multicast overlays, QoS
overlays, event dissemination, anomaly-detection mechanisms, and network measurement
systems [329].

There are many simulators available that support both structured and unstructured over-
lay algorithms. As a classic example we can take the ns-2 simulator,1 which is a discrete
event simulation framework that is commonly used to experiment with different TCP/IP

1 The Network Simulator ns-2: http://www.isi.edu/nsnam/ns.

© 2010 Taylor and Francis Group, LLC

114 Overlay Networks: Toward Information Networking

protocols. One of the challenges in simulating wide-area networks with ns-2 are the memory
and processing requirements.

OMNeT++2 is a component-based modular simulator architecture for experimenting
with various networks. OverSim is an OMNeT++-based open-source simulation frame-
work designed for overlay and P2P networks. This simulator supports a number of struc-
tured DHT algorithms such as Chord, Kademlia, and Pastry [25]. OMNeT++ also has been
extended to simulate CDNs with CDNSim [304]. Another toolkit for overlay networks with
modular design is the Overlay Weaver [292].

6.12.8 Criticism

There have been two main criticisms of structured systems [70]. The first pertains to peer
transience, which is an important factor in maintaining robustness. Highly transient peers
may not be well supported by DHTs [70]. Transient peers result in churn, which is a current
concern with DHTs. The tolerance to churn depends on the DHT algorithm as well as the
application scenario [201].

The second criticism of structured systems stems from their foundation in consistent
hashing, which makes it more challenging to implement scalable query processing than for
unstructured systems. Given that the popular file-sharing applications rely extensively on
metadata-based queries, simple exact-match key searches are not sufficient for them, and
additional solutions are needed on top of the basic DHT API. It is also possible to combine
structured and unstructured algorithms in so-called hybrid models [61]. Unstructured net-
works with flooding or random walks are inefficient with sparse data; that is, data that is
not widely replicated and available. In these environments, it is tempting to utilize a more
structured approach to find keys efficiently irrespective of the level of replication. Castro,
et al. have proposed Structella, which is a hybrid of Gnutella built on top of Pastry [61].
Another proposal employed structured search for rare items and unstructured search for
massively popular and replicated items [212].

2 http://www.omnetpp.org/

© 2010 Taylor and Francis Group, LLC

7
Probabilistic Algorithms

Many peer-to-peer (P2P) protocols and overlay networks utilize probabilistic techniques
to reduce processing and networking costs. This chapter presents a number of frequently
used and useful probabilistic techniques. Bloom filters and their variants are of prime
importance, and they are heavily used in various network solutions.

The chapter also examines epidemic algorithms and gossiping, which are also the foun-
dation of a number of overlay solutions. In basic gossip-based protocols, each node contacts
a subset of nodes in each round and exchanges information with these nodes. The dynamics
of information dissemination bear semblance to the spread of an epidemic [108] and can
result in high robustness, reliability, and self-stabilization [31].

7.1 Overview of Bloom Filters

Fast matching of arbitrary identifiers to values is a basic requirement for a large num-
ber of applications. Data objects are typically referenced using locally or globally unique
identifiers. Recently, many distributed systems have been developed using probabilis-
tic globally unique random bitstrings as node identifiers. For example, a node tracks a
large number of peers that advertise files or parts of files. Fast mapping from host iden-
tifiers to object identifiers and vice versa are needed. The number of these identifiers in
memory may be great, which motivates the development of fast and compact matching
algorithms.

Given that there are millions or even billions of data elements, efficient solutions for
storing, updating, and querying them becomes increasingly important. The key idea behind
the data structures discussed in this chapter is that, by allowing the representation of
the set of elements to lose some information, in other words to become lossy, the storage
requirements can be significantly reduced.

The data structures presented in this chapter for probabilistic representation of sets are
based on the seminal work by Burton Bloom in 1970. Bloom first described a compact
probabilistic data structure that was used to represent words in a dictionary. There was
little interest in using Bloom filters for networking until 1995, after which this area has
gained widespread interest both in academia and in the industry.

Bloom filters are an efficient mechanism for probabilistic representation of sets and support
membership queries [32]. Bloom filters have many applications in dictionaries, networking,
measurement, and P2P systems [40]. Meta-databases are an example application domain
of Bloomier filters. Meta-databases direct queries to actual external databases.

Toward the end of the chapter, we consider four types of applications pertaining to dis-
tributed operation and networking: caching, P2P networks, packet routing and forwarding,
and measurement.

115
© 2010 Taylor and Francis Group, LLC

116 Overlay Networks: Toward Information Networking

7.2 Bloom Filters

The Bloom filter is a space-efficient probabilistic data structure that supports set mem-
bership queries. The data structure was conceived by Burton H. Bloom in the 1970s. The
structure offers a compact probabilistic way to represent a set that can result in false posi-
tives but never in false negatives. This makes Bloom filters useful for many different kinds
of tasks that involve lists and sets. The basic operations involve adding elements to the set
and querying for element membership in the probabilistic set representation.

The basic Bloom filter does not support the removal of elements; however, a number of
extensions have been developed that also support removals. The accuracy of a Bloom filter
depends on the size of the filter, the number of hash functions used in the filter, and the
number of elements added to the set. When more elements are added to a Bloom filter, the
probability that the query operation reports false positives becomes higher.

Broder and Mitzenmacher have coined the Bloom filter principle [40]:

Whenever a list or set is used, and space is at a premium, consider using a
Bloom filter if the effect of false positives can be mitigated.

A Bloom filter is an array of m bits for representing a set S = {x1, x2, . . . , xn} of n elements.
Initially all the bits in the filter are set to zero. The key idea is to use hash functions to map
items in the set S to a random number uniform in the range 1, . . . m. A Bloom filter uses k
hash functions and they are assumed to be random. The MD5 hash algorithm is a popular
choice for the hash functions.

An element x ∈ S is inserted into the filter by setting the bits hi (x) to one for 1 ≤ i ≤ k.
If the bits are not set, then x is not an element of S. If all the bits are set to one, then it is
assumed that the element is a member of S. Algorithm 7.1 presents the pseudocode for the
insertion operation. Algorithm 7.2 gives the pseudocode for the membership test of a given
element x in the filter. The weak point of Bloom filters is the possibility for a false positive.
False positives are elements that are not part of S but are reported being in the set by the
filter.

Figure 7.1 presents an overview of a Bloom filter. The Bloom filter consists of a bitstring of
length 18. Three elements have been inserted, namely x, y, and z. Each of the elements have

Algorithm 7.1 Pseudocode for Bloom filter insertion

Data: x is the object key to insert into the Bloom filter.
Function: insert(x)
for j : 1 . . . k do

/* Loop all hash functions k */

i ← h j (x)
if Bi == 0 then

/* Bloom filter had zero bit at position i */
Bi ← 1

end
end

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 117

Algorithm 7.2 Pseudocode for Bloom member test

Data: x is the object key for which membership is tested.
Function: ismember(x) returns true or false to the membership test
m ← 1
j ← 1
While m == 1 and j ≤ k do

i ← h j (x)
if Bi == 0 then

m ← 0
j ← j + 1

end
end
return m

been hashed using three hash functions to bit positions in the bitstring. The corresponding
bits have been set to 1. Now, when an element not in the set, w, is looked up, it will be
hashed using the three hash functions into bit positions. In this case, one of the positions is
zero and hence the Bloom filter reports correctly that the element is not in the set. It may
happen that all the bit positions of an element report that the corresponding bits have been
set. When this occurs, the Bloom filter will erroneously report that the element is a member
of the set. These erroneous reports are called false positives. We observe that for the inserted
elements, the hashed positions correctly report that the bit is set in the bitstring.

For optimal performance, each of the k hash functions should be a member of the class
of universal hash functions, which means that the hash functions map each item in the
universe to a random number uniform over the range. The development of uniform hashing
techniques has been an active area of research. An almost ideal solution for uniform hashing
is presented in [246]. In practice, reasonable hash functions, such as MD5, appear to be useful
for most purposes. In addition, d-left hashing has been proposed as almost perfect hash
function [38].

A Bloom filter constructed based on S requires space O(n) and can answer mem-
bership queries in O(1) time. Due to its probabilistic nature, the structure has
one-sided error. Given x ∈ S, the Bloom filter will always report that x belongs to
S, but given y
∈ S the Bloom filter may report that y ∈ S.

{x, y, z}

W

0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0

FIGURE 7.1
Overview of a Bloom filter.

© 2010 Taylor and Francis Group, LLC

118 Overlay Networks: Toward Information Networking

Higher false positive rateLower false positive rateNumber of elements in the

inserted set (n)

More space is needed

Lower false positive rate

Smaller space requirements

Higher false positive rate

Size of filter (m)

More computation

Lower false positive rate

Less computation

Higher false positive rate

Number of hash functions (k)

IncreaseDecrease

FIGURE 7.2
Key Bloom filter parameters.

Figure 7.2 examines the behavior of three key parameters when their value is either
decreased or increased. The number of hash function is used to tune the accuracy of the
filter with the price of more computation in insertions and lookups. The cost is directly
proportional to the number of hash functions. The size of the filter can be used to tune
the space requirements and the false positive rate. A larger filter will result in fewer false
positives. Finally, the size of the set that is inserted into the filter determines the false positive
rate.

7.2.1 False Positive Probability

Now, we derive the false positive probability rate of a Bloom filter and the optimal number
of hash functions for a given false positive probability rate. We start with the assumption
that a hash function selects each array position with equal probability. Let m denote the
number of bits in the Bloom filter. When inserting an element to the filter, the probability
that a certain bit is not set to one by a hash function is given by

1 − 1
m

. (7.1)

Now, there are k hash functions, and the probability that any of them have not set the bit
to one is given by (

1 − 1
m

)k

. (7.2)

After inserting n elements to the filter, the probability that a given bit is still zero is

(
1 − 1

m

)kn

. (7.3)

And consequently the probability that the bit is one is

1 −
(

1 − 1
m

)kn

. (7.4)

For an element membership test, if all of the k array positions in the filter computed by
the hash functions result to one, the Bloom filter claims that the element belongs to the set.
The probability of this happening when the element is not part of the set is given by

(
1 −

(
1 − 1

m

)kn
)k

≈ (
1 − e−kn/m)k

. (7.5)

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 119

We note that e−kn/m is a very close approximation of (1 − (1/m))kn [40]. The false positive
probability decreases as the size of the Bloom filter increases (m). The probability increases
as more elements are added to the filter and n increases. Now, we want to minimize the
probability for false positives. Minimizing the false positive rate is performed by minimizing
(1 − e−kn/m)k with respect to k. This is accomplished by taking the derivative. The minimal
value of k is given by

m
n

ln 2 ≈ 9m
13n

. (7.6)

This results in the false probability of
(

1
2

)k

≈ 0.6185m/n. (7.7)

Taking the optimal number of hashes, the false positive probability (when ≤ 0.5) can be
rewritten and bounded

m
n

≥ 1
ln 2

. (7.8)

This means that in order to maintain a fixed false positive probability, the length of a Bloom
filter must grow linearly with the number of elements inserted in the filter.

Figure 7.3 presents the false probability rate p as a function of number of elements n in
the filter and the filter size m. An optimal number of hash functions k = (m/n) ln 2 has been
assumed.

There is a factor of log2 e ≈ 1.44 between the amount of space used by a Bloom filter and
the optimal amount of space that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated.

7.2.2 Operations

Standard Bloom filters do not support the removal of elements. Removal of an element
can be implemented by using a second Bloom filter that contains elements that have been

1 10 100
1000 10000 100000n (elements)

10

100

1000

m (bits)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

FIGURE 7.3
False probability rate for Bloom filters.

© 2010 Taylor and Francis Group, LLC

120 Overlay Networks: Toward Information Networking

removed. The problem of this approach is that the false positives of the second filter result
in false negatives in the composite filter, which is undesirable. Therefore, a number of
dedicated structures have been proposed that support deletions. These are examined later
in this chapter.

A number of operations involving Bloom filters can be implemented easily—for example,
the union and halving of a Bloom filter. The bit-vector nature of Bloom filter allows the
merging of two or more Bloom filters simply by performing bitwise OR on the bit-vector.
Given two sets S1 and S2, a Bloom filter B that represents the union S = S1 ∪ S2 can be
created by taking the OR of the original Bloom filters B = B1 ∨ B2. The merged filter B will
report any element belonging to S1 or S2 as belonging to set S.

A Bloom filter can be halved easily in size. Given that the size of the filter is a power
of two, the size can be halved by taking OR of the first and second halves together. The
highest-order bit can be masked when hashing in lookups.

Bloom filters can be used to approximate set intersection; however, this is more compli-
cated than the union operation. The inner product of the bit-vectors is an indicator of the
size of the intersection [40]. The idea of a bloomjoin was presented by Mackert and Lohman
in 1986 [216]. Bloomjoin is by two hosts, A and B, compute the intersection of two sets S1
and S2, when A has the first set and B the second. It is not feasible to send all the elements
from A to B, and vice versa. In a bloomjoin, the S1 is represented using a Bloom filter and
sent from A to B. B can then compute the intersection and send back this set. Host A can
then check false positives with B in a final round.

7.2.3 d-left Counting Bloom Filter

Bonomi et al. [38] presented a data structure based on d-left hashing and fingerprints
that is functionally equivalent to a counting Bloom filter but uses approximately
half the space.

The d-left hashing scheme divides a hashtable into d subtables that are of equal size. Each
subtable has n/d buckets, where n is the total number of buckets. When an element is
placed into the table, hashing is used to obtain d possible buckets where it can be placed.
The candidate buckets are obtained by applying independent uniform hash functions. Each
incoming element is placed in the bucket that contains the smallest number of elements. In
case of a tie, the element is placed in the bucket of the leftmost subtable with the smallest
number of elements. When searching for an element, each of the d possible subtables are
examined. The technique uses multiple choices in hashing to achieve balanced loads and
very small maximum loads.

The d-left counting Bloom filter partitions the m bits among the k hash functions and
creates k slices of m′ = m/k bits. Each hash function hi (), with 1 ≤ i ≤ k, results in an index
over m′ for the slice it is responsible for. When an element is inserted into the structure, it
is first given a fingerprint. The fingerprint is stored in the least loaded subtable. Lookups
use parallel search of the subtables to find the fingerprint.

When testing for an element x, if all k bits given by hi (x), 1 ≤ i ≤ k are set to one, the filter
will result in a false positive. This false positive probability can be reduced by increasing
the number of slices k or the size m. The problem of knowing which element to delete is
solved by breaking the problem into two steps—namely, the creation of the fingerprint and
then finding the k locations.

This approach results in a more robust filter that spreads the load more uniformly over
the bits. Thus no element is specially sensitive to false positives [41].

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 121

7.2.4 Compressed Bloom Filter

Compressing Bloom filter improves performance when a Bloom filter is passed in
a message between distributed nodes. This structure is particularly useful when
information must be transmitted repeatedly and the bandwidth is a limiting fac-
tor [230].

Compressed Bloom filters are used only for optimizing the transmission (over the net-
work) size of the filters. This is motivated by applications such as Web caches and P2P
information sharing, which frequently use Bloom filters to distribute routing tables. If the
optimal value of the number of hash functions k in order to minimize the false probability
is used then the probability that a bit is set in the bitstring representing the filter is 1/2.
Given the assumption of independent random hash functions, this means that the bitstring
is random, and thus it does not compress well.

The key idea in compressed Bloom filters is that by changing the way bits are distributed
in the filter, it can be compressed for transmission purposes. This is achieved by choosing
the number of hash functions k in such a way that the entries in the m vector have a smaller
probability than 1/2 of being set. After transmission, the filter is decompressed for use.
The size of k selected for compression is not optimal for the uncompressed Bloom filter,
but may result in a smaller compressed filter. Compression can result in a smaller false
positive rate as a function of the compressed size compared to a Bloom filter that does not
use compression. The compressed Bloom filter requires that some additional compression
algorithm is used for the data that is transmitted over the network, for example, arithmetic
coding [230].

7.2.5 Counting Bloom Filters

As mentioned with the treatment on standard Bloom filters, they do not support element
deletions. A Bloom filter can be easily extended to support deletions by adding a counter
for each element of the data structure. This means that instead of having m bits we have m
counters. Fan et al. [127] first introduced the idea of a counting Bloom filter in conjunction
with Web caches.

Figure 7.4 illustrates a counting Bloom filter. The structure works in a manner similar to
a regular Bloom filter; however, it is able to keep track of the insertions and deletions. In
this example, three elements are added as follows. Element x is inserted three times, and
y and z are inserted once. Three hash functions are used to find the bit positions for each
element, and the corresponding counter in the filter is incremented by one.

x
(3)

0 3 0 1 1 4 0 0 0 0 0 2 0 3 0 0 1 0

y
(1)

z
(1)

FIGURE 7.4
Example of a counting Bloom filter.

© 2010 Taylor and Francis Group, LLC

122 Overlay Networks: Toward Information Networking

A counting Bloom filter also has the ability to keep a approximate counts of items. This
count estimate can be determined by finding the minimum of the counts in all locations in
the bitstring where an item is hashed to.

In a counting Bloom filter, each entry in the Bloom filter is not a single bit but rather
a small counter. When an item is inserted, the corresponding counters are incre-
mented; when an item is deleted, the corresponding counters are decremented. To
avoid counter overflow, we choose sufficiently large counters.

Given that the counters are only used for book-keeping for the membership test, the
analysis from [127] reveals that 4 bits per counter should suffice for most applications
[40, 128]. To determine a good counter size, we can consider a counting Bloom filter for a
set with n elements, k hash functions, and m counters. Let c(i) be the count associated with
the ith counter. The probability that the ith counter is incremented j times is a binomial
random variable:

P(c(i) = j) =
(

nk
j

) (
1
m

) j (
1 − 1

m

)nk− j

(7.9)

The probability that any counter is at least j is bounded above by mP(c(i) = j), which can
be calculated using the above formula.

The counter counts the number of times that the bit is set to one. All the counts are initially
zero. The probability that any count is greater or equal to j :

Pr (max(c) ≥ j) ≤ m
(

nk
j

)
1

m j
≤ m

(
enk
jm

) j

. (7.10)

As already mentioned the optimum value for k (over reals) is ln 2m/n so assuming that
the number of hash functions is less than ln 2m/n we can further bound

Pr (max(c) ≥ j) ≤ m
(

e ln 2
j

) j

. (7.11)

Hence taking j = 16 we obtain that

Pr (max(c) ≥ 16) ≤ 1.37 × 10−15 × m. (7.12)

In other words if we allow 4 bits per count, the probability of overflow for practical values of
m during the initial insertion in the filter is extremely small. Figure 7.5 illustrates overflow
probability as a function of counter size (number of elements). The case of 4 bit counters is
shown using a horizontal line.

Algorithm 7.3 presents the pseudocode for the insert operation for element x with count-
ing. The operation increments the counter of each bit to which x is hashed. The count-
ing structure supports the removal of elements using the delete operation presented in
Algorithm 7.4. The delete decrements the counter of each bit to which x is hashed. The
corresponding bit is reset to zero when the counter becomes zero.

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 123

1e–016

1e–014

1e–012

1e–010

1e–008

1e–006

0.0001

0.01

1

5 10 15 20 25 30

Pr
/m

Elements

Upper bound probability that any counter is at least j
4 bit counters

FIGURE 7.5
Counting Bloom filter scalability.

7.2.6 Hierarchical Bloom Filters

Shanmugasundaram et al. [291] presented a data structure called hierarchical Bloom
filter to support substring matching. This structures supports the checking of a part
of string for containment in the filter with low false positive rates. The filter works
by splitting an input string into a number of fixed-size blocks. These blocks are
then inserted into a standard Bloom filter. By using the Bloom filter, it is possible
to check for substrings with a block-size granularity. This substring matching may
result in combinations of strings that are incorrectly reported as being in the set
(false positives). For example, a concatenation of two blocks from different strings
would be incorrectly recognized as an inserted substring.

Algorithm 7.3 Pseudocode for counting Bloom filter insertion

Data: x is the object key to insert into the counting Bloom filter.
Function: insert(x)
for j : 1 . . . k do

/* Loop all hash functions k */

i ← h j (x)
/* Increment counter Ci */

Ci ← Ci + 1
if Bi == 0 then

/* Bloom filter had zero bit at position i */
Bi ← 1

end
end

© 2010 Taylor and Francis Group, LLC

124 Overlay Networks: Toward Information Networking

Algorithm 7.4 Pseudocode for counting Bloom filter deletion

Data: x is the object key to be removed from the counting Bloom filter.
Function: delete(x)
for j : 1 . . . k do

/* Loop all hash functions k */

i ← h j (x)
/* Decrement counter Ci */

Ci ← Ci − 1
if Ci ≤ 0 then

/* Reset bit at position i */
Bi ← 0

end
end

The hierarchical Bloom filter construction improves matching accuracy by inserting the
concatenation of blocks into the filter in addition to inserting them separately. This means
that two subsequent single-block matches can be verified by looking up their concatenation.
This approach generalizes to a sequence of blocks; however, storage space requirements
grow as more block sequences are added to the structure.

This filter was used to implement a payload attribution system that associates excerpts
of packet payloads to their source and destination hosts. The filter was used to create
compact digests of payloads. The system works by dividing the payload of each packet into
a set of blocks of a certain fixed size. Each block is appended by its offset in the payload:
(content||offset). The blocks are then hashed and inserted into a Bloom filter. A hierarchical
Bloom filter is a collection of the standard Bloom filters for increasing block sizes.

When a string is inserted, it is first broken into blocks that are inserted into the filter
hierarchy starting from the lowest level. For the second level, two subsequent blocks are
concatenated and inserted into the second level. This block-based concatenation continues
for the remaining levels of the hierarchy. The resulting structure can then be used to verify
whether or not a given string occurs in the payload. The search starts at the first level and
then continues upward in the hierarchy to verify whether the substrings occurred together
in the same or different packets.

7.2.7 Spectral Bloom Filters

Spectral Bloom filters generalize Bloom filters to storing an approximate multiset. The
membership query is generalized to a query on the multiplicity of an element. The answer
to any multiplicity query is never smaller than the true multiplicity and is greater only with
probability ε. The space usage is similar to that of a Bloom filter for a set of the same size
(adding multiplicities).

Spectral Bloom filters extend Bloom filters to store an approximate multiset, and they
support frequency queries [86]. The answer to a multiplicity query is never smaller than
the actual value and is greater only with probability ε. The query time is �(log(1

ε
)). Spectral

Bloom filters are used in storing shortest path distance information.

7.2.8 Bloomier Filters

Bloom filters have been generalized to Bloomier filters that compactly store functions. The
Bloomier filters can encode functions instead of sets and allow the association of values with

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 125

a subset of the domain elements [71]. Bloomier filters are implemented using a cascade of
Bloom filters.

In more detail, given S ⊆ D, n = |S| and a function f : S �→ {0, 1}k , a Bloomier filter
is a data structure that supports queries to the function value. It also has one-sided error:
given x ∈ S, it always outputs the correct value f (x) and if x ⊆ D\S with high probability it
outputs ⊥, a symbol not in the range of f [71]. In other words, the filter returns the desired
function value for any element in the set S and returns the undefined value for any element
not in S. For any elements not in S, there is a possibility of a false positive, in which case
the filter may return an incorrect function value.

The query time of a Bloomier filter is constant and space requirement is linear. The basic
construction of a Bloomier filter requires O(n log n) time to create, O(n) space to store
and, O(1) time to evaluate. Although a Bloomier filter can be made mutable, the set S is
immutable. This means that in a mutable Bloomier filter, function values can be changed
but set membership (in S) cannot change.

7.2.9 Approximate State Machines

Efficient and compact state representation is needed in routers and other network devices in
which the number and behavior of flows needs to be tracked. The approximate concurrent state
machine (ACSM) approach was motivated by the observation that network devices, such as
network address translation devices (NATs), firewalls, and application-level gateways, keep
more and more state regarding TCP connections [37]. The ACSM construction was proposed
to track the simultaneous state of a large number of entities within a state machine. ACSMs
can return false positives, false negatives, and “do not know” answers. Their construction
is based on Bloom filters and hashing.

7.2.10 Perfect Hashing Scheme

A simple technique called perfect hashing (or explicit hashing) can be used to store a static
set S of values in an optimal manner using a perfect hash function. An array of size n stores
the perfect hash value for each x ∈ S and the information associated with x [249]. It follows
from the definition of 2-universal hashing that any element y not in S has probability at
most ε of having the same hash function value h(y) as the element in S that maps to the
same entry of the array.

A minimal perfect hash function is stored for S using O(n + log w) bits and a function
h : {0, 1}w �→ {0, 1}log(2/ε) from a 2-universal family using O(log n + log w) bits. This results
in O(n + log w) space and constant-time lookups. An array of size n is stored, where the
entry that is the perfect hash value of x ∈ S contains

1. the value h(x) and
2. the information associated with x.

Figure 7.6 illustrates the perfect hashing technique. Lookup of x simply consists of com-
puting a value of the perfect hash function and checking whether the stored hash function
value is h(x). This approach is not preferred for dynamic environments because the perfect
hash function needs to be recomputed when the set S changes.

7.2.11 Summary

Figure 7.7 presents a comparison of the different Bloom filter variants discussed in this chap-
ter. Bloom filters come in many shapes and forms, and they are widely used in distributed

© 2010 Taylor and Francis Group, LLC

126 Overlay Networks: Toward Information Networking

Fingerprint(4) Fingerprint(5) Fingerprint(2) Fingerprint(1) Fingerprint(3)

Element 1 Element 2 Element 3 Element 4 Element 5

FIGURE 7.6
Example of explicit hashing.

systems due to their compact nature and configurable trade-off between size and accuracy.
The basic Bloom filter offers a probabilistic representation of a set, but it does not sup-
port counting, deletion of elements, and multisets. The basic structure also has a number
of other limitations. The lookup time grows as the false positive rate decreases (number
of hash functions). The space usage of a Bloom filter is a factor log e ≈ 1.44 from the in-
formation theoretically optimal. Different variants have been developed to address these
shortcomings.

The compressed Bloom filter improves on the basic construction by making it more
friendly toward compression. The main expected usage for compressed Bloom filters is in
transferring them over the network, and it requires an additional compression step—for
example, using arithmetic coding.

The counting Bloom filter adds a counter to each bit in the filter, thus making it possible to
count elements and remove them from the filter. The interesting result regarding counting
filters is that a relatively small counter of 4 bits suffices for most requirements. This structure
can also answer to multiplicity queries based on the counters. The d-left counting Bloom
filter improves the basic construction by making it more balanced and thus results in better
false positive rates.

Hierarchical Bloom filter uses basic Bloom filters in an hierarchical manner to be able to
answer substring queries. As such, it does not support counting, deletion, and multisets. The

YesYesYesBF that supports multiple sets,

minimum counter

Spectral Bloom filter

Yes

(functions),

mutable

function

values

NoYesProbabilistic representation of

multisets

Bloomier filter

NoNoNoSuitable for substring dataHierarchical Bloom

filter

No

Yes

No

No

Counting

NoNoHashing technique that achieves near-

optimal storage

Perfect Hashing

NoYesBF with c-bit countersCounting Bloom filter

or d-left hashing with

fingerprints

NoNoSparser BF compressed for

transmission

Compressed Bloom

filter

NoNoProbabilistic representation of a setBloom filter (BF)

MultisetsDeletionDescriptionFilter

FIGURE 7.7
Comparison of Bloom filters.

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 127

Spectral Bloom filter is a more advanced structure that supports both deletion, multiplicity
queries (frequencies), and multisets. The Bloomier filter allows the insertion of functions
to the structure, and it is based on a recursive cascade of Bloom filters. This structure can
offer counting and multisets but does not allow the set of elements to change.

Finally, perfect (or explicit) hashing is a simple technique that achieves near-optimal
storage, but it is suitable only for static environments and does not support deletion or
counting.

7.3 Bloom Filters in Distributed Computing

We have surveyed techniques for probabilistic representation of sets and functions. The ap-
plications of these structures are manyfold, and they are widely used in various networking
systems such as Web proxies and caches, database servers, and routers. In this section, we
consider four types of network-related applications areas for these structures:

• Caching for Web servers and storage servers.
• Supporting P2P networks: Probabilistic structures can be used for summarizing

content and caching [128].
• Packet routing and forwarding. Probabilistic techniques can be used to improve

efficiency and scalability of various network processes.
• Supporting monitoring and measurement activities. Probabilistic techniques can

be used to store and process measurement data summaries in routers and other
network entities.

7.3.1 Caching

Bloom filters have been applied extensively to caching in distributed environments. To take
an early example, Fan, Cao, Almeida, and Broder proposed the summary cache [127, 128]
system, which uses Bloom filters for the distribution of Web cache information. The system
consists of cooperative proxies that store and exchange summary cache data structures,
essentially Bloom filters. When a local cache miss happens, the proxy in question will try
to find out if another proxy has a copy of the Web resource using the summary cache. If
another proxy has a copy, then the request is forwarded there.

In order for distributed proxy-based caching to work well, the proxies need to have a
way to compactly summarize available content. In the summary cache system, proxies
periodically transfer the Bloom filters that represent the cache contents (URL lists).

Dynamic content poses a challenge for caching content and keeping the summary indexes
updated. Within a single proxy, a Bloom filter representing the local content cache needs to
be recreated when the content changes. This can be seen to be inefficient; as a solution, the
summary cache uses counting Bloom filters for the maintenance of their local cache contents
and then, based on the updates, a regular Bloom filter is broadcast to other proxies.

The summary cache–based technique is used in the popular Squid Web Proxy Cache.1

Squid uses Bloom filters for so-called cache digests. The system uses a 128-bit MD5 hash
of the key, a combination of the URL and the HTTP method, and splits the hash into four
equal chunks. Each chunk modulo the digest size is used as the value for one of the Bloom
filter hash functions. Squid does not support deletions from the digest and thus the digest
must be periodically rebuilt to remove stale information.

1 www.squid-cache.org

© 2010 Taylor and Francis Group, LLC

128 Overlay Networks: Toward Information Networking

Bloom filters have been applied extensively in distributed storage to minimize disk
lookups. As an example, we consider Google’s Bigtable system, which is used by many
massively popular Google services (such as Google Maps and Google Earth) and Web in-
dexing. Bigtable is a distributed storage system for structured data that has been designed
with high scalability requirements in mind—for example, capability to store and query
petabytes of data across thousands of commodity servers [68].

A Bigtable is a sparse multidimensional sorted map. The map is indexed by a row key,
a column key, and a timestamp. Each value in the map is an uninterpreted array of bytes.
Bigtable uses Bloom filters to reduce the disk lookups for nonexistent rows or columns [68].
As a result, the query performance of the database has to rely less on costly disk operations
and thus performance increases.

7.3.2 P2P Networks

The exchange of keyword lists and other metadata between peers is crucial for P2P net-
works. Ideally, the state should be such that it allows for accurate matching of queries and
takes sublinear space (or near-constant space). As discussed in Chapter 4, the later versions
of the Gnutella protocol use Bloom filters [32] to represent the keyword lists in an effi-
cient manner. In Gnutella, each leaf node sends its keyword Bloom filter to an ultra node,
which can then produce a summary of all the filters from its leaves and then send this to
its neighboring ultra nodes.

Bloom filters can be applied for approximate set reconciliation. This application is im-
portant for P2P systems, in which a peer may send a compact data structure to another
peer that represents items that the peer already has. Bloom filters are not directly ideal
for this kind of set-reconciliation application because of the possibility for false positives.
Therefore, a number of Bloom filter–based structures have been developed [44, 270].

Rhea et al. [191] designed a probabilistic routing algorithm for P2P location mechanisms
in the OceanStore project. Their aim was to determine when a requested file has been
replicated near the requesting system. This system uses a construction called attenuated
Bloom filter, which is an array of d basic Bloom filters. The ith basic filter keeps a record of
what files are reachable within i hops in the network. The attenuated Bloom filter only finds
files within d hops, but the returned paths are likely to be the shortest paths to the replica.
In the distributed system, a node maintains attenuated filters for each neighbor separately,
and updates are broadcast periodically.

The OceanStore system uses a two-tiered model in which the attenuated filter is part of
the first tier. If the probabilistic search fails, the search can then fall back to a deterministic
overlay search using Tapestry.

7.3.3 Packet Routing and Forwarding

Bloom filters can be applied in various parts in a routing and forwarding engine. Probabilis-
tic techniques have been used for efficient IP lookups. IP routers forward packets based on
their address prefixes. Each prefix is associated with the next hop destination. CIDR-based
routing and forwarding uses longest prefix match for finding the next hop destination.
This is commonly solved using a binary search, a trie search, or a TCAM. IP lookups can be
made more efficient by dividing the addresses into tables based on their length and then
utilizing binary search to find the longest common prefix. The d-left hashing technique has
been used to make this lookup more compact and efficient [41].

Many different probabilistic structures have been developed for fast packet forward-
ing. To take one example, an algorithm that uses Bloom filters for longest prefix matching
(LPM) was introduced in [110]. The algorithm performs parallel queries on Bloom filters

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 129

to determine address prefix membership in sets of prefixes sorted by prefix length. This
work indicates that Bloom filter–based forwarding engines can offer favorable performance
characteristics compared to TCAMs used by many routers.

Bloom filters can be used for loop detection in network protocols. IP uses the time-to-
live (TTL) field to detect and drop packets that are in a forwarding loop. The TTL counter
is incremented for each network hop. For small loops, TTL may still allow a substantial
amount of looping traffic to be generated.

Icarus is a system that uses Bloom filters for preventing unicast loops and multicast
implosions. The idea is straightforward—namely, to use a Bloom filter in the packet header
as a probabilistic loop detection mechanism. Each node has a corresponding mask that can
be ORed with the Bloom filter in the header of a packet and then determine whether or
not a loop has occurred. Detection accuracy can be traded off against space required in the
packet header [347].

Bloom filters can also be used in multicast forwarding engines. A multicast packet is sent
through a multicast tree. A multicast router maps an incoming multicast packet to out-
going interfaces based on the multicast address. Initially, Grönvall suggests an alternative
multicast forwarding technique using Bloom filters [151]. In this technique, a router has a
Bloom filter for each outgoing interface. The filters contain the addresses associated with
the interfaces. When a multicast packet arrives on one interface, the Bloom filters of each
interface are checked for matches. The packet is forwarded to all matching interfaces. This
technique is interesting because it does not store any addresses at the router; however, the
addition or removal of multicast addresses requires that the Bloom filters be updated. A
similar technique has been proposed recently for publish/subscribe networking [121].

Bloom filters have also found applications in deep packet scanning, in which applications
need to search for predefined patterns in packets at high speeds. Bloom filters can be used
to detect predefined signatures in packet payload. When a suspect packet is encountered,
it can then be moved for further investigation. One advantage of Bloom filters is that they
can be efficiently implemented in hardware and parallelized [109].

7.3.4 Measurement

Bloom filters have found many applications in measurement of network traffic. One par-
ticular application is the detection of heavy flows in a router. Heavy flows can be detected
with a relatively small amount of space and small number of operations per packet by
hashing incoming packets into a variant of the counting Bloom filter and incrementing the
counter at each set bit with the size of the packet. Then, if the minimum counter exceeds
some threshold value, the flow is marked as a heavy flow [129].

Iceberg queries have been an active area of research development. An iceberg query iden-
tifies all items with frequency above some given threshold. Bloom filter variants that are
able to count elements are good candidate structures for supporting iceberg queries. In
networking, low-memory approximate histogram structures are needed for collecting net-
work statistics at runtime. For example, in some applications it is necessary to track flows
across domains and perform, to name a few examples, congestion and security monitoring.
Iceberg queries can be used to detect denial-of-service attacks.

Packet and payload attribution is another application area in measurement for Bloom fil-
ters. The problem in payload attribution is as follows. Given a payload, the system reduces
the uncertainty that we have about the actual source and destination(s) of the payload
within a given target time interval. The goodness of the system is directly related to how
much this uncertainty can be reduced. The implementation of a payload attribution sys-
tem has two key components—a payload-processing component and a query-processing
component.

© 2010 Taylor and Francis Group, LLC

130 Overlay Networks: Toward Information Networking

The source path isolation engine (SPIE) [300] implements a packet attribution system in
which the system keeps track of incoming and outgoing packets at a router. Simply storing
all the resulting information is not feasible. Therefore, Snoeren et al. proposed using Bloom
filters to reduce the state requirements. A Bloom filter stores a summary of packet infor-
mation in a probabilistic way. One key observation is that each router maintains its own
Bloom filters and thus their hash functions are independent.

A SPIE-capable router creates a packet digest for every packet it processes. The digest
is based on the packet’s nonmutable header fields and a prefix of the first 8 bytes of the
payload. These digests are then maintained by a network component for a predefined time.

When a security component, such as an intrusion-detection system, detects that the net-
work is under attack, it can use SPIE to trace the packet’s route through the network to
the sender. A single packet can be traced to its source, given that the routers on the route
still have the packet digest available. A false positive in this setting means that a packet is
incorrectly reported as having been seen by a router. When the source of a packet is traced,
false positives mean that the reverse path becomes a tree (essentially branches to multiple
points due to false positives).

The packet attribution was extended to payload attribution by Shanmugasundaram
et al. [291] with the hierarchical Bloom filter. As discussed earlier in this chapter, this struc-
ture allows the query of a part of a string. SPIE uses the nonmutable headers and a prefix of
the payload, whereas with hierarchical Bloom filters it is sufficient to have only the payload
to perform a traceback.

7.4 Gossip Algorithms

Probabilistic gossip protocols have gained considerable interest in recent years, starting with
the seminal work of Alan Demers et al. in 1987 [108]. A gossip protocol is based on oppor-
tunistic interactions between nodes, in a manner similar to gossip in social networks or the
way in which a viral infection spreads in a biological population [184]. The mathematics
of epidemics are frequently used to model gossip-based systems, and the term epidemic
algorithm has been used to describe gossip-like software systems. They can be applied in
various distributed environments where nodes are expected to communicate frequently
with other nodes. The probabilistic nature of gossip allows the flooding of a message with
a relatively low cost [30].

Epidemic and gossip algorithms have been recently recognized as robust and scal-
able means to disseminate information in wide-area environments. Information is
disseminated reliably in a distributed system the same way an epidemic would be
propagated throughout a group of individuals. Each process of the system chooses
random peers to which information is forwarded. The underlying P2P communi-
cation paradigm is the key to the scalability of the dissemination schemes.

7.4.1 Overview

Gossip-based unstructured overlays can be used as a building block for various network
and service management applications, especially when support for dynamic operation and
eventual consistency is required [335]. Gossip has been used for monitoring and configu-
ration in the AstroLabe system [331] and for achieving eventual consistency in Amazon’s
Dynamo [105], which is a core system for the company’s services. Gossip lends itself well
to monitoring in large-scale networks where each node monitors a small random subset

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 131

of other nodes, thus distributing the monitoring cost. Gossip is also suitable for managing
routing tables in a large-scale P2P network.

Gossip-based protocols can be divided into three main categories:

• Dissemination protocols, which use gossip to spread data across the network by
using probabilistic flooding. A technique called rumormongering uses gossip for
some predetermined time that has been chosen high enough to ensure that the
gossiped information is sent across the network to all expected receivers.

• Anti-entropy protocols, which are used to replicate data. These protocols compare
replicas and reconcile differences in an opportunistic fashion. An anti-entropy pro-
tocol gossips information until it is made obsolete by newer information.

• Data aggregation protocols, which compute a network-wide aggregate by sampling
information at the nodes. The aim is to ultimately compute a system-wide ag-
gregate value, for example, the largest measurement value. In order to efficiently
aggregate computation to work, the aggregate function must be computable by
fixed-size pairwise information exchanges. Typically the exchanges eventually ter-
minate after a logarithmic number of rounds to the system size. Aggregation-based
protocols can be used also to implement sorting, counting, and summing of values
at nodes [171].

The first category includes various kinds of multicast and event-dissemination protocols.
A gossip dissemination can be triggered periodically (push or pull) or when an external
request is received. The key concern is the latency of the communication and the proba-
bility of reaching all proper nodes in the network through gossiping. Latency is a concern
especially with periodic operation. The random choice of the subset of nodes to contact
can be determined using local information acquired by a node during its execution. Gossip
protocols that utilize local information in peer selection are called informed gossip protocols.

Figure 7.8 presents an overview of an abstract model for gossiping. The gossip is either
triggered by an application reacting to some event (1) or by a periodic trigger. The gossip is
driven by a predefined policy that needs to first decide whether or not the gossip process is
started. The gossip engine consults this policy and makes a gossip decision (2). The gossip
decision is based on the current state of the system and the policies.

After the decision has been made, the gossip engine needs to determine where gossip
messages are sent. This involves peer selection. Different policies can be used for selecting
peers. A subset of peers can be selected randomly or based on an estimate of their reliability
and lifetime on the network. As discussed in Chapter 4, peer selection is an integral part

Gossip

decision

Periodic

trigger

Network

Gossip

Peer selection

State

compression

State

1
2

3
3

5

4

2

6

8

7

9

FIGURE 7.8
Key gossip interactions.

© 2010 Taylor and Francis Group, LLC

132 Overlay Networks: Toward Information Networking

of unstructured P2P protocols. Peer selection also consults state (3), and a list of candidate
peers is then created as a result (4). Many gossip algorithms may need to decide the content
to be gossiped. For example, a proactive gossip protocol retrieves the parameters from its
current state.

The gossip engine then uses the underlying network to communicate with the selected
peers. The communication can utilize unicast, multicast, or broadcast (5). The network in-
forms the engine about message delivery (6). If the engine is informed that certain messages
could not be delivered and there are communication problems, it can then consult the peer
selection and find other peers to contact. The interactions between the gossip engine and
the network depend on the operating environment. For Internet applications, the gossip
engine can utilize a bootstrapping server to find peers. In pervasive and ubiquitous com-
puting environments, the gossip engine may rely on peer advertisements from the network
(such as universal plug and play (UPnP)) discovery messages.

When a gossip message is received from the network, a gossip protocol may react in dif-
ferent ways to the message. The received message may be forwarded to the current peers.
The message may result in a response—for example, sending the requested information
pertaining to the current state. State contained in the message may be extracted and com-
bined or compared with the current state (7). The gossip protocol can then decide whether
to merge the received state with its local state or not. If merging takes place, the new state
can then be either proactively or reactively disseminated (8). State can also be compressed
(9) to improve both local and distributed processing [2].

7.4.2 Design Considerations

The gossip process forwards a message each time to a randomly selected set of peers. A
crucial observation for the reliability of the system is that the peer sets of nodes in the system
are independent. This replication factor of a message is called the fanout of the dissemina-
tion, and it is a key parameter for gossip and epidemic algorithms. The reliability of these
algorithms is based on their proactive nature, in which redundancy and randomization
circumvent potential failures and disruptions in communications. Gossip and epidemic
algorithms avoid expensive reconfiguration when failures happen because they rely on the
probabilistic dissemination and the fact that the message is eventually delivered across the
network to the proper receivers.

Epidemic algorithms exhibit a bimodal behavior. There is a threshold in the parame-
ter configuration below which a reliable delivery can be ensured. The delivery guarantee
depends on the system parameters.

7.4.3 Basic Models

The two basic models of gossip are the following:

• Rumormongering, in which nodes periodically choose a node at random and
spread the rumor. Gossiping is typically performed for some preset duration. In
this model, each message is important and thus it is a building block for reliable
multicast protocols.

• Anti-entropy, in which every node periodically chooses another node at random
and resolves any differences in state. Gossiping is continued until the data becomes
obsolete, which makes this model useful for applications that require eventual
consistency.

Anti-entropy supports the replication of state that does not have strong consistency
requirements. Updates are distributed by the participating nodes, and the expected

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 133

Push Pull

Infectious nodes push rumors Susceptible nodes pull rumors

FIGURE 7.9
Examples of push and pull interactions.

dissemination time grows logarithmic to the number of nodes in the system even when
failures occur. Anti-entropy protocols gossip information until it is made obsolete by newer
information. Rumormongering uses gossip for some predetermined time that has been cho-
sen high enough to ensure that the gossiped information is sent across the network to all
expected receivers.

In rumormongering, nodes have three states, infected, susceptible, and removed. In the
first state, a node has a certain piece of data and gossips with other nodes to propagate
this data. With the second state, a node does not yet have the data but is willing to gossip.
In the third state, a node that has already received the data has been removed with some
probability. A removed node does not participate in gossiping. A node running the rumor-
mongering algorithm simply picks another node at random and exchanges updates with
this node.

There are two central types of interactions for gossip, namely push and pull. Figure 7.9
illustrates these two modes. In push, nodes can directly contact other nodes, their peers,
and send information. In pull-based gossip, a node sends a digest (summary) of its state to
another node and requests updates. The other node then checks what information should
be sent to the requesting node and sends the appropriate content. The two modes can
be combined for push-pull gossip, in which the responder includes a list of information
elements that appear to be outdated based on the digest. The requestor can then send the
updates to this node.

Pushing involves one message, pulling involves two messages, and the push-pull cycle
involves three messages. Pushing is not a very good choice when rapid dissemination is
required. The pull mode works better when many nodes are infected (have the data). The
hybrid mode is the most efficient of the three modes since it allows information to propagate
faster. Gossiping is divided into rounds. Gossiping takes O(log n) rounds to propagate a
single update to all nodes.

Gossip systems can be extended to support the deletion of data. This is achieved by
creating a special record for deleted data called a death certificate. The death certificates are
timestamped and distributed in the environment to inform nodes that a certain piece of
data has been removed. In order to keep the data from being reinjected into the system,
some nodes need to keep a permanent copy of the death certificate.

7.4.4 Basic Shuffling

Figure 7.10 illustrates the general view-based gossiping model, in which nodes have partial
views regarding the P2P network and randomly exchange views. Basic shuffling is a simple

© 2010 Taylor and Francis Group, LLC

134 Overlay Networks: Toward Information Networking

B
F
C
ZA F

Select peer
B
F
C
Z F

Exchange views

A

FA

3. Apply updates and redefine topology

2. Exchange views with the peer1. Select peer

FIGURE 7.10
Example of view shuffling.

gossip algorithm that uses a push-pull strategy [306]. The algorithm assumes that there are
no failures and that neighborhood information is available [19]. The idea is to form an
overlay and keep it connected by means of an epidemic algorithm. In the protocol, each
peer keeps a set of continuously changing neighbors and occasionally contacts a random
neighbor to exchange some of their neighbors. An entry in the neighbor table contains the
network address (IP address and port) of another peer in the overlay. Each peer periodically
initiates the shuffle operation with a neighbor.

The shuffle operation has the following six steps from the viewpoint of the initiating
node A:

1. Select a random subset of t neighbors from the local neighbor list. Select a random
peer, B, within the subset. The parameter t is called the shuffle length.

2. Replace B’s address with A’s address.
3. Send the updated subset to B.
4. Receive from B a subset of no more than t of B’s neighbors.
5. Discard entries pointing to A and entries that are already in A’s neighbor table.
6. Update A’s neighbor table to include all remaining entries. First populate empty

slots and then replace entries that were originally sent to B.

When a shuffling request is received by a peer, it randomly selects a subset of its own
neighbors and sends it to the initiating node. Then the node executes steps 5 and 6 to update
its neighbor table.

The shuffling operation reverses the relation between Aand B. After node Ahas initiated
a shuffling operation with its neighbor B, A becomes B’s neighbor, while B is no longer a
neighbor of A.

Given a fail-free environment, the connectivity resulting from the shuffle algorithm is
guaranteed. A node cannot become disconnected because of the shuffling operation, be-
cause it only changes the neighbors. An overlay built using shuffling cannot be split into
two disjoint subsets as a result of the shuffling operation [335].

© 2010 Taylor and Francis Group, LLC

Probabilistic Algorithms 135

7.4.5 Enhanced Shuffling

The Cyclon overlay system introduced an enhanced version of shuffling that improves
the quality of the algorithm in terms of randomness [335]. The key difference between
basic shuffling and enhanced shuffling is that, in the latter, nodes do not randomly choose
which neighbor to shuffle with; instead they select the neighbor that has the most recent
information.

Enhanced shuffling nodes initiate neighbor exchanges periodically. In enhanced shuf-
fling, the neighbor table elements contain an extra field called age that denotes the age of
the entry expressed in intervals since its creation by the node it references. The enhanced
shuffling operation involves the following seven steps from the viewpoint of the initiator A:

1. Increase the age of all neighbors by one.
2. Select neighbor B with the highest age among all neighbors and a random subset

of neighbors of size t − 1.
3. Replace B’s entry with a new entry of zero age and with A’s address.
4. Send the updated subset to peer B.
5. Receive from B a subset of at most t entries.
6. Discard entries pointing at A and entries already contained in A’s neighbor table.
7. Update A’s neighbor table to include all remaining entries. First populate empty

slots and then replace entries that were originally sent to B.

As in the case of basic shuffling, when a shuffling request is received by a peer, it randomly
selects a subset of its own neighbors, of size at most t, and sends it to the initiating node.
Then the node executes steps 5 and 6 to update its neighbor table. The age count is not
increased by the receiver; it is only increased by the initiator.

The Cyclon protocol results in a graph that has similar properties to those of random
graphs in terms of the average path length, clustering coefficient, and diameter. Ran-
dom peer sampling can be replaced with a sampling algorithm that maintains short-
cuts to far-away peers. Random shortcut selection with greedy routing results in n1/3

average hop count, where n is the number of peers in the small-world topology. Using
Kleinberg’ small-world routing results in greedy routing performance of O(log2(n)). It is
possible to instrument the peer sampling to achieve routing similar in performance to
Kleinberg’s greedy routing [183]. Experimental results with P2P gossip-based protocols
indicate that small-world topologies with randomly chosen shortcuts perform reasonably
well in practice [36].

7.4.6 Flow Control and Fairness

As in the case of network protocols in general, gossip algorithms need to have a mechanism
to ensure fairness. The goal of a flow control mechanism for gossip is to determine in
an adaptive fashion the maximum rate at which a participant can send updates without
creating a backlog of updates [332]. A flow control mechanism should be fair and allow
each participant to send updates even when the system is under heavy load. Since there is
no global control, the flow control system needs to be decentralized.

Flow control can be accomplished through the gossip protocol by having each partici-
pant maintain a maximum update rate. When two participants gossip, they exchange the
maximum update rates and split the difference between the maximum rates. A similar
technique that is used in TCP (additive increase, multiplicative decrease) can be used when
a message overflows or underflows. If a gossip message overflows, then the maximum rate

© 2010 Taylor and Francis Group, LLC

136 Overlay Networks: Toward Information Networking

is reduced by a percentage. If a gossip message underflows, then the rate can be additively
increased [332].

7.4.7 Gossip for Structured Overlays

Gossip protocols are a form of unstructured overlays. Gossip can be used together with a
structured overlay to improve system scalability. Gossiping can offer eventual consistency
for a wide-area system. It has been shown that the randomness provided by an unstructured
gossip overlay can be used to build the routing table of a structured P2P overlay. This system
uses the leaf set of Pastry and the proximity links of an unstructured overlay to build a
complete overlay. Simulation results of the system indicate that the combination of the
two overlay techniques can be used to significantly reduce overlay maintenance overhead
without adverse effects to performance [218].

Gossip has been applied for multicast and pub/sub systems, in which the goal of the
system is to deliver messages from publishers to the subscribers. The motivation for gos-
siping in pub/sub is that gossip protocols are simple and do not require a pub/sub routing
infrastructure. The limitations include more overhead in communications. A number of
gossip algorithms for pub/sub systems have been proposed in [18, 22, 74, 92, 124, 253, 336].

Eugster and Guerraoui present the probabilistic multicast (pmcast) system that is an exam-
ple of informed gossip for pub/sub event delivery [123]. The system avoids gossiping to
subscribers who are not interested in the content. This is achieved by organizing nodes in
a hierarchy of groups, which are built based on the physical proximity of nodes.

Event messages are disseminated using the hierarchy by gossiping depth-wise, starting
at the root. The hierarchy is mapped to network topology, which allows for reduction of the
number of network boundaries that are crossed during the multicast. Each node maintains
a view that includes the subscriptions of its neighbors in a group. Special members of the
group called delegates are responsible for aggregating subscriptions within a group and
have access to the other views of other nodes at the same level of hierarchy. Membership
information updating is based on gossip pull.

Voulgaris et al. present a multilayer architecture called SUB-2-SUB where content-based
event dissemination is realized by traversing multiple layers [336]. This architecture is based
on three layers. The lower layer uses a gossip protocol to exchange information pertaining to
subscriptions. The middle layer is responsible for maintaining semantic relations between
the subscribers and clustering them based on their interests. The upper layer is a logical
ring structure that connects all participants.

The system leverages the overlapping intervals of range subscriptions and creates an
unstructured overlay reflecting the structure of the attribute space and that of the set of
subscriptions. Once subscriptions are clustered, events are directly posted to the proper
cluster where they are delivered. The SUB-2-SUB system uses Cyclon for gossiping. An
event publisher needs to find at least one subscriber for the event being published. After
this, the subscribers collaborate in the dissemination by using the shortcuts links obtained
using gossiping and the ring topology. The ring ensures that all potential subscribers are
reached.

© 2010 Taylor and Francis Group, LLC

8
Content-based Networking and Publish/Subscribe

Content-based routing has become an active research area. In this chapter we consider
content-centric routing and examine a number of protocols and algorithms. Special em-
phasis is placed on distributed publish/subscribe (pub/sub), in which content is targeted
to active subscribers. A content-based router is part of an overlay structure in which each
router forwards events to neighboring routers and local clients based on their interests.

In this chapter, we give an overview of content-based pub/sub systems and focus on
content-centric routing and forwarding operations performed by a router. First we give an
overview of different data-centric and content-based systems that have been developed.
Then we focus on the Siena and Hermes systems, where the former is based on a static
router topology and the latter uses a distributed hash table (DHT) to be able to support
more dynamic environments. The Siena content-based router is used as an example, and a
number of optimization techniques for improving performance are discussed. The chapter
also discusses the formal specification of pub/sub systems and how mobile subscribers
and publishers can be supported.

8.1 Overview

Figure 8.1 presents the key data-centric and content-based systems discussed in this chap-
ter. They have been positioned based on the expressiveness on the x axis and the dynamics
of the supported topology on the y axis. The middle row of the diagram consists of DHT-
based solutions—Scribe, Bayeux, and i3 are examples of DHT-based data-centric solutions.
DONA is a data-centric anycast system that follows the current Internet structure by in-
troducing hierarchical anycast request-processing routers into the network. It therefore
provides more rigid structure to the network. SplitStream is an example of a DHT-based
system for efficient multicast, and it explicitly addresses the concerns with dynamic op-
eration and offers redundancy. In addition, a number of structured gossip-based overlays
have been proposed. Gossip-based techniques were discussed in Section 7.4.

Both Meghdoot and MEDYM are more content-based, and the former builds on a DHT
whereas the latter uses a novel clustering technique that can use various underlying mul-
ticast solutions. On the right side, we have proper content-based systems that allow more
complex queries and query aggregations. Siena is a classic example of content-based rout-
ing based on a static topology of application-layer routers. Hermes is a DHT-based system
that follows the Siena model and uses rendezvous points to coordinate both signaling and
message propagation. Hermes therefore can support more dynamic environments. Finally,
we have content-based systems designed for dynamic environments that allow reconfigu-
ration between the routers. The scalability to Internet-wide environments of these different
proposals is an open issue. DHT-based solutions can be seen as possible candidates due to
the flexibility and scalability offered by the basic overlay substrate.

137
© 2010 Taylor and Francis Group, LLC

138 Overlay Networks: Toward Information Networking

Content-based

routing

Key-based

data-centric

routing

Static structure

Dynamic structure

Scribe, Bayeux,

i3

Siena, Rebeca,

JEDI, etc.

Hermes

SplitStream MEDYM

DONA

GREEN and

REDS

Meghdoot

FIGURE 8.1
Overview of data-centric and content-based systems.

8.2 DHT-based Data-centric Communications

In this section, we examine a number of DHT-based data-centric systems, with the focus on
efficient wide-area anycast and multicast. Many of the systems are based on rendezvous-
based routing [344] such as Scribe [66], Bayeux [365], SplitStream [64], OverCast [170],
Meghdoot [155], MEDYM [155], and i3 [307]. These systems are motivated by the observa-
tion that introducing some control in the form of fixed processing points results in improved
multicast tree management operations.

8.2.1 Scribe

Scribe is a scalable application-level multicast infrastructure built on top of the Pastry
DHT [66]. Any Scribe node may create a group, and other nodes can then join the group.
Nodes that are members of the group can then multicast messages to all members of the
group. Scribe provides best-effort delivery of multicast messages and does not enforce any
particular delivery order for the messages.

Each Scribe multicast group is represented by a Pastry key called the groupId. A multicast
tree for a given groupId is created by taking the union of the Pastry routes from each group
member to the groupId’s root. Content can then be sent using this multicast tree by using
reverse path routing from the root toward the leaves of the tree.

Scribe relies on the properties of the underlying Pastry substrate for efficiency. The delay
to forward a message from the root to each group member is low because of the low delay
penalty of Pastry routes. The local route convergence property of Pastry ensures that the
load imposed on the physical network is small. This is because most message replication
is performed by intermediate nodes that are close to the leaf nodes in the tree.

The group membership management is decentralized and efficient because it builds on
the existing, proximity-aware Pastry overlay. The introduction of new members to the mul-
ticast tree is easy. A new member simply sends a message to the groupId. Thus Scribe can
support large numbers of members per group. The groups can also be dynamic.

Pastry’s proximity-aware routing and Scribe’s multicast group management can be com-
bined to support anycast communications. Anycast is useful when performing resource
discovery. With Anycast, any node in the overlay can send an anycast message to a Scribe

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 139

group. The anycast message is routed toward the groupId and forwarded to the nearest
member by relying on the local route convergence property.

The Scribe multicast routing state is distributed and maintained in a decentralized fash-
ion. Each node in a tree only maintains its immediate predecessors and successors in the
tree. This can be seen as a significant scalability advantage over other overlay multicast
schemes such a Bayeux [365]), discussed next. As a result, Scribe does not require excessive
signaling traffic in order to gather global state information.

8.2.2 Bayeux

Bayeux is an application-level multicast protocol that has been built on top of the Tapestry
DHT [365]. The Bayeux algorithm is similar to the Scribe algorithm because they both use
an overlay routing layer to build a multicast tree for a given topic. The main difference
from Scribe is in the way that the multicast tree is constructed. Bayeux sends a subscription
message always to the root of the tree. The root node maintains the membership list for
the topic-based multicast group. A response message from the root installs state in the
intermediate overlay nodes that forward the message. Thus the new node becomes part of
the forwarding tree.

Scribe can be seen to have a more scalable approach to the construction of the multi-
cast tree. In Bayeux, the root node has to keep membership information pertaining to all
members of the multicast group. Moreover, group membership management introduces
overhead, since each control message must be sent to the root and the root then sends the
reply back. To prevent the root node from becoming a bottleneck for performance, a parti-
tioning scheme for the multicast tree has been proposed that shares the load among several
root nodes.

8.2.3 SplitStream

SplitStream addresses the scalability of application-layer tree-based multicast [64]. The aim
is to support efficient multicast when nodes participating in the peer-to-peer (P2P) network
come and go. The solution is based on striping the content across a forest of interior-node-
disjoint multicast trees. These trees distribute the forwarding load among participating
peers [64]. SplitStream has been implemented on top of Scribe and Pastry; however, it
could also be implemented using a different underlying overlay algorithm.

Many multicast systems are based on trees. In these systems, a node is either an interior
node or a leaf node. Given a balanced tree with fanout f and height h, the number of
interior nodes is given by (f h − 1)/(f − 1). The percentage of leaf nodes increases with f .
The potential outbound bandwidth of the interior nodes is proportional to the fanout degree.

The key idea in SplitStream is to split the content into k stripes. A separate multicast tree
is used to distribute a given stripe. Peers join as many multicast trees as there are stripes
that they wish to receive. Each peer also defines an upper bound on the number of stripes
they can forward to other peers. Given that the original content has bandwidth requirement
B, each stripe has a bandwidth requirement of B/k. The peers can control their inbound
bandwidth in increments of B/k.

Figure 8.2 illustrates SplitStream’s forest construction. The source generates the stripes
from the content and multicasts each stripe using its designated tree. The stripe identifier of
each stripe starts with a different digit. The node identifiers of interior nodes share a prefix
with the stripe identifier. This means that they must be leaves in the interior-node-disjoint
multicast forest.

The challenge is to construct this forest of multicast trees such that an interior node in
one tree is a leaf node in all the remaining trees and the bandwidth constraints specified
by the nodes are satisfied. This ensures that the forwarding load can be spread across all

© 2010 Taylor and Francis Group, LLC

140 Overlay Networks: Toward Information Networking

M

M

M

Source

StripeID 0x StripeID 1x StripeID Fx

Nodes starting 0x

Nodes starting 1x

Nodes starting Fx

Nodes starting 2x, . . . , Ex

FIGURE 8.2
SplitStream forest construction.

participating peers. A set of trees is said to be interior-node-disjoint if each node is an in-
terior node in, at most, one tree and a leaf node in the other trees. SplitStream exploits the
properties of Pastry routing to construct interior-node-disjoint trees. k Scribe trees have a
disjoint set of interior nodes when the identifier for the trees all differ in the most significant
digit. The value of b for Pastry needs to be chosen so that it results in a suitable value for k.

For example, if all nodes wish to receive k stripes and they are willing to forward k stripes,
SplitStream will construct a forest such that the forwarding load is evenly balanced across
all nodes while achieving low delay and link stress across the system.

The following equation defines a rough upper bound on the probability of failure [64],

|N| × k ×
(

1 − Imin

k

) C
k−1

, (8.1)

where N is the set of nodes, Imin is the minimum number of stripes that a node receives, and
C is the total amount of spare capacity. The observation is that the probability of success is
very high even with a small amount of space capacity.

The forest does not necessarily satisfy the constraints of nodes on outbound bandwidth.
Therefore, SplitStream utilizes an algorithm to resolve the case where a node that has
reached its outdegree limit receives a join request from a prospective child. Initially, the
node accepts the prospective child. Then, it evaluates its new set of children to select a child
to reject based on the stripe identifiers. If a reject node has not found a parent, it sends an
anycast message to a special Scribe group called the spare capacity group. This group is
used to find potential parents for orphan nodes.

In order to use the SplitStream system, applications need to encode content in such a way
that each stripe requires approximately the same bandwidth and that the content can be
reconstructed from any subset of the stripes of sufficient size. These requirements motivate
the use of coding techniques in combination with the system—for example, erasure coding,
which allows reconstruction of an original data block using sufficient subset of the block.

The expected amount of state maintained by each node is O(log|N|). The expected num-
ber of messages to build the forest is O(|N|log|N|), if the trees are well balanced, or O(|N|2)
in the worst case. We expect the trees to be well balanced if each node forwards the stripe
whose identifier shares the first digit with the nodes identifier to at least two other nodes.

8.2.4 Overcast

A similar system called Overcast provides scalable and reliable single-source multicast us-
ing a protocol for building data distribution trees that adapt to network conditions [170].

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 141

Overcast organizes dedicated servers into a source-rooted multicast tree using bandwidth-
estimation measurements to optimize bandwidth usage across the tree. The main differ-
ences between Overcast and SplitStream are that Overcast uses dedicated servers while
SplitStream utilizes clients. Moreover, SplitStream assumes that the network bandwidth
available between peers is limited by their connections to their ISP rather than the network
backbone.

8.2.5 Meghdoot

Meghdoot [155] is one of the early examples of a content-based pub/sub systems en-
tirely based on a structured overlay infrastructure, namely content a addressable network
(CAN) [267], with rendezvous-based event routing. Meghdoot uses structured subscrip-
tions with either numerical or string attributes. A subscription is mapped to a CAN point
whose coordinates are the bounds of each range constraints. A published event is mapped
to a CAN region spanning all the possible subscriptions that can map to the event. A generic
architecture for content-based pub/sub independent of the specific infrastructure has also
been proposed [21].

8.2.6 MEDYM

Match early with dynamic multicast (MEDYM) [47] partitions the event space into nonoverlap-
ping partitions with balanced load. Each server acts as a matcher for one or more partitions.
A channelization technique is presented that partitions the event space into a number of
multicast groups. A multicast tree is built for each group that spans servers with subscrip-
tions for any event in that group. Multicast can be performed either through IP multicast,
if available, or with application-level multicast.

8.2.7 Internet Indirection Infrastructure

The internet indirection infrastructure (i3) [307] is a Chord-based overlay network that aims
to provide a more flexible communication model than the current IP addressing [307]. In i3,
each packet is sent to an identifier. Packets are routed using the identifier to a single node
in the overlay system. One of the i3 nodes is responsible for an address space in which the
destination belongs. This node maintains triggers, which are installed by receivers that are
associated with identifiers. When a matching trigger is found, the packet is forwarded to
the corresponding receiver. The system is flexible in the sense that an i3 identifier can be
used to represent various distributed entities such as hosts, objects, and sessions.

The i3 system can support a number of interactions, including unicast, multicast, anycast,
and service composition. The overlay provides a level of indirection that can be used for
supporting mobile and multihoming hosts. In i3 unicast, a host R inserts a trigger (id, R)
in the i3 infrastructure to receive all packets with identifier id. In multicast, an application
can build a multicast tree using a hierarchy of triggers. i3 provides support for anycast by
allowing applications to specify a prefix for each trigger identifier. Packets are then matched
to the identifiers according to the longest matching prefix rule.

8.2.8 Data-oriented Network Architecture

Data-oriented network architecture (DONA) [189] aims to introduce data-centric operations
to the networking architecture. DONA introduces a data-handling shim layer above the
network layer and support anycast queries by resolving them to nearest replicas. DONA
does not use domain name system (DNS), but rather routes using the names given to
data objects. The architecture introduces two new network entities: the data handlers that
operate at the data-handling layer and perform name-based routing and caching, and the

© 2010 Taylor and Francis Group, LLC

142 Overlay Networks: Toward Information Networking

authoritative resolvers, which can point to the authoritative copy of a principal’s data. The
two new network primitives are fetch(name) and register(name) [189].

DONA’s name-based anycast primitive can be used in many different types of resource
discovery. For example, it can provide the basic primitives underlying session initiation
protocol (SIP), can support host mobility and multihoming, and can establish forwarding
state for interdomain multicast. The implementation of anycast at the naming layer rather
than the network layer is motivated by separation of concerns. Name resolution is a control
plane operation and thus it does not need to operate at link speeds.

8.2.9 Semantic Search

Adding support for range queries and semantic queries over DHTs has gained interest
recently. This is essentially taking DHT technology toward content-based routing. In this
section, we summarize two systems toward this end, namely the distributed segment tree
and the pSearch system.

DHT-based systems have been enhanced to support more expressive search techniques.
While these systems can offer search guarantees, they also require maintenance of their
structured overlays. The search characteristics and performance of DHT-based structured
keyword search systems are influenced by two factors:

• Indexing scheme that is used by the DHT. An index should be able to take data
locality into account.

• Efficiency of the distributed query engine.

8.2.10 Distributed Segment Tree

A range query is intended to find all the keys in a certain range. A number of techniques for
implementing range queries in P2P overlays have been developed. Mercury uses a circular
overlay and stores data continuously in order to support multiattribute range query [28].
Skip graphs presented in Chapter 6 are distributed data structures that support range
search. Space-filling curves and kd-trees also have been proposed for multidimensional
queries [142]. In this section, we consider the distributed segment tree as an example tech-
nique. A dual query to a range query is the cover query, which aims to find all the ranges
currently in the system that cover a given key.

The distributed segment tree is a layered DHT structure that incorporates the concept of
segment tree. Figure 8.3 illustrates the segment tree structure. The binary segment tree uses

[0, 7]

[0, 3] [4, 7]

[0, 1] [2, 3] [4, 5] [6, 7]

[0, 0] [1, 1] [6, 6] [7, 7]

Segment

[2, 6]

Level 1

Level 2

Level 3

Level 4

FIGURE 8.3
An example of a segment tree.

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 143

O(n log n) storage and can be built in O(n log n) time. The intervals that contain a given
query point can be located in O(log n + k), where k is the number of retrieved segments.
The height of the structure that supports range length L is H = log L + 1. The structure
also generalizes to higher dimensions. In the example, the range [0, 7] has been divided
into four levels. The range [2, 6] is represented using ranges [0, 7], [0, 3], and [4, 7].

The segment tree structure can then be distributed onto DHT by assigning the node inter-
val [s, t] to the DHT node with the key h([s, t]), where h is a hash function used to generate
node identifiers. This means that information pertaining to any node of the segment tree can
be efficiently located using a DHT lookup. Each node can reconstruct the range tree locally
since the structure is a binary tree and can map each node in this local tree to distributed
DHT nodes. This technique connects the structural information of the node intervals and
the underlying DHT, in which structural information is not used in node identifiers. As a
result, both range and cover query can be performed efficiently [286].

Insertion of a value requires the creation of a new leaf node in the distributed range tree
(and mapped to a DHT node) and then propagating this information to all ancestors of the
leaf node. The value is inserted to all covering nodes. Insertion of a cover query is similar,
but differs in that it requires the insertion of a range. A range is inserted by decomposing it
into corresponding segments, and then inserting these segments. A cover query does not
require the ancestor propagation step that is needed when a value is inserted [286].

The system uses parallelism to achieve approximately O(1) query complexity. Given a
range to query, the range is first split into a union of minimum node intervals of segment
tree using a specific range splitting algorithm. Then the identifiers for each of the ranges are
obtained by using hashing. Each of the identifiers are then queried using a DHT lookup.
The final answer is a union of the lookup answers.

8.2.11 Semantic Queries

The pSearch system is a decentralized structured P2P information retrieval system. pSearch
uses a technique called latent semantic indexing (LSI) for generating descriptions of document
semantics, and then distributing this information over the P2P network. The aim is to
reduce the search cost of the system for a given query by taking document semantics into
account [319].

Figure 8.4 gives an overview of the CAN-based pSearch system. The basic idea in pSearch
is to define a semantic overlay and mapping the overlay nodes to physical nodes using the

pSearch key idea

Doc Query

D

A

E

B

F

C

IG H

Semantic space

FIGURE 8.4
Overview of pSearch.

© 2010 Taylor and Francis Group, LLC

144 Overlay Networks: Toward Information Networking

CAN DHT algorithm. Latent semantic indexing is used to position each document in a
semantic Cartesian space. Documents that are close in the space have similar contents.
Each query can also be positioned in this semantic space. A query involves comparing
documents in a small region centered at the query. The dimensionality of CAN is set to
be equal to that of LSI’s semantic space. The semantic vector of a document is used as a
key in CAN to store the document’s index. This index includes the semantic vector and a
reference to the document (URL).

The approach has to address the problem known as the curse of dimensionality that com-
plicates the mapping of the high-dimensional space to practical dimensions that can be
achieved with CAN. Moreover, the semantic vectors are not uniformly distributed in the
semantic space. Thus direct mapping can result in unbalanced distribution. The pSearch
system requires some global statistics such as the inverse document frequence and the basis
of the semantic space. This information can be distributed in the network [4, 84, 95, 318].

The pSearch systems works as follows:

• When a new document is introduced to the system, a semantic vector is generated
for the document using latent semantic indexing. This vector is used as a key to
store the index in the CAN.

• When a query is received, a semantic vector is generated for the query, and it is
routed in the overlay using the vector as the key.

• When the query reaches its destination defined by the key, the query is flooded to
nodes within radius r . This radius is determined by the similarity threshold or the
number of requested documents.

• Nodes that receive the query perform a local search using latent semantic indexing
and report the matching references back to the user.

8.3 Content-based Routing

Event-based systems [45, 57, 118, 235, 244, 314, 364] are seen as good candidates for sup-
porting distributed applications in dynamic and ubiquitous environments because they
support decoupled and asynchronous one-to-many and many-to-many information dis-
semination [99, 259]. Event systems are widely used because asynchronous messaging
provides a flexible alternative to remote procedure call (RPC) [87, 122].

In the general model of event notification, subscribers subscribe events by specifying
their interests using filters. Event producers publish events (also known as notifications),
which are matched against active subscriptions. Event filtering or matching is used to deliver
information to the proper set of subscribers [7, 48, 54, 56, 59, 60, 125, 133, 234, 299].

Filtering is a central core functionality for realizing event-based systems and ac-
curate content delivery. Filtering is performed before delivering a notification to a
client or neighboring router to ensure that the notification matches an active sub-
scription from the client or neighbor. Filtering is therefore essential in maintaining
accurate event notification delivery.

Filtering increases the efficiency by avoiding the forwarding of notifications to routers
that have no active subscriptions for them. Filters and their properties are useful for many

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 145

different operations, such as matching, optimizing routing, load balancing, and access
control. To take some examples, a firewall is an example of a filtering router, and an auditing
gateway is a router that records traffic that matches the given set of filters.

Message routing systems can be classified into four categories: channel-based, subject-
based, header-based, and content-based. Channel-based systems make the routing decision
based on channel names that have been agreed on beforehand by the communicating par-
ticipants. Subject-based systems make the routing decision based on a single field in the
message. Header-based systems use a special header part of the message in order to make
the routing decision. Finally, content-based systems use the whole content of the message
in making the decision [56].

In header-based routing, the message has two parts: the header and the body.
Only fields in the header are used for making routing and forwarding decisions.
Header-based routing is more expressive than subject-based and has performance
advantage to content-based routing because only the header of a message is in-
spected. In content-based routing, the decision is made based on the whole content
of a message (the payload). Typically, content-based systems use strongly typed
fields in the event message or utilize XML-based document matching.

8.4 Router Configurations

A number of overlay-based routing algorithms and router configurations have been pro-
posed. An application layer overlay network is implemented on top of the network layer,
and typically overlays provide useful features such as fast deployment time, resilience, and
fault-tolerance. An overlay-routing algorithm leverages underlying packet-routing facili-
ties and provides additional services on the higher level, such as searching, storage, and
synchronization services.

8.4.1 Basic Configuration

In hierarchical systems, each router has a master and a number of slave routers. Notifications
are always sent to the master. Notifications are also sent to slaves that have previously
expressed interest in the notifications. The basic hierarchical design is limited in terms of
scalability, because one master router is the root of the distribution tree and will receive all
the notifications produced in the system.

For acyclic and cyclic topologies, routers employ a different P2P protocol to exchange
interest-propagation information and control messages. In this context, the P2P protocol
denotes that the topology is not hierarchical. Acyclic topologies allow more scalable con-
figurations than hierarchical topologies, but they lack the redundancy of cyclic topologies.
On the other hand, topologies based on cyclic graphs require techniques, such as the com-
putation of minimum spanning trees, to prevent loops and unnecessary messaging.

The hierarchical topology was used in the JEDI system [39, 96], and an acyclic topology
with advertisements was used in Rebeca [132, 234, 235]. The Siena project investigated
and evaluated the topologies with different interest-propagation mechanisms [53, 57]. In
general, the acyclic and cyclic topologies have been found to be superior to hierarchical
topologies [39, 53, 237]. The router topology in Gryphon [168, 310] is based on clusters
called cells and redundant link bundles that connect cells. Most researches are focused on

© 2010 Taylor and Francis Group, LLC

146 Overlay Networks: Toward Information Networking

B

C

Publisher

Subscriber

A

I want to

publish

information

I want

information that

matches my

interests.

Overlay

routing

infrastructure

1
2

3

FIGURE 8.5
Example of an overlay routing topology.

static connections between routers; however, a number of dynamic systems have also been
proposed [100, 333]—for example, GREEN [297] and REDS [98].

Figure 8.5 illustrates the general content-based routing environment—in which a number
of application layer routers offer the interest registration service and maintain routing
tables. The depicted topology is acyclic, and the publisher first establishes the publication
capability by advertising content. Then subscriptions are connected by using reverse path
routing.

8.4.2 Structured DHT-based Overlays

Good overlay routing configuration follows the network-level placement of routers. Many
overlays are based on DHTs discussed in Chapter 5, which are typically used to implement
distributed lookup structures. Many DHTs work by hashing data to routers/brokers and
using a scheme to find the proper data broker for a given data item.

Hermes [256] and Scribe [281] are examples of publish/subscribe systems implemented
on top of an overlay network and are based on the rendezvous point routing model. The
Hermes routing model is based on advertisement semantics and an overlay topology with
rendezvous points. This model was found to compare favorably with the Siena advertise-
ment semantics using an acyclic topology [256].

The rendezvous point model differs from acyclic and cyclic topologies because the routing
of a specific type of event is constrained by a special router, the rendezvous point (RP). The
RP serves as a meeting point for advertisements and subscriptions and avoids the flooding
of advertisements throughout the system.

Rendezvous-based systems limit the propagation of messages using the RP and thus
attempt to address scalability limitations presented by the flooding of subscriptions or
advertisements. Typically, an RP is responsible for a predetermined event type. RPs may
be used to create a type hierarchy. In this case, a message needs to be sent to the proper RP
and any supertype RPs, which may increase messaging cost and limit scalability.

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 147

8.4.3 Interest Propagation

Notifications are defined using a notification data model, which determines the syntax and
structure of events. A filtering model or filtering language determines the syntax, structure,
and semantics of filters. These two models in combination represent how information is
produced and forwarded to subscribers.

The main functions of a router are to match notifications for local clients and to route
notifications to neighboring routers that have previously expressed interest in the notifica-
tions. The interest-propagation mechanism is an important part of the distributed system
and heart of the routing algorithm. The desirable properties for an interest-propagation
mechanism are small routing table sizes and forwarding overhead [237], support for fre-
quent updates, and high performance.

The two well-known operating semantics for content-based pub/sub are the subscription
and advertisement semantics. With subscription semantics, the routers propagate subscrip-
tions to other routers, and notifications are sent on the reverse path of subscriptions. With
advertisement semantics, the routers first propagate advertisements and then, on the re-
verse path of advertisements, the subscriptions. Notifications are forwarded on the reverse
path of subscriptions in both semantics. Advertisements may be used with various routing
mechanisms. Advertisements typically have their own routing table, and they are man-
aged using the same algorithms as subscriptions. The removal of an advertisement causes
a router to drop all overlapping subscriptions for the neighbor that sent the unadvertisement
message. Similarly, an incoming advertisement requires that overlapping subscriptions are
forwarded to the neighbor that sent the advertisement message. The use of advertisements
considerably improves the scalability of the event system [39, 53, 237].

The four key types of pub/sub routing systems are the following:

• Simple routing: Each router knows all active subscriptions in the distributed system,
which is realized by flooding subscriptions.

• Identity-based routing: A subscription message is not forwarded if an identical mes-
sage was previously forwarded. This requires an identity test for subscriptions.
Identity-based routing removes duplicate entries from routing tables and reduces
unnecessary forwarding of subscriptions.

• Covering-based routing: A covering test is used instead of an identity test. This results
in the propagation of the most general filters that cover more specific filters. On the
other hand, unsubscription becomes more complicated because previously covered
subscriptions may become uncovered due to an unsubscription.

• Merging-based routing: This type of routing allows routers to merge exiting rout-
ing entries. Merging-based routing may be implemented in many ways and may
be combined with covering-based routing [237]. Also, merging-based routing has
more complex unsubscription processing when a part of a previously merged rout-
ing entry is removed.

The Siena system was the first system to support both subscription and advertisement se-
mantics and covering-based routing. The Siena system used the notion of covering for three
different comparisons: matching a notification against a filter, covering relation between
two subscription filters, and overlapping between an advertisement filter and a subscrip-
tion filter. Covering and overlapping relations have been used in many later event systems,
such as Rebeca [235] and Hermes [255, 256]. The combined broadcast and content-based
(CBCB) routing scheme extends the Siena routing protocols by combining higher-level rout-
ing using covering relations and lower-level broadcast delivery [58]. The protocol prunes
the broadcast distribution paths using higher-level information exchanged by routers.

© 2010 Taylor and Francis Group, LLC

148 Overlay Networks: Toward Information Networking

8.5 Siena and Routing Structures

Most research on content-based routing has focused on distributed routing with various
semantics or the efficient matching of filters. The routing tables of content-based routers
are typically represented as sets. For example, JEDI [96] and Hermes [256] keep filters in
a simple table, and Rebeca uses sets and a counting algorithm for finding covering filters
and mergeable filters [234]. Two counting-based algorithms are needed for routing, one to
determine the covered filters and one to determine the covering filters. A unified approach
based on binary decision diagrams (BDDs) has been proposed in [200].

The desirable characteristics for a content-based routing table are efficiency, small size,
support for frequent updates, and extensibility and interoperability. The routing table data
structure should be generic enough to support a wide range of filtering languages.

The filters poset data structure was used in the Siena system to store filters by
their covering relations and manage information related to forwarded messages.
The filters poset can be thought of as the routing table for a Siena router. The
poset stores filters by their generality and may also be used to match notifications
against filters by traversing only matching filters in the poset, starting from the
most general filters. We call the set of most general filters that covers other filters
the root set of the data structure in question. The root set is also called the noncovered
set or the minimal cover set.

The filters poset is a generic data structure and may be used with various filter semantics,
which makes it attractive for dynamic environments. The poset may also be used for various
interest-propagation mechanisms, such as subscription and advertisement semantics. On
the other hand, this generality has a performance drawback. One of the findings in Siena
was that the filters poset algorithm limits the performance of routers and more efficient
solutions are needed [58].

A BDD-based routing and matching mechanism was presented in [200]. This approach
uses a global predicate index and modified binary decision diagrams (MBDs), which are ab-
stract representations of boolean functions. An MBD is used to represent a subscription.
They assume typed tuples, and the variables are based on a predefined order. The variable
ordering problem is known to be NP-complete. In an MBD-based routing table, publica-
tion matching involves iterating the name/value pairs of the event and computing the
truth values for the corresponding attribute filters. The attribute filters are located using
the predicate index. After this, the MBDs are evaluated using the computed truth values.
The cover algorithm involves iterating the MBDs for elements that cover or are covered
by the input subscription. If there are no covering elements, the new subscription is a root
element. The algorithm stops when a covering element is found. The BDD-based approach
can be seen to be more efficient than more generic routing structures such as the poset;
however, it assumes global knowledge of predicates and a predefined predicate ordering.

8.5.1 Routing Blocks

A number of generic and modular content-based routing table building blocks can be iden-
tified, namely the poset and forest. The routing table can be divided into multiple parts to
improve performance and scalability. Figure 8.6 presents three useful routing table config-
urations that combine the poset and forest structures. The main insight is to separate the
routing table into two parts: the external table and the local table—for example, the external
table using the poset and the local table using the forest. The term NB in the figure denotes a

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 149

Filters poset

k neighbors +

local clients

Forest

n local clients

Forest

k neighbors

n local clients

Forest

1 master

k slave

routers

n local clients

Filters poset

k neighbors +

local clients

Forest

n local clients

Efficient

matcher

n local clients

Notifications

Add/del Notify

Peer-to-peer Peer-to-peer Hierarchical External matchers

A set of generic building blocks for filter cover–based routing.

Can be extended with optimizations such as pruning and caching.

FIGURE 8.6
Routing blocks for covering-based routing.

neighbor interface. The forest is used to maintain client subscriptions (and advertisements),
and the poset is updated only when the root set of the forest changes. The Siena system
also uses the poset to store local filters, which is not efficient. Assuming that there exist
covering relations between local filters, this separation ensures that the external table is not
burdened with frequent updates by local clients.

In Siena, the subscriptions of a local client are not handled independently of each other.
Any filter from a local client that is covered by a new filter from the same client will
be removed. Similarly, when a client removes a filter (unsubscribes), any filters that are
covered by the removed filter will be removed. This approach requires that clients are able
to compute the covering relations between their filters and explicitly manage their filter sets.
In addition, in this model it is not possible to transparently change the routing algorithm
semantics without making changes to the client code.

A separate data structure called the poset-derived forest can be used to manage filters
from local clients. In this case, client-side filter set management is simple and efficient. The
second benefit is increased performance, because the forest supports faster insertions and
deletions than the poset. This model also supports extending the system to support filter
merging (also called aggregation and summarization)—for example, by starting with the
root set of the forest storing the local clients.

The figure also illustrates use of the forest as both local and external routing tables. This
configuration is feasible when there are many local clients, but the external forwarding is
more complicated than for the poset. The forest can also be used for hierarchical routing
with the master and slave interfaces identified. The forest may also store local clients. The
separation into two parts allows for prioritizing operations.

A more efficient matching data structure may be introduced into the filter-based routing
core. In this case, any addition (add) and deletion (del) operations by local clients are
processed by the forest and also reflected to the efficient matcher. Only the root set is updated
to the poset, which is the external routing structure. When an incoming event matches the
local interface (root filters of the forest), the notification is sent to the efficient matcher.

With hierarchical and P2P routing, the routing blocks may be used to enhance rendezvous-
based routing models, such as Hermes. In the Hermes model with filters, advertisements
are always propagated toward the RP. Subscriptions are propagated toward the RP and
towards any overlapping advertisements. Therefore, advertisements may be stored using a

© 2010 Taylor and Francis Group, LLC

150 Overlay Networks: Toward Information Networking

forest and subscriptions using a forest or a poset. In both cases local clients are stored using
a forest. For rendezvous-based models, the subscription poset must be extended to support
any subscriptions that should be forwarded toward the RP. This is accomplished by using
a virtual advertisement from the RP that covers all subscriptions of the designated type.

8.5.2 Definitions

We follow the basic concepts defined in the Siena system [55] and later refined and extended
in Rebeca [234]. A filter F is a stateless Boolean function that takes a notification as an
argument. Many event systems use the operators of Boolean logic, AND, OR, and NOT, to
construct filters. A filtering language specifies how filters are constructed and defines the
various predicates that may be used. A predicate is a language-specific constraint on the
input notification.

A filter is said to match a notification n if and only if F (n) = true. The set of all notifications
matched by a filter F is denoted by N(F). A filter F1 is said to cover a filter F2, denoted by
F1 � F2, if and only if all notifications that are matched by F2 are also matched by F1—i.e.,
N(F1) ⊇ N(F2). We also say that F1 has equal or greater selectivity than F2. Similarly, F2 has
equal or lesser selectivity than F1. The filter F1 is equivalent to F2, written F1 ≡ F2, if F1 � F2
and F2 � F1. The filter F1 is incomparable with F2, if F1
� F2 and F2
� F1. The � relation is
reflexive and transitive and defines a partial order.

A set of n filters SF = {F1, . . . , Fn} covers a filter Fk if and only if N(SF) ⊇ N(Fk) ⇔⋃n
i N(Fi) ⊇ N(Fk). Covering of two sets follows from this.
An advertisement A is said to overlap with the subscription S, denoted by A � S, when

their filters overlap. Two filters, F1 and F2, are overlapping if and only if N(F1) ∩ N(F2)
= ∅.
As an example, we can consider three filters using the notation (filter, constraint): (F1, x <

10), (F2, x ∈ [5, 9]), and (F3, x ∈ [8, 15]). The constraints are defined for the variable x over
integers. We have F1 � F2, since the range [5, 9] is contained in x < 10. We have F1
� F3,
because the range [8, 15] is not totally contained in x < 10. It is also clear that the ranges
do not contain each other, hence F2
� F3 and F3
� F2. On the other hand, it is clear that
F1 � F2. Also F1 � F3 since x < 10 and [8, 15] overlap.

8.5.3 Siena Filters Poset

The filters poset data structure was used in the Siena-distributed event system for maintain-
ing covering relations between filters [55]. In Siena’s P2P configurations, the poset stores
additional information for each subscription that is inserted into the poset. The subscribers(f)
set gives the set of subscribers for the given subscription filter f , and, similarly, forwards(f)
contains the subset of peers to which f needs to be sent. Algorithm 8.1 presents the steps
needed to process a subscription subscribe(X, f) where X is the subscriber and f is the filter
representing the subscription [55, 57].

In distributed operation based on an acyclic graph router topology, the Siena server
defines the set forwards(f) as presented in the equation

forwards(f) = neighbors − NST(f) −
⋃

f ′∈Ps∧ f ′� f

forwards(f ′). (8.2)

The neighbors set contains the event brokers connected to the current broker (one
application-level hop distance). The functor NST (not on any spanning tree) means that
the propagation of f must follow the computed spanning trees rooted at the original sub-
scribers of f . With acyclic topologies, NST contains the neighbor that sent f . Ps denotes the
subscription poset. Using the equation, f is never forwarded to the neighbor that sent it.
Due to the last term of the equation, the subscription is not forwarded to any routers that
have already been sent a covering subscription.

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 151

Algorithm 8.1 Filter processing in the subscription subscribe(X, f)

Function: subscribe(X, f)

1. If a filter f ′ is found for which f ′ � f and X ∈ subscribers(f ′), then the procedure
terminates, because f for X has already been subscribed by a covering filter.

2. If a filter f ′ is found for which f ′ ≡ f and X
∈ subscribers(f ′), then X is added
to subscribers(f ′). The server removes X from all subscriptions covered by f . Also,
subscriptions with no subscribers are removed.

3. Otherwise, the filter f is placed in the poset between two possibly empty sets:
immediate predecessors and immediate successors of f . The filter f is inserted
and X is added to subscribers(f). The server removes X from all subscriptions
covered by f , and subscriptions with no subscribers are also removed.

Because X is removed from all subscriptions covered by f , an intermediary server does
not know which subscriptions should be forwarded due to unsubscription. This informa-
tion is essentially lost by this optimization; however, the origin of the subscriptions has this
information and propagates any subscriptions due to the unsubscription in the same mes-
sage, which is applied atomically by other servers. The unsubscribe(X, f) removes X from
the subscribers set of all subscriptions that are covered by f . Filters with empty subscriber
sets are removed. Algorithm 8.2 gives an outline of subscription processing. The model
may be extended with advertisements [57].

The message-forwarding behavior of hierarchical routing is simple. This behavior be-
comes more complex when a router has multiple neighboring routers. Siena uses the
forwards set to compute destinations for messages in P2P routing.

The forwards(f) set is determined using Equation (8.2). The last term of the equation
means that the removal of an entry in a forwards set may affect the forwards sets of other
subscriptions. This happens during unsubscriptions and may require some of the uncovered

Algorithm 8.2 Message handlers for subscription semantics.

Function: IncomingSub(f ,source)

1. Add (f ,source) to Ps .
2. Forward subscription message using forwards(f) to any new neighbors in the set.

Function: IncomingUnsub(f ,source)

1. Remove (f ,source) from Ps .
2. Let FO denote the old forwards set and FN a newly computed forwards set for f

after the subscriber source has been removed from the subscribers set. If the subscribers
set is empty, then FN = ∅. The unsubscription is forwarded to FO\FN. The set may
be empty if there are subscriptions from other neighbors that cover f . The forwards
sets of subscriptions covered by f may change, which may require the forwarding
of new subscriptions. Any uncovered subscriptions in Ps are forwarded with the
unsubscription message. An uncovered subscription is such that its forwards set
gains an additional element due to the removal of a covering filter.

© 2010 Taylor and Francis Group, LLC

152 Overlay Networks: Toward Information Networking

subscriptions to be forwarded. Only elements in the root set or the direct successors of
elements in the root set may have a nonempty forwards set [322, 324].

8.5.4 Advertisements

The basic subscription semantics may be optimized by using advertisements. In this model,
advertisements are propagated to every node, and subscriptions are propagated only to-
ward advertisers that have previously advertised an overlapping filter. The idea is to use
the additional advertisement information to prevent subscription flooding. The model uses
two poset data structures, one for each type of message. Since the poset-derived forest can
be made equivalent to the filters poset, it is also a useful data structure for advertisement
semantics. Advertisements from local clients can be stored in a redundant forest.

In advertisement semantics, a second poset Pa is used for advertisements [55]. The sets
advertisers(a) and forwards(a) are needed for each advertisement a ∈ TA, where TA is the
set of all advertisements in the poset. Instead of forwarding subscriptions to a global set
neighbors, a set constrained by advertisements is used as presented by the equation

neighborss =
⋃

a∈TA:a�s

advertisers(a) ∩ neighbors. (8.3)

In this case, Equation (8.2) uses the neighborss set instead of the neighbors set. An advertise-
ment may thus result in a number of subscriptions being forwarded to the sender of the
advertisement. The process of unadvertisement is similar to unsubscription. Algorithms 8.3
and 8.4 give an outline of message processing with advertisement semantics. The algorithms
are derived from [55] and [234].

8.5.5 Poset-derived Forest

The poset-derived forest data structure is used to store filters by their covering property
with other filters [322, 324], and it offers linear time processing for both insertions and
deletions instead of superlinear time of the filters poset. Moreover, the space requirement is
linear, which contrasts the superlinear space required by the poset to store both the nodes
and the edges between them.

Algorithm 8.3 Subscription message handlers for advertisement semantics.

Function: IncomingSub(f ,source)

1. Add (f ,source) to Ps .
2. Calculate neighborss using Pa and Equation (8.3).
3. Send subscription message to forwards(f).

Function: IncomingUnsub(f ,source)

1. Remove (f ,source) from Ps .
2. Forward unsubscription following the procedure in Algorithm 8.2. The set may be

empty if there are subscriptions from other neighbors that cover f . The forwards
sets of subscriptions covered by f may change, which may require the forwarding
of new subscriptions. An uncovered subscription is such that its forwards set gains
an additional element due to the removal of a covering filter.

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 153

Algorithm 8.4 Subscription message handlers for advertisement semantics.

Function: IncomingAdv(a ,source)

1. Add (a ,source) to Pa .
2. Forward advertisement message to forwards(a).
3. Determine the set of overlapping subscriptions using Ps for which a is the only

advertisement from the source that overlaps and send them to the source. In other
words, any subscriptions that have not yet been sent are forwarded to the advertis-
ing node (source). Those subscriptions that overlap with an existing advertisement
from the source have already been forwarded, so they are not processed. The over-
lapping set is found by iterating over the first two levels of Ps and testing the
overlap of subscriptions with the advertisement.

Function: IncomingUnadv(a , source)

1. Remove (a ,source) from Pa .
2. Forward unadvertisement in a similar fashion that the unsubscription is forwarded.

The forwards(a) set may be empty if there are advertisements that cover a from other
neighbors. Forward any uncovered advertisements in Pa .

3. Remove any subscriptions for source that are no longer needed. All subscriptions
are removed from neighbors other than the source that do not have an associated
overlapping advertisement from some other neighbor.

A pair (F , #) represents the poset-derived forest, where F is a finite set of filters and #
is a subset of the covering relation. More formally:

DEFINITION 8.1
A pair (F , #) is a poset-derived forest with base set F , if

1. F is a finite set of filters and # is a relation between filters in F .

2. For each a ∈ F there is at most one b ∈ F for which b # a, i.e., (F , #) is a forest with the
relation # going from parent to child.

3. If a , b ∈ F and b # a, then b � a.

It is convenient for uniformity of treatment to imagine the roots of the trees belonging to
(F , #) to be children of a node not in F , which we will call the imaginary root of (F , #).

(F , #) is called maximal in F if there does not exist a, b ∈ F for which (F , # ∪{(a, b)}) is a
poset-derived forest. It is clear that any poset-derived forest can be extended to a maximal
one by adding pairs to the relation #.

In applications we typically require the maximality criterion to hold. The maximality
criterion may be generalized to apply at any level of the forest, which is called sibling-purity.
Sibling-purity at a node means that the node’s children in the forest are incomparable with
each other. In other words, a sibling-pure forest ensures that nodes are locally placed as far
away from the root nodes as possible.

The add and del operations are simple and efficient for the forest. Add is based on a depth-
first search on F to find a suitable parent for the new node. Del simply removes a node
and performs add for children as subtrees starting from the current parent. The algorithms

© 2010 Taylor and Francis Group, LLC

154 Overlay Networks: Toward Information Networking

Algorithm 8.5 Add and del procedures for the forest.

Let (F , #) be a poset-derived forest. It is assumed that there is an efficient way to find a
node in F based on its identifier. In subsequent examination, references to “larger” and
“smaller” are to be taken with respect to the relation �. We define the following algorithms
with inputs F and a filter x and output a poset-derived forest:

add(F , x): This algorithm maintains a current node during its execution. First, set the current
node to be the imaginary root of F .

1. If x is already in the forest, return without changes.
2. Else if x is incomparable with all children of the current node, add x as a new child

of the current node.
3. Else if x is larger than some child of the current node, move all children of the

current node that are smaller than x to be children of x and make x a new child of
the current node.

4. Else pick a child of the current node that is larger than x, set the current node to
this picked child and repeat this procedure from step 2.

del(F , x): Let C be the set of children of x and r be the parent of x. Then run add for each
of the elements of C starting from step 2 and setting r as the current node. In this
an element of C carries the whole subtree rooted at it with the addition. To preserve
sibling-purity, any siblings of a relocated node that are smaller than the node must be
relocated deeper into the tree using add .

are presented in more detail in [322, 324]. The filters poset and the poset-derived forest
compute the minimal cover set for the input set (Definition 8.2).

DEFINITION 8.2
A minimal cover set or a root set of the filters poset or poset-derived forest is a set R such that there
does not exist an element a ∈ R for which b � a and b ∈ R.

Sibling-purity is very easy to maintain for the add operation but more complicated for
the del operation. It is expected that, for some application areas, such as hierarchical routing
or the management of filters from local clients, it is not necessary to maintain sibling-purity
for the del operation. This simplifies the del operation in Algorithm 8.5.

Algorithm 8.5 assumes that there is an efficient way to find if a filter has already been
placed into the structure. This is possible using syntactic equivalence using hashtables. In
syntactic equivalence, canonical representations of filters are compared. Syntactic equiva-
lence is not necessarily implied by semantic equivalence—e.g., F1 � F2 ∧ F2 � F1. Semantic
equivalence is computationally more complex to determine, whereas syntactic equivalence
may be achieved in constant or near-constant time, and it detects all semantically identical
filters with simple filtering languages. We note that this restriction to syntactic equivalence
does not break the data structure or the routing algorithms. Filters that fail the equivalence
testing will simply be placed into the structure.

8.5.6 Filter Merging

Filter merging is a technique to find the minimum number of filters that represent a set of
subscriptions defined in the content space. Filter merging approaches this by fusing and
combining the filters using logical rules. Filter covering is a related technique, which is used

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 155

to remove filters that are covered by other, more general, filters. Merging and covering are
needed to reduce processing power and memory requirements both on client devices and on
event routers. These techniques are typically general and may be applied to subscriptions,
advertisements, and other information represented using filters.

A false negative is an event that was not matched and delivered when it should have been.
A false positive is a message that was matched, but it should not have been. In publish/
subscribe, false negatives should never occur, and they indicate a serious error in the sys-
tem. False positives may occur, and it is possible to balance between efficiency and accuracy.

A filter-merging-based routing mechanism was presented in the Rebeca-distributed event
system [234]. The mechanism merges conjunctive filters using perfect merging rules that
are predicate-specific. Merging was used only for simple predicates in the context of a stock
application [234, 237].

The optimal merging of filters and queries with constraints has been shown to be NP-
complete [94] in the multicast environment. This work considered query merging for al-
locating query answers to multicast channels. Subscription partitioning and routing in
content-based systems have been investigated in [344, 345] using Bloom filters [32] and
R-trees [33] for efficiently summarizing subscriptions.

Bloom filters investigated in Chapter 7 are an efficient mechanism for probabilistic rep-
resentation of sets and support membership queries, but they lack the precision of more
complex methods of representing subscriptions. Bloom filters and additional predicate
indices were used in a mechanism to summarize subscriptions [327, 328]. An arithmetic
attribute constraint summary (AACS) and a string attribute constraint summary (SACS)
structure were used to summarize constraints because Bloom filters cannot directly capture
the meaning of other operators than equality. The subscription summarization is similar to
filter merging, but it is not transparent because routers need to be aware of the summariza-
tion mechanism. Filter merging, on the other hand, does not necessarily require changes
to other routers. The event routers need to be aware of the summarization mechanism. In
addition, the set of attributes needs to be known a priori by all brokers, and new operators
require new summarization indices. The benefit of the summarization mechanism is im-
proved efficiency, since a custom-matching algorithm is used that is based on Bloom filters
and the additional indices.

A BDD-based matching algorithm was proposed in [46]. A BDD-based merging algorithm
was presented in [200]. The exact rules for dynamic filter merging were not elaborated in
this work. The algorithm removes all subscriptions, which are covered by a new merger.
This requires that all routers are aware of the merging technique in order to support safe
unsubscriptions.

A general model for filter merging for Siena-style content-based routers was presented
in [323]. Filter merging may be applied in different places in the event router. The three
key merging scenarios and techniques are local merging, root-merging, and aggregate merging.
In the first scenario, filter merging is performed within a data structure. In the second
scenario, filter merging is performed on the root sets of local filters, edge/border routers,
and hierarchical routers. In the third scenario, filter merging is performed on the two first
levels of a peer-to-peer data structure, such as the filters poset. The latter two scenarios are
examples of remote merging [323].

Figure 8.7 presents two router configurations with filter merging and highlights the mod-
ular structure of content-based routers. Local clients are stored by the forest data structure,
which is a good candidate structure for storing filters from local clients. The key idea is to
perform merging separately for the external routing table and structure that stores filters
from local clients. Moreover, given that a cover-based structure is used, it is sufficient to
test merging candidates only from the two first levels of the structure. In many cases, it is
sufficient to scan the root set or parts of it to find merging opportunities.

© 2010 Taylor and Francis Group, LLC

156 Overlay Networks: Toward Information Networking

Filters poset

k neighbors +

local clients

Forest

n local clients

Root merger

Aggregate merger

Forest

1 master router

k slave routers

Forest

n local clients

Root merger

Root merger

SlaveSlave

Peer-to-peer Hierarchical

master

FIGURE 8.7
Routing blocks for merging-based routing.

8.6 Hermes

Hermes [255, 256] is a peer-to-peer event system based on an overlay called Pan that sup-
ports a variant of the advertisement semantics. Hermes leverages the features of the un-
derlying overlay system for message routing, scalability, and improved fault-tolerance.
Hermes supports the basic pub/sub operations introduced previously. Rendezvous points
are used to coordinate advertisement and subscription propagation. The RP manages
an event type and Hermes supports chaining RPs into type hierarchies. The RP of an
event type is obtained by hashing the event type to the flat addressing space of the over-
lay [256].

A rendezvous point is a special node in the routing network that is used to coordinate
signaling. Rendezvous points are used in many overlay routing systems [280, 308, 363] to
reduce communication costs and realize nonfixed indirection points. The rendezvous points
are uniformly distributed over the addressing space. The placement of event types (RPs)
using uniform distribution is motivated by the fact that the types are disjoint from the view-
point of matching. On the other hand, event traffic distribution may well be nonuniform,
which should also be taken into account. The problem with nonuniform traffic distribution
is that an RP may be located on the other side of the network. The RP may then become a
performance and scalability bottleneck.

Hermes rendezvous points are established using a special message that establishes an
event type to a rendezvous point, which owns the address of the hashed type identifier.
Event type conforms to a schema that the client software may request using an API call.
This is required for type-safe subscriptions.

Hermes supports two routing algorithms: type-based routing and type/attribute-based rout-
ing. In type-based routing, all messages are propagated toward the RP: subscriptions,
advertisements, and notifications. Type-based routing does not support filtering, but com-
pares events based on their type. Subscriptions and advertisements are local to a branch
of the multicast tree rooted at the RP, and they are not forwarded by the RP. This means
that notifications are always to be sent to the RP. Type/attribute-based routing is similar to
type-based routing but supports filtering with covering relations and, instead of sending
all notifications to the RP, notifications are sent on the reverse path of subscriptions. In this
case, advertisements are sent only to the RP. Subscriptions are always sent on the reverse

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 157

path of advertisements. The RP forwards subscription messages to overlapping advertise-
ments. The type/attribute-based routing is more suitable to scenarios where event traffic
is not uniformly distributed, because notifications are not always sent to the RP.

One key feature of Hermes is connecting RPs into type hierarchies. In subscription in-
heritance routing, advertisements are sent only to the RP that maintains the event type.
Subscriptions are forwarded by the RP to all RPs with descendant types. In advertisement
inheritance routing, the RP forwards the advertisement recursively to all RPs of all ancestor
event types. Also, notifications are forwarded to all ancestor event types, because they are
sent on the same forward path as advertisements.

Hermes uses heartbeat messages to detect server and RP failures. The underlying overlay
allows location of a new server that takes over the responsibilities of a failed node. Routing
tables are simply sent toward the RP, and the overlay will provide a new route with a new
server. Hermes supports RP replication by synchronizing advertisement and subscription
status between different replicas. The replicas are placed in the same multicast tree to
avoid overhead due to message propagation. Load balancing of traffic between RPs is not
discussed.

Figure 8.8 illustrates rendezvous-point-based operation using 11 steps: 1. A publisher
advertises an event type (and a filter in type/attribute-based routing). 2. The advertisement
is forwarded to the rendezvous point. 3. A subscriber subscribes to an event of the same type
(and a filter in type/attribute-based routing). 4. The subscription message is not covered
(type or filter) at any intermediate broker and is forwarded to the rendezvous point. 5.
Another subscriber subscribes. 6. The subscription message is propagated toward the RP.
7. The publisher publishes an event. 8–11. The message is sent using the multicast tree
rooted at the RP.

In type-based routing, any events conforming to the advertisement from the publisher
are sent on the forward path of the advertisement to the RP, which then forwards the event
on the reverse path of any subscriptions. In type/attribute-based routing, the RP sends
the subscriptions on the reverse path of advertisements. Any events conforming to the
advertisement from the publisher are sent on the reverse path of subscriptions.

The model used by the Hermes system is the familiar advertisement semantics model,
with three key differences:

• All messages (type-based routing) or advertisements and subscriptions (type/
attribute-based routing) are sent toward the RP. Thus routing topology is con-
strained by the RP.

• Advertisements are introduced only on the path from the advertiser to the RP.

S

S

PA B

D RP

C

3

4

1

2,8

5 6

7

9

9

10

10

11

FIGURE 8.8
Rendezvous-point-based routing in Hermes.

© 2010 Taylor and Francis Group, LLC

158 Overlay Networks: Toward Information Networking

• Subscriptions are introduced on the path from the subscriber to the RP. In addition,
for type/attribute-based routing, subscriptions are sent on the reverse path of any
overlapping advertisements.

These differences are interesting because advertisement becomes a local property of a
branch of the multicast tree rooted at an RP. This may be modeled using virtual adver-
tisements. In this case, an RP has virtual advertisements for all events of the event type
managed by the RP and hence subscriptions are sent toward it. In the following examina-
tion we assume that the overlay topology is static; a dynamic topology would require a
more complex investigation.

8.7 Formal Specification of Content-based Routing Systems

8.7.1 Valid Routing Configuration

The valid routing configuration determines that the publish/subscribe system does not
manifest illegal traces. A trace is a sequence of operations, such as subscribe, notify, and
unsubscribe. Any valid routing configuration must satisfy the following constraints on
traces presented using the operators of the linear temporal logic (LTL). LTL formulas are used
to define a specification, and a system is correct when it exhibits only traces allowed by the
specification. � denotes “always”, ♦ “eventually”, and © “next”.

Property 8.1 gives the liveness constraint for the basic publish/subscribe system with
subscription semantics. The liveness property defines when a notification should be deliv-
ered and ensures that notifications are eventually delivered. Property 8.2 gives the safety
constraint, which ensures that incorrect events are not processed and delivered. The prop-
erties are from the definitions in [234], with minor changes in presentation.

Property 8.1
Liveness:

�[Sub(A,F) ⇒ [♦�(Pub(B,n) ∧ n ∈ N(F) ⇒ ♦ Notify(A,n))] ∨
[♦Unsub(A,F)]],

specifies that a subscription with filter F and the publication of an event n that matches the sub-
scription will lead to an eventual notification of subsequent publications of that event unless the
subscription is invalidated by unsubscription.

Property 8.2
Safety:

�[Notify(A, n) ⇒ [©�¬Notify(A, n)] ∧
[n ∈ Published] ∧

[∃F ∈ Subs(A) : n ∈ N(F)]],

specifies that a notification is delivered only once, that it has been published previously, and that
the recipient has a matching subscription. Published is the set of published events, and the set Subs
gives the subscriptions for each client.

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 159

Since it may be difficult to maintain these properties in dynamic pub/sub systems,
they may be relaxed. A self-stabilizing pub/sub system ensures correctness of the routing
algorithm against the specification and convergence [234]. The safety property may be
modified to take self-stabilization into account by requiring eventual safety. The safety and
liveness properties were extended in [321] with the notion of message-completeness and using
propositional temporal logic. A message-complete pub/sub system eventually acknowl-
edges subscriptions and guarantees the delivery of notifications matching acknowledged
subscriptions.

8.7.2 Weakly Valid Routing Configuration

The weakly valid routing configuration guarantees only the delivery of notifications to
those subscriptions whose update process has terminated. A routing algorithm that uses
the weakly valid routing configuration and ensures that every update process terminates
satisfies Properties 8.1 and 8.2 [234].

We call all update procedures that have ended successfully complete in the topology and
use completeness to characterize and prove properties of pub/sub mobility. By topology,
we mean the logical network among brokers that is used to route messages. Typically, the
topology for advertisements consists of the logical connections between the brokers, and
for subscriptions it is constrained by advertisements.

The completeness of subscriptions and advertisements is given by Definition 8.3. Ad-
vertisements are complete when they have been propagated to every node that may issue
an overlapping subscription in the future. Similarly, subscriptions are complete when they
have been introduced at every node that has an overlapping advertisement. This formula-
tion is flexible enough to be useful for various routing protocols. Completeness may be used
to characterize the whole routing system. In addition, it may also be used to characterize a
part of the routing system, such as a path.

DEFINITION 8.3
An advertisement A is complete in a pub/sub system PS if there does not exist a broker r with an
overlapping subscription that has not processed A. Similarly, a subscription S is complete in PS if
there does not exist a broker r such that r has an advertisement that overlaps with S and S is not
active on r.

8.7.3 Mobility-Safety

In distributed pub/sub systems it is evident that, after issuing a subscription, it will take
some hops before the subscription is activated for all publishers. During this time several
notifications may be missed. In the mobility-aware weakly valid routing configuration,
false negatives that occur during topology reconfiguration caused by subscriptions and
advertisements from stationary components are tolerated. False negatives that occur dur-
ing client mobility are not tolerated. A mobility-safe pub/sub system can be defined as
follows:

DEFINITION 8.4
A pub/sub system is mobility-safe if, starting from an initial configuration C0 at time T0 and
ending in a configuration Ce at time Te , handovers (mobile clients) will not cause any false
negatives.

© 2010 Taylor and Francis Group, LLC

160 Overlay Networks: Toward Information Networking

8.8 Pub/sub Mobility

Event systems have traditionally focused on event dissemination in the fixed network,
where clients are stationary and have reliable, low-latency, and high bandwidth
communication links. Recently, mobility support and wireless communication have be-
come active research topics in many research projects [97, 165, 166, 258, 259] working with
event systems, such as Siena [57] and Rebeca [131, 236].

Mobility support [165, 166, 259] is a relatively new research topic in event-based com-
puting. Mobility is an important requirement for many application domains, where entities
change their physical or logical location. Mobile IP is a layer-3 mobility protocol for sup-
porting clients that roam between IP networks [175, 252]. Higher-level mobility protocols
are also needed in order to provide efficient middleware solutions—for example, session
initiation protocol (SIP) mobility [287] and wireless CORBA [245]. Event-based systems
require their own mobility protocols in order to update the event-routing topology and
optimize event flow.

In order to understand event-routing, we need to have useful metrics to characterize the
system. Besides message complexity and computing power, the two most important metrics
are the number of false positives and negatives. False positives are events that are delivered
but were not subscribed, and, similarly, false negatives are events that were subscribed but
were not delivered upon publication. Clearly, the presence of false negatives indicates a
serious error in any event system. Therefore, we are interested in proving that a candidate
event system does not manifest this erroneous behavior.

Intuitively, given that we first establish a new flow and only after the successful comple-
tion of this tear down the old one, there should not be any false negatives, which would
satisfy the requirement for mobility-safety. A perfect topology update protocol may be de-
scribed using flooding that delivers all events to all brokers. This naive protocol also ensures
that mobile components will receive all events that match their filters, albeit with a high
cost in false positives. A good mobility protocol is mobility-safe, minimizes the number of
false positives, and minimizes the signaling cost.

Recently, mobility extensions have been presented for several well-known distributed
event systems, such as Siena and Rebeca. JEDI was one of the early systems to incorporate
support for mobile clients with the move-in and move-out commands [97]. JEDI maintains
causal ordering of events and is based on a tree topology, which has a potential performance
bottleneck at the root of the tree with subscription semantics. Elvin is an event system that
supports disconnected operation using a centralized proxy but does not support mobility
between proxies [316].

Siena is a scalable architecture based on event routing that has been extended to support
mobility [49–51]. The extension provides support for terminal mobility on top of a routed
event infrastructure. In addition, the Rebeca event system supports mobility in an acyclic
event topology with advertisement semantics [357].

Rebeca supports both logical and physical mobility. The basic system is an acyclic routed
event network using advertisement semantics. The mobility protocol uses an intermediate
node, between the source and target of mobility, called junction for synchronizing the
servers. If the brokers keep track of every subscription, the junction is the first node with
a subscription that matches the relocated subscription propagated from the target broker.
If covering relations or merging is used, this information is lost, and the junction needs to
use content-based flooding to locate the source broker [235].

JECho is a mobility-aware event system that uses opportunistic event channels in order
to support mobile clients [73]. The central problem is to support a dynamic event delivery
topology, which adapts to mobile clients and different mobility patterns. The requirements

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 161

are addressed primarily using two mechanisms: proactively locating more suitable brokers
and using a mobility protocol between brokers; and using a load-balancing system based
on a central load-balancing component that monitors brokers in a domain. The topology
update and its mobility-safety are not discussed.

Mobility support in a generic routed event infrastructure, such as Siena and Rebeca, is
challenging because of the high cost of the flooding and issues with mobile publishers. The
standard state transfer protocol consists of four phases:

1. Subscriptions are moved from broker A to broker B.
2. B subscribes to the events.
3. A sends buffered notifications to B.
4. A unsubscribes if necessary.

The problem with this protocol is that B may not know when the subscriptions have
taken effect—especially if the routing topology is large and arbitrary. This is solved by
synchronizing Aand B using events, which potentially involves flooding the content-based
network.

Recent findings on the cost of mobility in hierarchical routed event infrastructures that
use unicast include that network capacity must be doubled to manage with the extra load
of 10% of mobile clients [42]. Recent findings also present optimizations for client mobility:
prefetching, logging, home-broker, and subscriptions-on-device. Prefetching takes future mobil-
ity patterns into account by transferring the state while the user is mobile. With logging,
the brokers maintain a log of recent events and only those events not found in the log need
to be transferred from the old location. The home-broker approach involves a designated
home broker that buffers events on behalf of the client. This approach has extra messag-
ing costs when retrieving buffered events. Subscriptions-on-device stores the subscription
status on the client so it is not necessary to contact the old broker. In this study the cost of
reconfiguration was dominated by the cost of forwarding stored events (through the event
routing network).

The cost of publisher mobility has also been recently addressed [240, 241]. They start
with a basic model for publisher mobility that simply tears down the old advertisement
and establishes it at the new location after mobility. Thus a specific handover protocol is
not needed. They confirm the high cost of publisher mobility and present three optimiza-
tion techniques, namely prefetching, proxy, and delayed. The first exploits information about
future mobility patterns. The second uses special proxy nodes that advertise on behalf of
the publisher and maintain the multicast trees. The third delays the unadvertisement at
the source to exploit the overlap of advertisements but does not synchronize the source
and target brokers. The publisher mobility support mechanisms used in the study are not
necessarily mobility-safe.

The Siena event system was extended with generic mobility support, which uses existing
pub/sub primitives: publish and subscribe [50, 51]. The mobility-safety of the protocol
was formally verified. The benefits of a generic protocol are that it may work on top of
various pub/sub systems and requires no changes to the system API. On the other hand,
the performance of the mobility support decreases, because mobility-specific optimizations
are difficult to realize when the underlying topology is hidden by the API. Indeed, in this
section we show that a general API-based pub/sub mobility support may have a very high
cost in terms of message exchanges.

The Siena generic mobility support service, the ping/pong protocol, is implemented by
proxy objects that reside on access routers. Figure 8.9 presents an overview of the process:
(1) the client arrives to access point B from A and sends the move-in request to the new
local proxy, (2) a ping request is sent, and (3) a response will be received eventually from

© 2010 Taylor and Francis Group, LLC

162 Overlay Networks: Toward Information Networking

Move-out

proxy

Move-in

proxy

Client

1. Move-in

 request

3. Ping reply

4. Download

5. Buffered events

A B

6. Messages, merge queues

2. Ping request

FIGURE 8.9
Generic mobility in pub/sub.

the old proxy. The response can also be called a pong. The pong message ensures that
subscriptions are fully propagated from B to A. (4) the client sends a download request for
buffered events and (5) the buffered events are sent to the proxy. Finally, in (6) the client
receives the messages and duplicates are removed.

The following guidelines have been proposed for engineering mobility-safe pub/sub
systems [325]:

• The generic protocol is mobility-safe and applicable to various underlying pub/sub
systems, but it is very inefficient and does not allow pub/sub system or topology-
specific optimizations. The mobility-safety of this mechanism requires that the
ping/pong interaction is sufficient to establish the completeness of the path or
paths.

• The general acyclic graph-routing topology is more efficient than the generic pro-
tocol but suffers from the problem that the source broker needs to be located using
event routing. Since covering and merging do not preserve information pertain-
ing to the original broker that issued a subscription or advertisement, the use of
content-based flooding may be required. This routing topology also suffers from
the incompleteness of subscriptions, and thus the covering optimization that uses
out-of-band communication cannot be performed if mobility-safety is required.
Incompleteness may also cause a broker to flood subscriptions to several exit in-
terfaces. Incompleteness of the subpath from the source broker to the destination
broker may be corrected, but it has a high cost due to potential content-based
flooding.

• Rendezvous point models with cyclic overlay routing support better coordina-
tion of mobility. With rendezvous points, advertisements are no longer flooded
throughout the network, which improves update latency and performance. More-
over, rendezvous points may be used for fast completeness checks. The covering
optimization may be used with completeness checking. Furthermore, the overlay

© 2010 Taylor and Francis Group, LLC

Content-based Networking and Publish/Subscribe 163

address may be used to prevent content-based flooding by consulting the over-
lay routing tables and finding the proper next hop. On the other hand, the upper
bound cost for cyclic topologies may be higher than for general acyclic graphs if
the moving subscriber has subscribed to multiple rendezvous points that have to
be updated.

• Rendezvous point models with acyclic overlay routing have the simplifying fea-
tures mentioned above and the upper bound cost cannot be greater than for the
general acyclic graphs.

Mobility can be improved by using the following techniques: overlay-based routing,
rendezvous points, and completeness checking. Overlay addresses prevent the content-
based flooding problem. This abstracts the communication used by the pub/sub system
from the underlying network-level routing and allows the system to cope with network-
level routing errors and node failures. Rendezvous points simplify mobility by allowing
better coordination of topology updates. There is only one direction where to propagate
updates for a single rendezvous point. Completeness checking ensures that subscriptions
and advertisements are fully established (complete) in the topology. This is needed to
perform the covering optimization.

© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

9
Security

Given the scalable and flexible distribution solutions enabled by peer-to-peer (P2P) and
overlay technologies, we are faced with the question of security risks. The authenticity of
data and content needs to be ensured, also taking required levels of anonymity, availability,
and access control into account. This chapter examines the security challenges of P2P and
overlay technologies and then outlines a number of solutions to mitigate the examined
risks. Issues pertaining to identity, trust, reputation, and incentives need to be analyzed as
well.

The most visible security challenge pertains to the authentication of data and content
distributed in the networks. This is also the risk sector that has the largest number of
concerned parties facing possible losses and other kinds of adverse effects resulting from
inadequate digital defenses. The need for strong anonymity is closely linked to the content
integrity, and they can often be considered as technically unseparable challenges for design
efforts. Lesser interlinked problems are related to availability and sufficient access control.

9.1 Overview

The security challenges most often appear as malicious attacks: realized or threatened. There
are many types of these attacks, and the mutability of attack methods is very high, producing
an ever growing set of new risks when the underlying networks are changed in any way.
Strengthening the networks against new challenges is also an alteration bound to bring
forth yet new methods of malicious attacks; thus the cycle of security solution/malicious
attack is in practice never-ending.

The malicious schemes are multifarious, and they often use ingenious methods for at-
tacking networks. Possible attack scenarios are presented below:

• Attacker controls malicious nodes masquerading as legal nodes.
• Attacker floods DHT with data.
• Attacker returns incorrect data.
• Attacker denies data exists or supplies incorrect routing info.
• Attackers may seek a quorum in k-redundant networks.

The methods normally used within overlay networks to combat threats can be sectorized
as follows:

• Securing the data and content
• Securing the routing
• Authentication and access control
• Certification

165
© 2010 Taylor and Francis Group, LLC

166 Overlay Networks: Toward Information Networking

In general, solutions need to have certain fixed points that are used to build trust toward
the system. This is typically achieved by using some sort of logically centralized identity
management. It is known that without this kind of centralized management, the distributed
system cannot defend itself from malicious nodes. This is exemplified by the Sybil attack
discussed later in this chapter. If attackers may be able to achieve a quorum, a way to
control the creation of node identifiers is needed. One potential solution is secure node
identifiers through public key cryptography. Also in this case, a mechanism to bootstrap
trust toward the public keys is needed.

9.2 Attacks and Threats

Some types of malicious attacks are widely published and warned against; some are less
well known and therefore potentially more dangerous. In the following, we briefly discuss
typical security threats.

9.2.1 Worms

A worm is a self-replicating software module, designed to use the network for propagation
automatically. A worm is an autonomous entity and does not need a carrier code to exist.
Worms can carry a payload code of their own and often do so. The payload might be purely
destructive, but it can often facilitate secondary malware attacks: launch extortion attacks,
send documents via e-mail, install hidden backdoors to create zombie nets (botnets) for
illegal mass operations such as spamming and DoS attacks. Worms propagate by exploiting
hidden vulnerabilities of operating systems. Worms commonly use e-mail in the form of
attachments and Web sites in the form of browser vulnerabilities to compromise end users’
machines. Worms propagating through P2P applications would be disastrous: it is probably
the most serious threat.

9.2.2 Sybil Attack

In a Sybil attack, the attacker tries to subvert the reputation system in a P2P net-
work [115]. The idea behind this attack is that a single malicious entity can present
multiple pseudonymous identities. An entity can have many identities mapped
to it for resource sharing and redundancy reasons. Thus the malicious entity can
overwhelm the network and gain control over part of the network. After the net-
work has been compromised, the attacker can, for example, gain responsibility
over certain files or pollute them.

If the attacking entity can position his identities in a strategic way, the damage from a
Sybil attack can be considerable. The attacker might choose to continue in an eclipse attack
(presented next), or slow down the network by rerouting all queries in a wrong direction;
the adversary can also monitor communications. The vulnerability of a P2P reputation
system depends on how easily identities can be generated and how the system reacts to
entities without a proper chain of trust.

9.2.3 Eclipse Attack

Overlay networks are vulnerable to eclipse attacks, in which malicious nodes in collusion
grab the neighboring true nodes [293, 294]. Figure 9.1 illustrates this form of attack. In an
overlay network each node maintains links to a set of neighboring nodes (an overlay graph),

© 2010 Taylor and Francis Group, LLC

Security 167

Eclipse attack: the malicious nodes have separated

the network in two subnetworks

FIGURE 9.1
Eclipse attacks in P2P systems.

used to maintain the overlay and to implement application functionality. If a hijacker gets
control over a large fraction of the neighbors, it can eclipse the correct nodes and prevent
the correct overlay operations. Thus a set of malicious nodes will act in collusion and force
the correct nodes to peer only with the corrupted set. The attacker can also utilize the overlay
maintenance algorithm and launch a full-size attack from a smaller hijacked set of nodes.

With eclipse attacks, the adversaries can disrupt overlay communication by taking
control over a large fraction of the neighbors of correct nodes even while they
control only a part of overlay nodes. Thus mitigation techniques are needed.

The general defense is based on a simple observation that in an eclipse attack the in-
degrees of attacking nodes in the overlay graph are necessarily considerably higher than
the average in-degree of uncorrupted nodes in the overlay. Therefore, one way to prevent an
eclipse attack is for proper nodes to choose neighbors where the in-degree is not significantly
above average among the set of nodes satisfying the structural constraints assigned by the
overlay protocol.

It may not be sufficient to bound the node in-degrees. Malicious nodes could deplete all
in-degrees of correct nodes, thus making it difficult for correct nodes to pair as neighbors.
It follows that binding the out-degree of nodes is necessary as well. Proper nodes will then
choose neighbors with both in-degree and out-degree below a given threshold.

An eclipse attack mitigation technique has been proposed that uses anonymous audit-
ing to bound the degree of overlay nodes. This technique can be used in homogeneous
structured overlays with moderate churn, and it allows important optimizations such as
proximity neighbor selection. Experimental results indicate that the technique can prevent
attacks effectively in a structured overlay.

9.2.4 File Poisoning

File poisoning attacks have become commonplace in P2P networks. The goal of
this type of attack is to swap a legal file in the network with one provided by the
attacker. There are two types of attacks: the content pollution attack and the index
poisoning attack [77].

© 2010 Taylor and Francis Group, LLC

168 Overlay Networks: Toward Information Networking

In a content pollution attack, the adversary corrupts the targeted content files that are
available for sharing. Because many systems do not test the file for possible corruption,
the polluted content rapidly spreads through the P2P network. This type of attack requires
substantial bandwidth and server resources to be successful [77].

The second type of attack is the index poisoning attack, in which the adversary inserts
large numbers of fake records into the P2P index. This index might be centralized, or it
might be distributed over P2P nodes. The most common way to poison records is to use
randomized content identifiers instead of the correct ones. Random hash identifiers do not
correspond to any existing content in a P2P system, and thus the system cannot locate the
content. The extent of damage caused by this kind of attack depends on the size of the
corrupted index. The attack can be applied for both structured and unstructured systems.

9.2.5 Man-in-the-Middle Attack

In a man-in-the-middle (MiTM) attack, the adversary sits on the communication path of two
nodes and, using independent connections to the nodes, relays messages between them. The
adversary aims then to be undetected and eavesdrop and manipulate the relayed messages.
Man-in-the-middle attacks are a threat in many protocols. As a mitigation strategy, many
protocols include some form of end point authentication to prevent this attack.

9.2.6 DoS Attack

A denial-of-service (DoS) attack is an attack against a node or a network that involves the cre-
ation of vast amounts of connections or packets against the target. The idea is to overwhelm
the target and thus disrupt the service or client. The five basic types of DoS are

• Excess consumption of computational resources, such as processor time or
bandwidth

• Destruction of configuration information, such as routing tables
• Disruption of state information—e.g., TCP session states
• Destruction of networking hardware—e.g., making fake updates on firmware
• Obstruction of the communication media in the vicinity of the target

In the case of P2P networks, the most common form of a DoS attack is an attempt to
saturate the network with packets, thus preventing legitimate network traffic. Another
method is to send a vast amount of queries to the target, requiring all of its computational
capacity. Because of the large computing power needed, DoS attacks will be more efficient
if multiple hosts are used by the adversary. The attack is then called a distributed denial-of-
service (DDoS attack). Figure 9.2 illustrates the DDoS attack in P2P systems.

In a DDoS attack, the attacking computers are often personal computers with broad-
band connections that have been compromised by a virus or Trojan; often they are zombies
belonging to a botnet. The attacker is able to remotely control these PCs by directing an
attack at any host or network. Furthermore, a DDoS attack can be strengthened by using
uncompromised hosts as amplifiers. The zombies send requests to the uncompromised
hosts and spoof the zombie IP addresses to the victim’s IP. The uncompromised hosts will
respond by sending their answering packets to the victim. This is known as a reflection
attack.

© 2010 Taylor and Francis Group, LLC

Security 169

FIGURE 9.2
Denial of service attacks in P2P systems.

9.3 Securing Data

The main goals of content protection in overlay networks are

• Ensuring the availability of content. Preventing deletion and concealment of
content.

• Preventing the modification of content.
• Protecting the identity of content publishers and thus enabling publisher anonymity.

The ultimate aim is to make content publishing on networks as secure as possible against
various attacks. Many factions such as criminals, hackers, political entities, and even busi-
ness interests may have interests to suppress or alter content material on the Internet.

There are a multitude of methods to provide content protection or censorship resistance.
They are often somewhat overlapping, and certainly many are used in combination to create
stronger security tools.

• Self-certifying data
• Merkle trees
• Information dispersal
• Shamir’s secret sharing scheme
• Distributed steganographic file systems
• Erasure coding
• Smartcards for bootstrapping trust

In this chapter, solutions for anonymity are considered after examining the above
techniques.

9.3.1 Self-Certifying Data

Data is self-certifying when its integrity can be verified by the node retrieving it [227].
A node needing to insert a file in the network will calculate a cryptographic hash of the
content of the file to produce the file key. The hash is based on a known hashing function.

© 2010 Taylor and Francis Group, LLC

170 Overlay Networks: Toward Information Networking

Block B1

Block B2

Block B3

Block B4

Block B5

Root

Hash

H(...)
H(...)

H(B1) H(B2) H(B3)
H(H(B4),

H(B5))

H(B5)H(B4)

FIGURE 9.3
Example Merkle tree.

Conversely, when the file is retrieved by a node using its key, the node uses the same hash
function to verify the data. We should note that the method requires that all nodes in the
network share the same knowledge of the hashing function. Similarly, the method requires
that the hash-derived signature is used as unique access key for the file. Self-certifying data
(and labels) are widely used in P2P and DHT systems.

9.3.2 Merkle Trees

The Merkle tree or hash tree is a data structure that contains a verifiable summary
of a block of data [229]. Merkle trees are commonly used to verify that the content
of a given file has not changed with respect to the information contained in the
Merkle tree.

The structure is typically based on a binary tree, in which the original data blocks are
the leaves, and each level in the tree performs a hash to the digest of the level below. This
recursive process results in a single hash value at the root of the tree. This is called the
top hash. Figure 9.3 presents an example Merkle tree. The top hash uniquely identifies the
file. The hashes are performed with a cryptographic hash function, such as SHA-1. The
approach generalizes to trees that have more than two child nodes.

Merkle trees are useful for P2P applications that deal with immutable data because the
signatures can be generated based on the data and then stored separately. P2P clients can
obtain or verify the root hash of the data from some trusted source. Once this has been
done, the hash tree and the pieces of the data can be obtained from nontrusted sources.
First any parts of the hash tree received from nontrusted sites are verified against the trusted
top hash. Then the actual data can be transferred and verified against the hash tree. One
additional benefit of the hash tree is that one branch of the tree can be downloaded at a
time and each branch can be checked immediately. This is useful especially with large data
sets.

Merkle trees are widely used in distributed systems—for example, in the Sun’s ZFS file
system and Google’s recent Wave service protocol.1 A variant of Merkle trees based on

1 wave.google.com

© 2010 Taylor and Francis Group, LLC

wave.google.com

Security 171

the Tiger hash is called Tiger tree hash, and it is widely used in P2P protocols such as
Gnutella.

9.3.3 Information Dispersal

Information dispersal uses an algorithm to split a file into pieces. The file can then
be reconstructed from predefined subsets of pieces. Dispersal methods are needed
both for fault-tolerant routing and efficient memory management.

Rabin’s information dispersal algorithm is in wide use [265]. This algorithm breaks a file
F of length L into n pieces, each of length L/m, so that every m pieces are sufficient to
reconstruct F . File dispersal and reconstruction are computationally efficient. Rabin’s algo-
rithm has numerous applications in secure and reliable storage of information in computer
networks and in fault-tolerant and efficient transmission of information in networks.

This algorithm is employed by systems such as Publius [338] and Mnemosyne [159] for
encoding information to be published in the network.

9.3.4 Secret-sharing Schemes

Secret sharing is used to designate a method in which a secret is share-wise distributed
among the participants. The secret can be reconstructed from its parts, but all shares must
be combined together. Generally, in a secret-sharing scheme a dealer gives a secret to n
players in such a way that any set of t players (t is the threshold value, t < n) can reconstruct
the secret in collusion but no set of players smaller than k can perform the reconstruction.
If such a method purports to be information theoretically secure, some limitations must be
observed:

• A share must be as large or larger than the secret itself. This is a basic requirement
stemming from information theory.

• A sharing scheme must use random bits and, in order to distribute a secret of length
L , (t − 1) × L random bits are needed, where t is the threshold.

Shamir’s secret-sharing system is based on the idea that a unique polynomial of degree
(t − 1) can be fitted to any set of t points that lie on the polynomial [290]. In Shamir’s
scheme, a polynomial of degree t −1 is created with the secret as the first coefficient and the
other coefficients randomly generated. Then, n points are taken on the curve and shared
with the players, one to each player. It follows that t points are enough to fit a t − 1 degree
polynomial where the secret is the first coefficient.

In practice, the publisher of the content encrypts a file with a key K , then uses the
polynomial method to divide K into n shares so that any k of them can reproduce K , but
k − 1 will give no hints about K . Each participating server encrypts one of the key shares
and attaches it with the file. The file becomes inaccessible only if at least (n − k − 1) servers
containing the key are shut down.

Shamir’s secret-sharing scheme is used in several systems (Publius [338] and PAST [116,
278]).

9.3.5 Smartcards for Bootstrapping Trust

We take the PAST system as an example of the usage of smartcards in a large-scale P2P global
storage utility [116, 278, 279]. Its native security mechanism relies on the use of smartcards.
Each PAST node and each user of the system holds a smartcard. A private/public key pair is

© 2010 Taylor and Francis Group, LLC

172 Overlay Networks: Toward Information Networking

associated with each card. Each smartcard’s public key is certified by the smartcard issuer’s
private key. The smartcards generate and verify various certificates used during insert and
reclaim operations, and they maintain storage quotas.

A smartcard provides the nodeId for an associated PAST node based on a cryptographic
hash of the public key of the smartcard. The assignment of nodeIds probabilistically en-
sures uniform coverage of the space of nodeIds and also diversity of nodes with adjacent
nodeIds—e.g., in terms of geographic location, network attachment, ownership. Further-
more, nodes verify the authenticity of each other’s nodeIds.

The smartcard of a user planning to insert a file into PAST issues a file certificate. This
certificate contains a cryptographic hash of the contents of the file (computed by the client
node), the fileId (computed by the smartcard), the replication factor, and the salt. It is signed
by the smartcard. During an insert operation, the file certificate allows each storing node
to verify several things:

• The user is authorized to insert the file into the system. This prevents clients from
exceeding their storage quotas

• The contents of the file arriving at the storing node have not been damaged en
route from the client by faulty or malicious nodes

• The fileId is authentic. This defeats DoS attacks where malicious nodes try to ex-
haust storage at a subset of PAST nodes using fileIds with nearby values.

Each node that has successfully stored a copy of the file then issues and returns a receipt
to the client node. This allows the client to verify that k copies of the file have been created
on nodes with adjacent nodeIds, preventing a malicious node from suppressing the creation
of k diverse replicas. During a retrieve operation, the file certificate is returned with the file.
This allows the client to verify that the contents are authentic.

Before issuing a reclaim operation, the user’s smartcard generates a reclaim certificate.
The certificate, containing the fileId, is signed by the smartcard. It is included in the reclaim
request that is routed to the nodes storing the file. The smartcard of a storage node first
verifies that the signature in the reclaim certificate matches the signature in the file certificate.
This prevents other than the owner of the file from reclaiming the file. If the operation is
accepted, the smartcard of the storage node generates a reclaim receipt. This receipt contains
the reclaim certificate and the size of storage reclaimed; it is signed by the smartcard and
returned to the client.

9.3.6 Distributed Steganographic File Systems

Steganography denotes a system which both hides and encrypts information while
preventing outsiders from knowing how many files have been stored, if any. The
hiding of both existence and number of files gives a measure of plausible denia-
bility [10].

In a distributed steganographic file system, an entire partition is randomized and the en-
crypted files are hidden within it. Efficient encryption normally generates data that resem-
bles random data; thus, the files will be indistinguishable from the randomized substrate.
File locations are coded into the keys for the files, and therefore they will be hidden and
available only for legal users. The presence of the files is difficult if not impossible to detect.
The system is prepared by first filling all blocks with random data; then files are stored by
encrypting their file blocks and placing them at pseudo-randomly chosen locations (nor-
mally by hashing the block number with a randomly chosen key). To avoid collisions, a
considerable amount of replication will be required.

© 2010 Taylor and Francis Group, LLC

Security 173

Generally, the steganographic system requires a large overhead in read/write perfor-
mance and is inefficient in storage. Still, the plausible deniability is a valuable property in
many situations, often more than justifying the complexities of the system [159].

9.3.7 Erasure Coding

Erasure coding is a method in which a message of n blocks is transformed into
a message of m blocks (m > n) in such a way that the original message is re-
coverable from a subset of the m blocks. The fraction of M blocks needed is the
rate r of the erasure coding. A mechanism using erasure coding for data durabil-
ity and a Byzantine agreement protocol for achieving consistency and updating
serialization is implemented by the OceanStore system [191].

With erasure coding the data is broken in blocks and spread over multiple servers. Only a
fraction of them is needed for regenerating the original block. The objects and the attached
fragments are then named. This is done by applying a secure hash to the object contents.
This gives them globally unique identifiers and also provides data integrity by ensuring
that a recovered file has not been corrupted. A corrupted file would produce a different
identifier. Blocks are carefully dispersed, avoiding possible correlated failures. The nodes
are chosen to reside in distinct geographic locations or administrative domains.

OceanStore is a global data store designed to be persistent and scalable up to billions of
users. It provides a consistent and durable storage utility built atop an infrastructure of un-
trusted servers. Any computer can join the system and contribute storage or provide local
user access. Users need only subscribe to a single OceanStore service provider, although
they may use storage and bandwidth from many different providers. The providers auto-
matically buy and sell capacity and coverage among themselves, transparently to the users.
In OceanStore, any server may create a local replica of any data object. These local repli-
cas provide access speed and robustness to network partitions. They also reduce network
congestion by making access traffic more localized.

Any infrastructure server could crash, become compromised, or leak information. The
caching system therefore requires redundancy and cryptographic techniques to protect the
data from the underlying servers. OceanStore employs a Byzantine-fault-tolerant commit
protocol that provides consistency across replicas. The OceanStore API also permits appli-
cations to weaken their consistency restrictions in order to achieve higher performance and
availability.

Each object is attached to an inner ring of servers to provide versioning capabilities.
The ring maintains a mapping from the original identifier of the object to the identifier of
the most recent version of the object. The ring will be kept consistent through a Byzantine
agreement protocol [194], allowing 3k + 1 servers to reach an agreement when no more
than k are faulty. Therefore, the mapping is fault tolerant from the active identifier to the
most recent identifier. The inner ring also handles the verifying of the legitimate writers of
the object and maintains a history of the object updates. Thus it provides, in addition to
referential integrity, a universal undo mechanism by storing previous versions of objects.

9.3.8 Censorship Resistance

Publius is one of the tools aiming to cater to the growing problems of Internet censorship and
attempts to prevent free flow of content through the network’s distribution channels [338].
Publius is a Web publishing system designed to be resistant to censorship while providing
publishers with a high degree of anonymity as well. This is important because typically
censorship and attempts to break anonymity are simultaneous factors in recent attacks

© 2010 Taylor and Francis Group, LLC

174 Overlay Networks: Toward Information Networking

against freedom of information and thus they should be met with a single tool. Aside
from censorship, there are also other considerations behind Publius: there is often need to
publish content without explicit association with publisher’s gender, race, nationality, or
ethnic background.

The Publius system consists of the following parts:

• Publishers posting content to the Web
• Servers hosting random-looking content
• Retrievers which browse Publius content on the Web

The Publius system supports any static content and requires a static, system-wide list of
available servers. Content is encrypted by the publisher and distributed over some of the
Web servers (in the current system, the set of servers is static). The publisher takes the key,
K , originally used to encrypt the file and divides it into n parts (shares) such that any k of
them can regenerate the original K , but k −1 shares are not enough to give any information
of the key. Each server receives the encrypted Publius content and one of the shares. At
this point, the server has no idea of the hosted content; it simply stores some data that
looks random. To browse content, a retriever must get the encrypted Publius content from
a server and k of the shares.

The system includes mechanisms for detection of any malicious tampering of the content.
The publishing process creates a special URL used to recover the data and the shares;
the Publius content is tied to this URL cryptographically, so that any modification of the
content or the URL has the result that the retriever is unable to find the information or fails at
verification. In addition to the basic publishing mechanism, Publius also provides a way for
publishers, and only publishers, to update or delete their own Publius content. Furthermore,
it is possible to publish several files simultaneously and also mutually hyperlinked material.

Publius increases system robustness and protects anonymity by distributing redundant
partial shares (instead of files) among multiple holders. However, Publius remains im-
perfect, because the identity of the holders is not anonymized and an adversary could
still destroy information by attacking a sufficient number of shares. No publishing system
fully protects the consumers of information, although the Rewebber system also operates
a separate browser proxy service [147]

9.4 Security Issues in P2P Networks

9.4.1 Overview

P2P DHT-based overlay systems are susceptible to security breaches from malicious peer
attacks. One of the simplest attacks on DHT-based overlay system happens when the ma-
licious peer returns wrong data objects to the lookup queries. The authenticity of the data
objects can be guaranteed by using cryptographic techniques, either through cost-effective
public keys and/or content hashes, securely linking together different pieces of data ob-
jects. However, such techniques cannot prevent undesirable data objects from polluting the
search results or prevent DoS attacks. Still, malicious adversaries may succeed in corrupt-
ing, denying access or responding to lookup queries of replicated data objects. They might
also impersonate others so that replicas would be stored on illegitimate peers.

Sit and Morris [296] provide a very clear description of security considerations that
involve the adversaries that are peers in the DHT overlay lookup system that do not care
to follow the protocol correctly:

© 2010 Taylor and Francis Group, LLC

Security 175

• Malicious peers are able to eavesdrop on the communication between other nodes.
• A malicious peer can only receive data objects addressed to its IP address, and thus

IP address can be a weak form of peer identity.
• Malicious peers can collude together, giving believable false information.

They also present a taxonomy of possible attacks such as

• Routing deficiencies due to corrupted lookup routing and updates
• Vulnerability to partitioning and virtualization into incorrect networks when new

peers join and contact malicious peers
• Lookup and storage attacks
• Inconsistent behavior of peers
• DoS attacks preventing access by overloading network connection
• Unsolicited responses to a lookup query

Securing the content in overlay networks is not sufficient, and also the routing and
forwarding processes need to be made secure. The aim of secure routing is to address the
problem of malicious nodes attempting to corrupt or delete files, deny access to objects, or
poison files and indexes. Therefore, the following processes need to be considered:

• Secure assignment of node identifiers
• Secure maintenance of routing tables
• Secure forwarding of both control and content messages

The solutions used must make these processes secure, naturally combined with other se-
curity techniques. Design principles for defenses against such attacks can be classified as
follows:

• Defining verifiable system invariants for lookup queries
• Node identifier (nodeId) assignment
• Peer selection in routing
• Cross-checking information by using random queries
• Avoiding single point of responsibility

Castro et al. [62] consider the vulnerabilities of secure routing for structured P2P overlay
networks mainly in terms of the possibility that a small number of malicious and conspiring
peers could compromise the overlay system. They presented a design and analysis of tech-
niques for secure peer joining, routing table maintenance, and robust message forwarding
in the presence of malicious peers in structured P2P overlays. This technique can toler-
ate up to 25% of malicious peers while providing good performance when the number of
compromised peers is small. However, this defense restricts the flexibility necessary to im-
plement optimizations such as proximity neighbor selection and only works in structured
P2P overlay networks.

Singh et al. [293, 294] propose a defense that prevents eclipse attacks for both structured
and unstructured P2P overlay networks by bounding degree of overlay peers. That is, the
in-degree of malicious overlay peers is likely to be higher than the average in-degree of
legitimate peers, and legitimate peers thus choose their neighbors from a subset of overlay
peers whose in-degree is below a threshold. However, even after the in-degree bounding, it
is still possible for the adversary to consume the in-degree of legitimate peers and prevent

© 2010 Taylor and Francis Group, LLC

176 Overlay Networks: Toward Information Networking

other legitimate peers from referencing to them. Therefore, bounding the out-degree is
necessary; then legitimate peers choose neighbors from the subset of overlay peers with both
in-degree and out-degree below some threshold. An auditing scheme is also introduced to
prevent incorrect information concerning the in-degree and out-degree.

9.4.2 Insider Attacks

A central problem has been to how find join and leave operations that run as efficiently as
possible while still maintaining a highly scalable overlay network. However, besides scala-
bility, robustness is also important, since in open environments like the Internet adversaries
may use both insider and outsider attacks on a distributed system [15, 293].

Join and leave operations may be used by attackers to cause trouble in the system. More
specifically, we consider the scenario in which there are n honest peers and εn adversarial
peers in the system for some constant ε < 1. The adversary has full control over its ad-
versarial peers and knows the entire overlay network at all points in time. It can use this
information to decide in an arbitrary and adaptive manner which of its adversarial peers
should leave the system and join it again from scratch. In this way, it is possible to construct
sequences of rejoin activities by the adversarial peers in order to harm the overlay network
as much as possible—for example, by degrading its scalability or isolating honest peers.

There exists some accumulated experience on join-leave attacks by adversarial peers. The
P2P community has been aware of the danger of these attacks, and solutions have been
proposed to mitigate the attacks in practice. Until recently no mechanism was known that
can be proved to cope with the attacks without sacrificing the essential openness of the
system.

The first mechanism shown to preserve randomness for a polynomial number of adver-
sarial rejoin requests uses randomized peer identifiers. A limited lifetime on peers in the
system is enforced; i.e., every peer has to reinject itself after a certain amount of time steps.
However, this leaves the system in a mode that may unnecessarily deplete resources. The
application of competitive strategies would be an ideal solution, and the resources taken
by the mixing mechanism should be scalable with the join-leave processes of the system. A
corresponding strategy was first presented for a pebble shuffling game on a ring. However,
the join rule proposed cannot be directly applied to overlay networks based on the concept
of virtual space. This is because it has no control over the distribution of the peers in the
virtual space. The balancing condition might be violated.

The first rule able to satisfy both the balancing and majority conditions while accepting
a polynomial number of rejoin requests from attacking peers is the k-cuckoo rule, outlined
in Figure 9.4. The rule requires that a new peer pick a random identifier x and then all
peers in the x’s k-region of size k/n are relocated to points in the identifier space that are
chosen uniformly and independently at random. This rule is a randomized join strategy
that wins with high probability against any adversary as long as ε < 1−1/k. The aim of the
join strategy is to maintain two conditions—namely, that in any �((log n)/n) interval there
are �(log n) nodes, and that the good nodes are in the majority in every such interval. An
improved version of the rule called cuckoo and flip rule has been proposed that alleviates
region-balancing issues when nodes leave [15].

9.4.3 Outsider Attacks

Besides insider attacks, we must also consider certain outsider attacks. The adversary might
shut down any peer at any point in time by starting a brute-force DoS attack bypassing
the overlay network. We assume that an honest peer that is exposed to such an attack will
leave the system and will rejoin the network anew as soon as the DoS attack on it is over.

© 2010 Taylor and Francis Group, LLC

Security 177

n honest

εn adversarial

Evict k/n–region ε < 1–1/k

Rejoin: leave and join via k-cuckoo rule

FIGURE 9.4
k-cuckoo rule.

There are two types of serious forms of attack:

1. Consider outsider attacks that are oblivious and targeted on P2P systems with
peers placed at randomized positions in a virtual space. These can be modeled as
random faults or churn. Random faults and churn has been heavily investigated in
the P2P community, and it is known that some structured P2P systems like Chord
can tolerate any constant probability of failure.

2. Adaptive outsider attacks are more difficult to handle. The best current method
results in a structured overlay network that can recover from any sequence of
adaptive outsider attacks in which at most log n peers may be removed from the
system at any point in time. The basic idea behind this approach is that the peers
perform load balancing locally in order to fill the holes the adversary may have
caused in the network. This approach works fairly well when peers in the network
can be assumed to be honest, but it fails if some of the peers are adversarial. The
adversary would only have to focus on a particular corner of the network and force
all honest peers in it to leave until enough adversarial peers have accumulated in
the corner. If the adversarial peers are able to gain the majority in this corner, they
can launch serious application-layer attacks. It will not be possible any more to
wash out adversarial behavior in a proactive manner.

9.4.4 SybilGuard

Decentralized, distributed systems like P2P systems are particularly vulnerable to Sybil
attacks. Sybil attack (termed by Douceur [115]) describes the situation whereby there are
a large number of potentially malicious peers in the system without a central authority to
certify peer identities. In a Sybil attack, a malicious user obtains multiple fake identities
pretending to be multiple, distinct nodes in the system. Control over a large fraction of
the nodes in the system gives the malicious user ability to throw out the honest users in
collaborative tasks such as Byzantine failure defenses.

In such a situation, it becomes very difficult to trust the claimed identity. Dingledine et al.
propose puzzle schemes, including the use of microcash, which allow peers to build up

© 2010 Taylor and Francis Group, LLC

178 Overlay Networks: Toward Information Networking

reputations [113]. Although this proposal provides a degree of accountability, it still allows
a resourceful adversary to launch successful attacks. Many P2P computational models of
trust and reputation systems have emerged to assess trustworthiness behavior through
feedback and interaction mechanisms. These computational trust and reputation models
make the basic assumption that the peers commit themselves to bilateral interactions and
evaluations on a globally agreed scale.

SybilGuard is a protocol that limits the corruptive influences of Sybil attacks. The protocol
is based on the social network of user identities. An edge between two identities points
out a human-established trust relationship. Malicious users can create multiple identities,
but in general they are unable to forge many trust relationships. Thus, the cut in the graph
between the sybil nodes and the honest nodes is too small. SybilGuard exploits this property
for setting an upper bound for the number of identities of a malicious user. The effectiveness
of SybilGuard has been shown both analytically and experimentally [355].

9.4.5 Reputation Management with EigenTrust

The trustworthiness of a node can be measured by the level of trust that other peers have
toward the node. This activity of collecting reputation information in a distributed environ-
ment, and then making decisions based on it, is called reputation management. Reputation
management involves a number of processes, including the following:

• An entity’s actions are tracked.
• Other entities’ opinions about those actions are tracked.
• Actions and opinions are reported.
• Reacting to the report is enhanced by creating a feedback loop.

Reputation management uses preset criteria and algorithms for processing complex data
for tracking and reporting reputations. These systems facilitate the process of determining
trustworthiness automatically.

EigenTrust is an algorithm for reputation management in P2P networks, devel-
oped by Sepandar Kamvar, Mario Schlosser, and Hector Garci-Molina. The algo-
rithm calculates a unique global trust value for each peer in the network. The value
is based on the upload history of the peer and helps to cut down the number of
incorrect files in a P2P file-sharing network [177].

The EigenTrust algorithm makes use of the concept of transitive trust: If a peer i trusts any
peer j , it would trust peers trusted by j as well. Each peer i evaluates the local trust value
si j for all peers having provided authentic or bogus downloads based on the satisfaction
level of its experienced transactions. More formally,

si j = sat(i, j) − unsat(i, j), (9.1)

where sat(i, j) refers to the number of adequate responses that peer i has received from
peer j and unsat(i, j) refers to the number of inadequate responses that peer i has received
from peer j . The local value is always normalized, thus preventing malicious peers from
assigning arbitrarily high local trust values to their colluding malicious partners and, re-
spectively, arbitrarily low local trust values to satisfactory peers. The normalized local trust
value ci j is given by

cij = max(sij, 0)∑
j max(sij, 0)

. (9.2)

© 2010 Taylor and Francis Group, LLC

Security 179

The system uses either the aggregation of the local trust values at a central location or
accesses them in a distributed manner in order to create a trust vector for the whole network.
According to the concept of transitive trust, a peer i would ask any other peers it knows to
report the trust value of a peer k, weighing the responses by the trust peer i places in them.
This trust value is given by tik :

tik =
∑

j

ci j c jk . (9.3)

Assuming that a user knows the ci j values for the network, given by the matrix C , then
trust vector t̄i defining the trust value for tik is given by

t̄i = CT c̄i . (9.4)

In the equation above, if C is aperiodic and strictly connected, powers of the matrix C
will be converging to a stable value at some point.

t̄ = (CT)xc̄i . (9.5)

For large values of x, the trust vector t̄i appears to converge to a single vector for every
peer in the network. The vector t̄i is the left principal eigenvector of the matrix C . It is
notable that, since t̄i is the same for all nodes in the network, it stands for the global trust
value.

It is possible to develop a simple centralized algorithm computing trust value. We assume
that all local trust values for the network are available and presented in the matrix C . If
the equation is convergent, the initial vector c̄i can be replaced with a vector ē that is an m-
vector and represents the uniform probability distribution over all m peers. Algorithm 9.1
presents a simple centralized version of the EigenTrust algorithm.

Algorithm 9.2 presents the basic EigenTrust algorithm that addresses some limitations
in the simple algorithm. The simple algorithm does not address a priori notions of trust,
inactive peers, and malicious collectives. Pretrusted peers are crucial for the basic algorithm,
because they guarantee convergence and break malicious collectives. The choice of the
pretrusted peers is important, and that they are not members of malicious collectives.
The pretrusted peers are represented by p̄, which is some distribution over them. In the
algorithm a is a system parameter, a constant less than 1.

The Eigentrust system has also been extended for decentralized environments, in which
a component-wise algorithm is used. In this case, each peer stores its local trust vector and
trust value. Security is provided by assigning trust score, managed using a DHT such as
CAN or Chord [177].

Algorithm 9.1 A simple centralized EigenTrust algorithm

Function: SimpleEigenTrust()
t̄0 = ē
repeat

t̄(k+1) = CT t̄(k)

δ = ||t(k+1) − t(k)||
until δ < error

© 2010 Taylor and Francis Group, LLC

180 Overlay Networks: Toward Information Networking

Algorithm 9.2 The basic EigenTrust algorithm

Function: EigenTrust()
t̄0 = p̄
repeat

t̄(k+1) = CT t̄(k)

t̄(k−1) = (1 + a)t̄(k+1) + a p̄
δ = ||t(k+1) − t(k)||

untilδ < error

9.5 Anonymous Routing

One of the central requirements for P2P networks is anonymity. Anonymity is often accom-
plished by employing anonymous connection layers, such as onion routing [112, 148] and
mix networks [3, 69]. For instance, the anonymizing, censorship-resistant system proposed
in [288] splits documents into encrypted shares using an anonymizing layer of nodes (re-
ferred as forwarders). The technique then chooses nodes that store the shares and destroys
the original data. Data requests and resulting shares are forwarded by using onion rout-
ing thus anonymizing the addresses. FreeHaven [114] is a similar system built on top of
anonymous remailers to provide necessary pseudonyms and communication channels.

This section describes the main approaches currently used for providing anonymity to
routing processes in overlay networks, especially in P2P systems. The Freenet system was
already presented in Chapter 4, and in the rest of this section we present additional examples
of systems that support anonymity.

9.5.1 Mixes

Mixes introduced the notion of anonymous digital communication, and the Mix system
essentially creates unlinkability between sender and receiver [69]. This ensures that, while
an attacker can determine that the sender and receiver are actually communicating by
sending and/or receiving messages, he cannot detect with whom they are communicating.
The system is composed of a mixed set of nodes that store, mix, and forward the messages
in transit. The route of the message is predetermined by the sender using one or more
mix nodes and a precisely defined protocol. A public key cryptography protocol is used
to ensure that messages cannot be tracked by an adversary while passing through the mix
network. In the simplest form that is called a threshold mix, a node waits until it is able to
collect a set of messages as input. The private key is then used to get the address of the
next mix node or final destination. The received and buffered messages are then reordered
according to some metric before forwarding them. In this sense, an attacker cannot trace a
message from source to destination without the help of the mix nodes.

Kesdogan et al. provide a mix-network routing protocol by introducing the free route
and mix cascade concepts [185]. Free route gives autonomy to the sender to choose dynam-
ically the trust path for the mix nodes, but in mix cascade the routing paths are preset.
Mix networks use delays due to buffering and mixing and different padding patterns for
mixing real and dummy traffic. Continuous mixes try to avoid delay issues by introduc-
ing fixed delay distributions. Mixes have been subject to several attacks, such as timing
attacks, statistical message distributions analyses, and statistical analysis of the properties
of randomized routes.

© 2010 Taylor and Francis Group, LLC

Security 181

9.5.2 Onion Routing

Onion routing [148] is an overlay infrastructure created to provide anonymous commu-
nication over a public network. Onion routing supports anonymous connections in three
separate phases: connection setup, data exchange, and connection termination.

In the setup phase, the initiator will create a layered data structure called onion that im-
plicitly defines the complete route through the network. An onion is encrypted recursively
by applying public key cryptography. The number of encryptions is equal to the number
of onion routers (OR) that process the onion while it is moving toward the destination. The
outer cryptographic control layer pertains to the first router in the onion path, while the
innermost cryptographic control block refers to the last onion router in the path (i.e., the pre-
decessor to the destination). Each router along the onion route uses its public key to decrypt
the next layer off the onion that it receives. This operation reveals the embedded onion, and
also the identity of the next onion router. Essentially, each onion router takes off one layer
of encryption to arrive in plain form at the next recipient.

Each onion router also pads the embedded onion after decrypting a layer to maintain a
fixed size, and then sends it to the next router in the onion chain. Once the onion reaches
the destination, all of the inner control data appears as plain text. Essentially this estab-
lishes an anonymous end-to-end connection, and data can be sent in both directions. For
data moving backward through the connection, the layering occurs in the reverse order
and also applies different algorithms and keys. The tear-down of the connection can be
started by either end and also in the middle of the path if need be. All messages (onions
and real data) transferred through the onion routing network will be identically sized to
the messages arriving at an onion router using fixed time intervals. However, the mes-
sages are mixed to avoid correlation efforts by potential attackers and, additionally, cover
traffic in the semipermanent connections between onion routers can misguide external
eavesdroppers.

9.5.3 Tor

Tor2 is a circuit-based low-latency anonymous communication service in which the second-
generation onion routing system addresses limitations by adding perfect forward secrecy,
directory servers, congestion control, integrity checking, configurable exit policies, and an
architecture for location-hidden services using rendezvous points [112]. Tor needs no kernel
modifications nor special privileges. Furthermore, it requires very little synchronization or
coordination between nodes, at the same time providing a reasonably balanced solution
between anonymity, usability, and efficiency.

Using Tor protects, for example, against traffic analysis, a common form of Internet
surveillance activity. Traffic analysis can be used to detect which nodes are communicating
over a public network. Knowing the source and destination of the traffic allows adversaries
to track one’s behavior and interests. This information could be very useful, for instance
for e-commerce sites adjusting prices and conditions based on the country or institution of
the shopper. It could even pose a safety threat by revealing the identities and geographical
locations, even if the connection is encrypted.

The traffic analysis uses the knowledge that Internet data packets have two parts: a data
payload and a header used for routing. The data payload may be encrypted, but the header
discloses information such as the source, destination, size, timing. The header part will
reveal more than most users would like it to, especially under statistical analysis based on
cumulative data.

2 www.torproject.org

© 2010 Taylor and Francis Group, LLC

www.torproject.org

182 Overlay Networks: Toward Information Networking

A basic problem for Internet privacy is that the recipient of the communications can see
who sent it simply by looking at headers, as could authorized intermediaries like service
providers, and often unauthorized intermediaries as well. The simplest, but very effective,
form of traffic analysis involves a node situated between sender and recipient on the overlay
network, just looking at headers. Nevertheless, there are also more powerful methods of
traffic analysis. Some adversaries watch on multiple locations of the Internet using sophis-
ticated statistical techniques to track the communications patterns of target organizations
and individuals. No encryption helps against these attackers, since it can only hide the
content of the traffic, not the header information.

Tor applies the concept of onion routing. Onion routing is a distributed overlay network
built to facilitate making anonymous many TCP-based applications such as Web browsing,
secure shell, and instant messaging. Clients choose a path through the network and build
a circuit in which each node (onion router) in the path knows its predecessor and succes-
sor but not the other nodes in the circuit. Traffic moves in the circuit in fixed-size cells,
unwrapped by a symmetric key at each node (like peeling an onion) and then sent down-
stream. However, real-Internet applications are scarce: while a wide-area onion routing
network was briefly tested, the only notable public implementation was a single machine
proof-of-concept experiment, which was successful in itself but not conclusive. Many criti-
cal design and deployment issues were not resolved, and the design has not been updated
in years. Nevertheless, the onion concept was deemed useful enough to be implemented
in more advanced designs, and Tor is one of those.

The Tor network is an overlay network where each onion router is running as a user-
level process without having any special privileges. Each onion router maintains a TLS
(transport later security) connection [111] with every other onion router. The users run a local
software package called an onion proxy (OP) to establish circuits across the network, retrieve
directories, and handle connections with user applications. The onion proxies accept TCP
streams, multiplexing them across the onion circuits. The onion router at the other end of
the circuit takes connection to the requested destination relaying data.

Each onion router maintains two keys: an identity key that is long term and an onion key,
which is short term. The identity key is used in three ways: to sign TLS certificates, to sign
the descriptor for OR router (this is a summary of the keys, address, bandwidth, exit policy,
etc.), and to sign the directories by the directory servers. The onion key is used to decrypt
user requests for setting up a circuit and to negotiate ephemeral keys. The TLS protocol is
also used to establish a short-term link key if it is communicating between ORs. Short-term
keys will be rotated periodically and independently; this is done in order to limit the impact
of possibly compromised keys. Figure 9.5 illustrates the building of a two-hop circuit with
Tor and using it to fetch a Web page.

Tor also enables users to hide their locations. This is very important when offering ser-
vices such as Web publishing or an instant messaging server. Rendezvous points help other
Tor users to connect to the hidden services without knowing the other participant’s net-
work identity. This hidden service functionality allows Tor users to set up Web sites for
publishing any material without worrying about censorship. It would be impossible to
determine who is offering the site, and nobody who offers the site would know who was
posting to it.

9.5.4 P2P Anonymization System

The goal of anonymization of overlay networks is to help a node in communicating with an
arbitrary other node in such a way that the identity of the node is impossible to determine.
The P2P anynomization system (formerly Tarzan) [139, 140] was proposed to take care
of this requirement for anonymity. The Tarzan system is a decentralized network layer

© 2010 Taylor and Francis Group, LLC

Security 183

Relay c1 {Extend, OR2, E(g^×2)}

Create c1, E(g^×1)

Created c1, g^y1, H(K1)

Create c2, E(g^×2)

Relay c1 {Extended, g^y2, H(K2)} Created c2, g^y2, H(K2)

Legend:

E(x)—RSA encryption

(X)—AES encryption

cN—a circID

Relay c1 {{Begin <website>:80}} Relay c2 {Begin <website>:80}

(TCP handshake)

Relay c2{Connected}
Relay c1{{Connected}}

Relay c1{{Data, “HTTP GET…”}}
Relay c2{Data, “HTTP GET…”}

“HTTP GET…”

(response)
Relay c2{Data, (response)}

Relay c1{{Data, (response)}}

Web siteOR 2 (unencrypted)Alice (link is TLS-encrypted) OR 1 (link is TLS-encrypted)

Alice builds a two-hop circuit and begins fetching a Web page

FIGURE 9.5
Overview of Tor.

infrastructure that builds anonymous IP tunnels between an open-ended set of peers. By
using the Tarzan infrastructure, a client is able to communicate with a server and nobody
can determine the identity of either one.

The anonymizing layer is fully decentralized and is also transparent to both clients and
servers. System nodes communicate over sequences of mix relays. These are chosen from an
open-ended pool of volunteer nodes, without any centralized component. Tarzan includes
techniques that enable secure discovering and selecting of other nodes as communication
relays. All peers will be feasible originators of traffic; all peers are potential relays as well.
The scalable design greatly lessens the significance of targeted attacks and also inhibits
network-edge analysis; a relay is not able to tell when it is the first point in a mix path. The
system also works to remove potential adversarial bias: an adversary may run hundreds of
virtual machines, but it will be unlikely for it to control hundreds of different IP subnets.

Tarzan also introduces a scalable and useful technique for covering the traffic. This uses
a restricted topology for packet routing. Packets can be routed only between two mimics.
They are pairs of nodes assigned by the system in a way that is secure and universally
verifiable. The technique does not expect network synchrony and takes only a little more
bandwidth than the original traffic that is to be hidden. The Tarzan technique shields all
network participants, not only core routers.

Thus packets are routed in Tarzan via tunnels of randomized peers and using a mix-style
layered encryption very similar to onion routing. The two ends of this communication
tunnel are a Tarzan node running a client application and a Tarzan node running a network
address translator. The translator forwards the traffic to the final destination, an ordinary
Internet server. The system is essentially transparent to both client applications and servers.
However, it must be installed and configured on all participating nodes. A possible policy
that would further reduce the risk of attacks would be for the tunnels to contain peers
from different jurisdictions or organizations. Nevertheless, some performance would then

© 2010 Taylor and Francis Group, LLC

184 Overlay Networks: Toward Information Networking

be sacrificed. Crowds is a system similar to Tarzan; the core difference is that in Tarzan the
data is always encrypted in the tunnels, in contrast to Crowds.

9.5.5 Censorship-resistant Lookup: Achord

A central and fixed element of all peer-to-peer publishing systems is a mechanism that
enables efficient locating of published documents. To foster resistance to censorship, it is
particularly important to make the lookup mechanism both difficult to disable or to abuse.
Achord is a variant of the older Chord mechanism that takes into account the stringent
requirements of censorship resistance [161].

Achord is equivalent to Chord both in performance and correctness, but more suitable
for use in P2P publishing systems that aim to be censorship resistant. Achord provides
censorship resistance because it focuses on publisher, storer, and retriever anonymity and
hinders a node to voluntarily assume full responsibility for a certain document. Its basic
method for providing anonymity and also for limiting what each node will know of the
network are similar to those of Freenet. The architecture of Achord is carefully varied so that
the properties of anonymity and censorship resistance are achieved without hampering the
main operation. In particular, the Chord algorithm is modified here so that the identification
information is suppressed as the successor nodes are located.

9.5.6 Crowds

Crowds is a network that consists of multiple nodes collaborating voluntarily [269]. The
basic idea is that the anonymity of a single object can be protected better when it is mov-
ing within a crowd of objects. Crowds Web servers are unable to learn the origin of any
request because all members of the set of potential requestors are equally likely. Even in
collaboration, the Crowds members are not able to distinguish the originator of a request
from a member forwarding the request on behalf of some other member. In Crowds, each
user is represented in the system by a jondo process. When a message that will require user
anonymity arrives at the Crowds node, its arrival is announced using the local jondo. Then
it is sent to another jondo, randomly chosen, with probability p or to the actual server with
probability 1− p. When the server (or recipient jondo) receives the message, it will respond
using the same forwarding path. Crowds can effectively prevent traceback attacks and also
relieve collusion attacks if the users select the set of forwarding jondos by randomization.

9.5.7 Hordes

Hordes [198] is an anonymizing infrastructure combining elements from both onion routing
and Crowds. It is the first protocol that used multicast transmission when the destination
answers the sender. It includes two phases: the initialization and the transmission phase.

In the initialization phase, Hordes uses the jondo concept from Crowds. In addition, it
uses a public key scheme to give authentication services. The sender dispatches a join-
request message to a proxy server, which will authenticate the sender by returning a signed
message. This includes the multicast address of jondos and tells the multicast group of the
new entry.

In the transmission phase of a message, the sender picks a subset of jondos to be used
in the forwarding path and also a multicast group address for the reverse path. When a
data message becomes scheduled for transmission, the sender will select a jondo member
within the forwarding subset, sending the message to this peer as an encrypted onion-type
data structure. The designated jondo then sends this message either to another random
jondo with probability p or directly to the receiver with probability 1− p. Encryption layers

© 2010 Taylor and Francis Group, LLC

Security 185

are used throughout. The receiver replies using the preset return path. It will also send an
acknowledgment to the multicast group as a plaintext message.

9.5.8 Mist

A new system that tackles some of the privacy drawbacks discussed above is the Mist [8].
The Mist handles the problem of routing messages in a network but keeps the location of
the sender strictly concealed from all intermediate devices (such as routers and caching
tools), from the receiver, and from any potential eavesdroppers. The system is built with a
number of routers (Mist routers), which are ordered in a hierarchical structure. Mist also
applies special routers, called portals, which are enabled to be aware of the user locations, yet
without knowing the corresponding identities. The designated lighthouse routers (LIGs) are
aware of the user’s identity, but even they do not know their exact location. The emphasis of
the Mist architecture is the distributed knowledge. Due to the decentralized nature of Mist,
a possible malicious collusion by some of the Mist routers is nearly impossible because
the Mist routers are ignorant of each other’s identity. The leaf nodes in the Mist hierarchy
(portals) function as points where users are connected to the Mist system.

For example, let us assume that publisher X requires a network service ensuring privacy
and data confidentiality. X must first register with the Mist system. The publisher’s device
interfaces directly with one of the portals available in the nearby Mist space. The portal
replies to the request with a list of its ancestral Mist routers that exist at a higher level within
the hierarchy and are willing to act as a LIG (point of contact) for the user.

Subscribers intending to have communication with publisher X have to contact his des-
ignated LIG. After the LIG selection, a virtual circuit (a Mist circuit) must be newly created
between publisher X and the corresponding LIG. This Mist circuit establishment process
aims to enable the LIG of publisher X to authenticate X without revealing the physical
location of X. Simultaneously, Mist hides the identity of X and the designated LIG from
the portal. Furthermore, the Mist circuit applies a routing technique, which is hop-to-hop
and handle-based, for packets transmitted between source and destination nodes. Also, in
combination with data encryption, it will conceal any information on the identities and
locations of the communicating parties.

To establish a Mist circuit, X will generate a circuit establishment packet, transmitting
this packet to the corresponding portal. X does not inform the portal of the selected LIG.
When it receives the packet, the portal assigns a special handle ID number to the current
communication session with X. The portal encloses the assigned handle ID in the received
packet and forwards it to its ancestor in the Mist router chain. When the data packet moves
through the Mist hierarchy, each LIG router makes an attempt to decrypt the payload by
applying their private key. If the decryption fails, the particular router will decide that it
cannot be the final recipient of this packet, forwarding the packet to the next router in the
hierarchical chain.

The process is repeated by every intermediate Mist router until the packet reaches the
ultimate destination. If the decryption of the payload is successfully performed, this forms
an indication that X has in fact selected the current Mist router as his LIG. The LIG then
responds to X confirming the registration. From there, a secure circuit will be established
and X can communicate securely with its LIG. Note that even though the LIG of X can infer
that its physical location is underneath a given Mist router Y, it is very hard to determine X’s
exact position. After the circuit establishment, the LIG will accept the role of representing
the end-user.

A further issue to be handled is the detection of the user’s LIG. A public directory—for
instance, a lightweight directory access protocol (LDAP) server or a plain Web server—may
be used for this purpose. For example, subscriber Z tries to communicate with publisher X.

© 2010 Taylor and Francis Group, LLC

186 Overlay Networks: Toward Information Networking

X and Z have previously established Mist circuits with corresponding LIGs LZ and LX. Z
transmits to LZ a packet indicating that he wants to set up a publish/subscribe (pub/sub)
service with X. LZ will verify that the originator of the message is really Z, locates LX (the
LIG of publisher X), and carries out the initialization for establishment of the connection. If
the communication path is successfully established, X and Z are able to communicate with
each other. Here the intermediate routers are always unaware of the two end points of the
communication. Moreover, it is impossible for Z to detect the location of X and vice versa.

9.6 Security Issues in Pub/Sub Networks

Many security concerns emerge in pub/sub overlay environments (because of the many-
to-many communication model) with regard to authenticity, integrity, confidentiality, and
also availability. For instance, one has to be able

• To guarantee that only authentic publications are delivered to the subscribers (pub-
lication authenticity) and that only the subscribers really subscribing to the service
will get publications matching their interest (subscription authentication)

• To prevent unauthorized, possibly malicious, modifications of pub/sub messages
(publication and subscription integrity)

• To perform the content-based routing without the publishers trusting the pub/sub
network (publication confidentiality)

• To not reveal their subscriptions to the network (subscription confidentiality).
• To protect the pub/sub services from any spamming or flooding attacks, both

selective and random message dropping attacks, and other DoS attacks.

Many attacks gravely threaten message integrity (unauthorized write) and authenticity
(false origin) in addition to confidentiality of messages (unauthorized read). Yet most of the
existing secure event-distribution protocols focus only on content confidentiality. Relatively
trifling effort has been devoted to developing a more coherent security framework that
would be able to guard the pub/sub system from multiple native security problems.

9.6.1 Hermes

Access control is a crucial security requirement, especially in commercial pub/sub ap-
plications. Access control is used to assign privileges to all elements participating in the
pub/sub architecture. Hermes [255] pub/sub system is a distributed event-based middle-
ware architecture adapted to a type-based and attribute-based publish/subscribe model.
Hermes is built around the notion of an event type, and it will support features derived from
object-oriented languages such as type hierarchies and supertype subscriptions. A scalable
routing algorithm atop of an overlay routing network is used, thus avoiding global broad-
casts, since rendezvous nodes are created. Fault-tolerance mechanisms able to cope with
breakdowns of the middleware are fully integrated with the routing algorithm. This yields
a scalable and robust system.

The main goal of the Hermes architecture is to create a system in which security is man-
aged and controlled within the pub/sub middleware, access control being fully transparent
to both publishers and subscribers. In Hermes, each event has a designated owner iden-
tified with a X.509 certificate. These owners decide upon the access policies for their own
events. Users are then assigned roles, and, furthermore, privileges are assigned to each role.

© 2010 Taylor and Francis Group, LLC

Security 187

However, the users will never be assigned privileges directly. This approach has two clear
advantages: administration of privileges is much easier, and policy control becomes strictly
decoupled from the specific software under protection. Both publishers and subscribers are
to be authenticated. Every request they direct to brokers is delivered using their own creden-
tials. Based on these credentials, brokers may then either accept, partially accept, or reject
the request. Policies are expressed in a specific policy language provided by OASIS [27].

In Hermes, decisions upon access control are always based on predicates. Generic predi-
cates are used, and they are operated as black boxes. A predicate might make decisions on
the basis of the size of the message. The predicates could be publish/subscribe restriction
predicates, as well. In that case, predicates are fully understood by the pub/sub system, and
they will use the event-type hierarchy. For example, if a subscriber attempts to subscribe to
any event that it is not authorized to access, the system will try to detect if the subscriber is
authorized to subscribe to any subtypes of the event. Thus the original subscription request
is transformed to a different subscription scope. For this approach to be effective, brokers
must be trusted to use the access control policies. The Hermes architecture also allows for
the usage of certificate chains, forming a web-of-trust. In this web-of-trust, an event owner
will sign the trust broker certificates, while these brokers will sign the certificates of their
immediate brokers, etc. If publishers and subscribers can show a trusted root certificate
for the event owners, they can verify whether their local brokers are eligible to process a
certain event.

9.6.2 EventGuard

EventGuard [303] is a mechanism designed to provide access security in content-based
pub/sub systems. The goals are to provide authentication for publications, confidentiality
and integrity for both publications and subscriptions, and to enable availability while not
forgetting performance metrics, scalability, and ease of use.

EventGuard is a modular system designed to operate above a content-based pub/sub
core. It has two main components:

• A suite of security guards seamlessly pluggable into a content-based pub/sub
system.

• A flexible pub/sub network design capable of scalable routing and handling of
message dropping DoS attacks and node failures.

EventGuard uses six guards that secure six critical pub/sub operations (subscribe, adver-
tise, publish, unsubscribe, unadvertise, and routing) as well as a metaservice that generates
tokens and keys. Tokens are used as identification of the publications, such as a hash function
over publication topic. Keys are used for encrypting message contents. All pub/sub opera-
tions involve communication with the provided metaservice before sending any messages.
The El-Gamal algorithm is used for encryption, signatures, and the creation of tokens [303].

9.6.3 QUIP

QUIP is a protocol used for securing content distribution in P2P pub/sub overlay net-
works [89]. It is designed to provide encryption and authentication mechanisms for already
existing pub/sub systems. QUIP’s security goals are the following:

• To protect content from unauthorized users
• To protect payment methods and to authenticate publishers
• To protect the integrity of the communicated messages

© 2010 Taylor and Francis Group, LLC

188 Overlay Networks: Toward Information Networking

QUIP tackles two main problems—first, ensuring that subscribers are able to authenticate
the messages they are receiving from publishers, and second, ensuring that publishers; are
able to strictly control who receives their content. QUIP allows the application of a public
key traitor-tracing scheme. This scheme has two main advantages:

• The ability to invalidate the keys of any subscribers without hampering the keys
of the others.

• Each subscriber has a unique key that facilitates detecting who has leaked a key.

The main idea is to incorporate the efficient traitor-tracing scheme with a secure key
management protocol. This allows publishers to restrict their messages to truly authorized
subscribers and also to add and remove subscribers without affecting the keys held by the
other subscribers.

QUIP does not deal with the problems of privacy in subscriptions. It assumes a single
trusted authority fully responsible for keys and payments handling. This is the key server.
Each participant in the pub/sub network willing to use QUIP has to download in advance
a QUIP client that will provide the participant with a unique random ID and also the public
key of the key server. At the initiation, the key server provides a certificate to any QUIP
participants linking their public key to their identifier. A publisher wishing to publish a
protected object contacts the key server. In return it will receive a content key, which is then
used for encryption. Subscribers wanting to read the encrypted publication have to contact
the key server in order to obtain the content key (this may require payment, depending on
the system).

© 2010 Taylor and Francis Group, LLC

10
Applications

This chapter considers applications of overlay technology. We focus on four key applica-
tion areas—a commercial service system, video delivery, P2P session initiation protocol
(P2PSIP), and content delivery networks (CDNs). Our commercial service example is the
Amazon Dynamo, which uses many techniques from distributed computing and overlay
systems, such as vector clocks, gossip, consistent hashing, replication, and reconciliation.
Then we discuss video delivery using overlay technologies, with emphasis on video-on-
demand (VoD). Video traffic is becoming increasingly popular, and thus techniques are
needed to ensure efficient content distribution for both real-time and on-demand media.
Then we consider the P2PSIP protocol, which aims to offer a decentralized version of the
SIP signaling protocol. Finally, we discuss CDNs based on both commercial and DHT (dis-
tributed hash table) technologies.

10.1 Amazon Dynamo

Rapid growth in e-commerce and the proliferation of different types of commercial ac-
tivities have created a simultaneous demand for new technological solutions, systems,
and platforms. The weight of this demand has been in overlay networks. There are many
examples of this concurrent development of e-commerce and its tools where the infant
market has launched the first versions of technology and a successful system design has
helped to mature the commerce, starting a continuous feedback cycle of technological so-
lutions and commercial possibilities. A good example of the process is Amazon, world’s
largest bookseller, which runs a world-wide e-commerce platform serving tens of millions
of customers and using many data centers around the world with tens of thousands of
servers.

Amazon Web services stack operates in three levels:

1. E-commerce solutions
• E-commerce service
• Historical pricing service
• Alexa thumbnails
• Mechanical turk (answers)

2. Search solutions
• Alexa web search platform
• Alexa top sites
• Alexa web information service

189
© 2010 Taylor and Francis Group, LLC

190 Overlay Networks: Toward Information Networking

3. Infrastructure solutions
• Messaging (simple queueing service)
• Storage (simple storage service)
• Grid (elastic compute cloud)

Understandably, the Amazon operating platform faces stringent requirements for perfor-
mance, reliability, and efficiency. Also, to support continuous business growth, the platform
must be highly scalable. The most important requirement is reliability, because even slight
malfunctions can cause financial losses and, furthermore, will impact the customer trust
adversely.

The Amazon platform is decentralized, loosely coupled, and service oriented, resulting
in an architecture with hundreds of separate services. In the Amazon business environ-
ment there is a particular need for storage technologies of high availability. Disks may fail,
network routes may be unreliable, or data centers may face electricity problems. Despite
all this, customers should be able to view their shopping carts and add items to it. The
shopping cart manager service has to be able to write to and read from data stores, and
the multiple data centers must always have the data available. Ability to deal with failures
in an infrastructure consisting of a very large set of components must be a central tenet of
the standard mode of operation. At any given time there are always a significant number
of server and network components in danger of failure, and Amazon’s software systems
see the ability of failure handling without troubling availability or performance as a central
requirement.

Amazon relies heavily on relational databases that are the central powering elements of
any system of e-commerce where visitors must be able to browse and search for a large
number of products. Modern relational database should be able to do this. However, there
are problems with redundancy and parallelism in large relational databases, and they might
become a point of failure mainly because processing replications is nontrivial. For example,
if two database servers need to have identical data, then synchronizing the data will be
difficult when both servers are actively reading and writing. The master/slave model is
not applicable, because the master will be burdened with the users writing information.
Thus, when a relational database grows, its limitations will rapidly become evident and
may throttle the entire system. Laterally adding more Web servers does not remedy this
situation.

Figure 10.1 illustrates the environment in which Dynamo and other Amazon core ser-
vices are used. The actual Web pages are created by page-rendering components run
on Web servers. A request routing infrastructure is used to connect the page-rendering
components, aggregator services, and the data storage services together. Dynamo is used
for the storage and maintenance of profile information, such as shopping carts and user
preferences.

Amazon has developed a number of storage technologies to attain the requirements
for reliability and scaling. The most important of these is probably Dynamo[105], a Java-
based, highly available, and scalable distributed data store meant for the Amazon platform,
where services typically have very high reliability requirements. The platform requires that
the balance between availability, consistency, cost-effectiveness, and performance must be
closely controlled. The Amazon commercial platform has a very large and diverse set of
applications with a plethora of storage requirements.

Some applications require flexible storage technology where application designers can
configure their data store specifically in a cost-effective manner. This will always result in
trade-offs to attain high availability simultaneously with guaranteed performance. Still, a
primary-key access to a data store is enough for many services on the Amazon platform.

© 2010 Taylor and Francis Group, LLC

Applications 191

Client requests

Request routing

…

Page-rendering

components

Aggregator

services

Request routing Services

Amazon

S3
Other

datastores

Dynamo instances

FIGURE 10.1
Amazon Dynamo.

To this group belong the central services of providing shopping carts, customer prefer-
ences, best seller lists, session management, product catalogues. Here the normal usage
of a relational database would lead to inefficiencies severely limiting both scalability and
availability. For these applications, Dynamo provides a primary-key-only interface.

In order to attain scalability and availability, Dynamo uses a combination of techniques:

• Consistent hashing is used to partition and replicate data objects.
• Object versioning is used to increase consistency.
• Quorum-like techniques are used to maintain consistency among replicas during

updates.

10.1.1 Architecture

A complex architecture for a storage system is necessary to operate in a production setting.
At least the following scalable and robust components are needed: components for load
balancing, data persistence, membership detection, failure detection, failure recovery, state
transfer, overload handling, replica synchronization, request routing, concurrency and job
scheduling, request marshalling, system monitoring, and configuration management. The
Amazon Dynamo architecture consists of the following key components and features:

• Nodes: Physical nodes are identical and organized into a ring. Virtual nodes are
created by the system and mapped on physical nodes, enabling hardware swapping
for maintenance and failure. Any node in the system can receive a put or get request
for any key.

• Partitioning: The partitioning algorithm specifies which nodes will store a given
object. The mechanism is automatically scaled when nodes enter and leave.

© 2010 Taylor and Francis Group, LLC

192 Overlay Networks: Toward Information Networking

• Replication: Every object will be asynchronously replicated to a number of other
nodes.

• Updating: The updating is done asynchronously and thus might result in multiple
copies with slightly different states of the object.

• Discrepancies: The discrepancies in the system are eventually reconciled, ensuring
eventual consistency.

Dynamo uses two operations in its simple interface for storing objects associated with a
key: get() and put():

1. The get(key) operation finds the object replicas, which are associated with the key in
the storage system, returning either a single object or alternatively a list of objects
with a context.

2. The put(key, context, object) operation is used to determine where the replicas of the
object are to be placed on the basis of the associated key writing the replicas to
storage.

System metadata about the object is encoded. It is opaque to the caller and includes, for
example, the version of the object. The context information is stored with the object in such
a way that it is possible for the system to verify the validity of the context object in the put
request. Both the key and the object are delivered by the caller in the form of an opaque
byte array. The system applies a MD5 hash on the key and generates a 128-bit identifier.
This is used to determine the storage nodes responsible for the serving of the key.

Dynamo is based on self-organization and emergence: nodes are identical, they can
emerge and disappear, and the data will be automatically balanced in the ring. Unlike
popular commercial data stores, Dynamo exposes issues of data consistency and reconcil-
iation logic to the developers.

Dynamo also uses a full membership scheme, with each node aware of the data hosted
by other nodes. Therefore, each node actively keeps the other nodes in the system informed
of the full routing table using gossip protocol. In smallish environments this is enough, but
scaling the design to run with tens of thousands of nodes is nontrivial because the overhead
needed to maintain the routing table is a function of the system size.

Many different applications at Amazon use Dynamo with differing configurations. The
exact way of configuring Dynamo for an application depends on the tolerance to delays or
data discrepancy. The current main uses of Dynamo are:

• Business logic–specific reconciliation, where each data object will be replicated in
multiple nodes (for example, the shopping cart service).

• Timestamp-based reconciliation, which is like the previous one but with a differ-
ent reconciliation mechanism (for example, the service that maintains customers’
session information).

• High-performance read engine, where Dynamo data store is built to be always
writeable but some services are using it as a read engine (for example, services that
maintain a product catalogue and promotional items).

Porting applications to use Dynamo should be relatively simple if the applications are
designed to handle different modes of failure and other inconsistencies that may arise.
Analysis is needed during the initial stages of the development to choose the appropriate
conflict resolution mechanisms.

© 2010 Taylor and Francis Group, LLC

Applications 193

B

C

DE

F

G

A

Key K

Nodes B, C,

and D store

keys in

range (A, B)

including K

FIGURE 10.2
Overview of the ring structure in Dynamo.

10.1.2 Ring Membership

The membership changes of nodes in the Dynamo storage ring are initiated by adminis-
trators, both to join a node or remove a node. Figure 10.2 illustrates the ring structure. The
explicit mechanism was chosen to prevent transient outages causing unnecessary rebalanc-
ing, repair, or startup operations. The membership change and its timestamp are written to
a persistent store, and a gossip-based protocol is used to propagate this information. This
leads eventually to a consistent list of membership. With the gossip mechanism, every node
in the ring regularly contacts a random ring node, reconciling the membership changes.
These contacts are also used to reconcile the token mappings (mappings of virtual nodes
in the hash space), which are stored persistently. Thus, information of partitioning and
placement propagates via the gossip-based protocol as well. Every node will be aware of
the token ranges of its peers and is therefore able to forward read/write operations to the
proper set of nodes.

If an administrator joins two nodes to the ring successively, the ring could be temporarily
in logically partitioned state before the new nodes hear of each other. Therefore Dynamo
uses seed nodes, obtained from static configuration or a configuring service. All nodes will
eventually reconcile with seeds, effectively preventing logical partitions.

10.1.3 Partitioning Algorithm

Incremental scalability is one of Dynamo’s foremost design requirements. A mechanism is
needed to partition the data dynamically over the set of nodes (which are the storage hosts)
of the system. The partitioning scheme in Dynamo uses consistent hashing for distributing
the load across multiple hosts. The output range of a hash function is basically a fixed
circular ring, and the largest hash value is wrapped around to the smallest. As discussed
in Chapter 4, in a consistent hashing scheme:

• The nodes of the system are assigned random values representing positions on the
ring.

• A data item identifiable by a key is attached to a node by first hashing the key of
the data item in order to yield its position X on the ring and then stepping the ring
clockwise to find the first node with a position larger than X.

In this way, each node occupies the local responsibility for a region in the ring lying
between the node and its predecessor on the ring. Thus, in consistent hashing the departure
or arrival of a node only affects its adjacent neighbors.

© 2010 Taylor and Francis Group, LLC

194 Overlay Networks: Toward Information Networking

However, Dynamo must consider some challenges present in consistent hashing algo-
rithms, like the random position assignment of nodes on the ring, leading to nonuniform
data and load distribution and the obliviousness of the algorithm to the performance het-
erogeneity of nodes.

Dynamo uses its own variant of consistent hashing. Nodes are assigned to multiple points
in the ring instead of the practice of mapping a node to a single point. To do this, Dynamo
uses virtual nodes, and a new node added to the system is assigned to multiple positions
in the ring.

There are three advantages in Dynamo’s usage of virtual nodes:

• The potential unavailability of a node has the consequence that the failed node’s
load is evenly dispersed among the remaining nodes.

• A newly emergent node (reentering or fresh creation) gets an equivalent amount
of load from the existing nodes.

• The system can allow for the heterogeneity of the infrastructure and make a
capacity-based decision on the number of the other nodes for which a node is
responsible.

10.1.4 Replication

Dynamo replicates its data on multiple hosts. This is done because of the need for both high
availability and durability. Each data item is replicated at N hosts, where N is an instance
parameter. Each key, k, is assigned to a coordinator node, handling the replication of the
data items within its range. The coordinator locally stores each key within its range but
also replicates the keys in the ring at the N − 1 clockwise successor nodes. Thus each node
is responsible for the ring region between itself and its Nth predecessor.

The list of nodes responsible for a particular key is called its preference list. Every node
in the system is able to determine the identity of the nodes that should be in the list for
any specific key. Because there could be node failures, the preference list must contain
more than N nodes. However, the use of virtual nodes makes it possible that the first N
successive positions for a key could be owned by less than N separate nodes. Therefore, a
key’s preference list must contain only distinct physical nodes.

10.1.5 Data Versioning

Dynamo uses a mechanism by which updates are propagated to all replicas asynchronously,
providing a measure of eventual consistency. Eventual consistency means that there could
be immediate inconsistencies: if a put() call returns to the caller before all replicas have been
updated. This could cause situations where a subsequent get() operation returns an object
without the latest updates.

In the case of no failures, there will be an upper bound on the update propagation times.
However, it is possible that under, for example, server outages all replicas are not updated
for an extended time period. All categories of Amazon applications are not vulnerable
to such inconsistencies, however. For example, the shopping cart application can operate
under these conditions. It only requires that an add-to-cart operation will be never forgotten
or rejected. If a user makes changes to an older version of the cart when the current state is
unavailable, the change is still meaningful in the cart environment and must be retained.
Still, the change should not supersede the current state of the cart, which, while unavailable,
could contain preservable changes.

© 2010 Taylor and Francis Group, LLC

Applications 195

In the Dynamo environment, add to cart and delete item from cart operations are carried
through with put() requests. Additions to and removals from the cart are executed in the
available version of the cart, and the different versions are adjusted and mediated later.
Therefore, all modifications are treated in Dynamo as new and immutable versions of the
object. This idea makes it possible for multiple versions of an object to exist simultaneously
in the storage system.

Generally, older versions are subjugated by the newer versions. The system is capable
of deciding which one is the authoritative version by syntactic reconciliation. In case of
failures combined with concurrent updates, some version branching could happen, leading
to conflicting versions of an object. Then a semantic reconciliation is performed, because
the system is unable to reconcile the differing versions of the target object. In practice, the
client must collapse the conflicting branches of data back into one. This can happen, for
example, with the shopping cart when different versions are merged. Dynamo guarantees
that an add to cart operation is never lost.

However, this is not necessarily the case with delete operation, and erased items may
then emerge back in the cart. Thus there really might be several different versions of a single
shopping cart in existence. This danger must be perceived when designing applications on
top of the Dynamo system platform.

10.1.6 Vector Clocks

Vector clocks (lists of node/counter pairs) are used to detect causality between multiple object
versions [193]. All object versions are guaranteed to have an associated vector clock. The
vector clocks are central in facilitating the checking of a multiplicity of objects. Examining
them will resolve the parallelity or the causal order of the branches.

The logic of ancestral relations goes like this: when comparing the clocks of a pair of
objects, if we find that the counters in the object A clock are less-than-or-equal-to all of
the nodes in the object B clock, then A is an ancestor of B and can be erased. If this is
not the result, A and B are in conflict requiring reconciliation. A client obtains the object
context from a read operation. The vector clock information is included in the context. When
updating an object, the client passes the context to the system; this effectively specifies the
version of object that is updated.

When Dynamo gets a read request, it will notice the multiple branches. If these are
in conflict, Dynamo returns all objects at the leaves, the context including the version
information. If an update is received using this context, the system will deem that all
versions are reconciled and consequently the differing branches are collapsed into one.

The Dynamo process using vector clocks can be clarified with a simple example:

1. A new object T1 is written by a client. The node A handling the write increases its
sequence number and uses this number to create the vector clock for T1 so that we
have now object T1 and the associated clock (A, 1).

2. Next the client updates T1. We assume that node A handles the update as well.
The updated object is T2 and the associated clock is (A, 2). T1 is the ancestor of T2,
and therefore T2 overwrites T1. However, because of the asynchronous updating,
there could well be replicas of T1 at nodes that have not updated to T2.

3. Next the same client updates T2 with a different server B handling the request.
The system now has data T3 and the clock [(A, 2), (B, 1)].

4. Now a different client reads T2, attempting to update it and node C writing the
data. The system will have object T4 (descendant of T2) with clock [(A, 2), (C, 1)].

© 2010 Taylor and Francis Group, LLC

196 Overlay Networks: Toward Information Networking

After these updates, the situation is the following:

• If a node aware of T1 or T2 receives T4 with its context (clock), it is able to determine
that T1 and T2 are obsolete and can be overwritten.

• If a node aware of T3 receives T4, it will find no causal relation between them.

Thus changes in T3 and T4 are not synchronized, and we must keep both versions of the
data and ultimately present them to a client to be reconciled semantically.

If a client reads both T3 and T4, the context of the read will be a summary of the clocks of
T3 and T4, resulting in (A, 2), (B, 1), (C, 1). The client can now perform the reconciliation.
If node A handles the write, A updates its sequence number in the version clock and the
new data object T5 will have the clock (A, 3), (B, 1), (C, 1).

Theoretically, the growing size of vector clocks might limit scalability, if a single object is
handled by multiple servers. However, the write operations are in a normal case handled
by the top N nodes in the preference list. Only when the case is a network partition or
multiple server failure might handling be done by nodes outside the set of top N nodes.
Then we might have to manage the problem of growing vector clocks. Dynamo is able to
limit the size of vector clocks by using clock truncation where a timestamp is stored with
each (node, counter) pair, indicating the last time the node updated the data item. If the
number of (node, counter) pairs reaches a preset threshold, the oldest pair is erased from
the clock.

10.1.7 Coping with Failures

The get and put operations can be used in Dynamo for all nodes and all keys. Both operations
are invoked using Amazon’s request processing HTTP framework, which is infrastructure-
specific. A client can select a node using two strategies:

1. Routing the request through a generic load balancer. This will select a node on the
basis of load information. In this case the client has no need to link Dynamo-specific
code in application.

2. Using a client library that is partition-aware and routes requests directly to the co-
ordinator nodes. The advantage in this case is the low latency achieved by skipping
a possible forwarding step.

The coordinator node sitting within the top N nodes of the preference list handles read
and write operations. Even if a request is routed to a random node through a load balancer,
it will not become a coordinator node but will forward the request to a true, accessible
coordinator among the top N nodes the preference list. This list is accessed from top down.

A consistency protocol is applied to maintain consistency in the replica set. In this pro-
tocol, two values can be configured for any successful read/write operation:

1. R is the minimum number of nodes for read.
2. W is the minimum number of nodes for write.

The requirement for R and W is R + W > N. This will produce a quorum-like system.
Furthermore, both R and W are usually set to be less than N, because this generates better
latency for operations such as put/get that are sensitive to the slowest replicas. Thus the
following will happen:

• put() request: The receiving coordinator will generate the vector clock, do a local
write, and send the new object with its context to the N accessible top nodes of the
list. The write fails if fewer than W − 1 nodes respond.

© 2010 Taylor and Francis Group, LLC

Applications 197

• get() request: The coordinator will send a read for the given key to the topmost
N reachable nodes in the preference list, waiting for R responses. If successful,
it will return the result to the client. In case of multiple versions of the data, the
coordinator evaluates the causality of the set and returns all causally unrelated
versions. This leads to the reconciliation process, and eventually the older versions
are overwritten by the reconciled version.

Dynamo has a failure-detection scheme to prevent attempts to communicate with un-
reachable nodes. Dynamo does not use a decentralized failure-detection protocol that would
maintain a globally consistent view of failures. It is sufficient to use explicit local node join
and leave methods because these inform nodes of permanent additions and removals.
Furthermore, any temporary failed nodes are detected after unsuccessful communication
attempts.

10.2 Overlay Video Delivery

Much of the expected IP traffic increase in the coming years will come from the delivery of
video data in various forms [79]. Video delivery on the Internet will see a huge increase,
and the volume of video delivery in 2013 is expected to be 700 times the capacity of the US
Internet backbone in 2000. The study anticipates that video traffic will account for 91% of
all consumer traffic in 2013. Therefore, solutions are needed on multiple protocol layers to
be able to cope with this demand. The solutions need to be ISP friendly in the sense that
unneccessary interdomain traffic is minimized [341]. In this chapter, we focus on overlay
solutions for video delivery across the Internet.

10.2.1 Live Streaming

Although most peer-to-peer (P2P) solutions, such as Gnutella, BitTorrent, and Freenet, focus
on file sharing, a number of P2P systems have been developed for live (real-time) media
streaming [35]. These systems are also called P2PTV systems. These streams are typically
TV channels [211]. In contrast to typical streaming systems, P2PTV users assist each other
in downloading the stream. Each peer thus contributes upload capacity to the P2P network.

P2P has recently become a popular alternative to Content Delivery Network (CDN) tech-
nologies in order to address the growing demands for video traffic [248]. We can take PPLive
as an example, which is a P2P-based video startup in China. PPLive1 has demonstrated the
use of 10 Mbps server distribution bandwidth to simultaneously serve 1.48 million users at a
total consumption rate of 592 Gbps [326]. This has been realized by user-assisted streaming,
in which the peers contribute resources to the P2P networks.

The aims of file-sharing and live streaming P2P differ. The former has the goal of high
piece retrieval rate and does not consider the ordering of the pieces. For example, BitTorrent
uses either rarest piece first or random piece-selection models. The latter has to balance the
retrieval rate with the media playback rate. The file-sharing algorithms require that the file
transfer completes before actions can be performed on the data. This is contrasted by the
live streaming systems, which operate on the data at runtime.

Live streaming systems require more intricate piece-selection algorithms that support
sequential retrieval of the pieces (in-order delivery). In order to balance efficiency with
retrieval rate, small deviations are typically allowed from the sequential order. Figure 10.3

1 www.pplive.com

© 2010 Taylor and Francis Group, LLC

www.pplive.com

198 Overlay Networks: Toward Information Networking

File sharing Video on demand

Playback pos.

Playback pos.
Buffer

Buffer
Playback pos.

Buffer

data from server

Live streaming BitTorrent-assisted streaming

BitTorrent

FIGURE 10.3
Comparison of piece-selection strategies.

illustrates the difference between the four types of media delivery: file sharing, VoD, live
streaming, and BitTorrent-assisted streaming.

The SplitStream system presented in Chapter 8 is an example of a DHT-based application-
layer multicast protocol that can be used to deliver live media stream. Another example is
data-driven overlay network (DONet), a system for live media streaming [360]. This system
does not have an explicit overlay structure but instead adaptively forwards data based
on current supply and demand. A new version of the system, called Coolstreaming, uses a
hybrid push-pull scheme [199].

10.2.2 Video-on-Demand

P2P has been applied extensively to on-demand streaming of stored media, typically
VoD [12, 250]. This form of data delivery has stricter delivery requirements than file sharing;
however, it does not require real-time guarantees for piece retrieval. The stored media file
needs to be retrieved at a rate that allows the pieces to be played back in a sequential order
at the media playback rate.

The VoD delivery consists of two phases, namely the transfer phase and the playback
phase. The transfer phase starts first, and the two phases are partially overlapping. A peer
joins the system as a downloader and contacts other peers in order to download parts of a
video. After a prebuffering period, the peer starts playback. When the video has finished
playing, the peer may depart. If the peer is done downloading the video before playback
is finished, it will stay as a seeder until it departs [233].

In P2P VoD systems, peers typically stay in the system as long as it takes to download
the media file. During this time they contribute upload bandwidth to the system and share
the pieces that they have. A peer may also choose to be altruistic and keep the file available
after playback, thus becoming a seed in BitTorrent terminology for the file.

BitTorrent-assisted Streaming System (BASS) BASS [104] is a hybrid system that uses
a traditional client-server VoD streaming solution, which is extended with BitTorrent.
BitTorrent is used to download non-time-sensitive data. The BitTorrent’s rarest-first
algorithm is modified to retrieve pieces that are after the current position in the playback.
Thus retrieved pieces are stored for later playback. Pieces are downloaded in sequence

© 2010 Taylor and Francis Group, LLC

Applications 199

from a dedicated media server, with the exception of pieces that have already been down-
loaded using BitTorrent or are being downloaded and are expected to be retrieved before
the playback deadline.

BiToS The BiToS system considers techniques for enhancing BitTorrent for view-as-you-
download service. This is essentially VoD using a variant of BitTorrent. A peer can start to
watch a video file while it is downloading. The motivation for VoD is clear for the peer:
playback can start immediately rather than waiting for the whole file download to complete.

The BiToS system identifies the piece-selection mechanism as the only component that
needs to be changed in order to support VoD. The key idea is to make the piece-selection
algorithm aware of the playing order to enable smooth playback. However, this is not
enough. The selection algorithm also has to support parallel downloading of pieces, the
default being the rarest first order. The BiToS system strikes a balance between these two
ways of ordering pieces.

The functional components of BiToS are the following:

• Received pieces, which contain all the downloaded pieces of the video stream. A
piece state can have one of three values: downloaded, not downloaded or missed.
A piece will be assigned the missed status if it did not meet its playback deadline.

• High-priority set, which contains the pieces of the video stream that have not been
downloaded yet, are not missed, and are near being played back. This results in
these pieces having higher priority over the other pieces.

• Remaining pieces set, which contains the pieces that have not been downloaded,
are not missed, and are not in the high priority set.

With BiToS, a peer chooses with some probability p to download a piece of the video,
which is in the high-priority set. The peer then has a probability of 1− p for a piece contained
in the remaining pieces set. This probability p denotes the balance between the need to have
pieces for immediate playback and future needs. An advantage of this approach is that the
parameter p can be adjusted during runtime [334].

VoD Piece Selection Algorithms The two well-known BitTorrent piece-selection algo-
rithms suitable for VoD are BiToS [233] and the algorithm by Shah and Paris [289]. Both
of these selection algorithms can be characterized as being window-based. They keep the
basic piece-selection strategy of BitTorrent intact but restrict piece retrieval to a certain por-
tion of the file. This window slides forward in the file as the download progresses. The
two algorithms have two major differences: the definition of the window and whether the
pieces are also requested from outside the window or not.

The starting point of the window is defined as the first piece that has not yet been
downloaded and has not missed its playback deadline. Both BiToS and the Shah and Paris
algorithm define a window size that is measured in the number of pieces. The difference
in window definitions between the two is that, when calculating which pieces are within
the window, the fixed-size window algorithm accepts both arrived and nonarrived pieces,
whereas BiToS only accepts nonarrived pieces.

Give-to-Get The Give-to-Get is a P2P VoD algorithm that discourages free-riding by let-
ting peers favor uploading to other peers that have proven to be good uploaders. As a
consequence, free-riders are only tolerated as long as there is spare capacity in the sys-
tem. Simulation studies indicate that even if 20% of the peers are free-riders, Give-to-Get

© 2010 Taylor and Francis Group, LLC

200 Overlay Networks: Toward Information Networking

provides good performance to the well-behaving peers [233]. The Give-to-Get algorithm
has been implemented in the Tribler P2P system.2

10.3 SIP and P2PSIP

The session initiation protocol (SIP) [276] is a text-based application-layer control protocol
that can be used to establish, maintain, and terminate calls between two or more end
points. The driving application for SIP has been telephony—e.g., the ability to be able to
establish audio, such as voice-over-IP (VoIP) calls, or video sessions between mobile devices.
SIP can be used to implement many of the advanced call-processing features found in
the Signaling System 7 (SS7) used in traditional telecom systems. The SIP architecture has
grown over the years and consists of a collection of IETF RFCs, Internet drafts, and best
practices. In November 2000, SIP was accepted as a 3GPP signaling protocol, and therefore
it is a key part of the IP Multimedia Subsystem (IMS) architecture for IP-based multimedia
services.

Figure 10.4 presents an overview of the SIP architecture. The architecture consists of the
user agents and proxy servers. SIP is a control-plane protocol and is used to set up sessions
between user agents and also between user agents and servers. The main task of a SIP
proxy is to mediate messages and to resolve a user’s address of record (AoR) to the current IP
address of a user. This is typically done by using DNS and a location server. SIP therefore
offers a level of indirection that can be used to support various kinds of mobility, including
session mobility [287]. The session description protocol is used to describe session properties.
Typically real-time transport protocol (RTP) or some other protocol is used for transferring
the actual content.

Decentralized VoIP calls can be seen as an emerging usage scenario. IETF has established
a working group to develop protocols that can use the SIP protocol in networks where there
are no centralized servers. The SIP architecture presented above requires the fixed-network
proxies to function. Decentralization is desirable for mobile ad hoc networks that can be
quickly deployed—for example, in case of emergency. The P2P session initiation protocol
working group (P2PSIP WG)3 is chartered to develop protocols and mechanisms for the
use of the SIP protocol in environments where the service of establishing and managing
sessions is handled by a collection of endpoints rather than centralized servers [24, 173,
215, 295].

The P2PSIP architecture is based on collections of nodes called P2PSIP peers and P2PSIP
clients. P2PSIP peers define a distributed namespace in which overlay users are identified
and provide mechanisms for locating users or resources within the P2PSIP overlay. P2PSIP
clients differ from P2PSIP peers because they only utilize the overlay for discovery and
do not contribute resources to the overlay. The overlay provides an alternative resolution
service for the peers to the standardized SIP discovery process (RFC 3263).

Figure 10.5 illustrates the P2PSIP architecture. Instead of having dedicated fixed-network
proxies, the discovery and message routing happens through a decentralized overlay—
for example, a ring DHT. Each node in the DHT is responsible for part of the SIP proxy
functionality. The processing load of the control plane signaling is therefore distributed
over the P2P network.

2 www.tribler.org
3 tools.ietf.org/wg/p2psip/

© 2010 Taylor and Francis Group, LLC

tools.ietf.org
www.tribler.org

Applications 201

DNS

server
Location

service

Proxy server Proxy server

User agent

Bob

User agent

Alice

Internet
DNS

SIP (SDP)

SIP

(SDP)

SIP

(SDP)

Media (RTP)

Location lookup

FIGURE 10.4
Overview of SIP architecture.

Figure 10.6 presents a comparison of the standard SIP and P2PSIP. The figure has two
parts, the top and bottom diagrams. The top diagram presents the standard SIP call routing
in which proxies are used to discover resources and route messages. The diagram shows the
various resolution messages that are needed in order to find the destination—namely, DNS
resolution and contacting the location server and database. The bottom diagram presents
the P2PSIP call routing scenario, which contrasts with the standard SIP call routing process.
In this case, the overlay (DHT) is used for both routing messages and for discovering the
end points. Therefore DNS and the location server are not needed.

Several different P2PSIP protocols have been proposed, such as the RELOAD, SOSIM-
PLE [223], decentralized SIP [221], DHT plug-ins [172], and P2PNS [24]. Resource location
and discovery (RELOAD) is a P2P signaling protocol for use on the Internet. The protocol

User agent

Bob

User agent

Alice

Internet

SIP

(SDP)

SIP

(SDP)

Media (RTP)

Proxy

(SIP/DHT)

Proxy

(SIP/DHT)

Proxy

(SIP/DHT)
Proxy

(SIP/DHT)

Proxy

(SIP/DHT)

DHT

FIGURE 10.5
Overview of P2PSIP architecture.

© 2010 Taylor and Francis Group, LLC

202 Overlay Networks: Toward Information Networking

DNS DNS

SIP UA
Outbound

Proxy

Outbound

Proxy
SIP UA

Location

DB

SRV & A

queries

ENUM:

NAPTR, SRV

& A queries
DB query

Invite Invite Invite

Caller Called
C/S SIP

DHT

PN

DHT

PN

DHT

PN

DHT

PN

INVITE

Caller Called

API

7

6
1

432

5

b.15,2006

P2P SIP

Location

Discovery using DHT (Chord or other)

FIGURE 10.6
Comparison of SIP and P2PSIP.

provides its clients with an abstract storage and messaging service between a set of coop-
erating peers that form the overlay network. RELOAD is designed to support a P2PSIP
network but can be utilized by other applications as well. The protocol has a security
model based on identities obtained using a certificate enrollment service. The protocol also
includes network address translation (NAT) traversal support.

The SIP usage of RELOAD allows SIP user agents to provide a P2P telephony service
without requiring permanent proxies or registration servers. The RELOAD overlay itself
performs the registration and rendezvous functions ordinarily associated with such servers.
RELOAD is an overlay network that also offers storage capability. Records are stored under
numeric addresses that are defined in the same identifier space as node identifiers. A node
identifier determines the data items that the node is responsible for storing.

We briefly summarize the key features of RELOAD:

• Security framework: In the typical P2P network environment, peers do not neces-
sarily trust each other. Therefore, a security framework is needed for building trust
between peers. RELOAD uses a central enrollment server for granting credentials
to peers. The credentials can then be used to authenticate and authorize peers.

• Usage model: The protocol has been designed to support a variety of signaling
applications. These applications include P2P multimedia communications using
SIP.

• NAT traversal: The protocol has been designed with the assumption that many
network nodes will be behind NATs or firewalls. Thus NAT traversal support
has been built into the RELOAD protocol. ICE is used to establish new protocol
connections.

• High-performance routing: The distributed processing is distributed among peers
in a P2P network. This means that the protocol needs to be lightweight.

© 2010 Taylor and Francis Group, LLC

Applications 203

• Pluggable overlay algorithms: The protocol has an abstract interface to the overlay
layer, which can be used to support a variety of different structure and unstructured
overlay algorithms. The specification defines how RELOAD is used with the Chord
DHT, which is a mandatory part of the protocol; however, other algorithms can also
be supported.

The security model of RELOAD is based on each node having one or more public key
certificates. The protocol supports both certificates obtained from a central enrollment server
and self-generated and self-signed certificates. The P2PSIP node identifier is computed as
a digest of the public key. When self-certified identifiers are used, the system is vulnerable
to a number of attacks, such as the Sybil and Eclipse attacks. Through the use of certificates,
security is provided on three layers, namely the connection, message, and object levels. In
the first level, connections between peers are secured using transport-layer security (TLS
or DTLS). In the second level, messages are signed. In the third level, stored objects must
be signed by the storing peer.

RELOAD distinguishes between clients and peers. A client is a an end system that uses
the same protocol as the peers but is not required to participate in the DHT. Peers, on the
other hand, are responsible for contributing resources to the overlay and running it. A client
uses either the peer that is responsible for the client’s identifier or an arbitrary peer in the
overlay. The latter option is provided because in many environments it is not possible for
a client to directly communicate with the designated peer due to issues pertaining to fire-
walls and NATs. The peers are required to support three overlay maintenance operations,
namely join, update, and leave. The implementation of these operations is left to the DHT
algorithm being used.

10.4 CDN Solutions

CDNs have evolved to improve Web site scalability and reliability. The first-generation
systems mostly supported static or dynamic Web pages. With the second-generation CDNs,
the focus has shifted to media delivery, such as streaming and VoD. CDNs have an important
role in supporting the network in content delivery. The Internet was designed based on the
end-to-end principle, which places the intelligence at the edges rather than the core of
the network. This means that the core is optimized for packet forwarding. CDNs extend
the end-to-end data-transport capability of the network by introducing techniques for the
optimization of content delivery. Typical techniques used by CDN systems include server
load balancing, caching, request routing, and content services.

10.4.1 Overview

The main components of a CDN architecture are content providers, CDN provider, and end
users [43]. A content provider delegates the uniform resource identifier (URI) namespace
to be replicated and distributed and buys this service from the CDN provider, or uses a
collaborative open CDN such as the Coral CDN. The CDN provider has surrogate servers
in various geographical locations and can thus distribute the requested resources efficiently.
Clients are then directed to a surrogate server based on various metrics. In practice, a CDN
is a collection of geographically distributed data centers.

The two general approaches for building CDNs are the overlay and network approach.
In the former and frequently used approach, application-specific servers and caches dis-
tributed over the network manage content replication and delivery. In this approach, the

© 2010 Taylor and Francis Group, LLC

204 Overlay Networks: Toward Information Networking

CDN architecture

Surrogate

Surrogate

Request

routing

infrastructure

Distribution

and

accounting

infrastructure

CDN

Origin

Server

Client Client

FIGURE 10.7
Content distribution networks.

basic network elements, namely routers, are not aware of the content delivery. In the lat-
ter, the network provides special support for content delivery. This approach is applicable
within smaller networks; however, the requirement for custom network elements makes it
very difficult to deploy in the wide-area environment.

Figure 10.7 presents as an example the central components of CDN systems. The example
CDN architecture consists of an origin server that is the original source of data. The idea
is that the CDN helps the origin server to distribute the data in an efficient and low-cost
manner. In order to realize this distribution, the CDN has two important parts, namely the
request routing infrastructure and the distribution and accounting infrastructure. The former is
responsible for handling client-issued data queries. The clients need to be forwarded to a
suitable surrogate or cache. The latter infrastructure is responsible for distributing the data
given by the source across the Internet using surrogates and other caches. The surrogates
store the data, and a record of this is made in the request routing infrastructure so that
queries can be forwarded properly.

In addition to distribution, accounting is also needed to keep track of how data is accessed
across the CDN. In Chapter 2 we discussed the costs of internetworking and observed that
internet service providers (ISPs) have a motivation to minimize excessive interdomain traffic,
especially through tier-1 transit. CDNs offer a convenient way to reduce this interdomain
traffic by distributing the data based on anticipated and current demand.

Taxonomy Figure 10.8 illustrates the key aspects of CDNs. A hosting CDN simply makes
data available and does not offer relaying services. Therefore a hosting CDN includes the
origin server. A relaying CDN offers either full or partial site content delivery service for
an external origin server.

A request-routing system routes requests from clients to surrogate servers. CDNs use a
variety of proprietary techniques to direct clients to the surrogate servers, including DNS-
based request routing, URL rewriting, application or network level anycast, and HTTP-
based redirection.

© 2010 Taylor and Francis Group, LLC

Applications 205

CDNs

Hosting CDN Relaying CDN

Partial-site

content delivery

Full-site content

delivery

URL rewritingDNS based

Request routing techniques

FIGURE 10.8
CDN taxonomy.

The system needs to be able to take into account various metrics when deciding to which
surrogate server a request is forwarded—for example, network proximity, distance, client
perceived latency, and replica server and data center load. The delivery technique used by
a CDN has implications for the request-routing system. The two frequently used delivery
techniques are full-site and partial-site content delivery. In the former, the CDN replicates
a whole site. In the latter, only certain resources in a site are replicated and handled by
the CDN infrastructure. In this case, the resource-specific redirection can be realized using
either DNS-based request routing or URL rewriting. Figure 10.9 illustrates DNS-based
request direction in which a DNS resolution first consults the content provider’s DNS,
which refers the DNS resolver to the CDN’s DNS. The CDN can then direct the request to
the proper surrogate server.

The full-site content delivery model is simple; however, it requires additional solutions
for dynamic content. Both models require a content outsourcing solution, which is typically
cooperative push-based, noncooperative pull-based, or cooperative pull-based. In the first

DNS

CDN DNS

CDN

Client ISP
Clients

1

6

2
3

5

4

Redirection

Content

Provider

Client DNS

(Local DNS
server for

client)

FIGURE 10.9
DNS-based request direction.

© 2010 Taylor and Francis Group, LLC

206 Overlay Networks: Toward Information Networking

content outsourcing solution, content is pushed to the surrogate servers by the origin server.
Given that surrogate servers cooperate, a greedy-global heuristic replication algorithm can
be used to optimize content placement. The second solution is used by most popular CDN
services. This approach directs clients to the closest surrogate servers. In the case of cache
miss, the surrogate servers pull content from the origin server. This means that the creation
of a new replica is delayed until the first request for the content is received. The third
solution differs from noncooperative pull because surrogate servers cooperate to fetch the
requested content. This solution is used by the Coral CDN.

The optimal placement of content on the surrogate servers is an important problem for
CDNs. The key questions pertain to what content to replicate and where to replicate [72,
178, 305]. The problem of replica placement is to select K surrogate servers out of N possible
sites such that an objective function is optimized. Typically the objective function takes into
account the network topology, client population and content access patterns. The problem of
determining the number and placement of replicas can be modeled as the center placement
problem. Two related problems are the K-median problem and the facility location problem,
which have been shown to be NP-hard [298].

The cached and replicated resources at surrogate servers have an expiration time after
which they are considered to be stale. Different cache update techniques are employed
by CDNs to ensure that the content is fresh. The most common of these techniques is the
periodic update.

CDN Types CDNs can be divided into three categories:

• Commercial
• Cooperative (federated)
• P2P-based overlays

Commercial CDNs offer content and service distribution. Examples of commercial CDNs
include Akamai and LimeLight. Both use similar domain name system (DNS) redirection
techniques to connect end clients with content servers. DNS redirection is used to reroute
client requests to local clusters of machines, in many cases data centers. This rerouting
behavior is influenced by detailed maps of the Internet topology, which are based on border
gateway protocol information and various measurement methods.

An emerging CDN technology is based on P2P, in which peers assist the CDN infrastruc-
ture in load balancing. P2P is an attractive solution because it does not involve increased
infrastructure cost and supply grows linearly with demand. This is contrasted by traditional
CDN technology, in which there is substantial initial cost and centralized scheduling and
replication algorithms. Thus CDNs are more reliable and can support quality-of-service
parameters. Rather than implementing a CDN with P2P technology alone, the combination
of the two appears to have favorable properties, namely reliability and low-cost incremental
scalability, especially when facing flash crowds [135, 136].

CoralCDN is an example of a noncommercial cooperative P2P content distribution net-
work that allows a user to run a Web site that offers high performance and scalability.
The system is based on volunteer sites that run CoralCDN to automatically replicate con-
tent [137, 342]. Another example of Web caching using a DHT is the Squirrel system, which
is based on the Pastry DHT algorithm. This system is intended for organization-wide net-
works [169]. CoDeeN is an academic CDN that provides caching of Web content and HTTP
redirection [343]. The system has been developed on top of the global PlanetLab testbed
and consists of a set of proxy servers that act both as request redirectors and surrogate
servers. Globule is an open-source collaborative CDN that provides replication of content,
server monitoring, and client request redirection to replicas. The internode latency is used

© 2010 Taylor and Francis Group, LLC

Applications 207

as a proximity measure when forwarding requests and optimally placing replicas to clients.
The system is implemented as an Apache HTTP server module [254].

Companies that operate CDNs invest in large-scale infrastructure, such as data cen-
ters, in order to be able to meet the demands for content distribution. The introduction
of a new CDN service usually involves high investments, which motivates the devel-
opment of CDN prototyping tools. One tool is the CDNSim, which is a CDN simulator
designed to be a tool for predicting the behavior of CDN services in a controlled environ-
ment [304].

Performance Performance of a CDN pertains to the average and peak volume of traffic
that can be sustained by the system. From the viewpoint of clients, latency also plays a
crucial role. In general, five key metrics are used by the content providers to evaluate the
performance of a CDN [43]:

• Cache hit ratio, which is defined as the ratio of the number of cached documents
versus total documents requested

• Reserved bandwidth, which is the measure of the bandwidth used by the origin
server

• Latency, which refers to the user-perceived response time
• Surrogate server utilization, which refers to the fraction of time during which the

surrogate servers remain busy
• Reliability, which involves packet-loss measurements that are used to determine

the reliability of a CDN

Charging CDN providers charge their customers based on the traffic volume. Thus a
logging and accounting mechanism is a crucial part of a CDN architecture. Information
pertaining to request-routing and content delivery needs to be collected and then processed
for billing and charging. Key factors in influencing the price of a CDN service include the
following:

• Number of surrogate servers
• Size of content replicated over surrogate servers
• Bandwidth cost
• Variation of traffic distribution

10.4.2 Akamai

Akamai is the market leader in CDN services and owns tens of thousands of servers across
the world in order to serve content even in the flash crowd scenarios, in which a specific
page or resource receives massive amounts of queries. As a solution to increasing content
demand, the CDN infrastructure must be able to take geographical location of both requests
and servers into account. Indeed, Akamai’s approach is based on this observation [164].

The Akamai CDN uses DNS extensively to be able to connect end users to nearby surro-
gate servers. This is realized by hosting the content in some specific host name, for example
under the Akamai domain. When an end user requests content that is available through
the CDN, the URL of the resource will initially point at the service provider. The name is
then resolved by the client’s DNS resolver, and a new host name is obtained pointing to
the CDN domain. The client then performs a secondary resolution to find an IP address
for the surrogate server hosting the content. This secondary DNS query is processed by

© 2010 Taylor and Francis Group, LLC

208 Overlay Networks: Toward Information Networking

Akamai’s own private DNS infrastructure, which can then direct the query to the nearest
surrogate. The resolution may return several IP addresses in order to allow client-side load
balancing.

The Akamai load-balancing system uses border gateway protocol (BGP) information to
determine network topology. This topology information is then combined with real-time
network statistics to derive a dynamic view of the CDN infrastructure. The state of the
surrogate servers is constantly monitored. Akamai also uses software agents that simulate
end-user behavior to measure system latency and failure rates. The CDN system can then
be provisioned based on these measurements—for example, the internal DNS system can
distribute load by varying the surrogate server IP addresses that are returned to clients.
Similarly, a top-level domain name server (NS) resolver can be instructed to direct traffic
away from overloaded data centers.

10.4.3 Limelight

Limelight Networks entered the CDN market in 2001 with a vision to deliver a media-
quality Internet experience to Internet users. The Limelight CDN provides distributed
on-demand and live delivery of various kinds of media, including video. The system is
built around data centers that host surrogate servers across the world, and it uses a similar
DNS redirection technique to that used by Akamai. Web addresses are first mapped to one
of Limelight’s data centers and then to one of the surrogates. Unlike Akamai, Limelight
allows customers direct use of CDN-based hostnames in their Web sites.

10.4.4 Coral

Coral CDN is a P2P CDN that allows users to run highly popular Web sites for the price of
a regular broadband Internet connection. The idea is to use volunteer sites that run Coral
CDN software and replicate content when users access it. The system has been designed
to help Web sites cope with flash crowds. The system is easy to use, and it requires a small
change in the hostname of an object’s URL. A P2P DNS layer is used to redirect browsers to
nearby cache nodes. This redirection effectively reduces the load on the origin Web server.
The system uses a latency-optimized hierarchical indexing abstraction called distributed
sloppy hash table (DSHT) [137, 138]. A content publisher can use CoralDNS by appending
.nyud.net:8090 to the hostname in a URL. DNS redirection is then used to direct clients to
nearby Coral Web caches. The caches cooperate to minimize the load and latency of content
access.

CoralCDN uses a key/value indexing infrastructure built on top of a DHT. The index
allows nodes to locate nearby cached copies of content. It also mitigates flash crowds by
distributing the requests across caches. The system design of the Coral DHT differs from
the more traditional decentralized algorithms in that the architecture is based on clusters
of nodes rather than nodes that are dispersed across wide areas. These clusters are exposed
in the Coral interface to higher-level software, and they are part of the DNS redirection
mechanism. In addition to this cluster-based nature, Coral also uses a weakened notion of
consistency than what is typical for DHTs.

Each Coral node belongs to several distinct DSHT clusters. Each cluster has a diameter,
which is the maximum preferred round-trip time (RTT) time. The system is parameterized
by a fixed hierarchy of diameters that are called levels. Every node is a member of one
DSHT at each level. A group of nodes can form a level-i cluster if a high-enough fraction
of their pair-wise RTTs are below the level-i diameter threshold. The depth of a hierarchy
can be arbitrary, but it can be expected to be a relatively small number (for example, 3). The
higher-level and faster clusters are queries before slower lower-level clusters.

© 2010 Taylor and Francis Group, LLC

Applications 209

Resolver Browser

Coral

dns srv

http prx

Coral

dns srv

http prx 4 4

2

5

3

9

8,11

1 6

7

10www.x.com

.nyud.net

www.x.com

.nyud.net/

Coral

dns srv

http prx

Coral

dns srv

http prx

Coral

dns srv

http prx

Coral

dns srv

http prx

Coral

dns srv

http prx

FIGURE 10.10
Overview of Coral.

Coral offers the following API for applications:

• put(key, val, ttl, [levels]): It inserts a mapping from the key to some value and spec-
ifies a time-to-live for the mapping. The caller may optionally specify restriction
of the operation to certain levels of the hierarchy.

• get(key, [levels]): It retrieves a subset of the values stored under a key. The caller
may optionally specify restriction of the operation to certain levels of the
hierarchy.

• nodes(level, count, [target], [services]): It returns the specified number (count) of
neighbors belonging to the node’s cluster at the specified levels. The caller may
optionally specify the target IP address, which is then taken into account when
selecting the neighbors. In this case, the neighbors should be near the given tar-
get. The services option can be used to find only neighbors that run the given
service.

• levels(): It returns the number of levels in the Coral’s hierarchy and their RTT
thresholds.

Figure 10.10 shows the steps for accessing a Coral-based URL—for example, http://www.x.-
com.nyud.net:8090/. The two main stages are DNS redirection and HTTP request handling.
Both of these stages involve the Coral indexing infrastructure.

1. A client consults its local DNS resolver for www.x.com.nyud.net.
2. The local resolver uses some Coral DNS servers, possibly starting from the top-level

DNS servers.
3. A Coral DNS server receives the query and probes the client to determine the RTT

and last few network hops.
4. The probe results are then used to find any known nameservers or HTTP proxies

near the client.

© 2010 Taylor and Francis Group, LLC

210 Overlay Networks: Toward Information Networking

5. The DNS server sends a reply to the client that includes any servers found through
Coral. If no servers were found, the DNS server returns a random set of nameservers
and proxies.

6. The client receives the address of a Coral HTTP proxy for www.x.com.nyud.net.
7. The client sends the HTTP request http://www.x.com.nyud.net:8090/ to the proxy.
8. The proxy looks up the Web object’s URL in Coral.
9. If Coral finds a node caching the object identified by the URL, the proxy downloads

the object from the node. Otherwise, the proxy downloads the object from the origin
server.

10. The proxy stores the object and returns it to the client.
11. The proxy stores a reference (identified by the object’s URL) to itself in Coral.

The Coral DHT uses 160-bit identifier values as keys. As with many DHTs, node identifiers
are defined in the same 160-bit identifier space. A node’s identifier is the SHA-1 hash of
its IP address. A distance metric is defined for keys to be able to cluster keys. Every DSHT
node maintains a routing table that is used to find the closest node for any given key. The
routing tables are based on Kademlia, which was presented in Chapter 5 and uses the XOR
geometry. The put operation stores a key/value pair at a node closest to the key. Similarly, the
get operation uses the routing tables to find the closest node that is responsible for the key.

The Coral algorithm routes messages to their destination (key) by visiting nodes whose
distances to the key are approximately halved at each hop. Coral uses sloppy storage that
caches key/value pairs at nodes that are close to the key in order to reduce congestion in
the routing system. Frequent cached references to the same key can result in congestion in
the shortcut nodes. The sloppy nature of Coral can be seen as a distinguishing feature that
contrasts the typical DHT algorithms, which place key/value pairs to the node responsible
for the closest key.

Figure 10.11 illustrates the Coral DHT routing algorithm. Each Coral node has the same
identifier in all clusters. The node is placed in the same place in each of its clusters. The
higher-level clusters are sparser than lower-level clusters. A node can be identified in a
cluster by its shortest unique identifier prefix. The prefixes are stored in trees based on the
XOR metric. A key observation is that routing is first performed using a higher-level cluster
and then can be switched to a lower-level cluster on the fly. In the figure, a requesting node
R initiates a query on its highest-level (level-2) cluster. This is done in order to find nearest
replicas. The routing finds a node storing the requested key (1) and the value is returned to
R. In this case, it is not necessary to consider the lower-layer clusters. If this routing in the
highest-level does not produce a cache hit, the request will reach the node C2, signifying
the failure to locate the object at this level. The requesting node R then searches the level-1
cluster. R continues the search from C2 on level-1 (3) because the identifier space up to
the prefix of C2 has already been covered. Eventually the search can switch to the global
cluster (4). Even in this case, the search is efficient because lookups avoid testing the same
identifier subspaces multiple times.

Sloppiness in the DSHT mitigates hotspots when nodes search for new clusters and
test random subsets of nodes for acceptable RTT thresholds. Without sloppiness in the
structure, hotspots could distort RTT measurements and limit scalability. The system allows
the merging of clusters into the same namespace and the splitting of clusters into disjoint
subsets, while minimizing oscillatory behavior. Merging can be started as a side-effect of a
lookup to a node that has changed clusters. The notion of a cluster center provides a stable
point about which to separate nodes.

Although the Coral CDN offers scalability and flexibility, centralized CDNs appear to of-
fer two benefits over this system. The network measurement and monitoring in centralized

© 2010 Taylor and Francis Group, LLC

Applications 211

C1

C0

C2 R4

0

0

0

0

0

0

0

01

1

1

1

1

1

1

1

10

0

0

0 0

0

0

0

0 1

1
1

1

11

1

1

C1 C2 R
3

0

0

0 0

0

0

0

0

1

1

11 1

1

1

1

C2 R
2

1

0

0 0

1

1

Level 0

Level 1

Level 2

00…00

k

11…11160-bit id space

FIGURE 10.11
XOR-based routing in Coral.

CDNs can be seen to be more accurate and reflect the network topology better. Coral CDN
does not rely on BGP topology information. Moreover, the system does not have informa-
tion about node identities or their precise locations. The system offers less aggregate storage
capacity than centralized CDNs, because the cache management is completely localized.
Thus the approach appears to be more suitable for small organizations with static content.
Indeed, performance measurements of Coral indicate that it allows under-provisioned Web
sites to achieve significantly higher capacity.

10.4.5 Comparison

Figure 10.12 presents a comparison of the selected CDN technologies discussed in this
chapter. Akamai, Limelight Networks, and many other commercial CDNs utilize a pro-
prietary network of data centers distributed across the world in order to provide efficient
content distribution. These systems can support both static and dynamic content, as well
as various streaming and on-demand content types. The key architectural component is
the request-routing system that is used to forward clients to nearest surrogate servers that
cache the requested data. The problem of optimally placing surrogates and distributing the
content over them is nontrivial and requires constant monitoring of the network, request
patterns, and the load of the surrogates. Most CDNs use DNS-based redirection techniques
because this can be implemented in a transparent fashion to clients and does not require
changes to basic network infrastructure.

A number of academic experimental CDNs have been proposed, such as Coral, CoDeeN,
and Globule. Many of the proposals are based on a DHT—for example, Coral. The aim is

© 2010 Taylor and Francis Group, LLC

212 Overlay Networks: Toward Information Networking

Support for static content,

monitoring services, DNS-

based request-routing

Apache extension,

Open-source collaborative

CDN

Academic

Replication of content, server

monitoring, redirection to available

replicas

Globule

Support for static content,

HTTP direction

Consistent hashing for

mapping data to servers

Experimental,

hosted on PlanetLab,

collaborative CDN

Academic testbed

Caching of content and redirection

of HTTP requests

CoDeeN

Uses a DHT algorithm

(Kademlia), support for

static content, DNS-based

request-routing

Experimental,

hosted on PlanetLab

Academic

Content replication based on

popularity (on demand), addresses

flash crowds

Coral

Edge-based solutions for

content delivery, streaming

support, custom CDN for

custom delivery solutions,

DNS-based request-routing

Surrogate servers in over

70 locations in the world

Commercial

On-demand distribution, live video,

music, games, etc.

Limelight networks

Edge platform for handling

static and dynamic content,

DNS-based request-routing

Market leaderCommercial

CDN service including streaming

data

Akamai

SolutionsCoverageTypeCDN

FIGURE 10.12
Comparison of selected CDN technologies.

to be able to provide a decentralized and collaborative CDN in which clients contribute
resources to the system. This would ideally allow efficient low-cost content delivery and a
way to deal with flash crowds. PlanetLab is used to host many of these proposals. The P2P
CDN solutions appear to be the most suitable for small sites because they do not provide
guarantees on the collaborative CDN capacity. Moreover, they typically do not have as
robust a monitoring infrastructure as commercial CDNs.

© 2010 Taylor and Francis Group, LLC

11
Conclusions

In this book we have examined a number of algorithms, structures, and systems for coping
with vast amounts of information. We are currently in the exabyte era and entering the era of
the zettabyte and beyond. Current IP networking trends include peer-to-peer (P2P), Inter-
net broadcast, both Internet and commercial video-on-demand (VoD), and high-definition
content. These trends contribute to the load on the network and require new solutions to
keep the network cost efficient and manageable.

One key observation regarding the IP infrastructure is that it is very difficult to change.
Another observation is that the end-to-end communication nature of the Internet, the very
idea of placing intelligence at the edges, provides a natural building ground for over-
lay systems. Therefore, overlay technology aims to extend network features in a low-cost
and deployable fashion. It is clear that if file sharing clients support each other, the ser-
vice provider does not have to have massive infrastructure or bandwidth to provide the
resources. Indeed, this is where the strength of P2P systems lie, this ability of realizing
information delivery systems in a cooperative way, utilizing local resources in the system.

Given the scale of the Internet, currently peer-assisted service delivery is becoming popu-
lar in order to alleviate scalability and performance issues. The classic examples of P2P ser-
vices are BitTorrent for bulk data delivery and Skype for VoIP telephone calls. Infrastructure-
based services may also be peer-assisted, with the clients, peers, collaborating in order to
make the service more efficient and scalable.

Overlays also have limitations, as we have observed in this book. For example, they in-
troduce additional latency (stretch) into the communications, may violate organizational
boundaries, may suffer from connectivity problems due to firewalls and NATs, and are
susceptible to malicious nodes and other security problems. Many P2P systems are prone
to the tragedy of the commons, in which most peers do not contribute to the system but
only selfishly consume resources and services offered by the P2P network. The study of
incentives regarding participation in P2P networks has attracted a lot of interest, and many
solutions have been proposed. Trust management can be seen to be crucial for P2P net-
works. The EigenTrust reputation algorithm and the give-to-get algorithm are examples of
solutions in this domain.

We examined structured, unstructured, and hybrid solutions. The routing structures
come in various forms and shapes, and they can be deterministic or probabilistic. The
geometry of an overlay imposes constraints on its structure. Structure is necessary in order to
ensure scalability. Examples of early systems that were unstructured but later incorporated
structure in order to be more scalable include Gnutella and Freenet. Freenet is also an
interesting example of small-world routing, in which a small number of selectively picked
shortcuts result in improved scalability and network diameter. Structure also plays a crucial
role for DHTs, in which the geometry and the way routing tables are built and maintained
determine the scalability.

Many P2P systems and overlay solutions use probabilistic filters, typically Bloom filters
and variants, to be able to maintain a compact representation of data items. Bloom filters
offer constant-time lookups and a trade-off between the size of the filter and false positives.

213
© 2010 Taylor and Francis Group, LLC

214 Overlay Networks: Toward Information Networking

Since data items may need to be updated and removed, a number of Bloom filter variants
have been proposed that support counting and deletion of elements. Bloom filters are used
extensively by P2P software, such as Gnutella, and Web caching systems, such as Squid.

Although P2P technology can be seen as being very successful with large-scale deploy-
ments with BitTorrent, Gnutella, and Skype, to name some popular systems, it also has not
resulted in a revolution in how distributed applications are developed and deployed. The
client-server paradigm still prevails, and it is the dominant paradigm for Web applications.
Indeed, there are only a few examples of advanced DHT algorithms being used in pro-
duction systems. Of the older technologies, linear hashing and LH* are extensively used in
cluster solutions.

The more recent pioneers of this area are Amazon and Google, which use sophisticated
algorithms to be able to manage and distribute massive amounts of data. The Amazon
Dynamo system is a key example in this book of a system in production that uses advanced
solutions from distributed computing. On the other hand, Amazon Dynamo is still owned
and operated by a single company. Other deployed examples of the more advanced DHT
technologies include the Coral CDN and Kademlia.

Regarding the query expressiveness of P2P systems, we can say that unstructured systems
are more expressive than structured systems, because they allow each peer to evaluate the
queries and the network topology is not constrained by the query language. Content-based
routing is a recent research area in which messages are forwarded based on their contents.
This model is expressive but also has scalability limitations in terms of the load that routers
can handle. Unstructured and structured networks can be combined to form hybrids, and,
in a similar manner, content-based routing systems can use structured networks to improve
efficiency and scalability.

One possible application of overlay technology for the Internet is in the form of a control
plane. In traditional telecommunications systems, there is a clear separation between the
control plane and the content plane. In the Internet, there is no such separation and all
interactions are over IP, and UDP or TCP. Overlays provide a scalable way to implement
the separation of the content and control planes over the Internet. The i3 overlay can be
seen as an example system that could offer this kind of service. The challenge with this
kind of a service would be in taking organizational boundaries into account in the overlay.
Content-based systems can also be seen as candidates for a control-plane that supports
expressive information routing. An unsolved problem with content-based routing systems
is spam and how to prevent it.

Cloud computing aims to provide various functions and services over the Internet by ex-
posing remotely invocable APIs or virtualized resources. The cloud-based applications and
services are facilitated by the cloud infrastructure, which needs to be resilient and scalable.
The term cloud computing encompasses various kinds of services and service infrastruc-
tures. Typically, the infrastructure involves communications, storage, data distribution, and
security facilities. These facilities are often hosted by data centers and high-performance
computing clusters.

Current cloud infrastructure providers include Amazon, Google, Microsoft, and Yahoo.
Figure 11.1 illustrates the cloud infrastructure that spans over the Internet. Amazon Web
Services provide services on a utility computing basis, and the infrastructure is based on
scalable structures such as those used in the Dynamo platform. Google App Engine uses
dedicated infrastructure to execute applications and store their data. App Engine supports
two programming languages, namely Python and Java, and offers a limited set of APIs—for
example, nonrelational data storage using the BigTable structure.

Overlay technology can been seen in a facilitating role in cloud computing and Internet
services in general. In this book we have presented the basic building blocks of this new
infrastructure that have been developed over the past decade. Many of the solutions can

© 2010 Taylor and Francis Group, LLC

Conclusions 215

The Cloud

Salesforce

Google
Microsoft

Amazon

YahooZoho

FIGURE 11.1
Cloud services.

also be applied for solutions on layers of the protocol other than the application layer.
For example, Bloom filters can also be used on network layer routers. From the viewpoint
of layering and network routers, overlay technology can be seen as a way to experiment
with different kinds of alternatives for both intradomain and interdomain routing. Some of
these solutions may then ultimately replace some of the current network layer technology
in routers.

Wide-area overlays in the form of data-centric and content-based systems are not yet
mainstream solutions, but they offer great promise for application developers and users
alike in that routing, forwarding, and processing is performed in terms of the supply and
demand for data. Indeed, the solutions covered in the book are paving the way toward
information networking, in which the data supply and demand drives the network and of-
fers good placement and distribution of data in terms of a number of parameters, including
performance, accountability and organizational boundaries, security, and business models.
There are many research questions still unanswered for information networking; however,
the groundwork has already been done in terms of cluster-based systems and unstructured,
structured, and hybrid decentralized overlays.

© 2010 Taylor and Francis Group, LLC

© 2010 Taylor and Francis Group, LLC

References

1. CIDR Report, 2009. http://www.cidr-report.org.
2. Shen Lin, Francois Taı̈ani, and Gordon S. Blair. 2008. Facilitating gossip programming with the

GossipKit framework. Lecture notes in computer science. In DAIS 5053:238–252. Oslo, Norway.
3. Masayuki Abe. 1998. Universally verifiable mix-net with verification work independent of

the number of mix servers. In Proceedings of EUROCRYPT 1998, LNCS 1403, Espoo, Finland:
Springer-Verlag.

4. Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Manfred
Hauswirth, Magdalena Punceva, and Roman Schmidt. 2003. P-Grid: A self-organizing struc-
tured P2P system. SIGMOD Rec. 32(3):29–33.

5. Lada A. Adamic. 2000. Zipf, power-law, Pareto—a ranking tutorial. Technical Report, Oct.: In-
formation Dynamics Lab, HP Labs, Palo Alto, CA.

6. Lada A. Adamic and Bernardo A. Huberman. 2002. Zipf’s law and the Internet. Glottometrics
3:143–150.

7. Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar D. Chandra.
1999. Matching events in a content-based subscription system. In PODC ’99: Proceedings of the
eighteenth annual ACM symposium on principles of distributed computing, 53–61, New York: ACM
Press.

8. Jalal Al-Muhtadi, Roy Campbell, Apu Kapadia, M. Dennis Mickunas, and Seung Yi. 2002.
Routing through the mist: Privacy preserving communication in ubiquitous computing envi-
ronments. In ICDCS ’02: Proceedings of the 22nd international conference on distributed computing
systems (ICDCS’02), 74, Washington, DC: IEEE Computer Society.

9. David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen, Daekyeong Moon,
and Scott Shenker. 2008. Accountable internet protocol (AIP). In SIGCOMM ’08: Proceedings of
the ACM SIGCOMM 2008 conference on data communication, 339–350, New York: ACM.

10. Ross J. Anderson, Roger M. Needham, and Adi Shamir. 1998. The steganographic file system.
In Proceedings of the 2nd international workshop on information hiding, 73–82, London: Springer-
Verlag.

11. Stephanos Androutsellis-Theotokis and Diomidis Spinellis. 2004. A survey of peer-to-peer con-
tent distribution technologies. ACM Comp. Surv. 36(4) (dec.):335–371.

12. Siddhartha Annapureddy, Saikat Guha, Christos Gkantsidis, Dinan Gunawardena, and Pablo
Rodriguez. 2007. Exploring VoD in P2P swarming systems. In INFOCOM, 2571–2575. Anchor-
age, Alaska.

13. James Aspnes and Gauri Shah. 2007. Skip graphs. ACM Trans. Algo. 3(4):37.
14. Tuomas Aura. 2005. Cryptographically generated addresses (CGA). RFC 3972, Mar.: IETF.
15. Baruch Awerbuch and Christian Scheideler. 2006. Towards a scalable and robust DHT. In SPAA

’06: Proceedings of the 18th annual ACM symposium on parallelism in algorithms and architectures,
318–327, New York: ACM.

16. Robert Axelrod. 1984. The evolution of cooperation. New York: Basic Books.
17. Robert Axelrod. 1997. The complexity of cooperation: Princeton University Press. August.
18. Sebastien Baehni, Patrick Th. Eugster, and Rachid Guerraoui. 2004. Data-aware multicast. In

Proceedings of the 2004 international conference on dependable systems and networks (DSN 2004),
233–242. Florence, Italy.

19. Rena Bakhshi, Daniela Gavidia, Wan Fokkink, and Maarten Steen. 2009. An analytical model of
information dissemination for a gossip-based protocol. In ICDCN ’09: Proceedings of the 10th
international conference on distributed computing and networking, 230–242, Berlin, Heidelberg:
Springer-Verlag.

217
© 2010 Taylor and Francis Group, LLC

218 References

20. Hari Balakrishnan, Scott Shenker, and Michael Walfish. 2003. Semantic-free referencing in linked
distributed systems. In 2nd international workshop on peer-to-peer systems (IPTPS ’03), February.
Berkeley, CA.

21. Roberto Baldoni, Carlo Marchetti, Antonino Virgillito, Roman Vitenberg. 2005. Content-based
publishsubscribe over structured overlay networks. In International conference on distributed
computing systems (ICDCS 2005). 437–446. Columbus, OH.

22. Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni, and Sara Tucci-
Piergiovanni. 2007. TERA: Topic-based event routing for peer-to-peer architectures. In DEBS
’07: Proceedings of the 2007 inaugural international conference on distributed event-based systems,
2–13, New York: ACM.

23. Lali Barrière, Pierre Fraigniaud, Evangelos Kranakis, and Danny Krizanc. 2001. Efficient routing
in networks with long range contacts. In DISC ’01: Proceedings of the 15th international conference
on distributed computing, 270–284, London: Springer-Verlag.

24. Ingmar Baumgart. 2008. P2PNS: A secure distributed name service for P2PSIP. In Proceedings
of the 6th annual IEEE international conference on pervasive computing and communications (PerCom
2008), Mar., 480–485. Hong Kong, China.

25. Ingmar Baumgart, Bernhard Heep, and Stephan Krause. 2007. OverSim: A flexible overlay
network simulation framework. In Proceedings of the 10th IEEE global internet symposium (GI ’07)
in conjunction with IEEE INFOCOM 2007, May, 79–84. Anchorage, AK.

26. J. Robert von Behren, Eric A. Brewer, Nikita Borisov, Michael Chen, Matt Welsh, Josh
MacDonald, Jeremy Lau, and David E. Culler. 2002. Ninja: A framework for network services.
In ATEC ’02: Proceedings of the general track of the annual conference on USENIX annual technical
conference, 87–102. Berkeley, CA: USENIX Association.

27. András Belokosztolszki, David M. Eyers, Peter R. Pietzuch, Jean Bacon, and Ken Moody. 2003.
Role-based access control for publish/subscribe middleware architectures. In Proceedings of
the 2nd international workshop on distributed event-based systems (DEBS’03), ACM SIGMOD. San
Diego, CA.

28. Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. 2004. Mercury: Supporting
scalable multi-attribute range queries. SIGCOMM Comput. Commun. Rev. 34(4):353–366.

29. Ruchir Bindal, Pei Cao, William Chan, Jan Medved, George Suwala, Tony Bates, and Amy
Zhang. 2006. Improving traffic locality in BitTorrent via biased neighbor selection. In ICDCS,
66 (4–7 Jul.). Lisboa, Portugal.

30. Ken Birman. 2007. The promise, and limitations, of gossip protocols. SIGOPS Oper. Syst. Rev.
41(5):8–13.

31. Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and Yaron Minsky.
1999. Bimodal multicast. ACM Trans. Comput. Syst. 17(2):41–88.

32. Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7):422–426.

33. Christian Böhm, Stefan Berchtold, and Daniel A. Keim. 2001. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3):322–373.

34. Béla Bollobás and Oliver Riordan. 2004. The diameter of a scale-free random graph. Combina-
torica 24(1):5–34.

35. Thomas Bonald, Laurent Massoulié, Fabien Mathieu, Diego Perino, Andrew Twigg. 2008. Epi-
demic live streaming: Optimal performance trade-offs. In Proceedings of ACM SIGMETRICS
(2–6 Jun.), 325–336. Annapolis, Maryland.

36. Francois Bonnet, Anne-Marie Kermarrec, and Michel Raynal. 2007. Small-world networks:
From theoretical bounds to practical systems. In OPODIS, vol. 4878 of Lecture notes in computer
science, ed. Eduardo Tovar, Philippas Tsigas, and Hacne Fouchal, 372–385: Guadeloupe, French
West Indies: Springer.

37. Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
2006. Beyond bloom filters: From approximate membership checks to approximate state
machines. In SIGCOMM ’06: Proceedings of the 2006 conference on applications, technologies,
architectures, and protocols for computer communications, 315–326, Pisa Italy: ACM.

© 2010 Taylor and Francis Group, LLC

References 219

38. Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
2006. An improved construction for counting bloom filters. In 14th Annual European symposium
on algorithms, LNCS 4168, 684–695.

39. Giovanni Bricconi, Emma Tracanella, Elisabetta Di Nitto, and Alfonso Fuggetta. 2000. Analyz-
ing the behavior of event dispatching systems through simulation. Lecture notes in computer
science, In HiPC (Dec. 17–20), 131–140. Banglore, India.

40. Andrei Broder and Michael Mitzenmacher. 2002. Network applications of bloom filters: A
survey. In Internet Mathematics, vol. 1, 636–646.

41. Andrei Z. Broder and Michael Mitzenmacher. 2001. Using multiple hash functions to improve
IP lookups. In INFOCOM (22–26 Apr.), 1454–1463. Anchorage, AL.

42. Ioana Burcea, Hans-Arno Jacobsen, Eyal de Lara, Vinod Muthusamy, and Milenko Petrovic.
2004. Disconnected operation in publish/subscribe middleware. In Mobile data management.
Berkeley, CA.

43. Rajkumar Buyya, Mukaddim Pathan, and Athena Vakali, eds. 2008. Content delivery networks
(lecture notes electrical engineering): Springer-Verlag.

44. John Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost. 2002. Informed con-
tent delivery across adaptive overlay networks. In SIGCOMM ’02: Proceedings of the 2002 con-
ference on applications, technologies, architectures, and protocols for computer communications, 47–60,
Pittsburgh, PA: ACM.

45. Luis Felipe Cabrera, Michael B. Jones, and Marvin Theimer. 2001. Herald: Achieving a global
event notification service. In Proceedings of the 8th workshop on hot topics in operating systems
(HotOS-VIII). Elmau/Oberbayern, Germany.

46. Alexis Campailla, Sagar Chaki, Edmund Clarke, Somesh Jha, and Helmut Veith. 2001. Efficient
filtering in publish-subscribe systems using binary decision diagrams. In ICSE ’01: Proceedings of
the 23rd international conference on software engineering, 443–452, Washington, DC: IEEE Computer
Society.

47. Fengyun Cao and Jaswinder Pal Singh. 2005. MEDYM: Match-early with dynamic multicast
for content-based publish-subscribe networks. In Proceedings of the ACM/IFIP/USENIX 6th in-
ternational middleware conference Nov. 28–Dec. 2 (Middleware 2005). Grenoble, France.

48. Fengyun Cao and Jaswinder Pal Singh. 2004. Efficient event routing in content-based publish-
subscribe service networks. In Proceedings of IEEE INFOCOM, Mar. HongKong, China: IEEE.

49. Mauro Caporuscio, Paola Inverardi, Patrizio Pelliccione. 2002. Formal analysis of clients mobil-
ity in the Siena publish/subscribe middleware. Technical Report, Oct.: Department of Computer
Science, University of Colorado.

50. Mauro Caporuscio, Antonio Carzaniga, and Alexander Wolf. 2002. An experience in evaluating
publish/subscribe services in a wireless network. In WOSP ’02: Proceedings of the 3rd international
workshop on software and performance, 128–133. New York: ACM.

51. Mauro Caporuscio, Antonio Carzaniga, and Alexander L. Wolf. 2003. Design and evaluation
of a support service for mobile, wireless publish/subscribe applications. IEEE Trans. Software
Eng., 29(12) (Dec.):1059–1071.

52. Damiano Carra, Giovanni Neglia, and Pietro Michiardi. 2008. On the impact of greedy strategies
in BitTorrent networks: The case of BitTyrant. In Peer-to-Peer Computing, 311–320, 200. Aachen,
Germany.

53. Antonio Carzaniga. 1998. Architectures for an event notification service scalable to widearea networks.
PhD thesis, Politecnico di Milano, Milano, Italy.

54. Antonio Carzaniga, Jing Deng, and Alexander L. Wolf. 2001. Fast forwarding for content-based
networking. Technical Report, Nov., CU-CS-922-01, Department of Computer Science, University
of Colorado.

55. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 1999. Interfaces and algorithms
for a wide-area event notification service. Technical Report, Oct. Revised May, CU-CS-888-99, De-
partment of Computer Science, University of Colorado, 2000.

56. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 2000. Content-based addressing
and routing: A general model and its application. Technical Report, Jan., CU-CS-902-00, Department
of Computer Science, University of Colorado.

© 2010 Taylor and Francis Group, LLC

220 References

57. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 2001. Design and evaluation
of a wide-area event notification service. ACM Trans. Comp. Sys. 19(3) (Aug.):332–383.

58. Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf. 2004. A routing scheme for
content-based networking. In Proceedings of IEEE INFOCOM 2004, Mar., Hong Kong, China:
IEEE.

59. Antonio Carzaniga and Alexander L. Wolf. 2001, Content-based networking: A new com-
munication infrastructure. In Infrastructure for Mobile and Wireless Systems, (Oct. 15), 59–68.
Scottsdale, AZ.

60. Antonio Carzaniga and Alexander L. Wolf. 2003. Forwarding in a content-based network. In
Proceedings of ACM SIGCOMM, Aug. 2003, 163–174, Karlsruhe, Germany.

61. Miguel Castro, Manuel Costa, and Antony Rowstron. 2004. Should we build Gnutella on a
structured overlay? SIGCOMM Comput. Commun. Rev. 34(1):131–136.

62. Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S. Wallach.
2002. Secure routing for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev.
36(SI):299–314.

63. Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron. 2002. Exploiting network
proximity in distributed hash tables. In Proceedings of the international workshop on future
directions in distributed computing (FuDiCo), June. Bertinoro, Italy.

64. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Rowstron,
and Atul Singh. SplitStream: High-bandwidth multicast in a cooperative environment. 2003.
In 19th ACM symposium on operating systems principles (SOSP’03), Oct. New York.

65. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. 2002. One ring
to rule them all: Service discovery and binding in structured peer-to-peer overlay networks.
In EW10: Proceedings of the 10th workshop on ACM SIGOPS European workshop, 140–145, New
York: ACM.

66. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. 2002. Scribe: A
large-scale and decentralized application-level multicast infrastructure. IEEE J. Selected Areas
in Commun. (JSAC) 20(8) (Oct.).

67. Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue B. Moon. 2007. I
tube, you tube, everybody tubes: Analyzing the world’s largest user generated content video
system. In Internet Measurement Conference, (24–26 Oct.), 1–14. San Diego, CA.

68. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: A distributed
storage system for structured data. In OSDI ’06: Proceedings of the 7th USENIX symposium on
operating systems design and implementation, 5–15. Berkeley, CA: USENIX Association.

69. David L. Chaum. 1981. Untraceable electronic mail, return addresses, and digital 263
pseudonyms. Commun. ACM 24(2) (Feb.):84–90.

70. Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. 2003.
Making gnutella-like P2P systems scalable. In SIGCOMM ’03: Proceedings of the 2003 conference
on applications, technologies, architectures, and protocols for computer communications, 407–418,
New York: ACM.

71. Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. 2004. The Bloomier filter:
an efficient data structure for static support lookup tables. In SODA ’04: Proceedings of the
15th annual ACM-SIAM symposium on discrete algorithms, 30–39, Philadelphia, PA: Society for
Industrial and Applied Mathematics.

72. Yan Chen, Lili Qiu, Weiyu Chen, Luan Nguyen, Randy H. Katz, and Y. H. Katz. 2003. Efficient
and adaptive web replication using content clustering. IEEE J. Select. Areas Commun. 21:979–994.

73. Yuan Chen, Karsten Schwan, and Dong Zhou. 2003. Opportunistic channels: Mobility-aware
event delivery. In Middleware (16–20 Jun.), 182–201. Rio de Janeiro, Brazil.

74. Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg. 2007. SpiderCast:
A scalable interest-aware overlay for topic-based pub/sub communication. In DEBS ’07:
Proceedings of the 2007 inaugural international conference on distributed event-based systems, 14–25,
New York: ACM.

75. David R. Choffnes and Fabián E. Bustamante. 2008. Taming the torrent: A practical approach
to reducing cross-ISP traffic in peer-to-peer systems. SIGCOMM Comput. Commun. Rev.
38(4):363–374.

© 2010 Taylor and Francis Group, LLC

References 221

76. Nicolas Christin and John Chuang. 2005. A cost-based analysis of overlay routing geometries.
In INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies.
Proceedings IEEE (13–17 Mar.) 4:2566–2577. Miami.

77. Nicolas Christin, Andreas S. Weigend, and John Chuang. 2005. Content availability, pollution
and poisoning in file sharing peer-to-peer networks. In EC ’05: Proceedings of the 6th ACM
conference on electronic commerce, 68–77, New York: ACM.

78. Cisco. 2008. The exabyte era. http://www.hbtf.org/files/cisco_ExabyteEra.pdf, January.
79. Cisco. 2009. Cisco visual networking index: Forecast and methodology, 2008–2013, June: Cisco.
80. Dave Clark, Bill Lehr, Steve Bauer, Peyman Faratin, Rahul Sami, and John Wroclawski. 2006.

Overlay networks and the future of the Internet. Commun. Strategies (63).
81. David D. Clark. 1988. The design philosophy of the DARPA internet protocols. In SIGCOMM,

Aug., 106–114. Stanford, CA: ACM.
82. Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, and Brandon Wiley. 2002.

Protecting free expression online with Freenet. IEEE Internet Comput. 6(1):40–49.
83. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. 2001. Freenet: A

distributed anonymous information storage and retrieval system. In International workshop on
designing privacy enhancing technologies, 46–66, New York: Springer-Verlag.

84. Edith Cohen and Scott Shenker. 2002. Replication strategies in unstructured peer-to-peer
networks. In SIGCOMM ’02: Proceedings of the 2002 conference on applications, technologies,
architectures, and protocols for computer communications, 177–190, New York: ACM.

85. Reuven Cohen, Keren Erez, Daniel Ben-Avraham, and Shlomo Havlin. 2000. Resilience of the
Internet to random breakdowns. Phys. Rev. Lett. 85(21) (Nov.):4626+.

86. Saar Cohen and Yossi Matias. 2003. Spectral bloom filters. In SIGMOD ’03: Proceedings of the
2003 ACM SIGMOD international conference on management of data, 241–252, New York: ACM.

87. George Colouris, Jean Dollimore, and Tim Kindberg. 1994. Distributed systems: Concepts and
design. 2nd ed. Boston, MA: Addison-Wesley.

88. Brian F. Cooper and Hector Garcia-Molina. 2005. Ad hoc, self-supervising peer-to-peer search
networks. ACM Trans. Inf. Syst. 23(2):169–200.

89. Amy Beth Corman, Peter Schachte, and Vanessa Teague. 2007. QUIP: A protocol for securing
content in peer-to-peer publish/subscribe overlay networks. In ACSC ’07: Proceedings of the
30th Australasian conference on computer science, 35–40, Darlinghurst, Australia: Australian
Computer Society, Inc.

90. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. 2001. Introduction to algorithms:
The MIT Press.

91. Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. 2004. PIC: Practical Internet
coordinates for distance estimation. In ICDCS ’04: Proceedings of the 24th international conference
on distributed computing systems (ICDCS’04), 178–187, Washington, DC: IEEE Computer
Society.

92. Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, Gianpaolo Cugola. 2003. Introducing
reliability in content-based publish-subscribe through epidemic algorithms. In Proceedings
of the 2nd international workshop on distributed event-based systems (DEBS’03). San Diego,
California.

93. Lenore J. Cowen. 1999. Compact routing with minimum stretch. In SODA ’99: Proceedings of
the 10th annual ACM-SIAM symposium on discrete algorithms, 255–260, Philadelphia, PA: Society
for Industrial and Applied Mathematics.

94. Arturo Crespo, Orkut Buyukkokten, and Hector Garcia-Molina. 2003. Query merging: Im-
proving query subscription processing in a multicast environment. IEEE Trans. Knowl. Data
Eng. 15(1):174–191.

95. Arturo Crespo and Hector Garcia-Molina. 2002. Routing indices for peer-to-peer systems.
In ICDCS ’02: Proceedings of the 22nd international conference on distributed computing systems
(ICDCS’02), 23, Vienna, Austria: IEEE Computer Society.

96. Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. 1998. Exploiting an event-based
infrastructure to develop complex distributed systems. In Proceedings of the 20th international
conference on software engineering, 261–270: IEEE Computer Society.

97. Gianpaolo Cugola and Hans-Arno Jacobsen. 2002. Using publish/subscribe middleware for
mobile systems. ACM SIGMOBILE Mobile Comput. Commun. Rev. 6(4) (Oct.).

© 2010 Taylor and Francis Group, LLC

www.hbtf.org

222 References

98. Gianpaolo Cugola and Gian Pietro Picco. 2005. REDS: A reconfigurable dispatching system. In
Technical Report, Politecnico di Milano, Milan, Italy.

99. Gianpaolo Cugola, Elisabetta Di Nitto, and Gian Pietro Picco. 2000. Content-based dispatching
in a mobile environment. In Workshop su sistemi distribuiti: Algorithmi, architectture e linguaggi,
Sep. Ischia, Italy.

100. Gianpaolo Cugola, Davide Frey, Amy L. Murphy, and Gian Pietro Picco. 2004. Minimizing the
reconfiguration overhead in content-based publish-subscribe. In SAC ’04: Proceedings of the 2004
ACM symposium on applied computing (Mar. 14–17), 1134–1140: Nicosia, Cyprus: ACM Press.

101. Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. 2004. Vivaldi: A decentralized
network coordinate system. SIGCOMM Comput. Commun. Rev. 34(4):15–26.

102. Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. 2003. Towards
a common API for structured peer-to-peer overlays. In Proceedings of the 2nd international
workshop on peer-to-peer systems (IPTPS03), Berkeley, CA.

103. Ayodele Damola, Victor Souza, Per Karlsson, and Howard Green. 2008. Peer-to-peer traffic in
operator networks. In Peer-to-peer computing, 177–179.

104. Chris Dana, Danjue Li, David Harrison, and Chen-Nee Chuah. 2005. BASS: BitTorrent assisted
streaming system for video-on-demand. In IEEE 7th workshop on multimedia signal processing,
(Oct. 30–Nov. 2), 1–4. Shanghai, China.

105. Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lak-
shman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007.
Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev. 41(6):205–220.

106. Stephen E. Deering and Robert M. Hinden. 1998. Internet Protocol, Version 6 (IPv6) Specifica-
tion.

107. Stephen E. Deering. 1989. Host extensions for IP multicasting.
108. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, and John Larson. 1987. Epidemic algorithms

for replicated database maintenance. In Proceedings of the 6th annual ACM symposium on
principles of distributed computing, (Aug. 10–12), 1–12. Vancouver, British Columbia, Canada.

109. Sarang Dharmapurikar, Praveen Krishnamurthy, Todd S. Sproull, and John W. Lockwood.
2004. Deep packet inspection using parallel bloom filters. IEEE Micro 24(1):52–61.

110. Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor. 2003. Longest prefix
matching using bloom filters. In SIGCOMM ’03: Proceedings of the 2003 conference on applications,
technologies, architectures, and protocols for computer communications, (Aug. 25–29), 201–212,
Karlsruhe, Germany: ACM.

111. Tim Dierks and Eric Rescorla. 2006. The Transport Layer Security (TLS) Protocol Version 1.1. RFC
4346, Apr.: IETF.

112. Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-generation
onion router. In 13th USENIX security symposium, San Diego, CA.

113. Roger Dingledine, Michael J. Freedman, and David Molnar. 2001. Accountability. In Peer-to-peer:
Harnessing the benefits of a disruptive technology: O’Reilly and Associates.

114. Roger Dingledine, Michael J. Freedman, and David Molnar. 2000. The free haven project:
Distributed anonymous storage service. In International workshop on designing privacy enhancing
technologies, LNCS. 67–95. Berkeley: Springer-Verlag.

115. John R. Douceur. 2002. The Sybil attack. In IPTPS ’01: Revised papers from the 1st international
workshop on peer-to-peer systems, 251–260, London: Springer-Verlag.

116. Peter Druschel and Antony I. T. Rowstron. 2001. Past: A large-scale, persistent peer-to-peer
storage utility. In HotOS VIII, 75–80. Elmau/Oberbayern, Germany.

117. Peter Druschel and Antony Rowstron. 2001. Storage management and caching in PAST, a
large scale, persistent peer-to-peer storage utility. In 18th ACM SOSP. Lake Louise, Alberta,
Canada.

118. Sérgio Duarte, José Legatheaux Martins, Henrique J. Domingos, and Nuno Preguia. 2001.
DEEDS—A distributed and extensible event dissemination service. In Proceedings of the 4th
European research seminar on advances in distributed systems (ERSADS), Forli, Italy.

119. Jeremy Elson and Jon Howell. 2008. Handling flash crowds from your garage. In ATC’08:
USENIX 2008 annual technical conference, 171–184, Berkeley, CA: USENIX Association.

120. Kave Eshghi. 2002. Intrinsic references in distributed systems. Technical Report, In IEEE
workshop on resource sharing in massively distributed systems, 675–680.

© 2010 Taylor and Francis Group, LLC

References 223

121. Christian Esteve, Fábio L. Verdi, and Maurı́cio F. Magalh aes. 2008. Towards a new generation
of information-oriented internetworking architectures. In CoNEXT ’08: Proceedings of the 2008
ACM CoNEXT Conference, 1–6, Madrid, Spain: ACM.

122. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The
many faces of publish/subscribe. ACM Comput. Surv. 35(2):114–131.

123. Patrick Th. Eugster and Rachid Guerraoui. 2002. Probabilistic multicast. 0:313–324. International
conference on dependable systems and networks (23–26 Jun.) Bethesda, MD: IEEE Computer Society.

124. Patrick Th. Eugster, Rachid Guerraoui, S. B. Handurukande, Petr Kouznetsov, and Anne-Marie
Kermarrec. 2001. Lightweight probabilistic broadcast. In DSN ’01: Proceedings of the 2001 in-
ternational conference on dependable systems and networks (formerly: FTCS), 443–452. Washington,
DC: IEEE Computer Society.

125. Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth Ross, and Dennis
Shasha. 2001. Filtering algorithms and implementation for very fast publish/subscribe. In
Proceedings of the 20th international conference on management of data (SIGMOD 2001), ed. Timos
Sellis and Sharad Mehrotra, 115–126. Santa Barbara, CA.

126. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law relation-
ships of the Internet topology. In SIGCOMM ’99: Proceedings of the conference on applications,
technologies, architectures, and protocols for computer communication, 251–262, New York: ACM.

127. Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 1998. Summary cache: A scalable
wide-area web cache sharing protocol. SIGCOMM Comput. Commun. Rev. 28(4):254–265.

128. Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 2000. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3):281–293.

129. Wu-chang Feng, Kang G. Shin, Dilip D. Kandlur, and Debanjan Saha. 2002. The BLUE active
queue management algorithms. IEEE/ACM Trans. Netw. 10(4):513–528.

130. William Fenner. 1997. Internet group management protocol, version 2. RFC 2236 (Nov.).
131. Ludger Fiege, Felix C. Gärtner, Sidath B. Handurukande, and Andreas Zeidler. 2003. Dealing

with uncertainty in mobile publish/subscribe middleware. In 1st international workshop on
middleware for pervasive and ad-hoc computing (MPAC 03), Rio de Janeiro, Brazil.

132. Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and Andreas Zeidler. 2003. Supporting mobility
in content-based publish/subscribe middleware. Lecture notes in Computer Science, 2672. In
Middleware (Jun. 16–20), 103–122. Rio de Janerio, Brazil.

133. Geoffrey Fox and Shrideep Pallickara. 2002.The Narada event brokering system: Overview
and extensions. In Proceedings of the 2002 international conference on parallel and distributed
processing techniques and applications (PDPTA’02), ed. H.R. Arabnia, 353–359: CSREA
Press.

134. Pierre Fraigniaud and Philippe Gauron. 2006. D2B: A de Bruijn based content-addressable
network. Theor. Comput. Sci., 355(1):65–79.

135. Michael J. Freedman. 2007. Democratizing content distribution. PhD thesis, NYU.
136. Michael J. Freedman, Christina Aperjis, and Ramesh Johari. 2008. Prices are right: Manag-

ing resources and incentives in peer-assisted content distribution. In Proceedings of the 7th
international workshop on peer-to-peer systems (IPTPS08), Feb., Tampa Bay, FL.

137. Michael J. Freedman, Eric Freudenthal, and David Mazières. 2004. Democratizing content
publication with coral. In NSDI’04: Proceedings of the 1st conference on symposium on networked
systems design and implementation, 239–252. Berkeley, CA: USENIX Association.

138. Michael J. Freedman and David Mazières. 2003. Sloppy hashing and self-organizing clusters. In
Proceedings of the 2nd international workshop on peer-to-peer systems (IPTPS03) Feb. Berkeley, CA.

139. Michael J. Freedman and Robert Morris. 2002. Tarzan: A peer-to-peer anonymizing network
layer. In Proceedings of the 9th ACM conference on computer and communications security (CCS
2002), Nov., Washington, DC.

140. Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris. 2002. Introducing Tarzan, a
peer-to-peer anonymizing network layer. In Proceedings of the 1st international 267 workshop on
peer-to-peer systems (IPTPS02), Mar., Cambridge, MA.

141. Prasanna Ganesan, Krishna Gummadi, and Hector Garcia-Molina. 2004. Canon in G Major:
Designing DHTs with hierarchical structure. In ICDCS ’04: Proceedings of the 24th interna-
tional conference on distributed computing systems (ICDCS’04), 263–272. Washington, DC: IEEE
Computer Society.

© 2010 Taylor and Francis Group, LLC

224 References

142. Prasanna Ganesan, Beverly Yang, and Hector Garcia-Molina. 2004. One torus to rule them all:
Multi-dimensional queries in P2P systems. In WebDB ’04: Proceedings of the 7th international
workshop on the web and databases, 19–24. New York, NY: ACM.

143. Lixin Gao. 2001. On inferring autonomous system relationships in the internet. IEEE/ACM
Trans. Netw. 9(6):733–745.

144. Cyril Gavoille and Stéphane Pérennès. 1996. Memory requirement for routing in distributed
networks. In PODC ’96: Proceedings of the 15th annual ACM symposium on principles of distributed
computing, 125–133. New York: ACM.

145. Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2007. Youtube traffic charac-
terization: A view from the edge. In IMC ’07: Proceedings of the 7th ACM SIGCOMM conference
on internet measurement, 15–28. New York: ACM.

146. Christos Gkantsidis, Milena Mihail, and Amin Saberi. 2006. Random walks in peer-to-peer
networks: Algorithms and evaluation. Perform. Eval. 63(3):241–263.

147. Ian Goldberg and David Wagner. 1998. TAZ servers and the rewebber network: Enabling
anonymous publishing on the world wide web. First Monday 3(4) (Aug.).

148. David Goldschlag, Michael Reed, and Paul Syverson. 1999. Onion routing. Commun. ACM
42(2):39–41.

149. Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. 2000. Scalable,
distributed data structures for internet service construction. In OSDI’00: Proceedings of the 4th
conference on symposium on operating system design & implementation, 319–332. San diego, CA:
USENIX Association.

150. Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler, N. Borisov, S.
Czerwinski, et al. 2001. The Ninja architecture for robust internet-scale systems and services.
Comput. Netw. 35(4):473–497.

151. Björn Grönvall. 2002. Scalable multicast forwarding. SIGCOMM Comput. Commun. Rev. 32(1).
152. K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. 2003. The impact

of DHT routing geometry on resilience and proximity. In SIGCOMM ’03: Proceedings of the 2003
conference on applications, technologies, architectures, and protocols for computer communications,
381–394. New York: ACM.

153. Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble, Henry M. Levy,
and John Zahorjan. 2003. Measurement, modeling, and analysis of a peer-to-peer filesharing
workload. In SOSP ’03: Proceedings of the 19th ACM symposium on operating systems principles,
314–329. New York: ACM.

154. Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong Zhang. 2005.
Measurement, analysis, and modeling of BitTorrent-like systems. In Proceedings of the 5th ACM
SIGCOMM conference on internet measurement, 35–48. Berkeley, CA.

155. Abhishek Gupta, Ozgur Sahin, Divyakant Agrawal, and Amr El Abbadi. 2004. Meghdoot:
Content-based publish:subscribe over P2P networks. In Proceedings of the ACM/IFIP/USENIX
5th international middleware conference (Middleware ’04). Toronto, Ontario, Canada.

156. Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. 2003. One hop lookups for peer-to-peer
overlays. In HotOS’03: Proceedings of the 9th conference on hot topics in operating systems, (May
18–21), 7–12. Lihue, Hawaii: USENIX Association.

157. Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert van Renesse. Kelips:
2003. Building an efficient and stable P2P DHT through increased memory and background
overhead. In Proceedings of the 2nd international workshop on peer-to-peer systems (IPTPS ’03).
(20–21 Feb.). Berkeley, CA.

158. Andrei Gurtov, Dmitry Korzun, Andrey Lukyanenko, and Pekka Nikander. 2008. Hi3: An effi-
cient and secure networking architecture for mobile hosts. Comput. Commun. 31(10): 2457–2467.

159. Steven Hand and Timothy Roscoe. 2002. Mnemosyne: Peer-to-peer steganographic storage.
In IPTPS ’01: Revised papers from the 1st international workshop on peer-to-peer systems, 130–140.
London: Springer-Verlag.

160. Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman.
2003. SkipNet: A scalable overlay network with practical locality properties. In USITS’03:
Proceedings of the 4th conference on USENIX symposium on internet technologies and systems,
113–126. Berkeley, CA: USENIX Association.

© 2010 Taylor and Francis Group, LLC

References 225

161. Steven Hazel, and Brandon Wiley. 2002. Achord: A variant of the chord lookup service for use
in censorship resistant peer-to-peer publishing systems. In 1st international peer to peer systems
workshop (IPTPS02). (Mar. 7–8). MIT Faculty Club, Cambridge, MA.

162. Joseph M. Hellerstein. 2003. Toward network data independence. SIGMOD Rec.
32(3):34–40.

163. Kevin Ho, Jie Wu, and John Sum. 2008. On the session lifetime distribution of Gnutella. Int. J.
Parallel Emerg. Distrib. Syst. 23(1):1–15.

164. Cheng Huang, Angela Wang, Jin Li, and Keith W. Ross. 2008. Understanding hybrid CDNP2P:
Why limelight needs its own red swoosh. In NOSSDAV ’08: Proceedings of the 18th international
workshop on network and operating systems support for digital audio and video, 75–80, New York:
ACM.

165. Yongqiang Huang and Hector Garcia-Molina. 2001. Publish/subscribe in a mobile enviroment.
In Proceedings of the 2nd ACM international workshop on data engineering for wireless and mobile
access, 27–34:ACM.

166. Yongqiang Huang and Hector Garcia-Molina. 2004. Publish/subscribe in a mobile environ-
ment. Wirel. Netw. 10(6):643–652.

167. Daniel Hughes, Geoff Coulson, and James Walkerdine. 2005. Free riding on Gnutella revisited:
The bell tolls? IEEE Distributed Systems Online 6(6):1.

168. IBM. 2002. Gryphon: Publish/subscribe over public networks, Dec. (White paper)
http://researchweb.watson.ibm.com/distributedmessaging/gryphon.html.

169. Sitaram Iyer, Antony Rowstron, and Peter Druschel. 2002. Squirrel: A decentralized peer-
to-peer web cache. In Proceedings of the 21st symposium on principles of distributed computing
(PODC), July, Monterey, CA.

170. John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and James W. O’Toole,
Jr. 2000. Overcast: Reliable multicasting with on overlay network. In OSDI’00: Proceedings of
the 4th conference on symposium on operating system design & implementation, 14–14, Berkeley,
CA:USENIX Association.

171. Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. 2005. Gossip-based aggregation in
large dynamic networks. ACM Trans. Comput. Syst. 23(3):219–252.

172. David A. Bryan, Bruce B. Lowekamp, and Cullen Jennings. 2005. SOSIMPLE: A serverless,
standards-based, P2P SIP communication system. First international workshop on advanced
architectures and algorithms for internet delivery and applications, AAA-IDEA, 15 June, 42–49,
Orlando, FL.

173. Yang Ji, Chunhong Zhang, Lichun Li, Yao Wang, and Mao Tao. 2009. Architecture design of
P2PSIP system. Int. J. Distrib. Sen. Netw. 5(1):85–85.

174. Xing Jin, Wanqing Tu, and S.-H. Gary Chan. 2009. Challenges and advances in using IP
multicast for overlay data delivery. IEEE Commun. 47(6).

175. David B. Johnson, Charles E. Perkins, and Jari Arkko. 2004. Mobility Support in IPv6., Jun., 269
[Standards Track RFC 3775]: IETF.

176. M. Frans Kaashoek and David R. Karger. 2003. Koorde: A simple degree-optimal distributed
hash table. In LNCS 2735, 98–107. Berkeley, CA.

177. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. 2003. The EigenTrust
algorithm for reputation management in P2P networks. In Proceedings of the 12th international
world wide web conference, 640–651. Budapest, Hungary: ACM.

178. Jussi Kangasharju, James W. Roberts, and Keith W. Ross. 2002. Object replication strategies in
content distribution networks. Comp. Commun. 25(4):376–383.

179. David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. 1997. Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In STOC ’97: Proceedings of the 29th annual ACM symposium
on theory of computing, 654–663, New York: ACM.

180. David R. Karger and Matthias Ruhl. 2006. Simple efficient load-balancing algorithms for
peer-to-peer systems. Theor. Comp. Sys. 39(6):787–804.

181. Jonas S. Karlsson, Witold Litwin, and Tore Risch. 1996. LH*LH: A scalable high performance
data structure for switched multicomputers. In EDBT ’96: Proceedings of the 5th international
conference on extending database technology, 573–591, London:Springer-Verlag.

© 2010 Taylor and Francis Group, LLC

http://researchweb.watson.ibm.com

226 References

182. Sebastian Kaune, Tobias Lauinger, Aleksandra Kovacevic, and Konstantin Pussep. 2008.
Embracing the peer next door: Proximity in Kademlia. In Peer-to-Peer Computing, 343–350.
Aachen, Germany.

183. David Kempe, Jon Kleinberg, and Alan Demers. 2001. Spatial gossip and resource location
protocols. In STOC ’01: Proceedings of the 33rd annual ACM symposium on theory of computing,
163–172, New York: ACM.

184. Anne-Marie Kermarrec and Maarten van Steen. 2007. Gossiping in distributed systems.
SIGOPS Oper. Syst. Rev. 41(5):2–7.

185. Dogan Kesdogan, Jan Egner and Roland Büschkes 1998. Stop-and-go-mixes providing
probabilistic anonymity in an open system. In Proceedings of information hiding workshop, 83–98.
Springer-Verlag.

186. Jon Kleinberg. 2000. The small-world phenomenon: An algorithm perspective. In STOC ’00:
Proceedings of the 32nd annual ACM symposium on theory of computing (May 21–23), 163–170,
Portland, OR: ACM.

187. Leonard Kleinrock and Farouk Kamoun. 1975. Hierarchical routing for large networks. Comput.
Net. 1:155–174.

188. Miika Komu, Sasu Tarkoma, Jaakko Kangasharju, and Andrei Gurtov. 2005. Applying a
cryptographic namespace to applications. In Proceedings of the 1st ACM workshop on dynamic
interconnection of networks (DIN 2005). Cologne, Germany.

189. Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim, Scott
Shenker, and Ion Stoica. 2007. A data-oriented (and beyond) network architecture. SIGCOMM
Comput. Commun. Rev. 37(4):181–192.

190. Dmitri Krioukov, K. C. Claffy, Kevin Fall, and Arthur Brady. 2007. On compact routing for the
internet. SIGCOMM Comput. Commun. Rev. 37(3):41–52.

191. John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, et al. 2000. OceanStore: An architecture for global-scale persistent
storage. SIGARCH Comput. Archit. News 28(5):190–201.

192. Gu-In Kwon and John W. Byers. 2004. ROMA: Reliable overlay multicast with loosely coupled
TCP connections. In proceedings IEEE INFOCOM: The 23rd annual joint conference of the IEEE
computer and communications societies (Mar. 7–11). 385–395. Hongkong, China.

193. Leslie Lamport. 1978. Time, clocks, and the ordering of events. Commun. ACM, 21(7)
(Jul.):558–565.

194. Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3):382–401.

195. Arnaud Legout, Nikitas Liogkas, Eddie Kohler, and Lixia Zhang. 2007. Clustering and sharing
incentives in BitTorrent systems. In SIGMETRICS ’07: Proceedings of the 2007 ACM SIGMETRICS
international conference on measurement and modeling of computer systems, 301–312, New York:
ACM.

196. Shan Lei and Ananth Grama. 2004. Extended consistent hashing: An efficient framework
for object location. In ICDCS ’04: Proceedings of the 24th international conference on distributed
computing systems (ICDCS’04), 254–262,Washington, DC: IEEE Computer Society.

197. Kirill Levchenko, Geoffrey M. Voelker, Ramamohan Paturi, and Stefan Savage. 2008. Xl: An
efficient network routing algorithm. In SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008
conference on data communication, 15–26, New York: ACM.

198. Brian Neil Levine and Clay Shields. 2002. Hordes: A multicast based protocol for anonymity.
J. Comput. Secur. 10(3):213–240.

199. Bo Li, Yang Qu, Gabriel Yik Keung, Susu Xie, Chuang Lin, Jiangchuan Liu, and Xinyan
Zhang. 2008. Inside the new coolstreaming: Principles, measurements and performance
implications. In INFOCOM 2008. The 27th conference on computer communications, 1031–1039:
IEEE.

200. Guoli Li, Shuang Hou, and Hans-Arno Jacobsen. 2005. A unified approach to routing, covering
and merging in publish/subscribe systems based on modified binary decision diagrams. In
ICDCS, 447–457. Columbus, OH.

201. Ji Li, Karen Sollins, and Dah-Yoh Lim. 2005. Implementing aggregation and broadcast over
distributed hash tables. SIGCOMM Comput. Commun. Rev. 35(1):81–92.

© 2010 Taylor and Francis Group, LLC

References 227

202. Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and Thomer M. Gil. 2005.
A performance vs. cost framework for evaluating DHT design tradeoffs under churn. In
INFOCOM, 225–236. Miami, OH.

203. Zhi Li and Prasant Mohapatra. 2007. On investigating overlay service topologies. Comput.
Netw. 51(1):54–68.

204. Witold Litwin, Marie-Anna Neimat, Gerard Levy, Yakham Ndiaye, and Mouhamed T. Seck.
1997. LH*s: A high-availability and high-security scalable distributed data structure. In RIDE
’97: Proceedings of the 7th international workshop on research issues in data engineering (RIDE ’97)
high performance database management for large-scale applications, 141, Birmigham, England:IEEE
Computer Society.

205. Witold Litwin. 1980. Linear hashing: A new tool for file and table addressing. In VLDB ’1980:
Proceedings of the 6th international conference on very large data bases, 212–223. VLDB Endowment.
Montreal, Canada.

206. Witold Litwin, Jai Menon, and Tore Risch. 1998. LH* schemes with scalable availability. Research
Report RJ10121 (91937): IBM.

207. Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. 1994. RP*: A family of order
preserving scalable distributed data structures. In VLDB ’94: Proceedings of the 20th international
conference on very large data bases, 342–353, San Francisco, CA: Morgan Kaufmann Publishers Inc.

208. Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. 1996. LH*—A scalable,
distributed data structure. ACM Trans. Database Syst. 21(4):480–525.

209. Witold Litwin, Hanafi Yakouben, and Thomas Schwarz. 2008. LH*RSP2P: A scalable dis-
tributed data structure for P2P environment. In NOTERE ’08: Proceedings of the 8th international
conference on new technologies in distributed systems, 1–6, New York: ACM.

210. Francesca Lo Piccolo, Giovanni Neglia, and Giuseppe Bianchi. 2004. The effect of heteroge-
neous link capacities in BitTorrent-like file sharing systems. In Proceedings of HOT-P2P, 40–47.
Volendam, The Netherlands.

211. Richard John Lobb, Ana Paula Couto da Silva, Emilio Leonardi, Marco Mellia, and Michela
Meo. 2009. Adaptive overlay topology for mesh-based P2P-TV systems. In NOSS271 DAV ’09:
Proceedings of the 18th international workshop on network and operating systems support for digital
audio and video, 31–36, New York: ACM.

212. Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph M. Hellerstein. 2004. The case for a
hybrid P2P search infrastructure. In IPTPS (Feb. 26–27), 141–150. San Diego, CA.

213. Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. 2005. A survey
and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tut. 7:72–93.

214. Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. 2002. Search and replication in unstruc-
tured peer-to-peer networks. In SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS in-
ternational conference on measurement and modeling of computer systems, 258–259, New York:ACM.

215. Hongyan Ma and Baomin Xu. 2007. A hierarchical P2P architecture for SIP communication.
In NGMAST ’07: Proceedings of the the 2007 international conference on next generation mobile
applications, services and technologies, 130–135, Washington, DC:IEEE Computer Society.

216. Lothar F. Mackert and Guy M. Lohman. 1986. R* optimizer validation and performance
evaluation for distributed queries. In VLDB, 149–159. Kyoto, Japan.

217. Dahlia Malkhi, Moni Naor, and David Ratajczak. 2002. Viceroy: A scalable and dynamic
emulation of the butterfly. In PODC ’02: Proceedings of the 21st annual symposium on principles
of distributed computing, 183–192, New York: ACM.

218. Balasubramaneyam Maniymaran, Marin Bertier, and Anne-Marie Kermarrec. 2007. Build
one, get one free: Leveraging the coexistence of multiple P2P overlay networks. In ICDCS
’07: Proceedings of the 27th international conference on distributed computing systems, 33, Toronto,
Canada: IEEE Computer Society.

219. Gurmeet Singh Manku. 2003. Routing networks for distributed hash tables. In PODC ’03:
Proceedings of the 22nd annual symposium on principles of distributed computing, 133–142, New
York: ACM.

220. Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. 2003. Symphony: Distributed
hashing in a small world. In USITS’03: Proceedings of the 4th conference on USENIX symposium
on internet technologies and systems, 10–10, Berkeley, CA: USENIX Association.

© 2010 Taylor and Francis Group, LLC

228 References

221. Jukka Manner, Simone Leggio, Tommi Mikkonen, Jussi Saarinen, Pekka Vuorela, and Antti
Ylä-Jääski. 2008. Seamless service interworking of ad-hoc networks and the internet. Comput.
Commun. 31(10):2293–2307.

222. Chip Martel and Van Nguyen. 2004. Analyzing Kleinberg’s (and other) small-world models. In
PODC ’04: Proceedings of the 23rd annual ACM symposium on principles of distributed computing,
179–188, New York: ACM.

223. Isaias Martinez-Yelmo, Alex Bikfalvi, Ruben Cuevas, Carmen Guerrero, and Jaime Garcia.
2009. H-P2PSIP: Interconnection of P2PSIP domains for global multimedia services based on
a hierarchical DHT overlay network. Comput. Netw. 53(4):556–568.

224. Laurent Massoulié and Milan Vojnovic. 2005. Coupon replication systems. In Proceedings of
ACM SIGMETRICS (Jun. 6–10), 2–13. Banff, Alberta, Canada.

225. Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi Ganesh. 2006. Peer
counting and sampling in overlay networks: Random walk methods. In PODC ’06: Proceedings of
the 25th annual ACM symposium on principles of distributed computing, 123–132, New York: ACM.

226. Petar Maymounkov and David Mazières. 2002. Kademlia: A peer-to-peer information system
based on the XOR metric. In IPTPS, 53–65. Cambridge, MA.

227. David Mazières and M. Frans Kaashoek. 1998. Escaping the evils of centralized control with
self-certifying pathnames. In EW 8: Proceedings of the 8th ACM SIGOPS European workshop on
support for composing distributed applications, 118–125, New York: ACM.

228. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. 1997. Handbook of applied
cryptography. CRC Press.

229. Ralph C. Merkle. 1988. A digital signature based on a conventional encryption function. In
CRYPTO ’87: A conference on the theory and applications of cryptographic techniques on advances in
cryptology, 369–378, London, UK: Springer-Verlag.

230. Michael Mitzenmacher. 2001. Compressed bloom filters. In PODC ’01: Proceedings of the 20th
annual ACM symposium on principles of distributed computing, 144–150, New York: ACM.

231. Paul V. Mockapetris and Kevin. J. Dunlap. 1988. Development of the domain name system.
SIGCOMM Comput. Commun. Rev. 18(4):123–133.

232. Jacob Jan-David Mol, Johan A. Pouwelse, Dick H. J. Epema, and Henk J. Sips. 2008. Free-riding,
fairness, and firewalls in P2P file-sharing. In K. Wehrle, W. Kellerer, S. K. Singhal, and R.
Steinmetz, ed., 8th IEEE international conference on peer-to-peer computing, Sep. 301–310: IEEE
Computer Society.

233. Jacob Jan-David Mol, Johan A. Pouwelse, Michel Meulpolder, Dick H. J. Epema, and Henk J.
Sips. 2008. Give-to-get: Free-riding-resilient video-on-demand in P2P systems. In Multimedia
Computing and Networking 818; SPIE 6818 (30–31 Jan.). San Jose, CA.

234. Gero Mühl. 2002. Large-scale content-based publish/subscribe systems. PhD thesis, Darmstadt
University of Technology, Sep.

235. Gero Mühl. Disseminating information to mobile clients using publish/subscribe. IEEE
Internet Compu. (May):46–53, 2004.

236. Gero Mühl and Ludger Fiege. 2001. Supporting covering and merging in content-based
publish/subscribe systems: Beyond name/value pairs. IEEE Distri. Sys. Online
(DSOnline) 2(7).

237. Gero Mühl, Ludger Fiege, Felix C. Gärtner, and Alejandro P. Buchmann. 2002. Evaluating
advanced routing algorithms for content-based publish/subscribe systems. In A. Boukerche, S.
K. Das, and S. Majumdar, eds., The 10th IEEE/ACM international symposium on modeling, analysis
and simulation of computer and telecommunication systems (MASCOTS 2002), (Oct.), 167–176, Fort
Worth, TX: IEEE Press.

238. Jochen Mundinger, Richard R. Weber, and Gideon Weiss. 2008. Optimal scheduling of
peer-to-peer file dissemination. J. Scheduling 11:105–120.

239. Jochen Mundinger, Richard Weber, and Gideon Weiss. 2006. Analysis of peer-to-peer file
dissemination. SIGMETRICS Perform. Eval. Rev. 34(3):12–14.

240. Vinod Muthusamy and Milenko Petrovic. 2005. Publisher mobility in distributed publish/
subscribe systems. In 4th international workshop on distributed event-based systems (DEBS’05),
June, 421–427, Columbus, Ohio: IEEE Press.

241. Vinod Muthusamy, Milenko Petrovic, and Hans-Arno Jacobsen. 2005. Effects of routing
computations in content-based routing networks with mobile data sources. In MobiCom ’05:

© 2010 Taylor and Francis Group, LLC

References 229

Proceedings of the 11th annual international conference on mobile computing and networking, 103–116,
New York: ACM.

242. Alper Tugay Mýzrak, Yuchung Cheng, Vineet Kumar, and Stefan Savage. 2003. Structured
superpeers: Leveraging heterogeneity to provide constant-time lookup. In WIAPP ’03: Proceed-
ings of the the 3rd IEEE workshop on internet applications, 104, Washington, DC: IEEE Computer
Society.

243. Pekka Nikander, Jukka Ylitalo, and Jorma Wall. 2003. Integrating security, mobility, and
multi-homing in a HIP way. In Proceedings of network and distributed systems security symposium
(NDSS03), (Feb.), 87–89. San Diego, CA.

244. Object Management Group. 2001. CORBA notification service specification v.1.0, Mar.
245. Object Management Group. 2004. Wireless access and terminal mobility in CORBA v.1.1, Apr.
246. Anna Ostlin and Rasmus Pagh. 2003. Uniform hashing in constant time and linear space. In

STOC ’03: Proceedings of the 35th annual ACM symposium on theory of computing, 622–628, New
York: ACM.

247. Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F. Kurose. 2000. Modeling TCP
Reno performance: A simple model and its empirical validation. IEEE/ACM Trans. Netw.
8(2):133–145.

248. Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou, and Kunwadee Sripanidkulchai.
2002. Distributing streaming media content using cooperative networking. In NOSSDAV ’02:
Proceedings of the 12th international workshop on network and operating systems support for digital
audio and video, 177–186, New York: ACM.

249. Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. 2005. An optimal Bloom filter replacement. In
SODA ’05: Proceedings of the 16th annual ACM-SIAM symposium on discrete algorithms, 823–829,
Philadelphia, PA: Society for Industrial and Applied Mathematics.

250. Nadim Parvez, Carey Williamson, Anirban Mahanti, and Nikas Carlsson. 2008. Analysis
of BitTorrent-like protocols for on-demand stored media streaming. In Proceedings of ACM
SIGMETRICS (Jun. 2–6), 301–312. Annapolis, MD.

251. David Peleg and Eli Upfal. 1989. A trade-off between space and efficiency for routing tables.
J. ACM 36(3):510–530.

252. Charles Perkins. 2002. IP Mobility Support for IPv4. IETF, Aug [Standards Track RFC 3344].
253. Gian Pietro Picco and Paolo Costa. 2005. Semi-probabilistic publish/subscribe. In Proceedings

of 25th IEEE international conference on distributed computing systems (ICDCS 2005). (575–585).
Columbus, OH.

254. Guillaume Pierre and Maarten van Steen. 2006. Globule: A collaborative content delivery
network. IEEE Commun. Mag. 44(8) (Aug.):127–133.

255. Peter Pietzuch and Jean Bacon. 2002. Hermes: A distributed event-based middleware architec-
ture. In Proceedings of the 1st international workshop on distributed event-based systems (DEBS’02).
Vienna, Austria.

256. Peter R. Pietzuch. 2004. Hermes: A scalable event-based middleware. PhD thesis, Computer
Laboratory, Queens’ College, University of Cambridge, Feb.

257. C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. 1997. Accessing nearby copies
of replicated objects in a distributed environment. In SPAA ’97: Proceedings of the 9th annual
ACM symposium on parallel algorithms and architectures, 311–320, New York: ACM.

258. Ivana Podnar and Ignac Lovrek. 2004. Supporting mobility with persistent notifications in
publish/subscribe systems. In 3rd international workshop on distributed event-based systems
(DEBS’04), May. Edinburgh, Scotland.

259. Ivana Podnar, Manfred Hauswirth, and Mehdi Jazayeri. 2002. Mobile push: Delivering content
to mobile users. In Proceedings of the 22nd international conference on distributed computing systems,
563–570: IEEE Computer Society.

260. Alexandru Popescu, David Erman, Markus Fiedler, and Demetres Kouvatsosn. 2009. Routing
in content addressable networks: Algorithms and performance. In 20th ITC specialist seminar
(May 18–20): IEEE. Hoi An, Vietnam.

261. Jon Postel. Simple mail transfer protocol, RFC 2821, April 2001. http://www.rfc-editor.org/
rfc/rfc2821.txt.

262. Dongyu Qiu and Weiqian Sang. 2008. Global stability of peer-to-peer file sharing systems.
Comp. Commun. 31(2):212–219.

© 2010 Taylor and Francis Group, LLC

http://www.rfc-editor.org
http://www.rfc-editor.org

230 References

263. Donqyu Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like peer-to-peer
networks. In Proceedings of ACM SIGCOMM, 367–378, 2004.

264. Changtao Qu, Wolfgang Nejdl, and Matthias Kriesell. 2004. Cayley DHTs—A group-theoretic
framework for analyzing DHTs based on Cayley graphs. In International symposium on parallel
and distributed processing and applications (ISPA) LNCS 3358 (Dec. 13–15): Springer-Verlag.
Hongkong, China.

265. Michael O. Rabin. 1989. Efficient dispersal of information for security, load balancing, and
fault tolerance. J. ACM 36(2):335–348.

266. Venugopalan Ramasubramanian, and Emin Gün Sirer. 2004. Beehive: O(1)lookup performance
for power-law query distributions in peer-to-peer overlays. In NSDI’04: Proceedings of the
1st conference on symposium on networked systems design and implementation, 8–8, Berkeley, CA:
USENIX Association.

267. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. 2001. A
scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on
applications, technologies, architectures, and protocols for computer communications, 161–172, San
Diego, CA: ACM.

268. V. C. Ravikumar. 2005. EaseCAM: An energy and storage efficient TCAM-based router archi-
tecture for IP lookup. IEEE Trans. Comput. 54(5):521–533. Senior member– Rabi N. Mahapatra,
and Fellow– Laxmi Narayan Bhuyan.

269. Michael K. Reiter and Aviel D. Rubin. 1997. Crowds: Anonymity for web transactions. Technical
Report. . Available at: http://dimacs.rutgers.edu/TechnicalReports1997.html.

270. Patrick Reynolds and Amin Vahdat. 2003. Efficient peer-to-peer keyword searching. In
Middleware ’03: Proceedings of the ACM/IFIP/USENIX 2003 international conference on middleware,
21–40, New York: Springer-Verlag.

271. Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. 2004. Handling churn in a
DHT. In ATEC ’04: Proceedings of the annual conference on USENIX annual technical conference,
10–10, Berkeley, CA: USENIX Association.

272. Matei Ripeanu and Ian T. Foster. 2002. Mapping the Gnutella network: Macroscopic properties
of large-scale peer-to-peer systems. In IPTPS, 85–93. Cambridge, MA.

273. Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. 2002. Mapping the Gnutella network. IEEE
Internet Comput. 6(1):50–57.

274. John Risson and Tim Moors. 2007. Survey of research towards robust peer-to-peer networks: Search
method, Sep., RFC 4981: Internet Engineering Task Force.

275. Rodrigo Rodrigues, Barbara Liskov, and Liuba Shrira. 2002. The design of a robust peer-to-peer
system. In 10th ACM SIGOPS European workshop, Sep., Saint Emilion, France.

276. Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon Peterson,
Robert Sparks, Mark Handley, and Eve Schooler. 2002. SIP: Session initiation protocol, Jun.,
RFC 3261: IETF.

277. Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM international conference on distributed
systems platforms (Middleware) (Nov. 12–16), 329–350. Heidelberg, Germany.

278. Antony Rowstron and Peter Druschel. 2001. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. In 18th ACM symposium on operating systems
principles (SOSP’01), Oct, 188–201. Chateau lake Louise, Banff, Canada.

279. Antony Rowstron and Peter Druschel. 2001. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. SIGOPS Oper. Syst. Rev. 35(5):188–201.

280. Antony I., T. Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware 2001: 275 Proceedings of the
IFIP/ACM international conference on distributed systems platforms Heidelberg, 329–350, London:
Springer-Verlag.

281. Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. SCRIBE:
The design of a large-scale event notification infrastructure. In Networked Group Communication,
pages 30–43, 2001.

282. Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-to-end arguments in system
design. ACM TOCS 2(4) (Nov.):277–288.

© 2010 Taylor and Francis Group, LLC

http://dimacs.rutgers.edu

References 231

283. Oskar Sandberg. 2006. Distributed routing in small-world networks. In Proceedings of the eigth
workshop on algorithm engineering and experiments. Miami, FL.

284. Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. 2002. A measurement study of
peer-to-peer file sharing systems. In Multimedia Computing and Networking (MMCN), Jan.

285. Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. 2003. Measuring and analyzing
the characteristics of Napster and Gnutella hosts. Multimedia Syst. 9(2):170–184.

286. Cristina Schmidt and Manish Parashar. 2008. Squid: Enabling search in DHT-based systems.
J. Parallel Distrib. Comput. 68(7):962–975.

287. Henning Schulzrinne and Elin Wedlund. 2000. Application-layer mobility using SIP. SIGMO-
BILE Mob. Comput. Commun. Rev. 4(3):47–57.

288. Andrei Serjantov. 2002. Anonymizing censorship resistant systems. In IPTPS ’01: Revised papers
from the 1st international workshop on peer-to-peer systems, 111–120, London: Springer-Verlag.

289. Purvi Shah and Jehan-Francois Paris. Peer-to-peer multimedia streaming using BitTorrent.
2007. In Performance, computing, and communications conference, IPCCC 2007, 340–347: IEEE
International. New Orleans.

290. Adi Shamir. 1979. How to share a secret. Commun. ACM 22(11):612–613.
291. Kulesh Shanmugasundaram, Hervé Brönnimann, and Nasir Memon. 2004. Payload attribution

via hierarchical bloom filters. In CCS ’04: Proceedings of the 11th ACM conference on computer and
communications security, 31–41, New York: ACM.

292. Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi. 2008. Overlay weaver: An overlay
construction toolkit. Comput. Commun. 31(2):402–412.

293. Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron. 2004. Defending against
eclipse attacks on overlay networks. In EW11: Proceedings of the 11th workshop on ACM SIGOPS
European workshop, 21, New York: ACM.

294. Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wallach. 2006. Eclipse attacks on
overlay networks: Threats and defenses. In INFOCOM. Barcelona. Spain.

295. Kundan Singh and Henning Schulzrinne. 2005. Peer-to-peer internet telephony using SIP. In
NOSSDAV ’05: Proceedings of the international workshop on network and operating systems support
for digital audio and video, 63–68, New York: ACM.

296. Emil Sit and Robert Morris. 2002. Security considerations for peer-to-peer distributed hash
tables. In IPTPS ’01: Revised papers from the first international workshop on peer-to-peer systems,
261–269, London:Springer-Verlag.

297. Thirunavukkarasu Sivaharan, Gordon S. Blair, and Geoff Coulson. 2005. GREEN: A con-
figurable and re-configurable publish-subscribe middleware for pervasive computing. In
Proceedings of DOA. 732–749. Agia Napa, Cyprus.

298. Swaminathan Sivasubramanian, Michal Szymaniak, Guillaume Pierre, and Maarten van
Steen. 2004. Replication for web hosting systems. ACM Comput. Surv. 36(3):291–334.
http://www.globule.org/publi/RWHS_cs.html.

299. Nikolaos Skarmeas and Keith Clark. 1999. Content-based routing as the basis for intra-agent
communication. In Proceedings of the 5th international workshop on intelligent agents V: Agent
theories, architectures, and languages (ATAL-98) 1555 of LNAI, 345–362, Berlin: Springer.

300. Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchakountio,
Beverly Schwartz, Stephen T. Kent, and W. Timothy Strayer. 2002. Single-packet IP traceback.
IEEE/ACM Trans. Netw. 10(6):721–734.

301. Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. 2004. An analysis of live streaming
workloads on the internet. In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, 41–54, New York: ACM.

302. Pyda Srisuresh, Bryan Ford, and Dan Kegel. 2008. State of peer-to-peer (P2P) communication
across network address translators (NATs). RFC 5128 (Informational), Mar.

303. Mudhakar Srivatsa and Ling Liu. Securing publish-subscribe overlay services with Event-
Guard. 2005. In CCS ’05: Proceedings of the 12th ACM conference on computer and communications
security, 289–298, New York: ACM.

304. Konstantinos Stamos, George Pallis, Dimitrios Katsaros, Athena Vakali, and Yannis Manolo-
poulos Antonis Sidiropoulos. 2009. CDNSim: A simulation tool for content distribution
networks. ACM transactions on modeling and computer simulation, in press.

© 2010 Taylor and Francis Group, LLC

http://www.globule.org

232 References

305. Konstantinos Stamos, George Pallis, Athena Vakali, and Marios D. Dikaiakos. 2009. Evaluating
the utility of content delivery networks. In UPGRADE-CN ’09: Proceedings of the 4th edition of the
UPGRADE-CN workshop on use of P2P, GRID and agents for the development of content networks,
11–20, New York: ACM.

306. Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. 2004. A lightweight, robust P2P system
to handle flash crowds. IEEE J. Select. Areas Commun. 22(1):6–17.

307. Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. 2002. Internet
indirection infrastructure. In Proceedings of the 2002 conference on applications, technologies,
architectures, and protocols for computer communications, 73–86: ACM. Pittsburgh, PA.

308. Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. 2001, Chord:
A scalable peer-to-peer lookup service for internet applications. Comp. Commun. Rev. 31(4)
(Oct.):149–160.

309. Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. 2003. Chord: A scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Trans. Netw. 11(1):17–32.

310. Robert E. Strom, Guruduth Banavar, Tushar Deepak Chandra, Marc Kaplan, Kevan Miller,
Bodhi Mukherjee, Daniel C. Sturman, and Michael Ward. 1998. Gryphon: An information flow
based approach to message brokering. CoRR, cs.DC/9810019.

311. Daniel Stutzbach and Reza Rejaie. 2006. Improving lookup performance over a widely
deployed DHT. In INFOCOM. Barcelona, Spain.

312. Daniel Stutzbach and Reza Rejaie. 2006. Understanding churn in peer-to-peer networks. In
IMC ’06: Proceedings of the 6th ACM SIGCOMM conference on internet measurement, 189–202,
Pisa, Italy: ACM.

313. Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. 2008. Characterizing unstructured overlay
topologies in modern P2P file-sharing systems. IEEE/ACM Trans. Netw. 16(2):267–280.

314. Sun Microsystems. 2001. Java message service specification, Jun.
315. Riikka Susitaival and Samuli Aalto. 2006. Modelling the population dynamics and the file

availability in a BitTorrent-like P2P system with decreasing peer arrival rate. In Proceedings of
IWSOS, 34–48, Passau, Germany.

316. Peter Sutton, Rhys Arkins, and Bill Segall. 2001. Supporting disconnectedness-transparent
information delivery for mobile and invisible computing. In CCGRID ’01: Proceedings of the
1st international symposium on cluster computing and the grid, 277, Brisbane, Australia: IEEE
Computer Society.

317. Chunqiang Tang, Melissa J. Buco, Rong N. Chang, Sandhya Dwarkadas, Laura Z. Luan,
Edward So, and Christopher Ward. 2005. Low traffic overlay networks with large routing
tables. SIGMETRICS Perform. Eval. Rev. 33(1):14–25.

318. Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. 2003. Peer-to-peer information
retrieval using self-organizing semantic overlay networks. In SIGCOMM ’03: Proceedings
of the 2003 conference on applications, technologies, architectures, and protocols for computer
communications, 175–186, New York: ACM.

319. Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam. 2003. pSearch: Information retrieval
in structured overlays. SIGCOMM Comput. Commun. Rev., 33(1):89–94.

320. Liying Tang and Mark Crovella. 2003. Virtual landmarks for the internet. In IMC ’03: Pro-
ceedings of the 3rd ACM SIGCOMM conference on internet measurement, 143–152, New York:
ACM.

321. Andreas Tanner and Gero Mühl. 2004. A formalisation of message-complete publish/subscribe
systems. Technical Report Rote Reihe, Sep., Berlin University of Technology, Amsterdam, the
Netherlands, October 2004. Brief announcement given at the 18th annual conference on
distributed computing (DISC 2004).

322. Sasu Tarkoma. 2006. Efficient content-based routing, mobility-aware topologies, and temporal subspace
matching. PhD thesis, Department of Computer Science, University of Helsinki. Available at
ethesis.helsinki.fi.

323. Sasu Tarkoma. 2008. Dynamic filter merging and mergeability detection for publish/subscribe.
Pervasive and Mobile Comput. 4(5):681–696.

324. Sasu Tarkoma and Jaakko Kangasharju. 2006. Optimizing content-based routers: Posets and
forests. Distri. Comput. 19(1):62–77.

© 2010 Taylor and Francis Group, LLC

References 233

325. Sasu Tarkoma and Jaakko Kangasharju. 2007. On the cost and safety of handoffs in content
based routing systems. Comp. Net. 51(6):1459–1482.

326. Ye Tian, Di Wu, Guangzhong Sun, and Kam-Wing Ng. 2008. Improving stability for peer-to-peer
multicast overlays by active measurements. J. Syst. Archit. 54(1–2):305–323.

327. Peter Triantafillou and Andreas Economides. 2002. Subscription summaries for scalability and
efficiency in publish/subscribe systems. In J. Bacon, L. Fiege, R. Guerraoui, A. Jacobsen, and
G. Mühl, eds., In Proceedings of the 1st international workshop on distributed event-based systems
(DEBS’02). Vienna, Austria.

328. Peter Triantafillou and Andreas Economides. 2004. Subscription summarization: A new
paradigm for efficient publish/subscribe systems. In ICDCS, 562–571. Tokyo, Japan.

329. Jonathan S. Turner, Patrick Crowley, John DeHart, Amy Freestone, Brandon Heller, Fred Kuhns,
Sailesh Kumar, et al. 2007. Supercharging Planetlab: A high performance, multi-application,
overlay network platform. SIGCOMM Comput. Commun. Rev. 37(4):85–96.

330. UPnP Forum. 2000. UPnP device architecture. http://www.upnp.org/download/UPnPDA10_
20000613.htm,

331. Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. 2003. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21(2):164–206.

332. Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas. 2008. Efficient
reconciliation and flow control for anti-entropy protocols. In LADIS ’08: Proceedings of the 2nd
workshop on large-scale distributed systems and middleware, 1–7, White Plains, NY: ACM.

333. Antonio Virgillito, Roberto Beraldi, and Roberto Baldoni. 2003. On event routing in content-
based publish/subscribe through dynamic networks. In Proceedings of the 9th IEEE workshop on
future trends of distributed computing systems (FTDCS 2003). 322–328: IEEE.

334. Aggelos Vlavianos, Marios Iliofotou, and Michalis Faloutsos. 2006. BiToS: Enhancing BitTorrent
for supporting streaming applications. In 25th IEEE international conference on the IEEE computer
communications, joint conference of the IEEE computer and communications societies (23–29 Apr.).
Barcelona, Catalunya.

335. Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. 2005. CYCLON: Inexpensive
membership management for unstructured P2P overlays. J. Network Syst. Manage. 13(2).

336. Spyros Voulgaris, Etienne Rivire, Anne-Marie Kermarrec, and Maarten Van Steen. 2006. Sub-
2-Sub: Self-organizing content-based publish subscribe for dynamic large scale collaborative
networks. In In IPTPS06: The 5th international workshop on peer-to-peer systems. Santa Barbara, CA.

337. Litwin W. and T. Risch. 1997. LH*g: A high-availability scalable distributed data structure by
record grouping. IEEE Transactions on Knowledge and Data Engineering, 14(4): 923–927.

338. Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. 2000. Publius: A robust, tamper-
evident, censorship-resistant web publishing system. In SSYM’00: Proceedings of the 9th
conference on USENIX security symposium, 5–5, Berkeley, CA: USENIX Association.

339. Michael Walfish, Hari Balakrishnan, and Scott Shenker. 2004. Untangling the web from DNS.
In NSDI’04: Proceedings of the 1st conference on symposium on networked systems design and
implementation, 225–238, San Francisco, CA: USENIX Association.

340. Guohui Wang, Bo Zhang, and T. S. Eugene Ng. 2007. Towards network triangle inequality
violation aware distributed systems. In IMC ’07: Proceedings of the 7th ACM SIGCOMM
conference on internet measurement, 175–188, New York: ACM.

341. Jiajun Wang, Cheng Huang, and Jin Li. 2008. On ISP-friendly rate allocation for peer-assisted
vod. In MM ’08: Proceedings of the 16th ACM international conference on multimedia, 279–288,
New York: ACM.

342. Limin Wang, Vivek Pai, and Larry Peterson. 2002. The effectiveness of request redirection on
CDN robustness. In OSDI ’02: Proceedings of the 5th symposium on operating systems design and
implementation, 345–360, New York: ACM.

343. Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peterson. 2004. Reliability
and security in the CoDeeN content distribution network. In ATEC ’04: Proceedings of the annual
conference on USENIX annual technical conference, 14–14, Berkeley, CA: USENIX Association.

344. Yi-Min Wang, Lili Qiu, Dimitris Achlioptas, Gautam Das, Paul Larson, and Helen J. Wang.
2002. Subscription partitioning and routing in content-based publish/subscribe networks. In
D. Malkhi, ed., Distributed algorithms, vol. 2508/2002 of Lecture notes in computer science, Oct.

© 2010 Taylor and Francis Group, LLC

http://www.upnp.org
http://www.upnp.org

234 References

345. Yi-Min Wang, Lili Qiu, Chad Verbowski, Dimitris Achlioptas, Gautam Das, and Paul Larson.
2004. Summary-based routing for content-based event distribution networks. SIGCOMM
Comput. Commun. Rev. 34(5):59–74.

346. Duncan J. Watts. 1999. Small worlds: the dynamics of networks between order and randomness.
Princeton, NJ: Princeton University Press.

347. A. Whitaker and D. Wetherall. 2002. Forwarding without Loops in Icarus. In Open Architectures
and Network Programming, 63–75.

348. Pawel Winter. 1987. Steiner problem in networks: A survey. Netw. 17(2):129–167.
349. Chuan Wu, Baochun Li, and Shuqiao Zhao. 2007. Magellan: Charting large-scale peer-to-peer

live streaming topologies. In ICDCS ’07: Proceedings of the 27th international conference on
distributed computing systems, 62, Washington, DC: IEEE Computer Society. Toronto, Canada.

350. Jun Xu, Abhishek Kumar, and Xingxing Yu. 2003. On the fundamental tradeoffs between
routing table size and network diameter in peer-to-peer networks. IEEE J. Select. Areas Commun.
22:151–163.

351. Beverly Yang and Hector Garcia-Molina. 2003. Designing a super-peer network. International
conference on data engineering: 49. Banglore, India

352. Xiangying Yang and Gustavo de Veciana. 2004. Service capacity of peer to peer networks. In
Proceedings of IEEE INFOCOM, 2242–2252. Hongkong, China.

353. Xiangying Yang and Gustavo de Veciana. 2006. Performance of peer-to-peer networks: Service
capacity and role of resource sharing policies. Perform. Eval. 63(3):175–194.

354. Xiaowei Yang, David Clark, and Arthur W. Berger. 2007. NIRA: A new inter-domain routing
architecture. IEEE/ACM Trans. Netw. 15(4):775–788.

355. Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham D. Flaxman. 2008. SybilGuard:
Defending against Sybil attacks via social networks. IEEE/ACM Trans. Netw. 16(3):576–589.

356. Y. Yue, C. Lin, and Z. Tan. 2006. Analyzing the performance and fairness of BitTorrent-like
networks using a general fluid model. Comp. Commun. 29(18):3946–3956.

357. Andreas Zeidler and Ludger Fiege. 2003. Mobility support with REBECA. In ICDCS workshops.
Providence, RI.

358. Hui Zhang, Ashish Goel, and Ramesh Govindan. 2003. Incrementally improving lookup
latency in distributed hash table systems. SIGMETRICS Perform. Eval. Rev. 31(1):114–125.

359. Hui Zhang, Ashish Goel, and Ramesh Govindan. 2004. Using the small-world model to
improve Freenet performance. Comput. Netw. 46(4):555–574.

360. Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum. 2005. CoolStreaming/ DONet:
A data-driven overlay network for peer-to-peer live media streaming. In Proc. IEEE INFOCOM,
Mar., Miami, FL.

361. Zhan Zhang and Shigang Chen. 2006. Capacity-aware multicast algorithms on heterogeneous
overlay networks. IEEE Trans. Parallel Distrib. Syst. 17(2):135–147.

362. Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D.
Kubiatowicz. 2004. Tapestry: A resilient global-scale overlay for service deployment. IEEE J.
Select. Areas Commun. 22:41–53.

363. Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. 2002. Tapestry: A fault-tolerant
wide-area application infrastructure. SIGCOMM Comput. Commun. Rev. 32(1):81–81.

364. Dong Zhou, Yuan Chen, Greg Eisenhauer, and Karsten Schwan. 2001. Active brokers and
their runtime deployment in the ECho/JECho distributed event systems. In Active Middleware
Services, 67–72. San Francisco, CA.

365. Shelley Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D. Kubiatowicz.
2001. Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination. In
The 11th international workshop on network and operating systems support for digital audio and video
(NOSSDAV’01), (Jun.), 11–20, Port Jefferson, NY.

366. Shelley Zhuang, Dennis Geels, Ion Stoica, and Randy H. Katz. 2005. On failure detection
algorithms in overlay networks. In INFOCOM, 2112–2123. Miami.

© 2010 Taylor and Francis Group, LLC

	9781439813713
	Overlay Networks
	Contents
	Preface
	About the Author

	Chapter 1.
Introduction
	1.1 Overview
	1.2 Overlay Technology
	1.3 Applications
	1.4 Properties of Data
	1.5 Structure of the Book

	Chapter 2. Network Technologies
	2.1 Networking
	2.2 Firewalls and NATs
	2.3 Naming
	2.4 Addressing
	2.5 Routing
	2.5.1 Overview
	2.5.2 Interdomain
	2.5.3 Border Gateway Protocol
	2.5.4 Current Challenges
	2.5.5 Compact Routing

	2.6 Multicast
	2.6.1 Network-layer Multicast
	2.6.2 Application-layer Multicast
	2.6.3 Chaining TCP Connections for Multicast

	2.7 Network Coordinates
	2.7.1 Vivaldi Centralized Algorithm
	2.7.2 Vivaldi Distributed Algorithm
	2.7.3 Applications
	2.7.4 Triangle Inequality Violation

	2.8 Network Metrics
	2.8.1 Routing Algorithm Invariants
	2.8.2 Convergence
	2.8.3 Shortest Path
	2.8.4 Routing Table Size and Stretch
	2.8.5 Forwarding Load
	2.8.6 Churn
	2.8.7 Other Metrics

	Chapter 3. Properties of Networks and Data
	3.1 Data on the Internet
	3.1.1 Video Delivery
	3.1.2 P2P Traffic
	3.1.3 Trends in Networking

	3.2 Zipf’s Law
	3.2.1 Overview
	3.2.2 Zipf’s Law and the Internet
	3.2.3 Implications for P2P

	3.3 Scale-free Networks
	3.4 Robustness
	3.5 SmallWorlds

	Chapter 4. Unstructured Overlays
	4.1 Overview
	4.2 Early Systems
	4.3 Locating Data
	4.4 Napster
	4.5 Gnutella
	4.5.1 Overview
	4.5.2 Searching the Network
	4.5.3 Efficient Keyword Lists

	4.6 Skype
	4.7 BitTorrent
	4.7.1 Torrents and Swarms
	4.7.2 Networking
	4.7.3 Choking Mechanism
	4.7.4 Antisnubbing
	4.7.5 End Game
	4.7.6 Trackerless Operation
	4.7.7 BitTorrent Vulnerabilities
	4.7.8 Service Capacity
	4.7.9 Fluid Models for Performance Evaluation

	4.8 Cross-ISP BitTorrent
	4.9 Freenet
	4.9.1 Overview
	4.9.2 Bootstrapping
	4.9.3 Identifier keys
	4.9.4 Key-based Routing
	4.9.5 Indirect Files
	4.9.6 API
	4.9.7 Security

	4.10 Comparison

	Chapter 5. Foundations of Structured Overlays
	5.1 Overview
	5.2 Geometries
	5.2.1 Trees
	5.2.2 Hypercubes and Tori
	5.2.3 Butterflies
	5.2.4 de Bruijn graph
	5.2.5 Rings
	5.2.6 XOR Geometry
	5.2.7 Summary

	5.3 Consistent Hashing
	5.4 Distributed Data Structures for Clusters
	5.4.1 Linear Hashing
	5.4.2 SDDS Taxonomy
	5.4.3 LH* Overview
	5.4.4 Ninja

	Chapter 6. Distributed Hash Tables
	6.1 Overview
	6.2 APIs
	6.3 Plaxton’s Algorithm
	6.3.1 Routing
	6.3.2 Performance

	6.4 Chord
	6.4.1 Joining the Network
	6.4.2 Leaving the Network
	6.4.3 Routing
	6.4.4 Performance

	6.5 Pastry
	6.5.1 Joining and Leaving the Network
	6.5.2 Routing
	6.5.3 Performance
	6.5.4 Bamboo

	6.6 Koorde
	6.6.1 Routing
	6.6.2 Performance

	6.7 Tapestry
	6.7.1 Joining and Leaving the Network
	6.7.2 Routing
	6.7.3 Performance

	6.8 Kademlia
	6.8.1 Joining and Leaving the Network
	6.8.2 Routing
	6.8.3 Performance

	6.9 Content Addressable Network
	6.9.1 Joining the Network
	6.9.2 Leaving the Network
	6.9.3 Routing
	6.9.4 Performance

	6.10 Viceroy
	6.10.1 Joining the Network
	6.10.2 Leaving the Network
	6.10.3 Routing
	6.10.4 Performance

	6.11 Skip Graph
	6.12 Comparison
	6.12.1 Geometries
	6.12.2 Routing Function
	6.12.3 Churn
	6.12.4 Asymptotic Trade-offs
	6.12.5 Network Proximity
	6.12.6 Adding Hierarchy to DHTs
	6.12.7 Experimenting with Overlays
	6.12.8 Criticism

	Chapter 7. Probabilistic Algorithms
	7.1 Overview of Bloom Filters
	7.2 Bloom Filters
	7.2.1 False Positive Probability
	7.2.2 Operations
	7.2.3 d-left Counting Bloom Filter
	7.2.4 Compressed Bloom Filter
	7.2.5 Counting Bloom Filters
	7.2.6 Hierarchical Bloom Filters
	7.2.7 Spectral Bloom Filters
	7.2.8 Bloomier Filters
	7.2.9 Approximate State Machines
	7.2.10 Perfect Hashing Scheme
	7.2.11 Summary

	7.3 Bloom Filters in Distributed Computing
	7.3.1 Caching
	7.3.2 P2P Networks
	7.3.3 Packet Routing and Forwarding
	7.3.4 Measurement

	7.4 Gossip Algorithms
	7.4.1 Overview
	7.4.2 Design Considerations
	7.4.3 Basic Models
	7.4.4 Basic Shuffling
	7.4.5 Enhanced Shuffling
	7.4.6 Flow Control and Fairness
	7.4.7 Gossip for Structured Overlays

	Chapter 8. Content-based Networking and Publish/Subscribe
	8.1 Overview
	8.2 DHT-based Data-centric Communications
	8.2.1 Scribe
	8.2.2 Bayeux
	8.2.3 SplitStream
	8.2.4 Overcast
	8.2.5 Meghdoot
	8.2.6 MEDYM
	8.2.7 Internet Indirection Infrastructure
	8.2.8 Data-oriented Network Architecture
	8.2.9 Semantic Search
	8.2.10 Distributed Segment Tree
	8.2.11 Semantic Queries

	8.3 Content-based Routing
	8.4 Router Configurations
	8.4.1 Basic Configuration
	8.4.2 Structured DHT-based Overlays
	8.4.3 Interest Propagation

	8.5 Siena and Routing Structures
	8.5.1 Routing Blocks
	8.5.2 Definitions
	8.5.3 Siena Filters Poset
	8.5.4 Advertisements
	8.5.5 Poset-derived Forest
	8.5.6 Filter Merging

	8.6 Hermes
	8.7 Formal Specification of Content-based Routing Systems
	8.7.1 Valid Routing Configuration
	8.7.2 Weakly Valid Routing Configuration
	8.7.3 Mobility-Safety

	8.8 Pub/sub Mobility

	Chapter 9. Security
	9.1 Overview
	9.2 Attacks and Threats
	9.2.1 Worms
	9.2.2 Sybil Attack
	9.2.3 Eclipse Attack
	9.2.4 File Poisoning
	9.2.5 Man-in-the-Middle Attack
	9.2.6 DoS Attack

	9.3 Securing Data
	9.3.1 Self-Certifying Data
	9.3.2 Merkle Trees
	9.3.3 Information Dispersal
	9.3.4 Secret-sharing Schemes
	9.3.5 Smartcards for Bootstrapping Trust
	9.3.6 Distributed Steganographic File Systems
	9.3.7 Erasure Coding
	9.3.8 Censorship Resistance

	9.4 Security Issues in P2P Networks
	9.4.1 Overview
	9.4.2 Insider Attacks
	9.4.3 Outsider Attacks
	9.4.4 SybilGuard
	9.4.5 Reputation Management with EigenTrust

	9.5 Anonymous Routing
	9.5.1 Mixes
	9.5.2 Onion Routing
	9.5.3 Tor
	9.5.4 P2P Anonymization System
	9.5.5 Censorship-resistant Lookup: Achord
	9.5.6 Crowds
	9.5.7 Hordes
	9.5.8 Mist

	9.6 Security Issues in Pub/Sub Networks
	9.6.1 Hermes
	9.6.2 EventGuard
	9.6.3 QUIP

	Chapter 10. Applications
	10.1 Amazon Dynamo
	10.1.1 Architecture
	10.1.2 Ring Membership
	10.1.3 Partitioning Algorithm
	10.1.4 Replication
	10.1.5 Data Versioning
	10.1.6 Vector Clocks
	10.1.7 Coping with Failures

	10.2 Overlay Video Delivery
	10.2.1 Live Streaming
	10.2.2 Video-on-Demand

	10.3 SIP and P2PSIP
	10.4 CDN Solutions
	10.4.1 Overview
	10.4.2 Akamai
	10.4.3 Limelight
	10.4.4 Coral
	10.4.5 Comparison

	Chapter 11. Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

